EXPERT INSIGHT

_ Modern C++
Programming
Cookbook

Master C++ core language and standard
library features, with over 100 recipes,
updated to C++20

§
§
—
X
=3 \‘i -—

Second Edition

Marius Bancila PCICk'l')

Modern C++ Programming
Cookbook

Second Edition

Master C++ core language and standard library
features, with over 100 recipes, updated to C++20

Marius Bancila

BIRMINGHAM - MUMBAI

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Modern C++ Programming Cookbook
Second Edition

Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded

in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book

is sold without warranty, either express or implied. Neither the author, nor Packt
Publishing or its dealers and distributors, will be held liable for any damages
caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Producer: Ben Renow-Clarke

Acquisition Editor - Peer Reviews: Suresh Jain
Project Editors: Carol Lewis and Tom Jacob
Content Development Editor: Alex Patterson
Copy Editor: Safis Editing

Technical Editor: Saby D'silva

Proofreader: Safis Editing

Indexer: Priyanka Dhadke

Presentation Designer: Sandip Tadge

First published: May 2017
Second Edition: September 2020

Production reference: 1090920

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-80020-898-8

www . packt.com

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

http://www.packt.com

Packt

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos,
as well as industry leading tools to help you plan your personal development and
advance your career. For more information, please visit our website.

Why subscribe?

Spend less time learning and more time coding with practical eBooks and
Videos from over 4,000 industry professionals

* Learn better with Skill Plans built especially for you

* Get a free eBook or video every month

* Fully searchable for easy access to vital information

* Copy and paste, print, and bookmark content
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.Packt.com

and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.Packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

http://packt.com
http://www.Packt.com
http://customercare@packtpub.com
http://www.Packt.com

Contributors

About the author

Marius Bancila is a software engineer with almost two decades of experience

in developing solutions for the industrial and financial sectors. He is the author

of The Modern C++ Challenge and coauthor of Learn C# Programming. He works as

a software architect and is focused on Microsoft technologies, mainly developing
desktop applications with C++ and C#, but not solely. He is passionate about sharing
his technical expertise with others and, for that reason, he has been recognized as

a Microsoft MVP for C++ and later developer technologies since 2006.

T'would like to thank all the people at Packt that worked on this project and
helped to make a better book updated with the latest C++ changes. To Carol,
Alex, Tom, and Saby for their efforts and coordination of the project. And to
my family for their support during the time spent writing this book.

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

About the reviewer

Steve Oualline wrote his first program at age 11. He's been programming ever
since. He has worked at a variety of programming jobs since then.

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost - printed on 2/9/2023 10:14 AMvia . A

use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Table of Contents

Preface xXi
Chapter 1: Learning Modern Core Language Features 1
Using auto whenever possible 2
How to do it... 2
How it works... 3
See also 7
Creating type aliases and alias templates 7
How to do it... 8
How it works... 9
See also 10
Understanding uniform initialization 10
Getting ready 10
How to do it... 11
How it works... 12
There's more... 16
See also 17
Understanding the various forms of non-static member initialization 17
How to do it... 18
How it works... 19
See also 22
Controlling and querying object alignment 22
Getting ready 23
How to do it... 23
How it works... 24
See also 28
Using scoped enumerations 28
How to do it... 28
How it works... 30
See also 32

[il

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

EBSCChost -

Table of Contents

Using override and final for virtual methods
Getting ready
How to do it...
How it works...
See also
Using range-based for loops to iterate on a range
Getting ready
How to do it...
How it works...
See also
Enabling range-based for loops for custom types
Getting ready
How to do it...
How it works...
See also

Using explicit constructors and conversion operators to avoid implicit

conversion
Getting ready
How to do it...
How it works...
See also
Using unnamed namespaces instead of static globals
Getting ready
How to do it...
How it works...
See also
Using inline namespaces for symbol versioning
Getting ready
How to do it...
How it works...
See also
Using structured bindings to handle multi-return values
Getting ready
How to do it...
How it works...
There's more...
See also
Simplifying code with class template argument deduction
How to do it...
How it works...
See also

32
33
33
34
36
36
36
37
38
39
39
40
41
43
44

44
44
44
45
49
49
50
50
51
52
53
53
53
54
56
57
57
57
58
60
62
62
62
63
65

Lii]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

EBSCChost -

Table of Contents

Chapter 2: Working with Numbers and Strings 67
Converting between numeric and string types 68
Getting ready 68
How to do it... 68
How it works... 69
See also 74
Limits and other properties of numeric types 74
Getting ready 74
How to do it... 75
How it works... 76
See also 78
Generating pseudo-random numbers 79
Getting ready 79
How to do it... 79
How it works... 80
See also 86
Initializing all bits of internal state of a pseudo-random
number generator 86
Getting ready 87
How to do it... 87
How it works... 88
See also 88
Creating cooked user-defined literals 88
Getting ready 89
How to do it... 89
How it works... 90
There's more... 94
See also 95
Creating raw user-defined literals 95
Getting ready 95
How to do it... 96
How it works... 98
See also 100
Using raw string literals to avoid escaping characters 101
Getting ready 101
How to do it... 101
How it works... 102
See also 103
Creating a library of string helpers 103
Getting ready 103
How to do it... 104

[iii]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

EBSCChost -

Table of Contents

How it works... 107
See also 110
Verifying the format of a string using regular expressions 110
Getting ready 110
How to do it... 110
How it works... 111
There's more... 116
See also 118
Parsing the content of a string using regular expressions 118
Getting ready 119
How to do it... 119
How it works... 120
See also 123
Replacing the content of a string using regular expressions 124
Getting ready 124
How to do it... 124
How it works... 125
See also 127
Using string_view instead of constant string references 127
Getting ready 128
How to do it... 128
How it works... 128
See also 131
Formatting text with std::format 131
Getting ready 131
How to do it... 132
How it works... 133
See also 138
Using std::format with user-defined types 138
Getting ready 138
How to do it... 139
How it works... 139
See also 142
Chapter 3: Exploring Functions 143
Defaulted and deleted functions 144
Getting started 144
How to do it... 144
How it works... 146
See also 148
Using lambdas with standard algorithms 149
Getting ready 149

[iv]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

EBSCChost -

Table of Contents

How to do it...
How it works...
See also
Using generic and template lambdas
Getting started
How to do it...
How it works...
See also
Writing a recursive lambda
Getting ready
How to do it...
How it works...
See also
Writing a function template with a variable number of arguments
Getting ready
How to do it...
How it works...
See also
Using fold expressions to simplify variadic function templates
Getting ready
How to do it...
How it works...
There's more...
See also
Implementing the higher-order functions map and fold
Getting ready
How to do it...
How it works...
There's more...
See also
Composing functions into a higher-order function
Getting ready
How to do it...
How it works...
There's more...
See also
Uniformly invoking anything callable
Getting ready
How to do it...
How it works...
See also

149
150
154
155
155
155
156
159
160
160
160
161
163
163
163
164
165
168
169
169
170
170
172
173
174
174
174
176
180
182
182
182
182
183
184
186
186
186
187
188
190

[v]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Table of Contents

Chapter 4: Preprocessing and Compilation 191
Conditionally compiling your source code 192
Getting ready 192
How to do it... 192
How it works... 194
See also 196
Using the indirection pattern for preprocessor stringification and
concatenation 196
Getting ready 196
How to do it... 197
How it works... 197
See also 199
Performing compile-time assertion checks with static_assert 199
Getting ready 200
How to do it... 200
How it works... 201
See also 201
Conditionally compiling classes and functions with enable_if 202
Getting ready 202
How to do it... 202
How it works... 204
There's more... 206
See also 208
Selecting branches at compile time with constexpr if 208
Getting ready 208
How to do it... 209
How it works... 211
See also 212
Providing metadata to the compiler with attributes 212
How to do it... 212
How it works... 215
See also 217
Chapter 5: Standard Library Containers, Algorithms,
and lterators 219
Using vector as a default container 220
Getting ready 220
How to do it... 220
How it works... 223

See also 225

[vil

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Table of Contents

Using bitset for fixed-size sequences of bits
Getting ready
How to do it...
How it works...
There's more...
See also
Using vector<bool> for variable-size sequences of bits
Getting ready...
How to do it...
How it works...
There's more...
See also
Using the bit manipulation utilities
Getting ready
How to do it...
How it works...
See also
Finding elements in a range
Getting ready
How to do it...
How it works...
See also
Sorting a range
Getting ready
How to do it...
How it works...
See also
Initializing a range
Getting ready
How to do it...
How it works...
See also
Using set operations on a range
Getting ready
How to do it...
How it works...
See also
Using iterators to insert new elements into a container
Getting ready
How to do it...

225
226
226
228
230
232
232
232
233
233
234
236
237
237
237
239
240
240
240
241
244
245
246
246
246
248
250
250
250
251
252
252
253
253
253
255
258
258
258
258

[vii]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

EBSCChost -

Table of Contents

How it works... 259
There's more... 261
See also 261
Writing your own random-access iterator 261
Getting ready 262
How to do it... 262
How it works... 268
There's more... 269
See also 269
Container access with non-member functions 270
Getting ready 270
How to do it... 270
How it works... 272
There's more... 276
See also 276
Chapter 6: General-Purpose Utilities 277
Expressing time intervals with chrono::duration 278
Getting ready 278
How to do it... 278
How it works... 280
There's more... 282
See also 282
Working with calendars 282
Getting ready 283
How to do it... 283
How it works... 285
There's more... 287
See also 287
Converting times between time zones 287
Getting ready 287
How to do it... 287
How it works... 289
See also 290
Measuring function execution time with a standard clock 290
Getting ready 291
How to do it... 291
How it works... 292
See also 295
Generating hash values for custom types 295
Getting ready 296

[viii]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Table of Contents

How to do it... 296
How it works... 298
See also 299
Using std::any to store any value 299
Getting ready 299
How to do it... 299
How it works... 301
See also 303
Using std::optional to store optional values 303
Getting ready 303
How to do it... 303
How it works... 306
See also 307
Using std::variant as a type-safe union 308
Getting ready 308
How to do it... 308
How it works... 310
There's more... 311
See also 311
Visiting an std::variant 311
Getting ready 311
How to do it... 312
How it works... 315
See also 316
Using std::span for contiguous sequences of objects 316
Getting ready 316
How to do it... 317
How it works... 318
See also 319
Registering a function to be called when a program exits normally 319
Getting ready 320
How to do it... 320
How it works... 321
See also 322
Using type traits to query properties of types 323
Getting ready 323
How to do it... 323
How it works... 325
There's more... 327

See also 327

[ix]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Table of Contents

Writing your own type traits 327
Getting ready 328
How to do it... 328
How it works... 330
See also 331

Using std::conditional to choose between types 331
Getting ready 331
How to do it... 331
How it works... 333
See also 334

Chapter 7: Working with Files and Streams 335

Reading and writing raw data from/to binary files 336
Getting ready 336
How to do it... 336
How it works... 338
There's more... 343
See also 345

Reading and writing objects from/to binary files 345
Getting ready 345
How to do it... 347
How it works... 349
See also 351

Using localized settings for streams 351
Getting ready 351
How to do it... 352
How it works... 354
See also 356

Using I/0 manipulators to control the output of a stream 357
Getting ready 357
How to do it... 357
How it works... 358
See also 365

Using monetary I/O manipulators 365
Getting ready 365
How to do it... 366
How it works... 367
See also 368

Using time I/0 manipulators 368
Getting ready 368
How to do it... 368

[x]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

EBSCChost -

Table of Contents

How it works... 370
See also 372
Working with filesystem paths 372
Getting ready 372
How to do it... 372
How it works... 375
See also 376
Creating, copying, and deleting files and directories 377
Getting ready 377
How to do it... 377
How it works... 379
See also 382
Removing content from a file 382
Getting ready 382
How to do it... 383
How it works... 384
See also 385
Checking the properties of an existing file or directory 385
Getting ready 385
How to do it... 386
How it works... 388
See also 389
Enumerating the content of a directory 390
Getting ready 390
How to do it... 390
How it works... 392
There's more... 394
See also 395
Finding a file 396
Getting ready 396
How to do it... 396
How it works... 397
See also 398
Chapter 8: Leveraging Threading and Concurrency 399
Working with threads 400
Getting ready 400
How to do it... 401
How it works... 403

See also 405

[xi]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Table of Contents

Synchronizing access to shared data with mutexes and locks 405
Getting ready 406
How to do it... 406
How it works... 407
See also 412

Avoiding using recursive mutexes 412
Getting ready 413
How to do it... 413
How it works... 414
See also 415

Handling exceptions from thread functions 415
Getting ready 415
How to do it... 415
How it works... 417
See also 418

Sending notifications between threads 418
Getting ready 419
How to do it... 419
How it works... 420
See also 426

Using promises and futures to return values from threads 426
Getting ready 426
How to do it... 426
How it works... 427
There's more... 429
See also 429

Executing functions asynchronously 429
Getting ready 430
How to do it... 431
How it works... 432
See also 434

Using atomic types 434
Getting ready 434
How to do it... 434
How it works... 437
See also 443

Implementing parallel map and fold with threads 444
Getting ready 444
How to do it... 445

How it works... 449

[xii]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Table of Contents

See also 452
Implementing parallel map and fold with tasks 453
Getting ready 453
How to do it... 453
How it works... 457
There's more... 461
See also 463
Implementing parallel map and fold with standard parallel algorithms 464
Getting ready 464
How to do it... 464
How it works... 465
There's more... 467
See also 469
Using joinable threads and cancellation mechanisms 469
Getting ready 469
How to do it... 469
How it works... 473
See also 474
Using thread synchronization mechanisms 474
Getting ready 475
How to do it... 475
How it works... 478
See also 481
Chapter 9: Robustness and Performance 483
Using exceptions for error handling 484
Getting ready 484
How to do it... 484
How it works... 486
There's more... 489
See also 491
Using noexcept for functions that do not throw exceptions 491
How to do it... 492
How it works... 493
There's more... 495
See also 496
Ensuring constant correctness for a program 496
How to do it... 496
How it works... 497
There's more... 501
See also 501

[xiii]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Table of Contents

Creating compile-time constant expressions 502
Getting ready 502
How to do it... 503
How it works... 504
There's more... 506
See also 507

Creating immediate functions 508
How to do it... 508
How it works... 509
See also 510

Performing correct type casts 510
How to do it... 511
How it works... 513
There's more... 515
See also 516

Using unique_ptr to uniquely own a memory resource 516
Getting ready 516
How to do it... 517
How it works... 519
See also 522

Using shared_ptr to share a memory resource 522
Getting ready 523
How to do it... 523
How it works... 527
See also 529

Implementing move semantics 529
Getting ready 529
How to do it... 531
How it works... 533
There's more... 535
See also 535

Consistent comparison with the operator <=> 535
Getting ready 536
How to do it... 536
How it works... 537
See also 543

Chapter 10: Implementing Patterns and Idioms 545

Avoiding repetitive if...else statements in factory patterns 546
Getting ready 546
How to do it... 547

[xiv]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Table of Contents

How it works... 548
There's more... 548
See also 550
Implementing the pimpl idiom 550
Getting ready 550
How to do it... 552
How it works... 554
There's more... 555
See also 557
Implementing the named parameter idiom 557
Getting ready 558
How to do it... 558
How it works... 561
See also 562
Separating interfaces and implementations with the
non-virtual interface idiom 562
Getting ready 563
How to do it... 563
How it works... 564
See also 567
Handling friendship with the attorney-client idiom 567
Getting ready 568
How to do it... 568
How it works... 570
See also 571
Static polymorphism with the curiously recurring template pattern 571
Getting ready 572
How to do it... 572
How it works... 574
There's more... 575
See also 576
Implementing a thread-safe singleton 576
Getting ready 577
How to do it... 577
How it works... 578
There's more... 579
See also 580
Chapter 11: Exploring Testing Frameworks 581
Getting started with Boost.Test 582
Getting ready 583

[xv]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Table of Contents

How to do it...
How it works...
There's more...
See also
Writing and invoking tests with Boost.Test
Getting ready
How to do it...
How it works...
See also
Asserting with Boost.Test
Getting ready
How to do it...
How it works...
See also
Using fixtures in Boost.Test
Getting ready
How to do it...
How it works...
See also
Controlling outputs with Boost.Test
Getting ready
How to do it...
How it works...
There's more...
See also
Getting started with Google Test
Getting ready
How to do it...
How it works...
There's more...
See also
Writing and invoking tests with Google Test
Getting ready
How to do it...
How it works...
See also
Asserting with Google Test
How to do it...
How it works...
See also

583
584
585
587
587
587
589
592
593
593
594
594
595
597
597
598
599
600
601
601
602
602
603
606
606
606
606
607
607
609
610
610
610
610
611
613
613
614
616
617

printed on 2/9/2023 10:14 AMvia .

[xvi]

Al'l use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Table of Contents

printed on 2/9/2023 10:14 AMvia .

Using test fixtures with Google Test 617
Getting ready 617
How to do it... 618
How it works... 619
See also 620

Controlling output with Google Test 620
Getting ready 621
How to do it... 622
How it works... 623
See also 623

Getting started with Catch2 624
Getting ready 624
How to do it... 624
How it works... 625
There's more... 626
See also 627

Writing and invoking tests with Catch2 627
How to do it... 627
How it works... 630
See also 632

Asserting with Catch2 632
Getting ready 632
How to do it... 633
How it works... 634
See also 637

Controlling output with Catch2 637
Getting ready 638
How to do it... 639
How it works... 641
See also 642

Chapter 12: C++20 Core Features 643

Working with modules 644
Getting ready 644
How to do it... 645
How it works... 648
See also 650

Understanding module partitions 650
Getting ready 651
How to do it... 651
How it works... 654

[xvii]

Al'l use subject to https://ww.ebsco.conlterns-of-use

Table of Contents

There's more... 655
See also 657
Specifying requirements on template arguments with concepts 657
Getting ready 658
How to do it... 658
How it works... 659
There's more... 663
See also 663
Using requires expressions and clauses 663
Getting ready 663
How to do it... 664
How it works... 667
See also 668
Iterating over collections with the ranges library 668
Getting ready 669
How to do it... 669
How it works... 672
There's more... 674
See also 675
Creating your own range view 675
Getting ready 675
How to do it... 675
How it works... 680
See also 681
Creating a coroutine task type for asynchronous computations 681
Getting ready 682
How to do it... 683
How it works... 687
There's more... 691
See also 692
Creating a coroutine generator type for sequences of values 692
Getting ready 692
How to do it... 694
How it works... 698
There's more... 700

See also 700

[xviii]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Table of Contents

Bibliography 701
Websites 701
Articles and books 701

Other Books You May Enjoy 707

Index 711

[xix]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost - printed on 2/9/2023 10:14 AMvia . A

use subject to https://ww.ebsco.conlterns-of-use

Preface

C++ is one of the most popular and most widely used programming languages,
and it has been like that for three decades. Designed with a focus on performance,
efficiency, and flexibility, C++ combines paradigms such as object-oriented,
imperative, generic, and functional programming. C++ is standardized by the
International Organization for Standardization (ISO) and has undergone massive
changes over the last decade. With the standardization of C++11, the language

has entered into a new age, which has been widely referred to as modern C++.
Type inference, move semantics, lambda expressions, smart pointers, uniform
initialization, variadic templates, and many other recent features have changed the
way we write code in C++ to the point that it almost looks like a new programming
language. This change is being further advanced with the release of the C++20
standard that is supposed to happen during 2020. The new standard includes many
new changes to the language, such as modules, concepts, and coroutines, as well as
to the standard library, such as ranges, text formatting, and calendars.

This book addresses many of the new features included in C++11, C++14, C++17,
and the forthcoming C++20. This book is organized in recipes, each covering one
particular language or library feature, or a common problem that developers face
and its typical solution using modern C++. Through more than 130 recipes, you

will learn to master both core language features and the standard libraries, including
those for strings, containers, algorithms, iterators, streams, regular expressions,
threads, filesystem, atomic operations, utilities, and ranges.

This second edition of the book took several months to write, and during this
time the work on the C++20 standard has been completed. However, at the time
of writing this preface, the standard is yet to be approved and will be published
later this year.

[xxi]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Preface

More than 30 new or updated recipes in this book cover C++20 features, including
modules, concepts, coroutines, ranges, threads and synchronization mechanisms,
text formatting, calendars and time zones, immediate functions, the three-way
comparison operator, and the new span class.

All the recipes in the book contain code samples that show how to use a feature

or how to solve a problem. These code samples have been written using Visual
Studio 2019, but have been also compiled using Clang and GCC. Since the support
for various language and library features has been gradually added to all these
compilers, it is recommended that you use the latest version to ensure that all of
them are supported. At the time of writing this preface, the latest versions are GCC
10.1, Clang 12.0 (in progress), and VC++ 2019 version 14.27 (from Visual Studio 2019
version 16.7). Although all these compilers are C++17 complete, the support for
C++20 varies from compiler to compiler. Please refer to https://en.cppreference.
com/w/cpp/compiler_support to check your compiler's support for C++20 features.

Who this book is for

This book is intended for all C++ developers, regardless of their experience level.
The typical reader is an entry- or medium-level C++ developer who wants to master
the language and become a prolific modern C++ developer. The experienced C++
developer will find a good reference for many C++11, C++14, C++17, and C++20
language and library features that may come in handy from time to time. The

book consists of more than 130 recipes that are simple, intermediate, or advanced.
However, they all require prior knowledge of C++, and that includes functions,
classes, templates, namespaces, macros, and others. Therefore, if you are not familiar
with the language, it is recommended that you first read an introductory book to
familiarize yourself with the core aspects, and then proceed with this book.

What this book covers

Chapter 1, Learning Modern Core Language Features, teaches you about modern

core language features, including type inference, uniform initialization, scoped
enumerations, range-based for loops, structured bindings, class template argument
deduction, and others.

Chapter 2, Working with Numbers and Strings, discusses how to convert between
numbers and strings, generate pseudo-random numbers, work with regular
expressions and various types of string, as well as how to format text using the
C++20 text formatting library.

[xxii]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

https://en.cppreference.com/w/cpp/compiler_support
https://en.cppreference.com/w/cpp/compiler_support

Preface

Chapter 3, Exploring Functions, dives into defaulted and deleted functions, variadic
templates, lambda expressions, and higher-order functions.

Chapter 4, Preprocessing and Compilation, takes a look at various aspects of
compilation, from how to perform conditional compilation, to compile-time
assertions, code generation, and hinting the compiler with attributes.

Chapter 5, Standard Library Containers, Algorithms, and Iterators, introduces you to
several standard containers, many algorithms, and teaches you how to write your
own random-access iterator.

Chapter 6, General-Purpose Utilities, dives into the chrono library, including the C++20
calendars and time zones support; the any, optional, variant, and span types; and
type traits.

Chapter 7, Working with Files and Streams, explains how to read and write data to/
from streams, use I/O manipulators to control streams, and explores the filesystem
library.

Chapter 8, Leveraging Threading and Concurrency, teaches you how to work with
threads, mutexes, locks, condition variables, promises, futures, atomic types, as well
as the C++20 latches, barriers, and semaphores.

Chapter 9, Robustness and Performance, focuses on exceptions, constant correctness,
type casts, smart pointers, and move semantics.

Chapter 10, Implementing Patterns and Idioms, covers various useful patterns and
idioms, such as the pimpl idiom, the non-virtual interface idiom, and the curiously
recurring template pattern.

Chapter 11, Exploring Testing Frameworks, gives you a kickstart with three of the most
widely used testing frameworks, Boost.Test, Google Test, and Catch2.

Chapter 12, C++20 Core Features, introduces you to the most important new additions
to the C++20 standard —modules, concepts, coroutines, and ranges.

To get the most out of this book

The code presented in the book is available for download from https://github.com/
PacktPublishing/Modern-Cpp-Cookbook-Second-Edition, although I encourage you
to try writing all the samples by yourself. In order to compile them, you need VC++
2019 16.7 on Windows and GCC 10.1 or Clang 12.0 on Linux and Mac. If you don't
have the latest version of the compiler, or you want to try another compiler, you can
use one that is available online.

[xxiii]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

https://github.com/PacktPublishing/Modern-Cpp-Cookbook-Second-Edition
https://github.com/PacktPublishing/Modern-Cpp-Cookbook-Second-Edition

Preface

Although there are various online platforms that you could use, I recommend
Wandbox, available at https://wandbox.org/, and Compiler Explorer, available
at https://godbolt.org/.

Download the example code files

You can download the example code files for this book from your account at http://
www . packtpub. com. If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at http://www.packtpub.com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the on-screen
instructions.

Ll

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

* WIinRAR / 7-Zip for Windows
* Zipeg / iZip / UnRarX for Mac
» 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Modern-CPP-Programming-Cookbook-Second-Edition. We also have
other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams
used in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781800208988_ColorImages.pdf.

[xxiv]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

https://wandbox.org/
https://godbolt.org/
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com
https://github.com/PacktPublishing/Modern-CPP-Programming-Cookbook-Second-Edition
https://github.com/PacktPublishing/Modern-CPP-Programming-Cookbook-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781800208988_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800208988_ColorImages.pdf

EBSCChost -

Preface

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter
handles. For example: "The geometry module was defined in a file called geometry.
ixx/ .cppm, although any file name would have had the same result."

A block of code is set as follows:

static std::map<
std::string,
std::function<std::unique_ptr<Image>()>> mapping
{
{ "bmp", []() {return std::make_unique<BitmapImage>(); } },
{ "png", [1() {return std::make_unique<PngImage>(); } },
{ "jpg", []() {return std::make_unique<JpgImage>(); } }
s

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are highlighted:

static std::map<
std::string,
std: :function<std: :unique_ptr<Image>()>> mapping
{
{ "bmp", []J() {return std::make_unique<BitmapImage>(); } },
{ "png", [1() {return std::make_unique<PngImage>(); } },
{ "jpg", []() {return std::make_unique<JpgImage>(); } }
s

Any command-line input or output is written as follows:

running thread 140296854550272
running thread 140296846157568

running thread 140296837764864

Bold: Indicates a new term, an important word, or words that you see on the screen,
for example, in menus or dialog boxes, also appear in the text like this. For example:
"Select System info from the Administration panel."

[xxv]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

EBSCChost -

Preface

\/;p’> Warnings or important notes appear like this.

\ 7/
‘/@\‘ Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com, and mention the book's title in the
subject of your message. If you have questions about any aspect of this book, please
email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book we would be grateful
if you would report this to us. Please visit, packtpub.com/support/errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location address
or website name. Please contact us at copyright@packtpub.com with a link to the
material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book,
please visit http://authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and use
your unbiased opinion to make purchase decisions, we at Packt can understand what
you think about our products, and our authors can see your feedback on their book.
Thank you!

For more information about Packt, please visit packtpub.com.

[xxvi]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

http://packtpub.com/support/errata
http://authors.packtpub.com
http://packtpub.com

Learning Modern Core
Language Features

The C++ language has gone through a major transformation in the past decade
with the development and release of C++11 and then, later, with its newer versions:
C++14, C++17, and C++20. These new standards have introduced new concepts,
simplified and extended existing syntax and semantics, and overall transformed the
way we write code. C++11 looks like a new language, and code written using the
new standards is called modern C++ code.

The recipes included in this chapter are as follows:

Using auto whenever possible

Creating type aliases and alias templates

Understanding uniform initialization

Understanding the various forms of non-static member initialization
Controlling and querying object alignment

Using scoped enumerations

Using override and final for virtual methods

Using range-based for loops to iterate on a range

Enabling range-based for loops for custom types

Using explicit constructors and conversion operators to avoid implicit
conversion

Using unnamed namespaces instead of static globals

[11]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Learning Modern Core Language Features

* Using inline namespaces for symbol versioning
* Using structured bindings to handle multi-return values

* Simplifying code with class template argument deduction

Let's start by learning about automatic type deduction.

Using auto whenever possible

Automatic type deduction is one of the most important and widely used features

in modern C++. The new C++ standards have made it possible to use auto as a
placeholder for types in various contexts and let the compiler deduce the actual type.
In C++11, auto can be used for declaring local variables and for the return type of a
function with a trailing return type. In C++14, auto can be used for the return type
of a function without specifying a trailing type and for parameter declarations in
lambda expressions. Future standard versions are likely to expand the use of auto to
even more cases. The use of auto in these contexts has several important benefits, all
of which will be discussed in the How it works... section. Developers should be aware
of them, and prefer auto whenever possible. An actual term was coined for this by
Andrei Alexandrescu and promoted by Herb Sutter —almost always auto (AAA).

How to do it...

Consider using auto as a placeholder for the actual type in the following situations:

* To declare local variables with the form auto name = expression when you
do not want to commit to a specific type:
auto i = 42;
auto d = 42.5;
auto s = "text";
autov = {1, 2, 3 };

e To declare local variables with the auto name = type-id { expression }
form when you need to commit to a specific type:
auto b = new char[10]{ © };
auto sl = std::string {"text"};
auto vl = std::vector<int> { 1, 2, 3 };
auto p = std::make_shared<int>(42);

e To declare named lambda functions, with the form auto name = lambda-
expression, unless the lambda needs to be passed or returned to a function:

auto upper = [](char const c) {return toupper(c); };

[2]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 1

* To declare lambda parameters and return values:

auto add = []J(auto const a, auto const b) {return a + b;};

* To declare a function return type when you don't want to commit to a
specific type:
template <typename F, typename T>
auto apply(F&& f, T value)
{
return f(value);

}

How it works...

The auto specifier is basically a placeholder for an actual type. When using auto, the
compiler deduces the actual type from the following instances:

* From the type of expression used to initialize a variable, when auto is used to
declare variables.

* From the trailing return type or the type of the return expression of a
function, when auto is used as a placeholder for the return type of a function.

In some cases, it is necessary to commit to a specific type. For instance, in the first
example in the previous section, the compiler deduces the type of s to be char const
*. If the intention was to have an std: : string, then the type must be specified
explicitly. Similarly, the type of v was deduced as std: :initializer_list<int>.
However, the intention could be to have an std: :vector<int>. In such cases, the type
must be specified explicitly on the right side of the assignment.

There are some important benefits of using the auto specifier instead of actual types;
the following is a list of, perhaps, the most important ones:

* Itis not possible to leave a variable uninitialized. This is a common mistake
that developers make when declaring variables specifying the actual type.
However, this is not possible with auto, which requires an initialization of
the variable in order to deduce the type.

* Using auto ensures that you always use the correct type and that implicit
conversion will not occur. Consider the following example where we retrieve
the size of a vector to a local variable. In the first case, the type of the variable
is int, though the size() method returns size_t. This means an implicit
conversion from size_t to int will occur. However, using auto for the type
will deduce the correct type; that is, size_t:

auto v = std::vector<int>{ 1, 2, 3 };

[31]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Learning Modern Core Language Features

int sizel = v.size();

auto size2 = v.size();

auto size3 = int{ v.size() };

* Using auto promotes good object-oriented practices, such as preferring
interfaces over implementations. The fewer the number of types specified,
the more generic the code is and more open to future changes, which is a
fundamental principle of object-oriented programming.

* It means less typing and less concern for actual types that we don't care about
anyway. It is very often the case that even though we explicitly specify the
type, we don't actually care about it. A very common case is with iterators,
but there are many more. When you want to iterate over a range, you don't
care about the actual type of the iterator. You are only interested in the
iterator itself; so, using auto saves time used for typing possibly long names
and helps you focus on actual code and not type names. In the following
example, in the first for loop, we explicitly use the type of the iterator. It
is a lot of text to type; the long statements can actually make the code less
readable, and you also need to know the type name that you actually don't
care about. The second loop with the auto specifier looks simpler and saves
you from typing and caring about actual types:

std::map<int, std::string> m;
for (std::map<int, std::string>::const_iterator
it = m.cbegin();

it = m.cend(); ++it)
{ }
for (auto it = m.cbegin(); it != m.cend(); ++it)
{ ¥

* Declaring variables with auto provides a consistent coding style with the
type always in the right-hand side. If you allocate objects dynamically, you
need to write the type both on the left and right side of the assignment, for
example, int* p = new int(42). With auto, the type is specified only once on
the right side.

[4]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 1

However, there are some gotchas when using auto:

* The auto specifier is only a placeholder for the type, not for the const/
volatile and references specifiers. If you need a const/volatile and/or
reference type, then you need to specify them explicitly. In the following
example, foo.get() returns a reference to int; when the variable x is
initialized from the return value, the type deduced by the compiler is int,
not int&. Therefore, any change made to x will not propagate to foo.x_.
In order to do so, we should use auto&:

class foo {
int x_;

public:
foo(int const x = @) :x_ { x } {}
int& get() { return x_; }

¥

foo f(42);

auto x = f.get();

X = 100;

std::cout << f.get() << '\n’';

* Itis not possible to use auto for types that are not moveable:

auto ai = std::atomic<int>(42);

* Itis not possible to use auto for multi-word types, such as long long, long
double, or struct foo. However, in the first case, the possible workarounds
are to use literals or type aliases; as for the second, using struct/class
in that form is only supported in C++ for C compatibility and should be
avoided anyway:

auto 11 = long long{ 42 };

using llong = long long;
auto 12 = 1llong{ 42 };
auto 13 = 42LL;

* If you use the auto specifier but still need to know the type, you can do so in
most IDEs by putting the cursor over a variable, for instance. If you leave the
IDE, however, that is not possible anymore, and the only way to know the
actual type is to deduce it yourself from the initialization expression, which
could mean searching through the code for function return types.

[51]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Learning Modern Core Language Features

The auto can be used to specify the return type from a function. In C++11, this
requires a trailing return type in the function declaration. In C++14, this has been
relaxed, and the type of the return value is deduced by the compiler from the return
expression. If there are multiple return values, they should have the same type:

auto funcl(int const i) -> int
{ return 2*i; }

auto func2(int const i)
{ return 2*i; }

As mentioned earlier, auto does not retain const/volatile and reference qualifiers.
This leads to problems with auto as a placeholder for the return type from a function.
To explain this, let's consider the preceding example with foo.get(). This time,

we have a wrapper function called proxy_get() that takes a reference to a foo,

calls get(), and returns the value returned by get (), which is an int& However,

the compiler will deduce the return type of proxy_get() as being int, not int&.
Trying to assign that value to an int& fails with an error:

class foo

{
int x_;

public:
foo(int const x = @) :x { x } {}
int& get() { return x_; }

s

auto proxy_get(foo& f) { return f.get(); }

auto £ = foo{ 42 };
auto& x = proxy_get(f);

To fix this, we need to actually return auto& However, this is a problem with
templates and perfect forwarding the return type without knowing whether it is
a value or a reference. The solution to this problem in C++14 is decltype(auto),
which will correctly deduce the type:

decltype(auto) proxy_get(foo& f) { return f.get(); }
auto f = foo{ 42 };
decltype(auto) x = proxy_get(f);

[6]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 1

The decltype specifier is used to inspect the declared type of an entity or an
expression. It's mostly useful when declaring types are cumbersome or not possible
at all to declare with the standard notation. Examples of this include declaring
lambda types and types that depend on template parameters.

The last important case where auto can be used is with lambdas. As of C++14,
both lambda return types and lambda parameter types can be auto. Such a lambda
is called a generic lambda because the closure type defined by the lambda has

a templated call operator. The following shows a generic lambda that takes two
auto parameters and returns the result of applying operator+ to the actual types:

auto ladd = [] (auto const a, auto const b) { return a + b; };
struct
{

template<typename T, typename U>

auto operator () (T const a, U const b) const { return a+b; }

¥ L

This lambda can be used to add anything for which the operator+ is defined,
as shown in the following snippet:

ladd(4e, 2);
ladd("forty"s, "two"s);

auto i
auto s

In this example, we used the 1add lambda to add two integers and to concatenate
to std: :string objects (using the C++14 user-defined literal operator ""s).

See also

* Creating type aliases and alias templates to learn about aliases for types

* Understanding uniform initialization to see how brace-initialization works

Creating type aliases and alias templates

In C++, it is possible to create synonyms that can be used instead of a type name.
This is achieved by creating a typedef declaration. This is useful in several cases,
such as creating shorter or more meaningful names for a type or names for
function pointers. However, typedef declarations cannot be used with templates
to create template type aliases. An std: :vector<T», for instance, is not a type
(std::vector<int> is a type), but a sort of family of all types that can be created
when the type placeholder T is replaced with an actual type.

[71

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Learning Modern Core Language Features

In C++11, a type alias is a name for another already declared type, and an alias
template is a name for another already declared template. Both of these types
of aliases are introduced with a new using syntax.

How to do it...
* Create type aliases with the form using identifier = type-id, asin the
following examples:
using byte = unsigned char;
using byte_ptr = unsigned char *;
using array_t = int[10];
using fn = void(byte, double);

void func(byte b, double d) { }

byte b{42};

byte_ptr pb = new byte[10] {0};
array_t a{e,1,2,3,4,5,6,7,8,9};
fn* £ = func;

* Create alias templates with the form template<template-params-list>
identifier = type-id, as in the following examples:

template <class T>
class custom_allocator { 18

template <typename T>
using vec_t = std::vector<T, custom_allocator<T>>;

vec_t<int> vi;
vec_t«std::string> vs;

For consistency and readability, you should do the following:

* Not mix typedef and using declarations when creating aliases

* Prefer the using syntax to create names of function pointer types

[8]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 1

How it works...

A typedef declaration introduces a synonym (an alias, in other words) for a type.

It does not introduce another type (like a class, struct, union, or enum declaration).
Type names introduced with a typedef declaration follow the same hiding rules

as identifier names. They can also be redeclared, but only to refer to the same type
(therefore, you can have valid multiple typedef declarations that introduce the same
type name synonym in a translation unit, as long as it is a synonym for the same
type). The following are typical examples of typedef declarations:

typedef unsigned char byte;
typedef unsigned char * byte_ptr;
typedef int array_t[10];
typedef void(*fn)(byte, double);

template<typename T>
class foo {

typedef T value_type;
s

typedef std::vector<int> vint_t;

A type alias declaration is equivalent to a typedef declaration. It can appear in a
block scope, class scope, or namespace scope. According to C++11 paragraph 7.1.3.2:

"A typedef-name can also be introduced by an alias declaration. The identifier
following the using keyword becomes a typedef-name and the optional attribute-
specifier-seq following the identifier appertains to that typedef-name. It has the same
semantics as if it were introduced by the typedef specifier. In particular, it does not
define a new type and it shall not appear in the type-id."

An alias declaration is, however, more readable and clearer about the actual type
that is aliased when it comes to creating aliases for array types and function pointer
types. In the examples from the How to do it... section, it is easily understandable that
array_t is a name for the type array of 10 integers, while fn is a name for a function
type that takes two parameters of the type byte and double and returns void. This

is also consistent with the syntax for declaring std: : function objects (for example,
std: :function<void(byte, double)> f).

[o]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Learning Modern Core Language Features

It is important to take note of the following things:

* Alias templates cannot be partially or explicitly specialized.

* Alias templates are never deduced by template argument deduction when
deducing a template parameter.

* The type produced when specializing an alias template is not allowed to
directly or indirectly make use of its own type.

The driving purpose of the new syntax is to define alias templates. These are
templates that, when specialized, are equivalent to the result of substituting the
template arguments of the alias template for the template parameters in the type-id.

See also

» Simplifying code with class template arqument deduction to learn how to use class
templates without explicitly specifying template arguments

Understanding uniform initialization

Brace-initialization is a uniform method for initializing data in C++11. For this
reason, it is also called uniform initialization. It is arguably one of the most important
features from C++11 that developers should understand and use. It removes
previous distinctions between initializing fundamental types, aggregate and
non-aggregate types, and arrays and standard containers.

Getting ready

To continue with this recipe, you need to be familiar with direct initialization,
which initializes an object from an explicit set of constructor arguments, and
copy initialization, which initializes an object from another object. The following
is a simple example of both types of initialization:

std::string s1("test");
std::string s2 = "test";

With these in mind, let's explore how to perform uniform initialization.

[10]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 1

How to do it...

To uniformly initialize objects regardless of their type, use the brace-initialization
form {}, which can be used for both direct initialization and copy initialization.
When used with brace-initialization, these are called direct-list and copy-list-
initialization:

T object {other};
T object = {other};

Examples of uniform initialization are as follows:

Standard containers:

std::vector<int> v { 1, 2, 3 };
std::map<int, std::string> m { {1, "one"}, { 2, "two" }};

* Dynamically allocated arrays:
int* arr2 = new int[3]{ 1, 2, 3 };

* Arrays:
int arrl[3] { 1, 2, 3 };

* Built-in types:
int i { 42 };
double d { 1.2 };

* User-defined types:

class foo
{
int a_;
double b_j;
public:
foo():a_(0), b_(0) {}
foo(int a, double b = ©.0):a_(a), b_(b) {}
};

foo f1{};
foo f2{ 42, 1.2 };
foo f3{ 42 };

[11]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Learning Modern Core Language Features

* User-defined POD types:

struct bar { int a_; double b_;};
bar b{ 42, 1.2 };

How it works...

Before C++11, objects required different types of initialization based on their type:

* Fundamental types could be initialized using assignment:

int a = 42;
double b = 1.2;

* C(lass objects could also be initialized using assignment from a single value if
they had a conversion constructor (prior to C++11, a constructor with a single
parameter was called a conversion constructor):

class foo
{
int a_;
public:
foo(int a):a_(a) {}
s
foo fl = 42;

* Non-aggregate classes could be initialized with parentheses (the functional
form) when arguments were provided and only without any parentheses
when default initialization was performed (call to the default constructor).
In the next example, foo is the structure defined in the How to do it... section:

foo f1;

foo f2(42, 1.2);
foo 3(42);

foo f4();

* Aggregate and POD types could be initialized with brace-initialization. In the
following example, bar is the structure defined in the How to do it... section:
bar b = {42, 1.2};
int a[] = {11 2, 3, 4, 5};

[12]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 1

A Plain Old Data (POD) type is a type that is both trivial (has
special members that are compiler-provided or explicitly defaulted
and occupy a contiguous memory area) and has a standard layout
‘ p/ (a class that does not contain language features, such as virtual
\/ functions, which are incompatible with the C language, and all
members have the same access control). The concept of POD types
has been deprecated in C++20 in favor of trivial and standard

layout types.

Apart from the different methods of initializing the data, there are also some
limitations. For instance, the only way to initialize a standard container (apart
from copy constructing) is to first declare an object and then insert elements into
it; std: :vector was an exception because it is possible to assign values from an
array that can be initialized prior using aggregate initialization. On the other hand,
however, dynamically allocated aggregates could not be initialized directly.

All the examples in the How to do it... section use direct initialization, but copy
initialization is also possible with brace-initialization. These two forms, direct

and copy initialization, may be equivalent in most cases, but copy initialization

is less permissive because it does not consider explicit constructors in its implicit
conversion sequence, which must produce an object directly from the initializer,
whereas direct initialization expects an implicit conversion from the initializer to

an argument of the constructor. Dynamically allocated arrays can only be initialized
using direct initialization.

Of the classes shown in the preceding examples, foo is the one class that has

both a default constructor and a constructor with parameters. To use the default
constructor to perform default initialization, we need to use empty braces; that is,
{}. To use the constructor with parameters, we need to provide the values for all
the arguments in braces {}. Unlike non-aggregate types, where default initialization
means invoking the default constructor, for aggregate types, default initialization
means initializing with zeros.

Initialization of standard containers, such as the vector and the map, also shown
previously, is possible because all standard containers have an additional constructor
in C++11 that takes an argument of the type std: :initializer_list<T»>. Thisis
basically a lightweight proxy over an array of elements of the type T const. These
constructors then initialize the internal data from the values in the initializer list.

[13]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Learning Modern Core Language Features

The way initialization using std: :initializer_list works is as follows:

* The compiler resolves the types of the elements in the initialization list
(all the elements must have the same type).

* The compiler creates an array with the elements in the initializer list.

* The compiler creates an std: :initializer_list<T> object to wrap the
previously created array.

* Thestd::initializer_list<T> object is passed as an argument to the
constructor.

An initializer list always takes precedence over other constructors where brace-
initialization is used. If such a constructor exists for a class, it will be called when
brace-initialization is performed:

class foo

{
int a_;
int b_;
public:
foo() :a_(@), b_(8) {}

foo(int a, int b = @) :a_(a), b_(b) {}
foo(std::initializer_list<int> 1) {}

s
foo f{ 1, 2 };

The precedence rule applies to any function, not just constructors. In the following
example, two overloads of the same function exist. Calling the function with an
initializer list resolves to a call to the overload with an std::initializer list:

void func(int const a, int const b, int const c)

{

std::cout << a << b << c << '"\n';

void func(std::initializer list<int> const list)

{

for (auto const & e : list)
std::cout << e << '"\n';

func({ 1,2,3 });

[14]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 1

This, however, has the potential of leading to bugs. Let's take, for example, the

std: :vector type. Among the constructors of the vector, there is one that has a single
argument, representing the initial number of elements to be allocated, and another
one that has an std: :initializer_list as an argument. If the intention is to create

a vector with a preallocated size, using brace-initialization will not work as the
constructor with the std: :initializer list will be the best overload to be called:

std::vector<int> v {5};

The preceding code does not create a vector with five elements, but a vector with one
element with a value of 5. To be able to actually create a vector with five elements,
initialization with the parentheses form must be used:

std::vector<int> v (5);

Another thing to note is that brace-initialization does not allow narrowing
conversion. According to the C++ standard (refer to paragraph 8.5.4 of the standard),
a narrowing conversion is an implicit conversion:

"- From a floating-point type to an integer type.

- From long double to double or float, or from double to float, except where the source
is a constant expression and the actual value after conversion is within the range of
values that can be represented (even if it cannot be represented exactly).

- From an integer type or unscoped enumeration type to a floating-point type, except
where the source is a constant expression and the actual value after conversion will
fit into the target type and will produce the original value when converted to its
original type.

- From an integer type or unscoped enumeration type to an integer type that cannot
represent all the values of the original type, except where the source is a constant
expression and the actual value after conversion will fit into the target type and will
produce the original value when converted to its original type."

The following declarations trigger compiler errors because they require a narrowing
conversion:

int i{ 1.2 };

double d = 47 / 13;
float f1{ d };

[15]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Learning Modern Core Language Features

To fix this error, an explicit conversion must be done:

int i{ static_cast<int>(1.2) };

double d = 47 / 13;
float f1{ static_cast<float>(d) };

A brace-initialization list is not an expression and does not have
‘ , a type. Therefore, decltype cannot be used on a brace-init-list,
a .
and template type deduction cannot deduce the type that matches
a brace-init-list.

Let's consider one more example:

float f2{47/13};

The preceding declaration is, however, correct because an implicit conversion from
int to float exists. The expression 47/13 is first evaluated to integer value 3, which
is then assigned to the variable f2 of the type float.

There's more...

The following example shows several examples of direct-list-initialization and
copy-list-initialization. In C++11, the deduced type of all these expressions is
std::initializer_list<int>:

auto a = {42};
auto b {42};
auto c = {4, 2};
auto d {4, 2};

C++17 has changed the rules for list initialization, differentiating between the direct-
and copy-list-initialization. The new rules for type deduction are as follows:

* For copy-list-initialization, auto deduction will deduce an std: :initializer_
1list<T> if all the elements in the list have the same type, or be ill-formed.

e For direct-list-initialization, auto deduction will deduce a T if the list has
a single element, or be ill-formed if there is more than one element.

[16]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 1

Based on these new rules, the previous examples would change as follows
(the deduced type is mentioned in comments):

auto a = {42};
auto b {42};
auto c = {4, 2};
auto d {4, 2};

In this case, a and c are deduced as std::initializer list<int>, b is deduced as an
int, and d, which uses direct initialization and has more than one value in the brace-
init-list, triggers a compiler error.

See also

* Using auto whenever possible to understand how automatic type deduction
works in C++

* Understanding the various forms of non-static member initialization to learn how
to best perform initialization of class members

Understanding the various forms
of non-static member initialization

Constructors are places where non-static class member initialization is done. Many
developers prefer assignments in the constructor body. Aside from the several
exceptional cases when that is actually necessary, initialization of non-static
members should be done in the constructor's initializer list or, as of C++11, using
default member initialization when they are declared in the class. Prior to C++11,
constants and non-constant non-static data members of a class had to be initialized
in the constructor. Initialization on declaration in a class was only possible for static
constants. As we will see here, this limitation was removed in C++11, which allows
the initialization of non-statics in the class declaration. This initialization is called
default member initialization and is explained in the following sections.

This recipe will explore the ways non-static member initialization should be done.
Using the appropriate initialization method for each member leads not only to more
efficient code, but also to better organized and more readable code.

[17]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Learning Modern Core Language Features

How to do it...

To initialize non-static members of a class, you should:

Use default member initialization for constants, both static and non-static
(see [1] and [2] in the following code).

Use default member initialization to provide default values for members
of classes with multiple constructors that would use a common initializer
for those members (see [3] and [4] in the following code).

Use the constructor initializer list to initialize members that don't have
default values, but depend on constructor parameters (see [5] and [6] in the
following code).

Use assignment in constructors when the other options are not possible
(examples include initializing data members with the pointer this, checking
constructor parameter values, and throwing exceptions prior to initializing
members with those values or self-references of two non-static data
members).

The following example shows these forms of initialization:

struct Control

{

const int DefaultHeight = 14;

const int DefaultWidth

TextVerticalAligment valign
TextHorizontalAligment halign

80;

TextVerticalAligment::Middle;
TextHorizontalAligment: :Left;

std::string text;

Control(std::string const & t) : text(t)

1}

Control(std::string const & t,

%

TextVerticalAligment const va,

TextHorizontalAligment const ha):

text(t), valign(va), halign(ha)
{}

[18]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Chapter 1

How it works...

Non-static data members are supposed to be initialized in the constructor's initializer
list, as shown in the following example:

struct Point
{
double X, Y;
Point(double const x = 0.0, double const y = 0.0) : X(x), Y(y) {}

1

Many developers, however, do not use the initializer list, but prefer assignments in
the constructor's body, or even mix assignments and the initializer list. That could
be for several reasons — for larger classes with many members, the constructor
assignments may look easier to read than long initializer lists, perhaps split on many
lines, or it could be because they are familiar with other programming languages
that don't have an initializer list. It also could also happen, unfortunately, for various
reasons they don't even know about it.

It is important to note that the order in which non-static data
members are initialized is the order in which they were declared
‘ / in the class definition, and not the order of their initialization in a
\p/ constructor initializer list. On the other hand, the order in which
non-static data members are destroyed is the reversed order of
construction.

Using assignments in the constructor is not efficient, as this can create temporary
objects that are later discarded. If not initialized in the initializer list, non-static
members are initialized via their default constructor and then, when assigned a
value in the constructor's body, the assignment operator is invoked. This can lead to
inefficient work if the default constructor allocates a resource (such as memory or a
file) and that has to be deallocated and reallocated in the assignment operator. This is
exemplified in the following snippet:

struct foo

{
foo()
{ std::cout << "default constructor\n"; }
foo(std::string const & text)
{ std::cout << "constructor '"
foo(foo const & other)
{ std::cout << "copy constructor\n"; }

<< text << "\n"; }

[19]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Learning Modern Core Language Features

foo(foo&& other)
{ std::cout << "move constructor\n"; };
foo& operator=(foo const & other)
{ std::cout << "assignment\n"; return *this; }
foo& operator=(foo&& other)
{ std::cout << "move assignment\n"; return *this;}
~foo()
{ std::cout << "destructor\n"; }
s
struct bar
{
foo f;

bar(foo const & value)

{
f = value;
}
s
foo f;
bar b(f);

The preceding code produces the following output, showing how the data member f
is first default initialized and then assigned a new value:

default constructor
default constructor

assignment
destructor
destructor

Changing the initialization from the assignment in the constructor body to the
initializer list replaces the calls to the default constructor, plus the assignment
operator, with a call to the copy constructor:

bar(foo const & value) : f(value) { }
Adding the preceding line of code produces the following output:

default constructor
copy constructor

destructor
destructor

[20]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Chapter 1

For those reasons, at least for types other than the built-in types (such as bool, char,
int, float, double, or pointers), you should prefer the constructor initializer list.
However, to be consistent with your initialization style, you should always prefer the
constructor initializer list when possible. There are several situations when using the
initializer list is not possible; these include the following cases (but the list could be
expanded for other cases):

* If a member has to be initialized with a pointer or reference to the object
that contains it, using the this pointer in the initialization list may trigger a
warning with some compilers that it is used before the object is constructed.

* If you have two data members that must contain references to each other.

* If you want to test an input parameter and throw an exception before
initializing a non-static data member with the value of the parameter.

Starting with C++11, non-static data members can be initialized when declared in
the class. This is called default member initialization because it is supposed to represent
initialization with default values. Default member initialization is intended for
constants and for members that are not initialized based on constructor parameters
(in other words, members whose value does not depend on the way the object is
constructed):

enum class TextFlow { LeftToRight, RightToLeft };

struct Control

{
const int DefaultHeight = 20;
const int DefaultWidth = 100;

TextFlow textFlow = TextFlow::LeftToRight;
std::string text;

Control(std::string t) : text(t)
{}
s

In the preceding example, DefaultHeight and DefaultWidth are both constants;
therefore, the values do not depend on the way the object is constructed, so they

are initialized when declared. The textFlow object is a non-constant non-static

data member whose value also does not depend on the way the object is initialized
(it could be changed via another member function); therefore, it is also initialized
using default member initialization when it is declared. text, on the other hand, is
also a non-constant non-static data member, but its initial value depends on the way
the object is constructed.

[21]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Learning Modern Core Language Features

Therefore, it is initialized in the constructor's initializer list using a value passed
as an argument to the constructor.

If a data member is initialized both with the default member initialization and
constructor initializer list, the latter takes precedence and the default value is
discarded. To exemplify this, let's again consider the foo class mentioned earlier
and the following bar class, which uses it:

struct bar

{
foo f{"default value"};

bar() : f{"constructor initializer"}

{
}
I

bar b;

The output differs, in this case, as follows:

constructor 'constructor initializer'

destructor

The reason for the different behavior is that the value from the default initializer list
is discarded, and the object is not initialized twice.

See also

* Understanding uniform initialization to see how brace-initialization works

Controlling and querying object
alignment

C++11 provides standardized methods for specifying and querying the alignment
requirements of a type (something that was previously possible only through
compiler-specific methods). Controlling the alignment is important in order to
boost performance on different processors and enable the use of some instructions
that only work with data on particular alignments.

[22]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 1

For example, Intel Streaming SIMD Extensions (SSE) and Intel SSE2, which are

a set of processor instructions that can greatly increase performance when the same
operations are to be applied on multiple data objects, require 16 bytes of alignment
of data. On the other hand, for Intel Advanced Vector Extensions (or Intel

AVX), which expands most integer processor commands to 256 bits, it is highly
recommended to use 32 bytes alignment. This recipe explores the alignas specifier
for controlling the alignment requirements and the alignof operator, which retrieves
the alignment requirements of a type.

Getting ready

You should be familiar with what data alignment is and the way the compiler
performs default data alignment. However, basic information about the latter
is provided in the How it works... section.

How to do it...

* To control the alignment of a type (both at the class level or data member
level) or an object, use the alignas specifier:

struct alignas(4) foo
{

char a;
char b;
3
struct bar

{
alignas(2) char a;
alignas(8) int b;
3
alignas(8) int a;
alignas(256) long b[4];

* To query the alignment of a type, use the alignof operator:

auto align = alignof(foo);

[23]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Learning Modern Core Language Features

How it works...

Processors do not access memory one byte at a time, but in larger chunks of powers
of two (2, 4, 8,16, 32, and so on). Owing to this, it is important that compilers align
data in memory so that it can be easily accessed by the processor. Should this data be
misaligned, the compiler has to do extra work to access data; it has to read multiple
chunks of data, shift and discard unnecessary bytes, and combine the rest.

C++ compilers align variables based on the size of their data type. The standard
only specifies the sizes of char, signed char, unsigned char, char8_t, and std: :byte,
which must be 1. It also requires that the size of short must be at least 16 bits, the
size of long must be at least 32 bits, and that the size of long long must be at least
64 bits. It also requires that 1 == sizeof(char) <= sizeof(short) <= sizeof(int) <=
sizeof(long) <= sizeof(long long). Therefore, the size of most types are compiler-
specific and may depend on the platform. Typically, these are 1 byte for bool and
char, 2 bytes for short, 4 bytes for int, long, and float, 8 bytes for double and long
long, and so on. When it comes to structures or unions, the alignment must match
the size of the largest member in order to avoid performance issues. To exemplify
this, let's consider the following data structures:

struct fool

{

char a;

%

struct foo2
{
char a;
char b;

%

struct foo3
{
char a;
int b;
s

fool and foo2 are different sizes, but the alignment is the same — that is, 1 —because
all data members are of the type char, which has a size of 1 byte. In the structure
foo3, the second member is an integer, whose size is 4. As a result, the alignment

of members of this structure is done at addresses that are multiples of 4. To achieve
this, the compiler introduces padding bytes.

[24]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 1

The structure foo3 is actually transformed into the following;:

struct foo3_

{
char a;
char _pado[3];
int b;

s

Similarly, the following structure has a size of 32 bytes and an alignment of §; that

is because the largest member is a double whose size is 8. This structure, however,
requires padding in several places to make sure that all the members can be accessed
at addresses that are multiples of 8:

struct foo4
{
int a;
char b;
float c;
double d;
bool e;

¥
The equivalent structure that's created by the compiler is as follows:

struct foo4_
{
int a;
char b;
char _pado[3];
float c;
char _padi[4];
double d;
bool e;
char _pad2[7];

1

In C++11, specifying the alignment of an object or type is done using the alignas
specifier. This can take either an expression (an integral constant expression that
evaluates to @ or a valid value for an alignment), a type-id, or a parameter pack.
The alignas specifier can be applied to the declaration of a variable or a class data
member that does not represent a bit field, or to the declaration of a class, union, or
enumeration.

[25]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Learning Modern Core Language Features

The type or object on which an alignas specification is applied will have the
alignment requirement equal to the largest, greater than zero, expression of
all alignas specifications used in the declaration.

There are several restrictions when using the alignas specifier:

* The only valid alignments are the powers of two (1, 2, 4, 8, 16, 32, and so on).
Any other values are illegal, and the program is considered ill-formed; that
doesn't necessarily have to produce an error, as the compiler may choose
to ignore the specification.

* Analignment of 0 is always ignored.

* If the largest alignas on a declaration is smaller than the natural alignment
without any alignas specifier, then the program is also considered ill-formed.

In the following example, the alignas specifier has been applied to a class
declaration. The natural alignment without the alignas specifier would have
been 1, but with alignas(4), it becomes 4:

struct alignas(4) foo
{

char a;

char b;

¥
In other words, the compiler transforms the preceding class into the following:

struct foo
{

char a;

char b;

char _pado[2];
3

The alignas specifier can be applied both to the class declaration and the member
data declarations. In this case, the strictest (that is, largest) value wins. In the
following example, member a has a natural size of 1 and requires an alignment of
2; member b has a natural size of 4 and requires an alignment of 8, so the strictest
alignment would be 8. The alignment requirement of the entire class is 4, which is
weaker (that is, smaller) than the strictest required alignment and therefore it will
be ignored, though the compiler will produce a warning;:

struct alignas(4) foo
{

alignas(2) char a;

[26]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 1

alignas(8) int b;
}s

The result is a structure that looks like this:

struct foo
{
char a;
char _pado[7];
int b;
char _padi[4];
¥

The alignas specifier can also be applied to variables. In the following example,
variable a, which is an integer, is required to be placed in memory at a multiple

of 8. The next variable, the array of 4 longs, is required to be placed in memory at

a multiple of 256. As a result, the compiler will introduce up to 244 bytes of padding
between the two variables (depending on where in memory, at an address multiple
of 8, variable a is located):

alignas(8) int a;
alignas(256) long b[4];

printf("%p\n", &a);
printf("%p\n", &b);

Looking at the addresses, we can see that the address of a is indeed a multiple of 8,
and that the address of b is a multiple of 256 (hexadecimal 100).

To query the alignment of a type, we use the alignof operator. Unlike sizeof, this
operator can only be applied to type-ids, and not to variables or class data members.
The types it can be applied to can be complete types, an array type, or a reference
type. For arrays, the value that's returned is the alignment of the element type; for
references, the value that's returned is the alignment of the referenced type. Here
are several examples:

Expression Evaluation

alignof(char) 1, because the natural alignment of char is 1.
alignof(int) 4, because the natural alignment of int is 4.
alignof(int*) 4 on 32-bit, 8 on 64-bit, the alignment for pointers.

alignof(int[4]) 4, because the natural alignment of the element type is 4.

8, because the specified alignment for the class foo, which is the

alignof(foot) referred type (as shown in the previous example), was 8.

[27]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Learning Modern Core Language Features

The alignas specifier is useful if you wish to force an alignment for a data type
(taking into consideration the restriction mentioned previously) so that variables of
that type can be accessed and copied efficiently. This means optimizing CPU reads
and writes and avoiding unnecessary invalidation from cache lines. This can be
highly important in some categories of applications where performance is key, such
as games or trading applications. On the other hand, the alignof operator retries the
minimum alighment requirement of a specified type.

See also

* Creating type aliases and alias templates to learn about aliases for types

Using scoped enumerations

Enumeration is a basic type in C++ that defines a collection of values, always of
an integral underlying type. Their named values, which are constant, are called
enumerators. Enumerations declared with the keyword enum are called unscoped
enumerations, while enumerations declared with enum class or enum struct are
called scoped enumerations. The latter ones were introduced in C++11 and are
intended to solve several problems with unscoped enumerations, which are
explained in this recipe.

How to do it...

When working with enumerations, you should:

* Prefer to use scoped enumerations instead of unscoped ones

* Declare scoped enumerations using enum class or enum struct:

enum class Status { Unknown, Created, Connected };
Status s = Status::Created;

/ The enum class and enum struct declarations are equivalent,
\/§n> and throughout this recipe and the rest of this book, we will use

enum class.

[28]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 1

Because scope enumerations are restricted namespaces, the C++20 standard allows
us to associate them with a using directive. You can do the following;:

* Introduce a scoped enumeration identifier in the local scope with a using
directive, as follows:

int main()

{

using Status::Unknown;
Status s = Unknown;

}

* Introduce all the identifiers of a scoped enumeration in the local scope with
a using directive, as follows:

struct foo

{

enum class Status { Unknown, Created, Connected };

using enum Status;

1

foo::Status s = foo::Created;

e Useausing enum directive to introduce the enum identifiers in a switch
statement to simplify your code:

void process(Status const s)

{
switch (s)
{
using enum Status;
case Unknown: break;
case Created: break;
case Connected: break;
}
b
[29]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Learning Modern Core Language Features

How it works...

Unscoped enumerations have several issues that create problems for developers:

* They export their enumerators to the surrounding scope (for which reason,
they are called unscoped enumerations), and that has the following two
drawbacks:

a. It can lead to name clashes if two enumerations in the same
namespace have enumerators with the same name, and

b. It's not possible to use an enumerator using its fully qualified name:

enum Status {Unknown, Created, Connected};
enum Codes {OK, Failure, Unknown};
auto status = Status::Created;

* Prior to C++ 11, they could not specify the underlying type, which is
required to be an integral type. This type must not be larger than int, unless
the enumerator value cannot fit a signed or unsigned integer. Owing to this,
forward declaration of enumerations was not possible. The reason for this
was that the size of the enumeration was not known. This was because the
underlying type was not known until the values of the enumerators were
defined so that the compiler could pick the appropriate integer type. This
has been fixed in C++11.

* Values of enumerators implicitly convert to int. This means you can
intentionally or accidentally mix enumerations that have a certain meaning
and integers (which may not even be related to the meaning of the
enumeration) and the compiler will not be able to warn you:

enum Codes { OK, Failure };
void include_offset(int pixels) { }
include_offset(Failure);

The scoped enumerations are basically strongly typed enumerations that behave
differently than the unscoped enumerations:

* They do not export their enumerators to the surrounding scope. The two
enumerations shown earlier would change to the following, no longer
generating a name collision and being possible to fully qualify the names
of the enumerators:

enum class Status { Unknown, Created, Connected };
enum class Codes { OK, Failure, Unknown };
Codes code = Codes::Unknown;

[30]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 1

* You can specify the underlying type. The same rules for underlying types of
unscoped enumerations apply to scoped enumerations too, except that the
user can explicitly specify the underlying type. This also solves the problem
with forward declarations since the underlying type can be known before the
definition is available:

enum class Codes : unsigned int;
void print_code(Codes const code) {}

enum class Codes : unsigned int

{

OK = 0,

Failure = 1,

Unknown = OxFFFF@000U
s

* Values of scoped enumerations no longer convert implicitly to int. Assigning
the value of an enum class to an integer variable would trigger a compiler
error unless an explicit cast is specified:

Codes cl1l = Codes::0K;
int c2 = Codes::Failure;
int ¢3 = static_cast<int>(Codes::Failure);

However, the scoped enumerations have a drawback: they are restricted
namespaces. They do not export the identifiers in the outer scope, which can be
inconvenient at times. For instance, if you are writing a switch and you need to
repeat the enumeration name for each case label, as in the following example:

std::string view to_string(Status const s)

{
switch (s)
{
case Status::Unknown: return "Unknown";
case Status::Created: return "Created";
case Status::Connected: return "Connected";
}
by

In C++20, this can be simplified with the help of a using directive with the name
of the scoped enumeration. The preceding code can be simplified as follows:

[31]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Learning Modern Core Language Features

std::string_view to_string(Status const s)

{
switch (s)
{
using enum Status;
case Unknown: return "Unknown";
case Created: return "Created";
case Connected: return "Connected";
}
by

The effect of this using directive is that all the enumerator identifiers are introduced
in the local scope, making it possible to refer to them with the unqualified form. It is
also possible to bring only a particular enum identifier to the local scope with a using
directive with the qualified identifier name, such as using Status: :Connected.

See also

* Creating compile-time constant expressions in Chapter 9, Robustness and
Performance to learn how to work with compile-time constants

Using override and final for virtual
methods

Unlike other similar programming languages, C++ does not have a specific syntax
for declaring interfaces (which are basically classes with pure virtual methods only)
and also has some deficiencies related to how virtual methods are declared. In
C++, the virtual methods are introduced with the virtual keyword. However, the
keyword virtual is optional for declaring overrides in derived classes, which can
lead to confusion when dealing with large classes or hierarchies. You may need to
navigate throughout the hierarchy up to the base to figure out whether a function is
virtual or not. On the other hand, sometimes, it is useful to make sure that a virtual
function or even a derived class can no longer be overridden or derived further. In
this recipe, we will see how to use the C++11 special identifiers override and final
to declare virtual functions or classes.

[32]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 1

Getting ready

You should be familiar with inheritance and polymorphism in C++ and concepts
such as abstract classes, pure specifiers, virtual, and overridden methods.

How to do it...

To ensure the correct declaration of virtual methods both in base and derived classes,
but also that you increase readability, do the following:

* DPrefer to use the virtual keyword when declaring virtual functions
in derived classes that are supposed to override virtual functions from
a base class.

* Always use the override special identifier after the declarator part
of a virtual function's declaration or definition:

class Base

{

virtual void foo() = 0;
virtual void bar() {}
virtual void foobar() = 0;

};
void Base::foobar() {}

class Derivedl : public Base

{

virtual void foo() override = 0;
virtual void bar() override {}
virtual void foobar() override {}

};

class Derived2 : public Derivedl

{

virtual void foo() override {}

%

[33]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Learning Modern Core Language Features

return type.

\/‘/ The declarator is the part of the type of a function that excludes the

To ensure that functions cannot be overridden further or that classes cannot
be derived any more, use the final special identifier:

* After the declarator part of a virtual function declaration or definition
to prevent further overrides in a derived class:

class Derived2 : public Derivedl

{
virtual void foo() final {}

1

* After the name of a class in the declaration of the class to prevent further
derivations of the class:

class Derived4 final : public Derivedl

{

virtual void foo() override {}

1

How it works...

The way override works is very simple; in a virtual function declaration or
definition, it ensures that the function is actually overriding a base class function;
otherwise, the compiler will trigger an error.

It should be noted that both the override and final keywords are special identifiers
that have a meaning only in a member function declaration or definition. They are
not reserved keywords and can still be used elsewhere in a program as user-defined
identifiers.

Using the override special identifier helps the compiler detect situations where
a virtual method does not override another one, as shown in the following example:

class Base

{

public:
virtual void foo() {}
virtual void bar() {}

¥

[34]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 1

class Derivedl : public Base

{
public:
void foo() override {}

virtual void bar(char const c) override {}

%

Without the presence of the override specifier, the virtual bar(char const) method
of the Derivedl class would not be an overridden method, but an overload of the
bar() from Base.

The other special identifier, final, is used in a member function declaration or
definition to indicate that the function is virtual and cannot be overridden in

a derived class. If a derived class attempts to override the virtual function, the
compiler triggers an error:

class Derived2 : public Derivedl

{
virtual void foo() final {}

1

class Derived3 : public Derived2

{

virtual void foo() override {}

%

The final specifier can also be used in a class declaration to indicate that it cannot be
derived:

class Derived4 final : public Derivedl

{

virtual void foo() override {}
}s
class Derived5 : public Derived4
{
¥

[35]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Learning Modern Core Language Features

Since both override and final have this special meaning when used in the defined
context and are not, in fact, reserved keywords, you can still use them anywhere else
in the C++ code. This ensured that existing code written before C++11 did not break
because of the use of these names for identifiers:

class foo

{
int final = ©;
void override() {}

};

Although the recommendation given earlier suggesting using both virtual and
override in the declaration of an overridden virtual method, the virtual keyword is
optional, and can be omitted to shorten the declaration. The presence of the override
specifier should be enough to indicate to the reader that the method is virtual. This is
rather a matter of personal preference and does not affect the semantics.

See also

* Static polymorphism with the curiously recurring template pattern in Chapter 10,
Implementing Patterns and Idioms to learn how the CRTP pattern helps with
implementing polymorphism at compile time

Using range-based for loops to iterate
on a range

Many programming languages support a variant of a for loop called for each; that
is, repeating a group of statements over the elements of a collection. C++ did not
have core language support for this until C++11. The closest feature was the general-
purpose algorithm from the standard library called std: : for_each, which applies a
function to all the elements in a range. C++11 brought language support for for each
that's actually called range-based for loops. The new C++17 standard provides several
improvements for the original language feature.

Getting ready

In C++11, a range-based for loop has the following general syntax:

for (range_declaration : range_expression) loop_statement

[36]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 1

To exemplify the various ways of using range-based for loops, we will use the
following functions, which return sequences of elements:

std::vector<int> getRates()
{

return std::vector<int> {1, 1, 2, 3, 5, 8, 13};
}

std::multimap<int, bool> getRates2()
{
return std::multimap<int, bool> {
{ 1, true },
, true },
false },
true },
, true },
, false },
13, true }

N e e e
00 Ul W N B
S O

1
}

In the next section, we'll look at the various ways we can use range-based for loops.

How to do it...

Range-based for loops can be used in various ways:

* By committing to a specific type for the elements of the sequence:

auto rates = getRates();

for (int rate : rates)
std::cout << rate << '\n';

for (int& rate : rates)
rate *= 2;

* By not specifying a type and letting the compiler deduce it:

for (auto&& rate : getRates())
std::cout << rate << '\n’;

for (auto & rate : rates)
rate *= 2;

for (auto const & rate : rates)
std::cout << rate << '\n’;

[37]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Learning Modern Core Language Features

* By using structured bindings and decomposition declaration in C++17:

for (auto&& [rate, flag] : getRates2())
std::cout << rate << '\n';

How it works...

The expression for the range-based for loops shown earlier in the How to do it...
section is basically syntactic sugar as the compiler transforms it into something
else. Before C++17, the code generated by the compiler used to be the following:

{
auto && __range = range_expression;
for (auto __begin = begin_expr, __end = end_expr;
__begin != __end; ++__begin) {
range_declaration = *__ begin;
loop_statement
}
}

What begin_expr and end_expr are in this code depends on the type of the range:

* For C-like arrays: __range and __range + __bound (where __bound is the
number of elements in the array).

* For a class type with begin and end members (regardless of their type and
accessibility): __range.begin() and __range.end().

* For others, it is begin(__range) and end(__range), which are determined
via argument-dependent lookup.

It is important to note that if a class contains any members (function, data member,
or enumerators) called begin or end, regardless of their type and accessibility, they

will be picked for begin_expr and end_expr. Therefore, such a class type cannot be

used in range-based for loops.

In C++17, the code generated by the compiler is slightly different:
{

auto && __range = range_expression;
auto _ begin = begin_expr;
auto __end = end_expr;

[38]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 1

for (; __begin != __end; ++__begin) {
range_declaration = *__ begin;
loop_statement
}
}

The new standard has removed the constraint that the begin expression and the end
expression must be the same type. The end expression does not need to be an actual
iterator, but it has to be able to be compared for inequality with an iterator. A benefit
of this is that the range can be delimited by a predicate. On the other hand, the end
expression is only evaluated once, and not every time the loop is iterated, which
could potentially increase performance.

See also

* Enabling range-based for loops for custom types to see how to make it possible for
user-defined types to be used with range-based for loops

* [terating over collections with the ranges library in Chapter 12, C++20 Core
Features, to learn about the fundamentals of the C++20 ranges library

* Creating your own range view in Chapter 12, C++20 Core Features, to see how
to extend the C++20 range library's capabilities with user-defined range
adaptors

Enabling range-based for loops for
custom types

As we saw in the preceding recipe, range-based for loops, known as for each in
other programming languages, allow you to iterate over the elements of a range,
providing a simplified syntax over the standard for loops and making the code
more readable in many situations. However, range-based for loops do not work out
of the box with any type representing a range, but require the presence of a begin()
and end() function (for non-array types) either as a member or free function. In

this recipe, we will learn how to enable a custom type to be used in range-based

for loops.

[39]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Learning Modern Core Language Features

Getting ready

It is recommended that you read the Using range-based for loops to iterate on a range
recipe before continuing with this one if you need to understand how range-based
for loops work, as well as what code the compiler generates for such a loop.

To show how we can enable range-based for loops for custom types representing
sequences, we will use the following implementation of a simple array:

template <typename T, size_t const Size>
class dummy_array

{
T data[Size] = {};

public:
T const & GetAt(size_t const index) const
{
if (index < Size) return data[index];
throw std::out_of _range("index out of range");

}
void SetAt(size_t const index, T const & value)
{
if (index < Size) data[index] = value;
else throw std::out_of_range("index out of range");
}

size_t GetSize() const { return Size; }

¥
The purpose of this recipe is to enable writing code like the following:

dummy_array<int, 3> arr;
arr.SetAt(0, 1);
arr.SetAt(1, 2);
arr.SetAt(2, 3);

for(auto&& e : arr)

{

std::cout << e << '\n’;

}

The steps necessary to make all this possible are described in detail in the following
section.

[40]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 1

How to do it...

To enable a custom type to be used in range-based for loops, you need to do the
following:

* Create mutable and constant iterators for the type, which must implement
the following operators:

* operator++ (both the prefix and the postfix version) for incrementing
the iterator

* operator* for dereferencing the iterator and accessing the actual
element being pointed to by the iterator

* operator!=for comparing it with another iterator for inequality

* Provide free begin() and end() functions for the type.
Given the earlier example of a simple range, we need to provide the following:

1. The following minimal implementation of an iterator class:

template <typename T, typename C, size_t const Size>
class dummy_array_iterator_type
{
public:
dummy array_iterator_type(C& collection,
size_t const index) :
index(index), collection(collection)

{1}
bool operator!= (dummy_array_iterator_type const & other)
const
{
return index != other.index;
}
T const & operator* () const
{
return collection.GetAt(index);
}
dummy_array_iterator_type& operator++()
{
++index;
return *this;
}

[41]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Learning Modern Core Language Features

dummy_array_iterator_type operator++(int)
{

auto temp = *this;

++*temp;

return temp;

}

private:
size_ t index;
C& collection;

%

2. Alias templates for mutable and constant iterators:

template <typename T, size_t const Size>
using dummy_array_iterator =
dummy_array_iterator_type<
T, dummy_array<T, Size>, Size>;

template <typename T, size_t const Size>
using dummy_array_const_iterator =
dummy_array_iterator_type<
T, dummy_array<T, Size> const, Size>;

3. Free begin() and end() functions that return the corresponding begin and
end iterators, with overloads for both alias templates:

template <typename T, size_t const Size>

inline dummy_array_iterator<T, Size> begin(
dummy_array<T, Size>& collection)

{
return dummy_array_iterator<T, Size>(collection, 9);

}

template <typename T, size_t const Size>
inline dummy_array_iterator<T, Size> end(
dummy_array<T, Size>& collection)
{
return dummy_array_iterator<T, Size>(
collection, collection.GetSize());

template <typename T, size_t const Size>

[42]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Chapter 1

inline dummy_array_const_iterator<T, Size> begin(
dummy_array<T, Size> const & collection)
{
return dummy_array_const_iterator<T, Size>(
collection, 0);

template <typename T, size_t const Size>
inline dummy_array_const_iterator<T, Size> end(
dummy_array<T, Size> const & collection)
{
return dummy_array_const_iterator<T, Size>(
collection, collection.GetSize());

How it works...

Having this implementation available, the range-based for loop shown earlier
compiles and executes as expected. When performing argument-dependent lookup,
the compiler will identify the two begin() and end() functions that we wrote (which
take a reference to a dummy_array) and therefore the code it generates becomes valid.

In the preceding example, we have defined one iterator class template and two alias
templates, called dummy_array_iterator and dummy_array_const_iterator. The
begin() and end() functions both have two overloads for these two types of iterators.

This is necessary so that the container we have considered can be used in range-
based for loops with both constant and non-constant instances:

template <typename T, const size_t Size>
void print_dummy_array(dummy_array<T, Size> const & arr)

{
for (auto & e : arr)
{
std::cout << e << '\n"';
}
b

A possible alternative to enable range-based for loops for the simple range class we
considered for this recipe is to provide the member begin() and end() functions. In
general, that will make sense only if you own and can modify the source code. On
the other hand, the solution shown in this recipe works in all cases and should be
preferred to other alternatives.

[43]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Learning Modern Core Language Features

See also

* Creating type aliases and alias templates to learn about aliases for types

* Iterating over collections with the ranges library in Chapter 12, C++20 Core
Features, to learn about the fundamentals of the C++20 ranges library

Using explicit constructors and
conversion operators to avoid implicit
conversion

Before C++11, a constructor with a single parameter was considered a converting
constructor (because it takes a value of another type and creates a new instance of

the type out of it). With C++11, every constructor without the explicit specifier

is considered a converting constructor. Such a constructor defines an implicit
conversion from the type or types of its arguments to the type of the class. Classes can
also define converting operators that convert the type of the class to another specified
type. All of these are useful in some cases but can create problems in other cases. In
this recipe, we will learn how to use explicit constructors and conversion operators.

Getting ready

For this recipe, you need to be familiar with converting constructors and converting
operators. In this recipe, you will learn how to write explicit constructors and
conversion operators to avoid implicit conversions to and from a type. The use

of explicit constructors and conversion operators (called user-defined conversion
functions) enables the compiler to yield errors —which, in some cases, are coding
errors —and allow developers to spot those errors quickly and fix them.

How to do it...

To declare explicit constructors and explicit conversion operators (regardless of
whether they are functions or function templates), use the explicit specifier in the
declaration.

The following example shows both an explicit constructor and an explicit converting
operator:

struct handle_t

{
explicit handle_t(int const h) : handle(h) {}

[44]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Chapter 1

explicit operator bool() const { return handle != 9; };

private:
int handle;

%

How it works...

To understand why explicit constructors are necessary and how they work, we will
tirst look at converting constructors. The following class, foo, has three constructors:
a default constructor (without parameters), a constructor that takes an int, and

a constructor that takes two parameters, an int and a double. They don't do

anything except print a message. As of C++11, these are all considered converting
constructors. The class also has a conversion operator that converts a value of the
foo type to a bool:

struct foo

{

foo()
{ std::cout << "foo" << '\n'; }
foo(int const a)
{ std::cout << "foo(a)" << '\n'; }
foo(int const a, double const b)

{ std::cout << "foo(a, b)" << '\n'; }

operator bool() const { return true; }

+;

Based on this, the following definitions of objects are possible (note that the

comments represent the console's output):

foo
foo

foo
foo
foo
foo

foo
foo
foo

f1;
2 {};

£3(1);
f4 = 1;
f5 {1}
f6 = {13}

£7(1, 2.0);
f8 { 1, 2.0 };
f9 = {1, 2.0 };

printed on 2/9/2023 10:14 AMvia . Al use subject

[45]

to https://ww. ebsco. conlterns-of -use

Learning Modern Core Language Features

The variables f1 and f2 invoke the default constructor. £3, f4, 5, and f6 invoke
the constructor that takes an int. Note that all the definitions of these objects are
equivalent, even if they look different (3 is initialized using the functional form,
f4 and f6 are copy initialized, and 5 is directly initialized using brace-init-list).
Similarly, £7, 8, and f9 invoke the constructor with two parameters.

In this case, £5 and 6 will print foo(1), while £8 and f9 will generate compiler
errors because all the elements of the initializer list should be integers.

It may be important to note that if foo defines a constructor that takes an
std::initializer_list, then all the initializations using {} would resolve
to that constructor:

foo(std::initializer_ list<int> 1)
{ std::cout << "foo(l)" << '\n'; }

These may all look right, but the implicit conversion constructors enable scenarios
where the implicit conversion may not be what we wanted. First, let's look at some
correct examples:

void bar(foo const f)

{
}

bar({});
bar(1);
bar({ 1, 2.0 });

The conversion operator to bool from the foo class also enables us to use foo objects
where Boolean values are expected. Here is an example:

bool flag = f1;

if(f2) { }
std::cout << f3 + f4 << '\n';
if(f5 == f6) { }

The first two are examples where foo is expected to be used as a Boolean. However,
the last two with addition and test for equality are probably incorrect, as we most
likely expect to add foo objects and test foo objects for equality, not the Booleans
they implicitly convert to.

Perhaps a more realistic example to understand where problems could arise would
be to consider a string buffer implementation. This would be a class that contains an
internal buffer of characters.

[46]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 1

This class provides several conversion constructors: a default constructor,

a constructor that takes a size_t parameter representing the size of the buffer

to preallocate, and a constructor that takes a pointer to char that should be used
to allocate and initialize the internal buffer. Succinctly, the implementation of the
string buffer that we use for this exemplification looks like this:

class string buffer

{
public:
string_buffer() {}

string_buffer(size_t const size) {}

string_buffer(char const * const ptr) {}

size t size() const { return ...; }

operator bool() const { return ...; }

operator char * const () const { return ...; }
¥

Based on this definition, we could construct the following objects:

std::shared_ptr<char> str;
string_buffer bil;

string buffer b2(20);
string_buffer b3(str.get());

The object b1 is created using the default constructor and thus has an empty buffer;
b2 is initialized using the constructor with a single parameter where the value of the
parameter represents the size in terms of the characters of the internal buffer; and b3
is initialized with an existing buffer, which is used to define the size of the internal
buffer and copy its value into the internal buffer. However, the same definition also
enables the following object definitions:

enum ItemSizes {DefaultHeight, Large, MaxSize};

string_buffer b4 = 'a’';
string_buffer b5 = MaxSize;

In this case, b4 is initialized with a char. Since an implicit conversion to size_t exists,
the constructor with a single parameter will be called. The intention here is not
necessarily clear; perhaps it should have been "a" instead of 'a’, in which case the
third constructor would have been called.

[47]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Learning Modern Core Language Features

However, b5 is most likely an error, because MaxSize is an enumerator representing
an ItemSizes and should have nothing to do with a string buffer size. These
erroneous situations are not flagged by the compiler in any way. The implicit
conversion of unscoped enums to int is a good argument for preferring to

use scoped enums (declared with enum class), which do not have this implicit
conversion. If ItemSizes was a scoped enum, the situation described here would
not appear.

When using the explicit specifier in the declaration of a constructor, that
constructor becomes an explicit constructor and no longer allows implicit

constructions of objects of a class type. To exemplify this, we will slightly
change the string_buffer class to declare all constructors as explicit:

class string buffer
{
public:
explicit string_buffer() {}

explicit string buffer(size_t const size) {}
explicit string_buffer(char const * const ptr) {}

explicit operator bool() const { return ...; }
explicit operator char * const () const { return ...; }

};

The change here is minimal, but the definitions of b4 and b5 in the earlier example no
longer work and are incorrect. This is because the implicit conversions from char or
int to size_t are no longer available during overload resolution to figure out what
constructor should be called. The result is compiler errors for both b4 and b5. Note
that b1, b2, and b3 are still valid definitions, even if the constructors are explicit.

The only way to fix the problem, in this case, is to provide an explicit cast from char
or int to string_buffer:

string_buffer b4 = string_buffer('a');
string_buffer b5 = static_cast<string buffer>(MaxSize);
string buffer b6 = string_buffer{ "a" };

With explicit constructors, the compiler is able to immediately flag erroneous
situations and developers can react accordingly, either fixing the initialization
with a correct value or providing an explicit cast.

[48]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 1

! This is only the case when initialization is done with copy

\ 7/
/@ initialization and not when using functional or universal

= initialization.

The following definitions are still possible (and wrong) with explicit constructors:

string_buffer b7{ 'a' };
string buffer b8('a');

Similar to constructors, conversion operators can be declared explicit (as shown
earlier). In this case, the implicit conversions from the object type to the type
specified by the conversion operator are no longer possible and require an explicit
cast. Considering b1 and b2, which are the string_buffer objects we defined earlier,
the following are no longer possible with an explicit conversion operator bool:

std::cout << b4 + b5 << '\n';
if(b4 == b5) {}

Instead, they require explicit conversion to bool:

std::cout << static_cast<bool>(b4) + static_cast<bool>(b5);
if(static_cast<bool>(b4) == static_cast<bool>(b5)) {}

The addition of two bool values does not make much sense. The preceding example
is intended only to show how an explicit cast is required in order to make the
statement compile. The error issued by the compiler when there is no explicit static
cast, should help you figure out that the expression itself is wrong and something
else was probably intended.

See also

* Understanding uniform initialization to see how brace-initialization works

Using unnamed namespaces instead of
static globals

The larger a program, the greater the chances are you could run into name collisions
when your program is linked to multiple translation units. Functions or variables that
are declared in a source file, and are supposed to be local to the translation unit, may
collide with other similar functions or variables declared in another translation unit.

[49]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Learning Modern Core Language Features

That is because all the symbols that are not declared static have external linkage and
their names must be unique throughout the program. The typical C solution for this
problem is to declare those symbols as static, changing their linkage from external
to internal and therefore making them local to a translation unit. An alternative is

to prefix the names with the name of the module or library they belong to. In this
recipe, we will look at the C++ solution for this problem.

Getting ready

In this recipe, we will discuss concepts such as global functions and static functions,
as well as variables, namespaces, and translation units. We expect that you have

a basic understanding of these concepts. Apart from these, it is required that you
understand the difference between internal and external linkage; this is key for

this recipe.

How to do it...

When you are in a situation where you need to declare global symbols as static
to avoid linkage problems, you should prefer to use unnamed namespaces:

1. Declare a namespace without a name in your source file.
2. Put the definition of the global function or variable in the unnamed
namespace without making them static.

The following example shows two functions called print() in two different
translation units; each of them is defined in an unnamed namespace:

namespace
{
void print(std::string message)
{
std::cout << "[filel] " << message << '\n';
}
}
void filel_run()
{
print("run");
}
namespace

[50]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 1

{
void print(std::string message)
{
std::cout << "[file2] " << message << '\n';
}
}
void file2_run()
{
print("run");
}

How it works...

When a function is declared in a translation unit, it has external linkage. This

means two functions with the same name from two different translation units would
generate a linkage error because it is not possible to have two symbols with the same
name. The way this problem is solved in C, and by some in C++ also, is to declare
the function or variable as static and change its linkage from external to internal. In
this case, its name is no longer exported outside the translation unit, and the linkage
problem is avoided.

The proper solution in C++ is to use unnamed namespaces. When you define
a namespace like the ones shown previously, the compiler transforms it into the
following;:

namespace _unique_name_ {}
using namespace _unique_name_;
namespace _unique_name_

{
void print(std::string message)
{
std::cout << "[filel] " << message << '\n';
¥
}
void filel run()
{
print("run");
}
[51]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Learning Modern Core Language Features

First of all, it declares a namespace with a unique name (what the name is and how
it generates that name is a compiler implementation detail and should not be a
concern). At this point, the namespace is empty, and the purpose of this line is to
basically establish the namespace. Second, a using directive brings everything from
the _unique_name_ namespace into the current namespace. Third, the namespace,
with the compiler-generated name, is defined as it was in the original source code
(when it had no name).

By defining the translation unit local print() functions in an unnamed namespace,
they have local visibility only, yet their external linkage no longer produces linkage
errors since they now have external unique names.

Unnamed namespaces also work in a perhaps more obscure situation involving
templates. Prior to C++11, template non-type arguments could not be names with
internal linkage, so using static variables was not possible. On the other hand,
symbols in an unnamed namespace have external linkage and could be used

as template arguments. Although this linkage restriction for template non-type
arguments was lifted in C++11, it is still present in the latest version of the VC++
compiler. This problem is shown in the following example:

template <int const& Size>
class test {};

static int Sizel = 10;

namespace

{
int Size2 = 10;

}

test<Sizel> t1;
test<Size2> t2;

In this snippet, the declaration of the t1 variable produces a compiler error because
the non-type argument expression, Sizel, has internal linkage. On the other hand,
the declaration of the t2 variable is correct because Size2 has external linkage.
(Note that compiling this snippet with Clang and GCC does not produce an error.)

See also

* Using inline namespaces for symbol versioning to learn how to version your
source code using inline namespaces and conditional compilation

[52]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Chapter 1

Using inline namespaces for symbol
versioning

The C++11 standard has introduced a new type of namespace called inline
namespaces, which are basically a mechanism that makes declarations from a nested
namespace look and act like they were part of the surrounding namespace. Inline
namespaces are declared using the inline keyword in the namespace declaration
(unnamed namespaces can also be inlined). This is a helpful feature for library
versioning, and in this recipe, we will learn how inline namespaces can be used

for versioning symbols. From this recipe, you will learn how to version your source
code using inline namespaces and conditional compilation.

Getting ready

In this recipe, we will discuss namespaces and nested namespaces, templates and
template specializations, and conditional compilation using preprocessor macros.
Familiarity with these concepts is required in order to proceed with this recipe.

How to do it...

To provide multiple versions of a library and let the user decide what version to use,
do the following:

* Define the content of the library inside a namespace.

* Define each version of the library or parts of it inside an inner inline
namespace.

* Use preprocessor macros and #if directives to enable a particular version
of the library.

The following example shows a library that has two versions that clients can use:

namespace modernlib
{
#ifndef LIB_VERSION_2
inline namespace version_1
{
template<typename T>
int test(T value) { return 1; }

}
#tendif

[53]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Learning Modern Core Language Features

#ifdef LIB_VERSION 2
inline namespace version_2

{
template<typename T>

int test(T value) { return 2; }

}
#endif

How it works...

A member of an inline namespace is treated as if it was a member of the surrounding
namespace. Such a member can be partially specialized, explicitly instantiated, or
explicitly specialized. This is a transitive property, which means that if a namespace,
A, contains an inline namespace, B, that contains an inline namespace, C, then the
members of C appear as they were members of both B and A and the members of

B appear as they were members of A.

To better understand why inline namespaces are helpful, let's consider the case of
developing a library that evolves over time from a first version to a second version
(and further on). This library defines all its types and functions under a namespace
called modernlib. In the first version, this library could look like this:

namespace modernlib

{
template<typename T>

int test(T value) { return 1; }
}

A client of the library can make the following call and get back the value 1:

auto x = modernlib::test(42);

However, the client might decide to specialize the template function test()
as follows:

struct foo { int a; };

namespace modernlib

{

template<>
int test(foo value) { return value.a; }

}

[54]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 1

auto y = modernlib::test(foo{ 42 });

In this case, the value of y is no longer 1 but 42 because the user-specialized function
gets called.

Everything is working correctly so far, but as a library developer, you decide to
create a second version of the library, yet still ship both the first and the second
version and let the user control what to use with a macro. In this second version, you
provide a new implementation of the test() function that no longer returns 1, but

2. To be able to provide both the first and second implementations, you put them in
nested namespaces called version_1 and version_2 and conditionally compile the
library using preprocessor macros:

namespace modernlib

{

namespace version_1
{
template<typename T>
int test(T value) { return 1; }

}

#ifndef LIB_VERSION 2
using namespace version_1;
t#tendif

namespace version_2
{
template<typename T>
int test(T value) { return 2; }

}

#ifdef LIB_VERSION_ 2
using namespace version_2;
#endif

}

Suddenly, the client code will break, regardless of whether it uses the first or
second version of the library. This is because the test function is now inside a nested
namespace, and the specialization for foo is done in the modernlib namespace,
when it should actually be done in modernlib: :version_1 or modernlib: :version_2.
This is because the specialization of a template is required to be done in the same
namespace where the template was declared.

[55]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Learning Modern Core Language Features

In this case, the client needs to change the code, like this:

#define LIB_VERSION 2
#include "modernlib.h"

struct foo { int a; };
namespace modernlib

{

namespace version_2
{
template<>
int test(foo value) { return value.a; }

}
}

This is a problem because the library leaks implementation details, and the client
needs to be aware of those in order to do template specialization. These internal
details are hidden with inline namespaces in the manner shown in the How to do
it... section of this recipe. With that definition of the modernlib library, the client
code with the specialization of the test() function in the modernlib namespace

is no longer broken, because either version_1::test() or version_2::test()
(depending on what version the client is actually using) acts as being part of the
enclosing modernlib namespace when template specialization is done. The details
of the implementation are now hidden to the client, who only sees the surrounding
namespace, modernlib.

However, you should keep in mind that the namespace std is reserved for the
standard and should never be inlined. Also, a namespace should not be defined
inline if it was not inline in its first definition.

See also

* Using unnamed namespaces instead of static globals to explore anonymous
namespaces and learn how they help

* Conditionally compiling your source code in Chapter 4, Preprocessing and
Compilation, to learn the various options for performing conditional
compilation

[56]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 1

Using structured bindings to handle
multi-return values

Returning multiple values from a function is very common, yet there is no first-
class solution in C++ to make it possible in a straightforward way. Developers
have to choose between returning multiple values through reference parameters
to a function, defining a structure to contain the multiple values, or returning an
std::pair or std: :tuple. The first two use named variables, which gives them the
advantage that they clearly indicate the meaning of the return value, but have the
disadvantage that they have to be explicitly defined. std: :pair has its members
called first and second, while std: : tuple has unnamed members that can only
be retrieved with a function call, but can be copied to named variables using

std: :tie(). None of these solutions are ideal.

C++17 extends the semantic use of std: :tie() into a first-class core language feature
that enables unpacking the values of a tuple into named variables. This feature is
called structured bindings.

Getting ready

For this recipe, you should be familiar with the standard utility types std: :pair and
std: :tuple and the utility function std: : tie().

How to do it...

To return multiple values from a function using a compiler that supports C++17, you
should do the following;:

1. Usean std::tuple for the return type:

std: :tuple<int, std::string, double> find()
{

return std::make_tuple(1, "marius", 1234.5);

}

2. Use structured bindings to unpack the values of the tuple into named objects:

auto [id, name, score] = find();

[57]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Learning Modern Core Language Features

3. Use decomposition declaration to bind the returned values to the variables
inside an if statement or switch statement:

if (auto [id, name, score] = find(); score > 1000)

{

std::cout << name << '\n';

How it works...

Structured bindings are a language feature that works just like std: : tie(), except
that we don't have to define named variables for each value that needs to be
unpacked explicitly with std: :tie(). With structured bindings, we define all the
named variables in a single definition using the auto specifier so that the compiler
can infer the correct type for each variable.

To exemplify this, let's consider the case of inserting items into an std: :map. The
insert method returns an std: :pair containing an iterator for the inserted element
or the element that prevented the insertion, and a Boolean indicating whether the
insertion was successful or not. The following code is very explicit and the use

of second or first->second makes the code harder to read because you need to
constantly figure out what they represent:

std::map<int, std::string> m;

auto result = m.insert({ 1, "
std::cout << "inserted = "

<< "value ="

one" });
<< result.second << '\n’
<< result.first->second << '\n';

The preceding code can be made more readable with the use of std: : tie,
which unpacks tuples into individual objects (and works with std: :pair because
std: :tuple has a converting assignment from std: : pair):

std::map<int, std::string> m;
std::map<int, std::string>::iterator it;
bool inserted;

std::tie(it, inserted) = m.insert({ 1, "one" });
std::cout << "inserted << 1inserted << ‘\n’
<< "value = << it->second << '\n';

std::tie(it, inserted) = m.insert({ 1, "two" });
std::cout << "inserted << inserted << '\n’
<< "value = << it->second << '\n';

[58]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 1

The code is not necessarily simpler because it requires defining the objects that the
pair is unpacked to in advance. Similarly, the more elements the tuple has, the more
objects you need to define, but using named objects makes the code easier to read.

C++17 structured bindings elevates unpacking tuple elements into named objects to
the rank of a language feature; it does not require the use of std: :tie(), and objects
are initialized when declared:

std::map<int, std::string> m;
{
auto [it, inserted] = m.insert({ 1, "one" });
std::cout << "inserted = " << inserted << '\n'’
<< "value = " << it->second << '\n';

{
auto [it, inserted] = m.insert({ 1, "two" });
std::cout << "inserted = " << inserted << '\n'
<< "value = " << it-»>second << '\n’';

}

The use of multiple blocks in the preceding example is necessary because variables
cannot be redeclared in the same block, and structured bindings imply a declaration
using the auto specifier. Therefore, if you need to make multiple calls, as in the
preceding example, and use structured bindings, you must either use different
variable names or multiple blocks. An alternative to that is to avoid structured
bindings and use std: :tie(), because it can be called multiple times with the same
variables, so you only need to declare them once.

In C++17, it is also possible to declare variables in if and switch statements in the
form if(init; condition) and switch(init; condition), respectively. This could
be combined with structured bindings to produce simpler code. Let's look at an
example:

if(auto [it, inserted] = m.insert({ 1, "two" }); inserted)
{ std::cout << it->second << '\n'; }

In the preceding snippet, we attempted to insert a new value into a map. The result
of the call is unpacked into two variables, it and inserted, defined in the scope of
the if statement in the initialization part. Then, the condition of the if statement is
evaluated from the value of the inserted variable.

[59]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Learning Modern Core Language Features

There's more...

Although we focused on binding names to the elements of tuples, structured
bindings can be used in a broader scope because they also support binding to array
elements or data members of a class. If you want to bind to the elements of an array,
you must provide a name for every element of the array; otherwise, the declaration is
ill-formed. The following is an example of binding to array elements:

int arr[] = { 1,2 };
auto [a, b] = arr;
auto& [x, y] = arr;

arr[0] += 19;
arr[1] += 10;

std::cout << arr[@] << ' ' << arr[1l] << '\n';
std::cout << a << ' ' << b << '\n';
std::cout << x << ' ' <<y << '\n';

In this example, arr is an array with two elements. We first bind a and b to its
elements, and then we bind the x and y references to its elements. Changes that are
made to the elements of the array are not visible through the variables a and b but
are visible through the x and y references, as shown in the comments that print these
values to the console. This happens because when we do the first binding, a copy

of the array is created and a and b are bound to the elements of the copy.

As we already mentioned, it's also possible to bind to data members of a class. The
following restrictions apply:

* Binding is possible only for non-static members of the class.
* The class cannot have anonymous union members.

¢ The number of identifiers must match the number of non-static members
of the class.

The binding of identifiers occurs in the order of the declaration of the data members,
which can include bitfields. An example is shown here:

struct foo

{
int id;
std::string name;

%

[60]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 1

foo f{ 42, "john" };
auto [i, n] = f;
auto& [ri, rn] = f;

f.id = 43;

std::cout << f.id << ' ' << f.name << '\n';
std::cout << i << ' ' << n << '\n';
std::cout << ri << " ' << rn << '\n’';

Again, changes to the foo object are not visible to the variables i and n but are

to ri and rn. This is because each identifier in the structure binding becomes the
name of an Ivalue that refers to a data member of the class (just like with an array,
it refers to an element of the array). However, the reference type of an identifier is
the corresponding data member (or array element).

The new C++20 standard has introduced a series of improvements to structure
bindings, including the following:

* Possibility to include the static or thread_local storage-class specifiers
in the declaration of the structure bindings.

e Allow the use of the [[maybe_unused]] attribute for the declaration of
a structured binding. Some compilers, such as Clang and GCC, already
supported this feature.

* Allow us to capture structure binding identifiers in lambdas. All identifiers,
including those bound to bitfields, can be captured by value. On the other
hand, all identifiers except for those bound to bitfields can also be captured
by reference.

These changes enable us to write the following:

foo f{ 42, "john" };
auto [i, n] = f;
auto 11 = [i] {std::cout << i; };

auto 12 = [=] {std::cout << i; };
auto 13 = [&1] {std::cout << i; };
auto 14 = [&] {std::cout << i; };

These examples show the various ways structured bindings can be captured in
lambdas in C++20.

[61]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Learning Modern Core Language Features

See also

* Using auto whenever possible to understand how automatic type deduction
works in C++

* Using lambdas with standard algorithms in Chapter 3, Exploring Functions to
learn how lambdas can be used with standard library general-purpose
algorithms

* Providing metadata to the compiler with attributes in Chapter 4, Preprocessing and
Compilation, to learn about providing hints to the compiler with the use of
standard attributes

Simplifying code with class template
argument deduction

Templates are ubiquitous in C++, but having to specify template arguments all

the time can be annoying. There are cases when the compiler can actually infer the
template arguments from the context. This feature, available in C++17, is called class
template arqument deduction and enables the compiler to deduce the missing template
arguments from the type of the initializer. In this recipe, we will learn how to take
advantage of this feature.

How to do it...

In C++17, you can skip specifying template arguments and let the compiler deduce
them in the following cases:

* When you declare a variable or a variable template and initialize it:

std::pair p{ 42, "demo" };

std::vector v{ 1, 2 };
std::less 1;

* When you create an object using a new expression:

template <class T»>
struct foo
{

foo(T v) :data(v) {}
private:

T data;

1

[62]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Chapter 1

auto f = new foo(42);

* When you perform function-like cast expressions:

std::mutex mx;

auto lock = std::lock_guard(mx);
std::vector<int> v;

std::fill n(std::back_insert_iterator(v), 5, 42);

How it works...

Prior to C++17, you had to specify all the template arguments when initializing
variables, because all of them must be known in order to instantiate the class
template, such as in the following example:

std::pair<int, char const*> p{ 42, "demo" };
std::vector<int> v{ 1, 2 };
foo<int> f{ 42 };

The problem of explicitly specifying template arguments could have been avoided
with a function template, such as std: :make_pair(), which benefits from function
template argument deduction, and allows us to write code such as the following;:

auto p = std::make_pair(42, "demo");

In the case of the foo class template shown here, we can write the following make_
foo() function template to enable the same behavior:

template <typename T>
constexpr foo<T> make_foo(T&& value)

{

return foo{ value };

auto f = make_foo(42);

[63]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Learning Modern Core Language Features

In C++17, this is no longer necessary in the cases listed in the How it works... section.
Let's take the following declaration as an example:

std::pair p{ 42, "demo" };

In this context, std: :pair is not a type, but acts as a placeholder for a type that
activates class template argument deduction. When the compiler encounters it
during the declaration of a variable with initialization or a function-style cast, it
builds a set of deduction guides. These deduction guides are fictional constructors
of a hypothetical class type. As a user, you can complement this set with user-
defined deduction rules. This set is used to perform template argument deduction
and overload resolution.

In the case of std: :pair, the compiler will build a set of deduction guides that
includes the following fictional function templates (but not only these):

template <class T1l, class T2>
std::pair<T1l, T2> F();

template <class T1l, class T2>
std::pair<T1l, T2> F(T1l const& x, T2 const& y);

template <class T1l, class T2, class U1, class U2>
std::pair<T1l, T2> F(U18&& x, U28&& y);

These compiler-generated deduction guides are created from the constructors of
the class template, and if none are present, then a deduction guide is created for
a hypothetical default constructor. In addition, in all cases, a deduction guide for
a hypothetical copy constructor is always created.

The user-defined deduction guides are function signatures with trailing return
type and without the auto keyword (since they represent hypothetical constructors
that don't have a return value). They must be defined in the namespace of the class
template they apply to.

To understand how this works, let's consider the same example with the std: :pair
object:

std::pair p{ 42, "demo" };

The type that the compiler is deducing is std: :pair<int, char const*>.If we want
to instruct the compiler to deduce std: :string instead of char const*, then we need
several user-defined deduction rules, as shown here:

namespace std {

[64]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 1

template <class T>
pair(T&&, char const*)->pair<T, std::string>;

template <class T>
pair(char const*, T&&)->pair<std::string, T>;

pair(char const*, char const*)->pair<std::string, std::string>;

}

These will enable us to perform the following declarations, where the type of the
string "demo" is always deduced to be std: :string:

std::pair pi1{ 42, "demo" };
std::pair p2{ "demo", 42 };
std::pair p3{ "42", "demo" };

\/V As you can see from this example, deduction guides do not have to

be function templates.

It is important to note that class template argument deduction does not occur if the
template argument list is present, regardless of the number of specified arguments.
Examples of this are shown here:

std::pair<> pl { 42, "demo" };
std::pair<int> p2 { 42, "demo" };

Because both these declarations specify a template argument list, they are invalid
and produce compiler errors.

See also

* Understanding uniform initialization to see how brace-initialization works

[65]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost - printed on 2/9/2023 10:14 AMvia . A

use subject to https://ww.ebsco.conlterns-of-use

Working with
Numbers and Strings

Numbers and strings are the fundamental types of any programming language;
all other types are based on or composed of these ones. Developers are confronted
all the time with tasks such as converting between numbers and strings, parsing
and formatting strings, and generating random numbers. This chapter is focused
on providing useful recipes for these common tasks using modern C++ language
and library features.

The recipes included in this chapter are as follows:

Converting between numeric and string types
Limits and other properties of numeric types
Generating pseudo-random numbers

Initializing all the bits of the internal state of a pseudo-random number
generator

Creating cooked user-defined literals

Creating raw, user-defined literals

Using raw string literals to avoid escaping characters
Creating a library of string helpers

Verifying the format of a string using regular expressions
Parsing the content of a string using regular expressions

Replacing the content of a string using regular expressions

[67]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Working with Numbers and Strings

* Using std: :string_view instead of constant string references
* Formatting text with std: : format
* Using std: : format with user-defined types

Let's start this chapter by looking at a very common problem developers face on
a daily basis, which is converting between numeric and string types.

Converting between numeric and
string types

Converting between number and string types is a ubiquitous operation. Prior to
C++11, there was little support for converting numbers to strings and back, so
developers had to resort mostly to type-unsafe functions, and they usually wrote
their own utility functions in order to avoid writing the same code over and over
again. With C++11, the standard library provides utility functions for converting
between numbers and strings. In this recipe, you will learn how to convert between
numbers and strings and the other way around using modern C++ standard
functions.

Getting ready

All the utility functions mentioned in this recipe are available in the <string> header.

How to do it...

Use the following standard conversion functions when you need to convert between
numbers and strings:

* To convert from an integer or floating-point type to a string type, use
std::to_string() or std::to_wstring(), as shown in the following code

snippet:
auto si = std::to_string(42);
auto sl = std::to_string(42L);

auto su = std::to_string(42u);
auto sd = std::to_wstring(42.90);
auto sld = std::to_wstring(42.0L);

[68]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Chapter 2

To convert from a string type to an integer type, use std: :stoi(),
std::stol(), std::stoll(), std::stoul(), or std::stoull(), as shown
in the following code snippet:

auto
auto
auto
auto

il = std::stoi("42");

i2 = std::stoi("101010", nullptr, 2);
i3 = std::stoi("@52", nullptr, 8);
i4 = std::stoi("@x2A", nullptr, 16);

To convert from a string type to a floating-point type, use std: :stof(),
std::stod(), or std: :stold(), as shown in the following code snippet:

auto dl1 = std::stod("123.45");

auto d2 = std::stod("1.2345e+2");

auto d3 = std::stod("OxF.6E6666p3");

How it works...

To convert an integral or floating-point type to a string type, you can use either

the std: :to_string() function (which converts to a std: :string) or the std: :to_
wstring() function (which converts to a std: :wstring). These functions are available
in the <string> header and have overloads for signed and unsigned integer and

real types. They produce the same result as std: :sprintf() and std: : swprintf()
would produce when called with the appropriate format specifier for each type.

The following code snippet lists all the overloads of these two functions:

std:
std:
std:
std:
std:
std:
std:
std:
std:
std:
std:
std:
std:
std:
std:

:string
:string
:string
:string
:string
:string
:string
:string
:string
:wstring
:wstring
:wstring
:wstring
:wstring
:wstring

to_string(int value);
to_string(long value);
to_string(long long value);
to_string(unsigned value);
to_string(unsigned long value);
to_string(unsigned long long value);
to_string(float value);
to_string(double value);
to_string(long double value);
to_wstring(int value);
to_wstring(long value);
to_wstring(long long value);
to_wstring(unsigned value);
to_wstring(unsigned long value);
to_wstring(unsigned long long value);

[69]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Working with Numbers and Strings

std::wstring to_wstring(float value);
std::wstring to_wstring(double value);
std::wstring to_wstring(long double value);

When it comes to the opposite conversion, there is an entire set of functions

that have a name with the format ston (string to number), where n stands for i
(integer), 1 (1ong), 11 (1ong long), ul (unsigned long), or ull (unsigned long long).
The following list shows all these functions, each of them with two overloads —one
that takes an std: : string and one that takes an std: :wstring as the first parameter:

int stoi(const std::string& str, std::size_t* pos = 0,
int base = 10);

int stoi(const std::wstring& str, std::size_t* pos = 0,
int base = 10);
long stol(const std::string& str, std::size_t* pos = 0,

int base = 10);
long stol(const std::wstring& str, std::size_t* pos = 0,
int base = 10);
long long stoll(const std::string& str, std::size_t* pos = 0,
int base = 10);
long long stoll(const std::wstring& str, std::size_t* pos = 0,
int base = 10);
unsigned long stoul(const std::string& str, std::size_t* pos = 0,
int base = 10);
unsigned long stoul(const std::wstring& str, std::size_t* pos = 0,
int base = 10);
unsigned long long stoull(const std::string& str,
std::size_t* pos = 0, int base = 10);
unsigned long long stoull(const std::wstring& str,
std::size_t* pos = 0, int base = 10);

float stof(const std::string& str, std::size_t* pos = 0);
float stof(const std::wstring& str, std::size_t* pos = 9);
double stod(const std::string& str, std::size_t* pos = 9);
double stod(const std::wstring& str, std::size_t* pos = 0);

long double stold(const std::string& str, std::size_t* pos = 9);
long double stold(const std::wstring& str, std::size_t* pos = 0);

The way the string to integral type functions work is by discarding all white spaces
before a non-whitespace character, then taking as many characters as possible to
form a signed or unsigned number (depending on the case), and then converting that
to the requested integral type (stoi() will return an integer, stoul() will return an
unsigned long, and so on). In all the following examples, the result is the integer 42,
except for the last example, where the result is -42:

[70]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 2

auto il = std::stoi("42");

auto i2 = std::stoi(" 42");

auto i3 = std::stoi(" 42fortytwo");
auto i4 = std::stoi("+42");

auto i5 = std::stoi("-42");

A valid integral number may consist of the following parts:

e Asign, plus (+) or minus (-) (optional)
* Prefix @ to indicate an octal base (optional)
* Prefix @x or oX to indicate a hexadecimal base (optional)

* A sequence of digits

The optional prefix @ (for octal) is applied only when the specified base is 8 or e.
Similarly, the optional prefix @x or X (for hexadecimal) is applied only when the
specified base is 16 or @.

The functions that convert a string to an integer have three parameters:

* The input string.

* A pointer that, when not null, will receive the number of characters that were
processed. This can include any leading whitespaces that were discarded,
the sign, and the base prefix, so it should not be confused with the number
of digits the integral value has.

* A number indicating the base; by default, this is 1e.

The valid digits in the input string depend on the base. For base 2, the only valid
digits are @ and 1; for base 5, they are 01234. For base 11, the valid digits are 8-9 and
the characters A and a. This continues until we reach base 36, which has the valid
characters -9, A-Z, and a-z.

The following are additional examples of strings with numbers in various bases
converted to decimal integers. Again, in all cases, the result is either 42 or -42:

auto i6 = std::stoi("e52", nullptr, 8);
auto i7 = std::stoi("e52", nullptr, 0);
auto i8 = std::stoi("ex2A", nullptr, 16);
auto i9 = std::stoi("ex2A", nullptr, 0);
auto i10 = std::stoi("101010", nullptr, 2);
auto il11 = std::stoi("22", nullptr, 20);
auto i12 = std::stoi("-22", nullptr, 20);

[71]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Working with Numbers and Strings

auto pos = size_t{ 0 };

auto i13 = std::stoi("42", &pos);

auto il14 = std::stoi("-42", &pos);
auto i15 = std::stoi(" +42dec", &pos);

An important thing to note is that these conversion functions throw an exception
if the conversion fails. There are two exceptions that can be thrown:

* std::invalid_argument: If the conversion cannot be performed:

try
{

auto i1l6 = std::stoi("");
}
catch (std::exception const & e)
{

std::cout << e.what() << "\n';
}

* std::out_of_range: If the converted value is outside the range of the result
type (or if the underlying function sets errno to ERANGE):

try
{

auto i17 = std::stoll("12345678901234");

auto i18 = std::stoi("12345678901234");

}
catch (std::exception const & e)
{

std::cout << e.what() << "\n';
}

The other set of functions that convert a string to a floating-point type is very similar,
except that they don't have a parameter for the numeric base. A valid floating-point
value can have different representations in the input string:

* Decimal floating-point expression (optional sign, sequence of decimal
digits with optional point, optional e or E, followed by exponent with
optional sign).

[72]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 2

Binary floating-point expression (optional sign, @x or eX prefix, sequence of
hexadecimal digits with optional point, optional p or P, followed by exponent
with optional sign).

Infinity expression (optional sign followed by case-insensitive INF or
INFINITY).

A non-number expression (optional sign followed by case-insensitive NAN and
possibly other alphanumeric characters).

The following are various examples of converting strings to doubles:

auto
auto
auto
auto
auto
auto
auto

auto
auto
auto
auto

dl = std::stod("123.45");

d2 = std::stod("+123.45");

d3 = std::stod("-123.45");

d4 = std::stod(" 123.45");

d5 = std::stod(" -123.45abc");
d6 = std::stod("1.2345e+2");

d7 = std::stod("0xF.6E6666p3");

d8 = std::stod("INF");
d9 = std::stod("-infinity");
d10 = std::stod("NAN");
dll = std::stod("-nanabc");

The floating-point base 2 scientific notation, seen earlier in the form @xF.6E6666p3,

is not the topic of this recipe. However, for a clear understanding, a short description
is provided; but it is recommended that you look at additional references for details
(such as https://en.cppreference.com/w/cpp/language/floating_literal). A
floating-point constant in the base 2 scientific notation is composed of several parts:

The hexadecimal prefix ox.
An integer part, which in this example was F, which in decimal is 15.

A fractional part, which in this example was 6E6666, or
011011100110011001100110 in binary. To convert that into decimal, we need
to add inverse powers of two: 1/4 + 1/8 + 1/32 + 1/64 + 1/128 + ..

A suffix, representing a power of 2; in this example, p3 means 2 at the power
of 3.

The value of the decimal equivalent is determined by multiplying the significant
(composed of the integer and fractional parts) and the base at the power of the
exponent.

[73]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

https://en.cppreference.com/w/cpp/language/floating_literal

Working with Numbers and Strings

For the given hexadecimal base 2 floating-point literal, the significant is
15.4312499. .. (please note that digits after the seventh one are not shown), the
base is 2, and the exponent is 3. Therefore, the result is 15.4212499... * 8, which
is 123.44999980926514.

See also

* Limits and other properties of numeric types to learn about the minimum
and maximum values, as well as the other properties of numerical types

Limits and other properties
of numeric types

Sometimes, it is necessary to know and use the minimum and maximum values

that can be represented with a numeric type, such as char, int, or double. Many
developers use standard C macros for this, such as CHAR_MIN/CHAR_MAX, INT_MIN/
INT_MAX, and DBL_MIN/DBL_MAX. C++ provides a class template called numeric_limits
with specializations for every numeric type that enables you to query the minimum
and maximum value of a type. However, numeric_limits is not limited to that
functionality, and offers additional constants for type property querying, such as
whether a type is signed or not, how many bits it needs for representing its values,
whether it can represent infinity for floating-point types, and many others. Prior to
C++11, the use of numeric_limits<T> was limited because it could not be used in
places where constants were needed (examples include the size of arrays and switch
cases). Due to that, developers preferred to use C macros throughout their code. In
C++11, that is no longer the case, as all the static members of numeric_limits<T> are
now constexpr, which means they can be used everywhere a constant expression is
expected.

Getting ready

The numeric_limits<T> class template is available in the namespace std in the
<limits> header.

[74]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 2

How to do it...

Use std: :numeric_limits<T> to query various properties of a numeric type T:

* Use the min() and max() static methods to get the smallest and largest finite
numbers of a type. The following are examples of how these could be used:

template<typename T, typename Iter>
T minimum(Iter const start, Iter const end)

T minval = std::numeric_limits<T>::max();
for (auto i = start; i < end; ++i)
{
if (*i < minval)
minval = *i;
}

return minval;

int range[std::numeric_limits<char>::max() + 1] = { 0 };

switch(get_value())
{

case std::numeric_limits<int>::min():

break;

}

* Use other static methods and static constants to retrieve other properties of a
numeric type. In the following example, the variable bits is an std: :bitset
object that contains a sequence of bits that are necessary to represent the
numerical value represented by the variable n (which is an integer):

auto n = 42;
std::bitset<std::numeric_limits<decltype(n)>::digits>
bits { static_cast<unsigned long long>(n) };

[75]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Working with Numbers and Strings

, In C++11, there is no limitation to where std: :numeric_
\/;p; limits<T> can be used; therefore, preferably, use it over

C macros in your modern C++ code.

How it works...

The std: :numeric_limits<T> class template enables developers to query properties
of numeric types. Actual values are available through specializations, and the
standard library provides specializations for all the built-in numeric types (char,
short, int, long, float, double, and so on). In addition, third parties may provide
additional implementations for other types. An example could be a numeric
library that implements a bigint integer type and a decimal type and provides
specializations of numeric_limits for these types (such as numeric_limits<bigint>
and numeric_limits<decimal>).

The following specializations of numeric types are available in the <1imits> header.
Note that specializations for char16_t and char32_t are new in C++11; the others
were available previously. Apart from the specializations listed ahead, the library
also includes specializations for every cv-qualified version of these numeric types,
and they are identical to the unqualified specialization. For example, consider the
type int; there are four actual specializations (and they are identical): numeric_
limits<int>, numeric_limits<const int>, numeric_limits<volatile int>, and
numeric_limits<const volatile int>:

template<> class numeric_limits<bool>;
template<> class numeric_limits<char>;
template<> class numeric_limits<signed char>;
template<> class numeric_limits<unsigned char>;
template<> class numeric_limits<wchar_t>;
template<> class numeric_limits<charl6_t>;
template<> class numeric_limits<char32_t>;
template<> class numeric_limits<short>;
template<> class numeric_limits<unsigned short>;
template<> class numeric_limits<int>;

template<> class numeric_limits<unsigned int>;
template<> class numeric_limits<long>;
template<> class numeric_limits<unsigned long>;
template<> class numeric_limits<long long>;
template<> class numeric_limits<unsigned long long>;
template<> class numeric_limits<float>;
template<> class numeric_limits<double>;
template<> class numeric_limits<long double>;

[76]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 2

As mentioned earlier, in C++11, all static members of std: :numeric_limits
are constexpr, which means they can be used in all the places where constant
expressions are needed. These have several major advantages over C++ macros:

* They are easier to remember, as the only thing you need to know is the
name of the type, which you should know anyway, and not countless names
of macros.

* They support types that are not available in C, such as char16_t and
char32_t.

* They are the only possible solutions for templates where you don't know the
type.

* Minimum and maximum are only two of the various properties of types it
provides; therefore, its actual use is beyond the numeric limits shown. As a
side note, for this reason, the class should have been perhaps called numeric_
properties, instead of numeric_limits.

The following function template, print_type_properties(), prints the minimum and
maximum finite values of the type, as well as other information:

template <typename T>
void print_type properties()

{
std: :cout

<< "min="
<< std::numeric_limits<T>::min() << "\n'
<< "max="
<< std::numeric_limits<T>::max() << "\n’
<< "bits="
<< std::numeric_limits<T>::digits << "\n'
<< "decdigits="
<< std::numeric_limits<T>::digits1@ << "\n'
<< "integral="
<< std::numeric_limits<T>::is_integer << '\n'
<< "signed="
<< std::numeric_limits<T>::is_signed << "\n'
<< "exact="
<< std::numeric_limits<T>::is_exact << "\n'
<< "infinity="
<< std::numeric_limits<T>::has_infinity << '\n';

}

[77]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Working with Numbers and Strings

If we call the print_type properties() function for unsigned short, int, and double,

we will get the following output:

unsigned short

int

double

min=0
max=65535
bits=16
decdigits=4

integral=1

min=-2147483648
max=2147483647
bits=31
decdigits=9

integral=1

min=2.22507e-308
max=1.79769e+308
bits=53
decdigits=15
integral=0

signed=0
exact=1
infinity=0

signed=1 signed=1
exact=1 exact=0
infinity=0 infinity=1

Please note that there is a difference between the digits and digits1@ constants:

* digits represents the number of bits (excluding the sign bit if present) and
padding bits (if any) for integral types and the number of bits of the mantissa
for floating-point types.

* digits1eis the number of decimal digits that can be represented by a
type without a change. To understand this better, let's consider the case
of unsigned short. This is a 16-bit integral type. It can represent numbers
between 0 and 65,536. It can represent numbers up to five decimal digits,
10,000 to 65,536, but it cannot represent all five decimal digit numbers, as
numbers from 65,537 to 99,999 require more bits. Therefore, the largest
numbers that it can represent without requiring more bits have four decimal
digits (numbers from 1,000 to 9,999). This is the value indicated by digits1e.
For integral types, it has a direct relationship to constant digits; for an
integral type, T, the value of digits1@is std: :numeric_limits<T>::digits *
std::loglo(2).

It's worth mentioning that the standard library types that are aliases of arithmetic
types (such as std: :size_t) may also be inspected with std: :numeric_limits.
On the other hand, other standard types that are not arithmetic types, such

as std: :complex<T> or std: :nullptr_t, do not have std: :numeric_limits
specializations.

See also

* Converting between numeric and string types to learn how to convert between
numbers and strings

[78]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 2

Generating pseudo-random numbers

Generating random numbers is necessary for a large variety of applications, from
games to cryptography, from sampling to forecasting. However, the term random
numbers is not actually correct, as the generation of numbers through mathematical
formulas is deterministic and does not produce true random numbers, but numbers
that look random and are called pseudo-random. True randomness can only be
achieved through hardware devices, based on physical processes, and even that can
be challenged as we may consider even the universe to be actually deterministic.
Modern C++ provides support for generating pseudo-random numbers through a
pseudo-random number library containing number generators and distributions.
Theoretically, it can also produce true random numbers, but in practice, those could
actually be only pseudo-random.

Getting ready

In this recipe, we'll discuss the standard support for generating pseudo-random
numbers. Understanding the difference between random and pseudo-random
numbers is key. True random numbers are numbers that cannot be predicted better
than by random chance, and are produced with the help of hardware random
number generators. Pseudo-random numbers are numbers produced with the help
of algorithms that generate sequences with properties that approximate the ones of
true random numbers.

Furthermore, being familiar with various statistical distributions is a plus. It is
mandatory, though, that you know what a uniform distribution is, because all
engines in the library produce numbers that are uniformly distributed. Without
going into any details, we will just mention that uniform distribution is a probability
distribution that is concerned with events that are equally likely to occur (within
certain bounds).

How to do it...

To generate pseudo-random numbers in your application, you should perform the
following steps:

1. Include the header <random>:

#include <random>

2. Usean std: :random_device generator for seeding a pseudo-random engine:

std::random_device rd{};

[79]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Working with Numbers and Strings

3. Use one of the available engines for generating numbers and initialize it with
a random seed:

auto mtgen = std::mt19937{ rd() };

4. Use one of the available distributions for converting the output of the engine
to one of the desired statistical distributions:

auto ud = std::uniform_int_distribution<>{ 1, 6 };

5. Generate the pseudo-random numbers:

for(auto i = 0; i < 20; ++i)
auto number = ud(mtgen);

How it works...

The pseudo-random number library contains two types of components:

* Engines, which are generators of random numbers; these can produce either
pseudo-random numbers with a uniform distribution or, if available, actual
random numbers.

* Distributions that convert the output of an engine to a statistical distribution.

All engines (except for random_device) produce integer numbers in a uniform
distribution, and all engines implement the following methods:

* min(): This is a static method that returns the minimum value that can be
produced by the generator.

* max(): This is a static method that returns the maximum value that can be
produced by the generator.

* seed(): This initializes the algorithm with a start value (except for random_
device, which cannot be seeded).

* operator(): This generates a new number uniformly distributed between
min() and max().

* discard(): This generates and discards a given number of pseudo-random
numbers.

The following engines are available:

* linear_congruential_engine: This is a linear congruential generator that
produces numbers using the following formula:

x())=(A*x(i-1)+C) mod M

[80]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Chapter 2

* mersenne_twister_engine: This is a Mersenne twister generator that keeps
a value on W* (N - 1) * R bits. Each time a number needs to be generated,
it extracts IV bits. When all the bits have been used, it twists the large value
by shifting and mixing the bits so that it has a new set of bits to extract from.

* subtract_with_carry_engine: This is a generator that implements a subtract
with carry algorithm based on the following formula:

x(i) = (x(i-R) -x(i - S) - cy(i - 1)) mod M
In the preceding formula, cy is defined as:

(.)_{O; x(i—S)—x(—-R)—cy(i—1)=0
YW= %= —x(i—R) —cy(i—1) <0

In addition, the library provides engine adapters that are also engines wrapping
another engine and producing numbers based on the output of the base engine.
Engine adapters implement the same methods mentioned earlier for the base
engines. The following engine adapters are available:

* discard_block_engine: A generator that, from every block of P numbers
generated by the base engine, keeps only R numbers, discarding the rest.

* independent_bits_engine: A generator that produces numbers with
a different number of bits than the base engine.

* shuffle_order_engine: A generator that keeps a shuffled table of K numbers
produced by the base engine and returns numbers from this table, replacing
them with numbers generated by the base engine.

Choosing a pseudo-random number generator should be done based on the specific
requirements of your application. The linear congruential engine is medium fast but
has very small storage requirements for its internal state. The subtract with carry
engine is very fast, including on machines that don't have a processor with advanced
arithmetic instructions set. However, it requires larger storage for its internal

state and the sequence of generated numbers has fewer desirable characteristics.

The Mersenne twister is the slowest of these engines and has the greatest storage
durations, but produces the longest non-repeating sequences of pseudo-numbers.

All these engines and engine adaptors produce pseudo-random numbers. The
library, however, provides another engine called random_device that is supposed to
produce non-deterministic numbers, but this is not an actual constraint as physical
sources of random entropy might not be available. Therefore, implementations

of random_device could actually be based on a pseudo-random engine. The
random_device class cannot be seeded like the other engines and has an additional
method called entropy() that returns the random device entropy, which is 0 for a
deterministic generator and nonzero for a non-deterministic generator.

[81]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Working with Numbers and Strings

However, this is not a reliable method for determining whether the device is actually
deterministic or non-deterministic. For instance, both GNU libstdc++ and LLVM
libc++ implement a non-deterministic device, but return @ for entropy. On the

other hand, VC++ and boost.random return 32 and 10, respectively, for entropy.

All these generators produce integers in a uniform distribution. This is, however,
only one of the many possible statistical distributions where random numbers
are needed in most applications. To be able to produce numbers (either integer or
real) in other distributions, the library provides several classes called distributions.
These convert the output of an engine according to the statistical distribution

it implements. The following distributions are available:

Type Class name Numbers | Statistical
distribution
Uniform uniform_int_distribution Integer Uniform
uniform_real distribution Real Uniform
Bernoulli bernoulli_distribution Boolean Bernoulli
binomial_distribution Integer Binomial
negative_binomial_ Integer Negative binomial
distribution
geometric_distribution Integer Geometric
Poisson poisson_distribution Integer Poisson
exponential_distribution Real Exponential
gamma_distribution Real Gamma
weibull distribution Real Weibull
extreme_value_distribution Real Extreme value
Normal normal_distribution Real Standard normal
(Gaussian)
lognormal_distribution Real Lognormal
chi_squared_distribution Real Chi-squared
cauchy_distribution Real Cauchy
fisher_f_distribution Real Fisher's
F-distribution
student_t_distribution Real Student's
t-distribution

[82]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 2

Sampling discrete_distribution Integer Discrete
piecewise_constant_ Real Values distributed
distribution on constant

subintervals
piecewise_linear_distribution | Real Values distributed

on defined

subintervals

Each of the engines provided by the library has advantages and disadvantages,

as it was mentioned earlier. The Mersenne twister, although the slowest and one
that has the largest internal state, when initialized appropriately, can produce the
longest non-repeating sequence of numbers. In the following examples, we will use
std: :mt19937, a 32-bit Mersenne twister with 19,937 bits of internal state.

The simplest way to generate random numbers looks like this:

auto mtgen = std::mt19937 {};
for (auto i = 0; i < 10; ++i)
std::cout << mtgen() << '\n';

In this example, mtgen is std: :mt19937 for the Mersenne twister. To generate
numbers, you only need to use the call operator that advances the internal state and
returns the next pseudo-random number. However, this code is flawed, as the engine
is not seeded. As a result, it always produces the same sequence of numbers, which
is probably not what you want in most cases.

There are different approaches for initializing the engine. One approach, common
with the C random library, is to use the current time. In modern C++, it should look
like this:

auto seed = std::chrono::high_resolution_clock: :now()
.time_since_epoch()
.count();

auto mtgen = std::mt19937{ static_cast<unsigned int>(seed) };

In this example, seed is a number representing the number of ticks since the clock's
epoch until the present moment. This number is then used to seed the engine. The
problem with this approach is that the value of that seed is actually deterministic,
and in some classes of applications, it could be prone to attacks. A more reliable
approach is to seed the generator with actual random numbers.

[83]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Working with Numbers and Strings

The std: :random_device class is an engine that is supposed to return true random
numbers, though implementations could actually be based on a pseudo-random
generator:

std::random_device rd;
auto mtgen = std::mt19937 {rd()};

Numbers produced by all engines follow a uniform distribution. To convert the result
to another statistical distribution, we have to use a distribution class. To show how
generated numbers are distributed according to the selected distribution, we will use
the following function. This function generates a specified number of pseudo-random
numbers and counts their repetition in a map. The values from the map are then used
to produce a bar-like diagram showing how often each number occurred:

void generate_and_print(std::function<int(void)> gen,
int const iterations = 10000)

auto data = std::map<int, int>{};

for (auto n = 0; n < iterations; ++n)
++data[gen()];

auto max = std::max_element(
std::begin(data), std::end(data),
[](auto kvpl, auto kvp2) {
return kvpl.second < kvp2.second; });

for (auto i = max->second / 200; i > 9; --1i)

{ for (auto kvp : data)
{
std::cout
<< std::fixed << std::setprecision(1l) << std::setw(3)
<< (kvp.second / 200 >= i ? (char)219 : ' ');
}
std::cout << '\n’;
}

[84]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 2

for (auto kvp : data)

{
std::cout
<< std::fixed << std::setprecision(l) << std::setw(3)
<< kvp.first;
}

std::cout << '\n';

}

The following code generates random numbers using the std: :mt19937 engine with
a uniform distribution in the range [1, 6]; this is basically what you get when you
throw a dice:

std::random_device rd{};

auto mtgen = std::mt19937{ rd() };

auto ud = std::uniform_int_distribution<>{ 1, 6 };
generate_and_print([&mtgen, &ud]() {return ud(mtgen); });

The output of the program looks like this:

B8 Microsoft Visual Studio Debug Console

1 2 3 4 5 6

Figure 2.1: Uniform distribution of the range [1,6]

In the next and final example, we're changing the distribution to a normal
distribution with a mean of 5 and a standard deviation of 2. This distribution
produces real numbers; therefore, in order to use the previous generate_and_print()
function, the numbers must be rounded to integers:

std::random_device rd{};
auto mtgen = std::mt19937{ rd() };

[85]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Working with Numbers and Strings

auto nd = std::normal_distribution<>{ 5, 2 };
generate_and_print(
[&mtgen, &nd]() {
return static_cast<int>(std::round(nd(mtgen))); });

The following will be the output of the preceding code:

BH Microsoft Visual Studio Debug Console

-2 -1 @0 1 2 6 7 8 9 1@ 11 12 13 14

Figure 2.2: Normal distribution with mean 5 and standard variance 2

Here, we can see that, based on the graphical representation, the distribution has
changed from a uniform one to a normal one with the mean at value 5.

See also

* Initializing all bits of internal state of a pseudo-random number generator to learn
how to properly initialize random number engines

Initializing all bits of internal state
of a pseudo-random number generator

In the previous recipe, we looked at the pseudo-random number library, along with
its components, and how it can be used to produce numbers in different statistical
distributions. One important factor that was overlooked in that recipe is the proper
initialization of the pseudo-random number generators.

[86]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

EBSCChost -

Chapter 2

With careful analysis (that is beyond the purpose of this recipe or this book), it

can be shown that the Mersenne twister engine has a bias toward producing some
values repeatedly and omitting others, thus generating numbers not in a uniform
distribution, but rather in a binomial or Poisson distribution. In this recipe, you will
learn how to initialize a generator in order to produce pseudo-random numbers with
a true uniform distribution.

Getting ready

You should read the previous recipe, Generating pseudo-random numbers, to get an
overview of what the pseudo-random number library offers.

How to do it...

To properly initialize a pseudo-random number generator to produce a uniformly
distributed sequence of pseudo-random numbers, perform the following steps:

1. Usean std::random_device to produce random numbers to be used as
seeding values:

std::random_device rd;

2. Generate random data for all internal bits of the engine:

std::array<int, std::mt19937::state_size> seed_data {};
std::generate(std: :begin(seed_data), std::end(seed_data),
std::ref(rd));

3. Create an std: : seed_seq object from the previously generated pseudo-
random data:

std::seed_seq seq(std::begin(seed_data), std::end(seed_data));

4. Create an engine object and initialize all the bits representing the internal
state of the engine; for example, an mt19937 has 19,937 bits of internal states:

auto eng = std::mt19937{ seq };

5. Use the appropriate distribution based on the requirements of the
application:

auto dist = std::uniform_real_distribution<>{ @, 1 };

[87]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

EBSCChost -

Working with Numbers and Strings

How it works...

In all the examples shown in the previous recipe, we used the std: :mt19937 engine
to produce pseudo-random numbers. Though the Mersenne twister is slower than
the other engines, it can produce the longest sequences of non-repeating numbers
with the best spectral characteristics. However, initializing the engine in the
manner shown in the previous recipe will not have this effect. The problem is that
the internal state of mt19937 has 624 32-bit integers, and in the examples from the
previous recipe, we have only initialized one of them.

When working with the pseudo-random number library, remember the following
rule of thumb (shown in the information box):

\/‘/ In order to produce the best results, engines must have all their

internal state properly initialized before generating numbers.

The pseudo-random number library provides a class for this particular purpose,
called std: :seed_seq. This is a generator that can be seeded with any number of
32-bit integers and produces the requested number of integers evenly distributed
in the 32-bit space.

In the preceding code from the How to do it... section, we defined an array called
seed_data with a number of 32-bit integers equal to the internal state of the mt19937
generator; that is, 624 integers. Then, we initialized the array with random numbers
produced by std: :random_device. The array was later used to seed std: :seed_seq,
which, in turn, was used to seed the mt19937 generator.

See also

* Generating pseudo-random numbers to familiarize yourself with the capabilities
of the standard numerics library for generating pseudo-random numbers

Creating cooked user-defined literals

Literals are constants of built-in types (numerical, Boolean, character, character
string, and pointer) that cannot be altered in a program. The language defines a
series of prefixes and suffixes to specify literals (and the prefix/suffix is actually part
of the literal). C++11 allows us to create user-defined literals by defining functions
called literal operators, which introduce suffixes for specifying literals. These work
only with numerical character and character string types.

[88]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Chapter 2

This opens the possibility of defining both standard literals in future versions and
allows developers to create their own literals. In this recipe, we will learn how to
create our own cooked literals.

Getting ready

User-defined literals can have two forms: raw and cooked. Raw literals are not
processed by the compiler, whereas cooked literals are values processed by the
compiler (examples can include handling escape sequences in a character string or
identifying numerical values such as integer 2898 from literal OxBAD). Raw literals
are only available for integral and floating-point types, whereas cooked literals are
also available for character and character string literals.

How to do it...

To create cooked user-defined literals, you should follow these steps:

1. Define your literals in a separate namespace to avoid name clashes.
2. Always prefix the user-defined suffix with an underscore (_).
3. Define a literal operator of one of the following forms for cooked literals:

T operator _suffix(unsigned long long int);

T operator "" _suffix(long double);

T operator "" _suffix(char);

T operator "" _suffix(wchar_t);

T operator "" _suffix(charl6_t);

T operator "" _suffix(char32_t);

T operator "" _suffix(char const *, std::size t);

T operator "" _suffix(wchar_t const *, std::size_t);
T operator "" _suffix(charl6_t const *, std::size t);
T operator "" _suffix(char32_t const *, std::size t);

The following example creates a user-defined literal for specifying kilobytes:

namespace compunits

{
constexpr size t operator "" _KB(unsigned long long const size)
{
return static_cast<size t>(size * 1024);
}
}
[89]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Working with Numbers and Strings

auto size{ 4 KB };

using byte = unsigned char;
auto buffer = std::array<byte, 1_KB>{};

How it works...

When the compiler encounters a user-defined literal with a user-defined suffix,

S (it always has a leading underscore for third-party suffixes, as suffixes without

a leading underscore are reserved for the standard library), it does an unqualified
name lookup in order to identify a function with the name operator "" s.If it finds
one, then it calls it according to the type of the literal and the type of the literal
operator. Otherwise, the compiler will yield an error.

In the example shown in the How to do it... section, the literal operator is called
operator "" _KBand has an argument of type unsigned long long int. This is the
only integral type possible for literal operators for handling integral types. Similarly,
for floating-point user-defined literals, the parameter type must be long double since
for numeric types, the literal operators must be able to handle the largest possible
values. This literal operator returns a constexpr value so that it can be used where
compile-time values are expected, such as specifying the size of an array, as shown
in the preceding example.

When the compiler identifies a user-defined literal and has to call the appropriate
user-defined literal operator, it will pick the overload from the overload set
according to the following rules:

* For integral literals: It calls in the following order: the operator that takes an
unsigned long long, the raw literal operator that takes a const char*, or the
literal operator template.

* For floating-point literals: It calls in the following order: the operator that
takes a long double, the raw literal operator that takes a const char*,
or the literal operator template.

* For character literals: It calls the appropriate operator, depending on the
character type (char, wchar_t, char16_t, and char32_t).

* For string literals: It calls the appropriate operator, depending on the string
type, that takes a pointer to the string of characters and the size.

In the following example, we're defining a system of units and quantities. We
want to operate with kilograms, pieces, liters, and other types of units. This could
be useful in a system that can process orders and you need to specify the amount
and unit for each article.

[90]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 2

The following are defined in the namespace units:

* A scoped enumeration for the possible types of units (kilogram, meter, liter,
and pieces):

enum class unit { kilogram, liter, meter, piece, };

* A class template to specify quantities of a particular unit (such as 3.5
kilograms or 42 pieces):

template <unit U>
class quantity
{
const double amount;
public:
constexpr explicit quantity(double const a) : amount(a)

1}

explicit operator double() const { return amount; }

Y

* The operator+ and operator- functions for the quantity class template in
order to be able to add and subtract quantities:

template <unit U>
constexpr quantity<U> operator+(quantity<U> const &ql,
quantity<U> const &q2)
{
return quantity<U>(static_cast<double>(ql) +
static_cast<double>(q2));

template <unit U>
constexpr quantity<U> operator-(quantity<U> const &ql,
quantity<U> const &q2)
{
return quantity<U>(static_cast<double>(ql) -
static_cast<double>(q2));

}

* Literal operators to create quantity literals, defined in an inner namespace
called unit_literals. The purpose of this is to avoid possible name clashes
with literals from other namespaces.

[91]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Working with Numbers and Strings

If such collisions do happen, developers could select the ones that they
should use using the appropriate namespace in the scope where the literals
need to be defined:

namespace unit_literals

{
constexpr quantity<unit::kilogram> operator "" _kg(
long double const amount)
{
return quantity<unit::kilogram>
{ static_cast<double>(amount) };
}
constexpr quantity<unit::kilogram> operator "" _kg(
unsigned long long const amount)
{
return quantity<unit::kilogram>
{ static_cast<double>(amount) };
}
constexpr quantity<unit::liter> operator "" _I(
long double const amount)
{
return quantity<unit::liter>
{ static_cast<double>(amount) };
}
constexpr quantity<unit::meter> operator "" _m(
long double const amount)
{
return quantity<unit::meter>
{ static_cast<double>(amount) };
}

constexpr quantity<unit::piece> operator
unsigned long long const amount)

_pcs(

{

return quantity<unit::piece>
{ static_cast<double>(amount) };

[92]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 2

By looking carefully, you can note that the literal operators defined earlier are not the
same:

* _kgis defined for both integral and floating-point literals; that enables us to
create both integral and floating-point values such as 1_kg and 1.0_kg.

* _land _mare defined only for floating-point literals; this means we can only
define quantity literals for these units with floating points, such as 4.5_1 and
10.0_m.

* _pcsis only defined for integral literals; this means we can only define
quantities of an integer number of pieces, such as 42_pcs.

Having these literal operators available, we can operate with various quantities.
The following examples show both valid and invalid operations:

using namespace units;
using namespace unit_literals;

auto q1{ 1_kg };

auto q2{ 4.5 _kg };
auto q3{ q1 + g2 };
auto gq4{ g2 - ql1 };

auto g5{ 1.0.m + 1_pcs };
auto gq6{ 1_1 };

auto q7{ 2.0_pcs}

ql is a quantity of 1 kg; this is an integer value. Since an overloaded operator
_kg(unsigned long long const) exists, the literal can be correctly created from

the integer 1. Similarly, g2 is a quantity of 4.5 kilograms; this is a real value. Since
an overloaded operator "" _kg(long double) exists, the literal can be created from
the double floating-point value 4.5.

On the other hand, g6 is a quantity of 1 liter. Since there is no overloaded operator
"" _1l(unsigned long long), the literal cannot be created. It would require an
overload that takes an unsigned long long, but such an overload does not exist.
Similarly, q7 is a quantity of 2.0 pieces, but piece literals can only be created from
integer values and, therefore, this generates another compiler error.

[93]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Working with Numbers and Strings

There's more...

Though user-defined literals are available from C++11, standard literal operators
have been available only from C++14. Further standard user-defined literals have
been added to the next versions of the standard. The following is a list of these
standard literal operators:

* operator""s for defining std: :basic_string literals and operator""sv
(in C++17) for defining std: :basic_string_view literals:

using namespace std::string_literals;

auto s1{ "text"s };
auto s2{ L"text"s };
auto s3{ u"text"s };
auto s4{ U"text"s };
using namespace std::string_view_literals;
auto s5{ "text"sv };

min, operator""s, operator""ms, operator""us,
ns for creating an std: :chrono: :duration value:

®* operator""h, operator
and operator""

using namespace std::chrono_literals;

auto timer {2h + 42min + 15s};

* operator""y for creating an std: : chrono: :year literal and operator""d for
creating an std: :chrono: :day literal that represents a day of a month, both
added to C++20:

using namespace std::chrono_literals;

auto year { 2020y };
auto day { 15d };

* operator""if, operator""i, and operator""il for creating an std: :complex

value:

using namespace std::complex_literals;

auto c{ 12.0 + 4.5i };

The standard user-defined literals are available in multiple namespaces. For
instance, the ""s and ""sv literals for strings are defined in the namespace
std::literals::string_literals.

[94]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Chapter 2

However, both literals and string_literals are inlined namespaces. Therefore,
you can access the literals with using namespace std::literals, using namespace
std::string_literals, or using namespace std::literals::string literals. In the
previous examples, the second form was preferred.

See also

* Using raw string literals to avoid escaping characters to learn how to define string
literals without the need to escape special characters

* Creating raw user-defined literals to understand how to provide a custom
interpretation of an input sequence so that it changes the normal behavior
of the compiler

* Using inline namespaces for symbol versioning in Chapter 1, Learning Modern
Core Language Features, to learn how to version your source code using inline
namespaces and conditional compilation

Creating raw user-defined literals

In the previous recipe, we looked at the way C++11 allows library implementers and
developers to create user-defined literals and the user-defined literals available in
the C++14 standard. However, user-defined literals have two forms: a cooked form,
where the literal value is processed by the compiler before being supplied to the
literal operator, and a raw form, in which the literal is not processed by the compiler
before being supplied to the literal operator. The latter is only available for integral
and floating-point types. Raw literals are useful for altering the compiler's normal
behavior. For instance, a sequence such as 3.1415926 is interpreted by the compiler
as a floating-point value, but with the use of a raw user-defined literal, it could be
interpreted as a user-defined decimal value. In this recipe, we will look at creating
raw user-defined literals.

Getting ready

Before continuing with this recipe, it is strongly recommended that you go through
the previous one, Creating cooked user-defined literals, as general details about user-
defined literals will not be reiterated here.

To exemplify the way raw user-defined literals can be created, we will define binary
literals. These binary literals can be of 8-bit, 16-bit, and 32-bit (unsigned) types. These
types will be called byte8, byte16, and byte32, and the literals we will create will be
called b8, bi6, and b32.

[95]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Working with Numbers and Strings

How to do it...

To create raw user-defined literals, you should follow these steps:

1. Define your literals in a separate namespace to avoid name clashes.
2. Always prefix the used-defined suffix with an underscore (_).

3. Define a literal operator or literal operator template of the following form:

T operator _suffix(const char*);

template<char...> T operator "" _suffix();

The following example shows a possible implementation of 8-bit, 16-bit, and 32-bit
binary literals:

namespace binary

{
using byte8 unsigned char;
using bytel6 = unsigned short;
using byte32 = unsigned int;

namespace binary_literals
{
namespace binary_literals_internals
{
template <typename CharT, char... bits>
struct binary_struct;

template <typename CharT, char... bits>
struct binary_struct<CharT, '©', bits...>
{
static constexpr CharT value{
binary_struct<CharT, bits...>::value };

s

template <typename CharT, char... bits>
struct binary_struct<CharT, '1', bits...>
{

static constexpr CharT value{
static_cast<CharT>(1 << sizeof...(bits)) |
binary_struct<CharT, bits...>::value };

%

[96]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 2

template <typename CharT>
struct binary_struct<CharT>

{

static constexpr CharT value{ 0 };

b

template<char... bits>
constexpr byte8 operator""_b8()
{
static_assert(
sizeof...(bits) <= 8,
"binary literal b8 must be up to 8 digits long");

return binary_literals_internals::
binary_struct<byte8, bits...>::value;

template<char... bits>
constexpr bytel6 operator"" _bil6()
{
static_assert(
sizeof...(bits) <= 16,
"binary literal bl6 must be up to 16 digits long");

return binary_literals_internals::
binary_struct<bytel6, bits...>::value;

}

template<char... bits>

constexpr byte32 operator""_b32()
{

static_assert(
sizeof...(bits) <= 32,
"binary literal b32 must be up to 32 digits long");

return binary_literals_internals::
binary_struct<byte32, bits...>::value;

[97]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Working with Numbers and Strings

How it works...

First of all, we define everything inside a namespace called binary and start with
introducing several type aliases: byte8, byte16, and byte32. These represent integral
types of 8 bits, 16 bits, and 32 bits, as the names imply.

The implementation in the previous section enables us to define binary literals of
the form 1010_b8 (a byte8 value of decimal 10) or ©00010101100_b16 (a bytel6 value
of decimal 2130496). However, we want to make sure that we do not exceed the
number of digits for each type. In other words, values such as 111160001_b8 should
be illegal and the compiler should yield an error.

The literal operator templates are defined in a nested namespace called binary_
literal_internals. This is a good practice in order to avoid name collisions with
other literal operators from other namespaces. Should something like that happen,
you can choose to use the appropriate namespace in the right scope (such as one
namespace in a function or block and another namespace in another function

or block).

The three literal operator templates are very similar. The only things that are
different are their names (_b8, _16, and _b32), return type (bytes, bytel6, and
byte32), and the condition in the static assert that checks the number of digits.

We will explore the details of variadic templates and template recursion in a

later recipe; however, for a better understanding, this is how this particular
implementation works: bits is a template parameter pack that is not a single

value, but all the values the template could be instantiated with. For example, if we
consider the literal 1010_b8, then the literal operator template would be instantiated
as operator"" _b8<'1', 'e', '1', '@'>().Before proceeding with computing the
binary value, we check the number of digits in the literal. For _b8, this must not
exceed eight (including any trailing zeros). Similarly, it should be up to 16 digits
for _b16 and 32 for _b32. For this, we use the sizeof... operator, which returns the
number of elements in a parameter pack (in this case, bits).

If the number of digits is correct, we can proceed to expand the parameter pack and
recursively compute the decimal value represented by the binary literal. This is done
with the help of an additional class template and its specializations. These templates
are defined in yet another nested namespace, called binary_literals_internals.
This is also a good practice because it hides (without proper qualification) the
implementation details from the client (unless an explicit using namespace directive
makes them available to the current namespace).

[98]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Chapter 2

Even though this looks like recursion, it is not a true runtime
recursion. This is because after the compiler expands and generates
‘ / the code from templates, what we end up with is basically calls to
\P/ overloaded functions with a different number of parameters. This
is explained later in the Writing a function template with a variable
number of arquments recipe.

The binary_struct class template has a template type of CharT for the return type of
the function (we need this because our literal operator templates should return either
bytes8, bytels, or byte32) and a parameter pack:

template <typename CharT, char... bits>
struct binary_struct;

Several specializations of this class template are available with parameter pack
decomposition. When the first digit of the pack is '@', the computed value remains
the same, and we continue expanding the rest of the pack. If the first digit of the pack
is '1', then the new value is 1, shifted to the left with the number of digits in the
remainder of the pack bit, or the value of the rest of the pack:

template <typename CharT, char... bits>
struct binary_struct<CharT, '0', bits...>
{
static constexpr CharT value{
binary_struct<CharT, bits...>::value };

%

template <typename CharT, char... bits>
struct binary_struct<CharT, '1', bits...>
{
static constexpr CharT value{
static_cast<CharT>(1 << sizeof...(bits)) |
binary_struct<CharT, bits...>::value };

1

The last specialization covers the case where the pack is empty; in this case,
we return 0:

template <typename CharT>
struct binary_struct<CharT>

{

static constexpr CharT value{ 0 };

1

[99]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Working with Numbers and Strings

After defining these helper classes, we could implement the byte8, byte16, and
byte32 binary literals as intended. Note that we need to bring the content of the
namespace binary_literals into the current namespace in order to use the literal
operator templates:

using namespace binary;
using namespace binary_literals;

auto bl = 1010_bS8;
auto b2 = 101010101010 _b1l6;
auto b3 = 101010101010101010101010_b32;

The following definitions trigger compiler errors:

auto b4 = 0011111111 _b8;
auto b5 = 001111111111111111_b16;
auto b6 = 00111111111111112111111111111111111_b32;

The reason for this is that the condition in static_assert is not met. The length of
the sequence of characters preceding the literal operator is greater than expected,
in all cases.

See also

* Using raw string literals to avoid escaping characters to learn how to define string
literals without the need to escape special characters

* Creating cooked user-defined literals to learn how to create literals of user-
defined types

* Writing a function template with a variable number of arguments in Chapter 3
to see how variadic templates enable us to write functions that can take any
number of arguments

* Creating type aliases and alias templates in Chapter 1 to learn about aliases for

types

[100]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 2

Using raw string literals to avoid
escaping characters

Strings may contain special characters, such as non-printable characters (newline,
horizontal and vertical tab, and so on), string and character delimiters (double and
single quotes), or arbitrary octal, hexadecimal, or Unicode values. These special
characters are introduced with an escape sequence that starts with a backslash,
followed by either the character (examples include ' and "), its designated letter
(examples include n for a new line, t for a horizontal tab), or its value (examples
include octal 050, hexadecimal XF7, or Unicode U16F0). As a result, the backslash
character itself has to be escaped with another backslash character. This leads to
more complicated literal strings that can be hard to read.

To avoid escaping characters, C++11 introduced raw string literals that do not
process escape sequences. In this recipe, you will learn how to use the various
forms of raw string literals.

Getting ready

In this recipe, and throughout the rest of this book, I will use the s suffix to define
basic_string literals. This was covered earlier in this chapter in the Creating cooked
user-defined literals recipe.

How to do it...

To avoid escaping characters, define the string literals with one of the following
forms:

e R"(literal)" asthe default form:

auto filename {R"(C:\Users\Marius\Documents\)"s};
auto pattern {R"((\w+)=(\d+)$)"s};

auto sqglselect {
R"(SELECT *
FROM Books
WHERE Publisher='Packtpub'
ORDER BY PubDate DESC)"s};

[101]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Working with Numbers and Strings

* R"delimiter(literal)delimiter", where delimiter is any sequence of
characters excluding parentheses, backslash, and spaces, and literal is any
sequence of characters with the limitation that it cannot include the closing
sequence)delimiter”. Here is an example with ! ! as delimiter:

auto text{ R"!!(This text contains both "(and)".)!!"s };
std::cout << text << '\n';

How it works...

When string literals are used, escapes are not processed, and the actual content of
the string is written between the delimiter (in other words, what you see is what
you get). The following example shows what appears as the same raw literal string;
however, the second one still contains escaped characters. Since these are not
processed in the case of string literals, they will be printed as they are in the output:

auto filenamel {R"(C:\Users\Marius\Documents\)"s};
auto filename2 {R"(C:\\Users\\Marius\\Documents\\)"s};

std::cout << filenamel << '\n';

std::cout << filename2 << '\n';

If the text has to contain the)" sequence, then a different delimiter must be used,
in the R"delimiter(literal)delimiter" form. According to the standard, the
possible characters in a delimiter can be as follows:

" Any member of the basic source character set except: space, the left parenthesis
(the right parenthesis), the backslash \, and the control characters representing
horizontal tab, vertical tab, form feed, and newline."

Raw string literals can be prefixed by one of L, u8, u, and U to indicate a wide, UTF-
8, UTF-16, or UTF-32 string literal, respectively. The following are examples of such
string literals:

auto t1{ LR"(text)" };
auto t2{ u8R"(text)" };
auto t3{ uR"(text)" };
auto t4{ UR"(text)" };

auto t5{ LR"(text)"s };

[102]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Chapter 2

auto te6{ u8R"(text)"s };
auto t7{ uR"(text)"s };
auto t8{ UR"(text)"s };

Note that the presence of the suffix ""s at the end of the string makes the compiler
deduce the type as various string classes and not character arrays.

See also
* Creating cooked user-defined literals to learn how to create literals of user-
defined types

Creating a library of string helpers

The string types from the standard library are a general-purpose implementation
that lacks many helpful methods, such as changing the case, trimming, splitting,

and others that may address different developer needs. Third-party libraries that
provide rich sets of string functionalities exist. However, in this recipe, we will look
at implementing several simple, yet helpful, methods you may often need in practice.
The purpose is rather to see how string methods and standard general algorithms
can be used for manipulating strings, but also to have a reference to reusable code
that can be used in your applications.

In this recipe, we will implement a small library of string utilities that will provide
functions for the following;:

* Changing a string into lowercase or uppercase
* Reversing a string
* Trimming white spaces from the beginning and/or the end of the string

* Trimming a specific set of characters from the beginning and/or the end of
the string

* Removing occurrences of a character anywhere in the string

* Tokenizing a string using a specific delimiter

Before we start with the implementation, let's look at some prerequisites.

Getting ready

The string library we will be implementing should work with all the standard string
types; thatis, std::string, std: :wstring, std: :ul6string, and std: :u32string.

[103]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Working with Numbers and Strings

To avoid specifying long names such as std: :basic_string<CharT, std::char_
traits<CharT>, std::allocator<CharT>>, we will use the following alias templates
for strings and string streams:

template <typename CharT>
using tstring =
std::basic_string<CharT, std::char_traits<CharT>,
std::allocator<CharT>>;

template <typename CharT>
using tstringstream =
std::basic_stringstream<CharT, std::char_traits<CharT>,
std::allocator<CharT>>;

To implement these string helper functions, we need to include the header <string>
for strings and <algorithm> for the general standard algorithms we will use.

In all the examples in this recipe, we will use the standard user-defined literal
operators for strings from C++14, for which we need to explicitly use the
std: :string_literals namespace.

How to do it...

1. To convert a string to lowercase or uppercase, apply the tolower() or
toupper() functions to the characters of a string using the general-purpose
algorithm std: :transform():

template<typename CharT>
inline tstring<CharT> to_upper(tstring<CharT> text)
{
std::transform(std: :begin(text), std::end(text),
std: :begin(text), toupper);
return text;

}

template<typename CharT>
inline tstring<CharT> to_lower(tstring<CharT> text)
{
std::transform(std: :begin(text), std::end(text),
std::begin(text), tolower);
return text;

}

[104]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 2

2. Toreverse a string, use the general-purpose algorithm std: :reverse():

template<typename CharT>
inline tstring<CharT> reverse(tstring<CharT> text)
{
std::reverse(std: :begin(text), std::end(text));
return text;

}

3. To trim a string, at the beginning, end, or both, use the std: :basic_string
methods find_first_not_of() and find_last_not_of():

template<typename CharT>
inline tstring<CharT> trim(tstring<CharT> const & text)
{

auto first{ text.find_first_not_of(' ') };

auto last{ text.find_last_not_of(' ') };

return text.substr(first, (last - first + 1));

}

template<typename CharT>
inline tstring<CharT> trimleft(tstring<CharT> const & text)
{

auto first{ text.find_first_not_of(' ') };

return text.substr(first, text.size() - first);

}

template<typename CharT>
inline tstring<CharT> trimright(tstring<CharT> const & text)
{

auto last{ text.find_last_not_of(' ') };

return text.substr(0, last + 1);

}

4. To trim characters in a given set from a string, use overloads of the
std: :basic_string methods find_first_not_of() and find_last_not_of(),
which take
a string parameter that defines the set of characters to look for:

template<typename CharT>
inline tstring<CharT> trim(tstring<CharT> const & text,
tstring<CharT> const & chars)
{
auto first{ text.find_first_not_of(chars) };
auto last{ text.find_last_not_of(chars) };

[105]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Working with Numbers and Strings

return text.substr(first, (last - first + 1));
}

template<typename CharT>
inline tstring<CharT> trimleft(tstring<CharT> const & text,
tstring<CharT> const & chars)
{
auto first{ text.find_first_not_of(chars) };
return text.substr(first, text.size() - first);

}

template<typename CharT>
inline tstring<CharT> trimright(tstring<CharT> const &text,
tstring<CharT> const &chars)
{
auto last{ text.find_last_not_of(chars) };
return text.substr(@, last + 1);

}

5. Toremove characters from a string, use std: :remove_if() and std: :basic_
string::erase():
template<typename CharT>
inline tstring<CharT> remove(tstring<CharT> text,
CharT const ch)

{
auto start = std::remove_if(
std::begin(text), std::end(text),
[=](CharT const c¢) {return c == ch; });
text.erase(start, std::end(text));
return text;
}

6. To split a string based on a specified delimiter, use std: :getline() to read
from an std: :basic_stringstream initialized with the content of the string.
The tokens extracted from the stream are pushed into a vector of strings:

template<typename CharT>
inline std::vector<tstring<CharT>> split
(tstring<CharT> text, CharT const delimiter)

auto sstr = tstringstream<CharT>{ text };
auto tokens = std::vector<tstring<CharT>>{};
auto token = tstring<CharT>{};

[106]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Chapter 2

while (std::getline(sstr, token, delimiter))

{
if (!token.empty()) tokens.push back(token);

}

return tokens;

}

How it works...

To implement the utility functions from the library, we have two options:

* Functions would modify a string passed by a reference

* Functions would not alter the original string but return a new string

The second option has the advantage that it preserves the original string, which may
be helpful in many cases. Otherwise, in those cases, you would first have to make

a copy of the string and alter the copy. The implementation provided in this recipe
takes the second approach.

The first functions we implemented in the How to do it... section were to_upper()
and to_lower(). These functions change the content of a string either to uppercase
or lowercase. The simplest way to implement this is using the std: : transform()
standard algorithm. This is a general-purpose algorithm that applies a function to
every element of a range (defined by a begin and end iterator) and stores the result
in another range for which only the begin iterator needs to be specified. The output
range can be the same as the input range, which is exactly what we did to transform
the string. The applied function is toupper() or tolower():

auto ut{ string_library::to_upper("this is not UPPERCASE"s) };

auto 1t{ string_library::to_lower("THIS IS NOT lowercase"s) };

The next function we considered was reverse(), which, as the name implies,
reverses the content of a string. For this, we used the std: :reverse() standard
algorithm. This general-purpose algorithm reverses the elements of a range defined
by a begin and end iterator:

auto rt{string_library::reverse("cookbook"s)};

[107]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Working with Numbers and Strings

When it comes to trimming, a string can be trimmed at the beginning, end, or

both sides. Because of that, we implemented three different functions: trim() for
trimming at both ends, trimleft() for trimming at the beginning of a string, and
trimright() for trimming at the end of a string. The first version of the function
trims only spaces. In order to find the right part to trim, we use the find_first_not_
of () and find_last_not_of() methods of std: :basic_string. These return the first
and last characters in the string that are not of the specified character. Subsequently,
a call to the substr() method of std: :basic_string returns a new string. The
substr() method takes an index in the string and a number of elements to copy

to the new string:

auto textl{" this is an example "s};
auto t1{ string_library::trim(textl) };
auto t2{ string_library::trimleft(textl) };

auto t3{ string_library::trimright(textl) };

Sometimes, it can be useful to trim other characters and then spaces from a string. In
order to do that, we provided overloads for the trimming functions that specify a set
of characters to be removed. That set is also specified as a string. The implementation
is very similar to the previous one because both find_first_not_of() and find_
last_not_of() have overloads that take a string containing the characters to be
excluded from the search:

auto chars1{" !%\n\r"s};
auto text3{"!! this % needs a lot\rof trimming !\n"s};

auto t7{ string_library::trim(text3, charsl) };

auto t8{ string_library::trimleft(text3, charsl) };

auto t9{ string_library::trimright(text3, charsl) };

If removing characters from any part of the string is necessary, the trimming
methods are not helpful because they only treat a contiguous sequence of characters
at the start and end of a string. For that, however, we implemented a simple
remove () method. This uses the std:remove_if() standard algorithm.

[108]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 2

Both std: :remove() and std: :remove_if() work in a way that may not be very
intuitive at first. They remove elements that satisfy the criteria from a range defined
by a first and last iterator by rearranging the content of the range (using move
assignment). The elements that need to be removed are placed at the end of the
range, and the function returns an iterator to the first element in the range that
represents the removed elements. This iterator basically defines the new end of the
range that was modified. If no element was removed, the returned iterator is the end
iterator of the original range. The value of this returned iterator is then used to call
the std: :basic_string::erase() method, which actually erases the content of the
string defined by two iterators. The two iterators in our case are the iterator returned
by std: :remove_if() and the end of the string;

auto text4{"must remove all * from text**"s};

auto t1e{ string_library::remove(textd4, "*') };

auto t11{ string_library::remove(textd4, "'!') };

The last method we implemented, split(), splits the content of a string based

on a specified delimiter. There are various ways to implement this. In this
implementation, we used std: :getline(). This function reads characters from an
input stream until a specified delimiter is found and places the characters in a string.
Before starting to read from the input buffer, it calls erase() on the output string to
clear its content. Calling this method in a loop produces tokens that are placed in a
vector. In our implementation, empty tokens were skipped from the result set:

auto text5{"this text will be split "s};

auto tokensl{ string_library::split(text5, ' ") };

auto tokens2{ string_library::split(""s, " ') };

Two examples of text splitting are shown here. In the first example, the text from
the texts5 variable is split into words and, as mentioned earlier, empty tokens are
ignored. In the second example, splitting an empty string produces an empty vector
of token.

[109]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Working with Numbers and Strings

See also
* Creating cooked user-defined literals to learn how to create literals of user-
defined types

* Creating type aliases and alias templates in Chapter 1, Learning Modern Core
Language Features, to learn about aliases for types

Verifying the format of a string using
regular expressions

Regular expressions are a language intended for performing pattern matching and
replacements in texts. C++11 provides support for regular expressions within the
standard library through a set of classes, algorithms, and iterators available in the
header <regex>. In this recipe, we will learn how regular expressions can be used
to verify that a string matches a pattern (examples can include verifying an email
or IP address formats).

Getting ready

Throughout this recipe, we will explain, whenever necessary, the details of the
regular expressions that we use. However, you should have at least some basic
knowledge of regular expressions in order to use the C++ standard library for
regular expressions. A description of regular expressions syntax and standards is
beyond the purpose of this book; if you are not familiar with regular expressions, it
is recommended that you read more about them before continuing with the recipes
that focus on regular expressions. Good online resources for learning, building, and
debugging regular expressions can be found at https://regexr.comand https://
regex101.com.

How to do it...

In order to verify that a string matches a regular expression, perform the following
steps:

1. Include the headers <regex> and <string> and the namespace std: :string_
literals for C++14 standard user-defined literals for strings:

#include <regex>
#include <string>
using namespace std::string_literals;

[110]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

https://regexr.com
https://regex101.com
https://regex101.com

EBSCChost -

Chapter 2

Use raw string literals to specify the regular expression to avoid escaping
backslashes (which can occur frequently). The following regular expression
validates most email formats:

auto pattern {R"(~[A-Z0-9. %+-]+@[A-Z0-9.-]+\.[A-Z]{2,}$)"s};

Create an std: :regex/std: :wregex object (depending on the character set
that is used) to encapsulate the regular expression:

auto rx = std::regex{pattern};

To ignore casing or specify other parsing options, use an overloaded
constructor that has an extra parameter for regular expression flags:

auto rx = std::regex{pattern, std::regex_constants::icase};

Use std: :regex_match() to match the regular expression with an entire
string:

auto valid = std::regex_match("marius@domain.com"s, rx);

How it works...

Considering the problem of verifying the format of email addresses, even though
this may look like a trivial problem, in practice, it is hard to find a simple regular
expression that covers all the possible cases for valid email formats. In this recipe,
we will not try to find that ultimate regular expression, but rather apply a regular
expression that is good enough for most cases. The regular expression we will use
for this purpose is this:

A[A-Z0-9. %+-1+@[A-Z0-9.-1+\.[A-Z]1{2,}$

The following table explains the structure of the regular expression:

Part

Description

N

Start of string.

[A-Z0-9._%+-]1+ | Atleast one character in the range A-Z, 9-9, or one of -, %, +, or - that

represents the local part of the email address.

@ The character @.

[A-Z0-9.-]+ At least one character in the range A-Z, 9-9, or one of -, %, +, or - that
represents the hostname of the domain part.

\. A dot that separates the domain hostname and label.

[A-Z1{2,} The DNS label of a domain that can have between 2 and 63 characters.

$ End of the string.

[111]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Working with Numbers and Strings

Bear in mind that, in practice, a domain name is composed of a hostname followed
by a dot-separated list of DNS labels. Examples include localhost, gmail.com

and yahoo. co.uk. This regular expression we are using does not match domains
without DNS labels, such as localhost (an email, such as root@localhost, is a valid
email). The domain name can also be an IP address specified in brackets, such as
[192.168.100.11] (as in john.doe@[192.168.100.11]). Email addresses containing
such domains will not match the regular expression defined previously. Even though
these rather rare formats will not be matched, the regular expression can cover most
email formats.

| The regular expression for the example in this chapter is provided
\ 7/
@ for didactical purposes only, and is not intended to be used as it
- is in production code. As explained earlier, this sample does not
- cover all possible email formats.

We began by including the necessary headers; that is, <regex> for regular expressions
and <string> for strings. The is_valid_email() function, shown in the following
code (which basically contains the samples from the How fo do it... section), takes a
string representing an email address and returns a Boolean indicating whether the
email has a valid format or not.

We first construct an std: : regex object to encapsulate the regular expression
indicated with the raw string literal. Using raw string literals is helpful because
it avoids escaping backslashes, which are used for escape characters in regular
expressions too. The function then calls std: : regex_match(), passing the input
text and the regular expression:

bool is_valid_email format(std::string const & email)

{
auto pattern {R"(~[A-Z0-9. %+-]+@[A-Z0-9.-]+\.[A-Z]{2,}$)"s};

auto rx = std::regex{pattern, std::regex_constants::icase};

return std::regex_match(email, rx);

}

The std: :regex_match() method tries to match the regular expression against the
entire string. If successful, it returns true; otherwise, it returns false:

auto ltest = [](std::string const & email)

{
std::cout << std::setw(30) << std::left

<< email << " "

[112]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 2

<< (is_valid_email format(email) ?
"valid format" : "invalid format")
<< '\n';

1

1test("JOHN.DOE@DOMAIN.COM"s);
ltest("JOHNDOE@DOMAIL.CO.UK"s);
1test("JOHNDOE@DOMAIL .INFO"s);
1test("J.0.H.N_D.O.E@DOMAIN.INFO"s);
1test("ROOT@LOCALHOST"s);
ltest("john.doe@domain.com"s);

In this simple test, the only emails that do not match the regular expression are ROOT@
LOCALHOST and john.doe@domain.com. The first contains a domain name without a
dot-prefixed DNS label, and that case is not covered in the regular expression. The
second contains only lowercase letters, and in the regular expression, the valid set of
characters for both the local part and the domain name was uppercase letters, A to Z.

Instead of complicating the regular expression with additional valid characters (such
as [A-Za-z@-9._%+-]), we can specify that the match can ignore this case. This can

be done with an additional parameter to the constructor of the std: :basic_regex
class. The available constants for this purpose are defined in the regex_constants
namespace. The following slight change to is_valid_email_format() will make

it ignore the case and allow emails with both lowercase and uppercase letters to
correctly match the regular expression:

bool is_valid_email format(std::string const & email)
{
auto rx = std::regex{
R"(A[A-Z0-9. %+-]+@[A-Z0-9.-]+\.[A-Z]{2,}$)"s,
std::regex_constants::icase};

return std::regex_match(email, rx);

}

This is_valid_email_format() function is pretty simple, and if the regular
expression was provided as a parameter, along with the text to match, it could be
used for matching anything. However, it would be nice to be able to handle not only
multi-byte strings (std: : string), but also wide strings (std: :wstring), with a single
function. This can be achieved by creating a function template where the character
type is provided as a template parameter:

template <typename CharT>

[113]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Working with Numbers and Strings

using tstring = std::basic_string<CharT, std::char_traits<CharT>,
std::allocator<CharT>>;

template <typename CharT>
bool is_valid_format(tstring<CharT> const & pattern,
tstring<CharT> const & text)

auto rx = std::basic_regex<CharT>{
pattern, std::regex_constants::icase };

return std::regex_match(text, rx);

}

We start by creating an alias template for std: :basic_string in order to simplify

its use. The new is_valid_format() function is a function template very similar

to our implementation of is_valid_email(). However, we now use std: :basic_
regex<CharT> instead of the typedef std: : regex, which is std: :basic_regex<char>,
and the pattern is provided as the first argument. We now implement a new function
called is_valid_email_format_w() for wide strings that relies on this function
template. The function template, however, can be reused for implementing other
validations, such as if a license plate has a particular format:

bool is_valid_email format_w(std::wstring const & text)

{

return is_valid format(
LR"(~[A-Z0-9. %+-]+@[A-Z0-9.-]+\.[A-Z]1{2,}%$)"s,
text);

auto ltest2 = [](auto const & email)

{
std::wcout << std::setw(30) << std::left

<< email << L" "

<< (is_valid_email format_w(email) ? L"valid" : L"invalid")

<< '\n';
s
1test2(L"JOHN.DOE@DOMAIN.COM"s); // valid
ltest2(L"JOHNDOE@DOMAIL.CO.UK"s); // valid
1test2(L"JOHNDOE@DOMAIL .INFO"s); // valid
ltest2(L"J.0.H.N_D.O.E@DOMAIN.INFO"s); // valid
ltest2(L"ROOT@LOCALHOST"s); // invalid
ltest2(L"john.doe@domain.com"s); // valid

[114]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 2

Of all the examples shown here, the only one that does not match is ROOT@LOCALHOST,
as expected.

The std: : regex_match() method has, in fact, several overloads, and some of them
have a parameter that is a reference to an std: :match_results object to store the
result of the match. If there is no match, then std: :match_results is empty and its
size is 0. Otherwise, if there is a match, the std: :match_results object is not empty
and its size is 1, plus the number of matched subexpressions.

The following version of the function uses the mentioned overloads and returns the
matched subexpressions in an std: : smatch object. Note that the regular expression
is changed as three caption groups are defined —one for the local part, one for the
hostname part of the domain, and one for the DNS label. If the match is successful,
then the std: : smatch object will contain four submatch objects: the first to match the
entire string, the second for the first capture group (the local part), the third for the
second capture group (the hostname), and the fourth for the third and last capture
group (the DNS label). The result is returned in a tuple, where the first item actually
indicates success or failure:

std::tuple<bool, std::string, std::string, std::string>
is_valid_email format_with_result(std::string const & email)
{
auto rx = std::regex{
R"("([A-Z0-9. _%+-]1+)@([A-Z06-9.-]+)\. ([A-Z]{2,})$)"s,
std::regex_constants::icase };
auto result = std::smatch{};
auto success = std::regex_match(email, result, rx);

return std::make_tuple(

success,
success ? result[1].str() : ""s,
success ? result[2].str() : ""s,
success ? result[3].str() : ""s);

}

Following the preceding code, we use C++17 structured bindings to unpack the
content of the tuple into named variables:

auto ltest3 = [](std::string const & email)
{

auto [valid, localpart, hostname, dnslabel] =
is_valid_email_ format_with_result(email);

std::cout << std::setw(30) << std::left

[115]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Working with Numbers and Strings

<<
<<
<<
<<
<<
<<

%

email <<
std::setw(10) << (valid ? "valid" : "invalid")
"local=" << localpart

";domain=" << hostname

";dns=" << dnslabel

"\n';

ltest3("JOHN.DOE@DOMAIN.COM"s);
ltest3("JOHNDOE@DOMAIL.CO.UK"s);
1test3("JOHNDOE@DOMAIL.INFO"s);
ltest3("J.0.H.N_D.O.E@DOMAIN.INFO"s);
ltest3("ROOT@LOCALHOST"s);
ltest3("john.doe@domain.com"s);

The output of the program will be as follows:

B Microsoft Visual Studio Debug Console
JOHN . DOE@DOMAIN.COM : valid
local=JOHN.DOE ;domain=DOMAIN;dns=COM
JOHNDOE@DOMAIL.CO.UK : valid
local=JOHNDOE ;domain=DOMAIL.CO;dns=UK
JOHNDOE@DOMAIL .INFO : valid
local=JOHNDOE ;domain=DOMAIL ;dns=INFO
J.0.H.N_D.O.E@DOMAIN.INFO : valid
local=J.0.H.N_D.O.E;domain=DOMAIN;dns=INFO
ROOT@LOCALHOST : invalid
local=;domain=;dns=
john.doe@domain.com : valid
local=john.doe;domain=domain;dns=com

Figure 2.3: Output of tests

There's more...

There are multiple versions of regular expressions, and the C++ standard library
supports six of them: ECMAScript, basic POSIX, extended POSIX, awk, grep, and
egrep (grep with the option -E). The default grammar used is ECMAScript, and

in order to use another, you have to explicitly specify the grammar when defining
the regular expression. In addition to specifying the grammar, you can also specify
parsing options, such as matching by ignoring the case.

[116]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Chapter 2

The standard library provides more classes and algorithms than what we have seen
so far. The main classes available in the library are as follows (all of them are class
templates and, for convenience, typedefs are provided for different character types):

The class template std: :basic_regex defines the regular expression object:

typedef basic_regex<char> regex;
typedef basic_regex<wchar_t> wregex;

The class template std: : sub_match represents a sequence of characters that
matches a capture group; this class is actually derived from std: :pair, and
its first and second members represent iterators to the first and the one-
past-end characters in the match sequence. If there is no match sequence,
the two iterators are equal:

typedef sub_match<const char *> csub_match;
typedef sub_match<const wchar_t *> wcsub_match;
typedef sub_match<string::const_iterator> ssub_match;
typedef sub_match<wstring::const_iterator> wssub_match;

The class template std: :match_results is a collection of matches; the first
element is always a full match in the target, while the other elements are
matches of subexpressions:

typedef match_results<const char *> cmatch;
typedef match_results<const wchar_t *> wcmatch;
typedef match_results<string::const_iterator> smatch;
typedef match_results<wstring::const_iterator> wsmatch;

The algorithms available in the regular expressions standard library are as follows:

std: :regex_match(): This tries to match a regular expression (represented by
an std: :basic_regex instance) to an entire string.

std: :regex_search(): This tries to match a regular expression (represented
by an std: :basic_regex instance) to a part of a string (including the entire
string).

std: :regex_replace(): This replaces matches from a regular expression
according to a specified format.

The iterators available in the regular expressions standard library are as follows:

std::regex_interator: A constant forward iterator used to iterate through
the occurrences of a pattern in a string. It has a pointer to an std: :basic_
regex that must live until the iterator is destroyed. Upon creation and when
incremented, the iterator calls std: : regex_search() and stores a copy of the
std: :match_results object returned by the algorithm.

[117]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Working with Numbers and Strings

* std::regex_token_iterator: A constant forward iterator used to iterate
through the submatches of every match of a regular expression in a string.
Internally, it uses a std: :regex_iterator to step through the submatches.
Since it stores a pointer to an std: :basic_regex instance, the regular
expression object must live until the iterator is destroyed.

It should be mentioned that the standard regex library has poorer performance
compared to other implementations (such as Boost.Regex) and does not support
Unicode. Moreover, it could be argued that the API itself is cumbersome to use.

See also

* Parsing the content of a string using regular expressions to learn how to perform
multiple matches of a pattern in a text

* Replacing the content of a string using reqular expressions to see how to perform
text replacements with the help of regular expressions

* Using structured bindings to handle multi-return values in Chapter 1, Learning
Modern Core Language Features, to learn how to bind variables to subobjects or
elements from the initializing expressions

Parsing the content of a string using
regular expressions

In the previous recipe, we looked at how to use std: :regex_match() to verify that
the content of a string matches a particular format. The library provides another
algorithm called std: :regex_search() that matches a regular expression against any
part of a string, and not only the entire string, as regex_match() does. This function,
however, does not allow us to search through all the occurrences of a regular
expression in an input string. For this purpose, we need to use one of the iterator
classes available in the library.

In this recipe, you will learn how to parse the content of a string using regular
expressions. For this purpose, we will consider the problem of parsing a text file
containing name-value pairs. Each such pair is defined on a different line and has
the format name = value, but lines starting with a # represent comments and must
be ignored. The following is an example:

#firemove # to uncomment a line
timeout=120
server = 127.0.0.1

#retrycount=3

[118]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 2

Before looking at the implementation details, let's consider some prerequisites.

Getting ready

For general information about regular expression support in C++11, refer to the
Verifying the format of a string using regular expressions recipe, earlier in this chapter.
Basic knowledge of regular expressions is required to proceed with this recipe.

In the following examples, text is a variable that's defined as follows:

auto text {
R"(
#remove # to uncomment a line
timeout=120
server = 127.0.0.1

#retrycount=3
)"s};

The sole purpose of this is to simplify our snippets, although in a real-world
example, you will probably be reading the text from a file or other source.

How to do it...

In order to search for occurrences of a regular expression through a string, you
should do the following;:

1. Include the headers <regex> and <string> and the namespace std: :string_
literals for C++14 standard user-defined literals for strings:
#include <regex>
#include <string>
using namespace std::string_literals;

2. Use raw string literals to specify a regular expression in order to avoid
escaping backslashes (which can occur frequently). The following regular
expression validates the file format proposed earlier:

auto pattern {R"(~(?!#)(\w+)\s*=\s*([\w\d]+[\w\d. ,\-:1*)$)"s};

3. Create an std: :regex/std: :wregex object (depending on the character set
that is used) to encapsulate the regular expression:

auto rx = std::regex{pattern};

[119]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Working with Numbers and Strings

4. To search for the first occurrence of a regular expression in a given text,
use the general-purpose algorithm std: :regex_search() (example 1):
auto match = std::smatch{};
if (std::regex_search(text, match, rx))
{
std::cout << match[1] << '=" << match[2] << "\n’;

}

5. To find all the occurrences of a regular expression in a given text, use the
iterator std: :regex_iterator (example 2):

auto end = std::sregex_iterator{};
for (auto it=std::sregex_iterator{ std::begin(text),
std::end(text), rx };

it != end; ++it)
{
std::cout << "\'' << (*it)[1] << "'=""
<< (*it)[2] << "\"" << '\n’';
¥

6. To iterate through all the subexpressions of a match, use the iterator
std: :regex_token_iterator (example 3):

auto end = std::sregex_token_iterator{};
for (auto it = std::sregex_token_iterator{
std::begin(text), std::end(text), rx };
it = end; ++it)
{

std::cout << *it << '\n';

How it works...

A simple regular expression that can parse the input file shown earlier may look like
this:

ACTE) (\w+) \s*=\s*([\w\d]+[\w\d._,\-:]*)$

This regular expression is supposed to ignore all lines that start with a #; for those
that do not start with #, match a name followed by the equals sign and then a value
that can be composed of alphanumeric characters and several other characters
(underscore, dot, comma, and so on). The exact meaning of this regular expression
is explained as follows:

[120]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 2

Part Description
A Start of line.
(214) A negative lookahead that makes sure that it is not
o possible to match the # character.
A capturing group representing an identifier of at least
(\w)+
a one-word character.
\s* Any whitespaces.
= Equals sign.
\s* Any whitespaces.
A capturing group representing a value that starts with
([\w\d]+[\w\d._,\-:71*) an alphanumeric character, but can also contain a dot,
comma, backslash, hyphen, colon, or an underscore.
$ End of line.

We can use std: :regex_search() to search for a match anywhere in the input text.
This algorithm has several overloads, but in general, they work in the same way. You
must specify the range of characters to work through, an output std: :match_results
object that will contain the result of the match, and an std: :basic_regex object
representing the regular expression and matching flags (which define the way the
search is done). The function returns true if a match was found or false otherwise.

In the first example from the previous section (see the fourth list item), match is an
instance of std: :smatch that is a typedef of std: :match_results with string::const_
iterator as the template type. If a match was found, this object will contain the
matching information in a sequence of values for all matched subexpressions.

The submatch at index 0 is always the entire match. The submatch at index 1 is

the first subexpression that was matched, the submatch at index 2 is the second
subexpression that was matched, and so on. Since we have two capturing groups
(which are subexpressions) in our regular expression, the std: :match_results will
have three submatches in the event of success. The identifier representing the name
is at index 1, and the value after the equals sign is at index 2. Therefore, this code
only prints the following:

B Microsoft Visual Studic Debug Console

timeout=120

Figure 2.4: Output of first example

The std: :regex_search() algorithm is not able to iterate through all the possible
matches in a piece of text. To do that, we need to use an iterator. std: : regex_
iterator is intended for this purpose. It allows not only iterating through all the
matches, but also accessing all the submatches of a match.

[121]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Working with Numbers and Strings

The iterator actually calls std: : regex_search() upon construction and on each
increment, and it remembers the resulting std: :match_results from the call. The
default constructor creates an iterator that represents the end of the sequence and
can be used to test when the loop through the matches should stop.

In the second example from the previous section (see the fifth list item), we first
create an end-of-sequence iterator, and then we start iterating through all the
possible matches. When constructed, it will call std: :regex_match(), and if a
match is found, we can access its results through the current iterator. This will
continue until no match is found (the end of the sequence). This code will print
the following output:

B Microsoft Visual Studic Debug Console
"timeout'="'120"
‘server'='127.0.0.1"

Figure 2.5: Output of second example

An alternative to std: :regex_iterator is std: :regex_token_iterator. This works
similar to the way std: :regex_iterator works and, in fact, it contains such an
iterator internally, except that it enables us to access a particular subexpression from
a match. This is shown in the third example in the How to do it... section (see the sixth
list item). We start by creating an end-of-sequence iterator and then loop through the
matches until the end-of-sequence is reached. In the constructor we used, we did not
specify the index of the subexpression to access through the iterator; therefore, the
default value of 0 is used. This means this program will print all the matches:

B Microsoft Visual Studic Debug Console

timeout=120
server = 127.0.09.1

Figure 2.6: Output of third example

If we wanted to access only the first subexpression (this means the names in our
case), all we had to do was specify the index of the subexpression in the constructor
of the token iterator, as shown here:

auto end = std::sregex_token_iterator{};
for (auto it = std::sregex_token_iterator{ std::begin(text),
std::end(text), rx, 1 };
it != end; ++it)
{

std::cout << *it << '\n’;

[122]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 2

This time, the output that we get contains only the names. This is shown in the
following image:

B Microsoft Visual Studio Debug Console

timeout
server

Figure 2.7: Output containing only the names

An interesting thing about the token iterator is that it can return the unmatched
parts of the string if the index of the subexpressions is -1, in which case it returns an
std: :match_results object that corresponds to the sequence of characters between
the last match and the end of the sequence:

auto end = std::sregex_token_iterator{};
for (auto it = std::sregex_token_iterator{ std::begin(text),
std::end(text), rx, -1 };
it != end; ++it)
{
std::cout << *it << '\n’;

}

This program will output the following:

BH Microsoft Visual Studio Debug Console

#remove # to uncomment a line

#retrycount=3

Figure 2.8: Output including empty lines

Please note that the empty lines in the output correspond to empty tokens.

See also

» Verifying the format of a string using regular expressions to familiarize yourself
with the C++ library support for working with regular expressions

* Replacing the content of a string using reqular expressions to learn how
to perform multiple matches of a pattern in a text

[123]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Working with Numbers and Strings

Replacing the content of a string using
regular expressions

In the previous two recipes, we looked at how to match a regular expression on a
string or a part of a string and iterate through matches and submatches. The regular
expression library also supports text replacement based on regular expressions. In
this recipe, we will learn how to use std: : regex_replace() to perform such text
transformations.

Getting ready

For general information about regular expressions support in C++11, refer to the
Verifying the format of a string using reqular expressions recipe, earlier in this chapter.

How to do it...

In order to perform text transformations using regular expressions, you should
perform the following:

* Include <regex> and <string> and the namespace std: :string_literals
for C++14 standard user-defined literals for strings:

#include <regex>
#include <string>
using namespace std::string_literals;

* Use the std: :regex_replace() algorithm with a replacement string as the
third argument. Consider this example: replace all words composed of
exactly three characters that are either a, b, or ¢ with three hyphens:

auto text{"abc aa bca ca bbbb"s};
auto rx = std::regex{ R"(\b[a|b|c]{3}\b)"s };

auto newtext = std::regex_replace(text, rx, "---"s);

* Use the std: :regex_replace() algorithm with match identifiers prefixed
with a ¢ for the third argument. For example, replace names in the format
"lastname, firsthame" with names in the format "firstname lastname",
as follows:

auto text{ "bancila, marius"s };
auto rx = std::regex{ R"((\w+),\s*(\w+))"s };
auto newtext = std::regex_replace(text, rx, "$2 $1"s);

[124]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 2

How it works...

The std: :regex_replace() algorithm has several overloads with different types
of parameters, but the meaning of the parameters is as follows:

* The input string on which the replacement is performed.

* Anstd::basic_regex object that encapsulates the regular expression used
to identify the parts of the strings to be replaced.

* The string format used for replacement.

* Optional matching flags.

The return value is, depending on the overload used, either a string or a copy of the
output iterator provided as an argument. The string format used for replacement can
either be a simple string or a match identifier, indicated with a $ prefix:

e $& indicates the entire match.

* $1,$2, $3, and so on indicate the first, second, and third submatches,
and so on.

* ¢ indicates the part of the string before the first match.
* $' indicates the part of the string after the last match.

In the first example shown in the How to do it... section, the initial text contains
two words made of exactly three a, b, and c characters, abc and bca. The regular
expression indicates an expression of exactly three characters between word
boundaries. This means a subtext, such as bbbb, will not match the expression.
The result of the replacement is that the string text will be --- aa --- ca bbbb.

Additional flags for the match can be specified for the std: :regex_replace()
algorithm. By default, the matching flag is std: :regex_constants: :match_default,
which basically specifies ECMAScript as the grammar used for constructing the
regular expression. If we want, for instance, to replace only the first occurrence,
then we can specify std: :regex_constants: :format_first_only. In the following
example, the resultis --- aa bca ca bbbb as the replacement stops after the first
match is found:

auto text{ "abc aa bca ca bbbb"s };

auto rx = std::regex{ R"(\b[a|b|c]{3}\b)"s };

auto newtext = std::regex_replace(text, rx, "---"s,
std::regex_constants::format_first_only);

[125]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Working with Numbers and Strings

The replacement string, however, can contain special indicators for the whole match,
a particular submatch, or the parts that were not matched, as explained earlier. In the
second example shown in the How to do it... section, the regular expression identifies
a word of at least one character, followed by a comma and possible white spaces,
and then another word of at least one character. The first word is supposed to be the
last name, while the second word is supposed to be the first name. The replacement
string is in the $2 $1 format. This is an instruction that's used to replace the matched
expression (in this example, the entire original string) with another string formed of
the second submatch, followed by a space and then the first submatch.

In this case, the entire string was a match. In the following example, there will be
multiple matches inside the string, and they will all be replaced with the indicated
string. In this example, we are replacing the indefinite article # when preceding a
word that starts with a vowel (this, of course, does not cover words that start with
a vowel sound) with the indefinite article an:

auto text{"this is a example with a error"s};
auto rx = std::regex{R"(\ba ((ale|ilu|o)\w+))"s};
auto newtext = std::regex_replace(text, rx, "an $1");

The regular expression identifies the letter a as a single word (\b indicates a word
boundary, so \ba means a word with a single letter, a), followed by a space and

a word of at least two characters starting with a vowel. When such a match is
identified, it is replaced with a string formed of the fixed string an, followed by

a space and the first subexpression of the match, which is the word itself. In this
example, the newtext string will be this is an example with an error.

Apart from the identifiers of the subexpressions ($1, $2, and so on), there are other
identifiers for the entire match ($&), the part of the string before the first match ($°),
and the part of the string after the last match ($'). In the last example, we change the
format of a date from dd.mm.yyyy to yyyy.mm.dd, but also show the matched parts:

auto text{"today is 1.06.2016!!"s};
auto rx =

std::regex{R"((\d{1,2}) (\. |- |/) (\d{1,2}) (\. [-[/) (\d{4}))"s};

auto newtextl = std::regex_replace(text, rx, R"($5%$4$3%$2%$1)");

auto newtext2 = std::regex_replace(text, rx, R"([$ 1[$&]1[$'1)");

[126]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 2

The regular expression matches a one- or two-digit number followed by a dot,
hyphen, or slash; followed by another one- or two-digit number; then a dot, hyphen,
or slash; and lastly a four-digit number.

For newtext1, the replacement string is $5$4$3$2$1; this means year, followed by the
second separator, then month, the first separator, and finally day. Therefore, for the
input string today is 1.06.2016!, the result is today is 2016.06.1!!.

For newtext2, the replacement string is [$~][$&][$ ']; this means the part before the
first match, followed by the entire match, and finally the part after the last match,
are in square brackets. However, the resultis not [!!][1.06.2016][today is] as
you perhaps might expect at first glance, but today is [today is][1.06.2016]
[11]!!. The reason for this is that what is replaced is the matched expression, and,
in this case, that is only the date (1.06.2016). This substring is replaced with another
string formed of all the parts of the initial string.

See also

» Verifying the format of a string using regular expressions to familiarize yourself
with the C++ library support for working with regular expressions

* Parsing the content of a string using regular expressions to learn how to
perform multiple matches of a pattern in a text

Using string_view instead of constant
string references

When working with strings, temporary objects are created all the time, even

if you might not be really aware of it. Many times, these temporary objects are
irrelevant and only serve the purpose of copying data from one place to another

(for example, from a function to its caller). This represents a performance issue
because they require memory allocation and data copying, which should be avoided.
For this purpose, the C++17 standard provides a new string class template called
std::basic_string_view that represents a non-owning constant reference to a string
(that is, a sequence of characters). In this recipe, you will learn when and how you
should use this class.

[127]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Working with Numbers and Strings

Getting ready

The string_view class is available in the namespace std in the string_view header.

How to do it...

You should use std: :string_view to pass a parameter to a function (or return

a value from a function), instead of std: :string const &, unless your code needs
to call other functions that take std: : string parameters (in which case, conversions
would be necessary):

std::string_view get_filename(std::string view str)

{
auto const posl {str.find_last of('')};

auto const pos2 {str.find_last of('."')};
return str.substr(posl + 1, pos2 - posl - 1);

}

char const filel[] {R"(c:\test\examplel.doc)"};
auto namel = get filename(filel);

std::string file2 {R"(c:\test\example2)"};
auto name2 = get_filename(file2);

auto name3 = get_filename(std::string view{filel, 16});

How it works...

Before we look at how the new string type works, let's consider the following
example of a function that is supposed to extract the name of a file without its
extension. This is basically how you would write the function from the previous
section before C++17:

std::string get_filename(std::string const & str)
{

auto const posl {str.find_last_of('\\')};

auto const pos2 {str.find_last of('."')};

return str.substr(posl + 1, pos2 - posl - 1);

auto namel = get_filename(R"(c:\test\examplel.doc)");
auto name2 = get_filename(R"(c:\test\example2)");
if(get_filename(R"(c:\test_sample_.tmp)").front() == "'_") {}

[128]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 2

in Windows. For Linux-based systems, it has to be changed to /
(slash).

B’ Note that in this example, the file separator is \ (backslash), as
\”/

The get_filename() function is relatively simple. It takes a constant reference to an
std: :string and identifies a substring bounded by the last file separator and the last
dot, which basically represents a filename without an extension (and without folder
names).

The problem with this code, however, is that it creates one, two, or possibly even
more temporaries, depending on the compiler optimizations. The function parameter
is a constant std: : string reference, but the function is called with a string literal,
which means std: : string needs to be constructed from the literal. These temporaries
need to allocate and copy data, which is both time- and resource-consuming. In the
last example, all we want to do is check whether the first character of the filename is
an underscore, but we create at least two temporary string objects for that purpose.

The std::basic_string_view class template is intended to solve this problem. This
class template is very similar to std: :basic_string, with the two having almost the
same interface. The reason for this is that std: :basic_string view is intended to be
used instead of a constant reference to an std: :basic_string without further code
changes. Just like with std: :basic_string, there are specializations for all types of
standard characters:

typedef basic_string view<char> string view;
typedef basic_string_view<wchar_t> wstring view;
typedef basic_string_view<charl6_t> ul6string_view;
typedef basic_string_view<char32_t> u32string_view;

The std::basic_string_view class template defines a reference to a constant
contiguous sequence of characters. As the name implies, it represents a view

and cannot be used to modify the reference sequence of characters. An std: :basic_
string_view object has a relatively small size because all that it needs is a pointer to
the first character in the sequence and the length. It can be constructed not only from
an std: :basic_string object but also from a pointer and a length, or from a null-
terminated sequence of characters (in which case, it will require an initial traversal
of the string in order to find the length). Therefore, the std: :basic_string_view class
template can also be used as a common interface for multiple types of strings (as long
as data only needs to be read). On the other hand, converting from an std: :basic_
string_view to an std: :basic_string is not possible.

[129]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Working with Numbers and Strings

You must explicitly construct an std: :basic_string object from a std: :basic_
string_view, as shown in the following example:

std::string_view sv{ "demo" };
std::string s{ sv };

Passing std: :basic_string_view to functions and returning std: :basic_string_view
still creates temporaries of this type, but these are small-sized objects on the stack (a
pointer and a size could be 16 bytes for 64-bit platforms); therefore, they should incur
fewer performance costs than allocating heap space and copying data.

Note that all major compilers provide an implementation of
std: :basic_string, which includes a small string optimization.
, Although the implementation details are different, they typically
\/;p; rely on having a statically allocated buffer of a number of
characters (16 for VC++ and GCC 5 or newer) that does not involve
heap operations, which are only required when the size of the
string exceeds that number of characters.

In addition to the methods that are identical to those available in std: :basic_string,
the std: :basic_string_view has two more:

* remove_prefix(): Shrinks the view by incrementing the start with N
characters and decrementing the length with N characters.

* remove_suffix(): Shrinks the view by decrementing the length with N
characters.

The two member functions are used in the following example to trim an

std: :string_view from spaces, both at the beginning and the end. The
implementation of the function first looks for the first element that is not a space and
then for the last element that is not a space. Then, it removes from the end everything
after the last non-space character, and from the beginning everything until the first
non-space character. The function returns the new view, trimmed at both ends:

std::string_view trim_view(std::string view str)
{
auto const posi{ str.find_first _not_of(" ") };
auto const pos2{ str.find_last_not_of(" ") };
str.remove_suffix(str.length() - pos2 - 1);
str.remove_prefix(posl);

return str;

[130]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 2

auto svil{ trim_view("sample") };
auto sv2{ trim_view(" sample") };
auto sv3{ trim_view("sample ") };
auto sv4{ trim_view(" sample ") };

std::string s1{ svl };
std::string s2{ sv2 };
std::string s3{ sv3 };
std::string s4{ sv4 };

When using std: :basic_string_view, you must be aware of two things: you cannot
change the underlying data referred to by a view and you must manage the lifetime
of the data, as the view is a non-owning reference.

See also

* Creating a library of string helpers to see how to create useful text utilities that
are not directly available in the standard library

Formatting text with std::format

The C++ language has two ways of formatting text: the printf family of functions
and the I/O streams library. The printf functions are inherited from C and provide
a separation of the formatting text and the arguments. The streams library provides
safety and extensibility and is usually recommended over printf functions, but is, in
general, slower. The C++20 standard proposes a new formatting library alternative
for output formatting, which is similar in form to printf but safe and extensible and
is intended to complement the existing streams library. In this recipe, we will learn
how to use the new functionalities instead of the printf functions or the streams
library.

Getting ready

The new formatting library is available in the header <format>. You must include
this header for the following samples to work.

[131]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Working with Numbers and Strings

How to do it...

The std: : format() function formats its arguments according to the provided
formatting string. You can use it as follows:

* Provide empty replacement fields, represented by {}, in the format string for
each argument:

auto text = std::format("{} is {}", "John", 42);

* Specify the 0-based index of each argument in the argument list inside the
replacement field, such as {@}, {1}, and so on. The order of the arguments
is not important, but the index must be valid:

auto text = std::format("{@} is {1}", "John", 42);

* Control the output text with format specifiers provided in the replacement
field after a colon (:). For basic and string types, this is a standard format
specification. For chrono types, this is a chrono format specification:

auto text = std::format("{0} hex is {@:08X}", 42);

auto now = std::chrono::system_clock::now();

auto time = std::chrono::system_clock::to_time_t(now);
auto text = std::format("Today is {:%Y-%m-%d}",
*std::localtime(&time));

You can also write the arguments in an out format using an iterator with either
std: :format_to() or std: :format_to_n(), as follows:

* Write to a buffer, such as an std: :string or std: :vector<char>, using
std::format_n() and using the std: :back_inserter() helper function:

std::vector<char> buf;
std::format_to(std::back_inserter(buf), "{} is {}", "John", 42);

* Usestd::formatted_size() to retrieve the number of characters necessary to
store the formatted representation of the arguments:

auto size = std::formatted_size("{} is {}", "John", 42);
std::vector<char> buf(size);
std::format_to(buf.data(), "{} is {}", "John", 42);

[132]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 2

* To limit the number of characters written to the output buffer, you can use
std::format_to_n(), which is similar to std: : format_to() but writes, at
most, n characters:

char buf[100];

auto result = std::format_to_n(buf, sizeof(buf), "{} is {}",
"John", 42);

How it works...

The std: : format() function has multiple overloads. You can specify the format
string either as a string view or a wide string view, with the function returning either
an std::stringor an std: :wstring. You can also specify, as the first argument, an
std: :locale, which is used for locale-specific formatting. The function overloads

are all variadic function templates, which means you can specify any number of
arguments after the format.

The format string consists of ordinary characters, replacement fields, and escape
sequences. The escape sequences are {{ and }} and are replaced with { and } in the
output. A replacement field is provided within curly brackets {}. It can optionally
contain a non-negative number, representing the 0-based index of the argument to
be formatted, and a colon (:), followed by a format specifier. If the format specifier is
invalid, an exception of the type std: : format_error is thrown.

In a similar manner, std: : format_to() has multiple overloads, just like

std: :format(). The difference between these two is that std: : format_to() always
takes an iterator to the output buffer as the first argument and returns an iterator
past the end of the output range (and not a string as std: : format () does). On the
other hand, std: : format_to_n() has one more parameter than std: : format_to().
Its second parameter is a number representing the maximum number of characters
to be written to the buffer.

The following listing shows the signature of the simplest overload of each of these
three function templates:

template<class... Args>
std::string format(std::string_view fmt, const Args&... args);

template<class OutputIt, class... Args>
OutputIt format_to(OutputIt out,

[133]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Working with Numbers and Strings

std::string_view fmt, const Args&... args);

template<class OutputIt, class... Args>

std::format_to_n_result<OutputIt>

format_to_n(OutputIt out, std::iter_difference_t<OutputIt> n,
std::string_view fmt, const Args&... args);

When you provide the format string, you can supply argument identifiers (their
0-based index) or omit them. However, it is illegal to use both. If the indexes are
omitted in the replacement fields, the arguments are processed in the provided
order, and the number of replacement fields must not be greater than the number
of supplied arguments. If indexes are provided, they must be valid for the format
string to be valid.

When a format specification is used, then:

* For basic types and string types, it is considered to be a standard format
specification.

* For chrono types, it is considered to be a chrono format specification.
* For user-defined types, it is defined by a user-defined specialization of the
std: :formatter class for the desired type.

The standard format specification is based on the format specification in Python and
has the following syntax:

fill-and-align(optional) sign(optional) #(optional) ©(optional)
width(optional) precision(optional) L(optional) type(optional)

These syntax parts are briefly described here.

fill-and-align is an optional fill character, followed by one of the align options:

* <:Forces the field to be left-aligned with the available space.
* >:Forces the field to be right-aligned with the available space.

* ~:Forces the field to be centered with the available space. To do so, it will
insert n/2 characters to the left and n/2 characters to the right:

auto t1 = std::format("{:5}", 42);
auto t2 = std::format("{:5}", 'x');
auto t3 = std::format("{:*<5}", 'x');
auto t4 = std::format("{:*>5}", 'x');
auto t5 = std::format("{:*"5}", 'x');
auto t6 = std::format("{:5}", true);

[134]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 2

sign, #, and 0 are only valid when a number (either an integer or a floating-point) is
used. The sign can be one of:

* +: Specifies that the sign must be used for both negative and positive
numbers.

* -:Specifies that the sign must be used only for negative numbers (which is
the implicit behavior).

* A space: Specifies that the sign must be used for negative numbers and that
a leading space must be used for non-negative numbers:

auto t7 = std::format("{0:},{0:+},{0:-},{0: }", 42);

auto t8 = std::format("{@:},{0:+},{0:-},{0: }", -42);

The symbol # causes the alternate form to be used. This can be one of the following:

* For integral types, when binary, octal, or hexadecimal representation is
specified, the alternate form adds the prefix @b, @, or @x to the output.

* For floating-point types, the alternate form causes a decimal-point character
to always be present in the formatted value, even if no digits follow it. In
addition, when g or G are used, the trailing zeros are not removed from the
output.

The digit @ specifies that leading zeros should be outputted to the field width, except
when the value of a floating-point type is infinity or NaN. When present alongside an
align option, the specifier @ is ignored:

auto t9 std::format("{:+05d}", 42);
auto t1e = std::format("{:#05x}", 42);
auto t11 = std::format("{:<@5}", -42);

width specifies the minimum field width and can be either a positive decimal number
or a nested replacement field. The precision field indicates the precision for floating-
point types or, for string types, how many characters will be used from the string. It
is specified with a dot (.), followed by a non-negative decimal number or a nested
replacement field.

Locale-specific formatting is specified with the uppercase L and causes the locale-
specific form to be used. This option is only available for arithmetic types.

[135]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Working with Numbers and Strings

The optional type determines how the data will be presented in the output.
The available string presentation types are shown in the following table:

Type Presentation type | Description
Strings none, s Copies the string to the output.
Integral types B Binary format with Ob as a prefix.
B Binary format with OB as a prefix.
C Character format. Copies the value to the output as
it was a character type.
none or d Decimal format.
0 Octal format with 0 as a prefix (unless the value is 0).
X Hexadecimal format with Ox as a prefix.
X Hexadecimal format with 0X as a prefix.
char and none or ¢ Copies the character to the output.
wchar_t b,B, c, d,o, X, X Integer presentation types.
bool none or s Copies true or false as a textual representation

(or their local-specific form) to the output.

b,B,c,d, o0, x, X

Integer presentation types.

Floating-point

A

Hexadecimal representation. Same as if calling
std::to_chars(first, last, value,
std::chars_format::hex, precision)

or std::to_chars(first, last, value,
std::chars_format: :hex), depending on whether
precision is specified or not.

Same as a except that it uses uppercase letters for
digits above 9 and uses P to indicate the exponent.

Scientific representation. Produces the output as if
calling std: :to_chars(first, last, value,
std::chars_format::scientific, precision).

Similar to e except that it uses E to indicate the
exponent.

Fixed representation. Produces the output as if by
calling std: :to_chars(first, last, value,
std::chars_format::fixed, precision). When
no precision is specified, the default is 6.

General floating-point representation. Produces
the output as if by calling std: : to_chars(first,
last, value, std::chars_format::general,
precision). When no precision is specified, the
default is 6.

printed on 2/9/2023 10:14 AMvia .

[136]

Al'l use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Chapter 2

G Same as g except that it uses E to indicate the
exponent.
Pointer none or p Pointer representation. Produces the output as

if by calling std: :to_chars(first, last,
reinterpret_cast<std::uintptr_t>(value),
16) with the prefix @x added to the output. This is
available only when std: :uintptr_t is defined;
otherwise, the output is implementation-defined.

The chrono format specification has the following form:

fill-and-align(optional) width(optional) precision(optional) chrono-
spec(optional)

The fill-and-align, width, and precision fields have the same meaning as in

the standard format specification, described previously. The precision is only valid
for std: :chrono: :duration types when the representation type is a floating-point
type. Using it in other cases throws an std: : format_error exception.

The chrono specification can be empty, in which case the argument is formatted as if
by streaming it to an std: : stringstream and copying the result string. Alternatively,
it can consist of a series of conversion specifiers and ordinary characters. Some of
these format specifiers are presented in the following table:

Conversion Description

specifier

%% Writes a literal % character.

%n Writes a newline character.

%t Writes a horizontal tab character.

%Y Writes the year as a decimal number. If the result is less than four
digits, it is left-padded with @ to four digits.

J6m Writes the month as a decimal number (January is 01). If the result
is a single digit, it is prefixed with @.

%d Writes the day of month as a decimal number. If the result is
a single decimal digit, it is prefixed with @.

%w Writes the weekday as a decimal number (0-6), where Sunday is 0.

%D Equivalent to %m/%d/%y.

%F Equivalent to %Y-%m-%d.

%6H Writes the hour (24-hour clock) as a decimal number. If the result is

a single digit, it is prefixed with 0.

%L Writes the hour (12-hour clock) as a decimal number. If the result is
a single digit, it is prefixed with 0.

[137]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Working with Numbers and Strings

%M Writes the minute as a decimal number. If the result is a single
digit, it is prefixed with 0.

%S Writes the second as a decimal number. If the number of seconds is
less than 10, the result is prefixed with @.

%R Equivalent to %H: %M.

%T Equivalent to %H:%M: %S.

%X Writes the locale's time representation.

The complete list of format specifiers for the chrono library can be consulted at
https://en.cppreference.com/w/cpp/chrono/system_clock/formatter.

See also

* Using std::format with user-defined types to learn how to create custom
formatting specialization for user-defined types

* Converting between numeric and string types to learn how to convert between
numbers and strings

Using std::format with user-defined types

The C++20 formatting library is a modern alternative to using printf-like functions
or the I/O streams library, which it actually complements. Although the standard
provides default formatting for basic types, such as integral and floating-point
types, bool, character types, strings, and chrono types, the user can create custom
specialization for user-defined types. In this recipe, we will learn how to do that.

Getting ready

You should read the previous recipe, Formatting text with std::format, to familiarize
yourself with the formatting library.

In the examples that we'll be showing here, we will use the following class:

struct employee

{
int id;
std::string firstName;
std::string lastName;

1

[138]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

https://en.cppreference.com/w/cpp/chrono/system_clock/formatter

EBSCChost -

Chapter 2

In the next section, we'll introduce the necessary steps to implement to enable text
formatting using std: : format () for user-defined types.

How to do it...

To enable formatting using the new formatting library for user-defined types, you
must do the following:

* Define a specialization of the std: : formatter<T, CharT> class in the std
namespace.

* Implement the parse() method to parse the portion of the format string
corresponding to the current argument. If the class inherits from another
formatter, then this method can be omitted.

* Implement the format() method to format the argument and write the
output via format_context.

For the employee class listed here, a formatter that formats employee to the form [42]
John Doe (thatis [id] firstName lastName)can be implemented as follows:

template <>
struct std::formatter<employee>

{ constexpr auto parse(format_parse_context& ctx)
{
return ctx.begin();
}
auto format(employee const & value, format_context& ctx) {
return std::format_to(ctx.out(),
Iy {3
e.id, e.firstName, e.lastName);
}
s

How it works...

The formatting library uses the std: : formatter<T, CharT> class template to define
formatting rules for a given type. Built-in types, string types, and chrono types have
formatters provided by the library. These are implemented as specializations of the
std::formatter<T, CharT> class template.

[139]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Working with Numbers and Strings

This class has two methods:

* parse(), which takes a single argument of the type std: :basic_format_
parse_context<CharT> and parses the format's specification for the type
T, provided by the parse context. The result of the parsing is supposed
to be stored in member fields of the class. If the parsing succeeds, this
function should return a value of the type std: :basic_format_parse_
context<CharT>: :iterator, which represents the end of the format
specification. If the parsing fails, the function should throw an exception
of the type std: : format_error to provide details about the error.

* format(), which takes two arguments, the first being the object of the type
T to format and the second being a formatting context object of the type
std: :basic_format_context<OutputIt, CharT>. This function should write
the output to ctx.out() according to the desired specifiers (which could
be something implicit or the result of parsing the format specification).

The function must return a value of the type std: :basic_format_
context<OutputIt, CharT>::iterator, representing the end of the output.

In the implementation shown here, the parse() function does not do anything
other than return an iterator representing the beginning of the format specification.
The formatting is always done by printing the employee identifier between square
brackets, followed by the first name and the last name, such as in [42] John Doe.
An attempt to use a format specifier would result in a runtime exception:

employee e{ 42, "John", "Doe" };
auto sl = std::format("{}", e);
auto s2 = std::format("{:L}", e);

If you want your user-defined types to support format specifiers, then you must
properly implement the parse() method. To show how this can be done, we will
support the L specifier for the employee class. When this specifier is used, the
employee is formatted with the identifier in square brackets, followed by the last
name, a comma, and then the first name, such as in [42] Doe, John:

template<>
struct std::formatter<employee>

{

bool lexicographic_order = false;

template <typename ParseContext>
constexpr auto parse(ParseContext& ctx)

{

auto iter = ctx.begin();

[140]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Chapter 2

auto get_char = [&]() { return iter != ctx.end() ? *iter : 0; };

if (get_char() == ':') ++iter;
char ¢ = get_char();

switch (c)

{

case '}': return ++iter;

case 'L': lexicographic_order = true; return ++iter;
case '{': return ++iter;

default: throw std::format_error("invalid format");

}

template <typename FormatContext>
auto format(employee const& e, FormatContext& ctx)

{
if(lexicographic_order)
return std::format_to(ctx.out(), "[{}] {}, {}",
e.id, e.lastName, e.firstName);
return std::format_to(ctx.out(), "[{}] {} {}",
e.id, e.firstName, e.lastName);
}

I

With this defined, the preceding sample code would work. However, using other
format specifiers, such as A, for example, would still throw an exception:

auto sl = std::format("{}", e); // [42] John Doe
auto s2 = std::format("{:L}", e); // [42] Doe, John
auto s3 = std::format("{:A}", e); // error (invalid format)

If you do not need to parse the format specifier in order to support various options,
you could entirely omit the parse() method. However, in order to do so, your

std: : formatter specialization must derive from another std: : formatter class.

An implementation is shown here:

template<>
struct fmt::formatter<employee> : fmt::formatter<char const*>

{

template <typename FormatContext>

[141]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Working with Numbers and Strings

auto format(employee const& e, FormatContext& ctx)

{
return std::format_to(ctx.out(), "[{}] {} {}",

e.id, e.firstName, e.lastName);

b

This specialization for the employee class is equivalent to the first implementation
shown earlier in the How to do it... section.

See also
* Formatting text with std::format to get a good introduction to the new C++20
text formatting library

[142]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Exploring Functions

Functions are a fundamental concept in programming; regardless of the topic we
discuss, we end up writing functions. Trying to cover functions in a single chapter
is not only hard but also not very rational. Being a fundamental element of the
language, functions are encountered in every recipe of this book. This chapter,
however, covers modern language features related to functions and callable
objects, with a focus on lambda expressions, concepts from functional languages
such as higher-order functions, and type-safe functions with a variable number

of arguments.

The recipes included in this chapter are as follows:

* Defaulted and deleted functions
* Using lambdas with standard algorithms
* Using generic and template lambdas
* Writing a recursive lambda
* Writing a function template with a variable number of arguments
* Using fold expressions to simplify variadic function templates
* Implementing the higher-order functions map and fold
* Composing functions into a higher-order function
* Uniformly invoking anything callable
We will start this chapter by learning about a feature that makes it easier for us to

provide special class member functions or prevent any function (member or non-
member) from being invoked.

[143]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Exploring Functions

Defaulted and deleted functions

In C++, classes have special members (constructors, destructors, and assignment
operators) that may be either implemented by default by the compiler or supplied
by the developer. However, the rules for what can be default implemented are a bit
complicated and can lead to problems. On the other hand, developers sometimes
want to prevent objects from being copied, moved, or constructed in a particular
way. This is possible by implementing different tricks using these special members.
The C++11 standard has simplified many of these by allowing functions to be
deleted or defaulted in the manner we will see in the next section.

Getting started

For this recipe, you need to be familiar with the following concepts:

* Special member functions (default constructor, destructor, copy constructor,
move constructor, copy assignment operator, move assignment operator)

* The copyable concept (a class features a copy constructor and copy
assignment operator making it possible to create copies)

* The moveable concept (a class features a move constructor and a move
assignment operator making it possible to move objects)

With this in mind, let's learn how to define default and deleted special functions.

How to do it...
Use the following syntax to specify how functions should be handled:

* To default a function, use =default instead of the function body. Only special
class member functions that have defaults can be defaulted:

struct foo

{
foo() = default;

b

* To delete a function, use =delete instead of the function body. Any function,
including non-member functions, can be deleted:

struct foo

{
foo(foo const &) = delete;

%

[144]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Chapter 3

void func(int) = delete;

Use defaulted and deleted functions to achieve various design goals, such as the
following examples:

* To implement a class that is not copyable, and implicitly not movable,
declare the copy constructor and the copy assignment operator as deleted:

class foo_not_copyable

{

public:
foo_not_copyable() = default;
foo_not_copyable(foo_not_copyable const &) = delete;
foo_not_copyable& operator=(foo_not_copyable const&) = delete;

s

* Toimplement a class that is not copyable, but is movable, declare the copy
operations as deleted and explicitly implement the move operations (and
provide any additional constructors that are needed):

class data_wrapper

{
Data* data;

public:
data_wrapper(Data* d = nullptr) : data(d) {}
~data_wrapper() { delete data; }

data_wrapper(data_wrapper const&) = delete;
data_wrapper& operator=(data_wrapper const &) = delete;

data_wrapper(data_wrapper&& other) :data(std::move(other.
data))

{
other.data = nullptr;

}

data_wrapper& operator=(data_wrapper&& other)
{
if (this != std::addressof(other))
{
delete data;
data = std::move(other.data);
other.data = nullptr;

}

[145]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

EBSCChost -

Exploring Functions

return *this;

}
%

To ensure a function is called only with objects of a specific type, and
perhaps prevent type promotion, provide deleted overloads for the function
(the following example with free functions can also be applied to any class
member functions):

template <typename T>
void run(T val) = delete;

void run(long val) {}

How it works...

A class has several special members that can be implemented, by default, by the
compiler. These are the default constructor, copy constructor, move constructor,
copy assignment, move assignment, and destructor (for a discussion on move
semantics, refer to the Implementing move semantics recipe in Chapter 9, Robustness and
Performance). If you don't implement them, then the compiler does it so that instances
of a class can be created, moved, copied, and destructed. However, if you explicitly
provide one or more of these special methods, then the compiler will not generate
the others according to the following rules:

If a user-defined constructor exists, the default constructor is not generated
by default.

If a user-defined virtual destructor exists, the default constructor is not
generated by default.

If a user-defined move constructor or move assignment operator exists, then
the copy constructor and copy assignment operator are not generated by
default.

If a user-defined copy constructor, move constructor, copy assignment
operator, move assignment operator, or destructor exists, then the move
constructor and move assignment operator are not generated by default.

If a user-defined copy constructor or destructor exists, then the copy
assignment operator is generated by default.

If a user-defined copy assignment operator or destructor exists, then the copy
constructor is generated by default.

[146]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Chapter 3

\/‘/ Note that the last two rules in the preceding list are deprecated

rules and may no longer be supported by your compiler.

Sometimes, developers need to provide empty implementations of these special
members or hide them in order to prevent the instances of the class from being
constructed in a specific manner. A typical example is a class that is not supposed to
be copyable. The classical pattern for this is to provide a default constructor and hide
the copy constructor and copy assignment operators. While this works, the explicitly
defined default constructor ensures the class is no longer considered trivial and,
therefore, a POD type. The modern alternative to this is using a deleted function, as
shown in the preceding section.

When the compiler encounters =default in the definition of a function, it will
provide the default implementation. The rules for special member functions
mentioned earlier still apply. Functions can be declared =default outside the body of
a class if and only if they are inlined:

class foo

{
public:
foo() = default;

inline foo& operator=(foo const &);

I
inline foo& foo::operator=(foo const &) = default;
The defaulted implementations have several benefits, including the following;:

* Can be more efficient than the explicit ones.

* Non-defaulted implementations, even if they are empty, are considered non-
trivial, and that affects the semantics of the type, which becomes non-trivial
(and, therefore, non-POD).

* Helps the user not write explicit default implementations. For instance, if
a user-defined move constructor is present, then the copy constructor and
the copy assignment operator are not provided by default by the compiler.
However, you can still default explicitly and ask the compiler to provide
them so that you don't have to do it manually.

[147]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Exploring Functions

When the compiler encounters the =delete in the definition of a function, it will
prevent the calling of the function. However, the function is still considered

during overload resolution, and only if the deleted function is the best match does
the compiler generate an error. For example, by giving the previously defined
overloads for the run() function, only calls with long integers are possible. Calls with
arguments of any other type, including int, for which an automatic type promotion
to long exists, will determine a deleted overload to be considered the best match and
therefore the compiler will generate an error:

run(42);
run(42L);

Note that previously declared functions cannot be deleted as the =delete definition
must be the first declaration in a translation unit:

void forward_declared_function();
void forward_declared_function() = delete;

The rule of thumb, also known as The Rule of Five, for class special member functions
is that if you explicitly define any copy constructor, move constructor, copy
assignment operator, move assignment operator, or destructor, then you must either
explicitly define or default all of them.

The user-defined destructor, copy-constructor, and copy assignment operator are
necessary because objects are constructed from copies in various situations (like
passing parameters to functions). If they are not user-defined, they are provided by
the compiler, but their default implementation may be wrong. If the class manages
resources, then the default implementation does a shallow copy, meaning that it
copies the value of the handle of the resource (such as a pointer to an object) and not
the resource itself. In such cases, a user-defined implementation must do a deep copy
that copies the resource, not the handle to it. The presence of the move constructor
and move assignment operator are desirable in this case because they represent

a performance improvement. Lacking these two is not an error but a missed
optimization opportunity.

See also

* Uniformly invoking anything callable to learn how to use std: :invoke() to
invoke any callable object with the provided arguments

[148]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 3

Using lambdas with standard algorithms

One of the most important modern features of C++ is lambda expressions, also
referred to as lambda functions or simply lambdas. Lambda expressions enable us

to define anonymous function objects that can capture variables in the scope and be
invoked or passed as arguments to functions. Lambdas are useful for many purposes,
and in this recipe, we will learn how to use them with standard algorithms.

Getting ready

In this recipe, we'll discuss standard algorithms that take an argument that's a
function or predicate that's applied to the elements it iterates through. You need to
know what unary and binary functions are and what predicates and comparison
functions are. You also need to be familiar with function objects because lambda
expressions are syntactic sugar for function objects.

How to do it...

You should prefer to use lambda expressions to pass callbacks to standard
algorithms instead of functions or function objects:

* Define anonymous lambda expressions in the place of the call if you only
need to use the lambda in a single place:

auto numbers =
std::vector<int>{ @, 2, -3, 5, -1, 6, 8, -4, 9 };
auto positives = std::count_if(
std::begin(numbers), std::end(numbers),
[](int const n) {return n > 0; });

* Define a named lambda, that is, one assigned to a variable (usually with the
auto specifier for the type), if you need to call the lambda in multiple places:

auto ispositive = [](int const n) {return n > 0; };
auto positives = std::count_if(
std::begin(numbers), std::end(numbers), ispositive);

* Use generic lambda expressions if you need lambdas that only differ in terms
of their argument types (available since C++14):

auto positives = std::count_if(
std::begin(numbers), std::end(numbers),
[]J(auto const n) {return n > 0; });

[149]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Exploring Functions

How it works...

The non-generic lambda expression shown in the second bullet takes a constant
integer and returns true if it is greater than o, or false otherwise. The compiler
defines an unnamed function object with the call operator, which has the signature of
the lambda expression:

struct _ lambda_name__

{

bool operator()(int const n) const { return n > 0; }

%

The way the unnamed function object is defined by the compiler depends on the
way we define the lambda expression that can capture variables, use the mutable
specifier or exception specifications, or have a trailing return type. The __lambda_
name__ function object shown earlier is actually a simplification of what the compiler
generates because it also defines a default copy and move constructor, a default
destructor, and a deleted assignment operator.

It must be well understood that the lambda expression is actually
‘ / a class. In order to call it, the compiler needs to instantiate an object
\p/ of the class. The object instantiated from a lambda expression is
called a lambda closure.

In the following example, we want to count the number of elements in a range that
are greater than or equal to 5 and less than or equal to 10. The lambda expression, in
this case, will look like this:

auto numbers
auto minimum
auto maximum { 10 };
auto inrange = std::count_if(
std::begin(numbers), std::end(numbers),
[minimum, maximum](int const n) {
return minimum <= n && n <= maximum;});

std::vector<int>{ 0, 2, -3, 5, -1, 6, 8, -4, 9 };
513

N~~~

[150]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 3

This lambda captures two variables, minimum and maximum, by copy (that is, value).
The resulting unnamed function object created by the compiler looks very much like
the one we defined earlier. With the default and deleted special members mentioned
earlier, the class looks like this:

class _ lambda_name_2_
{
int minimum_;
int maximum_;
public:
explicit _ lambda_name_2__ (int const minimum, int const maximum) :
minimum_(minimum), maximum_(maximum)

{}

__lambda_name_2_(const __ lambda_name_2_ &) = default;

__lambda_name_2__ (__lambda_name_2_&&) = default;

__lambda_name_2_ & operator=(const _ lambda_name_2_ &)
= delete;

~ lambda_name_2 () = default;

bool operator() (int const n) const
{
return minimum_ <= n & & n <= maximum_;
}
s

The lambda expression can capture variables by copy (or value) or by reference, and
different combinations of the two are possible. However, it is not possible to capture
a variable multiple times and it is only possible to have & or = at the beginning of the
capture list.

A lambda can only capture variables from an enclosing function

\/‘p’ scope. It cannot capture variables with static storage duration

(that is, variables declared in a namespace scope or with the
static or external specifier).

[151]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Exploring Functions

The following table shows various combinations for lambda captures semantics:

Lambda Description
[1O{} Does not capture anything.
[&1O){} Captures everything by reference.
[=101{> Captures everything by copy. Implicit capturing of the pointer this
is deprecated in C++20.
[&x](){} Capture only x by reference.
[x]JO{} Capture only x by copy.
[&x...70){} Capture pack extension x by reference.
[x...70{3 Capture pack extension x by copy.
[&, x]O{} Captures everything by reference except for x that is captured by copy.
[=, &](){} | Captures everything by copy except for x that is captured by reference.

[&, this]()
{}

Captures everything by reference except for pointer this that is captured
by copy (this is always captured by copy).

[x, x1O{}

Error, x is captured twice.

[&, &](O){}

Error, everything is captured by reference, and we cannot specify again
to capture x by reference.

[=, =x]JO){} Error, everything is captured by copy, and we cannot specify again to
capture x by copy.

[&this](){} Error, the pointer this is always captured by copy.

[& =101} Error, cannot capture everything both by copy and by reference.

[x=expr](){}

X is a data member of the lambda's closure initialized from the
expression expr.

[&x=expr]()
{}

X is a reference data member of the lambda's closure initialized from the
expression expr.

The general form of a lambda expression, as of C++17, looks like this:

[capture-1list](params) mutable constexpr exception attr -> ret
{ body }

All parts shown in this syntax are actually optional except for the capture list, which
can, however, be empty, and the body, which can also be empty. The parameter list
can actually be omitted if no parameters are needed. The return type does not need
to be specified as the compiler can infer it from the type of the returned expression.
The mutable specifier (which tells the compiler the lambda can actually modify
variables captured by copy), the constexpr specifier (which tells the compiler to
generate a constexpr call operator), and the exception specifiers and attributes are all
optional.

[152]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 3

\/‘/ The simplest possible lambda expression is []{}, though it is often

written as [1(){}.

The latter two examples in the preceding table are forms of generalized lambda
captures. These were introduced in C++14 to allow us to capture variables with
move-only semantics, but they can also be used to define new arbitrary objects in the
lambda. The following example shows how variables can be captured by move with
generalized lambda captures:

auto ptr = std::make_unique<int>(42);
auto 1 = [1lptr = std::move(ptr)](){return ++*1ptr;};

Lambdas that are written in class methods and need to capture class data members
can do so in several ways:

* Capturing individual data members with the form [x=expr]:

struct foo

{
int id;
std::string name;

auto run()
{
return [i=id, n=name] { std::cout << i << ' ' << n << "\n';
s
}
s

* Capturing the entire object with the form [=] (please notice that the implicit
capture of pointer this via [=] is deprecated in C++20):

struct foo

{
int id;
std::string name;

auto run()

{

return [=] { std::cout << id << ' ' << name << '\n'; };

}
};

[153]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Exploring Functions

* Capturing the entire object by capturing the this pointer. This is necessary
if you need to invoke other methods of the class. This can be captured either
as [this] when the pointer is captured by value, or [*this] when the object
itself is captured by value. This can make a big difference if the object may go
out of scope after the capture occurs but before the lambda is invoked:

struct foo

{
int id;
std::string name;

auto run()
{
return[this]{ std::cout << id << ' ' << name << '\n'; };
}
s

auto 1 = foo{ 42, "john" }.run();
10)s

In this latter case seen here, the correct capture should be [*this] so that object is
copied by value. In this case, invoking the lambda will print 42 john, even though the
temporary has gone out of scope.

The C++20 standard introduces several changes to capturing the pointer this:

* It deprecates the implicit capturing of this when you use [=]. This will
produce a deprecation warning to be issued by the compiler.

* Itintroduces explicit capturing of the this pointer by value when you want
to capture everything with [=, this]. You can still only capture the pointer
this with a [this] capture.

There are cases where lambda expressions only differ in terms of their arguments. In
this case, the lambdas can be written in a generic way, just like templates, but using
the auto specifier for the type parameters (no template syntax is involved). This is
addressed in the next recipe, as noted in the upcoming See also section.

See also

* Using generic and template lambdas to learn how to use auto for lambda
parameters and how to define template lambdas in C++20

* Writing a recursive lambda to understand the technique we can use to make
a lambda call itself recursively

[154]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 3

Using generic and template lambdas

In the preceding recipe, we saw how to write lambda expressions and use them with
standard algorithms. In C++, lambdas are basically syntactic sugar for unnamed
function objects, which are classes that implement the call operator. However, just
like any other function, this can be implemented generically with templates. C++14
takes advantage of this and introduces generic lambdas that do not need to specify
actual types for their parameters and use the auto specifier instead. Though not
referred to with this name, generic lambdas are basically lambda templates. They
are useful in cases where we want to use the same lambda but with different types
of parameter. Moreover, the C++20 standard takes this a step further and supports
explicitly defining template lambdas. This helps with some scenarios where generic
lambdas are cumbersome.

Getting started

It is recommended that you read the preceding recipe, Using lambdas with standard
algorithms, before you continue with this one to familiarize yourself with the
fundamentals of lambdas in C++.

How to do it...

In C++14, we can write generic lambdas:

* By using the auto specifier instead of actual types for lambda expression
parameters

* When we need to use multiple lambdas that only differ by their parameter
types
The following example shows a generic lambda used with the std: :accumulate()

algorithm, first with a vector of integers and then with a vector of strings:

auto numbers =
std::vector<int>{0, 2, -3, 5, -1, 6, 8, -4, 9};

using namespace std::string_literals;
auto texts =

std::vector<std::string>{"hello"s, " "s, "world"s, "!"s};

auto lsum = [](auto const s, auto const n) {return s + n;};

[155]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Exploring Functions

auto sum = std::accumulate(
std::begin(numbers), std::end(numbers), 0, lsum);

auto text = std::accumulate(
std::begin(texts), std::end(texts), ""s, 1lsum);

In C++20, we can write template lambdas:

* By using a template parameter list in angle brackets (such as <template T>)
after the capture clause

* When you want to:

* Restrict the use of a generic lambda with only some types, such as a
container, or types that satisfy a concept.

* Make sure that two or more arguments of a generic lambda actually
do have the same type.

* Retrieve the type of a generic parameter so that, for example, we can
create instances of it, invoke static methods, or use its iterator types.

* Perform perfect forwarding in a generic lambda.

The following example shows a template lambda that can be invoked only using an
std::vector:

std::vector<int> vi { 1, 1, 2, 3, 5, 8 };

auto tl = []<typename T>(std::vector<T> const& vec)

{

std::cout << std::size(vec) << '\n';

b

tl(vi);
t1(42);

How it works...

In the first example from the previous section, we defined a named lambda
expression; that is, a lambda expression that has its closure assigned to a variable.
This variable is then passed as an argument to the std: :accumulate() function.

[156]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 3

This general algorithm takes the begin and the end iterators, which define a range,
an initial value to accumulate over, and a function that is supposed to accumulate
each value in the range to the total. This function takes a first parameter representing
the currently accumulated value and a second parameter representing the current
value to accumulate to the total, and it returns the new accumulated value. Note that
I did not use the term add because this can be used for other things than just adding.
It can also be used for calculating a product, concatenating, or other operations that
aggregate values together.

The two calls to std: :accumulate() in this example are almost the same; only the
types of the arguments are different:

* In the first call, we pass iterators to a range of integers (from a vector<int>), 0
for the initial sum, and a lambda that adds two integers and returns their sum.
This produces a sum of all integers in the range; for this example, it is 22.

* In the second call, we pass iterators to a range of strings (from a
vector<string>), an empty string for the initial value, and a lambda that
concatenates two strings by adding them together and returning the result.
This produces a string that contains all the strings in the range put together
one after another; for this example, the result is hello world!.

Though generic lambdas can be defined anonymously in the place where they are
called, it does not really make sense because the very purpose of a generic lambda
(which is basically, as we mentioned earlier, a lambda expression template) is to be
reused, as shown in the example from the How to do it... section.

When defining this lambda expression, when used with multiple calls to
std::accumulate(), instead of specifying concrete types for the lambda parameters
(such as int or std: :string), we used the auto specifier and let the compiler deduce
the type. When encountering a lambda expression that has the auto specifier for a
parameter type, the compiler generates an unnamed function object that has a call
operator template. For the generic lambda expression in this example, the function
object would look like this:

struct _ lambda_name__
{
template<typename T1l, typename T2>
auto operator()(T1 const s, T2 const n) const { return s + n; }

__lambda_name__(const __ lambda_name__ &) = default;
__lambda_name__(__lambda_name__ &&) = default;
__lambda_name__& operator=(const __ lambda_name__ &) = delete;
~_lambda_name__() = default;

Y

[157]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Exploring Functions

The call operator is a template with a type parameter for each parameter in the
lambda that was specified with auto. The return type of the call operator is also auto,
which means the compiler will deduce it from the type of the returned value. This
operator template will be instantiated with the actual types the compiler will identify
in the context where the generic lambda is used.

The C++20 template lambdas are an improvement of the C++14 generic lambdas,
making some scenarios easier. A typical one was shown in the second example of the
previous section, where the use of lambda was restricted with arguments of the type
std: :vector. Another example is when you want to make sure that two parameters
of the lambda have the same type. Prior to C++20, this was difficult to do, but with
template lambdas, it is very easy, as shown in the following example:

auto tl = []<typename T>(T x, T y)
{

std::cout << x <<

I

<< y << '\n';

tl(10, 20);
tl(1e, "20");

Another scenario for template lambdas is when you need to know the type of a
parameter so that you can create instances of that type or invoke static members of it.
With generic lambdas, the solution is as follows:

struct foo

{
static void f() { std::cout << "foo\n"; }

¥
auto tl = [](auto x)
{

using T = std::decay_t<decltype(x)>;

T other;

T::f();
¥
tl(foo{});

[158]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 3

This solution requires the use of std: :decay_t and decltype. However, in C++20, the
same lambda can be written as follows:

auto tl = []<typename T>(T x)

{
T other;

T::F();
3

A similar situation occurs when we need to do perfect forwarding in a generic
lambda, which requires the use of decltype to determine the types of the arguments:

template <typename ...T>
void foo(T&& ... args)

{ }

auto tl = [](auto&& ...args)

{
return foo(std::forward<decltype(args)>(args)...);

s
t1(1, 42.99, "lambda");

With template lambda, we can rewrite it in a simpler way as follows:

auto tl = []<typename ...T>(T && ...args)
{

return foo(std::forward<T>(args)...);

%

As seen in these examples, template lambdas are an improvement of generic
lambdas, making it easier to handle the scenarios mentioned in this recipe.

See also

* Using lambdas with standard algorithms to explore the basics of lambda
expressions and how you can utilize them with the standard algorithms

* Using auto whenever possible in Chapter 1, Learning Modern Core Language
Features, to understand how automatic type deduction works in C++

[159]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Exploring Functions

Writing a recursive lambda

Lambdas are basically unnamed function objects, which means that it should be
possible to call them recursively. Indeed, they can be called recursively; however,
the mechanism for doing so is not obvious as it requires assigning the lambda to a
function wrapper and capturing the wrapper by reference. Though it can be argued
that a recursive lambda does not really make sense and that a function is probably a
better design choice, in this recipe, we will look at how to write a recursive lambda.

Getting ready

To demonstrate how to write a recursive lambda, we will consider the well-known
example of the Fibonacci function. This is usually implemented recursively in C++,
as follows:

constexpr int fib(int const n)

{
return n <= 2 ? 1 : fib(n - 1) + fib(n - 2);

}

Having this implementation as a starting point, let's see how we can rewrite it using
a recursive lambda.

How to do it...

In order to write a recursive lambda function, you must do the following:

* Define the lambda in a function scope
* Assign the lambda to an std: : function wrapper

* Capture the std: : function object by reference in the lambda in order to call
it recursively

The following are examples of recursive lambdas:

* Arecursive Fibonacci lambda expression in the scope of a function that is
invoked from the scope where it is defined:

void sample()
{
std::function<int(int const)> 1fib =
[&1fib](int const n)
{
return n <= 2 ? 1 : 1fib(n - 1) + 1fib(n - 2);
}s

[160]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Chapter 3

auto f10 = 1fib(10);
}

* Arecursive Fibonacci lambda expression returned by a function, which can
be invoked from any scope:

std::function<int(int const)> fib_create()

{
std::function<int(int const)> £ = [](int const n)
{
std: :function<int(int const)> 1fib = [&1fib](int n)
{
return n <=2 ? 1 : 1fib(n - 1) + 1fib(n - 2);
s
return 1fib(n);
}s
return f;
}

void sample()

{
auto 1fib = fib_create();
auto 10 = 1fib(10);

}

How it works...

The first thing you need to consider when writing a recursive lambda is that a
lambda expression is a function object and that, in order to call it recursively from
the lambda's body, the lambda must capture its closure (that is, the instantiation of
the lambda). In other words, the lambda must capture itself, and this has several
implications:

e First of all, the lambda must have a name; an unnamed lambda cannot be
captured so that it can be called again.

* Secondly, the lambda can only be defined in a function scope. The reason
for this is that a lambda can only capture variables from a function scope;
it cannot capture any variable that has a static storage duration. Objects
defined in a namespace scope or with the static or external specifiers have
static storage duration. If the lambda was defined in a namespace scope, its
closure would have static storage duration and therefore the lambda would
not capture it.

[161]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Exploring Functions

* The third implication is that the type of the lambda closure cannot remain
unspecified; that is, it cannot be declared with the auto specifier. It is not
possible for a variable declared with the auto type specifier to appear in its
own initializer. This is because the type of the variable is not known when
the initializer is being processed. Therefore, you must specify the type of
the lambda closure. The way we can do this is by using the general-purpose
function wrapper std: : function.

* Last, but not least, the lambda closure must be captured by reference. If we
capture by copy (or value), then a copy of the function wrapper is made,
but the wrapper is uninitialized when the capturing is done. We end up
with an object that we are not able to call. Even though the compiler will
not complain about capturing by value, when the closure is invoked, an
std: :bad_function_call is thrown.

In the first example from the How to do it... section, the recursive lambda is defined
inside another function called sample(). The signature and the body of the lambda
expression are the same as those of the regular recursive function fib (), which was
defined in the introductory section. The lambda closure is assigned to a function
wrapper called 1fib that is then captured by reference by the lambda and called
recursively from its body. Since the closure is captured by reference, it will be
initialized at the time it has to be called from the lambda's body.

In the second example, we defined a function that returns the closure of a lambda
expression that, in turn, defines and invokes a recursive lambda with the argument
it was, in turn, invoked with. This is a pattern that must be implemented when a
recursive lambda needs to be returned from a function. This is necessary because
the lambda closure must still be available at the time the recursive lambda is called.
If it is destroyed before that, we are left with a dangling reference, and calling it will
cause the program to terminate abnormally. This erroneous situation is exemplified
in the following example:

std::function<int(int const)> fib_create()

{
std::function<int(int const)> 1fib = [&Llfib](int const n)
{
return n <= 2 ? 1 : 1fib(n - 1) + 1fib(n - 2);
¥
return 1fib;
}

[162]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 3

void sample()

{
auto 1fib = fib_create();
auto f10 = 1fib(10);

}

The solution for this is to create two nested lambda expressions, as shown in the How
to do it... section. The fib_create() method returns a function wrapper that, when
invoked, creates the recursive lambda that captures itself. This is slightly and subtly,
yet fundamentally, different from the implementation shown in the preceding sample.
The outer f lambda does not capture anything, especially by reference; therefore, we
don't have this issue with dangling references. However, when invoked, it creates a
closure of the nested lambda, which is the actual lambda we are interested in calling,
and returns the result of applying that recursive 1fib lambda to its parameter.

See also

* Using generic and template lambdas to learn how to use auto for lambda
parameters and how to define template lambdas in C++20

Writing a function template with a
variable number of arguments

It is sometimes useful to write functions with a variable number of arguments or
classes with a variable number of members. Typical examples include functions such
as printf, which takes a format and a variable number of arguments, or classes such
as tuple. Before C++11, the former was possible only with the use of variadic macros
(which enable writing only type-unsafe functions) and the latter was not possible

at all. C++11 introduced variadic templates, which are templates with a variable
number of arguments that make it possible to write both type-safe function templates
with a variable number of arguments, and also class templates with a variable
number of members. In this recipe, we will look at writing function templates.

Getting ready

Functions with a variable number of arguments are called variadic functions. Function
templates with a variable number of arguments are called variadic function templates.
Knowledge of C++ variadic macros (va_start, va_end, va_arg and va_copy, va_list) is
not necessary for learning how to write variadic function templates, but it represents a
good starting point.

[163]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Exploring Functions

We have already used variadic templates in our previous recipes, but this one will
provide detailed explanations.

How to do it...

In order to write variadic function templates, you must perform the following steps:

1. Define an overload with a fixed number of arguments to end compile-time
recursion if the semantics of the variadic function template require it (refer to
[1] in the following code).

2. Define a template parameter pack that is a template parameter that can hold
any number of arguments, including zero; these arguments can be either
types, non-types, or templates (refer to [2]).

3. Define a function parameter pack to hold any number of function
arguments, including zero; the size of the template parameter pack and
the corresponding function parameter pack is the same. This size can be
determined with the sizeof... operator (refer to [3] and refer to the end of
the How it works...
section for information on this operator).

4. Expand the parameter pack in order to replace it with the actual arguments
being supplied (refer to [4]).

The following example, which illustrates all the preceding points, is a variadic
function template that adds a variable number of arguments using operator+:

template <typename T>
T add(T value)

{ return value;
¥
template <typename T, typename... Ts>
T add(T head, Ts... rest)
{
return head + add(rest...);
}

[164]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

EBSCChost -

Chapter 3

How it works...

At first glance, the preceding implementation looks like recursion, because the
function add() calls itself, and in a way it is, but it is a compile-time recursion that
does not incur any sort of runtime recursion and overhead. The compiler actually
generates several functions with a different number of arguments, based on the
variadic function template's usage, so only function overloading is involved and not
any sort of recursion. However, implementation is done as if parameters would be
processed in a recursive manner with an end condition.

In the preceding code, we can identify the following key parts:

* Typename... Tsisatemplate parameter pack that indicates a variable
number of template type arguments.

* Ts... restisafunction parameter pack that indicates a variable number of
function arguments.

* rest... isan expansion of the function parameter pack.

/ The position of the ellipsis is not syntactically relevant.
) typename... Ts,typename ... Ts,and typename ...Ts areall
equivalent.

In the add(T head, Ts... rest) parameter, head is the first element of the list of
arguments, while . . .rest is a pack with the rest of the parameters in the list (this
can be zero or more). In the body of the function, rest. .. is an expansion of the
function parameter pack. This means the compiler replaces the parameter pack with
its elements in their order. In the add() function, we basically add the first argument
to the sum of the remaining arguments, which gives the impression of recursive
processing. This recursion ends when there is a single argument left, in which case
the first add() overload (with a single argument) is called and returns the value of its
argument.

This implementation of the function template add() enables us to write code, as
shown here:

auto si

add(1, 2, 3, 4, 5);

auto s2 = add("hello"s, " "s, "world"s, "!"s);

[165]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Exploring Functions

When the compiler encounters add(1, 2, 3, 4, 5), it generates the following
functions (argi, arg2, and so on are not the actual names the compiler generates),
which show that this is actually only calls to overloaded functions and not recursion:

int add(int head, int argl, int arg2, int arg3, int arg4)
{return head + add(argl, arg2, arg3, argd4);}

int add(int head, int argl, int arg2, int arg3)

{return head + add(argl, arg2, arg3);}

int add(int head, int argl, int arg2)

{return head + add(argl, arg2);}

int add(int head, int argl)

{return head + add(argl);}

int add(int value)

{return value;}

!
\@l With GCC and Clang, you can use the __ PRETTY_FUNCTION__
AR macro to print the name and the signature of the function.

By adding an std: :cout << __PRETTY_FUNCTION__ << std::endl at the beginning of
the two functions we wrote, we get the following when running the code:

{int, int, int, int}]
{int, int, int}]
{int, int}]

{int}]

Since this is a function template, it can be used with any type that supports
operator+. The other example, add("hello"s, s, "world"s, "!"s), produces the
hello world! string. However, the std: :basic_string type has different overloads for
operator+, including one that can concatenate a string into a character, so we should

be able to also write the following:

auto s3 = add("hello"s, " ', "world"s, '!");

[166]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 3

However, that will generate compiler errors, as follows (note that I actually replaced
std::basic_string<char, std::char_traits<char>, std::allocator<char> > with
the string hello world! for simplicity):

In instantiation of 'T add(T, Ts ...) [with T = char; Ts = {string,
char}]':

16:29: required from 'T add(T, Ts ...) [with T = string; Ts = {char,
string, char}]'

22:46: required from here

16:29: error: cannot convert 'string' to 'char' in return

In function 'T add(T, Ts ...) [with T = char; Ts = {string, char}]':
17:1: warning: control reaches end of non-void function [-Wreturn-type]

What happens is that the compiler generates the code shown here, where the return
type is the same as the type of the first argument. However, the first argument

is either an std: :string or a char (again, std: :basic_string<char, std::char_
traits<char>, std::allocator<char> > was replaced with string for simplicity).
In cases where char is the type of the first argument, the type of the return value
head+add (...), which is an std: : string, does not match the function return type
and does not have an implicit conversion to it:

string add(string head, char argl, string arg2, char arg3)
{return head + add(argl, arg2, arg3);}

char add(char head, string argl, char arg2)

{return head + add(argl, arg2);}

string add(string head, char argl)

{return head + add(argl);}

char add(char value)

{return value;}

We can fix this by modifying the variadic function template so that it has auto for
the return type instead of T. In this case, the return type is always inferred from the
return expression, and in our example, it will be std: : string in all cases:

template <typename T, typename... Ts>
auto add(T head, Ts... rest)

{

return head + add(rest...);

}

[167]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Exploring Functions

It should be further added that a parameter pack can appear in a brace-initialization
and that its size can be determined using the sizeof... operator. Also, variadic
function templates do not necessarily imply compile-time recursion, as we have
shown in this recipe. All these are shown in the following example:

template<typename... T>
auto make_even_tuple(T... a)
{
static_assert(sizeof...(a) % 2 == 0,

"expected an even number of arguments");
std::tuple<T...> t { a... };

return t;

}

auto tl1 = make_even_tuple(1, 2, 3, 4);

auto t2 = make_even_tuple(1, 2, 3);

In the preceding snippet, we have defined a function that creates a tuple with an
even number of members. We first use sizeof...(a) to make sure that we have an
even number of arguments and assert by generating a compiler error otherwise. The
sizeof... operator can be used with both template parameter packs and function
parameter packs. sizeof...(a) and sizeof...(T) would produce the same value.
Then, we create and return a tuple. The template parameter pack T is expanded (with
T...) into the type arguments of the std: : tuple class template, and the function
parameter pack a is expanded (with a. . .) into the values for the tuple members
using brace initialization.

See also

* Using fold expressions to simplify variadic function templates to learn how to
write simpler and clearer code when creating function templates with a
variable number of arguments

* Creating raw user-defined literals in Chapter 2, Working with Numbers and Strings,
to understand how to provide a custom interpretation of an input sequence
so that it changes the normal behavior of the compiler

[168]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 3

Using fold expressions to simplify
variadic function templates

In this chapter, we are discussing folding several times; this is an operation that
applies a binary function to a range of values to produce a single value. We have
seen this when we discussed variadic function templates, and will see it again with
higher-order functions. It turns out there is a significant number of cases where the
expansion of a parameter pack in variadic function templates is basically a folding
operation. To simplify writing such variadic function templates, C++17 introduced
fold expressions, which fold an expansion of a parameter pack over a binary
operator. In this recipe, we will learn how to use fold expressions to simplify writing
variadic function templates.

Getting ready

The examples in this recipe are based on the variadic function template add (), which
we wrote in the previous recipe, Writing a function template with a variable number

of arquments. That implementation is a left-folding operation. For simplicity, we'll
present the function again:

template <typename T>
T add(T value)

{
return value;
}
template <typename T, typename... Ts>
T add(T head, Ts... rest)
{
return head + add(rest...);
}

In the next section, we will learn how this particular implementation can be
simplified, as well as other examples of using fold expressions.

[169]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Exploring Functions

How to do it...

To fold a parameter pack over a binary operator, use one of the following forms:

Left folding with a unary form (... op pack):

template <typename... Ts>
auto add(Ts... args)

{

return (... + args);

}

Left folding with a binary form (init op ... op pack):
template <typename... Ts>

auto add_to_one(Ts... args)
{

return (1 + ... + args);
}

Right folding with a unary form (pack op ...):

template <typename... Ts>
auto add(Ts... args)

{
return (args + ...);
}
* Right folding with a binary form (pack op ... op init):
template <typename... Ts>
auto add_to_one(Ts... args)
{
return (args + ... + 1);
}

cannot be omitted.

\/‘D/ The parentheses shown here are part of the fold expression and

How it works...

When the compiler encounters a fold expression, it expands it in one of the following
expressions:

[170]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 3

Expression Expansion

(... op pack) ((pack$1l op pack$2) op ...) op pack$n

(init op ... op pack) (((init op pack$1l) op pack$2) op ...) op pack$n

(pack op ...) pack$l op (... op (pack$n-1 op pack$n))

(pack op ... op init) pack$l op (... op (pack$n-1 op (pack$n op
init)))

When the binary form is used, the operator on both the left-hand and right-hand
sides of the ellipses must be the same, and the initialization value must not contain
an unexpanded parameter pack.

The following binary operators are supported with fold expressions:

+ - * / % A & | = < > <<
> += -= *= /= %= Az &= |= <<= >>= ==
= <= >= && [, ¥ ->*,

When using the unary form, only operators such as *, +, &, |, 88, ||, and , (comma)

are allowed with an empty parameter pack. In this case, the value of the empty pack
is as follows:

+
1

& -1

| 0

&& true

| false

, void()

Now that we have the function templates we implemented earlier (let's consider the
left-folding version), we can write the following code:

auto sum = add(1, 2, 3, 4, 5);
auto suml = add_to_one(1, 2, 3, 4, 5);

Considering the add(1, 2, 3, 4, 5) call, it will produce the following function:

int add(int argl, int arg2, int arg3, int arg4, int arg5)
{

return ((((argl + arg2) + arg3) + argd) + arg5);
}

[171]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Exploring Functions

It's worth mentioning that due to the aggressive ways modern compilers do
optimizations, this function can be inlined and, eventually, we may end up with an
expression such asauto sum = 1 + 2 + 3 + 4 + 5.

There's more...

Fold expressions work with all overloads for the supported binary operators, but do
not work with arbitrary binary functions. It is possible to implement a workaround
for that by providing a wrapper type that will hold a value and an overloaded
operator for that wrapper type:

template <typename T>
struct wrapper

{

T const & value;

t;

template <typename T>
constexpr auto operator<(wrapper<T> const & lhs,
wrapper<T> const & rhs)
{
return wrapper<T> {
lhs.value < rhs.value ? lhs.value : rhs.value};

}

In the preceding code, wrapper is a simple class template that holds a constant
reference to a value of type T. An overloaded operator< is provided for this class
template; this overload does not return a Boolean to indicate that the first argument
is less than the second, but actually an instance of the wrapper class type to hold the
minimum value of the two arguments. The variadic function template min (), shown
here, uses this overloaded operator< to fold the pack of arguments expanded to
instances of the wrapper class template:

template <typename... Ts>
constexpr auto min(Ts&&... args)
{
return (wrapper<Ts>{args} < ...).value;
}

auto m = min(3, 1, 2);

This min() function is expanded by the compiler to something that could look like
the following:

[172]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 3

template<>

inline constexpr int min<int, int, int>(int && __argse,
int && __argsi,
int && __args2)

{
return
operator<(wrapper_min<int>{__argse},
operator<(wrapper_min<int>{__argsl},
wrapper_min<int>{__args2})).value;
}

What we can see here is cascading calls to the binary operator < that return a
Wrapper<int> value. Without this, an implementation of the min() function using
fold expressions would not be possible. The following implementation does not

work:
template <typename... Ts>
constexpr auto minimum(Ts&&... args)
{
return (args < ...);
}

The compiler would transform this, based on the call min(3, 1, 2), to something
such as the following:

template<>
inline constexpr bool minimum<int, int, int>(int && __argse,
int & __argsi,
int & __args2)
{
return __argse < (static_cast<int>(__argsl < _ args2));

}

The result is a function that returns a Boolean, and not the actual integer value,
which is the minimum between the supplied arguments.

See also

* Implementing higher-order functions map and fold to learn about higher-order
functions in functional programming and how to implement the widely used
map and fold (or reduce) functions

[173]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Exploring Functions

Implementing the higher-order functions
map and fold

Throughout the preceding recipes in this book, we have used the general-purpose
algorithms std: :transform() and std: :accumulate() in several examples, such as
for implementing string utilities to create uppercase or lowercase copies of a string
or for summing the values of a range. These are basically implementations of higher-
order functions, map and fold. A higher-order function is a function that takes one or
more other functions as arguments and applies them to a range (a list, vector, map,
tree, and so on), thus producing either a new range or a value. In this recipe, we

will learn how to implement the map and fold functions so that they work with C++
standard containers.

Getting ready

Map is a higher-order function that applies a function to the elements of a range and
returns a new range in the same order.

Fold is a higher-order function that applies a combining function to the elements

of the range to produce a single result. Since the order of the processing can be
important, there are usually two versions of this function. One is foldleft, which
processes elements from left to right, while the other is foldright, which combines
the elements from right to left.

Most descriptions of the function map indicate that it is applied
to a list, but this is a general term that can indicate different

‘ / sequential types, such as list, vector, and array, and also

\p/ dictionaries (that is, maps), queues, and so on. For this reason, I
prefer to use the term range when describing these higher-order
functions.

As an example, the mapping operation could transform a range of strings into a
range of integers representing the length of each string. The fold operation could
then add these lengths to determine the combined length of all the strings.

How to do it...

To implement the map function, you should:

* Use std::transform on containers that support iterating and assignment to
the elements, such as std: :vector or std::1list:

[174]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Chapter 3

template <typename F, typename R>
R mapf(F&& func, R range)
{
std: :transform(
std::begin(range), std::end(range), std::begin(range),
std: :forward<F>(func));
return range;

}

* Use other means such as explicit iteration and insertion for containers that do
not support assignment to the elements, such as std: :map:

template<typename F, typename T, typename U>
std::map<T, U> mapf(F&& func, std::map<T, U> const & m)
{
std::map<T, U> r;
for (auto const kvp : m)
r.insert(func(kvp));
return r;

}

template<typename F, typename T>
std::queue<T> mapf(F&& func, std::queue<T> q)
{
std::queue<T> r;
while (!qg.empty())
{
r.push(func(q.front()));
q.pop();
}

return r;

}

To implement the fold function, you should:

e Use std::accumulate() on containers that support iterating:

template <typename F, typename R, typename T>
constexpr T foldl(F&& func, R&& range, T init)
{
return std::accumulate(
std::begin(range), std::end(range),
std: :move(init),
std: :forward<F>(func));

[175]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Exploring Functions

template <typename F, typename R, typename T>
constexpr T foldr(F& func, R&& range, T init)

{
return std::accumulate(
std::rbegin(range), std::rend(range),
std: :move(init),
std: :forward<F>(func));
}

* Use other means to explicitly process containers that do not support iterating,
such as std: :queue:

template <typename F, typename T>
constexpr T foldl(F&& func, std::queue<T> q, T init)
{
while (!q.empty())
{ init = func(init, q.front());
q.pop();
}

return init;

}

How it works...

In the preceding examples, we implemented the map in a functional way, without
side effects. This means it preserves the original range and returns a new one. The
arguments of the function are the function to apply and the range. In order to avoid
confusion with the std: :map container, we have called this function mapf. There are
several overloads for mapf, as shown earlier:

* The first overload is for containers that support iterating and assignment
to its elements; this includes std: :vector, std: :1ist, and std: :array, but
also C-like arrays. The function takes an rvalue reference to a function and
a range for which std: :begin() and std: :end() are defined. The range is
passed by value so that modifying the local copy does not affect the original
range. The range is transformed by applying the given function to each
element using the standard algorithm std: : transform(); the transformed
range is then returned.

* The second overload is specialized for std: :map, which does not support
direct assignment to its elements (std: :pair<T, U>). Therefore, this overload
creates a new map, then iterates through its elements using a range-based for
loop, and inserts the result of applying the input function to each element of
the original map into the new map.

[176]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 3

The third overload is specialized for std: : queue, which is a container that
does not support iterating. It can be argued that a queue is not a typical
structure to map over, but for the sake of demonstrating different possible
implementations, we are considering it. In order to iterate over the elements
of a queue, the queue must be altered — you need to pop elements from the
front until the list is empty. This is what the third overload does—it processes
each element of the input queue (passed by value) and pushes the result of
applying the given function to the front element of the remaining queue.

Now that we have these overloads implemented, we can apply them to a lot of
containers, as shown in the following examples:

Retain absolute values from a vector. In this example, the vector contains
both negative and positive values. After applying the mapping, the result is a
new vector with only positive values:

auto vnums =

std::vector<int>{e, 2, -3, 5, -1, 6, 8, -4, 9};
auto r = funclib::mapf([](int const i) {

return std::abs(i); }, vnums);

Square the numerical values of a list. In this example, the list contains
integral values. After applying the mapping, the result is a list containing the
squares of the initial values:
auto lnums = std::list<int>{1, 2, 3, 4, 5};
auto 1 = funclib::mapf([](int const i) {
return i*i; }, lnums);

Rounded amounts of floating points. For this example, we need to use

std: :round(); however, this has overloads for all floating-point types, which
makes it impossible for the compiler to pick the right one. As a result, we
either have to write a lambda that takes an argument of a specific floating-
point type and returns the value of std: :round() applied to that value, or
create a function object template that wraps std: : round() and enables its call
operator only for floating point types. This technique is used in the following
example:

template<class T = double>
struct fround

{

typename std::enable_if t<
std::is_floating_point_v<T>, T>

[177]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Exploring Functions

operator()(const T& value) const

{
return std::round(value);
¥
s

auto amounts =
std::array<double, 5> {10.42, 2.50, 100.0, 23.75, 12.99};
auto a = funclib::mapf(fround<>(), amounts);

* Uppercase the string keys of a map of words (where the key is the word
and the value is the number of appearances in the text). Note that creating
an uppercase copy of a string is itself a mapping operation. Therefore, in
this example, we use mapf to apply toupper() to the elements of the string
representing the key in order to produce an uppercase copy:

auto words = std::map<std::string, int>{
{"one", 1}, {"two", 2}, {"three", 3}
}s
auto m = funclib: :mapf(
[1(std::pair<std::string, int> const kvp) {
return std::make_pair(
funclib: :mapf(toupper, kvp.first),
kvp.second);

¥

words);

* Normalize values from a queue of priorities; initially, the values are from 1 to
100, but we want to normalize them into two values, 1=high and 2=normal.
All the initial priorities that have a value up to 30 get high priority; the others
get normal priority:

auto priorities = std::queue<int>();

priorities.push(10);

priorities.push(20);

priorities.push(30);

priorities.push(40);

priorities.push(50);

auto p = funclib: :mapf(
[](int const i) { return i > 30 ? 2 : 1; },
priorities);

[178]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 3

To implement fold, we actually have to consider the two possible types of folding;
that is, from left to right and from right to left. Therefore, we have provided

two functions called foldl (for left folding) and foldr (for right folding). The
implementations shown in the previous section are very similar: they both take a
function, a range, and an initial value and call std: :algorithm() to fold the values
of the range into a single value. However, foldl uses direct iterators, whereas foldr
uses reverse iterators to traverse and process the range. The second overload is a
specialization for the type std: : queue, which does not have iterators.

Based on these implementations for folding, we can implement the following
examples:

* Adding the values of a vector of integers. In this case, both left and right
folding will produce the same result. In the following examples, we pass
either a lambda that takes a sum and a number and returns a new sum or
the function object std: : plus<> from the standard library, which applies
operator+ to two operands of the same type (basically similar to the closure
of the lambda):

auto vnums =
std::vector<int>{e, 2, -3, 5, -1, 6, 8, -4, 9};

auto sl = funclib::foldl(
[J(const int s, const int n) {return s + n; },
vnums, 9);

auto s2 = funclib::foldl(
std::plus<>(), vnums, 0);

auto s3 = funclib::foldr(
[J(const int s, const int n) {return s + n; },
vnums, 9);

auto s4 = funclib::foldr(
std::plus<>(), vnums, 0);

* Concatenating strings from a vector into a single string:

auto texts =
std::vector<std::string>{"hello"s, " "s, "world"s, "!"s};

auto txtl = funclib::foldl(
[](std::string const & s, std::string const & n) {
return s + n;},
texts, ""s);

[179]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Exploring Functions

auto txt2 = funclib::foldr(
[J(std::string const & s, std::string const & n) {
return s + n; },
texts, ""s);

* Concatenating an array of characters into a string:

char chars[] = {'c','i",'v"',"1","'c'};

auto stril

funclib::foldl(std::plus<>(), chars, ""s);

auto str2

funclib::foldr(std::plus<>(), chars, ""s);

* Counting the number of words in text based on their already computed
appearances, available in a map<string, int>:

auto words = std::map<std::string, int>{
{"one", 1}, {"two", 2}, {"three", 3} };

auto count = funclib::foldl(
[1(int const s, std::pair<std::string, int> const kvp) {
return s + kvp.second; },
words, 9);

There's more...

These functions can be pipelined; that is, they can call one function with the result

of another. The following example maps a range of integers into a range of positive
integers by applying the std: :abs() function to its elements. The result is then
mapped into another range of squares. These are then summed together by applying
a left fold on the range:

auto vnums = std::vector<int>{ o, 2, -3, 5, -1, 6, 8, -4, 9 };

auto s = funclib::foldl(
std::plus<>(),
funclib: :mapf(
[1(int const i) {return i*i; },
funclib: :mapf(
[J(int const i) {return std::abs(i); },
vnums)),
0);

[180]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 3

As an exercise, we could implement the fold function as a variadic function
template, in the manner seen earlier. The function that performs the actual folding is
provided as an argument:

template <typename F, typename T1l, typename T2>
auto foldl(F&&f, T1 argl, T2 arg2)
{
return f(argl, arg2);
}

template <typename F, typename T, typename... Ts>
auto foldl(F&& f, T head, Ts... rest)
{

return f(head, foldl(std::forward<F>(f), rest...));

}

When we compare this with the add() function template that we wrote in the Writing
a function template with a variable number of arquments recipe, we can notice several
differences:

* The first argument is a function, which is perfectly forwarded when calling
foldl recursively.

* The end case is a function that requires two arguments because the function
we use for folding is a binary one (taking two arguments).

* The return type of the two functions we wrote is declared as auto because it
must match the return type of the supplied binary function f, which is not
known until we call foldl.

The foldl() function can be used as follows:

auto s1 = foldl(std::plus<>(), 1, 2, 3, 4, 5);
auto s2 = foldl(std::plus<>(), "hello"s, ' ', "world"s, "!');
auto s3 = foldl(std::plus<>(), 1);

Notice that the last call produces a compiler error because the variadic function
template fold1() requires at least two arguments to be passed, in order to invoke the
supplied binary function.

[181]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Exploring Functions

See also

* Creating a library of string helpers in Chapter 2, Working with Numbers and
Strings, to see how to create useful text utilities that are not directly available
in the standard library

* Writing a function template with a variable number of arguments to see how
variadic templates enable us to write functions that can take any number of
arguments

* Composing functions into a higher-order function to learn the functional
programming technique for creating a new function from one or more other
functions

Composing functions into a higher-order
function

In the previous recipe, we implemented two higher-order functions, map and fold,
and saw various examples of using them. At the end of the recipe, we saw how they
can be pipelined to produce a final value after several transformations of the original
data. Pipelining is a form of composition, which means creating one new function
from two or more given functions. In the mentioned example, we didn't actually
compose functions; we only called a function with the result produced by another,
but in this recipe, we will learn how to actually compose functions together into a
new function. For simplicity, we will only consider unary functions (functions that
take only one argument).

Getting ready

Before you go forward, it is recommended that you read the previous recipe,
Implementing higher-order functions map and fold. It is not mandatory for understanding
this recipe, but we will refer to the map and fold functions we implemented there.

How to do it...

To compose unary functions into a higher-order function, you should:

* For composing two functions, provide a function that takes two functions,
f and g, as arguments and returns a new function (a lambda) that returns
f(g(x)), where x is the argument of the composed function:

[182]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 3

template <typename F, typename G>
auto compose(F&& f, G&& g)
{
return [=](auto x) { return f(g(x)); };
}

auto v = compose(
[](int const n) {return std::to_string(n); },
[1(int const n) {return n * n; })(-3);

* For composing a variable number of functions, provide a variadic template
overload of the function described previously:

template <typename F, typename... R>
auto compose(F&& f, R&&... r)
{

return [=](auto x) { return f(compose(r...)(x)); };

}

auto n = compose(
[1(int const n) {return std::to_string(n); },
[](int const n) {return n * n; },
[1(int const n) {return n + n; },
[J(int const n) {return std::abs(n); })(-3);

How it works...

Composing two unary functions into a new one is relatively trivial. Create a template
function, which we called compose() in the earlier examples, with two arguments—f
and g —that represent functions, and return a function that takes one argument,

x, and returns f(g(x)). It is important that the type of the value returned by the g
function is the same as the type of the argument of the f function. The returned value
of the compose function is a closure; that is, it's an instantiation of a lambda.

In practice, it is useful to be able to combine more than just two functions. This

can be achieved by writing a variadic template version of the compose() function.
Variadic templates are explained in more detail in the Writing a function template with
a variable number of arguments recipe.

[183]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Exploring Functions

Variadic templates imply compile-time recursion by expanding the parameter pack.
This implementation is very similar to the first version of compose(), except for the
following:

* It takes a variable number of functions as arguments.

* The returned closure calls compose () recursively with the expanded
parameter pack; recursion ends when only two functions are left, in which
case the previously implemented overload is called.

Even if the code looks like recursion is happening, this is not true
N recursion. It could be called compile-time recursion, but with every
‘,@\‘ expansion, we get a call to another method with the same name
= but a different number of arguments, which does not represent

recursion.

Now that we have these variadic template overloads implemented, we can rewrite
the last example from the previous recipe, Implementing higher-order functions map and
fold. Refer to the following snippet:

auto s = compose(
[](std::vector<int> const & v) {
return foldl(std::plus<>(), v, 0); },
[](std::vector<int> const & v) {
return mapf([](int const i) {return i + i; }, v); },
[]J(std::vector<int> const & v) {
return mapf([](int const i) {return std::abs(i); }, v); })(vnums);

Having an initial vector of integers, we map it to a new vector with only positive
values by applying std: :abs() to each element. The result is then mapped to a new
vector by doubling the value of each element. Finally, the values in the resulting
vector are folded together by adding them to the initial value, e.

There's more...

Composition is usually represented by a dot (.) or asterisk (*), suchas f . gor

f * g. We can actually do something similar in C++ by overloading operator* (it
would make little sense to try to overload the operator dot). Similar to the compose()
function, operator* should work with any number of arguments; therefore, we will
have two overloads, just like in the case of compose():

* The first overload takes two arguments and calls compose() to return a new
function.

[184]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 3

* The second overload is a variadic template function that, again, calls
operator* by expanding the parameter pack.

Based on these considerations, we can implement operator* as follows:

template <typename F, typename G>
auto operator*(F&& f, G&& g)
{
return compose(std::forward<F>(f), std::forward<G>(g));

}

template <typename F, typename... R>
auto operator*(F&& f, R&&... r)
{

return operator*(std::forward<F>(f), r...);

}

We can now simplify the actual composition of functions by applying operator*
instead of the more verbose call to compose():

auto n =
([](int const n) {return std::to_string(n); } *
[](int const n) {return n * n; } *
[J(int const n) {return n + n; } *
[](int const n) {return std::abs(n); })(-3);

auto c =
[J(std::vector<int> const & v) {
return foldl(std::plus<>(), v, 0); } *
[]J(std::vector<int> const & v) {
return mapf([](int const i) {return i + i; }, v); } *
[](std::vector<int> const & v) {
return mapf([](int const i) {return std::abs(i); }, v); };

auto vnums = std::vector<int>{ o, 2, -3, 5, -1, 6, 8, -4, 9 };
auto s = c(vnums);

Although it may not be intuitive at first glance, the functions are applied in reverse
order rather than the one shown in the text. For instance, in the first example, the
absolute value of the argument is retained. Then, the result is doubled, and the result
of that operation is then multiplied with itself. Finally, the result is converted to a
string. For the supplied argument, -3, the final result is the string "36".

[185]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Exploring Functions

See also

* Writing a function template with a variable number of arguments to see how
variadic templates enable us to write functions that can take any number of
arguments

Uniformly invoking anything callable

Developers, and especially those who implement libraries, sometimes need to invoke
a callable object in a uniform manner. This can be a function, a pointer to a function,
a pointer to a member function, or a function object. Examples of such cases include
std::bind, std::function, std: :mem_fn, and std: :thread: :thread. C++17 defines

a standard function called std: : invoke() that can invoke any callable object with

the provided arguments. This is not intended to replace direct calls to functions or
function objects, but it is useful in template metaprogramming for implementing
various library functions.

Getting ready

For this recipe, you should be familiar with how to define and use function pointers.

To exemplify how std: :invoke() can be used in different contexts, we will use the
following function and class:

int add(int const a, int const b)

{

return a + b;

}

struct foo

{

int x = 0;

void increment_by(int const n) { x += n; }

1

In the next section, we'll explore the possible use cases for the std: : invoke()
function.

[186]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 3

How to do it...

The std: :invoke() function is a variadic function template that takes the callable
object as the first argument and a variable list of arguments that are passed to the
call. std: :invoke() can be used to call the following:

Free functions:

auto al = std::invoke(add, 1, 2);

Free functions through pointer to function:

auto a2 = std::invoke(&add, 1, 2);
int(*fadd)(int const, int const) = &add;
auto a3 = std::invoke(fadd, 1, 2);

Member functions through pointer to member function:

foo f;
std::invoke(&foo: :increment_by, f, 10);

Data members:

foo f;
auto x1 = std::invoke(&foo::x, f);

Function objects:

foo f;
auto x3 = std::invoke(std::plus<>(),
std::invoke(&foo::x, f), 3);

Lambda expressions:

auto 1 = [](auto a, auto b) {return a + b; };
auto a = std::invoke(l, 1, 2);

In practice, std:invoke() should be used in template metaprogramming for invoking
a function with an arbitrary number of arguments. To exemplify such a case, we'll
present a possible implementation for our std: :apply() function, and also a part of
the standard library, as of C++17, that calls a function by unpacking the members of
a tuple into the arguments of the function:

[187]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Exploring Functions

namespace details

{
template <class F, class T, std::size_t... I>
auto apply(F&& f, T&& t, std::index_sequence<I...>)
{
return std::invoke(
std::forward<F>(f),
std::get<I>(std::forward<T>(t))...);
}
by

template <class F, class T>
auto apply(F&& f, T&& t)
{
return details::apply(

std: :forward<F>(f),

std::forward<T>(t),

std: :make_index_sequence<

std::tuple_size_v<std::decay_t<T>>> {});

How it works...

Before we see how std: :invoke () works, let's have a quick look at how different
callable objects can be invoked. Given a function, obviously, the ubiquitous way of
invoking it is by directly passing it the necessary parameters. However, we can also
invoke the function using function pointers. The trouble with function pointers is
that defining the type of the pointer can be cumbersome. Using auto can simplify
things (as shown in the following code), but in practice, you usually need to define
the type of the pointer to function first, and then define an object and initialize it with
the correct function address. Here are several examples:

auto al = add(1, 2);
int(*fadd)(int const, int const) = &add;
auto a2 = fadd(1, 2);

auto fadd2 = &add;
auto a3 = fadd2(1, 2);

[188]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 3

Calling through a function pointer becomes more cumbersome when you need to
invoke a class function through an object that is an instance of the class. The syntax
for defining the pointer to a member function and invoking it is not simple:

foo f;
f.increment_by(3);
auto x1 = f.x;

void(foo::*finc)(int const) = &foo::increment_by;
(f.*finc)(3);
auto x2 = f.x;

auto finc2 = &foo::increment_by;
(f.*finc2)(3);
auto x3 = f.x;

Regardless of how cumbersome this kind of call may look, the actual problem is
writing library components (functions or classes) that are able to call any of these
types of callable objects, in a uniform manner. This is what benefits, in practice, from
a standard function, such as std: : invoke().

The implementation details of std: : invoke() are complex, but the way it works
can be explained in simple terms. Supposing the call has the form invoke(f, argi,
arg2, ..., argN), then consider the following:

» If fis a pointer to a member function of a T class, then the call is equivalent to
either:

* (argl.*f)(arg2, ..., argN),if arglisan instance of T

* (argl.get().*f)(arg2, ..., argN),if arglis a specialization of
reference_wrapper

* ((*argl).*f)(arg2, ..., argN),ifitis otherwise

* If fis a pointer to a data member of a T class and there is a single argument,
in other words, the call has the form invoke(f, argl), then the call is
equivalent to either:

e argl.*fif argl is an instance class T
* argl.get().*fif argl is a specialization of reference_wrapper
* (*argl).*f,if it is otherwise
* If f is a function object, then the call is equivalent to f(argl, arg2, ...,

argN)

The standard library also provides a series of related type traits: std: :is_invocable
and std::is_nothrow_invocable on one hand, and std::is_invocable r and

[189]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Exploring Functions

std::is_nothrow_invocable r on the other hand. The first set determines whether a
function can be invocable with the supplied arguments, while the second determines
whether it can be invocable with the supplied arguments and produce a result that
can be implicitly converted to a specified type. The nothrow versions of these type
traits verify that the call can be done without any exception being thrown.

See also

* Writing a function template with a variable number of arguments to see how
variadic templates enable us to write functions that can take any number of
arguments

[190]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Preprocessing
and Compilation

In C++, compilation is the process by which source code is transformed to machine
code and organized in object files that are then linked together to produce an
executable. The compiler actually works on a single file at a time, produced by

the preprocessor (the part of the compiler that handles preprocessing directives)
from a single source file and all the header files that it includes. This is, however,

an oversimplification of what happens when we compile the code. This chapter
addresses topics related to preprocessing and compilation, with a focus on various
methods to perform conditional compilation, but also touching other modern topics
such as using attributes to provide implementation-defined language extensions.

The recipes included in this chapter are as follows:

Conditionally compiling your source code

Using the indirection pattern for preprocessor stringification and
concatenation

Performing compile-time assertion checks with static_assert
Conditionally compiling classes and functions with enable_if
Selecting branches at compile time with constexpr if

Providing metadata to the compiler with attributes

The recipe that we will start this chapter with addresses a very common problem
faced by developers, which is compiling only parts of a code base depending on
various conditions.

[191]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Preprocessing and Compilation

Conditionally compiling your source
code

Conditional compilation is a simple mechanism that enables developers to maintain
a single code base, but only consider some parts of the code for compilation to
produce different executables, usually in order to run on different platforms or
hardware, or depend on different libraries or library versions. Common examples
include using or ignoring code based on the compiler, platform (x86, x64, ARM, and
so on), configuration (debug or release), or any user-defined specific conditions. In
this recipe, we'll take a look at how conditional compilation works.

Getting ready

Conditional compilation is a technique used extensively for many purposes. In this
recipe, we will look at several examples and explain how they work. This technique
is not in any way limited to these examples. For the scope of this recipe, we will only
consider the three major compilers: GCC, Clang, and VC++.

How to do it...

To conditionally compile portions of code, use the #if, #ifdef, and #ifndef
directives (with the #elif, #else, and #endif directives). The general form for
conditional compilation is as follows:

#if conditionl
textl

#elif condition2
text2

#elif condition3
text3

#else
text4

#tendif

To define macros for conditional compilation, you can use either of the following;:

* A #define directive in your source code:

#define VERBOSE_PRINTS
#define VERBOSITY_LEVEL 5

[192]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Chapter 4

* Compiler command-line options that are specific to each compiler. Examples
for the most widely used compilers are as follows:

* For Visual C++, use /Dname or /Dname=value (where /Dname is
equivalent to /Dname=1), for example, c1 /DVERBOSITY_LEVEL=5.

* For GCC and Clang, use -D name or -D name=value (where -D name is
equivalent to -D name=1), for example, gcc -D VERBOSITY_LEVEL=5.

The following are typical examples of conditional compilation:

* Header guards to avoid duplicate definitions:
#if ldefined (UNIQUE_NAME)
#define UNIQUE_NAME
class widget { };
#endif

* Compiler-specific code for cross-platform applications. The following is an
example of printing a message to the console with the name of the compiler:

void show_compiler()
{
#if defined _MSC_VER
std::cout << "Visual C++\n";
#elif defined __clang
std::cout << "Clang\n";
#elif defined ___GNUG__
std::cout << "GCC\n";
#telse
std::cout << "Unknown compiler\n";
#tendif

}

» Target-specific code for multiple architectures, for example, for conditionally
compiling code for multiple compilers and architectures:

void show_architecture()

{
#if defined _MSC_VER

#if defined _M_X64
std::cout << "AMD64\n";
#elif defined _M_IX86
std::cout << "INTEL x86\n";

[193]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Preprocessing and Compilation

#elif defined _M_ARM
std::cout << "ARM\n";

#else
std::cout << "unknown\n";
#endif
#elif defined _ clang || __GNUG__

#if defined __amd64__
std::cout << "AMD64\n";
#elif defined _ i386_
std::cout << "INTEL x86\n";
#elif defined __arm__
std::cout << "ARM\n";
#else
std::cout << "unknown\n";
#endif

#telse
#error Unknown compiler
#endif

}

* Configuration-specific code, for example, for conditionally compiling code
for debug and release builds:

void show_configuration()
{
#ifdef _DEBUG

std::cout << "debug\n";
#else

std::cout << "release\n";
#endif

}

How it works...

When you use the preprocessing directives #if, #ifndef, #ifdef, #elif, #else, and
#endif, the compiler will select, at most, one branch whose body will be included
in the translation unit for compilation. The body of these directives can be any text,
including other preprocessing directives. The following rules apply:

[194]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 4

* #if, #ifdef, and #ifndef must be matched by a #endif.

* The #if directive may have multiple #elif directives, but only one #else,
which must also be the last one before #endif.

e #if, #ifdef, #ifndef, #elif, #else, and #endif can be nested.

* The #if directive requires a constant expression, whereas #ifdef and #ifndef
require an identifier.

* The operator defined can be used for preprocessor constant expressions, but
only in #if and #elif directives.

e defined(identifier) is considered true if identifier is defined; otherwise,
it is considered false.

* Anidentifier defined as an empty text is considered defined.
* #ifdef identifier is equivalent to #if defined(identifier).
* #ifndef identifier is equivalent to #if !defined(identifier).

* defined(identifier) and defined identifier are equivalent.

Header guards are one of the most common forms of conditional compilation.

This technique is used to prevent the content of a header file from being compiled
several times (although the header is still scanned every time in order to detect what
should be included). Since headers are often included in multiple source files, having
them compiled for every translation unit where they are included would produce
multiple definitions for the same symbols, which is an error. Therefore, the code in
headers is guarded for multiple compilations in the manner shown in the example
given in the previous section. The way this works, considering the given example,

is that if the macro UNIQUE_NAME (this is a generic name from the previous section)

is not defined, then the code after the #if directive, until #endif, is included in the
translation unit and compiled. When that happens, the macro UNIQUE_NAME is defined
with the #define directive. The next time the header is included in a translation unit,
the macro UNIQUE_NAME is defined and the code in the body of the #if directive is not
included in the translation unit and, therefore, not compiled again.

Note that the name of the macro must be unique throughout the
/ application; otherwise, only the code from the first header where
\/;p; the macro is used will be compiled. Code from other headers using
the same name will be ignored. Typically, the name of the macro is
based on the name of the header file where it is defined.

[195]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Preprocessing and Compilation

Another important example of conditional compilation is cross-platform code, which
needs to account for different compilers and architectures, usually one of Intel x86,
AMD64, or ARM. However, the compiler defines its own macros for the possible
platforms. The samples from the How to do it... section show how to conditionally
compile code for multiple compilers and architectures.

Note that in the aforementioned example, we only consider a few
, architectures. In practice, there are multiple macros that can be
\/;n> used to identify the same architecture. Ensure that you read the
documentation of each compiler before using these types of macros
in your code.

Configuration-specific code is also handled with macros and conditional
compilation. Compilers such as GCC and Clang do not define any special macros
for debug configurations (when the -g flag is used). Visual C++ does define _DEBUG
for a debug configuration, which was shown in the last example in the How to do
it... section. For the other compilers, you would have to explicitly define a macro to
identify such a debug configuration.

See also

* Using the indirection pattern for preprocessor stringification and concatenation
to learn how to transform identifiers to strings and concatenate identifiers
together during preprocessing

Using the indirection pattern for
preprocessor stringification and
concatenation

The C++ preprocessor provides two operators for transforming identifiers to

strings and concatenating identifiers together. The first one, operator #, is called the
stringizing operator, while the second one, operator ##, is called the token-pasting,
merging, or concatenating operator. Although their use is limited to some particular
cases, it is important to understand how they work.

Getting ready

For this recipe, you need to know how to define macros using the preprocessing
directive #define.

[196]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 4

How to do it...

To create a string from an identifier using the preprocessing operator #, use the
following pattern:

1. Define a helper macro taking one argument that expands to #, followed by
the argument:

#define MAKE_STR2(x) #x

2. Define the macro you want to use, taking one argument that expands to the
helper macro:

#define MAKE_STR(x) MAKE_STR2(x)

To concatenate identifiers together using the preprocessing operator ##, use the
following pattern:

1. Define a helper macro with one or more arguments that use the token-
pasting operator ## to concatenate arguments:

#tdefine MERGE2(Xx, V) Xy

2. Define the macro you want to use by using the helper macro:
#define MERGE(X, Y) MERGE2(x, y)

How it works...

To understand how these work, let's consider the MAKE_STR and MAKE_STR2 macros
defined earlier. When used with any text, they will produce a string containing that
text. The following example shows how both these macros can be used to define
strings containing the text "sample":

std::string s1 { MAKE_STR(sample) };
std::string s2 { MAKE_STR2(sample) };

On the other hand, when a macro is passed as an argument, the results are different.
In the following example, NUMBER is a macro that expands to an integer, 42. When
used as an argument to MAKE_STR, it indeed produces the string "42"; however, when
used as an argument to MAKE_STR2, it produces the string "NUMBER":

#tdefine NUMBER 42

std::string s3 { MAKE_STR(NUMBER) };
std::string s4 { MAKE_STR2(NUMBER) };

[197]

- printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Preprocessing and Compilation

The C++ standard defines the following rules for argument substitution in function-
like macros (paragraph 16.3.1):

" After the arquments for the invocation of a function-like macro have been identified,
argument substitution takes place. A parameter in the replacement list, unless
preceded by a # or ## preprocessing token or followed by a ## preprocessing token
(see below), is replaced by the corresponding argument after all the macros contained
therein have been expanded. Before being substituted, each argument's preprocessing
tokens are completely macro replaced as if they formed the rest of the preprocessing
file; no other preprocessing tokens are available."

What this says is that macro arguments are expanded before they are substituted
into the macro body, except for the case when the operator # or ## is preceding or
following a parameter in the macro body. As a result, the following happens:

* For MAKE_STR2(NUMBER), the NUMBER parameter in the replacement list is
preceded by # and, therefore, it is not expanded before substituting the
argument in the macro body; therefore, after the substitution, we have
#NUMBER, which becomes "NUMBER".

* For MAKE_STR(NUMBER), the replacement list is MAKE_STR2(NUMBER), which has
no # or ##; therefore, the NUMBER parameter is replaced with its corresponding
argument, 42, before being substituted. The result is MAKE_STR2(42), which is
then scanned again, and, after expansion, it becomes "42".

The same processing rules apply to macros using the token-pasting operator.
Therefore, in order to make sure that your stringification and concatenation macros
work for all cases, always apply the indirection pattern described in this recipe.

The token-pasting operator is typically used in macros that factor repetitive code to
avoid writing the same thing explicitly over and over again. The following simple
example shows a practical use of the token-pasting operator; given a set of classes,
we want to provide factory methods that create an instance of each class:

#define DECL_MAKE (x) DECL_MAKE2(X)
#define DECL_MAKE2(x) x* make##t_##x() { return new x(); }

struct bar {};
struct foo {};

DECL_MAKE (f00)
DECL_MAKE (bar)

auto f make_foo();
auto b = make_bar();

[198]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 4

Those familiar with the Windows platform have probably used the _T (or _TEXT)
macro for declaring string literals that are either translated to Unicode or ANSI
strings (both single- and multi-type character strings):

auto text{ _T("sample") };

The Windows SDK defines the _T macro as follows. Note that when _UNICODE is
defined, the token-pasting operator is defined to concatenate together the L prefix
and the actual string being passed to the macro:

#ifdef _UNICODE
#tdefine T(x) L ## x

#else

#tdefine T(x) X
#endif

#define _T(x) _ T(x)

#define TEXT(x) _ T(x)

At first glance, it seems unnecessary to have one macro calling another macro, but
this level of indirection is key for making the # and ## operators work with other
macros, as we have seen in this recipe.

See also

* Conditionally compiling your source code to learn how to compile only parts of
your code, depending on various conditions

Performing compile-time assertion
checks with static_assert

In C++, it is possible to perform both runtime and compile-time assertion checks to
ensure that specific conditions in your code are true. Runtime assertions have the
disadvantage that they are verified late when the program is running, and only if the
control flow reaches them. There is no alternative when the condition depends on
runtime data; however, when that is not the case, compile-time assertion checks are
to be preferred. With compile-time assertions, the compiler is able to notify you early
in the development stage with an error that a particular condition has not been met.
These, however, can only be used when the condition can be evaluated at compile
time. In C++11, compile-time assertions are performed with static_assert.

[199]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Preprocessing and Compilation

Getting ready

The most common use of static assertion checks is with template metaprogramming,
where they can be used for validating that preconditions on template types are met
(examples can include whether a type is a POD type, copy-constructible, a reference
type, and so on). Another typical example is to ensure that types (or objects) have an
expected size.

How to do it...

Use static_assert declarations to ensure that conditions in different scopes are met:

* namespace: In this example, we validate that the size of the class itemis

always 16:
struct alignas(8) item
{
int id;
bool active;
double value;
3
static_assert(sizeof(item) == 16,

"size of item must be 16 bytes");

* class: In this example, we validate that pod_wrapper can only be used with
POD types:

template <typename T>
class pod_wrapper
{
static_assert(std::is_standard_layout v<T>,
"POD type expected!");
T value;

1

struct point
{

int x;

int y;

}s
pod_wrapper<int> wl;
pod_wrapper<point> w2;
pod_wrapper<std::string> w3;

[200]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Chapter 4

* block (function): In this example, we validate that a function template has
only arguments of an integral type:
template<typename T>
auto mul(T const a, T const b)

{
static_assert(std::is_integral_ v<T>,
"Integral type expected");
return a * b;

}

auto vl = mul(1, 2);
auto v2 = mul(12.0, 42.5);

How it works...

static_assert is basically a declaration, but it does not introduce a new name. These
declarations have the following form:

static_assert(condition, message);

The condition must be convertible to a Boolean value at compile time, and the
message must be a string literal. As of C++17, the message is optional.

When the condition in a static_assert declaration evaluates to true, nothing
happens. When the condition evaluates to false, the compiler generates an error that
contains the specified message, if any.

See also

* Conditionally compiling classes and functions with enable_if to learn about
SFINAE and how to use it to specify type constraints for templates

* Specifying requirements on template arquments with concepts in Chapter 12, C++20
Core Features, to learn the fundamentals of C++20 concepts and how to use
them to specify constraints for template types

* Selecting branches at compile time with constexpr if to learn how to compile only
parts of your code with constexpr if statements

[201]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Preprocessing and Compilation

Conditionally compiling classes and
functions with enable_if

Template metaprogramming is a powerful feature of C++ that enables us to write
generic classes and functions that work with any type. This is a problem sometimes
because the language does not define any mechanism for specifying constraints

on the types that can be substituted for the template parameters. However, we can
still achieve this using metaprogramming tricks and by leveraging a rule called
substitution failure is not an error, also known as SFINAE. This rule determines
whether the compiler discards, from the overloaded set, a specialization when
substituting the explicitly specified or deduced type for the template parameter
when it fails, instead of generating an error. This recipe will focus on implementing
type constraints for templates.

Getting ready

Developers have used a class template usually called enable_if for many years in
conjunction with SFINAE to implement constraints on template types. The enable_if
family of templates has become part of the C++11 standard and is implemented as
follows:

template<bool Test, class T = void>
struct enable_if

{};

template<class T>
struct enable_if<true, T>

{
typedef T type;

Y

To be able to use std: :enable_if, you must include the header <type_traits>.

How to do it...

std: :enable_if can be used in multiple scopes to achieve different purposes;
consider the following examples:

* On aclass template parameter to enable a class template only for types that
meet a specified condition:

[202]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Chapter 4

template <typename T,
typename = typename
std::enable_if_t<std::is_standard_layout_v<T>, T>>
class pod_wrapper

{

T value;

%

struct point
{

int x;

int y;
}s

pod_wrapper<int> wl; // OK
pod_wrapper<point> w2; // OK
pod_wrapper<std::string> w3; // error: too few template arguments

On a function template parameter, function parameter, or function return
type to enable a function template only for types that meet a specified
condition:

template<typename T,
typename = typename std::enable_if_ t<
std::is_integral_v<T>, T>>
auto mul(T const a, T const b)

{
return a * b;
}
auto vl = mul(1, 2); // OK

auto v2 = mul(1.0, 2.9);
// error: no matching overloaded function found

To simplify the cluttered code that we end up writing when we use std: :enable_
if, we can leverage alias templates and define two aliases, called EnableIf and
DisableIf:

template <typename Test, typename T = void>
using EnableIf = typename std::enable_if t<Test::value, T>;

template <typename Test, typename T = void>
using DisableIf = typename std::enable_if t<!Test::value, T>;

[203]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Preprocessing and Compilation

Based on these alias templates, the following definitions are equivalent to the
preceding ones:

template <typename T, typename = EnableIf<std::is_standard_layout<T>>>
class pod_wrapper

{

T value;

t;

template<typename T, typename = EnableIf<std::is_integral<T>>>
auto mul(T const a, T const b)

{

return a * b;

}

How it works...

std::enable_if works because the compiler applies the SFINAE rule when
performing overload resolution. Before we can explain how std: :enable_if works,
we should have a quick look at what SFINAE is.

When the compiler encounters a function call, it needs to build a set of possible
overloads and select the best match for the call based on the arguments for the
function call. When building this overload set, the compiler evaluates function
templates too and has to perform a substitution for the specified or deduced types in
the template arguments. According to SFINAE, when the substitution fails, instead
of yielding an error, the compiler should just remove the function template from the
overload set and continue.

The standard specifies a list of type and expression errors that are
also SFINAE errors. These include an attempt to create an array
i of void or an array of size zero, an attempt to create a reference
\ 7/ . . .
@ to void, an attempt to create a function type with a parameter
S of type void, and an attempt to perform an invalid conversion
in a template argument expression or in an expression used in a
function declaration. For the complete list of exceptions, consult
the C++ standard or other resources.

4

Let's consider the following two overloads of a function called func(). The first
overload is a function template that has a single argument of type T: :value_type;
this means it can only be instantiated with types that have an inner type called
value_type. The second overload is a function that has a single argument of type int:

[204]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 4

template <typename T>
void func(typename T::value_type const a)
{ std::cout << "func<>" << '\n'; }

void func(int const a)
{ std::cout << "func" << '\n'; }

template <typename T>
struct some_type
{

using value_type = T;

¥

If the compiler encounters a call such as func(42), then it must find an overload
that can take an int argument. When it builds the overload set and substitutes

the template parameter with the provided template argument, the result, void
func(int::value_type const), is invalid, because int does not have a value_type
member. Due to SFINAE, the compiler will not emit an error and stop, but will
simply ignore the overload and continue. It then finds void func(int const), and
that will be the best (and only) match that it will call.

If the compiler encounters a call such as func<some_type<int>>(42), then it builds an
overload set containing void func(some_type<int>::value_type const>and void
func(int const), and the best match in this case is the first overload; no SFINAE is
involved this time.

On the other hand, if the compiler encounters a call such as func("string"s), then it
again relies on SFINAE to ignore the function template, because std: :basic_string
does not have a value_type member either. This time, however, the overload set does
not contain any match for the string argument; therefore, the program is ill-formed
and the compiler emits an error and stops.

The class template enable_if<bool, T>does not have any members, but its partial

specialization, enable_if<true, T >, does have an inner type called type, which is a
synonym for T. When the compile-time expression supplied as the first argument to
enable_if evaluates to true, the inner member type is available; otherwise, it is not.

Considering the last definition of the function mul() from the How to do it... section,
when the compiler encounters a call such as mul(1, 2), it tries to substitute int

for the template parameter, T; since int is an integral type, std: :is_integral<T>
evaluates to true and, therefore, a specialization of enable_if that defines an inner
type called type is instantiated. As a result, the alias template EnableIf becomes a
synonym for this type, which is void (from the expression typename T = void). The
result is a function template, int mul<int, void>(int a, int b), that can be called
with the supplied arguments.

[205]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Preprocessing and Compilation

On the other hand, when the compiler encounters a call such as mul(1.0, 2.0),

it tries to substitute double for the template parameter, T. However, this is not an
integral type; as a result, the condition in std: :enable_if evaluates to false and the
class template does not define an inner member type. This results in a substitution
error, but according to SFINAE, the compiler will not emit an error but move on.
However, since no other overload is found, there will be no mul () function that can
be called. Therefore, the program is considered ill-formed and the compiler stops
with an error.

A similar situation is encountered with the class template pod_wrapper. It has two
template type parameters: the first is the actual POD type that is being wrapped,
while the second is the result of the substitution of enable_if and is_pod. If the type
is a POD type (as in pod_wrapper<int>), then the inner member type from enable_if
exists and it substitutes the second template type parameter. However, if the inner
member type is not a POD type (as in pod_wrapper<std: :string>), then the inner
member type is not defined, and the substitution fails, producing an error such as foo
few template arguments.

There's more...

static_assert and std::enable_if can be used to achieve the same goals. In fact,
in the previous recipe, Performing compile-time assertion checks with static_assert, we
defined the same class template, pod_wrapper, and function template, mul(). For
these examples, static_assert seems like a better solution because the compiler
emits better error messages (provided that you specify relevant messages in the
static_assert declaration). These two, however, work quite differently and are not
intended as alternatives.

static_assert does not rely on SFINAE and is applied after overload resolution

is performed. The result of a failed assert is a compiler error. On the other hand,
std: :enable_if is used to remove candidates from the overload set and does not
trigger compiler errors (given that the exceptions the standard specifies for SFINAE
do not occur). The actual error that can occur after SFINAE is an empty overload set
that makes a program ill-formed. This is because a particular function call cannot be
performed.

To understand the difference between static_assert and std: :enable_if with
SFINAE, let's consider a case where we want to have two function overloads: one
that should be called for arguments of integral types and one for arguments of any
type other than integral types. With static_assert, we can write the following (note
that the dummy second type parameter on the second overload is necessary to define
two different overloads; otherwise, we would just have two definitions of the same
function):

[206]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 4

template <typename T>
auto compute(T const a, T const b)
{
static_assert(std::is_integral v<T>,
"An integral type expected");
return a + b;

}

template <typename T, typename = void>
auto compute(T const a, T const b)
{
static_assert(!std::is_integral v<T>,
"A non-integral type expected");
return a * b;

}

auto vl = compute(l, 2);

auto v2 = compute(1.0, 2.9);

Regardless of how we try to call this function, we end up with an error, because the
compiler finds two overloads that it could potentially call. This is because static_
assert is only considered after the overload resolution has been resolved, which, in
this case, builds a set of two possible candidates.

The solution to this problem is std: :enable_if and SFINAE. We use std: :enable_if
via the alias templates EnableIf and DisableIf defined previously on a template
parameter (although we still use the dummy template parameter on the second
overload to introduce two different definitions). The following example shows the
two overloads rewritten. The first overload is enabled only for integral types, while
the second is disabled for integral types:

template <typename T, typename = EnableIf<std::is_integral<T>>>
auto compute(T const a, T const b)

{

return a * b;

}

template <typename T, typename = DisableIf<std::is_integral<T>>,
typename = void>

[207]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Preprocessing and Compilation

auto compute(T const a, T const b)

{

return a + b;
}
auto vl = compute(l, 2);
auto v2 = compute(1l.0, 2.0);

With SFINAE at work, when the compiler builds the overload set for either
compute(1, 2) or compute(1.0, 2.0);, it will simply discard the overload that
produces a substitution failure and move on, where in each case we'll end up with an
overload set containing a single candidate.

See also

* Performing compile-time assertion checks with static_assert to learn how to define
assertions that are verified at compile time

* Creating type aliases and alias templates in Chapter 1, Learning Modern Core
Language Features, to learn about aliases for types

Selecting branches at compile time with
constexpr if

In the previous recipes, we saw how we can impose restrictions on types and
functions using static_assert and std: :enable_if and how these two are different.
Template metaprogramming can become complicated and cluttered when we use
SFINAE and std: :enable_if to define function overloads or when we write variadic
function templates. A new feature of C++17 is intended to simplify such code; it is
called constexpr if, and it defines an if statement with a condition that is evaluated
at compile time, resulting in the compiler selecting the body of a branch or another
in the translation unit. Typical usage of constexpr if is for simplification of variadic
templates and std: :enable_if-based code.

Getting ready

In this recipe, we will refer to and simplify the code written in previous recipes.
Before continuing with this recipe, you should take a moment to go back and review
the code we have written in the previous recipes, as follows:

* The compute() overloads for integral and non-integral types from the
Conditionally compiling classes and functions with enable_if recipe.

[208]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Chapter 4

* User-defined 8-bit, 16-bit, and 32-bit binary literals from the Creating raw
user-defined literals recipe of Chapter 2, Working with Numbers and Strings.

These implementations have several issues:

* They are hard to read. There is a lot of focus on the template declaration, yet
the body of the functions are very simple, for instance. The biggest problem,
though, is that it requires greater attention from developers because it is
cluttered with complicated declarations, such as typename = std::enable_
if<std::is_integral<T>::value, T>::type.

* There is too much code. The end purpose in the first example is to have a
generic function that behaves differently for different types, yet we had to
write two overloads for the function; moreover, to differentiate the two, we
had to use an extra, unused, template parameter. In the second example, the
purpose was to build an integer value out of characters '@’ and '1', yet we
had to write one class template and three specializations to make it happen.

* Itrequires advanced template metaprogramming skills, which shouldn't be
necessary for doing something this simple.

The syntax for constexpr if is very similar to regular if statements and requires the
constexpr keyword before the condition. The general form is as follows:

if constexpr (init-statement condition) statement-true
else statement-false

In the following section, we'll explore several use cases for conditional compilation
with constexpr if.

How to do it...

Use constexpr if statements to do the following;:

* To avoid using std: :enable_if and relying on SFINAE to impose restrictions
on function template types and conditionally compile code:

template <typename T>
auto value_of(T value)
{
if constexpr (std::is_pointer_v<T>)
return *value;
else
return value;

[209]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Preprocessing and Compilation

* To simplify writing variadic templates and implement metaprogramming
compile-time recursion:

namespace binary

{

using byte8 = unsigned char;

namespace binary_literals

{

namespace binary_literals_internals
{
template <typename CharT, char d, char... bits>
constexpr CharT binary_eval()
{
if constexpr(sizeof...(bits) == 0)
return static_cast<CharT>(d-'0");
else if constexpr(d == '0")
return binary_eval<CharT, bits...>();
else if constexpr(d == '1")
return static_cast<CharT>(
(1 << sizeof...(bits)) |
binary_eval<CharT, bits...>());

template<char... bits>
constexpr byte8 operator"" b8()
{
static_assert(
sizeof...(bits) <= 8,
"binary literal b8 must be up to 8 digits long");

return binary_literals_internals::
binary_eval<byte8, bits...>();

[210]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 4

How it works...

The way constexpr if works is relatively simple: the condition in the if statement
must be a compile-time expression that evaluates or is convertible to a Boolean. If the
condition is true, the body of the if statement is selected, which means it ends up in
the translation unit for compilation. If the condition is false, the else branch, if any
is defined, is evaluated. Return statements in discarded constexpr if branches do not
contribute to the function return type deduction.

In the first example from the How to do it... section, the value_of() function template
has a clean signature. The body is also very simple; if the type that is substituted

for the template parameter is a pointer type, the compiler will select the first branch
(that is, return *value;) for code generation and discard the else branch. For non-
pointer types, because the condition evaluates to false, the compiler will select the
else branch (that is, return value;) for code generation and discard the rest. This
function can be used as follows:

auto vl = value_of(42);

auto p = std::make_unique<int>(42);
auto v2 = value_of(p.get());

However, without the help of constexpr if, we could only implement this using
std::enable_if. The following implementation is a more cluttered alternative:

template <typename T,

typename = typename std::enable_ if t<std::is_pointer v<T>,
T>>

auto value_of(T value)

{

return *value;

}

template <typename T,
typename = typename std::enable_if_ t<!std::is_pointer_v<T>,

T>>
T value of(T value)
{
return value;
}

[211]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Preprocessing and Compilation

As you can see, the constexpr if variant is not only shorter but more expressive and
easier to read and understand.

In the second example from the How to do it... section, the internal helper function
binary_eval() is a variadic template function without any parameters; it only has
template parameters. The function evaluates the first argument and then does
something with the rest of the arguments in a recursive manner (but remember

this is not a runtime recursion). When there is a single character left and the size of
the remaining pack is @, we return the decimal value represented by the character

(0 for 'e' and 1 for '1'). If the current first element is a '@', we return the value
determined by evaluating the rest of the arguments pack, which involves a recursive
call. If the current first elementis a '1', we return the value by shifting a 1 to the left
on a number of positions given by the size of the remaining pack bit or the value
determined. We do this by evaluating the rest of the arguments pack, which again
involves a recursive call.

See also

* Conditionally compiling classes and functions with enable_if to learn about
SFINAE and how to use it to specify type constraints for templates

Providing metadata to the compiler with
attributes

C++ has been very deficient when it comes to features that enable reflection

or introspection on types or data or standard mechanisms to define language
extensions. Because of that, compilers have defined their own specific extensions
for this purpose. Examples include the VC++ __declspec() specifier or the GCC
__attribute__((...)). C++11, however, introduces the concept of attributes, which
enable compilers to implement extensions in a standard way or even embedded
domain-specific languages. The new C++ standards define several attributes all
compilers should implement, and that will be the topic of this recipe.

How to do it...

Use standard attributes to provide hints for the compiler about various design goals
such as in the scenarios listed here, but not only these:

[212]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 4

* To ensure that the return value from a function cannot be ignored, declare
the function with the [[nodiscard]] attribute. In C++20, you can specify a
string literal, of the form [[nodiscard(text)]], to explain why the result
should not be discarded:

[[nodiscard]] int get_valuel()
{

return 42;

}

get valuel();

* Alternatively, you can declare enumerations and classes used as the return
type of a function with the [[nodiscard]] attribute; in this case, the return
value of any function returning such a type cannot be ignored:

enum class[[nodiscard]] ReturnCodes{ OK, NoData, Error };

ReturnCodes get _value2()
{

return ReturnCodes: :0K;

}

struct[[nodiscard]] Item{};

Item get_value3()
{

return Item{};

}

get value2();
get_value3();

* To ensure that the usage of functions or types that are considered
deprecated is flagged by the compiler with a warning, declare them with the
[[deprecated]] attribute:

[213]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Preprocessing and Compilation

[[deprecated("Use func2()")]] void func()

{
}

func();

class [[deprecated]] foo

{
b

foo f;

* To ensure that the compiler does not emit a warning for unused variables,
use the [[maybe_unused]] attribute:

double run([[maybe_unused]] int a, double b)
{

return 2 * b;

}

[[maybe_unused]] auto i = get valuel();

* To ensure that intentional fall-through case labels in a switch statement
are not flagged by the compiler with a warning, use the [[fallthrough]]
attribute:

void optionl() {}
void option2() {}

int alternative = get_valuel();
switch (alternative)
{
case 1:
optionl();
[[fallthroughl];
case 2:
option2();

[214]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 4

* To help the compiler optimize paths of execution that are more or less likely
to execute, use the C++20 [[likely]] and [[unlikely]] attributes:

void execute_command(char cmd)

{
switch(cmd)

{
[[likely]]

case 'a': break;

[[unlikely]]
case 'd': break;

case 'p': break;

default: break;

How it works...

Attributes are a very flexible feature of C++; they can be used almost everywhere,
but the actual usage is specifically defined for each particular attribute. They can be
used on types, functions, variables, names, code blocks, or entire translation units.

Attributes are specified between double square brackets (for example, [[attr1]])
and more than one attribute can be specified in a declaration (for example, [[attrl,
attr2, attr3]]).

Attributes can have arguments, for example, [[mode(greedy)]], and can be fully
qualified, for example, [[sys::hidden]] or [[using sys: visibility(hidden),
debug]].

Attributes can appear either before or after the name of the entity on which they
are applied, or both, in which case they are combined. The following are several
examples that exemplify this:

int a [[attrl]], b [[attr2]];

int [[attrl]] a, b;

[215]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Preprocessing and Compilation

int [[attrl]] a [[attr2]], b;

Attributes cannot appear in a namespace declaration, but they can appear as a
single line declaration anywhere in a namespace. In this case, it is specific to each
attribute whether it applies to the following declaration, to the namespace, or to the
translation unit:

namespace test

{
[[debug]];
}

The standard does define several attributes all compilers must implement, and using
them can help you write better code. We have seen some of them in the examples
given in the previous section. These attributes have been defined in different
versions of the standard:

e In C++11:
* The [[noreturn]] attribute indicates that a function does not return.

* The [[carries_dependency]] attribute indicates that the dependency
chain in release-consume std: :memory_order propagates in and
out of the function, which allows the compiler to skip unnecessary
memory fence instructions.

e In C++14:

* The [[deprecated]] and [[deprecated("reason")]] attributes
indicate that the entity declared with these attributes is considered
deprecated and should not be used. These attributes can be used with
classes, non-static data members, typedefs, functions, enumerations,
and template specializations. The "reason"” string is an optional
parameter.

e InC++17:

* The [[fallthrough]] attribute indicates that fall-through between
labels in a switch statement is intentional. The attribute must appear
on a line of its own immediately before a case label.

e The [[nodiscard]] attribute indicates that a return value from a
function cannot be ignored.

* The [[maybe_unused]] attribute indicates that an entity may be
unused, but the compiler should not emit a warning about that.
This attribute can be applied to variables, classes, non-static data
members, enumerations, enumerators, and typedefs.

[216]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Chapter 4

* InC++20:

e The [[nodiscard(text)]] attribute is an extension of the C++17
[[nodiscard]] attribute and provides a text that describes the reason
a result should not be discarded.

* The [[1likely]] and [[unlikely]] attributes provide hints for the
compiler that a path of execution is more or less likely to execute,
therefore allowing it to optimize accordingly. They can be applied to
statements (but not declarations) and labels, but only one of them, as
they are mutually exclusive.

* The [[no_unique_address]] attribute can be applied to non-static
data members, excluding bitfields, and tells the compiler that the
member does not have to have a unique address. When applied to
a member that has an empty type, the compiler can optimize it to
occupy no space, as in the case of it being an empty base. On the
other hand, if the member's type is not empty, the compiler may
reuse any ensuing padding to store other data members.

Attributes are often ignored or briefly mentioned in books and tutorials on modern
C++ programming, and the reason for that is probably the fact that developers
cannot actually write attributes, as this language feature is intended for compiler
implementations. For some compilers, though, it may be possible to define user-
provided attributes; one such compiler is GCC, which supports plugins that add
extra features to the compiler, and they can be used for defining new attributes too.

See also

* Using noexcept for functions that do not throw in Chapter 9, Robustness and
Performance, to learn how to inform the compiler that a function should not
throw exceptions

[217]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

EBSCChost - printed on 2/9/2023 10:14 AMvia . A

use subject to https://ww.ebsco.conlterns-of-use

Standard Library Containers,
Algorithms, and Iterators

The C++ standard library has evolved a lot with C++11, C++14, C++17, and now
C++20. However, at its core initially sat three main pillars: containers, algorithms,
and iterators. They are all implemented as general-purpose classes or function
templates. In this chapter, we'll look at how these can be employed together for
achieving various goals.

We will cover the following recipes in this chapter:

* Using vector as a default container

* Using bitset for fixed-size sequences of bits

* Using vector<bool> for variable-size sequences of bits
* Using the bit manipulation utilities

* Finding elements in a range

* Sorting a range

* Initializing a range

* Using set operations on a range

* Using iterators to insert new elements into a container
* Writing your own random-access iterator

¢ Container access with non-member functions

[219]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Standard Library Containers, Algorithms, and Iterators

We'll begin this chapter by exploring the functionalities of the de facto default
container in C++, which is std: :vector.

Using vector as a default container

The standard library provides various types of containers that store collections of
objects; the library includes sequence containers (such as vector, array, and 1list),
ordered and unordered associative containers (such as set and map), and container
adapters that do not store data but provide an adapted interface toward a sequence
container (such as stack and queue). All of them are implemented as class templates,
which means they can be used with any type (providing it meets the container
requirements). In general, you should always use the container that is the most
appropriate for a particular problem, which not only provides good performance
in terms of speed of inserts, deletes, access to elements, and memory usage but also
makes the code easy to read and maintain. However, the default choice should

be vector. In this recipe, we will see why vector should be the preferred choice

for a container in many cases and what the most common operations with vector
are.

Getting ready
For this recipe, you must be familiar with arrays, both statically and dynamically

allocated. A couple examples are provided here:

double d[3];
int* arr = new int[5];

The class template vector is available in the std namespace in the <vector> header.

How to do it...

To initialize an std: : vector class template, you can use any of the following
methods, but you are not restricted to only these:

e Initialize from an initialization list:
std::vector<int> v1 { 1, 2, 3, 4, 5 };

* Initialize from an array:

int arr[] = { 1, 2, 3, 4, 5 };
std::vector<int> v21(arr, arr + 5);
std::vector<int> v22(arr+l, arr+4);

[220]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 5

e Initialize from another container:
std::1list<int> 1{ 1, 2, 3, 4, 5 };
std::vector<int> v3(l.begin(), l.end());

e Initialize from a count and a value:

std::vector<int> v4(5, 1);

To modify the content of std: :vector, you can use any of the following methods
(you're not restricted to just these):

e Add an element at the end of the vector with push_back():

std::vector<int> vi{ 1, 2, 3, 4, 5 };
vl.push_back(6);

* Remove an element from the end of the vector with pop_back():

vl.pop_back();

* Insert anywhere in the vector with insert():

int arr[] = { 1, 2, 3, 4, 5 };
std::vector<int> v21;
v21l.insert(v21.begin(), arr, arr + 5);
std::vector<int> v22;
v22.insert(v22.begin(), arr, arr + 3);

* Add an element by creating it at the end of the vector with emplace_back():

struct foo

{
int a;
double b;
std::string c;

foo(int a, double b, std::string const & c) :
a(a), b(b), c(c) {}
s

std::vector<foo> v3;
v3.emplace_back(1l, 1.9, "one"s);

* Insert an element by creating it anywhere in the vector with emplace():

v3.emplace(v3.begin(), 2, 2.0, "two"s);

[221]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Standard Library Containers, Algorithms, and Iterators

To modify the whole content of the vector, you can use any of the following
methods, although you're not restricted to just these:

* Assign from another vector with operator=; this replaces the content of the
container:
std::vector<int> vi{ 1, 2, 3, 4, 5 };
std::vector<int> v2{ 10, 20, 30 };
v2 = vl;

* Assign from another sequence defined by a begin and end iterator with the
assign() method; this replaces the content of the container:
int arr[] = {1, 2, 3, 4, 5 };
std::vector<int> v31;
v3l.assign(arr, arr + 5);
std::vector<int> v32;
v32.assign(arr + 1, arr + 4);

* Swap the content of two vectors with the swap() method:

std::vector<int> v4{ 1, 2, 3, 4, 5 };
std::vector<int> v5{ 10, 20, 30 };
v4.swap(v5);

¢ Remove all the elements with the clear() method:

std::vector<int> ve{ 1, 2, 3, 4, 5 };
v6.clear();

* Remove one or more elements with the erase() method (which requires
either an iterator or a pair of iterators that define the range of elements from
the vector to be removed):

std::vector<int> v7{ 1, 2, 3, 4, 5 };
v7.erase(v7.begin() + 2, v7.begin() + 4);

To get the address of the first element in a vector, usually to pass the content of a
vector to a C-like AP, use any of the following methods:

* Use the data() method, which returns a pointer to the first element,
providing direct access to the underlying contiguous sequence of memory
where the vector elements are stored; this is only available since C++11:

void process(int const * const arr, size_t const size)

{ }

std::vector<int> v{ 1, 2, 3, 4, 5 };
process(v.data(), v.size());

[222]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Chapter 5

¢ Get the address of the first element:

process(&v[0], v.size());

* Get the address of the element referred to by the front() method:

process(&v.front(), v.size());

* Get the address of the element pointed by the iterator returned from begin():

process(&*v.begin(), v.size());

How it works...

The std: :vector class is designed to be the C++ container most similar to and inter-
operable with arrays. A vector is a variable-sized sequence of elements, guaranteed
to be stored contiguously in memory, which makes the content of a vector easily
passable to a C-like function that takes a pointer to an element of an array and,
usually, a size. There are many benefits of using a vector instead of arrays, and these
benefits include:

* No direct memory management is required from the developer as the
container does this internally, allocating memory, reallocating it, and
releasing it.

. Note that a vector is intended for storing object instances.
\@’ If you need to store pointers, do not store raw pointers but

S smart pointers. Otherwise, you need to handle the lifetime
management of the pointed objects.

4

({l

* The possibility of modifying the size of the vector.
* Simple assignment or concatenation of two vectors.

* Direct comparison of two vectors.

The vector class is a very efficient container, with all its implementations providing
a lot of optimizations that most developers are not capable of doing with arrays.
Random access to its elements and insertion and removal at the end of a vector is a
constant 0(1) operation (provided that reallocation is not necessary), while insertion
and removal anywhere else is a linear 0(n) operation.

Compared to other standard containers, the vector has various benefits:

* Itis compatible with arrays and C-like APlIs. If a function takes an array as a
parameter, the content of other containers (except for std: :array) needs to be
copied to a vector before being passed as an argument to the function.

[223]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Standard Library Containers, Algorithms, and Iterators

* It has the fastest access to elements of all containers (but the same as
std: :array).

* It has no per-element memory overhead for storing elements. This is because
elements are stored in a contiguous space, like arrays are. Therefore, vector
has a small memory footprint, unlike other containers, such as 1ist, which
require additional pointers to other elements, or associative containers,
which require hash values.

std: :vector is very similar in semantics to arrays but has a variable size. The size of
a vector can increase and decrease. There are two properties that define the size of a
vector:

* Capacity is the number of elements the vector can accommodate without
performing additional memory allocations; this is indicated by the
capacity() method.

* Sizeis the actual number of elements in the vector; this is indicated by the
size() method.

Size is always smaller than or equal to capacity. When size is equal to capacity and
a new element needs to be added, the capacity needs to be modified so that the
vector has space for more elements. In this case, the vector allocates a new chunk

of memory and moves the previous content to the new location before freeing the
previously allocated memory. Though this sounds time-consuming —and it is—
implementations increase the capacity exponentially by doubling it each time it
needs to be changed. As a result, on average, each element of the vector only needs
to be moved once (that is because all the elements of the vector are moved during
an increase of capacity, but then an equal number of elements can be added without
incurring more moves, given that insertions are performed at the end of the vector).

If you know beforehand how many elements will be inserted in the vector, you
can first call the reserve() method to increase the capacity to at least the specified
amount (this method does nothing if the specified size is smaller than the current
capacity) and only then insert the elements.

On the other hand, if you need to free additional reserved memory, you can use
the shrink_to_fit() method to request this, but it is an implementation decision as
to whether to free any memory or not. An alternative to this non-binding method,
available since C++11, is to do a swap with a temporary, empty vector:

std::vector<int> v{ 1, 2, 3, 4, 5 };
std::vector<int>().swap(v);

Calling the clear() method only removes all the elements from the vector but does
not free any memory.

[224]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 5

It should be noted that the vector class implements some operations that are specific
to other types of containers:

e stack: With push_back() and emplace_back() to add at the end and pop_
back() to remove from the end. Keep in mind that pop_back() does not
return the last element that has been removed. You need to access that
explicitly, if that is necessary, for instance, using the back() method before
removing the element.

e [ist: With insert() and emplace() to add elements in the middle of the
sequence and erase() to remove elements from anywhere in the sequence.

A good rule of thumb for C++ containers is to use std: : vector as the default
container unless you have good reasons to use another one.

See also

» Using bitset for fixed-size sequences of bits to learn about the standard container
for handling bit sequences of fixed sizes.

* Using vector<bool> for variable-size sequences of bits to learn about the
specialization of std: :vector for the bool type, intended for handling bit
sequences of variable sizes.

Using bitset for fixed-size sequences of
bits

It is not uncommon for developers to operate with bit flags. This can be either
because they work with operating system APIs (usually written in C) that take
various types of arguments (such as options or styles) in the form of bit flags, or
because they work with libraries that do similar things, or simply because some
types of problems are naturally solved with bit flags. We can think of alternatives to
working with bits and bit operations, such as defining arrays that have one element
for every option/flag, or defining a structure with members and functions to model
the bit flags, but these are often more complicated; and in the case where you need to
pass a numerical value representing bit flags to a function, you still need to convert

the array or the structure to a sequence of bits. For this reason, the C++ standard
provides a container called std: :bitset for fixed-size sequences of bits.

[225]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Standard Library Containers, Algorithms, and Iterators

Getting ready

For this recipe, you must be familiar with bitwise operations (AND, OR, XOR, NOT,
and shifting).

The bitset class is available in the std namespace in the <bitset> header. A bitset
represents a fixed-size sequence of bits, with the size defined at compile time. For
convenience, in this recipe, most examples will be with bitsets of 8 bits.

How to do it...

To construct an std: :bitset object, use one of the available constructors:

* An empty bitset with all bits set to e:
std::bitset<8> bil;

e A bitset from a numerical value:
std::bitset<8> b2{ 10 };

* A bitset from a string of '@’ and "1':
std::bitset<8> b3{ "1010"s };

* A bitset from a string containing any two characters representing '@ and
'1'; in this case, we must specify which character represents a @ (the fourth
parameter, 'o') and which character represents a 1 (the fifth parameter, 'x"):

std::bitset<8> b4
{ "ooooxoxo"s, @, std::string::npos, 'o', 'x' };

To test individual bits in the set or the entire set for specific values, use any of the
available methods:

e count() to get the number of bits set to 1:

std::bitset<8> bs{ 10 };
std::cout << "has " << bs.count() << " 1s" << '\n';

* any() to check whether there is at least one bit set to 1:
if (bs.any()) std::cout << "has some 1s" << '\n';

[226]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Chapter 5

all() to check whether all the bits are set to 1:
if (bs.all()) std::cout << "has only 1s" << '\n';

none() to check whether all the bits are set to e:

if (bs.none()) std::cout << "has no 1s" << '\n';

test() to check the value of an individual bit (whose position is the only
argument to the function):

if (!bs.test(@)) std::cout << "even" << '\n';

operator[] to access and test individual bits:

if(!bs[@]) std::cout << "even" << '\n';

To modify the content of a bitset, use any of the following methods:

Member operators |=, &=, #=, and ~ to perform the binary operation OR,
AND, XOR, and NOT, respectively. Alternatively, use the non-member
operators |, & and *:

std::bitset<8> bl{ 42 };

std::bitset<8> b2{ 11 };

auto b3 = bl | b2;
auto b4 = bl & b2;
auto b5 = bl ~ b2;

auto b6 = ~bil;

Member operators <<=, <<, >>=, and >> to perform shifting operations:

auto b7 = bl << 2;
auto b8 = bl >> 2;

flip() to toggle the entire set or an individual bit from @ to 1 or from 1 to e:

bl.flip();
bl.flip(0);

set() to change the entire set or an individual bit to true or the specified
value:

bl.set(0, true);
bl.set(0, false);

reset() to change the entire set or an individual bit to false:
bl.reset(2);

[227]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Standard Library Containers, Algorithms, and Iterators

To convert a bitset to a numerical or string value, use the following methods:

* to_ulong() and to_ullong() to convert to unsigned long or unsigned long
long. These operations throw an std: :overflow_error exception if the value
cannot be represented in the output type. Refer to the following examples:

std::bitset<8> bs{ 42 };
auto nl = bs.to_ulong();
auto n2 = bs.to_ullong();

* to_string() to convert to std: :basic_string. By default, the result is a string
containing '@' and '1', but you can specify a different character for these
two values:

auto sl = bs.to_string();
auto s2 = bs.to_string('o", 'x");

How it works...

If you've ever worked with C or C-like APIs, chances are you either wrote or at
least have seen code that manipulates bits to define styles, options, or other kinds of
values. This usually involves operations such as:

* Defining the bit flags; these can be enumerations, static constants in a class,
or macros introduced with #define in the C style. Usually, there is a flag
representing no value (style, option, and so on). Since these are supposed to
be bit flags, their values are powers of 2.

* Adding and removing flags from the set (that is, a numerical value). Adding

a bit flag is done with the bit-or operator (value |= FLAG) and removing a
bit flag is done with the bit-and operator, with the negated flag (value &=
~FLAG).

* Testing whether a flag is added to the set (value & FLAG == FLAG).

* Calling functions with the flags as an argument.

The following shows a simple example of flags defining the border style of a control
that can have a border on the left, right, top, or bottom side, or any combination of
these, including no border:

#define BORDER_NONE 0x00
#define BORDER_LEFT ox01
#define BORDER_TOP 0x02
#define BORDER_RIGHT ©x04
#define BORDER_BOTTOM 0x08

[228]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 5

void apply_ style(unsigned int const style)

{
if (style & BORDER_BOTTOM) { }

}

unsigned int style = BORDER_NONE;
style = BORDER_BOTTOM;
style |= BORDER_LEFT | BORDER_RIGHT | BORDER_TOP;

style &= ~BORDER_LEFT;
style &= ~BORDER_RIGHT;

if ((style & BORDER_BOTTOM) == BORDER_BOTTOM) {}
apply_style(style);

The standard std: :bitset class is intended as a C++ alternative to this C-like
working style with sets of bits. It enables us to write more robust and safer code
because it abstracts the bit operations with member functions, though we still need
to identify what each bit in the set is representing;

* Adding and removing flags is done with the set() and reset() methods,
which set the value of a bit indicated by its position to 1 or @ (or true and
false); alternatively, we can use the index operator for the same purpose.

* Testing if a bit is set with the test() method.

* Conversion from an integer or a string is done through the constructor, and
conversion to an integer or string is done with member functions so that
the values from the bitsets can be used where integers are expected (such as
arguments to functions).

In addition to these operations, the bitset class has additional methods for
performing bitwise operations on bits, shifting, testing, and others that have been
shown in the previous section.

Conceptually, std: :bitset is a representation of a numerical value that enables you
to access and modify individual bits. Internally, however, a bitset has an array of
integer values on which it performs bit operations. The size of a bitset is not limited
to the size of a numerical type; it can be anything, except that it is a compile-time
constant.

[229]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Standard Library Containers, Algorithms, and Iterators

The example of the control border styles from the previous section can be written
using std: :bitset in the following manner:

struct border_flags

{
static const int left = 0;
static const int top = 1;
static const int right = 2;
static const int bottom = 3;

HE

std::bitset<4> style;
style.set(border_flags::bottom);

style
.set(border_flags::left)
.set(border_flags::top)
.set(border_flags::right);

style[border_flags::left] = 0;
style.reset(border_flags::right);

if (style.test(border_flags::bottom)) {}

apply style(style.to_ulong());

Keep in mind this is only a possible implementation. For instance, the border_
flags class could have been an enumeration. However, the resulting code is more
expressive and easier to understand.

There's more...

A bitset can be created from an integer and can convert its value to an integer using
the to_ulong() or to_ullong() methods. However, if the size of the bitset is larger
than the size of these numerical types and any of the bits beyond the size of the
requested numerical type is set to 1, then these methods throw an std: :overflow_
error exception. This is because the value cannot be represented on unsigned long
or unsigned long long. In order to extract all the bits, we need to do the following
operations:

[230]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 5

* Clear the bits beyond the size of unsigned long or unsigned long long.

e Convert the value to unsigned long or unsigned long long.

* Shift the bitset with the number of bits in unsigned long or unsigned long
long.

* Do this until all the bits are retrieved.
These are implemented as follows:

template <size_t N>
std::vector<unsigned long> bitset_to_vectorulong(std::bitset<N> bs)
{

auto result = std::vector<unsigned long> {};

auto const size = 8 * sizeof(unsigned long);

auto const mask = std::bitset<N>{ static_cast<unsigned long>(-1)};

auto totalbits = 0;
while (totalbits < N)

{
auto value = (bs & mask).to_ulong();
result.push _back(value);
bs >>= size;
totalbits += size;
}

return result;

std::bitset<128> bs =
(std::bitset<128>(OXFEDC) << 96) |
(std::bitset<128>(0xBA98) << 64) |
(std::bitset<128>(0x7654) << 32) |
std::bitset<128>(0x3210);

std::cout << bs << '\n';

auto result = bitset to_vectorulong(bs);
for (auto const v : result)
std::cout << std::hex << v << '\n';

For cases where the size of the bitset cannot be known at compile time, the
alternative is std: : vector<bool>, which we will cover in the next recipe.

[231]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Standard Library Containers, Algorithms, and Iterators

See also

* Using vector<bool> for variable-size sequences of bits to learn about the
specialization of std: :vector for the bool type, which is used for handling bit
sequences of variable sizes.

* Using the bit manipulation utilities to explore the C++20 set of utility functions
for bit manipulation from the numeric library.

Using vector<bool> for variable-size
sequences of bits

In the previous recipe, we looked at using std: :bitset for fixed-size sequences of
bits. Sometimes, however, std: :bitset is not a good choice because you do not
know the number of bits at compile time, and just defining a set of a large enough
number of bits is not a good idea. This is because you can get into a situation where
the number is not actually large enough. The standard alternative for this is to use
the std: :vector<bool> container, which is a specialization of std: :vector with space
and speed optimizations since implementations do not actually store Boolean values,
but individual bits for each element.

For this reason, however, std: : vector<bool> does not meet the
requirements of a standard container or sequential container, nor
does std: :vector<bool>: :iterator meet the requirements of a
/ forward iterator. As a result, this specialization cannot be used in
\/;p; generic code where a vector is expected. On the other hand, being
a vector, it has a different interface from that of std: :bitset and
cannot be viewed as a binary representation of a number. There are

no direct ways to construct std: : vector<bool> from a number or
string, nor to convert it to a number or string.

Getting ready...

This recipe assumes you are familiar with both std: :vector and std: :bitset. If you
didn't read the previous recipes, Using vector as a default container and Using bitset for
fixed-size sequences of bits, you should read them before continuing.

The vector<bool> class is available in the std namespace in the <vector> header.

[232]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 5

How to do it...

To manipulate an std: : vector<bool>, use the same methods you would use for an
std: :vector<T>, as shown in the following examples:

* Creating an empty vector:

std::vector<bool> bv;

* Adding bits to the vector:

bv.push_back(true);
bv.push_back(true);
bv.push_back(false);
bv.push_back(false);
bv.push_back(true);

* Setting the values of individual bits:
bv[3] = true;

* Using generic algorithms:

auto count_of_ones = std::count(bv.cbegin(), bv.cend(), true);

* Removing bits from the vector:

bv.erase(bv.begin() + 2);

How it works...

std: :vector<bool> is not a standard vector because it is designed to provide space
optimization by storing a single bit for each element instead of a Boolean value.
Therefore, its elements are not stored in a contiguous sequence and cannot be
substituted for an array of Booleans. Due to this:

* The index operator cannot return a reference to a specific element because
elements are not stored individually:
std::vector<bool> bv;
bv.resize(10);
auto& bit = bv[0];

* Dereferencing an iterator cannot produce a reference to bool for the same
reason as mentioned earlier:

auto& bit = *bv.begin();

[233]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Standard Library Containers, Algorithms, and Iterators

* There is no guarantee that individual bits can be manipulated independently
at the same time from different threads.

* The vector cannot be used with algorithms that require forward iterators,
such as std: :search().

* The vector cannot be used in some generic code where std: :vector<T> is
expected if such code requires any of the operations mentioned in this list.

An alternative to std: :vector<bool> is std: :dequeu<bool>, which is a standard
container (a double-ended queue) that meets all container and iterator requirements
and can be used with all standard algorithms. However, this will not have the space
optimization that std: : vector<bool> provides.

There's more...

The std: :vector<bool> interface is very different from std: :bitset. If you

want to be able to write code in a similar manner, you can create a wrapper on
std: :vector<bool>, which looks like std: :bitset, where possible. The following
implementation provides members similar to what is available in std: :bitset:

class bitvector

std: :vector<bool> bv;

public:

bitvector(std::vector<bool> const & bv) : bv(bv) {}
bool operator[](size_t const i) { return bv[i]; }

inline bool any() const {
for (auto b : bv) if (b) return true;
return false;

}

inline bool all() const {
for (auto b : bv) if (!b) return false;
return true;

}

inline bool none() const { return lany(); }

inline size_t count() const {
return std::count(bv.cbegin(), bv.cend(), true);

}

[234]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Chapter 5

inline size t size() const { return bv.size(); }

inline bitvector & add(bool const value) {
bv.push_back(value);
return *this;

}

inline bitvector & remove(size_t const index) {
if (index >= bv.size())
throw std::out_of range("Index out of range");
bv.erase(bv.begin() + index);
return *this;

}

inline bitvector & set(bool const value = true) {
for (size t i = 0; i < bv.size(); ++1)
bv[i] = value;
return *this;

}

inline bitvector& set(size t const index, bool const value = true) {
if (index >= bv.size())
throw std::out_of_range("Index out of range");
bv[index] = value;
return *this;

}

inline bitvector & reset() {
for (size_t i = @; i < bv.size(); ++i) bv[i] = false;
return *this;

}

inline bitvector & reset(size_t const index) {
if (index >= bv.size())
throw std::out_of_range("Index out of range");
bv[index] = false;
return *this;

}

inline bitvector & flip() {
bv.flip();
return *this;

}

[235]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Standard Library Containers, Algorithms, and Iterators

std::vector<bool>& data() { return bv; }
¥

This is only a basic implementation, and if you want to use such a wrapper, you
should add additional methods, such as bit logic operations, shifting, maybe reading
and writing from and to streams, and so on. However, with the preceding code, we
can write the following examples:

bitvector bv;
bv.add(true).add(true).add(false);
bv.add(false);

bv.add(true);

if (bv.any()) std::cout << "has some 1s" << '\n';
if (bv.all()) std::cout << "has only 1s" << '\n';
if (bv.none()) std::cout << "has no 1s" << '\n';
std::cout << "has " << bv.count() << " 1s" << '\n’';

bv.set(2, true);
bv.set();

bv.reset(9);
bv.reset();

bv.flip();

These examples are very similar to the examples where an std: :bitset was used.
This bitvector class has a compatible API to std: :bitset but is useful for handling
bit sequences of variable sizes.

See also

* Using vector as a default container to learn how to use the std: :vector
standard container.

» Using bitset for fixed-size sequences of bits to learn about the standard container
for handling bit sequences of fixed sizes.

* Using the bit manipulation utilities to explore the C++20 set of utility functions
for bit manipulation from the numeric library.

[236]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 5

Using the bit manipulation utilities

In the previous recipes, we have seen how to use std: :bitset and

std: :vector<bool> to work with fixed and variable sequences of bits. There are,
however, situations when we need to manipulate or process individual or multiple
bits of an unsigned integral value. This includes operations such as counting

or rotating bits. The C++20 standard provides a set of utility functions for bit
manipulation as part of the numeric library. In this recipe, we will learn what they
are and how to use these utilities.

Getting ready

The function templates discussed in this recipe are all available in the std namespace
in the new C++20 header <bit>.

How to do it...

Use the following function templates to manipulate bits of unsigned integral types:

* If you need to perform a circular shift, use std: :rot1<T>() for left rotation
and std: :rotr<T>() for right rotation:

unsigned char n = 0b00111100;

auto vl1 = std::rotl(n, 0);
auto v12 = std::rotl(n, 1);
auto v13 = std::rotl(n, 3);
auto vl4 = std::rotl(n, 9);
auto v15 = std::rotl(n, -2);

auto vrl = std::rotr(n, 0);
auto vr2 = std::rotr(n, 1);
auto vr3 = std::rotr(n, 3);
auto vrd = std::rotr(n, 9);
auto vr5 = std::rotr(n, -2);

* If you need to count the number of consecutive 0 bits (that is, until a 1
is found), use std: : countl_zero<T>() to count from left to right (that is,
starting with the most significant bit) and std: : countr_zero<T>() to count
from right to left (that is, starting with the least significant bit):

std::cout << std::countl_zero(©beeeeeeoo) << '\n';
std::cout << std::countl_zero(®b11111111) << '\n';

[237]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Standard Library Containers, Algorithms, and Iterators

std::cout << std::countl_zero(0be0111010) << ‘\n'; // 2

std::cout << std::countr_zero(0booooeeeod) << ‘\n'; // 8
std::cout << std::countr_zero(®b11111111) << ‘\n'; // ©
std::cout << std::countr_zero(0be0111010) << '\n'; // 1

* If you need to count the number of consecutive 1 bits (that is, until a @ is
found), use std: : countl_one<T>() to count from left to right (that is, starting
with the most significant bit) and std: : countr_one<T>() to count from right
to left (that is, starting with the least significant bit):

std::cout << std::countl_one(0boooOOLOO) << '\n'; // O
std::cout << std::countl _one(©b11111111) << '\n'; // 8
std::cout << std::countl_one(©b11000101) << '\n'; // 2

std::cout << std::countr_one(0boooeoeoo) << '\n'; // 0
std::cout << std::countr_one(©b11111111) << '\n'; // 8
std::cout << std::countr_one(@b11000101) << '\n'; // 1

* If you need to count the number of 1 bits, use std: :popcount<T>(). The
number of @ bits is the number of digits used to represent the value (this can
be determined with std: :numeric_limits<T>::digits), minus the count of 1
bits:
std::cout << std::popcount(@b00LEOOLL) << '\n'; // ©
std::cout << std::popcount(@b11111111) << '\n'; // 8
std::cout << std::popcount(0blee00001) << '\n'; // 2

* If you need to check whether a number is a power of two, use std: :has_
single_bit<T>():

std::cout << std::boolalpha << std::has_single bit(®) << '\n';
// false
std::cout << std::boolalpha << std::has_single_bit(1) << '\n';
// true
std::cout << std::boolalpha << std::has_single bit(2) << '\n';
// true
std::cout << std::boolalpha << std::has_single_bit(3) << "\n';
// false
std::cout << std::boolalpha << std::has_single bit(4) << '\n';
// true

* If you need to find the smallest power of two that is greater than or equal to
a given number, use std: :bit_ceil<T>(). On the other hand, if you need to
find the largest power of two that is smaller than or equal to a given number,
use std::bit_floor<T>():

[238]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Chapter 5

std:
std:
std:
std:
std:

std:
std:
std:
std:
std:

* If you need to determine the smallest number of digits to represent a

:cout
:cout
:cout
:cout
:cout

:cout
:cout
:cout
:cout
:cout

<<
<<
<<
<<
<<

<<
<<
<<
<<
<<

std:
std:
std:
std:
std:

std:
std:
std:
std:
std:

:bit_ceil(®) << '\n';
:bit_ceil(3) << '\n';
:bit_ceil(4) << '\n’;
:bit_ceil(31) << '\n’;
:bit_ceil(42) << '\n’;

:bit_floor(@) << '\n’';
:bit_floor(3) << '\n';
:bit_floor(4) << "\n’';
:bit_floor(31) << '\n';
:bit_floor(42) << "\n';

number, use std: :bit_width<T>():

std:
std:
std:
std:
std:

:cout
:cout
:cout
:cout
:cout

<<
<<
<<
<<
<<

std:
std:
std:
std:
std:

:bit _width(@) << '\n';
:bit_width(2) << '\n';
:bit width(15) << '\n';
:bit_width(16) << "\n';
:bit_width(1000) << '\n';

* If you need to reinterpret the object representation of a type F as that of a
type T, then use std: :bit_cast<T, F>():

const double pi

const uint64_t bits = std::bit_cast<uint64_t>(pi);

const double pi2

std:

:cout
<< std
<< std:
<< std

3.1415927;

= std::bit_cast<double>(bits);

::fixed << pi << '"\n'

thex

<< bits << '"\n'

::fixed << pi2 << "\n';

How it works...

All the function templates mentioned in the previous section, with the exception

of std::bit_cast<T, F>() are only available for unsigned integral types. That
includes the types unsigned char, unsigned short, unsigned int, unsigned long,
and unsigned long long, as well as the extended unsigned integer types (such as
uint8_t, uint64_t, uint_least8_t, uintmax_t, and so on). These functions are simple
and should not require a detailed description.

printed on 2/9/2023 10:14 AMvia .

Al'l use subject to https://ww.ebsco.conlterns-of-use

[239]

Standard Library Containers, Algorithms, and Iterators

The function that is different from the rest is std: :bit_cast<T, F>(). Here, Fis
the type that is reinterpreted, and T is the type that we interpret to. This function
template does not require T and F to be unsigned integral types, but both of them
must be trivially copyable. Moreover, the sizeof(T) must be the same as the
sizeof(F).

The specification for this function does not mention the value of padding bits in the
result. On the other hand, if the result value does not correspond to a valid value of
the type T, then the behavior is undefined.

std::bit_cast<T, F>() can be constexprif T, F, and the types of all their sub-objects
is not a union type, a pointer type, a pointer to member type, a volatile-qualified
type, and has no non-static data members of a reference type.

See also

* Using bitset for fixed-size sequences of bits to learn about the standard container
for handling bit sequences of fixed sizes.

* Using vector<bool> for variable-size sequences of bits to learn about the
specialization of std: :vector for the bool type intended for handling bit
sequences of variable sizes.

Finding elements in a range

One of the most common operations we do in any application is searching through
data. Therefore, it is not surprising that the standard library provides many generic
algorithms for searching through standard containers, or anything that can represent
arange and is defined by a start and a past-the-end iterator. In this recipe, we will
see what these standard algorithms are and how they can be used.

Getting ready

For all the examples in this recipe, we will use std: :vector, but all the algorithms
work with ranges defined by a begin and past-the-end, either input or forward
iterators, depending on the algorithm (for more information about the various
types of iterators, see the Writing your own random access iterator recipe, later in this
chapter). All these algorithms are available in the std namespace in the <algorithm>
header.

[240]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 5

How to do it...

The following is a list of algorithms that can be used for finding elements in a range:

* Use std::find() to find a value in a range; this algorithm returns an iterator
to the first element equal to the value:

std::vector<int> v{ 1, 1, 2, 3, 5, 8, 13 };

auto it = std::find(v.cbegin(), v.cend(), 3);
if (it != v.cend()) std::cout << *it << '\n';

* Use std::find_if() to find a value in a range that meets a criterion from
a unary predicate; this algorithm returns an iterator to the first element for
which the predicate returns true:

std::vector<int> v{ 1, 1, 2, 3, 5, 8, 13 };

auto it = std::find_if(v.cbegin(), v.cend(),
[1(int const n) {return n > 10; });
if (it != v.cend()) std::cout << *it << '\n';

e Use std::find_if_not() to find a value in a range that does not meet a
criterion from a unary predicate; this algorithm returns an iterator to the first
element for which the predicate returns false:

std::vector<int> v{ 1, 1, 2, 3, 5, 8, 13 };

auto it = std::find_if_not(v.cbegin(), v.cend(),
[J(int const n) {return n % 2 == 1; });
if (it != v.cend()) std::cout << *it << '\n';

e Use std::find_first_of() to search for the occurrence of any value from a
range in another range; this algorithm returns an iterator to the first element
that is found:

std::vector<int> v{ 1, 1, 2, 3, 5, 8, 13 };
std::vector<int> p{ 5, 7, 11 };

auto it = std::find_first_of(v.cbegin(), v.cend(),
p.cbegin(), p.cend());
if (it != v.cend())
std::cout << "found " << *it
<< " at index " << std::distance(v.cbegin(), it)
<< '"\n';

[241]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Standard Library Containers, Algorithms, and Iterators

* Use std::find_end() to find the last occurrence of a subrange of elements
in a range; this algorithm returns an iterator to the first element of the last
subrange in the range:

std::vector<int> vi{ 1, 1, 0, @, 1, 0, 1, 0, 1, 0, 1, 1 };
std::vector<int> v2{ 1, 0, 1 };

auto it = std::find_end(vl.cbegin(), vil.cend(),
v2.cbegin(), v2.cend());

if (it != vil.cend())
std::cout << "found at index
<< std::distance(vl.cbegin(), it) << "\n';

* Use std::search() to search for the first occurrence of a subrange in a range;
this algorithm returns an iterator to the first element of the subrange in the

range:
auto text = "The quick brown fox jumps over the lazy dog"s;
auto word = "over's;

auto it = std::search(text.cbegin(), text.cend(),
word.cbegin(), word.cend());

if (it != text.cend())
std::cout << "found " << word
<< " at index
<< std::distance(text.cbegin(), it) << '\n’;

* Use std::search() with a searcher, which is a class that implements a
searching algorithm and meets some predefined criteria. This overload of
std: :search() was introduced in C++17, and available standard searchers
implement the Boyer-Moore and Boyer-Moore-Horspool string searching

algorithms:
auto text = "The quick brown fox jumps over the lazy dog"s;
auto word = "over's;

auto it = std::search(
text.cbegin(), text.cend(),
std: :make_boyer_moore_searcher(word.cbegin(), word.cend()));

if (it != text.cend())
std::cout << "found " << word
<< " at index
<< std::distance(text.cbegin(), it) << '\n’;

[242]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Chapter 5

e Use std: :search_n() to search for N consecutive occurrences of a value in
a range; this algorithm returns an iterator to the first element of the found
sequence in the range:

std::vector<int> v{ 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1 };

auto it = std::search_n(v.cbegin(), v.cend(), 2, 9);

if (it != v.cend())
std::cout << "found at index
<< std::distance(v.cbegin(), it) << "\n';

* Use std::adjacent_find() to find two adjacent elements in a range that are
equal or satisfy a binary predicate; this algorithm returns an iterator to the
first element that is found:

std::vector<int> v{ 1, 1, 2, 3, 5, 8, 13 };

auto it = std::adjacent_find(v.cbegin(), v.cend());

if (it != v.cend())
std::cout << "found at index
<< std::distance(v.cbegin(), it) << "\n';

auto it = std::adjacent_find(
v.cbegin(), v.cend(),
[J(int const a, int const b) {
return IsPrime(a) && IsPrime(b); });

if (it != v.cend())
std::cout << "found at index
<< std::distance(v.cbegin(), it) << "\n';

e Use std::binary_search() to find whether an element exists in a sorted
range; this algorithm returns a Boolean value to indicate whether the value
was found or not:

std::vector<int> v{ 1, 1, 2, 3, 5, 8, 13 };

auto success = std::binary_search(v.cbegin(), v.cend(), 8);
if (success) std::cout << "found" << '\n';

* Use std::1lower_bound() to find the first element in a range not less than a
specified value; this algorithm returns an iterator to the element:

std::vector<int> v{ 1, 1, 2, 3, 5, 8, 13 };

auto it = std::lower_bound(v.cbegin(), v.cend(), 1);

[243]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Standard Library Containers, Algorithms, and Iterators

if (it != v.cend())
std::cout << "lower bound at "
<< std::distance(v.cbegin(), it) << '\n’';

* Use std: :upper_bound() to find the first element in a range greater than a
specified value; this algorithm returns an iterator to the element:

std::vector<int> v{ 1, 1, 2, 3, 5, 8, 13 };

auto it = std::upper_bound(v.cbegin(), v.cend(), 1);
if (it !'= v.cend())
std::cout << "upper bound at "
<< std::distance(v.cbegin(), it) << '\n’';

* Use std::equal_range() to find a subrange in a range whose values are
equal to a specified value. This algorithm returns a pair of iterators defining
the first and the one-past-end iterators to the subrange; these two iterators
are equivalent to those returned by std::lower_bound() and std: :upper_
bound():

std::vector<int> v{ 1, 1, 2, 3, 5, 8, 13 };

auto bounds = std::equal_range(v.cbegin(), v.cend(), 1);
std::cout << "range between indexes "
<< std::distance(v.cbegin(), bounds.first)

<< " and "
<< std::distance(v.cbegin(), bounds.second)
<< '\n';

How it works...

The way these algorithms work is very similar: they all take, as arguments,
iterators that define the searchable range and additional arguments that depend on
each algorithm. The exceptions are std: :search(), which returns a Boolean, and
std::equal_range(), which returns a pair of iterators. They all return an iterator to
the searched element or to a subrange. These iterators must be compared with the
end iterator (that is, the past-last-element) of the range to check whether the search
was successful or not. If the search did not find an element or a subrange, then the
returned value is the end iterator.

All these algorithms have multiple overloads, but in the How to do it... section, we
only looked at one particular overload to show how the algorithm can be used. For a
complete reference of all overloads, you should see other sources.

[244]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Chapter 5

In all the preceding examples, we used constant iterators, but all these algorithms
work the same with mutable iterators and with reverse iterators. Because they take
iterators as input arguments, they can work with standard containers, arrays, or
anything that represents a sequence and has iterators available.

A special note on the std: :binary_search() algorithm is necessary: the iterator
parameters that define the range to search in should at least meet the requirements
of the forward iterators. Regardless of the type of the supplied iterators, the number
of comparisons is always logarithmic on the size of the range. However, the number
of iterator increments is different if the iterators are random access, in which case the
number of increments is also logarithmic, or are not random access, in which case it
is linear and proportional to the size of the range.

All these algorithms, except for std: : find_if_not(), were available before C++11.
However, some overloads of them have been introduced in the newer standards.
An example is std: : search(), which has several overloads that were introduced in
C++17. One of these overloads has the following form:

template<class ForwardIterator, class Searcher>
ForwardIterator search(ForwardIterator first, ForwardIterator last,
const Searcher& searcher);

This overload searches for the occurrence of a pattern defined by a searcher function
object for which the standard provides several implementations:

* default_searcher basically delegates the searching to the standard
std: :search() algorithm.

* boyer_moore_searcher implements the Boyer-Moore algorithm for string
searching.

* boyer_moore_horspool_algorithm implements the Boyer-Moore-Horspool
algorithm for string searching.

Many standard containers have a member function find() for finding elements in
the container. When such a method is available and suits your needs, it should be
preferred to the general algorithms because these member functions are optimized
based on the particularities of each container.

See also
* Using vector as a default container to see how to use the std: :vector standard
container.

* Initializing a range to explore the standard algorithms for filling a range with
values.

[245]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Standard Library Containers, Algorithms, and Iterators

* Using set operations on a range to learn about the standard algorithms used to
perform union, intersection, or difference of sorted ranges.

* Sorting a range to learn about the standard algorithms for sorting ranges.

Sorting a range

In the previous recipe, we looked at the standard general algorithms for searching in
a range. Another common operation we often need to do is sorting a range because
many routines, including some of the algorithms for searching, require a sorted
range. The standard library provides several general algorithms for sorting ranges,
and in this recipe, we will see what these algorithms are and how they can be used.

Getting ready

The sorting general algorithms work with ranges defined by a start and end iterator
and, therefore, can sort standard containers, arrays, or anything that represents

a sequence and has random iterators available. However, all the examples in this
recipe will use std: :vector.

How to do it...

The following is a list of standard general algorithms for searching a range:

* Use std::sort() for sorting a range:
std::vector<int> v{3, 13, 5, 8, 1, 2, 1};

std::sort(v.begin(), v.end());

std::sort(v.begin(), v.end(), std::greater<>());

* Usestd::stable_sort() for sorting a range but keeping the order of the
equal elements:
struct Task
{

int priority;
std::string name;

};

[246]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Chapter 5

bool operator<(Task const & lhs, Task const & rhs) {
return lhs.priority < rhs.priority;

}

bool operator>(Task const & lhs, Task const & rhs) {
return lhs.priority > rhs.priority;

}

std::vector<Task> v{
{ 10, "Task 1"s }, { 40, "Task 2"s }, { 25, "Task 3"s },
{ 10, "Task 4"s }, { 80, "Task 5"s }, { 10, "Task 6"s },

%

std::stable_sort(v.begin(), v.end());
// {{ 16, "Task 1" },{ 10, "Task 4" },{ 10, "Task 6" },
// { 25, "Task 3" },{ 40, "Task 2" },{ 86, "Task 5" }}

std::stable_sort(v.begin(), v.end(), std::greater<>());
// {{ 86, "Task 5" },{ 40, "Task 2" },{ 25, "Task 3" },
// { 16, "Task 1" },{ 10, "Task 4" },{ 10, "Task 6" }}

Use std: :partial_sort() for sorting a part of a range (and leaving the rest in
an unspecified order):

std::vector<int> v{ 3, 13, 5, 8, 1, 2, 1 };

std::partial_sort(v.begin(), v.begin() + 4, v.end());
//V={11 1; 2) 31 ?) ?; p}

std::partial_sort(v.begin(), v.begin() + 4, v.end(),
std::greater<>());
// v ={13, 8, 5, 3, ?, ?, ?}

Use std: :partial_sort_copy() for sorting a part of a range by copying the
sorted elements to a second range and leaving the original range unchanged:

std::vector<int> v{ 3, 13, 5, 8, 1, 2, 1 };
std::vector<int> vc(v.size());

std::partial_sort_copy(v.begin(), v.end(),
vc.begin(), vc.end());

// v =1{3 13, 5, 8, 1, 2, 1}

// vc = {1, 1, 2, 3, 5, 8, 13}

[247]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Standard Library Containers, Algorithms, and Iterators

std::partial_sort_copy(v.begin(), v.end(),
vc.begin(), vc.end(),
std::greater<>());

e Use std::nth_element() for sorting a range so that the Nth element is the
one that would be in that position if the range was completely sorted, and the
elements before it are all smaller and the ones after it are all greater, without
any guarantee that they are also ordered:

std::vector<int> v{ 3, 13, 5, 8, 1, 2, 1 };

std::nth_element(v.begin(), v.begin() + 3, v.end());

std::nth_element(v.begin(), v.begin() + 3, v.end(),
std::greater<>());

e Usestd::is_sorted() to check whether a range is sorted:
std::vector<int> v { 1, 1, 2, 3, 5, 8, 13 };

auto sorted = std::is_sorted(v.cbegin(), v.cend());
sorted = std::is_sorted(v.cbegin(), v.cend(),
std::greater<>());

e Usestd::is_sorted_until() to find a sorted subrange from the beginning of
arange:
std::vector<int> v{ 3, 13, 5, 8, 1, 2, 1 };

auto it = std::is_sorted_until(v.cbegin(), v.cend());
auto length = std::distance(v.cbegin(), it);

How it works...

All the preceding general algorithms take random iterators as arguments to define
the range to be sorted. Some of them also take an output range. They all have
overloads: one that requires a comparison function for sorting the elements and one
that does not and uses operator< for comparing the elements.

[248]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 5

These algorithms work in the following way:

* std::sort() modifies the input range so that its elements are sorted
according to the default or the specified comparison function; the actual
algorithm for sorting is an implementation detail.

* std::stable_sort() is similar to std: :sort(), but it guarantees to preserve
the original order of elements that are equal.

* std::partial_sort() takes three iterator arguments indicating the first,
middle, and last element in a range, where middle can be any element, not
just the one at the natural middle position. The result is a partially sorted
range so that that first middle - first smallest elements from the original range,
that is, [first, last), are found in the [first, middle) subrange and the rest of the
elements are in an unspecified order, in the [middle, last) subrange.

* std::partial_sort_copy() is not a variant of std: :partial_copy(), as the
name may suggest, but of std: :sort(). It sorts a range without altering it by
copying its elements to an output range. The arguments of the algorithm are
the first and last iterators of the input and output ranges. If the output range
has a size M that is greater than or equal to the size N of the input range,
the input range is entirely sorted and copied to the output range; the first N
elements of the output range are overwritten, and the last M - N elements are
left untouched. If the output range is smaller than the input range, then only
the first M sorted elements from the input range are copied to the output
range (which is entirely overwritten in this case).

* std::nth_element() is basically an implementation of a selection algorithm,
which is an algorithm for finding the Nth smallest element of a range. This
algorithm takes three iterator arguments representing the first, Nth, and last
element, and partially sorts the range so that, after sorting, the Nth element is
the one that would be in that position if the range had been entirely sorted. In
the modified range, all the N - 1 elements before the Nth one are smaller than
it, and all the elements after the Nth element are greater than it. However,
there is no guarantee on the order of these other elements.

* std::is_sorted() checks whether the specified range is sorted according to
the specified or default comparison function and returns a Boolean value to
indicate that.

e std::is_sorted_until() finds a sorted subrange of the specified range,
starting from the beginning, using either a provided comparison function
or the default operator<. The returned value is an iterator representing the
upper bound of the sorted subrange, which is also the iterator of the one-
past-last sorted element.

[249]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Standard Library Containers, Algorithms, and Iterators

Some standard containers, std: :1ist and std: : forward_list, provide a member
function, sort (), which is optimized for those containers. These member functions
should be preferred over the general standard algorithm, std: :sort().

See also

* Using vector as a default container to learn how to use the std: :vector
standard container.

* Initializing a range to explore the standard algorithms for filling a range with
values.

* Using set operations on a range to learn about the standard algorithms used to
perform union, intersection, or difference of sorted ranges.

* Finding elements in a range to learn about the standard algorithms for
searching through sequences of values.

Initializing a range

In the previous recipes, we explored the general standard algorithms for searching
in a range and sorting a range. The algorithms library provides many other general
algorithms, and among them are several that are intended for filling a range with
values. In this recipe, you will learn what these algorithms are and how they should
be used.

Getting ready

All the examples in this recipe use std: :vector. However, like all the general
algorithms, the ones we will see in this recipe take iterators to define the bounds of a
range and can therefore be used with any standard container, arrays, or custom types
representing a sequence that have forward iterators defined.

Except for std: :iota(), which is available in the <numeric> header, all the other
algorithms are found in the <algorithm> header.

[250]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 5

How to do it...

To assign values to a range, use any of the following standard algorithms:

* std::fill() to assign a value to all the elements of a range; the range is
defined by a first and last forward iterator:

std::vector<int> v(5);
std::fill(v.begin(), v.end(), 42);

* std::fill_n() to assign values to a number of elements of a range; the range
is defined by a first forward iterator and a counter that indicates how many
elements should be assigned the specified value:

std::vector<int> v(10);
std::fill n(v.begin(), 5, 42);

* std::generate() to assign the value returned by a function to the elements
of a range; the range is defined by a first and last forward iterator, and the
function is invoked once for each element in the range:

std::random_device rd{};
std::mt19937 mt{ rd() };
std::uniform_int_distribution<> ud{1, 10};
std::vector<int> v(5);
std::generate(v.begin(), v.end(),

[&ud, &mt] {return ud(mt); });

* std::generate_n() to assign the value returned by a function to a number
of elements of a range; the range is defined by a first forward iterator and a
counter that indicates how many elements should be assigned the value from
the function that is invoked once for each element:

std::vector<int> v(5);
auto i = 1;
std::generate_n(v.begin(), v.size(), [&L] { return i*i++; });

* std::iota() to assign sequentially increasing values to the elements of a
range; the range is defined by a first and last forward iterator, and the values
are incremented using the prefix operator++ from an initial specified value:

std::vector<int> v(5);
std::iota(v.begin(), v.end(), 1);

[251]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Standard Library Containers, Algorithms, and Iterators

How it works...

std::fill() and std::fill_n() work similarly but differ in the way the range is
specified: for the former by a first and last iterator, for the latter by a first iterator

and a count. The second algorithm returns an iterator, representing either the one-
past-last assigned element if the counter is greater than zero, or an iterator to the first
element of the range otherwise.

std: :generate() and std: :generate_n() are also similar, differing only in the way
the range is specified. The first takes two iterators, defining the range's lower and
upper bounds, while the second takes an iterator to the first element and a count.
Like std::fill_n(), std::generate_n() also returns an iterator, representing either
the one-past-last assigned element if the count is greater than zero, or an iterator to
the first element of the range otherwise. These algorithms call a specified function
for each element in the range and assign the returned value to the element. The
generating function does not take any argument, so the value of the argument cannot
be passed to the function. This is because it's intended as a function to initialize the
elements of a range. If you need to use the value of the elements to generate new
values, you should use std: : transform().

std::iota() takes its name from the 1 (iota) function from the APL programming
language, and though it was a part of the initial STL, it was only included in the
standard library in C++11. This function takes a first and last iterator to a range, as
well as an initial value that is assigned to the first element of the range. These are
then used to generate sequentially increasing values using the prefix operator++ for
the rest of the elements in the range.

See also

* Sorting a range to learn about the standard algorithms for sorting ranges.

* Using set operations on a range to learn about the standard algorithms used to
perform union, intersection, or difference of sorted ranges.

* Finding elements in a range to learn about the standard algorithms for
searching through sequences of values.

* Generating pseudo-random numbers in Chapter 2, Working with Numbers and
Strings, to understand the proper ways for generating pseudo-random
numbers in C++.

* Initializing all bits of internal state of a pseudo-random number generator in
Chapter 2, Working with Numbers and Strings, to learn how to properly
initialize random number engines.

[252]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 5

Using set operations on a range

The standard library provides several algorithms for set operations that enable us to
do unions, intersections, or differences of sorted ranges. In this recipe, we will see
what these algorithms are and how they work.

Getting ready

The algorithms for set operations work with iterators, which means they can be used
for standard containers, arrays, or any custom type representing a sequence that has
input iterators available. All the examples in this recipe will use std: :vector.

For all the examples in the next section, we will use the following ranges:

std::vector<int> vi{ 1, 2, 3, 4, 4, 5 };
std::vector<int> v2{ 2, 3, 3, 4, 6, 8 };
std::vector<int> v3;

In the following section, we will explore the use of the standard algorithm for set
operations.

How to do it...

Use the following general algorithms for set operations:

* std::set_union() to compute the union of two ranges into a third range:

std::set_union(vl.cbegin(), vl.cend(),
v2.cbegin(), v2.cend(),
std: :back_inserter(v3));

* std::merge() to merge the content of two ranges into a third one; this is
similar to std: :set_union() except that it copies the entire content of the
input ranges into the output one, not just their union:

std::merge(vl.cbegin(), vl.cend(),
v2.cbegin(), v2.cend(),
std::back_inserter(v3));

[253]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Standard Library Containers, Algorithms, and Iterators

std::set_intersection() to compute the intersection of the two ranges into
a third range:

std::set_intersection(vl.cbegin(), vil.cend(),
v2.cbegin(), v2.cend(),
std::back_inserter(v3));

std::set_difference() to compute the difference of two ranges into a third
range; the output range will contain elements from the first range, which are
not present in the second range:

std::set_difference(vl.cbegin(), vl.cend(),
v2.cbegin(), v2.cend(),
std: :back_inserter(v3));

std::set_symmetric_difference() to compute a dual difference of the two
ranges into a third range; the output range will contain elements that are
present in any of the input ranges, but only in one:

std::set_symmetric_difference(vl.cbegin(), vl.cend(),
v2.cbegin(), v2.cend(),
std: :back_inserter(v3));

std: :includes() to check if one range is a subset of another range (that is, all
its elements are also present in the other range):

std::vector<int> vi{ 1, 2, 3, 4, 4, 5 };

std::vector<int> v2{ 2, 3, 3, 4, 6, 8 };

std::vector<int> v3{ 1, 2, 4 };

std::vector<int> v4{ };

auto i1l

std::includes(vl.cbegin(), vil.cend(),
v2.cbegin(), v2.cend());

auto i2 = std::includes(vl.cbegin(), vil.cend(),
v3.cbegin(), v3.cend());

auto i3 = std::includes(vl.cbegin(), vil.cend(),
v4.cbegin(), vd.cend());

[254]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Chapter 5

How it works...

All the set operations that produce a new range from two input ranges have the same
interface and work in a similar way:

* They take two input ranges, each defined by a first and last input iterator.

* They take an output iterator to an output range where elements will be
inserted.

* They have an overload that takes an extra argument representing a
comparison binary function object that must return true if the first argument
is less than the second. When a comparison function object is not specified,
operator< is used.

* They return an iterator past the end of the constructed output range.

* The input ranges must be sorted using either operator< or the provided
comparison function, depending on the overload that is used.

* The output range must not overlap any of the two input ranges.

We will demonstrate the way they work with additional examples using vectors of a
POD type called Task that we also used in a previous recipe:

struct Task

{
int priority;
std::string name;

%

bool operator<(Task const & lhs, Task const & rhs) {
return lhs.priority < rhs.priority;

}

bool operator>(Task const & lhs, Task const & rhs) {
return lhs.priority > rhs.priority;

}

std::vector<Task> vi{
{ 10, "Task 1.1"s },
{ 20, "Task 1.2"s },
{ 20, "Task 1.3"s },

[255]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Standard Library Containers, Algorithms, and Iterators

{ 20, "Task 1.4"s },
{ 30, "Task 1.5"s },
{ 50, "Task 1.6"s },

1

std::vector<Task> v2{

{ 20, "Task 2.1"s },

{ 30, "Task 2.2"s },

{ 30, "Task 2.3"s },

{ 30, "Task 2.4"s },

{ 40, "Task 2.5"s },

{ 50, "Task 2.6"s },
}s

The particular way each algorithm produces the output range is described here:

* std::set_union() copies all the elements present in one or both of the input
ranges to the output range, producing a new sorted range. If an element is
found M times in the first range and N times in the second range, then all
the M elements from the first range will be copied to the output range in
their existing order, and then the N - M elements from the second range are
copied to the output range if N > M, or @ elements otherwise:

std::vector<Task> v3;

std::set_union(vl.cbegin(), vi.cend(),
v2.cbegin(), v2.cend(),
std: :back_inserter(v3));

* std::merge() copies all the elements from both the input ranges into the
output range, producing a new range sorted with respect to the comparison
function:

std::vector<Task> v4;

std: :merge(vl.cbegin(), vil.cend(),
v2.cbegin(), v2.cend(),
std: :back_inserter(v4));

[256]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 5

* std::set_intersection() copies all the elements that are found in both
the input ranges into the output range, producing a new range sorted with
respect to the comparison function:

std::vector<Task> v5;

std::set_intersection(vl.cbegin(), vi.cend(),
v2.cbegin(), v2.cend(),
std: :back_inserter(vs));

* std::set_difference() copies to the output range all the elements from the
first input range that are not found in the second input range. For equivalent
elements that are found in both ranges, the following rule applies: if an
element is found M times in the first range and N times in the second range,
and if M > N, then it is copied M - N times; otherwise, it is not copied:

std::vector<Task> v6;

std::set_difference(vl.cbegin(), vl.cend(),
v2.cbegin(), v2.cend(),
std: :back_inserter(vé6));

* std::set_symmetric_difference() copies to the output range all the
elements that are found in either of the two input ranges but not in both of
them. If an element is found M times in the first range and N times in the
second range, then if M > N, the last M - N of those elements from the first
range are copied into the output range; otherwise, the last N - M of those
elements from the second range will be copied into the output range:

std::vector<Task> v7;

std::set_symmetric_difference(vl.cbegin(), vl.cend(),
v2.cbegin(), v2.cend(),
std::back_inserter(v7));

On the other hand, std: :includes() does not produce an output range; it only
checks whether the second range is included in the first range. It returns a Boolean
value that is true if the second range is empty or all its elements are included in the
first range, or false otherwise. It also has two overloads, one of which specifies a
comparison binary function object.

[257]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Standard Library Containers, Algorithms, and Iterators

See also

* Using vector as a default container to learn how to use the std: :vector
standard container.

* Sorting a range to learn about the standard algorithms for sorting ranges.

* Using iterators to insert new elements in a container to learn how to use iterators
and iterator adapters to add elements to a range.

* Finding elements in a range to learn about the standard algorithms for
searching through sequences of values.

Using iterators to insert new elements
into a container

When you're working with containers, it is often useful to insert new elements at the
beginning, end, or somewhere in the middle. There are algorithms, such as the ones
we saw in the previous recipe, Using set operations on a range, that require an iterator
to a range to insert into, but if you simply pass an iterator, such as the one returned
by begin(), it will not insert but overwrite the elements of the container. Moreover,
it's not possible to insert at the end by using the iterator returned by end(). In order
to perform such operations, the standard library provides a set of iterators and
iterator adapters that enable these scenarios..

Getting ready

The iterators and adapters discussed in this recipe are available in the std namespace
in the <iterator> header. If you include headers such as <algorithm>, you do not
have to explicitly include <iterator>.

How to do it...

Use the following iterator adapters to insert new elements into a container:

* std::back_inserter() to insert elements at the end, for containers that have
a push_back() method:
std::vector<int> v{ 1,2,3,4,5 };
std::fill _n(std::back_inserter(v), 3, 9);

[258]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Chapter 5

* std::front_inserter() to insert elements at the beginning, for containers
that have a push_front() method:
std::1list<int> 1{ 1,2,3,4,5 };
std::fill_n(std::front_inserter(l), 3, 0);

* std::inserter() to insert anywhere in a container, for containers that have
an insert() method:
std::vector<int> v{ 1,2,3,4,5 };
std::fill n(std::inserter(v, v.begin()), 3, 9);

std::1list<int> 1{ 1,2,3,4,5 };

auto it = l.begin();

std::advance(it, 3);

std::fill n(std::inserter(l, it), 3, 0);

How it works...

std::back_inserter(), std: :front_inserter(), and std: :inserter() are all helper
functions that create iterator adapters of the types std: :back_insert_iterator,
std::front_insert_iterator, and std: :insert_iterator. These are all output
iterators that append, prepend, or insert into the container for which they were
constructed. Incrementing and dereferencing these iterators does not do anything.
However, upon assignment, these iterators call the following methods from the
container:

* std::back_insterter_iterator calls push_back()
* std::front_inserter_iterator calls push_front()

e std::insert_iterator calls insert()

The following is the oversimplified implementation of std: :back_inserter_
iterator:

template<class C>

class back_insert_iterator {

public:
typedef back_insert_iterator<C> T;
typedef typename C::value_type V;

[259]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Standard Library Containers, Algorithms, and Iterators

explicit back_insert_iterator(C& ¢) :container(&) { }

T& operator=(const V& val) {
container->push_back(val);
return *this;

}

T& operator*() { return *this; }

T& operator++() { return *this; }

T& operator++(int) { return *this; }

protected:

C* container;

%

Because of the way the assignment operator works, these iterators can only be used
with some standard containers:

* std::
std:

* std::
std:

e std:

back_insert_iterator can be used with std: :vector, std: :1ist,

:deque, and std: :basic_string.

front_insert_iterator can be used with std::1ist,

:forward_list, and std:deque.

:insert_iterator can be used with all the standard containers.

The following example inserts three elements with the value @ at the beginning of an

std: :vector:

std::vector<int> v{ 1,2,3,4,5 };
std::fill n(std::inserter(v, v.begin()), 3, 9);

The std: :inserter() adapter takes two arguments: the container and the iterator
where an element is supposed to be inserted. Upon calling insert() on the container,
the std: :insert_iterator increments the iterator, so upon being assigned again, it
can insert a new element into the next position. Take a look at the following snippet:

T& operator=(const V& v)

{

iter =
++iter;

container->insert(iter, v);

return (*this);

}

[260]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 5

This snippet shows (conceptually) how the assignment operator is implemented

for this std: :inserter_iterator adapter. You can see that it first calls the member
function insert() of the container and then increments the returned iterator. Because
all the standard containers have a method called insert() with this signature, this
adapter can be used with all these containers.

There's more...

These iterator adapters are intended to be used with algorithms or functions that
insert multiple elements into a range. They can be used, of course, to insert a
single element, but that is rather an anti-pattern, since simply calling push_back(),
push_front(), or insert() is much simpler and intuitive in this case. Consider the
following snippets:

std::vector<int> v{ 1,2,3,4,5 };
*std::back_inserter(v) = 6;

std::back_insert_iterator<std::vector<int>> it(v);
*it = 7;

The examples shown here should be avoided. They do not provide any benefit; they
only make the code cluttered.

See also

* Using set operations on a range to learn about the standard algorithms used to
perform union, intersection, or difference of sorted ranges.

Writing your own random-access iterator

In the first chapter, we saw how we can enable range-based for loops for custom
types by implementing iterators, as well as free begin() and end() functions to
return iterators to the first and one-past-the-last element of the custom range. You
might have noticed that the minimal iterator implementation that we provided in
that recipe does not meet the requirements for a standard iterator. This is because it
cannot be copy constructible or assigned and cannot be incremented. In this recipe,
we will build upon that example and show you how to create a random-access
iterator that meets all requirements.

[261]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Standard Library Containers, Algorithms, and Iterators

Getting ready

For this recipe, you should know the types of iterators the standard defines and how
they are different. A good overview of their requirements is available at http://www.
cplusplus.com/reference/iterator/.

To exemplify how to write a random access iterator, we will consider a variant of the
dummy_array class used in the Enabling range-based for loops for custom types recipe of

Chapter 1, Learning Modern Core Language Features. This is a very simple array concept
with no practical value other than serving as a code base for demonstrating iterators:

template <typename Type, size_t const SIZE>
class dummy_array

{
Type data[SIZE] = {};
public:
Type& operator[](size_t const index)

{
if (index < SIZE) return data[index];

throw std::out_of_range("index out of range");

}

Type const & operator[](size_t const index) const

{
if (index < SIZE) return data[index];

throw std::out_of_range("index out of range");

}

size t size() const { return SIZE; }

18

All the code shown in the next section, the iterator classes, typedefs, and the begin()
and end() functions, will be a part of this class.

How to do it...

To provide mutable and constant random-access iterators for the dummy_array class
shown in the previous section, add the following members to the class:

* Aniterator class template, which is parameterized with the type of elements
and the size of the array. The class must have the following public typedefs
that define standard synonyms:

[262]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

http://www.cplusplus.com/reference/iterator/
http://www.cplusplus.com/reference/iterator/

Chapter 5

template <typename T, size_t const Size>
class dummy_array_iterator

{
public:
typedef dummy_array_iterator self_type;
typedef T value_type;
typedef T& reference;
typedef T* pointer;
typedef std::random_access_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
¥

* Private members for the iterator class —a pointer to the array data and a
current index into the array:

private:
pointer ptr = nullptr;
size_t index = 0;

e Private method for the iterator class to check whether two iterator instances
point to the same array data:

private:
bool compatible(self_type const & other) const
{
return ptr == other.ptr;
}

* An explicit constructor for the iterator class:

public:
explicit dummy_array_iterator(pointer ptr,
size_t const index)
: ptr(ptr), index(index) { }

* Iterator class members to meet common requirements for all iterators —copy-
constructible, copy-assignable, destructible, prefix, and postfix incrementable.
In this implementation, the post-increment operator is implemented in terms
of the pre-increment operator to avoid code duplication:
dummy_array_iterator(dummy_array_iterator const & o)
= default;
dummy_array_iterator& operator=(dummy_array_iterator const & o)
= default;
~dummy_array_iterator() = default;

[263]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Standard Library Containers, Algorithms, and Iterators

self_type & operator++ ()
{
if (index >= Size)
throw std::out_of_range("Iterator cannot be incremented
past the end of range.");
++index;
return *this;

}

self_type operator++ (int)
{
self_type tmp = *this;
++*this;
return tmp;

}

Iterator class members to meet input iterator requirements — test for
equality/inequality, dereferenceable as rvalues:

bool operator== (self_type const & other) const

{
assert(compatible(other));

return index == other.index;

}

bool operator!= (self_type const & other) const

{

return !(*this == other);

}

reference operator* () const
{
if (ptr == nullptr)
throw std::bad_function_call();
return *(ptr + index);

}

reference operator-> () const
{
if (ptr == nullptr)
throw std::bad_function_call();
return *(ptr + index);

}

[264]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Chapter 5

* Iterator class members to meet forward iterator requirements — default
constructible:

dummy_array_iterator() = default;

* Iterator class members to meet bidirectional iterator requirements —
decrementable:

self_type & operator--()
{
if (index <= 9)
throw std::out_of_range("Iterator cannot be decremented
past the end of range.");
--index;
return *this;

}

self type operator--(int)
{
self type tmp = *this;
--*this;
return tmp;

}

* Iterator class members to meet random access iterator requirements —
arithmetic add and subtract, comparable for inequality with other iterators,
compound assignments, and offset dereferenceable:

self type operator+(difference_type offset) const

{
self type tmp = *this;
return tmp += offset;

}

self type operator-(difference_type offset) const

{
self type tmp = *this;
return tmp -= offset;

}

difference_type operator-(self_type const & other) const

{
assert(compatible(other));

return (index - other.index);

}

[265]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Standard Library Containers, Algorithms, and Iterators

bool operator<(self_type const & other) const
{

assert(compatible(other));

return index < other.index;

}
bool operator>(self_type const & other) const
{
return other < *this;
}
bool operator<=(self_type const & other) const
{
return !(other < *this);
}
bool operator>=(self_type const & other) const
{
return !(*this < other);
}
self_type & operator+=(difference_type const offset)
{
if (index + offset < @ || index + offset > Size)

throw std::out_of_range("Iterator cannot be incremented
past the end of range.");
index += offset;
return *this;

}
self_type & operator-=(difference_type const offset)
{
return *this += -offset;
}

value type & operator[](difference_type const offset)
{

[266]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 5

return (*(*this + offset));

}
value_type const & operator[](difference_type const offset)
const
{

return (*(*this + offset));
}

* Add typedefs to the dummy_array class for mutable and constant iterator
synonyms:

public:

typedef dummy_array_iterator<Type, SIZE>

iterator;

typedef dummy_array_iterator<Type const, SIZE>
constant_iterator;

* Add the public begin() and end() functions to the dummy_array class to
return the iterators to the first and one-past-last elements in the array:

iterator begin()

{

return iterator(data, 0);

}

iterator end()

{
return iterator(data, SIZE);

}

constant_iterator begin() const

{

return constant_iterator(data, 90);

}

constant_iterator end() const

{

return constant_iterator(data, SIZE);

}

[267]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Standard Library Containers, Algorithms, and Iterators

How it works...

The standard library defines five categories of iterators:

* Input iterators: These are the simplest category and guarantee validity only
for single-pass sequential algorithms. After being incremented, the previous
copies may become invalid.

* Output iterators: These are basically input iterators that can be used to write
to the pointed element.

* Forward iterators: These can read (and write) data to the pointed element.
They satisfy the requirements for input iterators and, in addition, must
be default constructible and must support multi-pass scenarios without
invalidating the previous copies.

* Bidirectional iterators: These are forward iterators that, in addition, support
decrementing so that they can move in both directions.

* Random access iterators: These support access to any element in the
container in constant time. They implement all the requirements for
bidirectional iterators, and, in addition, support arithmetic operations + and
-, compound assignments += and -=, comparisons with other iterators with <,
<=, >, >=, and the offset dereference operator.

Forward, bidirectional, and random-access iterators that also implement the
requirements of output iterators are called mutable iterators.

In the previous section, we saw how to implement random access iterators, with a
step-by-step walkthrough of the requirements of each category of iterators (as each
iterator category includes the requirements of the previous category and adds new
requirements). The iterator class template is common for both constant and mutable
iterators, and we have defined two synonyms for it called iterator and constant_
iterator.

After implementing the inner iterator class template, we also defined the begin()
and end() member functions, which return an iterator to the first and the one-past-
last element in the array, respectively. These methods have overloads to return
mutable or constant iterators, depending on whether the dummy_array class instance
is mutable or constant.

With this implementation of the dummy_array class and its iterators, we can write the
following samples:

dummy_array<int, 3> a;
a[e] = 1e;
a[1] = 20;

[268]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Chapter 5

a[2] = 30;

std::transform(a.begin(), a.end(), a.begin(),
[1(int const e) {return e * 2; });

for (auto&& e : a) std::cout << e << '\n';

auto 1lp = [](dummy_array<int, 3> const & ca)
{
for (auto const & e : ca)
std::cout << e << '\n’;

18
1p(a);

dummy_array<std::unique_ptr<Tag>, 3> ta;

ta[@] = std::make_unique<Tag>(1, "Tag 1");
ta[1] std::make_unique<Tag>(2, "Tag 2");
ta[2] std::make_unique<Tag>(3, "Tag 3");

for (auto it = ta.begin(); it != ta.end(); ++it)
std::cout << it->id << " " << it->name << '\n’;

For more examples, check the source code that accompanies this book.

There's more...

Apart from begin() and end(), a container may have additional methods such as
cbegin()/cend() (for constant iterators), rbegin()/rend() (for mutable reverse
iterators), and crbegin()/ crend() (for constant reverse iterators). Implementing this
is left as an exercise for you.

On the other hand, in modern C++, these functions that return the first and last
iterators do not have to be member functions but can be provided as non-member
functions. In fact, this is the topic of the next recipe, Container access with non-member
functions.

See also

* Enabling range-based for loops for custom types in Chapter 1, Learning Modern
Core Language Features, to learn to execute one or more statements for each
element of a collection.

[269]

printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Standard Library Containers, Algorithms, and Iterators

* Creating type aliases and alias templates in Chapter 1, Learning Modern Core
Language Features, to learn about aliases for types.

Container access with non-member
functions

Standard containers provide the begin() and end() member functions for retrieving
iterators for the first and one-past-last elements of the container. There are actually
four sets of these functions. Apart from begin()/end(), containers provide
cbegin()/cend() to return constant iterators, rbegin()/rend() to return mutable
reverse iterators, and crbegin()/crend() to return constant reverse iterators. In
C++11/C++14, all these have non-member equivalents that work with standard
containers, arrays, and any custom type that specializes them. In C++17, even more
non-member functions have been added: std: :data(), which returns a pointer to
the block of memory containing the elements of the container; std: :size(), which
returns the size of a container or array; and std: :empty (), which returns whether
the given container is empty. These non-member functions are intended for generic
code but can be used anywhere in your code. Moreover, in C++20, the std: :ssize()
non-member function was introduced, to return the size of a container or array as a
signed integer.

Getting ready

In this recipe, we will use the dummy_array class and its iterators that we
implemented in the previous recipe, Writing your own random-access iterator, as an
example. You should read that recipe before continuing with this one.

Non-member begin()/end() functions and the other variants, as well as non-
member data(), size(), and empty() functions are available in the std namespace
in the <iterator> header, which is implicitly included with any of the following
headers: <array>, <deque>, <forward_list>, <list>, <map>, <regex>, <set>, <string>,
<unordered_map>, <unordered_set>, and <vector>.

In this recipe, we will refer to the std: :begin()/std: :end() functions, but
everything discussed also applies to the other functions: std: : cbegin()/
std::cend(), std: :rbegin()/std: :rend(), and std: :crbegin()/std::crend().

How to do it...

Use the non-member std: :begin()/std: :end() function and the other variants, as
well as std: :data(), std: :size(), and std: :empty() with:

[270]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 5

* Standard containers:
std::vector<int> vi{ 1, 2, 3, 4, 5 };
auto svl = std::size(vl); // svli =5
auto evl = std::empty(vl); // evl = false
auto dvl = std::data(vl); // dvl = vi.data()
for (auto i = std::begin(vl); i != std::end(vl); ++i)
std::cout << *1i << '\n';

std::vector<int> v2;
std::copy(std::cbegin(vl), std::cend(vl),
std::back_inserter(v2));

* Arrays:
int a[5] = {1, 2, 3, 4, 5 };
auto pos = std::find_if(std::crbegin(a), std::crend(a),
[1(int const n) {return n % 2 == 0; });
auto sa = std::size(a); // sa =5
auto ea = std::empty(a); // ea = false
auto da = std::data(a); // da = a

* Custom types that provide the corresponding member functions; that is,
begin()/end(), data(), empty(), or size():

dummy_array<std::string, 5> sa;
dummy_array<int, 5> sb;

sa[@] = "1"s;
sa[l] = "2"s;
sa[2] = "3"s;
sa[3] = "4"s;
sa[4] = "5"s;

std: :transform(

std: :begin(sa), std::end(sa),

std: :begin(sb),

[](std::string const & s) {return std::stoi(s); });
// sb =1[1, 2, 3, 4, 5]

auto sa_size = std::size(sa); // sa_size = 5

* Generic code where the type of the container is not known:

template <typename F, typename C>
void process(F& & f, C const & c)

{

[271]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Standard Library Containers, Algorithms, and Iterators

std::for_each(std::begin(c), std::end(c),
std::forward<F>(f));
}

auto 1 = []J(auto const e) {std::cout << e << '\n'; };

process(1l, v1);
process(1l, a);
process(1l, sa);

How it works...

These non-member functions were introduced in different versions of the standard,
but all of them were modified in C++17 to return constexpr auto:

* std::begin() and std::end() in C++11

* std::cbegin()/std::cend(), std::rbegin()/std::rend(), and
std::crbegin()/std::crend() in C++14

* std::data(), std::size(), and std::empty() in C++17

* std::ssize() in C++20

The begin()/end() family of functions have overloads for container classes and
arrays, and all they do is the following:

* Return the results of calling the container-corresponding member function
for containers

* Return a pointer to the first or one-past-last element of the array for arrays
The actual typical implementation for std: :begin()/std::end() is as follows:

template<class C>
constexpr auto inline begin(C& c) -> decltype(c.begin())

{

return c.begin();

}

template<class C>
constexpr auto inline end(C& c) -> decltype(c.end())

{

return c.end();

}

[272]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 5

template<class T, std::size_t N>
constexpr T* inline begin(T (&array)[N])
{

return array;

}

template<class T, std::size_t N>
constexpr T* inline begin(T (&array)[N])
{

return array+N;

}

Custom specialization can be provided for containers that do not have corresponding
begin()/end() members but can still be iterated. The standard library actually
provides such specializations for std: :initializer_list and std::valarray.

| Specializations must be defined in the same namespace where the
\@’ original class or function template has been defined. Therefore,
- if you want to specialize any of the std: :begin()/std::end()
- pairs, you must do so in the std namespace.

The other non-member functions for container access that were introduced in C++17
also have several overloads:

* std::data() has several overloads; for a class C it returns c.data(), for
arrays it returns the array, and for std: :initializer_list<T> it returns the
il.begin():

template <class C>
constexpr auto data(C& c) -> decltype(c.data())
{

return c.data();

}

template <class C>
constexpr auto data(const C& c) -> decltype(c.data())
{

return c.data();

}

template <class T, std::size_t N>
constexpr T* data(T (&array)[N]) noexcept
{

[273]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Standard Library Containers, Algorithms, and Iterators

return array;

}

template <class E>
constexpr const E* data(std::initializer_list<E> il) noexcept

{

return il.begin();

}

* std::size() has two overloads; for a class C it returns c.size(), and for
arrays it returns the size N:
template <class C>
constexpr auto size(const C& c) -> decltype(c.size())

{

return c.size();

}

template <class T, std::size_t N>
constexpr std::size_t size(const T (&array)[N]) noexcept

{

return N;

}

* std::empty() has several overloads; for a class C it returns c.empty(),
for arrays it returns false, and for std: :initializer_list<T> it returns
il.size() ==

template <class C>
constexpr auto empty(const C& c) -> decltype(c.empty())

{

return c.empty();

}

template <class T, std::size_t N>
constexpr bool empty(const T (&array)[N]) noexcept
{

return false;

[274]

EBSCChost - printed on 2/9/2023 10:14 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Chapter 5

template <class E>
constexpr bool empty(std::initializer_ list<E> il) noexcept
{

return il.size() == 0;

}

In C++20, the std: :ssize() non-member function was added as a companion to
std::size() to return the number of elements in a given container or an array as

a signed integer. std: :size() returns an unsigned integer, but there are scenarios
where a signed value is desired. For instance, the C++20 class std: : span, which
represents a view to a contiguous sequence of objects, has a size() member function
that returns a signed integer, unlike standard library containers where the size()
member function returns an unsigned integer.

The reason the function size() of std: : span returns a signed integer is that the
value -1 is supposed to represent a sentinel for types whose size was not known at
compile time. Performing mixed signed and unsigned arithmetic can lead to errors
in code that are hard to find. std: :ssize() has two overloads: for a class C it returns
c.size() statically cast to a signed integer (typically std: :ptrdiff_t) and for arrays
it returns N, the number of elements. Take a look at t