
C
o
p
y
r
i
g
h
t

2
0
2
0
.

P
a
c
k
t

P
u
b
l
i
s
h
i
n
g
.

A
l
l

r
i
g
h
t
s

r
e
s
e
r
v
e
d
.

M
a
y

n
o
t

b
e

r
e
p
r
o
d
u
c
e
d

i
n

a
n
y

f
o
r
m

w
i
t
h
o
u
t

p
e
r
m
i
s
s
i
o
n

f
r
o
m

t
h
e

p
u
b
l
i
s
h
e
r
,

e
x
c
e
p
t

f
a
i
r

u
s
e
s

p
e
r
m
i
t
t
e
d

u
n
d
e
r

U
.
S
.

o
r

a
p
p
l
i
c
a
b
l
e

c
o
p
y
r
i
g
h
t

l
a
w
.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 2/9/2023 10:14 AM via
AN: 2621661 ; Marius Bancila.; Modern C++ Programming Cookbook : Master C++ Core Language and Standard Library Features, with Over 100 Recipes, Updated to
C++20
Account: ns335141

Modern C++ Programming
Cookbook
Second Edition

Master C++ core language and standard library
features, with over 100 recipes, updated to C++20

Marius Bancila

BIRMINGHAM - MUMBAI

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Modern C++ Programming Cookbook
Second Edition

Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded
in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author, nor Packt
Publishing or its dealers and distributors, will be held liable for any damages
caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Producer: Ben Renow-Clarke
Acquisition Editor – Peer Reviews: Suresh Jain
Project Editors: Carol Lewis and Tom Jacob
Content Development Editor: Alex Patterson
Copy Editor: Safis Editing
Technical Editor: Saby D'silva
Proofreader: Safis Editing
Indexer: Priyanka Dhadke
Presentation Designer: Sandip Tadge

First published: May 2017
Second Edition: September 2020

Production reference: 1090920

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-80020-898-8

www.packt.com

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.packt.com

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos,
as well as industry leading tools to help you plan your personal development and
advance your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and

Videos from over 4,000 industry professionals
• Learn better with Skill Plans built especially for you
• Get a free eBook or video every month
• Fully searchable for easy access to vital information
• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.Packt.com
and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.Packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://packt.com
http://www.Packt.com
http://customercare@packtpub.com
http://www.Packt.com

Contributors

About the author
Marius Bancila is a software engineer with almost two decades of experience
in developing solutions for the industrial and financial sectors. He is the author
of The Modern C++ Challenge and coauthor of Learn C# Programming. He works as
a software architect and is focused on Microsoft technologies, mainly developing
desktop applications with C++ and C#, but not solely. He is passionate about sharing
his technical expertise with others and, for that reason, he has been recognized as
a Microsoft MVP for C++ and later developer technologies since 2006.

I would like to thank all the people at Packt that worked on this project and
helped to make a better book updated with the latest C++ changes. To Carol,
Alex, Tom, and Saby for their efforts and coordination of the project. And to
my family for their support during the time spent writing this book.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

About the reviewer
Steve Oualline wrote his first program at age 11. He's been programming ever
since. He has worked at a variety of programming jobs since then.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

[i]

Table of Contents
Preface xxi
Chapter 1: Learning Modern Core Language Features 1

Using auto whenever possible 2
How to do it... 2
How it works... 3
See also 7

Creating type aliases and alias templates 7
How to do it... 8
How it works... 9
See also 10

Understanding uniform initialization 10
Getting ready 10
How to do it... 11
How it works... 12
There's more... 16
See also 17

Understanding the various forms of non-static member initialization 17
How to do it... 18
How it works... 19
See also 22

Controlling and querying object alignment 22
Getting ready 23
How to do it... 23
How it works... 24
See also 28

Using scoped enumerations 28
How to do it... 28
How it works... 30
See also 32

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[ii]

Using override and final for virtual methods 32
Getting ready 33
How to do it... 33
How it works... 34
See also 36

Using range-based for loops to iterate on a range 36
Getting ready 36
How to do it... 37
How it works... 38
See also 39

Enabling range-based for loops for custom types 39
Getting ready 40
How to do it... 41
How it works... 43
See also 44

Using explicit constructors and conversion operators to avoid implicit
conversion 44

Getting ready 44
How to do it... 44
How it works... 45
See also 49

Using unnamed namespaces instead of static globals 49
Getting ready 50
How to do it... 50
How it works... 51
See also 52

Using inline namespaces for symbol versioning 53
Getting ready 53
How to do it... 53
How it works... 54
See also 56

Using structured bindings to handle multi-return values 57
Getting ready 57
How to do it... 57
How it works... 58
There's more... 60
See also 62

Simplifying code with class template argument deduction 62
How to do it... 62
How it works... 63
See also 65

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[iii]

Chapter 2: Working with Numbers and Strings 67
Converting between numeric and string types 68

Getting ready 68
How to do it... 68
How it works... 69
See also 74

Limits and other properties of numeric types 74
Getting ready 74
How to do it... 75
How it works... 76
See also 78

Generating pseudo-random numbers 79
Getting ready 79
How to do it... 79
How it works... 80
See also 86

Initializing all bits of internal state of a pseudo-random
number generator 86

Getting ready 87
How to do it... 87
How it works... 88
See also 88

Creating cooked user-defined literals 88
Getting ready 89
How to do it... 89
How it works... 90
There's more... 94
See also 95

Creating raw user-defined literals 95
Getting ready 95
How to do it... 96
How it works... 98
See also 100

Using raw string literals to avoid escaping characters 101
Getting ready 101
How to do it... 101
How it works... 102
See also 103

Creating a library of string helpers 103
Getting ready 103
How to do it... 104

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[iv]

How it works... 107
See also 110

Verifying the format of a string using regular expressions 110
Getting ready 110
How to do it... 110
How it works... 111
There's more... 116
See also 118

Parsing the content of a string using regular expressions 118
Getting ready 119
How to do it... 119
How it works... 120
See also 123

Replacing the content of a string using regular expressions 124
Getting ready 124
How to do it... 124
How it works... 125
See also 127

Using string_view instead of constant string references 127
Getting ready 128
How to do it... 128
How it works... 128
See also 131

Formatting text with std::format 131
Getting ready 131
How to do it... 132
How it works... 133
See also 138

Using std::format with user-defined types 138
Getting ready 138
How to do it... 139
How it works... 139
See also 142

Chapter 3: Exploring Functions 143
Defaulted and deleted functions 144

Getting started 144
How to do it... 144
How it works... 146
See also 148

Using lambdas with standard algorithms 149
Getting ready 149

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[v]

How to do it... 149
How it works... 150
See also 154

Using generic and template lambdas 155
Getting started 155
How to do it... 155
How it works... 156
See also 159

Writing a recursive lambda 160
Getting ready 160
How to do it... 160
How it works... 161
See also 163

Writing a function template with a variable number of arguments 163
Getting ready 163
How to do it... 164
How it works... 165
See also 168

Using fold expressions to simplify variadic function templates 169
Getting ready 169
How to do it... 170
How it works... 170
There's more... 172
See also 173

Implementing the higher-order functions map and fold 174
Getting ready 174
How to do it... 174
How it works... 176
There's more... 180
See also 182

Composing functions into a higher-order function 182
Getting ready 182
How to do it... 182
How it works... 183
There's more... 184
See also 186

Uniformly invoking anything callable 186
Getting ready 186
How to do it... 187
How it works... 188
See also 190

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[vi]

Chapter 4: Preprocessing and Compilation 191
Conditionally compiling your source code 192

Getting ready 192
How to do it... 192
How it works... 194
See also 196

Using the indirection pattern for preprocessor stringification and
concatenation 196

Getting ready 196
How to do it... 197
How it works... 197
See also 199

Performing compile-time assertion checks with static_assert 199
Getting ready 200
How to do it... 200
How it works... 201
See also 201

Conditionally compiling classes and functions with enable_if 202
Getting ready 202
How to do it... 202
How it works... 204
There's more... 206
See also 208

Selecting branches at compile time with constexpr if 208
Getting ready 208
How to do it... 209
How it works... 211
See also 212

Providing metadata to the compiler with attributes 212
How to do it... 212
How it works... 215
See also 217

Chapter 5: Standard Library Containers, Algorithms,
and Iterators 219

Using vector as a default container 220
Getting ready 220
How to do it... 220
How it works... 223
See also 225

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[vii]

Using bitset for fixed-size sequences of bits 225
Getting ready 226
How to do it... 226
How it works... 228
There's more... 230
See also 232

Using vector<bool> for variable-size sequences of bits 232
Getting ready... 232
How to do it... 233
How it works... 233
There's more... 234
See also 236

Using the bit manipulation utilities 237
Getting ready 237
How to do it… 237
How it works… 239
See also 240

Finding elements in a range 240
Getting ready 240
How to do it... 241
How it works... 244
See also 245

Sorting a range 246
Getting ready 246
How to do it... 246
How it works... 248
See also 250

Initializing a range 250
Getting ready 250
How to do it... 251
How it works... 252
See also 252

Using set operations on a range 253
Getting ready 253
How to do it... 253
How it works... 255
See also 258

Using iterators to insert new elements into a container 258
Getting ready 258
How to do it... 258

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[viii]

How it works... 259
There's more... 261
See also 261

Writing your own random-access iterator 261
Getting ready 262
How to do it... 262
How it works... 268
There's more... 269
See also 269

Container access with non-member functions 270
Getting ready 270
How to do it... 270
How it works... 272
There's more... 276
See also 276

Chapter 6: General-Purpose Utilities 277
Expressing time intervals with chrono::duration 278

Getting ready 278
How to do it... 278
How it works... 280
There's more... 282
See also 282

Working with calendars 282
Getting ready 283
How to do it… 283
How it works… 285
There's more… 287
See also 287

Converting times between time zones 287
Getting ready 287
How to do it… 287
How it works… 289
See also 290

Measuring function execution time with a standard clock 290
Getting ready 291
How to do it... 291
How it works... 292
See also 295

Generating hash values for custom types 295
Getting ready 296

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[ix]

How to do it... 296
How it works... 298
See also 299

Using std::any to store any value 299
Getting ready 299
How to do it... 299
How it works... 301
See also 303

Using std::optional to store optional values 303
Getting ready 303
How to do it... 303
How it works... 306
See also 307

Using std::variant as a type-safe union 308
Getting ready 308
How to do it... 308
How it works... 310
There's more... 311
See also 311

Visiting an std::variant 311
Getting ready 311
How to do it... 312
How it works... 315
See also 316

Using std::span for contiguous sequences of objects 316
Getting ready 316
How to do it… 317
How it works… 318
See also 319

Registering a function to be called when a program exits normally 319
Getting ready 320
How to do it... 320
How it works... 321
See also 322

Using type traits to query properties of types 323
Getting ready 323
How to do it... 323
How it works... 325
There's more... 327
See also 327

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[x]

Writing your own type traits 327
Getting ready 328
How to do it... 328
How it works... 330
See also 331

Using std::conditional to choose between types 331
Getting ready 331
How to do it... 331
How it works... 333
See also 334

Chapter 7: Working with Files and Streams 335
Reading and writing raw data from/to binary files 336

Getting ready 336
How to do it... 336
How it works... 338
There's more... 343
See also 345

Reading and writing objects from/to binary files 345
Getting ready 345
How to do it... 347
How it works... 349
See also 351

Using localized settings for streams 351
Getting ready 351
How to do it... 352
How it works... 354
See also 356

Using I/O manipulators to control the output of a stream 357
Getting ready 357
How to do it... 357
How it works... 358
See also 365

Using monetary I/O manipulators 365
Getting ready 365
How to do it... 366
How it works... 367
See also 368

Using time I/O manipulators 368
Getting ready 368
How to do it... 368

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[xi]

How it works... 370
See also 372

Working with filesystem paths 372
Getting ready 372
How to do it... 372
How it works... 375
See also 376

Creating, copying, and deleting files and directories 377
Getting ready 377
How to do it... 377
How it works... 379
See also 382

Removing content from a file 382
Getting ready 382
How to do it... 383
How it works... 384
See also 385

Checking the properties of an existing file or directory 385
Getting ready 385
How to do it... 386
How it works... 388
See also 389

Enumerating the content of a directory 390
Getting ready 390
How to do it... 390
How it works... 392
There's more... 394
See also 395

Finding a file 396
Getting ready 396
How to do it... 396
How it works... 397
See also 398

Chapter 8: Leveraging Threading and Concurrency 399
Working with threads 400

Getting ready 400
How to do it... 401
How it works... 403
See also 405

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[xii]

Synchronizing access to shared data with mutexes and locks 405
Getting ready 406
How to do it... 406
How it works... 407
See also 412

Avoiding using recursive mutexes 412
Getting ready 413
How to do it... 413
How it works... 414
See also 415

Handling exceptions from thread functions 415
Getting ready 415
How to do it... 415
How it works... 417
See also 418

Sending notifications between threads 418
Getting ready 419
How to do it... 419
How it works... 420
See also 426

Using promises and futures to return values from threads 426
Getting ready 426
How to do it... 426
How it works... 427
There's more... 429
See also 429

Executing functions asynchronously 429
Getting ready 430
How to do it... 431
How it works... 432
See also 434

Using atomic types 434
Getting ready 434
How to do it... 434
How it works... 437
See also 443

Implementing parallel map and fold with threads 444
Getting ready 444
How to do it... 445
How it works... 449

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[xiii]

See also 452
Implementing parallel map and fold with tasks 453

Getting ready 453
How to do it... 453
How it works... 457
There's more... 461
See also 463

Implementing parallel map and fold with standard parallel algorithms 464
Getting ready 464
How to do it... 464
How it works... 465
There's more... 467
See also 469

Using joinable threads and cancellation mechanisms 469
Getting ready 469
How to do it... 469
How it works... 473
See also 474

Using thread synchronization mechanisms 474
Getting ready 475
How to do it... 475
How it works... 478
See also 481

Chapter 9: Robustness and Performance 483
Using exceptions for error handling 484

Getting ready 484
How to do it... 484
How it works... 486
There's more... 489
See also 491

Using noexcept for functions that do not throw exceptions 491
How to do it... 492
How it works... 493
There's more... 495
See also 496

Ensuring constant correctness for a program 496
How to do it... 496
How it works... 497
There's more... 501
See also 501

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[xiv]

Creating compile-time constant expressions 502
Getting ready 502
How to do it... 503
How it works... 504
There's more… 506
See also 507

Creating immediate functions 508
How to do it… 508
How it works… 509
See also 510

Performing correct type casts 510
How to do it... 511
How it works... 513
There's more... 515
See also 516

Using unique_ptr to uniquely own a memory resource 516
Getting ready 516
How to do it... 517
How it works... 519
See also 522

Using shared_ptr to share a memory resource 522
Getting ready 523
How to do it... 523
How it works... 527
See also 529

Implementing move semantics 529
Getting ready 529
How to do it... 531
How it works... 533
There's more... 535
See also 535

Consistent comparison with the operator <=> 535
Getting ready 536
How to do it… 536
How it works… 537
See also 543

Chapter 10: Implementing Patterns and Idioms 545
Avoiding repetitive if...else statements in factory patterns 546

Getting ready 546
How to do it... 547

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[xv]

How it works... 548
There's more... 548
See also 550

Implementing the pimpl idiom 550
Getting ready 550
How to do it... 552
How it works... 554
There's more... 555
See also 557

Implementing the named parameter idiom 557
Getting ready 558
How to do it... 558
How it works... 561
See also 562

Separating interfaces and implementations with the
non-virtual interface idiom 562

Getting ready 563
How to do it... 563
How it works... 564
See also 567

Handling friendship with the attorney-client idiom 567
Getting ready 568
How to do it... 568
How it works... 570
See also 571

Static polymorphism with the curiously recurring template pattern 571
Getting ready 572
How to do it... 572
How it works... 574
There's more... 575
See also 576

Implementing a thread-safe singleton 576
Getting ready 577
How to do it... 577
How it works... 578
There's more... 579
See also 580

Chapter 11: Exploring Testing Frameworks 581
Getting started with Boost.Test 582

Getting ready 583

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[xvi]

How to do it... 583
How it works... 584
There's more... 585
See also 587

Writing and invoking tests with Boost.Test 587
Getting ready 587
How to do it... 589
How it works... 592
See also 593

Asserting with Boost.Test 593
Getting ready 594
How to do it... 594
How it works... 595
See also 597

Using fixtures in Boost.Test 597
Getting ready 598
How to do it... 599
How it works... 600
See also 601

Controlling outputs with Boost.Test 601
Getting ready 602
How to do it... 602
How it works... 603
There's more... 606
See also 606

Getting started with Google Test 606
Getting ready 606
How to do it... 607
How it works... 607
There's more... 609
See also 610

Writing and invoking tests with Google Test 610
Getting ready 610
How to do it... 610
How it works... 611
See also 613

Asserting with Google Test 613
How to do it... 614
How it works... 616
See also 617

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[xvii]

Using test fixtures with Google Test 617
Getting ready 617
How to do it... 618
How it works... 619
See also 620

Controlling output with Google Test 620
Getting ready 621
How to do it... 622
How it works... 623
See also 623

Getting started with Catch2 624
Getting ready 624
How to do it... 624
How it works... 625
There's more... 626
See also 627

Writing and invoking tests with Catch2 627
How to do it... 627
How it works... 630
See also 632

Asserting with Catch2 632
Getting ready 632
How to do it... 633
How it works... 634
See also 637

Controlling output with Catch2 637
Getting ready 638
How to do it… 639
How it works... 641
See also 642

Chapter 12: C++20 Core Features 643
Working with modules 644

Getting ready 644
How to do it... 645
How it works... 648
See also 650

Understanding module partitions 650
Getting ready 651
How to do it... 651
How it works... 654

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[xviii]

There's more... 655
See also 657

Specifying requirements on template arguments with concepts 657
Getting ready 658
How to do it... 658
How it works... 659
There's more... 663
See also 663

Using requires expressions and clauses 663
Getting ready 663
How to do it... 664
How it works... 667
See also 668

Iterating over collections with the ranges library 668
Getting ready 669
How to do it... 669
How it works... 672
There's more... 674
See also 675

Creating your own range view 675
Getting ready 675
How to do it... 675
How it works... 680
See also 681

Creating a coroutine task type for asynchronous computations 681
Getting ready 682
How to do it... 683
How it works... 687
There's more... 691
See also 692

Creating a coroutine generator type for sequences of values 692
Getting ready 692
How to do it... 694
How it works... 698
There's more... 700
See also 700

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[xix]

Bibliography 701
Websites 701
Articles and books 701

Other Books You May Enjoy 707
Index 711

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

[xxi]

Preface

C++ is one of the most popular and most widely used programming languages,
and it has been like that for three decades. Designed with a focus on performance,
efficiency, and flexibility, C++ combines paradigms such as object-oriented,
imperative, generic, and functional programming. C++ is standardized by the
International Organization for Standardization (ISO) and has undergone massive
changes over the last decade. With the standardization of C++11, the language
has entered into a new age, which has been widely referred to as modern C++.
Type inference, move semantics, lambda expressions, smart pointers, uniform
initialization, variadic templates, and many other recent features have changed the
way we write code in C++ to the point that it almost looks like a new programming
language. This change is being further advanced with the release of the C++20
standard that is supposed to happen during 2020. The new standard includes many
new changes to the language, such as modules, concepts, and coroutines, as well as
to the standard library, such as ranges, text formatting, and calendars.

This book addresses many of the new features included in C++11, C++14, C++17,
and the forthcoming C++20. This book is organized in recipes, each covering one
particular language or library feature, or a common problem that developers face
and its typical solution using modern C++. Through more than 130 recipes, you
will learn to master both core language features and the standard libraries, including
those for strings, containers, algorithms, iterators, streams, regular expressions,
threads, filesystem, atomic operations, utilities, and ranges.

This second edition of the book took several months to write, and during this
time the work on the C++20 standard has been completed. However, at the time
of writing this preface, the standard is yet to be approved and will be published
later this year.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[xxii]

More than 30 new or updated recipes in this book cover C++20 features, including
modules, concepts, coroutines, ranges, threads and synchronization mechanisms,
text formatting, calendars and time zones, immediate functions, the three-way
comparison operator, and the new span class.

All the recipes in the book contain code samples that show how to use a feature
or how to solve a problem. These code samples have been written using Visual
Studio 2019, but have been also compiled using Clang and GCC. Since the support
for various language and library features has been gradually added to all these
compilers, it is recommended that you use the latest version to ensure that all of
them are supported. At the time of writing this preface, the latest versions are GCC
10.1, Clang 12.0 (in progress), and VC++ 2019 version 14.27 (from Visual Studio 2019
version 16.7). Although all these compilers are C++17 complete, the support for
C++20 varies from compiler to compiler. Please refer to https://en.cppreference.
com/w/cpp/compiler_support to check your compiler's support for C++20 features.

Who this book is for
This book is intended for all C++ developers, regardless of their experience level.
The typical reader is an entry- or medium-level C++ developer who wants to master
the language and become a prolific modern C++ developer. The experienced C++
developer will find a good reference for many C++11, C++14, C++17, and C++20
language and library features that may come in handy from time to time. The
book consists of more than 130 recipes that are simple, intermediate, or advanced.
However, they all require prior knowledge of C++, and that includes functions,
classes, templates, namespaces, macros, and others. Therefore, if you are not familiar
with the language, it is recommended that you first read an introductory book to
familiarize yourself with the core aspects, and then proceed with this book.

What this book covers
Chapter 1, Learning Modern Core Language Features, teaches you about modern
core language features, including type inference, uniform initialization, scoped
enumerations, range-based for loops, structured bindings, class template argument
deduction, and others.

Chapter 2, Working with Numbers and Strings, discusses how to convert between
numbers and strings, generate pseudo-random numbers, work with regular
expressions and various types of string, as well as how to format text using the
C++20 text formatting library.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://en.cppreference.com/w/cpp/compiler_support
https://en.cppreference.com/w/cpp/compiler_support

Preface

[xxiii]

Chapter 3, Exploring Functions, dives into defaulted and deleted functions, variadic
templates, lambda expressions, and higher-order functions.

Chapter 4, Preprocessing and Compilation, takes a look at various aspects of
compilation, from how to perform conditional compilation, to compile-time
assertions, code generation, and hinting the compiler with attributes.

Chapter 5, Standard Library Containers, Algorithms, and Iterators, introduces you to
several standard containers, many algorithms, and teaches you how to write your
own random-access iterator.

Chapter 6, General-Purpose Utilities, dives into the chrono library, including the C++20
calendars and time zones support; the any, optional, variant, and span types; and
type traits.

Chapter 7, Working with Files and Streams, explains how to read and write data to/
from streams, use I/O manipulators to control streams, and explores the filesystem
library.

Chapter 8, Leveraging Threading and Concurrency, teaches you how to work with
threads, mutexes, locks, condition variables, promises, futures, atomic types, as well
as the C++20 latches, barriers, and semaphores.

Chapter 9, Robustness and Performance, focuses on exceptions, constant correctness,
type casts, smart pointers, and move semantics.

Chapter 10, Implementing Patterns and Idioms, covers various useful patterns and
idioms, such as the pimpl idiom, the non-virtual interface idiom, and the curiously
recurring template pattern.

Chapter 11, Exploring Testing Frameworks, gives you a kickstart with three of the most
widely used testing frameworks, Boost.Test, Google Test, and Catch2.

Chapter 12, C++20 Core Features, introduces you to the most important new additions
to the C++20 standard—modules, concepts, coroutines, and ranges.

To get the most out of this book
The code presented in the book is available for download from https://github.com/
PacktPublishing/Modern-Cpp-Cookbook-Second-Edition, although I encourage you
to try writing all the samples by yourself. In order to compile them, you need VC++
2019 16.7 on Windows and GCC 10.1 or Clang 12.0 on Linux and Mac. If you don't
have the latest version of the compiler, or you want to try another compiler, you can
use one that is available online.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Modern-Cpp-Cookbook-Second-Edition
https://github.com/PacktPublishing/Modern-Cpp-Cookbook-Second-Edition

Preface

[xxiv]

Although there are various online platforms that you could use, I recommend
Wandbox, available at https://wandbox.org/, and Compiler Explorer, available
at https://godbolt.org/.

Download the example code files
You can download the example code files for this book from your account at http://
www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at http://www.packtpub.com.
2. Select the SUPPORT tab.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box and follow the on-screen

instructions.
Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Modern-CPP-Programming-Cookbook-Second-Edition. We also have
other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams
used in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781800208988_ColorImages.pdf.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://wandbox.org/
https://godbolt.org/
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com
https://github.com/PacktPublishing/Modern-CPP-Programming-Cookbook-Second-Edition
https://github.com/PacktPublishing/Modern-CPP-Programming-Cookbook-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781800208988_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800208988_ColorImages.pdf

Preface

[xxv]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter
handles. For example: "The geometry module was defined in a file called geometry.
ixx/.cppm, although any file name would have had the same result."

A block of code is set as follows:

static std::map<
 std::string,
 std::function<std::unique_ptr<Image>()>> mapping
{
 { "bmp", []() {return std::make_unique<BitmapImage>(); } },
 { "png", []() {return std::make_unique<PngImage>(); } },
 { "jpg", []() {return std::make_unique<JpgImage>(); } }
};

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are highlighted:

static std::map<
 std::string,
 std::function<std::unique_ptr<Image>()>> mapping
{
 { "bmp", []() {return std::make_unique<BitmapImage>(); } },
 { "png", []() {return std::make_unique<PngImage>(); } },
 { "jpg", []() {return std::make_unique<JpgImage>(); } }
};

Any command-line input or output is written as follows:

running thread 140296854550272
running thread 140296846157568
running thread 140296837764864

Bold: Indicates a new term, an important word, or words that you see on the screen,
for example, in menus or dialog boxes, also appear in the text like this. For example:
"Select System info from the Administration panel."

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[xxvi]

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com, and mention the book's title in the
subject of your message. If you have questions about any aspect of this book, please
email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book we would be grateful
if you would report this to us. Please visit, packtpub.com/support/errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location address
or website name. Please contact us at copyright@packtpub.com with a link to the
material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book,
please visit http://authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and use
your unbiased opinion to make purchase decisions, we at Packt can understand what
you think about our products, and our authors can see your feedback on their book.
Thank you!

For more information about Packt, please visit packtpub.com.

Warnings or important notes appear like this.

Tips and tricks appear like this.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://packtpub.com/support/errata
http://authors.packtpub.com
http://packtpub.com

[1]

1
Learning Modern Core

Language Features
The C++ language has gone through a major transformation in the past decade
with the development and release of C++11 and then, later, with its newer versions:
C++14, C++17, and C++20. These new standards have introduced new concepts,
simplified and extended existing syntax and semantics, and overall transformed the
way we write code. C++11 looks like a new language, and code written using the
new standards is called modern C++ code.

The recipes included in this chapter are as follows:

• Using auto whenever possible
• Creating type aliases and alias templates
• Understanding uniform initialization
• Understanding the various forms of non-static member initialization
• Controlling and querying object alignment
• Using scoped enumerations
• Using override and final for virtual methods
• Using range-based for loops to iterate on a range
• Enabling range-based for loops for custom types
• Using explicit constructors and conversion operators to avoid implicit

conversion
• Using unnamed namespaces instead of static globals

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Modern Core Language Features

[2]

• Using inline namespaces for symbol versioning
• Using structured bindings to handle multi-return values
• Simplifying code with class template argument deduction

Let's start by learning about automatic type deduction.

Using auto whenever possible
Automatic type deduction is one of the most important and widely used features
in modern C++. The new C++ standards have made it possible to use auto as a
placeholder for types in various contexts and let the compiler deduce the actual type.
In C++11, auto can be used for declaring local variables and for the return type of a
function with a trailing return type. In C++14, auto can be used for the return type
of a function without specifying a trailing type and for parameter declarations in
lambda expressions. Future standard versions are likely to expand the use of auto to
even more cases. The use of auto in these contexts has several important benefits, all
of which will be discussed in the How it works... section. Developers should be aware
of them, and prefer auto whenever possible. An actual term was coined for this by
Andrei Alexandrescu and promoted by Herb Sutter—almost always auto (AAA).

How to do it...
Consider using auto as a placeholder for the actual type in the following situations:

• To declare local variables with the form auto name = expression when you
do not want to commit to a specific type:

auto i = 42; // int
auto d = 42.5; // double
auto s = "text"; // char const *
auto v = { 1, 2, 3 }; // std::initializer_list<int>

• To declare local variables with the auto name = type-id { expression }
form when you need to commit to a specific type:

auto b = new char[10]{ 0 }; // char*
auto s1 = std::string {"text"}; // std::string
auto v1 = std::vector<int> { 1, 2, 3 }; // std::vector<int>
auto p = std::make_shared<int>(42); // std::shared_ptr<int>

• To declare named lambda functions, with the form auto name = lambda-
expression, unless the lambda needs to be passed or returned to a function:

auto upper = [](char const c) {return toupper(c); };

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 1

[3]

• To declare lambda parameters and return values:
auto add = [](auto const a, auto const b) {return a + b;};

• To declare a function return type when you don't want to commit to a
specific type:

template <typename F, typename T>
auto apply(F&& f, T value)
{
 return f(value);
}

How it works...
The auto specifier is basically a placeholder for an actual type. When using auto, the
compiler deduces the actual type from the following instances:

• From the type of expression used to initialize a variable, when auto is used to
declare variables.

• From the trailing return type or the type of the return expression of a
function, when auto is used as a placeholder for the return type of a function.

In some cases, it is necessary to commit to a specific type. For instance, in the first
example in the previous section, the compiler deduces the type of s to be char const
*. If the intention was to have an std::string, then the type must be specified
explicitly. Similarly, the type of v was deduced as std::initializer_list<int>.
However, the intention could be to have an std::vector<int>. In such cases, the type
must be specified explicitly on the right side of the assignment.

There are some important benefits of using the auto specifier instead of actual types;
the following is a list of, perhaps, the most important ones:

• It is not possible to leave a variable uninitialized. This is a common mistake
that developers make when declaring variables specifying the actual type.
However, this is not possible with auto, which requires an initialization of
the variable in order to deduce the type.

• Using auto ensures that you always use the correct type and that implicit
conversion will not occur. Consider the following example where we retrieve
the size of a vector to a local variable. In the first case, the type of the variable
is int, though the size() method returns size_t. This means an implicit
conversion from size_t to int will occur. However, using auto for the type
will deduce the correct type; that is, size_t:

auto v = std::vector<int>{ 1, 2, 3 };

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Modern Core Language Features

[4]

// implicit conversion, possible loss of data
int size1 = v.size();

// OK
auto size2 = v.size();

// ill-formed (warning in gcc/clang, error in VC++)
auto size3 = int{ v.size() };

• Using auto promotes good object-oriented practices, such as preferring
interfaces over implementations. The fewer the number of types specified,
the more generic the code is and more open to future changes, which is a
fundamental principle of object-oriented programming.

• It means less typing and less concern for actual types that we don't care about
anyway. It is very often the case that even though we explicitly specify the
type, we don't actually care about it. A very common case is with iterators,
but there are many more. When you want to iterate over a range, you don't
care about the actual type of the iterator. You are only interested in the
iterator itself; so, using auto saves time used for typing possibly long names
and helps you focus on actual code and not type names. In the following
example, in the first for loop, we explicitly use the type of the iterator. It
is a lot of text to type; the long statements can actually make the code less
readable, and you also need to know the type name that you actually don't
care about. The second loop with the auto specifier looks simpler and saves
you from typing and caring about actual types:

std::map<int, std::string> m;
for (std::map<int, std::string>::const_iterator
 it = m.cbegin();
 it != m.cend(); ++it)
{ /*...*/ }

for (auto it = m.cbegin(); it != m.cend(); ++it)
{ /*...*/ }

• Declaring variables with auto provides a consistent coding style with the
type always in the right-hand side. If you allocate objects dynamically, you
need to write the type both on the left and right side of the assignment, for
example, int* p = new int(42). With auto, the type is specified only once on
the right side.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 1

[5]

However, there are some gotchas when using auto:

• The auto specifier is only a placeholder for the type, not for the const/
volatile and references specifiers. If you need a const/volatile and/or
reference type, then you need to specify them explicitly. In the following
example, foo.get() returns a reference to int; when the variable x is
initialized from the return value, the type deduced by the compiler is int,
not int&. Therefore, any change made to x will not propagate to foo.x_.
In order to do so, we should use auto&:

class foo {
 int x_;
public:
 foo(int const x = 0) :x_{ x } {}
 int& get() { return x_; }
};

foo f(42);
auto x = f.get();
x = 100;
std::cout << f.get() << '\n'; // prints 42

• It is not possible to use auto for types that are not moveable:
auto ai = std::atomic<int>(42); // error

• It is not possible to use auto for multi-word types, such as long long, long
double, or struct foo. However, in the first case, the possible workarounds
are to use literals or type aliases; as for the second, using struct/class
in that form is only supported in C++ for C compatibility and should be
avoided anyway:

auto l1 = long long{ 42 }; // error

using llong = long long;
auto l2 = llong{ 42 }; // OK
auto l3 = 42LL; // OK

• If you use the auto specifier but still need to know the type, you can do so in
most IDEs by putting the cursor over a variable, for instance. If you leave the
IDE, however, that is not possible anymore, and the only way to know the
actual type is to deduce it yourself from the initialization expression, which
could mean searching through the code for function return types.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Modern Core Language Features

[6]

The auto can be used to specify the return type from a function. In C++11, this
requires a trailing return type in the function declaration. In C++14, this has been
relaxed, and the type of the return value is deduced by the compiler from the return
expression. If there are multiple return values, they should have the same type:

// C++11
auto func1(int const i) -> int
{ return 2*i; }

// C++14
auto func2(int const i)
{ return 2*i; }

As mentioned earlier, auto does not retain const/volatile and reference qualifiers.
This leads to problems with auto as a placeholder for the return type from a function.
To explain this, let's consider the preceding example with foo.get(). This time,
we have a wrapper function called proxy_get() that takes a reference to a foo,
calls get(), and returns the value returned by get(), which is an int&. However,
the compiler will deduce the return type of proxy_get() as being int, not int&.
Trying to assign that value to an int& fails with an error:

class foo
{
 int x_;
public:
 foo(int const x = 0) :x_{ x } {}
 int& get() { return x_; }
};

auto proxy_get(foo& f) { return f.get(); }

auto f = foo{ 42 };
auto& x = proxy_get(f); // cannot convert from 'int' to 'int &'

To fix this, we need to actually return auto&. However, this is a problem with
templates and perfect forwarding the return type without knowing whether it is
a value or a reference. The solution to this problem in C++14 is decltype(auto),
which will correctly deduce the type:

decltype(auto) proxy_get(foo& f) { return f.get(); }
auto f = foo{ 42 };
decltype(auto) x = proxy_get(f);

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 1

[7]

The decltype specifier is used to inspect the declared type of an entity or an
expression. It's mostly useful when declaring types are cumbersome or not possible
at all to declare with the standard notation. Examples of this include declaring
lambda types and types that depend on template parameters.

The last important case where auto can be used is with lambdas. As of C++14,
both lambda return types and lambda parameter types can be auto. Such a lambda
is called a generic lambda because the closure type defined by the lambda has
a templated call operator. The following shows a generic lambda that takes two
auto parameters and returns the result of applying operator+ to the actual types:

auto ladd = [] (auto const a, auto const b) { return a + b; };
struct
{
 template<typename T, typename U>
 auto operator () (T const a, U const b) const { return a+b; }
} L;

This lambda can be used to add anything for which the operator+ is defined,
as shown in the following snippet:

auto i = ladd(40, 2); // 42
auto s = ladd("forty"s, "two"s); // "fortytwo"s

In this example, we used the ladd lambda to add two integers and to concatenate
to std::string objects (using the C++14 user-defined literal operator ""s).

See also
• Creating type aliases and alias templates to learn about aliases for types
• Understanding uniform initialization to see how brace-initialization works

Creating type aliases and alias templates
In C++, it is possible to create synonyms that can be used instead of a type name.
This is achieved by creating a typedef declaration. This is useful in several cases,
such as creating shorter or more meaningful names for a type or names for
function pointers. However, typedef declarations cannot be used with templates
to create template type aliases. An std::vector<T>, for instance, is not a type
(std::vector<int> is a type), but a sort of family of all types that can be created
when the type placeholder T is replaced with an actual type.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Modern Core Language Features

[8]

In C++11, a type alias is a name for another already declared type, and an alias
template is a name for another already declared template. Both of these types
of aliases are introduced with a new using syntax.

How to do it...
• Create type aliases with the form using identifier = type-id, as in the

following examples:
using byte = unsigned char;
using byte_ptr = unsigned char *;
using array_t = int[10];
using fn = void(byte, double);

void func(byte b, double d) { /*...*/ }

byte b{42};
byte_ptr pb = new byte[10] {0};
array_t a{0,1,2,3,4,5,6,7,8,9};
fn* f = func;

• Create alias templates with the form template<template-params-list>
identifier = type-id, as in the following examples:

template <class T>
class custom_allocator { /* ... */ };

template <typename T>
using vec_t = std::vector<T, custom_allocator<T>>;

vec_t<int> vi;
vec_t<std::string> vs;

For consistency and readability, you should do the following:

• Not mix typedef and using declarations when creating aliases
• Prefer the using syntax to create names of function pointer types

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 1

[9]

How it works...
A typedef declaration introduces a synonym (an alias, in other words) for a type.
It does not introduce another type (like a class, struct, union, or enum declaration).
Type names introduced with a typedef declaration follow the same hiding rules
as identifier names. They can also be redeclared, but only to refer to the same type
(therefore, you can have valid multiple typedef declarations that introduce the same
type name synonym in a translation unit, as long as it is a synonym for the same
type). The following are typical examples of typedef declarations:

typedef unsigned char byte;
typedef unsigned char * byte_ptr;
typedef int array_t[10];
typedef void(*fn)(byte, double);

template<typename T>
class foo {
 typedef T value_type;
};

typedef std::vector<int> vint_t;

A type alias declaration is equivalent to a typedef declaration. It can appear in a
block scope, class scope, or namespace scope. According to C++11 paragraph 7.1.3.2:

"A typedef-name can also be introduced by an alias declaration. The identifier
following the using keyword becomes a typedef-name and the optional attribute-
specifier-seq following the identifier appertains to that typedef-name. It has the same
semantics as if it were introduced by the typedef specifier. In particular, it does not
define a new type and it shall not appear in the type-id."

An alias declaration is, however, more readable and clearer about the actual type
that is aliased when it comes to creating aliases for array types and function pointer
types. In the examples from the How to do it... section, it is easily understandable that
array_t is a name for the type array of 10 integers, while fn is a name for a function
type that takes two parameters of the type byte and double and returns void. This
is also consistent with the syntax for declaring std::function objects (for example,
std::function<void(byte, double)> f).

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Modern Core Language Features

[10]

It is important to take note of the following things:

• Alias templates cannot be partially or explicitly specialized.
• Alias templates are never deduced by template argument deduction when

deducing a template parameter.
• The type produced when specializing an alias template is not allowed to

directly or indirectly make use of its own type.

The driving purpose of the new syntax is to define alias templates. These are
templates that, when specialized, are equivalent to the result of substituting the
template arguments of the alias template for the template parameters in the type-id.

See also
• Simplifying code with class template argument deduction to learn how to use class

templates without explicitly specifying template arguments

Understanding uniform initialization
Brace-initialization is a uniform method for initializing data in C++11. For this
reason, it is also called uniform initialization. It is arguably one of the most important
features from C++11 that developers should understand and use. It removes
previous distinctions between initializing fundamental types, aggregate and
non-aggregate types, and arrays and standard containers.

Getting ready
To continue with this recipe, you need to be familiar with direct initialization,
which initializes an object from an explicit set of constructor arguments, and
copy initialization, which initializes an object from another object. The following
is a simple example of both types of initialization:

std::string s1("test"); // direct initialization
std::string s2 = "test"; // copy initialization

With these in mind, let's explore how to perform uniform initialization.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 1

[11]

How to do it...
To uniformly initialize objects regardless of their type, use the brace-initialization
form {}, which can be used for both direct initialization and copy initialization.
When used with brace-initialization, these are called direct-list and copy-list-
initialization:

T object {other}; // direct-list-initialization
T object = {other}; // copy-list-initialization

Examples of uniform initialization are as follows:

• Standard containers:
std::vector<int> v { 1, 2, 3 };
std::map<int, std::string> m { {1, "one"}, { 2, "two" }};

• Dynamically allocated arrays:
int* arr2 = new int[3]{ 1, 2, 3 };

• Arrays:
int arr1[3] { 1, 2, 3 };

• Built-in types:
int i { 42 };
double d { 1.2 };

• User-defined types:
class foo
{
 int a_;
 double b_;
public:
 foo():a_(0), b_(0) {}
 foo(int a, double b = 0.0):a_(a), b_(b) {}
};

foo f1{};
foo f2{ 42, 1.2 };
foo f3{ 42 };

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Modern Core Language Features

[12]

• User-defined POD types:
struct bar { int a_; double b_;};
bar b{ 42, 1.2 };

How it works...
Before C++11, objects required different types of initialization based on their type:

• Fundamental types could be initialized using assignment:
int a = 42;
double b = 1.2;

• Class objects could also be initialized using assignment from a single value if
they had a conversion constructor (prior to C++11, a constructor with a single
parameter was called a conversion constructor):

class foo
{
 int a_;
public:
 foo(int a):a_(a) {}
};
foo f1 = 42;

• Non-aggregate classes could be initialized with parentheses (the functional
form) when arguments were provided and only without any parentheses
when default initialization was performed (call to the default constructor).
In the next example, foo is the structure defined in the How to do it... section:

foo f1; // default initialization
foo f2(42, 1.2);
foo f3(42);
foo f4(); // function declaration

• Aggregate and POD types could be initialized with brace-initialization. In the
following example, bar is the structure defined in the How to do it... section:

bar b = {42, 1.2};
int a[] = {1, 2, 3, 4, 5};

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 1

[13]

Apart from the different methods of initializing the data, there are also some
limitations. For instance, the only way to initialize a standard container (apart
from copy constructing) is to first declare an object and then insert elements into
it; std::vector was an exception because it is possible to assign values from an
array that can be initialized prior using aggregate initialization. On the other hand,
however, dynamically allocated aggregates could not be initialized directly.

All the examples in the How to do it... section use direct initialization, but copy
initialization is also possible with brace-initialization. These two forms, direct
and copy initialization, may be equivalent in most cases, but copy initialization
is less permissive because it does not consider explicit constructors in its implicit
conversion sequence, which must produce an object directly from the initializer,
whereas direct initialization expects an implicit conversion from the initializer to
an argument of the constructor. Dynamically allocated arrays can only be initialized
using direct initialization.

Of the classes shown in the preceding examples, foo is the one class that has
both a default constructor and a constructor with parameters. To use the default
constructor to perform default initialization, we need to use empty braces; that is,
{}. To use the constructor with parameters, we need to provide the values for all
the arguments in braces {}. Unlike non-aggregate types, where default initialization
means invoking the default constructor, for aggregate types, default initialization
means initializing with zeros.

Initialization of standard containers, such as the vector and the map, also shown
previously, is possible because all standard containers have an additional constructor
in C++11 that takes an argument of the type std::initializer_list<T>. This is
basically a lightweight proxy over an array of elements of the type T const. These
constructors then initialize the internal data from the values in the initializer list.

A Plain Old Data (POD) type is a type that is both trivial (has
special members that are compiler-provided or explicitly defaulted
and occupy a contiguous memory area) and has a standard layout
(a class that does not contain language features, such as virtual
functions, which are incompatible with the C language, and all
members have the same access control). The concept of POD types
has been deprecated in C++20 in favor of trivial and standard
layout types.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Modern Core Language Features

[14]

The way initialization using std::initializer_list works is as follows:

• The compiler resolves the types of the elements in the initialization list
(all the elements must have the same type).

• The compiler creates an array with the elements in the initializer list.
• The compiler creates an std::initializer_list<T> object to wrap the

previously created array.
• The std::initializer_list<T> object is passed as an argument to the

constructor.

An initializer list always takes precedence over other constructors where brace-
initialization is used. If such a constructor exists for a class, it will be called when
brace-initialization is performed:

class foo
{
 int a_;
 int b_;
public:
 foo() :a_(0), b_(0) {}

 foo(int a, int b = 0) :a_(a), b_(b) {}
 foo(std::initializer_list<int> l) {}
};

foo f{ 1, 2 }; // calls constructor with initializer_list<int>

The precedence rule applies to any function, not just constructors. In the following
example, two overloads of the same function exist. Calling the function with an
initializer list resolves to a call to the overload with an std::initializer_list:

void func(int const a, int const b, int const c)
{
 std::cout << a << b << c << '\n';
}

void func(std::initializer_list<int> const list)
{
 for (auto const & e : list)
 std::cout << e << '\n';
}

func({ 1,2,3 }); // calls second overload

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 1

[15]

This, however, has the potential of leading to bugs. Let's take, for example, the
std::vector type. Among the constructors of the vector, there is one that has a single
argument, representing the initial number of elements to be allocated, and another
one that has an std::initializer_list as an argument. If the intention is to create
a vector with a preallocated size, using brace-initialization will not work as the
constructor with the std::initializer_list will be the best overload to be called:

std::vector<int> v {5};

The preceding code does not create a vector with five elements, but a vector with one
element with a value of 5. To be able to actually create a vector with five elements,
initialization with the parentheses form must be used:

std::vector<int> v (5);

Another thing to note is that brace-initialization does not allow narrowing
conversion. According to the C++ standard (refer to paragraph 8.5.4 of the standard),
a narrowing conversion is an implicit conversion:

"- From a floating-point type to an integer type.

- From long double to double or float, or from double to float, except where the source
is a constant expression and the actual value after conversion is within the range of
values that can be represented (even if it cannot be represented exactly).

- From an integer type or unscoped enumeration type to a floating-point type, except
where the source is a constant expression and the actual value after conversion will
fit into the target type and will produce the original value when converted to its
original type.

- From an integer type or unscoped enumeration type to an integer type that cannot
represent all the values of the original type, except where the source is a constant
expression and the actual value after conversion will fit into the target type and will
produce the original value when converted to its original type."

The following declarations trigger compiler errors because they require a narrowing
conversion:

int i{ 1.2 }; // error

double d = 47 / 13;
float f1{ d }; // error

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Modern Core Language Features

[16]

To fix this error, an explicit conversion must be done:

int i{ static_cast<int>(1.2) };

double d = 47 / 13;
float f1{ static_cast<float>(d) };

Let's consider one more example:

float f2{47/13}; // OK, f2=3

The preceding declaration is, however, correct because an implicit conversion from
int to float exists. The expression 47/13 is first evaluated to integer value 3, which
is then assigned to the variable f2 of the type float.

There's more...
The following example shows several examples of direct-list-initialization and
copy-list-initialization. In C++11, the deduced type of all these expressions is
std::initializer_list<int>:

auto a = {42}; // std::initializer_list<int>
auto b {42}; // std::initializer_list<int>
auto c = {4, 2}; // std::initializer_list<int>
auto d {4, 2}; // std::initializer_list<int>

C++17 has changed the rules for list initialization, differentiating between the direct-
and copy-list-initialization. The new rules for type deduction are as follows:

• For copy-list-initialization, auto deduction will deduce an std::initializer_
list<T> if all the elements in the list have the same type, or be ill-formed.

• For direct-list-initialization, auto deduction will deduce a T if the list has
a single element, or be ill-formed if there is more than one element.

A brace-initialization list is not an expression and does not have
a type. Therefore, decltype cannot be used on a brace-init-list,
and template type deduction cannot deduce the type that matches
a brace-init-list.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 1

[17]

Based on these new rules, the previous examples would change as follows
(the deduced type is mentioned in comments):

auto a = {42}; // std::initializer_list<int>
auto b {42}; // int
auto c = {4, 2}; // std::initializer_list<int>
auto d {4, 2}; // error, too many

In this case, a and c are deduced as std::initializer_list<int>, b is deduced as an
int, and d, which uses direct initialization and has more than one value in the brace-
init-list, triggers a compiler error.

See also
• Using auto whenever possible to understand how automatic type deduction

works in C++
• Understanding the various forms of non-static member initialization to learn how

to best perform initialization of class members

Understanding the various forms
of non-static member initialization
Constructors are places where non-static class member initialization is done. Many
developers prefer assignments in the constructor body. Aside from the several
exceptional cases when that is actually necessary, initialization of non-static
members should be done in the constructor's initializer list or, as of C++11, using
default member initialization when they are declared in the class. Prior to C++11,
constants and non-constant non-static data members of a class had to be initialized
in the constructor. Initialization on declaration in a class was only possible for static
constants. As we will see here, this limitation was removed in C++11, which allows
the initialization of non-statics in the class declaration. This initialization is called
default member initialization and is explained in the following sections.

This recipe will explore the ways non-static member initialization should be done.
Using the appropriate initialization method for each member leads not only to more
efficient code, but also to better organized and more readable code.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Modern Core Language Features

[18]

How to do it...
To initialize non-static members of a class, you should:

• Use default member initialization for constants, both static and non-static
(see [1] and [2] in the following code).

• Use default member initialization to provide default values for members
of classes with multiple constructors that would use a common initializer
for those members (see [3] and [4] in the following code).

• Use the constructor initializer list to initialize members that don't have
default values, but depend on constructor parameters (see [5] and [6] in the
following code).

• Use assignment in constructors when the other options are not possible
(examples include initializing data members with the pointer this, checking
constructor parameter values, and throwing exceptions prior to initializing
members with those values or self-references of two non-static data
members).

The following example shows these forms of initialization:

struct Control
{
 const int DefaultHeight = 14; // [1]
 const int DefaultWidth = 80; // [2]

 TextVerticalAligment valign = TextVerticalAligment::Middle; // [3]
 TextHorizontalAligment halign = TextHorizontalAligment::Left; // [4]

 std::string text;

 Control(std::string const & t) : text(t) // [5]
 {}

 Control(std::string const & t,
 TextVerticalAligment const va,
 TextHorizontalAligment const ha):
 text(t), valign(va), halign(ha) // [6]
 {}
};

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 1

[19]

How it works...
Non-static data members are supposed to be initialized in the constructor's initializer
list, as shown in the following example:

struct Point
{
 double X, Y;
 Point(double const x = 0.0, double const y = 0.0) : X(x), Y(y) {}
};

Many developers, however, do not use the initializer list, but prefer assignments in
the constructor's body, or even mix assignments and the initializer list. That could
be for several reasons—for larger classes with many members, the constructor
assignments may look easier to read than long initializer lists, perhaps split on many
lines, or it could be because they are familiar with other programming languages
that don't have an initializer list. It also could also happen, unfortunately, for various
reasons they don't even know about it.

Using assignments in the constructor is not efficient, as this can create temporary
objects that are later discarded. If not initialized in the initializer list, non-static
members are initialized via their default constructor and then, when assigned a
value in the constructor's body, the assignment operator is invoked. This can lead to
inefficient work if the default constructor allocates a resource (such as memory or a
file) and that has to be deallocated and reallocated in the assignment operator. This is
exemplified in the following snippet:

struct foo
{
 foo()
 { std::cout << "default constructor\n"; }
 foo(std::string const & text)
 { std::cout << "constructor '" << text << "\n"; }
 foo(foo const & other)
 { std::cout << "copy constructor\n"; }

It is important to note that the order in which non-static data
members are initialized is the order in which they were declared
in the class definition, and not the order of their initialization in a
constructor initializer list. On the other hand, the order in which
non-static data members are destroyed is the reversed order of
construction.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Modern Core Language Features

[20]

 foo(foo&& other)
 { std::cout << "move constructor\n"; };
 foo& operator=(foo const & other)
 { std::cout << "assignment\n"; return *this; }
 foo& operator=(foo&& other)
 { std::cout << "move assignment\n"; return *this;}
 ~foo()
 { std::cout << "destructor\n"; }
};

struct bar
{
 foo f;

 bar(foo const & value)
 {
 f = value;
 }
};

foo f;
bar b(f);

The preceding code produces the following output, showing how the data member f
is first default initialized and then assigned a new value:

default constructor
default constructor
assignment
destructor
destructor

Changing the initialization from the assignment in the constructor body to the
initializer list replaces the calls to the default constructor, plus the assignment
operator, with a call to the copy constructor:

bar(foo const & value) : f(value) { }

Adding the preceding line of code produces the following output:

default constructor
copy constructor
destructor
destructor

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 1

[21]

For those reasons, at least for types other than the built-in types (such as bool, char,
int, float, double, or pointers), you should prefer the constructor initializer list.
However, to be consistent with your initialization style, you should always prefer the
constructor initializer list when possible. There are several situations when using the
initializer list is not possible; these include the following cases (but the list could be
expanded for other cases):

• If a member has to be initialized with a pointer or reference to the object
that contains it, using the this pointer in the initialization list may trigger a
warning with some compilers that it is used before the object is constructed.

• If you have two data members that must contain references to each other.
• If you want to test an input parameter and throw an exception before

initializing a non-static data member with the value of the parameter.

Starting with C++11, non-static data members can be initialized when declared in
the class. This is called default member initialization because it is supposed to represent
initialization with default values. Default member initialization is intended for
constants and for members that are not initialized based on constructor parameters
(in other words, members whose value does not depend on the way the object is
constructed):

enum class TextFlow { LeftToRight, RightToLeft };

struct Control
{
 const int DefaultHeight = 20;
 const int DefaultWidth = 100;

 TextFlow textFlow = TextFlow::LeftToRight;
 std::string text;

 Control(std::string t) : text(t)
 {}
};

In the preceding example, DefaultHeight and DefaultWidth are both constants;
therefore, the values do not depend on the way the object is constructed, so they
are initialized when declared. The textFlow object is a non-constant non-static
data member whose value also does not depend on the way the object is initialized
(it could be changed via another member function); therefore, it is also initialized
using default member initialization when it is declared. text, on the other hand, is
also a non-constant non-static data member, but its initial value depends on the way
the object is constructed.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Modern Core Language Features

[22]

Therefore, it is initialized in the constructor's initializer list using a value passed
as an argument to the constructor.

If a data member is initialized both with the default member initialization and
constructor initializer list, the latter takes precedence and the default value is
discarded. To exemplify this, let's again consider the foo class mentioned earlier
and the following bar class, which uses it:

struct bar
{
 foo f{"default value"};

 bar() : f{"constructor initializer"}
 {
 }
};

bar b;

The output differs, in this case, as follows:

constructor 'constructor initializer'
destructor

The reason for the different behavior is that the value from the default initializer list
is discarded, and the object is not initialized twice.

See also
• Understanding uniform initialization to see how brace-initialization works

Controlling and querying object
alignment
C++11 provides standardized methods for specifying and querying the alignment
requirements of a type (something that was previously possible only through
compiler-specific methods). Controlling the alignment is important in order to
boost performance on different processors and enable the use of some instructions
that only work with data on particular alignments.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 1

[23]

For example, Intel Streaming SIMD Extensions (SSE) and Intel SSE2, which are
a set of processor instructions that can greatly increase performance when the same
operations are to be applied on multiple data objects, require 16 bytes of alignment
of data. On the other hand, for Intel Advanced Vector Extensions (or Intel
AVX), which expands most integer processor commands to 256 bits, it is highly
recommended to use 32 bytes alignment. This recipe explores the alignas specifier
for controlling the alignment requirements and the alignof operator, which retrieves
the alignment requirements of a type.

Getting ready
You should be familiar with what data alignment is and the way the compiler
performs default data alignment. However, basic information about the latter
is provided in the How it works... section.

How to do it...
• To control the alignment of a type (both at the class level or data member

level) or an object, use the alignas specifier:
struct alignas(4) foo
{
 char a;
 char b;
};
struct bar
{
 alignas(2) char a;
 alignas(8) int b;
};
alignas(8) int a;
alignas(256) long b[4];

• To query the alignment of a type, use the alignof operator:
auto align = alignof(foo);

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Modern Core Language Features

[24]

How it works...
Processors do not access memory one byte at a time, but in larger chunks of powers
of two (2, 4, 8, 16, 32, and so on). Owing to this, it is important that compilers align
data in memory so that it can be easily accessed by the processor. Should this data be
misaligned, the compiler has to do extra work to access data; it has to read multiple
chunks of data, shift and discard unnecessary bytes, and combine the rest.

C++ compilers align variables based on the size of their data type. The standard
only specifies the sizes of char, signed char, unsigned char, char8_t, and std::byte,
which must be 1. It also requires that the size of short must be at least 16 bits, the
size of long must be at least 32 bits, and that the size of long long must be at least
64 bits. It also requires that 1 == sizeof(char) <= sizeof(short) <= sizeof(int) <=
sizeof(long) <= sizeof(long long). Therefore, the size of most types are compiler-
specific and may depend on the platform. Typically, these are 1 byte for bool and
char, 2 bytes for short, 4 bytes for int, long, and float, 8 bytes for double and long
long, and so on. When it comes to structures or unions, the alignment must match
the size of the largest member in order to avoid performance issues. To exemplify
this, let's consider the following data structures:

struct foo1 // size = 1, alignment = 1
{ // foo1: +-+
 char a; // members: |a|
};

struct foo2 // size = 2, alignment = 1
{ // foo2: +-+-+
 char a; // members |a|b|
 char b;
};

struct foo3 // size = 8, alignment = 4
{ // foo3: +----+----+
 char a; // members: |a...|bbbb|
 int b; // . represents a byte of padding
};

foo1 and foo2 are different sizes, but the alignment is the same—that is, 1—because
all data members are of the type char, which has a size of 1 byte. In the structure
foo3, the second member is an integer, whose size is 4. As a result, the alignment
of members of this structure is done at addresses that are multiples of 4. To achieve
this, the compiler introduces padding bytes.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 1

[25]

The structure foo3 is actually transformed into the following:

struct foo3_
{
 char a; // 1 byte
 char _pad0[3]; // 3 bytes padding to put b on a 4-byte boundary
 int b; // 4 bytes
};

Similarly, the following structure has a size of 32 bytes and an alignment of 8; that
is because the largest member is a double whose size is 8. This structure, however,
requires padding in several places to make sure that all the members can be accessed
at addresses that are multiples of 8:

struct foo4 // size = 24, alignment = 8
{ // foo4: +--------+--------+--------+--------+
 int a; // members: |aaaab...|cccc....|dddddddd|e.......|
 char b; // . represents a byte of padding
 float c;
 double d;
 bool e;
};

The equivalent structure that's created by the compiler is as follows:

struct foo4_
{
 int a; // 4 bytes
 char b; // 1 byte
 char _pad0[3]; // 3 bytes padding to put c on a 8-byte boundary
 float c; // 4 bytes
 char _pad1[4]; // 4 bytes padding to put d on a 8-byte boundary
 double d; // 8 bytes
 bool e; // 1 byte
 char _pad2[7]; // 7 bytes padding to make sizeof struct multiple of 8
};

In C++11, specifying the alignment of an object or type is done using the alignas
specifier. This can take either an expression (an integral constant expression that
evaluates to 0 or a valid value for an alignment), a type-id, or a parameter pack.
The alignas specifier can be applied to the declaration of a variable or a class data
member that does not represent a bit field, or to the declaration of a class, union, or
enumeration.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Modern Core Language Features

[26]

The type or object on which an alignas specification is applied will have the
alignment requirement equal to the largest, greater than zero, expression of
all alignas specifications used in the declaration.

There are several restrictions when using the alignas specifier:

• The only valid alignments are the powers of two (1, 2, 4, 8, 16, 32, and so on).
Any other values are illegal, and the program is considered ill-formed; that
doesn't necessarily have to produce an error, as the compiler may choose
to ignore the specification.

• An alignment of 0 is always ignored.
• If the largest alignas on a declaration is smaller than the natural alignment

without any alignas specifier, then the program is also considered ill-formed.

In the following example, the alignas specifier has been applied to a class
declaration. The natural alignment without the alignas specifier would have
been 1, but with alignas(4), it becomes 4:

struct alignas(4) foo
{
 char a;
 char b;
};

In other words, the compiler transforms the preceding class into the following:

struct foo
{
 char a;
 char b;
 char _pad0[2];
};

The alignas specifier can be applied both to the class declaration and the member
data declarations. In this case, the strictest (that is, largest) value wins. In the
following example, member a has a natural size of 1 and requires an alignment of
2; member b has a natural size of 4 and requires an alignment of 8, so the strictest
alignment would be 8. The alignment requirement of the entire class is 4, which is
weaker (that is, smaller) than the strictest required alignment and therefore it will
be ignored, though the compiler will produce a warning:

struct alignas(4) foo
{
 alignas(2) char a;

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 1

[27]

 alignas(8) int b;
};

The result is a structure that looks like this:

struct foo
{
 char a;
 char _pad0[7];
 int b;
 char _pad1[4];
};

The alignas specifier can also be applied to variables. In the following example,
variable a, which is an integer, is required to be placed in memory at a multiple
of 8. The next variable, the array of 4 longs, is required to be placed in memory at
a multiple of 256. As a result, the compiler will introduce up to 244 bytes of padding
between the two variables (depending on where in memory, at an address multiple
of 8, variable a is located):

alignas(8) int a;
alignas(256) long b[4];

printf("%p\n", &a); // eg. 0000006C0D9EF908
printf("%p\n", &b); // eg. 0000006C0D9EFA00

Looking at the addresses, we can see that the address of a is indeed a multiple of 8,
and that the address of b is a multiple of 256 (hexadecimal 100).

To query the alignment of a type, we use the alignof operator. Unlike sizeof, this
operator can only be applied to type-ids, and not to variables or class data members.
The types it can be applied to can be complete types, an array type, or a reference
type. For arrays, the value that's returned is the alignment of the element type; for
references, the value that's returned is the alignment of the referenced type. Here
are several examples:

Expression Evaluation
alignof(char) 1, because the natural alignment of char is 1.
alignof(int) 4, because the natural alignment of int is 4.
alignof(int*) 4 on 32-bit, 8 on 64-bit, the alignment for pointers.
alignof(int[4]) 4, because the natural alignment of the element type is 4.

alignof(foo&) 8, because the specified alignment for the class foo, which is the
referred type (as shown in the previous example), was 8.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Modern Core Language Features

[28]

The alignas specifier is useful if you wish to force an alignment for a data type
(taking into consideration the restriction mentioned previously) so that variables of
that type can be accessed and copied efficiently. This means optimizing CPU reads
and writes and avoiding unnecessary invalidation from cache lines. This can be
highly important in some categories of applications where performance is key, such
as games or trading applications. On the other hand, the alignof operator retries the
minimum alignment requirement of a specified type.

See also
• Creating type aliases and alias templates to learn about aliases for types

Using scoped enumerations
Enumeration is a basic type in C++ that defines a collection of values, always of
an integral underlying type. Their named values, which are constant, are called
enumerators. Enumerations declared with the keyword enum are called unscoped
enumerations, while enumerations declared with enum class or enum struct are
called scoped enumerations. The latter ones were introduced in C++11 and are
intended to solve several problems with unscoped enumerations, which are
explained in this recipe.

How to do it...
When working with enumerations, you should:

• Prefer to use scoped enumerations instead of unscoped ones
• Declare scoped enumerations using enum class or enum struct:

enum class Status { Unknown, Created, Connected };
Status s = Status::Created;

The enum class and enum struct declarations are equivalent,
and throughout this recipe and the rest of this book, we will use
enum class.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 1

[29]

Because scope enumerations are restricted namespaces, the C++20 standard allows
us to associate them with a using directive. You can do the following:

• Introduce a scoped enumeration identifier in the local scope with a using
directive, as follows:

int main()
{
 using Status::Unknown;
 Status s = Unknown;
}

• Introduce all the identifiers of a scoped enumeration in the local scope with
a using directive, as follows:

struct foo
{
 enum class Status { Unknown, Created, Connected };

 using enum Status;
};

foo::Status s = foo::Created; // instead of
 // foo::Status::Created

• Use a using enum directive to introduce the enum identifiers in a switch
statement to simplify your code:

void process(Status const s)
{
 switch (s)
 {
 using enum Status;
 case Unknown: /*...*/ break;
 case Created: /*...*/ break;
 case Connected: /*...*/ break;
 }
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Modern Core Language Features

[30]

How it works...
Unscoped enumerations have several issues that create problems for developers:

• They export their enumerators to the surrounding scope (for which reason,
they are called unscoped enumerations), and that has the following two
drawbacks:

a. It can lead to name clashes if two enumerations in the same
namespace have enumerators with the same name, and

b. It's not possible to use an enumerator using its fully qualified name:

enum Status {Unknown, Created, Connected};
enum Codes {OK, Failure, Unknown}; // error
auto status = Status::Created; // error

• Prior to C++ 11, they could not specify the underlying type, which is
required to be an integral type. This type must not be larger than int, unless
the enumerator value cannot fit a signed or unsigned integer. Owing to this,
forward declaration of enumerations was not possible. The reason for this
was that the size of the enumeration was not known. This was because the
underlying type was not known until the values of the enumerators were
defined so that the compiler could pick the appropriate integer type. This
has been fixed in C++11.

• Values of enumerators implicitly convert to int. This means you can
intentionally or accidentally mix enumerations that have a certain meaning
and integers (which may not even be related to the meaning of the
enumeration) and the compiler will not be able to warn you:

enum Codes { OK, Failure };
void include_offset(int pixels) {/*...*/}
include_offset(Failure);

The scoped enumerations are basically strongly typed enumerations that behave
differently than the unscoped enumerations:

• They do not export their enumerators to the surrounding scope. The two
enumerations shown earlier would change to the following, no longer
generating a name collision and being possible to fully qualify the names
of the enumerators:

enum class Status { Unknown, Created, Connected };
enum class Codes { OK, Failure, Unknown }; // OK
Codes code = Codes::Unknown; // OK

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 1

[31]

• You can specify the underlying type. The same rules for underlying types of
unscoped enumerations apply to scoped enumerations too, except that the
user can explicitly specify the underlying type. This also solves the problem
with forward declarations since the underlying type can be known before the
definition is available:

enum class Codes : unsigned int;

void print_code(Codes const code) {}

enum class Codes : unsigned int
{
 OK = 0,
 Failure = 1,
 Unknown = 0xFFFF0000U
};

• Values of scoped enumerations no longer convert implicitly to int. Assigning
the value of an enum class to an integer variable would trigger a compiler
error unless an explicit cast is specified:

Codes c1 = Codes::OK; // OK
int c2 = Codes::Failure; // error
int c3 = static_cast<int>(Codes::Failure); // OK

However, the scoped enumerations have a drawback: they are restricted
namespaces. They do not export the identifiers in the outer scope, which can be
inconvenient at times. For instance, if you are writing a switch and you need to
repeat the enumeration name for each case label, as in the following example:

std::string_view to_string(Status const s)
{
 switch (s)
 {
 case Status::Unknown: return "Unknown";
 case Status::Created: return "Created";
 case Status::Connected: return "Connected";
 }
}

In C++20, this can be simplified with the help of a using directive with the name
of the scoped enumeration. The preceding code can be simplified as follows:

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Modern Core Language Features

[32]

std::string_view to_string(Status const s)
{
 switch (s)
 {
 using enum Status;
 case Unknown: return "Unknown";
 case Created: return "Created";
 case Connected: return "Connected";
 }
}

The effect of this using directive is that all the enumerator identifiers are introduced
in the local scope, making it possible to refer to them with the unqualified form. It is
also possible to bring only a particular enum identifier to the local scope with a using
directive with the qualified identifier name, such as using Status::Connected.

See also
• Creating compile-time constant expressions in Chapter 9, Robustness and

Performance to learn how to work with compile-time constants

Using override and final for virtual
methods
Unlike other similar programming languages, C++ does not have a specific syntax
for declaring interfaces (which are basically classes with pure virtual methods only)
and also has some deficiencies related to how virtual methods are declared. In
C++, the virtual methods are introduced with the virtual keyword. However, the
keyword virtual is optional for declaring overrides in derived classes, which can
lead to confusion when dealing with large classes or hierarchies. You may need to
navigate throughout the hierarchy up to the base to figure out whether a function is
virtual or not. On the other hand, sometimes, it is useful to make sure that a virtual
function or even a derived class can no longer be overridden or derived further. In
this recipe, we will see how to use the C++11 special identifiers override and final
to declare virtual functions or classes.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 1

[33]

Getting ready
You should be familiar with inheritance and polymorphism in C++ and concepts
such as abstract classes, pure specifiers, virtual, and overridden methods.

How to do it...
To ensure the correct declaration of virtual methods both in base and derived classes,
but also that you increase readability, do the following:

• Prefer to use the virtual keyword when declaring virtual functions
in derived classes that are supposed to override virtual functions from
a base class.

• Always use the override special identifier after the declarator part
of a virtual function's declaration or definition:

class Base
{
 virtual void foo() = 0;
 virtual void bar() {}
 virtual void foobar() = 0;
};

void Base::foobar() {}

class Derived1 : public Base
{
 virtual void foo() override = 0;
 virtual void bar() override {}
 virtual void foobar() override {}
};

class Derived2 : public Derived1
{
 virtual void foo() override {}
};

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Modern Core Language Features

[34]

To ensure that functions cannot be overridden further or that classes cannot
be derived any more, use the final special identifier:

• After the declarator part of a virtual function declaration or definition
to prevent further overrides in a derived class:

class Derived2 : public Derived1
{
 virtual void foo() final {}
};

• After the name of a class in the declaration of the class to prevent further
derivations of the class:

class Derived4 final : public Derived1
{
 virtual void foo() override {}
};

How it works...
The way override works is very simple; in a virtual function declaration or
definition, it ensures that the function is actually overriding a base class function;
otherwise, the compiler will trigger an error.

It should be noted that both the override and final keywords are special identifiers
that have a meaning only in a member function declaration or definition. They are
not reserved keywords and can still be used elsewhere in a program as user-defined
identifiers.

Using the override special identifier helps the compiler detect situations where
a virtual method does not override another one, as shown in the following example:

class Base
{
public:
 virtual void foo() {}
 virtual void bar() {}
};

The declarator is the part of the type of a function that excludes the
return type.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 1

[35]

class Derived1 : public Base
{
public:
 void foo() override {}
 // for readability use the virtual keyword

 virtual void bar(char const c) override {}
 // error, no Base::bar(char const)
};

Without the presence of the override specifier, the virtual bar(char const) method
of the Derived1 class would not be an overridden method, but an overload of the
bar() from Base.

The other special identifier, final, is used in a member function declaration or
definition to indicate that the function is virtual and cannot be overridden in
a derived class. If a derived class attempts to override the virtual function, the
compiler triggers an error:

class Derived2 : public Derived1
{
 virtual void foo() final {}
};

class Derived3 : public Derived2
{
 virtual void foo() override {} // error
};

The final specifier can also be used in a class declaration to indicate that it cannot be
derived:

class Derived4 final : public Derived1
{
 virtual void foo() override {}
};

class Derived5 : public Derived4 // error
{
};

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Modern Core Language Features

[36]

Since both override and final have this special meaning when used in the defined
context and are not, in fact, reserved keywords, you can still use them anywhere else
in the C++ code. This ensured that existing code written before C++11 did not break
because of the use of these names for identifiers:

class foo
{
 int final = 0;
 void override() {}
};

Although the recommendation given earlier suggesting using both virtual and
override in the declaration of an overridden virtual method, the virtual keyword is
optional, and can be omitted to shorten the declaration. The presence of the override
specifier should be enough to indicate to the reader that the method is virtual. This is
rather a matter of personal preference and does not affect the semantics.

See also
• Static polymorphism with the curiously recurring template pattern in Chapter 10,

Implementing Patterns and Idioms to learn how the CRTP pattern helps with
implementing polymorphism at compile time

Using range-based for loops to iterate
on a range
Many programming languages support a variant of a for loop called for each; that
is, repeating a group of statements over the elements of a collection. C++ did not
have core language support for this until C++11. The closest feature was the general-
purpose algorithm from the standard library called std::for_each, which applies a
function to all the elements in a range. C++11 brought language support for for each
that's actually called range-based for loops. The new C++17 standard provides several
improvements for the original language feature.

Getting ready
In C++11, a range-based for loop has the following general syntax:

for (range_declaration : range_expression) loop_statement

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 1

[37]

To exemplify the various ways of using range-based for loops, we will use the
following functions, which return sequences of elements:

std::vector<int> getRates()
{
 return std::vector<int> {1, 1, 2, 3, 5, 8, 13};
}

std::multimap<int, bool> getRates2()
{
 return std::multimap<int, bool> {
 { 1, true },
 { 1, true },
 { 2, false },
 { 3, true },
 { 5, true },
 { 8, false },
 { 13, true }
 };
}

In the next section, we'll look at the various ways we can use range-based for loops.

How to do it...
Range-based for loops can be used in various ways:

• By committing to a specific type for the elements of the sequence:
auto rates = getRates();
for (int rate : rates)
 std::cout << rate << '\n';
for (int& rate : rates)
 rate *= 2;

• By not specifying a type and letting the compiler deduce it:
for (auto&& rate : getRates())
 std::cout << rate << '\n';

for (auto & rate : rates)
 rate *= 2;

for (auto const & rate : rates)
 std::cout << rate << '\n';

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Modern Core Language Features

[38]

• By using structured bindings and decomposition declaration in C++17:
for (auto&& [rate, flag] : getRates2())
 std::cout << rate << '\n';

How it works...
The expression for the range-based for loops shown earlier in the How to do it...
section is basically syntactic sugar as the compiler transforms it into something
else. Before C++17, the code generated by the compiler used to be the following:

{
 auto && __range = range_expression;
 for (auto __begin = begin_expr, __end = end_expr;
 __begin != __end; ++__begin) {
 range_declaration = *__begin;
 loop_statement
 }
}

What begin_expr and end_expr are in this code depends on the type of the range:

• For C-like arrays: __range and __range + __bound (where __bound is the
number of elements in the array).

• For a class type with begin and end members (regardless of their type and
accessibility): __range.begin() and __range.end().

• For others, it is begin(__range) and end(__range), which are determined
via argument-dependent lookup.

It is important to note that if a class contains any members (function, data member,
or enumerators) called begin or end, regardless of their type and accessibility, they
will be picked for begin_expr and end_expr. Therefore, such a class type cannot be
used in range-based for loops.

In C++17, the code generated by the compiler is slightly different:

{
 auto && __range = range_expression;
 auto __begin = begin_expr;
 auto __end = end_expr;

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 1

[39]

 for (; __begin != __end; ++__begin) {
 range_declaration = *__begin;
 loop_statement
 }
}

The new standard has removed the constraint that the begin expression and the end
expression must be the same type. The end expression does not need to be an actual
iterator, but it has to be able to be compared for inequality with an iterator. A benefit
of this is that the range can be delimited by a predicate. On the other hand, the end
expression is only evaluated once, and not every time the loop is iterated, which
could potentially increase performance.

See also
• Enabling range-based for loops for custom types to see how to make it possible for

user-defined types to be used with range-based for loops
• Iterating over collections with the ranges library in Chapter 12, C++20 Core

Features, to learn about the fundamentals of the C++20 ranges library
• Creating your own range view in Chapter 12, C++20 Core Features, to see how

to extend the C++20 range library's capabilities with user-defined range
adaptors

Enabling range-based for loops for
custom types
As we saw in the preceding recipe, range-based for loops, known as for each in
other programming languages, allow you to iterate over the elements of a range,
providing a simplified syntax over the standard for loops and making the code
more readable in many situations. However, range-based for loops do not work out
of the box with any type representing a range, but require the presence of a begin()
and end() function (for non-array types) either as a member or free function. In
this recipe, we will learn how to enable a custom type to be used in range-based
for loops.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Modern Core Language Features

[40]

Getting ready
It is recommended that you read the Using range-based for loops to iterate on a range
recipe before continuing with this one if you need to understand how range-based
for loops work, as well as what code the compiler generates for such a loop.

To show how we can enable range-based for loops for custom types representing
sequences, we will use the following implementation of a simple array:

template <typename T, size_t const Size>
class dummy_array
{
 T data[Size] = {};

public:
 T const & GetAt(size_t const index) const
 {
 if (index < Size) return data[index];
 throw std::out_of_range("index out of range");
 }

 void SetAt(size_t const index, T const & value)
 {
 if (index < Size) data[index] = value;
 else throw std::out_of_range("index out of range");
 }

 size_t GetSize() const { return Size; }
};

The purpose of this recipe is to enable writing code like the following:

dummy_array<int, 3> arr;
arr.SetAt(0, 1);
arr.SetAt(1, 2);
arr.SetAt(2, 3);

for(auto&& e : arr)
{
 std::cout << e << '\n';
}

The steps necessary to make all this possible are described in detail in the following
section.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 1

[41]

How to do it...
To enable a custom type to be used in range-based for loops, you need to do the
following:

• Create mutable and constant iterators for the type, which must implement
the following operators:

• operator++ (both the prefix and the postfix version) for incrementing
the iterator

• operator* for dereferencing the iterator and accessing the actual
element being pointed to by the iterator

• operator!= for comparing it with another iterator for inequality
• Provide free begin() and end() functions for the type.

Given the earlier example of a simple range, we need to provide the following:

1. The following minimal implementation of an iterator class:
template <typename T, typename C, size_t const Size>
class dummy_array_iterator_type
{
public:
 dummy_array_iterator_type(C& collection,
 size_t const index) :
 index(index), collection(collection)
 { }

 bool operator!= (dummy_array_iterator_type const & other)
const
 {
 return index != other.index;
 }

 T const & operator* () const
 {
 return collection.GetAt(index);
 }
 dummy_array_iterator_type& operator++()
 {
 ++index;
 return *this;
 }

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Modern Core Language Features

[42]

 dummy_array_iterator_type operator++(int)
 {
 auto temp = *this;
 ++*temp;
 return temp;
 }

private:
 size_t index;
 C& collection;
};

2. Alias templates for mutable and constant iterators:
template <typename T, size_t const Size>
using dummy_array_iterator =
 dummy_array_iterator_type<
 T, dummy_array<T, Size>, Size>;

template <typename T, size_t const Size>
using dummy_array_const_iterator =
 dummy_array_iterator_type<
 T, dummy_array<T, Size> const, Size>;

3. Free begin() and end() functions that return the corresponding begin and
end iterators, with overloads for both alias templates:

template <typename T, size_t const Size>
inline dummy_array_iterator<T, Size> begin(
 dummy_array<T, Size>& collection)
{
 return dummy_array_iterator<T, Size>(collection, 0);
}

template <typename T, size_t const Size>
inline dummy_array_iterator<T, Size> end(
 dummy_array<T, Size>& collection)
{
 return dummy_array_iterator<T, Size>(
 collection, collection.GetSize());
}

template <typename T, size_t const Size>

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 1

[43]

inline dummy_array_const_iterator<T, Size> begin(
 dummy_array<T, Size> const & collection)
{
 return dummy_array_const_iterator<T, Size>(
 collection, 0);
}

template <typename T, size_t const Size>
inline dummy_array_const_iterator<T, Size> end(
 dummy_array<T, Size> const & collection)
{
 return dummy_array_const_iterator<T, Size>(
 collection, collection.GetSize());
}

How it works...
Having this implementation available, the range-based for loop shown earlier
compiles and executes as expected. When performing argument-dependent lookup,
the compiler will identify the two begin() and end() functions that we wrote (which
take a reference to a dummy_array) and therefore the code it generates becomes valid.

In the preceding example, we have defined one iterator class template and two alias
templates, called dummy_array_iterator and dummy_array_const_iterator. The
begin() and end() functions both have two overloads for these two types of iterators.

This is necessary so that the container we have considered can be used in range-
based for loops with both constant and non-constant instances:

template <typename T, const size_t Size>
void print_dummy_array(dummy_array<T, Size> const & arr)
{
 for (auto && e : arr)
 {
 std::cout << e << '\n';
 }
}

A possible alternative to enable range-based for loops for the simple range class we
considered for this recipe is to provide the member begin() and end() functions. In
general, that will make sense only if you own and can modify the source code. On
the other hand, the solution shown in this recipe works in all cases and should be
preferred to other alternatives.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Modern Core Language Features

[44]

See also
• Creating type aliases and alias templates to learn about aliases for types
• Iterating over collections with the ranges library in Chapter 12, C++20 Core

Features, to learn about the fundamentals of the C++20 ranges library

Using explicit constructors and
conversion operators to avoid implicit
conversion
Before C++11, a constructor with a single parameter was considered a converting
constructor (because it takes a value of another type and creates a new instance of
the type out of it). With C++11, every constructor without the explicit specifier
is considered a converting constructor. Such a constructor defines an implicit
conversion from the type or types of its arguments to the type of the class. Classes can
also define converting operators that convert the type of the class to another specified
type. All of these are useful in some cases but can create problems in other cases. In
this recipe, we will learn how to use explicit constructors and conversion operators.

Getting ready
For this recipe, you need to be familiar with converting constructors and converting
operators. In this recipe, you will learn how to write explicit constructors and
conversion operators to avoid implicit conversions to and from a type. The use
of explicit constructors and conversion operators (called user-defined conversion
functions) enables the compiler to yield errors—which, in some cases, are coding
errors—and allow developers to spot those errors quickly and fix them.

How to do it...
To declare explicit constructors and explicit conversion operators (regardless of
whether they are functions or function templates), use the explicit specifier in the
declaration.

The following example shows both an explicit constructor and an explicit converting
operator:

struct handle_t
{
 explicit handle_t(int const h) : handle(h) {}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 1

[45]

 explicit operator bool() const { return handle != 0; };
private:
 int handle;
};

How it works...
To understand why explicit constructors are necessary and how they work, we will
first look at converting constructors. The following class, foo, has three constructors:
a default constructor (without parameters), a constructor that takes an int, and
a constructor that takes two parameters, an int and a double. They don't do
anything except print a message. As of C++11, these are all considered converting
constructors. The class also has a conversion operator that converts a value of the
foo type to a bool:

struct foo
{
 foo()
 { std::cout << "foo" << '\n'; }
 foo(int const a)
 { std::cout << "foo(a)" << '\n'; }
 foo(int const a, double const b)
 { std::cout << "foo(a, b)" << '\n'; }

 operator bool() const { return true; }
};

Based on this, the following definitions of objects are possible (note that the
comments represent the console's output):

foo f1; // foo()
foo f2 {}; // foo()

foo f3(1); // foo(a)
foo f4 = 1; // foo(a)
foo f5 { 1 }; // foo(a)
foo f6 = { 1 }; // foo(a)

foo f7(1, 2.0); // foo(a, b)
foo f8 { 1, 2.0 }; // foo(a, b)
foo f9 = { 1, 2.0 }; // foo(a, b)

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Modern Core Language Features

[46]

The variables f1 and f2 invoke the default constructor. f3, f4, f5, and f6 invoke
the constructor that takes an int. Note that all the definitions of these objects are
equivalent, even if they look different (f3 is initialized using the functional form,
f4 and f6 are copy initialized, and f5 is directly initialized using brace-init-list).
Similarly, f7, f8, and f9 invoke the constructor with two parameters.

In this case, f5 and f6 will print foo(l), while f8 and f9 will generate compiler
errors because all the elements of the initializer list should be integers.

It may be important to note that if foo defines a constructor that takes an
std::initializer_list, then all the initializations using {} would resolve
to that constructor:

foo(std::initializer_list<int> l)
{ std::cout << "foo(l)" << '\n'; }

These may all look right, but the implicit conversion constructors enable scenarios
where the implicit conversion may not be what we wanted. First, let's look at some
correct examples:

void bar(foo const f)
{
}

bar({}); // foo()
bar(1); // foo(a)
bar({ 1, 2.0 }); // foo(a, b)

The conversion operator to bool from the foo class also enables us to use foo objects
where Boolean values are expected. Here is an example:

bool flag = f1; // OK, expect bool conversion
if(f2) { /* do something */ } // OK, expect bool conversion
std::cout << f3 + f4 << '\n'; // wrong, expect foo addition
if(f5 == f6) { /* do more */ } // wrong, expect comparing foos

The first two are examples where foo is expected to be used as a Boolean. However,
the last two with addition and test for equality are probably incorrect, as we most
likely expect to add foo objects and test foo objects for equality, not the Booleans
they implicitly convert to.

Perhaps a more realistic example to understand where problems could arise would
be to consider a string buffer implementation. This would be a class that contains an
internal buffer of characters.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 1

[47]

This class provides several conversion constructors: a default constructor,
a constructor that takes a size_t parameter representing the size of the buffer
to preallocate, and a constructor that takes a pointer to char that should be used
to allocate and initialize the internal buffer. Succinctly, the implementation of the
string buffer that we use for this exemplification looks like this:

class string_buffer
{
public:
 string_buffer() {}

 string_buffer(size_t const size) {}

 string_buffer(char const * const ptr) {}

 size_t size() const { return ...; }
 operator bool() const { return ...; }
 operator char * const () const { return ...; }
};

Based on this definition, we could construct the following objects:

std::shared_ptr<char> str;
string_buffer b1; // calls string_buffer()
string_buffer b2(20); // calls string_buffer(size_t const)
string_buffer b3(str.get()); // calls string_buffer(char const*)

The object b1 is created using the default constructor and thus has an empty buffer;
b2 is initialized using the constructor with a single parameter where the value of the
parameter represents the size in terms of the characters of the internal buffer; and b3
is initialized with an existing buffer, which is used to define the size of the internal
buffer and copy its value into the internal buffer. However, the same definition also
enables the following object definitions:

enum ItemSizes {DefaultHeight, Large, MaxSize};

string_buffer b4 = 'a';
string_buffer b5 = MaxSize;

In this case, b4 is initialized with a char. Since an implicit conversion to size_t exists,
the constructor with a single parameter will be called. The intention here is not
necessarily clear; perhaps it should have been "a" instead of 'a', in which case the
third constructor would have been called.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Modern Core Language Features

[48]

However, b5 is most likely an error, because MaxSize is an enumerator representing
an ItemSizes and should have nothing to do with a string buffer size. These
erroneous situations are not flagged by the compiler in any way. The implicit
conversion of unscoped enums to int is a good argument for preferring to
use scoped enums (declared with enum class), which do not have this implicit
conversion. If ItemSizes was a scoped enum, the situation described here would
not appear.

When using the explicit specifier in the declaration of a constructor, that
constructor becomes an explicit constructor and no longer allows implicit
constructions of objects of a class type. To exemplify this, we will slightly
change the string_buffer class to declare all constructors as explicit:

class string_buffer
{
public:
 explicit string_buffer() {}

 explicit string_buffer(size_t const size) {}

 explicit string_buffer(char const * const ptr) {}

 explicit operator bool() const { return ...; }
 explicit operator char * const () const { return ...; }
};

The change here is minimal, but the definitions of b4 and b5 in the earlier example no
longer work and are incorrect. This is because the implicit conversions from char or
int to size_t are no longer available during overload resolution to figure out what
constructor should be called. The result is compiler errors for both b4 and b5. Note
that b1, b2, and b3 are still valid definitions, even if the constructors are explicit.

The only way to fix the problem, in this case, is to provide an explicit cast from char
or int to string_buffer:

string_buffer b4 = string_buffer('a');
string_buffer b5 = static_cast<string_buffer>(MaxSize);
string_buffer b6 = string_buffer{ "a" };

With explicit constructors, the compiler is able to immediately flag erroneous
situations and developers can react accordingly, either fixing the initialization
with a correct value or providing an explicit cast.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 1

[49]

The following definitions are still possible (and wrong) with explicit constructors:

string_buffer b7{ 'a' };
string_buffer b8('a');

Similar to constructors, conversion operators can be declared explicit (as shown
earlier). In this case, the implicit conversions from the object type to the type
specified by the conversion operator are no longer possible and require an explicit
cast. Considering b1 and b2, which are the string_buffer objects we defined earlier,
the following are no longer possible with an explicit conversion operator bool:

std::cout << b4 + b5 << '\n'; // error
if(b4 == b5) {} // error

Instead, they require explicit conversion to bool:

std::cout << static_cast<bool>(b4) + static_cast<bool>(b5);
if(static_cast<bool>(b4) == static_cast<bool>(b5)) {}

The addition of two bool values does not make much sense. The preceding example
is intended only to show how an explicit cast is required in order to make the
statement compile. The error issued by the compiler when there is no explicit static
cast, should help you figure out that the expression itself is wrong and something
else was probably intended.

See also
• Understanding uniform initialization to see how brace-initialization works

Using unnamed namespaces instead of
static globals
The larger a program, the greater the chances are you could run into name collisions
when your program is linked to multiple translation units. Functions or variables that
are declared in a source file, and are supposed to be local to the translation unit, may
collide with other similar functions or variables declared in another translation unit.

This is only the case when initialization is done with copy
initialization and not when using functional or universal
initialization.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Modern Core Language Features

[50]

That is because all the symbols that are not declared static have external linkage and
their names must be unique throughout the program. The typical C solution for this
problem is to declare those symbols as static, changing their linkage from external
to internal and therefore making them local to a translation unit. An alternative is
to prefix the names with the name of the module or library they belong to. In this
recipe, we will look at the C++ solution for this problem.

Getting ready
In this recipe, we will discuss concepts such as global functions and static functions,
as well as variables, namespaces, and translation units. We expect that you have
a basic understanding of these concepts. Apart from these, it is required that you
understand the difference between internal and external linkage; this is key for
this recipe.

How to do it...
When you are in a situation where you need to declare global symbols as static
to avoid linkage problems, you should prefer to use unnamed namespaces:

1. Declare a namespace without a name in your source file.
2. Put the definition of the global function or variable in the unnamed

namespace without making them static.

The following example shows two functions called print() in two different
translation units; each of them is defined in an unnamed namespace:

// file1.cpp
namespace
{
 void print(std::string message)
 {
 std::cout << "[file1] " << message << '\n';
 }
}
void file1_run()
{
 print("run");
}

// file2.cpp
namespace

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 1

[51]

{
 void print(std::string message)
 {
 std::cout << "[file2] " << message << '\n';
 }
}

void file2_run()
{
 print("run");
}

How it works...
When a function is declared in a translation unit, it has external linkage. This
means two functions with the same name from two different translation units would
generate a linkage error because it is not possible to have two symbols with the same
name. The way this problem is solved in C, and by some in C++ also, is to declare
the function or variable as static and change its linkage from external to internal. In
this case, its name is no longer exported outside the translation unit, and the linkage
problem is avoided.

The proper solution in C++ is to use unnamed namespaces. When you define
a namespace like the ones shown previously, the compiler transforms it into the
following:

// file1.cpp
namespace _unique_name_ {}
using namespace _unique_name_;
namespace _unique_name_
{
 void print(std::string message)
 {
 std::cout << "[file1] " << message << '\n';
 }
}
void file1_run()
{
 print("run");
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Modern Core Language Features

[52]

First of all, it declares a namespace with a unique name (what the name is and how
it generates that name is a compiler implementation detail and should not be a
concern). At this point, the namespace is empty, and the purpose of this line is to
basically establish the namespace. Second, a using directive brings everything from
the _unique_name_ namespace into the current namespace. Third, the namespace,
with the compiler-generated name, is defined as it was in the original source code
(when it had no name).

By defining the translation unit local print() functions in an unnamed namespace,
they have local visibility only, yet their external linkage no longer produces linkage
errors since they now have external unique names.

Unnamed namespaces also work in a perhaps more obscure situation involving
templates. Prior to C++11, template non-type arguments could not be names with
internal linkage, so using static variables was not possible. On the other hand,
symbols in an unnamed namespace have external linkage and could be used
as template arguments. Although this linkage restriction for template non-type
arguments was lifted in C++11, it is still present in the latest version of the VC++
compiler. This problem is shown in the following example:

template <int const& Size>
class test {};

static int Size1 = 10;

namespace
{
 int Size2 = 10;
}

test<Size1> t1;
test<Size2> t2;

In this snippet, the declaration of the t1 variable produces a compiler error because
the non-type argument expression, Size1, has internal linkage. On the other hand,
the declaration of the t2 variable is correct because Size2 has external linkage.
(Note that compiling this snippet with Clang and GCC does not produce an error.)

See also
• Using inline namespaces for symbol versioning to learn how to version your

source code using inline namespaces and conditional compilation

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 1

[53]

Using inline namespaces for symbol
versioning
The C++11 standard has introduced a new type of namespace called inline
namespaces, which are basically a mechanism that makes declarations from a nested
namespace look and act like they were part of the surrounding namespace. Inline
namespaces are declared using the inline keyword in the namespace declaration
(unnamed namespaces can also be inlined). This is a helpful feature for library
versioning, and in this recipe, we will learn how inline namespaces can be used
for versioning symbols. From this recipe, you will learn how to version your source
code using inline namespaces and conditional compilation.

Getting ready
In this recipe, we will discuss namespaces and nested namespaces, templates and
template specializations, and conditional compilation using preprocessor macros.
Familiarity with these concepts is required in order to proceed with this recipe.

How to do it...
To provide multiple versions of a library and let the user decide what version to use,
do the following:

• Define the content of the library inside a namespace.
• Define each version of the library or parts of it inside an inner inline

namespace.
• Use preprocessor macros and #if directives to enable a particular version

of the library.

The following example shows a library that has two versions that clients can use:

namespace modernlib
{
 #ifndef LIB_VERSION_2
 inline namespace version_1
 {
 template<typename T>
 int test(T value) { return 1; }
 }
 #endif

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Modern Core Language Features

[54]

 #ifdef LIB_VERSION_2
 inline namespace version_2
 {
 template<typename T>
 int test(T value) { return 2; }
 }
 #endif
}

How it works...
A member of an inline namespace is treated as if it was a member of the surrounding
namespace. Such a member can be partially specialized, explicitly instantiated, or
explicitly specialized. This is a transitive property, which means that if a namespace,
A, contains an inline namespace, B, that contains an inline namespace, C, then the
members of C appear as they were members of both B and A and the members of
B appear as they were members of A.

To better understand why inline namespaces are helpful, let's consider the case of
developing a library that evolves over time from a first version to a second version
(and further on). This library defines all its types and functions under a namespace
called modernlib. In the first version, this library could look like this:

namespace modernlib
{
 template<typename T>
 int test(T value) { return 1; }
}

A client of the library can make the following call and get back the value 1:

auto x = modernlib::test(42);

However, the client might decide to specialize the template function test()
as follows:

struct foo { int a; };

namespace modernlib
{
 template<>
 int test(foo value) { return value.a; }
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 1

[55]

auto y = modernlib::test(foo{ 42 });

In this case, the value of y is no longer 1 but 42 because the user-specialized function
gets called.

Everything is working correctly so far, but as a library developer, you decide to
create a second version of the library, yet still ship both the first and the second
version and let the user control what to use with a macro. In this second version, you
provide a new implementation of the test() function that no longer returns 1, but
2. To be able to provide both the first and second implementations, you put them in
nested namespaces called version_1 and version_2 and conditionally compile the
library using preprocessor macros:

namespace modernlib
{
 namespace version_1
 {
 template<typename T>
 int test(T value) { return 1; }
 }

 #ifndef LIB_VERSION_2
 using namespace version_1;
 #endif

 namespace version_2
 {
 template<typename T>
 int test(T value) { return 2; }
 }

 #ifdef LIB_VERSION_2
 using namespace version_2;
 #endif
}

Suddenly, the client code will break, regardless of whether it uses the first or
second version of the library. This is because the test function is now inside a nested
namespace, and the specialization for foo is done in the modernlib namespace,
when it should actually be done in modernlib::version_1 or modernlib::version_2.
This is because the specialization of a template is required to be done in the same
namespace where the template was declared.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Modern Core Language Features

[56]

In this case, the client needs to change the code, like this:

#define LIB_VERSION_2

#include "modernlib.h"

struct foo { int a; };
namespace modernlib
{
 namespace version_2
 {
 template<>
 int test(foo value) { return value.a; }
 }
}

This is a problem because the library leaks implementation details, and the client
needs to be aware of those in order to do template specialization. These internal
details are hidden with inline namespaces in the manner shown in the How to do
it... section of this recipe. With that definition of the modernlib library, the client
code with the specialization of the test() function in the modernlib namespace
is no longer broken, because either version_1::test() or version_2::test()
(depending on what version the client is actually using) acts as being part of the
enclosing modernlib namespace when template specialization is done. The details
of the implementation are now hidden to the client, who only sees the surrounding
namespace, modernlib.

However, you should keep in mind that the namespace std is reserved for the
standard and should never be inlined. Also, a namespace should not be defined
inline if it was not inline in its first definition.

See also
• Using unnamed namespaces instead of static globals to explore anonymous

namespaces and learn how they help
• Conditionally compiling your source code in Chapter 4, Preprocessing and

Compilation, to learn the various options for performing conditional
compilation

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 1

[57]

Using structured bindings to handle
multi-return values
Returning multiple values from a function is very common, yet there is no first-
class solution in C++ to make it possible in a straightforward way. Developers
have to choose between returning multiple values through reference parameters
to a function, defining a structure to contain the multiple values, or returning an
std::pair or std::tuple. The first two use named variables, which gives them the
advantage that they clearly indicate the meaning of the return value, but have the
disadvantage that they have to be explicitly defined. std::pair has its members
called first and second, while std::tuple has unnamed members that can only
be retrieved with a function call, but can be copied to named variables using
std::tie(). None of these solutions are ideal.

C++17 extends the semantic use of std::tie() into a first-class core language feature
that enables unpacking the values of a tuple into named variables. This feature is
called structured bindings.

Getting ready
For this recipe, you should be familiar with the standard utility types std::pair and
std::tuple and the utility function std::tie().

How to do it...
To return multiple values from a function using a compiler that supports C++17, you
should do the following:

1. Use an std::tuple for the return type:
std::tuple<int, std::string, double> find()
{
 return std::make_tuple(1, "marius", 1234.5);
}

2. Use structured bindings to unpack the values of the tuple into named objects:
auto [id, name, score] = find();

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Modern Core Language Features

[58]

3. Use decomposition declaration to bind the returned values to the variables
inside an if statement or switch statement:

if (auto [id, name, score] = find(); score > 1000)
{
 std::cout << name << '\n';
}

How it works...
Structured bindings are a language feature that works just like std::tie(), except
that we don't have to define named variables for each value that needs to be
unpacked explicitly with std::tie(). With structured bindings, we define all the
named variables in a single definition using the auto specifier so that the compiler
can infer the correct type for each variable.

To exemplify this, let's consider the case of inserting items into an std::map. The
insert method returns an std::pair containing an iterator for the inserted element
or the element that prevented the insertion, and a Boolean indicating whether the
insertion was successful or not. The following code is very explicit and the use
of second or first->second makes the code harder to read because you need to
constantly figure out what they represent:

std::map<int, std::string> m;

auto result = m.insert({ 1, "one" });
std::cout << "inserted = " << result.second << '\n'
 << "value = " << result.first->second << '\n';

The preceding code can be made more readable with the use of std::tie,
which unpacks tuples into individual objects (and works with std::pair because
std::tuple has a converting assignment from std::pair):

std::map<int, std::string> m;
std::map<int, std::string>::iterator it;
bool inserted;

std::tie(it, inserted) = m.insert({ 1, "one" });
std::cout << "inserted = " << inserted << '\n'
 << "value = " << it->second << '\n';

std::tie(it, inserted) = m.insert({ 1, "two" });
std::cout << "inserted = " << inserted << '\n'
 << "value = " << it->second << '\n';

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 1

[59]

The code is not necessarily simpler because it requires defining the objects that the
pair is unpacked to in advance. Similarly, the more elements the tuple has, the more
objects you need to define, but using named objects makes the code easier to read.

C++17 structured bindings elevates unpacking tuple elements into named objects to
the rank of a language feature; it does not require the use of std::tie(), and objects
are initialized when declared:

std::map<int, std::string> m;
{
 auto [it, inserted] = m.insert({ 1, "one" });
 std::cout << "inserted = " << inserted << '\n'
 << "value = " << it->second << '\n';
}

{
 auto [it, inserted] = m.insert({ 1, "two" });
 std::cout << "inserted = " << inserted << '\n'
 << "value = " << it->second << '\n';
}

The use of multiple blocks in the preceding example is necessary because variables
cannot be redeclared in the same block, and structured bindings imply a declaration
using the auto specifier. Therefore, if you need to make multiple calls, as in the
preceding example, and use structured bindings, you must either use different
variable names or multiple blocks. An alternative to that is to avoid structured
bindings and use std::tie(), because it can be called multiple times with the same
variables, so you only need to declare them once.

In C++17, it is also possible to declare variables in if and switch statements in the
form if(init; condition) and switch(init; condition), respectively. This could
be combined with structured bindings to produce simpler code. Let's look at an
example:

if(auto [it, inserted] = m.insert({ 1, "two" }); inserted)
{ std::cout << it->second << '\n'; }

In the preceding snippet, we attempted to insert a new value into a map. The result
of the call is unpacked into two variables, it and inserted, defined in the scope of
the if statement in the initialization part. Then, the condition of the if statement is
evaluated from the value of the inserted variable.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Modern Core Language Features

[60]

There's more...
Although we focused on binding names to the elements of tuples, structured
bindings can be used in a broader scope because they also support binding to array
elements or data members of a class. If you want to bind to the elements of an array,
you must provide a name for every element of the array; otherwise, the declaration is
ill-formed. The following is an example of binding to array elements:

int arr[] = { 1,2 };
auto [a, b] = arr;
auto& [x, y] = arr;

arr[0] += 10;
arr[1] += 10;

std::cout << arr[0] << ' ' << arr[1] << '\n'; // 11 12
std::cout << a << ' ' << b << '\n'; // 1 2
std::cout << x << ' ' << y << '\n'; // 11 12

In this example, arr is an array with two elements. We first bind a and b to its
elements, and then we bind the x and y references to its elements. Changes that are
made to the elements of the array are not visible through the variables a and b but
are visible through the x and y references, as shown in the comments that print these
values to the console. This happens because when we do the first binding, a copy
of the array is created and a and b are bound to the elements of the copy.

As we already mentioned, it's also possible to bind to data members of a class. The
following restrictions apply:

• Binding is possible only for non-static members of the class.
• The class cannot have anonymous union members.
• The number of identifiers must match the number of non-static members

of the class.

The binding of identifiers occurs in the order of the declaration of the data members,
which can include bitfields. An example is shown here:

struct foo
{
 int id;
 std::string name;
};

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 1

[61]

foo f{ 42, "john" };
auto [i, n] = f;
auto& [ri, rn] = f;

f.id = 43;

std::cout << f.id << ' ' << f.name << '\n'; // 43 john
std::cout << i << ' ' << n << '\n'; // 42 john
std::cout << ri << ' ' << rn << '\n'; // 43 john

Again, changes to the foo object are not visible to the variables i and n but are
to ri and rn. This is because each identifier in the structure binding becomes the
name of an lvalue that refers to a data member of the class (just like with an array,
it refers to an element of the array). However, the reference type of an identifier is
the corresponding data member (or array element).

The new C++20 standard has introduced a series of improvements to structure
bindings, including the following:

• Possibility to include the static or thread_local storage-class specifiers
in the declaration of the structure bindings.

• Allow the use of the [[maybe_unused]] attribute for the declaration of
a structured binding. Some compilers, such as Clang and GCC, already
supported this feature.

• Allow us to capture structure binding identifiers in lambdas. All identifiers,
including those bound to bitfields, can be captured by value. On the other
hand, all identifiers except for those bound to bitfields can also be captured
by reference.

These changes enable us to write the following:

foo f{ 42, "john" };
auto [i, n] = f;
auto l1 = [i] {std::cout << i; };
auto l2 = [=] {std::cout << i; };
auto l3 = [&i] {std::cout << i; };
auto l4 = [&] {std::cout << i; };

These examples show the various ways structured bindings can be captured in
lambdas in C++20.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Modern Core Language Features

[62]

See also
• Using auto whenever possible to understand how automatic type deduction

works in C++
• Using lambdas with standard algorithms in Chapter 3, Exploring Functions to

learn how lambdas can be used with standard library general-purpose
algorithms

• Providing metadata to the compiler with attributes in Chapter 4, Preprocessing and
Compilation, to learn about providing hints to the compiler with the use of
standard attributes

Simplifying code with class template
argument deduction
Templates are ubiquitous in C++, but having to specify template arguments all
the time can be annoying. There are cases when the compiler can actually infer the
template arguments from the context. This feature, available in C++17, is called class
template argument deduction and enables the compiler to deduce the missing template
arguments from the type of the initializer. In this recipe, we will learn how to take
advantage of this feature.

How to do it...
In C++17, you can skip specifying template arguments and let the compiler deduce
them in the following cases:

• When you declare a variable or a variable template and initialize it:
std::pair p{ 42, "demo" }; // deduces std::pair<int, char
const*>
std::vector v{ 1, 2 }; // deduces std::vector<int>
std::less l; // deduces std::less<void>

• When you create an object using a new expression:
template <class T>
struct foo
{
 foo(T v) :data(v) {}
private:
 T data;
};

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 1

[63]

auto f = new foo(42);

• When you perform function-like cast expressions:
std::mutex mx;

// deduces std::lock_guard<std::mutex>
auto lock = std::lock_guard(mx);

std::vector<int> v;
// deduces std::back_insert_iterator<std::vector<int>>
std::fill_n(std::back_insert_iterator(v), 5, 42);

How it works...
Prior to C++17, you had to specify all the template arguments when initializing
variables, because all of them must be known in order to instantiate the class
template, such as in the following example:

std::pair<int, char const*> p{ 42, "demo" };
std::vector<int> v{ 1, 2 };
foo<int> f{ 42 };

The problem of explicitly specifying template arguments could have been avoided
with a function template, such as std::make_pair(), which benefits from function
template argument deduction, and allows us to write code such as the following:

auto p = std::make_pair(42, "demo");

In the case of the foo class template shown here, we can write the following make_
foo() function template to enable the same behavior:

template <typename T>
constexpr foo<T> make_foo(T&& value)
{
 return foo{ value };
}

auto f = make_foo(42);

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Modern Core Language Features

[64]

In C++17, this is no longer necessary in the cases listed in the How it works... section.
Let's take the following declaration as an example:

std::pair p{ 42, "demo" };

In this context, std::pair is not a type, but acts as a placeholder for a type that
activates class template argument deduction. When the compiler encounters it
during the declaration of a variable with initialization or a function-style cast, it
builds a set of deduction guides. These deduction guides are fictional constructors
of a hypothetical class type. As a user, you can complement this set with user-
defined deduction rules. This set is used to perform template argument deduction
and overload resolution.

In the case of std::pair, the compiler will build a set of deduction guides that
includes the following fictional function templates (but not only these):

template <class T1, class T2>
std::pair<T1, T2> F();

template <class T1, class T2>
std::pair<T1, T2> F(T1 const& x, T2 const& y);

template <class T1, class T2, class U1, class U2>
std::pair<T1, T2> F(U1&& x, U2&& y);

These compiler-generated deduction guides are created from the constructors of
the class template, and if none are present, then a deduction guide is created for
a hypothetical default constructor. In addition, in all cases, a deduction guide for
a hypothetical copy constructor is always created.

The user-defined deduction guides are function signatures with trailing return
type and without the auto keyword (since they represent hypothetical constructors
that don't have a return value). They must be defined in the namespace of the class
template they apply to.

To understand how this works, let's consider the same example with the std::pair
object:

std::pair p{ 42, "demo" };

The type that the compiler is deducing is std::pair<int, char const*>. If we want
to instruct the compiler to deduce std::string instead of char const*, then we need
several user-defined deduction rules, as shown here:

namespace std {

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 1

[65]

 template <class T>
 pair(T&&, char const*)->pair<T, std::string>;

 template <class T>
 pair(char const*, T&&)->pair<std::string, T>;

 pair(char const*, char const*)->pair<std::string, std::string>;
}

These will enable us to perform the following declarations, where the type of the
string "demo" is always deduced to be std::string:

std::pair p1{ 42, "demo" }; // std::pair<int, std::string>
std::pair p2{ "demo", 42 }; // std::pair<std::string, int>
std::pair p3{ "42", "demo" }; // std::pair<std::string, std::string>

It is important to note that class template argument deduction does not occur if the
template argument list is present, regardless of the number of specified arguments.
Examples of this are shown here:

std::pair<> p1 { 42, "demo" };
std::pair<int> p2 { 42, "demo" };

Because both these declarations specify a template argument list, they are invalid
and produce compiler errors.

See also
• Understanding uniform initialization to see how brace-initialization works

As you can see from this example, deduction guides do not have to
be function templates.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

[67]

2
Working with

Numbers and Strings
Numbers and strings are the fundamental types of any programming language;
all other types are based on or composed of these ones. Developers are confronted
all the time with tasks such as converting between numbers and strings, parsing
and formatting strings, and generating random numbers. This chapter is focused
on providing useful recipes for these common tasks using modern C++ language
and library features.

The recipes included in this chapter are as follows:

• Converting between numeric and string types
• Limits and other properties of numeric types
• Generating pseudo-random numbers
• Initializing all the bits of the internal state of a pseudo-random number

generator
• Creating cooked user-defined literals
• Creating raw, user-defined literals
• Using raw string literals to avoid escaping characters
• Creating a library of string helpers
• Verifying the format of a string using regular expressions
• Parsing the content of a string using regular expressions
• Replacing the content of a string using regular expressions

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Numbers and Strings

[68]

• Using std::string_view instead of constant string references
• Formatting text with std::format
• Using std::format with user-defined types

Let's start this chapter by looking at a very common problem developers face on
a daily basis, which is converting between numeric and string types.

Converting between numeric and
string types
Converting between number and string types is a ubiquitous operation. Prior to
C++11, there was little support for converting numbers to strings and back, so
developers had to resort mostly to type-unsafe functions, and they usually wrote
their own utility functions in order to avoid writing the same code over and over
again. With C++11, the standard library provides utility functions for converting
between numbers and strings. In this recipe, you will learn how to convert between
numbers and strings and the other way around using modern C++ standard
functions.

Getting ready
All the utility functions mentioned in this recipe are available in the <string> header.

How to do it...
Use the following standard conversion functions when you need to convert between
numbers and strings:

• To convert from an integer or floating-point type to a string type, use
std::to_string() or std::to_wstring(), as shown in the following code
snippet:

auto si = std::to_string(42); // si="42"
auto sl = std::to_string(42L); // sl="42"
auto su = std::to_string(42u); // su="42"
auto sd = std::to_wstring(42.0); // sd=L"42.000000"
auto sld = std::to_wstring(42.0L); // sld=L"42.000000"

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[69]

• To convert from a string type to an integer type, use std::stoi(),
std::stol(), std::stoll(), std::stoul(), or std::stoull(), as shown
in the following code snippet:

auto i1 = std::stoi("42"); // i1 = 42
auto i2 = std::stoi("101010", nullptr, 2); // i2 = 42
auto i3 = std::stoi("052", nullptr, 8); // i3 = 42
auto i4 = std::stoi("0x2A", nullptr, 16); // i4 = 42

• To convert from a string type to a floating-point type, use std::stof(),
std::stod(), or std::stold(), as shown in the following code snippet:

// d1 = 123.45000000000000
auto d1 = std::stod("123.45");
// d2 = 123.45000000000000
auto d2 = std::stod("1.2345e+2");
// d3 = 123.44999980926514
auto d3 = std::stod("0xF.6E6666p3");

How it works...
To convert an integral or floating-point type to a string type, you can use either
the std::to_string() function (which converts to a std::string) or the std::to_
wstring() function (which converts to a std::wstring). These functions are available
in the <string> header and have overloads for signed and unsigned integer and
real types. They produce the same result as std::sprintf() and std::swprintf()
would produce when called with the appropriate format specifier for each type.
The following code snippet lists all the overloads of these two functions:

std::string to_string(int value);
std::string to_string(long value);
std::string to_string(long long value);
std::string to_string(unsigned value);
std::string to_string(unsigned long value);
std::string to_string(unsigned long long value);
std::string to_string(float value);
std::string to_string(double value);
std::string to_string(long double value);
std::wstring to_wstring(int value);
std::wstring to_wstring(long value);
std::wstring to_wstring(long long value);
std::wstring to_wstring(unsigned value);
std::wstring to_wstring(unsigned long value);
std::wstring to_wstring(unsigned long long value);

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Numbers and Strings

[70]

std::wstring to_wstring(float value);
std::wstring to_wstring(double value);
std::wstring to_wstring(long double value);

When it comes to the opposite conversion, there is an entire set of functions
that have a name with the format ston (string to number), where n stands for i
(integer), l (long), ll (long long), ul (unsigned long), or ull (unsigned long long).
The following list shows all these functions, each of them with two overloads—one
that takes an std::string and one that takes an std::wstring as the first parameter:

int stoi(const std::string& str, std::size_t* pos = 0,
 int base = 10);
int stoi(const std::wstring& str, std::size_t* pos = 0,
 int base = 10);
long stol(const std::string& str, std::size_t* pos = 0,
 int base = 10);
long stol(const std::wstring& str, std::size_t* pos = 0,
 int base = 10);
long long stoll(const std::string& str, std::size_t* pos = 0,
 int base = 10);
long long stoll(const std::wstring& str, std::size_t* pos = 0,
 int base = 10);
unsigned long stoul(const std::string& str, std::size_t* pos = 0,
 int base = 10);
unsigned long stoul(const std::wstring& str, std::size_t* pos = 0,
 int base = 10);
unsigned long long stoull(const std::string& str,
 std::size_t* pos = 0, int base = 10);
unsigned long long stoull(const std::wstring& str,
 std::size_t* pos = 0, int base = 10);
float stof(const std::string& str, std::size_t* pos = 0);
float stof(const std::wstring& str, std::size_t* pos = 0);
double stod(const std::string& str, std::size_t* pos = 0);
double stod(const std::wstring& str, std::size_t* pos = 0);
long double stold(const std::string& str, std::size_t* pos = 0);
long double stold(const std::wstring& str, std::size_t* pos = 0);

The way the string to integral type functions work is by discarding all white spaces
before a non-whitespace character, then taking as many characters as possible to
form a signed or unsigned number (depending on the case), and then converting that
to the requested integral type (stoi() will return an integer, stoul() will return an
unsigned long, and so on). In all the following examples, the result is the integer 42,
except for the last example, where the result is -42:

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[71]

auto i1 = std::stoi("42"); // i1 = 42
auto i2 = std::stoi(" 42"); // i2 = 42
auto i3 = std::stoi(" 42fortytwo"); // i3 = 42
auto i4 = std::stoi("+42"); // i4 = 42
auto i5 = std::stoi("-42"); // i5 = -42

A valid integral number may consist of the following parts:

• A sign, plus (+) or minus (-) (optional)
• Prefix 0 to indicate an octal base (optional)
• Prefix 0x or 0X to indicate a hexadecimal base (optional)
• A sequence of digits

The optional prefix 0 (for octal) is applied only when the specified base is 8 or 0.
Similarly, the optional prefix 0x or 0X (for hexadecimal) is applied only when the
specified base is 16 or 0.

The functions that convert a string to an integer have three parameters:

• The input string.
• A pointer that, when not null, will receive the number of characters that were

processed. This can include any leading whitespaces that were discarded,
the sign, and the base prefix, so it should not be confused with the number
of digits the integral value has.

• A number indicating the base; by default, this is 10.

The valid digits in the input string depend on the base. For base 2, the only valid
digits are 0 and 1; for base 5, they are 01234. For base 11, the valid digits are 0-9 and
the characters A and a. This continues until we reach base 36, which has the valid
characters 0-9, A-Z, and a-z.

The following are additional examples of strings with numbers in various bases
converted to decimal integers. Again, in all cases, the result is either 42 or -42:

auto i6 = std::stoi("052", nullptr, 8);
auto i7 = std::stoi("052", nullptr, 0);
auto i8 = std::stoi("0x2A", nullptr, 16);
auto i9 = std::stoi("0x2A", nullptr, 0);
auto i10 = std::stoi("101010", nullptr, 2);
auto i11 = std::stoi("22", nullptr, 20);
auto i12 = std::stoi("-22", nullptr, 20);

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Numbers and Strings

[72]

auto pos = size_t{ 0 };
auto i13 = std::stoi("42", &pos); // pos = 2
auto i14 = std::stoi("-42", &pos); // pos = 3
auto i15 = std::stoi(" +42dec", &pos);// pos = 5

An important thing to note is that these conversion functions throw an exception
if the conversion fails. There are two exceptions that can be thrown:

• std::invalid_argument: If the conversion cannot be performed:
try
{
 auto i16 = std::stoi("");
}
catch (std::exception const & e)
{
 // prints "invalid stoi argument"
 std::cout << e.what() << '\n';
}

• std::out_of_range: If the converted value is outside the range of the result
type (or if the underlying function sets errno to ERANGE):

try
{
 // OK
 auto i17 = std::stoll("12345678901234");
 // throws std::out_of_range
 auto i18 = std::stoi("12345678901234");
}
catch (std::exception const & e)
{
 // prints "stoi argument out of range"
 std::cout << e.what() << '\n';
}

The other set of functions that convert a string to a floating-point type is very similar,
except that they don't have a parameter for the numeric base. A valid floating-point
value can have different representations in the input string:

• Decimal floating-point expression (optional sign, sequence of decimal
digits with optional point, optional e or E, followed by exponent with
optional sign).

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[73]

• Binary floating-point expression (optional sign, 0x or 0X prefix, sequence of
hexadecimal digits with optional point, optional p or P, followed by exponent
with optional sign).

• Infinity expression (optional sign followed by case-insensitive INF or
INFINITY).

• A non-number expression (optional sign followed by case-insensitive NAN and
possibly other alphanumeric characters).

The following are various examples of converting strings to doubles:

auto d1 = std::stod("123.45"); // d1 = 123.45000000000000
auto d2 = std::stod("+123.45"); // d2 = 123.45000000000000
auto d3 = std::stod("-123.45"); // d3 = -123.45000000000000
auto d4 = std::stod(" 123.45"); // d4 = 123.45000000000000
auto d5 = std::stod(" -123.45abc"); // d5 = -123.45000000000000
auto d6 = std::stod("1.2345e+2"); // d6 = 123.45000000000000
auto d7 = std::stod("0xF.6E6666p3"); // d7 = 123.44999980926514

auto d8 = std::stod("INF"); // d8 = inf
auto d9 = std::stod("-infinity"); // d9 = -inf
auto d10 = std::stod("NAN"); // d10 = nan
auto d11 = std::stod("-nanabc"); // d11 = -nan

The floating-point base 2 scientific notation, seen earlier in the form 0xF.6E6666p3,
is not the topic of this recipe. However, for a clear understanding, a short description
is provided; but it is recommended that you look at additional references for details
(such as https://en.cppreference.com/w/cpp/language/floating_literal). A
floating-point constant in the base 2 scientific notation is composed of several parts:

• The hexadecimal prefix 0x.
• An integer part, which in this example was F, which in decimal is 15.
• A fractional part, which in this example was 6E6666, or

011011100110011001100110 in binary. To convert that into decimal, we need
to add inverse powers of two: 1/4 + 1/8 + 1/32 + 1/64 + 1/128 +

• A suffix, representing a power of 2; in this example, p3 means 2 at the power
of 3.

The value of the decimal equivalent is determined by multiplying the significant
(composed of the integer and fractional parts) and the base at the power of the
exponent.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://en.cppreference.com/w/cpp/language/floating_literal

Working with Numbers and Strings

[74]

For the given hexadecimal base 2 floating-point literal, the significant is
15.4312499... (please note that digits after the seventh one are not shown), the
base is 2, and the exponent is 3. Therefore, the result is 15.4212499... * 8, which
is 123.44999980926514.

See also
• Limits and other properties of numeric types to learn about the minimum

and maximum values, as well as the other properties of numerical types

Limits and other properties
of numeric types
Sometimes, it is necessary to know and use the minimum and maximum values
that can be represented with a numeric type, such as char, int, or double. Many
developers use standard C macros for this, such as CHAR_MIN/CHAR_MAX, INT_MIN/
INT_MAX, and DBL_MIN/DBL_MAX. C++ provides a class template called numeric_limits
with specializations for every numeric type that enables you to query the minimum
and maximum value of a type. However, numeric_limits is not limited to that
functionality, and offers additional constants for type property querying, such as
whether a type is signed or not, how many bits it needs for representing its values,
whether it can represent infinity for floating-point types, and many others. Prior to
C++11, the use of numeric_limits<T> was limited because it could not be used in
places where constants were needed (examples include the size of arrays and switch
cases). Due to that, developers preferred to use C macros throughout their code. In
C++11, that is no longer the case, as all the static members of numeric_limits<T> are
now constexpr, which means they can be used everywhere a constant expression is
expected.

Getting ready
The numeric_limits<T> class template is available in the namespace std in the
<limits> header.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[75]

How to do it...
Use std::numeric_limits<T> to query various properties of a numeric type T:

• Use the min() and max() static methods to get the smallest and largest finite
numbers of a type. The following are examples of how these could be used:

template<typename T, typename Iter>
T minimum(Iter const start, Iter const end) // finds the
 // minimum value
 // in a range
{
 T minval = std::numeric_limits<T>::max();
 for (auto i = start; i < end; ++i)
 {
 if (*i < minval)
 minval = *i;
 }
 return minval;
}

int range[std::numeric_limits<char>::max() + 1] = { 0 };

switch(get_value())
{
 case std::numeric_limits<int>::min():
 // do something
 break;
}

• Use other static methods and static constants to retrieve other properties of a
numeric type. In the following example, the variable bits is an std::bitset
object that contains a sequence of bits that are necessary to represent the
numerical value represented by the variable n (which is an integer):

auto n = 42;
std::bitset<std::numeric_limits<decltype(n)>::digits>
 bits { static_cast<unsigned long long>(n) };

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Numbers and Strings

[76]

How it works...
The std::numeric_limits<T> class template enables developers to query properties
of numeric types. Actual values are available through specializations, and the
standard library provides specializations for all the built-in numeric types (char,
short, int, long, float, double, and so on). In addition, third parties may provide
additional implementations for other types. An example could be a numeric
library that implements a bigint integer type and a decimal type and provides
specializations of numeric_limits for these types (such as numeric_limits<bigint>
and numeric_limits<decimal>).

The following specializations of numeric types are available in the <limits> header.
Note that specializations for char16_t and char32_t are new in C++11; the others
were available previously. Apart from the specializations listed ahead, the library
also includes specializations for every cv-qualified version of these numeric types,
and they are identical to the unqualified specialization. For example, consider the
type int; there are four actual specializations (and they are identical): numeric_
limits<int>, numeric_limits<const int>, numeric_limits<volatile int>, and
numeric_limits<const volatile int>:

template<> class numeric_limits<bool>;
template<> class numeric_limits<char>;
template<> class numeric_limits<signed char>;
template<> class numeric_limits<unsigned char>;
template<> class numeric_limits<wchar_t>;
template<> class numeric_limits<char16_t>;
template<> class numeric_limits<char32_t>;
template<> class numeric_limits<short>;
template<> class numeric_limits<unsigned short>;
template<> class numeric_limits<int>;
template<> class numeric_limits<unsigned int>;
template<> class numeric_limits<long>;
template<> class numeric_limits<unsigned long>;
template<> class numeric_limits<long long>;
template<> class numeric_limits<unsigned long long>;
template<> class numeric_limits<float>;
template<> class numeric_limits<double>;
template<> class numeric_limits<long double>;

In C++11, there is no limitation to where std::numeric_
limits<T> can be used; therefore, preferably, use it over
C macros in your modern C++ code.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[77]

As mentioned earlier, in C++11, all static members of std::numeric_limits
are constexpr, which means they can be used in all the places where constant
expressions are needed. These have several major advantages over C++ macros:

• They are easier to remember, as the only thing you need to know is the
name of the type, which you should know anyway, and not countless names
of macros.

• They support types that are not available in C, such as char16_t and
char32_t.

• They are the only possible solutions for templates where you don't know the
type.

• Minimum and maximum are only two of the various properties of types it
provides; therefore, its actual use is beyond the numeric limits shown. As a
side note, for this reason, the class should have been perhaps called numeric_
properties, instead of numeric_limits.

The following function template, print_type_properties(), prints the minimum and
maximum finite values of the type, as well as other information:

template <typename T>
void print_type_properties()
{
 std::cout
 << "min="
 << std::numeric_limits<T>::min() << '\n'
 << "max="
 << std::numeric_limits<T>::max() << '\n'
 << "bits="
 << std::numeric_limits<T>::digits << '\n'
 << "decdigits="
 << std::numeric_limits<T>::digits10 << '\n'
 << "integral="
 << std::numeric_limits<T>::is_integer << '\n'
 << "signed="
 << std::numeric_limits<T>::is_signed << '\n'
 << "exact="
 << std::numeric_limits<T>::is_exact << '\n'
 << "infinity="
 << std::numeric_limits<T>::has_infinity << '\n';
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Numbers and Strings

[78]

If we call the print_type_properties() function for unsigned short, int, and double,
we will get the following output:

unsigned short int double

min=0
max=65535
bits=16
decdigits=4
integral=1
signed=0
exact=1
infinity=0

min=-2147483648
max=2147483647
bits=31
decdigits=9
integral=1
signed=1
exact=1
infinity=0

min=2.22507e-308
max=1.79769e+308
bits=53
decdigits=15
integral=0
signed=1
exact=0
infinity=1

Please note that there is a difference between the digits and digits10 constants:

• digits represents the number of bits (excluding the sign bit if present) and
padding bits (if any) for integral types and the number of bits of the mantissa
for floating-point types.

• digits10 is the number of decimal digits that can be represented by a
type without a change. To understand this better, let's consider the case
of unsigned short. This is a 16-bit integral type. It can represent numbers
between 0 and 65,536. It can represent numbers up to five decimal digits,
10,000 to 65,536, but it cannot represent all five decimal digit numbers, as
numbers from 65,537 to 99,999 require more bits. Therefore, the largest
numbers that it can represent without requiring more bits have four decimal
digits (numbers from 1,000 to 9,999). This is the value indicated by digits10.
For integral types, it has a direct relationship to constant digits; for an
integral type, T, the value of digits10 is std::numeric_limits<T>::digits *
std::log10(2).

It's worth mentioning that the standard library types that are aliases of arithmetic
types (such as std::size_t) may also be inspected with std::numeric_limits.
On the other hand, other standard types that are not arithmetic types, such
as std::complex<T> or std::nullptr_t, do not have std::numeric_limits
specializations.

See also
• Converting between numeric and string types to learn how to convert between

numbers and strings

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[79]

Generating pseudo-random numbers
Generating random numbers is necessary for a large variety of applications, from
games to cryptography, from sampling to forecasting. However, the term random
numbers is not actually correct, as the generation of numbers through mathematical
formulas is deterministic and does not produce true random numbers, but numbers
that look random and are called pseudo-random. True randomness can only be
achieved through hardware devices, based on physical processes, and even that can
be challenged as we may consider even the universe to be actually deterministic.
Modern C++ provides support for generating pseudo-random numbers through a
pseudo-random number library containing number generators and distributions.
Theoretically, it can also produce true random numbers, but in practice, those could
actually be only pseudo-random.

Getting ready
In this recipe, we'll discuss the standard support for generating pseudo-random
numbers. Understanding the difference between random and pseudo-random
numbers is key. True random numbers are numbers that cannot be predicted better
than by random chance, and are produced with the help of hardware random
number generators. Pseudo-random numbers are numbers produced with the help
of algorithms that generate sequences with properties that approximate the ones of
true random numbers.

Furthermore, being familiar with various statistical distributions is a plus. It is
mandatory, though, that you know what a uniform distribution is, because all
engines in the library produce numbers that are uniformly distributed. Without
going into any details, we will just mention that uniform distribution is a probability
distribution that is concerned with events that are equally likely to occur (within
certain bounds).

How to do it...
To generate pseudo-random numbers in your application, you should perform the
following steps:

1. Include the header <random>:
#include <random>

2. Use an std::random_device generator for seeding a pseudo-random engine:
std::random_device rd{};

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Numbers and Strings

[80]

3. Use one of the available engines for generating numbers and initialize it with
a random seed:

auto mtgen = std::mt19937{ rd() };

4. Use one of the available distributions for converting the output of the engine
to one of the desired statistical distributions:

auto ud = std::uniform_int_distribution<>{ 1, 6 };

5. Generate the pseudo-random numbers:

for(auto i = 0; i < 20; ++i)
 auto number = ud(mtgen);

How it works...
The pseudo-random number library contains two types of components:

• Engines, which are generators of random numbers; these can produce either
pseudo-random numbers with a uniform distribution or, if available, actual
random numbers.

• Distributions that convert the output of an engine to a statistical distribution.

All engines (except for random_device) produce integer numbers in a uniform
distribution, and all engines implement the following methods:

• min(): This is a static method that returns the minimum value that can be
produced by the generator.

• max(): This is a static method that returns the maximum value that can be
produced by the generator.

• seed(): This initializes the algorithm with a start value (except for random_
device, which cannot be seeded).

• operator(): This generates a new number uniformly distributed between
min() and max().

• discard(): This generates and discards a given number of pseudo-random
numbers.

The following engines are available:

• linear_congruential_engine: This is a linear congruential generator that
produces numbers using the following formula:

x(i) = (A * x(i – 1) + C) mod M

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[81]

• mersenne_twister_engine: This is a Mersenne twister generator that keeps
a value on W * (N – 1) * R bits. Each time a number needs to be generated,
it extracts W bits. When all the bits have been used, it twists the large value
by shifting and mixing the bits so that it has a new set of bits to extract from.

• subtract_with_carry_engine: This is a generator that implements a subtract
with carry algorithm based on the following formula:

x(i) = (x(i – R) – x(i – S) – cy(i – 1)) mod M
In the preceding formula, cy is defined as:𝑐𝑐𝑐𝑐(𝑖𝑖) = { 0; 𝑥𝑥(𝑖𝑖 𝑖 𝑖𝑖) 𝑖 𝑥𝑥(𝑖𝑖 𝑖 𝑖𝑖) 𝑖 𝑐𝑐𝑐𝑐(𝑖𝑖 𝑖 𝑖) ≥ 0𝑖; 𝑥𝑥(𝑖𝑖 𝑖 𝑖𝑖) 𝑖 𝑥𝑥(𝑖𝑖 𝑖 𝑖𝑖) 𝑖 𝑐𝑐𝑐𝑐(𝑖𝑖 𝑖 𝑖) < 0

In addition, the library provides engine adapters that are also engines wrapping
another engine and producing numbers based on the output of the base engine.
Engine adapters implement the same methods mentioned earlier for the base
engines. The following engine adapters are available:

• discard_block_engine: A generator that, from every block of P numbers
generated by the base engine, keeps only R numbers, discarding the rest.

• independent_bits_engine: A generator that produces numbers with
a different number of bits than the base engine.

• shuffle_order_engine: A generator that keeps a shuffled table of K numbers
produced by the base engine and returns numbers from this table, replacing
them with numbers generated by the base engine.

Choosing a pseudo-random number generator should be done based on the specific
requirements of your application. The linear congruential engine is medium fast but
has very small storage requirements for its internal state. The subtract with carry
engine is very fast, including on machines that don't have a processor with advanced
arithmetic instructions set. However, it requires larger storage for its internal
state and the sequence of generated numbers has fewer desirable characteristics.
The Mersenne twister is the slowest of these engines and has the greatest storage
durations, but produces the longest non-repeating sequences of pseudo-numbers.

All these engines and engine adaptors produce pseudo-random numbers. The
library, however, provides another engine called random_device that is supposed to
produce non-deterministic numbers, but this is not an actual constraint as physical
sources of random entropy might not be available. Therefore, implementations
of random_device could actually be based on a pseudo-random engine. The
random_device class cannot be seeded like the other engines and has an additional
method called entropy() that returns the random device entropy, which is 0 for a
deterministic generator and nonzero for a non-deterministic generator.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Numbers and Strings

[82]

However, this is not a reliable method for determining whether the device is actually
deterministic or non-deterministic. For instance, both GNU libstdc++ and LLVM
libc++ implement a non-deterministic device, but return 0 for entropy. On the
other hand, VC++ and boost.random return 32 and 10, respectively, for entropy.

All these generators produce integers in a uniform distribution. This is, however,
only one of the many possible statistical distributions where random numbers
are needed in most applications. To be able to produce numbers (either integer or
real) in other distributions, the library provides several classes called distributions.
These convert the output of an engine according to the statistical distribution
it implements. The following distributions are available:

Type Class name Numbers Statistical
distribution

Uniform uniform_int_distribution Integer Uniform
uniform_real_distribution Real Uniform

Bernoulli bernoulli_distribution Boolean Bernoulli
binomial_distribution Integer Binomial
negative_binomial_
distribution

Integer Negative binomial

geometric_distribution Integer Geometric
Poisson poisson_distribution Integer Poisson

exponential_distribution Real Exponential
gamma_distribution Real Gamma
weibull_distribution Real Weibull
extreme_value_distribution Real Extreme value

Normal normal_distribution Real Standard normal
(Gaussian)

lognormal_distribution Real Lognormal
chi_squared_distribution Real Chi-squared
cauchy_distribution Real Cauchy
fisher_f_distribution Real Fisher's

F-distribution
student_t_distribution Real Student's

t-distribution

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[83]

Sampling discrete_distribution Integer Discrete
piecewise_constant_
distribution

Real Values distributed
on constant
subintervals

piecewise_linear_distribution Real Values distributed
on defined
subintervals

Each of the engines provided by the library has advantages and disadvantages,
as it was mentioned earlier. The Mersenne twister, although the slowest and one
that has the largest internal state, when initialized appropriately, can produce the
longest non-repeating sequence of numbers. In the following examples, we will use
std::mt19937, a 32-bit Mersenne twister with 19,937 bits of internal state.

The simplest way to generate random numbers looks like this:

auto mtgen = std::mt19937 {};
for (auto i = 0; i < 10; ++i)
 std::cout << mtgen() << '\n';

In this example, mtgen is std::mt19937 for the Mersenne twister. To generate
numbers, you only need to use the call operator that advances the internal state and
returns the next pseudo-random number. However, this code is flawed, as the engine
is not seeded. As a result, it always produces the same sequence of numbers, which
is probably not what you want in most cases.

There are different approaches for initializing the engine. One approach, common
with the C random library, is to use the current time. In modern C++, it should look
like this:

auto seed = std::chrono::high_resolution_clock::now()
 .time_since_epoch()
 .count();
auto mtgen = std::mt19937{ static_cast<unsigned int>(seed) };

In this example, seed is a number representing the number of ticks since the clock's
epoch until the present moment. This number is then used to seed the engine. The
problem with this approach is that the value of that seed is actually deterministic,
and in some classes of applications, it could be prone to attacks. A more reliable
approach is to seed the generator with actual random numbers.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Numbers and Strings

[84]

The std::random_device class is an engine that is supposed to return true random
numbers, though implementations could actually be based on a pseudo-random
generator:

std::random_device rd;
auto mtgen = std::mt19937 {rd()};

Numbers produced by all engines follow a uniform distribution. To convert the result
to another statistical distribution, we have to use a distribution class. To show how
generated numbers are distributed according to the selected distribution, we will use
the following function. This function generates a specified number of pseudo-random
numbers and counts their repetition in a map. The values from the map are then used
to produce a bar-like diagram showing how often each number occurred:

void generate_and_print(std::function<int(void)> gen,
 int const iterations = 10000)
{
 // map to store the numbers and their repetition
 auto data = std::map<int, int>{};

 // generate random numbers
 for (auto n = 0; n < iterations; ++n)
 ++data[gen()];

 // find the element with the most repetitions
 auto max = std::max_element(
 std::begin(data), std::end(data),
 [](auto kvp1, auto kvp2) {
 return kvp1.second < kvp2.second; });

 // print the bars
 for (auto i = max->second / 200; i > 0; --i)
 {
 for (auto kvp : data)
 {
 std::cout
 << std::fixed << std::setprecision(1) << std::setw(3)
 << (kvp.second / 200 >= i ? (char)219 : ' ');
 }

 std::cout << '\n';
 }

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[85]

 // print the numbers
 for (auto kvp : data)
 {
 std::cout
 << std::fixed << std::setprecision(1) << std::setw(3)
 << kvp.first;
 }

 std::cout << '\n';
}

The following code generates random numbers using the std::mt19937 engine with
a uniform distribution in the range [1, 6]; this is basically what you get when you
throw a dice:

std::random_device rd{};
auto mtgen = std::mt19937{ rd() };
auto ud = std::uniform_int_distribution<>{ 1, 6 };
generate_and_print([&mtgen, &ud]() {return ud(mtgen); });

The output of the program looks like this:

Figure 2.1: Uniform distribution of the range [1,6]

In the next and final example, we're changing the distribution to a normal
distribution with a mean of 5 and a standard deviation of 2. This distribution
produces real numbers; therefore, in order to use the previous generate_and_print()
function, the numbers must be rounded to integers:

std::random_device rd{};
auto mtgen = std::mt19937{ rd() };

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Numbers and Strings

[86]

auto nd = std::normal_distribution<>{ 5, 2 };

generate_and_print(
 [&mtgen, &nd]() {
 return static_cast<int>(std::round(nd(mtgen))); });

The following will be the output of the preceding code:

Figure 2.2: Normal distribution with mean 5 and standard variance 2

Here, we can see that, based on the graphical representation, the distribution has
changed from a uniform one to a normal one with the mean at value 5.

See also
• Initializing all bits of internal state of a pseudo-random number generator to learn

how to properly initialize random number engines

Initializing all bits of internal state
of a pseudo-random number generator
In the previous recipe, we looked at the pseudo-random number library, along with
its components, and how it can be used to produce numbers in different statistical
distributions. One important factor that was overlooked in that recipe is the proper
initialization of the pseudo-random number generators.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[87]

With careful analysis (that is beyond the purpose of this recipe or this book), it
can be shown that the Mersenne twister engine has a bias toward producing some
values repeatedly and omitting others, thus generating numbers not in a uniform
distribution, but rather in a binomial or Poisson distribution. In this recipe, you will
learn how to initialize a generator in order to produce pseudo-random numbers with
a true uniform distribution.

Getting ready
You should read the previous recipe, Generating pseudo-random numbers, to get an
overview of what the pseudo-random number library offers.

How to do it...
To properly initialize a pseudo-random number generator to produce a uniformly
distributed sequence of pseudo-random numbers, perform the following steps:

1. Use an std::random_device to produce random numbers to be used as
seeding values:

std::random_device rd;

2. Generate random data for all internal bits of the engine:
std::array<int, std::mt19937::state_size> seed_data {};
std::generate(std::begin(seed_data), std::end(seed_data),
 std::ref(rd));

3. Create an std::seed_seq object from the previously generated pseudo-
random data:

std::seed_seq seq(std::begin(seed_data), std::end(seed_data));

4. Create an engine object and initialize all the bits representing the internal
state of the engine; for example, an mt19937 has 19,937 bits of internal states:

auto eng = std::mt19937{ seq };

5. Use the appropriate distribution based on the requirements of the
application:

auto dist = std::uniform_real_distribution<>{ 0, 1 };

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Numbers and Strings

[88]

How it works...
In all the examples shown in the previous recipe, we used the std::mt19937 engine
to produce pseudo-random numbers. Though the Mersenne twister is slower than
the other engines, it can produce the longest sequences of non-repeating numbers
with the best spectral characteristics. However, initializing the engine in the
manner shown in the previous recipe will not have this effect. The problem is that
the internal state of mt19937 has 624 32-bit integers, and in the examples from the
previous recipe, we have only initialized one of them.

When working with the pseudo-random number library, remember the following
rule of thumb (shown in the information box):

The pseudo-random number library provides a class for this particular purpose,
called std::seed_seq. This is a generator that can be seeded with any number of
32-bit integers and produces the requested number of integers evenly distributed
in the 32-bit space.

In the preceding code from the How to do it... section, we defined an array called
seed_data with a number of 32-bit integers equal to the internal state of the mt19937
generator; that is, 624 integers. Then, we initialized the array with random numbers
produced by std::random_device. The array was later used to seed std::seed_seq,
which, in turn, was used to seed the mt19937 generator.

See also
• Generating pseudo-random numbers to familiarize yourself with the capabilities

of the standard numerics library for generating pseudo-random numbers

Creating cooked user-defined literals
Literals are constants of built-in types (numerical, Boolean, character, character
string, and pointer) that cannot be altered in a program. The language defines a
series of prefixes and suffixes to specify literals (and the prefix/suffix is actually part
of the literal). C++11 allows us to create user-defined literals by defining functions
called literal operators, which introduce suffixes for specifying literals. These work
only with numerical character and character string types.

In order to produce the best results, engines must have all their
internal state properly initialized before generating numbers.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[89]

This opens the possibility of defining both standard literals in future versions and
allows developers to create their own literals. In this recipe, we will learn how to
create our own cooked literals.

Getting ready
User-defined literals can have two forms: raw and cooked. Raw literals are not
processed by the compiler, whereas cooked literals are values processed by the
compiler (examples can include handling escape sequences in a character string or
identifying numerical values such as integer 2898 from literal 0xBAD). Raw literals
are only available for integral and floating-point types, whereas cooked literals are
also available for character and character string literals.

How to do it...
To create cooked user-defined literals, you should follow these steps:

1. Define your literals in a separate namespace to avoid name clashes.
2. Always prefix the user-defined suffix with an underscore (_).
3. Define a literal operator of one of the following forms for cooked literals:

T operator "" _suffix(unsigned long long int);
T operator "" _suffix(long double);
T operator "" _suffix(char);
T operator "" _suffix(wchar_t);
T operator "" _suffix(char16_t);
T operator "" _suffix(char32_t);
T operator "" _suffix(char const *, std::size_t);
T operator "" _suffix(wchar_t const *, std::size_t);
T operator "" _suffix(char16_t const *, std::size_t);
T operator "" _suffix(char32_t const *, std::size_t);

The following example creates a user-defined literal for specifying kilobytes:

namespace compunits
{
 constexpr size_t operator "" _KB(unsigned long long const size)
 {
 return static_cast<size_t>(size * 1024);
 }
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Numbers and Strings

[90]

auto size{ 4_KB }; // size_t size = 4096;

using byte = unsigned char;
auto buffer = std::array<byte, 1_KB>{};

How it works...
When the compiler encounters a user-defined literal with a user-defined suffix,
S (it always has a leading underscore for third-party suffixes, as suffixes without
a leading underscore are reserved for the standard library), it does an unqualified
name lookup in order to identify a function with the name operator "" S. If it finds
one, then it calls it according to the type of the literal and the type of the literal
operator. Otherwise, the compiler will yield an error.

In the example shown in the How to do it... section, the literal operator is called
operator "" _KB and has an argument of type unsigned long long int. This is the
only integral type possible for literal operators for handling integral types. Similarly,
for floating-point user-defined literals, the parameter type must be long double since
for numeric types, the literal operators must be able to handle the largest possible
values. This literal operator returns a constexpr value so that it can be used where
compile-time values are expected, such as specifying the size of an array, as shown
in the preceding example.

When the compiler identifies a user-defined literal and has to call the appropriate
user-defined literal operator, it will pick the overload from the overload set
according to the following rules:

• For integral literals: It calls in the following order: the operator that takes an
unsigned long long, the raw literal operator that takes a const char*, or the
literal operator template.

• For floating-point literals: It calls in the following order: the operator that
takes a long double, the raw literal operator that takes a const char*,
or the literal operator template.

• For character literals: It calls the appropriate operator, depending on the
character type (char, wchar_t, char16_t, and char32_t).

• For string literals: It calls the appropriate operator, depending on the string
type, that takes a pointer to the string of characters and the size.

In the following example, we're defining a system of units and quantities. We
want to operate with kilograms, pieces, liters, and other types of units. This could
be useful in a system that can process orders and you need to specify the amount
and unit for each article.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[91]

The following are defined in the namespace units:

• A scoped enumeration for the possible types of units (kilogram, meter, liter,
and pieces):

enum class unit { kilogram, liter, meter, piece, };

• A class template to specify quantities of a particular unit (such as 3.5
kilograms or 42 pieces):

template <unit U>
class quantity
{
 const double amount;
public:
 constexpr explicit quantity(double const a) : amount(a)
 {}

 explicit operator double() const { return amount; }
};

• The operator+ and operator- functions for the quantity class template in
order to be able to add and subtract quantities:

template <unit U>
constexpr quantity<U> operator+(quantity<U> const &q1,
 quantity<U> const &q2)
{
 return quantity<U>(static_cast<double>(q1) +
 static_cast<double>(q2));
}

template <unit U>
constexpr quantity<U> operator-(quantity<U> const &q1,
 quantity<U> const &q2)
{
 return quantity<U>(static_cast<double>(q1) –
 static_cast<double>(q2));
}

• Literal operators to create quantity literals, defined in an inner namespace
called unit_literals. The purpose of this is to avoid possible name clashes
with literals from other namespaces.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Numbers and Strings

[92]

If such collisions do happen, developers could select the ones that they
should use using the appropriate namespace in the scope where the literals
need to be defined:

namespace unit_literals
{
 constexpr quantity<unit::kilogram> operator "" _kg(
 long double const amount)
 {
 return quantity<unit::kilogram>
 { static_cast<double>(amount) };
 }

 constexpr quantity<unit::kilogram> operator "" _kg(
 unsigned long long const amount)
 {
 return quantity<unit::kilogram>
 { static_cast<double>(amount) };
 }

 constexpr quantity<unit::liter> operator "" _l(
 long double const amount)
 {
 return quantity<unit::liter>
 { static_cast<double>(amount) };
 }

 constexpr quantity<unit::meter> operator "" _m(
 long double const amount)
 {
 return quantity<unit::meter>
 { static_cast<double>(amount) };
 }

 constexpr quantity<unit::piece> operator "" _pcs(
 unsigned long long const amount)
 {
 return quantity<unit::piece>
 { static_cast<double>(amount) };
 }
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[93]

By looking carefully, you can note that the literal operators defined earlier are not the
same:

• _kg is defined for both integral and floating-point literals; that enables us to
create both integral and floating-point values such as 1_kg and 1.0_kg.

• _l and _m are defined only for floating-point literals; this means we can only
define quantity literals for these units with floating points, such as 4.5_l and
10.0_m.

• _pcs is only defined for integral literals; this means we can only define
quantities of an integer number of pieces, such as 42_pcs.

Having these literal operators available, we can operate with various quantities.
The following examples show both valid and invalid operations:

using namespace units;
using namespace unit_literals;

auto q1{ 1_kg }; // OK
auto q2{ 4.5_kg }; // OK
auto q3{ q1 + q2 }; // OK
auto q4{ q2 - q1 }; // OK

// error, cannot add meters and pieces
auto q5{ 1.0_m + 1_pcs };
// error, cannot have an integer number of liters
auto q6{ 1_l };
// error, can only have an integer number of pieces
auto q7{ 2.0_pcs}

q1 is a quantity of 1 kg; this is an integer value. Since an overloaded operator ""
_kg(unsigned long long const) exists, the literal can be correctly created from
the integer 1. Similarly, q2 is a quantity of 4.5 kilograms; this is a real value. Since
an overloaded operator "" _kg(long double) exists, the literal can be created from
the double floating-point value 4.5.

On the other hand, q6 is a quantity of 1 liter. Since there is no overloaded operator
"" _l(unsigned long long), the literal cannot be created. It would require an
overload that takes an unsigned long long, but such an overload does not exist.
Similarly, q7 is a quantity of 2.0 pieces, but piece literals can only be created from
integer values and, therefore, this generates another compiler error.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Numbers and Strings

[94]

There's more...
Though user-defined literals are available from C++11, standard literal operators
have been available only from C++14. Further standard user-defined literals have
been added to the next versions of the standard. The following is a list of these
standard literal operators:

• operator""s for defining std::basic_string literals and operator""sv
(in C++17) for defining std::basic_string_view literals:

using namespace std::string_literals;

auto s1{ "text"s }; // std::string
auto s2{ L"text"s }; // std::wstring
auto s3{ u"text"s }; // std::u16string
auto s4{ U"text"s }; // std::u32string
using namespace std::string_view_literals;
auto s5{ "text"sv }; // std::string_view

• operator""h, operator""min, operator""s, operator""ms, operator""us,
and operator""ns for creating an std::chrono::duration value:

using namespace std::chrono_literals;

// std::chrono::duration<long long>
auto timer {2h + 42min + 15s};

• operator""y for creating an std::chrono::year literal and operator""d for
creating an std::chrono::day literal that represents a day of a month, both
added to C++20:

using namespace std::chrono_literals;

auto year { 2020y }; // std::chrono::year
auto day { 15d }; // std::chrono::day

• operator""if, operator""i, and operator""il for creating an std::complex
value:

using namespace std::complex_literals;

auto c{ 12.0 + 4.5i }; // std::complex<double>

The standard user-defined literals are available in multiple namespaces. For
instance, the ""s and ""sv literals for strings are defined in the namespace
std::literals::string_literals.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[95]

However, both literals and string_literals are inlined namespaces. Therefore,
you can access the literals with using namespace std::literals, using namespace
std::string_literals, or using namespace std::literals::string_literals. In the
previous examples, the second form was preferred.

See also
• Using raw string literals to avoid escaping characters to learn how to define string

literals without the need to escape special characters
• Creating raw user-defined literals to understand how to provide a custom

interpretation of an input sequence so that it changes the normal behavior
of the compiler

• Using inline namespaces for symbol versioning in Chapter 1, Learning Modern
Core Language Features, to learn how to version your source code using inline
namespaces and conditional compilation

Creating raw user-defined literals
In the previous recipe, we looked at the way C++11 allows library implementers and
developers to create user-defined literals and the user-defined literals available in
the C++14 standard. However, user-defined literals have two forms: a cooked form,
where the literal value is processed by the compiler before being supplied to the
literal operator, and a raw form, in which the literal is not processed by the compiler
before being supplied to the literal operator. The latter is only available for integral
and floating-point types. Raw literals are useful for altering the compiler's normal
behavior. For instance, a sequence such as 3.1415926 is interpreted by the compiler
as a floating-point value, but with the use of a raw user-defined literal, it could be
interpreted as a user-defined decimal value. In this recipe, we will look at creating
raw user-defined literals.

Getting ready
Before continuing with this recipe, it is strongly recommended that you go through
the previous one, Creating cooked user-defined literals, as general details about user-
defined literals will not be reiterated here.

To exemplify the way raw user-defined literals can be created, we will define binary
literals. These binary literals can be of 8-bit, 16-bit, and 32-bit (unsigned) types. These
types will be called byte8, byte16, and byte32, and the literals we will create will be
called _b8, _b16, and _b32.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Numbers and Strings

[96]

How to do it...
To create raw user-defined literals, you should follow these steps:

1. Define your literals in a separate namespace to avoid name clashes.
2. Always prefix the used-defined suffix with an underscore (_).
3. Define a literal operator or literal operator template of the following form:

T operator "" _suffix(const char*);

template<char...> T operator "" _suffix();

The following example shows a possible implementation of 8-bit, 16-bit, and 32-bit
binary literals:

namespace binary
{
 using byte8 = unsigned char;
 using byte16 = unsigned short;
 using byte32 = unsigned int;

 namespace binary_literals
 {
 namespace binary_literals_internals
 {
 template <typename CharT, char... bits>
 struct binary_struct;

 template <typename CharT, char... bits>
 struct binary_struct<CharT, '0', bits...>
 {
 static constexpr CharT value{
 binary_struct<CharT, bits...>::value };
 };

 template <typename CharT, char... bits>
 struct binary_struct<CharT, '1', bits...>
 {
 static constexpr CharT value{
 static_cast<CharT>(1 << sizeof...(bits)) |
 binary_struct<CharT, bits...>::value };
 };

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[97]

 template <typename CharT>
 struct binary_struct<CharT>
 {
 static constexpr CharT value{ 0 };
 };
 }

 template<char... bits>
 constexpr byte8 operator""_b8()
 {
 static_assert(
 sizeof...(bits) <= 8,
 "binary literal b8 must be up to 8 digits long");

 return binary_literals_internals::
 binary_struct<byte8, bits...>::value;
 }

 template<char... bits>
 constexpr byte16 operator""_b16()
 {
 static_assert(
 sizeof...(bits) <= 16,
 "binary literal b16 must be up to 16 digits long");

 return binary_literals_internals::
 binary_struct<byte16, bits...>::value;
 }

 template<char... bits>
 constexpr byte32 operator""_b32()
 {
 static_assert(
 sizeof...(bits) <= 32,
 "binary literal b32 must be up to 32 digits long");

 return binary_literals_internals::
 binary_struct<byte32, bits...>::value;
 }

 }
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Numbers and Strings

[98]

How it works...
First of all, we define everything inside a namespace called binary and start with
introducing several type aliases: byte8, byte16, and byte32. These represent integral
types of 8 bits, 16 bits, and 32 bits, as the names imply.

The implementation in the previous section enables us to define binary literals of
the form 1010_b8 (a byte8 value of decimal 10) or 000010101100_b16 (a byte16 value
of decimal 2130496). However, we want to make sure that we do not exceed the
number of digits for each type. In other words, values such as 111100001_b8 should
be illegal and the compiler should yield an error.

The literal operator templates are defined in a nested namespace called binary_
literal_internals. This is a good practice in order to avoid name collisions with
other literal operators from other namespaces. Should something like that happen,
you can choose to use the appropriate namespace in the right scope (such as one
namespace in a function or block and another namespace in another function
or block).

The three literal operator templates are very similar. The only things that are
different are their names (_b8, _16, and _b32), return type (byte8, byte16, and
byte32), and the condition in the static assert that checks the number of digits.

We will explore the details of variadic templates and template recursion in a
later recipe; however, for a better understanding, this is how this particular
implementation works: bits is a template parameter pack that is not a single
value, but all the values the template could be instantiated with. For example, if we
consider the literal 1010_b8, then the literal operator template would be instantiated
as operator"" _b8<'1', '0', '1', '0'>(). Before proceeding with computing the
binary value, we check the number of digits in the literal. For _b8, this must not
exceed eight (including any trailing zeros). Similarly, it should be up to 16 digits
for _b16 and 32 for _b32. For this, we use the sizeof... operator, which returns the
number of elements in a parameter pack (in this case, bits).

If the number of digits is correct, we can proceed to expand the parameter pack and
recursively compute the decimal value represented by the binary literal. This is done
with the help of an additional class template and its specializations. These templates
are defined in yet another nested namespace, called binary_literals_internals.
This is also a good practice because it hides (without proper qualification) the
implementation details from the client (unless an explicit using namespace directive
makes them available to the current namespace).

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[99]

The binary_struct class template has a template type of CharT for the return type of
the function (we need this because our literal operator templates should return either
byte8, byte16, or byte32) and a parameter pack:

template <typename CharT, char... bits>
struct binary_struct;

Several specializations of this class template are available with parameter pack
decomposition. When the first digit of the pack is '0', the computed value remains
the same, and we continue expanding the rest of the pack. If the first digit of the pack
is '1', then the new value is 1, shifted to the left with the number of digits in the
remainder of the pack bit, or the value of the rest of the pack:

template <typename CharT, char... bits>
struct binary_struct<CharT, '0', bits...>
{
 static constexpr CharT value{
 binary_struct<CharT, bits...>::value };
};

template <typename CharT, char... bits>
struct binary_struct<CharT, '1', bits...>
{
 static constexpr CharT value{
 static_cast<CharT>(1 << sizeof...(bits)) |
 binary_struct<CharT, bits...>::value };
};

The last specialization covers the case where the pack is empty; in this case,
we return 0:

template <typename CharT>
struct binary_struct<CharT>
{
 static constexpr CharT value{ 0 };
};

Even though this looks like recursion, it is not a true runtime
recursion. This is because after the compiler expands and generates
the code from templates, what we end up with is basically calls to
overloaded functions with a different number of parameters. This
is explained later in the Writing a function template with a variable
number of arguments recipe.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Numbers and Strings

[100]

After defining these helper classes, we could implement the byte8, byte16, and
byte32 binary literals as intended. Note that we need to bring the content of the
namespace binary_literals into the current namespace in order to use the literal
operator templates:

using namespace binary;
using namespace binary_literals;
auto b1 = 1010_b8;
auto b2 = 101010101010_b16;
auto b3 = 101010101010101010101010_b32;

The following definitions trigger compiler errors:

// binary literal b8 must be up to 8 digits long
auto b4 = 0011111111_b8;
// binary literal b16 must be up to 16 digits long
auto b5 = 001111111111111111_b16;
// binary literal b32 must be up to 32 digits long
auto b6 = 0011111111111111111111111111111111_b32;

The reason for this is that the condition in static_assert is not met. The length of
the sequence of characters preceding the literal operator is greater than expected,
in all cases.

See also
• Using raw string literals to avoid escaping characters to learn how to define string

literals without the need to escape special characters
• Creating cooked user-defined literals to learn how to create literals of user-

defined types
• Writing a function template with a variable number of arguments in Chapter 3

to see how variadic templates enable us to write functions that can take any
number of arguments

• Creating type aliases and alias templates in Chapter 1 to learn about aliases for
types

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[101]

Using raw string literals to avoid
escaping characters
Strings may contain special characters, such as non-printable characters (newline,
horizontal and vertical tab, and so on), string and character delimiters (double and
single quotes), or arbitrary octal, hexadecimal, or Unicode values. These special
characters are introduced with an escape sequence that starts with a backslash,
followed by either the character (examples include ' and "), its designated letter
(examples include n for a new line, t for a horizontal tab), or its value (examples
include octal 050, hexadecimal XF7, or Unicode U16F0). As a result, the backslash
character itself has to be escaped with another backslash character. This leads to
more complicated literal strings that can be hard to read.

To avoid escaping characters, C++11 introduced raw string literals that do not
process escape sequences. In this recipe, you will learn how to use the various
forms of raw string literals.

Getting ready
In this recipe, and throughout the rest of this book, I will use the s suffix to define
basic_string literals. This was covered earlier in this chapter in the Creating cooked
user-defined literals recipe.

How to do it...
To avoid escaping characters, define the string literals with one of the following
forms:

• R"(literal)" as the default form:
auto filename {R"(C:\Users\Marius\Documents\)"s};
auto pattern {R"((\w+)=(\d+)$)"s};

auto sqlselect {
 R"(SELECT *
 FROM Books
 WHERE Publisher='Packtpub'
 ORDER BY PubDate DESC)"s};

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Numbers and Strings

[102]

• R"delimiter(literal)delimiter", where delimiter is any sequence of
characters excluding parentheses, backslash, and spaces, and literal is any
sequence of characters with the limitation that it cannot include the closing
sequence)delimiter". Here is an example with !! as delimiter:

auto text{ R"!!(This text contains both "(and)".)!!"s };
std::cout << text << '\n';

How it works...
When string literals are used, escapes are not processed, and the actual content of
the string is written between the delimiter (in other words, what you see is what
you get). The following example shows what appears as the same raw literal string;
however, the second one still contains escaped characters. Since these are not
processed in the case of string literals, they will be printed as they are in the output:

auto filename1 {R"(C:\Users\Marius\Documents\)"s};
auto filename2 {R"(C:\\Users\\Marius\\Documents\\)"s};

// prints C:\Users\Marius\Documents\
std::cout << filename1 << '\n';

// prints C:\\Users\\Marius\\Documents\\
std::cout << filename2 << '\n';

If the text has to contain the)" sequence, then a different delimiter must be used,
in the R"delimiter(literal)delimiter" form. According to the standard, the
possible characters in a delimiter can be as follows:

"Any member of the basic source character set except: space, the left parenthesis
(the right parenthesis), the backslash \, and the control characters representing
horizontal tab, vertical tab, form feed, and newline."

Raw string literals can be prefixed by one of L, u8, u, and U to indicate a wide, UTF-
8, UTF-16, or UTF-32 string literal, respectively. The following are examples of such
string literals:

auto t1{ LR"(text)" }; // const wchar_t*
auto t2{ u8R"(text)" }; // const char*
auto t3{ uR"(text)" }; // const char16_t*
auto t4{ UR"(text)" }; // const char32_t*

auto t5{ LR"(text)"s }; // wstring

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[103]

auto t6{ u8R"(text)"s }; // string
auto t7{ uR"(text)"s }; // u16string
auto t8{ UR"(text)"s }; // u32string

Note that the presence of the suffix ""s at the end of the string makes the compiler
deduce the type as various string classes and not character arrays.

See also
• Creating cooked user-defined literals to learn how to create literals of user-

defined types

Creating a library of string helpers
The string types from the standard library are a general-purpose implementation
that lacks many helpful methods, such as changing the case, trimming, splitting,
and others that may address different developer needs. Third-party libraries that
provide rich sets of string functionalities exist. However, in this recipe, we will look
at implementing several simple, yet helpful, methods you may often need in practice.
The purpose is rather to see how string methods and standard general algorithms
can be used for manipulating strings, but also to have a reference to reusable code
that can be used in your applications.

In this recipe, we will implement a small library of string utilities that will provide
functions for the following:

• Changing a string into lowercase or uppercase
• Reversing a string
• Trimming white spaces from the beginning and/or the end of the string
• Trimming a specific set of characters from the beginning and/or the end of

the string
• Removing occurrences of a character anywhere in the string
• Tokenizing a string using a specific delimiter

Before we start with the implementation, let's look at some prerequisites.

Getting ready
The string library we will be implementing should work with all the standard string
types; that is, std::string, std::wstring, std::u16string, and std::u32string.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Numbers and Strings

[104]

To avoid specifying long names such as std::basic_string<CharT, std::char_
traits<CharT>, std::allocator<CharT>>, we will use the following alias templates
for strings and string streams:

template <typename CharT>
using tstring =
 std::basic_string<CharT, std::char_traits<CharT>,
 std::allocator<CharT>>;

template <typename CharT>
using tstringstream =
 std::basic_stringstream<CharT, std::char_traits<CharT>,
 std::allocator<CharT>>;

To implement these string helper functions, we need to include the header <string>
for strings and <algorithm> for the general standard algorithms we will use.

In all the examples in this recipe, we will use the standard user-defined literal
operators for strings from C++14, for which we need to explicitly use the
std::string_literals namespace.

How to do it...
1. To convert a string to lowercase or uppercase, apply the tolower() or

toupper() functions to the characters of a string using the general-purpose
algorithm std::transform():

template<typename CharT>
inline tstring<CharT> to_upper(tstring<CharT> text)
{
 std::transform(std::begin(text), std::end(text),
 std::begin(text), toupper);
 return text;
}

template<typename CharT>
inline tstring<CharT> to_lower(tstring<CharT> text)
{
 std::transform(std::begin(text), std::end(text),
 std::begin(text), tolower);
 return text;
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[105]

2. To reverse a string, use the general-purpose algorithm std::reverse():
template<typename CharT>
inline tstring<CharT> reverse(tstring<CharT> text)
{
 std::reverse(std::begin(text), std::end(text));
 return text;
}

3. To trim a string, at the beginning, end, or both, use the std::basic_string
methods find_first_not_of() and find_last_not_of():

template<typename CharT>
inline tstring<CharT> trim(tstring<CharT> const & text)
{
 auto first{ text.find_first_not_of(' ') };
 auto last{ text.find_last_not_of(' ') };
 return text.substr(first, (last - first + 1));
}

template<typename CharT>
inline tstring<CharT> trimleft(tstring<CharT> const & text)
{
 auto first{ text.find_first_not_of(' ') };
 return text.substr(first, text.size() - first);
}

template<typename CharT>
inline tstring<CharT> trimright(tstring<CharT> const & text)
{
 auto last{ text.find_last_not_of(' ') };
 return text.substr(0, last + 1);
}

4. To trim characters in a given set from a string, use overloads of the
std::basic_string methods find_first_not_of() and find_last_not_of(),
which take
a string parameter that defines the set of characters to look for:

template<typename CharT>
inline tstring<CharT> trim(tstring<CharT> const & text,
 tstring<CharT> const & chars)
{
 auto first{ text.find_first_not_of(chars) };
 auto last{ text.find_last_not_of(chars) };

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Numbers and Strings

[106]

 return text.substr(first, (last - first + 1));
}

template<typename CharT>
inline tstring<CharT> trimleft(tstring<CharT> const & text,
 tstring<CharT> const & chars)
{
 auto first{ text.find_first_not_of(chars) };
 return text.substr(first, text.size() - first);
}

template<typename CharT>
inline tstring<CharT> trimright(tstring<CharT> const &text,
 tstring<CharT> const &chars)
{
 auto last{ text.find_last_not_of(chars) };
 return text.substr(0, last + 1);
}

5. To remove characters from a string, use std::remove_if() and std::basic_
string::erase():

template<typename CharT>
inline tstring<CharT> remove(tstring<CharT> text,
 CharT const ch)
{
 auto start = std::remove_if(
 std::begin(text), std::end(text),
 [=](CharT const c) {return c == ch; });
 text.erase(start, std::end(text));
 return text;
}

6. To split a string based on a specified delimiter, use std::getline() to read
from an std::basic_stringstream initialized with the content of the string.
The tokens extracted from the stream are pushed into a vector of strings:

template<typename CharT>
inline std::vector<tstring<CharT>> split
 (tstring<CharT> text, CharT const delimiter)
{
 auto sstr = tstringstream<CharT>{ text };
 auto tokens = std::vector<tstring<CharT>>{};
 auto token = tstring<CharT>{};

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[107]

 while (std::getline(sstr, token, delimiter))
 {
 if (!token.empty()) tokens.push_back(token);
 }
 return tokens;
}

How it works...
To implement the utility functions from the library, we have two options:

• Functions would modify a string passed by a reference
• Functions would not alter the original string but return a new string

The second option has the advantage that it preserves the original string, which may
be helpful in many cases. Otherwise, in those cases, you would first have to make
a copy of the string and alter the copy. The implementation provided in this recipe
takes the second approach.

The first functions we implemented in the How to do it... section were to_upper()
and to_lower(). These functions change the content of a string either to uppercase
or lowercase. The simplest way to implement this is using the std::transform()
standard algorithm. This is a general-purpose algorithm that applies a function to
every element of a range (defined by a begin and end iterator) and stores the result
in another range for which only the begin iterator needs to be specified. The output
range can be the same as the input range, which is exactly what we did to transform
the string. The applied function is toupper() or tolower():

auto ut{ string_library::to_upper("this is not UPPERCASE"s) };
// ut = "THIS IS NOT UPPERCASE"

auto lt{ string_library::to_lower("THIS IS NOT lowercase"s) };
// lt = "this is not lowercase"

The next function we considered was reverse(), which, as the name implies,
reverses the content of a string. For this, we used the std::reverse() standard
algorithm. This general-purpose algorithm reverses the elements of a range defined
by a begin and end iterator:

auto rt{string_library::reverse("cookbook"s)}; // rt = "koobkooc"

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Numbers and Strings

[108]

When it comes to trimming, a string can be trimmed at the beginning, end, or
both sides. Because of that, we implemented three different functions: trim() for
trimming at both ends, trimleft() for trimming at the beginning of a string, and
trimright() for trimming at the end of a string. The first version of the function
trims only spaces. In order to find the right part to trim, we use the find_first_not_
of() and find_last_not_of() methods of std::basic_string. These return the first
and last characters in the string that are not of the specified character. Subsequently,
a call to the substr() method of std::basic_string returns a new string. The
substr() method takes an index in the string and a number of elements to copy
to the new string:

auto text1{" this is an example "s};
// t1 = "this is an example"
auto t1{ string_library::trim(text1) };
// t2 = "this is an example "
auto t2{ string_library::trimleft(text1) };
// t3 = " this is an example"
auto t3{ string_library::trimright(text1) };

Sometimes, it can be useful to trim other characters and then spaces from a string. In
order to do that, we provided overloads for the trimming functions that specify a set
of characters to be removed. That set is also specified as a string. The implementation
is very similar to the previous one because both find_first_not_of() and find_
last_not_of() have overloads that take a string containing the characters to be
excluded from the search:

auto chars1{" !%\n\r"s};
auto text3{"!! this % needs a lot\rof trimming !\n"s};

auto t7{ string_library::trim(text3, chars1) };
// t7 = "this % needs a lot\rof trimming"

auto t8{ string_library::trimleft(text3, chars1) };
// t8 = "this % needs a lot\rof trimming !\n"

auto t9{ string_library::trimright(text3, chars1) };
// t9 = "!! this % needs a lot\rof trimming"

If removing characters from any part of the string is necessary, the trimming
methods are not helpful because they only treat a contiguous sequence of characters
at the start and end of a string. For that, however, we implemented a simple
remove() method. This uses the std:remove_if() standard algorithm.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[109]

Both std::remove() and std::remove_if() work in a way that may not be very
intuitive at first. They remove elements that satisfy the criteria from a range defined
by a first and last iterator by rearranging the content of the range (using move
assignment). The elements that need to be removed are placed at the end of the
range, and the function returns an iterator to the first element in the range that
represents the removed elements. This iterator basically defines the new end of the
range that was modified. If no element was removed, the returned iterator is the end
iterator of the original range. The value of this returned iterator is then used to call
the std::basic_string::erase() method, which actually erases the content of the
string defined by two iterators. The two iterators in our case are the iterator returned
by std::remove_if() and the end of the string:

auto text4{"must remove all * from text**"s};

auto t10{ string_library::remove(text4, '*') };
// t10 = "must remove all from text"

auto t11{ string_library::remove(text4, '!') };
// t11 = "must remove all * from text**"

The last method we implemented, split(), splits the content of a string based
on a specified delimiter. There are various ways to implement this. In this
implementation, we used std::getline(). This function reads characters from an
input stream until a specified delimiter is found and places the characters in a string.
Before starting to read from the input buffer, it calls erase() on the output string to
clear its content. Calling this method in a loop produces tokens that are placed in a
vector. In our implementation, empty tokens were skipped from the result set:

auto text5{"this text will be split "s};

auto tokens1{ string_library::split(text5, ' ') };
// tokens1 = {"this", "text", "will", "be", "split"}

auto tokens2{ string_library::split(""s, ' ') };
// tokens2 = {}

Two examples of text splitting are shown here. In the first example, the text from
the text5 variable is split into words and, as mentioned earlier, empty tokens are
ignored. In the second example, splitting an empty string produces an empty vector
of token.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Numbers and Strings

[110]

See also
• Creating cooked user-defined literals to learn how to create literals of user-

defined types
• Creating type aliases and alias templates in Chapter 1, Learning Modern Core

Language Features, to learn about aliases for types

Verifying the format of a string using
regular expressions
Regular expressions are a language intended for performing pattern matching and
replacements in texts. C++11 provides support for regular expressions within the
standard library through a set of classes, algorithms, and iterators available in the
header <regex>. In this recipe, we will learn how regular expressions can be used
to verify that a string matches a pattern (examples can include verifying an email
or IP address formats).

Getting ready
Throughout this recipe, we will explain, whenever necessary, the details of the
regular expressions that we use. However, you should have at least some basic
knowledge of regular expressions in order to use the C++ standard library for
regular expressions. A description of regular expressions syntax and standards is
beyond the purpose of this book; if you are not familiar with regular expressions, it
is recommended that you read more about them before continuing with the recipes
that focus on regular expressions. Good online resources for learning, building, and
debugging regular expressions can be found at https://regexr.com and https://
regex101.com.

How to do it...
In order to verify that a string matches a regular expression, perform the following
steps:

1. Include the headers <regex> and <string> and the namespace std::string_
literals for C++14 standard user-defined literals for strings:

#include <regex>
#include <string>
using namespace std::string_literals;

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://regexr.com
https://regex101.com
https://regex101.com

Chapter 2

[111]

2. Use raw string literals to specify the regular expression to avoid escaping
backslashes (which can occur frequently). The following regular expression
validates most email formats:

auto pattern {R"(^[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}$)"s};

3. Create an std::regex/std::wregex object (depending on the character set
that is used) to encapsulate the regular expression:

auto rx = std::regex{pattern};

4. To ignore casing or specify other parsing options, use an overloaded
constructor that has an extra parameter for regular expression flags:

auto rx = std::regex{pattern, std::regex_constants::icase};

5. Use std::regex_match() to match the regular expression with an entire
string:

auto valid = std::regex_match("marius@domain.com"s, rx);

How it works...
Considering the problem of verifying the format of email addresses, even though
this may look like a trivial problem, in practice, it is hard to find a simple regular
expression that covers all the possible cases for valid email formats. In this recipe,
we will not try to find that ultimate regular expression, but rather apply a regular
expression that is good enough for most cases. The regular expression we will use
for this purpose is this:

^[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}$

The following table explains the structure of the regular expression:

Part Description
^ Start of string.
[A-Z0-9._%+-]+ At least one character in the range A-Z, 0-9, or one of -, %, +, or - that

represents the local part of the email address.
@ The character @.
[A-Z0-9.-]+ At least one character in the range A-Z, 0-9, or one of -, %, +, or - that

represents the hostname of the domain part.
\. A dot that separates the domain hostname and label.
[A-Z]{2,} The DNS label of a domain that can have between 2 and 63 characters.
$ End of the string.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Numbers and Strings

[112]

Bear in mind that, in practice, a domain name is composed of a hostname followed
by a dot-separated list of DNS labels. Examples include localhost, gmail.com
and yahoo.co.uk. This regular expression we are using does not match domains
without DNS labels, such as localhost (an email, such as root@localhost, is a valid
email). The domain name can also be an IP address specified in brackets, such as
[192.168.100.11] (as in john.doe@[192.168.100.11]). Email addresses containing
such domains will not match the regular expression defined previously. Even though
these rather rare formats will not be matched, the regular expression can cover most
email formats.

We began by including the necessary headers; that is, <regex> for regular expressions
and <string> for strings. The is_valid_email() function, shown in the following
code (which basically contains the samples from the How to do it... section), takes a
string representing an email address and returns a Boolean indicating whether the
email has a valid format or not.

We first construct an std::regex object to encapsulate the regular expression
indicated with the raw string literal. Using raw string literals is helpful because
it avoids escaping backslashes, which are used for escape characters in regular
expressions too. The function then calls std::regex_match(), passing the input
text and the regular expression:

bool is_valid_email_format(std::string const & email)
{
 auto pattern {R"(^[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}$)"s};

 auto rx = std::regex{pattern, std::regex_constants::icase};

 return std::regex_match(email, rx);
}

The std::regex_match() method tries to match the regular expression against the
entire string. If successful, it returns true; otherwise, it returns false:

auto ltest = [](std::string const & email)
{
 std::cout << std::setw(30) << std::left
 << email << " : "

The regular expression for the example in this chapter is provided
for didactical purposes only, and is not intended to be used as it
is in production code. As explained earlier, this sample does not
cover all possible email formats.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[113]

 << (is_valid_email_format(email) ?
 "valid format" : "invalid format")
 << '\n';
};

ltest("JOHN.DOE@DOMAIN.COM"s); // valid format
ltest("JOHNDOE@DOMAIL.CO.UK"s); // valid format
ltest("JOHNDOE@DOMAIL.INFO"s); // valid format
ltest("J.O.H.N_D.O.E@DOMAIN.INFO"s); // valid format
ltest("ROOT@LOCALHOST"s); // invalid format
ltest("john.doe@domain.com"s); // invalid format

In this simple test, the only emails that do not match the regular expression are ROOT@
LOCALHOST and john.doe@domain.com. The first contains a domain name without a
dot-prefixed DNS label, and that case is not covered in the regular expression. The
second contains only lowercase letters, and in the regular expression, the valid set of
characters for both the local part and the domain name was uppercase letters, A to Z.

Instead of complicating the regular expression with additional valid characters (such
as [A-Za-z0-9._%+-]), we can specify that the match can ignore this case. This can
be done with an additional parameter to the constructor of the std::basic_regex
class. The available constants for this purpose are defined in the regex_constants
namespace. The following slight change to is_valid_email_format() will make
it ignore the case and allow emails with both lowercase and uppercase letters to
correctly match the regular expression:

bool is_valid_email_format(std::string const & email)
{
 auto rx = std::regex{
 R"(^[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}$)"s,
 std::regex_constants::icase};

 return std::regex_match(email, rx);
}

This is_valid_email_format() function is pretty simple, and if the regular
expression was provided as a parameter, along with the text to match, it could be
used for matching anything. However, it would be nice to be able to handle not only
multi-byte strings (std::string), but also wide strings (std::wstring), with a single
function. This can be achieved by creating a function template where the character
type is provided as a template parameter:

template <typename CharT>

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Numbers and Strings

[114]

using tstring = std::basic_string<CharT, std::char_traits<CharT>,
 std::allocator<CharT>>;

template <typename CharT>
bool is_valid_format(tstring<CharT> const & pattern,
 tstring<CharT> const & text)
{
 auto rx = std::basic_regex<CharT>{
 pattern, std::regex_constants::icase };

 return std::regex_match(text, rx);
}

We start by creating an alias template for std::basic_string in order to simplify
its use. The new is_valid_format() function is a function template very similar
to our implementation of is_valid_email(). However, we now use std::basic_
regex<CharT> instead of the typedef std::regex, which is std::basic_regex<char>,
and the pattern is provided as the first argument. We now implement a new function
called is_valid_email_format_w() for wide strings that relies on this function
template. The function template, however, can be reused for implementing other
validations, such as if a license plate has a particular format:

bool is_valid_email_format_w(std::wstring const & text)
{
 return is_valid_format(
 LR"(^[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}$)"s,
 text);
}

auto ltest2 = [](auto const & email)
{
 std::wcout << std::setw(30) << std::left
 << email << L" : "
 << (is_valid_email_format_w(email) ? L"valid" : L"invalid")
 << '\n';
};

ltest2(L"JOHN.DOE@DOMAIN.COM"s); // valid
ltest2(L"JOHNDOE@DOMAIL.CO.UK"s); // valid
ltest2(L"JOHNDOE@DOMAIL.INFO"s); // valid
ltest2(L"J.O.H.N_D.O.E@DOMAIN.INFO"s); // valid
ltest2(L"ROOT@LOCALHOST"s); // invalid
ltest2(L"john.doe@domain.com"s); // valid

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[115]

Of all the examples shown here, the only one that does not match is ROOT@LOCALHOST,
as expected.

The std::regex_match() method has, in fact, several overloads, and some of them
have a parameter that is a reference to an std::match_results object to store the
result of the match. If there is no match, then std::match_results is empty and its
size is 0. Otherwise, if there is a match, the std::match_results object is not empty
and its size is 1, plus the number of matched subexpressions.

The following version of the function uses the mentioned overloads and returns the
matched subexpressions in an std::smatch object. Note that the regular expression
is changed as three caption groups are defined—one for the local part, one for the
hostname part of the domain, and one for the DNS label. If the match is successful,
then the std::smatch object will contain four submatch objects: the first to match the
entire string, the second for the first capture group (the local part), the third for the
second capture group (the hostname), and the fourth for the third and last capture
group (the DNS label). The result is returned in a tuple, where the first item actually
indicates success or failure:

std::tuple<bool, std::string, std::string, std::string>
is_valid_email_format_with_result(std::string const & email)
{
 auto rx = std::regex{
 R"(^([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\.([A-Z]{2,})$)"s,
 std::regex_constants::icase };
 auto result = std::smatch{};
 auto success = std::regex_match(email, result, rx);

 return std::make_tuple(
 success,
 success ? result[1].str() : ""s,
 success ? result[2].str() : ""s,
 success ? result[3].str() : ""s);
}

Following the preceding code, we use C++17 structured bindings to unpack the
content of the tuple into named variables:

auto ltest3 = [](std::string const & email)
{
 auto [valid, localpart, hostname, dnslabel] =
 is_valid_email_format_with_result(email);

 std::cout << std::setw(30) << std::left

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Numbers and Strings

[116]

 << email << " : "
 << std::setw(10) << (valid ? "valid" : "invalid")
 << "local=" << localpart
 << ";domain=" << hostname
 << ";dns=" << dnslabel
 << '\n';
};

ltest3("JOHN.DOE@DOMAIN.COM"s);
ltest3("JOHNDOE@DOMAIL.CO.UK"s);
ltest3("JOHNDOE@DOMAIL.INFO"s);
ltest3("J.O.H.N_D.O.E@DOMAIN.INFO"s);
ltest3("ROOT@LOCALHOST"s);
ltest3("john.doe@domain.com"s);

The output of the program will be as follows:

Figure 2.3: Output of tests

There's more...
There are multiple versions of regular expressions, and the C++ standard library
supports six of them: ECMAScript, basic POSIX, extended POSIX, awk, grep, and
egrep (grep with the option -E). The default grammar used is ECMAScript, and
in order to use another, you have to explicitly specify the grammar when defining
the regular expression. In addition to specifying the grammar, you can also specify
parsing options, such as matching by ignoring the case.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[117]

The standard library provides more classes and algorithms than what we have seen
so far. The main classes available in the library are as follows (all of them are class
templates and, for convenience, typedefs are provided for different character types):

• The class template std::basic_regex defines the regular expression object:
typedef basic_regex<char> regex;
typedef basic_regex<wchar_t> wregex;

• The class template std::sub_match represents a sequence of characters that
matches a capture group; this class is actually derived from std::pair, and
its first and second members represent iterators to the first and the one-
past-end characters in the match sequence. If there is no match sequence,
the two iterators are equal:

typedef sub_match<const char *> csub_match;
typedef sub_match<const wchar_t *> wcsub_match;
typedef sub_match<string::const_iterator> ssub_match;
typedef sub_match<wstring::const_iterator> wssub_match;

• The class template std::match_results is a collection of matches; the first
element is always a full match in the target, while the other elements are
matches of subexpressions:

typedef match_results<const char *> cmatch;
typedef match_results<const wchar_t *> wcmatch;
typedef match_results<string::const_iterator> smatch;
typedef match_results<wstring::const_iterator> wsmatch;

The algorithms available in the regular expressions standard library are as follows:

• std::regex_match(): This tries to match a regular expression (represented by
an std::basic_regex instance) to an entire string.

• std::regex_search(): This tries to match a regular expression (represented
by an std::basic_regex instance) to a part of a string (including the entire
string).

• std::regex_replace(): This replaces matches from a regular expression
according to a specified format.

The iterators available in the regular expressions standard library are as follows:

• std::regex_interator: A constant forward iterator used to iterate through
the occurrences of a pattern in a string. It has a pointer to an std::basic_
regex that must live until the iterator is destroyed. Upon creation and when
incremented, the iterator calls std::regex_search() and stores a copy of the
std::match_results object returned by the algorithm.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Numbers and Strings

[118]

• std::regex_token_iterator: A constant forward iterator used to iterate
through the submatches of every match of a regular expression in a string.
Internally, it uses a std::regex_iterator to step through the submatches.
Since it stores a pointer to an std::basic_regex instance, the regular
expression object must live until the iterator is destroyed.

It should be mentioned that the standard regex library has poorer performance
compared to other implementations (such as Boost.Regex) and does not support
Unicode. Moreover, it could be argued that the API itself is cumbersome to use.

See also
• Parsing the content of a string using regular expressions to learn how to perform

multiple matches of a pattern in a text
• Replacing the content of a string using regular expressions to see how to perform

text replacements with the help of regular expressions
• Using structured bindings to handle multi-return values in Chapter 1, Learning

Modern Core Language Features, to learn how to bind variables to subobjects or
elements from the initializing expressions

Parsing the content of a string using
regular expressions
In the previous recipe, we looked at how to use std::regex_match() to verify that
the content of a string matches a particular format. The library provides another
algorithm called std::regex_search() that matches a regular expression against any
part of a string, and not only the entire string, as regex_match() does. This function,
however, does not allow us to search through all the occurrences of a regular
expression in an input string. For this purpose, we need to use one of the iterator
classes available in the library.

In this recipe, you will learn how to parse the content of a string using regular
expressions. For this purpose, we will consider the problem of parsing a text file
containing name-value pairs. Each such pair is defined on a different line and has
the format name = value, but lines starting with a # represent comments and must
be ignored. The following is an example:

#remove # to uncomment a line
timeout=120
server = 127.0.0.1

#retrycount=3

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[119]

Before looking at the implementation details, let's consider some prerequisites.

Getting ready
For general information about regular expression support in C++11, refer to the
Verifying the format of a string using regular expressions recipe, earlier in this chapter.
Basic knowledge of regular expressions is required to proceed with this recipe.

In the following examples, text is a variable that's defined as follows:

auto text {
 R"(
 #remove # to uncomment a line
 timeout=120
 server = 127.0.0.1

 #retrycount=3
)"s};

The sole purpose of this is to simplify our snippets, although in a real-world
example, you will probably be reading the text from a file or other source.

How to do it...
In order to search for occurrences of a regular expression through a string, you
should do the following:

1. Include the headers <regex> and <string> and the namespace std::string_
literals for C++14 standard user-defined literals for strings:

#include <regex>
#include <string>
using namespace std::string_literals;

2. Use raw string literals to specify a regular expression in order to avoid
escaping backslashes (which can occur frequently). The following regular
expression validates the file format proposed earlier:

auto pattern {R"(^(?!#)(\w+)\s*=\s*([\w\d]+[\w\d._,\-:]*)$)"s};

3. Create an std::regex/std::wregex object (depending on the character set
that is used) to encapsulate the regular expression:

auto rx = std::regex{pattern};

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Numbers and Strings

[120]

4. To search for the first occurrence of a regular expression in a given text,
use the general-purpose algorithm std::regex_search() (example 1):

auto match = std::smatch{};
if (std::regex_search(text, match, rx))
{
 std::cout << match[1] << '=' << match[2] << '\n';
}

5. To find all the occurrences of a regular expression in a given text, use the
iterator std::regex_iterator (example 2):

auto end = std::sregex_iterator{};
for (auto it=std::sregex_iterator{ std::begin(text),
 std::end(text), rx };
 it != end; ++it)
{
 std::cout << '\'' << (*it)[1] << "'='"
 << (*it)[2] << '\'' << '\n';
}

6. To iterate through all the subexpressions of a match, use the iterator
std::regex_token_iterator (example 3):

auto end = std::sregex_token_iterator{};
for (auto it = std::sregex_token_iterator{
 std::begin(text), std::end(text), rx };
 it != end; ++it)
{
 std::cout << *it << '\n';
}

How it works...
A simple regular expression that can parse the input file shown earlier may look like
this:

^(?!#)(\w+)\s*=\s*([\w\d]+[\w\d._,\-:]*)$

This regular expression is supposed to ignore all lines that start with a #; for those
that do not start with #, match a name followed by the equals sign and then a value
that can be composed of alphanumeric characters and several other characters
(underscore, dot, comma, and so on). The exact meaning of this regular expression
is explained as follows:

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[121]

Part Description
^ Start of line.

(?!#) A negative lookahead that makes sure that it is not
possible to match the # character.

(\w)+ A capturing group representing an identifier of at least
a one-word character.

\s* Any whitespaces.
= Equals sign.
\s* Any whitespaces.

([\w\d]+[\w\d._,\-:]*)
A capturing group representing a value that starts with
an alphanumeric character, but can also contain a dot,
comma, backslash, hyphen, colon, or an underscore.

$ End of line.

We can use std::regex_search() to search for a match anywhere in the input text.
This algorithm has several overloads, but in general, they work in the same way. You
must specify the range of characters to work through, an output std::match_results
object that will contain the result of the match, and an std::basic_regex object
representing the regular expression and matching flags (which define the way the
search is done). The function returns true if a match was found or false otherwise.

In the first example from the previous section (see the fourth list item), match is an
instance of std::smatch that is a typedef of std::match_results with string::const_
iterator as the template type. If a match was found, this object will contain the
matching information in a sequence of values for all matched subexpressions.
The submatch at index 0 is always the entire match. The submatch at index 1 is
the first subexpression that was matched, the submatch at index 2 is the second
subexpression that was matched, and so on. Since we have two capturing groups
(which are subexpressions) in our regular expression, the std::match_results will
have three submatches in the event of success. The identifier representing the name
is at index 1, and the value after the equals sign is at index 2. Therefore, this code
only prints the following:

Figure 2.4: Output of first example

The std::regex_search() algorithm is not able to iterate through all the possible
matches in a piece of text. To do that, we need to use an iterator. std::regex_
iterator is intended for this purpose. It allows not only iterating through all the
matches, but also accessing all the submatches of a match.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Numbers and Strings

[122]

The iterator actually calls std::regex_search() upon construction and on each
increment, and it remembers the resulting std::match_results from the call. The
default constructor creates an iterator that represents the end of the sequence and
can be used to test when the loop through the matches should stop.

In the second example from the previous section (see the fifth list item), we first
create an end-of-sequence iterator, and then we start iterating through all the
possible matches. When constructed, it will call std::regex_match(), and if a
match is found, we can access its results through the current iterator. This will
continue until no match is found (the end of the sequence). This code will print
the following output:

Figure 2.5: Output of second example

An alternative to std::regex_iterator is std::regex_token_iterator. This works
similar to the way std::regex_iterator works and, in fact, it contains such an
iterator internally, except that it enables us to access a particular subexpression from
a match. This is shown in the third example in the How to do it... section (see the sixth
list item). We start by creating an end-of-sequence iterator and then loop through the
matches until the end-of-sequence is reached. In the constructor we used, we did not
specify the index of the subexpression to access through the iterator; therefore, the
default value of 0 is used. This means this program will print all the matches:

Figure 2.6: Output of third example

If we wanted to access only the first subexpression (this means the names in our
case), all we had to do was specify the index of the subexpression in the constructor
of the token iterator, as shown here:

auto end = std::sregex_token_iterator{};
for (auto it = std::sregex_token_iterator{ std::begin(text),
 std::end(text), rx, 1 };
 it != end; ++it)
{
 std::cout << *it << '\n';
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[123]

This time, the output that we get contains only the names. This is shown in the
following image:

Figure 2.7: Output containing only the names

An interesting thing about the token iterator is that it can return the unmatched
parts of the string if the index of the subexpressions is -1, in which case it returns an
std::match_results object that corresponds to the sequence of characters between
the last match and the end of the sequence:

auto end = std::sregex_token_iterator{};
for (auto it = std::sregex_token_iterator{ std::begin(text),
 std::end(text), rx, -1 };
 it != end; ++it)
{
 std::cout << *it << '\n';
}

This program will output the following:

Figure 2.8: Output including empty lines

Please note that the empty lines in the output correspond to empty tokens.

See also
• Verifying the format of a string using regular expressions to familiarize yourself

with the C++ library support for working with regular expressions
• Replacing the content of a string using regular expressions to learn how

to perform multiple matches of a pattern in a text

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Numbers and Strings

[124]

Replacing the content of a string using
regular expressions
In the previous two recipes, we looked at how to match a regular expression on a
string or a part of a string and iterate through matches and submatches. The regular
expression library also supports text replacement based on regular expressions. In
this recipe, we will learn how to use std::regex_replace() to perform such text
transformations.

Getting ready
For general information about regular expressions support in C++11, refer to the
Verifying the format of a string using regular expressions recipe, earlier in this chapter.

How to do it...
In order to perform text transformations using regular expressions, you should
perform the following:

• Include <regex> and <string> and the namespace std::string_literals
for C++14 standard user-defined literals for strings:

#include <regex>
#include <string>
using namespace std::string_literals;

• Use the std::regex_replace() algorithm with a replacement string as the
third argument. Consider this example: replace all words composed of
exactly three characters that are either a, b, or c with three hyphens:

auto text{"abc aa bca ca bbbb"s};
auto rx = std::regex{ R"(\b[a|b|c]{3}\b)"s };
auto newtext = std::regex_replace(text, rx, "---"s);

• Use the std::regex_replace() algorithm with match identifiers prefixed
with a $ for the third argument. For example, replace names in the format
"lastname, firstname" with names in the format "firstname lastname",
as follows:

auto text{ "bancila, marius"s };
auto rx = std::regex{ R"((\w+),\s*(\w+))"s };
auto newtext = std::regex_replace(text, rx, "$2 $1"s);

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[125]

How it works...
The std::regex_replace() algorithm has several overloads with different types
of parameters, but the meaning of the parameters is as follows:

• The input string on which the replacement is performed.
• An std::basic_regex object that encapsulates the regular expression used

to identify the parts of the strings to be replaced.
• The string format used for replacement.
• Optional matching flags.

The return value is, depending on the overload used, either a string or a copy of the
output iterator provided as an argument. The string format used for replacement can
either be a simple string or a match identifier, indicated with a $ prefix:

• $& indicates the entire match.
• $1, $2, $3, and so on indicate the first, second, and third submatches,

and so on.
• $` indicates the part of the string before the first match.
• $' indicates the part of the string after the last match.

In the first example shown in the How to do it... section, the initial text contains
two words made of exactly three a, b, and c characters, abc and bca. The regular
expression indicates an expression of exactly three characters between word
boundaries. This means a subtext, such as bbbb, will not match the expression.
The result of the replacement is that the string text will be --- aa --- ca bbbb.

Additional flags for the match can be specified for the std::regex_replace()
algorithm. By default, the matching flag is std::regex_constants::match_default,
which basically specifies ECMAScript as the grammar used for constructing the
regular expression. If we want, for instance, to replace only the first occurrence,
then we can specify std::regex_constants::format_first_only. In the following
example, the result is --- aa bca ca bbbb as the replacement stops after the first
match is found:

auto text{ "abc aa bca ca bbbb"s };
auto rx = std::regex{ R"(\b[a|b|c]{3}\b)"s };
auto newtext = std::regex_replace(text, rx, "---"s,
 std::regex_constants::format_first_only);

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Numbers and Strings

[126]

The replacement string, however, can contain special indicators for the whole match,
a particular submatch, or the parts that were not matched, as explained earlier. In the
second example shown in the How to do it... section, the regular expression identifies
a word of at least one character, followed by a comma and possible white spaces,
and then another word of at least one character. The first word is supposed to be the
last name, while the second word is supposed to be the first name. The replacement
string is in the $2 $1 format. This is an instruction that's used to replace the matched
expression (in this example, the entire original string) with another string formed of
the second submatch, followed by a space and then the first submatch.

In this case, the entire string was a match. In the following example, there will be
multiple matches inside the string, and they will all be replaced with the indicated
string. In this example, we are replacing the indefinite article a when preceding a
word that starts with a vowel (this, of course, does not cover words that start with
a vowel sound) with the indefinite article an:

auto text{"this is a example with a error"s};
auto rx = std::regex{R"(\ba ((a|e|i|u|o)\w+))"s};
auto newtext = std::regex_replace(text, rx, "an $1");

The regular expression identifies the letter a as a single word (\b indicates a word
boundary, so \ba means a word with a single letter, a), followed by a space and
a word of at least two characters starting with a vowel. When such a match is
identified, it is replaced with a string formed of the fixed string an, followed by
a space and the first subexpression of the match, which is the word itself. In this
example, the newtext string will be this is an example with an error.

Apart from the identifiers of the subexpressions ($1, $2, and so on), there are other
identifiers for the entire match ($&), the part of the string before the first match ($`),
and the part of the string after the last match ($'). In the last example, we change the
format of a date from dd.mm.yyyy to yyyy.mm.dd, but also show the matched parts:

auto text{"today is 1.06.2016!!"s};
auto rx =
 std::regex{R"((\d{1,2})(\.|-|/)(\d{1,2})(\.|-|/)(\d{4}))"s};
// today is 2016.06.1!!
auto newtext1 = std::regex_replace(text, rx, R"($5$4$3$2$1)");
// today is [today is][1.06.2016][!!]!!
auto newtext2 = std::regex_replace(text, rx, R"([$`][$&][$'])");

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[127]

The regular expression matches a one- or two-digit number followed by a dot,
hyphen, or slash; followed by another one- or two-digit number; then a dot, hyphen,
or slash; and lastly a four-digit number.

For newtext1, the replacement string is $5$4$3$2$1; this means year, followed by the
second separator, then month, the first separator, and finally day. Therefore, for the
input string today is 1.06.2016!, the result is today is 2016.06.1!!.

For newtext2, the replacement string is [$`][$&][$']; this means the part before the
first match, followed by the entire match, and finally the part after the last match,
are in square brackets. However, the result is not [!!][1.06.2016][today is] as
you perhaps might expect at first glance, but today is [today is][1.06.2016]
[!!]!!. The reason for this is that what is replaced is the matched expression, and,
in this case, that is only the date (1.06.2016). This substring is replaced with another
string formed of all the parts of the initial string.

See also
• Verifying the format of a string using regular expressions to familiarize yourself

with the C++ library support for working with regular expressions
• Parsing the content of a string using regular expressions to learn how to

perform multiple matches of a pattern in a text

Using string_view instead of constant
string references
When working with strings, temporary objects are created all the time, even
if you might not be really aware of it. Many times, these temporary objects are
irrelevant and only serve the purpose of copying data from one place to another
(for example, from a function to its caller). This represents a performance issue
because they require memory allocation and data copying, which should be avoided.
For this purpose, the C++17 standard provides a new string class template called
std::basic_string_view that represents a non-owning constant reference to a string
(that is, a sequence of characters). In this recipe, you will learn when and how you
should use this class.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Numbers and Strings

[128]

Getting ready
The string_view class is available in the namespace std in the string_view header.

How to do it...
You should use std::string_view to pass a parameter to a function (or return
a value from a function), instead of std::string const &, unless your code needs
to call other functions that take std::string parameters (in which case, conversions
would be necessary):

std::string_view get_filename(std::string_view str)
{
 auto const pos1 {str.find_last_of('')};
 auto const pos2 {str.find_last_of('.')};
 return str.substr(pos1 + 1, pos2 - pos1 - 1);
}

char const file1[] {R"(c:\test\example1.doc)"};
auto name1 = get_filename(file1);

std::string file2 {R"(c:\test\example2)"};
auto name2 = get_filename(file2);

auto name3 = get_filename(std::string_view{file1, 16});

How it works...
Before we look at how the new string type works, let's consider the following
example of a function that is supposed to extract the name of a file without its
extension. This is basically how you would write the function from the previous
section before C++17:

std::string get_filename(std::string const & str)
{
 auto const pos1 {str.find_last_of('\\')};
 auto const pos2 {str.find_last_of('.')};
 return str.substr(pos1 + 1, pos2 - pos1 - 1);
}

auto name1 = get_filename(R"(c:\test\example1.doc)"); // example1
auto name2 = get_filename(R"(c:\test\example2)"); // example2
if(get_filename(R"(c:\test_sample_.tmp)").front() == '_') {}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[129]

The get_filename() function is relatively simple. It takes a constant reference to an
std::string and identifies a substring bounded by the last file separator and the last
dot, which basically represents a filename without an extension (and without folder
names).

The problem with this code, however, is that it creates one, two, or possibly even
more temporaries, depending on the compiler optimizations. The function parameter
is a constant std::string reference, but the function is called with a string literal,
which means std::string needs to be constructed from the literal. These temporaries
need to allocate and copy data, which is both time- and resource-consuming. In the
last example, all we want to do is check whether the first character of the filename is
an underscore, but we create at least two temporary string objects for that purpose.

The std::basic_string_view class template is intended to solve this problem. This
class template is very similar to std::basic_string, with the two having almost the
same interface. The reason for this is that std::basic_string_view is intended to be
used instead of a constant reference to an std::basic_string without further code
changes. Just like with std::basic_string, there are specializations for all types of
standard characters:

typedef basic_string_view<char> string_view;
typedef basic_string_view<wchar_t> wstring_view;
typedef basic_string_view<char16_t> u16string_view;
typedef basic_string_view<char32_t> u32string_view;

The std::basic_string_view class template defines a reference to a constant
contiguous sequence of characters. As the name implies, it represents a view
and cannot be used to modify the reference sequence of characters. An std::basic_
string_view object has a relatively small size because all that it needs is a pointer to
the first character in the sequence and the length. It can be constructed not only from
an std::basic_string object but also from a pointer and a length, or from a null-
terminated sequence of characters (in which case, it will require an initial traversal
of the string in order to find the length). Therefore, the std::basic_string_view class
template can also be used as a common interface for multiple types of strings (as long
as data only needs to be read). On the other hand, converting from an std::basic_
string_view to an std::basic_string is not possible.

Note that in this example, the file separator is \ (backslash), as
in Windows. For Linux-based systems, it has to be changed to /
(slash).

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Numbers and Strings

[130]

You must explicitly construct an std::basic_string object from a std::basic_
string_view, as shown in the following example:

std::string_view sv{ "demo" };
std::string s{ sv };

Passing std::basic_string_view to functions and returning std::basic_string_view
still creates temporaries of this type, but these are small-sized objects on the stack (a
pointer and a size could be 16 bytes for 64-bit platforms); therefore, they should incur
fewer performance costs than allocating heap space and copying data.

In addition to the methods that are identical to those available in std::basic_string,
the std::basic_string_view has two more:

• remove_prefix(): Shrinks the view by incrementing the start with N
characters and decrementing the length with N characters.

• remove_suffix(): Shrinks the view by decrementing the length with N
characters.

The two member functions are used in the following example to trim an
std::string_view from spaces, both at the beginning and the end. The
implementation of the function first looks for the first element that is not a space and
then for the last element that is not a space. Then, it removes from the end everything
after the last non-space character, and from the beginning everything until the first
non-space character. The function returns the new view, trimmed at both ends:

std::string_view trim_view(std::string_view str)
{
 auto const pos1{ str.find_first_not_of(" ") };
 auto const pos2{ str.find_last_not_of(" ") };
 str.remove_suffix(str.length() - pos2 - 1);
 str.remove_prefix(pos1);

 return str;
}

Note that all major compilers provide an implementation of
std::basic_string, which includes a small string optimization.
Although the implementation details are different, they typically
rely on having a statically allocated buffer of a number of
characters (16 for VC++ and GCC 5 or newer) that does not involve
heap operations, which are only required when the size of the
string exceeds that number of characters.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[131]

auto sv1{ trim_view("sample") };
auto sv2{ trim_view(" sample") };
auto sv3{ trim_view("sample ") };
auto sv4{ trim_view(" sample ") };

std::string s1{ sv1 };
std::string s2{ sv2 };
std::string s3{ sv3 };
std::string s4{ sv4 };

When using std::basic_string_view, you must be aware of two things: you cannot
change the underlying data referred to by a view and you must manage the lifetime
of the data, as the view is a non-owning reference.

See also
• Creating a library of string helpers to see how to create useful text utilities that

are not directly available in the standard library

Formatting text with std::format
The C++ language has two ways of formatting text: the printf family of functions
and the I/O streams library. The printf functions are inherited from C and provide
a separation of the formatting text and the arguments. The streams library provides
safety and extensibility and is usually recommended over printf functions, but is, in
general, slower. The C++20 standard proposes a new formatting library alternative
for output formatting, which is similar in form to printf but safe and extensible and
is intended to complement the existing streams library. In this recipe, we will learn
how to use the new functionalities instead of the printf functions or the streams
library.

Getting ready
The new formatting library is available in the header <format>. You must include
this header for the following samples to work.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Numbers and Strings

[132]

How to do it...
The std::format() function formats its arguments according to the provided
formatting string. You can use it as follows:

• Provide empty replacement fields, represented by {}, in the format string for
each argument:

auto text = std::format("{} is {}", "John", 42);

• Specify the 0-based index of each argument in the argument list inside the
replacement field, such as {0}, {1}, and so on. The order of the arguments
is not important, but the index must be valid:

auto text = std::format("{0} is {1}", "John", 42);

• Control the output text with format specifiers provided in the replacement
field after a colon (:). For basic and string types, this is a standard format
specification. For chrono types, this is a chrono format specification:

auto text = std::format("{0} hex is {0:08X}", 42);

auto now = std::chrono::system_clock::now();
auto time = std::chrono::system_clock::to_time_t(now);
auto text = std::format("Today is {:%Y-%m-%d}",
*std::localtime(&time));

You can also write the arguments in an out format using an iterator with either
std::format_to() or std::format_to_n(), as follows:

• Write to a buffer, such as an std::string or std::vector<char>, using
std::format_n() and using the std::back_inserter() helper function:

std::vector<char> buf;
std::format_to(std::back_inserter(buf), "{} is {}", "John", 42);

• Use std::formatted_size() to retrieve the number of characters necessary to
store the formatted representation of the arguments:

auto size = std::formatted_size("{} is {}", "John", 42);
std::vector<char> buf(size);
std::format_to(buf.data(), "{} is {}", "John", 42);

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[133]

• To limit the number of characters written to the output buffer, you can use
std::format_to_n(), which is similar to std::format_to() but writes, at
most, n characters:

char buf[100];
auto result = std::format_to_n(buf, sizeof(buf), "{} is {}",
"John", 42);

How it works...
The std::format() function has multiple overloads. You can specify the format
string either as a string view or a wide string view, with the function returning either
an std::string or an std::wstring. You can also specify, as the first argument, an
std::locale, which is used for locale-specific formatting. The function overloads
are all variadic function templates, which means you can specify any number of
arguments after the format.

The format string consists of ordinary characters, replacement fields, and escape
sequences. The escape sequences are {{ and }} and are replaced with { and } in the
output. A replacement field is provided within curly brackets {}. It can optionally
contain a non-negative number, representing the 0-based index of the argument to
be formatted, and a colon (:), followed by a format specifier. If the format specifier is
invalid, an exception of the type std::format_error is thrown.

In a similar manner, std::format_to() has multiple overloads, just like
std::format(). The difference between these two is that std::format_to() always
takes an iterator to the output buffer as the first argument and returns an iterator
past the end of the output range (and not a string as std::format() does). On the
other hand, std::format_to_n() has one more parameter than std::format_to().
Its second parameter is a number representing the maximum number of characters
to be written to the buffer.

The following listing shows the signature of the simplest overload of each of these
three function templates:

template<class... Args>
std::string format(std::string_view fmt, const Args&... args);

template<class OutputIt, class... Args>
OutputIt format_to(OutputIt out,

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Numbers and Strings

[134]

 std::string_view fmt, const Args&... args);

template<class OutputIt, class... Args>
std::format_to_n_result<OutputIt>
format_to_n(OutputIt out, std::iter_difference_t<OutputIt> n,
 std::string_view fmt, const Args&... args);

When you provide the format string, you can supply argument identifiers (their
0-based index) or omit them. However, it is illegal to use both. If the indexes are
omitted in the replacement fields, the arguments are processed in the provided
order, and the number of replacement fields must not be greater than the number
of supplied arguments. If indexes are provided, they must be valid for the format
string to be valid.

When a format specification is used, then:

• For basic types and string types, it is considered to be a standard format
specification.

• For chrono types, it is considered to be a chrono format specification.
• For user-defined types, it is defined by a user-defined specialization of the

std::formatter class for the desired type.

The standard format specification is based on the format specification in Python and
has the following syntax:

fill-and-align(optional) sign(optional) #(optional) 0(optional)
width(optional) precision(optional) L(optional) type(optional)

These syntax parts are briefly described here.

fill-and-align is an optional fill character, followed by one of the align options:

• <: Forces the field to be left-aligned with the available space.
• >: Forces the field to be right-aligned with the available space.
• ^: Forces the field to be centered with the available space. To do so, it will

insert n/2 characters to the left and n/2 characters to the right:

auto t1 = std::format("{:5}", 42); // " 42"
auto t2 = std::format("{:5}", 'x'); // "x "
auto t3 = std::format("{:*<5}", 'x'); // "x****"
auto t4 = std::format("{:*>5}", 'x'); // "****x"
auto t5 = std::format("{:*^5}", 'x'); // "**x**"
auto t6 = std::format("{:5}", true); // "true "

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[135]

sign, #, and 0 are only valid when a number (either an integer or a floating-point) is
used. The sign can be one of:

• +: Specifies that the sign must be used for both negative and positive
numbers.

• -: Specifies that the sign must be used only for negative numbers (which is
the implicit behavior).

• A space: Specifies that the sign must be used for negative numbers and that
a leading space must be used for non-negative numbers:

auto t7 = std::format("{0:},{0:+},{0:-},{0: }", 42);
// "42,+42,42, 42"
auto t8 = std::format("{0:},{0:+},{0:-},{0: }", -42);
// "-42,-42,-42,-42"

The symbol # causes the alternate form to be used. This can be one of the following:

• For integral types, when binary, octal, or hexadecimal representation is
specified, the alternate form adds the prefix 0b, 0, or 0x to the output.

• For floating-point types, the alternate form causes a decimal-point character
to always be present in the formatted value, even if no digits follow it. In
addition, when g or G are used, the trailing zeros are not removed from the
output.

The digit 0 specifies that leading zeros should be outputted to the field width, except
when the value of a floating-point type is infinity or NaN. When present alongside an
align option, the specifier 0 is ignored:

auto t9 = std::format("{:+05d}", 42); // "+0042"
auto t10 = std::format("{:#05x}", 42); // "0x02a"
auto t11 = std::format("{:<05}", -42); // "-42 "

width specifies the minimum field width and can be either a positive decimal number
or a nested replacement field. The precision field indicates the precision for floating-
point types or, for string types, how many characters will be used from the string. It
is specified with a dot (.), followed by a non-negative decimal number or a nested
replacement field.

Locale-specific formatting is specified with the uppercase L and causes the locale-
specific form to be used. This option is only available for arithmetic types.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Numbers and Strings

[136]

The optional type determines how the data will be presented in the output.
The available string presentation types are shown in the following table:

Type Presentation type Description
Strings none, s Copies the string to the output.
Integral types B Binary format with 0b as a prefix.

B Binary format with 0B as a prefix.
C Character format. Copies the value to the output as

it was a character type.
none or d Decimal format.
O Octal format with 0 as a prefix (unless the value is 0).
X Hexadecimal format with 0x as a prefix.
X Hexadecimal format with 0X as a prefix.

char and
wchar_t

none or c Copies the character to the output.
b, B, c, d, o, x, X Integer presentation types.

bool none or s Copies true or false as a textual representation
(or their local-specific form) to the output.

b, B, c, d, o, x, X Integer presentation types.
Floating-point A Hexadecimal representation. Same as if calling

std::to_chars(first, last, value,
std::chars_format::hex, precision)
or std::to_chars(first, last, value,
std::chars_format::hex), depending on whether
precision is specified or not.

A Same as a except that it uses uppercase letters for
digits above 9 and uses P to indicate the exponent.

E Scientific representation. Produces the output as if
calling std::to_chars(first, last, value,
std::chars_format::scientific, precision).

E Similar to e except that it uses E to indicate the
exponent.

f, F Fixed representation. Produces the output as if by
calling std::to_chars(first, last, value,
std::chars_format::fixed, precision). When
no precision is specified, the default is 6.

G General floating-point representation. Produces
the output as if by calling std::to_chars(first,
last, value, std::chars_format::general,
precision). When no precision is specified, the
default is 6.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[137]

G Same as g except that it uses E to indicate the
exponent.

Pointer none or p Pointer representation. Produces the output as
if by calling std::to_chars(first, last,
reinterpret_cast<std::uintptr_t>(value),
16) with the prefix 0x added to the output. This is
available only when std::uintptr_t is defined;
otherwise, the output is implementation-defined.

The chrono format specification has the following form:

fill-and-align(optional) width(optional) precision(optional) chrono-
spec(optional)

The fill-and-align, width, and precision fields have the same meaning as in
the standard format specification, described previously. The precision is only valid
for std::chrono::duration types when the representation type is a floating-point
type. Using it in other cases throws an std::format_error exception.

The chrono specification can be empty, in which case the argument is formatted as if
by streaming it to an std::stringstream and copying the result string. Alternatively,
it can consist of a series of conversion specifiers and ordinary characters. Some of
these format specifiers are presented in the following table:

Conversion
specifier

Description

%% Writes a literal % character.
%n Writes a newline character.
%t Writes a horizontal tab character.
%Y Writes the year as a decimal number. If the result is less than four

digits, it is left-padded with 0 to four digits.
%m Writes the month as a decimal number (January is 01). If the result

is a single digit, it is prefixed with 0.
%d Writes the day of month as a decimal number. If the result is

a single decimal digit, it is prefixed with 0.
%w Writes the weekday as a decimal number (0-6), where Sunday is 0.
%D Equivalent to %m/%d/%y.
%F Equivalent to %Y-%m-%d.
%H Writes the hour (24-hour clock) as a decimal number. If the result is

a single digit, it is prefixed with 0.
%I Writes the hour (12-hour clock) as a decimal number. If the result is

a single digit, it is prefixed with 0.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Numbers and Strings

[138]

%M Writes the minute as a decimal number. If the result is a single
digit, it is prefixed with 0.

%S Writes the second as a decimal number. If the number of seconds is
less than 10, the result is prefixed with 0.

%R Equivalent to %H:%M.
%T Equivalent to %H:%M:%S.
%X Writes the locale's time representation.

The complete list of format specifiers for the chrono library can be consulted at
https://en.cppreference.com/w/cpp/chrono/system_clock/formatter.

See also
• Using std::format with user-defined types to learn how to create custom

formatting specialization for user-defined types
• Converting between numeric and string types to learn how to convert between

numbers and strings

Using std::format with user-defined types
The C++20 formatting library is a modern alternative to using printf-like functions
or the I/O streams library, which it actually complements. Although the standard
provides default formatting for basic types, such as integral and floating-point
types, bool, character types, strings, and chrono types, the user can create custom
specialization for user-defined types. In this recipe, we will learn how to do that.

Getting ready
You should read the previous recipe, Formatting text with std::format, to familiarize
yourself with the formatting library.

In the examples that we'll be showing here, we will use the following class:

struct employee
{
 int id;
 std::string firstName;
 std::string lastName;
};

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://en.cppreference.com/w/cpp/chrono/system_clock/formatter

Chapter 2

[139]

In the next section, we'll introduce the necessary steps to implement to enable text
formatting using std::format() for user-defined types.

How to do it...
To enable formatting using the new formatting library for user-defined types, you
must do the following:

• Define a specialization of the std::formatter<T, CharT> class in the std
namespace.

• Implement the parse() method to parse the portion of the format string
corresponding to the current argument. If the class inherits from another
formatter, then this method can be omitted.

• Implement the format() method to format the argument and write the
output via format_context.

For the employee class listed here, a formatter that formats employee to the form [42]
John Doe (that is [id] firstName lastName) can be implemented as follows:

template <>
struct std::formatter<employee>
{
 constexpr auto parse(format_parse_context& ctx)
 {
 return ctx.begin();
 }

 auto format(employee const & value, format_context& ctx) {
 return std::format_to(ctx.out(),
 "[{}] {} {}",
 e.id, e.firstName, e.lastName);
 }
};

How it works...
The formatting library uses the std::formatter<T, CharT> class template to define
formatting rules for a given type. Built-in types, string types, and chrono types have
formatters provided by the library. These are implemented as specializations of the
std::formatter<T, CharT> class template.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Numbers and Strings

[140]

This class has two methods:

• parse(), which takes a single argument of the type std::basic_format_
parse_context<CharT> and parses the format's specification for the type
T, provided by the parse context. The result of the parsing is supposed
to be stored in member fields of the class. If the parsing succeeds, this
function should return a value of the type std::basic_format_parse_
context<CharT>::iterator, which represents the end of the format
specification. If the parsing fails, the function should throw an exception
of the type std::format_error to provide details about the error.

• format(), which takes two arguments, the first being the object of the type
T to format and the second being a formatting context object of the type
std::basic_format_context<OutputIt, CharT>. This function should write
the output to ctx.out() according to the desired specifiers (which could
be something implicit or the result of parsing the format specification).
The function must return a value of the type std::basic_format_
context<OutputIt, CharT>::iterator, representing the end of the output.

In the implementation shown here, the parse() function does not do anything
other than return an iterator representing the beginning of the format specification.
The formatting is always done by printing the employee identifier between square
brackets, followed by the first name and the last name, such as in [42] John Doe.
An attempt to use a format specifier would result in a runtime exception:

employee e{ 42, "John", "Doe" };
auto s1 = std::format("{}", e); // [42] John Doe
auto s2 = std::format("{:L}", e); // error

If you want your user-defined types to support format specifiers, then you must
properly implement the parse() method. To show how this can be done, we will
support the L specifier for the employee class. When this specifier is used, the
employee is formatted with the identifier in square brackets, followed by the last
name, a comma, and then the first name, such as in [42] Doe, John:

template<>
struct std::formatter<employee>
{
 bool lexicographic_order = false;

 template <typename ParseContext>
 constexpr auto parse(ParseContext& ctx)
 {
 auto iter = ctx.begin();

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 2

[141]

 auto get_char = [&]() { return iter != ctx.end() ? *iter : 0; };

 if (get_char() == ':') ++iter;
 char c = get_char();

 switch (c)
 {
 case '}': return ++iter;
 case 'L': lexicographic_order = true; return ++iter;
 case '{': return ++iter;
 default: throw std::format_error("invalid format");
 }
 }

 template <typename FormatContext>
 auto format(employee const& e, FormatContext& ctx)
 {
 if(lexicographic_order)
 return std::format_to(ctx.out(), "[{}] {}, {}",
 e.id, e.lastName, e.firstName);

 return std::format_to(ctx.out(), "[{}] {} {}",
 e.id, e.firstName, e.lastName);
 }
};

With this defined, the preceding sample code would work. However, using other
format specifiers, such as A, for example, would still throw an exception:

auto s1 = std::format("{}", e); // [42] John Doe
auto s2 = std::format("{:L}", e); // [42] Doe, John
auto s3 = std::format("{:A}", e); // error (invalid format)

If you do not need to parse the format specifier in order to support various options,
you could entirely omit the parse() method. However, in order to do so, your
std::formatter specialization must derive from another std::formatter class.
An implementation is shown here:

template<>
struct fmt::formatter<employee> : fmt::formatter<char const*>
{
 template <typename FormatContext>

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Numbers and Strings

[142]

 auto format(employee const& e, FormatContext& ctx)
 {
 return std::format_to(ctx.out(), "[{}] {} {}",
 e.id, e.firstName, e.lastName);
 }
};

This specialization for the employee class is equivalent to the first implementation
shown earlier in the How to do it... section.

See also
• Formatting text with std::format to get a good introduction to the new C++20

text formatting library

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

[143]

3
Exploring Functions

Functions are a fundamental concept in programming; regardless of the topic we
discuss, we end up writing functions. Trying to cover functions in a single chapter
is not only hard but also not very rational. Being a fundamental element of the
language, functions are encountered in every recipe of this book. This chapter,
however, covers modern language features related to functions and callable
objects, with a focus on lambda expressions, concepts from functional languages
such as higher-order functions, and type-safe functions with a variable number
of arguments.

The recipes included in this chapter are as follows:

• Defaulted and deleted functions
• Using lambdas with standard algorithms
• Using generic and template lambdas
• Writing a recursive lambda
• Writing a function template with a variable number of arguments
• Using fold expressions to simplify variadic function templates
• Implementing the higher-order functions map and fold
• Composing functions into a higher-order function
• Uniformly invoking anything callable

We will start this chapter by learning about a feature that makes it easier for us to
provide special class member functions or prevent any function (member or non-
member) from being invoked.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Functions

[144]

Defaulted and deleted functions
In C++, classes have special members (constructors, destructors, and assignment
operators) that may be either implemented by default by the compiler or supplied
by the developer. However, the rules for what can be default implemented are a bit
complicated and can lead to problems. On the other hand, developers sometimes
want to prevent objects from being copied, moved, or constructed in a particular
way. This is possible by implementing different tricks using these special members.
The C++11 standard has simplified many of these by allowing functions to be
deleted or defaulted in the manner we will see in the next section.

Getting started
For this recipe, you need to be familiar with the following concepts:

• Special member functions (default constructor, destructor, copy constructor,
move constructor, copy assignment operator, move assignment operator)

• The copyable concept (a class features a copy constructor and copy
assignment operator making it possible to create copies)

• The moveable concept (a class features a move constructor and a move
assignment operator making it possible to move objects)

With this in mind, let's learn how to define default and deleted special functions.

How to do it...
Use the following syntax to specify how functions should be handled:

• To default a function, use =default instead of the function body. Only special
class member functions that have defaults can be defaulted:

struct foo
{
 foo() = default;
};

• To delete a function, use =delete instead of the function body. Any function,
including non-member functions, can be deleted:

struct foo
{
 foo(foo const &) = delete;
};

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 3

[145]

void func(int) = delete;

Use defaulted and deleted functions to achieve various design goals, such as the
following examples:

• To implement a class that is not copyable, and implicitly not movable,
declare the copy constructor and the copy assignment operator as deleted:

class foo_not_copyable
{
public:
 foo_not_copyable() = default;

 foo_not_copyable(foo_not_copyable const &) = delete;
 foo_not_copyable& operator=(foo_not_copyable const&) = delete;
};

• To implement a class that is not copyable, but is movable, declare the copy
operations as deleted and explicitly implement the move operations (and
provide any additional constructors that are needed):

class data_wrapper
{
 Data* data;
public:
 data_wrapper(Data* d = nullptr) : data(d) {}
 ~data_wrapper() { delete data; }

 data_wrapper(data_wrapper const&) = delete;
 data_wrapper& operator=(data_wrapper const &) = delete;

 data_wrapper(data_wrapper&& other) :data(std::move(other.
data))
 {
 other.data = nullptr;
 }

 data_wrapper& operator=(data_wrapper&& other)
 {
 if (this != std::addressof(other))
 {
 delete data;
 data = std::move(other.data);
 other.data = nullptr;
 }

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Functions

[146]

 return *this;
 }
};

• To ensure a function is called only with objects of a specific type, and
perhaps prevent type promotion, provide deleted overloads for the function
(the following example with free functions can also be applied to any class
member functions):

template <typename T>
void run(T val) = delete;

void run(long val) {} // can only be called with long integers

How it works...
A class has several special members that can be implemented, by default, by the
compiler. These are the default constructor, copy constructor, move constructor,
copy assignment, move assignment, and destructor (for a discussion on move
semantics, refer to the Implementing move semantics recipe in Chapter 9, Robustness and
Performance). If you don't implement them, then the compiler does it so that instances
of a class can be created, moved, copied, and destructed. However, if you explicitly
provide one or more of these special methods, then the compiler will not generate
the others according to the following rules:

• If a user-defined constructor exists, the default constructor is not generated
by default.

• If a user-defined virtual destructor exists, the default constructor is not
generated by default.

• If a user-defined move constructor or move assignment operator exists, then
the copy constructor and copy assignment operator are not generated by
default.

• If a user-defined copy constructor, move constructor, copy assignment
operator, move assignment operator, or destructor exists, then the move
constructor and move assignment operator are not generated by default.

• If a user-defined copy constructor or destructor exists, then the copy
assignment operator is generated by default.

• If a user-defined copy assignment operator or destructor exists, then the copy
constructor is generated by default.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 3

[147]

Sometimes, developers need to provide empty implementations of these special
members or hide them in order to prevent the instances of the class from being
constructed in a specific manner. A typical example is a class that is not supposed to
be copyable. The classical pattern for this is to provide a default constructor and hide
the copy constructor and copy assignment operators. While this works, the explicitly
defined default constructor ensures the class is no longer considered trivial and,
therefore, a POD type. The modern alternative to this is using a deleted function, as
shown in the preceding section.

When the compiler encounters =default in the definition of a function, it will
provide the default implementation. The rules for special member functions
mentioned earlier still apply. Functions can be declared =default outside the body of
a class if and only if they are inlined:

class foo
{
public:
 foo() = default;

 inline foo& operator=(foo const &);
};

inline foo& foo::operator=(foo const &) = default;

The defaulted implementations have several benefits, including the following:

• Can be more efficient than the explicit ones.
• Non-defaulted implementations, even if they are empty, are considered non-

trivial, and that affects the semantics of the type, which becomes non-trivial
(and, therefore, non-POD).

• Helps the user not write explicit default implementations. For instance, if
a user-defined move constructor is present, then the copy constructor and
the copy assignment operator are not provided by default by the compiler.
However, you can still default explicitly and ask the compiler to provide
them so that you don't have to do it manually.

Note that the last two rules in the preceding list are deprecated
rules and may no longer be supported by your compiler.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Functions

[148]

When the compiler encounters the =delete in the definition of a function, it will
prevent the calling of the function. However, the function is still considered
during overload resolution, and only if the deleted function is the best match does
the compiler generate an error. For example, by giving the previously defined
overloads for the run() function, only calls with long integers are possible. Calls with
arguments of any other type, including int, for which an automatic type promotion
to long exists, will determine a deleted overload to be considered the best match and
therefore the compiler will generate an error:

run(42); // error, matches a deleted overload
run(42L); // OK, long integer arguments are allowed

Note that previously declared functions cannot be deleted as the =delete definition
must be the first declaration in a translation unit:

void forward_declared_function();
// ...
void forward_declared_function() = delete; // error

The rule of thumb, also known as The Rule of Five, for class special member functions
is that if you explicitly define any copy constructor, move constructor, copy
assignment operator, move assignment operator, or destructor, then you must either
explicitly define or default all of them.

The user-defined destructor, copy-constructor, and copy assignment operator are
necessary because objects are constructed from copies in various situations (like
passing parameters to functions). If they are not user-defined, they are provided by
the compiler, but their default implementation may be wrong. If the class manages
resources, then the default implementation does a shallow copy, meaning that it
copies the value of the handle of the resource (such as a pointer to an object) and not
the resource itself. In such cases, a user-defined implementation must do a deep copy
that copies the resource, not the handle to it. The presence of the move constructor
and move assignment operator are desirable in this case because they represent
a performance improvement. Lacking these two is not an error but a missed
optimization opportunity.

See also
• Uniformly invoking anything callable to learn how to use std::invoke() to

invoke any callable object with the provided arguments

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 3

[149]

Using lambdas with standard algorithms
One of the most important modern features of C++ is lambda expressions, also
referred to as lambda functions or simply lambdas. Lambda expressions enable us
to define anonymous function objects that can capture variables in the scope and be
invoked or passed as arguments to functions. Lambdas are useful for many purposes,
and in this recipe, we will learn how to use them with standard algorithms.

Getting ready
In this recipe, we'll discuss standard algorithms that take an argument that's a
function or predicate that's applied to the elements it iterates through. You need to
know what unary and binary functions are and what predicates and comparison
functions are. You also need to be familiar with function objects because lambda
expressions are syntactic sugar for function objects.

How to do it...
You should prefer to use lambda expressions to pass callbacks to standard
algorithms instead of functions or function objects:

• Define anonymous lambda expressions in the place of the call if you only
need to use the lambda in a single place:

auto numbers =
 std::vector<int>{ 0, 2, -3, 5, -1, 6, 8, -4, 9 };
auto positives = std::count_if(
 std::begin(numbers), std::end(numbers),
 [](int const n) {return n > 0; });

• Define a named lambda, that is, one assigned to a variable (usually with the
auto specifier for the type), if you need to call the lambda in multiple places:

auto ispositive = [](int const n) {return n > 0; };
auto positives = std::count_if(
 std::begin(numbers), std::end(numbers), ispositive);

• Use generic lambda expressions if you need lambdas that only differ in terms
of their argument types (available since C++14):

auto positives = std::count_if(
 std::begin(numbers), std::end(numbers),
 [](auto const n) {return n > 0; });

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Functions

[150]

How it works...
The non-generic lambda expression shown in the second bullet takes a constant
integer and returns true if it is greater than 0, or false otherwise. The compiler
defines an unnamed function object with the call operator, which has the signature of
the lambda expression:

struct __lambda_name__
{
 bool operator()(int const n) const { return n > 0; }
};

The way the unnamed function object is defined by the compiler depends on the
way we define the lambda expression that can capture variables, use the mutable
specifier or exception specifications, or have a trailing return type. The __lambda_
name__ function object shown earlier is actually a simplification of what the compiler
generates because it also defines a default copy and move constructor, a default
destructor, and a deleted assignment operator.

In the following example, we want to count the number of elements in a range that
are greater than or equal to 5 and less than or equal to 10. The lambda expression, in
this case, will look like this:

auto numbers = std::vector<int>{ 0, 2, -3, 5, -1, 6, 8, -4, 9 };
auto minimum { 5 };
auto maximum { 10 };
auto inrange = std::count_if(
 std::begin(numbers), std::end(numbers),
 [minimum, maximum](int const n) {
 return minimum <= n && n <= maximum;});

It must be well understood that the lambda expression is actually
a class. In order to call it, the compiler needs to instantiate an object
of the class. The object instantiated from a lambda expression is
called a lambda closure.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 3

[151]

This lambda captures two variables, minimum and maximum, by copy (that is, value).
The resulting unnamed function object created by the compiler looks very much like
the one we defined earlier. With the default and deleted special members mentioned
earlier, the class looks like this:

class __lambda_name_2__
{
 int minimum_;
 int maximum_;
public:
 explicit __lambda_name_2__(int const minimum, int const maximum) :
 minimum_(minimum), maximum_(maximum)
 {}

 __lambda_name_2__(const __lambda_name_2__&) = default;
 __lambda_name_2__(__lambda_name_2__&&) = default;
 __lambda_name_2__& operator=(const __lambda_name_2__&)
 = delete;
 ~__lambda_name_2__() = default;

 bool operator() (int const n) const
 {
 return minimum_ <= n && n <= maximum_;
 }
};

The lambda expression can capture variables by copy (or value) or by reference, and
different combinations of the two are possible. However, it is not possible to capture
a variable multiple times and it is only possible to have & or = at the beginning of the
capture list.

A lambda can only capture variables from an enclosing function
scope. It cannot capture variables with static storage duration
(that is, variables declared in a namespace scope or with the
static or external specifier).

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Functions

[152]

The following table shows various combinations for lambda captures semantics:

Lambda Description
[](){} Does not capture anything.
[&](){} Captures everything by reference.
[=](){} Captures everything by copy. Implicit capturing of the pointer this

is deprecated in C++20.
[&x](){} Capture only x by reference.
[x](){} Capture only x by copy.
[&x...](){} Capture pack extension x by reference.
[x...](){} Capture pack extension x by copy.
[&, x](){} Captures everything by reference except for x that is captured by copy.
[=, &x](){} Captures everything by copy except for x that is captured by reference.
[&, this]()
{}

Captures everything by reference except for pointer this that is captured
by copy (this is always captured by copy).

[x, x](){} Error, x is captured twice.
[&, &x](){} Error, everything is captured by reference, and we cannot specify again

to capture x by reference.
[=, =x](){} Error, everything is captured by copy, and we cannot specify again to

capture x by copy.
[&this](){} Error, the pointer this is always captured by copy.
[&, =](){} Error, cannot capture everything both by copy and by reference.
[x=expr](){} x is a data member of the lambda's closure initialized from the

expression expr.
[&x=expr]()
{}

x is a reference data member of the lambda's closure initialized from the
expression expr.

The general form of a lambda expression, as of C++17, looks like this:

[capture-list](params) mutable constexpr exception attr -> ret
{ body }

All parts shown in this syntax are actually optional except for the capture list, which
can, however, be empty, and the body, which can also be empty. The parameter list
can actually be omitted if no parameters are needed. The return type does not need
to be specified as the compiler can infer it from the type of the returned expression.
The mutable specifier (which tells the compiler the lambda can actually modify
variables captured by copy), the constexpr specifier (which tells the compiler to
generate a constexpr call operator), and the exception specifiers and attributes are all
optional.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 3

[153]

The latter two examples in the preceding table are forms of generalized lambda
captures. These were introduced in C++14 to allow us to capture variables with
move-only semantics, but they can also be used to define new arbitrary objects in the
lambda. The following example shows how variables can be captured by move with
generalized lambda captures:

auto ptr = std::make_unique<int>(42);
auto l = [lptr = std::move(ptr)](){return ++*lptr;};

Lambdas that are written in class methods and need to capture class data members
can do so in several ways:

• Capturing individual data members with the form [x=expr]:
struct foo
{
 int id;
 std::string name;

 auto run()
 {
 return [i=id, n=name] { std::cout << i << ' ' << n << '\n';
};
 }
};

• Capturing the entire object with the form [=] (please notice that the implicit
capture of pointer this via [=] is deprecated in C++20):

struct foo
{
 int id;
 std::string name;

 auto run()
 {
 return [=] { std::cout << id << ' ' << name << '\n'; };
 }
};

The simplest possible lambda expression is []{}, though it is often
written as [](){}.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Functions

[154]

• Capturing the entire object by capturing the this pointer. This is necessary
if you need to invoke other methods of the class. This can be captured either
as [this] when the pointer is captured by value, or [*this] when the object
itself is captured by value. This can make a big difference if the object may go
out of scope after the capture occurs but before the lambda is invoked:

struct foo
{
 int id;
 std::string name;

 auto run()
 {
 return[this]{ std::cout << id << ' ' << name << '\n'; };
 }
};

auto l = foo{ 42, "john" }.run();
l(); // does not print 42 john

In this latter case seen here, the correct capture should be [*this] so that object is
copied by value. In this case, invoking the lambda will print 42 john, even though the
temporary has gone out of scope.

The C++20 standard introduces several changes to capturing the pointer this:

• It deprecates the implicit capturing of this when you use [=]. This will
produce a deprecation warning to be issued by the compiler.

• It introduces explicit capturing of the this pointer by value when you want
to capture everything with [=, this]. You can still only capture the pointer
this with a [this] capture.

There are cases where lambda expressions only differ in terms of their arguments. In
this case, the lambdas can be written in a generic way, just like templates, but using
the auto specifier for the type parameters (no template syntax is involved). This is
addressed in the next recipe, as noted in the upcoming See also section.

See also
• Using generic and template lambdas to learn how to use auto for lambda

parameters and how to define template lambdas in C++20
• Writing a recursive lambda to understand the technique we can use to make

a lambda call itself recursively

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 3

[155]

Using generic and template lambdas
In the preceding recipe, we saw how to write lambda expressions and use them with
standard algorithms. In C++, lambdas are basically syntactic sugar for unnamed
function objects, which are classes that implement the call operator. However, just
like any other function, this can be implemented generically with templates. C++14
takes advantage of this and introduces generic lambdas that do not need to specify
actual types for their parameters and use the auto specifier instead. Though not
referred to with this name, generic lambdas are basically lambda templates. They
are useful in cases where we want to use the same lambda but with different types
of parameter. Moreover, the C++20 standard takes this a step further and supports
explicitly defining template lambdas. This helps with some scenarios where generic
lambdas are cumbersome.

Getting started
It is recommended that you read the preceding recipe, Using lambdas with standard
algorithms, before you continue with this one to familiarize yourself with the
fundamentals of lambdas in C++.

How to do it...
In C++14, we can write generic lambdas:

• By using the auto specifier instead of actual types for lambda expression
parameters

• When we need to use multiple lambdas that only differ by their parameter
types

The following example shows a generic lambda used with the std::accumulate()
algorithm, first with a vector of integers and then with a vector of strings:

auto numbers =
 std::vector<int>{0, 2, -3, 5, -1, 6, 8, -4, 9};

using namespace std::string_literals;
auto texts =
 std::vector<std::string>{"hello"s, " "s, "world"s, "!"s};

auto lsum = [](auto const s, auto const n) {return s + n;};

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Functions

[156]

auto sum = std::accumulate(
 std::begin(numbers), std::end(numbers), 0, lsum);
 // sum = 22

auto text = std::accumulate(
 std::begin(texts), std::end(texts), ""s, lsum);
 // sum = "hello world!"s

In C++20, we can write template lambdas:

• By using a template parameter list in angle brackets (such as <template T>)
after the capture clause

• When you want to:
• Restrict the use of a generic lambda with only some types, such as a

container, or types that satisfy a concept.
• Make sure that two or more arguments of a generic lambda actually

do have the same type.
• Retrieve the type of a generic parameter so that, for example, we can

create instances of it, invoke static methods, or use its iterator types.
• Perform perfect forwarding in a generic lambda.

The following example shows a template lambda that can be invoked only using an
std::vector:

std::vector<int> vi { 1, 1, 2, 3, 5, 8 };

auto tl = []<typename T>(std::vector<T> const& vec)
{
 std::cout << std::size(vec) << '\n';
};

tl(vi); // OK, prints 6
tl(42); // error

How it works...
In the first example from the previous section, we defined a named lambda
expression; that is, a lambda expression that has its closure assigned to a variable.
This variable is then passed as an argument to the std::accumulate() function.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 3

[157]

This general algorithm takes the begin and the end iterators, which define a range,
an initial value to accumulate over, and a function that is supposed to accumulate
each value in the range to the total. This function takes a first parameter representing
the currently accumulated value and a second parameter representing the current
value to accumulate to the total, and it returns the new accumulated value. Note that
I did not use the term add because this can be used for other things than just adding.
It can also be used for calculating a product, concatenating, or other operations that
aggregate values together.

The two calls to std::accumulate() in this example are almost the same; only the
types of the arguments are different:

• In the first call, we pass iterators to a range of integers (from a vector<int>), 0
for the initial sum, and a lambda that adds two integers and returns their sum.
This produces a sum of all integers in the range; for this example, it is 22.

• In the second call, we pass iterators to a range of strings (from a
vector<string>), an empty string for the initial value, and a lambda that
concatenates two strings by adding them together and returning the result.
This produces a string that contains all the strings in the range put together
one after another; for this example, the result is hello world!.

Though generic lambdas can be defined anonymously in the place where they are
called, it does not really make sense because the very purpose of a generic lambda
(which is basically, as we mentioned earlier, a lambda expression template) is to be
reused, as shown in the example from the How to do it... section.

When defining this lambda expression, when used with multiple calls to
std::accumulate(), instead of specifying concrete types for the lambda parameters
(such as int or std::string), we used the auto specifier and let the compiler deduce
the type. When encountering a lambda expression that has the auto specifier for a
parameter type, the compiler generates an unnamed function object that has a call
operator template. For the generic lambda expression in this example, the function
object would look like this:

struct __lambda_name__
{
 template<typename T1, typename T2>
 auto operator()(T1 const s, T2 const n) const { return s + n; }

 __lambda_name__(const __lambda_name__&) = default;
 __lambda_name__(__lambda_name__&&) = default;
 __lambda_name__& operator=(const __lambda_name__&) = delete;
 ~__lambda_name__() = default;
};

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Functions

[158]

The call operator is a template with a type parameter for each parameter in the
lambda that was specified with auto. The return type of the call operator is also auto,
which means the compiler will deduce it from the type of the returned value. This
operator template will be instantiated with the actual types the compiler will identify
in the context where the generic lambda is used.

The C++20 template lambdas are an improvement of the C++14 generic lambdas,
making some scenarios easier. A typical one was shown in the second example of the
previous section, where the use of lambda was restricted with arguments of the type
std::vector. Another example is when you want to make sure that two parameters
of the lambda have the same type. Prior to C++20, this was difficult to do, but with
template lambdas, it is very easy, as shown in the following example:

auto tl = []<typename T>(T x, T y)
{
 std::cout << x << ' ' << y << '\n';
};

tl(10, 20); // OK
tl(10, "20"); // error

Another scenario for template lambdas is when you need to know the type of a
parameter so that you can create instances of that type or invoke static members of it.
With generic lambdas, the solution is as follows:

struct foo
{
 static void f() { std::cout << "foo\n"; }
};

auto tl = [](auto x)
{
 using T = std::decay_t<decltype(x)>;
 T other;
 T::f();
};

tl(foo{});

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 3

[159]

This solution requires the use of std::decay_t and decltype. However, in C++20, the
same lambda can be written as follows:

auto tl = []<typename T>(T x)
{
 T other;
 T::f();
};

A similar situation occurs when we need to do perfect forwarding in a generic
lambda, which requires the use of decltype to determine the types of the arguments:

template <typename ...T>
void foo(T&& ... args)
{ /* ... */ }

auto tl = [](auto&& ...args)
{
 return foo(std::forward<decltype(args)>(args)...);
};

tl(1, 42.99, "lambda");

With template lambda, we can rewrite it in a simpler way as follows:

auto tl = []<typename ...T>(T && ...args)
{
 return foo(std::forward<T>(args)...);
};

As seen in these examples, template lambdas are an improvement of generic
lambdas, making it easier to handle the scenarios mentioned in this recipe.

See also
• Using lambdas with standard algorithms to explore the basics of lambda

expressions and how you can utilize them with the standard algorithms
• Using auto whenever possible in Chapter 1, Learning Modern Core Language

Features, to understand how automatic type deduction works in C++

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Functions

[160]

Writing a recursive lambda
Lambdas are basically unnamed function objects, which means that it should be
possible to call them recursively. Indeed, they can be called recursively; however,
the mechanism for doing so is not obvious as it requires assigning the lambda to a
function wrapper and capturing the wrapper by reference. Though it can be argued
that a recursive lambda does not really make sense and that a function is probably a
better design choice, in this recipe, we will look at how to write a recursive lambda.

Getting ready
To demonstrate how to write a recursive lambda, we will consider the well-known
example of the Fibonacci function. This is usually implemented recursively in C++,
as follows:

constexpr int fib(int const n)
{
 return n <= 2 ? 1 : fib(n - 1) + fib(n - 2);
}

Having this implementation as a starting point, let's see how we can rewrite it using
a recursive lambda.

How to do it...
In order to write a recursive lambda function, you must do the following:

• Define the lambda in a function scope
• Assign the lambda to an std::function wrapper
• Capture the std::function object by reference in the lambda in order to call

it recursively

The following are examples of recursive lambdas:

• A recursive Fibonacci lambda expression in the scope of a function that is
invoked from the scope where it is defined:

void sample()
{
 std::function<int(int const)> lfib =
 [&lfib](int const n)
 {
 return n <= 2 ? 1 : lfib(n - 1) + lfib(n - 2);
 };

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 3

[161]

 auto f10 = lfib(10);
}

• A recursive Fibonacci lambda expression returned by a function, which can
be invoked from any scope:

std::function<int(int const)> fib_create()
{
 std::function<int(int const)> f = [](int const n)
 {
 std::function<int(int const)> lfib = [&lfib](int n)
 {
 return n <= 2 ? 1 : lfib(n - 1) + lfib(n - 2);
 };
 return lfib(n);
 };
 return f;
}

void sample()
{
 auto lfib = fib_create();
 auto f10 = lfib(10);
}

How it works...
The first thing you need to consider when writing a recursive lambda is that a
lambda expression is a function object and that, in order to call it recursively from
the lambda's body, the lambda must capture its closure (that is, the instantiation of
the lambda). In other words, the lambda must capture itself, and this has several
implications:

• First of all, the lambda must have a name; an unnamed lambda cannot be
captured so that it can be called again.

• Secondly, the lambda can only be defined in a function scope. The reason
for this is that a lambda can only capture variables from a function scope;
it cannot capture any variable that has a static storage duration. Objects
defined in a namespace scope or with the static or external specifiers have
static storage duration. If the lambda was defined in a namespace scope, its
closure would have static storage duration and therefore the lambda would
not capture it.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Functions

[162]

• The third implication is that the type of the lambda closure cannot remain
unspecified; that is, it cannot be declared with the auto specifier. It is not
possible for a variable declared with the auto type specifier to appear in its
own initializer. This is because the type of the variable is not known when
the initializer is being processed. Therefore, you must specify the type of
the lambda closure. The way we can do this is by using the general-purpose
function wrapper std::function.

• Last, but not least, the lambda closure must be captured by reference. If we
capture by copy (or value), then a copy of the function wrapper is made,
but the wrapper is uninitialized when the capturing is done. We end up
with an object that we are not able to call. Even though the compiler will
not complain about capturing by value, when the closure is invoked, an
std::bad_function_call is thrown.

In the first example from the How to do it... section, the recursive lambda is defined
inside another function called sample(). The signature and the body of the lambda
expression are the same as those of the regular recursive function fib (), which was
defined in the introductory section. The lambda closure is assigned to a function
wrapper called lfib that is then captured by reference by the lambda and called
recursively from its body. Since the closure is captured by reference, it will be
initialized at the time it has to be called from the lambda's body.

In the second example, we defined a function that returns the closure of a lambda
expression that, in turn, defines and invokes a recursive lambda with the argument
it was, in turn, invoked with. This is a pattern that must be implemented when a
recursive lambda needs to be returned from a function. This is necessary because
the lambda closure must still be available at the time the recursive lambda is called.
If it is destroyed before that, we are left with a dangling reference, and calling it will
cause the program to terminate abnormally. This erroneous situation is exemplified
in the following example:

// this implementation of fib_create is faulty
std::function<int(int const)> fib_create()
{
 std::function<int(int const)> lfib = [&lfib](int const n)
 {
 return n <= 2 ? 1 : lfib(n - 1) + lfib(n - 2);
 };

 return lfib;
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 3

[163]

void sample()
{
 auto lfib = fib_create();
 auto f10 = lfib(10); // crash
}

The solution for this is to create two nested lambda expressions, as shown in the How
to do it... section. The fib_create() method returns a function wrapper that, when
invoked, creates the recursive lambda that captures itself. This is slightly and subtly,
yet fundamentally, different from the implementation shown in the preceding sample.
The outer f lambda does not capture anything, especially by reference; therefore, we
don't have this issue with dangling references. However, when invoked, it creates a
closure of the nested lambda, which is the actual lambda we are interested in calling,
and returns the result of applying that recursive lfib lambda to its parameter.

See also
• Using generic and template lambdas to learn how to use auto for lambda

parameters and how to define template lambdas in C++20

Writing a function template with a
variable number of arguments
It is sometimes useful to write functions with a variable number of arguments or
classes with a variable number of members. Typical examples include functions such
as printf, which takes a format and a variable number of arguments, or classes such
as tuple. Before C++11, the former was possible only with the use of variadic macros
(which enable writing only type-unsafe functions) and the latter was not possible
at all. C++11 introduced variadic templates, which are templates with a variable
number of arguments that make it possible to write both type-safe function templates
with a variable number of arguments, and also class templates with a variable
number of members. In this recipe, we will look at writing function templates.

Getting ready
Functions with a variable number of arguments are called variadic functions. Function
templates with a variable number of arguments are called variadic function templates.
Knowledge of C++ variadic macros (va_start, va_end, va_arg and va_copy, va_list) is
not necessary for learning how to write variadic function templates, but it represents a
good starting point.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Functions

[164]

We have already used variadic templates in our previous recipes, but this one will
provide detailed explanations.

How to do it...
In order to write variadic function templates, you must perform the following steps:

1. Define an overload with a fixed number of arguments to end compile-time
recursion if the semantics of the variadic function template require it (refer to
[1] in the following code).

2. Define a template parameter pack that is a template parameter that can hold
any number of arguments, including zero; these arguments can be either
types, non-types, or templates (refer to [2]).

3. Define a function parameter pack to hold any number of function
arguments, including zero; the size of the template parameter pack and
the corresponding function parameter pack is the same. This size can be
determined with the sizeof... operator (refer to [3] and refer to the end of
the How it works...
section for information on this operator).

4. Expand the parameter pack in order to replace it with the actual arguments
being supplied (refer to [4]).

The following example, which illustrates all the preceding points, is a variadic
function template that adds a variable number of arguments using operator+:

template <typename T> // [1] overload with fixed
T add(T value) // number of arguments
{
 return value;
}

template <typename T, typename... Ts> // [2] typename... Ts
T add(T head, Ts... rest) // [3] Ts... rest
{
 return head + add(rest...); // [4] rest...
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 3

[165]

How it works...
At first glance, the preceding implementation looks like recursion, because the
function add() calls itself, and in a way it is, but it is a compile-time recursion that
does not incur any sort of runtime recursion and overhead. The compiler actually
generates several functions with a different number of arguments, based on the
variadic function template's usage, so only function overloading is involved and not
any sort of recursion. However, implementation is done as if parameters would be
processed in a recursive manner with an end condition.

In the preceding code, we can identify the following key parts:

• Typename... Ts is a template parameter pack that indicates a variable
number of template type arguments.

• Ts... rest is a function parameter pack that indicates a variable number of
function arguments.

• rest... is an expansion of the function parameter pack.

In the add(T head, Ts... rest) parameter, head is the first element of the list of
arguments, while ...rest is a pack with the rest of the parameters in the list (this
can be zero or more). In the body of the function, rest... is an expansion of the
function parameter pack. This means the compiler replaces the parameter pack with
its elements in their order. In the add() function, we basically add the first argument
to the sum of the remaining arguments, which gives the impression of recursive
processing. This recursion ends when there is a single argument left, in which case
the first add() overload (with a single argument) is called and returns the value of its
argument.

This implementation of the function template add() enables us to write code, as
shown here:

auto s1 = add(1, 2, 3, 4, 5);
// s1 = 15
auto s2 = add("hello"s, " "s, "world"s, "!"s);
// s2 = "hello world!"

The position of the ellipsis is not syntactically relevant.
typename... Ts, typename ... Ts, and typename ...Ts are all
equivalent.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Functions

[166]

When the compiler encounters add(1, 2, 3, 4, 5), it generates the following
functions (arg1, arg2, and so on are not the actual names the compiler generates),
which show that this is actually only calls to overloaded functions and not recursion:

int add(int head, int arg1, int arg2, int arg3, int arg4)
{return head + add(arg1, arg2, arg3, arg4);}
int add(int head, int arg1, int arg2, int arg3)
{return head + add(arg1, arg2, arg3);}
int add(int head, int arg1, int arg2)
{return head + add(arg1, arg2);}
int add(int head, int arg1)
{return head + add(arg1);}
int add(int value)
{return value;}

By adding an std::cout << __PRETTY_FUNCTION__ << std::endl at the beginning of
the two functions we wrote, we get the following when running the code:

T add(T, Ts ...) [with T = int; Ts = {int, int, int, int}]
T add(T, Ts ...) [with T = int; Ts = {int, int, int}]
T add(T, Ts ...) [with T = int; Ts = {int, int}]
T add(T, Ts ...) [with T = int; Ts = {int}]
T add(T) [with T = int]

Since this is a function template, it can be used with any type that supports
operator+. The other example, add("hello"s, " "s, "world"s, "!"s), produces the
hello world! string. However, the std::basic_string type has different overloads for
operator+, including one that can concatenate a string into a character, so we should
be able to also write the following:

auto s3 = add("hello"s, ' ', "world"s, '!');
// s3 = "hello world!"

With GCC and Clang, you can use the __PRETTY_FUNCTION__
macro to print the name and the signature of the function.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 3

[167]

However, that will generate compiler errors, as follows (note that I actually replaced
std::basic_string<char, std::char_traits<char>, std::allocator<char> > with
the string hello world! for simplicity):

In instantiation of 'T add(T, Ts ...) [with T = char; Ts = {string,
char}]':
16:29: required from 'T add(T, Ts ...) [with T = string; Ts = {char,
string, char}]'
22:46: required from here
16:29: error: cannot convert 'string' to 'char' in return
 In function 'T add(T, Ts ...) [with T = char; Ts = {string, char}]':
17:1: warning: control reaches end of non-void function [-Wreturn-type]

What happens is that the compiler generates the code shown here, where the return
type is the same as the type of the first argument. However, the first argument
is either an std::string or a char (again, std::basic_string<char, std::char_
traits<char>, std::allocator<char> > was replaced with string for simplicity).
In cases where char is the type of the first argument, the type of the return value
head+add (...), which is an std::string, does not match the function return type
and does not have an implicit conversion to it:

string add(string head, char arg1, string arg2, char arg3)
{return head + add(arg1, arg2, arg3);}
char add(char head, string arg1, char arg2)
{return head + add(arg1, arg2);}
string add(string head, char arg1)
{return head + add(arg1);}
char add(char value)
{return value;}

We can fix this by modifying the variadic function template so that it has auto for
the return type instead of T. In this case, the return type is always inferred from the
return expression, and in our example, it will be std::string in all cases:

template <typename T, typename... Ts>
auto add(T head, Ts... rest)
{
 return head + add(rest...);
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Functions

[168]

It should be further added that a parameter pack can appear in a brace-initialization
and that its size can be determined using the sizeof... operator. Also, variadic
function templates do not necessarily imply compile-time recursion, as we have
shown in this recipe. All these are shown in the following example:

template<typename... T>
auto make_even_tuple(T... a)
{
 static_assert(sizeof...(a) % 2 == 0,
 "expected an even number of arguments");
 std::tuple<T...> t { a... };

 return t;
}

auto t1 = make_even_tuple(1, 2, 3, 4); // OK

// error: expected an even number of arguments
auto t2 = make_even_tuple(1, 2, 3);

In the preceding snippet, we have defined a function that creates a tuple with an
even number of members. We first use sizeof...(a) to make sure that we have an
even number of arguments and assert by generating a compiler error otherwise. The
sizeof... operator can be used with both template parameter packs and function
parameter packs. sizeof...(a) and sizeof...(T) would produce the same value.
Then, we create and return a tuple. The template parameter pack T is expanded (with
T...) into the type arguments of the std::tuple class template, and the function
parameter pack a is expanded (with a...) into the values for the tuple members
using brace initialization.

See also
• Using fold expressions to simplify variadic function templates to learn how to

write simpler and clearer code when creating function templates with a
variable number of arguments

• Creating raw user-defined literals in Chapter 2, Working with Numbers and Strings,
to understand how to provide a custom interpretation of an input sequence
so that it changes the normal behavior of the compiler

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 3

[169]

Using fold expressions to simplify
variadic function templates
In this chapter, we are discussing folding several times; this is an operation that
applies a binary function to a range of values to produce a single value. We have
seen this when we discussed variadic function templates, and will see it again with
higher-order functions. It turns out there is a significant number of cases where the
expansion of a parameter pack in variadic function templates is basically a folding
operation. To simplify writing such variadic function templates, C++17 introduced
fold expressions, which fold an expansion of a parameter pack over a binary
operator. In this recipe, we will learn how to use fold expressions to simplify writing
variadic function templates.

Getting ready
The examples in this recipe are based on the variadic function template add (), which
we wrote in the previous recipe, Writing a function template with a variable number
of arguments. That implementation is a left-folding operation. For simplicity, we'll
present the function again:

template <typename T>
T add(T value)
{
 return value;
}

template <typename T, typename... Ts>
T add(T head, Ts... rest)
{
 return head + add(rest...);
}

In the next section, we will learn how this particular implementation can be
simplified, as well as other examples of using fold expressions.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Functions

[170]

How to do it...
To fold a parameter pack over a binary operator, use one of the following forms:

• Left folding with a unary form (... op pack):
template <typename... Ts>
auto add(Ts... args)
{
 return (... + args);
}

• Left folding with a binary form (init op ... op pack):
template <typename... Ts>
auto add_to_one(Ts... args)
{
 return (1 + ... + args);
}

• Right folding with a unary form (pack op ...):
template <typename... Ts>
auto add(Ts... args)
{
 return (args + ...);
}

• Right folding with a binary form (pack op ... op init):
template <typename... Ts>
auto add_to_one(Ts... args)
{
 return (args + ... + 1);
}

How it works...
When the compiler encounters a fold expression, it expands it in one of the following
expressions:

The parentheses shown here are part of the fold expression and
cannot be omitted.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 3

[171]

Expression Expansion
(... op pack) ((pack$1 op pack$2) op ...) op pack$n
(init op ... op pack) (((init op pack$1) op pack$2) op ...) op pack$n
(pack op ...) pack$1 op (... op (pack$n-1 op pack$n))
(pack op ... op init) pack$1 op (... op (pack$n-1 op (pack$n op

init)))

When the binary form is used, the operator on both the left-hand and right-hand
sides of the ellipses must be the same, and the initialization value must not contain
an unexpanded parameter pack.

The following binary operators are supported with fold expressions:

+ - * / % ^ & | = < > <<
>> += -= *= /= %= ^= &= |= <<= >>= ==
!= <= >= && || , .* ->*.

When using the unary form, only operators such as *, +, &, |, &&, ||, and , (comma)
are allowed with an empty parameter pack. In this case, the value of the empty pack
is as follows:

+ 0
* 1
& -1
| 0
&& true
|| false
, void()

Now that we have the function templates we implemented earlier (let's consider the
left-folding version), we can write the following code:

auto sum = add(1, 2, 3, 4, 5); // sum = 15
auto sum1 = add_to_one(1, 2, 3, 4, 5); // sum = 16

Considering the add(1, 2, 3, 4, 5) call, it will produce the following function:

int add(int arg1, int arg2, int arg3, int arg4, int arg5)
{
 return ((((arg1 + arg2) + arg3) + arg4) + arg5);
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Functions

[172]

It's worth mentioning that due to the aggressive ways modern compilers do
optimizations, this function can be inlined and, eventually, we may end up with an
expression such as auto sum = 1 + 2 + 3 + 4 + 5.

There's more...
Fold expressions work with all overloads for the supported binary operators, but do
not work with arbitrary binary functions. It is possible to implement a workaround
for that by providing a wrapper type that will hold a value and an overloaded
operator for that wrapper type:

template <typename T>
struct wrapper
{
 T const & value;
};

template <typename T>
constexpr auto operator<(wrapper<T> const & lhs,
 wrapper<T> const & rhs)
{
 return wrapper<T> {
 lhs.value < rhs.value ? lhs.value : rhs.value};
}

In the preceding code, wrapper is a simple class template that holds a constant
reference to a value of type T. An overloaded operator< is provided for this class
template; this overload does not return a Boolean to indicate that the first argument
is less than the second, but actually an instance of the wrapper class type to hold the
minimum value of the two arguments. The variadic function template min (), shown
here, uses this overloaded operator< to fold the pack of arguments expanded to
instances of the wrapper class template:

template <typename... Ts>
constexpr auto min(Ts&&... args)
{
 return (wrapper<Ts>{args} < ...).value;
}

auto m = min(3, 1, 2); // m = 1

This min() function is expanded by the compiler to something that could look like
the following:

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 3

[173]

template<>
inline constexpr int min<int, int, int>(int && __args0,
 int && __args1,
 int && __args2)
{
 return
 operator<(wrapper_min<int>{__args0},
 operator<(wrapper_min<int>{__args1},
 wrapper_min<int>{__args2})).value;
}

What we can see here is cascading calls to the binary operator < that return a
Wrapper<int> value. Without this, an implementation of the min() function using
fold expressions would not be possible. The following implementation does not
work:

template <typename... Ts>
constexpr auto minimum(Ts&&... args)
{
 return (args < ...);
}

The compiler would transform this, based on the call min(3, 1, 2), to something
such as the following:

template<>
inline constexpr bool minimum<int, int, int>(int && __args0,
 int && __args1,
 int && __args2)
{
 return __args0 < (static_cast<int>(__args1 < __args2));
}

The result is a function that returns a Boolean, and not the actual integer value,
which is the minimum between the supplied arguments.

See also
• Implementing higher-order functions map and fold to learn about higher-order

functions in functional programming and how to implement the widely used
map and fold (or reduce) functions

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Functions

[174]

Implementing the higher-order functions
map and fold
Throughout the preceding recipes in this book, we have used the general-purpose
algorithms std::transform() and std::accumulate() in several examples, such as
for implementing string utilities to create uppercase or lowercase copies of a string
or for summing the values of a range. These are basically implementations of higher-
order functions, map and fold. A higher-order function is a function that takes one or
more other functions as arguments and applies them to a range (a list, vector, map,
tree, and so on), thus producing either a new range or a value. In this recipe, we
will learn how to implement the map and fold functions so that they work with C++
standard containers.

Getting ready
Map is a higher-order function that applies a function to the elements of a range and
returns a new range in the same order.

Fold is a higher-order function that applies a combining function to the elements
of the range to produce a single result. Since the order of the processing can be
important, there are usually two versions of this function. One is foldleft, which
processes elements from left to right, while the other is foldright, which combines
the elements from right to left.

As an example, the mapping operation could transform a range of strings into a
range of integers representing the length of each string. The fold operation could
then add these lengths to determine the combined length of all the strings.

How to do it...
To implement the map function, you should:

• Use std::transform on containers that support iterating and assignment to
the elements, such as std::vector or std::list:

Most descriptions of the function map indicate that it is applied
to a list, but this is a general term that can indicate different
sequential types, such as list, vector, and array, and also
dictionaries (that is, maps), queues, and so on. For this reason, I
prefer to use the term range when describing these higher-order
functions.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 3

[175]

template <typename F, typename R>
R mapf(F&& func, R range)
{
 std::transform(
 std::begin(range), std::end(range), std::begin(range),
 std::forward<F>(func));
 return range;
}

• Use other means such as explicit iteration and insertion for containers that do
not support assignment to the elements, such as std::map:

template<typename F, typename T, typename U>
std::map<T, U> mapf(F&& func, std::map<T, U> const & m)
{
 std::map<T, U> r;
 for (auto const kvp : m)
 r.insert(func(kvp));
 return r;
}

template<typename F, typename T>
std::queue<T> mapf(F&& func, std::queue<T> q)
{
 std::queue<T> r;
 while (!q.empty())
 {
 r.push(func(q.front()));
 q.pop();
 }
 return r;
}

To implement the fold function, you should:

• Use std::accumulate() on containers that support iterating:
template <typename F, typename R, typename T>
constexpr T foldl(F&& func, R&& range, T init)
{
 return std::accumulate(
 std::begin(range), std::end(range),
 std::move(init),
 std::forward<F>(func));
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Functions

[176]

template <typename F, typename R, typename T>
constexpr T foldr(F&& func, R&& range, T init)
{
 return std::accumulate(
 std::rbegin(range), std::rend(range),
 std::move(init),
 std::forward<F>(func));
}

• Use other means to explicitly process containers that do not support iterating,
such as std::queue:

template <typename F, typename T>
constexpr T foldl(F&& func, std::queue<T> q, T init)
{
 while (!q.empty())
 {
 init = func(init, q.front());
 q.pop();
 }
 return init;
}

How it works...
In the preceding examples, we implemented the map in a functional way, without
side effects. This means it preserves the original range and returns a new one. The
arguments of the function are the function to apply and the range. In order to avoid
confusion with the std::map container, we have called this function mapf. There are
several overloads for mapf, as shown earlier:

• The first overload is for containers that support iterating and assignment
to its elements; this includes std::vector, std::list, and std::array, but
also C-like arrays. The function takes an rvalue reference to a function and
a range for which std::begin() and std::end() are defined. The range is
passed by value so that modifying the local copy does not affect the original
range. The range is transformed by applying the given function to each
element using the standard algorithm std::transform(); the transformed
range is then returned.

• The second overload is specialized for std::map, which does not support
direct assignment to its elements (std::pair<T, U>). Therefore, this overload
creates a new map, then iterates through its elements using a range-based for
loop, and inserts the result of applying the input function to each element of
the original map into the new map.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 3

[177]

• The third overload is specialized for std::queue, which is a container that
does not support iterating. It can be argued that a queue is not a typical
structure to map over, but for the sake of demonstrating different possible
implementations, we are considering it. In order to iterate over the elements
of a queue, the queue must be altered—you need to pop elements from the
front until the list is empty. This is what the third overload does—it processes
each element of the input queue (passed by value) and pushes the result of
applying the given function to the front element of the remaining queue.

Now that we have these overloads implemented, we can apply them to a lot of
containers, as shown in the following examples:

• Retain absolute values from a vector. In this example, the vector contains
both negative and positive values. After applying the mapping, the result is a
new vector with only positive values:

auto vnums =
 std::vector<int>{0, 2, -3, 5, -1, 6, 8, -4, 9};
auto r = funclib::mapf([](int const i) {
 return std::abs(i); }, vnums);
// r = {0, 2, 3, 5, 1, 6, 8, 4, 9}

• Square the numerical values of a list. In this example, the list contains
integral values. After applying the mapping, the result is a list containing the
squares of the initial values:

auto lnums = std::list<int>{1, 2, 3, 4, 5};
auto l = funclib::mapf([](int const i) {
 return i*i; }, lnums);
// l = {1, 4, 9, 16, 25}

• Rounded amounts of floating points. For this example, we need to use
std::round(); however, this has overloads for all floating-point types, which
makes it impossible for the compiler to pick the right one. As a result, we
either have to write a lambda that takes an argument of a specific floating-
point type and returns the value of std::round() applied to that value, or
create a function object template that wraps std::round() and enables its call
operator only for floating point types. This technique is used in the following
example:

template<class T = double>
struct fround
{
 typename std::enable_if_t<
 std::is_floating_point_v<T>, T>

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Functions

[178]

 operator()(const T& value) const
 {
 return std::round(value);
 }
};

auto amounts =
 std::array<double, 5> {10.42, 2.50, 100.0, 23.75, 12.99};
auto a = funclib::mapf(fround<>(), amounts);
// a = {10.0, 3.0, 100.0, 24.0, 13.0}

• Uppercase the string keys of a map of words (where the key is the word
and the value is the number of appearances in the text). Note that creating
an uppercase copy of a string is itself a mapping operation. Therefore, in
this example, we use mapf to apply toupper() to the elements of the string
representing the key in order to produce an uppercase copy:

auto words = std::map<std::string, int>{
 {"one", 1}, {"two", 2}, {"three", 3}
};
auto m = funclib::mapf(
 [](std::pair<std::string, int> const kvp) {
 return std::make_pair(
 funclib::mapf(toupper, kvp.first),
 kvp.second);
 },
 words);
// m = {{"ONE", 1}, {"TWO", 2}, {"THREE", 3}}

• Normalize values from a queue of priorities; initially, the values are from 1 to
100, but we want to normalize them into two values, 1=high and 2=normal.
All the initial priorities that have a value up to 30 get high priority; the others
get normal priority:

auto priorities = std::queue<int>();
priorities.push(10);
priorities.push(20);
priorities.push(30);
priorities.push(40);
priorities.push(50);
auto p = funclib::mapf(
 [](int const i) { return i > 30 ? 2 : 1; },
 priorities);
// p = {1, 1, 1, 2, 2}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 3

[179]

To implement fold, we actually have to consider the two possible types of folding;
that is, from left to right and from right to left. Therefore, we have provided
two functions called foldl (for left folding) and foldr (for right folding). The
implementations shown in the previous section are very similar: they both take a
function, a range, and an initial value and call std::algorithm() to fold the values
of the range into a single value. However, foldl uses direct iterators, whereas foldr
uses reverse iterators to traverse and process the range. The second overload is a
specialization for the type std::queue, which does not have iterators.

Based on these implementations for folding, we can implement the following
examples:

• Adding the values of a vector of integers. In this case, both left and right
folding will produce the same result. In the following examples, we pass
either a lambda that takes a sum and a number and returns a new sum or
the function object std::plus<> from the standard library, which applies
operator+ to two operands of the same type (basically similar to the closure
of the lambda):

auto vnums =
 std::vector<int>{0, 2, -3, 5, -1, 6, 8, -4, 9};

auto s1 = funclib::foldl(
 [](const int s, const int n) {return s + n; },
 vnums, 0); // s1 = 22

auto s2 = funclib::foldl(
 std::plus<>(), vnums, 0); // s2 = 22

auto s3 = funclib::foldr(
 [](const int s, const int n) {return s + n; },
 vnums, 0); // s3 = 22

auto s4 = funclib::foldr(
 std::plus<>(), vnums, 0); // s4 = 22

• Concatenating strings from a vector into a single string:
auto texts =
 std::vector<std::string>{"hello"s, " "s, "world"s, "!"s};

auto txt1 = funclib::foldl(
 [](std::string const & s, std::string const & n) {
 return s + n;},
 texts, ""s); // txt1 = "hello world!"

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Functions

[180]

auto txt2 = funclib::foldr(
 [](std::string const & s, std::string const & n) {
 return s + n; },
 texts, ""s); // txt2 = "!world hello"

• Concatenating an array of characters into a string:
char chars[] = {'c','i','v','i','c'};

auto str1 = funclib::foldl(std::plus<>(), chars, ""s);
// str1 = "civic"

auto str2 = funclib::foldr(std::plus<>(), chars, ""s);
// str2 = "civic"

• Counting the number of words in text based on their already computed
appearances, available in a map<string, int>:

auto words = std::map<std::string, int>{
 {"one", 1}, {"two", 2}, {"three", 3} };

auto count = funclib::foldl(
 [](int const s, std::pair<std::string, int> const kvp) {
 return s + kvp.second; },
 words, 0); // count = 6

There's more...
These functions can be pipelined; that is, they can call one function with the result
of another. The following example maps a range of integers into a range of positive
integers by applying the std::abs() function to its elements. The result is then
mapped into another range of squares. These are then summed together by applying
a left fold on the range:

auto vnums = std::vector<int>{ 0, 2, -3, 5, -1, 6, 8, -4, 9 };

auto s = funclib::foldl(
 std::plus<>(),
 funclib::mapf(
 [](int const i) {return i*i; },
 funclib::mapf(
 [](int const i) {return std::abs(i); },
 vnums)),
 0); // s = 236

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 3

[181]

As an exercise, we could implement the fold function as a variadic function
template, in the manner seen earlier. The function that performs the actual folding is
provided as an argument:

template <typename F, typename T1, typename T2>
auto foldl(F&&f, T1 arg1, T2 arg2)
{
 return f(arg1, arg2);
}

template <typename F, typename T, typename... Ts>
auto foldl(F&& f, T head, Ts... rest)
{
 return f(head, foldl(std::forward<F>(f), rest...));
}

When we compare this with the add() function template that we wrote in the Writing
a function template with a variable number of arguments recipe, we can notice several
differences:

• The first argument is a function, which is perfectly forwarded when calling
foldl recursively.

• The end case is a function that requires two arguments because the function
we use for folding is a binary one (taking two arguments).

• The return type of the two functions we wrote is declared as auto because it
must match the return type of the supplied binary function f, which is not
known until we call foldl.

The foldl() function can be used as follows:

auto s1 = foldl(std::plus<>(), 1, 2, 3, 4, 5);
// s1 = 15
auto s2 = foldl(std::plus<>(), "hello"s, ' ', "world"s, '!');
// s2 = "hello world!"
auto s3 = foldl(std::plus<>(), 1); // error, too few arguments

Notice that the last call produces a compiler error because the variadic function
template foldl() requires at least two arguments to be passed, in order to invoke the
supplied binary function.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Functions

[182]

See also
• Creating a library of string helpers in Chapter 2, Working with Numbers and

Strings, to see how to create useful text utilities that are not directly available
in the standard library

• Writing a function template with a variable number of arguments to see how
variadic templates enable us to write functions that can take any number of
arguments

• Composing functions into a higher-order function to learn the functional
programming technique for creating a new function from one or more other
functions

Composing functions into a higher-order
function
In the previous recipe, we implemented two higher-order functions, map and fold,
and saw various examples of using them. At the end of the recipe, we saw how they
can be pipelined to produce a final value after several transformations of the original
data. Pipelining is a form of composition, which means creating one new function
from two or more given functions. In the mentioned example, we didn't actually
compose functions; we only called a function with the result produced by another,
but in this recipe, we will learn how to actually compose functions together into a
new function. For simplicity, we will only consider unary functions (functions that
take only one argument).

Getting ready
Before you go forward, it is recommended that you read the previous recipe,
Implementing higher-order functions map and fold. It is not mandatory for understanding
this recipe, but we will refer to the map and fold functions we implemented there.

How to do it...
To compose unary functions into a higher-order function, you should:

• For composing two functions, provide a function that takes two functions,
f and g, as arguments and returns a new function (a lambda) that returns
f(g(x)), where x is the argument of the composed function:

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 3

[183]

template <typename F, typename G>
auto compose(F&& f, G&& g)
{
 return [=](auto x) { return f(g(x)); };
}

auto v = compose(
 [](int const n) {return std::to_string(n); },
 [](int const n) {return n * n; })(-3); // v = "9"

• For composing a variable number of functions, provide a variadic template
overload of the function described previously:

template <typename F, typename... R>
auto compose(F&& f, R&&... r)
{
 return [=](auto x) { return f(compose(r...)(x)); };
}

auto n = compose(
 [](int const n) {return std::to_string(n); },
 [](int const n) {return n * n; },
 [](int const n) {return n + n; },
 [](int const n) {return std::abs(n); })(-3); // n = "36"

How it works...
Composing two unary functions into a new one is relatively trivial. Create a template
function, which we called compose() in the earlier examples, with two arguments—f
and g—that represent functions, and return a function that takes one argument,
x, and returns f(g(x)). It is important that the type of the value returned by the g
function is the same as the type of the argument of the f function. The returned value
of the compose function is a closure; that is, it's an instantiation of a lambda.

In practice, it is useful to be able to combine more than just two functions. This
can be achieved by writing a variadic template version of the compose() function.
Variadic templates are explained in more detail in the Writing a function template with
a variable number of arguments recipe.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Functions

[184]

Variadic templates imply compile-time recursion by expanding the parameter pack.
This implementation is very similar to the first version of compose(), except for the
following:

• It takes a variable number of functions as arguments.
• The returned closure calls compose() recursively with the expanded

parameter pack; recursion ends when only two functions are left, in which
case the previously implemented overload is called.

Now that we have these variadic template overloads implemented, we can rewrite
the last example from the previous recipe, Implementing higher-order functions map and
fold. Refer to the following snippet:

auto s = compose(
 [](std::vector<int> const & v) {
 return foldl(std::plus<>(), v, 0); },
 [](std::vector<int> const & v) {
 return mapf([](int const i) {return i + i; }, v); },
 [](std::vector<int> const & v) {
 return mapf([](int const i) {return std::abs(i); }, v); })(vnums);

Having an initial vector of integers, we map it to a new vector with only positive
values by applying std::abs() to each element. The result is then mapped to a new
vector by doubling the value of each element. Finally, the values in the resulting
vector are folded together by adding them to the initial value, 0.

There's more...
Composition is usually represented by a dot (.) or asterisk (*), such as f . g or
f * g. We can actually do something similar in C++ by overloading operator* (it
would make little sense to try to overload the operator dot). Similar to the compose()
function, operator* should work with any number of arguments; therefore, we will
have two overloads, just like in the case of compose():

• The first overload takes two arguments and calls compose() to return a new
function.

Even if the code looks like recursion is happening, this is not true
recursion. It could be called compile-time recursion, but with every
expansion, we get a call to another method with the same name
but a different number of arguments, which does not represent
recursion.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 3

[185]

• The second overload is a variadic template function that, again, calls
operator* by expanding the parameter pack.

Based on these considerations, we can implement operator* as follows:

template <typename F, typename G>
auto operator*(F&& f, G&& g)
{
 return compose(std::forward<F>(f), std::forward<G>(g));
}

template <typename F, typename... R>
auto operator*(F&& f, R&&... r)
{
 return operator*(std::forward<F>(f), r...);
}

We can now simplify the actual composition of functions by applying operator*
instead of the more verbose call to compose():

auto n =
 ([](int const n) {return std::to_string(n); } *
 [](int const n) {return n * n; } *
 [](int const n) {return n + n; } *
 [](int const n) {return std::abs(n); })(-3); // n = "36"

auto c =
 [](std::vector<int> const & v) {
 return foldl(std::plus<>(), v, 0); } *
 [](std::vector<int> const & v) {
 return mapf([](int const i) {return i + i; }, v); } *
 [](std::vector<int> const & v) {
 return mapf([](int const i) {return std::abs(i); }, v); };

auto vnums = std::vector<int>{ 0, 2, -3, 5, -1, 6, 8, -4, 9 };
auto s = c(vnums); // s = 76

Although it may not be intuitive at first glance, the functions are applied in reverse
order rather than the one shown in the text. For instance, in the first example, the
absolute value of the argument is retained. Then, the result is doubled, and the result
of that operation is then multiplied with itself. Finally, the result is converted to a
string. For the supplied argument, -3, the final result is the string "36".

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Functions

[186]

See also
• Writing a function template with a variable number of arguments to see how

variadic templates enable us to write functions that can take any number of
arguments

Uniformly invoking anything callable
Developers, and especially those who implement libraries, sometimes need to invoke
a callable object in a uniform manner. This can be a function, a pointer to a function,
a pointer to a member function, or a function object. Examples of such cases include
std::bind, std::function, std::mem_fn, and std::thread::thread. C++17 defines
a standard function called std::invoke() that can invoke any callable object with
the provided arguments. This is not intended to replace direct calls to functions or
function objects, but it is useful in template metaprogramming for implementing
various library functions.

Getting ready
For this recipe, you should be familiar with how to define and use function pointers.

To exemplify how std::invoke() can be used in different contexts, we will use the
following function and class:

int add(int const a, int const b)
{
 return a + b;
}

struct foo
{
 int x = 0;

 void increment_by(int const n) { x += n; }
};

In the next section, we'll explore the possible use cases for the std::invoke()
function.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 3

[187]

How to do it...
The std::invoke() function is a variadic function template that takes the callable
object as the first argument and a variable list of arguments that are passed to the
call. std::invoke() can be used to call the following:

• Free functions:
auto a1 = std::invoke(add, 1, 2); // a1 = 3

• Free functions through pointer to function:
auto a2 = std::invoke(&add, 1, 2); // a2 = 3
int(*fadd)(int const, int const) = &add;
auto a3 = std::invoke(fadd, 1, 2); // a3 = 3

• Member functions through pointer to member function:
foo f;
std::invoke(&foo::increment_by, f, 10);

• Data members:
foo f;
auto x1 = std::invoke(&foo::x, f); // x1 = 0

• Function objects:
foo f;
auto x3 = std::invoke(std::plus<>(),
 std::invoke(&foo::x, f), 3); // x3 = 3

• Lambda expressions:
auto l = [](auto a, auto b) {return a + b; };
auto a = std::invoke(l, 1, 2); // a = 3

In practice, std:invoke() should be used in template metaprogramming for invoking
a function with an arbitrary number of arguments. To exemplify such a case, we'll
present a possible implementation for our std::apply() function, and also a part of
the standard library, as of C++17, that calls a function by unpacking the members of
a tuple into the arguments of the function:

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Functions

[188]

namespace details
{
 template <class F, class T, std::size_t... I>
 auto apply(F&& f, T&& t, std::index_sequence<I...>)
 {
 return std::invoke(
 std::forward<F>(f),
 std::get<I>(std::forward<T>(t))...);
 }
}

template <class F, class T>
auto apply(F&& f, T&& t)
{
 return details::apply(
 std::forward<F>(f),
 std::forward<T>(t),
 std::make_index_sequence<
 std::tuple_size_v<std::decay_t<T>>> {});
}

How it works...
Before we see how std::invoke() works, let's have a quick look at how different
callable objects can be invoked. Given a function, obviously, the ubiquitous way of
invoking it is by directly passing it the necessary parameters. However, we can also
invoke the function using function pointers. The trouble with function pointers is
that defining the type of the pointer can be cumbersome. Using auto can simplify
things (as shown in the following code), but in practice, you usually need to define
the type of the pointer to function first, and then define an object and initialize it with
the correct function address. Here are several examples:

// direct call
auto a1 = add(1, 2); // a1 = 3

// call through function pointer
int(*fadd)(int const, int const) = &add;
auto a2 = fadd(1, 2); // a2 = 3

auto fadd2 = &add;
auto a3 = fadd2(1, 2); // a3 = 3

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 3

[189]

Calling through a function pointer becomes more cumbersome when you need to
invoke a class function through an object that is an instance of the class. The syntax
for defining the pointer to a member function and invoking it is not simple:

foo f;
f.increment_by(3);
auto x1 = f.x; // x1 = 3

void(foo::*finc)(int const) = &foo::increment_by;
(f.*finc)(3);
auto x2 = f.x; // x2 = 6

auto finc2 = &foo::increment_by;
(f.*finc2)(3);
auto x3 = f.x; // x3 = 9

Regardless of how cumbersome this kind of call may look, the actual problem is
writing library components (functions or classes) that are able to call any of these
types of callable objects, in a uniform manner. This is what benefits, in practice, from
a standard function, such as std::invoke().

The implementation details of std::invoke() are complex, but the way it works
can be explained in simple terms. Supposing the call has the form invoke(f, arg1,
arg2, ..., argN), then consider the following:

• If f is a pointer to a member function of a T class, then the call is equivalent to
either:

• (arg1.*f)(arg2, ..., argN), if arg1 is an instance of T
• (arg1.get().*f)(arg2, ..., argN), if arg1 is a specialization of

reference_wrapper

• ((*arg1).*f)(arg2, ..., argN), if it is otherwise
• If f is a pointer to a data member of a T class and there is a single argument,

in other words, the call has the form invoke(f, arg1), then the call is
equivalent to either:

• arg1.*f if arg1 is an instance class T
• arg1.get().*f if arg1 is a specialization of reference_wrapper
• (*arg1).*f, if it is otherwise

• If f is a function object, then the call is equivalent to f(arg1, arg2, ...,
argN)

The standard library also provides a series of related type traits: std::is_invocable
and std::is_nothrow_invocable on one hand, and std::is_invocable_r and

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Functions

[190]

std::is_nothrow_invocable_r on the other hand. The first set determines whether a
function can be invocable with the supplied arguments, while the second determines
whether it can be invocable with the supplied arguments and produce a result that
can be implicitly converted to a specified type. The nothrow versions of these type
traits verify that the call can be done without any exception being thrown.

See also
• Writing a function template with a variable number of arguments to see how

variadic templates enable us to write functions that can take any number of
arguments

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

[191]

4
Preprocessing

and Compilation
In C++, compilation is the process by which source code is transformed to machine
code and organized in object files that are then linked together to produce an
executable. The compiler actually works on a single file at a time, produced by
the preprocessor (the part of the compiler that handles preprocessing directives)
from a single source file and all the header files that it includes. This is, however,
an oversimplification of what happens when we compile the code. This chapter
addresses topics related to preprocessing and compilation, with a focus on various
methods to perform conditional compilation, but also touching other modern topics
such as using attributes to provide implementation-defined language extensions.

The recipes included in this chapter are as follows:

• Conditionally compiling your source code
• Using the indirection pattern for preprocessor stringification and

concatenation
• Performing compile-time assertion checks with static_assert
• Conditionally compiling classes and functions with enable_if
• Selecting branches at compile time with constexpr if
• Providing metadata to the compiler with attributes

The recipe that we will start this chapter with addresses a very common problem
faced by developers, which is compiling only parts of a code base depending on
various conditions.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preprocessing and Compilation

[192]

Conditionally compiling your source
code
Conditional compilation is a simple mechanism that enables developers to maintain
a single code base, but only consider some parts of the code for compilation to
produce different executables, usually in order to run on different platforms or
hardware, or depend on different libraries or library versions. Common examples
include using or ignoring code based on the compiler, platform (x86, x64, ARM, and
so on), configuration (debug or release), or any user-defined specific conditions. In
this recipe, we'll take a look at how conditional compilation works.

Getting ready
Conditional compilation is a technique used extensively for many purposes. In this
recipe, we will look at several examples and explain how they work. This technique
is not in any way limited to these examples. For the scope of this recipe, we will only
consider the three major compilers: GCC, Clang, and VC++.

How to do it...
To conditionally compile portions of code, use the #if, #ifdef, and #ifndef
directives (with the #elif, #else, and #endif directives). The general form for
conditional compilation is as follows:

#if condition1
 text1
#elif condition2
 text2
#elif condition3
 text3
#else
 text4
#endif

To define macros for conditional compilation, you can use either of the following:

• A #define directive in your source code:
#define VERBOSE_PRINTS
#define VERBOSITY_LEVEL 5

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 4

[193]

• Compiler command-line options that are specific to each compiler. Examples
for the most widely used compilers are as follows:

• For Visual C++, use /Dname or /Dname=value (where /Dname is
equivalent to /Dname=1), for example, cl /DVERBOSITY_LEVEL=5.

• For GCC and Clang, use -D name or -D name=value (where -D name is
equivalent to -D name=1), for example, gcc -D VERBOSITY_LEVEL=5.

The following are typical examples of conditional compilation:

• Header guards to avoid duplicate definitions:
#if !defined(UNIQUE_NAME)
#define UNIQUE_NAME
class widget { };
#endif

• Compiler-specific code for cross-platform applications. The following is an
example of printing a message to the console with the name of the compiler:

void show_compiler()
{
 #if defined _MSC_VER
 std::cout << "Visual C++\n";
 #elif defined __clang__
 std::cout << "Clang\n";
 #elif defined __GNUG__
 std::cout << "GCC\n";
 #else
 std::cout << "Unknown compiler\n";
 #endif
}

• Target-specific code for multiple architectures, for example, for conditionally
compiling code for multiple compilers and architectures:

void show_architecture()
{
#if defined _MSC_VER

#if defined _M_X64
 std::cout << "AMD64\n";
#elif defined _M_IX86
 std::cout << "INTEL x86\n";

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preprocessing and Compilation

[194]

#elif defined _M_ARM
 std::cout << "ARM\n";
#else
 std::cout << "unknown\n";
#endif

#elif defined __clang__ || __GNUG__

#if defined __amd64__
 std::cout << "AMD64\n";
#elif defined __i386__
 std::cout << "INTEL x86\n";
#elif defined __arm__
 std::cout << "ARM\n";
#else
 std::cout << "unknown\n";
#endif

#else
#error Unknown compiler
#endif
}

• Configuration-specific code, for example, for conditionally compiling code
for debug and release builds:

void show_configuration()
{
#ifdef _DEBUG
 std::cout << "debug\n";
#else
 std::cout << "release\n";
#endif
}

How it works...
When you use the preprocessing directives #if, #ifndef, #ifdef, #elif, #else, and
#endif, the compiler will select, at most, one branch whose body will be included
in the translation unit for compilation. The body of these directives can be any text,
including other preprocessing directives. The following rules apply:

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 4

[195]

• #if, #ifdef, and #ifndef must be matched by a #endif.
• The #if directive may have multiple #elif directives, but only one #else,

which must also be the last one before #endif.
• #if, #ifdef, #ifndef, #elif, #else, and #endif can be nested.
• The #if directive requires a constant expression, whereas #ifdef and #ifndef

require an identifier.
• The operator defined can be used for preprocessor constant expressions, but

only in #if and #elif directives.
• defined(identifier) is considered true if identifier is defined; otherwise,

it is considered false.
• An identifier defined as an empty text is considered defined.
• #ifdef identifier is equivalent to #if defined(identifier).
• #ifndef identifier is equivalent to #if !defined(identifier).
• defined(identifier) and defined identifier are equivalent.

Header guards are one of the most common forms of conditional compilation.
This technique is used to prevent the content of a header file from being compiled
several times (although the header is still scanned every time in order to detect what
should be included). Since headers are often included in multiple source files, having
them compiled for every translation unit where they are included would produce
multiple definitions for the same symbols, which is an error. Therefore, the code in
headers is guarded for multiple compilations in the manner shown in the example
given in the previous section. The way this works, considering the given example,
is that if the macro UNIQUE_NAME (this is a generic name from the previous section)
is not defined, then the code after the #if directive, until #endif, is included in the
translation unit and compiled. When that happens, the macro UNIQUE_NAME is defined
with the #define directive. The next time the header is included in a translation unit,
the macro UNIQUE_NAME is defined and the code in the body of the #if directive is not
included in the translation unit and, therefore, not compiled again.

Note that the name of the macro must be unique throughout the
application; otherwise, only the code from the first header where
the macro is used will be compiled. Code from other headers using
the same name will be ignored. Typically, the name of the macro is
based on the name of the header file where it is defined.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preprocessing and Compilation

[196]

Another important example of conditional compilation is cross-platform code, which
needs to account for different compilers and architectures, usually one of Intel x86,
AMD64, or ARM. However, the compiler defines its own macros for the possible
platforms. The samples from the How to do it... section show how to conditionally
compile code for multiple compilers and architectures.

Configuration-specific code is also handled with macros and conditional
compilation. Compilers such as GCC and Clang do not define any special macros
for debug configurations (when the -g flag is used). Visual C++ does define _DEBUG
for a debug configuration, which was shown in the last example in the How to do
it... section. For the other compilers, you would have to explicitly define a macro to
identify such a debug configuration.

See also
• Using the indirection pattern for preprocessor stringification and concatenation

to learn how to transform identifiers to strings and concatenate identifiers
together during preprocessing

Using the indirection pattern for
preprocessor stringification and
concatenation
The C++ preprocessor provides two operators for transforming identifiers to
strings and concatenating identifiers together. The first one, operator #, is called the
stringizing operator, while the second one, operator ##, is called the token-pasting,
merging, or concatenating operator. Although their use is limited to some particular
cases, it is important to understand how they work.

Getting ready
For this recipe, you need to know how to define macros using the preprocessing
directive #define.

Note that in the aforementioned example, we only consider a few
architectures. In practice, there are multiple macros that can be
used to identify the same architecture. Ensure that you read the
documentation of each compiler before using these types of macros
in your code.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 4

[197]

How to do it...
To create a string from an identifier using the preprocessing operator #, use the
following pattern:

1. Define a helper macro taking one argument that expands to #, followed by
the argument:

#define MAKE_STR2(x) #x

2. Define the macro you want to use, taking one argument that expands to the
helper macro:

#define MAKE_STR(x) MAKE_STR2(x)

To concatenate identifiers together using the preprocessing operator ##, use the
following pattern:

1. Define a helper macro with one or more arguments that use the token-
pasting operator ## to concatenate arguments:

#define MERGE2(x, y) x##y

2. Define the macro you want to use by using the helper macro:
#define MERGE(x, y) MERGE2(x, y)

How it works...
To understand how these work, let's consider the MAKE_STR and MAKE_STR2 macros
defined earlier. When used with any text, they will produce a string containing that
text. The following example shows how both these macros can be used to define
strings containing the text "sample":

std::string s1 { MAKE_STR(sample) }; // s1 = "sample"
std::string s2 { MAKE_STR2(sample) }; // s2 = "sample"

On the other hand, when a macro is passed as an argument, the results are different.
In the following example, NUMBER is a macro that expands to an integer, 42. When
used as an argument to MAKE_STR, it indeed produces the string "42"; however, when
used as an argument to MAKE_STR2, it produces the string "NUMBER":

#define NUMBER 42

std::string s3 { MAKE_STR(NUMBER) }; // s3 = "42"
std::string s4 { MAKE_STR2(NUMBER) }; // s4 = "NUMBER"

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preprocessing and Compilation

[198]

The C++ standard defines the following rules for argument substitution in function-
like macros (paragraph 16.3.1):

"After the arguments for the invocation of a function-like macro have been identified,
argument substitution takes place. A parameter in the replacement list, unless
preceded by a # or ## preprocessing token or followed by a ## preprocessing token
(see below), is replaced by the corresponding argument after all the macros contained
therein have been expanded. Before being substituted, each argument's preprocessing
tokens are completely macro replaced as if they formed the rest of the preprocessing
file; no other preprocessing tokens are available."

What this says is that macro arguments are expanded before they are substituted
into the macro body, except for the case when the operator # or ## is preceding or
following a parameter in the macro body. As a result, the following happens:

• For MAKE_STR2(NUMBER), the NUMBER parameter in the replacement list is
preceded by # and, therefore, it is not expanded before substituting the
argument in the macro body; therefore, after the substitution, we have
#NUMBER, which becomes "NUMBER".

• For MAKE_STR(NUMBER), the replacement list is MAKE_STR2(NUMBER), which has
no # or ##; therefore, the NUMBER parameter is replaced with its corresponding
argument, 42, before being substituted. The result is MAKE_STR2(42), which is
then scanned again, and, after expansion, it becomes "42".

The same processing rules apply to macros using the token-pasting operator.
Therefore, in order to make sure that your stringification and concatenation macros
work for all cases, always apply the indirection pattern described in this recipe.

The token-pasting operator is typically used in macros that factor repetitive code to
avoid writing the same thing explicitly over and over again. The following simple
example shows a practical use of the token-pasting operator; given a set of classes,
we want to provide factory methods that create an instance of each class:

#define DECL_MAKE(x) DECL_MAKE2(x)
#define DECL_MAKE2(x) x* make##_##x() { return new x(); }

struct bar {};
struct foo {};

DECL_MAKE(foo)
DECL_MAKE(bar)

auto f = make_foo(); // f is a foo*
auto b = make_bar(); // b is a bar*

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 4

[199]

Those familiar with the Windows platform have probably used the _T (or _TEXT)
macro for declaring string literals that are either translated to Unicode or ANSI
strings (both single- and multi-type character strings):

auto text{ _T("sample") }; // text is either "sample" or L"sample"

The Windows SDK defines the _T macro as follows. Note that when _UNICODE is
defined, the token-pasting operator is defined to concatenate together the L prefix
and the actual string being passed to the macro:

#ifdef _UNICODE
#define __T(x) L ## x
#else
#define __T(x) x
#endif

#define _T(x) __T(x)
#define _TEXT(x) __T(x)

At first glance, it seems unnecessary to have one macro calling another macro, but
this level of indirection is key for making the # and ## operators work with other
macros, as we have seen in this recipe.

See also
• Conditionally compiling your source code to learn how to compile only parts of

your code, depending on various conditions

Performing compile-time assertion
checks with static_assert
In C++, it is possible to perform both runtime and compile-time assertion checks to
ensure that specific conditions in your code are true. Runtime assertions have the
disadvantage that they are verified late when the program is running, and only if the
control flow reaches them. There is no alternative when the condition depends on
runtime data; however, when that is not the case, compile-time assertion checks are
to be preferred. With compile-time assertions, the compiler is able to notify you early
in the development stage with an error that a particular condition has not been met.
These, however, can only be used when the condition can be evaluated at compile
time. In C++11, compile-time assertions are performed with static_assert.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preprocessing and Compilation

[200]

Getting ready
The most common use of static assertion checks is with template metaprogramming,
where they can be used for validating that preconditions on template types are met
(examples can include whether a type is a POD type, copy-constructible, a reference
type, and so on). Another typical example is to ensure that types (or objects) have an
expected size.

How to do it...
Use static_assert declarations to ensure that conditions in different scopes are met:

• namespace: In this example, we validate that the size of the class item is
always 16:

struct alignas(8) item
{
 int id;
 bool active;
 double value;
};

static_assert(sizeof(item) == 16,
 "size of item must be 16 bytes");

• class: In this example, we validate that pod_wrapper can only be used with
POD types:

template <typename T>
class pod_wrapper
{
 static_assert(std::is_standard_layout_v<T>,
 "POD type expected!");
 T value;
};

struct point
{
 int x;
 int y;
 };
pod_wrapper<int> w1; // OK
pod_wrapper<point> w2; // OK
pod_wrapper<std::string> w3; // error: POD type expected

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 4

[201]

• block (function): In this example, we validate that a function template has
only arguments of an integral type:

template<typename T>
auto mul(T const a, T const b)
{
 static_assert(std::is_integral_v<T>,
 "Integral type expected");
 return a * b;
}

auto v1 = mul(1, 2); // OK
auto v2 = mul(12.0, 42.5); // error: Integral type expected

How it works...
static_assert is basically a declaration, but it does not introduce a new name. These
declarations have the following form:

static_assert(condition, message);

The condition must be convertible to a Boolean value at compile time, and the
message must be a string literal. As of C++17, the message is optional.

When the condition in a static_assert declaration evaluates to true, nothing
happens. When the condition evaluates to false, the compiler generates an error that
contains the specified message, if any.

See also
• Conditionally compiling classes and functions with enable_if to learn about

SFINAE and how to use it to specify type constraints for templates
• Specifying requirements on template arguments with concepts in Chapter 12, C++20

Core Features, to learn the fundamentals of C++20 concepts and how to use
them to specify constraints for template types

• Selecting branches at compile time with constexpr if to learn how to compile only
parts of your code with constexpr if statements

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preprocessing and Compilation

[202]

Conditionally compiling classes and
functions with enable_if
Template metaprogramming is a powerful feature of C++ that enables us to write
generic classes and functions that work with any type. This is a problem sometimes
because the language does not define any mechanism for specifying constraints
on the types that can be substituted for the template parameters. However, we can
still achieve this using metaprogramming tricks and by leveraging a rule called
substitution failure is not an error, also known as SFINAE. This rule determines
whether the compiler discards, from the overloaded set, a specialization when
substituting the explicitly specified or deduced type for the template parameter
when it fails, instead of generating an error. This recipe will focus on implementing
type constraints for templates.

Getting ready
Developers have used a class template usually called enable_if for many years in
conjunction with SFINAE to implement constraints on template types. The enable_if
family of templates has become part of the C++11 standard and is implemented as
follows:

template<bool Test, class T = void>
struct enable_if
{};

template<class T>
struct enable_if<true, T>
{
 typedef T type;
};

To be able to use std::enable_if, you must include the header <type_traits>.

How to do it...
std::enable_if can be used in multiple scopes to achieve different purposes;
consider the following examples:

• On a class template parameter to enable a class template only for types that
meet a specified condition:

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 4

[203]

template <typename T,
 typename = typename
 std::enable_if_t<std::is_standard_layout_v<T>, T>>
class pod_wrapper
{
 T value;
};

struct point
{
 int x;
 int y;
};

pod_wrapper<int> w1; // OK
pod_wrapper<point> w2; // OK
pod_wrapper<std::string> w3; // error: too few template arguments

• On a function template parameter, function parameter, or function return
type to enable a function template only for types that meet a specified
condition:

template<typename T,
 typename = typename std::enable_if_t<
 std::is_integral_v<T>, T>>
auto mul(T const a, T const b)
{
 return a * b;
}

auto v1 = mul(1, 2); // OK
auto v2 = mul(1.0, 2.0);
// error: no matching overloaded function found

To simplify the cluttered code that we end up writing when we use std::enable_
if, we can leverage alias templates and define two aliases, called EnableIf and
DisableIf:

template <typename Test, typename T = void>
using EnableIf = typename std::enable_if_t<Test::value, T>;

template <typename Test, typename T = void>
using DisableIf = typename std::enable_if_t<!Test::value, T>;

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preprocessing and Compilation

[204]

Based on these alias templates, the following definitions are equivalent to the
preceding ones:

template <typename T, typename = EnableIf<std::is_standard_layout<T>>>
class pod_wrapper
{
 T value;
};

template<typename T, typename = EnableIf<std::is_integral<T>>>
auto mul(T const a, T const b)
{
 return a * b;
}

How it works...
std::enable_if works because the compiler applies the SFINAE rule when
performing overload resolution. Before we can explain how std::enable_if works,
we should have a quick look at what SFINAE is.

When the compiler encounters a function call, it needs to build a set of possible
overloads and select the best match for the call based on the arguments for the
function call. When building this overload set, the compiler evaluates function
templates too and has to perform a substitution for the specified or deduced types in
the template arguments. According to SFINAE, when the substitution fails, instead
of yielding an error, the compiler should just remove the function template from the
overload set and continue.

Let's consider the following two overloads of a function called func(). The first
overload is a function template that has a single argument of type T::value_type;
this means it can only be instantiated with types that have an inner type called
value_type. The second overload is a function that has a single argument of type int:

The standard specifies a list of type and expression errors that are
also SFINAE errors. These include an attempt to create an array
of void or an array of size zero, an attempt to create a reference
to void, an attempt to create a function type with a parameter
of type void, and an attempt to perform an invalid conversion
in a template argument expression or in an expression used in a
function declaration. For the complete list of exceptions, consult
the C++ standard or other resources.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 4

[205]

template <typename T>
void func(typename T::value_type const a)
{ std::cout << "func<>" << '\n'; }

void func(int const a)
{ std::cout << "func" << '\n'; }

template <typename T>
struct some_type
{
 using value_type = T;
};

If the compiler encounters a call such as func(42), then it must find an overload
that can take an int argument. When it builds the overload set and substitutes
the template parameter with the provided template argument, the result, void
func(int::value_type const), is invalid, because int does not have a value_type
member. Due to SFINAE, the compiler will not emit an error and stop, but will
simply ignore the overload and continue. It then finds void func(int const), and
that will be the best (and only) match that it will call.

If the compiler encounters a call such as func<some_type<int>>(42), then it builds an
overload set containing void func(some_type<int>::value_type const> and void
func(int const), and the best match in this case is the first overload; no SFINAE is
involved this time.

On the other hand, if the compiler encounters a call such as func("string"s), then it
again relies on SFINAE to ignore the function template, because std::basic_string
does not have a value_type member either. This time, however, the overload set does
not contain any match for the string argument; therefore, the program is ill-formed
and the compiler emits an error and stops.

The class template enable_if<bool, T> does not have any members, but its partial
specialization, enable_if<true, T >, does have an inner type called type, which is a
synonym for T. When the compile-time expression supplied as the first argument to
enable_if evaluates to true, the inner member type is available; otherwise, it is not.

Considering the last definition of the function mul() from the How to do it... section,
when the compiler encounters a call such as mul(1, 2), it tries to substitute int
for the template parameter, T; since int is an integral type, std::is_integral<T>
evaluates to true and, therefore, a specialization of enable_if that defines an inner
type called type is instantiated. As a result, the alias template EnableIf becomes a
synonym for this type, which is void (from the expression typename T = void). The
result is a function template, int mul<int, void>(int a, int b), that can be called
with the supplied arguments.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preprocessing and Compilation

[206]

On the other hand, when the compiler encounters a call such as mul(1.0, 2.0),
it tries to substitute double for the template parameter, T. However, this is not an
integral type; as a result, the condition in std::enable_if evaluates to false and the
class template does not define an inner member type. This results in a substitution
error, but according to SFINAE, the compiler will not emit an error but move on.
However, since no other overload is found, there will be no mul() function that can
be called. Therefore, the program is considered ill-formed and the compiler stops
with an error.

A similar situation is encountered with the class template pod_wrapper. It has two
template type parameters: the first is the actual POD type that is being wrapped,
while the second is the result of the substitution of enable_if and is_pod. If the type
is a POD type (as in pod_wrapper<int>), then the inner member type from enable_if
exists and it substitutes the second template type parameter. However, if the inner
member type is not a POD type (as in pod_wrapper<std::string>), then the inner
member type is not defined, and the substitution fails, producing an error such as too
few template arguments.

There's more...
static_assert and std::enable_if can be used to achieve the same goals. In fact,
in the previous recipe, Performing compile-time assertion checks with static_assert, we
defined the same class template, pod_wrapper, and function template, mul(). For
these examples, static_assert seems like a better solution because the compiler
emits better error messages (provided that you specify relevant messages in the
static_assert declaration). These two, however, work quite differently and are not
intended as alternatives.

static_assert does not rely on SFINAE and is applied after overload resolution
is performed. The result of a failed assert is a compiler error. On the other hand,
std::enable_if is used to remove candidates from the overload set and does not
trigger compiler errors (given that the exceptions the standard specifies for SFINAE
do not occur). The actual error that can occur after SFINAE is an empty overload set
that makes a program ill-formed. This is because a particular function call cannot be
performed.

To understand the difference between static_assert and std::enable_if with
SFINAE, let's consider a case where we want to have two function overloads: one
that should be called for arguments of integral types and one for arguments of any
type other than integral types. With static_assert, we can write the following (note
that the dummy second type parameter on the second overload is necessary to define
two different overloads; otherwise, we would just have two definitions of the same
function):

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 4

[207]

template <typename T>
auto compute(T const a, T const b)
{
 static_assert(std::is_integral_v<T>,
 "An integral type expected");
 return a + b;
}

template <typename T, typename = void>
auto compute(T const a, T const b)
{
 static_assert(!std::is_integral_v<T>,
 "A non-integral type expected");
 return a * b;
}

auto v1 = compute(1, 2);
// error: ambiguous call to overloaded function

auto v2 = compute(1.0, 2.0);
// error: ambiguous call to overloaded function

Regardless of how we try to call this function, we end up with an error, because the
compiler finds two overloads that it could potentially call. This is because static_
assert is only considered after the overload resolution has been resolved, which, in
this case, builds a set of two possible candidates.

The solution to this problem is std::enable_if and SFINAE. We use std::enable_if
via the alias templates EnableIf and DisableIf defined previously on a template
parameter (although we still use the dummy template parameter on the second
overload to introduce two different definitions). The following example shows the
two overloads rewritten. The first overload is enabled only for integral types, while
the second is disabled for integral types:

template <typename T, typename = EnableIf<std::is_integral<T>>>
auto compute(T const a, T const b)
{
 return a * b;
}

template <typename T, typename = DisableIf<std::is_integral<T>>,
 typename = void>

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preprocessing and Compilation

[208]

auto compute(T const a, T const b)
{
 return a + b;
}
auto v1 = compute(1, 2); // OK; v1 = 2
auto v2 = compute(1.0, 2.0); // OK; v2 = 3.0

With SFINAE at work, when the compiler builds the overload set for either
compute(1, 2) or compute(1.0, 2.0);, it will simply discard the overload that
produces a substitution failure and move on, where in each case we'll end up with an
overload set containing a single candidate.

See also
• Performing compile-time assertion checks with static_assert to learn how to define

assertions that are verified at compile time
• Creating type aliases and alias templates in Chapter 1, Learning Modern Core

Language Features, to learn about aliases for types

Selecting branches at compile time with
constexpr if
In the previous recipes, we saw how we can impose restrictions on types and
functions using static_assert and std::enable_if and how these two are different.
Template metaprogramming can become complicated and cluttered when we use
SFINAE and std::enable_if to define function overloads or when we write variadic
function templates. A new feature of C++17 is intended to simplify such code; it is
called constexpr if, and it defines an if statement with a condition that is evaluated
at compile time, resulting in the compiler selecting the body of a branch or another
in the translation unit. Typical usage of constexpr if is for simplification of variadic
templates and std::enable_if-based code.

Getting ready
In this recipe, we will refer to and simplify the code written in previous recipes.
Before continuing with this recipe, you should take a moment to go back and review
the code we have written in the previous recipes, as follows:

• The compute() overloads for integral and non-integral types from the
Conditionally compiling classes and functions with enable_if recipe.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 4

[209]

• User-defined 8-bit, 16-bit, and 32-bit binary literals from the Creating raw
user-defined literals recipe of Chapter 2, Working with Numbers and Strings.

These implementations have several issues:

• They are hard to read. There is a lot of focus on the template declaration, yet
the body of the functions are very simple, for instance. The biggest problem,
though, is that it requires greater attention from developers because it is
cluttered with complicated declarations, such as typename = std::enable_
if<std::is_integral<T>::value, T>::type.

• There is too much code. The end purpose in the first example is to have a
generic function that behaves differently for different types, yet we had to
write two overloads for the function; moreover, to differentiate the two, we
had to use an extra, unused, template parameter. In the second example, the
purpose was to build an integer value out of characters '0' and '1', yet we
had to write one class template and three specializations to make it happen.

• It requires advanced template metaprogramming skills, which shouldn't be
necessary for doing something this simple.

The syntax for constexpr if is very similar to regular if statements and requires the
constexpr keyword before the condition. The general form is as follows:

if constexpr (init-statement condition) statement-true
else statement-false

In the following section, we'll explore several use cases for conditional compilation
with constexpr if.

How to do it...
Use constexpr if statements to do the following:

• To avoid using std::enable_if and relying on SFINAE to impose restrictions
on function template types and conditionally compile code:

template <typename T>
auto value_of(T value)
{
 if constexpr (std::is_pointer_v<T>)
 return *value;
 else
 return value;
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preprocessing and Compilation

[210]

• To simplify writing variadic templates and implement metaprogramming
compile-time recursion:

namespace binary
{
 using byte8 = unsigned char;

 namespace binary_literals
 {
 namespace binary_literals_internals
 {
 template <typename CharT, char d, char... bits>
 constexpr CharT binary_eval()
 {
 if constexpr(sizeof...(bits) == 0)
 return static_cast<CharT>(d-'0');
 else if constexpr(d == '0')
 return binary_eval<CharT, bits...>();
 else if constexpr(d == '1')
 return static_cast<CharT>(
 (1 << sizeof...(bits)) |
 binary_eval<CharT, bits...>());
 }
 }

 template<char... bits>
 constexpr byte8 operator""_b8()
 {
 static_assert(
 sizeof...(bits) <= 8,
 "binary literal b8 must be up to 8 digits long");

 return binary_literals_internals::
 binary_eval<byte8, bits...>();
 }
 }
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 4

[211]

How it works...
The way constexpr if works is relatively simple: the condition in the if statement
must be a compile-time expression that evaluates or is convertible to a Boolean. If the
condition is true, the body of the if statement is selected, which means it ends up in
the translation unit for compilation. If the condition is false, the else branch, if any
is defined, is evaluated. Return statements in discarded constexpr if branches do not
contribute to the function return type deduction.

In the first example from the How to do it... section, the value_of() function template
has a clean signature. The body is also very simple; if the type that is substituted
for the template parameter is a pointer type, the compiler will select the first branch
(that is, return *value;) for code generation and discard the else branch. For non-
pointer types, because the condition evaluates to false, the compiler will select the
else branch (that is, return value;) for code generation and discard the rest. This
function can be used as follows:

auto v1 = value_of(42);

auto p = std::make_unique<int>(42);
auto v2 = value_of(p.get());

However, without the help of constexpr if, we could only implement this using
std::enable_if. The following implementation is a more cluttered alternative:

template <typename T,
 typename = typename std::enable_if_t<std::is_pointer_v<T>,
T>>
auto value_of(T value)
{
 return *value;
}

template <typename T,
 typename = typename std::enable_if_t<!std::is_pointer_v<T>,
T>>
T value_of(T value)
{
 return value;
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preprocessing and Compilation

[212]

As you can see, the constexpr if variant is not only shorter but more expressive and
easier to read and understand.

In the second example from the How to do it... section, the internal helper function
binary_eval() is a variadic template function without any parameters; it only has
template parameters. The function evaluates the first argument and then does
something with the rest of the arguments in a recursive manner (but remember
this is not a runtime recursion). When there is a single character left and the size of
the remaining pack is 0, we return the decimal value represented by the character
(0 for '0' and 1 for '1'). If the current first element is a '0', we return the value
determined by evaluating the rest of the arguments pack, which involves a recursive
call. If the current first element is a '1', we return the value by shifting a 1 to the left
on a number of positions given by the size of the remaining pack bit or the value
determined. We do this by evaluating the rest of the arguments pack, which again
involves a recursive call.

See also
• Conditionally compiling classes and functions with enable_if to learn about

SFINAE and how to use it to specify type constraints for templates

Providing metadata to the compiler with
attributes
C++ has been very deficient when it comes to features that enable reflection
or introspection on types or data or standard mechanisms to define language
extensions. Because of that, compilers have defined their own specific extensions
for this purpose. Examples include the VC++ __declspec() specifier or the GCC
__attribute__((...)). C++11, however, introduces the concept of attributes, which
enable compilers to implement extensions in a standard way or even embedded
domain-specific languages. The new C++ standards define several attributes all
compilers should implement, and that will be the topic of this recipe.

How to do it...
Use standard attributes to provide hints for the compiler about various design goals
such as in the scenarios listed here, but not only these:

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 4

[213]

• To ensure that the return value from a function cannot be ignored, declare
the function with the [[nodiscard]] attribute. In C++20, you can specify a
string literal, of the form [[nodiscard(text)]], to explain why the result
should not be discarded:

[[nodiscard]] int get_value1()
{
 return 42;
}

get_value1();
// warning: ignoring return value of function
// declared with 'nodiscard' attribute get_value1();

• Alternatively, you can declare enumerations and classes used as the return
type of a function with the [[nodiscard]] attribute; in this case, the return
value of any function returning such a type cannot be ignored:

enum class[[nodiscard]] ReturnCodes{ OK, NoData, Error };

ReturnCodes get_value2()
{
 return ReturnCodes::OK;
}

struct[[nodiscard]] Item{};

Item get_value3()
{
 return Item{};
}

// warning: ignoring return value of function
// declared with 'nodiscard' attribute
get_value2();
get_value3();

• To ensure that the usage of functions or types that are considered
deprecated is flagged by the compiler with a warning, declare them with the
[[deprecated]] attribute:

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preprocessing and Compilation

[214]

[[deprecated("Use func2()")]] void func()
{
}

// warning: 'func' is deprecated : Use func2()
func();

class [[deprecated]] foo
{
};

// warning: 'foo' is deprecated
foo f;

• To ensure that the compiler does not emit a warning for unused variables,
use the [[maybe_unused]] attribute:

double run([[maybe_unused]] int a, double b)
{
 return 2 * b;
}

[[maybe_unused]] auto i = get_value1();

• To ensure that intentional fall-through case labels in a switch statement
are not flagged by the compiler with a warning, use the [[fallthrough]]
attribute:

void option1() {}
void option2() {}

int alternative = get_value1();
switch (alternative)
{
 case 1:
 option1();
 [[fallthrough]]; // this is intentional
 case 2:
 option2();
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 4

[215]

• To help the compiler optimize paths of execution that are more or less likely
to execute, use the C++20 [[likely]] and [[unlikely]] attributes:

void execute_command(char cmd)
{
 switch(cmd)
 {
 [[likely]]
 case 'a': /* add */ break;

 [[unlikely]]
 case 'd': /* delete */ break;

 case 'p': /* print */ break;

 default: /* do something else */ break;
 }
}

How it works...
Attributes are a very flexible feature of C++; they can be used almost everywhere,
but the actual usage is specifically defined for each particular attribute. They can be
used on types, functions, variables, names, code blocks, or entire translation units.

Attributes are specified between double square brackets (for example, [[attr1]])
and more than one attribute can be specified in a declaration (for example, [[attr1,
attr2, attr3]]).

Attributes can have arguments, for example, [[mode(greedy)]], and can be fully
qualified, for example, [[sys::hidden]] or [[using sys: visibility(hidden),
debug]].

Attributes can appear either before or after the name of the entity on which they
are applied, or both, in which case they are combined. The following are several
examples that exemplify this:

// attr1 applies to a, attr2 applies to b
int a [[attr1]], b [[attr2]];

// attr1 applies to a and b
int [[attr1]] a, b;

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preprocessing and Compilation

[216]

// attr1 applies to a and b, attr2 applies to a
int [[attr1]] a [[attr2]], b;

Attributes cannot appear in a namespace declaration, but they can appear as a
single line declaration anywhere in a namespace. In this case, it is specific to each
attribute whether it applies to the following declaration, to the namespace, or to the
translation unit:

namespace test
{
 [[debug]];
}

The standard does define several attributes all compilers must implement, and using
them can help you write better code. We have seen some of them in the examples
given in the previous section. These attributes have been defined in different
versions of the standard:

• In C++11:
• The [[noreturn]] attribute indicates that a function does not return.
• The [[carries_dependency]] attribute indicates that the dependency

chain in release-consume std::memory_order propagates in and
out of the function, which allows the compiler to skip unnecessary
memory fence instructions.

• In C++14:
• The [[deprecated]] and [[deprecated("reason")]] attributes

indicate that the entity declared with these attributes is considered
deprecated and should not be used. These attributes can be used with
classes, non-static data members, typedefs, functions, enumerations,
and template specializations. The "reason" string is an optional
parameter.

• In C++17:
• The [[fallthrough]] attribute indicates that fall-through between

labels in a switch statement is intentional. The attribute must appear
on a line of its own immediately before a case label.

• The [[nodiscard]] attribute indicates that a return value from a
function cannot be ignored.

• The [[maybe_unused]] attribute indicates that an entity may be
unused, but the compiler should not emit a warning about that.
This attribute can be applied to variables, classes, non-static data
members, enumerations, enumerators, and typedefs.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 4

[217]

• In C++20:
• The [[nodiscard(text)]] attribute is an extension of the C++17

[[nodiscard]] attribute and provides a text that describes the reason
a result should not be discarded.

• The [[likely]] and [[unlikely]] attributes provide hints for the
compiler that a path of execution is more or less likely to execute,
therefore allowing it to optimize accordingly. They can be applied to
statements (but not declarations) and labels, but only one of them, as
they are mutually exclusive.

• The [[no_unique_address]] attribute can be applied to non-static
data members, excluding bitfields, and tells the compiler that the
member does not have to have a unique address. When applied to
a member that has an empty type, the compiler can optimize it to
occupy no space, as in the case of it being an empty base. On the
other hand, if the member's type is not empty, the compiler may
reuse any ensuing padding to store other data members.

Attributes are often ignored or briefly mentioned in books and tutorials on modern
C++ programming, and the reason for that is probably the fact that developers
cannot actually write attributes, as this language feature is intended for compiler
implementations. For some compilers, though, it may be possible to define user-
provided attributes; one such compiler is GCC, which supports plugins that add
extra features to the compiler, and they can be used for defining new attributes too.

See also
• Using noexcept for functions that do not throw in Chapter 9, Robustness and

Performance, to learn how to inform the compiler that a function should not
throw exceptions

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

[219]

5
Standard Library Containers,

Algorithms, and Iterators
The C++ standard library has evolved a lot with C++11, C++14, C++17, and now
C++20. However, at its core initially sat three main pillars: containers, algorithms,
and iterators. They are all implemented as general-purpose classes or function
templates. In this chapter, we'll look at how these can be employed together for
achieving various goals.

We will cover the following recipes in this chapter:

• Using vector as a default container
• Using bitset for fixed-size sequences of bits
• Using vector<bool> for variable-size sequences of bits
• Using the bit manipulation utilities
• Finding elements in a range
• Sorting a range
• Initializing a range
• Using set operations on a range
• Using iterators to insert new elements into a container
• Writing your own random-access iterator
• Container access with non-member functions

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Standard Library Containers, Algorithms, and Iterators

[220]

We'll begin this chapter by exploring the functionalities of the de facto default
container in C++, which is std::vector.

Using vector as a default container
The standard library provides various types of containers that store collections of
objects; the library includes sequence containers (such as vector, array, and list),
ordered and unordered associative containers (such as set and map), and container
adapters that do not store data but provide an adapted interface toward a sequence
container (such as stack and queue). All of them are implemented as class templates,
which means they can be used with any type (providing it meets the container
requirements). In general, you should always use the container that is the most
appropriate for a particular problem, which not only provides good performance
in terms of speed of inserts, deletes, access to elements, and memory usage but also
makes the code easy to read and maintain. However, the default choice should
be vector. In this recipe, we will see why vector should be the preferred choice
for a container in many cases and what the most common operations with vector
are.

Getting ready
For this recipe, you must be familiar with arrays, both statically and dynamically
allocated. A couple examples are provided here:

double d[3]; // a statically allocated array of 3 doubles
int* arr = new int[5]; // a dynamically allocated array of 5 ints

The class template vector is available in the std namespace in the <vector> header.

How to do it...
To initialize an std::vector class template, you can use any of the following
methods, but you are not restricted to only these:

• Initialize from an initialization list:
std::vector<int> v1 { 1, 2, 3, 4, 5 };

• Initialize from an array:
int arr[] = { 1, 2, 3, 4, 5 };
std::vector<int> v21(arr, arr + 5); // v21 = { 1, 2, 3, 4, 5 }
std::vector<int> v22(arr+1, arr+4); // v22 = { 2, 3, 4 }

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 5

[221]

• Initialize from another container:
std::list<int> l{ 1, 2, 3, 4, 5 };
std::vector<int> v3(l.begin(), l.end()); //{ 1, 2, 3, 4, 5 }

• Initialize from a count and a value:
std::vector<int> v4(5, 1); // {1, 1, 1, 1, 1}

To modify the content of std::vector, you can use any of the following methods
(you're not restricted to just these):

• Add an element at the end of the vector with push_back():
std::vector<int> v1{ 1, 2, 3, 4, 5 };
v1.push_back(6); // v1 = { 1, 2, 3, 4, 5, 6 }

• Remove an element from the end of the vector with pop_back():
v1.pop_back();

• Insert anywhere in the vector with insert():
int arr[] = { 1, 2, 3, 4, 5 };
std::vector<int> v21;
v21.insert(v21.begin(), arr, arr + 5); // v21 = { 1, 2, 3, 4, 5 }
std::vector<int> v22;
v22.insert(v22.begin(), arr, arr + 3); // v22 = { 1, 2, 3 }

• Add an element by creating it at the end of the vector with emplace_back():
struct foo
{
 int a;
 double b;
 std::string c;

 foo(int a, double b, std::string const & c) :
 a(a), b(b), c(c) {}
};

std::vector<foo> v3;
v3.emplace_back(1, 1.0, "one"s);
// v3 = { foo{1, 1.0, "one"} }

• Insert an element by creating it anywhere in the vector with emplace():
v3.emplace(v3.begin(), 2, 2.0, "two"s);
// v3 = { foo{2, 2.0, "two"}, foo{1, 1.0, "one"} }

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Standard Library Containers, Algorithms, and Iterators

[222]

To modify the whole content of the vector, you can use any of the following
methods, although you're not restricted to just these:

• Assign from another vector with operator=; this replaces the content of the
container:

std::vector<int> v1{ 1, 2, 3, 4, 5 };
std::vector<int> v2{ 10, 20, 30 };
v2 = v1; // v2 = { 1, 2, 3, 4, 5 }

• Assign from another sequence defined by a begin and end iterator with the
assign() method; this replaces the content of the container:

int arr[] = { 1, 2, 3, 4, 5 };
std::vector<int> v31;
v31.assign(arr, arr + 5); // v31 = { 1, 2, 3, 4, 5 }
std::vector<int> v32;
v32.assign(arr + 1, arr + 4); // v32 = { 2, 3, 4 }

• Swap the content of two vectors with the swap() method:
std::vector<int> v4{ 1, 2, 3, 4, 5 };
std::vector<int> v5{ 10, 20, 30 };
v4.swap(v5); // v4 = { 10, 20, 30 }, v5 = { 1, 2, 3, 4, 5 }

• Remove all the elements with the clear() method:
std::vector<int> v6{ 1, 2, 3, 4, 5 };
v6.clear(); // v6 = { }

• Remove one or more elements with the erase() method (which requires
either an iterator or a pair of iterators that define the range of elements from
the vector to be removed):

std::vector<int> v7{ 1, 2, 3, 4, 5 };
v7.erase(v7.begin() + 2, v7.begin() + 4); // v7 = { 1, 2, 5 }

To get the address of the first element in a vector, usually to pass the content of a
vector to a C-like API, use any of the following methods:

• Use the data() method, which returns a pointer to the first element,
providing direct access to the underlying contiguous sequence of memory
where the vector elements are stored; this is only available since C++11:

void process(int const * const arr, size_t const size)
{ /* do something */ }

std::vector<int> v{ 1, 2, 3, 4, 5 };
process(v.data(), v.size());

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 5

[223]

• Get the address of the first element:
process(&v[0], v.size());

• Get the address of the element referred to by the front() method:
process(&v.front(), v.size());

• Get the address of the element pointed by the iterator returned from begin():
process(&*v.begin(), v.size());

How it works...
The std::vector class is designed to be the C++ container most similar to and inter-
operable with arrays. A vector is a variable-sized sequence of elements, guaranteed
to be stored contiguously in memory, which makes the content of a vector easily
passable to a C-like function that takes a pointer to an element of an array and,
usually, a size. There are many benefits of using a vector instead of arrays, and these
benefits include:

• No direct memory management is required from the developer as the
container does this internally, allocating memory, reallocating it, and
releasing it.

• The possibility of modifying the size of the vector.
• Simple assignment or concatenation of two vectors.
• Direct comparison of two vectors.

The vector class is a very efficient container, with all its implementations providing
a lot of optimizations that most developers are not capable of doing with arrays.
Random access to its elements and insertion and removal at the end of a vector is a
constant O(1) operation (provided that reallocation is not necessary), while insertion
and removal anywhere else is a linear O(n) operation.

Compared to other standard containers, the vector has various benefits:

• It is compatible with arrays and C-like APIs. If a function takes an array as a
parameter, the content of other containers (except for std::array) needs to be
copied to a vector before being passed as an argument to the function.

Note that a vector is intended for storing object instances.
If you need to store pointers, do not store raw pointers but
smart pointers. Otherwise, you need to handle the lifetime
management of the pointed objects.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Standard Library Containers, Algorithms, and Iterators

[224]

• It has the fastest access to elements of all containers (but the same as
std::array).

• It has no per-element memory overhead for storing elements. This is because
elements are stored in a contiguous space, like arrays are. Therefore, vector
has a small memory footprint, unlike other containers, such as list, which
require additional pointers to other elements, or associative containers,
which require hash values.

std::vector is very similar in semantics to arrays but has a variable size. The size of
a vector can increase and decrease. There are two properties that define the size of a
vector:

• Capacity is the number of elements the vector can accommodate without
performing additional memory allocations; this is indicated by the
capacity() method.

• Size is the actual number of elements in the vector; this is indicated by the
size() method.

Size is always smaller than or equal to capacity. When size is equal to capacity and
a new element needs to be added, the capacity needs to be modified so that the
vector has space for more elements. In this case, the vector allocates a new chunk
of memory and moves the previous content to the new location before freeing the
previously allocated memory. Though this sounds time-consuming—and it is—
implementations increase the capacity exponentially by doubling it each time it
needs to be changed. As a result, on average, each element of the vector only needs
to be moved once (that is because all the elements of the vector are moved during
an increase of capacity, but then an equal number of elements can be added without
incurring more moves, given that insertions are performed at the end of the vector).

If you know beforehand how many elements will be inserted in the vector, you
can first call the reserve() method to increase the capacity to at least the specified
amount (this method does nothing if the specified size is smaller than the current
capacity) and only then insert the elements.

On the other hand, if you need to free additional reserved memory, you can use
the shrink_to_fit() method to request this, but it is an implementation decision as
to whether to free any memory or not. An alternative to this non-binding method,
available since C++11, is to do a swap with a temporary, empty vector:

std::vector<int> v{ 1, 2, 3, 4, 5 };
std::vector<int>().swap(v); // v.size = 0, v.capacity = 0

Calling the clear() method only removes all the elements from the vector but does
not free any memory.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 5

[225]

It should be noted that the vector class implements some operations that are specific
to other types of containers:

• stack: With push_back() and emplace_back() to add at the end and pop_
back() to remove from the end. Keep in mind that pop_back() does not
return the last element that has been removed. You need to access that
explicitly, if that is necessary, for instance, using the back() method before
removing the element.

• list: With insert() and emplace() to add elements in the middle of the
sequence and erase() to remove elements from anywhere in the sequence.

A good rule of thumb for C++ containers is to use std::vector as the default
container unless you have good reasons to use another one.

See also
• Using bitset for fixed-size sequences of bits to learn about the standard container

for handling bit sequences of fixed sizes.
• Using vector<bool> for variable-size sequences of bits to learn about the

specialization of std::vector for the bool type, intended for handling bit
sequences of variable sizes.

Using bitset for fixed-size sequences of
bits
It is not uncommon for developers to operate with bit flags. This can be either
because they work with operating system APIs (usually written in C) that take
various types of arguments (such as options or styles) in the form of bit flags, or
because they work with libraries that do similar things, or simply because some
types of problems are naturally solved with bit flags. We can think of alternatives to
working with bits and bit operations, such as defining arrays that have one element
for every option/flag, or defining a structure with members and functions to model
the bit flags, but these are often more complicated; and in the case where you need to
pass a numerical value representing bit flags to a function, you still need to convert
the array or the structure to a sequence of bits. For this reason, the C++ standard
provides a container called std::bitset for fixed-size sequences of bits.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Standard Library Containers, Algorithms, and Iterators

[226]

Getting ready
For this recipe, you must be familiar with bitwise operations (AND, OR, XOR, NOT,
and shifting).

The bitset class is available in the std namespace in the <bitset> header. A bitset
represents a fixed-size sequence of bits, with the size defined at compile time. For
convenience, in this recipe, most examples will be with bitsets of 8 bits.

How to do it...
To construct an std::bitset object, use one of the available constructors:

• An empty bitset with all bits set to 0:
std::bitset<8> b1; // [0,0,0,0,0,0,0,0]

• A bitset from a numerical value:
std::bitset<8> b2{ 10 }; // [0,0,0,0,1,0,1,0]

• A bitset from a string of '0' and '1':
std::bitset<8> b3{ "1010"s }; // [0,0,0,0,1,0,1,0]

• A bitset from a string containing any two characters representing '0' and
'1'; in this case, we must specify which character represents a 0 (the fourth
parameter, 'o') and which character represents a 1 (the fifth parameter, 'x'):

std::bitset<8> b4
 { "ooooxoxo"s, 0, std::string::npos, 'o', 'x' };
 // [0,0,0,0,1,0,1,0]

To test individual bits in the set or the entire set for specific values, use any of the
available methods:

• count() to get the number of bits set to 1:
std::bitset<8> bs{ 10 };
std::cout << "has " << bs.count() << " 1s" << '\n';

• any() to check whether there is at least one bit set to 1:
if (bs.any()) std::cout << "has some 1s" << '\n';

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 5

[227]

• all() to check whether all the bits are set to 1:
if (bs.all()) std::cout << "has only 1s" << '\n';

• none() to check whether all the bits are set to 0:
if (bs.none()) std::cout << "has no 1s" << '\n';

• test() to check the value of an individual bit (whose position is the only
argument to the function):

if (!bs.test(0)) std::cout << "even" << '\n';

• operator[] to access and test individual bits:
if(!bs[0]) std::cout << "even" << '\n';

To modify the content of a bitset, use any of the following methods:

• Member operators |=, &=, ^=, and ~ to perform the binary operation OR,
AND, XOR, and NOT, respectively. Alternatively, use the non-member
operators |, &, and ^:

std::bitset<8> b1{ 42 }; // [0,0,1,0,1,0,1,0]
std::bitset<8> b2{ 11 }; // [0,0,0,0,1,0,1,1]
auto b3 = b1 | b2; // [0,0,1,0,1,0,1,1]
auto b4 = b1 & b2; // [0,0,0,0,1,0,1,0]
auto b5 = b1 ^ b2; // [1,1,0,1,1,1,1,0]
auto b6 = ~b1; // [1,1,0,1,0,1,0,1]

• Member operators <<=, <<, >>=, and >> to perform shifting operations:
auto b7 = b1 << 2; // [1,0,1,0,1,0,0,0]
auto b8 = b1 >> 2; // [0,0,0,0,1,0,1,0]

• flip() to toggle the entire set or an individual bit from 0 to 1 or from 1 to 0:
b1.flip(); // [1,1,0,1,0,1,0,1]
b1.flip(0); // [1,1,0,1,0,1,0,0]

• set() to change the entire set or an individual bit to true or the specified
value:

b1.set(0, true); // [1,1,0,1,0,1,0,1]
b1.set(0, false); // [1,1,0,1,0,1,0,0]

• reset() to change the entire set or an individual bit to false:
b1.reset(2); // [1,1,0,1,0,0,0,0]

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Standard Library Containers, Algorithms, and Iterators

[228]

To convert a bitset to a numerical or string value, use the following methods:

• to_ulong() and to_ullong() to convert to unsigned long or unsigned long
long. These operations throw an std::overflow_error exception if the value
cannot be represented in the output type. Refer to the following examples:

std::bitset<8> bs{ 42 };
auto n1 = bs.to_ulong(); // n1 = 42UL
auto n2 = bs.to_ullong(); // n2 = 42ULL

• to_string() to convert to std::basic_string. By default, the result is a string
containing '0' and '1', but you can specify a different character for these
two values:

auto s1 = bs.to_string(); // s1 = "00101010"
auto s2 = bs.to_string('o', 'x'); // s2 = "ooxoxoxo"

How it works...
If you've ever worked with C or C-like APIs, chances are you either wrote or at
least have seen code that manipulates bits to define styles, options, or other kinds of
values. This usually involves operations such as:

• Defining the bit flags; these can be enumerations, static constants in a class,
or macros introduced with #define in the C style. Usually, there is a flag
representing no value (style, option, and so on). Since these are supposed to
be bit flags, their values are powers of 2.

• Adding and removing flags from the set (that is, a numerical value). Adding
a bit flag is done with the bit-or operator (value |= FLAG) and removing a
bit flag is done with the bit-and operator, with the negated flag (value &=
~FLAG).

• Testing whether a flag is added to the set (value & FLAG == FLAG).
• Calling functions with the flags as an argument.

The following shows a simple example of flags defining the border style of a control
that can have a border on the left, right, top, or bottom side, or any combination of
these, including no border:

#define BORDER_NONE 0x00
#define BORDER_LEFT 0x01
#define BORDER_TOP 0x02
#define BORDER_RIGHT 0x04
#define BORDER_BOTTOM 0x08

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 5

[229]

void apply_style(unsigned int const style)
{
 if (style & BORDER_BOTTOM) { /* do something */ }
}

// initialize with no flags
unsigned int style = BORDER_NONE;
// set a flag
style = BORDER_BOTTOM;
// add more flags
style |= BORDER_LEFT | BORDER_RIGHT | BORDER_TOP;
// remove some flags
style &= ~BORDER_LEFT;
style &= ~BORDER_RIGHT;
// test if a flag is set
if ((style & BORDER_BOTTOM) == BORDER_BOTTOM) {}
// pass the flags as argument to a function
apply_style(style);

The standard std::bitset class is intended as a C++ alternative to this C-like
working style with sets of bits. It enables us to write more robust and safer code
because it abstracts the bit operations with member functions, though we still need
to identify what each bit in the set is representing:

• Adding and removing flags is done with the set() and reset() methods,
which set the value of a bit indicated by its position to 1 or 0 (or true and
false); alternatively, we can use the index operator for the same purpose.

• Testing if a bit is set with the test() method.
• Conversion from an integer or a string is done through the constructor, and

conversion to an integer or string is done with member functions so that
the values from the bitsets can be used where integers are expected (such as
arguments to functions).

In addition to these operations, the bitset class has additional methods for
performing bitwise operations on bits, shifting, testing, and others that have been
shown in the previous section.

Conceptually, std::bitset is a representation of a numerical value that enables you
to access and modify individual bits. Internally, however, a bitset has an array of
integer values on which it performs bit operations. The size of a bitset is not limited
to the size of a numerical type; it can be anything, except that it is a compile-time
constant.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Standard Library Containers, Algorithms, and Iterators

[230]

The example of the control border styles from the previous section can be written
using std::bitset in the following manner:

struct border_flags
{
 static const int left = 0;
 static const int top = 1;
 static const int right = 2;
 static const int bottom = 3;
};

// initialize with no flags
std::bitset<4> style;
// set a flag
style.set(border_flags::bottom);
// set more flags
style
 .set(border_flags::left)
 .set(border_flags::top)
 .set(border_flags::right);
// remove some flags
style[border_flags::left] = 0;
style.reset(border_flags::right);
// test if a flag is set
if (style.test(border_flags::bottom)) {}
// pass the flags as argument to a function
apply_style(style.to_ulong());

Keep in mind this is only a possible implementation. For instance, the border_
flags class could have been an enumeration. However, the resulting code is more
expressive and easier to understand.

There's more...
A bitset can be created from an integer and can convert its value to an integer using
the to_ulong() or to_ullong() methods. However, if the size of the bitset is larger
than the size of these numerical types and any of the bits beyond the size of the
requested numerical type is set to 1, then these methods throw an std::overflow_
error exception. This is because the value cannot be represented on unsigned long
or unsigned long long. In order to extract all the bits, we need to do the following
operations:

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 5

[231]

• Clear the bits beyond the size of unsigned long or unsigned long long.
• Convert the value to unsigned long or unsigned long long.
• Shift the bitset with the number of bits in unsigned long or unsigned long

long.
• Do this until all the bits are retrieved.

These are implemented as follows:

template <size_t N>
std::vector<unsigned long> bitset_to_vectorulong(std::bitset<N> bs)
{
 auto result = std::vector<unsigned long> {};
 auto const size = 8 * sizeof(unsigned long);
 auto const mask = std::bitset<N>{ static_cast<unsigned long>(-1)};

 auto totalbits = 0;
 while (totalbits < N)
 {
 auto value = (bs & mask).to_ulong();
 result.push_back(value);
 bs >>= size;
 totalbits += size;
 }

 return result;
}

std::bitset<128> bs =
 (std::bitset<128>(0xFEDC) << 96) |
 (std::bitset<128>(0xBA98) << 64) |
 (std::bitset<128>(0x7654) << 32) |
 std::bitset<128>(0x3210);

std::cout << bs << '\n';

auto result = bitset_to_vectorulong(bs);
for (auto const v : result)
 std::cout << std::hex << v << '\n';

For cases where the size of the bitset cannot be known at compile time, the
alternative is std::vector<bool>, which we will cover in the next recipe.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Standard Library Containers, Algorithms, and Iterators

[232]

See also
• Using vector<bool> for variable-size sequences of bits to learn about the

specialization of std::vector for the bool type, which is used for handling bit
sequences of variable sizes.

• Using the bit manipulation utilities to explore the C++20 set of utility functions
for bit manipulation from the numeric library.

Using vector<bool> for variable-size
sequences of bits
In the previous recipe, we looked at using std::bitset for fixed-size sequences of
bits. Sometimes, however, std::bitset is not a good choice because you do not
know the number of bits at compile time, and just defining a set of a large enough
number of bits is not a good idea. This is because you can get into a situation where
the number is not actually large enough. The standard alternative for this is to use
the std::vector<bool> container, which is a specialization of std::vector with space
and speed optimizations since implementations do not actually store Boolean values,
but individual bits for each element.

Getting ready...
This recipe assumes you are familiar with both std::vector and std::bitset. If you
didn't read the previous recipes, Using vector as a default container and Using bitset for
fixed-size sequences of bits, you should read them before continuing.

The vector<bool> class is available in the std namespace in the <vector> header.

For this reason, however, std::vector<bool> does not meet the
requirements of a standard container or sequential container, nor
does std::vector<bool>::iterator meet the requirements of a
forward iterator. As a result, this specialization cannot be used in
generic code where a vector is expected. On the other hand, being
a vector, it has a different interface from that of std::bitset and
cannot be viewed as a binary representation of a number. There are
no direct ways to construct std::vector<bool> from a number or
string, nor to convert it to a number or string.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 5

[233]

How to do it...
To manipulate an std::vector<bool>, use the same methods you would use for an
std::vector<T>, as shown in the following examples:

• Creating an empty vector:
std::vector<bool> bv; // []

• Adding bits to the vector:
bv.push_back(true); // [1]
bv.push_back(true); // [1, 1]
bv.push_back(false); // [1, 1, 0]
bv.push_back(false); // [1, 1, 0, 0]
bv.push_back(true); // [1, 1, 0, 0, 1]

• Setting the values of individual bits:
bv[3] = true; // [1, 1, 0, 1, 1]

• Using generic algorithms:
auto count_of_ones = std::count(bv.cbegin(), bv.cend(), true);

• Removing bits from the vector:
bv.erase(bv.begin() + 2); // [1, 1, 1, 1]

How it works...
std::vector<bool> is not a standard vector because it is designed to provide space
optimization by storing a single bit for each element instead of a Boolean value.
Therefore, its elements are not stored in a contiguous sequence and cannot be
substituted for an array of Booleans. Due to this:

• The index operator cannot return a reference to a specific element because
elements are not stored individually:

std::vector<bool> bv;
bv.resize(10);
auto& bit = bv[0]; // error

• Dereferencing an iterator cannot produce a reference to bool for the same
reason as mentioned earlier:

auto& bit = *bv.begin(); // error

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Standard Library Containers, Algorithms, and Iterators

[234]

• There is no guarantee that individual bits can be manipulated independently
at the same time from different threads.

• The vector cannot be used with algorithms that require forward iterators,
such as std::search().

• The vector cannot be used in some generic code where std::vector<T> is
expected if such code requires any of the operations mentioned in this list.

An alternative to std::vector<bool> is std::dequeu<bool>, which is a standard
container (a double-ended queue) that meets all container and iterator requirements
and can be used with all standard algorithms. However, this will not have the space
optimization that std::vector<bool> provides.

There's more...
The std::vector<bool> interface is very different from std::bitset. If you
want to be able to write code in a similar manner, you can create a wrapper on
std::vector<bool>, which looks like std::bitset, where possible. The following
implementation provides members similar to what is available in std::bitset:

class bitvector
{
 std::vector<bool> bv;
public:
 bitvector(std::vector<bool> const & bv) : bv(bv) {}
 bool operator[](size_t const i) { return bv[i]; }

 inline bool any() const {
 for (auto b : bv) if (b) return true;
 return false;
 }

 inline bool all() const {
 for (auto b : bv) if (!b) return false;
 return true;
 }

 inline bool none() const { return !any(); }

 inline size_t count() const {
 return std::count(bv.cbegin(), bv.cend(), true);
 }

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 5

[235]

 inline size_t size() const { return bv.size(); }

 inline bitvector & add(bool const value) {
 bv.push_back(value);
 return *this;
 }

 inline bitvector & remove(size_t const index) {
 if (index >= bv.size())
 throw std::out_of_range("Index out of range");
 bv.erase(bv.begin() + index);
 return *this;
 }

 inline bitvector & set(bool const value = true) {
 for (size_t i = 0; i < bv.size(); ++i)
 bv[i] = value;
 return *this;
 }

 inline bitvector& set(size_t const index, bool const value = true) {
 if (index >= bv.size())
 throw std::out_of_range("Index out of range");
 bv[index] = value;
 return *this;
 }

 inline bitvector & reset() {
 for (size_t i = 0; i < bv.size(); ++i) bv[i] = false;
 return *this;
 }

 inline bitvector & reset(size_t const index) {
 if (index >= bv.size())
 throw std::out_of_range("Index out of range");
 bv[index] = false;
 return *this;
 }

 inline bitvector & flip() {
 bv.flip();
 return *this;
 }

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Standard Library Containers, Algorithms, and Iterators

[236]

 std::vector<bool>& data() { return bv; }
};

This is only a basic implementation, and if you want to use such a wrapper, you
should add additional methods, such as bit logic operations, shifting, maybe reading
and writing from and to streams, and so on. However, with the preceding code, we
can write the following examples:

bitvector bv;
bv.add(true).add(true).add(false); // [1, 1, 0]
bv.add(false); // [1, 1, 0, 0]
bv.add(true); // [1, 1, 0, 0, 1]

if (bv.any()) std::cout << "has some 1s" << '\n';
if (bv.all()) std::cout << "has only 1s" << '\n';
if (bv.none()) std::cout << "has no 1s" << '\n';
std::cout << "has " << bv.count() << " 1s" << '\n';

bv.set(2, true); // [1, 1, 1, 0, 1]
bv.set(); // [1, 1, 1, 1, 1]

bv.reset(0); // [0, 1, 1, 1, 1]
bv.reset(); // [0, 0, 0, 0, 0]

bv.flip(); // [1, 1, 1, 1, 1]

These examples are very similar to the examples where an std::bitset was used.
This bitvector class has a compatible API to std::bitset but is useful for handling
bit sequences of variable sizes.

See also
• Using vector as a default container to learn how to use the std::vector

standard container.
• Using bitset for fixed-size sequences of bits to learn about the standard container

for handling bit sequences of fixed sizes.
• Using the bit manipulation utilities to explore the C++20 set of utility functions

for bit manipulation from the numeric library.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 5

[237]

Using the bit manipulation utilities
In the previous recipes, we have seen how to use std::bitset and
std::vector<bool> to work with fixed and variable sequences of bits. There are,
however, situations when we need to manipulate or process individual or multiple
bits of an unsigned integral value. This includes operations such as counting
or rotating bits. The C++20 standard provides a set of utility functions for bit
manipulation as part of the numeric library. In this recipe, we will learn what they
are and how to use these utilities.

Getting ready
The function templates discussed in this recipe are all available in the std namespace
in the new C++20 header <bit>.

How to do it…
Use the following function templates to manipulate bits of unsigned integral types:

• If you need to perform a circular shift, use std::rotl<T>() for left rotation
and std::rotr<T>() for right rotation:

unsigned char n = 0b00111100;

auto vl1 = std::rotl(n, 0); // 0b00111100
auto vl2 = std::rotl(n, 1); // 0b01111000
auto vl3 = std::rotl(n, 3); // 0b11100001
auto vl4 = std::rotl(n, 9); // 0b01111000
auto vl5 = std::rotl(n, -2);// 0b00001111

auto vr1 = std::rotr(n, 0); // 0b00111100
auto vr2 = std::rotr(n, 1); // 0b00011110
auto vr3 = std::rotr(n, 3); // 0b10000111
auto vr4 = std::rotr(n, 9); // 0b00011110
auto vr5 = std::rotr(n, -2); // 0b11110000

• If you need to count the number of consecutive 0 bits (that is, until a 1
is found), use std::countl_zero<T>() to count from left to right (that is,
starting with the most significant bit) and std::countr_zero<T>() to count
from right to left (that is, starting with the least significant bit):

std::cout << std::countl_zero(0b00000000) << '\n'; // 8
std::cout << std::countl_zero(0b11111111) << '\n'; // 0

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Standard Library Containers, Algorithms, and Iterators

[238]

std::cout << std::countl_zero(0b00111010) << '\n'; // 2

std::cout << std::countr_zero(0b00000000) << '\n'; // 8
std::cout << std::countr_zero(0b11111111) << '\n'; // 0
std::cout << std::countr_zero(0b00111010) << '\n'; // 1

• If you need to count the number of consecutive 1 bits (that is, until a 0 is
found), use std::countl_one<T>() to count from left to right (that is, starting
with the most significant bit) and std::countr_one<T>() to count from right
to left (that is, starting with the least significant bit):

std::cout << std::countl_one(0b00000000) << '\n'; // 0
std::cout << std::countl_one(0b11111111) << '\n'; // 8
std::cout << std::countl_one(0b11000101) << '\n'; // 2

std::cout << std::countr_one(0b00000000) << '\n'; // 0
std::cout << std::countr_one(0b11111111) << '\n'; // 8
std::cout << std::countr_one(0b11000101) << '\n'; // 1

• If you need to count the number of 1 bits, use std::popcount<T>(). The
number of 0 bits is the number of digits used to represent the value (this can
be determined with std::numeric_limits<T>::digits), minus the count of 1
bits:

std::cout << std::popcount(0b00000000) << '\n'; // 0
std::cout << std::popcount(0b11111111) << '\n'; // 8
std::cout << std::popcount(0b10000001) << '\n'; // 2

• If you need to check whether a number is a power of two, use std::has_
single_bit<T>():

std::cout << std::boolalpha << std::has_single_bit(0) << '\n';
// false
std::cout << std::boolalpha << std::has_single_bit(1) << '\n';
// true
std::cout << std::boolalpha << std::has_single_bit(2) << '\n';
// true
std::cout << std::boolalpha << std::has_single_bit(3) << '\n';
// false
std::cout << std::boolalpha << std::has_single_bit(4) << '\n';
// true

• If you need to find the smallest power of two that is greater than or equal to
a given number, use std::bit_ceil<T>(). On the other hand, if you need to
find the largest power of two that is smaller than or equal to a given number,
use std::bit_floor<T>():

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 5

[239]

std::cout << std::bit_ceil(0) << '\n'; // 0
std::cout << std::bit_ceil(3) << '\n'; // 4
std::cout << std::bit_ceil(4) << '\n'; // 4
std::cout << std::bit_ceil(31) << '\n'; // 32
std::cout << std::bit_ceil(42) << '\n'; // 64

std::cout << std::bit_floor(0) << '\n'; // 0
std::cout << std::bit_floor(3) << '\n'; // 2
std::cout << std::bit_floor(4) << '\n'; // 4
std::cout << std::bit_floor(31) << '\n'; // 16
std::cout << std::bit_floor(42) << '\n'; // 32

• If you need to determine the smallest number of digits to represent a
number, use std::bit_width<T>():

std::cout << std::bit_width(0) << '\n'; // 1
std::cout << std::bit_width(2) << '\n'; // 3
std::cout << std::bit_width(15) << '\n'; // 4
std::cout << std::bit_width(16) << '\n'; // 5
std::cout << std::bit_width(1000) << '\n'; // 10

• If you need to reinterpret the object representation of a type F as that of a
type T, then use std::bit_cast<T, F>():

const double pi = 3.1415927;
const uint64_t bits = std::bit_cast<uint64_t>(pi);
const double pi2 = std::bit_cast<double>(bits);

std::cout
 << std::fixed << pi << '\n' // 3.1415923
 << std::hex << bits << '\n' // 400921fb5a7ed197
 << std::fixed << pi2 << '\n'; // 3.1415923

How it works…
All the function templates mentioned in the previous section, with the exception
of std::bit_cast<T, F>() are only available for unsigned integral types. That
includes the types unsigned char, unsigned short, unsigned int, unsigned long,
and unsigned long long, as well as the extended unsigned integer types (such as
uint8_t, uint64_t, uint_least8_t, uintmax_t, and so on). These functions are simple
and should not require a detailed description.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Standard Library Containers, Algorithms, and Iterators

[240]

The function that is different from the rest is std::bit_cast<T, F>(). Here, F is
the type that is reinterpreted, and T is the type that we interpret to. This function
template does not require T and F to be unsigned integral types, but both of them
must be trivially copyable. Moreover, the sizeof(T) must be the same as the
sizeof(F).

The specification for this function does not mention the value of padding bits in the
result. On the other hand, if the result value does not correspond to a valid value of
the type T, then the behavior is undefined.

std::bit_cast<T, F>() can be constexpr if T, F, and the types of all their sub-objects
is not a union type, a pointer type, a pointer to member type, a volatile-qualified
type, and has no non-static data members of a reference type.

See also
• Using bitset for fixed-size sequences of bits to learn about the standard container

for handling bit sequences of fixed sizes.
• Using vector<bool> for variable-size sequences of bits to learn about the

specialization of std::vector for the bool type intended for handling bit
sequences of variable sizes.

Finding elements in a range
One of the most common operations we do in any application is searching through
data. Therefore, it is not surprising that the standard library provides many generic
algorithms for searching through standard containers, or anything that can represent
a range and is defined by a start and a past-the-end iterator. In this recipe, we will
see what these standard algorithms are and how they can be used.

Getting ready
For all the examples in this recipe, we will use std::vector, but all the algorithms
work with ranges defined by a begin and past-the-end, either input or forward
iterators, depending on the algorithm (for more information about the various
types of iterators, see the Writing your own random access iterator recipe, later in this
chapter). All these algorithms are available in the std namespace in the <algorithm>
header.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 5

[241]

How to do it...
The following is a list of algorithms that can be used for finding elements in a range:

• Use std::find() to find a value in a range; this algorithm returns an iterator
to the first element equal to the value:

std::vector<int> v{ 1, 1, 2, 3, 5, 8, 13 };

auto it = std::find(v.cbegin(), v.cend(), 3);
if (it != v.cend()) std::cout << *it << '\n';

• Use std::find_if() to find a value in a range that meets a criterion from
a unary predicate; this algorithm returns an iterator to the first element for
which the predicate returns true:

std::vector<int> v{ 1, 1, 2, 3, 5, 8, 13 };

auto it = std::find_if(v.cbegin(), v.cend(),
 [](int const n) {return n > 10; });
if (it != v.cend()) std::cout << *it << '\n';

• Use std::find_if_not() to find a value in a range that does not meet a
criterion from a unary predicate; this algorithm returns an iterator to the first
element for which the predicate returns false:

std::vector<int> v{ 1, 1, 2, 3, 5, 8, 13 };

auto it = std::find_if_not(v.cbegin(), v.cend(),
 [](int const n) {return n % 2 == 1; });
if (it != v.cend()) std::cout << *it << '\n';

• Use std::find_first_of() to search for the occurrence of any value from a
range in another range; this algorithm returns an iterator to the first element
that is found:

std::vector<int> v{ 1, 1, 2, 3, 5, 8, 13 };
std::vector<int> p{ 5, 7, 11 };

auto it = std::find_first_of(v.cbegin(), v.cend(),
 p.cbegin(), p.cend());
if (it != v.cend())
 std::cout << "found " << *it
 << " at index " << std::distance(v.cbegin(), it)
 << '\n';

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Standard Library Containers, Algorithms, and Iterators

[242]

• Use std::find_end() to find the last occurrence of a subrange of elements
in a range; this algorithm returns an iterator to the first element of the last
subrange in the range:

std::vector<int> v1{ 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1 };
std::vector<int> v2{ 1, 0, 1 };

auto it = std::find_end(v1.cbegin(), v1.cend(),
 v2.cbegin(), v2.cend());
if (it != v1.cend())
 std::cout << "found at index "
 << std::distance(v1.cbegin(), it) << '\n';

• Use std::search() to search for the first occurrence of a subrange in a range;
this algorithm returns an iterator to the first element of the subrange in the
range:

auto text = "The quick brown fox jumps over the lazy dog"s;
auto word = "over"s;

auto it = std::search(text.cbegin(), text.cend(),
 word.cbegin(), word.cend());

if (it != text.cend())
 std::cout << "found " << word
 << " at index "
 << std::distance(text.cbegin(), it) << '\n';

• Use std::search() with a searcher, which is a class that implements a
searching algorithm and meets some predefined criteria. This overload of
std::search() was introduced in C++17, and available standard searchers
implement the Boyer-Moore and Boyer-Moore-Horspool string searching
algorithms:

auto text = "The quick brown fox jumps over the lazy dog"s;
auto word = "over"s;

auto it = std::search(
 text.cbegin(), text.cend(),
 std::make_boyer_moore_searcher(word.cbegin(), word.cend()));

if (it != text.cend())
 std::cout << "found " << word
 << " at index "
 << std::distance(text.cbegin(), it) << '\n';

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 5

[243]

• Use std::search_n() to search for N consecutive occurrences of a value in
a range; this algorithm returns an iterator to the first element of the found
sequence in the range:

std::vector<int> v{ 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1 };

auto it = std::search_n(v.cbegin(), v.cend(), 2, 0);
if (it != v.cend())
 std::cout << "found at index "
 << std::distance(v.cbegin(), it) << '\n';

• Use std::adjacent_find() to find two adjacent elements in a range that are
equal or satisfy a binary predicate; this algorithm returns an iterator to the
first element that is found:

std::vector<int> v{ 1, 1, 2, 3, 5, 8, 13 };

auto it = std::adjacent_find(v.cbegin(), v.cend());
if (it != v.cend())
 std::cout << "found at index "
 << std::distance(v.cbegin(), it) << '\n';

auto it = std::adjacent_find(
 v.cbegin(), v.cend(),
 [](int const a, int const b) {
 return IsPrime(a) && IsPrime(b); });

if (it != v.cend())
 std::cout << "found at index "
 << std::distance(v.cbegin(), it) << '\n';

• Use std::binary_search() to find whether an element exists in a sorted
range; this algorithm returns a Boolean value to indicate whether the value
was found or not:

std::vector<int> v{ 1, 1, 2, 3, 5, 8, 13 };

auto success = std::binary_search(v.cbegin(), v.cend(), 8);
if (success) std::cout << "found" << '\n';

• Use std::lower_bound() to find the first element in a range not less than a
specified value; this algorithm returns an iterator to the element:

std::vector<int> v{ 1, 1, 2, 3, 5, 8, 13 };

auto it = std::lower_bound(v.cbegin(), v.cend(), 1);

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Standard Library Containers, Algorithms, and Iterators

[244]

if (it != v.cend())
 std::cout << "lower bound at "
 << std::distance(v.cbegin(), it) << '\n';

• Use std::upper_bound() to find the first element in a range greater than a
specified value; this algorithm returns an iterator to the element:

std::vector<int> v{ 1, 1, 2, 3, 5, 8, 13 };

auto it = std::upper_bound(v.cbegin(), v.cend(), 1);
if (it != v.cend())
 std::cout << "upper bound at "
 << std::distance(v.cbegin(), it) << '\n';

• Use std::equal_range() to find a subrange in a range whose values are
equal to a specified value. This algorithm returns a pair of iterators defining
the first and the one-past-end iterators to the subrange; these two iterators
are equivalent to those returned by std::lower_bound() and std::upper_
bound():

std::vector<int> v{ 1, 1, 2, 3, 5, 8, 13 };

auto bounds = std::equal_range(v.cbegin(), v.cend(), 1);
std::cout << "range between indexes "
 << std::distance(v.cbegin(), bounds.first)
 << " and "
 << std::distance(v.cbegin(), bounds.second)
 << '\n';

How it works...
The way these algorithms work is very similar: they all take, as arguments,
iterators that define the searchable range and additional arguments that depend on
each algorithm. The exceptions are std::search(), which returns a Boolean, and
std::equal_range(), which returns a pair of iterators. They all return an iterator to
the searched element or to a subrange. These iterators must be compared with the
end iterator (that is, the past-last-element) of the range to check whether the search
was successful or not. If the search did not find an element or a subrange, then the
returned value is the end iterator.

All these algorithms have multiple overloads, but in the How to do it... section, we
only looked at one particular overload to show how the algorithm can be used. For a
complete reference of all overloads, you should see other sources.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 5

[245]

In all the preceding examples, we used constant iterators, but all these algorithms
work the same with mutable iterators and with reverse iterators. Because they take
iterators as input arguments, they can work with standard containers, arrays, or
anything that represents a sequence and has iterators available.

A special note on the std::binary_search() algorithm is necessary: the iterator
parameters that define the range to search in should at least meet the requirements
of the forward iterators. Regardless of the type of the supplied iterators, the number
of comparisons is always logarithmic on the size of the range. However, the number
of iterator increments is different if the iterators are random access, in which case the
number of increments is also logarithmic, or are not random access, in which case it
is linear and proportional to the size of the range.

All these algorithms, except for std::find_if_not(), were available before C++11.
However, some overloads of them have been introduced in the newer standards.
An example is std::search(), which has several overloads that were introduced in
C++17. One of these overloads has the following form:

template<class ForwardIterator, class Searcher>
ForwardIterator search(ForwardIterator first, ForwardIterator last,
 const Searcher& searcher);

This overload searches for the occurrence of a pattern defined by a searcher function
object for which the standard provides several implementations:

• default_searcher basically delegates the searching to the standard
std::search() algorithm.

• boyer_moore_searcher implements the Boyer-Moore algorithm for string
searching.

• boyer_moore_horspool_algorithm implements the Boyer-Moore-Horspool
algorithm for string searching.

Many standard containers have a member function find() for finding elements in
the container. When such a method is available and suits your needs, it should be
preferred to the general algorithms because these member functions are optimized
based on the particularities of each container.

See also
• Using vector as a default container to see how to use the std::vector standard

container.
• Initializing a range to explore the standard algorithms for filling a range with

values.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Standard Library Containers, Algorithms, and Iterators

[246]

• Using set operations on a range to learn about the standard algorithms used to
perform union, intersection, or difference of sorted ranges.

• Sorting a range to learn about the standard algorithms for sorting ranges.

Sorting a range
In the previous recipe, we looked at the standard general algorithms for searching in
a range. Another common operation we often need to do is sorting a range because
many routines, including some of the algorithms for searching, require a sorted
range. The standard library provides several general algorithms for sorting ranges,
and in this recipe, we will see what these algorithms are and how they can be used.

Getting ready
The sorting general algorithms work with ranges defined by a start and end iterator
and, therefore, can sort standard containers, arrays, or anything that represents
a sequence and has random iterators available. However, all the examples in this
recipe will use std::vector.

How to do it...
The following is a list of standard general algorithms for searching a range:

• Use std::sort() for sorting a range:
std::vector<int> v{3, 13, 5, 8, 1, 2, 1};

std::sort(v.begin(), v.end());
// v = {1, 1, 2, 3, 5, 8, 13}

std::sort(v.begin(), v.end(), std::greater<>());
// v = {13, 8, 5, 3, 2, 1, 1}

• Use std::stable_sort() for sorting a range but keeping the order of the
equal elements:

struct Task
{
 int priority;
 std::string name;
};

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 5

[247]

bool operator<(Task const & lhs, Task const & rhs) {
 return lhs.priority < rhs.priority;
}

bool operator>(Task const & lhs, Task const & rhs) {
 return lhs.priority > rhs.priority;
}

std::vector<Task> v{
 { 10, "Task 1"s }, { 40, "Task 2"s }, { 25, "Task 3"s },
 { 10, "Task 4"s }, { 80, "Task 5"s }, { 10, "Task 6"s },
};

std::stable_sort(v.begin(), v.end());
// {{ 10, "Task 1" },{ 10, "Task 4" },{ 10, "Task 6" },
// { 25, "Task 3" },{ 40, "Task 2" },{ 80, "Task 5" }}

std::stable_sort(v.begin(), v.end(), std::greater<>());
// {{ 80, "Task 5" },{ 40, "Task 2" },{ 25, "Task 3" },
// { 10, "Task 1" },{ 10, "Task 4" },{ 10, "Task 6" }}

• Use std::partial_sort() for sorting a part of a range (and leaving the rest in
an unspecified order):

std::vector<int> v{ 3, 13, 5, 8, 1, 2, 1 };

std::partial_sort(v.begin(), v.begin() + 4, v.end());
// v = {1, 1, 2, 3, ?, ?, ?}

std::partial_sort(v.begin(), v.begin() + 4, v.end(),
 std::greater<>());
// v = {13, 8, 5, 3, ?, ?, ?}

• Use std::partial_sort_copy() for sorting a part of a range by copying the
sorted elements to a second range and leaving the original range unchanged:

std::vector<int> v{ 3, 13, 5, 8, 1, 2, 1 };
std::vector<int> vc(v.size());

std::partial_sort_copy(v.begin(), v.end(),
 vc.begin(), vc.end());
// v = {3, 13, 5, 8, 1, 2, 1}
// vc = {1, 1, 2, 3, 5, 8, 13}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Standard Library Containers, Algorithms, and Iterators

[248]

std::partial_sort_copy(v.begin(), v.end(),
 vc.begin(), vc.end(),
 std::greater<>());
// vc = {13, 8, 5, 3, 2, 1, 1}

• Use std::nth_element() for sorting a range so that the Nth element is the
one that would be in that position if the range was completely sorted, and the
elements before it are all smaller and the ones after it are all greater, without
any guarantee that they are also ordered:

std::vector<int> v{ 3, 13, 5, 8, 1, 2, 1 };

std::nth_element(v.begin(), v.begin() + 3, v.end());
// v = {1, 1, 2, 3, 5, 8, 13}

std::nth_element(v.begin(), v.begin() + 3, v.end(),
 std::greater<>());
// v = {13, 8, 5, 3, 2, 1, 1}

• Use std::is_sorted() to check whether a range is sorted:
std::vector<int> v { 1, 1, 2, 3, 5, 8, 13 };

auto sorted = std::is_sorted(v.cbegin(), v.cend());
sorted = std::is_sorted(v.cbegin(), v.cend(),
 std::greater<>());

• Use std::is_sorted_until() to find a sorted subrange from the beginning of
a range:

std::vector<int> v{ 3, 13, 5, 8, 1, 2, 1 };

auto it = std::is_sorted_until(v.cbegin(), v.cend());
auto length = std::distance(v.cbegin(), it);

How it works...
All the preceding general algorithms take random iterators as arguments to define
the range to be sorted. Some of them also take an output range. They all have
overloads: one that requires a comparison function for sorting the elements and one
that does not and uses operator< for comparing the elements.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 5

[249]

These algorithms work in the following way:

• std::sort() modifies the input range so that its elements are sorted
according to the default or the specified comparison function; the actual
algorithm for sorting is an implementation detail.

• std::stable_sort() is similar to std::sort(), but it guarantees to preserve
the original order of elements that are equal.

• std::partial_sort() takes three iterator arguments indicating the first,
middle, and last element in a range, where middle can be any element, not
just the one at the natural middle position. The result is a partially sorted
range so that that first middle – first smallest elements from the original range,
that is, [first, last), are found in the [first, middle) subrange and the rest of the
elements are in an unspecified order, in the [middle, last) subrange.

• std::partial_sort_copy() is not a variant of std::partial_copy(), as the
name may suggest, but of std::sort(). It sorts a range without altering it by
copying its elements to an output range. The arguments of the algorithm are
the first and last iterators of the input and output ranges. If the output range
has a size M that is greater than or equal to the size N of the input range,
the input range is entirely sorted and copied to the output range; the first N
elements of the output range are overwritten, and the last M – N elements are
left untouched. If the output range is smaller than the input range, then only
the first M sorted elements from the input range are copied to the output
range (which is entirely overwritten in this case).

• std::nth_element() is basically an implementation of a selection algorithm,
which is an algorithm for finding the Nth smallest element of a range. This
algorithm takes three iterator arguments representing the first, Nth, and last
element, and partially sorts the range so that, after sorting, the Nth element is
the one that would be in that position if the range had been entirely sorted. In
the modified range, all the N – 1 elements before the Nth one are smaller than
it, and all the elements after the Nth element are greater than it. However,
there is no guarantee on the order of these other elements.

• std::is_sorted() checks whether the specified range is sorted according to
the specified or default comparison function and returns a Boolean value to
indicate that.

• std::is_sorted_until() finds a sorted subrange of the specified range,
starting from the beginning, using either a provided comparison function
or the default operator<. The returned value is an iterator representing the
upper bound of the sorted subrange, which is also the iterator of the one-
past-last sorted element.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Standard Library Containers, Algorithms, and Iterators

[250]

Some standard containers, std::list and std::forward_list, provide a member
function, sort(), which is optimized for those containers. These member functions
should be preferred over the general standard algorithm, std::sort().

See also
• Using vector as a default container to learn how to use the std::vector

standard container.
• Initializing a range to explore the standard algorithms for filling a range with

values.
• Using set operations on a range to learn about the standard algorithms used to

perform union, intersection, or difference of sorted ranges.
• Finding elements in a range to learn about the standard algorithms for

searching through sequences of values.

Initializing a range
In the previous recipes, we explored the general standard algorithms for searching
in a range and sorting a range. The algorithms library provides many other general
algorithms, and among them are several that are intended for filling a range with
values. In this recipe, you will learn what these algorithms are and how they should
be used.

Getting ready
All the examples in this recipe use std::vector. However, like all the general
algorithms, the ones we will see in this recipe take iterators to define the bounds of a
range and can therefore be used with any standard container, arrays, or custom types
representing a sequence that have forward iterators defined.

Except for std::iota(), which is available in the <numeric> header, all the other
algorithms are found in the <algorithm> header.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 5

[251]

How to do it...
To assign values to a range, use any of the following standard algorithms:

• std::fill() to assign a value to all the elements of a range; the range is
defined by a first and last forward iterator:

std::vector<int> v(5);
std::fill(v.begin(), v.end(), 42);
// v = {42, 42, 42, 42, 42}

• std::fill_n() to assign values to a number of elements of a range; the range
is defined by a first forward iterator and a counter that indicates how many
elements should be assigned the specified value:

std::vector<int> v(10);
std::fill_n(v.begin(), 5, 42);
// v = {42, 42, 42, 42, 42, 0, 0, 0, 0, 0}

• std::generate() to assign the value returned by a function to the elements
of a range; the range is defined by a first and last forward iterator, and the
function is invoked once for each element in the range:

std::random_device rd{};
std::mt19937 mt{ rd() };
std::uniform_int_distribution<> ud{1, 10};
std::vector<int> v(5);
std::generate(v.begin(), v.end(),
 [&ud, &mt] {return ud(mt); });

• std::generate_n() to assign the value returned by a function to a number
of elements of a range; the range is defined by a first forward iterator and a
counter that indicates how many elements should be assigned the value from
the function that is invoked once for each element:

std::vector<int> v(5);
auto i = 1;
std::generate_n(v.begin(), v.size(), [&i] { return i*i++; });
// v = {1, 4, 9, 16, 25}

• std::iota() to assign sequentially increasing values to the elements of a
range; the range is defined by a first and last forward iterator, and the values
are incremented using the prefix operator++ from an initial specified value:

std::vector<int> v(5);
std::iota(v.begin(), v.end(), 1);
// v = {1, 2, 3, 4, 5}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Standard Library Containers, Algorithms, and Iterators

[252]

How it works...
std::fill() and std::fill_n() work similarly but differ in the way the range is
specified: for the former by a first and last iterator, for the latter by a first iterator
and a count. The second algorithm returns an iterator, representing either the one-
past-last assigned element if the counter is greater than zero, or an iterator to the first
element of the range otherwise.

std::generate() and std::generate_n() are also similar, differing only in the way
the range is specified. The first takes two iterators, defining the range's lower and
upper bounds, while the second takes an iterator to the first element and a count.
Like std::fill_n(), std::generate_n() also returns an iterator, representing either
the one-past-last assigned element if the count is greater than zero, or an iterator to
the first element of the range otherwise. These algorithms call a specified function
for each element in the range and assign the returned value to the element. The
generating function does not take any argument, so the value of the argument cannot
be passed to the function. This is because it's intended as a function to initialize the
elements of a range. If you need to use the value of the elements to generate new
values, you should use std::transform().

std::iota() takes its name from the ι (iota) function from the APL programming
language, and though it was a part of the initial STL, it was only included in the
standard library in C++11. This function takes a first and last iterator to a range, as
well as an initial value that is assigned to the first element of the range. These are
then used to generate sequentially increasing values using the prefix operator++ for
the rest of the elements in the range.

See also
• Sorting a range to learn about the standard algorithms for sorting ranges.
• Using set operations on a range to learn about the standard algorithms used to

perform union, intersection, or difference of sorted ranges.
• Finding elements in a range to learn about the standard algorithms for

searching through sequences of values.
• Generating pseudo-random numbers in Chapter 2, Working with Numbers and

Strings, to understand the proper ways for generating pseudo-random
numbers in C++.

• Initializing all bits of internal state of a pseudo-random number generator in
Chapter 2, Working with Numbers and Strings, to learn how to properly
initialize random number engines.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 5

[253]

Using set operations on a range
The standard library provides several algorithms for set operations that enable us to
do unions, intersections, or differences of sorted ranges. In this recipe, we will see
what these algorithms are and how they work.

Getting ready
The algorithms for set operations work with iterators, which means they can be used
for standard containers, arrays, or any custom type representing a sequence that has
input iterators available. All the examples in this recipe will use std::vector.

For all the examples in the next section, we will use the following ranges:

std::vector<int> v1{ 1, 2, 3, 4, 4, 5 };
std::vector<int> v2{ 2, 3, 3, 4, 6, 8 };
std::vector<int> v3;

In the following section, we will explore the use of the standard algorithm for set
operations.

How to do it...
Use the following general algorithms for set operations:

• std::set_union() to compute the union of two ranges into a third range:
std::set_union(v1.cbegin(), v1.cend(),
 v2.cbegin(), v2.cend(),
 std::back_inserter(v3));
// v3 = {1, 2, 3, 3, 4, 4, 5, 6, 8}

• std::merge() to merge the content of two ranges into a third one; this is
similar to std::set_union() except that it copies the entire content of the
input ranges into the output one, not just their union:

std::merge(v1.cbegin(), v1.cend(),
 v2.cbegin(), v2.cend(),
 std::back_inserter(v3));
// v3 = {1, 2, 2, 3, 3, 3, 4, 4, 4, 5, 6, 8}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Standard Library Containers, Algorithms, and Iterators

[254]

• std::set_intersection() to compute the intersection of the two ranges into
a third range:

std::set_intersection(v1.cbegin(), v1.cend(),
 v2.cbegin(), v2.cend(),
 std::back_inserter(v3));
// v3 = {2, 3, 4}

• std::set_difference() to compute the difference of two ranges into a third
range; the output range will contain elements from the first range, which are
not present in the second range:

std::set_difference(v1.cbegin(), v1.cend(),
 v2.cbegin(), v2.cend(),
 std::back_inserter(v3));
// v3 = {1, 4, 5}

• std::set_symmetric_difference() to compute a dual difference of the two
ranges into a third range; the output range will contain elements that are
present in any of the input ranges, but only in one:

std::set_symmetric_difference(v1.cbegin(), v1.cend(),
 v2.cbegin(), v2.cend(),
 std::back_inserter(v3));
// v3 = {1, 3, 4, 5, 6, 8}

• std::includes() to check if one range is a subset of another range (that is, all
its elements are also present in the other range):

std::vector<int> v1{ 1, 2, 3, 4, 4, 5 };
std::vector<int> v2{ 2, 3, 3, 4, 6, 8 };
std::vector<int> v3{ 1, 2, 4 };
std::vector<int> v4{ };

auto i1 = std::includes(v1.cbegin(), v1.cend(),
 v2.cbegin(), v2.cend()); // i1 = false
auto i2 = std::includes(v1.cbegin(), v1.cend(),
 v3.cbegin(), v3.cend()); // i2 = true
auto i3 = std::includes(v1.cbegin(), v1.cend(),
 v4.cbegin(), v4.cend()); // i3 = true

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 5

[255]

How it works...
All the set operations that produce a new range from two input ranges have the same
interface and work in a similar way:

• They take two input ranges, each defined by a first and last input iterator.
• They take an output iterator to an output range where elements will be

inserted.
• They have an overload that takes an extra argument representing a

comparison binary function object that must return true if the first argument
is less than the second. When a comparison function object is not specified,
operator< is used.

• They return an iterator past the end of the constructed output range.
• The input ranges must be sorted using either operator< or the provided

comparison function, depending on the overload that is used.
• The output range must not overlap any of the two input ranges.

We will demonstrate the way they work with additional examples using vectors of a
POD type called Task that we also used in a previous recipe:

struct Task
{
 int priority;
 std::string name;
};

bool operator<(Task const & lhs, Task const & rhs) {
 return lhs.priority < rhs.priority;
}

bool operator>(Task const & lhs, Task const & rhs) {
 return lhs.priority > rhs.priority;
}

std::vector<Task> v1{
 { 10, "Task 1.1"s },
 { 20, "Task 1.2"s },
 { 20, "Task 1.3"s },

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Standard Library Containers, Algorithms, and Iterators

[256]

 { 20, "Task 1.4"s },
 { 30, "Task 1.5"s },
 { 50, "Task 1.6"s },
};

std::vector<Task> v2{
 { 20, "Task 2.1"s },
 { 30, "Task 2.2"s },
 { 30, "Task 2.3"s },
 { 30, "Task 2.4"s },
 { 40, "Task 2.5"s },
 { 50, "Task 2.6"s },
};

The particular way each algorithm produces the output range is described here:

• std::set_union() copies all the elements present in one or both of the input
ranges to the output range, producing a new sorted range. If an element is
found M times in the first range and N times in the second range, then all
the M elements from the first range will be copied to the output range in
their existing order, and then the N – M elements from the second range are
copied to the output range if N > M, or 0 elements otherwise:

std::vector<Task> v3;
std::set_union(v1.cbegin(), v1.cend(),
 v2.cbegin(), v2.cend(),
 std::back_inserter(v3));
// v3 = {{10, "Task 1.1"},{20, "Task 1.2"},{20, "Task 1.3"},
// {20, "Task 1.4"},{30, "Task 1.5"},{30, "Task 2.3"},
// {30, "Task 2.4"},{40, "Task 2.5"},{50, "Task 1.6"}}

• std::merge() copies all the elements from both the input ranges into the
output range, producing a new range sorted with respect to the comparison
function:

std::vector<Task> v4;
std::merge(v1.cbegin(), v1.cend(),
 v2.cbegin(), v2.cend(),
 std::back_inserter(v4));
// v4 = {{10, "Task 1.1"},{20, "Task 1.2"},{20, "Task 1.3"},
// {20, "Task 1.4"},{20, "Task 2.1"},{30, "Task 1.5"},
// {30, "Task 2.2"},{30, "Task 2.3"},{30, "Task 2.4"},
// {40, "Task 2.5"},{50, "Task 1.6"},{50, "Task 2.6"}}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 5

[257]

• std::set_intersection() copies all the elements that are found in both
the input ranges into the output range, producing a new range sorted with
respect to the comparison function:

std::vector<Task> v5;
std::set_intersection(v1.cbegin(), v1.cend(),
 v2.cbegin(), v2.cend(),
 std::back_inserter(v5));
// v5 = {{20, "Task 1.2"},{30, "Task 1.5"},{50, "Task 1.6"}}

• std::set_difference() copies to the output range all the elements from the
first input range that are not found in the second input range. For equivalent
elements that are found in both ranges, the following rule applies: if an
element is found M times in the first range and N times in the second range,
and if M > N, then it is copied M – N times; otherwise, it is not copied:

std::vector<Task> v6;
std::set_difference(v1.cbegin(), v1.cend(),
 v2.cbegin(), v2.cend(),
 std::back_inserter(v6));
// v6 = {{10, "Task 1.1"},{20, "Task 1.3"},{20, "Task 1.4"}}

• std::set_symmetric_difference() copies to the output range all the
elements that are found in either of the two input ranges but not in both of
them. If an element is found M times in the first range and N times in the
second range, then if M > N, the last M – N of those elements from the first
range are copied into the output range; otherwise, the last N – M of those
elements from the second range will be copied into the output range:

std::vector<Task> v7;
std::set_symmetric_difference(v1.cbegin(), v1.cend(),
 v2.cbegin(), v2.cend(),
 std::back_inserter(v7));
// v7 = {{10, "Task 1.1"},{20, "Task 1.3"},{20, "Task 1.4"}
// {30, "Task 2.3"},{30, "Task 2.4"},{40, "Task 2.5"}}

On the other hand, std::includes() does not produce an output range; it only
checks whether the second range is included in the first range. It returns a Boolean
value that is true if the second range is empty or all its elements are included in the
first range, or false otherwise. It also has two overloads, one of which specifies a
comparison binary function object.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Standard Library Containers, Algorithms, and Iterators

[258]

See also
• Using vector as a default container to learn how to use the std::vector

standard container.
• Sorting a range to learn about the standard algorithms for sorting ranges.
• Using iterators to insert new elements in a container to learn how to use iterators

and iterator adapters to add elements to a range.
• Finding elements in a range to learn about the standard algorithms for

searching through sequences of values.

Using iterators to insert new elements
into a container
When you're working with containers, it is often useful to insert new elements at the
beginning, end, or somewhere in the middle. There are algorithms, such as the ones
we saw in the previous recipe, Using set operations on a range, that require an iterator
to a range to insert into, but if you simply pass an iterator, such as the one returned
by begin(), it will not insert but overwrite the elements of the container. Moreover,
it's not possible to insert at the end by using the iterator returned by end(). In order
to perform such operations, the standard library provides a set of iterators and
iterator adapters that enable these scenarios..

Getting ready
The iterators and adapters discussed in this recipe are available in the std namespace
in the <iterator> header. If you include headers such as <algorithm>, you do not
have to explicitly include <iterator>.

How to do it...
Use the following iterator adapters to insert new elements into a container:

• std::back_inserter() to insert elements at the end, for containers that have
a push_back() method:

std::vector<int> v{ 1,2,3,4,5 };
std::fill_n(std::back_inserter(v), 3, 0);
// v={1,2,3,4,5,0,0,0}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 5

[259]

• std::front_inserter() to insert elements at the beginning, for containers
that have a push_front() method:

std::list<int> l{ 1,2,3,4,5 };
std::fill_n(std::front_inserter(l), 3, 0);
// l={0,0,0,1,2,3,4,5}

• std::inserter() to insert anywhere in a container, for containers that have
an insert() method:

std::vector<int> v{ 1,2,3,4,5 };
std::fill_n(std::inserter(v, v.begin()), 3, 0);
// v={0,0,0,1,2,3,4,5}

std::list<int> l{ 1,2,3,4,5 };
auto it = l.begin();
std::advance(it, 3);
std::fill_n(std::inserter(l, it), 3, 0);
// l={1,2,3,0,0,0,4,5}

How it works...
std::back_inserter(), std::front_inserter(), and std::inserter() are all helper
functions that create iterator adapters of the types std::back_insert_iterator,
std::front_insert_iterator, and std::insert_iterator. These are all output
iterators that append, prepend, or insert into the container for which they were
constructed. Incrementing and dereferencing these iterators does not do anything.
However, upon assignment, these iterators call the following methods from the
container:

• std::back_insterter_iterator calls push_back()
• std::front_inserter_iterator calls push_front()
• std::insert_iterator calls insert()

The following is the oversimplified implementation of std::back_inserter_
iterator:

template<class C>
class back_insert_iterator {
public:
 typedef back_insert_iterator<C> T;
 typedef typename C::value_type V;

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Standard Library Containers, Algorithms, and Iterators

[260]

 explicit back_insert_iterator(C& c) :container(&c) { }

 T& operator=(const V& val) {
 container->push_back(val);
 return *this;
 }

 T& operator*() { return *this; }

 T& operator++() { return *this; }

 T& operator++(int) { return *this; }
protected:
 C* container;
};

Because of the way the assignment operator works, these iterators can only be used
with some standard containers:

• std::back_insert_iterator can be used with std::vector, std::list,
std::deque, and std::basic_string.

• std::front_insert_iterator can be used with std::list,
std::forward_list, and std:deque.

• std::insert_iterator can be used with all the standard containers.

The following example inserts three elements with the value 0 at the beginning of an
std::vector:

std::vector<int> v{ 1,2,3,4,5 };
std::fill_n(std::inserter(v, v.begin()), 3, 0);
// v={0,0,0,1,2,3,4,5}

The std::inserter() adapter takes two arguments: the container and the iterator
where an element is supposed to be inserted. Upon calling insert() on the container,
the std::insert_iterator increments the iterator, so upon being assigned again, it
can insert a new element into the next position. Take a look at the following snippet:

T& operator=(const V& v)
{
 iter = container->insert(iter, v);
 ++iter;
 return (*this);
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 5

[261]

This snippet shows (conceptually) how the assignment operator is implemented
for this std::inserter_iterator adapter. You can see that it first calls the member
function insert() of the container and then increments the returned iterator. Because
all the standard containers have a method called insert() with this signature, this
adapter can be used with all these containers.

There's more...
These iterator adapters are intended to be used with algorithms or functions that
insert multiple elements into a range. They can be used, of course, to insert a
single element, but that is rather an anti-pattern, since simply calling push_back(),
push_front(), or insert() is much simpler and intuitive in this case. Consider the
following snippets:

std::vector<int> v{ 1,2,3,4,5 };
*std::back_inserter(v) = 6; // v = {1,2,3,4,5,6}

std::back_insert_iterator<std::vector<int>> it(v);
*it = 7; // v = {1,2,3,4,5,6,7}

The examples shown here should be avoided. They do not provide any benefit; they
only make the code cluttered.

See also
• Using set operations on a range to learn about the standard algorithms used to

perform union, intersection, or difference of sorted ranges.

Writing your own random-access iterator
In the first chapter, we saw how we can enable range-based for loops for custom
types by implementing iterators, as well as free begin() and end() functions to
return iterators to the first and one-past-the-last element of the custom range. You
might have noticed that the minimal iterator implementation that we provided in
that recipe does not meet the requirements for a standard iterator. This is because it
cannot be copy constructible or assigned and cannot be incremented. In this recipe,
we will build upon that example and show you how to create a random-access
iterator that meets all requirements.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Standard Library Containers, Algorithms, and Iterators

[262]

Getting ready
For this recipe, you should know the types of iterators the standard defines and how
they are different. A good overview of their requirements is available at http://www.
cplusplus.com/reference/iterator/.

To exemplify how to write a random access iterator, we will consider a variant of the
dummy_array class used in the Enabling range-based for loops for custom types recipe of
Chapter 1, Learning Modern Core Language Features. This is a very simple array concept
with no practical value other than serving as a code base for demonstrating iterators:

template <typename Type, size_t const SIZE>
class dummy_array
{
 Type data[SIZE] = {};
public:
 Type& operator[](size_t const index)
 {
 if (index < SIZE) return data[index];
 throw std::out_of_range("index out of range");
 }

 Type const & operator[](size_t const index) const
 {
 if (index < SIZE) return data[index];
 throw std::out_of_range("index out of range");
 }

 size_t size() const { return SIZE; }
};

All the code shown in the next section, the iterator classes, typedefs, and the begin()
and end() functions, will be a part of this class.

How to do it...
To provide mutable and constant random-access iterators for the dummy_array class
shown in the previous section, add the following members to the class:

• An iterator class template, which is parameterized with the type of elements
and the size of the array. The class must have the following public typedefs
that define standard synonyms:

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.cplusplus.com/reference/iterator/
http://www.cplusplus.com/reference/iterator/

Chapter 5

[263]

template <typename T, size_t const Size>
class dummy_array_iterator
{
public:
 typedef dummy_array_iterator self_type;
 typedef T value_type;
 typedef T& reference;
 typedef T* pointer;
 typedef std::random_access_iterator_tag iterator_category;
 typedef ptrdiff_t difference_type;
};

• Private members for the iterator class—a pointer to the array data and a
current index into the array:

private:
 pointer ptr = nullptr;
 size_t index = 0;

• Private method for the iterator class to check whether two iterator instances
point to the same array data:

private:
 bool compatible(self_type const & other) const
 {
 return ptr == other.ptr;
 }

• An explicit constructor for the iterator class:
public:
 explicit dummy_array_iterator(pointer ptr,
 size_t const index)
 : ptr(ptr), index(index) { }

• Iterator class members to meet common requirements for all iterators—copy-
constructible, copy-assignable, destructible, prefix, and postfix incrementable.
In this implementation, the post-increment operator is implemented in terms
of the pre-increment operator to avoid code duplication:

dummy_array_iterator(dummy_array_iterator const & o)
 = default;
dummy_array_iterator& operator=(dummy_array_iterator const & o)
 = default;
~dummy_array_iterator() = default;

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Standard Library Containers, Algorithms, and Iterators

[264]

self_type & operator++ ()
{
 if (index >= Size)
 throw std::out_of_range("Iterator cannot be incremented
 past the end of range.");
 ++index;
 return *this;
}

self_type operator++ (int)
{
 self_type tmp = *this;
 ++*this;
 return tmp;
}

• Iterator class members to meet input iterator requirements—test for
equality/inequality, dereferenceable as rvalues:

bool operator== (self_type const & other) const
{
 assert(compatible(other));
 return index == other.index;
}

bool operator!= (self_type const & other) const
{
 return !(*this == other);
}

reference operator* () const
{
 if (ptr == nullptr)
 throw std::bad_function_call();
 return *(ptr + index);
}

reference operator-> () const
{
 if (ptr == nullptr)
 throw std::bad_function_call();
 return *(ptr + index);
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 5

[265]

• Iterator class members to meet forward iterator requirements—default
constructible:

dummy_array_iterator() = default;

• Iterator class members to meet bidirectional iterator requirements—
decrementable:

self_type & operator--()
{
 if (index <= 0)
 throw std::out_of_range("Iterator cannot be decremented
 past the end of range.");
 --index;
 return *this;
}

self_type operator--(int)
{
 self_type tmp = *this;
 --*this;
 return tmp;
}

• Iterator class members to meet random access iterator requirements—
arithmetic add and subtract, comparable for inequality with other iterators,
compound assignments, and offset dereferenceable:

self_type operator+(difference_type offset) const
{
 self_type tmp = *this;
 return tmp += offset;
}

self_type operator-(difference_type offset) const
{
 self_type tmp = *this;
 return tmp -= offset;
}

difference_type operator-(self_type const & other) const
{
 assert(compatible(other));
 return (index - other.index);
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Standard Library Containers, Algorithms, and Iterators

[266]

bool operator<(self_type const & other) const
{
 assert(compatible(other));
 return index < other.index;
}

bool operator>(self_type const & other) const
{
 return other < *this;
}

bool operator<=(self_type const & other) const
{
 return !(other < *this);
}

bool operator>=(self_type const & other) const
{
 return !(*this < other);
}

self_type & operator+=(difference_type const offset)
{
 if (index + offset < 0 || index + offset > Size)
 throw std::out_of_range("Iterator cannot be incremented
 past the end of range.");
 index += offset;
 return *this;
}

self_type & operator-=(difference_type const offset)
{
 return *this += -offset;
}

value_type & operator[](difference_type const offset)
{

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 5

[267]

 return (*(*this + offset));
}

value_type const & operator[](difference_type const offset)
const
{
 return (*(*this + offset));
}

• Add typedefs to the dummy_array class for mutable and constant iterator
synonyms:

public:
 typedef dummy_array_iterator<Type, SIZE>
 iterator;
 typedef dummy_array_iterator<Type const, SIZE>
 constant_iterator;

• Add the public begin() and end() functions to the dummy_array class to
return the iterators to the first and one-past-last elements in the array:

iterator begin()
{
 return iterator(data, 0);
}

iterator end()
{
 return iterator(data, SIZE);
}

constant_iterator begin() const
{
 return constant_iterator(data, 0);
}

constant_iterator end() const
{
 return constant_iterator(data, SIZE);
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Standard Library Containers, Algorithms, and Iterators

[268]

How it works...
The standard library defines five categories of iterators:

• Input iterators: These are the simplest category and guarantee validity only
for single-pass sequential algorithms. After being incremented, the previous
copies may become invalid.

• Output iterators: These are basically input iterators that can be used to write
to the pointed element.

• Forward iterators: These can read (and write) data to the pointed element.
They satisfy the requirements for input iterators and, in addition, must
be default constructible and must support multi-pass scenarios without
invalidating the previous copies.

• Bidirectional iterators: These are forward iterators that, in addition, support
decrementing so that they can move in both directions.

• Random access iterators: These support access to any element in the
container in constant time. They implement all the requirements for
bidirectional iterators, and, in addition, support arithmetic operations + and
-, compound assignments += and -=, comparisons with other iterators with <,
<=, >, >=, and the offset dereference operator.

Forward, bidirectional, and random-access iterators that also implement the
requirements of output iterators are called mutable iterators.

In the previous section, we saw how to implement random access iterators, with a
step-by-step walkthrough of the requirements of each category of iterators (as each
iterator category includes the requirements of the previous category and adds new
requirements). The iterator class template is common for both constant and mutable
iterators, and we have defined two synonyms for it called iterator and constant_
iterator.

After implementing the inner iterator class template, we also defined the begin()
and end() member functions, which return an iterator to the first and the one-past-
last element in the array, respectively. These methods have overloads to return
mutable or constant iterators, depending on whether the dummy_array class instance
is mutable or constant.

With this implementation of the dummy_array class and its iterators, we can write the
following samples:

dummy_array<int, 3> a;
a[0] = 10;
a[1] = 20;

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 5

[269]

a[2] = 30;

std::transform(a.begin(), a.end(), a.begin(),
 [](int const e) {return e * 2; });

for (auto&& e : a) std::cout << e << '\n';

auto lp = [](dummy_array<int, 3> const & ca)
{
 for (auto const & e : ca)
 std::cout << e << '\n';
};

lp(a);

dummy_array<std::unique_ptr<Tag>, 3> ta;
ta[0] = std::make_unique<Tag>(1, "Tag 1");
ta[1] = std::make_unique<Tag>(2, "Tag 2");
ta[2] = std::make_unique<Tag>(3, "Tag 3");

for (auto it = ta.begin(); it != ta.end(); ++it)
 std::cout << it->id << " " << it->name << '\n';

For more examples, check the source code that accompanies this book.

There's more...
Apart from begin() and end(), a container may have additional methods such as
cbegin()/cend() (for constant iterators), rbegin()/rend() (for mutable reverse
iterators), and crbegin()/ crend() (for constant reverse iterators). Implementing this
is left as an exercise for you.

On the other hand, in modern C++, these functions that return the first and last
iterators do not have to be member functions but can be provided as non-member
functions. In fact, this is the topic of the next recipe, Container access with non-member
functions.

See also
• Enabling range-based for loops for custom types in Chapter 1, Learning Modern

Core Language Features, to learn to execute one or more statements for each
element of a collection.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Standard Library Containers, Algorithms, and Iterators

[270]

• Creating type aliases and alias templates in Chapter 1, Learning Modern Core
Language Features, to learn about aliases for types.

Container access with non-member
functions
Standard containers provide the begin() and end() member functions for retrieving
iterators for the first and one-past-last elements of the container. There are actually
four sets of these functions. Apart from begin()/end(), containers provide
cbegin()/cend() to return constant iterators, rbegin()/rend() to return mutable
reverse iterators, and crbegin()/crend() to return constant reverse iterators. In
C++11/C++14, all these have non-member equivalents that work with standard
containers, arrays, and any custom type that specializes them. In C++17, even more
non-member functions have been added: std::data(), which returns a pointer to
the block of memory containing the elements of the container; std::size(), which
returns the size of a container or array; and std::empty(), which returns whether
the given container is empty. These non-member functions are intended for generic
code but can be used anywhere in your code. Moreover, in C++20, the std::ssize()
non-member function was introduced, to return the size of a container or array as a
signed integer.

Getting ready
In this recipe, we will use the dummy_array class and its iterators that we
implemented in the previous recipe, Writing your own random-access iterator, as an
example. You should read that recipe before continuing with this one.

Non-member begin()/end() functions and the other variants, as well as non-
member data(), size(), and empty() functions are available in the std namespace
in the <iterator> header, which is implicitly included with any of the following
headers: <array>, <deque>, <forward_list>, <list>, <map>, <regex>, <set>, <string>,
<unordered_map>, <unordered_set>, and <vector>.

In this recipe, we will refer to the std::begin()/std::end() functions, but
everything discussed also applies to the other functions: std::cbegin()/
std::cend(), std::rbegin()/std::rend(), and std::crbegin()/std::crend().

How to do it...
Use the non-member std::begin()/std::end() function and the other variants, as
well as std::data(), std::size(), and std::empty() with:

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 5

[271]

• Standard containers:
std::vector<int> v1{ 1, 2, 3, 4, 5 };
auto sv1 = std::size(v1); // sv1 = 5
auto ev1 = std::empty(v1); // ev1 = false
auto dv1 = std::data(v1); // dv1 = v1.data()
for (auto i = std::begin(v1); i != std::end(v1); ++i)
 std::cout << *i << '\n';

std::vector<int> v2;
std::copy(std::cbegin(v1), std::cend(v1),
 std::back_inserter(v2));

• Arrays:
int a[5] = { 1, 2, 3, 4, 5 };
auto pos = std::find_if(std::crbegin(a), std::crend(a),
 [](int const n) {return n % 2 == 0; });
auto sa = std::size(a); // sa = 5
auto ea = std::empty(a); // ea = false
auto da = std::data(a); // da = a

• Custom types that provide the corresponding member functions; that is,
begin()/end(), data(), empty(), or size():

dummy_array<std::string, 5> sa;
dummy_array<int, 5> sb;
sa[0] = "1"s;
sa[1] = "2"s;
sa[2] = "3"s;
sa[3] = "4"s;
sa[4] = "5"s;

std::transform(
 std::begin(sa), std::end(sa),
 std::begin(sb),
 [](std::string const & s) {return std::stoi(s); });
// sb = [1, 2, 3, 4, 5]

auto sa_size = std::size(sa); // sa_size = 5

• Generic code where the type of the container is not known:
template <typename F, typename C>
void process(F&& f, C const & c)
{

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Standard Library Containers, Algorithms, and Iterators

[272]

 std::for_each(std::begin(c), std::end(c),
 std::forward<F>(f));
}

auto l = [](auto const e) {std::cout << e << '\n'; };

process(l, v1); // std::vector<int>
process(l, a); // int[5]
process(l, sa); // dummy_array<std::string, 5>

How it works...
These non-member functions were introduced in different versions of the standard,
but all of them were modified in C++17 to return constexpr auto:

• std::begin() and std::end() in C++11
• std::cbegin()/std::cend(), std::rbegin()/std::rend(), and

std::crbegin()/std::crend() in C++14
• std::data(), std::size(), and std::empty() in C++17
• std::ssize() in C++20

The begin()/end() family of functions have overloads for container classes and
arrays, and all they do is the following:

• Return the results of calling the container-corresponding member function
for containers

• Return a pointer to the first or one-past-last element of the array for arrays

The actual typical implementation for std::begin()/std::end() is as follows:

template<class C>
constexpr auto inline begin(C& c) -> decltype(c.begin())
{
 return c.begin();
}

template<class C>
constexpr auto inline end(C& c) -> decltype(c.end())
{
 return c.end();
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 5

[273]

template<class T, std::size_t N>
constexpr T* inline begin(T (&array)[N])
{
 return array;
}

template<class T, std::size_t N>
constexpr T* inline begin(T (&array)[N])
{
 return array+N;
}

Custom specialization can be provided for containers that do not have corresponding
begin()/end() members but can still be iterated. The standard library actually
provides such specializations for std::initializer_list and std::valarray.

The other non-member functions for container access that were introduced in C++17
also have several overloads:

• std::data() has several overloads; for a class C it returns c.data(), for
arrays it returns the array, and for std::initializer_list<T> it returns the
il.begin():

template <class C>
constexpr auto data(C& c) -> decltype(c.data())
{
 return c.data();
}

template <class C>
constexpr auto data(const C& c) -> decltype(c.data())
{
 return c.data();
}

template <class T, std::size_t N>
constexpr T* data(T (&array)[N]) noexcept
{

Specializations must be defined in the same namespace where the
original class or function template has been defined. Therefore,
if you want to specialize any of the std::begin()/std::end()
pairs, you must do so in the std namespace.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Standard Library Containers, Algorithms, and Iterators

[274]

 return array;
}

template <class E>
constexpr const E* data(std::initializer_list<E> il) noexcept
{
 return il.begin();
}

• std::size() has two overloads; for a class C it returns c.size(), and for
arrays it returns the size N:

template <class C>
constexpr auto size(const C& c) -> decltype(c.size())
{
 return c.size();
}

template <class T, std::size_t N>
constexpr std::size_t size(const T (&array)[N]) noexcept
{
 return N;
}

• std::empty() has several overloads; for a class C it returns c.empty(),
for arrays it returns false, and for std::initializer_list<T> it returns
il.size() == 0:

template <class C>
constexpr auto empty(const C& c) -> decltype(c.empty())
{
 return c.empty();
}

template <class T, std::size_t N>
constexpr bool empty(const T (&array)[N]) noexcept
{
 return false;
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 5

[275]

template <class E>
constexpr bool empty(std::initializer_list<E> il) noexcept
{
 return il.size() == 0;
}

In C++20, the std::ssize() non-member function was added as a companion to
std::size() to return the number of elements in a given container or an array as
a signed integer. std::size() returns an unsigned integer, but there are scenarios
where a signed value is desired. For instance, the C++20 class std::span, which
represents a view to a contiguous sequence of objects, has a size() member function
that returns a signed integer, unlike standard library containers where the size()
member function returns an unsigned integer.

The reason the function size() of std::span returns a signed integer is that the
value -1 is supposed to represent a sentinel for types whose size was not known at
compile time. Performing mixed signed and unsigned arithmetic can lead to errors
in code that are hard to find. std::ssize() has two overloads: for a class C it returns
c.size() statically cast to a signed integer (typically std::ptrdiff_t) and for arrays
it returns N, the number of elements. Take a look at the following code snippets:

template <class C>
constexpr auto ssize(const C& c)
 -> std::common_type_t<std::ptrdiff_t,
 std::make_signed_t<decltype(c.size())>>
{
 using R = std::common_type_t<std::ptrdiff_t,
 std::make_signed_t<decltype(c.size())>>;
 return static_cast<R>(c.size());
}

template <class T, std::ptrdiff_t N>
constexpr std::ptrdiff_t ssize(const T (&array)[N]) noexcept
{
 return N;
}

The preceding snippets show possible implementations for the std::ssize()
function for containers and arrays.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Standard Library Containers, Algorithms, and Iterators

[276]

There's more...
These non-member functions are mainly intended for template code where the
container is not known and can be a standard container, an array, or a custom type.
Using the non-member version of these functions enables us to write simpler and
less code that works with all these types of containers.

However, the use of these functions is not and should not be limited to generic
code. Though it is rather a matter of personal preference, it can be a good habit
to be consistent and use them everywhere in your code. All these methods have
lightweight implementations that will most likely be inlined by the compiler, which
means that there will be no overhead at all for using the corresponding member
functions.

See also
• Writing your own random-access iterator to understand what you need to do to

write a custom, random-access iterator

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

[277]

6
General-Purpose Utilities

The standard library contains many general-purpose utilities and libraries beyond
the containers, algorithms, and iterators discussed in the previous chapter. This
chapter is focused on three areas: the chrono library for working with dates, times,
calendars, and time zones; type traits, which provide meta-information about other
types; and the new C++17 types std::any, std::optional, and std::variant and the
C++20 type std::span.

The recipes included in this chapter are as follows:

• Expressing time intervals with chrono::duration
• Working with calendars
• Converting times between time zones
• Measuring function execution time with a standard clock
• Generating hash values for custom types
• Using std::any to store any value
• Using std::optional to store optional values
• Using std::variant as a type-safe union
• Visiting an std::variant
• Using std::span for contiguous sequences of objects
• Registering a function to be called when a program exits normally
• Using type traits to query properties of types
• Writing your own type traits
• Using std::conditional to choose between types

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

General-Purpose Utilities

[278]

The first part of the chapter focuses on the chrono library, which provides time and
date utilities.

Expressing time intervals with
chrono::duration
Working with times and dates is a common operation, regardless of the
programming language. C++11 provides a flexible date and time library as part of
the standard library that enables us to define time points and time intervals. This
library, called chrono, is a general-purpose utility library designed to work with
a timer and clocks that can be different on different systems and, therefore, be
precision-neutral. The library is available in the <chrono> header in the std::chrono
namespace and defines and implements several components, as follows:

• Durations, which represent time intervals
• Time points, which present a duration of time since the epoch of a clock
• Clocks, which define an epoch (that is, start of time) and a tick

In this recipe, we will learn how to work with durations.

Getting ready
This recipe is not intended as a complete reference to the duration class. It is
recommended that you consult additional resources for that purpose (the library
reference documentation is available at http://en.cppreference.com/w/cpp/chrono).

In the chrono library, a time interval is represented by the std::chrono::duration
class.

How to do it...
To work with time intervals, use the following:

• std::chrono::duration typedefs for hours, minutes, seconds, milliseconds,
microseconds, and nanoseconds:

std::chrono::hours half_day(12);
std::chrono::minutes half_hour(30);
std::chrono::seconds half_minute(30);
std::chrono::milliseconds half_second(500);

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://en.cppreference.com/w/cpp/chrono

Chapter 6

[279]

std::chrono::microseconds half_millisecond(500);
std::chrono::nanoseconds half_microsecond(500);

• Use the standard user-defined literal operators from C++14, available in the
namespace std::chrono_literals, for creating durations of hours, minutes,
seconds, milliseconds, microseconds, and nanoseconds:

using namespace std::chrono_literals;

auto half_day = 12h;
auto half_hour = 30min;
auto half_minute = 30s;
auto half_second = 500ms;
auto half_millisecond = 500us;
auto half_microsecond = 500ns;

• Use direct conversion from a lower precision duration to a higher precision
duration:

std::chrono::hours half_day_in_h(12);
std::chrono::minutes half_day_in_min(half_day_in_h);
std::cout << half_day_in_h.count() << "h" << '\n'; //12h
std::cout << half_day_in_min.count() << "min" << '\n';//720min

• Use std::chrono::duration_cast to convert from a higher precision to a
lower precision duration:

using namespace std::chrono_literals;

auto total_seconds = 12345s;
auto hours =
 std::chrono::duration_cast<std::chrono::hours>
 (total_seconds);
auto minutes =
 std::chrono::duration_cast<std::chrono::minutes>
 (total_seconds % 1h);
auto seconds =
 std::chrono::duration_cast<std::chrono::seconds>
 (total_seconds % 1min);

std::cout << hours.count() << ':'
 << minutes.count() << ':'
 << seconds.count() << '\n'; // 3:25:45

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

General-Purpose Utilities

[280]

• Use the conversion functions floor(), round(), and ceil() available in
C++17 when rounding is necessary:

using namespace std::chrono_literals;

auto total_seconds = 12345s;
auto m1 = std::chrono::floor<std::chrono::minutes>(
 total_seconds); // 205 min
auto m2 = std::chrono::round<std::chrono::minutes>(
 total_seconds); // 206 min
auto m3 = std::chrono::ceil<std::chrono::minutes>(
 total_seconds); // 206 min
auto sa = std::chrono::abs(total_seconds);

• Use arithmetic operations, compound assignments, and comparison
operations to modify and compare time intervals:

using namespace std::chrono_literals;

auto d1 = 1h + 23min + 45s; // d1 = 5025s
auto d2 = 3h + 12min + 50s; // d2 = 11570s
if (d1 < d2) { /* do something */ }

How it works...
The std::chrono::duration class defines a number of ticks (the increment between
two moments in time) over a unit of time. The default unit is the second, and for
expressing other units, such as minutes or milliseconds, we need to use a ratio.
For units greater than the second, the ratio is greater than one, such as ratio<60>
for minutes. For units smaller than the second, the ratio is smaller than one, such
as ratio<1, 1000> for milliseconds. The number of ticks can be retrieved with the
count() member function.

The standard library defines several type synonyms for durations of nanoseconds,
microseconds, milliseconds, seconds, minutes, and hours that we used in the first
example in the previous section. The following code shows how these durations are
defined in the chrono namespace:

namespace std {
 namespace chrono {
 typedef duration<long long, ratio<1, 1000000000>> nanoseconds;

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6

[281]

 typedef duration<long long, ratio<1, 1000000>> microseconds;
 typedef duration<long long, ratio<1, 1000>> milliseconds;
 typedef duration<long long> seconds;
 typedef duration<int, ratio<60> > minutes;
 typedef duration<int, ratio<3600> > hours;
 }
}

However, with this flexible definition, we can express time intervals such as 1.2 sixths
of a minute (which means 12 seconds), where 1.2 is the number of ticks of the duration
and ratio<10> (as in 60/6) is the time unit:

std::chrono::duration<double, std::ratio<10>> d(1.2); // 12 sec

In C++14, several standard user-defined literal operators have been added to the
namespace std::chrono_literals. This makes it easier to define durations, but you
must include the namespace in the scope where you want to use the literal operators.

All arithmetic operations are available for the duration class. It is possible to add
and subtract durations, multiply or divide them by a value, or apply the modulo
operation. However, it is important to note that when two durations of different time
units are added or subtracted, the result is a duration of the greatest common divisor
of the two time units. This means that if you add a duration representing seconds
and a duration representing minutes, the result is a duration representing seconds.

Conversion from a duration with a less precise time unit to a duration with a more
precise time unit is done implicitly. On the other hand, conversion from a more
precise to a less precise time unit requires an explicit cast. This is done with the non-
member function std::chrono::duration_cast(). In the How to do it... section, you
saw an example for determining the number of hours, minutes, and seconds of a
given duration expressed in seconds.

C++17 has added several more non-member conversion functions that perform
duration casting with rounding: floor() to round down, ceil() to round up, and
round() to round to the nearest. Also, C++17 added a non-member function called
abs() to retain the absolute value of a duration.

You should only include namespaces for user-defined literal
operators in the scope where you want to use them, and not in
larger scopes, in order to avoid conflict with other operators with
the same name from different libraries and namespaces.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

General-Purpose Utilities

[282]

There's more...
chrono is a general-purpose library that, before C++20, lacked many useful features,
such as expressing a date with the year, month, and day parts, working with time
zones and calendars, and others. The C++20 standard added support for calendars
and time zones, which we will see in the following recipes. Third-party libraries can
implement these features and a recommended one is Howard Hinnant's date library,
available under the MIT license at https://github.com/HowardHinnant/date. This
library was the foundation for the C++20 chrono additions.

See also
• Measuring function execution time with a standard clock to see how you can

determine the execution time of a function.
• Working with calendars to discover the C++20 additions to the chrono library

for working with dates and calendars.
• Converting times between time zones to learn how you can convert time points

between different time zones in C++20.

Working with calendars
The chrono library, available in C++11, offered support for clocks, time points,
and durations but did not make it easy for expressing times and dates, especially
with respect to calendars and time zones. The new C++20 standard corrects this by
extending the existing chrono library with:

• More clocks, such as a UTC clock, an International Atomic Time clock, a GPS
clock, a file time clock, and a pseudo-clock representing local time.

• Time of day, representing the time elapsed since midnight split into hours,
minutes, and seconds.

• Calendars, which enable us to express dates with year, month, and day parts.
• Time zones, which enable us to express time points with respect to a time

zone and make it possible to convert times between different time zones.
• I/O support for parsing chrono objects from a stream.

In this recipe, we will learn about working with calendar objects.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/HowardHinnant/date

Chapter 6

[283]

Getting ready
All the new chrono functionalities are available in the same std::chrono and
std::chrono_literals namespaces in the <chrono> header.

How to do it…
You can use the C++20 chrono calendar functionalities to:

• Represent Gregorian calendar dates with year, month, and day, as instances
of the year_month_day type. Use the standard user-defined literals, constants,
and the overloaded operator / to construct such objects:

// format: year / month /day
year_month_day d1 = 2020y / 1 / 15;
year_month_day d2 = 2020y / January / 15;
// format: day / month / year
year_month_day d3 = 15d / 1 / 2020;
year_month_day d4 = 15d / January / 2020;
// format: month / day / year
year_month_day d5 = 1 / 15d / 2020;
year_month_day d6 = January / 15 / 2020;

• Represent the nth weekday of a specific year and month as instances of the
year_month_weekday type:

// format: year / month / weekday
year_month_weekday d1 = 2020y / January / Monday[1];
// format: weekday / month / year
year_month_weekday d2 = Monday[1] / January / 2020;
// format: month / weekday / year
year_month_weekday d3 = January / Monday[1] / 2020;

• Determine the current date, as well as compute other dates from it, such as
the dates for tomorrow and yesterday:

auto today = floor<days>(std::chrono::system_clock::now());
auto tomorrow = today + days{ 1 };
auto yesterday = today - days{ 1 };

• Determine the first and last day of a specific month and year:
year_month_day today = floor<days>(
 std::chrono::system_clock::now());
year_month_day first_day_this_month = today.year() / today.
month() / 1;

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

General-Purpose Utilities

[284]

year_month_day last_day_this_month = today.year() / today.
month() / last;
year_month_day last_day_feb_2020 = 2020y / February / last;

year_month_day_last ymdl {today.year(),
 month_day_last{ month{ 2 } }};
year_month_day last_day_feb { ymdl };

• Compute the number of days between two dates:

inline int number_of_days(date::sys_days const& first,
 date::sys_days const& last)
{
 return (last - first).count();
}

auto days = number_of_days(2020_y / apr / 1, 2020_y / dec / 25);

• Check whether a date is valid:
auto day = 2020_y / January / 33;
auto is_valid = day.ok();

• Represent the time of day with hour, minutes, and seconds using the time_
of_day<Duration> class template:

time_of_day<std::chrono::seconds> td(13h + 12min + 11s);
std::cout << td << '\n'; // 13:12:11

• Create time points with date and time parts:
auto tp = sys_days{ 2020_y / April / 1 } + 12h + 30min + 45s;
std::cout << tp << '\n'; // 2020-04-01 12:30:45

• Determine the current time of day and express it with various precisions:
auto tp = std::chrono::system_clock::now();
auto dp = floor<days>(tp);

time_of_day<std::chrono::milliseconds> time{
std::chrono::duration_cast<std::chrono::milliseconds>(tp - dp)
};
std::cout << time << '\n'; // 13:12:11.625

time_of_day<std::chrono::minutes> time{
 std::chrono::duration_cast<std::chrono::minutes>(tp - dp) };
std::cout << time << '\n'; // 13:12

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6

[285]

How it works…
The year_month_day and year_month_weekday types we have seen in the examples
here are only some of the many new types added to the chrono library for calendar
support. The following table lists all these types in the std::chrono namespace and
what they represent:

Type Represents
day A day of a month
month A month of a year
year A year in the Gregorian calendar
weekday A day of the week in the Gregorian calendar
weekday_indexed The nth weekday of a month, where n is in the range [1,

5] (1 is the 1st weekday of the month and 5 is the 5th—if it
exists—weekday of the month)

weekday_last The last weekday of a month
month_day A specific day of a specific month
month_day_last The last day of a specific month
month_weekday The nth weekday of a specific month
month_weekday_last The last weekday of a specific month
year_month A specific month of a specific year
year_month_day A specific year, month, and day
year_month_day_last The last day of a specific year and month
year_month_weekday The nth weekday of a specific year and month
year_month_weekday_last The last weekday of a specific year and month

All the types listed in this table have:

• A default constructor that leaves the member fields uninitialized
• Member functions to access the parts of the entity
• A member function called ok() that checks if the stored value is valid
• Non-member comparison operators to compare values of the type
• An overloaded operator<< to output a value of the type to a stream
• An overloaded function template called from_stream() that parses a value

from a stream according to the provided format
• A specialization of the std::formatter<T, CharT> class template for the text

formatting library

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

General-Purpose Utilities

[286]

In addition, the operator/ is overloaded for many of these types to enable us to
easily create Gregorian calendar dates. When you create a date (with year, month,
and day), you can choose between three different formats:

• year/month/day (used in countries such as China, Japan, Korea, Canada, but
others too, sometimes together with the day/month/year format)

• month/day/year (used in the USA)
• day/month/year (used in most parts of the world)

In these cases, day can be either:

• An actual day of the month (values from 1 to 31)
• std:chrono::last to indicate the last day of the month
• weekday[n], to indicate the nth weekday of the month (where n can take

values from 1 to 5)
• weekday[std::chrono::last], to indicate the last week day of the month

In order to disambiguate between integers that represent the day, month, and year,
the library provides two user-defined literals: ""y to construct a literal of the type
std::chrono::year, and ""d to construct a literal of the type std::chrono::day.

In addition, there are constants that represent:

• An std::chrono::month, named January, February, up to December.
• An std::chrono::weekday, named Sunday, Monday, Tuesday, Wednesday,

Thursday, Friday, or Saturday.
You can use all these to construct dates such as 2020y/April/1, 25d/December/2020,
or Sunday[last]/May/2020.

The year_month_day type provides implicit conversion to and from
std::chrono::sys_days. This type is an std::chrono::time_point with the precision
of a day (24 hours). There is a companion type called std::chrono::sys_seconds,
which is a time_point with the precision of one second. Explicit conversion between
time_point and sys_days / sys_seconds can be performed using std::chrono::time_
point_cast() or std::chrono::floor().

To represent a moment of time during a day, we can use the std::chrono::time_
of_day type. This class represents the time elapsed since midnight, broken down
into hours, minutes, seconds, and sub-seconds. There are specializations of this class
template for different precisions (std::chrono::hours, std::chrono::minutes, and
std::chrono::seconds). This type is mostly intended as a formatting tool. It has two
members called make12() and make24() that change the time format used to output to
either a 12-hour or a 24-hour format.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6

[287]

There's more…
The date and time facilities described here are all based on the std::chrono::system_
clock. Since C++20, this clock is defined to measure the Unix time, which is the time
since 00:00:00 UTC on 1 January 1970. This means the implicit time zone is UTC.
However, in most cases, you might be interested in the local time of a specific time
zone. To help with that, the chrono library added support for time zones, which is
what we will learn about in the next recipe.

See also
• Expressing time intervals with chrono::duration to familiarize yourself with the

fundamentals of the C++11 chrono library and to work with durations, time
points, and points.

• Converting times between time zones to learn how you can convert time points
between different time zones in C++20.

Converting times between time zones
In the previous recipe, we talked about C++20 support for working with calendars
and expressing dates in the Gregorian calendar with the year_month_day type and
others from the chrono library.

We also saw how to represent times of day with the time_of_day type. However, in
all these examples, we worked with the time points using the system clock, which
measures Unix time and therefore uses UTC as the default time zone. However, we
are usually interested in the local time and, sometimes, in the time in some other
time zone. This is possible with the facilities added to the chrono library to support
time zones. In this recipe, you will learn about the most important functionalities of
chrono's time zones.

Getting ready
Before continuing with this recipe, it is recommended that you read the previous
one, Working with calendars, if you have not done so already.

How to do it…
You can do the following using the C++20 chrono library:

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

General-Purpose Utilities

[288]

• Use the std::chrono::current_zone() to retrieve the local time zone from
the time zone database.

• Use std::chrono::locate_zone() to retrieve a particular time zone, using its
name, from the time zone database.

• Represent a time point in a particular time zone using the
std::chrono::zoned_time class template.

• Retrieve and display the current local time:
auto time = zoned_time{ current_zone(), system_clock::now() };
std::cout << time << '\n'; // 2020-01-16 22:10:30.9274320 EET

• Retrieve and display the current time in another time zone. In the following
example, we use the time in Italy:

auto time = zoned_time{ locate_zone("Europe/Rome"),
 system_clock::now() };
std::cout << time << '\n'; // 2020-01-16 21:10:30.9291091 CET

• Display the current local time with proper locale formatting. In this example,
the current time is Romanian time, and the locale being used is for Romania:

auto time = zoned_time{ current_zone(), system_clock::now() };
std::cout << date::format(std::locale{"ro_RO"}, "%c", time)
 << '\n'; // 16.01.2020 22:12:57

• Represent a time point in a particular time zone and display it. In the
following example this is the New York's time:

auto time = local_days{ 2020_y / June / 1 } + 12h + 30min + 45s
+ 256ms;
auto ny_time = zoned_time<std::chrono::milliseconds>{
 locate_zone("America/New_York"), time};
std::cout << ny_time << '\n';
// 2020-06-01 12:30:45.256 EDT

• Convert a time point in a particular time zone into a time point in another
time zone. In the following example, we convert the time from New York
into the time in Los Angeles:

auto la_time = zoned_time<std::chrono::milliseconds>(
 locate_zone("America/Los_Angeles"),
 ny_time);
std::cout << la_time << '\n'; // 2020-06-01 09:30:45.256 PDT

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6

[289]

How it works…
The system maintains a copy of the IANA Time Zone Database (which is available
online at https://www.iana.org/time-zones). As a user, you cannot create or
alter the database, but only retrieve a read-only copy of it with functions such as
std::chrono::tzdb() or std::chrono::get_tzdb_list(). Information about a time
zone is stored in an std::chrono::time_zone object. Instances of this class cannot be
created directly; they are only created by the library when initializing the time zone
database. However, it is possible to obtain constant access to these instances, using
two functions:

• std::chrono::current_zone() retrieves the time_zone object representing the
local time zone.

• std::chrono::locate_zone()retrieves the time_zone object representing the
specified time zone.

Examples of time zone names include Europe/Berlin, Asia/Dubai, and America/
Los_Angeles. When the name of the location contains multiple words, spaces are
replaced by an underscore (_), such as in the preceding example where Los Angeles
is written as Los_Angeles. A list of all the time zones from the IANA TZ database can
be found at https://en.wikipedia.org/wiki/List_of_tz_database_time_zones.

There are two set of types in the C++20 chrono library to represent time points:

• sys_days and sys_seconds (having day and second precision) represent a
time point in the system's time zone, which is UTC. These are type aliases for
std::chrono::sys_time, which, in turn, is an alias for std::chrono::time_
point, which is using the std::chrono::system_clock.

• local_days and local_seconds (having also day and second precision)
represent a time point with respect to a time zone that has not yet
been specified. These are type aliases for std::chrono::local_time,
which is, in turn, a type alias for an std::chrono::time_point using the
std::chrono::local_t pseudo-clock. The sole purpose of this clock is to
indicate a not-yet-specified time zone.

The std::chrono::zoned_time class template represents a pairing of a time zone
with a time point. It can be created from either a sys_time, a local_time, or another
zoned_time object. Examples for all these cases are shown here:

auto zst = zoned_time<std::chrono::seconds>(
 current_zone(),
 sys_days{ 2020_y / May / 10 } +14h + 20min + 30s);
std::cout << zst << '\n'; // 2020-05-10 17:20:30 EEST

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.iana.org/time-zones
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

General-Purpose Utilities

[290]

auto zlt = zoned_time<std::chrono::seconds>(
 current_zone(),
 local_days{ 2020_y / May / 10 } +14h + 20min + 30s);
std::cout << zlt << '\n'; // 2020-05-10 14:20:30 EEST

auto zpt = zoned_time<std::chrono::seconds>(
 locate_zone("Europe/Paris"),
 zlt);
std::cout << zpt << '\n'; //2020-05-10 13:20:30 CEST

In this sample code, the times in the comments are based on the Romanian time
zone. Notice that in the first example, the time is expressed with sys_days, which
uses the UTC time zone. Since Romanian time is UTC+3 on 10 May 2020 (because
of Daylight Saving Time), the local time is 17:20:30. In the second example, the time
is specified with local_days, which is time zone-agnostic. For this reason, when
pairing with the current time zone, the time is actually 14:20:30. In the third and last
example, the local Romanian time is converted to the time in Paris, which is 13:20:30
(because on that day, the time in Paris is UTC+2).

See also
• Expressing time intervals with chrono::duration to familiarize yourself with the

fundamentals of the C++11 chrono library and to work with durations, time
points, and points.

• Working with calendars to discover the C++20 additions to the chrono library
for working with dates and calendars.

Measuring function execution time with
a standard clock
In the previous recipe, we saw how to work with time intervals using the chrono
standard library. However, we also often need to handle time points. The chrono
library provides such a component, representing a duration of time since the epoch
of a clock (that is, the beginning of time as defined by a clock). In this recipe, we will
learn how to use the chrono library and time points to measure the execution of a
function.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6

[291]

Getting ready
This recipe is tightly related to the preceding one, Expressing time intervals with
chrono::duration. If you did not go through that recipe previously, you should do that
before continuing with this one.

For the examples in this recipe, we will consider the following function, which does
nothing, but takes some time to execute:

void func(int const count = 100000000)
{
 for (int i = 0; i < count; ++i);
}

It should go without saying that this function is only meant for testing purposes and
does nothing valuable. In practice, you will use the counting utility provided here to
test your own functions.

How to do it...
To measure the execution of a function, you must perform the following steps:

1. Retrieve the current moment of time using a standard clock:
auto start = std::chrono::high_resolution_clock::now();

2. Call the function you want to measure:
func();

3. Retrieve the current moment of time again; the difference between the two is
the execution time of the function:

auto diff = std::chrono::high_resolution_clock::now() - start;

4. Convert the difference (which is expressed in nanoseconds) to the actual
resolution you are interested in:

std::cout
 << std::chrono::duration<double, std::milli>(diff).count()
 << "ms" << '\n';
std::cout
 << std::chrono::duration<double, std::nano>(diff).count()
 << "ns" << '\n';

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

General-Purpose Utilities

[292]

To implement this pattern in a reusable component, perform the following steps:

1. Create a class template parameterized with the resolution and the clock.
2. Create a static variadic function template that takes a function and its

arguments.
3. Implement the pattern shown previously, invoking the function with its

arguments.
4. Return a duration, not the number of ticks.

This is exemplified in the following snippet:

template <typename Time = std::chrono::microseconds,
 typename Clock = std::chrono::high_resolution_clock>
struct perf_timer
{
 template <typename F, typename... Args>
 static Time duration(F&& f, Args... args)
 {
 auto start = Clock::now();

 std::invoke(std::forward<F>(f), std::forward<Args>(args)...);

 auto end = Clock::now();

 return std::chrono::duration_cast<Time>(end - start);
 }
};

How it works...
A clock is a component that defines two things:

• A beginning of time called an epoch; there is no constraint regarding what the
epoch is, but typical implementations use January 1, 1970.

• A tick rate that defines the increment between two time points (such as a
millisecond or nanosecond).

A time point is a duration of time since the epoch of a clock. There are several time
points that are of particular importance:

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6

[293]

• The current time, returned by the clock's static member now().
• The epoch, or the beginning of time; this is the time point created by the

default constructor of time_point for a particular clock.
• The minimum time that can be represented by a clock, returned by the static

member min() of time_point.
• The maximum time that can be represented with a clock, returned by the

static member max() of a time point.

The standard defines several clocks:

• system_clock: This uses the real-time clock of the current system to represent
time points.

• high_resolution_clock: This represents a clock that uses the shortest
possible tick period on the current system.

• steady_clock: This indicates a clock that is never adjusted. This means that,
unlike the other clocks, as the time advances, the difference between two
time points is always positive.

• utc_clock: This is a C++20 clock for Coordinated Universal Time.
• tai_clock: This is a C++20 clock for International Atomic Clock.
• gps_clock: This is a C++20 clock for GPS time.
• file_clock: This is a C++20 clock used for expressing file times.

The following example prints the precision of the first three clocks in this list (the
ones available in C++11), regardless of whether it is steady (or monotone) or not:

template <typename T>
void print_clock()
{
 std::cout << "precision: "
 << (1000000.0 * double(T::period::num)) / (T::period::den)
 << '\n';
 std::cout << "steady: " << T::is_steady << '\n';
}

print_clock<std::chrono::system_clock>();
print_clock<std::chrono::high_resolution_clock>();
print_clock<std::chrono::steady_clock>();

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

General-Purpose Utilities

[294]

A possible output is the following:

precision: 0.1
steady: 0
precision: 0.001
steady: 1
precision: 0.001
steady: 1

This means that the system_clock has a resolution of 0.1 milliseconds and is not a
monotone clock. On the other hand, the other two clocks, high_resolution_clock
and steady_clock, both have a resolution of 1 nanosecond and are monotone clocks.

The steadiness of a clock is important when measuring the execution time of a
function, because if the clock is adjusted while the function runs, the result will not
yield the actual execution time, and values can even be negative. You should rely on
a steady clock to measure the function execution time. The typical choice for that is
the high_resolution_clock, and that was the clock we used in the examples in the
How to do it... section.

When we measure the execution time, we need to retrieve the current time before
making the call and after the call returns. For that, we use the clock's now() static
method. The result is a time_point; when we subtract two time points, the result is a
duration, defined by the duration of the clock.

In order to create a reusable component that can be used to measure the execution
time of any function, we have defined a class template called perf_timer. This
class template is parameterized with the resolution we are interested in, which,
by default, is microseconds, and the clock we want to use, which, by default, is
high_resolution_clock. The class template has a single static member called
duration()—a variadic function template—that takes a function to execute and
its variable number of arguments. The implementation is relatively simple: we
retrieve the current time, invoke the function using std::invoke (so that it handles
the different mechanisms for invoking anything callable), and then retrieve the
current time again. The return value is a duration (with the defined resolution). The
following snippet shows an example of this:

auto t = perf_timer<>::duration(func, 100000000);

std::cout << std::chrono::duration<double, std::milli>(t).count()
 << "ms" << '\n';
std::cout << std::chrono::duration<double, std::nano>(t).count()
 << "ns" << '\n';

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6

[295]

It is important to note that we are not returning a number of ticks from the
duration() function, but an actual duration value. The reason is that by returning a
number of ticks, we lose the resolution and won't know what they actually represent.
It is better to call count() only when the actual count of ticks is necessary. This is
exemplified here:

auto t1 = perf_timer<std::chrono::nanoseconds>::duration(func, 100000000);
auto t2 = perf_timer<std::chrono::microseconds>::duration(func, 100000000);
auto t3 = perf_timer<std::chrono::milliseconds>::duration(func, 100000000);

std::cout
 << std::chrono::duration<double, std::micro>(t1 + t2 + t3).count()
 << "us" << '\n';

In this example, we measure the execution of three different functions, using three
different resolutions (nanoseconds, microseconds, and milliseconds). The values t1,
t2, and t3 represent durations. These make it possible to easily add them together
and convert the result to microseconds.

See also
• Expressing time intervals with chrono::duration to familiarize yourself with the

fundamentals of the C++11 chrono library and how to work with durations,
time points, and points,

• Uniformly invoking anything callable in Chapter 3, Exploring Functions, to learn
how to use std::invoke() to call functions and any callable object,

Generating hash values for custom types
The standard library provides several unordered associative containers:
std::unordered_set, std::unordered_multiset, std::unordered_map, and
std::unordered_map. These containers do not store their elements in a particular
order; instead, they are grouped in buckets. The bucket an element belongs to
depends on the hash value of the element. These standard containers use, by default,
the std::hash class template to compute the hash value. The specialization for all
basic types and also some library types is available. However, for custom types, you
must specialize the class template yourself. This recipe will show you how to do
that and also explain how a good hash value can be computed. A good hash value
can be computed fast and is uniformly dispersed across the value domain, therefore
minimizing the chances of duplicate values (collisions) existing.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

General-Purpose Utilities

[296]

Getting ready
For the examples in this recipe, we will use the following class:

struct Item
{
 int id;
 std::string name;
 double value;

 Item(int const id, std::string const & name, double const value)
 :id(id), name(name), value(value)
 {}

 bool operator==(Item const & other) const
 {
 return id == other.id && name == other.name &&
 value == other.value;
 }
};

This recipe covers hashing functionalities from the standard library. You should be
familiar with the concepts of hashes and hash functions.

How to do it...
In order to use your custom types with the unordered associative containers, you
must perform the following steps:

1. Specialize the std::hash class template for your custom type; the
specialization must be done in the std namespace.

2. Define synonyms for the argument and result type.
3. Implement the call operator so that it takes a constant reference to your type

and returns a hash value.

To compute a good hash value, you should do the following:

1. Start with an initial value, which should be a prime number (for example,
17).

2. For each field that is used to determine whether two instances of the class are
equal, adjust the hash value according to the following formula:

hashValue = hashValue * prime + hashFunc(field);

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6

[297]

3. You can use the same prime number for all fields with the preceding
formula, but it is recommended to have a different value than the initial
value (for instance, 31).

4. Use a specialization of std::hash to determine the hash value for class data
members.

Based on the steps described here, the std::hash specialization for the class Item
looks like this:

namespace std
{
 template<>
 struct hash<Item>
 {
 typedef Item argument_type;
 typedef size_t result_type;

 result_type operator()(argument_type const & item) const
 {
 result_type hashValue = 17;
 hashValue = 31 * hashValue +
 std::hash<int>{}(item.id);
 hashValue = 31 * hashValue +
 std::hash<std::string>{}(item.name);
 hashValue = 31 * hashValue +
 std::hash<double>{}(item.value);

 return hashValue;
 }
 };
}

This specialization makes it possible to use the Item class with unordered associative
containers, such as std::unordered_set. An example is provided here:

std::unordered_set<Item> set2
{
 { 1, "one"s, 1.0 },
 { 2, "two"s, 2.0 },
 { 3, "three"s, 3.0 },
};

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

General-Purpose Utilities

[298]

How it works...
The class template std::hash is a function object template whose call operator
defines a hash function with the following properties:

• Takes an argument of the template parameter type and returns a size_t value.
• Does not throw any exceptions.
• For two arguments that are equal, it returns the same hash value.
• For two arguments that are not equal, the probability of returning the same

value is very small (should be close to 1.0/std::numeric_limits<size_
t>::max()).

The standard provides specialization for all basic types, such as bool, char, int, long,
float, double (along with all the possible unsigned and long variations), and the
pointer type, but also library types including the basic_string and basic_string_
view types, unique_ptr and shared_ptr, bitset and vector<bool>, optional and
variant (in C++17), and several other types. However, for custom types, you have to
provide your own specialization. This specialization must be in the namespace std
(because that is the namespace where the class template hash is defined) and must
meet the requirements enumerated earlier.

The standard does not specify how hash values should be computed. You can use
any function you want as long as it returns the same value for equal objects, and
also has a very small chance of returning the same value for non-equal objects. The
algorithm described in this recipe was presented in the book Effective Java 2nd Edition
by Joshua Bloch.

When computing the hash value, consider only the fields that participate in
determining whether two instances of the class are equal (in other words, fields that
are used in operator==). However, you must use all these fields that are used with
operator==. In our example, all three fields of the class Item are used to determine
the equality of two objects; therefore, we must use them all to compute the hash.
The initial hash value should be nonzero, and in our example, we picked the prime
number 17. The important thing is that these values should not be zero; otherwise,
the initial fields (that is, the first in the order of processing) that produce the hash
value zero will not alter the hash (which remains zero since x * 0 + 0 = 0). For
every field used to compute the hash, we alter the current hash by multiplying its
previous value with a prime number and adding the hash of the current field. For
this purpose, we use specializations of the class template std::hash. The use of the
prime number 31 is advantageous for performance optimizations because 31 * x
can be replaced by the compiler with (x << 5) - x, which is faster. Similarly, you
can use 127, because 127 * x is equal to (x << 7) - x or 8191, because 8191 * x is
equal to (x << 13) - x.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6

[299]

If your custom type contains an array and is used to determine the equality of two
objects and, therefore, needs to be used to compute the hash, then treat the array
as if its elements were data members of the class. In other words, apply the same
algorithm described earlier to all elements of the array.

See also
• Limits and other properties of numeric types in Chapter 2, Working with Numbers

and Strings, to learn about the minimum and maximum values, as well as the
other properties of numerical types.

Using std::any to store any value
C++ does not have a hierarchical type system like other languages (such as C# or
Java) and, therefore, it can't store multiple types of a value in a single variable like it
is possible to with type Object in .NET and Java or natively in JavaScript. Developers
have long used void* for that purpose, but this only helps us store pointers to
anything and is not type-safe. Depending on the end goal, alternatives can include
templates or overloaded functions. However, C++17 has introduced a standard type-
safe container, called std::any, that can hold a single value of any type.

Getting ready
std::any has been designed based on boost::any and is available in the <any>
header. If you are familiar with boost::any and have used it in your code, you can
migrate it seamlessly to std::any.

How to do it...
Use the following operations to work with std::any:

• To store values, use the constructor or assign them directly to an std::any
variable:

std::any value(42); // integer 42
value = 42.0; // double 42.0
value = "42"s; // std::string "42"

• To read values, use the non-member function std::any_cast():
std::any value = 42.0;

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

General-Purpose Utilities

[300]

try
{
 auto d = std::any_cast<double>(value);
 std::cout << d << '\n';
}
catch (std::bad_any_cast const & e)
{
 std::cout << e.what() << '\n';
}

• To check the type of the stored value, use the member function type():
inline bool is_integer(std::any const & a)
{
 return a.type() == typeid(int);
}

• To check whether the container stores a value, use the has_value() member
function:

auto ltest = [](std::any const & a) {
 if (a.has_value())
 std::cout << "has value" << '\n';
 else
 std::cout << "no value" << '\n';
 };

std::any value;
ltest(value); // no value
value = 42;
ltest(value); // has value

• To modify the stored value, use the member functions emplace(), reset(), or
swap():

std::any value = 42;
ltest(value); // has value
value.reset();
ltest(value); // no value

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6

[301]

How it works...
std::any is a type-safe container that can hold values of any type that is (or rather
whose decayed type is) copy constructible. Storing values in the container is very
simple—you can either use one of the available constructors (the default constructor
creates a container that stores no value) or the assignment operator. However,
reading values is not directly possible, and you need to use the non-member function
std::any_cast(), which casts the stored value to the specified type. This function
throws std::bad_any_cast if the stored value has a different type than the one you
are casting to. Casting between implicitly convertible types, such as int and long, is
not possible either. std::bad_any_cast is derived from std::bad_cast; therefore, you
can catch any of these two exception types.

It is possible to check the type of the stored value using the type() member function,
which returns a type_info constant reference. If the container is empty, this function
returns typeid(void). To check whether the container stores a value, you can use the
member function has_value(), which returns true if there is a value or false if the
container is empty.

The following example shows how to check whether the container has any value,
how to check the type of the stored value, and how to read the value from the
container:

void log(std::any const & value)
{
 if (value.has_value())
 {
 auto const & tv = value.type();
 if (tv == typeid(int))
 {
 std::cout << std::any_cast<int>(value) << '\n';
 }
 else if (tv == typeid(std::string))
 {
 std::cout << std::any_cast<std::string>(value) << '\n';
 }
 else if (tv == typeid(

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

General-Purpose Utilities

[302]

 std::chrono::time_point<std::chrono::system_clock>))
 {
 auto t = std::any_cast<std::chrono::time_point<
 std::chrono::system_clock>>(value);
 auto now = std::chrono::system_clock::to_time_t(t);
 std::cout << std::put_time(std::localtime(&now), "%F %T")
 << '\n';
 }
 else
 {
 std::cout << "unexpected value type" << '\n';
 }
 }
 else
 {
 std::cout << "(empty)" << '\n';
 }
}

log(std::any{}); // (empty)
log(42); // 42
log("42"s); // 42
log(42.0); // unexpected value type
log(std::chrono::system_clock::now()); // 2016-10-30 22:42:57

If you want to store multiple values of any type, use a standard container such as
std::vector to hold values of the type std::any. An example is presented here:

std::vector<std::any> values;
values.push_back(std::any{});
values.push_back(42);
values.push_back("42"s);
values.push_back(42.0);
values.push_back(std::chrono::system_clock::now());

for (auto const v : values)
 log(v);

In this snippet, the vector called values contains elements of the std::any type,
which, in turn, contain an int, std::string, double, and std::chrono::time_point
value.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6

[303]

See also
• Using std::optional to store optional values to learn about the C++17 class

template std::optional, which manages a value that may or may not exist.
• Using std::variant as a type-safe union to learn how to use the C++17

std::variant class to represent type-safe unions.

Using std::optional to store optional
values
Sometimes, it is useful to be able to store either a value or a null if a value is not
available. A typical example for such a case is the return value of a function that may
fail to produce a return value, but this failure is not an error. For instance, think of
a function that finds and returns values from a dictionary by specifying a key. Not
finding a value is a probable case and, therefore, the function would either return a
Boolean (or an integer value, if more error codes are necessary) and have a reference
argument to hold the return value or return a pointer (raw or smart pointer). In
C++17, std::optional is a better alternative to these solutions. The class template
std::optional is a template container for storing a value that may or may not exist.
In this recipe, we will see how to use this container and its typical use cases.

Getting ready
The class template std::optional<T> was designed based on boost::optional and
is available in the <optional> header. If you are familiar with boost::optional and
have used it in your code, you can migrate it seamlessly to std::optional.

How to do it...
Use the following operations to work with std::optional:

• To store a value, use the constructor or assign the value directly to an
std::optional object:

std::optional<int> v1; // v1 is empty
std::optional<int> v2(42); // v2 contains 42
v1 = 42; // v1 contains 42
std::optional<int> v3 = v2; // v3 contains 42

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

General-Purpose Utilities

[304]

• To read the stored value, use operator* or operator->:
std::optional<int> v1{ 42 };
std::cout << *v1 << '\n'; // 42
std::optional<foo> v2{ foo{ 42, 10.5 } };
std::cout << v2->a << ", "
 << v2->b << '\n'; // 42, 10.5

• Alternatively, use the member functions value() and value_or() to read the
stored value:

std::optional<std::string> v1{ "text"s };
std::cout << v1.value()
 << '\n'; // text

std::optional<std::string> v2;
std::cout << v2.value_or("default"s)
 << '\n'; // default

• To check whether the container stores a value, use a conversion operator to
bool or the member function has_value():

struct foo
{
 int a;
 double b;
};

std::optional<int> v1{ 42 };
if (v1) std::cout << *v1 << '\n';

std::optional<foo> v2{ foo{ 42, 10.5 } };
if (v2.has_value())
 std::cout << v2->a << ", " << v2->b << '\n';

• To modify the stored value, use the member functions emplace(), reset(), or
swap():

std::optional<int> v{ 42 }; // v contains 42
v.reset(); // v is empty

Use std::optional to model any of the following:

• Return values from functions that may fail to produce a value:
template <typename K, typename V>
std::optional<V> find(int const key,

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6

[305]

 std::map<K, V> const & m)
{
 auto pos = m.find(key);
 if (pos != m.end())
 return pos->second;
 return {};
}

std::map<int, std::string> m{
 { 1, "one"s },{ 2, "two"s },{ 3, "three"s } };

auto value = find(2, m);
if (value) std::cout << *value << '\n'; // two

value = find(4, m);
if (value) std::cout << *value << '\n';

• Parameters to functions that are optional:
std::string extract(std::string const & text,
 std::optional<int> start,
 std::optional<int> end)
{
 auto s = start.value_or(0);
 auto e = end.value_or(text.length());
 return text.substr(s, e - s);
}

auto v1 = extract("sample"s, {}, {});
std::cout << v1 << '\n'; // sample

auto v2 = extract("sample"s, 1, {});
std::cout << v2 << '\n'; // ample

auto v3 = extract("sample"s, 1, 4);
std::cout << v3 << '\n'; // amp

• Class data members that are optional:
struct book
{
 std::string title;
 std::optional<std::string> subtitle;
 std::vector<std::string> authors;

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

General-Purpose Utilities

[306]

 std::string publisher;
 std::string isbn;
 std::optional<int> pages;
 std::optional<int> year;
};

How it works...
The class template std::optional is a class template that represents a container
for an optional value. If the container does have a value, that value is stored as
part of the optional object; no heap allocations and pointers are involved. The
std::optional class template is conceptually implemented like this:

template <typename T>
class optional
{
 bool _initialized;
 std::aligned_storage_t<sizeof(t), alignof(T)> _storage;
};

The std::aligned_storage_t alias template allows us to create uninitialized chunks
of memory that can hold objects of a given type. The class template std::optional
does not contain a value if it was default constructed, or if it was copy constructed or
copy assigned from another empty optional object or from an std::nullopt_t value.
This is a helper type, implemented as an empty class, that indicates an optional
object with an uninitialized state.

The typical use for an optional type (called nullable in other programming
languages) is the return type from a function that may fail. Possible solutions for this
situation include the following:

• Return an std::pair<T, bool>, where T is the type of the return value; the
second element of the pair is a Boolean flag that indicates whether the value
of the first element is valid or not.

• Return a bool, take an extra parameter of the type T&, and assign a value to
this parameter only if the function succeeds.

• Return a raw or smart pointer type, and use nullptr to indicate a failure.

The class template std::optional is a better approach because, on one hand, it does
not involve output parameters to the function (which is unnatural for returning
values) and does not require working with pointers, and, on the other hand, it better
encapsulates the details of an std::pair<T, bool>. However, optional objects can
also be used for class data members, and compilers are able to optimize the memory
layout for efficient storage.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6

[307]

When you use std::optional to pass optional arguments to a function, you need to
understand that it may incur creating copies, which can be a performance issue if
large objects are involved. Let's consider the following example of a function that has
a constant reference to the std::optional parameter:

struct bar { /* details */ };

void process(std::optional<bar> const & arg)
{
 /* do something with arg */
}

std::optional<bar> b1{ bar{} };
bar b2{};

process(b1); // no copy
process(b2); // copy construction

The first call to process() does not involve any additional object construction
because we pass an std::optional<bar> object. The second call, however, will
involve the copy construction of a bar object, because b2 is a bar and needs to be
copied to an std::optional<bar>; a copy is made even if bar has move semantics
implemented. If bar was a small object, this shouldn't be of great concern, but for
large objects, it can prove to be a performance issue. The solution to avoid this
depends on the context, and can involve creating a second overload that takes a
constant reference to bar, or entirely avoiding using std::optional.

See also
• Using std::any to store any value to learn how to use the C++17 class std::any,

which represents a type-safe container for single values of any type,
• Using std::variant as a type-safe union to learn how to use the C++17

std::variant class to represent type-safe unions.

The class template std::optional cannot be used to return
polymorphic types. If you write, for instance, a factory method
that needs to return different types from a hierarchy of types,
you cannot rely on std::optional and need to return a pointer,
preferably an std::unique_ptr or std::shared_ptr (depending
if ownership of the object needs to be shared or not).

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

General-Purpose Utilities

[308]

Using std::variant as a type-safe union
In C++, union is a special class type that, at any point, holds a value of one of its
data members. Unlike regular classes, unions cannot have base classes, nor can they
be derived, and they cannot contain virtual functions (that would not make sense
anyway). Unions are mostly used to define different representations of the same
data. However, unions only work for types that are Plain Old Data (POD). If a union
contains values of non-POD types, then these members require explicit construction
with a placement new and explicit destruction, which is cumbersome and error-
prone. In C++17, a type-safe union is available in the form of a standard library class
template called std::variant. In this recipe, you will learn how
to use it to model alternative values.

Getting ready
Although discriminated unions are not directly discussed in this recipe, being
familiar with them will help us understand the design of, and the way, variant
works better.

The class template std::variant was designed based on boost::variant, and is
available in the <variant> header. If you are familiar with boost::variant and have
used it in your code, you can migrate your code with little effort to use the standard
variant class template.

How to do it...
Use the following operations to work with std::variant:

• To modify the stored value, use the member functions emplace() or swap():
struct foo
{
 int value;
 explicit foo(int const i) : value(i) {}
};

std::variant<int, std::string, foo> v = 42; // holds int
v.emplace<foo>(42); // holds foo

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6

[309]

• To read the stored values, use the non-member functions std::get or
std::get_if:

std::variant<int, double, std::string> v = 42;
auto i1 = std::get<int>(v);
auto i2 = std::get<0>(v);

try
{
 auto f = std::get<double>(v);
}
catch (std::bad_variant_access const & e)
{
 std::cout << e.what() << '\n'; // Unexpected index
}

• To store a value, use the constructor or assign a value directly to a variant
object:

std::variant<int, double, std::string> v;
v = 42; // v contains int 42
v = 42.0; // v contains double 42.0
v = "42"; // v contains string "42"

• To check what is the stored alternative, use the member function index():
std::variant<int, double, std::string> v = 42;
static_assert(std::variant_size_v<decltype(v)> == 3);
std::cout << "index = " << v.index() << '\n';
v = 42.0;
std::cout << "index = " << v.index() << '\n';
v = "42";
std::cout << "index = " << v.index() << '\n';

• To check whether a variant holds an alternative, use the non-member
function std::holds_alternative():

std::variant<int, double, std::string> v = 42;
std::cout << "int? " << std::boolalpha
 << std::holds_alternative<int>(v)
 << '\n'; // int? true

v = "42";
std::cout << "int? " << std::boolalpha
 << std::holds_alternative<int>(v)
 << '\n'; // int? false

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

General-Purpose Utilities

[310]

• To define a variant whose first alternative is not default constructible, use
std::monostate as the first alternative (in this example, foo is the same class
we used earlier):

std::variant<std::monostate, foo, int> v;
v = 42; // v contains int 42
std::cout << std::get<int>(v) << '\n';
v = foo{ 42 }; // v contains foo{42}
std::cout << std::get<foo>(v).value << '\n';

• To process the stored value of a variant and do something depending on the
type of the alternative, use std::visit():

std::variant<int, double, std::string> v = 42;
std::visit(
 [](auto&& arg) {std::cout << arg << '\n'; },
 v);

How it works...
std::variant is a class template that models a type-safe union, holding a value of
one of its possible alternatives at any given time. In some rare cases, though, it is
possible that a variant object does not store any value. std::variant has a member
function called valueless_by_exception() that returns true if the variant does not
hold a value, which is possible only in case of an exception during initialization;
therefore, the name of the function.

The size of an std::variant object is as large as its largest alternative. A variant does
not store additional data. The value stored by the variant is allocated within the
memory representation of the object itself.

A variant can hold multiple alternatives of the same type, and also hold different
constant- and volatile-qualified versions of the same time. On the other hand, it
cannot hold an alternative of the type void, or alternatives of array and reference
types. On the other hand, the first alternative must always be default constructible.
The reason for this is that, just like discriminated unions, a variant is default
initialized with the value of its first alternative. If the first alternative type is
not default constructible, then the variant must use std::monostate as the first
alternative. This is an empty type indented for making variants default constructible.

It is possible to query a variant at compile time for its size (that is, the number of
alternatives it defines) and for the type of an alternative specified by its zero-based
index. On the other hand, you can query the index of the currently held alternative at
runtime using the member function index().

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6

[311]

There's more...
A typical way of manipulating the content of a variant is through visitation. This is
basically the execution of an action based on the alternative hold by the variant. Since
it is a larger topic, it is addressed separately in the next recipe.

See also
• Using std::any to store any value to learn how to use the C++17 class std::any,

which represents a type-safe container for single values of any type,
• Using std::optional to store optional values to learn about the C++17 class

template std::optional, which manages a value that may or may not exist.
• Visiting a std::variant to understand how to perform type matching and

execute different actions based on the type of a variant's alternatives.

Visiting an std::variant
std::variant is a new standard container that was added to C++17 based on the
boost.variant library. A variant is a type-safe union that holds the value of one of its
alternative types. Although in the previous recipe we have seen various operations
with variants, the variants we used were rather simple, with POD types mostly,
which is not the actual purpose for which std::variant was created. Variants are
intended to be used for holding alternatives of similar non-polymorphic and non-
POD types. In this recipe, we will see a more real-world example of using variants
and will learn how to visit variants.

Getting ready
For this recipe, you should be familiar with the std::variant type. It is recommended
that you first read the previous recipe, Using std::variant as a type-safe union.

To explain how variant visitation can be done, we will consider a variant for
representing a media DVD. Let's suppose we want to model a store or library that
has DVDs that could contain either music, a movie, or software. However, these
options are not modeled as a hierarchy with common data and virtual functions,
but rather as non-related types that may have similar properties, such as a title. For
simplicity, we'll consider the following properties:

• For a movie: Title and length (in minutes)
• For an album: Title, artist name, and a list of tracks (each track having a title

and length in seconds)

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

General-Purpose Utilities

[312]

• For software: Title and manufacturer

The following code shows a simple implementation of these types, without
any functions, because that is not relevant to the visitation of a variant holding
alternatives of these types:

enum class Genre { Drama, Action, SF, Comedy };

struct Movie
{
 std::string title;
 std::chrono::minutes length;
 std::vector<Genre> genre;
};

struct Track
{
 std::string title;
 std::chrono::seconds length;
};

struct Music
{
 std::string title;
 std::string artist;
 std::vector<Track> tracks;
};

struct Software
{
 std::string title;
 std::string vendor;
};

using dvd = std::variant<Movie, Music, Software>;

With these defined, let's start looking at how visiting variants should be performed.

How to do it...
To visit a variant, you must provide one or more actions for the possible alternatives
of the variant. There are several types of visitors that are used for different purposes:

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6

[313]

• A void visitor that does not return anything, but has side effects. The
following example prints the title of each DVD to the console:

for (auto const & d : dvds)
{
 std::visit([](auto&& arg) {
 std::cout << arg.title << '\n'; },
 d);
}

• A visitor that returns a value; the value should have the same type,
regardless of the current alternative of the variant, or can be itself a variant.
In the following example, we visit a variant and return a new variant of
the same type that has the title property from any of its alternatives
transformed to uppercase letters:

for (auto const & d : dvds)
{
 dvd result = std::visit(
 [](auto&& arg) -> dvd
 {
 auto cpy { arg };
 cpy.title = to_upper(cpy.title);
 return cpy;
 },
 d);

 std::visit(
 [](auto&& arg) {
 std::cout << arg.title << '\n'; },
 result);
}

• A visitor that does type matching (which can either be a void or a value-
returning visitor) implemented by providing a function object that has an
overloaded call operator for each alternative type of the variant:

struct visitor_functor
{
 void operator()(Movie const & arg) const
 {
 std::cout << "Movie" << '\n';
 std::cout << " Title: " << arg.title << '\n';
 std::cout << " Length: " << arg.length.count()
 << "min" << '\n';

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

General-Purpose Utilities

[314]

 }

 void operator()(Music const & arg) const
 {
 std::cout << "Music" << '\n';
 std::cout << " Title: " << arg.title << '\n';
 std::cout << " Artist: " << arg.artist << '\n';

 for (auto const & t : arg.tracks)
 std::cout << " Track: " << t.title
 << ", " << t.length.count()
 << "sec" << '\n';
 }

 void operator()(Software const & arg) const
 {
 std::cout << "Software" << '\n';
 std::cout << " Title: " << arg.title << '\n';
 std::cout << " Vendor: " << arg.vendor << '\n';
 }
};

for (auto const & d : dvds)
{
 std::visit(visitor_functor(), d);
}

• A visitor that does type matching that's implemented by providing a lambda
expression that performs an action based on the type of the alternative:

for (auto const & d : dvds)
{
 std::visit([](auto&& arg) {
 using T = std::decay_t<decltype(arg)>;
 if constexpr (std::is_same_v<T, Movie>)
 {
 std::cout << "Movie" << '\n';
 std::cout << " Title: " << arg.title << '\n';
 std::cout << " Length: " << arg.length.count()
 << "min" << '\n';

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6

[315]

 }
 else if constexpr (std::is_same_v<T, Music>)
 {
 std::cout << "Music" << '\n';
 std::cout << " Title: " << arg.title << '\n';
 std::cout << " Artist: " << arg.artist << '\n';

 for (auto const & t : arg.tracks)
 std::cout << " Track: " << t.title
 << ", " << t.length.count()
 << "sec" << '\n';
 }
 else if constexpr (std::is_same_v<T, Software>)
 {
 std::cout << "Software" << '\n';
 std::cout << " Title: " << arg.title << '\n';
 std::cout << " Vendor: " << arg.vendor << '\n';
 }
 },
 d);
}

How it works...
A visitor is a callable object (a function, a lambda expression, or a function object)
that accepts every possible alternative from a variant. Visitation is done by invoking
std::visit() with the visitor and one or more variant objects. The variants do not
have to be of the same type, but the visitor must be able to accept every possible
alternative from all the variants it is invoked for. In the examples earlier, we visited
a single variant object, but visiting multiple variants does not imply anything more
than passing them as arguments to std::visit().

When you visit a variant, the callable object is invoked with the value currently
stored in the variant. If the visitor does not accept an argument of the type stored in
the variant, the program is ill-formed. If the visitor is a function object, then it must
overload its call operator for all the possible alternative types of the variant. If the
visitor is a lambda expression, it should be a generic lambda, which is basically a
function object with a call operator template, instantiated by the compiler with the
actual type that it is invoked with.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

General-Purpose Utilities

[316]

Examples of both approaches were shown in the previous section for a type-
matching visitor. The function object in the first example is straightforward and
should not require additional explanations. On the other hand, the generic lambda
expression uses constexpr if to select a particular if branch based on the type of the
argument at compile time. The result is that the compiler will create a function object
with an operator call template and a body that contains constexpr if statements; when
it instantiates that function template, it will produce an overload for each possible
alternative type of the variant, and in each of these overloads, it will select only the
constexpr if branch that matches the type of the call operator argument. The result is
conceptually equivalent to the implementation of the visitor_functor class.

See also
• Using std::any to store any value to learn how to use the C++17 class std::any,

which represents a type-safe container for single values of any type,
• Using std::optional to store optional values to learn about the C++17 class

template std::optional, which manages a value that may or may not exist,
• Using std::variant as a type-safe union to see how to use the C++17

std::variant class to represent type-safe unions,

Using std::span for contiguous
sequences of objects
In C++17, the std::string_view type was added to the standard library. This is an
object that represents a view over a constant contiguous sequence of characters.
The view is typically implemented with a pointer to the first element of the
sequence and a length. Strings are one of the data types that are most used in any
programming language, and having a non-owning view that does not allocate
memory, avoids copies, and has some operations faster than std::string, which
is an important benefit. However, a string is just a special vector of characters with
operations specific for text. Therefore, it makes sense to have a type that is a view of
a contiguous sequence of objects, regardless of their type. This is what the std::span
class template in C++20 represents. We could say that std::span is to std::vector
and array types what std::string_view is to std::string.

Getting ready
The std::span class template is available in the header .

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6

[317]

How to do it…
Prefer to use std::span<T> instead of a pointer and size pair as you typically would
with C-like interfaces. In other words, replace functions like this:

void func(int* buffer, size_t length) { /* ... */ }

with this:

void func(std::span<int> buffer) { /* ... */ }

When working with std::span, you can do the following:

• Create a span with a compile-time length (called static extent) by specifying
the number of elements in the span:

int arr[] = {1, 1, 2, 3, 5, 8, 13};
std::span<int, 7> s {arr};

• Create a span with a runtime length (called dynamic extent) by not specifying
the number of elements in the span:

int arr[] = {1, 1, 2, 3, 5, 8, 13};
std::span<int> s {arr};

• You can use a span in a range-based for loop:
void func(std::span<int> buffer)
{
 for(auto const e : buffer)
 std::cout << e << ' ';
 std::cout << '\n';
}

• You can access the elements of a span using the methods front(), back(),
data() and the operator[]:

int arr[] = {1, 1, 2, 3, 5, 8, 13};
std::span<int, 7> s {arr};
std::cout << s.front() << " == " << s[0] << '\n'; // 1 == 1
std::cout << s.back() << " == " << s[s.size() - 1] << '\n'; //
13 == 13

• You can obtain sub-spans of a span with the methods first(), last(), and
subspan():

std::span<int> first_3 = s.first(3);
func(first_3); // 1 1 2.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

General-Purpose Utilities

[318]

std::span<int> last_3 = s.last(3);
func(last_3); // 5 8 13
std::span<int> mid_3 = s.subspan(2, 3);
func(mid_3); // 2 3 5

How it works…
The std::span class template is not a container of objects but a lightweight wrapper
that defines a view of a contiguous sequence of objects. Initially, the span was called
array_view, which some argue was a better name, both because it clearly indicates
that the type is a non-owning view of a sequence and because it would be consistent
with the name of string_view. However, the type was adopted in the standard
library under the name span.

Although the standard does not specify the implementation details, the span is
typically implemented by storing a pointer to the first element of the sequence and
a length, representing the number of elements in the view. A span can, therefore, be
used to define a non-owning view over (but not only) an std::vector, std::array,
T[], or T*. However, it cannot be used with lists or associative containers (for
instance, std::list, std::map, or std::set) because these are not containers for a
contiguous sequence of elements.

The span can have either a compile-time size or a runtime size. When the number of
elements in the span is specified at compile-time, we have a span with a static extent
(compile-time size). If the number of elements is not specified, but determined at
runtime, we have a dynamic extent.

The std::span class has a simple interface, mainly consisting of the following
members:

begin(), end()

cbegin(), cend()

Mutable and constant iterators to the first and the one-past
last element of the sequence.

rbegin(), rend()

cbegin(), crend()

Mutable and constant reverse iterators to the beginning and
end of the sequence.

front(), back() Accesses the first and last element of the sequence.
data() Returns a pointer to the beginning of the sequence of

elements.
operator[] Accesses an element of the sequence specified by its index.
size() Retrieves the number of elements in the sequence.
size_bytes() Retrieves the size of the sequence in bytes.
empty() Checks if the sequence is empty.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6

[319]

first() Retrieves a sub-span with the first N elements of the sequence.
last() Retrieves a sub-span with the last N elements of the sequence.
subspan() Retrieves a sub-span with N elements starting from a specified

offset. If the count N is not specified, it returns a span with all
the elements from offset until the end of the sequence.

A span is not intended to be used with general-purpose algorithms that work with a
pair of iterators to the beginning and the end of a range (such as sort, copy, find_if,
and so on), nor as a replacement for standard containers. Its main purpose is to
build better interfaces than the C-like ones where a pointer and a size are passed to a
function. The user may pass a wrong value for the size, which could end in accessing
memory beyond the bounds of the sequence. The span provides safety and bounds
checking. It is also a good alternative to passing to a const reference to a function to
std::vector<T> (std::vector<T> const &). The span does not own its elements and
is small enough to be passed by value (you should not pass spans by reference or
constant reference).

Unlike std::string_view, which does not support changing the value of the
elements in the sequence, the std::span defines a mutable view and supports
modifying its elements. For this purpose, functions such as front(), back(), and
operator[] return a reference.

See also
• Using string_view instead of constant string references in Chapter 2, Working

with Numbers and Strings, to learn how to use std::string_view to improve
performance in some scenarios when working with strings.

Registering a function to be called when
a program exits normally
It is common that a program, upon exit, must clean up code to release resources,
write something to a log, or do some other end operation. The standard library
provides two utility functions that enable us to register functions to be called when
a program terminates normally, either by returning from main() or through a call
to std::exit() or std::quick_exit(). This is particularly useful for libraries that
need to perform an action before the program is terminated, without relying on the
user to explicitly call an end function. In this recipe, you will learn how to install exit
handlers and how they work..

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

General-Purpose Utilities

[320]

Getting ready
All the functions discussed in this recipe, exit(), quick_exit(), atexit(), and at_
quick_exit(), are available in the namespace std in the header <cstdlib>.

How to do it...
To register functions to be called upon termination of a program, you should use the
following:

• std::atexit() to register functions to be invoked when they return from
main() or when a call to std::exit() is made:

void exit_handler_1()
{
 std::cout << "exit handler 1" << '\n';
}

void exit_handler_2()
{
 std::cout << "exit handler 2" << '\n';
}

std::atexit(exit_handler_1);
std::atexit(exit_handler_2);
std::atexit([]() {std::cout << "exit handler 3" << '\n'; });

• std::at_quick_exit() to register functions to be invoked when a call to
std::quick_exit() is made:

void quick_exit_handler_1()
{
 std::cout << "quick exit handler 1" << '\n';
}

void quick_exit_handler_2()
{
 std::cout << "quick exit handler 2" << '\n';
}

std::at_quick_exit(quick_exit_handler_1);
std::at_quick_exit(quick_exit_handler_2);
std::at_quick_exit([]() {
 std::cout << "quick exit handler 3" << '\n'; });

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6

[321]

How it works...
The exit handlers, regardless of the method they are registered with, are called
only when the program terminates normally or quickly. If termination is done in
an abnormal way, via a call to std::terminate() or std::abort(), none of them
are called. If any of these handlers exits via an exception, then std::terminate()
is called. Exit handlers must not have any parameters and must return void. Once
registered, an exit handler cannot be unregistered.

A program can install multiple handlers. The standard guarantees that at least 32
handlers can be registered with each method, although actual implementations
can support any higher number. Both std::atexit() and std::at_quick_exit()
are thread-safe and, therefore, can be called simultaneously from different threads
without incurring race conditions.

If multiple handlers are registered, then they are called in the reverse order of their
registration. The following table shows the output of a program that registered the
exit handlers, as shown in the previous section, when the program terminates via an
std::exit() call and an std::quick_exit() call:

std::exit(0); std::quick_exit(0);

exit handler 3
exit handler 2
exit handler 1

quick exit handler 3
quick exit handler 2
quick exit handler 1

On the other hand, on normal termination of the program, destruction of objects
with local storage duration, destruction of objects with static storage duration, and
calls to registered exit handlers are done concurrently. However, it is guaranteed that
exit handlers registered before the construction of a static object are called after the
destruction of that static object, and exit handlers registered after the construction
of a static object are called before the destruction of that static object. To better
exemplify this, let's consider the following class:

struct static_foo
{
 ~static_foo() { std::cout << "static foo destroyed!" << '\n'; }
 static static_foo* instance()
 {
 static static_foo obj;
 return &obj;
 }
};

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

General-Purpose Utilities

[322]

In this context, we will refer to the following code snippet:

std::atexit(exit_handler_1);
static_foo::instance();
std::atexit(exit_handler_2);
std::atexit([]() {std::cout << "exit handler 3" << '\n'; });

std::exit(42);

When the preceding code snippet is executed, exit_handler_1 is registered before
the creation of the static object static_foo. On the other hand, exit_handler_2 and
the lambda expression are both registered, in that order, after the static object was
constructed. As a result, the order of calls at normal termination is as follows:

1. Lambda expression
2. exit_handler_2

3. Destructor of static_foo
4. exit_handler_1

The output for the preceding program is listed here:

exit handler 3
exit handler 2
static foo destroyed!
exit handler 1

When std::at_quick_exit() is used, the registered functions are not called in the
case of normal program termination. If a function needs to be called in that case, you
must register it with std::atexit().

See also
• Using lambdas with standard algorithms in Chapter 3, Exploring Functions, to

explore the basics of lambda expressions and how you can utilize them with
the standard algorithms.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6

[323]

Using type traits to query properties
of types
Template metaprogramming is a powerful feature of the language that enables us to
write and reuse generic code that works with all types. In practice, however, it is often
necessary that generic code should work differently, or not at all, with different types,
either through intent, or for semantic correctness, performance, or other reasons. For
example, you may want a generic algorithm to be implemented differently for POD
and non-POD types, or you want a function template to be instantiated only with
integral types. C++11 provides a set of type traits to help with this.

Type traits are basically meta-types that provide information about other types. The
type traits library contains a long list of traits for querying type properties (such as
checking whether a type is an integral type or whether two types are the same), but
also for performing type transformation (such as removing the const and volatile
qualifiers or adding a pointer to a type). We have used type traits in several recipes
earlier in this book; however, in this recipe, we will look into what the type traits are
and how they work.

Getting ready
All type traits introduced in C++11 are available in the namespace std in the
<type_traits> header.

Type traits can be used in many metaprogramming contexts, and throughout
this book, we have seen them used in various situations. In this recipe, we will
summarize some of these use cases and see how type traits work.

In this recipe, we will discuss full and partial template specialization. Familiarity
with these concepts will help you better understand the way type traits work.

How to do it...
The following list shows various situations where type traits are used to achieve
various design goals:

• With enable_if, to define preconditions for the types a function template can
be instantiated with:

template <typename T,
 typename = typename std::enable_if_t<
 std::is_arithmetic_v<T> > >
T multiply(T const t1, T const t2)

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

General-Purpose Utilities

[324]

{
 return t1 * t2;
}

auto v1 = multiply(42.0, 1.5); // OK
auto v2 = multiply("42"s, "1.5"s); // error

• With static_assert, to ensure that invariants are met:
template <typename T>
struct pod_wrapper
{
 static_assert(std::is_standard_layout_v<T> &&
 std::is_trivial_v<T>,
 "Type is not a POD!");
 T value;
};

pod_wrapper<int> i{ 42 }; // OK
pod_wrapper<std::string> s{ "42"s }; // error

• With std::conditional, to select between types:
template <typename T>
struct const_wrapper
{
 typedef typename std::conditional_t<
 std::is_const_v<T>,
 T,
 typename std::add_const_t<T>> const_type;
 };

static_assert(
 std::is_const_v<const_wrapper<int>::const_type>);

static_assert(
 std::is_const_v<const_wrapper<int const>::const_type>);

• With constexpr if, to enable the compiler to generate different code based
on the type the template is instantiated with:

template <typename T>
auto process(T arg)
{
 if constexpr (std::is_same_v<T, bool>)

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6

[325]

 return !arg;
 else if constexpr (std::is_integral_v<T>)
 return -arg;
 else if constexpr (std::is_floating_point_v<T>)
 return std::abs(arg);
 else
 return arg;
}

auto v1 = process(false); // v1 = true
auto v2 = process(42); // v2 = -42
auto v3 = process(-42.0); // v3 = 42.0
auto v4 = process("42"s); // v4 = "42"

How it works...
Type traits are classes that provide meta-information about types or can be used to
modify types. There are actually two categories of type traits:

• Traits that provide information about types, their properties, or their
relations (such as is_integer, is_arithmetic, is_array, is_enum, is_class,
is_const, is_trivial, is_standard_layout, is_constructible, is_same, and
so on). These traits provide a constant bool member called value.

• Traits that modify properties of types (such as add_const, remove_const,
add_pointer, remove_pointer, make_signed, make_unsigned, and so on). These
traits provide a member typedef called type that represents the transformed
type.

Both of these categories of types have been shown in the How to do it... section;
examples have been discussed and explained in detail in other recipes. For
convenience, a short summary is provided here:

• In the first example, the function template multiply() is allowed to be
instantiated only with arithmetic types (that is, integral or floating point);
when instantiated with a different kind of type, enable_if does not define a
typedef member called type, which produces a compilation error.

• In the second example, pod_wrapper is a class template that is supposed to be
instantiated only with POD types. A static_assert declaration produces a
compilation error if a non-POD type is used (it is either not trivial or not in
the standard layout).

• In the third example, const_wrapper is a class template that provides a
typedef member called const_type that represents a const-qualified type.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

General-Purpose Utilities

[326]

• In this example, we used std::conditional to select between two types at
compile time: if the type parameter T is already a const type, then we just
select T. Otherwise, we use the add_const type trait to qualify the type with
the const specifier.

• If the fourth example, process() is a function template that contains a series
of if constexpr branches. Based on the category of type, queried at compile
time with various type traits (is_same, is_integer, is_floating_point),
the compiler selects one branch only to be put into the generated code and
discards the rest. Therefore, a call such as process(42) will produce the
following instantiation of the function template:

int process(int arg)
{
 return -arg;
}

Type traits are implemented by providing a class template and a partial or full
specialization for it. The following represent conceptual implementations for some
type traits:

• The is_void() method indicates whether a type is void; this uses full
specialization:

template <typename T>
struct is_void
{ static const bool value = false; };

template <>
struct is_void<void>
{ static const bool value = true; };

• The is_pointer() method indicates whether a type is a pointer to an object
or a pointer to a function; this uses partial specialization:

template <typename T>
struct is_pointer
{ static const bool value = false; };

template <typename T>
struct is_pointer<T*>
{ static const bool value = true; };

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6

[327]

Note that, in C++20, the concept of the POD type has been deprecated. This also
includes the deprecation of the std::is_pod type trait. A POD type is a type that is
both trivial (has special members that are compiler-provided or explicitly defaulted
and occupy a contiguous memory area) and has a standard layout (a class that does
not contain language features, such as virtual functions, which are incompatible
with the C language, and all members have the same access control). Therefore, as
of C++20, the more fine-grained concepts of trivial and standard layout types are
preferred. This also implies that you should no longer use std::is_pod, but std::is_
trivial and, respectively, std::is_standard_layout.

There's more...
Type traits are not limited to what the standard library provides. Using similar
techniques, you can define your own type traits to achieve various goals. In the next
recipe, Writing your own type traits, we will learn how to define and use our own type
traits.

See also
• Selecting branches at compile time with constexpr if in Chapter 4, Preprocessing and

Compilation, to learn how to compile only parts of your code with constexpr
if statements.

• Conditionally compiling classes and functions with enable_if in Chapter 4,
Preprocessing and Compilation, to learn about SFINAE and how to use it to
specify type constraints for templates.

• Performing compile-time assertion checks with static_assert in Chapter 4,
Preprocessing and Compilation, to see how to define assertions that are verified
at compile time.

• Writing your own type traits to learn how to define your own type traits.
• Using std::conditional to choose between types to understand how to perform

a compile-time selection of types on a compile-time Boolean expression.

Writing your own type traits
In the previous recipe, we learned what type traits are, what traits the standard
provides, and how they can be used for various purposes. In this recipe, we'll go a
step further and take a look at how to define our own custom traits.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

General-Purpose Utilities

[328]

Getting ready
In this recipe, we will learn how to solve the following problem: we have several
classes that support serialization. Without getting into any details, let's suppose some
provide a "plain" serialization to a string (regardless of what that can mean), whereas
others do it based on a specified encoding. The end goal is to create a single, uniform
API for serializing the objects of any of these types. For this, we will consider the
following two classes: foo, which provides a simple serialization, and bar, which
provides serialization with encoding:

struct foo
{
 std::string serialize()
 {
 return "plain"s;
 }
};

struct bar
{
 std::string serialize_with_encoding()
 {
 return "encoded"s;
 }
};

It is recommended that you read the Using type traits to query properties of types recipe
first, before you continue with this one.

How to do it...
Implement the following class and function templates:

• A class template called is_serializable_with_encoding containing a static
const bool variable set to false:

template <typename T>
struct is_serializable_with_encoding
{
 static const bool value = false;
};

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6

[329]

• A full specialization of the is_serializable_with_encoding template for the
class bar that has the static const bool variable set to true:

template <>
struct is_serializable_with_encoding<bar>
{
 static const bool value = true;
};

• A class template called serializer, containing a static template method
called serialize, that takes an argument of the template type T and calls
serialize() for that object:

template <bool b>
struct serializer
{
 template <typename T>
 static auto serialize(T& v)
 {
 return v.serialize();
 }
};

• A full specialization class template for true, whose serialize() static
method calls serialize_with_encoding() for the argument:

template <>
struct serializer<true>
{
 template <typename T>
 static auto serialize(T& v)
 {
 return v.serialize_with_encoding();
 }
};

• A function template called serialize(), which uses the serializer class
templates defined previously and the is_serializable_with_encoding
type trait, to select which of the actual serialization methods (plain or with
encoding) should be called:

template <typename T>
auto serialize(T& v)
{
 return serializer<is_serializable_with_encoding<T>::value>::
 serialize(v);
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

General-Purpose Utilities

[330]

How it works...
is_serializable_with_encoding is a type trait that checks whether a type T is
serializable with (a specified) encoding. It provides a static member of the type
bool called value that is equal to true if T supports serialization with encoding, or
false otherwise. It is implemented as a class template with a single type template
parameter T; this class template is fully specialized for the types that support
encoded serialization—in this particular example—for the class bar:

std::cout <<
 is_serializable_with_encoding<foo>::value << '\n'; // false
std::cout <<
 is_serializable_with_encoding<bar>::value << '\n'; // true
std::cout <<
 is_serializable_with_encoding<int>::value << '\n'; // false
std::cout <<
 is_serializable_with_encoding<string>::value << '\n'; // false

The serialize() method is a function template that represents a common API for
serializing objects that support either type of serialization. It takes a single argument
of the type template parameter T and uses a helper class template serializer to call
either the serialize() or the serialize_with_encoding() method of its argument.

The serializer type is a class template with a single, non-type template parameter
of the type bool. This class template contains a static function template called
serialize(). This function template takes a single parameter of the type template
parameter T, calls serialize() on the argument, and returns the value returned
from that call. The serializer class template has a full specialization for the value
true of its non-type template parameter. In this specialization, the function template
serialize() has an unchanged signature, but calls serialize_with_encoding()
instead of serialize().

The selection between using the generic or the fully specialized class template
is done in the serialize() function template using the is_serializable_with_
encoding type trait. The static member value of the type trait is used as the argument
for the non-type template parameter of serializer.

With all that defined, we can write the following code:

foo f;
bar b;

std::cout << serialize(f) << '\n'; // plain
std::cout << serialize(b) << '\n'; // encoded

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6

[331]

In this snippet, calling serialize() with a foo argument will return the string plain,
while calling serialize() with a bar argument will return the string encoded.

See also
• Using type traits to query properties of types to explore a C++ meta-

programming technique that allows us to inspect and transform properties of
types.

• Using std::conditional to choose between types to understand how to perform
a compile-time selection of types on a compile-time Boolean expression.

Using std::conditional to choose
between types
In the previous recipes, we looked at some of the features from the type support
library, and type traits in particular. Related topics have been discussed in other
parts of this book, such as using std::enable_if to hide function overloads, in
Chapter 4, Preprocessing and Compilation, and std::decay to remove const and
volatile qualifiers, when we discussed visiting variants, also in this chapter.
Another type transformation feature worth discussing to a larger extent is
std::conditional, which enables us to choose between two types at compile time,
based on a compile-time Boolean expression. From this recipe, you will learn how it
works and how to use it through several examples.

Getting ready
It is recommended that you first read the Using type traits to query properties of types
recipe, earlier in this chapter.

How to do it...
The following is a list of examples that show you how to use std::conditional (and
std::conditional_t) to choose between two types at compile time:

• In a type alias or typedef, to select between a 32-bit and 64-bit integer type,
based on the platform (the pointer size is 4 bytes on 32-bit platforms and 8
bytes on 68-bit platforms):

using long_type = std::conditional_t<
 sizeof(void*) <= 4, long, long long>;

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

General-Purpose Utilities

[332]

auto n = long_type{ 42 };

• In an alias template, to select between an 8-, 16-, 32-, or 64-bit integer type,
based on the user specification (as a non-type template parameter):

template <int size>
using number_type =
 typename std::conditional_t<
 size<=1,
 std::int8_t,
 typename std::conditional_t<
 size<=2,
 std::int16_t,
 typename std::conditional_t<
 size<=4,
 std::int32_t,
 std::int64_t
 >
 >
 >;

auto n = number_type<2>{ 42 };

static_assert(sizeof(number_type<1>) == 1);
static_assert(sizeof(number_type<2>) == 2);
static_assert(sizeof(number_type<3>) == 4);
static_assert(sizeof(number_type<4>) == 4);
static_assert(sizeof(number_type<5>) == 8);
static_assert(sizeof(number_type<6>) == 8);
static_assert(sizeof(number_type<7>) == 8);
static_assert(sizeof(number_type<8>) == 8);
static_assert(sizeof(number_type<9>) == 8);

• In a type template parameter, to select between an integer and real uniform
distribution, depending on whether the type template parameter is of an
integral or floating-point type:

template <typename T,
 typename D = std::conditional_t<
 std::is_integral_v<T>,
 std::uniform_int_distribution<T>,
 std::uniform_real_distribution<T>>,
 typename = typename std::enable_if_t<

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 6

[333]

 std::is_arithmetic_v<T>>>
std::vector<T> GenerateRandom(T const min, T const max,
 size_t const size)
{
 std::vector<T> v(size);

 std::random_device rd{};
 std::mt19937 mt{ rd() };

 D dist{ min, max };

 std::generate(std::begin(v), std::end(v),
 [&dist, &mt] {return dist(mt); });

 return v;
}

auto v1 = GenerateRandom(1, 10, 10); // integers
auto v2 = GenerateRandom(1.0, 10.0, 10); // doubles

How it works...
std::conditional is a class template that defines a member called type as either one
or the other of its two type template parameters. This selection is done based on a
compile-time constant Boolean expression provided as an argument for a non-type
template parameter. Its implementation looks like this:

template<bool Test, class T1, class T2>
struct conditional
{
 typedef T2 type;
};
template<class T1, class T2>
struct conditional<true, T1, T2>
{
 typedef T1 type;
};

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

General-Purpose Utilities

[334]

Let's summarize the examples from the previous section:

• In the first example, if the platform is 32-bit, then the size of the pointer type
is 4 bytes and, therefore, the compile-time expression sizeof(void*) <= 4
is true; as a result, std::conditional defines its member type as long. If the
platform is 64-bit, then the condition evaluates to false, because the size of
the pointer type is 8 bytes, and therefore the member type is defined as long
long.

• A similar situation is encountered in the second example, where
std::conditional is used multiple times to emulate a series of if...else
statements to select an appropriate type.

• In the third example, we used the alias template std::conditional_t to
simplify the declaration of the function template GenerateRandom. Here,
std::conditional is used to define the default value for a type template
parameter representing a statistical distribution. Depending on whether
the first type template parameter T is an integral or floating-point type,
the default distribution type is chosen between std::uniform_int_
distribution<T> and std::uniform_real_distribution<T>. Use of other
types is disabled by employing std::enable_if with a third template
parameter, as we have seen in other recipes already.

To help simplify the use of std::conditional, C++14 provides an alias template
called std::conditional_t, which we have seen in the examples here, and that is
defined as follows:

template<bool Test, class T1, class T2>
using conditional_t = typename conditional_t<Test,T1,T2>;

The use of this helper class (and the many others that are similar and from the
standard library) is optional but helps with writing more concise code.

See also
• Using type traits to query properties of types to explore a C++ metaprogramming

technique that allows us to inspect and transform properties of types.
• Writing your own type traits to learn how to define your own type traits.
• Conditionally compiling classes and functions with enable_if in Chapter 4,

Preprocessing and Compilation, to learn about SFINAE and how to use it to
specify type constraints for templates.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

[335]

7
Working with

Files and Streams
One of the most important parts of the C++ standard library is the input/output (I/O),
stream-based library that enables developers to work with files, memory streams, or
other types of I/O devices. The first part of this chapter provides solutions to some
common stream operations, such as reading and writing data, localization settings,
and manipulating the input and output of a stream. The second part of the chapter
explores the new C++17 filesystem library that enables developers to perform
operations with the filesystem and its objects, such as files and directories.

The recipes covered in this chapter are as follows:

• Reading and writing raw data from/to binary files
• Reading and writing objects from/to binary files
• Using localized settings for streams
• Using I/O manipulators to control the output of a stream
• Using monetary I/O manipulators
• Using time I/O manipulators
• Working with filesystem paths
• Creating, copying, and deleting files and directories
• Removing content from a file
• Checking the properties of an existing file or directory
• Enumerating the content of a directory
• Finding a file

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Files and Streams

[336]

We will start the chapter with a couple of recipes on how to serialize and deserialize
data to/from files.

Reading and writing raw data from/to
binary files
Some of the data programs you work with must be persisted to disk files in various
ways, including storing data in a database or to flat files, either as text or binary data.
This recipe, and the next one, are focused on persisting and loading both raw data
and objects from and to binary files. In this context, raw data means unstructured
data, and, in this recipe, we will consider writing and reading the content of a
buffer (that is, a contiguous sequence of memory) that can either be an array, an
std::vector, or an std::array.

Getting ready
For this recipe, you should be familiar with the standard stream I/O library,
although some explanations, to the extent that is required to understand this recipe,
are provided next. You should also be familiar with the differences between binary
and text files.

In this recipe, we will use the ofstream and ifstream classes, which are available in
the namespace std in the <fstream> header.

How to do it...
To write the content of a buffer (in our example, an std::vector) to a binary file, you
should perform the following steps:

1. Open a file stream for writing in binary mode by creating an instance of the
std::ofstream class:

std::ofstream ofile("sample.bin", std::ios::binary);

2. Ensure that the file is actually open before writing data to the file:
if(ofile.is_open())
{
 // streamed file operations
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7

[337]

3. Write the data to the file by providing a pointer to the array of characters and
the number of characters to write. In the following example, we write the
content of a local vector; however, typically, this data comes from a different
context:

std::vector<unsigned char> output {0,1,2,3,4,5,6,7,8,9};
ofile.write(reinterpret_cast<char*>(output.data()),
 output.size());

4. Optionally, you can flush the content of the stream's output buffer to
the actual disk file by calling the flush() method. This determines the
uncommitted changes in the stream to be synchronized with the external
destination, which, in this case, is a disk file.

5. Close the stream by calling close(). This, in turn, calls flush(), making the
preceding step unnecessary in most contexts:

ofile.close();

To read the entire content of a binary file to a buffer, you should perform the
following steps:

1. Open a file stream to read from a file in binary mode by creating an instance
of the std::ifstream class:

std::ifstream ifile("sample.bin", std::ios::binary);

2. Ensure that the file is actually open before reading data from it:
if(ifile.is_open())
{
 // streamed file operations
}

3. Determine the length of the file by positioning the input position indicator
to the end of the file, read its value, and then move the indicator to the
beginning:

ifile.seekg(0, std::ios_base::end);
auto length = ifile.tellg();
ifile.seekg(0, std::ios_base::beg);

4. Allocate memory to read the content of the file:
std::vector<unsigned char> input;
input.resize(static_cast<size_t>(length));

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Files and Streams

[338]

5. Read the content of the file to the allocated buffer by providing a pointer to
the array of characters for receiving the data and the number of characters to
read:

ifile.read(reinterpret_cast<char*>(input.data()), length);

6. Check that the read operation is completed successfully:
auto success = !ifile.fail() && length == ifile.gcount();

7. Finally, close the file stream:
ifile.close();

How it works...
The standard stream-based I/O library provides various classes that implement
high-level input, output, or both input and output file stream, string stream and
character array operations, manipulators that control how these streams behave, and
several predefined stream objects (cin/wcin, cout/wcout, cerr/wcerr, and clog/
wclog).

These streams are implemented as class templates, and, for files, the library provides
several classes:

• basic_filebuf implements the I/O operations for a raw file and is similar in
semantics to a C FILE stream.

• basic_ifstream implements the high-level file stream input operations
defined by the basic_istream stream interface, internally using a basic_
filebuf object.

• basic_ofstream implements the high-level file stream output operations
defined by the basic_ostream stream interface, internally using a basic_
filebuf object.

• basic_fstream implements the high-level file stream input and output
operations defined by the basic_iostream stream interface, internally using a
basic_filebuf object.

These classes are represented in the following class diagram to better understand
their relationship:

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7

[339]

Figure 7.1: Stream class diagram

Notice that this diagram also features several classes designed to work with a string-
based stream. These streams, however, will not be discussed here.

Several typedefs for the class templates mentioned earlier are also defined in the
<fstream> header, in the std namespace. The ofstream and ifstream objects are the
type synonyms used in the preceding examples:

typedef basic_ifstream<char> ifstream;
typedef basic_ifstream<wchar_t> wifstream;
typedef basic_ofstream<char> ofstream;
typedef basic_ofstream<wchar_t> wofstream;
typedef basic_fstream<char> fstream;
typedef basic_fstream<wchar_t> wfstream;

In the previous section, you saw how we can write and read raw data to and from a
file stream. Now, we'll cover this process in more detail.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Files and Streams

[340]

To write data to a file, we instantiated an object of the type std::ofstream. In the
constructor, we passed the name of the file to be opened and the stream's open
mode, for which we specified std::ios::binary to indicate binary mode. Opening
the file like this discards the previous file content. If you want to append content to
an existing file, you should also use the flag std::ios::app (that is, std::ios::app
| std::ios::binary). This constructor internally calls open() on its underlying
raw file object, that is, a basic_filebuf object. If this operation fails, a fail bit is set.
To check whether the stream has been successfully associated with a file device,
we used is_open() (this internally calls the method with the same name from the
underlying basic_filebuf). Writing data to the file stream is done using the write()
method, which takes a pointer to the string of characters to write and the number
of characters to write. Since this method operates with strings of characters, a
reinterpret_cast is necessary if data is of another type, such as unsigned char in
our example. The write operation does not set a fail bit in the case of a failure, but
it may throw an std::ios_base::failure exception. However, data is not written
directly to the file device but stored in the basic_filebuf object. To write it to the
file, the buffer needs to be flushed, which is done by calling flush(). This is done
automatically when closing the file stream, as shown in the preceding example.

To read data from a file, we instantiated an object of type std::ifstream. In the
constructor, we passed the same arguments that we used for opening the file to write
the name of the file and the open mode, that is, std::ios::binary. The constructor
internally calls open() on the underlying std::basic_filebuf object. To check
whether the stream has been successfully associated with a file device, we use
is_open() (this internally calls the method with the same name from the underlying
basic_filebuf). In this example, we read the entire content of the file to a memory
buffer, in particular, an std::vector. Before we can read the data, we must know the
size of the file in order to allocate a buffer that is large enough to hold that data. To
do this, we used seekg() to move the input position indicator to the end of the file.

Then, we called tellg() to return the current position, which, in this case, indicates
the size of the file, in bytes, and then we moved the input position indicator to the
beginning of the file to be able to start reading from the beginning. Calling seekg()
to move the position indicator to the end can be avoided by opening the file with
the position indicator moved directly to the end. This can be achieved by using
the std::ios::ate opening flag in the constructor (or the open() method). After
allocating enough memory for the content of the file, we copied the data from the file
into memory using the read() method. This takes a pointer to the string of characters
that receives the data read from the stream and the number of characters to be read.
Since the stream operates on characters, a reinterpret_cast expression is necessary
if the buffer contains other types of data, such as unsigned char in our example.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7

[341]

This operation throws an std::basic_ios::failure exception if an error occurs.
To determine the number of characters that have been successfully read from the
stream, we can use the gcount() method. Upon completing the read operation, we
close the file stream.

The operations shown in these examples are the minimum ones required to write
and read data to and from file streams. It is important, though, that you perform
appropriate checks for the success of the operations and to catch any possible
exceptions that could occur.

The example code discussed so far in this recipe can be reorganized in the form of
two general functions for writing and reading data to and from a file:

bool write_data(char const * const filename,
 char const * const data,
 size_t const size)
{
 auto success = false;
 std::ofstream ofile(filename, std::ios::binary);

 if(ofile.is_open())
 {
 try
 {
 ofile.write(data, size);
 success = true;
 }
 catch(std::ios_base::failure &)
 {
 // handle the error
 }
 ofile.close();
 }

 return success;
}

size_t read_data(char const * const filename,
 std::function<char*(size_t const)> allocator)
{
 size_t readbytes = 0;
 std::ifstream ifile(filename, std::ios::ate | std::ios::binary);

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Files and Streams

[342]

 if(ifile.is_open())
 {
 auto length = static_cast<size_t>(ifile.tellg());
 ifile.seekg(0, std::ios_base::beg);

 auto buffer = allocator(length);

 try
 {
 ifile.read(buffer, length);

 readbytes = static_cast<size_t>(ifile.gcount());
 }
 catch (std::ios_base::failure &)
 {
 // handle the error
 }

 ifile.close();
 }

 return readbytes;
}

write_data() is a function that takes the name of a file, a pointer to an array of
characters, and the length of this array as arguments and writes the characters
to the specified file. read_data() is a function that takes the name of a file and a
function that allocates a buffer and reads the entire content of the file to the buffer
that is returned by the allocated function. The following is an example of how these
functions can be used:

std::vector<unsigned char> output {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
std::vector<unsigned char> input;

if(write_data("sample.bin",
 reinterpret_cast<char*>(output.data()),
 output.size()))
{
 if(read_data("sample.bin",
 [&input](size_t const length) {
 input.resize(length);
 return reinterpret_cast<char*>(input.data());}) > 0)
 {

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7

[343]

 std::cout << (output == input ? "equal": "not equal")
 << '\n';
 }
}

Alternatively, we could use a dynamically allocated buffer, instead of the
std::vector; the changes required for this are small in the overall example:

std::vector<unsigned char> output {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
unsigned char* input = nullptr;
size_t readb = 0;

if(write_data("sample.bin",
 reinterpret_cast<char*>(output.data()),
 output.size()))
{
 if((readb = read_data(
 "sample.bin",
 [&input](size_t const length) {
 input = new unsigned char[length];
 return reinterpret_cast<char*>(input); })) > 0)
 {
 auto cmp = memcmp(output.data(), input, output.size());
 std::cout << (cmp == 0 ? "equal": "not equal")
 << '\n';
 }
}

delete [] input;

However, this alternative is only provided to show that read_data() can be used
with different kinds of input buffers. It is recommended that you avoid the explicit
dynamic allocation of memory whenever possible.

There's more...
The way of reading data from a file to memory, as shown in this recipe, is only one
of several. The following is a list of possible alternatives for reading data from a file
stream:

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Files and Streams

[344]

• Initializing an std::vector directly using std::istreambuf_iterator
iterators (similarly, this can be used with std::string):

std::vector<unsigned char> input;
std::ifstream ifile("sample.bin", std::ios::binary);
if(ifile.is_open())
{
 input = std::vector<unsigned char>(
 std::istreambuf_iterator<char>(ifile),
 std::istreambuf_iterator<char>());
 ifile.close();
}

• Assigning the content of an std::vector from std::istreambuf_iterator
iterators:

std::vector<unsigned char> input;
std::ifstream ifile("sample.bin", std::ios::binary);
if(ifile.is_open())
{
 ifile.seekg(0, std::ios_base::end);
 auto length = ifile.tellg();
 ifile.seekg(0, std::ios_base::beg);

 input.reserve(static_cast<size_t>(length));
 input.assign(
 std::istreambuf_iterator<char>(ifile),
 std::istreambuf_iterator<char>());
 ifile.close();
}

• Copying the content of the file stream to a vector using std::istreambuf_
iterator iterators and an std::back_inserter adapter to write to the end of
the vector:

std::vector<unsigned char> input;
std::ifstream ifile("sample.bin", std::ios::binary);
if(ifile.is_open())
{
 ifile.seekg(0, std::ios_base::end);
 auto length = ifile.tellg();
 ifile.seekg(0, std::ios_base::beg);

 input.reserve(static_cast<size_t>(length));
 std::copy(std::istreambuf_iterator<char>(ifile),

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7

[345]

 std::istreambuf_iterator<char>(),
 std::back_inserter(input));
 ifile.close();
}

Compared to these alternatives, however, the method described in the How to do it...
section is the fastest one, even though the alternatives may look more appealing from
an object-oriented perspective. It is beyond the scope of this recipe to compare the
performance of these alternatives, but you can try it as an exercise.

See also
• Reading and writing objects from/to binary files to learn how to serialize and

deserialize objects to and from binary files
• Using I/O manipulators to control the output of a stream to learn about the use of

helper functions, called manipulators, that control input and output streams
using the << and >> stream operators

Reading and writing objects from/to
binary files
In the previous recipe, we learned how to write and read raw data (that is,
unstructured data) to and from a file. Many times, however, we must persist and
load objects instead. Writing and reading in the manner shown in the previous
recipe works for POD types only. For anything else, we must explicitly decide what
is actually written or read, since writing or reading pointers, virtual tables (vtables),
and any sort of metadata is not only irrelevant but also semantically wrong. These
operations are commonly referred to as serialization and deserialization. In this
recipe, we will learn how to serialize and deserialize both POD and
non-POD types to and from binary files.

Getting ready
For the examples in this recipe, we will use the foo and foopod classes, as follows:

class foo
{
 int i;
 char c;
 std::string s;

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Files and Streams

[346]

public:
 foo(int const i = 0, char const c = 0, std::string const & s = {}):
 i(i), c(c), s(s)
 {}

 foo(foo const &) = default;
 foo& operator=(foo const &) = default;

 bool operator==(foo const & rhv) const
 {
 return i == rhv.i &&
 c == rhv.c &&
 s == rhv.s;
 }

 bool operator!=(foo const & rhv) const
 {
 return !(*this == rhv);
 }
};

struct foopod
{
 bool a;
 char b;
 int c[2];
};

bool operator==(foopod const & f1, foopod const & f2)
{
 return f1.a == f2.a && f1.b == f2.b &&
 f1.c[0] == f2.c[0] && f1.c[1] == f2.c[1];
}

It is recommended that you first read the previous recipe, Reading and writing raw
data from/to binary files, before you continue. You should also know what POD (a
type that is both trivial and has a standard layout) and non-POD types are and how
operators can be overloaded. You can check the closing notes of the Using type traits
to query properties of types recipe, in Chapter 6, General-Purpose Utilities, for further
details on POD types.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7

[347]

How to do it...
To serialize/deserialize POD types that do not contain pointers, use
ofstream::write() and ifstream::read(), as shown in the previous recipe:

• Serialize objects to a binary file using ofstream and the write() method:
std::vector<foopod> output {
 {true, '1', {1, 2}},
 {true, '2', {3, 4}},
 {false, '3', {4, 5}}
};

std::ofstream ofile("sample.bin", std::ios::binary);
if(ofile.is_open())
{
 for(auto const & value : output)
 {
 ofile.write(reinterpret_cast<const char*>(&value),
 sizeof(value));
 }

 ofile.close();
}

• Deserialize objects from a binary file using the ifstream and read() methods:
std::vector<foopod> input;
std::ifstream ifile("sample.bin", std::ios::binary);
if(ifile.is_open())
{
 while(true)
 {
 foopod value;
 ifile.read(reinterpret_cast<char*>(&value),
 sizeof(value));

 if(ifile.fail() || ifile.eof()) break;
 input.push_back(value);
 }

 ifile.close();
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Files and Streams

[348]

To serialize non-POD types (or POD types that contain pointers), you must explicitly
write the value of the data members to a file, and to deserialize, you must explicitly
read from the file to the data members in the same order. To demonstrate this, we
will consider the foo class that we defined earlier:

• Add a member function called write() to serialize objects of this class.
The method takes a reference to an ofstream and returns a bool indicating
whether the operation was successful or not:

bool write(std::ofstream& ofile) const
{
 ofile.write(reinterpret_cast<const char*>(&i), sizeof(i));
 ofile.write(&c, sizeof(c));
 auto size = static_cast<int>(s.size());
 ofile.write(reinterpret_cast<char*>(&size), sizeof(size));
 ofile.write(s.data(), s.size());

 return !ofile.fail();
}

• Add a member function, called read(), to deserialize the objects of this class.
This method takes a reference to an ifstream and returns a bool indicating
whether the operation was successful or not:

bool read(std::ifstream& ifile)
{
 ifile.read(reinterpret_cast<char*>(&i), sizeof(i));
 ifile.read(&c, sizeof(c));
 auto size {0};
 ifile.read(reinterpret_cast<char*>(&size), sizeof(size));
 s.resize(size);
 ifile.read(reinterpret_cast<char*>(&s.front()), size);

 return !ifile.fail();
}

An alternative to the write() and read() member functions demonstrated earlier
is to overload operator<< and operator>>. To do this, you should perform the
following steps:

1. Add friend declarations for the non-member operator<< and operator>> to
the class to be serialized/deserialized (in this case, the foo class):

friend std::ofstream& operator<<(std::ofstream& ofile,
 foo const& f);

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7

[349]

friend std::ifstream& operator>>(std::ifstream& ifile,
 foo& f);

2. Overload operator<< for your class:
std::ofstream& operator<<(std::ofstream& ofile, foo const& f)
{
 ofile.write(reinterpret_cast<const char*>(&f.i),
 sizeof(f.i));
 ofile.write(&f.c, sizeof(f.c));
 auto size = static_cast<int>(f.s.size());
 ofile.write(reinterpret_cast<char*>(&size), sizeof(size));
 ofile.write(f.s.data(), f.s.size());

 return ofile;
}

3. Overload operator>> for your class:
std::ifstream& operator>>(std::ifstream& ifile, foo& f)
{
 ifile.read(reinterpret_cast<char*>(&f.i), sizeof(f.i));
 ifile.read(&f.c, sizeof(f.c));
 auto size {0};
 ifile.read(reinterpret_cast<char*>(&size), sizeof(size));
 f.s.resize(size);
 ifile.read(reinterpret_cast<char*>(&f.s.front()), size);

 return ifile;
}

How it works...
Regardless of whether we serialize the entire object (for POD types) or only parts of
it, we use the same stream classes that we discussed in the previous recipe: ofstream
for output file streams and ifstream for input file streams. Details about writing and
reading data using these standard classes have been discussed in that recipe and will
not be reiterated here.

When you serialize and deserialize objects to and from files, you should avoid writing
the values of the pointers to a file. Additionally, you must not read pointer values
from the file since these represent memory addresses and are meaningless across
processes and even in the same process some moments later. Instead, you should
write data referred by a pointer and read data into objects referred by a pointer.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Files and Streams

[350]

This is a general principle, and, in practice, you may encounter situations where a
source may have multiple pointers to the same object; in this case, you might want to
write only one copy and also handle the reading in a corresponding manner.

If the objects you want to serialize are of the POD type, you can do it just like we did
when we discussed raw data. In the example in this recipe, we serialized a sequence
of objects of the foopod type. When we deserialize, we read from the file stream in a
loop until the end of the file is read or a failure occurs. The way we read, in this case,
may look counterintuitive, but doing it differently may lead to the duplication of the
last read value:

• Reading is done in an infinite loop
• A read operation is performed in the loop
• A check for a failure or the end of file is performed, and if either of them has

occurred, the infinite loop is exited
• The value is added to the input sequence and the looping continues

If reading is done using a loop with an exit condition that checks the end of the file
bit, that is, while(!ifile.eof()), the last value will be added to the input sequence
twice. The reason for this is that upon reading the last value, the end of the file has
not yet been encountered (as that is a mark beyond the last byte of the file). The
end of the file mark is only reached at the next read attempt, which, therefore, sets
the eofbit of the stream. However, the input variable still has the last value since
it hasn't been overwritten with anything, and this is added to the input vector for a
second time.

If the objects you want to serialize and deserialize are of non-POD types, writing/
reading these objects as raw data is not possible. For instance, such an object may
have a virtual table. Writing the virtual table to a file does not cause problems, even
though it does not have any value; however, reading from a file, and, therefore,
overwriting the virtual table of an object will have catastrophic effects on the object
and the program.

When serializing/deserializing non-POD types, there are various alternatives, and
some of them have been discussed in the previous section. All of them provide
explicit methods for writing and reading or overloading the standard << and >>
operators. The second approach has an advantage in that it enables the use of your
class in generic code, where objects are written and read to and from stream files
using these operators.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7

[351]

See also
• Reading and writing raw data from/to binary files to learn how to write and read

unstructured data to binary files
• Using I/O manipulators to control the output of a stream to learn about the use of

helper functions, called manipulators, that control input and output streams
using the << and >> stream operators

Using localized settings for streams
How writing or reading to and from streams is performed may depend on the
language and regional settings. Examples include writing and parsing numbers, time
values, or monetary values, or comparing (collating) strings. The C++ I/O library
provides a general-purpose mechanism for handling internationalization features
through locales and facets. In this recipe, you will learn how to use locales to control
the behavior of input/output streams.

Getting ready
All of the examples in this recipe use the std::cout predefined console stream object.
However, the same applies to all I/O stream objects. Also, in these recipe examples,
we will use the following objects and lambda function:

auto now = std::chrono::system_clock::now();
auto stime = std::chrono::system_clock::to_time_t(now);
auto ltime = std::localtime(&stime);

std::vector<std::string> names
 {"John", "adele", "Øivind", "François", "Robert", "Åke"};

auto sort_and_print = [](std::vector<std::string> v,
 std::locale const & loc)
{
 std::sort(v.begin(), v.end(), loc);
 for (auto const & s : v) std::cout << s << ' ';

When you plan to serialize and deserialize your objects, consider
versioning your data from the very beginning to avoid problems
if the structure of your data changes over time. How versioning
should be done is beyond the scope of this recipe.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Files and Streams

[352]

 std::cout << '\n';
};

The locale names used in this recipe (en_US.utf8, de_DE.utf8, and so on) are the
ones that are used on UNIX systems. The following table lists their equivalents for
Windows systems:

UNIX Windows
en_US.utf8 English_US.1252
en_GB.utf8 English_UK.1252
de_DE.utf8 German_Germany.1252
sv_SE.utf8 Swedish_Sweden.1252

How to do it...
To control the localization settings of a stream, you must do the following:

• Use the std::locale class to represent the localization settings. There are
various ways in which to construct locale objects, including the following:

• Default construct it to use the global locale (by default, the C locale at
the program startup)

• From a local name, such as C, POSIX, en_US.utf8, and so on, if
supported by the operating system

• From another locale, except for a specified facet
• From another locale, except for all of the facets from a specified

category that are copied from another specified locale:

// default construct
auto loc_def = std::locale {};

// from a name
auto loc_us = std::locale {"en_US.utf8"};

// from another locale except for a facet
auto loc1 = std::locale {loc_def,
 new std::collate<wchar_t>};

// from another local, except the facet in a category
auto loc2 = std::locale {loc_def, loc_us,
 std::locale::collate};

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7

[353]

• To get a copy of the default C locale, use the std::locale::classic() static
method:

auto loc = std::locale::classic();

• To change the default locale that is copied every time a locale is default-
constructed, use the std::locale::global() static method:

std::locale::global(std::locale("en_US.utf8"));

• Use the imbue() method to change the current locale of an I/O stream:
std::cout.imbue(std::locale("en_US.utf8"));

The following list shows examples of using various locales:

• Use a particular locale, indicated by its name. In this example, the locale is for
German:

auto loc = std::locale("de_DE.utf8");
std::cout.imbue(loc);

std::cout << 1000.50 << '\n';
// 1.000,5
std::cout << std::showbase << std::put_money(1050)
 << '\n';
// 10,50 €
std::cout << std::put_time(ltime, "%c") << '\n';
// So 04 Dez 2016 17:54:06 JST
sort_and_print(names, loc);
// adele Åke François John Øivind Robert

• Use a locale that corresponds to the user settings (as defined in the system).
This is done by constructing an std::locale object from an empty string:

auto loc = std::locale("");
std::cout.imbue(loc);

std::cout << 1000.50 << '\n';
// 1,000.5
std::cout << std::showbase << std::put_money(1050)
 << '\n';
// $10.50
std::cout << std::put_time(ltime, "%c") << '\n';
// Sun 04 Dec 2016 05:54:06 PM JST
sort_and_print(names, loc);
// adele Åke François John Øivind Robert

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Files and Streams

[354]

• Set and use the global locale:
std::locale::global(std::locale("sv_SE.utf8")); // set global
auto loc = std::locale{}; // use global
std::cout.imbue(loc);

std::cout << 1000.50 << '\n';
// 1 000,5
std::cout << std::showbase << std::put_money(1050)
 << '\n';
// 10,50 kr
std::cout << std::put_time(ltime, "%c") << '\n';
// sön 4 dec 2016 18:02:29
sort_and_print(names, loc);
// adele François John Robert Åke Øivind

• Use the default C locale:
auto loc = std::locale::classic();
std::cout.imbue(loc);

std::cout << 1000.50 << '\n';
// 1000.5
std::cout << std::showbase << std::put_money(1050)
 << '\n';
// 1050
std::cout << std::put_time(ltime, "%c") << '\n';
// Sun Dec 4 17:55:14 2016
sort_and_print(names, loc);
// François John Robert adele Åke Øivind

How it works...
A locale object does not actually store localized settings. A locale is a heterogeneous
container of facets. A facet is an object that defines the localization and
internationalization settings. The standard defines a list of facets that each locale
must contain. In addition to this, a locale can contain any other user-defined facets.
The following is a list of all standard-defined facets:

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7

[355]

std::collate<char> std::collate<wchar_t>
std::ctype<char> std::ctype<wchar_t>
std::codecvt<char,char,mbstate_t>

std::codecvt<char16_t,char,mbsta
te_t>

std::codecvt<char32_t,char,mbsta
te_t>

std::codecvt<wchar_t,char,mbstate_t>
std::moneypunct<char>

std::moneypunct<char,true>

std::moneypunct<wchar_t>

std::moneypunct<wchar_t,true>
std::money_get<char> std::money_get<wchar_t>
std::money_put<char> std::money_put<wchar_t>
std::numpunct<char> std::numpunct<wchar_t>
std::num_get<char> std::num_get<wchar_t>
std::num_put<char> std::num_put<wchar_t>
std::time_get<char> std::time_get<wchar_t>
std::time_put<char> std::time_put<wchar_t>
std::messages<char> std::messages<wchar_t>

It is beyond the scope of this recipe to go through this list and discuss all of these
facets. However, we could mention that std::money_get is a facet that encapsulates
the rules for parsing monetary values from character streams, while std::money_put
is a facet that encapsulates the rules for formatting monetary values as strings. In a
similar manner, std::time_get encapsulates rules for data and time parsing, while
std::time_put encapsulates rules for data and time formatting. These will form the
subject of the next couple of recipes.

A locale is an immutable object containing immutable facet objects. Locales are
implemented as a reference-counted array of reference-counted pointers to facets.
The array is indexed by std::locale::id, and all facets must be derived from
the base class std::locale::facet and must have a public static member of the
std::locale::id type, called id.

It is only possible to create a locale object using one of the overloaded constructors
or with the combine() method, which, as the name implies, combines the current
locale with a new compile-time identifiable facet and returns a new locale object.
On the other hand, it is possible to determine whether a locale contains a particular
facet using the std::has_facet() function template, or to obtain a reference to a facet
implemented by a particular locale using the std::use_facet() function template.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Files and Streams

[356]

In the preceding examples, we sorted a vector of strings and passed a locale object
as the third argument to the std::sort() general algorithm. This third argument is
supposed to be a comparison function object. Passing a locale object works because
std::locale has an operator() that lexicographically compares two strings using
its collate facet. This is actually the only localization functionality that is directly
provided by std::locale; however, what this does is invoke the collate facet's
compare() method that performs the string comparison based on the facet's rules.

Every program has a global locale created when the program starts. The content of
this global locale is copied into every default-constructed locale. The global locale
can be replaced using the static method std::locale::global(). By default, the
global locale is the C locale, which is a locale equivalent to ANSI C's locale with the
same name. This locale was created to handle simple English texts, and it is the
default one in C++ that provides compatibility with C. A reference to this locale can
be obtained with the static method std::locale::classic().

By default, all streams use the classic locale to write or parse text. However, it is
possible to change the locale used by a stream using the stream's imbue() method.
This is a member of the std::ios_base class that is the base for all I/O streams. A
companion member is the getloc() method, which returns a copy of the current
stream's locale.

See also
• Using I/O manipulators to control the output of a stream to learn about the use of

helper functions, called manipulators, that control input and output streams
using the << and >> stream operators

• Using monetary I/O manipulators to learn how to use standard manipulators to
write and read monetary values

• Using time I/O manipulators to learn how to use standard manipulators to
write and read date and time values

In the preceding examples, we changed the locale for the
std::cout stream object. In practice, you may want to set the same
locale for all stream objects associated with the standard C streams:
cin, cout, cerr, and clog (or wcin, wcout, wcerr, and wclog).

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7

[357]

Using I/O manipulators to control the
output of a stream
Apart from the stream-based I/O library, the standard library provides a series of
helper functions, called manipulators, that control the input and output streams
using operator<< and operator>>. In this recipe, we will look at some of these
manipulators and demonstrate their use through some examples that format the
output to the console. We will continue covering more manipulators in the upcoming
recipes.

Getting ready
The I/O manipulators are available in the std namespace in the headers <ios>,
<istream>, <ostream>, and <iomanip>. In this recipe, we will only discuss some of the
manipulators from <ios> and <iomanip>.

How to do it...
The following manipulators can be used to control the output or input of a stream:

• boolalpha and noboolalpha enable and disable the textual representation of
Booleans:

std::cout << std::boolalpha << true << '\n'; // true
std::cout << false << '\n'; // false
std::cout << std::noboolalpha << false << '\n'; // 0

• left, right, and internal affect the alignment of the fill characters; left and
right affect all text, but internal affects only the integer, floating point, and
monetary output:

std::cout << std::right << std::setw(10) << "right\n";
std::cout << std::setw(10) << "text\n";
std::cout << std::left << std::setw(10) << "left\n";

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Files and Streams

[358]

• fixed, scientific, hexfloat, and defaultfloat change the formatting used
for floating-point types (for both the input and output streams). The latter
two have only been available since C++11:

std::cout << std::fixed << 0.25 << '\n';
// 0.250000
std::cout << std::scientific << 0.25 << '\n';
// 2.500000e-01
std::cout << std::hexfloat << 0.25 << '\n';
// 0x1p-2
std::cout << std::defaultfloat << 0.25 << '\n';
// 0.25

• dec, hex, and oct control the base that is used for the integer types (in both
the input and output streams):

std::cout << std::oct << 42 << '\n'; // 52
std::cout << std::hex << 42 << '\n'; // 2a
std::cout << std::dec << 42 << '\n'; // 42

• setw changes the width of the next input or output field. The default width is
0.

• setfill changes the fill character for the output stream; this is the character
that is used to fill the next fields until the specified width is reached. The
default fill character is whitespace:

std::cout << std::right
 << std::setfill('.') << std::setw(10)
 << "right" << '\n';
//right

• setprecision changes the decimal precision (how many digits are generated)
for the floating-point types in both the input and output streams. The default
precision is 6:

std::cout << std::fixed << std::setprecision(2) << 12.345
 << '\n';
// 12.35

How it works...
All of the I/O manipulators listed earlier, with the exception of setw, which only
refers to the next output field, affect the stream. Additionally, all consecutive writing
or reading operations use the last specified format until another manipulator is used
again.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7

[359]

Some of these manipulators are called without arguments. Examples include
boolalpha/noboolalpha or dec/hex/oct. These manipulators are functions that take
a single argument, that is, a reference to a string, and return a reference to the same
stream:

std::ios_base& hex(std::ios_base& str);

Expressions, such as std::cout << std::hex, are possible because both basic_
ostream::operator<< and basic_istream::operator>> have special overloads that
take a pointer to these functions.

Other manipulators, including some that are not mentioned here, are invoked with
arguments. These manipulators are functions that take one or more arguments and
return an object of an unspecified type:

template<class CharT>
/*unspecified*/ setfill(CharT c);

To better demonstrate the use of these manipulators, we will consider two examples
that format output to the console.

In the first example, we will list the table of contents of a book with the following
requirements:

• The chapter number is right-aligned and shown with Roman numerals.
• The chapter title is left-aligned and the remaining space until the page

number is filled with dots.
• The page number of the chapter is right-aligned.

For this example, we will use the following classes and helper function:

struct Chapter
{
 int Number;
 std::string Title;
 int Page;
};

struct BookPart
{
 std::string Title;
 std::vector<Chapter> Chapters;
};

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Files and Streams

[360]

struct Book
{
 std::string Title;
 std::vector<BookPart> Parts;
};

std::string to_roman(unsigned int value)
{
 struct roman_t { unsigned int value; char const* numeral; };
 const static roman_t rarr[13] =
 {
 {1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"},
 {100, "C"}, { 90, "XC"}, { 50, "L"}, { 40, "XL"},
 { 10, "X"}, { 9, "IX"}, { 5, "V"}, { 4, "IV"},
 { 1, "I"}
 };

 std::string result;
 for (auto const & number : rarr)
 {
 while (value >= number.value)
 {
 result += number.numeral;
 value -= number.value;
 }
 }

 return result;
}

The print_toc() function, as shown in the following code snippet, takes a Book
as its argument and prints its content to the console according to the specified
requirements. For this purpose, we use the following:

• std::left and std::right specify the text alignment
• std::setw specifies the width of each output field
• std::fill specifies the fill character (a blank space for the chapter number

and a dot for the chapter title)

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7

[361]

The implementation of the print_toc() function is listed here:

void print_toc(Book const & book)
{
 std::cout << book.Title << '\n';
 for(auto const & part : book.Parts)
 {
 std::cout << std::left << std::setw(15) << std::setfill(' ')
 << part.Title << '\n';
 std::cout << std::left << std::setw(15) << std::setfill('-')
 << '-' << '\n';

 for(auto const & chapter : part.Chapters)
 {
 std::cout << std::right << std::setw(4) << std::setfill(' ')
 << to_roman(chapter.Number) << ' ';
 std::cout << std::left << std::setw(35) << std::setfill('.')
 << chapter.Title;
 std::cout << std::right << std::setw(3) << std::setfill('.')
 << chapter.Page << '\n';
 }
 }
}

The following example uses this method with a Book object describing the table of
contents from the book The Fellowship of the Ring:

auto book = Book
{
 "THE FELLOWSHIP OF THE RING"s,
 {
 {
 "BOOK ONE"s,
 {
 {1, "A Long-expected Party"s, 21},
 {2, "The Shadow of the Past"s, 42},
 {3, "Three Is Company"s, 65},
 {4, "A Short Cut to Mushrooms"s, 86},
 {5, "A Conspiracy Unmasked"s, 98},

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Files and Streams

[362]

 {6, "The Old Forest"s, 109},
 {7, "In the House of Tom Bombadil"s, 123},
 {8, "Fog on the Barrow-downs"s, 135},
 {9, "At the Sign of The Prancing Pony"s, 149},
 {10, "Strider"s, 163},
 {11, "A Knife in the Dark"s, 176},
 {12, "Flight to the Ford"s, 197},
 },
 },
 {
 "BOOK TWO"s,
 {
 {1, "Many Meetings"s, 219},
 {2, "The Council of Elrond"s, 239},
 {3, "The Ring Goes South"s, 272},
 {4, "A Journey in the Dark"s, 295},
 {5, "The Bridge of Khazad-dum"s, 321},
 {6, "Lothlorien"s, 333},
 {7, "The Mirror of Galadriel"s, 353},
 {8, "Farewell to Lorien"s, 367},
 {9, "The Great River"s, 380},
 {10, "The Breaking of the Fellowship"s, 390},
 },
 },
 }
};

print_toc(book);

In this case, the output is as follows:

THE FELLOWSHIP OF THE RING
BOOK ONE

 I A Long-expected Party...............21
 II The Shadow of the Past..............42
 III Three Is Company....................65
 IV A Short Cut to Mushrooms............86
 V A Conspiracy Unmasked...............98
 VI The Old Forest.....................109
 VII In the House of Tom Bombadil.......123
VIII Fog on the Barrow-downs............135

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7

[363]

 IX At the Sign of The Prancing Pony...149
 X Strider............................163
 XI A Knife in the Dark................176
 XII Flight to the Ford.................197
BOOK TWO

 I Many Meetings......................219
 II The Council of Elrond..............239
 III The Ring Goes South................272
 IV A Journey in the Dark..............295
 V The Bridge of Khazad-dum...........321
 VI Lothlorien.........................333
 VII The Mirror of Galadriel............353
VIII Farewell to Lorien.................367
 IX The Great River....................380
 X The Breaking of the Fellowship.....390

For the second example, our goal is to output a table that lists the largest companies
in the world by revenue. The table will have columns for the company name, the
industry, the revenue (in USD billions), the increase/decrease in revenue growth,
the revenue growth, the number of employees, and the country of origin. For this
example, we will use the following class:

struct Company
{
 std::string Name;
 std::string Industry;
 double Revenue;
 bool RevenueIncrease;
 double Growth;
 int Employees;
 std::string Country;
};

The print_companies() function in the following code snippet uses several
additional manipulators to the ones shown in the previous example:

• std::boolalpha displays Boolean values as true and false instead of 1 and 0.
• std::fixed indicates a fixed floating-point representation, and then

std::defaultfloat reverts to the default floating-point representation.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Files and Streams

[364]

• std::setprecision specifies the number of decimal digits to be displayed
in the output. Together with std::fixed, this is used to indicate a fixed
representation with a decimal digit for the Growth field.

The implementation of the print_companies() function is listed here:

void print_companies(std::vector<Company> const & companies)
{
 for(auto const & company : companies)
 {
 std::cout << std::left << std::setw(26) << std::setfill(' ')
 << company.Name;
 std::cout << std::left << std::setw(18) << std::setfill(' ')
 << company.Industry;
 std::cout << std::left << std::setw(5) << std::setfill(' ')
 << company.Revenue;
 std::cout << std::left << std::setw(5) << std::setfill(' ')
 << std::boolalpha << company.RevenueIncrease
 << std::noboolalpha;
 std::cout << std::right << std::setw(5) << std::setfill(' ')
 << std::fixed << std::setprecision(1) << company.Growth
 << std::defaultfloat << std::setprecision(6) << ' ';
 std::cout << std::right << std::setw(8) << std::setfill(' ')
 << company.Employees << ' ';
 std::cout << std::left << std::setw(2) << std::setfill(' ')
 << company.Country
 << '\n';
 }
}

The following is an example of calling this method. The source of the data shown
here is Wikipedia (https://en.wikipedia.org/wiki/List_of_largest_companies_by_
revenue, as of 2016):

std::vector<Company> companies
{
 {"Walmart"s, "Retail"s, 482, false, 0.71,
 2300000, "US"s},
 {"State Grid"s, "Electric utility"s, 330, false, 2.91,
 927839, "China"s},
 {"Saudi Aramco"s, "Oil and gas"s, 311, true, 40.11,
 65266, "SA"s},
 {"China National Petroleum"s, "Oil and gas"s, 299,

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://en.wikipedia.org/wiki/List_of_largest_companies_by_revenue
https://en.wikipedia.org/wiki/List_of_largest_companies_by_revenue

Chapter 7

[365]

 false, 30.21, 1589508, "China"s},
 {"Sinopec Group"s, "Oil and gas"s, 294, false, 34.11,
 810538, "China"s},
};

print_companies(companies);

In this case, the output has a table-based format, as follows:

Walmart Retail 482 false 0.7 2300000 US
State Grid Electric utility 330 false 2.9 927839 China
Saudi Aramco Oil and gas 311 true 40.1 65266 SA
China National Petroleum Oil and gas 299 false 30.2 1589508 China
Sinopec Group Oil and gas 294 false 34.1 810538 China

As an exercise, you can try adding a table heading or even a grid line to precede
these lines for a better tabulation of the data.

See also
• Reading and writing raw data from/to binary files to learn how to write and read

unstructured data to binary files
• Using monetary I/O manipulators to learn how to use standard manipulators to

write and read monetary values
• Using time I/O manipulators to learn how to use standard manipulators to

write and read date and time values

Using monetary I/O manipulators
In the previous recipe, we looked at some of the manipulators that can be used to
control input and output streams. The manipulators that we discussed were related
to numeric values and text values. In this recipe, we will look at how to use standard
manipulators to write and read monetary values.

Getting ready
You should now be familiar with locales and how to set them for a stream. This topic
was discussed in the Using localized settings for streams recipe. It is recommended that
you read that recipe before continuing.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Files and Streams

[366]

The manipulators discussed in this recipe are available in the std namespace, in the
<iomanip> header.

How to do it...
To write a monetary value to an output stream, you should do the following:

• Set the desired locale for controlling the monetary format:
std::cout.imbue(std::locale("en_GB.utf8"));

• Use either a long double or a std::basic_string value for the amount:
long double mon = 12345.67;
std::string smon = "12345.67";

• Use a std::put_money manipulator with a single argument, the monetary
value, to display the value using the currency symbol (if any is available):

std::cout << std::showbase << std::put_money(mon)
 << '\n'; // £123.46
std::cout << std::showbase << std::put_money(smon)
 << '\n'; // £123.46

• Use std::put_money with two arguments, the monetary value and a Boolean
flag set to true, to indicate the use of an international currency string:

std::cout << std::showbase << std::put_money(mon, true)
 << '\n'; // GBP 123.46
std::cout << std::showbase << std::put_money(smon, true)
 << '\n'; // GBP 123.46

To read a monetary value from an input stream, you should do the following:

• Set the desired locale for controlling the monetary format:

std::istringstream stext("$123.45 123.45 USD");
stext.imbue(std::locale("en_US.utf8"));

• Use either a long double or std::basic_string value to read the amount
from the input stream:

long double v1;
std::string v2;

• Use std::get_money() with a single argument, the variable where the
monetary value is to be written, if a currency symbol might be used in the
input stream:

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7

[367]

stext >> std::get_money(v1) >> std::get_money(v2);
// v1 = 12345, v2 = "12345"

• Use std::get_money() with two arguments, the variable where the monetary
value is to be written and a Boolean flag set to true, to indicate the presence
of an international currency string:

stext >> std::get_money(v1, true) >> std::get_money(v2, true);
// v1 = 0, v2 = "12345"

How it works...
The put_money() and get_money() manipulators are very similar. They are both
function templates that take an argument representing either the monetary value to
be written to the output stream or a variable to hold the monetary value read from an
input stream, and a second, optional parameter, to indicate whether an international
currency string is used. The default alternative is the currency symbol, if one is
available. put_money() uses the std::money_put() facet settings to output a monetary
value, and get_money() uses the std::money_get() facet to parse a monetary value.
Both manipulator function templates return an object of an unspecified type. These
functions do not throw exceptions:

template <class MoneyT>
/*unspecified*/ put_money(const MoneyT& mon, bool intl = false);

template <class MoneyT>
/*unspecified*/ get_money(MoneyT& mon, bool intl = false);

Both of these manipulator functions require the monetary value to be either a long
double or a std::basic_string.

When writing a monetary value to an output stream, it is important to use the
std::showbase manipulator if you want to display the currency symbol or the
international currency string. This is normally used to indicate the prefix of a
numeric base (such as 0x for hexadecimal); however, for monetary values, it is used
to indicate whether the currency symbol/string should be displayed or not. The
following snippet provides an example:

However, it is important to note that monetary values are stored
as integral numbers of the smallest denomination of the currency
defined by the locale in use. Considering US dollars as that
currency, $100.00 is stored as 10000.0, and 1 cent, that is, $0.01, is
stored as 1.0.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Files and Streams

[368]

// print 123.46
std::cout << std::put_money(12345.67) << '\n';
// print £123.46
std::cout << std::showbase << std::put_money(12345.67) << '\n';

In the preceding snippet, the first line will just print the numerical value representing
a currency amount, 123.46, while the second line will print the same numerical value
but preceded by the currency symbol.

See also
• Using I/O manipulators to control the output of a stream to learn about the use of

helper functions, called manipulators, that control input and output streams
using the << and >> stream operators

• Using time I/O manipulators to learn how to use standard manipulators to
write and read date and time values

Using time I/O manipulators
Similar to the monetary I/O manipulators that we discussed in the previous recipe,
the C++11 standard provides manipulators that control the writing and reading of
time values to and from streams, where time values are represented in the form of an
std::tm object that holds a calendar date and time. In this recipe, you will learn how
to use these time manipulators.

Getting ready
Time values used by the time I/O manipulators are expressed in std::tm values. You
should be familiar with this structure from the <ctime> header.

You should also be familiar with locales and how to set them for a stream. This topic
was discussed in the Using localized settings for streams recipe. It is recommended that
you read that recipe before continuing.

The manipulators discussed in this recipe are available in the std namespace, in the
<iomanip> header.

How to do it...
To write a time value to an output stream, you should perform the following steps:

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7

[369]

1. Obtain a calendar date and time value corresponding to a given time. There
are various ways in which to do this. The following shows several examples
of how to convert the current time to a local time that is expressed as a
calendar date and time:

auto now = std::chrono::system_clock::now();
auto stime = std::chrono::system_clock::to_time_t(now);
auto ltime = std::localtime(&stime);

auto ttime = std::time(nullptr);
auto ltime = std::localtime(&ttime);

2. Use std::put_time() to supply a pointer to the std::tm object, representing
the calendar date and time, and a pointer to a null-terminated character
string, representing the format. The C++11 standard provides a long
list of formats that can be used; this list can be consulted at http://
en.cppreference.com/w/cpp/io/manip/put_time.

3. To write a standard date and time string according to the settings of a specific
locale, first set the locale for the stream by calling imbue() and then use the
std::put_time() manipulator:

std::cout.imbue(std::locale("en_GB.utf8"));
std::cout << std::put_time(ltime, "%c") << '\n';
// Sun 04 Dec 2016 05:26:47 JST

The following list shows some examples of supported time formats:

• ISO 8601 date format "%F" or "%Y-%m-%d":
std::cout << std::put_time(ltime, "%F") << '\n';
// 2016-12-04

• ISO 8601 time format "%T":
std::cout << std::put_time(ltime, "%T") << '\n';
// 05:26:47

• ISO 8601 combined date and time in UTC format "%FT%T%z":
std::cout << std::put_time(ltime, "%FT%T%z") << '\n';
// 2016-12-04T05:26:47+0900

• ISO 8601 week format "%Y-W%V":
std::cout << std::put_time(ltime, "%Y-W%V") << '\n';
// 2016-W48

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://en.cppreference.com/w/cpp/io/manip/put_time
http://en.cppreference.com/w/cpp/io/manip/put_time

Working with Files and Streams

[370]

• ISO 8601 date with week number format "%Y-W%V-%u":
std::cout << std::put_time(ltime, "%Y-W%V-%u") << '\n';
// 2016-W48-7

• ISO 8601 ordinal date format "%Y-%j":
std::cout << std::put_time(ltime, "%Y-%j") << '\n';
// 2016-339

To read a time value from an input stream, you should perform the following steps:

1. Declare an object of the std::tm type to hold the time value read from the
stream:

auto time = std::tm {};

2. Use std::get_time() to supply a pointer to the std::tm object, which will
hold the time value, and a pointer to a null-terminated character string,
which represents the format. The list of possible formats can be consulted
at http://en.cppreference.com/w/cpp/io/manip/get_time. The following
example parses an ISO 8601 combined date and time value:

std::istringstream stext("2016-12-04T05:26:47+0900");
stext >> std::get_time(&time, "%Y-%m-%dT%H:%M:%S");
if (!stext.fail()) { /* do something */ }

3. To read a standard date and time string according to the settings of a specific
locale, first set the locale for the stream by calling imbue() and then use the
std::get_time() manipulator:

std::istringstream stext("Sun 04 Dec 2016 05:35:30 JST");
stext.imbue(std::locale("en_GB.utf8"));
stext >> std::get_time(&time, "%c");
if (stext.fail()) { /* do something else */ }

How it works...
The two manipulators for time values, put_time() and get_time(), are very similar:
they are both function templates with two arguments. The first argument is a pointer
to an std::tm object representing the calendar date and time that holds the value
to be written to the stream or the value that is read from the stream. The second
argument is a pointer to a null-terminated character string representing the format
of the time text. put_time() uses the std::time_put() facet to output a date and time
value, and get_time() uses the std::time_get() facet to parse a date and time value.
Both manipulator function templates return an object of an unspecified type. These
functions do not throw exceptions:

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://en.cppreference.com/w/cpp/io/manip/get_time

Chapter 7

[371]

template<class CharT>
/*unspecified*/ put_time(const std::tm* tmb, const CharT* fmt);

template<class CharT>
/*unspecified*/ get_time(std::tm* tmb, const CharT* fmt);

The standard defines a long list of available conversion specifiers that compose the
format string. These specifiers are prefixed with a %, and, in some cases, are followed
by an E or a 0. Some of them are also equivalent; for instance, %F is equivalent to
%Y-%m-%d (this is the ISO 8601 date format), and %T is equivalent to %H:%M:%S (this
is the ISO 8601 time format). The examples in this recipe mention only a few of the
conversion specifiers, referring to ISO 8601 date and time formats. For the complete
list of conversion specifiers, refer to the C++ standard or follow the links that were
mentioned earlier.

std::istringstream stext("2016-12-04T05:26:47+0900");
auto time = std::tm {};

stext >> std::get_time(&time, "%Y-%m-%dT%H:%M:%S%z"); // fails
stext >> std::get_time(&time, "%Y-%m-%dT%H:%M:%S"); // OK

The text represented by some conversion specifiers is locale-dependent. All specifiers
prefixed with E or 0 are locale-dependent. To set a particular locale for the stream,
use the imbue() method, as demonstrated in the examples in the How to do it...
section.

The string that results from using put_time() to write a date and
time value to an output stream is the same as the one that results
from a call to std::strftime() or std::wcsftime().

It is important to note that not all of the conversion specifiers
supported by put_time() are also supported by get_time().
Examples include the z (offset from UTC in the ISO 8601 format)
and Z (time zone name or abbreviation) specifiers, which can only
be used with put_time(). This is demonstrated in the following
snippet:

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Files and Streams

[372]

See also
• Using I/O manipulators to control the output of a stream to learn about the use of

helper functions, called manipulators, that control input and output streams
using the << and >> stream operators

• Using monetary I/O manipulators to learn how to use standard manipulators to
write and read monetary values

Working with filesystem paths
An important addition to the C++17 standard is the filesystem library that enables
us to work with paths, files, and directories in hierarchical filesystems (such as
Windows or POSIX filesystems). This standard library has been developed based on
the boost.filesystem library. In the next few recipes, we will explore those features
of the library that enable us to perform operations with files and directories, such as
creating, moving, or deleting them, but also querying properties and searching. It is
important, however, to first look at how this library handles paths.

Getting ready
For this recipe, we will consider most of the examples using Windows paths. In the
accompanying code, all examples have both Windows and POSIX alternatives.

The filesystem library is available in the std::filesystem namespace, in the
<filesystem> header. To simplify the code, we will use the following namespace
alias in all of the examples:

namespace fs = std::filesystem;

A path to a filesystem component (file, directory, hard link, or soft link) is
represented by the path class.

How to do it...
The following is a list of the most common operations on paths:

• Create a path using the constructor, the assignment operator, or the assign()
method:

// Windows
auto path = fs::path{"C:\\Users\\Marius\\Documents"};

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7

[373]

// POSIX
auto path = fs::path{ "/home/marius/docs" };

• Append elements to a path by including a directory separator using the
member operator /=, the non-member operator /, or the append() method:

path /= "Book";
path = path / "Modern" / "Cpp";
path.append("Programming");
// Windows: C:\Users\Marius\Documents\Book\Modern\Cpp\
Programming
// POSIX: /home/marius/docs/Book/Modern/Cpp/Programming

• Concatenate elements to a path without including a directory separator by
using the member operator +=, the non-member operator +, or the concat()
method:

auto path = fs::path{ "C:\\Users\\Marius\\Documents" };
path += "\\Book";
path.concat("\\Modern");
// path = C:\Users\Marius\Documents\Book\Modern

• Decompose the elements of a path into its parts, such as the root, root
directory, parent path, filename, extension, and so on, using member
functions such as root_name(), root_dir(), filename(), stem(), extension(),
and so on (all of them are shown in the following example):

auto path =
 fs::path{"C:\\Users\\Marius\\Documents\\sample.file.txt"};

std::cout
 << "root: " << path.root_name() << '\n'
 << "root dir: " << path.root_directory() << '\n'
 << "root path: " << path.root_path() << '\n'
 << "rel path: " << path.relative_path() << '\n'
 << "parent path: " << path.parent_path() << '\n'
 << "filename: " << path.filename() << '\n'
 << "stem: " << path.stem() << '\n'
 << "extension: " << path.extension() << '\n';

• Query whether parts of a part are available using member functions such as
has_root_name(), has_root_directory(), has_filename(), has_stem(), and
has_extension() (all of them are shown in the following example):

auto path =
 fs::path{"C:\\Users\\Marius\\Documents\\sample.file.txt"};

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Files and Streams

[374]

std::cout
 << "has root: " << path.has_root_name() << '\n'
 << "has root dir: " << path.has_root_directory() << '\n'
 << "has root path: " << path.has_root_path() << '\n'
 << "has rel path: " << path.has_relative_path() << '\n'
 << "has parent path: " << path.has_parent_path() << '\n'
 << "has filename: " << path.has_filename() << '\n'
 << "has stem: " << path.has_stem() << '\n'
 << "has extension: " << path.has_extension() << '\n';

• Check whether a path is relative or absolute:
auto path2 = fs::path{ "marius\\temp" };
std::cout
 << "absolute: " << path1.is_absolute() << '\n'
 << "absolute: " << path2.is_absolute() << '\n';

• Modify individual parts of the path, such as the filename with replace_
filename() and remove_filename(), and the extension with replace_
extension():

auto path =
 fs::path{"C:\\Users\\Marius\\Documents\\sample.file.txt"};

path.replace_filename("output");
path.replace_extension(".log");
// path = C:\Users\Marius\Documents\output.log

path.remove_filename();
// path = C:\Users\Marius\Documents

• Convert the directory separator to the system-preferred separator:
// Windows
auto path = fs::path{"Users/Marius/Documents"};
path.make_preferred();
// path = Users\Marius\Documents

// POSIX
auto path = fs::path{ "\\home\\marius\\docs" };
path.make_preferred();
// path = /home/marius/docs

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7

[375]

How it works...
The std::filesystem::path class models paths to filesystem components. However,
it only handles the syntax and does not validate the existence of a component (such
as a file or a directory) represented by the path.

The library defines a portable, generic syntax for paths that can accommodate
various filesystems, such as POSIX or Windows, including the Microsoft Windows
Universal Naming Convention (UNC) format. Both of them differ in several key
aspects:

• POSIX systems have a single tree, no root name, a single root directory called
/, and a single current directory. Additionally, they use / as the directory
separator. Paths are represented as null-terminated strings of char encoded
as UTF-8.

• Windows systems have multiple trees, each with a root name (such as C:),
a root directory (such as \), and a current directory (such as C:\Windows\
System32). Paths are represented as null-terminated strings of wide
characters encoded as UTF-16.

A pathname, as defined in the filesystem library, has the following syntax:

• An optional root name (C: or //localhost)
• An optional root directory
• Zero or more filenames (which may refer to a file, a directory, a hard link,

or a symbolic link) or directory separators

There are two special filenames that are recognized: the single dot (.), which
represents the current directory, and the double dot (..), which represents the parent
directory. The directory separator can be repeated, in which case it is treated as a
single separator (in other words, /home////docs is the same as /home/marius/docs). A
path that has no redundant current directory name (.), no redundant parent directory
name (..), and no redundant directory separators is said to be in a normal form.

The path operations presented in the previous section are the most common
operations with paths. However, their implementation defines additional querying
and modifying methods, iterators, non-member comparison operators, and more.
The following sample iterates through the parts of a path and prints them to the
console:

auto path =
 fs::path{ "C:\\Users\\Marius\\Documents\\sample.file.txt" };

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Files and Streams

[376]

for (auto const & part : path)
{
 std::cout << part << '\n';
}

The following listing represents its result:

C:

Users
Marius
Documents
sample.file.txt

In this example, sample.file.txt is the filename. This is basically the part from the
last directory separator to the end of the path. This is what the member function
filename() would be returning for the given path. The extension for this file is .txt,
which is the string returned by the extension() member function. To retrieve the
filename without an extension, another member function called stem() is available.
Here, the string returned by this method is sample.file. For all of these methods,
but also all of the other decomposition methods, there is a corresponding querying
method with the same name and prefix has_, such as has_filename(), has_stem(),
and has_extension(). All of these methods return a bool value to indicate whether
the path has the corresponding part.

See also
• Creating, copying, and deleting files and directories to learn how to perform these

basic operations with files and directories independently of the filesystem in
use

• Checking the properties of an existing file or directory to learn how to query the
properties of files and directories, such as the type, permissions, file times,
and more

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7

[377]

Creating, copying, and deleting files and
directories
Operations with files, such as copying, moving, and deleting, or with directories,
such as creating, renaming, and deleting, are all supported by the filesystem library.
Files and directories are identified using a path (which can be absolute, canonical, or
relative), a topic that was covered in the previous recipes. In this recipe, we will look
at what the standard functions for the previously mentioned operations are and how
they work.

Getting ready
Before going forward, you should read the Working with filesystem paths recipe. The
introductory notes from that recipe also apply here. However, all of the examples in
this recipe are platform-independent.

For all of the following examples, we will use the following variables, and assume
the current path is C:\Users\Marius\Documents on Windows and /home/marius/docs
for a POSIX system:

auto err = std::error_code{};
auto basepath = fs::current_path();
auto path = basepath / "temp";
auto filepath = path / "sample.txt";

We will also assume the presence of a file called sample.txt in the temp subdirectory
of the current path (such as C:\Users\Marius\Documents\temp\sample.txt or /home/
marius/docs/temp/sample.txt).

How to do it...
Use the following library functions to perform operations with directories:

• To create a new directory, use create_directory(). This method does
nothing if the directory already exists; however, it does not create directories
recursively:

auto success = fs::create_directory(path, err);

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Files and Streams

[378]

• To create new directories recursively, use create_directories():
auto temp = path / "tmp1" / "tmp2" / "tmp3";
auto success = fs::create_directories(temp, err);

• To move an existing directory, use rename():
auto temp = path / "tmp1" / "tmp2" / "tmp3";
auto newtemp = path / "tmp1" / "tmp3";

fs::rename(temp, newtemp, err);
if (err) std::cout << err.message() << '\n';

• To rename an existing directory, also use rename():
auto temp = path / "tmp1" / "tmp3";
auto newtemp = path / "tmp1" / "tmp4";

fs::rename(temp, newtemp, err);
if (err) std::cout << err.message() << '\n';

• To copy an existing directory, use copy(). To recursively copy the entire
content of a directory, use the copy_options::recursive flag:

fs::copy(path, basepath / "temp2",
 fs::copy_options::recursive, err);
if (err) std::cout << err.message() << '\n';

• To create a symbolic link to a directory, use create_directory_symlink():
auto linkdir = basepath / "templink";
fs::create_directory_symlink(path, linkdir, err);
if (err) std::cout << err.message() << '\n';

• To remove an empty directory, use remove():
auto temp = path / "tmp1" / "tmp4";
auto success = fs::remove(temp, err);

• To remove the entire content of a directory recursively, and the directory
itself, use remove_all():

auto success = fs::remove_all(path, err) !=
 static_cast<std::uintmax_t>(-1);

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7

[379]

Use the following library functions to perform operations with files:

• To copy a file, use copy() or copy_file(). The next section explains the
difference between the two:

auto success = fs::copy_file(filepath, path / "sample.bak",
err);
if (!success) std::cout << err.message() << '\n';

fs::copy(filepath, path / "sample.cpy", err);
if (err) std::cout << err.message() << '\n';

• To rename a file, use rename():
auto newpath = path / "sample.log";
fs::rename(filepath, newpath, err);
if (err) std::cout << err.message() << '\n';

• To move a file, use rename():
auto newpath = path / "sample.log";
fs::rename(newpath, path / "tmp1" / "sample.log", err);
if (err) std::cout << err.message() << '\n';

• To create a symbolic link to a file, use create_symlink():
auto linkpath = path / "sample.txt.link";
fs::create_symlink(filepath, linkpath, err);
if (err) std::cout << err.message() << '\n';

• To delete a file, use remove():
auto success = fs::remove(path / "sample.cpy", err);
if (!success) std::cout << err.message() << '\n';

How it works...
All of the functions mentioned in this recipe, and other similar functions that are not
discussed here, have multiple overloads that can be grouped into two categories:

• Overloads that take, as the last argument, a reference to an std::error_
code: these overloads do not throw an exception (they are defined with the
noexcept specification). Instead, they set the value of the error_code object
to the operating system error code if an operating system error has occurred.
If no such error has occurred, then the clear() method on the error_code
object is called to reset any possible previously set code.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Files and Streams

[380]

• Overloads that do not take the last argument of the std::error_code type:
these overloads throw exceptions if errors occur. If an operating system error
occurs, they throw an std::filesystem::filesystem_error exception. On the
other hand, if memory allocation fails, these functions throw an std::bad_alloc
exception.

All the examples in the previous section used the overload that does not throw
exceptions but, instead, sets a code when an error occurs. Some functions return a
bool to indicate a success or a failure. You can check whether the error_code object
holds the code of an error by either checking whether the value of the error code,
returned by the method value(), is different from zero, or by using the conversion
operator bool, which returns true for the same case and false otherwise. To
retrieve the explanatory string for the error code, use the message() method.

Some filesystem library functions are common for both files and directories. This
is the case for rename(), remove(), and copy(). The working details of each of these
functions can be complex, especially in the case of copy(), and are beyond the
scope of this recipe. You should refer to the reference documentation if you need to
perform anything other than the simple operations covered here.

When it comes to copying files, there are two functions that can be used: copy()
and copy_file(). These have equivalent overloads with identical signatures and,
apparently, work the same way. However, there is an important difference (other
than the fact that copy() also works for directories): copy_file() follows symbolic
links. To avoid doing that and, instead, copy the actual symbolic link, you must use
either copy_symlink() or copy() with the copy_options::copy_symlinks flag. Both
the copy() and copy_file() functions have an overload that takes an argument of
the std::filesystem::copy_options type, which defines how the operation should
be performed. copy_options is a scoped enum with the following definition:

enum class copy_options
{
 none = 0,
 skip_existing = 1,
 overwrite_existing = 2,
 update_existing = 4,
 recursive = 8,
 copy_symlinks = 16,
 skip_symlinks = 32,
 directories_only = 64,
 create_symlinks = 128,
 create_hard_links = 256
};

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7

[381]

The following table defines how each of these flags affects a copy operation, either
with copy() or copy_file(). The table is taken from the 27.10.10.4 paragraph of the
C++17 standard:

Option group controlling copy_file function effects for existing target files
none (Default) Error; file already exists
skip_existing Do not overwrite existing file; do not report an error
overwrite_existing Overwrite the existing file
update_existing Overwrite the existing file if it is older than the replacement file
Option group controlling copy function effects for subdirectories
none (Default) Do not copy subdirectories
recursive Recursively copy subdirectories and their contents
Option group controlling copy function effects for symbolic links
none (Default) Follow symbolic links
copy_symlinks Copy symbolic links as symbolic links rather than copying the

files that they point to
skip_symlinks Ignore symbolic links
Option group controlling copy function effects for choosing the form of copying
none (Default) Copy contents
directories_only Copy the directory structure only, do not copy non-directory

files
create_symlinks Make symbolic links instead of copies of files; the source path

will be an absolute path unless the destination path is in the
current directory

create_hard_links Make hard links instead of copies of files

Another aspect that should be mentioned is related to symbolic links:
create_directory_symlink() creates a symbolic link to a directory, whereas
create_symlink() creates symbolic links to either files or directories. On POSIX
systems, the two are identical when it comes to directories. On other systems (such
as Windows), symbolic links to directories are created differently than symbolic links
to files. Therefore, it is recommended that you use create_directory_symlink() for
directories in order to write code that works correctly on all systems.

When you perform operations with files and directories, such
as the ones described in this recipe, and you use the overloads
that may throw exceptions, ensure that you try-catch the calls.
Regardless of the type of overload used, you should check the
success of the operation and take appropriate action in the case of
a failure.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Files and Streams

[382]

See also
• Working with filesystem paths to learn about the C++17 standard support for

filesystem paths
• Removing content from a file to explore the possible ways of removing parts of

the content of a file
• Checking the properties of an existing file or directory to learn how to query the

properties of files and directories, such as the type, permissions, file times,
and more

Removing content from a file
Operations such as copying, renaming, moving, or deleting files are directly
provided by the filesystem library. However, when it comes to removing content
from a file, you must perform explicit actions.

Regardless of whether you need to do this for text or binary files, you must
implement the following pattern:

1. Create a temporary file.
2. Copy only the content that you want from the original file to the temporary

file.
3. Delete the original file.
4. Rename/move the temporary file to the name/location of the original file.

In this recipe, we will learn how to implement this pattern for a text file.

Getting ready
For the purpose of this recipe, we will consider removing empty lines, or lines that
start with a semicolon (;), from a text file. For this example, we will have an initial
file, called sample.dat, that contains the names of Shakespeare's plays but also empty
lines and lines that start with a semicolon. The following is a partial listing of this file
(from the beginning):

;Shakespeare's plays, listed by genre

;TRAGEDIES
Troilus and Cressida
Coriolanus
Titus Andronicus

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7

[383]

Romeo and Juliet
Timon of Athens
Julius Caesar

The code samples listed in the next section use the following variables:

auto path = fs::current_path();
auto filepath = path / "sample.dat";
auto temppath = path / "sample.tmp";
auto err = std::error_code{};

We will learn how to put this pattern into code in the following section.

How to do it...
Perform the following operations to remove content from a file:

1. Open the file for reading:
std::ifstream in(filepath);
if (!in.is_open())
{
 std::cout << "File could not be opened!" << '\n';
 return;
}

2. Open another temporary file for writing; if the file already exists, truncate its
content:

std::ofstream out(temppath, std::ios::trunc);
if (!out.is_open())
{
 std::cout << "Temporary file could not be created!"
 << '\n';
 return;
}

3. Read, line by line, from the input file and copy the selected content to the
output file:

auto line = std::string{};
while (std::getline(in, line))
{
 if (!line.empty() && line.at(0) != ';')
 {

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Files and Streams

[384]

 out << line << 'n';
 }
}

4. Close both the input and output files:
in.close();
out.close();

5. Delete the original file:
auto success = fs::remove(filepath, err);
if(!success || err)
{
 std::cout << err.message() << '\n';
 return;
}

6. Rename/move the temporary file to the name/location of the original file:
fs::rename(temppath, filepath, err);
if (err)
{
 std::cout << err.message() << '\n';
}

How it works...
The pattern described here is the same for binary files too; however, for our
convenience, we are only discussing an example with text files. The temporary file
in this example is in the same directory as the original file. Alternatively, this can
be located in a separate directory, such as a user temporary directory. To get a path
to a temporary directory, you can use std::filesystem::temp_directory_path().
On Windows systems, this function returns the same directory as GetTempPath().
On POSIX systems, it returns the path specified in one of the environment variables
TMPDIR, TMP, TEMP, or TEMPDIR; or, if none of them are available, it returns the path
/tmp.

How content from the original file is copied to the temporary file varies from one
case to another, depending on what needs to be copied. In the preceding example,
we have copied entire lines, unless they are empty or start with a semicolon. For this
purpose, we read the content of the original file, line by line, using std::getline()
until there are no more lines to read. After all the necessary content has been copied,
the files should be closed, so they can be moved or deleted.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7

[385]

To complete the operation, there are three options:

• Delete the original file and rename the temporary file to the same name as
the original one, if they are in the same directory, or move the temporary
file to the original file location, if they are in different directories. This is
the approach taken in this recipe. For this, we used the remove() function
to delete the original file and rename() to rename the temporary file to the
original filename.

• Copy the content of the temporary file to the original file (for this, you
can use either the copy() or copy_file() functions) and then delete the
temporary file (use remove() for this).

• Rename the original file (for instance, changing the extension or the name)
and then use the original filename to rename/move the temporary file.

See also
• Creating, copying, and deleting files and directories to learn how to perform these

basic operations with files and directories independently of the filesystem in use

Checking the properties of an existing
file or directory
The filesystem library provides functions and types that enable developers to check
for the existence of a filesystem object, such as a file or directory, its properties,
such as the type (the file, directory, symbolic link, and more), the last write time,
permissions, and more. In this recipe, we will look at what these types and functions
are and how they can be used.

Getting ready
For the following code samples, we will use the namespace alias fs for the
std::filesystem namespace. The filesystem library is available in the header with
the same name, <filesystem>. Also, we will use the variables shown here, path for
the path of a file and err for receiving potential operating system error codes from
the filesystem APIs:

If you take the first approach mentioned here, then you must make
sure that the temporary file that is later replacing the original
file has the same file permissions as the original file; otherwise,
depending on the context of your solution, it can lead to problems.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Files and Streams

[386]

auto path = fs::current_path() / "main.cpp";
auto err = std::error_code{};

Also, the function to_time_t shown here, will be referred in this recipe:

 template <typename TP>
 std::time_t to_time_t(TP tp)
 {
 using namespace std::chrono;
 auto sctp = time_point_cast<system_clock::duration>(
 tp - TP::clock::now() + system_clock::now());
 return system_clock::to_time_t(sctp);
 }

Before continuing with this recipe, you should read the Working with filesystem paths
recipe.

How to do it...
Use the following library functions to retrieve information about filesystem objects:

• To check whether a path refers to an existing filesystem object, use exists():
auto exists = fs::exists(path, err);
std::cout << "file exists: " << std::boolalpha
 << exists << '\n';

• To check whether two different paths refer to the same filesystem object, use
equivalent():

auto same = fs::equivalent(path,
 fs::current_path() / "." / "main.cpp");
std::cout << "equivalent: " << same << '\n';

• To retrieve the size of a file in bytes, use file_size():
auto size = fs::file_size(path, err);
std::cout << "file size: " << size << '\n';

• To retrieve the count of hard links to a filesystem object, use hard_link_count():
auto links = fs::hard_link_count(path, err);
if(links != static_cast<uintmax_t>(-1))
 std::cout << "hard links: " << links << '\n';
else
 std::cout << "hard links: error" << '\n';

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7

[387]

• To retrieve or set the last modification time for a filesystem object, use
last_write_time():

auto lwt = fs::last_write_time(path, err);
auto time = to_time_t(lwt);
auto localtime = std::localtime(&time);
std::cout << "last write time: "
 << std::put_time(localtime, "%c") << '\n';

• To retrieve the file attributes, such as the type and permissions (as if returned
by the POSIX stat function), use the status() function. This function follows
symbolic links. To retrieve the file attributes of a symbolic link without
following it, use symlink_status():

auto print_perm = [](fs::perms p)
{
 std::cout
 << ((p & fs::perms::owner_read) != fs::perms::none ?
 "r" : "-")
 << ((p & fs::perms::owner_write) != fs::perms::none ?
 "w" : "-")
 << ((p & fs::perms::owner_exec) != fs::perms::none ?
 "x" : "-")
 << ((p & fs::perms::group_read) != fs::perms::none ?
 "r" : "-")
 << ((p & fs::perms::group_write) != fs::perms::none ?
 "w" : "-")
 << ((p & fs::perms::group_exec) != fs::perms::none ?
 "x" : "-")
 << ((p & fs::perms::others_read) != fs::perms::none ?
 "r" : "-")
 << ((p & fs::perms::others_write) != fs::perms::none ?
 "w" : "-")
 << ((p & fs::perms::others_exec) != fs::perms::none ?
 "x" : "-")
 << '\n';
};

auto status = fs::status(path, err);
std::cout << "type: " << static_cast<int>(status.type()) << '\n';
std::cout << "permissions: ";
print_perm(status.permissions());

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Files and Streams

[388]

• To check whether a path refers to a particular type of filesystem object, such as
a file, directory, symbolic link, and so on, use the functions is_regular_file(),
is_directory(), is_symlink(), and so on:

std::cout << "regular file? " <<
 fs::is_regular_file(path, err) << '\n';
std::cout << "directory? " <<
 fs::is_directory(path, err) << '\n';
std::cout << "char file? " <<
 fs::is_character_file(path, err) << '\n';
std::cout << "symlink? " <<
 fs::is_symlink(path, err) << '\n';

How it works...
These functions, used to retrieve information about the filesystem files and
directories, are, in general, simple and straightforward. However, some
considerations are necessary:

• Checking whether a filesystem object exists can be done using exists(),
either by passing the path or an std::filesystem::file_status object that
was previously retrieved using the status() function.

• The equivalent() function determines whether two filesystem objects have
the same status, as retrieved by the function status(). If neither path exists,
or if both exist but neither is a file, directory, or symbolic link, then the
function returns an error. Hard links to the same file object are equivalent. A
symbolic link and its target are also equivalent.

• The file_size() function can only be used to determine the size of regular
files and symbolic links that target a regular file. For any other types of file
objects, such as directories, this function fails. This function returns the size
of the file in bytes, or -1 if an error has occurred. If you want to determine
whether a file is empty, you can use the is_empty() function. This works for
all types of filesystem objects, including directories.

• The last_write_time() function has two sets of overloads: one that is
used to retrieve the last modification time of the filesystem object, and
one that is used to set the last modification time. Time is indicated by a
std::filesystem::file_time_type object, which is basically a type alias for
std::chrono::time_point. The following example changes the last write time
for a file to 30 minutes earlier than its previous value:

using namespace std::chrono_literals;
auto lwt = fs::last_write_time(path, err);
fs::last_write_time(path, lwt - 30min);

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7

[389]

• The status() function determines the type and permissions of a filesystem
object. However, if the file is a symbolic link, the information returned
is about the target of the symbolic link. To retrieve information about
the symbolic link itself, the symlink_status() function must be used.
Permissions are defined as an enumeration, std::filesystem::perms. Not
all the enumerators of this scoped enum represent permissions; some of them
represent controlling bits, such as add_perms, to indicate that permissions
should be added, or remove_perms, to indicate that permissions should be
removed. The permissions() function can be used to modify the permissions
of a file or a directory. The following example adds all permissions
to the owner and user group of a file:

fs::permissions(
 path,
 fs::perms::add_perms |
 fs::perms::owner_all | fs::perms::group_all,
 err);

• To determine the type of a filesystem object, such as a file, directory, or
symbolic link, there are two options available: retrieve the file status and
then check the type property, or use one of the available filesystem functions,
such as is_regular_file(), is_symlink(), or is_directory(). The following
examples that check whether a path refers to a regular file are equivalent:

auto s = fs::status(path, err);
auto isfile = s.type() == std::filesystem::file_type::regular;

auto isfile = fs::is_regular_file(path, err);

All of the functions discussed in this recipe have an overload that throws exceptions
if an error occurs, and an overload that does not throw but returns an error code via
a function parameter. All of the examples in this recipe used this approach. More
information about these sets of overloads can be found in the Creating, copying, and
deleting files and directories recipe.

See also
• Working with filesystem paths to learn about the C++17-standard support for

filesystem paths
• Creating, copying, and deleting files and directories to learn how to perform these

basic operations with files and directories independently of the filesystem in use
• Enumerating the content of a directory to learn how to iterate through the files

and subdirectories of a directory

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Files and Streams

[390]

Enumerating the content of a directory
So far in this chapter, we have looked at many of the functionalities provided by the
filesystem library, such as working with paths, performing operations with files
and directories (creating, moving, renaming, deleting, and so on), and querying
or modifying properties. Another useful functionality when working with the
filesystem is to iterate through the content of a directory. The filesystem library
provides two directory iterators, one called directory_iterator, which iterates
the content of a directory, and one called recursive_directory_iterator, which
recursively iterates the content of a directory and its subdirectories. In this recipe, we
will learn how to use them.

Getting ready
For this recipe, we will consider a directory with the following structure:

test/
├──data/
│ ├──input.dat
│ └──output.dat
├──file_1.txt
├──file_2.txt
└──file_3.log

In this recipe, we will work with filesystem paths and check the properties of a
filesystem object. Therefore, it is recommended that you first read the Working with
filesystem paths and Checking the properties of an existing file or directory recipes.

How to do it...
Use the following patterns to enumerate the content of a directory:

• To iterate only the content of a directory without recursively visiting its
subdirectories, use directory_iterator:

void visit_directory(fs::path const & dir)
{
 if (fs::exists(dir) && fs::is_directory(dir))
 {
 for (auto const & entry : fs::directory_iterator(dir))
 {
 auto filename = entry.path().filename();

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7

[391]

 if (fs::is_directory(entry.status()))
 std::cout << "[+]" << filename << '\n';
 else if (fs::is_symlink(entry.status()))
 std::cout << "[>]" << filename << '\n';
 else if (fs::is_regular_file(entry.status()))
 std::cout << " " << filename << '\n';
 else
 std::cout << "[?]" << filename << '\n';
 }
 }
}

• To iterate all the content of a directory, including its subdirectories, use
recursive_directory_iterator when the order of processing the entries does
not matter:

void visit_directory_rec(fs::path const & dir)
{
 if (fs::exists(dir) && fs::is_directory(dir))
 {
 for (auto const & entry :
 fs::recursive_directory_iterator(dir))
 {
 auto filename = entry.path().filename();
 if (fs::is_directory(entry.status()))
 std::cout << "[+]" << filename << '\n';
 else if (fs::is_symlink(entry.status()))
 std::cout << "[>]" << filename << '\n';
 else if (fs::is_regular_file(entry.status()))
 std::cout << " " << filename << '\n';
 else
 std::cout << "[?]" << filename << '\n';
 }
 }
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Files and Streams

[392]

• To iterate all the content of a directory, including its subdirectories, in a
structured manner, such as traversing a tree, use a function similar to the one
in the first example, which uses directory_iterator to iterate the content of
a directory. However, instead, call it recursively for each subdirectory:

void visit_directory(
 fs::path const & dir,
 bool const recursive = false,
 unsigned int const level = 0)
{
 if (fs::exists(dir) && fs::is_directory(dir))
 {
 auto lead = std::string(level*3, ' ');
 for (auto const & entry : fs::directory_iterator(dir))
 {
 auto filename = entry.path().filename();
 if (fs::is_directory(entry.status()))
 {
 std::cout << lead << "[+]" << filename << '\n';
 if(recursive)
 visit_directory(entry, recursive, level+1);
 }
 else if (fs::is_symlink(entry.status()))
 std::cout << lead << "[>]" << filename << '\n';
 else if (fs::is_regular_file(entry.status()))
 std::cout << lead << " " << filename << '\n';
 else
 std::cout << lead << "[?]" << filename << '\n';
 }
 }
}

How it works...
Both directory_iterator and recursive_directory_iterator are input iterators that
iterate over the entries of a directory. The difference is that the first one does not visit
the subdirectories recursively, while the second one, as its name implies, does. They
both share a similar behavior:

• The order of iteration is unspecified.
• Each directory entry is visited only once.
• The special paths dot (.) and dot-dot (..) are skipped.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7

[393]

• A default-constructed iterator is the end iterator and two end iterators are
always equal.

• When iterated past the last directory entries, it becomes equal to the end
iterator.

• The standard does not specify what happens if a directory entry is added or
deleted to the iterated directory after the iterator has been created.

• The standard defines the non-member functions begin() and end() for both
directory_iterator and recursive_directory_iterator, which enables us to
use these iterators in range-based for loops, as shown in the examples earlier.

Both iterators have overloaded constructors. Some overloads of the
recursive_directory_iterator constructor take an argument of the
std::filesystem::directory_options type, which specifies additional options for
the iteration:

• none: This is the default that does not specify anything.
• follow_directory_symlink: This specifies that the iteration should follow

symbolic links instead of serving the link itself.
• Skip_permission_denied: This specifies that you should ignore and skip the

directories that could trigger an access denied error.

The elements that both directory iterators point to are of the directory_entry type.
The path() member function returns the path of the filesystem object represented
by this object. The status of the filesystem object can be retrieved with the member
functions status() and symlink_status() for symbolic links.

The preceding examples follow a common pattern:

• Verify that the path to iterate actually exists.
• Use a range-based for loop to iterate all the entries of a directory.
• Use one of the two directory iterators available in the filesystem library,

depending on the way the iteration is supposed to be done.
• Process each entry according to the requirements.

In our examples, we simply printed the names of the directory entries to the console. It
is important to note, as we specified earlier, that the content of the directory is iterated
in an unspecified order. If you want to process the content in a structured manner,
such as showing subdirectories and their entries indented (for this particular case) or
in a tree (in other types of applications), then using recursive_directory_iterator
is not appropriate. Instead, you should use directory_iterator in a function that
is called recursively from the iteration, for each subdirectory, as shown in the last
example from the previous section.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Files and Streams

[394]

Considering the directory structure presented at the beginning of this recipe (relative
to the current path), we get the following output when using the recursive iterator,
as follows:

visit_directory_rec(fs::current_path() / "test");

[+]data
 input.dat
 output.dat
 file_1.txt
 file_2.txt
 file_3.log

On the other hand, when using the recursive function from the third example, as
shown in the following listing, the output is displayed ordered on sublevels, as
intended:

visit_directory(fs::current_path() / "test", true);

[+]data
 input.dat
 output.dat
 file_1.txt
 file_2.txt
 file_3.log

Remember that the visit_directory_rec() function is a non-recursive function
that uses the recursive_directory_iterator iterator, while the visit_directory()
function is a recursive function that uses the directory_iterator. This example
should help you to understand the difference between the two iterators.

There's more...
In the previous recipe, Checking the properties of an existing file or directory, we
discussed, among other things, the file_size() function that returns the size of
a file in bytes. However, this function fails if the specified path is a directory. To
determine the size of a directory, we need to iterate recursively through the content
of a directory, retrieve the size of the regular files or symbolic links, and add them
together. However, we must make sure that we check the value returned by file_
size(), that is, -1 cast to an std::uintmax_t, in the case of an error. This value,
indicating a failure, should not be added to the total size of a directory.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7

[395]

Consider the following function to exemplify this case:

std::uintmax_t dir_size(fs::path const & path)
{
 auto size = static_cast<uintmax_t>(-1);
 if (fs::exists(path) && fs::is_directory(path))
 {
 for (auto const & entry : fs::recursive_directory_iterator(path))
 {
 if (fs::is_regular_file(entry.status()) ||
 fs::is_symlink(entry.status()))
 {
 auto err = std::error_code{};
 auto filesize = fs::file_size(entry);
 if (filesize != static_cast<uintmax_t>(-1))
 size += filesize;
 }
 }
 }

 return size;
}

The preceding dir_size() function returns the size of all the files in a directory
(recursively), or -1, as an uintmax_t, in the case of an error.

See also
• Checking the properties of an existing file or directory to learn how to query the

properties of files and directories, such as the type, permissions, file times,
and more

• Finding a file to learn how to search for files based on their name, extension,
or other properties

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Files and Streams

[396]

Finding a file
In the previous recipe, we learned how we can use directory_iterator and
recursive_directory_iterator to enumerate the content of a directory. Displaying
the content of a directory, as we did in the previous recipe, is only one of the
scenarios in which this is needed. The other major scenario is when searching for
particular entries in a directory, such as files with a particular name, extension, and
so on. In this recipe, we will demonstrate how we can use the directory iterators and
the iterating patterns shown earlier to find files that match a given criterion.

Getting ready
You should read the previous recipe, Enumerating the content of a directory, for details
about directory iterators. In this recipe, we will also use the same test directory
structure that was presented in the previous recipe.

How to do it...
To find files that match particular criteria, use the following pattern:

1. Use recursive_directory_iterator to iterate through all the entries of a
directory and recursively through its subdirectories.

2. Consider regular files (and any other types of files you may need to process).
3. Use a function object (such as a lambda expression) to filter only the files that

match your criteria.
4. Add the selected entries to a range (such as a vector).

This pattern is exemplified in the find_files() function shown here:

std::vector<fs::path> find_files(
 fs::path const & dir,
 std::function<bool(fs::path const&)> filter)
{
 auto result = std::vector<fs::path>{};

 if (fs::exists(dir))
 {
 for (auto const & entry :
 fs::recursive_directory_iterator(
 dir,
 fs::directory_options::follow_directory_symlink))
 {

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7

[397]

 if (fs::is_regular_file(entry) &&
 filter(entry))
 {
 result.push_back(entry);
 }
 }
 }

 return result;
}

How it works...
When we want to find files in a directory, the structure of the directory and the order
its entries, including subdirectories, are visited in is probably not important. Therefore,
we can use the recursive_directory_iterator to iterate through the entries.

The function find_files() takes two arguments: a path and a function wrapper
that is used to select the entries that should be returned. The return type is a
vector of filesystem::path, though. Alternatively, it could also be a vector of
filesystem::directory_entry. The recursive directory iterator used in this example
does not follow symbolic links, returning the link itself and not the target. This
behavior can be changed using a constructor overload that has an argument of the
type filesystem::directory_options and by passing follow_directory_symlink.

In the preceding example, we only consider the regular files and ignore the other
types of filesystem objects. The predicate is applied to the directory entry, and, if it
returns true, the entry is added to the result.

The following example uses the find_files() function to find all of the files in the
test directory that start with the prefix file_:

auto results = find_files(
 fs::current_path() / "test",
 [](fs::path const & p) {
 auto filename = p.wstring();
 return filename.find(L"file_") != std::wstring::npos;
});

for (auto const & path : results)
{
 std::cout << path << '\n';
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Working with Files and Streams

[398]

The output of executing this program, with paths relative to the current path, is as
follows:

test\file_1.txt
test\file_2.txt
test\file_3.log

A second example shows how to find files that have a particular extension, in this
case, the extension .dat:

auto results = find_files(
 fs::current_path() / "test",
 [](fs::path const & p) {
 return p.extension() == L".dat";});

for (auto const & path : results)
{
 std::cout << path << '\n';
}

The output, again relative to the current path, is shown here:

test\data\input.dat
test\data\output.dat

These two examples are very similar. The only thing that is different is the code in
the lambda function, which checks the path received as an argument.

See also
• Checking the properties of an existing file or directory to learn how to query the

properties of files and directories, such as the type, permissions, file times,
and more

• Enumerating the content of a directory to learn how to iterate through the files
and subdirectories of a directory

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

[399]

8
Leveraging Threading

and Concurrency
Most computers contain multiple processors or at least multiple cores, and
leveraging this computational power is the key for many categories of applications.
Unfortunately, many developers still have a mindset of sequential code execution,
even though operations that do not depend on each other could be executed
concurrently. This chapter presents standard library support for threads, asynchronous
tasks, and related components, as well as some practical examples at the end.

Most modern processors (except those dedicated to types of applications that do
not require great computing power, such as Internet of Things applications) have
two, four, or more cores that enable you to concurrently execute multiple threads
of execution. Applications must be explicitly written to leverage the multiple
processing units that exist; you can write such applications by executing functions
on multiple threads at the same time. The C++ standard library provides support for
working with threads, synchronization of shared data, thread communication, and
asynchronous tasks. In this chapter, we'll explore the most important topics related
to threads and tasks.

This chapter includes the following recipes:

• Working with threads
• Synchronizing access to shared data with mutexes and locks
• Avoiding using recursive mutexes
• Handling exceptions from thread functions

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Threading and Concurrency

[400]

• Sending notifications between threads
• Using promises and futures to return values from threads
• Executing functions asynchronously
• Using atomic types
• Implementing parallel map and fold with threads
• Implementing parallel map and fold with tasks
• Implementing parallel map and fold with standard parallel algorithms
• Using joinable threads and cancellation mechanisms
• Using thread synchronization mechanisms

In the first part of this chapter, we will look at the various threading objects and
mechanisms that have built-in support in the library, such as threads, locking objects,
condition variables, exception handling, and others.

Working with threads
A thread is a sequence of instructions that can be managed independently by a
scheduler, such as the operating system. Threads could be software or hardware.
Software threads are threads of execution that are managed by the operating system.
They can run on single processing units, usually by time slicing. This is a mechanism
where each thread gets a time slot of execution (in the range of milliseconds) on
the processing unit before the operating system schedules another software thread
to run on the same processing unit. Hardware threads are threads of execution
at the physical level. They are, basically, a CPU or a CPU core. They can run
simultaneously, that is, in parallel, on systems with multiprocessors or multicores.
Many software threads can run concurrently on a hardware thread, usually by using
time slicing. The C++ library provides support for working with software threads. In
this recipe, you will learn how to create and perform other operations with threads.

Getting ready
A thread of execution is represented by the thread class, available in the std
namespace in the <thread> header. Additional thread utilities are available in the
same header but in the std::this_thread namespace.

In the following examples, the print_time() function is used. This function prints
the local time to the console. Its implementation is as follows:

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[401]

inline void print_time()
{
 auto now = std::chrono::system_clock::now();
 auto stime = std::chrono::system_clock::to_time_t(now);
 auto ltime = std::localtime(&stime);

 std::cout << std::put_time(ltime, "%c") << '\n';
}

In the next section, we will see how to perform common operations with threads.

How to do it...
Use the following solutions to manage threads:

1. To create an std::thread object without starting the execution of a new
thread, use its default constructor:

std::thread t;

2. Start the execution of a function on another thread by constructing an
std::thread object and passing the function as an argument:

void func1()
{
 std::cout << "thread func without params" << '\n';
}

std::thread t(func1);
std::thread t([]() {
 std::cout << "thread func without params"
 << '\n'; });

3. Start the execution of a function with arguments on another thread by
constructing an std::thread object, and then passing the function as an
argument to the constructor, followed by its arguments:

void func2(int const i, double const d, std::string const s)
{
 std::cout << i << ", " << d << ", " << s << '\n';
}

std::thread t(func2, 42, 42.0, "42");

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Threading and Concurrency

[402]

4. To wait for a thread to finish its execution, use the join() method on the
thread object:

t.join();

5. To allow a thread to continue its execution independently of the current
thread object, use the detach() method. This means the thread will continue
its execution until it finishes without being managed by the std::thread
object, which will no longer own any thread:

t.detach();

6. To pass arguments by reference to a function, thread wrap them in either
std::ref or std::cref (if the reference is constant):

void func3(int & i)
{
 i *= 2;
}

int n = 42;

std::thread t(func3, std::ref(n));
t.join();
std::cout << n << '\n'; // 84

7. To stop the execution of a thread for a specified duration, use the std::this_
thread::sleep_for() function:

void func4()
{
 using namespace std::chrono;
 print_time();
 std::this_thread::sleep_for(2s);
 print_time();
}

std::thread t(func4);
t.join();

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[403]

8. To stop the execution of a thread until a specified moment in time, use the
std::this_thread::sleep_until() function:

void func5()
{
 using namespace std::chrono;
 print_time();
 std::this_thread::sleep_until(
 std::chrono::system_clock::now() + 2s);
 print_time();
}

std::thread t(func5);
t.join();

9. To suspend the execution of the current thread and provide an opportunity
to another thread to perform the execution, use std::this_thread::yield():

void func6(std::chrono::seconds timeout)
{
 auto now = std::chrono::system_clock::now();
 auto then = now + timeout;
 do
 {
 std::this_thread::yield();
 } while (std::chrono::system_clock::now() < then);
}

std::thread t(func6, std::chrono::seconds(2));
t.join();
print_time();

How it works...
The std::thread class, which represents a single thread of execution, has several
constructors:

• A default constructor that only creates the thread object but does not start the
execution of a new thread.

• A move constructor that creates a new thread object to represent a thread of
execution previously represented by the object it was constructed from. After
the construction of the new object, the other object is no longer associated
with the execution thread.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Threading and Concurrency

[404]

• A constructor with a variable number of arguments: the first being a function
that represents the top-level thread function and the others being arguments
to be passed to the thread function. Arguments need to be passed to the
thread function by value. If the thread function takes parameters by reference
or by constant reference, they must be wrapped in either an std::ref or
std::cref object. These are helper function templates that generate objects of
the type std::reference_wrapper, which wraps a reference in a copyable and
assignable object.

The thread function, in this case, cannot return a value. It is not illegal for the
function to actually have a return type other than void, but it ignores any value that
is directly returned by the function. If it has to return a value, it can do so using a
shared variable or a function argument. In the Using promises and futures to return
values from threads recipe, later in this chapter, we will see how a thread function
returns a value to another thread using a promise.

If the function terminates with an exception, the exception cannot be caught with a
try...catch statement in the context where a thread was started and the program
terminated abnormally with a call to std::terminate(). All exceptions must be
caught within the executing thread, but they can be transported across threads via
an std::exception_ptr object. We'll discuss this topic in a following recipe, called
Handling exceptions from thread functions.

After a thread has started its execution, it is both joinable and detachable. Joining a
thread implies blocking the execution of the current thread until the joined thread
ends its execution. Detaching a thread means decoupling the thread object from the
thread of execution it represents, allowing both the current thread and the detached
thread to be executed at the same time. Joining a thread is done with join() and
detaching a thread is done with detach(). Once you call either of these two methods,
the thread is said to be non-joinable and the thread object can be safely destroyed.
When a thread is detached, the shared data it may need to access must be available
throughout its execution. The joinable() method indicates whether a thread can be
joined or not.

Each thread has an identifier that can be retrieved. For the current thread, call the
std::this_thread::get_id() function. For another thread of execution represented
by a thread object, call its get_id() method.

There are several additional utility functions available in the std::this_thread
namespace:

• The yield() method hints the scheduler to activate another thread. This is
useful when implementing a busy-waiting routine, as in the last example
from the previous section.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[405]

• The sleep_for() method blocks the execution of the current thread for at
least the specified period of time (the actual time the thread is put to sleep
may be longer than the requested period due to scheduling).

• The sleep_until() method blocks the execution of the current thread until at
least the specified time point (the actual duration of the sleep may be longer
than requested due to scheduling).

The std::thread class requires the join() method be called explicitly to wait for the
thread to finish. This can lead to programming errors. The C++20 standard provides
a new thread class, called std::jthread, that solves this inconvenience. This will be
the topic of the recipe Using joinable threads and cancellation mechanisms, later in this
chapter.

See also
• Synchronizing access to shared data with mutexes and locks, to see what

mechanisms are available for synchronizing thread access to shared data and
how they work.

• Avoiding using recursive mutexes, to learn why recursive mutexes should be
avoided, and also how to transform a thread-safe type using a recursive
mutex into a thread-safe type using a non-recursive mutex.

• Handling exceptions from thread functions, to understand how to handle
exceptions thrown in a worker thread from the main thread or the thread
where it was joined.

• Sending notifications between threads, to see how to use condition variables to
send notifications between producer and consumer threads.

• Using promises and futures to return values from threads, to learn how to use an
std::promise object to return a value or an exception from a thread.

Synchronizing access to shared data
with mutexes and locks
Threads allow you to execute multiple functions at the same time, but it is often
necessary that these functions access shared resources. Access to shared resources
must be synchronized so that only one thread can read or write from or to the
shared resource at a time. An example of this was shown in the previous recipe,
where multiple threads had the ability to add objects to a shared container at the
same time. In this recipe, we will see what mechanisms the C++ standard defines for
synchronizing thread access to shared data and how they work.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Threading and Concurrency

[406]

Getting ready
The mutex and lock classes discussed in this recipe are available in the std
namespace in the <mutex> header.

How to do it...
Use the following pattern for synchronizing access with a single shared resource:

1. Define a mutex in the appropriate context (class or global scope):
std::mutex g_mutex;

2. Acquire a lock on this mutex before accessing the shared resource in each
thread:

void thread_func()
{
 using namespace std::chrono_literals;
 {
 std::lock_guard<std::mutex> lock(g_mutex);
 std::cout << "running thread "
 << std::this_thread::get_id() << '\n';
 }

 std::this_thread::yield();
 std::this_thread::sleep_for(2s);

 {
 std::lock_guard<std::mutex> lock(g_mutex);
 std::cout << "done in thread "
 << std::this_thread::get_id() << '\n';
 }
}

Use the following pattern for synchronizing access to multiple shared resources at
the same time to avoid deadlocks:

1. Define a mutex for each shared resource in the appropriate context (global or
class scope):

template <typename T>
struct container
{
 std::mutex mutex;

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[407]

 std::vector<T> data;
};

2. Lock the mutexes at the same time using a deadlock avoidance algorithm
with std::lock():

template <typename T>
void move_between(container<T> & c1, container<T> & c2,
 T const value)
{
 std::lock(c1.mutex, c2.mutex);
 // continued at 3.
}

3. After locking them, adopt the ownership of each mutex into an std::lock_
guard class to ensure they are safely released at the end of the function (or
scope):

// continued from 2.
std::lock_guard<std::mutex> l1(c1.mutex, std::adopt_lock);
std::lock_guard<std::mutex> l2(c2.mutex, std::adopt_lock);

c1.data.erase(
 std::remove(c1.data.begin(), c1.data.end(), value),
 c1.data.end());
c2.data.push_back(value);

How it works...
A mutex is a synchronization primitive that allows us to protect simultaneous access
to shared resources from multiple threads. The C++ standard library provides
several implementations:

• std::mutex is the most commonly used mutex type; it is illustrated in the
preceding code snippet. It provides methods to acquire and release the
mutex. lock() tries to acquire the mutex and blocks it if it is not available,
try_lock() tries to acquire the mutex and returns it without blocking if the
mutex is not available, and unlock() releases the mutex.

• std::timed_mutex is similar to std::mutex but provides two more methods
to acquire the mutex using a timeout: try_lock_for() tries to acquire the
mutex and returns it if the mutex is not made available during the specified
duration, and try_lock_until() tries to acquire the mutex and returns it if
the mutex is not made available until a specified time point.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Threading and Concurrency

[408]

• std::recursive_mutex is similar to std::mutex, but the mutex can be
acquired multiple times from the same thread without being blocked.

• std::recursive_timed_mutex is a combination of a recursive mutex and a
timed mutex.

• std::shared_timed_mutex, since C++14, is to be used in scenarios when
multiple readers can access the same resource at the same time without
causing data races, while only one writer it allowed to do so. It implements
locking with two levels of access – shared (several threads can share the
ownership of the same mutex) and exclusive (only one thread can own the
mutex) – and provides timeout facilities.

• std::shared_mutex, since C++17, similar to the shared_timed_mutex but
without the timeout facilities.

The first thread that locks an available mutex takes ownership of it and continues
with the execution. All consecutive attempts to lock the mutex from any thread fail,
including the thread that already owns the mutex, and the lock() method blocks the
thread until the mutex is released with a call to unlock(). If a thread needs to be able
to lock a mutex multiple times without blocking it and therefore enter a deadlock, a
recursive_mutex class template should be used.

The typical use of a mutex to protect access to a shared resource comprises locking
the mutex, using the shared resource, and then unlocking the mutex:

g_mutex.lock();

// use the shared resource such as std::cout
std::cout << "accessing shared resource" << '\n';

g_mutex.unlock();

This method of using the mutex is, however, prone to error. This is because each
call to lock() must be paired with a call to unlock() on all execution paths; that is,
both normal return paths and exception return paths. In order to safely acquire and
release a mutex, regardless of the way the execution of a function goes, the C++
standard defines several locking classes:

• std::lock_guard is the locking mechanism seen earlier; it represents a mutex
wrapper implemented in an RAII manner. It attempts to acquire the mutex at
the time of its construction and release it upon destruction. This is available
in C++11. The following is a typical implementation of lock_guard:

template <class M>
class lock_guard

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[409]

{
public:
 typedef M mutex_type;

 explicit lock_guard(M& Mtx) : mtx(Mtx)
 {
 mtx.lock();
 }

 lock_guard(M& Mtx, std::adopt_lock_t) : mtx(Mtx)
 { }

 ~lock_guard() noexcept
 {
 mtx.unlock();
 }

 lock_guard(const lock_guard&) = delete;
 lock_guard& operator=(const lock_guard&) = delete;
private:
 M& mtx;
};

• std::unique_lock is a mutex ownership wrapper that provides support for
deferred locking, time locking, recursive locking, transfer of ownership, and
using it with condition variables. This is available in C++11.

• std::shared_lock is a mutex-shared ownership wrapper that provides
support for deferred locking, time locking, and transfer of ownership. This is
available in C++14.

• std::scoped_lock is a wrapper for multiple mutexes implemented in an RAII
manner. Upon construction, it attempts to acquire ownership of the mutexes
in a deadlock avoidance manner as if it is using std::lock(), and upon
destruction, it releases the mutexes in reverse order of the way they were
acquired. This is available in C++17.

In the first example in the How to do it... section, we used std::mutex and std::lock_
guard to protect access to the std::cout stream object, which is shared between all
the threads in a program. The following example shows how the thread_func()
function can be executed concurrently on several threads:

std::vector<std::thread> threads;
for (int i = 0; i < 5; ++i)

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Threading and Concurrency

[410]

 threads.emplace_back(thread_func);

for (auto & t : threads)
 t.join();

A possible output for this program is as follows:

running thread 140296854550272
running thread 140296846157568
running thread 140296837764864
running thread 140296829372160
running thread 140296820979456
done in thread 140296854550272
done in thread 140296846157568
done in thread 140296837764864
done in thread 140296820979456
done in thread 140296829372160

When a thread needs to take ownership of multiple mutexes that are meant to
protect multiple shared resources, acquiring them one by one may lead to deadlocks.
Let's consider the following example (where container is the class shown in the How
to do it... section):

template <typename T>
void move_between(container<T> & c1, container<T> & c2, T const value)
{
 std::lock_guard<std::mutex> l1(c1.mutex);
 std::lock_guard<std::mutex> l2(c2.mutex);

 c1.data.erase(
 std::remove(c1.data.begin(), c1.data.end(), value),
 c1.data.end());
 c2.data.push_back(value);
}

container<int> c1;
c1.data.push_back(1);
c1.data.push_back(2);
c1.data.push_back(3);

container<int> c2;
c2.data.push_back(4);
c2.data.push_back(5);

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[411]

c2.data.push_back(6);

std::thread t1(move_between<int>, std::ref(c1), std::ref(c2), 3);
std::thread t2(move_between<int>, std::ref(c2), std::ref(c1), 6);

t1.join();
t2.join();

In this example, the container class holds data that may be accessed simultaneously
from different threads; therefore, it needs to be protected by acquiring a mutex. The
move_between() function is a thread-safe function that removes an element from a
container and adds it to a second container. To do so, it acquires the mutexes of the
two containers sequentially, then erases the element from the first container and
adds it to the end of the second container.

This function is, however, prone to deadlocks because a race condition might be
triggered while acquiring the locks. Suppose we have a scenario where two different
threads execute this function, but with different arguments:

• The first thread starts executing with the arguments c1 and c2 in this order.
• The first thread is suspended after it acquires the lock for the c1 container.

The second thread starts executing with the arguments c2 and c1 in this
order.

• The second thread is suspended after it acquires the lock for the c2 container.
• The first thread continues the execution and tries to acquire the mutex for

c2, but the mutex is unavailable. Therefore, a deadlock occurs (this can be
simulated by putting the thread to sleep for a short while after it acquires the
first mutex).

To avoid possible deadlocks such as these, mutexes should be acquired in a
deadlock avoidance manner, and the standard library provides a utility function
called std::lock() that does that. The move_between() function needs to change
by replacing the two locks with the following code (as shown in the How to do it...
section):

std::lock(c1.mutex, c2.mutex);

std::lock_guard<std::mutex> l1(c1.mutex, std::adopt_lock);
std::lock_guard<std::mutex> l2(c2.mutex, std::adopt_lock);

The ownership of the mutexes must still be transferred to a lock guard object so they
are properly released after the execution of the function ends (or depending on the
case, when a particular scope ends).

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Threading and Concurrency

[412]

In C++17, a new mutex wrapper is available, std::scoped_lock, that can be used
to simplify code, such as the one in the preceding example. This type of lock can
acquire the ownership of multiple mutexes in a deadlock-free manner. These
mutexes are released when the scoped lock is destroyed. The preceding code is
equivalent to the following single line of code:

std::scoped_lock lock(c1.mutex, c2.mutex);

The scoped_lock class provides a simplified mechanism for owning one or more
mutexes for the duration of a scoped block, and also helps with writing simple and
more robust code.

See also
• Working with threads, to learn about the std::thread class and the basic

operations for working with threads in C++.
• Using joinable threads and cancellation mechanisms, to learn about the C++20

std::jthread class, which manages a thread of execution and automatically
joins during its destruction, as well as the improved mechanisms for
stopping the execution of threads.

• Avoiding using recursive mutexes, to learn why recursive mutexes should be
avoided and how to transform a thread-safe type using a recursive mutex
into a thread-safe type using a non-recursive mutex.

Avoiding using recursive mutexes
The standard library provides several mutex types for protecting access to shared
resources. std::recursive_mutex and std::recursive_timed_mutex are two
implementations that allow you to use multiple locking in the same thread. A typical
use for a recursive mutex is to protect access to a shared resource from a recursive
function. An std::recursive_mutex class may be locked multiple times from a
thread, either with a call to lock() or try_lock(). When a thread locks an available
recursive mutex, it acquires its ownership; as a result of this, consecutive attempts
to lock the mutex from the same thread do not block the execution of the thread,
creating a deadlock. The recursive mutex is, however, released only when an equal
number of calls to unlock() are made. Recursive mutexes may also have a greater
overhead than non-recursive mutexes. For these reasons, when possible, they should
be avoided. This recipe presents a use case for transforming a thread-safe type using
a recursive mutex into a thread-safe type using a non-recursive mutex.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[413]

Getting ready
You need to be familiar with the various mutexes and locks available in the standard
library. I recommend that you read the previous recipe, Synchronizing access to shared
data with mutex and locks, to get an overview of them.

For this recipe, we will consider the following class:

class foo_rec
{
 std::recursive_mutex m;
 int data;

public:
 foo_rec(int const d = 0) : data(d) {}

 void update(int const d)
 {
 std::lock_guard<std::recursive_mutex> lock(m);
 data = d;
 }

 int update_with_return(int const d)
 {
 std::lock_guard<std::recursive_mutex> lock(m);
 auto temp = data;
 update(d);
 return temp;
 }
};

The purpose of this recipe is to transform the foo_rec class so we can avoid using
std::recursive_mutex.

How to do it...
To transform the preceding implementation into a thread-safe type using a non-
recursive mutex, do this:

1. Replace std::recursive_mutex with std::mutex:
class foo
{
 std::mutex m;

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Threading and Concurrency

[414]

 int data;
 // continued at 2.
};

2. Define private non-thread-safe versions of the public methods or helper
functions to be used in thread-safe public methods:

void internal_update(int const d) { data = d; }
// continued at 3.

3. Rewrite the public methods to use the newly defined non-thread-safe private
methods:

public:
 foo(int const d = 0) : data(d) {}
 void update(int const d)
 {
 std::lock_guard<std::mutex> lock(m);
 internal_update(d);
 }

 int update_with_return(int const d)
 {
 std::lock_guard<std::mutex> lock(m);
 auto temp = data;
 internal_update(d);
 return temp;
 }

How it works...
The foo_rec class we just discussed uses a recursive mutex to protect access to
shared data; in this case, it is an integer member variable that is accessed from two
thread-safe public functions:

• update() sets a new value in the private variable.
• update_and_return() sets a new value in the private variable and returns the

previous value to the called function. This function calls update() to set the
new value.

The implementation of foo_rec was probably intended to avoid duplication of code,
yet this particular approach is rather a design error that can be improved, as shown
in the How to do it... section. Rather than reusing public thread-safe functions, we can
provide private non-thread-safe functions that could then be called from the public
interface.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[415]

The same solution can be applied to other similar problems: define a non-thread-safe
version of the code and then provide perhaps lightweight, thread-safe wrappers.

See also
• Working with threads, to learn about the std::thread class and the basic

operations for working with threads in C++.
• Synchronizing access to shared data with mutexes and locks, to see what

mechanisms are available for synchronizing thread access to shared data and
how they work.

Handling exceptions from thread
functions
In the previous recipe, we introduced the thread support library and saw how to do
some basic operations with threads. In that recipe, we briefly discussed exception
handling in thread functions and mentioned that exceptions cannot leave the
top-level thread function. This is because they cause the program to abnormally
terminate with a call to std::terminate().

On the other hand, exceptions can be transported between threads within an
std::exception_ptr wrapper. In this recipe, we will see how to handle exceptions
from thread functions.

Getting ready
You are now familiar with the thread operations we discussed in the previous recipe,
Working with threads. The exception_ptr class is available in the std namespace,
which is in the <exception> header; mutex (which we discussed in more detail
previously) is also available in the same namespace but in the <mutex> header.

How to do it...
To properly handle exceptions thrown in a worker thread from the main thread or
the thread where it was joined, do the following (assuming multiple exceptions can
be thrown from multiple threads):

1. Use a global container to hold instances of std::exception_ptr:
std::vector<std::exception_ptr> g_exceptions;

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Threading and Concurrency

[416]

2. Use a global mutex to synchronize access to the shared container:
std::mutex g_mutex;

3. Use a try...catch block for the code that is being executed in the top-level
thread function. Use std::current_exception() to capture the current
exception and wrap a copy or its reference into an std::exception_ptr
pointer, which is added to the shared container for exceptions:

void func1()
{
 throw std::runtime_error("exception 1");
}

void func2()
{
 throw std::runtime_error("exception 2");
}

void thread_func1()
{
 try
 {
 func1();
 }
 catch (...)
 {
 std::lock_guard<std::mutex> lock(g_mutex);
 g_exceptions.push_back(std::current_exception());
 }
}

void thread_func2()
{
 try
 {
 func2();
 }
 catch (...)
 {
 std::lock_guard<std::mutex> lock(g_mutex);
 g_exceptions.push_back(std::current_exception());
 }
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[417]

4. Clear the container from the main thread before you start the threads:
g_exceptions.clear();

5. In the main thread, after the execution of all the threads has finished, inspect
the caught exceptions and handle each of them appropriately:

std::thread t1(thread_func1);
std::thread t2(thread_func2);
t1.join();
t2.join();

for (auto const & e : g_exceptions)
{
 try
 {
 if(e != nullptr)
 std::rethrow_exception(e);
 }
 catch(std::exception const & ex)
 {
 std::cout << ex.what() << '\n';
 }
}

How it works...
For the example in the preceding section, we assumed that multiple threads could
throw exceptions and therefore need a container to hold them all. If there is a single
exception from a single thread at a time, then you do not need a shared container
and a mutex to synchronize access to it. You can use a single global object of the type
std::exception_ptr to hold the exception that's transported between threads.

std::current_exception() is a function that is typically used in a catch clause
to capture the current exception and create an instance of std::exception_ptr.
This is done to hold a copy or reference (depending on the implementation) to the
original exception, which remains valid as long as there is an std::exception_ptr
pointer available that refers to it. If this function is called when no exception is being
handled, then it creates an empty std::exception_ptr.

The std::exception_ptr pointer is a wrapper for an exception captured with
std::current_exception(). If default constructed, it does not hold any exception.
Two objects of this type are equal if they are both empty or point to the same
exception object. The std::exception_ptr objects can be passed to other threads,
where they can be rethrown and caught in a try...catch block.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Threading and Concurrency

[418]

std::rethrow_exception() is a function that takes std::exception_ptr as an
argument and throws the exception object referred to by its argument.

In the example from the previous section, each thread function uses a try...
catch statement for the entire code it executes so that no exception may leave the
function uncaught. When an exception is handled, a lock on the global mutex object
is acquired and the std::exception_ptr object holding the current exception is
added to the shared container. With this approach, the thread function stops at the
first exception; however, in other circumstances, you may need to execute multiple
operations, even if the previous one throws an exception. In this case, you will have
multiple try...catch statements and perhaps transport only some of the exceptions
outside the thread.

In the main thread, after all the threads have finished executing, the container is
iterated, and each non-empty exception is rethrown and caught with a try...catch
block and handled appropriately.

See also
• Working with threads, to learn about the std::thread class and the basic

operations for working with threads in C++.
• Synchronizing access to shared data with mutexes and locks, to see what

mechanisms are available for synchronizing thread access to shared data and
how they work.

Sending notifications between threads
Mutexes are synchronization primitives that can be used to protect access to shared
data. However, the standard library provides a synchronization primitive, called
a condition variable, that enables a thread to signal to others that a certain condition
has occurred. The thread or the threads that are waiting on the condition variable
are blocked until the condition variable is signaled or until a timeout or a spurious
wakeup occurs. In this recipe, we will see how to use condition variables to send
notifications between thread-producing data and thread-consuming data.

std::current_exception(), std::rethrow_exception(), and
std::exception_ptr are all available in C++11.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[419]

Getting ready
For this recipe, you need to be familiar with threads, mutexes, and locks. Condition
variables are available in the std namespace in the <condition_variable> header.

How to do it...
Use the following pattern for synchronizing threads with notifications on condition
variables:

1. Define a condition variable (in the appropriate context):
std::condition_variable cv;

2. Define a mutex for threads to lock on. A second mutex should be used for
synchronizing access to the standard console from different threads:

std::mutex cv_mutex; // data mutex
std::mutex io_mutex; // I/O mutex

3. Define the shared data used between the threads:
int data = 0;

4. In the producing thread, lock the mutex before you modify the data:
std::thread p([&](){
 // simulate long running operation
 {
 using namespace std::chrono_literals;
 std::this_thread::sleep_for(2s);
 }

 // produce
 {
 std::unique_lock lock(cv_mutex);
 data = 42;
 }

 // print message
 {
 std::lock_guard l(io_mutex);
 std::cout << "produced " << data << '\n';
 }

 // continued at 5.
});

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Threading and Concurrency

[420]

5. In the producing thread, signal the condition variable with a call to notify_
one() or notify_all() (do this after the mutex used to protect the shared
data is unlocked):

// continued from 4.
cv.notify_one();

6. In the consuming thread, acquire a unique lock on the mutex and use it to
wait on the condition variable. Beware that spurious wakeups may occur,
which is a subject we'll discuss in detail in the following section:

std::thread c([&](){
 // wait for notification
 {
 std::unique_lock lock(cv_mutex);
 cv.wait(lock);
 }

 // continued at 7.
});

7. In the consuming thread, use the shared data after the condition is notified:

// continued from 6.
{
 std::lock_guard lock(io_mutex);
 std::cout << "consumed " << data << '\n';
}

How it works...
The preceding example represents two threads that share common data (in this
case, an integer variable). One thread produces data after a lengthy computation
(simulated with a sleep), while the other consumes it only after it is produced. To do
so, they use a synchronization mechanism that uses a mutex and a condition variable
that blocks the consuming thread until a notification arises from the producer thread,
indicating that data has been made available. The key in this communication channel
is the condition variable that the consuming thread waits on until the producing
thread notifies it. Both threads start about the same time. The producer thread begins
a long computation that is supposed to produce data for the consuming thread. At
the same time, the consuming thread cannot actually proceed until the data is made
available; it must remain blocked until it is notified that the data has been produced.
Once notified, it can continue its execution. The entire mechanism works as follows:

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[421]

• There must be at least one thread waiting on the condition variable to be
notified.

• There must be at least one thread that is signaling the condition variable.
• The waiting threads must first acquire a lock on a mutex (std::unique_

lock<std::mutex>) and pass it to the wait(), wait_for(), or wait_until()
method of the condition variable. All the waiting methods atomically release
the mutex and block the thread until the condition variable is signaled. At
this point, the thread is unblocked and the mutex is atomically acquired
again.

• The thread that signals the condition variable can do so with either notify_
one(), where one blocked thread is unblocked, or notify_all(), where all the
blocked threads waiting for the condition variable are unblocked.

The C++ standard provides two implementations of condition variables:

• std::condition_variable, used in this recipe, defines a condition variable
associated with std::unique_lock.

• std::condition_variable_any represents a more general implementation
that works with any lock that meets the requirements of a basic lock
(implements the lock() and unlock() methods). A possible use of this
implementation is providing interruptible waits, as explained by Anthony
Williams in C++ concurrency in action (2012):

"A custom lock operation would both lock the associated mutex as expected
and also perform the necessary job of notifying this condition variable when
the interrupting signal is received."

Condition variables cannot be made completely
predictable on multiprocessor systems. Therefore, spurious
wakeups may occur, and a thread is unlocked even if
nobody signals the condition variable. So, it is necessary
to check whether the condition is true after the thread has
been unblocked. However, spurious wakeups may occur
multiple times and, therefore, it is necessary to check the
condition variable in a loop.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Threading and Concurrency

[422]

All the waiting methods of the condition variable have two overloads:

• The first overload takes std::unique_lock<std::mutex> (based on the type;
that is, duration or time point) and causes the thread to remain blocked
until the condition variable is signaled. This overload atomically releases
the mutex and blocks the current thread, and then adds it to the list of
threads waiting on the condition variable. The thread is unblocked when the
condition is notified with either notify_one() or notify_all(), a spurious
wakeup occurs, or a timeout occurs (depending on the function overload).
When this happens, the mutex is atomically acquired again.

• The second overload takes a predicate in addition to the arguments of the
other overloads. This predicate can be used to avoid spurious wakeups while
waiting for a condition to become true. This overload is equivalent to the
following:

while(!pred())
 wait(lock);

The following code illustrates a similar but more complex example than the one
presented in the previous section. The producing thread generates data in a loop
(in this example, it is a finite loop), and the consuming thread waits for new data to
be made available and consumes it (prints it to the console). The producing thread
terminates when it finishes producing data, and the consuming thread terminates
when there is no more data to consume. Data is added to queue<int>, and a Boolean
variable is used to indicate to the consuming thread that the process of producing
data is finished. The following snippet shows the implementation of the producer
thread:

std::mutex g_lockprint;
std::mutex g_lockqueue;
std::condition_variable g_queuecheck;
std::queue<int> g_buffer;
bool g_done;

void producer(
 int const id,
 std::mt19937& generator,
 std::uniform_int_distribution<int>& dsleep,
 std::uniform_int_distribution<int>& dcode)
{
 for (int i = 0; i < 5; ++i)
 {
 // simulate work

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[423]

 std::this_thread::sleep_for(
 std::chrono::seconds(dsleep(generator)));

 // generate data
 {
 std::unique_lock<std::mutex> locker(g_lockqueue);
 int value = id * 100 + dcode(generator);
 g_buffer.push(value);

 {
 std::unique_lock<std::mutex> locker(g_lockprint);
 std::cout << "[produced(" << id << ")]: " << value
 << '\n';
 }
 }

 // notify consumers
 g_queuecheck.notify_one();
 }
}

On the other hand, the consumer thread's implementation is listed here:

void consumer()
{
 // loop until end is signaled
 while (!g_done)
 {
 std::unique_lock<std::mutex> locker(g_lockqueue);

 g_queuecheck.wait_for(
 locker,
 std::chrono::seconds(1),
 [&]() {return !g_buffer.empty(); });

 // if there are values in the queue process them
 while (!g_done && !g_buffer.empty())
 {
 std::unique_lock<std::mutex> locker(g_lockprint);
 std::cout
 << "[consumed]: " << g_buffer.front()
 << '\n';

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Threading and Concurrency

[424]

 g_buffer.pop();
 }
 }
}

The consumer thread does the following:

• Loops until it is signaled that the process of producing data is finished.
• Acquires a unique lock on the mutex object associated with the condition

variable.
• Uses the wait_for() overload, which takes a predicate, checking that the

buffer is not empty when a wakeup occurs (to avoid spurious wakeups).
This method uses a timeout of 1 second and returns after the timeout has
occurred, even if the condition is signaled.

• Consumes all of the data from the queue after it is signaled through the
condition variable.

To test this, we can start several producing threads and one consuming thread.
Producer threads generate random data and, therefore, share the pseudo-random
generator engines and distributions. All of this is shown in the following code
sample:

auto seed_data = std::array<int, std::mt19937::state_size> {};
std::random_device rd {};
std::generate(std::begin(seed_data), std::end(seed_data),
 std::ref(rd));
std::seed_seq seq(std::begin(seed_data), std::end(seed_data));
auto generator = std::mt19937{ seq };
auto dsleep = std::uniform_int_distribution<>{ 1, 5 };
auto dcode = std::uniform_int_distribution<>{ 1, 99 };

std::cout << "start producing and consuming..." << '\n';

std::thread consumerthread(consumer);
std::vector<std::thread> threads;
for (int i = 0; i < 5; ++i)
{
 threads.emplace_back(producer,
 i + 1,
 std::ref(generator),
 std::ref(dsleep),
 std::ref(dcode));

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[425]

}

// work for the workers to finish
for (auto& t : threads)
 t.join();

// notify the logger to finish and wait for it
g_done = true;
consumerthread.join();

std::cout << "done producing and consuming" << '\n';

A possible output of this program is as follows (the actual output would be different
for each execution):

start producing and consuming...
[produced(5)]: 550
[consumed]: 550
[produced(5)]: 529
[consumed]: 529
[produced(5)]: 537
[consumed]: 537
[produced(1)]: 122
[produced(2)]: 224
[produced(3)]: 326
[produced(4)]: 458
[consumed]: 122
[consumed]: 224
[consumed]: 326
[consumed]: 458
...
done producing and consuming

The standard also features a helper function called notify_all_at_thread_exit(),
which provides a way for a thread to notify other threads through a condition_
variable object that it's completely finished execution, including destroying all
thread_local objects. This function has two parameters: a condition_variable and
an std::unique_lock<std::mutex> associated with the condition variable (that it
takes ownership of). The typical use case for this function is running a detached
thread that calls this function just before finishing.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Threading and Concurrency

[426]

See also
• Working with threads, to learn about the std::thread class and the basic

operations for working with threads in C++.
• Synchronizing access to shared data with mutexes and locks, to see what

mechanisms are available for synchronizing thread access to shared data and
how they work.

Using promises and futures to return
values from threads
In the first recipe of this chapter, we discussed how to work with threads. You also
learned that thread functions cannot return values and that threads should use
other means, such as shared data, to do so; however, for this, synchronization is
required. An alternative to communicating a return value or an exception with either
the main or another thread is using std::promise. This recipe will explain how this
mechanism works.

Getting ready
The promise and future classes used in this recipe are available in the std namespace
in the <future> header.

How to do it...
To communicate a value from one thread to another through promises and futures,
do this:

1. Make a promise available to the thread function through a parameter; for
example:

void produce_value(std::promise<int>& p)
{
 // simulate long running operation
 {
 using namespace std::chrono_literals;
 std::this_thread::sleep_for(2s);
 }

 // continued at 2.
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[427]

2. Call set_value() on the premise to set the result to represent a value or set_
exception() to set the result to indicate an exception:

// continued from 1.
p.set_value(42);

3. Make the future associated with the premise available to the other thread
function through a parameter; for example:

void consume_value(std::future<int>& f)
{
 // continued at 4.
}

4. Call get() on the future object to get the result set to the promise:
// continued from 3.
auto value = f.get();

5. In the calling thread, use get_future() on the promise to get the future
associated with the promise:

std::promise<int> p;
std::thread t1(produce_value, std::ref(p));

std::future<int> f = p.get_future();
std::thread t2(consume_value, std::ref(f));

t1.join();
t2.join();

How it works...
The promise-future pair is basically a communication channel that enables a thread
to communicate a value or exception with another thread through a shared state.
promise is an asynchronous provider of the result and has an associated future that
represents an asynchronous return object. To establish this channel, you must first
create a promise. This, in turn, creates a shared state that can be later read through
the future associated with the promise.

To set a result to a promise, you can use any of the following methods:

• The set_value() or set_value_at_thread_exit() method is used to set a
return value; the latter function stores the value in the shared state but only
makes it available through the associated future if the thread exits.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Threading and Concurrency

[428]

• The set_exception() or set_exception_at_thread_exit() method is
used to set an exception as a return value. The exception is wrapped in an
std::exception_ptr object. The latter function stores the exception in the
shared state but only makes it available when the thread exits.

To retrieve the future object associated with promise, use the get_future() method.
To get the value from the future value, use the get() method. This blocks the calling
thread until the value from the shared state is made available. The future class has
several methods for blocking the thread until the result from the shared state is made
available:

• wait() only returns when the result is available.
• wait_for() returns either when the result is available or when the specified

timeout expires.
• wait_until() returns either when the result is available or when the specified

time point is reached.

If an exception is set to the promise value, calling the get() method on the future
object will throw this exception. The example from the previous section has been
rewritten as follows to throw an exception instead of setting a result:

void produce_value(std::promise<int>& p)
{
 // simulate long running operation
 {
 using namespace std::chrono_literals;
 std::this_thread::sleep_for(2s);
 }

 try
 {
 throw std::runtime_error("an error has occurred!");
 }
 catch(...)
 {
 p.set_exception(std::current_exception());
 }
}

void consume_value(std::future<int>& f)
{
 std::lock_guard<std::mutex> lock(g_mutex);
 try

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[429]

 {
 std::cout << f.get() << '\n';
 }
 catch(std::exception const & e)
 {
 std::cout << e.what() << '\n';
 }
}

You can see here that, in the consume_value() function, the call to get() is put in a
try...catch block. If an exception is caught – and in this particular implementation,
it is – its message is printed to the console.

There's more...
Establishing a promise-future channel in this manner is a rather explicit operation
that can be avoided by using the std::async() function; this is a higher-level utility
that runs a function asynchronously, creates an internal promise and a shared state,
and returns a future associated with the shared state. We will see how std::async()
works in the next recipe, Executing functions asynchronously.

See also
• Working with threads, to learn about the std::thread class and the basic

operations for working with threads in C++.
• Handling exceptions from thread functions, to understand how to handle

exceptions thrown in a worker thread from the main thread or the thread
where it was joined.

Executing functions asynchronously
Threads enable us to run multiple functions at the same time; this helps us take
advantage of the hardware facilities in multiprocessor or multicore systems.
However, threads require explicit, lower-level operations. An alternative to threads
is tasks, which are units of work that run in a particular thread. The C++ standard
does not provide a complete task library, but it enables developers to execute
functions asynchronously on different threads and communicate results back
through a promise-future channel, as seen in the previous recipe. In this recipe, we
will see how to do this using std::async() and std::future.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Threading and Concurrency

[430]

Getting ready
For the examples in this recipe, we will use the following functions:

void do_something()
{
 // simulate long running operation
 {
 using namespace std::chrono_literals;
 std::this_thread::sleep_for(2s);
 }

 std::lock_guard<std::mutex> lock(g_mutex);
 std::cout << "operation 1 done" << '\n';
}

void do_something_else()
{
 // simulate long running operation
 {
 using namespace std::chrono_literals;
 std::this_thread::sleep_for(1s);
 }

 std::lock_guard<std::mutex> lock(g_mutex);
 std::cout << "operation 2 done" << '\n';
}

int compute_something()
{
 // simulate long running operation
 {
 using namespace std::chrono_literals;
 std::this_thread::sleep_for(2s);
 }

 return 42;
}

int compute_something_else()
{
 // simulate long running operation

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[431]

 {
 using namespace std::chrono_literals;
 std::this_thread::sleep_for(1s);
 }

 return 24;
}

In this recipe, we will use futures; therefore, you are advised to read the previous
recipe to get a quick overview of how they work. Both async() and future are
available in the std namespace in the <future> header.

How to do it...
To execute a function asynchronously on another thread when the current thread is
continuing with the execution without expecting a result, do the following:

1. Use std::async() to start a new thread to execute the specified function.
Create an asynchronous provider and return a future associated with it. Use
the std::launch::async policy for the first argument to the function in order
to make sure the function will run asynchronously:

auto f = std::async(std::launch::async, do_something);

2. Continue with the execution of the current thread:
do_something_else();

3. Call the wait() method on the future object returned by std::async() when
you need to make sure the asynchronous operation is completed:

f.wait();

To execute a function asynchronously on a worker thread while the current thread
continues its execution, until the result from the asynchronous function is needed in
the current thread, do the following:

1. Use std::async() to start a new thread to execute the specified function,
create an asynchronous provider, and return a future associated with it. Use
the std::launch::async policy of the first argument to the function to make
sure the function does run asynchronously:

auto f = std::async(std::launch::async, compute_something);

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Threading and Concurrency

[432]

2. Continue the execution of the current thread:
auto value = compute_something_else();

3. Call the get() method on the future object returned by std::async() when
you need the result from the function to be executed asynchronously:

value += f.get();

How it works...
std::async() is a variadic function template that has two overloads: one that
specifies a launch policy as the first argument and another that does not. The other
arguments to std::async() are the function to execute and its arguments, if any. The
launch policy is defined by a scoped enumeration called std::launch, available in
the <future> header:

enum class launch : /* unspecified */
{
 async = /* unspecified */,
 deferred = /* unspecified */,
 /* implementation-defined */
};

The two available launch policies specify the following:

• With async, a new thread is launched to execute the task asynchronously.
• With deferred, the task is executed on the calling thread the first time its

result is requested.

When both flags are specified (std::launch::async | std::launch::deferred), it
is an implementation decision regarding whether to run the task asynchronously
on a new thread or synchronously on the current thread. This is the behavior of
the std::async() overload; it does not specify a launch policy. This behavior is not
deterministic.

Do not use the non-deterministic overload of std::async()
to run tasks asynchronously. For this purpose, always use the
overload that requires a launch policy, and always use only
std::launch::async.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[433]

Both overloads of std::async() return a future object that refers to the shared state
created internally by std::async() for the promise-future channel it establishes.
When you need the result of the asynchronous operation, call the get() method on
the future. This blocks the current thread until either the result value or an exception
is made available. If the future does not transport any value or if you are not actually
interested in that value, but you want to make sure the asynchronous operation
would be completed at some point, use the wait() method; it blocks the current
thread until the shared state is made available through the future.

The future class has two more waiting methods: wait_for() specifies a duration after
which the call ends and returns even if the shared state is not yet available through
the future, while wait_until() specifies a time point after which the call returns,
even if the shared state is not yet available. These methods could be used to create a
polling routine and display a status message to the user, as shown in the following
example:

auto f = std::async(std::launch::async, do_something);

while(true)
{
 using namespace std::chrono_literals;
 auto status = f.wait_for(500ms);

 if(status == std::future_status::ready)
 break;

 std::cout << "waiting..." << '\n';
}

std::cout << "done!" << '\n';

The result of running this program is as follows:

waiting...
waiting...
waiting...
operation 1 done
done!

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Threading and Concurrency

[434]

See also
• Using promises and futures to return values from threads, to learn how to use an

std::promise object to return a value or an exception from a thread.

Using atomic types
The thread support library offers functionalities for managing threads and
synchronizing access to shared data with mutexes and locks, and, as of C++20,
with latches, barriers, and semaphores. The standard library provides support for
the complementary, lower-level atomic operations on data, which are indivisible
operations that can be executed concurrently from different threads on shared
data, without the risk of producing race conditions and without the use of locks.
The support it provides includes atomic types, atomic operations, and memory
synchronization ordering. In this recipe, we will see how to use some of these
types and functions.

Getting ready
All the atomic types and operations are defined in the std namespace in the <atomic>
header.

How to do it...
The following are a series of typical operations that use atomic types:

• Use the std::atomic class template to create atomic objects that support
atomic operations, such as loading, storing, or performing arithmetic or
bitwise operations:

std::atomic<int> counter {0};

std::vector<std::thread> threads;
for(int i = 0; i < 10; ++i)
{
 threads.emplace_back([&counter](){
 for(int i = 0; i < 10; ++i)
 ++counter;
 });
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[435]

for(auto & t : threads) t.join();

std::cout << counter << '\n'; // prints 100

• In C++20, use the std::atomic_ref class template to apply atomic operations
to a referenced object, which can be a reference or pointer to an integral type,
a floating-point type, or a user-defined type:

void do_count(int& c)
{
 std::atomic_ref<int> counter{ c };

 std::vector<std::thread> threads;
 for (int i = 0; i < 10; ++i)
 {
 threads.emplace_back([&counter]() {
 for (int i = 0; i < 10; ++i)
 ++counter;
 });
 }

 for (auto& t : threads) t.join();
}

int main()
{
 int c = 0;
 do_count(c);
 std::cout << c << '\n'; // prints 100
}

• Use the std::atomic_flag class for an atomic Boolean type:
std::atomic_flag lock = ATOMIC_FLAG_INIT;
int counter = 0;
std::vector<std::thread> threads;

for(int i = 0; i < 10; ++i)
{
 threads.emplace_back([&](){
 while(lock.test_and_set(std::memory_order_acquire));
 ++counter;
 lock.clear(std::memory_order_release);
 });

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Threading and Concurrency

[436]

}

for(auto & t : threads) t.join();

std::cout << counter << '\n'; // prints 10

• Use the atomic type's members – load(), store(), and exchange() – or
non-member functions – atomic_load()/atomic_load_explicit(), atomic_
store()/atomic_store_explicit(), and atomic_exchange()/atomic_
exchange_explicit() – to atomically read, set, or exchange the value of an
atomic object.

• Use its member functions fetch_add() and fetch_sub() or non-member
functions atomic_fetch_add()/atomic_fetch_add_explicit() and atomic_
fetch_sub()/atomic_fetch_sub_explicit() to atomically add or subtract a
value to/from an atomic object and return its value before the operation:

std::atomic<int> sum {0};
std::vector<int> numbers = generate_random();
size_t size = numbers.size();
std::vector<std::thread> threads;

for(int i = 0; i < 10; ++i)
{
 threads.emplace_back([&sum, &numbers](size_t const start,
 size_t const end) {
 for(size_t i = start; i < end; ++i)
 {
 std::atomic_fetch_add_explicit(
 &sum, numbers[i],
 std::memory_order_acquire);

 // same as
 // sum.fetch_add(numbers[i], std::memory_order_acquire);
 }},
 i*(size/10),
 (i+1)*(size/10));
}

for(auto & t : threads) t.join();

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[437]

• Use its member functions fetch_and(), fetch_or(), and fetch_xor() or
non-member functions atomic_fetch_and()/atomic_fetch_and_explicit(),
atomic_fetch_or()/ atomic_fetch_or_explicit(), and atomic_fetch_xor()/
atomic_fetch_xor_explicit() to perform AND, OR, and XOR atomic
operations, respectively, with the specified argument and return the value of
the atomic object before the operation.

• Use the std::atomic_flag member functions test_and_set() and clear() or
non-member functions atomic_flag_test_and_set()/atomic_flag_test_and_
set_explicit() and atomic_flag_clear()/atomic_flag_clear_explicit()
to set or reset an atomic flag. In addition, in C++20, you can use the member
function test() and the non-member function atomic_flag_test()/atomic_
flag_test_explicit() to atomically return the value of the flag.

• In C++20, perform thread synchronization with member functions wait(),
notify_one(), and notify_all(), available to std::atomic, std::atomic_ref,
and std::atomic_flag, as well as the non-member functions atomic_wait()/
atomic_wait_explicit(), atomic_notify_one(), and atomic_notify_all().
These functions provide a more efficient mechanism for waiting for the value
of an atomic object to change than polling.

How it works...
std::atomic is a class template that defines (including its specializations) an atomic
type. The behavior of an object of an atomic type is well defined when one thread
writes to the object and the other reads data, without using locks to protect access.
The std::atomic class provides several specializations:

• Full specialization for bool, with a typedef called atomic_bool.
• Full specialization for all integral types, with typedefs called atomic_int,

atomic_long, atomic_char, atomic_wchar, and many others.
• Partial specialization for pointer types.
• In C++20, full specializations for the floating-point types float, double, and

long double.
• In C++20, partial specializations such as std::atomic<std::shared_ptr<U>>

for std::shared_ptr and std::atomic<std::weak_ptr<U>> for std::weak_ptr.

The atomic class template has various member functions that perform atomic
operations, such as the following:

• load() to atomically load and return the value of the object.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Threading and Concurrency

[438]

• store() to atomically store a non-atomic value in the object; this function
does not return anything.

• exchange() to atomically store a non-atomic value in the object and return
the previous value.

• operator=, which has the same effect as store(arg).
• fetch_add() to atomically add a non-atomic argument to the atomic value

and return the value stored previously.
• fetch_sub() to atomically subtract a non-atomic argument from the atomic

value and return the value stored previously.
• fetch_and(), fetch_or(), and fetch_xor() to atomically perform a bitwise

AND, OR, or XOR operation between the argument and the atomic value;
store the new value in the atomic object; and return the previous value.

• Prefixing and postfixing operator++ and operator-- to atomically increment
and decrement the value of the atomic object with 1. These operations are
equivalent to using fetch_add() or fetch_sub().

• operator +=, -=, &=, |=, and ˆ= to add, subtract, or perform bitwise AND, OR,
or XOR operations between the argument and the atomic value and store
the new value in the atomic object. These operations are equivalent to using
fetch_add(), fetch_sub(), fetch_and(), fetch_or(), and fetch_xor().

Consider you have an atomic variable, such as std::atomic<int> a; the following is
not an atomic operation:

a = a + 42;

This involves a series of operations, some of which are atomic:

• Atomically load the value of the atomic object
• Add 42 to the value that was loaded
• Atomically store the result in the atomic object a

On the other hand, the following operation, which uses the member operator +=, is
atomic:

a += 42;

This operation has the same effect as either of the following:

a.fetch_add(42); // using member function
std::atomic_fetch_add(&a, 42); // using non-member function

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[439]

Though std::atomic has a full specialization for the bool type, called
std::atomic<bool>, the standard defines yet another atomic type called
std::atomic_flag, which is guaranteed to be lock-free. This atomic type, however,
is very different than std::atomic_bool, and it has only the following member
functions:

• test_and_set() atomically sets the value to true and returns the previous
value.

• clear() atomically sets the value to false.
• In C++20, there's test(), which atomically returns the value of the flag.

Prior to C++20, the only way to initialize an std::atomic_flag to a definite value
was by using the ATOMIC_FLAG_INIT macro. This initializes the atomic flag to the clear
(false) value:

std::atomic_flag lock = ATOMIC_FLAG_INIT;

In C++20, this macro has been deprecated because the default constructor of
std::atomic_flag initializes it to the clear state.

All member functions mentioned earlier, for both std::atomic and std::atomic_
flag, have non-member equivalents that are prefixed with atomic_ or atomic_
flag_, depending on the type they refer to. For instance, the equivalent of
std::atomic::fetch_add() is std::atomic_fetch_add(), and the first argument of
these non-member functions is always a pointer to an std::atomic object. Internally,
the non-member function calls the equivalent member function on the provided
std::atomic argument. Similarly, the equivalent of std::atomic_flag::test_and_
set() is std::atomic_flag_test_and_set(), and its first parameter is a pointer to an
std::atomic_flag object.

All these member functions of std::atomic and std::atomic_flag have two sets
of overloads; one of them has an extra argument representing a memory order.
Similarly, all non-member functions – such as std::atomic_load(), std::atomic_
fetch_add(), and std::atomic_flag_test_and_set() – have a companion with
the suffix _explicit – std::atomic_load_explicit(), std::atomic_fetch_add_
explicit(), and std::atomic_flag_test_and_set_explicit(); these functions have
an extra argument that represents the memory order.

The memory order specifies how non-atomic memory accesses are to be ordered
around atomic operations. By default, the memory order of all atomic types and
operations is sequential consistency.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Threading and Concurrency

[440]

Additional ordering types are defined in the std::memory_order enumeration
and can be passed as an argument to the member functions of std::atomic and
std::atomic_flag, or the non-member functions with the suffix _explicit().

Various types of memory ordering functions are described in the following table,
taken from the C++ reference website (http://en.cppreference.com/w/cpp/atomic/
memory_order). The details of how each one of these works is beyond the scope of this
book and can be looked up in the standard C++ reference (see the link we just came
across):

Model Explanation
memory_order_relaxed This is a relaxed operation. There are no synchronization or

ordering constraints; only atomicity is required from this
operation.

memory_order_consume A load operation with this memory order performs a
consume operation on the affected memory location; no
reads or writes in the current thread that are dependent
on the value currently loaded can be reordered before this
load operation. Writes to data-dependent variables in other
threads that release the same atomic variable are visible in
the current thread. On most platforms, this affects compiler
optimizations only.

memory_order_acquire A load operation with this memory order performs the
acquire operation on the affected memory location; no reads
or writes in the current thread can be reordered before
this load. All writes in other threads that release the same
atomic variable are visible in the current thread.

Sequential consistency is a consistency model that requires that, in a
multiprocessor system, all instructions are executed in some order
and all writes become instantly visible throughout the system.
This model was first proposed by Leslie Lamport in the 70s, and is
described as follows:

"the results of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified by
its program."

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://en.cppreference.com/w/cpp/atomic/memory_order
http://en.cppreference.com/w/cpp/atomic/memory_order

Chapter 8

[441]

memory_order_release A store operation with this memory order performs the
release operation; no reads or writes in the current thread can
be reordered after this store. All writes in the current thread
are visible in other threads that acquire the same atomic
variable, and writes that carry a dependency to the atomic
variable become visible in other threads that consume the
same atomic.

memory_order_acq_rel A read-modify-write operation with this memory order
is both an acquire operation and a release operation.
No memory reads or writes in the current thread can be
reordered before or after this store. All writes in other threads
that release the same atomic variable are visible before the
modification, and the modification is visible in other threads
that acquire the same atomic variable.

memory_order_seq_cst Any operation with this memory order is both an acquire
operation and a release operation; a single total order exists in
which all threads observe all modifications in the same order.

The first example in the How to do it... section shows several threads repeatedly
modifying a shared resource – a counter – by incrementing it concurrently. This
example can be refined further by implementing a class to represent an atomic
counter with methods such as increment() and decrement(), which modify the value
of the counter, and get(), which retrieves its current value:

template <typename T,
 typename I =
 typename std::enable_if<std::is_integral_v<T>>::type>
class atomic_counter
{
 std::atomic<T> counter {0};
public:
 T increment()
 {
 return counter.fetch_add(1);
 }

 T decrement()
 {
 return counter.fetch_sub(1);
 }

 T get()
 {
 return counter.load();

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Threading and Concurrency

[442]

 }
};

With this class template, the first example can be rewritten in the following form
with the same result:

atomic_counter<int> counter;

std::vector<std::thread> threads;
for(int i = 0; i < 10; ++i)
{
 threads.emplace_back([&counter](){
 for(int i = 0; i < 10; ++i)
 counter.increment();
 });
 }

for(auto & t : threads) t.join();

std::cout << counter.get() << '\n'; // prints 100

If you need to perform atomic operations to references, you cannot use std::atomic.
However, in C++20, you can use the new std::atomic_ref type. This is a class
template that applies atomic operations to the object it references. This object
must outlive the std::atomic_ref object and, as long as any std::atomic_ref
instance referencing this object exists, the object must be accessed only through the
std::atomic_ref instances.

The std::atomic_ref type has the following specializations:

• The primary template that can be instantiated with any trivially-copyable
type T, including bool.

• Partial specialization for all pointer types.
• Specializations for integral types (character types, signed and unsigned

integer types, and any additional integral types needed by the typedefs in the
<cstdint> header).

• Specializations for the floating-point types float, double, and long double.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[443]

When using std::atomic_ref, you must keep in mind that:

• It is not thread-safe to access any sub-object of the object referenced by an
std::atomic_ref.

• It is possible to modify the referenced value through a const std::atomic_ref
object.

Also, in C++20, there are new member and non-member functions that provide an
efficient thread-synchronization mechanism:

• The member function wait() and non-member functions atomic_wait()/
atomic_wait_explicit() and atomic_flag_wait()/atomic_flag_wait_
explicit() perform atomic wait operations, blocking a thread until
notified and the atomic value changes. Its behavior is similar to repeatedly
comparing the provided argument with the value returned by load() and, if
equal, blocks until notified by notify_one() or notify_all(), or the thread
is unblocked spuriously. If the compared values are not equal, then the
function returns without blocking.

• The member function notify_one() and non-member functions atomic_
notify_one() and atomic_flag_notify_one() notify, atomically, at least one
thread blocked in an atomic waiting operation. If there is no such thread
blocked, the function does nothing.

• The member function notify_all() and the non-member functions atomic_
notify_all() and atomic_flag_notify_all() unblock all the threads blocked
in an atomic waiting operation, or do nothing if no such thread exists.

Finally, it should be mentioned that all the atomic objects from the atomic operations
library – std::atomic, std::atomic_ref, and std::atomic_flag – are free of data
races.

See also
• Working with threads, to learn about the std::thread class and the basic

operations for working with threads in C++.
• Synchronizing access to shared data with mutexes and locks, to see what

mechanisms are available for synchronizing thread access to shared data and
how they work.

• Executing functions asynchronously, to learn how to use the std::future class
and the std::async() function to execute functions asynchronously on
different threads and communicate the result back.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Threading and Concurrency

[444]

Implementing parallel map and fold
with threads
In Chapter 3, Exploring Functions, we discussed two higher-order functions: map,
which applies a function to the elements of a range by either transforming the range
or producing a new range, and fold, which combines the elements of a range into
a single value. The various implementations we did were sequential. However, in
the context of concurrency, threads, and asynchronous tasks, we can leverage the
hardware and run parallel versions of these functions to speed up their execution
for large ranges, or when the transformation and aggregation are time-consuming.
In this recipe, we will see a possible solution for implementing map and fold using
threads.

Getting ready
You need to be familiar with the concepts of the map and fold functions. It is
recommended that you read the Implementing higher-order functions map and fold
recipe from Chapter 3, Exploring Functions. In this recipe, we will use the various
thread functionalities presented in the Working with threads recipe.

To measure the execution time of these functions and compare it with sequential
alternatives, we will use the perf_timer class template, which we introduced in the
Measuring function execution time with a standard clock recipe in Chapter 6, General-
Purpose Utilities.

To determine the number of threads required to split the work, we will use the
following function:

unsigned get_no_of_threads()
{
 return std::thread::hardware_concurrency();
}

A parallel version of an algorithm can potentially speed up
execution time, but this is not necessarily true in all circumstances.
Context switching for threads and synchronized access to
shared data can introduce a significant overhead. For some
implementations and particular datasets, this overhead could make
a parallel version actually take a longer time to execute than a
sequential version.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[445]

We'll explore a first possible implementation for a parallel version of the map and
fold functions in the next section.

How to do it...
To implement a parallel version of the map function, do the following:

1. Define a function template that takes the begin and end iterators to a range
and a function to apply to all the elements:

template <typename Iter, typename F>
void parallel_map(Iter begin, Iter end, F f)
{
}

2. Check the size of the range. If the number of elements is smaller than a
predefined threshold (for this implementation, the threshold is 10,000),
execute the mapping in a sequential manner:

auto size = std::distance(begin, end);
if(size <= 10000)
 std::transform(begin, end, begin, std::forward<F>(f));

3. For larger ranges, split the work on multiple threads and let each thread map
be a part of the range. These parts should not overlap to avoid the need of
synchronizing access to the shared data:

else
{
 auto no_of_threads = get_no_of_threads();
 auto part = size / no_of_threads;
 auto last = begin;
 // continued at 4. and 5.
}

4. Start the threads, and on each thread, run a sequential version of the
mapping:

std::vector<std::thread> threads;
for(unsigned i = 0; i < no_of_threads; ++i)
{
 if(i == no_of_threads - 1) last = end;
 else std::advance(last, part);

 threads.emplace_back(
 [=,&f]{std::transform(begin, last,

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Threading and Concurrency

[446]

 begin, std::forward<F>(f));});
 begin = last;
}

5. Wait until all the threads have finished their execution:

for(auto & t : threads) t.join();

The preceding steps, when put together, result in the following implementation:

template <typename Iter, typename F>
void parallel_map(Iter begin, Iter end, F f)
{
 auto size = std::distance(begin, end);
 if(size <= 10000)
 std::transform(begin, end, begin, std::forward<F>(f));
 else
 {
 auto no_of_threads = get_no_of_threads();
 auto part = size / no_of_threads;
 auto last = begin;

 std::vector<std::thread> threads;
 for(unsigned i = 0; i < no_of_threads; ++i)
 {
 if(i == no_of_threads - 1) last = end;
 else std::advance(last, part);

 threads.emplace_back(
 [=,&f]{std::transform(begin, last,
 begin, std::forward<F>(f));});

 begin = last;
 }

 for(auto & t : threads) t.join();
 }
}

To implement a parallel version of the left fold function, do the following:

1. Define a function template that takes a begin and an end iterator to a range,
an initial value, and a binary function to apply to the elements of the range:

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[447]

template <typename Iter, typename R, typename F>
auto parallel_reduce(Iter begin, Iter end, R init, F op)
{
}

2. Check the size of the range. If the number of elements is smaller than a
predefined threshold (for this implementation, it is 10,000), execute the
folding in a sequential manner:

auto size = std::distance(begin, end);
if(size <= 10000)
 return std::accumulate(begin, end,
 init, std::forward<F>(op));

3. For larger ranges, split the work into multiple threads and let each
thread fold a part of the range. These parts should not overlap in order to
avoid thread synchronization of shared data. The result can be returned
through a reference passed to the thread function in order to avoid data
synchronization:

else
{
 auto no_of_threads = get_no_of_threads();
 auto part = size / no_of_threads;
 auto last = begin;
 // continued with 4. and 5.
}

4. Start the threads, and on each thread, execute a sequential version of the
folding:

std::vector<std::thread> threads;
std::vector<R> values(no_of_threads);
for(unsigned i = 0; i < no_of_threads; ++i)
{
 if(i == no_of_threads - 1) last = end;
 else std::advance(last, part);

 threads.emplace_back(
 [=,&op](R& result){
 result = std::accumulate(begin, last, R{},
 std::forward<F>(op));},
 std::ref(values[i]));
 begin = last;
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Threading and Concurrency

[448]

5. Wait until all the threads have finished execution and fold the partial results
into the final result:

for(auto & t : threads) t.join();

return std::accumulate(std::begin(values), std::end(values),
 init, std::forward<F>(op));

The steps we just put together result in the following implementation:

template <typename Iter, typename R, typename F>
auto parallel_reduce(Iter begin, Iter end, R init, F op)
{
 auto size = std::distance(begin, end);

 if(size <= 10000)
 return std::accumulate(begin, end, init, std::forward<F>(op));
 else
 {
 auto no_of_threads = get_no_of_threads();
 auto part = size / no_of_threads;
 auto last = begin;

 std::vector<std::thread> threads;
 std::vector<R> values(no_of_threads);
 for(unsigned i = 0; i < no_of_threads; ++i)
 {
 if(i == no_of_threads - 1) last = end;
 else std::advance(last, part);

 threads.emplace_back(
 [=,&op](R& result){
 result = std::accumulate(begin, last, R{},
 std::forward<F>(op));},
 std::ref(values[i]));

 begin = last;
 }

 for(auto & t : threads) t.join();

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[449]

 return std::accumulate(std::begin(values), std::end(values),
 init, std::forward<F>(op));
 }
}

How it works...
These parallel implementations of map and fold are similar in several aspects:

• They both fall back to a sequential version if the number of elements in the
range is smaller than 10,000.

• They both start the same number of threads. These threads are determined
using the static function std::thread::hardware_concurrency(), which
returns the number of concurrent threads supported by the implementation.
However, this value is rather a hint than an accurate value and should be
used with that in mind.

• No shared data is used to avoid synchronization of access. Even though all
the threads work on the elements from the same range, they all process parts
of the range that do not overlap.

• Both these functions are implemented as function templates that take a begin
and an end iterator to define the range to be processed. In order to split
the range into multiple parts to be processed independently by different
threads, use additional iterators in the middle of the range. For this, we
use std::advance() to increment an iterator with a particular number of
positions. This works well for vectors or arrays but is very inefficient for
containers such as lists. Therefore, this implementation is suited only for
ranges that have random access iterators.

The sequential versions of map and fold can be simply implemented in C++ with
std::transform() and std::accumulate(). In fact, to verify the correctness of the
parallel algorithms and check whether they provide any execution speedup, we can
compare them with the execution of these general-purpose algorithms.

To put this to the test, we will use map and fold on a vector with sizes varying from
10,000 to 50 million elements. The range is first mapped (that is, transformed) by
doubling the value of each element, and then the result is folded into a single value
by adding together all the elements of the range. For simplicity, each element in the
range is equal to its 1-based index (the first element is 1, the second element is 2,
and so on). The following sample runs both the sequential and parallel versions of
map and fold on vectors of different sizes and prints the execution time in a tabular
format:

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Threading and Concurrency

[450]

std::vector<int> sizes
{
 10000, 100000, 500000,
 1000000, 2000000, 5000000,
 10000000, 25000000, 50000000
};

std::cout
 << std::right << std::setw(8) << std::setfill(' ') << "size"
 << std::right << std::setw(8) << "s map"
 << std::right << std::setw(8) << "p map"
 << std::right << std::setw(8) << "s fold"
 << std::right << std::setw(8) << "p fold"
 << '\n';

for (auto const size : sizes)
{
 std::vector<int> v(size);
 std::iota(std::begin(v), std::end(v), 1);

 auto v1 = v;
 auto s1 = 0LL;

 auto tsm = perf_timer<>::duration([&] {
 std::transform(std::begin(v1), std::end(v1), std::begin(v1),
 [](int const i) {return i + i; }); });
 auto tsf = perf_timer<>::duration([&] {
 s1 = std::accumulate(std::begin(v1), std::end(v1), 0LL,
 std::plus<>()); });

 auto v2 = v;
 auto s2 = 0LL;
 auto tpm = perf_timer<>::duration([&] {
 parallel_map(std::begin(v2), std::end(v2),
 [](int const i) {return i + i; }); });

As an exercise, you can vary the number of elements, as well as
the number of threads, and see how the parallel version performs
compared to the sequential version.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[451]

 auto tpf = perf_timer<>::duration([&] {
 s2 = parallel_reduce(std::begin(v2), std::end(v2), 0LL,
 std::plus<>()); });

 assert(v1 == v2);
 assert(s1 == s2);

 std::cout
 << std::right << std::setw(8) << std::setfill(' ') << size
 << std::right << std::setw(8)
 << std::chrono::duration<double, std::micro>(tsm).count()
 << std::right << std::setw(8)
 << std::chrono::duration<double, std::micro>(tpm).count()
 << std::right << std::setw(8)
 << std::chrono::duration<double, std::micro>(tsf).count()
 << std::right << std::setw(8)
 << std::chrono::duration<double, std::micro>(tpf).count()
 << '\n';
}

A possible output of this program is shown in the following chart (executed on a
machine running Windows 64-bit with an Intel Core i7 processor and 4 physical and
8 logical cores). The parallel version, especially the fold implementation, performs
better than the sequential version. But this is true only when the length of the vector
exceeds a certain size. In the following table, we can see that for up to 1 million
elements, the sequential version is still faster. The parallel version executes faster
when there are 2 million or more elements in the vector. Notice that the actual times
vary slightly from one run to another, but they can be very different on different
machines:

 size s map p map s fold p fold
 10000 11 10 7 10
 100000 108 1573 72 710
 500000 547 2006 361 862
 1000000 1146 1163 749 862
 2000000 2503 1527 1677 1289
 5000000 5937 3000 4203 2314
10000000 11959 6269 8269 3868
25000000 29872 13823 20961 9156
50000000 60049 27457 41374 19075

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Threading and Concurrency

[452]

To better visualize these results, we can represent the speedup of the parallel version
in the form of a bar chart. In the following chart, the blue bars represent the speedup
of a parallel map implementation, while the orange bars show the speedup of the
parallel fold implementation. A positive value indicates that the parallel version is
faster; a negative version indicates that the sequential version is faster:

Figure 8.1: The speedup of the parallel implementation for map (in blue) and fold (in orange) for various
processed elements

This chart makes it easier to see that only when the number of elements exceeds
a certain threshold (which is about 2 million in my benchmarks) is the parallel
implementation faster than the sequential version.

See also
• Implementing higher-order functions map and fold, in Chapter 3, Exploring

Functions, to learn about higher-order functions in functional programming
and see how to implement the widely used map and fold (or reduce)
functions.

• Implementing parallel map and fold with tasks, to see how to implement the
map and fold functions from functional programming using asynchronous
functions.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[453]

• Implementing parallel map and fold with standard parallel algorithms, to see how
to implement the map and fold functions from functional programming using
parallel algorithms from C++17.

• Working with threads, to learn about the std::thread class and the basic
operations for working with threads in C++.

Implementing parallel map and fold
with tasks
Tasks are a higher-level alternative to threads for performing concurrent
computations. std::async() enables us to execute functions asynchronously,
without the need to handle lower-level threading details. In this recipe, we will take
the same task of implementing a parallel version of the map and fold functions, as in
the previous recipe, but we will use tasks and see how it compares with the thread
version.

Getting ready
The solution presented in this recipe is similar in many aspects to the one that uses
threads in the previous recipe, Implementing parallel map and fold with threads. Make
sure you read that one before continuing with the current recipe.

How to do it...
To implement a parallel version of the map function, do the following:

1. Define a function template that takes a begin and end iterator to a range, and
a function to apply to all the elements:

template <typename Iter, typename F>
void parallel_map(Iter begin, Iter end, F f)
{
}

2. Check the size of the range. For a number of elements smaller than the
predefined threshold (for this implementation, the threshold is 10,000),
execute the mapping in a sequential manner:

auto size = std::distance(begin, end);
if(size <= 10000)
 std::transform(begin, end, begin, std::forward<F>(f));

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Threading and Concurrency

[454]

3. For larger ranges, split the work into multiple tasks and let each task map
a part of the range. These parts should not overlap to avoid synchronizing
thread access to shared data:

else
{
 auto no_of_tasks = get_no_of_threads();
 auto part = size / no_of_tasks;
 auto last = begin;
 // continued at 4. and 5.
}

4. Start the asynchronous functions and run a sequential version of the
mapping on each one of them:

std::vector<std::future<void>> tasks;
for(unsigned i = 0; i < no_of_tasks; ++i)
{
 if(i == no_of_tasks - 1) last = end;
 else std::advance(last, part);

 tasks.emplace_back(std::async(
 std::launch::async,
 [=,&f]{std::transform(begin, last, begin,
 std::forward<F>(f));}));
 begin = last;
}

5. Wait until all the asynchronous functions have finished their execution:

for(auto & t : tasks) t.wait();

These steps, when put together, result in the following implementation:

template <typename Iter, typename F>
void parallel_map(Iter begin, Iter end, F f)
{
 auto size = std::distance(begin, end);
 if(size <= 10000)
 std::transform(begin, end, begin, std::forward<F>(f));
 else
 {
 auto no_of_tasks = get_no_of_threads();
 auto part = size / no_of_tasks;
 auto last = begin;

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[455]

 std::vector<std::future<void>> tasks;
 for(unsigned i = 0; i < no_of_tasks; ++i)
 {
 if(i == no_of_tasks - 1) last = end;
 else std::advance(last, part);

 tasks.emplace_back(std::async(
 std::launch::async,
 [=,&f]{std::transform(begin, last, begin,
 std::forward<F>(f));}));

 begin = last;
 }

 for(auto & t : tasks) t.wait();
 }
}

To implement a parallel version of the left fold function, do the following:

1. Define a function template that takes a begin and end iterator to a range, an
initial value, and a binary function to apply to the elements of the range:

template <typename Iter, typename R, typename F>
auto parallel_reduce(Iter begin, Iter end, R init, F op)
{
}

2. Check the size of the range. For a number of elements smaller than the
predefined threshold (for this implementation, the threshold is 10,000),
execute the folding in a sequential manner:

auto size = std::distance(begin, end);
if(size <= 10000)
 return std::accumulate(begin, end, init,
 std::forward<F>(op));

3. For larger ranges, split the work into multiple tasks and let each task fold
a part of the range. These parts should not overlap to avoid synchronizing
thread access to the shared data. The result can be returned through a
reference passed to the asynchronous function to avoid synchronization:

else
{

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Threading and Concurrency

[456]

 auto no_of_tasks = get_no_of_threads();
 auto part = size / no_of_tasks;
 auto last = begin;
 // continued at 4. and 5.
}

4. Start the asynchronous functions and execute a sequential version of folding
on each one of them:

std::vector<std::future<R>> tasks;
for(unsigned i = 0; i < no_of_tasks; ++i)
{
 if(i == no_of_tasks - 1) last = end;
 else std::advance(last, part);

 tasks.emplace_back(
 std::async(
 std::launch::async,
 [=,&op]{return std::accumulate(
 begin, last, R{},
 std::forward<F>(op));}));
 begin = last;
}

5. Wait until all the asynchronous functions have finished execution and fold
the partial results into the final result:

std::vector<R> values;
for(auto & t : tasks)
 values.push_back(t.get());

return std::accumulate(std::begin(values), std::end(values),
 init, std::forward<F>(op));

These steps, when put together, result in the following implementation:

template <typename Iter, typename R, typename F>
auto parallel_reduce(Iter begin, Iter end, R init, F op)
{
 auto size = std::distance(begin, end);

 if(size <= 10000)
 return std::accumulate(begin, end, init, std::forward<F>(op));

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[457]

 else
 {
 auto no_of_tasks = get_no_of_threads();
 auto part = size / no_of_tasks;
 auto last = begin;

 std::vector<std::future<R>> tasks;
 for(unsigned i = 0; i < no_of_tasks; ++i)
 {
 if(i == no_of_tasks - 1) last = end;
 else std::advance(last, part);

 tasks.emplace_back(
 std::async(
 std::launch::async,
 [=,&op]{return std::accumulate(
 begin, last, R{},
 std::forward<F>(op));}));

 begin = last;
 }

 std::vector<R> values;
 for(auto & t : tasks)
 values.push_back(t.get());

 return std::accumulate(std::begin(values), std::end(values),
 init, std::forward<F>(op));
 }
}

How it works...
The implementation just proposed is only slightly different than what we did in the
previous recipe. Threads were replaced with asynchronous functions, starting with
std::async(), and results were made available through the returned std::future.
The number of asynchronous functions that are launched concurrently is equal to
the number of threads the implementation can support. This is returned by the static
method std::thread::hardware_concurrency(), but this value is only a hint and
should not be considered very reliable.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Threading and Concurrency

[458]

There are mainly two reasons for taking this approach:

• Seeing how a function implemented for parallel execution with threads can
be modified to use asynchronous functions and, therefore, avoid lower-level
details of threading.

• Running a number of asynchronous functions equal to the number of
supported threads can potentially run one function per thread; this could
provide the fastest execution time for the parallel function because there is a
minimum overhead of context switching and waiting time.

We can test the performance of the new map and fold implementations using the
same method as in the previous recipe:

std::vector<int> sizes
{
 10000, 100000, 500000,
 1000000, 2000000, 5000000,
 10000000, 25000000, 50000000
};

std::cout
 << std::right << std::setw(8) << std::setfill(' ') << "size"
 << std::right << std::setw(8) << "s map"
 << std::right << std::setw(8) << "p map"
 << std::right << std::setw(8) << "s fold"
 << std::right << std::setw(8) << "p fold"
 << '\n';

for(auto const size : sizes)
{
 std::vector<int> v(size);
 std::iota(std::begin(v), std::end(v), 1);

 auto v1 = v;
 auto s1 = 0LL;

 auto tsm = perf_timer<>::duration([&] {
 std::transform(std::begin(v1), std::end(v1), std::begin(v1),
 [](int const i) {return i + i; }); });
 auto tsf = perf_timer<>::duration([&] {
 s1 = std::accumulate(std::begin(v1), std::end(v1), 0LL,
 std::plus<>()); });

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[459]

auto v2 = v;
auto s2 = 0LL;
auto tpm = perf_timer<>::duration([&] {
 parallel_map(std::begin(v2), std::end(v2),
 [](int const i) {return i + i; }); });
auto tpf = perf_timer<>::duration([&] {
 s2 = parallel_reduce(std::begin(v2), std::end(v2), 0LL,
 std::plus<>()); });

assert(v1 == v2);
assert(s1 == s2);

std::cout
 << std::right << std::setw(8) << std::setfill(' ') << size
 << std::right << std::setw(8)
 << std::chrono::duration<double, std::micro>(tsm).count()
 << std::right << std::setw(8)
 << std::chrono::duration<double, std::micro>(tpm).count()
 << std::right << std::setw(8)
 << std::chrono::duration<double, std::micro>(tsf).count()
 << std::right << std::setw(8)
 << std::chrono::duration<double, std::micro>(tpf).count()
 << '\n';
}

A possible output of the preceding program, which can vary slightly from one
execution to another and greatly from one machine to another, is as follows:

 size s map p map s fold p fold
 10000 11 11 11 11
 100000 117 260 113 94
 500000 576 303 571 201
 1000000 1180 573 1165 283
 2000000 2371 911 2330 519
 5000000 5942 2144 5841 1886
10000000 11954 4999 11643 2871
25000000 30525 11737 29053 9048
50000000 59665 22216 58689 12942

Similar to the illustration of the solution with threads, the speedup of the parallel map
and fold implementations can be seen in the following chart.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Threading and Concurrency

[460]

Negative values indicate that the sequential version was faster:

Figure 8.2: The speedup of the parallel implementation of map (in blue) and fold (in orange) using
asynchronous functions, compared to the sequential implementation

If we compare this with the results from the parallel version using threads, we
will find that these are faster execution times and that the speedup is significant,
especially for the fold function. The following chart shows the speedup of the task's
implementation over the thread's implementation. In this chart, a value smaller than
1 means that the thread's implementation was faster:

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[461]

Figure 8.3: The speedup of the parallel implementation using asynchronous functions over the parallel
implementation using threads for map (in blue) and fold (in orange)

There's more...
The implementation shown earlier is only one of the possible approaches we can take
for parallelizing the map and fold functions. A possible alternative uses the following
strategy:

• Divide the range to process into two equal parts.
• Recursively call the parallel function asynchronously to process the first part

of the range.
• Recursively call the parallel function synchronously to process the second

part of the range.
• After the synchronous recursive call is finished, wait for the asynchronous

recursive call to end too before finishing the execution.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Threading and Concurrency

[462]

This divide-and-conquer algorithm can potentially create a lot of tasks. Depending
on the size of the range, the number of asynchronous calls can greatly exceed the
number of threads, and in this case, there will be lots of waiting time that will affect
the overall execution time.

The map and fold functions can be implemented using a divide-and-conquer
algorithm, as follows:

template <typename Iter, typename F>
void parallel_map(Iter begin, Iter end, F f)
{
 auto size = std::distance(begin, end);

 if(size <= 10000)
 {
 std::transform(begin, end, begin, std::forward<F>(f));
 }
 else
 {
 auto middle = begin;
 std::advance(middle, size / 2);

 auto result = std::async(
 std::launch::deferred,
 parallel_map<Iter, F>,
 begin, middle, std::forward<F>(f));
 parallel_map(middle, end, std::forward<F>(f));
 result.wait();
 }
}

template <typename Iter, typename R, typename F>
auto parallel_reduce(Iter begin, Iter end, R init, F op)
{
 auto size = std::distance(begin, end);

 if(size <= 10000)
 return std::accumulate(begin, end, init, std::forward<F>(op));

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[463]

 else
 {
 auto middle = begin;
 std::advance(middle, size / 2);
 auto result1 = std::async(
 std::launch::async,
 parallel_reduce<Iter, R, F>,
 begin, middle, R{}, std::forward<F>(op));
 auto result2 = parallel_reduce(middle, end, init,
 std::forward<F>(op));
 return result1.get() + result2;
 }
}

The execution times for this implementation are listed here, next to the ones for the
previous implementations:

 size s map p1 map p2 map s fold p1 fold p2 fold
 10000 11 11 10 7 10 10
 100000 111 275 120 72 96 426
 500000 551 230 596 365 210 1802
 1000000 1142 381 1209 753 303 2378
 2000000 2411 981 2488 1679 503 4190
 5000000 5962 2191 6237 4177 1969 7974
10000000 11961 4517 12581 8384 2966 15174

When we compare these execution times, we can see that this version (indicated by
p2 in the preceding output) is similar to the sequential version for both map and fold
and much worse than the first parallel version shown earlier (indicated by p1).

See also
• Implementing parallel map and fold with threads, to see how to implement the

map and fold functions from functional programming using raw threads.
• Implementing parallel map and fold with standard parallel algorithms, to see how

to implement the map and fold functions from functional programming using
parallel algorithms from C++17.

• Executing functions asynchronously, to learn how to use the std::future class
and the std::async() function to execute functions asynchronously on
different threads and communicate the result back.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Threading and Concurrency

[464]

Implementing parallel map and fold with
standard parallel algorithms
In the previous two recipes, we implemented parallel versions of the map and
fold functions (which are called std::transform() and std::accumulate() in the
standard library) using threads and tasks. However, these implementations required
manual handling of parallelization details, such as splitting data into chunks to be
processed in parallel and creating threads or tasks, synchronizing their execution,
and merging the results.

In C++17, many of the standard generic algorithms have been parallelized. In fact,
the same algorithm can execute sequentially or in parallel, depending on a provided
execution policy. In this recipe, we will learn how to implement map and fold in
parallel with standard algorithms.

Getting ready
Before you continue with this recipe, it is recommended that you read the previous
two to make sure you understand the differences between various parallel
implementations.

How to do it...
To use the standard algorithms with parallel execution, you should do the following:

• Find a good candidate for an algorithm to parallelize. Not every algorithm
runs faster in parallel. Make sure you correctly identify the parts of the
program that can be improved with parallelization. Use profilers for
this purpose and, in general, look at operations that have O(n) or worse
complexity.

• Include the header <execution> for the execution policies.
• Provide the parallel execution policy (std::execution::par) as the first

argument to the overloaded algorithm.

A parallel implementation of the map function using the parallel overload of
std::transform() is as follows:

template <typename Iter, typename F>
void parallel_map(Iter begin, Iter end, F f)
{
 std::transform(std::execution::par,

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[465]

 begin, end,
 begin,
 std::forward<F>(f));
}

A parallel implementation of the fold function using the parallel overload of
std::reduce() is as follows:

template <typename Iter, typename R, typename F>
auto parallel_reduce(Iter begin, Iter end, R init, F op)
{
 return std::reduce(std::execution::par,
 begin, end,
 init,
 std::forward<F>(op));
}

How it works...
In C++17, 69 of the standard generic algorithms have been overloaded to support
parallel execution. These overloads take an execution policy as the first parameter.
The available execution policies, from header <execution>, are as follows:

Policy Since Description Global object
std::execution::sequenced_
policy

C++17 Indicates that the
algorithm may
not execute in
parallel.

std::execution::seq

std::execution::parallel_
policy

C++17 Indicates that
the algorithm's
execution may be
parallelized.

std::execution::par

std::execution::parallel_
unsequenced_policy

C++17 Indicates that
the algorithm's
execution may be
parallelized and
vectorized.

std::execution::par_
unseq

std::execution::unsequenced_
policy

C++20 Indicates that
the algorithm's
execution may be
vectorized.

std::execution::unseq

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Threading and Concurrency

[466]

Apart from the existing algorithms that have been overloaded, seven new algorithms
have been added:

Algorithm Description
std::for_each_n Applies a given function to the first N elements of the

specified range, according to the specified execution
policy.

std::exclusive_scan Computes the partial sum of a range of elements
but excludes the ith element from the ith sum. If the
binary operation is associative, the result is the same
as when using std::partial_sum().

std::inclusive_scan Computes the partial sum of a range of elements but
includes the ith element in the ith sum.

std::transform_exclusive_
scan

Applies a function and then calculates exclusive scan.

std::transform_inclusive_
scan

Applies a function and then calculates inclusive scan.

std::reduce An out of order version of std::accumulate().
std::transform_reduce Applies a function then accumulates out of order

(that is, reduces).

In the preceding examples, we used std::transform() and std::reduce() with an
execution policy – in our case, std::execution::par. The algorithm std::reduce()
is similar to std::accumulate() but it processes the elements out of order.
std::accumulate() does not have an overload for specifying an execution policy, so
it can only execute sequentially.

It is important to note that, just because an algorithm supports parallelization, it
doesn't mean that it will run faster than the sequential version. Execution depends
on the actual hardware, datasets, and algorithm particularities. In fact, some of these
algorithms may never or hardly execute faster when parallelized than sequentially.
For this reason, the Microsoft implementation of several algorithms that permute,
copy, or move elements does not perform parallelization but falls back to sequential
execution in all cases. These algorithms are copy(), copy_n(), fill(), fill_n(),
move(), reverse(), reverse_copy(), rotate(), rotate_copy(), and swap_ranges().
Moreover, the standard does not guarantee a particular execution; specifying a
policy is actually a request for an execution strategy but with no guarantees implied.

On the other hand, the standard library allows parallel algorithms to allocate
memory. When this cannot be done, an algorithm throws std::bad_alloc. However,
again, the Microsoft implementation differs and instead of throwing, it falls back to
the sequential version of the algorithm.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[467]

Another important aspect that must be known is that the standard algorithms work
with different kinds of iterators. Some require forward iterators, some input iterators.
However, all the overloads that allow to specify an execution policy restrict the use
of the algorithm with forward iterators.

Take a look at the following table:

Figure 8.4: A comparison of execution times for sequential and
parallel implementations of the map and reduce functions

Here, you can see a comparison of execution times for sequential and parallel
implementations of the map and reduce functions. Highlighted are the versions of the
functions implemented in this recipe. These times may vary slightly from execution
to execution. These values were obtained by running a 64-bit released version
compiled with Visual C++ 2019 16.4.x on a machine with an Intel Xeon CPU with
four cores. Although the parallel versions perform better than the sequential version
for these data sets, which one is actually better varies with the size of the dataset.
This is why profiling is key when you optimize by parallelizing work.

There's more...
In this example, we have seen separate implementations for map and fold (which
is also called reduce). However, in C++17, there is a standard algorithm called
std::transform_reduce(), which composes the two operations into a single function
call. This algorithm has overloads for sequential execution, as well as policy-based
execution for parallelism and vectorization. We can, therefore, utilize this algorithm
instead of the handwritten implementation we did in these previous three recipes.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Threading and Concurrency

[468]

The following are the sequential and parallel versions of the algorithm used to
compute the sum of the doubles of all the elements of a range:

std::vector<int> v(size);
std::iota(std::begin(v), std::end(v), 1);

// sequential
auto sums = std::transform_reduce(
 std::begin(v), std::end(v),
 0LL,
 std::plus<>(),
 [](int const i) {return i + i; });

// parallel
auto sump = std::transform_reduce(
 std::execution::par,
 std::begin(v), std::end(v),
 0LL,
 std::plus<>(),
 [](int const i) {return i + i; });

If we compare the execution time of these two calls, seen in the following table in the
last two columns, with the total time for separately calling map and reduce, as seen in
the other implementations, you can see that std::transform_reduce(), especially the
parallel version, executes better in most cases:

Figure 8.5: A comparison of execution times for the transform/reduce pattern with a highlight of the times for
the std::transform_reduce() standard algorithm from C++17

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[469]

See also
• Implementing higher-order functions map and fold, in Chapter 3, Exploring

Functions, to learn about higher-order functions in functional programming
and see how to implement the widely used map and fold (or reduce)
functions.

• Implementing parallel map and fold with threads, to see how to implement the
map and fold functions from functional programming using raw threads.

• Implementing parallel map and fold with tasks, to see how to implement the map
and fold functions from functional programming using asynchronous functions.

Using joinable threads and cancellation
mechanisms
The C++11 class std::thread represents a single thread of execution and allows
multiple functions to execute concurrently. However, it has a major inconvenience:
you must explicitly invoke the join() method to wait for the thread to finish
execution. This can lead to problems because if an std::thread object is destroyed
while it is still joinable, and then std::terminate() is called. C++20 provides an
improved thread class called std::jthread (from joinable thread) that automatically
calls join() if the thread is still joinable when the object is destroyed. Moreover,
this type supports cancellation through std::stop_source/std::stop_token and
its destructor also requests the thread to stop before joining. In this recipe, you will
learn how to use these new C++20 types.

Getting ready
Before you continue with this, you should read the first recipe of this chapter,
Working with threads, to make sure you are familiar with std::thread. To use
std::jthread, you need to include the same <thread> header. For std::stop_source
and std::stop_token, you need to include the header <stop_token>.

How to do it...
The typical scenarios for using joinable threads and a cooperative cancellation
mechanism are as follows:

• If you want to automatically join a thread object when it goes out of scope,
use std::jthread instead of std::thread. You can still use all the methods
that std::thread has, such as explicitly joining with join():

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Threading and Concurrency

[470]

void thread_func(int i)
{
 while(i-- > 0)
 {
 std::cout << i << '\n';
 }
}

int main()
{
 std::jthread t(thread_func, 10);
}

• If you need to be able to cancel the execution of a thread, you should do the
following:

• Make sure the first parameter of the thread function is an
std::stop_token object.

• In the thread function, periodically check if stopping was requested
using the stop_requested() method of the std::stop_token object
and stop when signaled.

• Use std::jthread for executing the function on a separate thread.
• From the calling thread, use the request_stop() method of the

std::jthread object to request the thread function to stop and return.

void thread_func(std::stop_token st, int& i)
{
 while(!st.stop_requested() && i < 100)
 {
 using namespace std::chrono_literals;
 std::this_thread::sleep_for(200ms);
 i++;
 }
}

int main()
{
 int a = 0;

 std::jthread t(thread_func, std::ref(a));

 using namespace std::chrono_literals;

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[471]

 std::this_thread::sleep_for(1s);

 t.request_stop();

 std::cout << a << '\n'; // prints 4
}

• If you need to cancel the work of multiple threads, then you can do the
following:

• All thread functions must take an std::stop_token object as the first
argument.

• All thread functions should periodically check if a stop was requested
by calling the stop_requested() method of std::stop_token and, if a
stop was requested, abort the execution.

• Use std::jthread to execute functions on different threads.
• In the calling thread, create an std::stop_source object.
• Get an std::stop_token object by calling the get_token() method of

the std::stop_source object and pass it as the first argument for the
thread function when creating std::jthread objects.

• When you want to stop the execution of the thread functions, call the
request_stop() method of the std::stop_source object.

void thread_func(std::stop_token st, int& i)
{
 while(!st.stop_requested() && i < 100)
 {
 using namespace std::chrono_literals;
 std::this_thread::sleep_for(200ms);
 i++;
 }
}

int main()
{
 int a = 0;
 int b = 10;

 std::stop_source st;

 std::jthread t1(thread_func, st.get_token(),
 std::ref(a));

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Threading and Concurrency

[472]

 std::jthread t2(thread_func, st.get_token(),
 std::ref(b));

 using namespace std::chrono_literals;
 std::this_thread::sleep_for(1s);

 st.request_stop();

 std::cout << a << ' ' << b << '\n'; // prints 4
 // and 14
}

• If you need to execute a piece of code when a stop source is requesting
cancellation, you can use an std::stop_callback created with the
std::stop_token object, which signals the stop request and a callback
function that is invoked when the stop is requested (through the
std::stop_source object associated with std::stop_token):

void thread_func(std::stop_token st, int& i)
{
 while(!st.stop_requested() && i < 100)
 {
 using namespace std::chrono_literals;
 std::this_thread::sleep_for(200ms);
 i++;
 }
}

int main()
{
 int a = 0;

 std::stop_source src;
 std::stop_token token = src.get_token();
 std::stop_callback cb(token,
 []{std::cout << "the end\n";});

 std::jthread t(thread_func, token, std::ref(a));

 using namespace std::chrono_literals;
 std::this_thread::sleep_for(1s);

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[473]

 src.request_stop();

 std::cout << a << '\n'; // prints "the end" and 4
}

How it works...
std::jthread is very similar to std::thread. It is, in fact, the attempt to fix what was
wrong with threads in C++11. Its public interface is very similar to std::thread. All
the methods std::thread has are also present in std:jthread. However, it differs in
the following key aspects:

• Internally, it maintains, at least logically, a shared stop-state, which allows
for the request of the thread function to stop execution.

• It has several methods for handling cooperative cancellation: get_stop_source(),
which returns an std::stop_source object associated with the shared stop state
of the thread, get_stop_token(), which returns an std::stop_token associated
with the shared stop state of the thread, and request_stop(), which requests the
cancellation of the execution of the thread function via the shared stop state.

• The behavior of its destructor that, when the thread is joinable, calls
request_stop() and then join() to first signal the request to stop execution
and then wait until the thread has finished its execution.

You can create std::jthread objects just as you would create std::thread objects.
However, the callable function that you pass to an std::jthread can have a first
argument of the type std::stop_token. This is necessary when you want to be able
to cooperatively cancel the thread's execution. Typical scenarios include graphical
user interfaces where user interaction may cancel work in progress, but many other
situations can be envisioned. The invocation of such a function thread happens as
follows:

• If the first argument for the thread function, supplied when constructing
std::jthread, is an std::stop_token, it is forwarded to the callable function.

• If the first argument, if any, for the callable function is not an std::stop_
token object, then the std::stop_token object associated with the
std::jthread object's internal shared stop-state is passed to the function. This
token is obtained with a call to get_stop_token().

The function thread must periodically check the status of the std::stop_token object.
The stop_requested() method checks if a stop was requested. The request to stop
comes from an std::stop_source object.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Threading and Concurrency

[474]

If multiple stop tokens are associated with the same stop source, a stop request is
visible to all the stop tokens. If a stop is requested, it cannot be withdrawn, and
successive stop requests have no meaning. To request a stop, you should call the
request_stop() method. You can check if an std::stop_source is associated with a
stop-state and can be requested to stop by calling the stop_possible() method.

If you need to invoke a callback function when a stop source is requested to stop,
then you can use the std::stop_callback class. This associates an std::stop_token
object with a callback function when the stop source of the stop token is requested to
stop the callback is invoked. Callback functions are invoked as follows:

• In the same thread that invoked request_stop().
• In the thread constructing the std::stop_callback object, if the stop has

already been requested before the stop callback object has been constructed.

You can create any number of std::stop_callback objects for the same stop token.
However, the order the callbacks are invoked in is unspecified. The only guarantee is
that they will be executed synchronously, provided that the stop has been requested
after the std::stop_callback objects have been created.

It is also important to note that, if any callback function returns via an exception,
then std::terminate() will be invoked.

See also
• Working with threads, to learn about the std::thread class and the basic

operations for working with threads in C++.
• Sending notifications between threads, to see how to use condition variables to

send notifications between producer and consumer threads.

Using thread synchronization
mechanisms
The thread support library from C++11 includes mutexes and condition variables
that enable thread-synchronization to shared resources. A mutex allows only one
thread of multiple processes to execute, while other threads that want to access a
shared resource are put to sleep. Mutexes can be expensive to use in some scenarios.
For this reason, the C++20 standard features several new simpler synchronization
mechanisms: latches, barriers, and semaphores. Although these do not provide new
use cases, they are simpler to use and can be more performant because they may
internally rely on lock-free mechanisms.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[475]

Getting ready
The new C++20 synchronization mechanisms are defined in new headers. You have
to include <latch> for std::latch, <barrier>, or std::barrier, and <semaphore> for
std::counting_semaphore and std::binary_semaphore.

How to do it...
Use the C++20 synchronization mechanisms as follows:

• Use std::latch when you need threads to wait until a counter, decreased
by other threads, reaches zero. The latch must be initialized with a non-zero
count and multiple threads can decrease it, while others wait to the count
to reach zero. When that happens, all waiting threads are awakened and
the latch can no longer be used. In the following example, four threads are
creating data (stored in a vector of integers) and the main thread waits for
the completion of them all by utilizing an std::latch, decremented by each
thread after completing its work:

int const jobs = 4;
std::latch work_done(jobs);
std::vector<int> data(jobs);
std::vector<std::jthread> threads;
for(int i = 1; i <= jobs; ++i)
{
 threads.push_back(std::jthread([&data, i, &work_done]{
 using namespace std::chrono_literals;
 std::this_thread::sleep_for(1s); // simulate work

 data[i] = create(i); // create data

 work_done.count_down(); // decrement counter
 }));
}
work_done.wait(); // wait for all jobs to finish
process(data); // process data from all jobs

At the time of writing this book, no compiler supports the C++20
thread synchronization mechanisms. Although based on the
standard specifications, the sample code in this recipe could
not be tested with any compiler, and we cannot guarantee their
correctness.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Threading and Concurrency

[476]

• Use std::barrier when you need to perform loop synchronization between
parallel tasks. You construct a barrier with a count and, optionally, a
completion function. Threads arrive at the barrier, decrease the internal
counter, and block. When the counter reaches zero, the completion function
is invoked, all blocked threads are awakened, and a new cycle begins. In
the following example, four threads are creating data that they store in a
vector of integers. When all the threads have completed a cycle, the data is
processed in the main thread, by a completion function. Each thread blocks
after completing a cycle until they are awakened through the use of an
std::barrier object, which also stores the completion function. This process
is repeated 10 times:

int const jobs = 4;
std::vector<int> data(jobs);
int cycle = 1;
std::stop_source st;

std::barrier<std::function<void()>>
 work_done(
 jobs, // counter
 [&data, &cycle, &st]() { // completion function
 process(data); // process data from all jobs
 cycle++;
 if (cycle == 10)
 st.request_stop(); // stop after ten cycles
 });

std::vector<std::jthread> threads;
for (int i = 1; i <= jobs; ++i)
{
 threads.push_back(std::jthread(
 [&cycle, &work_done](std::stop_token st, int const i)
 {
 while (!st.stop_requested())
 {
 // simulate work
 using namespace std::chrono_literals;
 std::this_thread::sleep_for(200ms);
 // create data
 data[i] = create(i, cycle);

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[477]

 // decrement counter
 work_done.arrive_and_wait(); }
 }));
}

for (auto& t : threads) t.join();

• Use std::counting_semaphore<N> or std::binary_semaphore when you
want to restrict a number of N threads (a single thread, in the case of
binary_semaphore) to access a shared resource, or when you want to pass
notifications between different threads. In the following example, four
threads are creating data that is added to the end of a vector of integers. To
avoid race conditions, a binary_semaphore object is used to restrict the access
of a single thread to the vector:

int const jobs = 4;
std::vector<int> data;

std::binary_semaphore bs;

for (int i = 1; i <= jobs; ++i)
{
 threads.push_back(std::jthread([&data, i, &bs] {
 for (int k = 1; k < 5; ++k)
 {
 // simulate work
 using namespace std::chrono_literals;
 std::this_thread::sleep_for(200ms);
 // create data
 int value = create(i, k);

 // acquire the semaphore
 bs.acquire();
 // write to the shared resource
 data.push_back(value);
 // release the semaphore
 bs.release(); }
 }));
}

process(data); // process data from all jobs

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Threading and Concurrency

[478]

How it works...
The std::latch class implements a counter that can be used to synchronize threads.
It is a race-free class that works as follows:

• The counter is initialized when the latch is created and can only be decreased.
• A thread may decrease the value of the latch and can do so multiple times.
• A thread may block by waiting until the latch counter reaches zero.
• When the counter reaches zero, the latch becomes permanently signaled and

all the threads that are blocked on the latch are awakened.

The std::latch class has the following methods:

Methods Descriptions
count_down() Decrements the internal counter by N (which is 1 by default)

without blocking the caller. This operation is performed
atomically. N must be a positive value not greater than the value
of the internal counter; otherwise, the behavior is undefined.

try_wait() Indicates whether the internal counter reaches zero, in which case
it returns true. There is a very low probability that, although the
counter has reached zero, the function may still return false.

wait() Blocks the calling thread until the internal counter reaches
zero. If the internal counter is already zero, the function returns
immediately without blocking.

arrive_and_wait() This function is equivalent to calling count_down(), followed
by wait(). It decrements the internal counter with N (which is 1
by default), and then blocks the calling thread until the internal
counter reaches zero.

In the first example in the previous section, we have an std::latch, called work_done,
initialized with the number of threads (or jobs) that perform work. Each thread
produces data that is then written in a shared resource, a vector of integers. Although
this is shared, there is no race condition because each thread writes to a different
place; therefore, there is no need for a synchronization mechanism. After completing
its work, each thread decrements the counter of the latch. The main thread waits
until the counter of the latch reaches zero, after which it processes the data from the
threads.

Because the internal counter of std::latch cannot be incremented or reset,
this synchronization mechanism can be used only once. A similar but reusable
synchronization mechanism is std::barrier. A barrier allows threads to block until
an operation is completed and is useful for managing repeated tasks performed by
multiple threads.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[479]

A barrier works as follows:

• A barrier contains a counter that is initialized during its creation and can be
decreased by threads arriving at the barrier. When the counter reaches zero,
it is reset to its initial value and the barrier can be reused.

• A barrier also contains a completion function that is called when the counter
reaches zero. If a default completion function is used, it is invoked as part
of the call to arrive_and_wait() or arrive_and_drop(). Otherwise, the
completion function is invoked on one of the threads that participates in the
completion phase.

• The process through which a barrier goes from start to reset is called the
completion phase. This starts with a so-called synchronization point and
ends with the completion step.

• The first N threads that arrive at the synchronization point after the
construction of the barrier are said to be the set of participating threads.
Only these threads are allowed to arrive at the barrier during each of the
following cycles.

• A thread that arrives at the synchronization point may decide to participate
in the completion phase by calling arrive_and_wait(). However, a thread
may remove itself from the participation set by calling arrive_and_drop(). In
this case, another thread must take its place in the participation set.

• When all the threads in the participation set have arrived at the
synchronization point, the completion phase is executed. There are three
steps that occur: first, the completion function is invoked. Second, all the
threads that are blocked are awakened. Third, and last, the barrier count is
reset and a new cycle begins.

The std::barrier class has the following methods:

Methods Descriptions
arrive_and_wait() Arrives at the barrier's synchronization point and blocks. The

calling thread must be in the participating set; otherwise, the
behavior is undefined. This function only returns after the
completion phase ends.

arrive_and_drop() Arrives at the barrier's synchronization point and removes the
thread from the participation set. It is an implementation detail
whether the function blocks or not until the end of the completion
phase. The calling thread must be in the participation set;
otherwise, the behavior is undefined.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Threading and Concurrency

[480]

We saw an example with std::barrier in the second snippet from the How to do it...
section. In this example, an std::barrier is created and initialized with a counter,
which represents the number of threads, and a completion function. This function
processes the data produced by all the threads, then increments a loop counter, and
requests threads to stop after 10 loops. This basically means that the barrier will
perform 10 cycles before the threads will finish their work. Each thread loops until
a stop is requested, and, in each iteration, they produce some data, written to the
shared vector of integers. At the end of the loop, each thread arrives at the barrier
synchronization point, decrements the counter, and waits for it to reach zero and the
completion function to execute. This is done with a call to the arrive_and_wait()
method of the std::barrier class.

The last synchronization mechanism available in the thread support library in C++20
is represented by semaphores. A semaphore contains an internal counter that can be
both decreased and increased by multiple threads. When the counter reaches zero,
further attempts to decrease it will block the thread, until another thread increases
the counter.

There are two semaphore classes: std::counting_semaphore<N> and std::binary_
semaphore. The latter is actually just an alias for std::counting_semaphore<1>.

A counting_semaphore allows N threads to access a shared resource, unlike a mutex,
which only allows one. binary_semaphore, is, in this matter, similar to the mutex,
because only one thread can access the shared resource. On the other hand, a mutex
is bound to a thread: the thread that locked the mutex must unlock it. However, this
is not the case for semaphores. A semaphore can be released by threads that did not
acquire it, and a thread that acquired a semaphore does not have to also release it.

The std::counting_semaphore class has the following methods:

Methods Descriptions
acquire() Decrements the internal counter by 1 if it is greater

than 0. Otherwise, it blocks until the counter becomes
greater than 0.

try_acquire() Tries to decrement the counter by 1 if it is greater
than 0. It returns true if it succeeds, or false
otherwise. This method does not block.

try_acquire_for() Tries to decrease the counter by 1 if it is greater than 0.
Otherwise, it blocks either until the counter becomes
greater than 0 or a specified timeout occurs. The
function returns true if it succeeded in decreasing
the counter.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 8

[481]

try_acquire_until() Tries to decrease the counter by 1 if it is greater
than 0. Otherwise, it blocks either until the counter
becomes greater than 0 or a specified time point has
been passed. The function returns true if it succeeded
in decreasing the counter.

release() Increments the internal counter by the specified value
(which is 1 by default). Any thread that was blocked
waiting for the counter to become greater than zero
is awakened.

All the increment and decrement operations performed on the counter by the
methods listed here are executed atomically.

The last example in the How to do it... section shows how a binary_semaphore can
be used. A number of threads (four, in this example) produce work in a loop and
write to a shared resource. Unlike the previous examples, they simply add to the
end of a vector of integers. Therefore, the access to this vector must be synchronized
between the threads, and this is where the binary semaphore is used. In each loop,
the thread function creates a new value (which may take some time). This value is
then appended to the end of the vector. However, the thread must call the acquire()
method of the semaphore to make sure it is the only thread that can continue
execution and access the shared resource. After the write operation completes,
the thread calls the release() method of the semaphore in order to increment the
internal counter and allow another thread to access the shared resource.

Semaphores can be used for multiple purposes: to block access to shared resources
(similar to mutexes), to signal or pass notifications between threads (similar to
condition variables), or to implement barriers, often with better performance than
similar mechanisms.

See also
• Working with threads, to learn about the std::thread class and the basic

operations for working with threads in C++.
• Synchronizing access to shared data with mutexes and locks, to see what

mechanisms are available for synchronizing thread access to shared data and
how they work.

• Sending notifications between threads, to see how to use condition variables to
send notifications between producer and consumer threads.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

[483]

9
Robustness and Performance
C++ is often the first choice when it comes to selecting an object-oriented
programming language with performance and flexibility as key goals. Modern C++
provides language and library features, such as rvalue references, move semantics,
and smart pointers.

When combined with good practices for exception handling, constant correctness,
type-safe conversions, resource allocation, and releasing, C++ enables developers
to write better, more robust, and performant code. This chapter's recipes address
all of these essential topics.

This chapter includes the following recipes:

• Using exceptions for error handling
• Using noexcept for functions that do not throw exceptions
• Ensuring constant correctness for a program
• Creating compile-time constant expressions
• Creating immediate functions
• Performing correct type casts
• Using unique_ptr to uniquely own a memory resource
• Using shared_ptr to share a memory resource
• Implementing move semantics
• Consistent comparison with the operator <=>

We will start this chapter with a couple of recipes that deal with exceptions.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Robustness and Performance

[484]

Using exceptions for error handling
Exceptions are responses to exceptional circumstances that can appear when a
program is running. They enable the transfer of the control flow to another part
of the program. Exceptions are a mechanism for simpler and more robust error
handling, as opposed to returning error codes, which could greatly complicate and
clutter the code. In this recipe, we will look at some key aspects related to throwing
and handling exceptions.

Getting ready
This recipe requires you to have basic knowledge of the mechanisms of throwing
exceptions (using the throw statement) and catching exceptions (using try...catch
blocks). This recipe is focused on good practices around exceptions and not on the
details of the exception mechanism in the C++ language.

How to do it...
Use the following practices to deal with exceptions:

• Throw exceptions by value:
void throwing_func()
{
 throw std::runtime_error("timed out");
}

void another_throwing_func()
{
 throw std::system_error(
 std::make_error_code(std::errc::timed_out));
}

• Catch exceptions by reference, or in most cases, by constant reference:
try
{
 throwing_func();
}
catch (std::exception const & e)
{
 std::cout << e.what() << '\n';
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[485]

• Order catch statements from the most derived class to the base class of the
hierarchy when catching multiple exceptions from a class hierarchy:

auto exprint = [](std::exception const & e)
{
 std::cout << e.what() << '\n';
};

try
{
 another_throwing_func();
}
catch (std::system_error const & e)
{
 exprint(e);
}
catch (std::runtime_error const & e)
{
 exprint(e);
}
catch (std::exception const & e)
{
 exprint(e);
}

• Use catch(...) to catch all exceptions, regardless of their type:
try
{
 throwing_func();
}
catch (std::exception const & e)
{
 std::cout << e.what() << '\n';
}
catch (...)
{
 std::cout << "unknown exception" << '\n';
}

• Use throw; to rethrow the current exception. This can be used to create a
single exception handling function for multiple exceptions.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Robustness and Performance

[486]

Throw the exception object (for example, throw e;) when you want to hide
the original location of the exception:

void handle_exception()
{
 try
 {
 throw; // throw current exception
 }
 catch (const std::logic_error & e)
 { /* ... */ }
 catch (const std::runtime_error & e)
 { /* ... */ }
 catch (const std::exception & e)
 { /* ... */ }
}

try
{
 throwing_func();
}
catch (...)
{
 handle_exception();
}

How it works...
Most functions have to indicate the success or failure of their execution. This can be
achieved in different ways. Here are several possibilities:

• Return an error code (with a special value for success) to indicate the specific
reason for failure:

int f1(int& result)
{
 if (...) return 1;
 // do something
 if (...) return 2;
 // do something more
 result = 42;
 return 0;
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[487]

enum class error_codes {success, error_1, error_2};

error_codes f2(int& result)
{
 if (...) return error_codes::error_1;
 // do something
 if (...) return error_codes::error_2;
 // do something more
 result = 42;
 return error_codes::success;
}

• A variation of this is to return a Boolean value to only indicate success or
failure:

bool g(int& result)
{
 if (...) return false;
 // do something
 if (...) return false;
 // do something more
 result = 42;
 return true;
}

• Another alternative is to return invalid objects, null pointers, or empty
std::optional<T> objects:

std::optional<int> h()
{
 if (...) return {};
 // do something
 if (...) return {};
 // do something more
 return 42;
}

In any case, the return value from the functions should be checked. This can lead to
complex, cluttered, and hard to read and maintain real-world code. Moreover, the
process of checking the return value of a function is always executed, regardless
of whether the function was successful or failed. On the other hand, exceptions are
thrown and handled only when a function fails, which should happen more rarely
than successful executions. This can actually lead to faster code than code that
returns and tests error codes.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Robustness and Performance

[488]

Class constructors are special functions that do not return any value. They are
supposed to construct an object, but in the case of failure, they will not be able
to indicate this with a return value. Exceptions should be a mechanism that
constructors use to indicate failure. Together with the resource acquisition
is initialization (RAII) idiom, this ensures the safe acquisition and release of
resources in all situations. On the other hand, exceptions are not allowed to leave
a destructor. When this happens, the program abnormally terminates with a call to
std::terminate(). This is the case for destructors called during stack unwinding,
due to the occurrence of another exception. When an exception occurs, the stack is
unwound from the point where the exception was thrown to the block where the
exception is handled. This process involves the destruction of all local objects in all
those stack frames.

If the destructor of an object that is being destroyed during this process throws an
exception, another stack unwinding process should begin, which conflicts with the
one already under way. Because of this, the program terminates abnormally.

It is possible to throw any type of exception. However, in most cases, you should
throw temporaries and catch exceptions by constant reference. The following are
some guidelines for exception throwing:

• Prefer throwing either standard exceptions or your own exceptions derived
from std::exception or another standard exception. The reason for this is
that the standard library provides exception classes that are intended to be
the first choice for representing exceptions. You should use the ones that
are available already and when these are not good enough, build your own
based on the standard ones. The main benefits of this are consistency and
helping users catch exceptions via the base std::exception class.

Exceptions and error codes are not mutually exclusive. Exceptions
should be used only for transferring the control flow in exceptional
situations, not for controlling the data flow in a program.

The rule of thumb for dealing with exceptions in constructors and
destructors is as follows:

1. Use exceptions to indicate the errors that occur in constructors.

2. Do not throw or let exceptions leave destructors.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[489]

• Avoid throwing exceptions of built-in types, such as integers. The reason
for this is that numbers carry little information to the user, who must know
what it represents, while an object can provide contextual information. For
instance, the statement throw 42; tells nothing to the user, but throw access_
denied_exception{}; carries much more implicit information from the class
name alone, and with the help of data members it carries anything useful or
necessary about the exceptional situation.

• When using a library or framework that provides its own exception
hierarchy, prefer throwing exceptions from this hierarchy or your own
exceptions derived from it, at least in the parts of the code that are tightly
related to it. The main reason for this is to keep the code that utilizes the
library APIs consistent.

There's more...
As mentioned in the preceding section, when you need to create your own exception
types, derive them from one of the standard exceptions that are available, unless you
are using a library or framework with its own exception hierarchy. The C++ standard
defines several categories of exceptions that need to be considered for this purpose:

• The std::logic_error represents an exception that indicates an error in the
program logic, such as an invalid argument, an index beyond the bounds
of a range, and so on. There are various standard derived classes, such as
std::invalid_argument, std::out_of_range, and std::length_error.

• The std::runtime_error represents an exception that indicates an error
beyond the scope of the program or that cannot be predicted due to various
factors, including external ones, such as overflows and underflows or
operating system errors. The C++ standard also provides several derived
classes from std::runtime_error, including std::overflow_error,
std::underflow_error, std::system_error, and std::format_error
in C++20.

• Exceptions prefixed with bad_, such as std::bad_alloc, std::bad_cast,
and std::bad_function_call, represent various errors in a program, such
as failure to allocate memory, failure to dynamically cast or make a function
call, and so on.

The base class for all these exceptions is std::exception. It has a non-throwing
virtual method called what() that returns a pointer to an array of characters
representing the description of the error.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Robustness and Performance

[490]

When you need to derive custom exceptions from a standard exception, use the
appropriate category, such as logical or runtime error. If none of these categories
is suitable, then you can derive directly from std::exception. The following is a list
of possible solutions you can use to derive from a standard exception:

• If you need to derive from std::exception, then override the virtual method
what() to provide a description of the error:

class simple_error : public std::exception
{
public:
 virtual const char* what() const noexcept override
 {
 return "simple exception";
 }
};

• If you derive from std::logic_error or std::runtime_error and you only
need to provide a static description that does not depend on runtime data,
then pass the description text to the base class constructor:

class another_logic_error : public std::logic_error
{
public:
 another_logic_error():
 std::logic_error("simple logic exception")
 {}
};

• If you derive from std::logic_error or std::runtime_error but the
description message depends on runtime data, provide a constructor with
parameters and use them to build the description message. You can either
pass the description message to the base class constructor or return it from
the overridden what() method:

class advanced_error : public std::runtime_error
{
 int error_code;
 std::string make_message(int const e)
 {
 std::stringstream ss;
 ss << "error with code " << e;

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[491]

 return ss.str();
 }
public:
 advanced_error(int const e) :
 std::runtime_error(make_message(e).c_str()),error_code(e)
 {
 }

 int error() const noexcept
 {
 return error_code;
 }
};

For a complete list of the standard exception classes, you can visit the https://
en.cppreference.com/w/cpp/error/exception page.

See also
• Handling exceptions from thread functions, in Chapter 8, Leveraging Threading

and Concurrency, to understand how to handle exceptions thrown in a worker
thread from the main thread or the thread where it was joined.

• Using noexcept for functions that do not throw exceptions, to see how to inform
the compiler that a function should not throw exceptions.

Using noexcept for functions that do not
throw exceptions
Exception specification is a language feature that can enable performance
improvements, but on the other hand, when done incorrectly, it can abnormally
terminate the program. The exception specification from C++03, which allowed you
to indicate what types of exceptions a function could throw, has been deprecated
and replaced with the new C++11 noexcept specification. This specification only
allows you to indicate that a function does not throw exceptions, but not the actual
exceptions types that it throws. This recipe provides information about the modern
exception specifications in C++, as well as guidelines on when to use them.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://en.cppreference.com/w/cpp/error/exception
https://en.cppreference.com/w/cpp/error/exception

Robustness and Performance

[492]

How to do it...
Use the following constructs to specify or query exception specifications:

• Use nothrow in a function declaration to indicate that the function is not
throwing any exception:

void func_no_throw() noexcept
{
}

• Use nothrow(expr) in a function declaration, such as template
metaprogramming, to indicate that the function may or may not throw
an exception based on a condition that evaluates to bool:

template <typename T>
T generic_func_1()
 noexcept(std::is_nothrow_constructible_v<T>)
{
 return T{};
}

• Use the noexcept operator at compile time to check whether an expression is
declared to not throw any exception:

template <typename T>
T generic_func_2() noexcept(noexcept(T{}))
{
 return T{};
}

template <typename F, typename A>
auto func(F&& f, A&& arg) noexcept
{
 static_assert(!noexcept(f(arg)), "F is throwing!");
 return f(arg);
}

std::cout << noexcept(func_no_throw) << '\n';

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[493]

How it works...
As of C++17, exception specification is part of the function type, but not part of
the function signature; it may appear as part of any function declarator. Because
exception specification is not part of the function signature, two function signatures
cannot differ only in the exception specification. Prior to C++17, exception
specification was not part of the function type and could only appear as part of
lambda declarators or top-level function declarators; they could not appear even
in typedef or type alias declarations. Further discussions on exception specification
refer solely to the C++17 standard.

There are several ways in which the process of throwing an exception can be
specified:

• If no exception specification is present, then the function could potentially
throw exceptions.

• noexcept(false) is equivalent to no exception specification.
• noexcept(true) and noexcept indicate that a function does not throw any

exception.
• throw() was equivalent to noexcept(true) but was deprecated until C++20,

when it was removed altogether.

Pointers to the functions that do not throw exceptions can be implicitly converted
to pointers to functions that may throw exceptions, but not vice versa. On the other
hand, if a virtual function has a non-throwing exception specification, this indicates
that all the declarations of all the overrides must preserve this specification unless
an overridden function is declared as deleted.

At compile time, it is possible to check whether a function is declared to be non-
throwing or not using the operator noexcept. This operator takes an expression and
returns true if the expression is declared as either non-throwing or false. It does not
evaluate the expression it checks.

Using exception specifications must be done with care because,
if an exception (either thrown directly or from another function
that is called) leaves a function marked as non-throwing, the
program is terminated immediately and abnormally with a call to
std::terminate().

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Robustness and Performance

[494]

The noexcept operator, along with the noexcept specifier, is particularly useful in
template metaprogramming to indicate whether a function may throw exceptions
for some types. It is also used with static_assert declarations to check whether an
expression breaks the non-throwing guarantee of a function, as seen in the examples
in the How to do it... section.

The following code provides more examples of how the noexcept operator works:

int double_it(int const i) noexcept
{
 return i + i;
}

int half_it(int const i)
{
 throw std::runtime_error("not implemented!");
}

struct foo
{
 foo() {}
};

std::cout << std::boolalpha
 << noexcept(func_no_throw()) << '\n' // true
 << noexcept(generic_func_1<int>()) << '\n' // true
 << noexcept(generic_func_1<std::string>()) << '\n'// true
 << noexcept(generic_func_2<int>()) << '\n' // true
 << noexcept(generic_func_2<std::string>()) << '\n'// true
 << noexcept(generic_func_2<foo>()) << '\n' // false
 << noexcept(double_it(42)) << '\n' // true
 << noexcept(half_it(42)) << '\n' // false
 << noexcept(func(double_it, 42)) << '\n' // true
 << noexcept(func(half_it, 42)) << '\n'; // true

It is important to note that the noexcept specifier does not provide compile-time
checking for exceptions. It only represents a way for users to inform the compiler
that a function is not expected to throw exceptions. The compiler can use this to
enable certain optimizations. An example is the std::vector, which moves elements
if their move constructor is noexcept and copies them otherwise.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[495]

There's more...
As mentioned earlier, a function declared with the noexcept specifier that exits due
to an exception causes the program to terminate abnormally. Therefore, the noexcept
specifier should be used with caution. Its presence can enable code optimizations,
which help increase performance while preserving the strong exception guarantee.
An example of this is library containers.

Many standard containers provide some of their operations with a strong exception
guarantee. An example is vector's push_back() method. This method could be
optimized by using the move constructor or move assignment operator instead of the
copy constructor or copy assignment operator of the vector's element type. However,
in order to preserve its strong exception guarantee, this can only be done if the move
constructor or assignment operator does not throw exceptions. If either does, then
the copy constructor or the assignment operator must be used instead.

The std::move_if_noexcept() utility function does this if the move constructor
of its type argument is marked with noexcept. The ability to indicate that move
constructors or move assignment operators do not throw exceptions is probably
the most important scenario where noexcept is used.

Consider the following rules for the exception specification:

• If a function could potentially throw an exception, then do not use any
exception specifier.

• Mark only those functions with noexcept that are guaranteed not to throw an
exception.

• Mark only those functions with noexcept(expression) that could potentially
throw exceptions based on a condition.

These rules are important because, as already noted previously, throwing an
exception from a noexcept function will immediately terminate the program with
a call to std::terminate().

The strong exception guarantee specifies that either an operation
is completed successfully, or that it is completed with an exception
that leaves the program in the same state it was before the
operation started. This ensures commit-or-rollback semantics.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Robustness and Performance

[496]

See also
• Using exceptions for error handling, to explore the best practices for using

exceptions in the C++ language.

Ensuring constant correctness for
a program
Although there is no formal definition, constant correctness means objects that
are not supposed to be modified (are immutable) remain unmodified indeed.
As a developer, you can enforce this by using the const keyword for declaring
parameters, variables, and member functions. In this recipe, we will explore the
benefits of constant correctness and how to achieve it.

How to do it...
To ensure constant correctness for a program, you should always declare the
following as constants:

• Parameters to functions that are not supposed to be modified within the
function:

struct session {};

session connect(std::string const & uri,
 int const timeout = 2000)
{
 /* do something */
 return session { /* ... */ };
}

• Class data members that do not change:
class user_settings
{
public:
 int const min_update_interval = 15;
 /* other members */
};

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[497]

• Class member functions that do not modify the object state, as seen from the
outside:

class user_settings
{
 bool show_online;
public:
 bool can_show_online() const {return show_online;}
 /* other members */
};

• Function locals whose value do not change throughout their lifetime:
user_settings get_user_settings()
{
 return user_settings {};
}

void update()
{
 user_settings const us = get_user_settings();
 if(us.can_show_online()) { /* do something */ }
 /* do more */
}

How it works...
Declaring objects and member functions as constant has several important benefits:

• You prevent both accidental and intentional changes of the object, which,
in some cases, can result in incorrect program behavior.

• You enable the compiler to perform better optimizations.
• You document the semantics of the code for other users.

Constant correctness is not a matter of personal style but a core
principle that should guide C++ development.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Robustness and Performance

[498]

Unfortunately, the importance of constant correctness has not been, and is still
not, stressed enough in books, C++ communities, and working environments.
But the rule of thumb is that everything that is not supposed to change should be
declared as constant. This should be done all the time and not only at later stages
of development, when you might need to clean up and refactor the code.

When you declare a parameter or variable as constant, you can either put the const
keyword before the type (const T c) or after the type (T const c). These two
are equivalent, but regardless of which of the two styles you use, reading of the
declaration must be done from the right-hand side. const T c is read as c is a T that
is constant and T const c as c is a constant T. This gets a little bit more complicated
with pointers. The following table presents various pointer declarations and their
meanings:

Expression Description
T* p p is a non-constant pointer to a non-constant T.
const T* p p is a non-constant pointer to a T that is constant.
T const * p p is a non-constant pointer to a constant T (same as the prior

point).
const T * const p p is a constant pointer to a T that is constant.
T const * const p p is a constant pointer to a constant T (same as the prior point).
T** p p is a non-constant pointer to a non-constant pointer

to a non-constant T.
const T** p p is a non-constant pointer to a non-constant pointer

to a constant T.
T const ** p Same as T const ** p.
const T* const * p p is a non-constant pointer to a constant pointer, which

is a constant T.
T const * const * p Same as T const * const * p.

When it comes to references, the situation is similar: const T & c and T const & c
are equivalent, which means c is a reference to a constant T. However, T const & const
c, which would mean that c is a constant reference to a constant T does not make sense
because references—aliases of a variable—are implicitly constant in the sense that
they cannot be modified to represent an alias to another variable.

Placing the const keyword after the type is more natural because
it is consistent with the reading direction, from right to left. For this
reason, all the examples in this book use this style.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[499]

A non-constant pointer to a non-constant object, that is, T*, can be implicitly
converted to a non-constant pointer to a constant object, T const *. However, T**
cannot be implicitly converted to T const ** (which is the same with const T**).
This is because this could lead to constant objects being modified through a pointer
to a non-constant object, as shown in the following example:

int const c = 42;
int* x;
int const ** p = &x; // this is an actual error
*p = &c;
*x = 0; // this modifies c

If an object is constant, only the constant functions of its class can be invoked.
However, declaring a member function as constant does not mean that the function
can only be called on constant objects; it could also mean that the function does not
modify the state of the object, as seen from the outside. This is a key aspect, but it is
usually misunderstood. A class has an internal state that it can expose to its clients
through its public interface.

However, not all the internal states might be exposed, and what is visible from
the public interface might not have a direct representation in the internal state. (If
you model order lines and have the item quantity and item selling price fields in
the internal representation, then you might have a public method that exposes the
order line amount by multiplying the quantity by the price.) Therefore, the state of
an object, as visible from its public interface, is a logical state. Defining a method
as constant is a statement that ensures the function does not alter the logical state.
However, the compiler prevents you from modifying data members using such
methods. To avoid this problem, data members that are supposed to be modified
from constant methods should be declared mutable.

In the following example, computation is a class with the compute() method, which
performs a long-running computation operation. Because it does not affect the logical
state of the object, this function is declared constant. However, to avoid computing
the result of the same input again, the computed values are stored in a cache. To be
able to modify the cache from the constant function, it is declared mutable:

class computation
{
 double compute_value(double const input) const
 {
 /* long running operation */
 return input;
 }

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Robustness and Performance

[500]

 mutable std::map<double, double> cache;
public:
 double compute(double const input) const
 {
 auto it = cache.find(input);
 if(it != cache.end()) return it->second;

 auto result = compute_value(input);
 cache[input] = result;

 return result;
 }
};

A similar situation is represented by the following class, which implements a
thread-safe container. Access to shared internal data is protected with mutex. The
class provides methods such as adding and removing values, and also methods
such as contains(), which indicate whether an item exists in the container. Because
this member function is not intended to modify the logical state of the object, it is
declared constant. However, access to the shared internal state must be protected
with the mutex. In order to lock and unlock the mutex, both mutable operations
(that modify the state of the object) and the mutex must be declared mutable:

template <typename T>
class container
{
 std::vector<T> data;
 mutable std::mutex mt;
public:
 void add(T const & value)
 {
 std::lock_guard<std::mutex> lock(mt);
 data.push_back(value);
 }

 bool contains(T const & value) const
 {
 std::lock_guard<std::mutex> lock(mt);
 return std::find(std::begin(data), std::end(data), value)
 != std::end(data);
 }
};

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[501]

The mutable specifier allows us to modify the class member on which it was used,
even if the containing object is declared const. This is the case of the mt member of
the std::mutex type, which is modified even within the contains() method, which
is declared const.

Sometimes, a method or an operator is overloaded to have both constant and non-
constant versions. This is often the case with the subscript operator or methods that
provide direct access to the internal state. The reason for this is that the method is
supposed to be available for both constant and non-constant objects. The behavior
should be different, though: for non-constant objects, the method should allow the
client to modify the data it provides access to, but for constant objects, it should not.
Therefore, the non-constant subscript operator returns a reference to a non-constant
object, and the constant subscript operator returns a reference to a constant object:

class contact {};

class addressbook
{
 std::vector<contact> contacts;
public:
 contact& operator[](size_t const index);
 contact const & operator[](size_t const index) const;
};

There's more...
The const qualifier of an object can be removed with a const_cast conversion, but
this should only be used when you know that the object was not declared constant.
You can read more about this in the Performing correct type casts recipe.

See also
• Creating compile-time constant expressions, to learn about the constexpr

specifier and how to define variables and functions that can be evaluated
at compile time.

It should be noted that, if a member function is constant, even if an
object is constant, the data that's returned by this member function
may not be constant.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Robustness and Performance

[502]

• Creating immediate functions, to learn about the C++20 consteval specifier,
which is used to define functions that are guaranteed to be evaluated at
compile time.

• Performing correct type casts, to learn about the best practices for performing
correct casts in the C++ language.

Creating compile-time constant
expressions
The possibility to evaluate expressions at compile time improves runtime
execution because there is less code to run and the compiler can perform additional
optimizations. Compile-time constants can be not only literals (such as a number
or string), but also the result of a function's execution. If all the input values of a
function (regardless of whether they are arguments, locals, or globals) are known at
compile time, the compiler can execute the function and have the result available at
compile time. This is what generalized the constant expressions that were introduced
in C++11, which were relaxed in C++14 and further more in C++20. The keyword
constexpr (short for constant expression) can be used to declare compile-time constant
objects and functions. We have seen this in several examples in the previous
chapters. Now, it's time to learn how it actually works.

Getting ready
The way generalized constant expressions work has been relaxed in C++14 and
C++20, but this introduced some breaking changes to C++11. For instance, in C++11,
a constexpr function was implicitly const, but this is no longer the case in C++14. In
this recipe, we will discuss generalized constant expressions, as defined in C++20.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[503]

How to do it...
Use the constexpr keyword when you want to:

• Define non-member functions that can be evaluated at compile time:
constexpr unsigned int factorial(unsigned int const n)
{
 return n > 1 ? n * factorial(n-1) : 1;
}

• Define constructors that can be executed at compile time to initialize
constexpr objects and member functions to be invoked during this period:

class point3d
{
 double const x_;
 double const y_;
 double const z_;
public:
 constexpr point3d(double const x = 0,
 double const y = 0,
 double const z = 0)
 :x_{x}, y_{y}, z_{z}
 {}

 constexpr double get_x() const {return x_;}
 constexpr double get_y() const {return y_;}
 constexpr double get_z() const {return z_;}
};

• Define variables that can have their values evaluated at compile time:
constexpr unsigned int size = factorial(6);
char buffer[size] {0};
constexpr point3d p {0, 1, 2};
constexpr auto x = p.get_x();

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Robustness and Performance

[504]

How it works...
The const keyword is used for declaring variables as constant at runtime; this means
that, once initialized, they cannot be changed. However, evaluating the constant
expression may still imply runtime computation. The constexpr keyword is used
for declaring variables that are constant at compile time or functions that can be
executed at compile time. constexpr functions and objects can replace macros and
hardcoded literals without any performance penalties.

There are some restrictions in regard to where constexpr can be used. These
restrictions have evolved over time, with changes in C++14 and C++20. To keep the
list in a reasonable form, only the requirements that need to be satisfied in C++20 are
shown here:

• A variable that is constexpr must satisfy the following requirements:
• Its type is a literal type.
• It is initialized upon declaration.
• The expression used for initializing the variable is a constant

expression.
• It must have constant destruction. This means that it must not be of

a class type or an array of a class type; otherwise, the class type must
have a constexpr destructor.

• A function that is constexpr must satisfy the following requirements:
• It is not a coroutine.
• The return type and the type of all its parameters are all literal types.

Declaring a function as constexpr does not mean that it is always
evaluated at compile time. It only enables the use of the function
in expressions that are evaluated during compile time. This only
happens if all the input values of the function can be evaluated
at compile time. However, the function may also be invoked at
runtime. The following code shows two invocations of the same
function, first at compile time, and then at runtime:

constexpr unsigned int size = factorial(6);
// compile time evaluation

int n;
std::cin >> n;
auto result = factorial(n);
// runtime evaluation

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[505]

• There is at least one set of arguments for which the invocation of the
function would produce a constant expression.

• The function body must not contain goto statements, labels (other
than case and default in a switch), and local variables that are either
of non-literal types, or of static or thread storage duration.

• A constructor that is constexpr must satisfy the following requirements,
in addition to the preceding ones required for functions:

• There is no virtual base class for the class.
• All the constructors that initialize non-static data members, including

base classes, must also be constexpr.

• A destructor that is constexpr, available only since C++20, must satisfy
the following requirements, in addition to the preceding ones required for
functions:

• There is no virtual base class for the class.
• All the destructors that destroy non-static data members, including

base classes, must also be constexpr.

A function that is constexpr is not implicitly const (as of C++14), so you need to
explicitly use the const specifier if the function does not alter the logical state of
the object. However, a function that is constexpr is implicitly inline. On the other
hand, an object that is declared constexpr is implicitly const. The following two
declarations are equivalent:

constexpr const unsigned int size = factorial(6);
constexpr unsigned int size = factorial(6);

There are situations when you may need to use both constexpr and const in a
declaration, as they would refer to different parts of the declaration. In the following
example, p is a constexpr pointer to a constant integer:

static constexpr int c = 42;
constexpr int const * p = &c;

For a complete list of requirements in different versions of the
standard, you should read the online documentation available at
https://en.cppreference.com/w/cpp/language/constexpr.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://en.cppreference.com/w/cpp/language/constexpr

Robustness and Performance

[506]

Reference variables can also be constexpr if, and only if, they alias an object with
static storage duration or a function. The following snippet provides an example:

static constexpr int const & r = c;

In this example, r is a constexpr reference that defines an alias for the compile-time
constant variable c, defined in the previous snippet.

There's more…
In C++20, a new specifier was added to the language. This specifier is called
constinit and is used for ensuring that variables with static or thread storage
duration have static initialization. In C++, initialization of variables can be either
static or dynamic. Static initialization can be either zero initialization (when the
initial value of an object is set to zero) or constant initialization (when the initial
value is set to a compile-time expression). The following snippet shows examples
of zero and constant initialization:

struct foo
{
 int a;
 int b;
};

struct bar
{
 int value;
 int* ptr;
 constexpr bar() :value{ 0 }, ptr{ nullptr }{}
};

std::string text {}; // zero-initialized to unspecified value
double arr[10]; // zero-initialized to ten 0.0
int* ptr; // zero-initialized to nullptr
foo f = foo(); // zero-initialized to a=0, b=0

foo const fc{ 1, 2 }; // const-initialized at runtime
constexpr bar b; // const-initialized at compile-time

A variable that has static storage could have either static or dynamic initialization.
In the latter case, hard to find bugs may appear. Imagine two static objects that are
initialized in different translation units.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[507]

When the initialization of one of the two objects depends on the other object, then the
order they are initialized in is important. This is because the object that is depending
on the object must be initialized first. However, the order of the initialization of the
translation units is not deterministic, so there is no guarantee on the order of these
objects' initialization. However, variables with static storage duration that have static
initialization are initialized at compile time. This implies that these objects can be
safely used when performing dynamic initialization of translation units.

This is what the new specifier, constinit, is intended for. It ensures that a variable
with static or thread-local storage has static initialization, and, therefore, its
initialization is performed at compile time:

int f() { return 42; }
constexpr int g(bool const c) { return c ? 0 : f(); }

constinit int c = g(true); // OK
constinit int d = g(false); /* error: variable does not have
 a constant initializer */

It can also be used in a non-initializing declaration to indicate that a variable with
thread storage duration is already initialized, as shown in the following example:

extern thread_local constinit int data;
int get_data() { return data; }

We will learn about consteval in the next recipe, Creating immediate functions.

See also
• Creating immediate functions, to learn about the C++20 consteval specifier,

which is used to define functions that are guaranteed to be evaluated at
compile time.

• Ensuring constant correctness for a program, to explore the benefits of constant
correctness and how to achieve it.

The constexpr, constinit, and consteval specifiers cannot be
used in the same declaration.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Robustness and Performance

[508]

Creating immediate functions
Constexpr functions enable the evaluation of functions at compile time, provided
that all their inputs, if any, are also available at compile time. However, this is not
a guarantee and constexpr functions may also execute at runtime, as we have seen
in the previous recipe, Creating compile-time constant expressions. In C++20, a new
category of functions has been introduced: immediate functions. These are functions
that are guaranteed to always be evaluated at compile time; otherwise, they produce
errors. Immediate functions are useful as replacements for macros and may be
important in the possible future development of the language with reflection and
meta-classes.

How to do it…
Use the consteval keyword when you want to:

• Define non-member functions or function templates that must be evaluated
at compile time:

consteval unsigned int factorial(unsigned int const n)
{
 return n > 1 ? n * factorial(n-1) : 1;
}

• Define constructors that must be executed at compile time to initialize
constexpr objects and member functions to be invoked only at compile time:

class point3d
{
 double x_;
 double y_;
 double z_;
public:
 consteval point3d(double const x = 0,
 double const y = 0,
 double const z = 0)
 :x_{x}, y_{y}, z_{z}
 {}

 consteval double get_x() const {return x_;}
 consteval double get_y() const {return y_;}
 consteval double get_z() const {return z_;}
};

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[509]

How it works…
The consteval specifier was introduced in C++20. It can only be applied to functions
and function templates and defines them as immediate functions. This means that
any function invocation must be evaluated at compile time and therefore produce
a compile-time constant expression. If the function cannot be evaluated at compile
time, the program is ill-formed and the compiler issues an error.

The following rules apply to immediate functions:

• Destructors, allocation, and deallocation functions cannot be immediate
functions.

• If any declaration of a function contains the consteval specifier, then all the
declarations of that function must also include it.

• The consteval specifier cannot be used together with constexpr or
constinit.

• An immediate function is an inline constexpr function. Therefore, immediate
functions and function templates must satisfy the requirements applicable
to constexpr functions.

Here is how we can use the factorial() function and the point3d class defined in
the previous section:

constexpr unsigned int f = factorial(6);
std::cout << f << '\n';

constexpr point3d p {0, 1, 2};
std::cout << p.get_x() << ' ' << p.get_y() << ' ' << p.get_z() << '\n';

However, the following sample produces compiler errors because the immediate
function factorial() and the constructor of point3d cannot be evaluated at compile
time:

unsigned int n;
std::cin >> n;
const unsigned int f2 = factorial(n); // error

double x = 0, y = 1, z = 2;
constexpr point3d p2 {x, y, z}; // error

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Robustness and Performance

[510]

It is not possible to take the address on an immediate function unless it is also in
a constant expression:

using pfact = unsigned int(unsigned int);
pfact* pf = factorial;
constexpr unsigned int f3 = pf(42); // error

consteval auto addr_factorial()
{
 return &factorial;
}

consteval unsigned int invoke_factorial(unsigned int const n)
{
 return addr_factorial()(n);
}

constexpr auto ptr = addr_factorial(); // ERROR: cannot take the pointer
 // of an immediate function
constexpr unsigned int f2 = invoke_factorial(5); // OK

Because immediate functions are not visible at runtime, their symbols are not emitted
for them and debuggers will not be able to show them.

See also
• Ensuring constant correctness for a program, to explore the benefits of constant

correctness and how to achieve it.
• Creating compile-time constant expressions, to learn about the constexpr

specifier and how to define variables and functions that can be evaluated
at compile time.

Performing correct type casts
It is often the case that data has to be converted from one type into another type.
Some conversions are necessary at compile time (such as double to int); others are
necessary at runtime (such as upcasting and downcasting pointers to the classes in
a hierarchy). The language supports compatibility with the C casting style in either
the (type)expression or type(expression) form. However, this type of casting
breaks the type safety of C++.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[511]

Therefore, the language also provides several conversions: static_cast, dynamic_
cast, const_cast, and reinterpret_cast. They are used to better indicate intent
and write safer code. In this recipe, we'll look at how these casts can be used.

How to do it...
Use the following casts to perform type conversions:

• Use static_cast to perform type casting of non-polymorphic types,
including casting of integers to enumerations, from floating point to integral
values, or from a pointer type to another pointer type, such as from a base
class to a derived class (downcasting) or from a derived class to a base class
(upcasting), but without any runtime checks:

enum options {one = 1, two, three};

int value = 1;
options op = static_cast<options>(value);

int x = 42, y = 13;
double d = static_cast<double>(x) / y;

int n = static_cast<int>(d);

• Use dynamic_cast to perform type casting of pointers or references of
polymorphic types from a base class to a derived class or the other way
around. These checks are performed at runtime and may require that run-
time type information (RTTI) is enabled:

struct base
{
 virtual void run() {}
 virtual ~base() {}
};

struct derived : public base
{
};

derived d;
base b;

base* pb = dynamic_cast<base*>(&d); // OK
derived* pd = dynamic_cast<derived*>(&b); // fail

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Robustness and Performance

[512]

try
{
 base& rb = dynamic_cast<base&>(d); // OK
 derived& rd = dynamic_cast<derived&>(b); // fail
}
catch (std::bad_cast const & e)
{
 std::cout << e.what() << '\n';
}

• Use const_cast to perform conversion between types with different const
and volatile specifiers, such as removing const from an object that was not
declared as const:

void old_api(char* str, unsigned int size)
{
 // do something without changing the string
}

std::string str{"sample"};
old_api(const_cast<char*>(str.c_str()),
 static_cast<unsigned int>(str.size()));

• Use reinterpret_cast to perform a bit reinterpretation, such as conversion
between integers and pointer types, from pointer types to integer, or from
a pointer type to any other pointer type, without involving any runtime
checks:

class widget
{
public:
 typedef size_t data_type;

 void set_data(data_type d) { data = d; }
 data_type get_data() const { return data; }
private:
 data_type data;
};

widget w;
user_data* ud = new user_data();
// write
w.set_data(reinterpret_cast<widget::data_type>(ud));
// read
user_data* ud2 = reinterpret_cast<user_data*>(w.get_data());

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[513]

How it works...
The explicit type conversion, sometimes referred to as C-style casting or static casting,
is a legacy of the compatibility of C++ with the C language and enables you to
perform various conversions including the following:

• Between arithmetical types
• Between pointer types
• Between integral and pointer types
• Between const or volatile qualified and unqualified types

This type of casting does not work well with polymorphic types or in templates.
Because of this, C++ provides the four casts we saw in the examples earlier. Using
these casts leads to several important benefits:

• They express user intent better, both to the compiler and others that read the
code.

• They enable safer conversion between various types (except for reinterpret_
cast).

• They can be easily searched in the source code.

static_cast is not a direct equivalent of explicit type conversion, or static casting,
even though the name might suggest that. This cast is performed at compile time
and can be used to perform implicit conversions, the reverse of implicit conversions,
and conversion from pointers to types from a hierarchy of classes. It cannot be used
to trigger a conversion between unrelated pointer types, though. For this reason, in
the following example, converting from int* to double* using static_cast produces
a compiler error:

int* pi = new int{ 42 };
double* pd = static_cast<double*>(pi); // compiler error

However, converting from base* to derived* (where base and derived are the classes
shown in the How to do it... section) does not produce a compiler error but a runtime
error when trying to use the newly obtained pointer:

base b;
derived* pd = static_cast<derived*>(&b); // compilers OK, runtime error
base* pb1 = static_cast<base*>(pd); // OK

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Robustness and Performance

[514]

On the other hand, static_cast cannot be used to remove const and volatile
qualifiers. The following snippet exemplifies this:

int const c = 42;
int* pc = static_cast<int*>(&c); // compiler error

Safely typecasting expressions up, down, or sideways along an inheritance hierarchy
can be performed with dynamic_cast. This cast is performed at runtime and requires
that RTTI is enabled. Because of this, it incurs a runtime overhead. Dynamic casting
can only be used for pointers and references. When dynamic_cast is used to convert
an expression into a pointer type and the operation fails, the result is a null pointer.
When it is used to convert an expression into a reference type and the operation
fails, an std::bad_cast exception is thrown. Therefore, always put a dynamic_cast
conversion to a reference type within a try...catch block.

Though dynamic casting is performed at runtime, if you attempt to convert it
between non-polymorphic types, you'll get a compiler error:

struct struct1 {};
struct struct2 {};

struct1 s1;
struct2* ps2 = dynamic_cast<struct2*>(&s1); // compiler error

reinterpret_cast is more like a compiler directive. It does not translate into any
CPU instructions; it only instructs the compiler to interpret the binary representation
of an expression as it was of another, specified type. This is a type-unsafe conversion
and should be used with care. It can be used to convert expressions between integral
types and pointers, pointer types, and function pointer types. Because no checks are
done, reinterpret_cast can be successfully used to convert expressions between
unrelated types, such as from int* to double*, which produces undefined behavior:

int* pi = new int{ 42 };
double* pd = reinterpret_cast<double*>(pi);

RTTI is a mechanism that exposes information about object data
types at runtime. This is available only for polymorphic types
(types that have at least one virtual method, including a virtual
destructor, which all base classes should have). RTTI is usually
an optional compiler feature (or might not be supported at all),
which means using this functionality may require using a compiler
switch.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[515]

A typical use of reinterpret_cast is to convert expressions between types in code
that uses operating system or vendor-specific APIs. Many APIs store user data in
the form of a pointer or an integral type. Therefore, if you need to pass the address
of a user-defined type to such APIs, you need to convert values of unrelated
pointer types or a pointer type value into an integral type value. A similar example
was provided in the previous section, where widget was a class that stored user-
defined data in a data member and provided methods for accessing it: set_data()
and get_data(). If you need to store a pointer to an object in widget, then use
reinterpret_cast, as shown in this example.

const_cast is similar to reinterpret_cast in the sense that it is a compiler directive
and does not translate into CPU instructions. It is used to cast away const or
volatile qualifiers, an operation that none of the other three conversions discussed
here can do.

In this example, the variable p points to an object (the variable a) that was declared
constant. By removing the const qualifier, the attempt to modify the pointed object
introduces undefined behavior.

There's more...
When using explicit type conversion in the form (type)expression, be aware that
it will select the first choice from the following list, which satisfies specific casts
requirements:

1. const_cast<type>(expression)

2. static_cast<type>(expression)

3. static_cast<type>(expression) + const_cast<type>(expression)

4. reinterpret_cast<type>(expression)

5. reinterpret_cast<type>(expression) + const_cast<type>(expression)

const_cast should only be used to remove const or volatile
qualifiers when the object is not declared const or volatile.
Anything else incurs undefined behavior, as shown in the
following example:

int const a = 42;
int const * p = &a;
int* q = const_cast<int*>(p);
*q = 0; // undefined behavior

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Robustness and Performance

[516]

Moreover, unlike the specific C++ casts, static cast can be used to convert between
incomplete class types. If both type and expression are pointers to incomplete types,
then it is not specified whether static_cast or reinterpret_cast is selected.

See also
• Ensuring constant correctness for a program, to explore the benefits of constant

correctness and how to achieve it.

Using unique_ptr to uniquely own
a memory resource
Manual handling of heap memory allocation and releasing it is one of the most
controversial features of C++. All allocations must be properly paired with a
corresponding delete operation in the correct scope. If the memory allocation is done
in a function and needs to be released before the function returns, for instance, then
this has to happen on all the return paths, including the abnormal situation where
a function returns because of an exception. C++11 features, such as rvalues and
move semantics, have enabled the development of smart pointers; these pointers
can manage a memory resource and automatically release it when the smart pointer
is destroyed. In this recipe, we will look at std::unique_ptr, a smart pointer that
owns and manages another object or an array of objects allocated on the heap, and
performs the disposal operation when the smart pointer goes out of scope.

Getting ready
In the following examples, we will use the ensuing class:

class foo
{
 int a;
 double b;
 std::string c;
public:
 foo(int const a = 0, double const b = 0, std::string const & c = "")
 :a(a), b(b), c(c)
 {}

 void print() const
 {
 std::cout << '(' << a << ',' << b << ',' << std::quoted(c) << ')'

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[517]

 << '\n';
 }
};

For this recipe, you need to be familiar with move semantics and the std::move()
conversion function. The unique_ptr class is available in the std namespace in the
<memory> header.

How to do it...
The following is a list of typical operations you need to be aware of when working
with std::unique_ptr:

• Use the available overloaded constructors to create an std::unique_ptr
that manages objects or an array of objects through a pointer. The default
constructor creates a pointer that does not manage any object:

std::unique_ptr<int> pnull;
std::unique_ptr<int> pi(new int(42));
std::unique_ptr<int[]> pa(new int[3]{ 1,2,3 });
std::unique_ptr<foo> pf(new foo(42, 42.0, "42"));

• Alternatively, use the std::make_unique() function template, available in
C++14, to create std::unique_ptr objects:

std::unique_ptr<int> pi = std::make_unique<int>(42);
std::unique_ptr<int[]> pa = std::make_unique<int[]>(3);
std::unique_ptr<foo> pf = std::make_unique<foo>(42, 42.0, "42");

• Use the std::make_unique_for_overwrite() function template, available
in C++20, to create an std::unique_ptr to objects or an array of objects
that are default initialized. These objects should later be overwritten with
a determined value:

std::unique_ptr<int> pi = std::make_unique_for_
overwrite<int>();
std::unique_ptr<foo[]> pa = std::make_unique_for_
overwrite<foo[]>();

• Use the overloaded constructor, which takes a custom deleter if the default
delete operator is not appropriate for destroying the managed object or
array:

struct foo_deleter
{
 void operator()(foo* pf) const

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Robustness and Performance

[518]

 {
 std::cout << "deleting foo..." << '\n';
 delete pf;
 }
};

std::unique_ptr<foo, foo_deleter> pf(
 new foo(42, 42.0, "42"),
 foo_deleter());

• Use std::move() to transfer the ownership of an object from one
std::unique_ptr to another:

auto pi = std::make_unique<int>(42);
auto qi = std::move(pi);
assert(pi.get() == nullptr);
assert(qi.get() != nullptr);

• To access the raw pointer to the managed object, use get() if you want
to retain ownership of the object or release() if you want to release the
ownership as well:

void func(int* ptr)
{
 if (ptr != nullptr)
 std::cout << *ptr << '\n';
 else
 std::cout << "null" << '\n';
}

std::unique_ptr<int> pi;
func(pi.get()); // prints null

pi = std::make_unique<int>(42);
func(pi.get()); // prints 42

• Dereference the pointer to the managed object using operator* and
operator->:

auto pi = std::make_unique<int>(42);
*pi = 21;

auto pf = std::make_unique<foo>();
pf->print();

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[519]

• If an std::unique_ptr manages an array of objects, operator[] can be used to
access individual elements of the array:

std::unique_ptr<int[]> pa = std::make_unique<int[]>(3);
for (int i = 0; i < 3; ++i)
 pa[i] = i + 1;

• To check whether std::unique_ptr can manage an object or not, use the
explicit operator bool or check whether get() != nullptr (which is what
the operator bool does):

std::unique_ptr<int> pi(new int(42));
if (pi) std::cout << "not null" << '\n';

• std::unique_ptr objects can be stored in a container. Objects returned by
make_unique() can be stored directly. An lvalue object could be statically
converted to an rvalue object with std::move() if you want to give up
the ownership of the managed object to the std::unique_ptr object in the
container:

std::vector<std::unique_ptr<foo>> data;
for (int i = 0; i < 5; i++)
 data.push_back(
std::make_unique<foo>(i, i, std::to_string(i)));

auto pf = std::make_unique<foo>(42, 42.0, "42");
data.push_back(std::move(pf));

How it works...
std::unique_ptr is a smart pointer that manages an object or an array allocated on
the heap through a raw pointer. It performs an appropriate disposal when the smart
pointer goes out of scope, is assigned a new pointer with operator=, or it gives up
ownership using the release() method. By default, the operator delete is used to
dispose of the managed object. However, the user may supply a custom deleter
when constructing the smart pointer. This deleter must be a function object, either
an lvalue reference to a function object or a function, and this callable object must
take a single argument of the type unique_ptr<T, Deleter>::pointer.

C++14 has added the std::make_unique() utility function template to create an
std::unique_ptr. It avoids memory leaks in some particular contexts, but it has some
limitations:

• It can only be used to allocate arrays; you cannot use it to initialize them,
which is possible with an std::unique_ptr constructor.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Robustness and Performance

[520]

The following two pieces of sample code are equivalent:
// allocate and initialize an array
std::unique_ptr<int[]> pa(new int[3]{ 1,2,3 });

// allocate and then initialize an array
std::unique_ptr<int[]> pa = std::make_unique<int[]>(3);
for (int i = 0; i < 3; ++i)
 pa[i] = i + 1;

• It cannot be used to create an std::unique_ptr object with a user-defined
deleter.

As we just mentioned, the great advantage of make_unique() is that it helps us avoid
memory leaks in some contexts where exceptions are being thrown. make_unique()
itself can throw std::bad_alloc if the allocation fails or any exception is thrown by
the constructor of the object it creates. Let's consider the following example:

void some_function(std::unique_ptr<foo> p)
{ /* do something */ }

some_function(std::unique_ptr<foo>(new foo()));
some_function(std::make_unique<foo>());

Regardless of what happens with the allocation and construction of foo, there will be
no memory leaks, irrespective of whether you use make_unique() or the constructor
of std::unique_ptr. However, this situation changes in a slightly different version
of the code:

void some_other_function(std::unique_ptr<foo> p, int const v)
{
}

int function_that_throws()
{
 throw std::runtime_error("not implemented");
}

// possible memory leak
some_other_function(std::unique_ptr<foo>(new foo),
 function_that_throws());

// no possible memory leak
some_other_function(std::make_unique<foo>(),
 function_that_throws());

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[521]

In this example, some_other_function() has an extra parameter: an integer value.
The integer argument that's passed to this function is the returned value of another
function. If this function call throws an exception, using the constructor of
std::unique_ptr to create the smart pointer can produce a memory leak. The reason
for this is that, upon calling some_other_function(), the compiler might first call
foo, then function_that_throws(), and then the constructor of std::unique_ptr.
If function_that_throws() throws an error, then the allocated foo will leak. If the
calling order is function_that_throws() and then new foo() and the constructor
of unique_ptr, a memory leak will not happen; this is because the stack starts
unwinding before the foo object is allocated. However, by using the make_unique()
function, this situation is avoided. This is because the only calls made are to
make_unique() and function_that_throws(). If function_that_throws() is called
first, then the foo object will not be allocated at all. If make_unique() is called first, the
foo object is constructed and its ownership is passed to std::unique_ptr. If a later
call to function_that_throws() does throw, then std::unique_ptr will be destroyed
when the stack is unwound and the foo object will be destroyed from the smart
pointer's destructor.

In C++20, a new function, called std::make_unique_for_overwrite(), has been
added. This is similar to make_unique() except that it default initializes the object or
the array of objects. This function can be used in generic code where it's unknown
whether the type template parameter is trivially copyable or not. This function
expresses the intent to create a pointer to an object that may not be initialized so that
it should be overwritten later.

Constant std::unique_ptr objects cannot transfer the ownership of a managed
object or array to another std::unique_ptr object. On the other hand, access to the
raw pointer to the managed object can be obtained with either get() or release().
The first method only returns the underlying pointer, but the latter also releases
the ownership of the managed object, hence the name. After a call to release(),
the std::unique_ptr object will be empty and a call to get() will return nullptr.

An std::unique_ptr that manages the object of a Derived class can be implicitly
converted to an std::unique_ptr that manages an object of the class Base if Derived is
derived from Base. This implicit conversion is safe only if Base has a virtual destructor
(as all base classes should have); otherwise, undefined behavior is employed:

struct Base
{
 virtual ~Base()
 {
 std::cout << "~Base()" << '\n';
 }
};

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Robustness and Performance

[522]

struct Derived : public Base
{
 virtual ~Derived()
 {
 std::cout << "~Derived()" << '\n';
 }
};

std::unique_ptr<Derived> pd = std::make_unique<Derived>();
std::unique_ptr<Base> pb = std::move(pd);

std::unique_ptr can be stored in containers, such as std::vector. Because only
one std::unique_ptr object can own the managed object at any point, the smart
pointer cannot be copied to the container; it has to be moved. This is possible with
std::move(), which performs a static_cast to an rvalue reference type. This allows
the ownership of the managed object to be transferred to the std::unique_ptr object
that is created in the container.

See also
• Using shared_ptr to share a memory resource, to learn about the std::shared_ptr

class, which represents a smart pointer that shares ownership of an object or
array of objects allocated on the heap.

Using shared_ptr to share a memory
resource
Managing dynamically allocated objects or arrays with std::unique_ptr is
not possible when the object or array has to be shared. This is because an
std::unique_ptr retains its sole ownership. The C++ standard provides another
smart pointer, called std::shared_ptr; it is similar to std::unique_ptr in many
ways, but the difference is that it can share the ownership of an object or array with
other std::shared_ptr. In this recipe, we will see how std::shared_ptr works and
how it differs from std::uniqueu_ptr. We will also look at std::weak_ptr, which is
a non-resource-owning smart pointer that holds a reference to an object managed
by an std::shared_ptr.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[523]

Getting ready
Make sure you read the previous recipe, Using unique_ptr to uniquely own a memory
resource, to become familiar with how unique_ptr and make_unique() work. We will
use the foo, foo_deleter, Base, and Derived classes defined in this recipe, and also
make several references to it.

Both the shared_ptr and weak_ptr classes, as well as the make_shared() function
template, are available in the std namespace in the <memory> header.

How to do it...
The following is a list of the typical operations you need to be aware of when
working with shared_ptr and weak_ptr:

• Use one of the available overloaded constructors to create a shared_ptr
that manages an object through a pointer. The default constructor creates
an empty shared_ptr, which does not manage any object:

std::shared_ptr<int> pnull1;
std::shared_ptr<int> pnull2(nullptr);
std::shared_ptr<int> pi1(new int(42));
std::shared_ptr<int> pi2 = pi1;
std::shared_ptr<foo> pf1(new foo());
std::shared_ptr<foo> pf2(new foo(42, 42.0, "42"));

• Alternatively, use the std::make_shared() function template, available since
C++11, to create shared_ptr objects:

std::shared_ptr<int> pi = std::make_shared<int>(42);
std::shared_ptr<foo> pf1 = std::make_shared<foo>();
std::shared_ptr<foo> pf2 = std::make_shared<foo>(42, 42.0,
"42");

• Use the std::make_shared_for_overwrite() function template, available in
C++20, to create shared_ptrs to objects or arrays of objects that are default
initialized. These objects should later be overwritten with a determined value:

std::shared_ptr<int> pi = std::make_shared_for_overwrite<int>();
std::shared_ptr<foo[]> pa = std::make_shared_for_
overwrite<foo[]>(3);

For simplicity and readability, we will not use the fully qualified
names std::unique_ptr, std::shared_ptr, and std::weak_ptr
in this recipe, but unique_ptr, shared_ptr, and weak_ptr.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Robustness and Performance

[524]

• Use the overloaded constructor, which takes a custom deleter if the default
delete operation is not appropriate for destroying the managed object:

std::shared_ptr<foo> pf1(new foo(42, 42.0, "42"),
 foo_deleter());
std::shared_ptr<foo> pf2(
 new foo(42, 42.0, "42"),
 [](foo* p) {
 std::cout << "deleting foo from lambda..." << '\n';
 delete p;});

• Always specify a deleter when managing an array of objects. The deleter can
either be a partial specialization of std::default_delete for arrays or any
function that takes a pointer to the template type:

std::shared_ptr<int> pa1(
 new int[3]{ 1, 2, 3 },
 std::default_delete<int[]>());

std::shared_ptr<int> pa2(
 new int[3]{ 1, 2, 3 },
 [](auto p) {delete[] p; });

• To access the raw pointer to the managed object, use the get() function:
void func(int* ptr)
{
 if (ptr != nullptr)
 std::cout << *ptr << '\n';
 else
 std::cout << "null" << '\n';
}

std::shared_ptr<int> pi;
func(pi.get());

pi = std::make_shared<int>(42);
func(pi.get());

• Dereference the pointer to the managed object using operator* and
operator->:

std::shared_ptr<int> pi = std::make_shared<int>(42);
*pi = 21;

std::shared_ptr<foo> pf = std::make_shared<foo>(42, 42.0, "42");
pf->print();

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[525]

• If a shared_ptr manages an array of objects, operator[] can be used to access
the individual elements of the array. This is only available in C++17:

std::shared_ptr<int[]> pa1(
 new int[3]{ 1, 2, 3 },
 std::default_delete<int[]>());

for (int i = 0; i < 3; ++i)
 pa1[i] *= 2;

• To check whether a shared_ptr could manage an object or not, use the
explicit operator bool or check whether get() != nullptr (which is what
the operator bool does):

std::shared_ptr<int> pnull;
if (pnull) std::cout << "not null" << '\n';

std::shared_ptr<int> pi(new int(42));
if (pi) std::cout << "not null" << '\n';

• shared_ptr objects can be stored in containers, such as std::vector:
std::vector<std::shared_ptr<foo>> data;
for (int i = 0; i < 5; i++)
 data.push_back(
 std::make_shared<foo>(i, i, std::to_string(i)));

auto pf = std::make_shared<foo>(42, 42.0, "42");
data.push_back(std::move(pf));
assert(!pf);

• Use weak_ptr to maintain a non-owning reference to a shared object, which
can be later accessed through a shared_ptr constructed from the weak_ptr
object:

auto sp1 = std::make_shared<int>(42);
assert(sp1.use_count() == 1);

std::weak_ptr<int> wpi = sp1;
assert(sp1.use_count() == 1);

auto sp2 = wpi.lock();
assert(sp1.use_count() == 2);
assert(sp2.use_count() == 2);

sp1.reset();

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Robustness and Performance

[526]

assert(sp1.use_count() == 0);
assert(sp2.use_count() == 1);

• Use the std::enable_shared_from_this class template as the base class for
a type when you need to create shared_ptr objects for instances that are
already managed by another shared_ptr object:

struct Apprentice;

struct Master : std::enable_shared_from_this<Master>
{
 ~Master() { std::cout << "~Master" << '\n'; }
 void take_apprentice(std::shared_ptr<Apprentice> a);
private:
 std::shared_ptr<Apprentice> apprentice;
};

struct Apprentice
{
 ~Apprentice() { std::cout << "~Apprentice" << '\n'; }
 void take_master(std::weak_ptr<Master> m);
private:
 std::weak_ptr<Master> master;
};

void Master::take_apprentice(std::shared_ptr<Apprentice> a)
{
 apprentice = a;
 apprentice->take_master(shared_from_this());
}

void Apprentice::take_master(std::weak_ptr<Master> m)
{
 master = m;
}

auto m = std::make_shared<Master>();
auto a = std::make_shared<Apprentice>();
m->take_apprentice(a);

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[527]

How it works...
shared_ptr is very similar to unique_ptr in many aspects; however, it serves
a different purpose: sharing the ownership of an object or array. Two or more
shared_ptr smart pointers can manage the same dynamically allocated object or
array, which is automatically destroyed when the last smart pointer goes out of
scope, is assigned a new pointer with operator=, or is reset with the method reset().
By default, the object is destroyed with operator delete; however, the user could
supply a custom deleter to the constructor, something that is not possible using
std::make_shared(). If shared_ptr is used to manage an array of objects, a custom
deleter must be supplied. In this case, you can use std::default_delete<T[]>,
which is a partial specialization of the std::default_delete class template that uses
operator delete[] to delete the dynamically allocated array.

The utility function std::make_shared() (available since C++11), unlike std::make_
unique(), which has only been available since C++14, should be used to create smart
pointers unless you need to provide a custom deleter. The primary reason for this
is the same as for make_unique(): avoiding potential memory leaks in some contexts
when an exception is thrown. For more information on this, read the explanation
provided on std::make_unique() in the previous recipe.

In C++20, a new function, called std::make_shared_for_overwrite(), has been
added. This is similar to make_shared() except that it default initializes the object
or the array of objects. This function can be used in generic code where it's unknown
whether the type template parameter is trivially copyable or not. This function
expresses the intent to create a pointer to an object that may not be initialized
so that it should be overwritten later.

Also, as in the case of unique_ptr, a shared_ptr that manages an object of a Derived
class can be implicitly converted to a shared_ptr that manages an object of the
Base class. This is possible if the Derived class is derived from Base. This implicit
conversion is safe only if Base has a virtual destructor (as all the base classes
should have when objects are supposed to be deleted polymorphically through a
pointer or reference to the base class); otherwise, undefined behavior is employed.
In C++17, several new non-member functions have been added: std::static_
pointer_cast(), std::dynamic_pointer_cast(), std::const_pointer_cast(),
and std::reinterpret_pointer_cast(). These apply static_cast, dynamic_cast,
const_cast, and reinterpret_cast to the stored pointer, returning a new shared_ptr
to the designated type.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Robustness and Performance

[528]

In the following example, Base and Derived are the same classes we used in the
previous recipe:

std::shared_ptr<Derived> pd = std::make_shared<Derived>();
std::shared_ptr<Base> pb = pd;

std::static_pointer_cast<Derived>(pb)->print();

There are situations when you need a smart pointer for a shared object but without
it contributing to the shared ownership. Suppose you model a tree structure where
a node has references to its children and they are represented by shared_ptr objects.
On the other hand, say a node needs to keep a reference to its parent. If this reference
were also shared_ptr, then it would create circular references and no object would
ever be automatically destroyed.

weak_ptr is a smart pointer that's used to break such circular dependencies. It holds
a non-owning reference to an object or array managed by a shared_ptr. weak_ptr can
be created from a shared_ptr object. In order to access the managed object, you need
to get a temporary shared_ptr object. To do so, we need to use the lock() method.
This method atomically checks whether the referred object still exists and returns
either an empty shared_ptr, if the object no longer exists, or a shared_ptr that owns
the object, if it still exists. Because weak_ptr is a non-owning smart pointer, the
referred object can be destroyed before weak_ptr goes out of scope or when all the
owning shared_ptr objects have been destroyed, reset, or assigned to other pointers.
The method expired() can be used to check whether the referenced object has been
destroyed or is still available.

In the How to do it... section, the preceding example models a master-apprentice
relationship. There is a Master class and an Apprentice class. The Master class
has a reference to an Apprentice class and a method called take_apprentice() to
set the Apprentice object. The Apprentice class has a reference to a Master class
and the method take_master() to set the Master object. In order to avoid circular
dependencies, one of these references must be represented by a weak_ptr. In the
proposed example, the Master class had a shared_ptr to own the Apprentice object,
and the Apprentice class had a weak_ptr to track a reference to the Master object.
This example, however, is a bit more complex because here, the Apprentice::take_
master() method is called from Master::take_apprentice() and needs a weak_
ptr<Master>. In order to call it from within the Master class, we must be able to
create a shared_ptr<Master> in the Master class, using the this pointer. The only
way to do this in a safe manner is to use std::enable_shared_from_this.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[529]

std::enable_shared_from_this is a class template that must be used as a base
class for all the classes where you need to create a shared_ptr for the current object
(the this pointer) when this object is already managed by another shared_ptr. Its
type template parameter must be the class that derives from it, as in the curiously
recurring template pattern. It has two methods: shared_from_this(), which returns
a shared_ptr, which shares the ownership of the this object, and weak_from_this(),
which returns a weak_ptr, which shares a non-owning reference to the this object.
The latter method is only available in C++17. These methods can be called only on an
object that is managed by an existing shared_ptr; otherwise, they throw an std::bad_
weak_ptr exception, as of C++17. Prior to C++17, the behavior was undefined.

Not using std::enable_shared_from_this and creating a shared_ptr<T>(this)
directly would lead to having multiple shared_ptr objects managing the same object
independently, without knowing each other. When this happens, the object ends up
being destroyed multiple times by different shared_ptr objects.

See also
• Using unique_ptr to uniquely own a memory resource, to learn about the

std::unique_ptr class, which represents a smart pointer that owns and
manages another object or array of objects allocated on the heap.

Implementing move semantics
Move semantics is a key feature that drives the performance improvements of
modern C++. They enable moving, rather than copying, resources or, in general,
objects that are expensive to copy. However, it requires that classes implement a
move constructor and assignment operator. These are provided by the compiler in
some circumstances, but in practice, it is often the case that you have to explicitly
write them. In this recipe, we will see how to implement the move constructor
and the move assignment operator.

Getting ready
You are expected to have basic knowledge of rvalue references and the special class
functions (constructors, assignment operators, and destructor). We will demonstrate
how to implement a move constructor and assignment operator using the following
Buffer class:

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Robustness and Performance

[530]

class Buffer
{
 unsigned char* ptr;
 size_t length;
public:
 Buffer(): ptr(nullptr), length(0)
 {}

 explicit Buffer(size_t const size):
 ptr(new unsigned char[size] {0}), length(size)
 {}

 ~Buffer()
 {
 delete[] ptr;
 }

 Buffer(Buffer const& other):
 ptr(new unsigned char[other.length]),
 length(other.length)
 {
 std::copy(other.ptr, other.ptr + other.length, ptr);
 }

 Buffer& operator=(Buffer const& other)
 {
 if (this != &other)
 {
 delete[] ptr;

 ptr = new unsigned char[other.length];
 length = other.length;

 std::copy(other.ptr, other.ptr + other.length, ptr);
 }

 return *this;
 }

 size_t size() const { return length;}
 unsigned char* data() const { return ptr; }
};

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[531]

Let's move on to the next section, where you'll learn how to modify this class in order
to benefit from move semantics.

How to do it...
To implement the move constructor for a class, do the following:

1. Write a constructor that takes an rvalue reference to the class type:
Buffer(Buffer&& other)
{
}

2. Assign all the data members from the rvalue reference to the current object.
This can be done either in the body of the constructor, as follows, or in the
initialization list, which is the preferred way:

ptr = other.ptr;
length = other.length;

3. Assign the data members from the rvalue reference to default values:
other.ptr = nullptr;
other.length = 0;

Put all together, the move constructor for the Buffer class looks like this:

Buffer(Buffer&& other)
{
 ptr = other.ptr;
 length = other.length;

 other.ptr = nullptr;
 other.length = 0;
}

To implement the move assignment operator for a class, do the following:

1. Write an assignment operator that takes an rvalue reference to the class type
and returns a reference to it:

Buffer& operator=(Buffer&& other)
{
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Robustness and Performance

[532]

2. Check that the rvalue reference does not refer to the same object as this,
and if they are different, perform steps 3 to 5:

if (this != &other)
{
}

3. Dispose of all the resources (such as memory, handles, and so on) from the
current object:

delete[] ptr;

4. Assign all the data members from the rvalue reference to the current object:
ptr = other.ptr;
length = other.length;

5. Assign the data members from the rvalue reference to the default values:
other.ptr = nullptr;
other.length = 0;

6. Return a reference to the current object, regardless of whether steps 3 to 5
were executed or not:

return *this;

Put all together, the move assignment operator for the Buffer class looks like this:

Buffer& operator=(Buffer&& other)
{
 if (this != &other)
 {
 delete[] ptr;

 ptr = other.ptr;
 length = other.length;

 other.ptr = nullptr;
 other.length = 0;
 }

 return *this;
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[533]

How it works...
The move constructor and move assignment operator are provided by default by the
compiler unless a user-defined copy constructor, move constructor, copy assignment
operator, move assignment operator, or destructor exists already. When provided
by the compiler, they perform a movement in a member-wise manner. The move
constructor invokes the move constructors of the class data members recursively;
similarly, the move assignment operator invokes the move assignment operators of
the class data members recursively.

Move, in this case, represents a performance benefit for objects that are too large to
copy (such as a string or container) or for objects that are not supposed to be copied
(such as the unique_ptr smart pointer). Not all classes are supposed to implement
both copy and move semantics. Some classes should only be movable, while others
both copyable and movable. On the other hand, it does not make much sense for a
class to be copyable but not moveable, though this can be technically achieved.

Not all types benefit from move semantics. In the case of built-in types (such as
bool, int, or double), arrays, or PODs, the move is actually a copy operation. On the
other hand, move semantics provide a performance benefit in the context of rvalues,
that is, temporary objects. An rvalue is an object that does not have a name; it lives
temporarily during the evaluation of an expression and is destroyed at the next
semicolon:

T a;
T b = a;
T c = a + b;

In the preceding example, a, b, and c are lvalues; they are objects that have a name
that can be used to refer to the object at any point throughout its lifetime. On the
other hand, when you evaluate the expression a+b, the compiler creates a temporary
object (which, in this case, is assigned to c) and then destroyed (when a semicolon
is encountered). These temporary objects are called rvalues because they usually
appear on the right-hand side of an assignment expression. In C++11, we can refer to
these objects through rvalue references, expressed with &&.

Move semantics are important in the context of rvalues. This is because they allow
you to take ownership of the resources from the temporary object that is destroyed,
without the client being able to use it after the move operation is completed. On the
other hand, lvalues cannot be moved; they can only be copied. This is because they
can be accessed after the move operation, and the client expects the object to be in
the same state. For instance, in the preceding example, the expression b = a assigns
a to b.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Robustness and Performance

[534]

After this operation is complete, the object a, which is an lvalue, can still be used by
the client and should be in the same state as it was before. On the other hand, the
result of a+b is temporary, and its data can be safely moved to c.

The move constructor is different than a copy constructor because it takes an rvalue
reference to the class type T(T&&), as opposed to an lvalue reference in the case
of the copy constructor T(T const&). Similarly, move assignment takes an rvalue
reference, namely T& operator=(T&&), as opposed to an lvalue reference for the
copy assignment operator, namely T& operator=(T const &). This is true even
though both return a reference to the T& class. The compiler selects the appropriate
constructor or assignment operator based on the type of argument, rvalue, or lvalue.

When a move constructor/assignment operator exists, an rvalue is moved
automatically. lvalues can also be moved, but this requires an explicit static cast to an
rvalue reference. This can be done using the std::move() function, which basically
performs a static_cast<T&&>:

std::vector<Buffer> c;
c.push_back(Buffer(100)); // move

Buffer b(200);
c.push_back(b); // copy
c.push_back(std::move(b)); // move

After an object is moved, it must remain in a valid state. However, there is no
requirement regarding what this state should be. For consistency, you should set
all member fields to their default value (numerical types to 0, pointers to nullptr,
Booleans to false, and so on).

The following example shows the different ways in which Buffer objects can be
constructed and assigned:

Buffer b1; // default constructor
Buffer b2(100); // explicit constructor
Buffer b3(b2); // copy constructor
b1 = b3; // assignment operator
Buffer b4(std::move(b1)); // move constructor
b3 = std::move(b4); // move assignment

The constructor or assignment operator involved in the creation or assignment of the
objects b1, b2, b3, and b4 is mentioned in the comments on each line.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[535]

There's more...
As seen with the Buffer example, implementing both the move constructor and
move assignment operator involves writing similar code (the entire code of the move
constructor was also present in the move assignment operator). This can actually be
avoided by calling the move assignment operator in the move constructor:

Buffer(Buffer&& other) : ptr(nullptr), length(0)
{
 *this = std::move(other);
}

There are two points that must be noticed in this example:

• Member initialization in the constructor's initialization list is necessary
because these members could potentially be used in the move assignment
operator later on (such as the ptr member in this example).

• Static casting of other to an rvalue reference. Without this explicit
conversion, the copy assignment operator would be called. This is because
even if an rvalue is passed to this constructor as an argument, when it is
assigned a name, it is bound to an lvalue. Therefore, other is actually an
lvalue, and it must be converted to an rvalue reference in order to invoke
the move assignment operator.

See also
• Defaulted and deleted functions, in Chapter 3, Exploring Functions, to learn about

the use of the default specifier on special member functions and how to
define functions as deleted with the delete specifier.

Consistent comparison with the
operator <=>
The C++ language defines six relational operators that perform comparison: ==, !=,
<, <=, >, and >=. Although != can be implemented in terms of ==, and <=, >=, and > in
terms of <, you still have to implement both == and != if you want your user-defined
type to support equality comparison, and <, <=, >, and >= if you want it to support
ordering.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Robustness and Performance

[536]

That means 6 functions if you want objects of your type—let's call it T—to be
comparable, 12 if you want them to be comparable with another type, U, 18 if you
also want values of a U type to be comparable with your T type, and so on. The
new C++20 standard reduces this number to either one or two, or multiple of these
(depending on the comparison with other types) by introducing a new comparison
operator, called the three-way comparison, which is designated with the symbol <=>,
for which reason it is popularly known as the spaceship operator. This new operator
helps us write less code, better describe the strength of relations, and avoid possible
performance issues of manually implementing comparison operators in terms
of others.

Getting ready
It is necessary to include the header <compare> when defining or implementing
the three-way comparison operator. This new C++20 header is part of the standard
general utility library and provides classes, functions, and concepts for implementing
comparison.

How to do it…
To optimally implement comparison in C++20, do the following:

• If you only want your type to support equality comparison (both == and
!=), implement only the == operator and return a bool. You can default the
implementation so that the compiler performs a member-wise comparison:

class foo
{
 int value;
public:
 foo(int const v):value(v){}

 bool operator==(foo const&) const = default;
};

• If you want your type to support both equality and ordering and the
default member-wise comparison will do, then only define the <=> operator,
returning auto, and default its implementation:

class foo
{
 int value;
public:

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[537]

 foo(int const v) :value(v) {}

 auto operator<=>(foo const&) const = default;
};

• If you want your type to support both equality and ordering and you need
to perform custom comparison, then implement both the == operator (for
equality) and the <=> operator (for ordering):

class foo
{
 int value;
public:
 foo(int const v) :value(v) {}

 bool operator==(foo const& other) const
 { return value == other.value; }

 auto operator<=>(foo const& other) const
 { return value <=> other.value; }
};

When implementing the three-way comparison operator, follow these guidelines:

• Only implement the three-way comparison operator but always use the two-
way comparison operators <, <=, >, and >= when comparing values.

• Implement the three-way comparison operator as a member function, even
if you want the first operand of a comparison to be of a type other than your
class.

• Implement the three-way comparison operator as non-member functions
only if you want implicit conversion on both arguments (that means
comparing two objects, neither of which is of your class).

How it works…
The new three-way comparison operator is similar to the memcmp()/strcmp() C
functions and the std::string::compare() method. These functions take two
arguments and return an integer value that is smaller than zero if the first is less than
the second, zero if they are equal, or greater than zero if the first argument is greater
than the second. The three-way comparison operator does not return an integer but a
value of a comparison category type.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Robustness and Performance

[538]

This can be one of the following:

• std::strong_ordering represents the result of a three-way comparison that
supports all six relational operators, does not allow incomparable values
(which means that at least one of a < b, a == b, and a > b must be true),
and implies substitutability. This is a property such that if a == b and f
is a function that reads only comparison-salient state (accessible via the
argument's public constant members), then f(a) == f(b).

• std::weak_ordering supports all the six relational operators, does not
support incomparable values (which means that none of a < b, a == b, and a
> b could be true), but also does not imply substitutability. A typical example
of a type that defines weak ordering is a case-insensitive string type.

• std::partial_ordering supports all six relational operators, but does not
imply substitutability and has a value that might not be comparable (for
instance, a floating point NaN cannot be compared to any other value).

The std::strong_ordering type is the strongest of all these category types. It is
not implicitly convertible from any other category, but it implicitly converts to
both std::weak_ordering and std::partial_ordering. std::weak_ordering is
also implicitly convertible to std::partial_ordering. We've summarized all these
properties in the following table:

Category Operators Substitutability Comparable
values

Implicit
conversion

std::strong_ordering ==, !=, <,
<=, >, >=

Yes Yes ↓↓

std::weak_ordering ==, !=, <,
<=, >, >=

No Yes ↓↓

std::partial_
ordering

==, !=, <,
<=, >, >=

No No

These comparison categories have values that are implicitly comparable with literal
zero (but not with an integer variable with a value of zero). Their values are listed in
the following table:

Category Numeric values Non-numeric
values-1 0 1

strong_ordering less equal

equivalent

greater

weak_ordering less equivalent greater

partial_ordering less equivalent greater unordered

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[539]

To better understand how this works, let's look at the following example:

class cost_unit_t
{
 // data members
public:
 std::strong_ordering operator<=>(cost_unit_t const & other) const
noexcept = default;
};

class project_t : public cost_unit_t
{
 int id;
 int type;
 std::string name;
public:
 bool operator==(project_t const& other) const noexcept
 {
 return (cost_unit_t&)(*this) == (cost_unit_t&)other &&
 name == other.name &&
 type == other.type &&
 id == other.id;
 }

 std::strong_ordering operator<=>(project_t const & other) const
noexcept
 {
 // compare the base class members
 if (auto cmp = (cost_unit_t&)(*this) <=> (cost_unit_t&)other;
 cmp != 0)
 return cmp;

 // compare this class members in custom order
 if (auto cmp = name.compare(other.name); cmp != 0)
 return cmp < 0 ? std::strong_ordering::less :
 std::strong_ordering::greater;
 if (auto cmp = type <=> other.type; cmp != 0)
 return cmp;
 return id <=> other.id;
 }
};

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Robustness and Performance

[540]

Here, cost_unit_t is a base class that contains some (unspecified) data members
and defines the <=> operator, although it defaults the implementation. This means
that the compiler will also provide the == and != operators, not just <, <=, >, and >=.
This class is derived by project_t, which contains several data fields: an identifier
for the project, a type, and a name. However, for this type, we cannot default the
implementation of the operators, because we do not want to compare the fields
member-wise, but in a custom order: first the name, then the type, and lastly the
identifier. In this case, we implement both the == operator, which returns a bool
and tests the member fields for equality, and the <=> operator, which returns
std::strong_ordering and uses the <=> operator itself to compare the values
of its two arguments.

The following code snippet shows a type called employee_t that models employees
in a company. An employee can have a manager, and an employee that is a manager
has people that it manages. Conceptually, such a type could look as follows:

struct employee_t
{
 bool is_managed_by(employee_t const&) const { /* ... */ }
 bool is_manager_of(employee_t const&) const { /* ... */ }
 bool is_same(employee_t const&) const { /* ... */ }

 bool operator==(employee_t const & other) const
 {
 return is_same(other);
 }

 std::partial_ordering operator<=>(employee_t const& other) const
noexcept
 {
 if (is_same(other))
 return std::partial_ordering::equivalent;
 if (is_managed_by(other))
 return std::partial_ordering::less;
 if (is_manager_of(other))
 return std::partial_ordering::greater;
 return std::partial_ordering::unordered;
 }
};

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[541]

The methods is_same(), is_manager_of(), and is_managed_by() return the
relationship of two employees. However, it is possible there are employees with
no relationship; for instance, employees in different teams, or the same team that
are not in a manager-subordinate position. Here, we can implement equality and
ordering. However, since we cannot compare all employees with each other, the
<=> operator must return an std::partial_ordering value. The return value is
partial_ordering::equivalent if the values represent the same employee, partial_
ordering::less if the current employee is managed by the supplied one, partial_
ordering::greater if the current employee is the manager of the supplied one, and
partial_ordering::unorder in all other cases.

Let's see one more example to understand how the three-way comparison operator
works. In the following sample, the ipv4 class models an IP version 4 address. It
supports comparison with both other objects of the ipv4 type but also unsigned
long values (because there is a to_unlong() method that converts the IP address
into a 32-bit unsigned integral value):

struct ipv4
{
 explicit ipv4(unsigned char const a=0, unsigned char const b=0,
 unsigned char const c=0, unsigned char const d=0)
noexcept :
 data{ a,b,c,d }
 {}

 unsigned long to_ulong() const noexcept
 {
 return
 (static_cast<unsigned long>(data[0]) << 24) |
 (static_cast<unsigned long>(data[1]) << 16) |
 (static_cast<unsigned long>(data[2]) << 8) |
 static_cast<unsigned long>(data[3]);
 }

 auto operator<=>(ipv4 const&) const noexcept = default;

 bool operator==(unsigned long const other) const noexcept
 {
 return to_ulong() == other;
 }

 std::strong_ordering
 operator<=>(unsigned long const other) const noexcept

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Robustness and Performance

[542]

 {
 return to_ulong() <=> other;
 }

private:
 std::array<unsigned char, 4> data;
};

In this example, we overloaded the <=> operator and allowed it to be default
implemented. But we also explicitly implemented overloads for operator== and
operator<=>, which compare an ipv4 object with an unsigned long value. Because
of these operators, we can write any of the following:

ipv4 ip(127, 0, 0, 1);
if(ip == 0x7F000001) {}
if(ip != 0x7F000001) {}
if(0x7F000001 == ip) {}
if(0x7F000001 != ip) {}
if(ip < 0x7F000001) {}
if(0x7F000001 < ip) {}

There are two things to notice here: the first is that although we only overloaded the
== operator, we can also use the != operator, and second, although we overloaded
the == operator and the <=> operator to compare ipv4 values to unsigned long
values, we can also compare unsigned long values to ipv4 values. This is because
the compiler performs symmetrical overload resolution. That means that for
an expression a@b where @ is a two-way relational operator, it performs name
lookup for a@b, a<=>b, and b<=>a. The following table shows the list of all possible
transformations of the relational operators:

a == b b == a

a != b !(a == b) !(b == a)
a <=> b 0 <=> (b <=> a)

a < b (a <=> b) < 0 0 > (b <=> a)
a <= b (a <=> b) <= 0 0 >= (b <=> a)
a > b (a <=> b) > 0 0 < (b <=> a)
a >= b (a <=> b) >= 0 0 <= (b <=> a)

This greatly reduces the number of overloads you must explicitly provide for
supporting comparison in different forms. The three-way comparison operator can
be implemented either as a member or as a non-member function. In general, you
should prefer the member implementation.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 9

[543]

The non-member form should be used only when you want implicit conversion on
both arguments. The following shows an example:

struct A { int i; };

struct B
{
 B(A a) : i(a.i) { }
 int i;
};

inline auto
operator<=>(B const& lhs, B const& rhs) noexcept
{
 return lhs.i <=> rhs.i;
}

assert(A{ 2 } < A{ 1 });

Although the <=> operator is defined for the type B, because it is a non-member and
because A can be implicitly converted to B, we can perform comparison on objects
of the A type.

See also
• Simplifying code with class template argument deduction, in Chapter 1, Learning

Modern Core Language Features, to learn how to use class templates without
explicitly specifying template arguments.

• Ensuring constant correctness for a program, to explore the benefits of constant
correctness and how to achieve it.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

[545]

10
Implementing Patterns

and Idioms
Design patterns are general reusable solutions that can be applied to common
problems that appear in software development. Idioms are patterns, algorithms,
or ways to structure the code in one or more programming languages. A great
number of books have been written on design patterns. This chapter is not intended
to reiterate them, but rather to show how to implement several useful patterns
and idioms, with a focus on readability, performance, and robustness, in terms
of modern C++.

The recipes included in this chapter are as follows:

• Avoiding repetitive if...else statements in factory patterns
• Implementing the pimpl idiom
• Implementing the named parameter idiom
• Separating interfaces from implementations with the non-virtual interface

idiom
• Handling friendship with the attorney-client idiom
• Static polymorphism with the curiously recurring template pattern
• Implementing a thread-safe singleton

The first recipe of this chapter presents a simple mechanism for avoiding repetitive
if-else statements. Let's explore how this mechanism works.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Patterns and Idioms

[546]

Avoiding repetitive if...else statements in
factory patterns
It is often the case that we end up writing repetitive if...else statements (or an
equivalent switch statement) that do similar things, often with little variation and
often done by copying and pasting with small changes. As the number of alternative
conditions increases, the code becomes both hard to read and hard to maintain.
Repetitive if...else statements can be replaced with various techniques, such
as polymorphism. In this recipe, we will see how to avoid if...else statements in
factory patterns (a factory is a function or object that is used to create other objects)
using a map of functions.

Getting ready
In this recipe, we will consider the following problem: building a system that
can handle image files in various formats, such as bitmap, PNG, JPG, and so on.
Obviously, the details are beyond the scope of this recipe; the part we are concerned
with is creating objects that handle various image formats. For this, we will consider
the following hierarchy of classes:

class Image {};
class BitmapImage : public Image {};
class PngImage : public Image {};
class JpgImage : public Image {};

On the other hand, we'll define an interface for a factory class that can create
instances of the aforementioned classes, as well as a typical implementation using
if...else statements:

struct IImageFactory
{
 virtual std::unique_ptr<Image> Create(std::string_view type) = 0;
};

struct ImageFactory : public IImageFactory
{
 std::unique_ptr<Image>
 Create(std::string_view type) override
 {
 if (type == "bmp")
 return std::make_unique<BitmapImage>();
 else if (type == "png")

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 10

[547]

 return std::make_unique<PngImage>();
 else if (type == "jpg")
 return std::make_unique<JpgImage>();
 return nullptr;
 }
};

The goal of this recipe is to see how this implementation can be refactored to avoid
repetitive if...else statements.

How to do it...
Perform the following steps to refactor the factory shown earlier to avoid using if...
else statements:

1. Implement the factory interface:
struct ImageFactory : public IImageFactory
{
 std::unique_ptr<Image> Create(std::string_view type) override
 {
 // continued with 2. and 3.
 }
};

2. Define a map where the key is the type of objects to create and the value
is a function that creates objects:

static std::map<
 std::string,
 std::function<std::unique_ptr<Image>()>> mapping
{
 { "bmp", []() {return std::make_unique<BitmapImage>(); } },
 { "png", []() {return std::make_unique<PngImage>(); } },
 { "jpg", []() {return std::make_unique<JpgImage>(); } }
};

3. To create an object, look up the object type in the map and, if it is found, use
the associated function to create a new instance of the type:

auto it = mapping.find(type.data());
if (it != mapping.end())
 return it->second();
return nullptr;

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Patterns and Idioms

[548]

How it works...
The repetitive if...else statements in the first implementation are very similar –
they check the value of the type parameter and create an instance of the appropriate
Image class. If the argument to check was an integral type (for instance, an
enumeration type), the sequence of if...else statements could have also been
written in the form of a switch statement. That code can be used like this:

auto factory = ImageFactory{};
auto image = factory.Create("png");

Regardless of whether the implementation was using if...else statements or a
switch, refactoring to avoid repetitive checks is relatively simple. In the refactored
code, we used a map that has the key type std::string representing the type, that
is, the name of the image format. The value is an std::function<std::unique_
ptr<Image>()>. This is a wrapper for a function that takes no arguments and returns
an std::unique_ptr<Image> (a unique_ptr of a derived class is implicitly converted
to a unique_ptr of a base class).

Now that we have this map of functions that create objects, the actual
implementation of the factory is much simpler; check the type of the object to
be created in the map and, if present, use the associated value from the map as
the actual function to create the object, or return nullptr if the object type is not
present in the map.

This refactoring is transparent for the client code, as there are no changes in the
way clients use the factory. On the other hand, this approach does require more
memory to handle the static map, which, for some classes of applications, such as
IoT, might be an important aspect. The example presented here is relatively simple,
because the purpose is to demonstrate the concept. In real-world code, it might be
necessary to create objects differently, such as using a different number of arguments
and different types of arguments. However, this is not specific to the refactored
implementation and the solution with the if...else/switch statement needs to
account for that too. Therefore, in practice, the solution to this problem that worked
with if...else statements should also work with the map.

There's more...
In the preceding implementation, the map is a local static to the virtual function, but
it can also be a member of the class or even a global. The following implementation
has the map defined as a static member of the class. The objects are not created based
on the format name, but on the type information, as returned by the typeid operator:

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 10

[549]

struct IImageFactoryByType
{
 virtual std::unique_ptr<Image> Create(
 std::type_info const & type) = 0;
};

struct ImageFactoryByType : public IImageFactoryByType
{
 std::unique_ptr<Image> Create(std::type_info const & type)
 override
 {
 auto it = mapping.find(&type);
 if (it != mapping.end())
 return it->second();
 return nullptr;
 }
private:
 static std::map<
 std::type_info const *,
 std::function<std::unique_ptr<Image>()>> mapping;
};

std::map<
 std::type_info const *,
 std::function<std::unique_ptr<Image>()>> ImageFactoryByType::mapping
{
 {&typeid(BitmapImage),[](){
 return std::make_unique<BitmapImage>();}},
 {&typeid(PngImage), [](){
 return std::make_unique<PngImage>();}},
 {&typeid(JpgImage), [](){
 return std::make_unique<JpgImage>();}}
};

In this case, the client code is slightly different, because instead of passing a name
representing the type to create, such as PNG, we pass the value returned by the
typeid operator, such as typeid(PngImage):

auto factory = ImageFactoryByType{};
auto movie = factory.Create(typeid(PngImage));

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Patterns and Idioms

[550]

This alternative is arguably more robust because the map keys are not strings that
could be more prone to errors. This recipe proposes a pattern as the solution to a
common problem, and not an actual implementation. As in the case of most patterns,
there are different ways they can be implemented, and it is up to you to pick the one
that is the most suitable for each context.

See also
• Implementing the pimpl idiom, to learn a technique that enables the separation

of the implementation details from an interface.
• Using unique_ptr to uniquely own a memory resource, in Chapter 9, Robustness

and Performance, to learn about the std::unique_ptr class, which represents
a smart pointer that owns and manages another object or array of objects
allocated on the heap.

Implementing the pimpl idiom
pimpl stands for pointer to implementation (but is also known as the Cheshire
cat idiom or the compiler firewall idiom) and is an opaque pointer technique that
enables the separation of the implementation details from an interface. This has
the advantage that it enables changing the implementation without modifying the
interface and, therefore, avoiding the need to recompile the code that is using the
interface. This has the potential of making libraries using the pimpl idiom on their
ABIs to be backward-compatible with older versions when only implementation
details change. In this recipe, we will see how to implement the pimpl idiom using
modern C++ features.

Getting ready
The reader is expected to be familiar with smart pointers and std::string_view,
both of which were discussed in previous chapters of this book.

To demonstrate the pimpl idiom in a practical manner, we will consider the
following class, which we will then refactor following the pimpl pattern:

class control
{
 std::string text;
 int width = 0;
 int height = 0;
 bool visible = true;

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 10

[551]

 void draw()
 {
 std::cout
 << "control " << '\n'
 << " visible: " << std::boolalpha << visible <<
 std::noboolalpha << '\n'
 << " size: " << width << ", " << height << '\n'
 << " text: " << text << '\n';
 }
public:
 void set_text(std::string_view t)
 {
 text = t.data();
 draw();
 }

 void resize(int const w, int const h)
 {
 width = w;
 height = h;
 draw();
 }

 void show()
 {
 visible = true;
 draw();
 }

 void hide()
 {
 visible = false;
 draw();
 }
};

This class represents a control that has properties such as text, size, and visibility.
Every time these properties are changed, the control is redrawn. In this mocked
implementation, drawing means printing the value of the properties to the console.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Patterns and Idioms

[552]

How to do it...
Take the following steps to implement the pimpl idiom, exemplified here by
refactoring the control class shown earlier:

1. Put all private members, both data and functions, into a separate class.
We will call this the pimpl class and the original class the public class.

2. In the header file of the public class, put a forward declaration to the pimpl
class:

// in control.h
class control_pimpl;

3. In the public class definition, declare a pointer to the pimpl class using
a unique_ptr. This should be the only private data member of the class:

class control
{
 std::unique_ptr<
 control_pimpl, void(*)(control_pimpl*)> pimpl;
 public:
 control();
 void set_text(std::string_view text);
 void resize(int const w, int const h);
 void show();
 void hide();
};

4. Put the pimpl class definition in the source file of the public class. The pimpl
class mirrors the public interface of the public class:

// in control.cpp
class control_pimpl
{
 std::string text;
 int width = 0;
 int height = 0;
 bool visible = true;

 void draw()
 {
 std::cout
 << "control " << '\n'
 << " visible: " << std::boolalpha << visible
 << std::noboolalpha << '\n'

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 10

[553]

 << " size: " << width << ", " << height << '\n'
 << " text: " << text << '\n';
 }

public:
 void set_text(std::string_view t)
 {
 text = t.data();
 draw();
 }

 void resize(int const w, int const h)
 {
 width = w;
 height = h;
 draw();
 }

 void show()
 {
 visible = true;
 draw();
 }

 void hide()
 {
 visible = false;
 draw();
 }
};

5. The pimpl class is instantiated in the constructor of the public class:
control::control() :
 pimpl(new control_pimpl(),
 [](control_pimpl* pimpl) {delete pimpl; })
{}

6. Public class member functions call the corresponding member functions
of the pimpl class:

void control::set_text(std::string_view text)
{
 pimpl->set_text(text);

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Patterns and Idioms

[554]

}

void control::resize(int const w, int const h)
{
 pimpl->resize(w, h);
}

void control::show()
{
 pimpl->show();
}

void control::hide()
{
 pimpl->hide();
}

How it works...
The pimpl idiom enables hiding the internal implementation of a class from the
clients of the library or module the class is part of. This provides several benefits:

• A clean interface for a class that its clients see.
• Changes in the internal implementation do not affect the public interface,

which enables binary backward-compatibility for newer versions of a library
(when the public interface remains unchanged).

• Clients of a class that use this idiom do not need to be recompiled when
changes to the internal implementation occur. This leads to shorter build
times.

• The header file does not need to include the headers for the types and
functions used in the private implementation. This, again, leads to shorter
build times.

The benefits mentioned above do not come for free; there are also several drawbacks
that need to be mentioned:

• There is more code to write and maintain.
• The code can arguably be less readable, as there is a level of indirection and

all the implementation details need to be looked up in the other files. In this
recipe, the pimpl class definition was provided in the source file of the public
class, but in practice, it could be in separate files.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 10

[555]

• There is a slight runtime overhead because of the level of indirection from
the public class to the pimpl class, but in practice, this is rarely significant.

• This approach does not work with protected members because these have
to be available to the derived classes.

• This approach does not work with the private virtual functions, which have
to appear in the class, either because they override functions from a base
class or have to be available for overriding in a derived class.

In the example in this recipe, the control_pimpl class is basically identical to the
original control class. In practice, where classes are larger, have virtual functions and
protected members, and both functions and data, the pimpl class is not a complete
equivalent of how the class would have looked like if it was not pimpled. Also, in
practice, the pimpl class may require a pointer to the public class in order to call
members that were not moved into the pimpl class.

Concerning the implementation of the refactored control class, the pointer to the
control_pimpl object is managed by a unique_ptr. In the declaration of this pointer,
we have used a custom deleter:

std::unique_ptr<control_pimpl, void(*)(control_pimpl*)> pimpl;

The reason for this is that the control class has a destructor implicitly defined by
the compiler, at a point where the control_pimpl type is still incomplete (that is, in
the header). This would result in an error with unique_ptr, which cannot delete an
incomplete type. This problem can be solved in two ways:

• Provide a user-defined destructor for the control class that is explicitly
implemented (even if declared as default) after the complete definition of
the control_pimpl class is available.

• Provide a custom deleter for the unique_ptr, as we did in this example.

There's more...
The original control class was both copyable and movable:

control c;
c.resize(100, 20);

As a rule of thumb, when implementing the pimpl idiom, always
put all the private member data and functions, except for the
virtual ones, in the pimpl class and leave the protected data
members and functions and all the private virtual functions
in the public class.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Patterns and Idioms

[556]

c.set_text("sample");
c.hide();

control c2 = c; // copy
c2.show();

control c3 = std::move(c2); // move
c3.hide();

The refactored control class is only movable, not copyable. The following code
shows an implementation of the control class that is both copyable and movable:

class control_copyable
{
 std::unique_ptr<control_pimpl, void(*)(control_pimpl*)> pimpl;
public:
 control_copyable();
 control_copyable(control_copyable && op) noexcept;
 control_copyable& operator=(control_copyable && op) noexcept;
 control_copyable(const control_copyable& op);
 control_copyable& operator=(const control_copyable& op);

 void set_text(std::string_view text);
 void resize(int const w, int const h);
 void show();
 void hide();
};

control_copyable::control_copyable() :
 pimpl(new control_pimpl(),
 [](control_pimpl* pimpl) {delete pimpl; })
{}

control_copyable::control_copyable(control_copyable &&)
 noexcept = default;
control_copyable& control_copyable::operator=(control_copyable &&)
 noexcept = default;

control_copyable::control_copyable(const control_copyable& op)
 : pimpl(new control_pimpl(*op.pimpl),
 [](control_pimpl* pimpl) {delete pimpl; })
{}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 10

[557]

control_copyable& control_copyable::operator=(
 const control_copyable& op)
{
 if (this != &op)
 {
 pimpl = std::unique_ptr<control_pimpl,void(*)(control_pimpl*)>(
 new control_pimpl(*op.pimpl),
 [](control_pimpl* pimpl) {delete pimpl; });
 }
 return *this;
}

// the other member functions

The class control_copyable is both copyable and movable, but to make it so, we
provided the copy constructor and copy assignment operator and both the move
constructor and move assignment operator. The latter ones can be defaulted, but the
former ones were explicitly implemented to create a new control_pimpl object from
the object that it is copied from.

See also
• Using unique_ptr to uniquely own a memory resource, in Chapter 9, Robustness

and Performance, to learn about the std::unique_ptr class, which represents
a smart pointer that owns and manages another object or array of objects
allocated on the heap.

Implementing the named parameter idiom
C++ supports only positional parameters, which means arguments are passed to
a function based on the parameter's position. Other languages also support named
parameters – that is, they specify parameter names when making a call and invoking
arguments. This is particularly useful with parameters that have default values.
A function may have parameters with default values, although they always appear
after all the non-defaulted parameters.

However, if you want to provide values for only some of the defaulted parameters,
there is no way to do this without providing arguments for the parameters that are
positioned before them in the function parameters list.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Patterns and Idioms

[558]

A technique called the named parameter idiom provides a method to emulate
named parameters and help solve this problem. We will explore this technique
in this recipe.

Getting ready
To exemplify the named parameter idiom, we will use the control class shown in the
following code snippet:

class control
{
 int id_;
 std::string text_;
 int width_;
 int height_;
 bool visible_;
public:
 control(
 int const id,
 std::string_view text = "",
 int const width = 0,
 int const height = 0,
 bool const visible = false):
 id_(id), text_(text),
 width_(width), height_(height),
 visible_(visible)
 {}
};

The control class represents a visual control, such as a button or an input, and has
properties such as numerical identifier, text, size, and visibility. These are provided
to the constructor and, except for the ID, all the others have default values. In
practice, such a class would have many more properties, such as text brush,
background brush, border style, font size, font family, and many others.

How to do it...
To implement the named parameter idiom for a function (usually with many default
parameters), do the following:

1. Create a class to wrap the parameters of the function:
class control_properties

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 10

[559]

{
 int id_;
 std::string text_;
 int width_ = 0;
 int height_ = 0;
 bool visible_ = false;
};

2. The class or function that needs to access these properties could be declared
as friend to avoid writing getters:

friend class control;

3. Every positional parameter of the original function that does not have
a default value should become a positional parameter, without a default
value in the constructor of the class:

public:
 control_properties(int const id) :id_(id)
 {}

4. For every positional parameter of the original function that has a default
value, there should be a function (with the same name) that sets the value
internally and returns a reference to the class:

public:
 control_properties& text(std::string_view t)
 { text_ = t.data(); return *this; }

 control_properties& width(int const w)
 { width_ = w; return *this; }

 control_properties& height(int const h)
 { height_ = h; return *this; }

 control_properties& visible(bool const v)
 { visible_ = v; return *this; }

5. The original function should be modified, or an overload should be
provided, to take an argument of the new class from which the property
values will be read:

control(control_properties const & cp):
 id_(cp.id_),
 text_(cp.text_),

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Patterns and Idioms

[560]

 width_(cp.width_),
 height_(cp.height_),
 visible_(cp.visible_)
{}

If we put all that together, the result is the following:

class control;

class control_properties
{
 int id_;
 std::string text_;
 int width_ = 0;
 int height_ = 0;
 bool visible_ = false;

 friend class control;
public:
 control_properties(int const id) :id_(id)
 {}

 control_properties& text(std::string_view t)
 { text_ = t.data(); return *this; }

 control_properties& width(int const w)
 { width_ = w; return *this; }

 control_properties& height(int const h)
 { height_ = h; return *this; }

 control_properties& visible(bool const v)
 { visible_ = v; return *this; }
};

class control
{
 int id_;
 std::string text_;
 int width_;
 int height_;
 bool visible_;

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 10

[561]

public:
 control(control_properties const & cp):
 id_(cp.id_),
 text_(cp.text_),
 width_(cp.width_),
 height_(cp.height_),
 visible_(cp.visible_)
 {}
};

How it works...
The initial control class had a constructor with many parameters. In real-world code,
you can find examples like this where the number of parameters is much higher.
A possible solution, often found in practice, is to group common Boolean type
properties in bit flags, which could be passed together as a single integral argument
(an example could be the border style for a control that defines the position where
the border should be visible: top, bottom, left, right, or any combination of these
four). Creating a control object with the initial implementation is done like this:

control c(1044, "sample", 100, 20, true);

The named parameter idiom has the advantage that it allows you to specify values
only for the parameters that you want, in any order, using a name, which is much
more intuitive than a fixed, positional order.

Although there isn't a single strategy for implementing the idiom, the example in this
recipe is rather typical. The properties of the control class, provided as parameters
in the constructor, have been put into a separate class, called control_properties,
that declares the class control as a friend class to allow it to access its private data
members without providing getters. This has the side effect that it limits the use
of control_properties outside the control class. The non-optional parameters
of the constructor of the control class are also non-optional parameters of the
control_properties constructor. For all the other parameters with default values, the
control_properties class defines a function with a relevant name that simply sets
the data member to the provided argument, and then returns a reference to control_
properties. This enables the client to chain calls to these functions in any order.

The constructor of the control class has been replaced with a new one that has a
single parameter, a constant reference to a control_properties object, whose data
members are copied into the control object's data members.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Patterns and Idioms

[562]

Creating a control object with the named parameter idiom implemented in this
manner is done as in the following snippet:

control c(control_properties(1044)
 .visible(true)
 .height(20)
 .width(100));

See also
• Separating interfaces and implementations with the non-virtual interface idiom,

to explore an idiom that promotes the separation of concerns of interfaces
and implementations by making (public) interfaces non-virtual and virtual
functions private.

• Handling friendship with the attorney-client idiom, to learn about a simple
mechanism to restrict friends' access to only designated, private parts
of a class.

Separating interfaces and
implementations with the non-virtual
interface idiom
Virtual functions provide specialization points for a class by allowing derived classes
to modify implementations from a base class. When a derived class object is handled
through a pointer or a reference to a base class, calls to overridden virtual functions
end up invoking the overridden implementation from the derived class. On the other
hand, a customization is an implementation detail, and a good design separates
interfaces from implementation.

The non-virtual interface idiom, proposed by Herb Sutter in an article about
virtuality in the C/C++ Users Journal, promotes the separation of concerns of
interfaces and implementations by making (public) interfaces non-virtual and
virtual functions private.

Public virtual interfaces prevent a class from enforcing pre- and post-conditions on
its interface. Users expecting an instance of a base class do not have the guarantee
that the expected behavior of a public virtual method is delivered, since it can be
overridden in a derived class. This idiom helps enforce the promised contract of
an interface.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 10

[563]

Getting ready
The reader should be familiar with aspects related to virtual functions, such as
defining and overriding virtual functions, abstract classes, and pure specifiers.

How to do it...
Implementing this idiom requires following several simple design guidelines,
formulated by Herb Sutter in the C/C++ Users Journal, 19(9), September 2001:

1. Make (public) interfaces non-virtual.
2. Make virtual functions private.
3. Make virtual functions protected only if the base implementation has to be

called from a derived class.
4. Make the base class destructor either public and virtual or protected and

nonvirtual.

The following example of a simple hierarchy of controls abides by all these four
guidelines:

class control
{
private:
 virtual void paint() = 0;
protected:
 virtual void erase_background()
 {
 std::cout << "erasing control background..." << '\n';
 }
public:
 void draw()
 {
 erase_background();
 paint();
 }

 virtual ~control() {}
};

class button : public control
{
private:

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Patterns and Idioms

[564]

 virtual void paint() override
 {
 std::cout << "painting button..." << '\n';
 }
protected:
 virtual void erase_background() override
 {
 control::erase_background();
 std::cout << "erasing button background..." << '\n';
 }
};

class checkbox : public button
{
private:
 virtual void paint() override
 {
 std::cout << "painting checkbox..." << '\n';
 }
protected:
 virtual void erase_background() override
 {
 button::erase_background();
 std::cout << "erasing checkbox background..." << '\n';
 }
};

How it works...
The NVI idiom uses the template method design pattern, which allows derived
classes to customize parts (that is, steps) of a base class functionality (that is, an
algorithm). This is done by splitting the overall algorithm into smaller parts, each
of them implemented by a virtual function. The base class may provide, or not,
a default implementation, and the derived classes could override them while
maintaining the overall structure and meaning of the algorithm.

The core principles of the NVI idiom is that virtual functions should not be public;
they should be either private or protected, in case the base class implementation
could be called from a derived class. The interface of a class, the public part
accessible to its clients, should be comprised exclusively of nonvirtual functions.
This provides several advantages:

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 10

[565]

• It separates the interface from the details of implementation that are no
longer exposed to the client.

• It enables changing the details of the implementation without altering the
public interface and without requiring changes to the client code, therefore
making base classes more robust.

• It allows a class to have sole control of its interface. If the public interface
contains virtual methods, a derived class can alter the promised functionality,
and therefore, the class cannot ensure its preconditions and postconditions.
When none of the virtual methods (except for the destructor) are accessible
to its clients, the class can enforce pre- and post-conditions on its interface.

The example from the previous section defines a hierarchy of classes representing
visual controls:

• control is the base class, but there are derived classes, such as button and
checkbox, which are a type of button and, therefore, are derived from this
class.

• The only functionality defined by the control class is drawing the controls.
The draw() method is nonvirtual, but it calls two virtual methods, erase_
background() and paint(), to implement the two phases of drawing the
control.

• erase_background() is a protected virtual method because derived classes
need to call it in their own implementation.

• paint() is a private pure virtual method. Derived classes must implement it,
but are not supposed to call a base implementation.

• The destructor of the control class is public and virtual because objects are
expected to be deleted polymorphically.

A special mention of the destructor of a class is required
for this idiom. It is often stressed that base class
destructors should be virtual so that objects can be
deleted polymorphically (through a pointer or references
to a base class). Destructing objects polymorphically when
the destructor is not virtual incurs undefined behavior.
However, not all base classes are intended to be deleted
polymorphically. For those particular cases, the base class
destructor should not be virtual. However, it should also
not be public, but protected.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Patterns and Idioms

[566]

An example of using these classes is shown as follows. Instances of these classes are
managed by smart pointers to the base class:

std::vector<std::unique_ptr<control>> controls;

controls.emplace_back(std::make_unique<button>());
controls.emplace_back(std::make_unique<checkbox>());

for (auto& c : controls)
 c->draw();

The output of this program is as follows:

erasing control background...
erasing button background...
painting button...
erasing control background...
erasing button background...
erasing checkbox background...
painting checkbox...
destroying button...
destroying control...
destroying checkbox...
destroying button...
destroying control...

The NVI idiom introduces a level of indirection when a public function calls a non-
public virtual function that does the actual implementation. In the previous example,
the draw() method called several other functions, but in many cases, it could be only
one call:

class control
{
protected:
 virtual void initialize_impl()
 {
 std::cout << "initializing control..." << '\n';
 }
public:
 void initialize()
 {

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 10

[567]

 initialize_impl();
 }
};

class button : public control
{
protected:
 virtual void initialize_impl()
 {
 control::initialize_impl();
 std::cout << "initializing button..." << '\n';
 }
};

In this example, the class control has an additional method called initialize()
(the previous content of the class was not shown to keep it simple) that calls a single
non-public virtual method called initialize_impl(), implemented differently in
each derived class. This does not incur much overhead – if any at all – since simple
functions like this are most likely inlined by the compiler anyway.

See also
• Use override and final for virtual methods, in Chapter 1, Learning Modern Core

Language Features, to learn how to specify that a virtual function overrides
another virtual function, as well as how to specify that a virtual function
cannot be overridden in a derived class.

Handling friendship with the attorney-
client idiom
Granting functions and classes access to the non-public parts of a class with a friend
declaration has been usually seen as a sign of bad design, as friendship breaks
encapsulation and ties classes and functions. Friends, whether they are classes or
functions, get access to all the private parts of a class, although they may only need
to access parts of it.

The attorney-client idiom provides a simple mechanism to restrict friends access
to only designated private parts of a class.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Patterns and Idioms

[568]

Getting ready
To demonstrate how to implement this idiom, we will consider the following classes:
Client, which has some private member data and functions (the public interface
is not important here), and Friend, which is supposed to access only parts of the
private details, for instance, data1 and action1(), but has access to everything:

class Client
{
 int data_1;
 int data_2;

 void action1() {}
 void action2() {}

 friend class Friend;
public:
 // public interface
};

class Friend
{
public:
 void access_client_data(Client& c)
 {
 c.action1();
 c.action2();
 auto d1 = c.data_1;
 auto d2 = c.data_1;
 }
};

To understand this idiom, you must be familiar with how friendship is declared
in the C++ language and how it works.

How to do it...
Take the following steps to restrict a friend's access to the private parts of a class:

1. In the Client class, which provides access to its private parts to a friend,
declare the friendships to an intermediate class, called the Attorney class:

class Client

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 10

[569]

{
 int data_1;
 int data_2;

 void action1() {}
 void action2() {}

 friend class Attorney;
public:
 // public interface
};

2. Create a class that contains only private (inline) functions that access the
private parts of the client. This intermediate class allows the actual friend
to access its private parts:

class Attorney
{
 static inline void run_action1(Client& c)
 {
 c.action1();
 }

 static inline int get_data1(Client& c)
 {
 return c.data_1;
 }

 friend class Friend;
};

3. In the Friend class, access the private parts of only the Client class indirectly
through the Attorney class:

class Friend
{
public:
 void access_client_data(Client& c)
 {
 Attorney::run_action1(c);
 auto d1 = Attorney::get_data1(c);
 }
};

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Patterns and Idioms

[570]

How it works...
The attorney-client idiom lays out a simple mechanism to restrict access to the
private parts of the client by introducing a middleman, the attorney. Instead of
providing friendship directly to those using its internal state, the client class offers
friendship to an attorney, which, in turn, provides access to a restricted set of private
data or functions of the client. It does so by defining private static functions. Usually,
these are also inline functions, which avoids any runtime overhead due to the level
of indirection the attorney class introduces. The client's friend gets access to its
private parts by actually using the private parts of the attorney. This idiom is called
attorney-client because it is similar to the way an attorney-client relationship works,
with the attorney knowing all the secrets of the client, but exposing only some of
them to other parties.

In practice, it might be necessary to create more than one attorney for a client class
if different friend classes or functions must access different private parts.

On the other hand, friendship is not inheritable, which means that a class or function
that is friend to class B is not friend with class D, which is derived from B. However,
virtual functions overridden in D are still accessible polymorphically through a
pointer or reference to B from a friend class. Such an example is shown as follows;
calling the run() method from F prints base and derived:

class B
{
 virtual void execute() { std::cout << "base" << '\n'; }
 friend class BAttorney;
};

class D : public B
{
 virtual void execute() override
 { std::cout << "derived" << '\n'; }
};

class BAttorney
{
 static inline void execute(B& b)
 {
 b.execute();
 }
 friend class F;
};

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 10

[571]

class F
{
public:
 void run()
 {
 B;
 BAttorney::execute(b); // prints 'base'

 D;
 BAttorney::execute(d); // prints 'derived'
 }
};

F;
f.run();

There are always trade-offs to using a design pattern, and this one makes no
exception. There are situations when using this pattern may lead to too much
overhead on development, testing, and maintenance. However, the pattern could
prove extremely valuable for some types of applications, such as extensible
frameworks.

See also
• Implementing the pimpl idiom, to learn a technique that enables the separation

of the implementation details from an interface.

Static polymorphism with the curiously
recurring template pattern
Polymorphism provides us with the ability to have multiple forms for the same
interface. Virtual functions allow derived classes to override implementations from
a base class. They represent the most common elements of a form of polymorphism,
called runtime polymorphism, because the decision to call a particular virtual
function from the class hierarchy happens at runtime. It is also called late binding,
because the binding between a function call and the invocation of the function
happens late, during the execution of the program. The opposite of this is called
early binding, static polymorphism, or compile time polymorphism because it
occurs at compile time through functions and operators overloading.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Patterns and Idioms

[572]

On the other hand, a technique called the curiously recurring template pattern (or
CRTP) allows simulating the virtual functions-based runtime polymorphism at
compile time, by deriving classes from a base class template parameterized with
the derived class. This technique is used extensively in some libraries, including
Microsoft's Active Template Library (ATL) and Windows Template Library (WTL).
In this recipe, we will explore this CRTP pattern and learn how to implement it and
how it works.

Getting ready
To demonstrate how the CRTP works, we will revisit the example with the hierarchy
of control classes we implemented in the Separating interfaces from implementations
with the non-virtual interface idiom recipe. We will define a set of control classes
that have functionalities such as drawing the control, which is (in our example) an
operation done in two phases: erasing the background and then painting the control.
For simplicity, in our implementation, these will be operations that will only print
text to the console.

How to do it...
To implement the curiously recurring template pattern in order to achieve static
polymorphism, do the following:

1. Provide a class template that will represent the base class for other classes
that should be treated polymorphically at compile time. Polymorphic
functions are invoked from this class:

template <class T>
class control
{
public:
 void draw()
 {
 static_cast<T*>(this)->erase_background();
 static_cast<T*>(this)->paint();
 }
};

2. Derived classes use the class template as their base class; the derived class is
also the template argument for the base class. The derived class implements
the functions that are invoked from the base class:

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 10

[573]

class button : public control<button>
{
public:
 void erase_background()
 {
 std::cout << "erasing button background..." << '\n';
 }

 void paint()
 {
 std::cout << "painting button..." << '\n';
 }
};

class checkbox : public control<checkbox>
{
public:
 void erase_background()
 {
 std::cout << "erasing checkbox background..."
 << '\n';
 }

 void paint()
 {
 std::cout << "painting checkbox..." << '\n';
 }
};

3. Function templates can handle derived classes polymorphically through
a pointer or reference to the base class template:

template <class T>
void draw_control(control<T>& c)
{
 c.draw();
}

button b;
draw_control(b);

checkbox c;
draw_control(c);

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Patterns and Idioms

[574]

How it works...
Virtual functions can represent a performance issue, especially when they are small
and called multiple times in a loop. Modern hardware has made most of these
situations rather irrelevant, but there are still some categories of applications where
performance is critical and any performance gains are important. The curiously
recurring template pattern enables the simulation of virtual calls at compile time
using metaprogramming, which eventually translates to functions overloading.

This pattern may look rather strange at first glance, but it is perfectly legal. The idea
is to derive a class from a base class that is a template class, and then pass the derived
class itself for the type template parameter of the base class. The base class then
makes calls to the derived class functions. In our example, control<button>::draw()
is declared before the button class is known to the compiler. However, the control
class is a class template, which means it is instantiated only when the compiler
encounters code that uses it. At that point, the button class, in this example, is
already defined and known to the compiler, so calls to button::erase_background()
and button::paint() can be made.

To invoke the functions from the derived class, we must first obtain a pointer to
the derived class. That is done with a static_cast conversion, as seen in static_
cast<T*>(this)->erase_background(). If this has to be done many times, the code
can be simplified by providing a private function to do that:

template <class T>
class control
{
 T* derived() { return static_cast<T*>(this); }
public:
 void draw()
 {
 derived()->erase_background();
 derived()->paint();
 }
};

There are some pitfalls when using the CRTP that you must be aware of:

• All the functions in the derived classes that are called from the base class
template must be public; otherwise, the base class specialization must be
declared a friend of the derived class:

class button : public control<button>
{
private:

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 10

[575]

 friend class control<button>;
 void erase_background()
 {
 std::cout << "erasing button background..." << '\n';
 }

 void paint()
 {
 std::cout << "painting button..." << '\n';
 }
};

• It is not possible to store, in a homogeneous container, such as a vector or
list, objects of CRTP types because each base class is a unique type (such
as control<button> and control<checkbox>). If this is actually necessary,
then a workaround can be used to implement it. This will be discussed
and exemplified in the next section.

• When using this technique, the size of a program may increase, because
of the way templates are instantiated.

There's more...
When objects of types implementing the CRTP need to be stored homogeneously
in a container, an additional idiom must be used. The base class template must be,
itself, derived from another class with pure virtual functions (and a virtual public
destructor). To exemplify this on the control class, the following changes are
necessary:

class controlbase
{
public:
 virtual void draw() = 0;
 virtual ~controlbase() {}
};

template <class T>
class control : public controlbase
{
public:
 virtual void draw() override
 {
 static_cast<T*>(this)->erase_background();

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Patterns and Idioms

[576]

 static_cast<T*>(this)->paint();
 }
};

No changes need to be made to the derived classes, such as button and checkbox.
Then, we can store pointers to the abstract class in a container, such as std::vector,
as shown here:

void draw_controls(std::vector<std::unique_ptr<controlbase>>& v)
{
 for (auto & c : v)
 {
 c->draw();
 }
}

std::vector<std::unique_ptr<controlbase>> v;
v.emplace_back(std::make_unique<button>());
v.emplace_back(std::make_unique<checkbox>());

draw_controls(v);

See also
• Implementing the pimpl idiom, to learn a technique that enables the separation

of the implementation details from an interface.
• Separating interfaces from implementations with the non-virtual interface idiom,

to explore an idiom that promotes the separation of concerns of interfaces
and implementations by making (public) interfaces non-virtual and virtual
functions private.

Implementing a thread-safe singleton
Singleton is probably one of the most well-known design patterns. It restricts the
instantiation of a single object of a class, something that is necessary in some cases,
although many times the use of a singleton is rather an anti-pattern that can be
avoided with other design choices.

Since a singleton means a single instance of a class is available to an entire program,
it is likely that such a unique instance might be accessible from different threads.
Therefore, when you implement a singleton, you should also make it thread-safe.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 10

[577]

Before C++11, doing that was not an easy job, and a double-checked locking
technique was the typical approach. However, Scott Meyers and Andrei
Alexandrescu showed, in a paper called C++ and the Perils of Double-Checked Locking,
that using this pattern did not guarantee a thread-safe singleton implementation
in portable C++. Fortunately, this changed in C++11, and this recipe shows how
to write a thread-safe singleton in modern C++.

Getting ready
For this recipe, you need to know how static storage duration, internal linkage, and
deleted and defaulted functions work. You should also read the previous recipe,
Static polymorphism with the curiously recurring template pattern, first if you have not
done that yet and are not familiar with that pattern as we will use it later in this
recipe.

How to do it...
To implement a thread-safe singleton, you should do the following:

1. Define the Singleton class:
class Singleton
{
};

2. Make the default constructor private:
private:
 Singleton() {}

3. Make the copy constructor and copy assignment operator public and delete,
respectively:

public:
 Singleton(Singleton const &) = delete;
 Singleton& operator=(Singleton const&) = delete;

4. The function that creates and returns the single instance should be static and
should return a reference to the class type. It should declare a static object of
the class type and return a reference to it:

public:
 static Singleton& instance()
 {
 static Singleton single;

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Patterns and Idioms

[578]

 return single;
 }

How it works...
Since singleton objects are not supposed to be created by the user directly, all
constructors are either private or public and deleted. The default constructor is
private and not deleted because an instance of the class must be actually created in
the class code. A static function, called instance(), in this implementation, returns
the single instance of the class.

The implementation of the instance() method may look simplistic and not thread-
safe at first glance, especially if you are familiar with the double-checked locking
pattern (DCLP). In C++11, this is actually no longer necessary due to a key detail of
how objects with static storage durations are initialized. Initialization happens only
once, even if several threads attempt to initialize the same static object at the same
time. The responsibility of the DCLP has been moved from the user to the compiler,
although the compiler may use another technique to guarantee the result.

The following quote from the C++ standard, paragraph 6.7.4, defines the rules for
static objects initialization (the highlight is the part related to concurrent initialization):

"The zero-initialization (8.5) of all block-scope variables with static storage duration
(3.7.1) or thread storage duration (3.7.2) is performed before any other initialization
takes place. Constant initialization (3.6.2) of a block-scope entity with static storage
duration, if applicable, is performed before its block is first entered. An implementation
is permitted to perform early initialization of other block-scope variables with static
or thread storage duration under the same conditions that an implementation is
permitted to statically initialize a variable with static or thread storage duration in
namespace scope (3.6.2). Otherwise, such a variable is initialized the first time control
passes through its declaration; such a variable is considered initialized upon the
completion of its initialization. If the initialization exits by throwing an exception, the
initialization is not complete, so it will be tried again the next time control enters the
declaration. If control enters the declaration concurrently while the variable
is being initialized, the concurrent execution shall wait for completion of the
initialization. If control re-enters the declaration recursively while the variable is
being initialized, the behavior is undefined."

Though most implementations return a pointer, it actually makes
more sense to return a reference, as there is no circumstance under
which this function would return a null pointer (no object).

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 10

[579]

The static local object has storage duration, but it is instantiated only when it is first
used (at the first call to the method instance()). The object is deallocated when the
program exists. As a side note, the only possible advantage of returning a pointer
and not a reference is the ability to delete this single instance at some point, before
the program exists, and then maybe recreate it. This, again, does not make too much
sense, as it conflicts with the idea of a single, global instance of a class, accessible
at any point from any place in the program.

There's more...
There might be situations in larger code bases where you need more than one
singleton type. In order to avoid writing the same pattern several times, you can
implement it in a generic way. For this, we need to employ the curiously recurring
template pattern (or CRTP) seen in the previous recipe. The actual singleton is
implemented as a class template. The instance() method creates and returns an
object of the type template parameter, which will be the derived class:

template <class T>
class SingletonBase
{
protected:
 SingletonBase() {}
public:
 SingletonBase(SingletonBase const &) = delete;
 SingletonBase& operator=(SingletonBase const&) = delete;

 static T& instance()
 {
 static T single;
 return single;
 }
};

class Single : public SingletonBase<Single>
{
 Single() {}
 friend class SingletonBase<Single>;
public:
 void demo() { std::cout << "demo" << '\n'; }
};

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Implementing Patterns and Idioms

[580]

The Singleton class from the previous section has become the SingletonBase class
template. The default constructor is no longer private but protected because it must
be accessible from the derived class. In this example, the class that needs to have
a single object instantiated is called Single. Its constructors must be private, but
the default constructor must also be available to the base class template; therefore,
SingletonBase<Single> is a friend of the Single class.

See also
• Static polymorphism with the curiously recurring template pattern, to learn

about the CRTP pattern, which allows simulating runtime polymorphism at
compile time by deriving classes from a base class template parameterized
with the derived class.

• Defaulted and deleted functions, in Chapter 3, Exploring Functions, to learn about
the use of the default specifier on special member functions and how to
define functions as deleted with the delete specifier.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

[581]

11
Exploring Testing

Frameworks
Testing the code is an important part of software development. Although there is no
support for testing in the C++ standard, there is a large variety of frameworks for
unit testing C++ code. The purpose of this chapter is to get you started with several
modern and widely used testing frameworks that enable you to write portable
testing code. The frameworks that will be covered in this chapter are Boost.Test,
Google Test, and Catch2.

This chapter includes the following recipes:

• Getting started with Boost.Test
• Writing and invoking tests with Boost.Test
• Asserting with Boost.Test
• Using test fixtures with Boost.Test
• Controlling output with Boost.Test
• Getting started with Google Test
• Writing and invoking tests with Google Test
• Asserting with Google Test
• Using test fixtures with Google Test
• Controlling output with Google Test
• Getting started with Catch2

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Testing Frameworks

[582]

• Writing and invoking tests with Catch2
• Asserting with Catch2
• Controlling output with Catch2

These three frameworks were chosen due to their wide use, rich capabilities, the ease
with which they can be used to write and execute tests, their extensibility, and their
customization. The following table shows a short comparison of the features of these
three libraries:

Feature Boost.Test Google Test Catch2
Easy to install Yes Yes Yes
Header-only Yes No Yes
Compiled library Yes Yes Yes
Easy to write tests Yes Yes Yes
Automatic test
registration

Yes Yes Yes

Supports test suites Yes Yes No (indirectly
with tags)

Supports fixtures Yes (setup/
teardown)

Yes (setup/
teardown)

Yes (multiple
ways)

Rich set of asserts Yes Yes Yes
Non-fatal asserts Yes Yes Yes
Multiple output
formats

Yes (includes HRF,
XML)

Yes (includes HRF,
XML)

Yes (includes
HRF, XML)

Filtering of test
execution

Yes Yes Yes

License Boost Apache 2.0 Boost

All these features will be discussed in detail for each framework. This chapter has a
symmetric structure, with 4-5 recipes dedicated to each testing framework. The first
framework to look at is Boost.Test.

Getting started with Boost.Test
Boost.Test is one of the oldest and most popular C++ testing frameworks. It provides
an easy-to-use set of APIs for writing tests and organizing them into test cases and
test suites. It has good support for asserting, exception handling, fixtures, and other
important features required for a testing framework.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 11

[583]

Throughout the next few recipes, we will explore the most important features it
has that enable you to write unit tests. In this recipe, we will see how to install the
framework and create a simple test project.

Getting ready
The Boost.Test framework has a macro-based API. Although you only need to
use the supplied macros for writing tests, a good understanding of macros is
recommended if you want to use the framework well.

How to do it...
In order to set up your environment to use Boost.Test, do the following:

1. Download the latest version of the Boost library from http://www.boost.
org/.

2. Unzip the content of the archive.
3. Build the library using the provided tools and scripts in order to use either

the static or shared library variant. This step is not necessary if you only plan
to use the header-only version of the library.

To create your first test program using the header-only variant of the Boost.Test
library, do the following:

1. Create a new, empty C++ project.
2. Do the necessary setup specific to the development environment you are

using to make the boost main folder available to the project for including
header files.

3. Add a new source file to the project with the following content:
#define BOOST_TEST_MODULE My first test module
#include <boost/test/included/unit_test.hpp>

BOOST_AUTO_TEST_CASE(first_test_function)
{
 int a = 42;
 BOOST_TEST(a > 0);
}

4. Build and run the project.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.boost.org/
http://www.boost.org/

Exploring Testing Frameworks

[584]

How it works...
The Boost.Test library can be downloaded, along with other Boost libraries, from
http://www.boost.org/. In this book, I used version 1.73, but the features discussed
in these recipes will probably be available for many future versions. The Test library
comes in three variants:

• Single header: This enables you to write test programs without building the
library; you just need to include a single header. Its limitation is that you can
only have a single translation unit for the module; however, you can still split
the module into multiple header files so that you can separate different test
suites into different files.

• Static library: This enables you to split a module across different translation
units, but the library needs to be built first as a static library.

• Shared library: This enables the same scenario as that of the static library.
However, it has the advantage that, for programs with many test modules,
this library is linked only once, and not once for each module, resulting
in a smaller binary size. However, in this case, the shared library must be
available at runtime.

For simplicity, we will use the single-header variant in this book. In the case of static
and shared library variants, you'd need to build the library. The downloaded archive
contains scripts for building the library. However, the exact steps vary, depending on
the platform and the compiler; they will not be covered here but are available online.

There are several terms and concepts that you need to understand in order to use
the library:

• Test module is a program that performs tests. There are two types of
modules: single-file (when you use the single-header variant) and multifile
(when you use either the static or shared variant).

• Test assertion is a condition that is checked by a test module.
• Test case is a group of one or more test assertions that is independently

executed and monitored by a test module so that, if it fails or leaks uncaught
exceptions, the execution of other tests will not be stopped.

• Test suite is a collection of one or more test cases or test suites.
• Test unit is either a test case or test suite.
• Test tree is a hierarchical structure of test units. In this structure, test cases

are leaves and test suites are non-leaves.
• Test runner is a component that, given a test tree, performs the necessary

initialization, execution of tests, and results reporting.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.boost.org/

Chapter 11

[585]

• Test report is the report produced by the test runner from executing the tests.
• Test log is the recording of all the events that occur during the execution

of the test module.
• Test setup is the part of the test module responsible for the initialization of

the framework, construction of the test tree, and individual test case setups.
• Test cleanup is a part of the test module responsible for cleanup operations.
• Test fixture is a pair of setup and cleanup operations that are invoked for

multiple test units in order to avoid repetitive code.

With these concepts defined, it is possible to explain the sample code listed earlier:

1. #define BOOST_TEST_MODULE My first test module defines a stub for
module initialization and sets a name for the main test suite. This must
be defined before you include any library header.

2. #include <boost/test/included/unit_test.hpp> includes the single-header
library, which includes all the other necessary headers.

3. BOOST_AUTO_TEST_CASE(first_test_function) declares a test case without
parameters (first_test_function) and automatically registers it to be
included in the test tree as part of the enclosing test suite. In this example,
the test suite is the main test suite defined by BOOST_TEST_MODULE.

4. BOOST_TEST(true); performs a test assertion.

The output of executing this test module is as follows:

Running 1 test case...
*** No errors detected

There's more...
If you don't want the library to generate the main() function but want to write it
yourself, then you need to define a couple more macros – BOOST_TEST_NO_MAIN
and BOOST_TEST_ALTERNATIVE_INIT_API – before you include any of the library
headers. Then, in the main() function that you supply, invoke the default test runner
called unit_test_main() by providing the default initialization function called
init_unit_test() as an argument, as shown in the following code snippet:

#define BOOST_TEST_MODULE My first test module
#define BOOST_TEST_NO_MAIN
#define BOOST_TEST_ALTERNATIVE_INIT_API
#include <boost/test/included/unit_test.hpp>

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Testing Frameworks

[586]

BOOST_AUTO_TEST_CASE(first_test_function)
{
 int a = 42;
 BOOST_TEST(a > 0);
}

int main(int argc, char* argv[])
{
 return boost::unit_test::unit_test_main(init_unit_test, argc, argv);
}

It is also possible to customize the initialization function of the test runner. In this
case, you must remove the definition of the BOOST_TEST_MODULE macro and instead
write an initialization function that takes no arguments and returns a bool value:

#define BOOST_TEST_NO_MAIN
#define BOOST_TEST_ALTERNATIVE_INIT_API
#include <boost/test/included/unit_test.hpp>
#include <iostream>

BOOST_AUTO_TEST_CASE(first_test_function)
{
 int a = 42;
 BOOST_TEST(a > 0);
}

bool custom_init_unit_test()
{
 std::cout << "test runner custom init\n";
 return true;
}

int main(int argc, char* argv[])
{
 return boost::unit_test::unit_test_main(
 custom_init_unit_test, argc, argv);
}

It is possible to customize the initialization function without
writing the main() function yourself. In this case, the
BOOST_TEST_NO_MAIN macro should not be defined and the
initialization function should be called init_unit_test().

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 11

[587]

See also
• Writing and invoking tests with Boost.Test, to see how to create test suites and

test cases using the single-header version of the Boost.Test library, as well
as how to run tests.

Writing and invoking tests with Boost.
Test
The library provides both an automatic and manual way of registering test cases and
test suites to be executed by the test runner. Automatic registration is the simplest
way because it enables you to construct a test tree just by declaring test units. In this
recipe, we will see how to create test suites and test cases using the single-header
version of the library, as well as how to run tests.

Getting ready
To exemplify the creation of test suites and test cases, we will use the following class,
which represents a three-dimensional point. This implementation contains methods
for accessing the properties of a point, comparison operators, a stream output
operator, and a method for modifying the position of a point:

class point3d
{
 int x_;
 int y_;
 int z_;
public:
 point3d(int const x = 0,
 int const y = 0,
 int const z = 0):x_(x), y_(y), z_(z) {}

 int x() const { return x_; }
 point3d& x(int const x) { x_ = x; return *this; }

 int y() const { return y_; }
 point3d& y(int const y) { y_ = y; return *this; }

 int z() const { return z_; }
 point3d& z(int const z) { z_ = z; return *this; }

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Testing Frameworks

[588]

 bool operator==(point3d const & pt) const
 {
 return x_ == pt.x_ && y_ == pt.y_ && z_ == pt.z_;
 }

 bool operator!=(point3d const & pt) const
 {
 return !(*this == pt);
 }

 bool operator<(point3d const & pt) const
 {
 return x_ < pt.x_ || y_ < pt.y_ || z_ < pt.z_;
 }

 friend std::ostream& operator<<(std::ostream& stream,
 point3d const & pt)
 {
 stream << "(" << pt.x_ << "," << pt.y_ << "," << pt.z_ << ")";
 return stream;
 }

 void offset(int const offsetx, int const offsety,
 int const offsetz)
 {
 x_ += offsetx;
 y_ += offsety;
 z_ += offsetz;
 }

 static point3d origin() { return point3d{}; }
};

Before you go any further, notice that the test cases in this recipe contain erroneous
tests on purpose so that they produce failures.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 11

[589]

How to do it...
Use the following macros to create test units:

• To create a test suite, use BOOST_AUTO_TEST_SUITE(name) and BOOST_AUTO_
TEST_SUITE_END():

BOOST_AUTO_TEST_SUITE(test_construction)
// test cases
BOOST_AUTO_TEST_SUITE_END()

• To create a test case, use BOOST_AUTO_TEST_CASE(name). Test cases are defined
between BOOST_AUTO_TEST_SUITE(name) and BOOST_AUTO_TEST_SUITE_END(),
as shown in the following code snippet:

BOOST_AUTO_TEST_CASE(test_constructor)
{
 auto p = point3d{ 1,2,3 };
 BOOST_TEST(p.x() == 1);
 BOOST_TEST(p.y() == 2);
 BOOST_TEST(p.z() == 4); // will fail
}

BOOST_AUTO_TEST_CASE(test_origin)
{
 auto p = point3d::origin();
 BOOST_TEST(p.x() == 0);
 BOOST_TEST(p.y() == 0);
 BOOST_TEST(p.z() == 0);
}

• To create a nested test suite, define a test suite inside another test suite:
BOOST_AUTO_TEST_SUITE(test_operations)
BOOST_AUTO_TEST_SUITE(test_methods)

BOOST_AUTO_TEST_CASE(test_offset)

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Testing Frameworks

[590]

{
 auto p = point3d{ 1,2,3 };
 p.offset(1, 1, 1);
 BOOST_TEST(p.x() == 2);
 BOOST_TEST(p.y() == 3);
 BOOST_TEST(p.z() == 3); // will fail
}

BOOST_AUTO_TEST_SUITE_END()
BOOST_AUTO_TEST_SUITE_END()

• To add decorators to a test unit, add an additional parameter to the test
unit's macros. Decorators could include description, label, precondition,
dependency, fixture, and so on. Refer to the following code snippet, which
illustrates this:

BOOST_AUTO_TEST_SUITE(test_operations)
BOOST_AUTO_TEST_SUITE(test_operators)

BOOST_AUTO_TEST_CASE(
 test_equal,
 *boost::unit_test::description("test operator==")
 *boost::unit_test::label("opeq"))
{
 auto p1 = point3d{ 1,2,3 };
 auto p2 = point3d{ 1,2,3 };
 auto p3 = point3d{ 3,2,1 };
 BOOST_TEST(p1 == p2);
 BOOST_TEST(p1 == p3); // will fail
}

BOOST_AUTO_TEST_CASE(
 test_not_equal,
 *boost::unit_test::description("test operator!=")
 *boost::unit_test::label("opeq")
 *boost::unit_test::depends_on(
 "test_operations/test_operators/test_equal"))
{
 auto p1 = point3d{ 1,2,3 };
 auto p2 = point3d{ 3,2,1 };
 BOOST_TEST(p1 != p2);
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 11

[591]

BOOST_AUTO_TEST_CASE(test_less)
{
 auto p1 = point3d{ 1,2,3 };
 auto p2 = point3d{ 1,2,3 };
 auto p3 = point3d{ 3,2,1 };
 BOOST_TEST(!(p1 < p2));
 BOOST_TEST(p1 < p3);
}

BOOST_AUTO_TEST_SUITE_END()
BOOST_AUTO_TEST_SUITE_END()

To execute the tests, do the following (notice that the command line is Windows-
specific, but it should be trivial to replace that with the one specific to Linux or macOS):

• To execute the entire test tree, run the program (the test module) without any
parameters:

chapter11bt_02.exe

Running 6 test cases...
f:/chapter11bt_02/main.cpp(12): error: in "test_construction/test_
constructor": check p.z() == 4 has failed [3 != 4]
f:/chapter11bt_02/main.cpp(35): error: in "test_operations/test_
methods/test_offset": check p.z() == 3 has failed [4 != 3]
f:/chapter11bt_02/main.cpp(55): error: in "test_operations/test_
operators/test_equal": check p1 == p3 has failed [(1,2,3) !=
(3,2,1)]
*** 3 failures are detected in the test module "Testing point 3d"

• To execute a single test suite, run the program with the argument run_test,
specifying the path of the test suite:

chapter11bt_02.exe --run_test=test_construction

Running 2 test cases...
f:/chapter11bt_02/main.cpp(12): error: in "test_construction/test_
constructor": check p.z() == 4 has failed [3 != 4]
*** 1 failure is detected in the test module "Testing point 3d"

• To execute a single test case, run the program with the argument run_test,
specifying the path of the test case:

chapter11bt_02.exe --run_test=test_construction/test_origin

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Testing Frameworks

[592]

Running 1 test case...
*** No errors detected

• To execute a collection of test suites and test cases defined under the same
label, run the program with the argument run_test, specifying the label
name prefixed with @:

chapter11bt_02.exe --run_test=@opeq

Running 2 test cases...
f:/chapter11bt_02/main.cpp(56): error: in "test_operations/test_
operators/test_equal": check p1 == p3 has failed [(1,2,3) !=
(3,2,1)]
*** 1 failure is detected in the test module "Testing point 3d"

How it works...
A test tree is constructed from test suites and test cases. A test suite can contain
one or more test cases and other nested test suites as well. Test suites are similar
to namespaces in the sense that they can be stopped and restarted multiple times
in the same file or in different files. Automatic registration of test suites is done with
the macros BOOST_AUTO_TEST_SUITE, which requires a name, and BOOST_AUTO_TEST_
SUITE_END. Automatic registration of test cases is done with BOOST_AUTO_TEST_CASE.
Test units (whether they're cases or suites) become members of the closest test suite.
Test units defined at the file scope level become members of the master test suite—
the implicit test suite created with the BOOST_TEST_MODULE declaration.

Both test suites and test cases can be decorated with a series of attributes that
affect how test units will be processed during the execution of the test module.
The currently supported decorators are as follows:

• depends_on: This indicates a dependency between the current test unit and
a designated test unit.

• description: This provides a semantic description of a test unit.
• enabled / disabled: These set the default run status of a test unit to either

true or false.
• enable_if: This sets the default run status of a test unit to either true

or false, depending on the evaluation of a compile-time expression.
• expected_failures: This indicates the expected failures for a test unit.
• fixture: This specifies a pair of functions (startup and cleanup) to be

called before and after the execution of a test unit.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 11

[593]

• label: With this, you can associate a test unit with a label. The same label
can be used for multiple test units, and a test unit can have multiple labels.

• precondition: This associates a predicate with a test unit, which is used
at runtime to determine the run status of the test unit.

• timeout: Specifies a timeout for a unit test, in wall-clock time. If the test lasts
longer than the specified timeout, the test fails.

• tolerance: This decorator specifies the default comparison tolerance for the
floating-point type FTP in the decorated test unit.

If the execution of a test case results in an unhandled exception, the framework
will catch the exception and terminate the execution of the test case with a failure.
However, the framework provides several macros to test whether a particular piece
of code raises, or does not raise, exceptions. For more information, see the next
recipe, Asserting with Boost.Test.

The test units that compose the module's test tree can be executed entirely or
partially. In both cases, to execute the test units, execute the (binary) program, which
represents the test module. To execute only some of the test units, use the --run_
test command-line option (or --t if you want to use a shorter name). This option
allows you to filter the test units and specify either a path or label. A path consists
of a sequence of test suite and/or test case names, such as test_construction or
test_operations/test_methods/test_offset. A label is a name defined with the
label decorator and is prefixed with @ for the run_test parameter. This parameter
is repeatable, which means you can specify multiple filters on it.

See also
• Getting started with Boost.Test, to learn how to install the Boost.Test

framework and how to create a simple test project.
• Asserting with Boost.Test, to explore the rich set of assertion macros from the

Boost.Test library.

Asserting with Boost.Test
A test case contains one or more tests. The Boost.Test library provides a series of
APIs in the form of macros to write tests. In the previous recipe, you learned a bit
about the BOOST_TEST macro, which is the most important and widely used macro
of the library. In this recipe, we will discuss how the BOOST_TEST macro can be used
in further detail.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Testing Frameworks

[594]

Getting ready
You should now be familiar with writing test suites and test cases, a topic we
covered in the previous recipe.

How to do it...
The following list shows some of the most commonly used APIs for performing tests:

• BOOST_TEST, in its plain form, is used for most tests:
int a = 2, b = 4;
BOOST_TEST(a == b);

BOOST_TEST(4.201 == 4.200);

std::string s1{ "sample" };
std::string s2{ "text" };
BOOST_TEST(s1 == s2, "not equal");

• BOOST_TEST, along with the tolerance() manipulator, is used to indicate the
tolerance of floating-point comparisons:

BOOST_TEST(4.201 == 4.200,
 boost::test_tools::tolerance(0.001));

• BOOST_TEST, along with the per_element() manipulator, is used to perform an
element-wise comparison of containers (even of different types):

std::vector<int> v{ 1,2,3 };
std::list<short> l{ 1,2,3 };

BOOST_TEST(v == l, boost::test_tools::per_element());

• BOOST_TEST, along with the ternary operator and compound statements using
the logical || or &&, requires an extra set of parentheses:

BOOST_TEST((a > 0 ? true : false));
BOOST_TEST((a > 2 && b < 5));

• BOOST_ERROR is used to unconditionally fail a test and produce a message in
the report. This is equivalent to BOOST_TEST(false, message):

BOOST_ERROR("this test will fail");

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 11

[595]

• BOOST_TEST_WARN is used to produce a warning in the report in case a test is
failing, without increasing the number of encountered errors and stopping
the execution of the test case:

BOOST_TEST_WARN(a == 4, "something is not right");

• BOOST_TEST_REQUIRE is used to ensure that test case preconditions are met;
the execution of the test case is stopped otherwise:

BOOST_TEST_REQUIRE(a == 4, "this is critical");

• BOOST_FAIL is used to unconditionally stop the execution of the test case,
increase the number of encountered errors, and produce a message in the
report. This is equivalent to BOOST_TEST_REQUIRE(false, message):

BOOST_FAIL("must be implemented");

• BOOST_IS_DEFINED is used to check whether a particular preprocessor
symbol is defined at runtime. It is used together with BOOST_TEST to perform
validation and logging:

BOOST_TEST(BOOST_IS_DEFINED(UNICODE));

How it works...
The library defines a variety of macros and manipulators for performing test
assertions. The most commonly used one is BOOST_TEST. This macro simply evaluates
an expression; if it fails, it increases the error count but continues the execution of the
test case. It has three variants actually:

• BOOST_TEST_CHECK is the same as BOOST_TEST and is used to perform checks,
as described in the previous section.

• BOOST_TEST_WARN is used for assertions meant to provide information, but
without increasing the error count and stopping the execution of the test
case.

• BOOST_TEST_REQUIRE is intended to ensure that pre-conditions that are
required for test cases to continue execution are met. Upon failure, this macro
increases the error count and stops the execution of the test case.

The general form of the test macro is BOOST_TEST(statement). This macro provides
rich and flexible reporting capabilities. By default, it shows not only the statement,
but also the value of the operands, to enable quick identification of the failure's
cause.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Testing Frameworks

[596]

However, the user could provide an alternative failure description; in this scenario,
the message is logged in the test report:

BOOST_TEST(a == b);
// error: in "regular_tests": check a == b has failed [2 != 4]

BOOST_TEST(a == b, "not equal");
// error: in "regular_tests": not equal

This macro also allows you to control the comparison process with special support
for the following:

• The first is a floating-point comparison, where tolerance can be defined
to test equality.

• Secondly, it supports a container's comparison using several methods:
default comparison (using the overloaded operator ==), per-element
comparison, and lexicographic comparison (using the lexicographical
order). Per-element comparison enables the comparison of different types of
containers (such as vector and list) in the order given by the forward iterators
of the container; it also takes into account the size of the container (meaning
that it first tests the sizes and, only if they are equal, continues with the
comparison of the elements).

• Lastly, it supports bitwise comparison of the operands. Upon failure,
the framework reports the index of the bit where the comparison failed.

The BOOST_TEST macro does have some limitations. It cannot be used with compound
statements that use a comma, because such statements would be intercepted and
handled by the preprocessor or the ternary operator, and compound statements
using the logical operators || and &&. The latter cases have a workaround: a second
pair of parentheses, as in BOOST_TEST((statement)).

Several macros are available for testing whether a particular exception is raised
during the evaluation of an expression. In the following list, <level> is either CHECK,
WARN, or REQUIRE:

• BOOST_<level>_NO_THROW(expr) checks whether an exception is raised from
the expr expression. Any exception raised during the evaluation of expr
is caught by this assertion and is not propagated to the test body. If any
exception occurs, the assertion fails.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 11

[597]

• BOOST_<level>_THROW(expr, exception_type) checks whether an exception
of exception_type is raised from the expr expression. If the expression expr
does not raise any exception, then the assertion fails. Exceptions of types
other than exception_type are not caught by this assertion and can be
propagated to the test body. Uncaught exceptions in a test case are caught
by the execution monitor, but they result in failed test cases.

• BOOST_<level>_EXCEPTION(expr, exception_type, predicate) checks
whether an exception of exception_type is raised from the expr expression.
If so, it passes the expression to the predicate for further examination. If no
exception is raised or an exception of a type different than exception_type is
raised, then the assertion behaves like BOOST_<level>_THROW.

This recipe discussed only the most common APIs for testing and their typical
usage. However, the library provides many more APIs. For further reference, check
the online documentation. For version 1.73, refer to https://www.boost.org/doc/
libs/1_73_0/libs/test/doc/html/index.html.

See also
• Writing and invoking tests with Boost.Test, to see how to create test suites and

test cases using the single-header version of the Boost.Test library, as well as
how to run tests.

Using fixtures in Boost.Test
The larger a test module is and the more similar the test cases are, the more likely
it is to have test cases that require the same setup, cleanup, and maybe the same
data. A component that contains these is called a test fixture or test context. Fixtures
are important to establish a well-defined environment for running tests so that the
results are repeatable. Examples can include copying a specific set of files to some
location before executing the tests and deleting them after, or loading data from
a particular data source.

Boost.Test provides several ways to define test fixtures for a test case, test suite,
or a module (globally). In this recipe, we will look at how fixtures work.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.boost.org/doc/libs/1_73_0/libs/test/doc/html/index.html
https://www.boost.org/doc/libs/1_73_0/libs/test/doc/html/index.html

Exploring Testing Frameworks

[598]

Getting ready
The examples in this recipe use the following classes and functions for specifying test
unit fixtures:

struct standard_fixture
{
 standard_fixture() {BOOST_TEST_MESSAGE("setup");}
 ~standard_fixture() {BOOST_TEST_MESSAGE("cleanup");}
 int n {42};
};

struct extended_fixture
{
 std::string name;
 int data;

 extended_fixture(std::string const & n = "") : name(n), data(0)
 {
 BOOST_TEST_MESSAGE("setup "+ name);
 }

 ~extended_fixture()
 {
 BOOST_TEST_MESSAGE("cleanup "+ name);
 }
};

void fixture_setup()
{
 BOOST_TEST_MESSAGE("fixture setup");
}

void fixture_cleanup()
{
 BOOST_TEST_MESSAGE("fixture cleanup");
}

The first two are classes whose constructors represent the setup function and the
destructors represent the teardown function. At the end of the sample, there is a pair
of functions, fixture_setup() and fixture_cleanup(), that represent functions for
a test's setup and cleanup.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 11

[599]

How to do it...
Use the following methods to define test fixtures for one or multiple test units:

• To define a fixture for a particular test case, use the BOOST_FIXTURE_TEST_CASE
macro:

BOOST_FIXTURE_TEST_CASE(test_case, extended_fixture)
{
 data++;
 BOOST_TEST(data == 1);
}

• To define a fixture for all the test cases in a test suite, use BOOST_FIXTURE_
TEST_SUITE:

BOOST_FIXTURE_TEST_SUITE(suite1, extended_fixture)

BOOST_AUTO_TEST_CASE(case1)
{
 BOOST_TEST(data == 0);
}

BOOST_AUTO_TEST_CASE(case2)
{
 data++;
 BOOST_TEST(data == 1);
}

BOOST_AUTO_TEST_SUITE_END()

• To define a fixture for all the test units in a test suite, except for one or several
test units, use BOOST_FIXTURE_TEST_SUITE. You can overwrite it to a particular
test unit with BOOST_FIXTURE_TEST_CASE for a test case and BOOST_FIXTURE_
TEST_SUITE for a nested test suite:

BOOST_FIXTURE_TEST_SUITE(suite2, extended_fixture)

BOOST_AUTO_TEST_CASE(case1)
{
 BOOST_TEST(data == 0);
}

BOOST_FIXTURE_TEST_CASE(case2, standard_fixture)
{

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Testing Frameworks

[600]

 BOOST_TEST(n == 42);
}

BOOST_AUTO_TEST_SUITE_END()

• To define more than a single fixture for a test case or test suite, use
boost::unit_test::fixture with the BOOST_AUTO_TEST_SUITE and BOOST_
AUTO_TEST_CASE macros:

BOOST_AUTO_TEST_CASE(test_case_multifix,
 * boost::unit_test::fixture<extended_fixture>
 (std::string("fix1"))
 * boost::unit_test::fixture<extended_fixture>
 (std::string("fix2"))
 * boost::unit_test::fixture<standard_fixture>())
{
 BOOST_TEST(true);
}

• To use free functions as setup and teardown operations in the case
of a fixture, use boost::unit_test::fixture:

BOOST_AUTO_TEST_CASE(test_case_funcfix,
 * boost::unit_test::fixture(&fixture_setup,
 &fixture_cleanup))
{
 BOOST_TEST(true);
}

• To define a fixture for the module, use BOOST_GLOBAL_FIXTURE:
BOOST_GLOBAL_FIXTURE(standard_fixture);

How it works...
The library supports several fixture models:

• A class model, where the constructor acts as the setup function and
the destructor as the cleanup function. An extended model allows the
constructor to have one parameter. In the preceding example, standard_
fixture implemented the first model and extended_fixture implemented
the second model.

• A pair of free functions: one that defines the setup and the other, which is
optional, that implements the cleanup code. In the preceding example, we
came across these when discussing fixture_setup() and fixture_cleanup().

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 11

[601]

Fixtures implemented as classes can also have data members, and these members
are made available to the test unit. If a fixture is defined for a test suite, it is available
implicitly to all the test units that are grouped under this test suite. However, it is
possible that test units contained in such a test suite could redefine the fixture. In this
case, the fixture defined in the closest scope is the one available to the test unit.

It is possible to define multiple fixtures for a test unit. However, this is done with
the boost::unit_test::fixture() decorator, not with macros. The test suite and test
case are defined, in this case, with the BOOST_TEST_SUITE/BOOST_AUTO_TEST_SUITE
and BOOST_TEST_CASE/BOOST_AUTO_TEST_CASE macros. Multiple fixture() decorators
can be composed together with operator *, as seen in the previous section. A
drawback of this approach is that if you use the fixture decorator with a class that
contains member data, then these members will not be available for the test units.

A new fixture object is constructed for each test case when it is executed, and the
object is destroyed at the end of the test case.

A global fixture uses the generic test class model (the model with the default
constructor); you can define any number of global fixtures (allowing you to organize
setup and cleanup by category, if necessary). Global fixtures are defined with the
BOOST_GLOBAL_FIXTURE macro, and they have to be defined at the test file scope
(not inside any test unit).

See also
• Writing and invoking tests with Boost.Test, to see how to create test suites and

test cases using the single-header version of the Boost.Test library, as well
as how to run tests.

Controlling outputs with Boost.Test
The framework provides us with the ability to customize what is shown in the test
log and test report and then format the results. Currently, there are two that are
supported: a human-readable format and XML (also with a JUNIT format for the test
log). However, it is possible to create and add your own format.

The fixture state is not shared among different test cases. Therefore,
the constructor and destructor are called once for each test case.
You must make sure these special functions do not contain code
that is supposed to be executed only once per module. If this is the
case, you should set a global fixture for the entire module.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Testing Frameworks

[602]

The configuration of what is shown in the output can be done both at runtime,
through command-line switches, and at compile time, through various APIs. During
the execution of the tests, the framework collects all the events in a log. At the end,
it produces a report that represents a summary of the execution with different levels
of details. In the case of a failure, the report contains detailed information about the
location and the cause, including actual and expected values. This helps developers
quickly identify the error. In this recipe, we will see how to control what is written
in the log and the report and in which format; we do this using the command-line
options at runtime.

Getting ready
For the examples presented in this recipe, we will use the following test module:

#define BOOST_TEST_MODULE Controlling output
#include <boost/test/included/unit_test.hpp>

BOOST_AUTO_TEST_CASE(test_case)
{
 BOOST_TEST(true);
}

BOOST_AUTO_TEST_SUITE(test_suite)

BOOST_AUTO_TEST_CASE(test_case)
{
 int a = 42;
 BOOST_TEST(a == 0);
}

BOOST_AUTO_TEST_SUITE_END()

The next section presents how to control the test log and the test report's output
through command-line options.

How to do it...
To control the test log's output, do the following:

• Use either the --log_format=<format> or -f <format> command-line option
to specify the log format. The possible formats are HRF (the default value),
XML, and JUNIT.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 11

[603]

• Use either the --log_level=<level> or -l <level> command-line option to
specify the log level. The possible log levels include error (default for HRF
and XML), warning, all, and success (the default for JUNIT).

• Use either the --log_sink=<stream or file name> or -k <stream or file
name> command-line option to specify the location where the framework
should write the test log. The possible options are stdout (default for HRM
and XML), stderr, or an arbitrary filename (default for JUNIT).

To control the test report's output, do the following:

• Use either the --report_format=<format> or -m <format> command-line
option to specify the report format. The possible formats are HRF (the
default value) and XML.

• Use either the --report_level=<format> or -r <format> command-line
option to specify the report level. The possible formats are confirm (the
default value), no (for no report), short, and detailed.

• Use either the --report_sink=<stream or file name> or -e <stream
or file name> command-line option to specify the location where the
framework should write the report log. The possible options are stderr
(the default value), stdout, or an arbitrary filename.

How it works...
When you run the test module from a console/Terminal, you see both the test log
and test report, with the test report following the test log. For the test module shown
earlier, the default output is as follows. The first three lines represent the test log,
while the last line represents the test report:

Running 2 test cases...
f:/chapter11bt_05/main.cpp(14): error: in "test_suite/test_case":
check a == 0 has failed [42 != 0]

*** 1 failure is detected in the test module "Controlling output"

The content of both the test log and test report can be made available in several
formats. The default is a human-readable format (or HRF); however, the framework
also supports XML, and for the test log, the JUNIT format. This is a format intended
for automated tools, such as continuous build or integration tools. Apart from these
options, you can implement your own format for the test log by implementing your
own class derived from boost::unit_test::unit_test_log_formatter.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Testing Frameworks

[604]

The following example shows how to format the test log (the first example) and the
test report (the second example) using XML (each highlighted in bold):

chapter11bt_05.exe -f XML
<TestLog><Error file="f:/chapter11bt_05/main.cpp"
line="14"><![CDATA[check a == 0 has failed [42 != 0]]]>
</Error></TestLog>
*** 1 failure is detected in the test module "Controlling output"

chapter11bt_05.exe -m XML
Running 2 test cases...
f:/chapter11bt_05/main.cpp(14): error: in "test_suite/test_case":
check a == 0 has failed [42 != 0]
<TestResult><TestSuite name="Controlling output" result="failed"
assertions_passed="1" assertions_failed="1" warnings_failed="0"
expected_failures="0" test_cases_passed="1"
test_cases_passed_with_warnings="0" test_cases_failed="1"
test_cases_skipped="0" test_cases_aborted="0"></TestSuite>
</TestResult>

The log or report level represents the verbosity of the output. The possible values of
the verbosity level of a log are shown in the following table, ordered from the lowest
to the highest level. A higher level in the table includes all the messages of the levels
above it:

Level Messages that are reported
Nothing Nothing is logged.
fatal_error System or user fatal errors and all the messages describing failed

assertions at the REQUIRE level (such as BOOST_TEST_REQUIRE and
BOOST_REQUIRE_).

system_error System non-fatal errors.
cpp_exception Uncaught C++ exceptions.
Error Failed assertion at the CHECK level (BOOST_TEST and BOOST_CHECK_).
Warning Failed assertion at the WARN level (BOOST_TEST_WARN and BOOST_

WARN_).
Message Messages generated by BOOST_TEST_MESSAGE.
test_suite Notification at the start and finish states of each test unit.
all / success All the messages, including passed assertions.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 11

[605]

The available formats of the test report are described in the following table:

Level Description
no No report is produced.
confirm Passing test:

*** No errors detected.

Skipped test:

*** The <name> test suite was skipped; see the standard output for details.

Aborted test:

*** The <name> test suite was aborted; see the standard output for details.

Failed test without failed assertions:

*** Errors were detected in the <name> test suite; see the standard output for
details.

Failed test:

*** N failures are detected in the <name> test suite.

Failed test with some failures expected:

*** N failures are detected (M failures are expected) in the <name> test suite.
detailed Results are reported in a hierarchical fashion (each test unit is reported as

part of the parent test unit), but only relevant information appears. Test cases
that do not have failing assertions do not produce entries in the report.

The test case/suite <name> has passed/was skipped/was aborted/has
failed/ with:

N assertions out of M passed

N assertions out of M failed

N warnings out of M failed

X failures expected
short Similar to detailed, but this reports information only to the master test suite.

The standard output stream (stdout) is the default location where the test log is
written, and the standard error stream (stderr) is the default location of the test report.
However, both the test log and test report can be redirected to another stream or file.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Testing Frameworks

[606]

In addition to these options, it is possible to specify a separate file for reporting
memory leaks using the --report_memory_leaks_to=<file name> command-line
option. If this option is not present and memory leaks are detected, they are reported
to the standard error stream.

There's more...
In addition to the options discussed in this recipe, the framework provides
additional compile-time APIs for controlling the output. For a comprehensive
description of these APIs, as well as the features described in this recipe, check the
framework documentation at https://www.boost.org/doc/libs/1_73_0/libs/test/
doc/html/index.html.

See also
• Writing and invoking tests with Boost.Test, to see how to create test suites and

test cases using the single-header version of the Boost.Test library, as well as
how to run tests.

• Asserting with Boost.Test, to explore the rich set of assertion macros from the
Boost.Test library.

Getting started with Google Test
Google Test is one of the most widely used testing frameworks for C++. The
Chromium projects and the LLVM compiler are among the projects that are using
it for unit testing. Google Test enables developers to write unit tests on multiple
platforms, using multiple compilers. Google Test is a portable, lightweight
framework that has a simple yet comprehensive API for writing tests using asserts;
here, tests are grouped into test suites and test suites into test programs.

The framework provides useful features, such as repeating a test a number of times
and breaking a test to invoke the debugger at the first failure. Its assertions work
regardless of whether exceptions are enabled or not. The next recipe will cover the
most important features of the framework. This recipe will show you how to install
the framework and set up your first testing project.

Getting ready
The Google Test framework, just like Boost.Test, has a macro-based API. Although
you only need to use the supplied macros for writing tests, a good understanding
of macros is recommended in order to use the framework well.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.boost.org/doc/libs/1_73_0/libs/test/doc/html/index.html
https://www.boost.org/doc/libs/1_73_0/libs/test/doc/html/index.html

Chapter 11

[607]

How to do it...
In order to set up your environment to use Google Test, do the following:

1. Clone or download the Git repository from https://github.com/google/
googletest.

2. Once you've downloaded the repository, unzip the content of the archive.
3. Build the framework using the provided build scripts.

To create your first test program using Google Test, do the following:

1. Create a new empty C++ project.
2. Do the necessary setup specific to the development environment you are

using to make the framework's headers folder (called include) available to
the project for including header files.

3. Link the project to the gtest shared library.
4. Add a new source file to the project with the following content:

#include <gtest/gtest.h>

TEST(FirstTestSuite, FirstTest)
{
 int a = 42;
 ASSERT_TRUE(a > 0);
}

int main(int argc, char **argv)
{
 ::testing::InitGoogleTest(&argc, argv);
 return RUN_ALL_TESTS();
}

5. Build and run the project.

How it works...
The Google Test framework provides a simple and easy-to-use set of macros for
creating tests and writing assertions. The structure of the test is also simplified
compared to other testing frameworks, such as Boost.Test. Tests are grouped into
test suites and test suites into test programs.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/google/googletest
https://github.com/google/googletest

Exploring Testing Frameworks

[608]

The framework provides a rich set of assertions, both fatal and non-fatal, great
support for exception handling, and the ability to customize the way tests are
executed and how the output should be generated. However, unlike with the
Boost.Test library, the test suites in Google Test cannot contain other test suites, but
only test functions.

Documentation for the framework is available on the project's page at GitHub. For
this edition of this book, I used Google Test framework version 1.10, but the code
presented here works with previous versions of the framework and is expected to
also work with future versions of the framework. The sample code shown in the
previous section contains the following parts:

1. #include <gtest/gtest.h> includes the main header of the framework.
2. TEST(FirstTestSuite, FirstTest) declares a test called FirstTest as part of

a test suite called FirstTestSuite. These names must be valid C++ identifiers
but are not allowed to contain underscores. The actual name of a test function
is composed through concatenation with an underscore from the name of the
test suite and the test name. For our example, the name is FirstTestSuite_
FirstTest. Tests from different test suites may have the same individual
name. A test function has no arguments and returns void. Multiple tests
can be grouped with the same test suite.

3. ASSERT_TRUE(a > 0); is an assertion macro that yields a fatal error and
returns from the current function in case the condition evaluates to false.
The framework defines many more assertion macros, which we will see in
the Asserting with Google Test recipe.

4. ::testing::InitGoogleTest(&argc, argv); initializes the framework and
must be called before RUN_ALL_TESTS().

It is important to mention several aspects related to terminology.
Traditionally, Google Test did not use the term test suite. A test
case in Google Test was basically a test suite and equivalent to
the test suites in Boost.Test. On the other hand, a test function
was equivalent to a test case. Because this has led to confusion,
Google Test has adhered to the common terminology, used by the
International Software Testing Qualifications Board (ISTQB), of
test cases and test suites and has started to replace this throughout
its code and documentation. In this book, we will use these terms.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 11

[609]

5. return RUN_ALL_TESTS(); automatically detects and calls all the tests defined
with either the TEST() or TEST_F() macro. The return value returned from the
macro is used as the return value of the main() function. This is important,
because the automated testing service determines the result of a test program
according to the value returned from the main() function, not the output
printed to the stdout or stderr streams. The RUN_ALL_TESTS() macro must be
called only once; calling it multiple times is not supported because it conflicts
with some advanced features of the framework.

Executing this test program will provide the following result:

[==========] Running 1 test from 1 test suite.
[----------] Global test environment set-up.
[----------] 1 test from FirstTestCase
[RUN] FirstTestCase.FirstTestFunction
[OK] FirstTestCase.FirstTestFunction (1 ms)
[----------] 1 test from FirstTestCase (1 ms total)

[----------] Global test environment tear-down
[==========] 1 test from 1 test suite ran. (2 ms total)
[PASSED] 1 test.

For many test programs, the content of the main() function is identical to the one
shown in this recipe, in the example from the How to do it... section. To avoid writing
such a main() function, the framework provides a basic implementation that you can
use by linking your program with the gtest_main shared library.

There's more...
The Google Test framework can also be used with other testing frameworks. You
can write tests using another testing framework, such as Boost.Test or CppUnit, and
use the Google Test assertion macros. To do so, set the throw_on_failure flag, either
from the code or command line, with the --gtest_throw_on_failure argument.
Alternatively, use the GTEST_THROW_ON_FAILURE environment variable and initialize
the framework, as shown in the following code snippet:

#include "gtest/gtest.h"

int main(int argc, char** argv)
{
 ::testing::GTEST_FLAG(throw_on_failure) = true;
 ::testing::InitGoogleTest(&argc, argv);
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Testing Frameworks

[610]

When you enable the throw_on_failure option, assertions that fail will print an error
message and throw an exception, which will be caught by the host testing framework
and treated as a failure. If exceptions are not enabled, then a failed Google Test
assertion will tell your program to exit with a non-zero code, which again will
be treated as a failure by the host testing framework.

See also
• Writing and invoking tests with Google Test, to see how to create tests and test

suites using the Google Test library, as well as how to run tests.
• Asserting with Google Test, to explore the various assertion macros from the

Google Test library.

Writing and invoking tests with Google
Test
In the previous recipe, we had a glimpse of what it takes to write simple tests with
the Google Test framework. Multiple tests can be grouped into a test suite and one or
more test suites grouped into a test program. In this recipe, we will see how to create
and run tests.

Getting ready
For the sample code in this recipe, we'll use the point3d class we discussed in the
Writing and invoking tests with Boost.Test recipe.

How to do it...
Use the following macros to create tests:

• TEST(TestSuiteName, TestName) defines a test called TestName as part of
a test suite called TestSuiteName:

TEST(TestConstruction, TestConstructor)
{
 auto p = point3d{ 1,2,3 };
 ASSERT_EQ(p.x(), 1);
 ASSERT_EQ(p.x(), 2);
 ASSERT_EQ(p.x(), 3);
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 11

[611]

TEST(TestConstruction, TestOrigin)
{
 auto p = point3d::origin();
 ASSERT_EQ(p.x(), 0);
 ASSERT_EQ(p.x(), 0);
 ASSERT_EQ(p.x(), 0);
}

• TEST_F(TestSuiteWithFixture, TestName) defines a test called TestName as
part of a test suite, using a fixture called TestSuiteWithFixture. You'll find
details about how this works in the Using test fixtures with Google Test recipe.

To execute the tests, do the following:

• Use the RUN_ALL_TESTS() macro to run all the tests defined in the test
program. This must be called only once from the main() function after the
framework has been initialized.

• Use the --gtest_filter=<filter> command-line option to filter the tests
to run.

• Use the --gtest_repeat=<count> command-line option to repeat the selected
tests the specified number of times.

• Use the --gtest_break_on_failure command-line option to attach the
debugger to debug the test program when the first test fails.

How it works...
There are several macros available for defining tests (as part of a test case). The
most common ones are TEST and TEST_F. The latter is used with fixtures, which
will be discussed in detail in the Using test fixtures with Google Test recipe. Other
macros for defining tests are TYPED_TEST for writing typed tests and TYPED_TEST_P
for writing type-parameterized tests. However, these are more advanced topics and
are beyond the scope of this book. The TEST and TEST_F macros take two arguments:
the first is the name of the test suite and the second is the name of the test. These two
arguments form the full name of a test, and they must be valid C++ identifiers; they
should not contain underscores, though. Different test suites can contain tests with
the same name (because the full name is still unique). Both macros automatically
register the tests with the framework; therefore, no explicit input is required from
the user to do this.

A test can either fail or succeed. A test fails if an assertion fails or an uncaught
exception occurs. Except for these two instances, the test always succeeds.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Testing Frameworks

[612]

To invoke the test, call RUN_ALL_TESTS(). However, you can do this only once
in a test program and only after the framework has been initialized with a call to
::testing::InitGoogleTest(). This macro runs all the tests in the test program.
However, it is possible that you select only some tests to run. You can do this either
by setting up an environment variable called GTEST_FILTER with the appropriate
filter, or by passing the filter as a command-line argument with the --gtest_filter
flag. If any of these two are present, the framework only runs the tests whose full
name matches the filter. The filter may include wildcards: * to match any string and
the ? symbol to match any character. Negative patterns (what should be omitted)
are introduced with a hyphen (-). The following are examples of filters:

Filter Description
--gtest_filter=* Run all the tests
--gtest_filter=TestConstruction.* Run all the tests from the test suite

called TestConstruction
--gtest_filter=TestOperations.*-
TestOperations.TestLess

Run all the tests from the test suite
called TestOperations, except for
a test called TestLess

--gtest_filter=*Operations*:*Construction* Run all the tests whose full name
contains either Operations or
Construction

The following listing is the output of a test program containing the tests
shown earlier when invoked with the command-line argument --gtest_
filter=TestConstruction.*-TestConstruction.TestConstructor:

Note: Google Test filter = TestConstruction.*-TestConstruction.
TestConstructor
[==========] Running 1 test from 1 test suite.
[----------] Global test environment set-up.
[----------] 1 test from TestConstruction
[RUN] TestConstruction.TestOrigin
[OK] TestConstruction.TestOrigin (0 ms)
[----------] 1 test from TestConstruction (0 ms total)

[----------] Global test environment tear-down
[==========] 1 test from 1 test suite ran. (2 ms total)
[PASSED] 1 test.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 11

[613]

It is possible for you to disable some of the tests by prefixing either the name of a test
with DISABLED_ or the name of a test suite with the same identifier, in which case all
the tests in the test suite will be disabled. This is exemplified here:

TEST(TestConstruction, DISABLED_TestConversionConstructor)
{ /* ... */ }
TEST(DISABLED_TestComparisons, TestEquality)
{ /* ... */ }
TEST(DISABLED_TestComparisons, TestInequality)
{ /* ... */ }

None of these tests will be executed. However, you will receive a report in the output
stating that you have a number of disabled tests.

Keep in mind that this feature is only meant for temporarily disabling tests. This
is useful when you need to perform some code changes that make tests fail and
you don't have time to fix them right away. Therefore, this feature should be used
judiciously.

See also
• Getting started with Google Test, to learn how to install the Google Test

framework and how to create a simple test project.
• Asserting with Google Test, to explore the various assertion macros from the

Google Test library.
• Using test fixtures with Google Test, to learn how to define test fixtures when

using the Google Test library.

Asserting with Google Test
The Google Test framework provides a rich set of both fatal and non-fatal assertion
macros, which resemble function calls, to verify the tested code. When these
assertions fail, the framework displays the source file, line number, and relevant
error message (including custom error messages) to help developers quickly identify
the failed code. We have already seen some simple examples on how to use the
ASSERT_TRUE macro; in this recipe, we will look at other available macros.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Testing Frameworks

[614]

How to do it...
Use the following macros to verify the tested code:

• Use ASSERT_TRUE(condition) or EXPECT_TRUE(condition) to check
whether the condition is true and ASSERT_FALSE(condition) or EXPECT_
FALSE(condition) to check whether the condition is false, as shown in
the following code:

EXPECT_TRUE(2 + 2 == 2 * 2);
EXPECT_FALSE(1 == 2);

ASSERT_TRUE(2 + 2 == 2 * 2);
ASSERT_FALSE(1 == 2);

• Use ASSERT_XX(val1, val2) or EXPECT_XX(val1, val2) to compare two
values, where XX is one of the following: EQ(val1 == val2), NE(val1 !=
val2), LT(val1 < val2), LE(val1 <= val2), GT(val1 > val2), or GE(val1 >=
val2). This is illustrated in the following code:

auto a = 42, b = 10;
EXPECT_EQ(a, 42);
EXPECT_NE(a, b);
EXPECT_LT(b, a);
EXPECT_LE(b, 11);
EXPECT_GT(a, b);
EXPECT_GE(b, 10);

• Use ASSERT_STRXX(str1, str2) or EXPECT_STRXX(str1, str2) to compare
two null-terminated strings, where XX is one of the following: EQ (the strings
have the same content), NE (the strings don't have the same content), CASEEQ
(the strings have the same content with the case ignored), and CASENE (the
strings don't have the same content with the case ignored). This is illustrated
in the following code snippet:

auto str = "sample";
EXPECT_STREQ(str, "sample");
EXPECT_STRNE(str, "simple");
ASSERT_STRCASEEQ(str, "SAMPLE");
ASSERT_STRCASENE(str, "SIMPLE");

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 11

[615]

• Use ASSERT_FLOAT_EQ(val1, val2) or EXPECT_FLOAT_EQ(val1, val2) to check
whether two float values are almost equal and ASSERT_DOUBLE_EQ(val1,
val2) or EXPECT_DOUBLE_EQ(val1, val2) to check whether two double values
are almost equal; they should differ by at most 4 ULP (units in the last place).
Use ASSERT_NEAR(val1, val2, abserr) to check whether the difference
between the two values is not greater than the specified absolute value:

EXPECT_FLOAT_EQ(1.9999999f, 1.9999998f);
ASSERT_FLOAT_EQ(1.9999999f, 1.9999998f);

• Use ASSERT_THROW(statement, exception_type) or EXPECT_THROW(statement,
exception_type) to check whether the statement throws an exception
of the specified type, ASSERT_ANY_THROW(statement) or EXPECT_ANY_
THROW(statement) to check whether the statement throws an exception of any
type, and ASSERT_NO_THROW(statement) or EXPECT_NO_THROW(statement) to
check whether the statement throws any exception:

void function_that_throws()
{
 throw std::runtime_error("error");
}

void function_no_throw()
{
}

TEST(TestAssertions, Exceptions)
{
 EXPECT_THROW(function_that_throws(),
 std::runtime_error);
 EXPECT_ANY_THROW(function_that_throws());
 EXPECT_NO_THROW(function_no_throw());

 ASSERT_THROW(function_that_throws(),
 std::runtime_error);
 ASSERT_ANY_THROW(function_that_throws());
 ASSERT_NO_THROW(function_no_throw());
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Testing Frameworks

[616]

• Use ASSERT_PRED1(pred, val) or EXPECT_PRED1(pred, val) to check whether
pred(val) returns true, ASSERT_PRED2(pred, val1, val2) or EXPECT_
PRED2(pred, val1, val2) to check whether pred(val1, val2) returns true,
and so on; use this for n-ary predicate functions or functors:

bool is_positive(int const val)
{
 return val != 0;
}

bool is_double(int const val1, int const val2)
{
 return val2 + val2 == val1;
}

TEST(TestAssertions, Predicates)
{
 EXPECT_PRED1(is_positive, 42);
 EXPECT_PRED2(is_double, 42, 21);

 ASSERT_PRED1(is_positive, 42);
 ASSERT_PRED2(is_double, 42, 21);
}

• Use ASSERT_HRESULT_SUCCEEDED(expr) or EXPECT_HRESULT_SUCCEEDED(expr) to
check whether expr is a success HRESULT and ASSERT_HRESULT_FAILED(expr)
or EXPECT_HRESULT_FAILED(expr) to check whether expr is a failure HRESULT.
These assertions are intended to be used on Windows.

• Use FAIL() to generate a fatal failure and ADD_FAILURE() or ADD_FAILURE_
AT(filename, line) to generate non-fatal failures:

ADD_FAILURE();
ADD_FAILURE_AT(__FILE__, __LINE__);

How it works...
All these asserts are available in two versions:

• ASSERT_*: This generates fatal failures, preventing further execution of the
current test function.

• EXPECT_*: This generates non-fatal failures, which means that the execution
of the test function continues, even if the assertion fails.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 11

[617]

Use the EXPECT_* assertion if not meeting the condition is not a critical error or if
you want the test function to continue, in order to get as many error messages as
possible. In other cases, use the ASSERT_* version of the test assertions.

You will find details about the assertions presented here in the framework's online
documentation, which is available on GitHub at https://github.com/google/
googletest; this is where the project is located. A special note on floating-point
comparison is, however, necessary. Due to round-offs (fractional parts cannot be
represented as a finite sum of the inverse powers of two), floating-point values do
not match exactly. Therefore, a comparison should be done within a relative error
bound. The macros ASSERT_EQ/EXPECT_EQ are not suitable for comparing floating
points, and the framework provides another set of assertions. ASSERT_FLOAT_EQ/
ASSERT_DOUBLE_EQ and EXPECT_FLOAT_EQ/EXPECT_DOUBLE_EQ perform a comparison
with a default error of 4ULP.

See also
• Writing and invoking tests with Google Test, to see how to create tests and test

suites using the Google Test library, as well as how to run tests.

Using test fixtures with Google Test
The framework provides support for using fixtures as reusable components for
all the tests that are part of a test suite. It also provides support for setting up
the global environment in which the tests will run. In this recipe, you will find
stepwise instructions on how to define and use test fixtures, as well as set up the
test environment.

Getting ready
You should now be familiar with writing and invoking tests using the Google Test
framework, a topic that was covered earlier in this chapter, specifically in the Writing
and invoking tests with Google Test recipe.

ULP is a unit of measurement for the spacing between floating-
point numbers, that is, the value the least significant digit
represents if it is 1. For more information on this, read the
Comparing Floating Point Numbers, 2012 Edition article by Bruce
Dawson: https://randomascii.wordpress.com/2012/02/25/
comparing-floating-point-numbers-2012-edition/.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/google/googletest
https://github.com/google/googletest
https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/

Exploring Testing Frameworks

[618]

How to do it...
To create and use a test fixture, do the following:

1. Create a class derived from the ::testing::Test class:
class TestFixture : public ::testing::Test
{
};

2. Use the constructor to initialize the fixture and the destructor to clean it up:
protected:
 TestFixture()
 {
 std::cout << "constructing fixture\n";
 data.resize(10);
 std::iota(std::begin(data), std::end(data), 1);
 }

 ~TestFixture()
 {
 std::cout << "destroying fixture\n";
 }

3. Alternatively, you can override the virtual methods SetUp() and TearDown()
for the same purpose.

4. Add member data and functions to the class to make them available to the
tests:

protected:
 std::vector<int> data;

5. Use the TEST_F macro to define tests using fixtures, and specify the fixture
class name as the test suite name:

TEST_F(TestFixture, TestData)
{
 ASSERT_EQ(data.size(), 10);
 ASSERT_EQ(data[0], 1);
 ASSERT_EQ(data[data.size()-1], data.size());
}

To customize the setup of the environment for running tests, do the following:

1. Create a class derived from ::testing::Environment:

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 11

[619]

class TestEnvironment : public ::testing::Environment
{
};

2. Override the virtual methods SetUp() and TearDown() to perform setup and
cleanup operations:

public:
 virtual void SetUp() override
 {
 std::cout << "environment setup\n";
 }

 virtual void TearDown() override
 {
 std::cout << "environment cleanup\n";
 }

 int n{ 42 };

3. Register the environment with a call to ::testing::AddGlobalTestEnvironment()
before calling RUN_ALL_TESTS():

int main(int argc, char **argv)
{
 ::testing::InitGoogleTest(&argc, argv);
 ::testing::AddGlobalTestEnvironment(new TestEnvironment{});
 return RUN_ALL_TESTS();
}

How it works...
Text fixtures enable users to share data configurations between multiple tests. Fixture
objects are not shared between tests. A different fixture object is created for each test
that is associated with the text function. The following operations are performed by
the framework for each test coming from a fixture:

1. Create a new fixture object.
2. Call its SetUp() virtual method.
3. Run the test.
4. Call the fixture's TearDown() virtual method.
5. Destroy the fixture object.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Testing Frameworks

[620]

You can set up and clean the fixture objects in two ways: by using the constructor
and destructor, or by using the SetUp() and TearDown() virtual methods. For most
cases, the former way is preferred. The use of virtual methods is suitable in several
cases, though:

• When the teardown operation throws an exception, as exceptions are not
allowed to leave destructors.

• If you are required to use assertion macros during cleanup and you use the
--gtest_throw_on_failure flag, which determines the macros to be thrown
upon a failure occurring.

• If you need to call virtual methods (which might be overridden in a derived
class), as virtual calls should not be invoked from the constructor or destructor.

Tests that use fixtures must be defined using the TEST_F macro (where _F stands for
fixture). Trying to declare them using the TEST macro will generate compiler errors.

The environments in which tests are run can also be customized. The mechanism
is similar to test fixtures: you derive from the base testing::Environment class and
override the SetUp() and TearDown() virtual functions. Instances of these derived
environment classes must be registered with the framework with a call to testing::
AddGlobalTestEnvironment(); however, this has to be done before you run the tests.
You can register as many instances as you want, in which case the SetUp() method
is called for the objects in the order they were registered and the TearDown() method
is called in reverse order. You must pass dynamically instantiated objects to this
function. The framework takes ownership of the objects and deletes them before the
program terminates; therefore, do not delete them yourself.

Environment objects are not available to the tests, nor intended to provide data to
the tests. Their purpose is to customize the global environment for running the tests.

See also
• Writing and invoking tests with Google Test, to see how to create tests and test

suites using the Google Test library, as well as how to run tests.

Controlling output with Google Test
By default, the output of a Google Test program goes to the standard stream, printed
in a human-readable form. The framework provides several options for customizing
the output, including printing XML to a disk file in a JUNIT-based format. This
recipe will explore the options available to control the output.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 11

[621]

Getting ready
For the purpose of this recipe, let's consider the following test program:

#include <gtest/gtest.h>

TEST(Sample, Test)
{
 auto a = 42;
 ASSERT_EQ(a, 0);
}

int main(int argc, char **argv)
{
 ::testing::InitGoogleTest(&argc, argv);
 return RUN_ALL_TESTS();
}

Its output is as follows:

[==========] Running 1 test from 1 test suite.
[----------] Global test environment set-up.
[----------] 1 test from Sample
[RUN] Sample.Test
f:\chapter11gt_05\main.cpp(6): error: Expected equality of these values:
 a
 Which is: 42
 0
[FAILED] Sample.Test (1 ms)
[----------] 1 test from Sample (1 ms total)
[----------] Global test environment tear-down
[==========] 1 test from 1 test suite ran. (3 ms total)
[PASSED] 0 tests.
[FAILED] 1 test, listed below:
[FAILED] Sample.Test

 1 FAILED TEST

We will use this simple testing program to demonstrate the various options we can
use to control the program's output, which are exemplified in the following section.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Testing Frameworks

[622]

How to do it...
To control the output of a test program, you can:

• Use the --gtest_output command-line option or the GTEST_OUTPUT
environment variable with the xml:filepath string to specify the location
of a file where the XML report is to be written:

chapter11gt_05.exe --gtest_output=xml:report.xml

<?xml version="1.0" encoding="UTF-8"?>
<testsuites tests="1" failures="1" disabled="0" errors="0"
 time="0.007" timestamp="2020-05-18T19:00:17"
 name="AllTests">
 <testsuite name="Sample" tests="1" failures="1" disabled="0"
 errors="0" time="0.002"
 timestamp="2020-05-18T19:00:17">
 <testcase name="Test" status="run" result="completed" time="0"
 timestamp="2020-05-18T19:00:17" classname="Sample">
 <failure message="f:\chapter11gt_05\main.cpp:6
Expected
equality of these values:
 a
 Which is: 42
 0"
type=""><![CDATA[f:\chapter11gt_05\main.cpp:6
Expected equality of these values:
 a
 Which is: 42
 0]]></failure>
 </testcase>
 </testsuite>
</testsuites>

• Use the --gtest_color command-line option or the GTEST_COLOR
environment variable and specify either auto, yes, or no to indicate whether
the report should be printed to a Terminal using colors or not:

chapter11gt_05.exe --gtest_color=no

• Use the --gtest_print_time command-line option or the GTEST_PRINT_TIME
environment variable with the value 0 to suppress the printing time each test
takes to execute:

chapter11gt_05.exe --gtest_print_time=0

[==========] Running 1 test from 1 test suite.
[----------] Global test environment set-up.
[----------] 1 test from Sample
[RUN] Sample.Test

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 11

[623]

f:\chapter11gt_05\main.cpp(6): error: Expected equality of these
values:
 a
 Which is: 42
 0
[FAILED] Sample.Test
[----------] Global test environment tear-down
[==========] 1 test from 1 test suite ran.
[PASSED] 0 tests.
[FAILED] 1 test, listed below:
[FAILED] Sample.Test

 1 FAILED TEST

How it works...
Generating a report in an XML format does not affect the human-readable report
printed to the Terminal. The output path can indicate either a file, a directory (in
which case a file with the name of the executable is created – if it already exists from
a previous run, it creates a file with a new name by suffixing it with a number), or
nothing, in which case the report is written to a file called test_detail.xml in the
current directory.

The XML report format is based on the JUnitReport Ant task and contains the
following main elements:

• <testsuites>: This is the root element and it corresponds to the entire test
program.

• <testsuite>: This corresponds to a test suite.
• <testcase>: This corresponds to a test function, as Google Test functions are

equivalent to test cases in other frameworks.

By default, the framework reports the time it takes for each test to execute. This
feature can be suppressed using the --gtest_print_time command-line option
or the GTEST_PRINT_TIME environment variable, as shown earlier.

See also
• Writing and invoking tests with Google Test, to see how to create tests and test

suites using the Google Test library, as well as how to run tests.
• Using test fixtures with Google Test, to learn how to define test fixtures when

using the Google Test library.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Testing Frameworks

[624]

Getting started with Catch2
Catch2 is a multiparadigm testing framework for C++ and Objective-C. The name
Catch2 follows on from Catch, the first version of the framework, which stands for
C++ Automated Test Cases in Headers. It enables developers to write tests using
either the traditional style of test functions grouped in test cases or the behavior-
driven development (BDD) style with given-when-then sections. Tests are self-
registered and the framework provides several assertion macros; out of these, two
are used the most: one fatal, namely REQUIRE, and one non-fatal, namely CHECK. They
perform expression decomposition of both the left-hand and right-hand side values,
which are logged in case of failure. Unlike its first version, Catch2 no longer supports
C++03. For the remaining recipes of this chapter, we will learn how to write unit
tests using Catch2.

Getting ready
The Catch2 test framework has a macro-based API. Although you only need to
use the supplied macros for writing tests, a good understanding of macros is
recommended if you want to use the framework well.

How to do it...
In order to set up your environment to use the Catch2 testing framework, do the
following:

1. Clone or download the Git repository from https://github.com/catchorg/
Catch2.

2. Once you've downloaded the repository, unzip the content of the archive.

To create your first test program using Catch2, do the following:

1. Create a new empty C++ project.
2. Do the necessary setup specific to the development environment you are

using to make the framework's single_header folder available to the project
for including header files.

3. Add a new source file to the project with the following content:
#define CATCH_CONFIG_MAIN
#include "catch2/catch.hpp"

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/catchorg/Catch2
https://github.com/catchorg/Catch2

Chapter 11

[625]

TEST_CASE("first_test_case", "[learn][catch]")
{
 SECTION("first_test_function")
 {
 auto i{ 42 };
 REQUIRE(i == 42);
 }
}

4. Build and run the project.

How it works...
Catch2 enables developers to write test cases as self-registered functions; it can even
provide a default implementation for the main() function so that you can focus on
testing code and writing less setup code. Test cases are divided into sections that
are run in isolation. The framework does not adhere to the style of the setup-test-
teardown architecture. Instead, the test case sections (or rather the innermost ones,
since sections can be nested) are the units of testing that are executed, along with
their enclosing sections. This makes the need for fixtures obsolete because data and
setup and teardown code can be reused on multiple levels.

Test cases and sections are identified using strings, not identifiers (as in most testing
frameworks). Test cases can also be tagged so that tests can be executed or listed
based on tags. Test results are printed in a textual human-readable form; however,
they can also be exported to XML, using either a Catch2-specific schema or a JUNIT
ANT schema for easy integration with continuous delivery systems. The execution of
the tests can be parameterized to break upon failure (on Windows and Mac) so that
you can attach a debugger and inspect the program.

The framework is easy to install and use. There are two alternatives: a single header
file (available in the single_header/catch2 folder) or a collection of header and
source files (in the include folder). In both cases, the only header file you have to
include in your test program is catch.hpp. However, if you do not use the single
header version, you will have to build the library and link it to your project. In this
book, we're using the single header implementation of the library.

The sample code shown in the previous section has the following parts:

1. #define CATCH_CONFIG_MAIN defines a macro that instructs the framework to
provide a default implementation of the main() function.

2. #include "catch2/catch.hpp" includes the single header of the library.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Testing Frameworks

[626]

3. TEST_CASE("first_test_case", "[learn][catch]") defines a test case called
first_test_case, which has several associated tags: learn and catch. Tags
are used to select either running or just listing test cases. Multiple test cases
can be tagged with the same tags.

4. SECTION("first_test_function") defines a section, that is, a test function,
called first_test_function, as part of the outer test case.

5. REQUIRE(i == 42); is an assertion that tells the test to fail if the condition is
not satisfied.

The output of running this program is as follows:

===
All tests passed (1 assertion in 1 test cases)

There's more...
As mentioned previously, the framework enables us to write tests using the BDD
style with give-when-then sections. This was made possible using several aliases:
SCENARIO for TEST_CASE and GIVE, WHEN, AND_WHEN, THEN, and AND_THEN for SECTION.
Using this style, we can rewrite the test shown earlier, as follows:

SCENARIO("first_scenario", "[learn][catch]")
{
 GIVEN("an integer")
 {
 auto i = 0;
 WHEN("assigned a value")
 {
 i = 42;
 THEN("the value can be read back")
 {
 REQUIRE(i == 42);
 }
 }
 }
}

When executed successfully, the program prints the following output:

===
All tests passed (1 assertion in 1 test cases)

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 11

[627]

However, upon failure (let's suppose we got the wrong condition: i == 0), the
expression that failed, as well as the values on the left-hand and right-hand sides are
printed in the output, as shown in the following snippet:

f:\chapter11ca_01\main.cpp(11)
...

f:\chapter11ca_01\main.cpp(13): FAILED:
 REQUIRE(i == 0)
with expansion:
 42 == 0

===
test cases: 1 | 1 failed
assertions: 1 | 1 failed

The output presented here, as well as in other snippets throughout the following
recipes, has been slightly trimmed or compressed from the actual console output
to make it easier to list within the pages of this book.

See also
• Writing and invoking tests with Catch2, to see how to create tests with the

Catch2 library, either using the traditional style based on test cases, or the
BDD style with scenarios, as well as how to run tests.

• Asserting with Catch2, to explore the various assertion macros from the Catch2
library.

Writing and invoking tests with Catch2
The Catch2 framework enables you to write tests using either the traditional style
of test cases and test functions or the BDD style with scenarios and given-when-then
sections. Tests are defined as separate sections of a test case and can be nested as
deep as you want. Whichever style you prefer, tests are defined with only two base
macros. This recipe will show what these macros are and how they work.

How to do it...
To write tests using the traditional style, with test cases and test functions, do this:

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Testing Frameworks

[628]

• Use the TEST_CASE macro to define a test case with a name (as a string), and
optionally, a list of its associated tags:

TEST_CASE("test construction", "[create]")
{
 // define sections here
}

• Use the SECTION macro to define a test function inside a test case, with the
name as a string:

TEST_CASE("test construction", "[create]")
{
 SECTION("test constructor")
 {
 auto p = point3d{ 1,2,3 };
 REQUIRE(p.x() == 1);
 REQUIRE(p.y() == 2);
 REQUIRE(p.z() == 4);
 }
}

• Define nested sections if you want to reuse the setup and teardown code or
organize your tests in a hierarchical structure:

TEST_CASE("test operations", "[modify]")
{
 SECTION("test methods")
 {
 SECTION("test offset")
 {
 auto p = point3d{ 1,2,3 };
 p.offset(1, 1, 1);
 REQUIRE(p.x() == 2);
 REQUIRE(p.y() == 3);
 REQUIRE(p.z() == 3);
 }
 }
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 11

[629]

To write tests using the BDD style, do this:

• Define scenarios using the SCENARIO macro, specifying a name for it:
SCENARIO("modify existing object")
{
 // define sections here
}

• Define nested sections inside the scenario using the GIVEN, WHEN, and THEN
macros, specifying a name for each of them:

SCENARIO("modify existing object")
{
 GIVEN("a default constructed point")
 {
 auto p = point3d{};
 REQUIRE(p.x() == 0);
 REQUIRE(p.y() == 0);
 REQUIRE(p.z() == 0);

 WHEN("increased with 1 unit on all dimensions")
 {
 p.offset(1, 1, 1);

 THEN("all coordinates are equal to 1")
 {
 REQUIRE(p.x() == 1);
 REQUIRE(p.y() == 1);
 REQUIRE(p.z() == 1);
 }
 }
 }
}

To execute the tests, do the following:

• To execute all the tests from your program (except hidden ones), run the test
program without any command-line arguments (from the ones described in
the following code).

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Testing Frameworks

[630]

• To execute only a specific set of test cases, provide a filter as a command-line
argument. This can contain test case names, wildcards, tag names, and tag
expressions:

chapter11ca_02.exe "test construction"

test construction
 test constructor

f:\chapter11ca_02\main.cpp(7)
...
f:\chapter11ca_02\main.cpp(12): FAILED:
 REQUIRE(p.z() == 4)
with expansion:
 3 == 4

===
test cases: 1 | 1 failed
assertions: 6 | 5 passed | 1 failed

• To execute only a particular section (or set of sections), use the command-line
argument --section or -c with the section name (can be used multiple times
for multiple sections):

chapter11ca_02.exe "test construction" --section "test origin"
Filters: test construction
==
All tests passed (3 assertions in 1 test case)

• To specify the order in which test cases should be run, use the command-
line argument --order with one of the following values: decl (for the order
of declaration), lex (for a lexicographic ordering by the name), or rand
(for a random order determined with std::random_shuffle()). Here's
an illustration of this:

chapter11ca_02.exe --order lex

How it works...
Test cases are self-registered and do not require any additional work from the
developer to set the test program, other than defining the test cases and test
functions. Test functions are defined as sections of test cases (using the SECTION
macro), and they can be nested.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 11

[631]

There is no limit to the depth of section nesting. Test cases and test functions,
which from here on will be referred to as sections, form a tree structure, with the
test cases on the root nodes and the most inner sections as leaves. When the test
program runs, it is the leaf sections that are executed. Each leaf section is executed
in isolation of the other leaf sections. However, the execution path starts at the root
test case and continues downward, toward the innermost section. All of the code
that's encountered on the path is executed entirely for each run. This means that
when multiple sections share common code (from a parent section or the test case),
the same code is executed once for each section, without any data being shared
between executions. This has the effect that it eliminates the need for a special fixture
approach on the one hand. On the other hand, it enables multiple fixtures for each
section (everything that is encountered up in the path), a feature that many testing
frameworks lack.

The BDD style of writing test cases is powered by the same two macros, namely,
TEST_CASE and SECTION, and the ability to test sections. In fact, the macro SCENARIO
is a redefinition of TEST_CASE, and GIVEN, WHEN, AND_WHEN, THEN, and AND_THEN are
redefinitions of SECTION:

#define SCENARIO(...) TEST_CASE("Scenario: " __VA_ARGS__)

#define GIVEN(desc) INTERNAL_CATCH_DYNAMIC_SECTION(" Given: "
<< desc)
#define AND_GIVEN(desc) INTERNAL_CATCH_DYNAMIC_SECTION("And given: "
<< desc)
#define WHEN(desc) INTERNAL_CATCH_DYNAMIC_SECTION(" When: "
<< desc)
#define AND_WHEN(desc) INTERNAL_CATCH_DYNAMIC_SECTION(" And when: "
<< desc)
#define THEN(desc) INTERNAL_CATCH_DYNAMIC_SECTION(" Then: "
<< desc)
#define AND_THEN(desc) INTERNAL_CATCH_DYNAMIC_SECTION(" And: "
<< desc)

When you execute a test program, all defined tests are run. This, however, excludes
hidden tests, which are specified either using a name that starts with ./ or a tag
that starts with a period. It is possible to force the running of hidden tests too by
providing the command-line argument [.] or [hide].

It is possible to filter the test cases to execute. This can be done using either the name
or the tags. The following table displays some of the possible options:

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Testing Frameworks

[632]

Argument Description
"test construction" The test case called test construction
test* All test cases that start with test
~"test construction" All test cases, except the one called test construction
~*equal* All test cases, except those that contain the word equal
a* ~ab* abc All tests that start with a, except those that start with ab,

except abc, which is included
[modify] All test cases tagged with [modify]
[modify],[compare][op] All test cases that are tagged with either [modify] or both

[compare] and [op]
-#sourcefile All tests from the file sourcefile.cpp

The execution of particular test functions is also possible by specifying one or
more section names with the command-line argument --section or -c. However,
wildcards are not supported for this option. If you specify a section to run, be
aware that the entire test path from the root test case to the selected section will be
executed. Moreover, if you do not specify a test case or a set of test cases first, then
all the test cases will be executed, though only the matching sections within them.

See also
• Getting started with Catch2, to learn how to install the Catch2 framework and

how to create a simple test project.
• Asserting with Catch2, to explore the various assertion macros from the Catch2

library.

Asserting with Catch2
Unlike other testing frameworks, Catch2 does not provide a large set of assertion
macros. It has two main macros: REQUIRE, which produces a fatal error, stopping the
execution of the test case upon failure, and CHECK, which produces a non-fatal error
upon failure, continuing the execution of the test case. Several additional macros are
defined; in this recipe, we will see how to put them to work.

Getting ready
You should now be familiar with writing test cases and test functions using Catch2,
a topic we covered in the previous recipe, Writing and invoking tests with Catch2.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 11

[633]

How to do it...
The following list contains the available options for asserting with the Catch2 framework:

• Use CHECK(expr) to check whether expr evaluates to true, continuing the
execution in case of failure, and REQUIRE(expr) to make sure that expr
evaluates to true, stopping the execution of the test in case of failure:

int a = 42;
CHECK(a == 42);
REQUIRE(a == 42);

• Use CHECK_FALSE(expr) and REQUIRE_FALSE(expr) to make sure that expr
evaluates to false and produces either a non-fatal or fatal error in case of
failure:

int a = 42;
CHECK_FALSE(a > 100);
REQUIRE_FALSE(a > 100);

• Use the Approx class to compare floating-point values with a given
approximation. The method epsilon() sets a maximum percentage
(as a value between 0 and 1) by which the value can differ:

double a = 42.5;
CHECK(42.0 == Approx(a).epsilon(0.02));
REQUIRE(42.0 == Approx(a).epsilon(0.02));

• Use CHECK_NOTHROW(expr)/REQUIRE_NOTHROW(expr) to verify that expr does
not throw any error, CHECK_THROWS(expr)/REQUIRE_THROWS(expr) to verify
that expr does throw an error of any type, CHECK_THROWS_AS(expr, exctype)/
REQUIRE_THROWS_AS(expr, exctype) to verify that expr throws an exception
of the type exctype, or CHECK_THROWS_WITH(expression, string or string
matcher)/REQUIRE_THROWS_WITH(expression, string or string matcher)
to verify that expr throws an expression whose description matches the
specified string:

void function_that_throws()
{
 throw std::runtime_error("error");
}

void function_no_throw()
{
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Testing Frameworks

[634]

SECTION("expressions")
{
 CHECK_NOTHROW(function_no_throw());
 REQUIRE_NOTHROW(function_no_throw());

 CHECK_THROWS(function_that_throws());
 REQUIRE_THROWS(function_that_throws());

 CHECK_THROWS_AS(function_that_throws(),
 std::runtime_error);
 REQUIRE_THROWS_AS(function_that_throws(),
 std::runtime_error);

 CHECK_THROWS_WITH(function_that_throws(),
 "error");
 REQUIRE_THROWS_WITH(function_that_throws(),
 Catch::Matchers::Contains("error"));
}

• Use CHECK_THAT(value, matcher expression)/REQUIRE_THAT(expr, matcher
expression) to check whether the given matcher expression evaluates to true
for the specified value:

std::string text = "this is an example";
CHECK_THAT(
 text,
 Catch::Matchers::Contains("EXAMPLE", Catch::CaseSensitive::No));
REQUIRE_THAT(
 text,
 Catch::Matchers::StartsWith("this") &&
 Catch::Matchers::Contains("an"));

• Use FAIL(message) to report message and fail the test case, WARN(message)
to log the message without stopping the execution of the test case, and
INFO(message) to log the message to a buffer and only report it with the
next assertion that would fail.

How it works...
The REQUIRE/CATCH family of macros decompose the expression into its left- and
right-hand side terms and, upon failure, report the location of the failure (source
file and line), the expression, and the values on the left- and right-hand sides:

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 11

[635]

f:\chapter11ca_03\main.cpp(19): FAILED:
 REQUIRE(a == 1)
with expansion:
 42 == 1

However, these macros do not support complex expressions composed using logical
operators, such as && and ||. The following example is an error:

REQUIRE(a < 10 || a %2 == 0); // error

The solution for this is to create a variable to hold the result of the expression
evaluation and use it in the assertion macros. In this case, however, the ability to
print the expansion of the elements of the expression is lost:

auto expr = a < 10 || a % 2 == 0;
REQUIRE(expr);

An alternative is to use another set of parentheses. However, this too stops the
decomposition from working:

REQUIRE((a < 10 || a %2 == 0)); // OK

Special handling is provided to floating-point values. The framework provides a
class called Approx. It overloads the equality/inequality and comparison operators
with values through which a double value can be constructed. The margin by
which the two values can either differ or be considered equal can be specified as
a percentage of the given value. This is set using the member function epsilon().
The value must be between 0 and 1 (for example, the value of 0.05 is 5 percent). The
default value of epsilon is set to std::numeric_limits<float>::epsilon()*100.

Two sets of assertions, namely CHECK_THAT/REQUIRE_THAT and CHECK_THROWS_WITH/
REQUIRE_THROWS_WITH, work with matchers. Matchers are extensible and composable
components that perform value matching. The framework provides several
matchers, including for:

• Strings: StartsWith, EndsWith, Contains, Equals, and Matches
• std::vector: Contains, VectorContains, Equals, UnorderedEquals, and Approx
• Floating-point values: WithinAbsMatcher, WithinUlpMatcher, and

WithinRelMatch

• Exceptions: ExceptionMessageMatcher

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Testing Frameworks

[636]

You can create your own matchers, either to extend the existing framework
capabilities or to work with your own types. There are two things that are necessary:

1. A matcher class derived from Catch::MatcherBase<T>, where T is the type
being compared. There are two virtual functions that must be overridden:
match(), which takes a value to match and returns a Boolean indicating
whether the match was successful, and describe(), which takes no
arguments but returns a string describing the matcher.

2. A builder function that is called from the test code.

The following example defines a matcher for the point3d class, which we have seen
throughout this chapter, to check whether a given 3D point lies on a line in the three-
dimensional space:

class OnTheLine : public Catch::MatcherBase<point3d>
{
 point3d const p1;
 point3d const p2;
public:
 OnTheLine(point3d const & p1, point3d const & p2):
 p1(p1), p2(p2)
 {}

 virtual bool match(point3d const & p) const override
 {
 auto rx = p2.x() - p1.x() != 0 ?
 (p.x() - p1.x()) / (p2.x() - p1.x()) : 0;
 auto ry = p2.y() - p1.y() != 0 ?
 (p.y() - p1.y()) / (p2.y() - p1.y()) : 0;
 auto rz = p2.z() - p1.z() != 0 ?
 (p.z() - p1.z()) / (p2.z() - p1.z()) : 0;

 return
 Approx(rx).epsilon(0.01) == ry &&
 Approx(ry).epsilon(0.01) == rz;
 }

The difference between Contains() and VectorContains()
is that Contains() searches for a vector in another vector and
VectorContains() searches for a single element inside a vector.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 11

[637]

protected:
 virtual std::string describe() const
 {
 std::ostringstream ss;
 ss << "on the line between " << p1 << " and " << p2;
 return ss.str();
 }
};

inline OnTheLine IsOnTheLine(point3d const & p1,
 point3d const & p2)
{
 return OnTheLine {p1, p2};
}

The following test case contains an example of how to use this custom matcher:

TEST_CASE("matchers")
{
 SECTION("point origin")
 {
 point3d p { 2,2,2 };
 REQUIRE_THAT(p, IsOnTheLine(point3d{ 0,0,0 },
 point3d{ 3,3,3 }));
 }
}

This test ensures that the point {2,2,2} lies on the line defined by the points {0,0,0}
and {3,3,3} by using the IsOnTheLine() custom matcher implemented previously.

See also
• Writing and invoking tests with Catch2, to see how to create tests with the

Catch2 library, either using the traditional style based on test cases, or the
BDD style with scenarios, as well as how to run tests.

Controlling output with Catch2
As with other testing frameworks discussed in this book, Catch2 reports the results
of a test program's execution in a human-readable format to the stdout standard
stream. Additional options are supported, such as reporting using XML format
or writing to a file. In this recipe, we will look at the main options available for
controlling the output when using Catch2.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Testing Frameworks

[638]

Getting ready
To exemplify the way the test program's execution output could be modified, use the
following test cases:

TEST_CASE("case1")
{
 SECTION("function1")
 {
 REQUIRE(true);
 }
}

TEST_CASE("case2")
{
 SECTION("function2")
 {
 REQUIRE(false);
 }
}

The output of running these two test cases is as follows:

--
case2
 function2
--
f:\chapter11ca_04\main.cpp(14)
..
f:\chapter11ca_04\main.cpp(16): FAILED:
 REQUIRE(false)
==
test cases: 2 | 1 passed | 1 failed
assertions: 2 | 1 passed | 1 failed

In the following section, we'll explore some of the various options for controlling the
output of a Catch2 test program.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 11

[639]

How to do it…
To control the output of a test program when using Catch2, you can:

• Use the command-line argument -r or --reporter <reporter> to specify
the reporter used to format and structure the results. The default options
supplied with the framework are console, compact, xml, and junit:

chapter11ca_04.exe -r junit

<?xml version="1.0" encoding="UTF-8"?>
<testsuites>
 <testsuite name="chapter11ca_04.exe" errors="0"
 failures="1"
 tests="2" hostname="tbd"
 time="0.002039"
 timestamp="2020-05-02T21:17:04Z">
 <testcase classname="case1" name="function1"
 time="0.00016"/>
 <testcase classname="case2"
 name="function2" time="0.00024">
 <failure message="false" type="REQUIRE">
 at f:\chapter11ca_04\main.cpp(16)
 </failure>
 </testcase>
 <system-out/>
 <system-err/>
 </testsuite>
</testsuites>

• Use the command-line argument -s or --success to display the results of
successful test cases too:

chapter11ca_04.exe -s

--
case1
 function1
--
f:\chapter11ca_04\main.cpp(6)
..

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Testing Frameworks

[640]

f:\chapter11ca_04\main.cpp(8):
PASSED:
 REQUIRE(true)
--
case2
 function2
--
f:\chapter11ca_04\main.cpp(14)
..
f:\chapter11ca_04\main.cpp(16):
FAILED:
 REQUIRE(false)
==
test cases: 2 | 1 passed | 1 failed
assertions: 2 | 1 passed | 1 failed

• Use the command-line argument -o or --out <filename> to send all of the
output to a file instead of the standard stream:

chapter11ca_04.exe -o test_report.log

• Use the command-line argument -d or --durations <yes/no> to display the
time that it takes each test case to execute:

chapter11ca_04.exe -d yes

0.000 s: scenario1
0.000 s: case1
--
case2
 scenario2
--
f:\chapter11ca_04\main.cpp(14)
..
f:\chapter11ca_04\main.cpp(16):
FAILED:
 REQUIRE(false)

0.003 s: scenario2
0.000 s: case2
0.000 s: case2
==
test cases: 2 | 1 passed | 1 failed
assertions: 2 | 1 passed | 1 failed

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 11

[641]

How it works...
Apart from the human-readable format used, by default, for reporting the results
of the test program execution, the Catch2 framework supports two XML formats:

• A Catch2-specific XML format (specified with -r xml)
• A JUnit-like XML format, following the structure of the JUnit ANT task

(specified with -r junit)

The former reporter streams the XML content as unit tests are executed and results
are available. It can be used as input to an XSLT transformation to generate an
HTML report for the instance. The latter reporter needs to gather all of the program
execution data in order to structure the report before printing it. The JUnit XML
format is useful for being consumed by third-party tools, such as a continuous
integration server.

Several additional reporters are provided but in standalone headers. They need
to be pulled into the project and explicitly included in the source code of the test
program (all the headers of the additional reporters have the name format as catch_
reporter_*.hpp). These additional available reporters are:

• TeamCity reporter (specified with -r teamcity), which writes TeamCity
service messages to the standard output stream. It is suitable only for
integration with TeamCity. It is a streamed reporter; data is written as it is
available.

• Automake reporter (specified with -r automake), which writes the meta tags
expected by automake via make check.

• Test Anything Protocol (or TAP, for short) reporter (specified with -r tap).
• SonarQube reporter (specified with -r sonarqube), which writes using the

SonarQube generic test data XML format.

The following example shows how to include the TeamCity header file in order to
produce the report using the TeamCity reporter:

#define CATCH_CONFIG_MAIN
#include "catch.hpp"
#include "catch_reporter_teamcity.hpp"

The default target of the test report is the standard stream stdout (even data written
explicitly to stderr ends up being redirected to stdout). However, it is possible that
the output is written to a file instead. These formatting options can be combined.
Take a look at the following command:

chapter11ca_04.exe -r junit -o test_report.xml

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring Testing Frameworks

[642]

This command specifies that the report should use the JUnit XML format and be
saved to a file called test_report.xml.

See also
• Getting started with Catch2, to learn how to install the Catch2 framework and

how to create a simple test project.
• Writing and invoking tests with Catch2, to see how to create tests with the

Catch2 library, either using the traditional style based on test cases, or the
BDD style with scenarios, as well as how to run tests.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

[643]

12
C++20 Core Features

The new C++20 standard is a major step in the development of the C++ language.
C++20 brings many new features both to the language and to the standard library.
Some of these have been already discussed in previous chapters, such as the text
formatting library, the calendar extensions to the chrono library, the changes to the
thread support library, and many others. However, the features that impact the
language the most are modules, concepts, coroutines, and the new ranges library.
The specification of these features is very lengthy, which makes it difficult to cover
them in great detail in this book. Therefore, in this chapter, we will look at the most
important aspects and use cases of these features. This chapter is intended to help
you start using these features.

This chapter includes the following recipes:

• Working with modules
• Understanding module partitions
• Specifying requirements on template arguments with concepts
• Using requires expressions and clauses
• Iterating over collections with the ranges library
• Creating your own range view
• Creating a coroutine task type for asynchronous computations
• Creating a coroutine generator type for sequences of values

Let's start this chapter by learning about modules, which are the most disruptive
change that's happened to the C++ language in decades.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

C++20 Core Features

[644]

Working with modules
Modules are one of the most important changes in the C++20 standard. They
represent a fundamental change to the C++ language and the way we write and
consume code. Modules are made available in source files that are compiled
separately from the translation units that consume them.

Modules provide multiple advantages, especially in comparison to the use of
header files.

• They are only imported once and the order they're imported in does not
matter.

• They do not require splitting interfaces and implementation in different
source files, although this is still possible.

• Modules have the potential of reducing compilation time, in some cases
significantly. The entities exported from a module are described in a binary
file that the compiler can process faster than traditional precompiled headers.

• Moreover, this file can potentially be used to build integrations and interop
with C++ code from other languages.

In this recipe, you will learn how to get started with modules.

Getting ready
At the time of writing this book, the major compilers (VC++, Clang, GCC) provide
work in progress, experimental support for modules. Build systems, such as CMake,
are lagging in terms of adoption for modules. Because different compilers have
different ways and different compiler options for supporting modules, this book
will not provide details for how to build these samples. The reader is invited to
consult online documentation for specific compilers.

There are several types of module files: module interface units, module interface
partitions, and module implementation partitions. In this recipe, we'll refer solely
to the first; the other two, we will learn about in the next recipe.

The source code accompanying this book includes scripts for
building the source code presented in this recipe and the next
one using the Visual C++ 2019 16.5 compiler.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 12

[645]

How to do it...
When you modularize your code, you can do the following:

• Import a module using the import directive, followed by the module name.
The Standard Library, although not yet modularized, may be available as
compiler-specific modules. The following snippet uses the std.core module
from Visual C++, which contains most of the functionality of the Standard
Library, including the streams library:

import std.core;

int main()
{
 std::cout << "Hello, World!\n";
}

• Export a module by creating a module interface unit (MIU) that can contain
functions, types, constants, and even macros. Their declaration must be
preceded by the keyword export. The module interface unit file must have
the extension .ixx for VC++. Clang accepts different extensions, including
.cpp, .cppm, and even .ixx. The following sample exports a class template
called point, a function called distance() that computes the distance
between two points, and a user-defined literal operator called _ip that
creates objects of the type point from strings in the form "0,0" or "12,-3":

// --- geometry.ixx/.cppm ---
export module geometry;

import std.core;

export template <class T,
 typename = typename std::enable_if_t<std::is_arithmetic_v<T>,
T>>
struct point
{
 T x;
 T y;
};
export using int_point = point<int>;

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

C++20 Core Features

[646]

export constexpr int_point int_point_zero{ 0,0 };

export template <class T>
double distance(point<T> const& p1,
 point<T> const& p2)
{
 return std::sqrt((p2.x - p1.x) * (p2.x - p1.x) +
 (p2.y - p1.y) * (p2.y - p1.y));
}

namespace geometry_literals
{
 export int_point operator ""_ip(const char* ptr,
 std::size_t size)
 {
 int x = 0, y = 0;
 while (*ptr != ',' && *ptr != ' ')
 x = x * 10 + (*ptr++ - '0');
 while (*ptr == ',' || *ptr == ' ') ptr++;
 while (*ptr != 0)
 y = y * 10 + (*ptr++ - '0');
 return { x, y };
 }
}

// --- main.cpp ---

import std.core;
import geometry;

int main()
{
 int_point p{ 3, 4 };
 std::cout << distance(int_point_zero, p) << '\n';

 {
 using namespace geometry_literals;
 std::cout << distance("0,0"_ip, "30,40"_ip) << '\n';
 }
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 12

[647]

• Use the import directive to also import the content of a header. The example
presented here uses the same type and functions seen in the preceding
example:

// --- geometry.h ---
#pragma once

#include <cmath>

template <class T,
 typename = typename std::enable_if_t<std::is_arithmetic_v<T>,
T>>
struct point
{
 T x;
 T y;
};

using int_point = point<int>;

constexpr int_point int_point_zero{ 0,0 };

template <class T>
double distance(point<T> const& p1,
 point<T> const& p2)
{
 return std::sqrt((p2.x - p1.x) * (p2.x - p1.x) +
 (p2.y - p1.y) * (p2.y - p1.y));
}

namespace geometry_literals
{
 int_point operator ""_ip(const char* ptr,
 std::size_t size)
 {
 int x = 0, y = 0;
 while (*ptr != ',' && *ptr != ' ')
 x = x * 10 + (*ptr++ - '0');
 while (*ptr == ',' || *ptr == ' ') ptr++;
 while (*ptr != 0)
 y = y * 10 + (*ptr++ - '0');
 return { x, y };
 }

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

C++20 Core Features

[648]

}

// --- main.cpp ---
import std.core;
import "geometry.h";

int main()
{
 int_point p{ 3, 4 };
 std::cout << distance(int_point_zero, p) << '\n';

 {
 using namespace geometry_literals;
 std::cout << distance("0,0"_ip, "30,40"_ip) << '\n';
 }
}

How it works...
A module unit is composed of several parts, mandatory or optional:

• The global module fragment, introduced with a module; statement. This
part is optional and, if present, may only contain preprocessor directives.
Everything that is added here is said to belong to the global module, which is
the collection of all the global module fragments and all translation units that
are not modules.

• The module declaration, which is a required statement of the form export
module name;.

• The module preamble, which is optional, and may only contain import
declarations.

• The module purview, which is the content of the unit, starting with the module
declaration and extending to the end of the module unit.

The following diagram shows a module unit containing all of the parts mentioned
previously. On the left side, we have the source code of the module, and on the right
side, the module parts are explained:

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 12

[649]

Figure 12.1: An example of a module (on the left side) with each part highlighted and explained
(on the right side)

A module can export any entity, such as functions, classes, and constants. Every
export must be preceded by the export keyword. This keyword is always the first
keyword, preceding others such as class/struct, template, or using. Several
examples have been provided in the geometry module shown in the previous
section:

• E class template called point, which represents a point in the two-
dimensional space

• A type alias for point<int> called int_point
• A compile-time constant called int_point_zero
• A function template, distance(), that computes the distance between two

points
• A user-defined literal _ip that creates int_point objects from strings such

as "3,4"

A translation unit that uses modules instead of headers does not require any other
changes except for replacing #include preprocessor directives with import directives.
Moreover, headers can also be imported as modules using the same import directive,
as shown in an example earlier.

There is no relationship between modules and namespaces. These two are
orthogonal concepts. The module's geometry exports the user-defined literal ""_ip
in the namespace geometry_literals, while all the other exports in the module are
available in the global namespace.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

C++20 Core Features

[650]

There is also no relationship between the module names and the name of the unit
file. The geometry module was defined in a file called geometry.ixx/.cppm, although
any filename would have had the same result. It is recommended that you follow
a consistent naming scheme and use the module name for the module filename too.
On the other hand, the extension used for module units differs with each compiler,
although this could be something that may change in the future when module
support reaches maturity.

The Standard Library is not yet modularized, although this is likely to happen in a
future version of the standard. However, compilers have already made it available
in modules. The Clang compiler provides a different module for each header. On
the other hand, the Visual C++ compiler provides the following modules for the
Standard Library:

• std.regex: The content of the <regex> header
• std.filesystem: The content of the <filesystem> header
• std.memory: The content of the <memory> header
• std.threading: The content of the headers <atomic>, <condition_variable>,

<future>, <mutex>, <shared_mutex>, and <thread>
• std.core: The rest of the C++ Standard Library

As you can see from these module names, such as std.core or std.regex, the name
of the module can be a series of identifiers concatenated with a dot (.). The dot has
no significance other than helping to split the name into parts representing a logical
hierarchy, such as company.project.module. The use of a dot can arguably provide
better readability compared to the use of an underscore (such as in std_core or std_
regex), which is also legal, like anything else that may form an identifier.

See also
• Understanding module partitions, to learn about interface and implementation

partitions.

Understanding module partitions
The source code of a module may become large and difficult to maintain. Moreover,
a module may be composed of logically separate parts. To help with scenarios such
as these, modules support composition from parts called partitions. A module unit
that is a partition that exports entities is called a module interface partition.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 12

[651]

However, there could also be internal partitions that do not export anything. Such a
partition unit is called a module implementation partition. In this recipe, you will learn
how to work with interface and implementation partitions.

Getting ready
You should read the previous recipe, Working with modules, before continuing with
this one. You will need both the module fundamentals we discussed there and the
code examples that we will continue with in this recipe.

How to do it...
You can split a module into several partitions as follows:

• Each partition unit must start with a statement of the form export module
modulename:partitionname;. Only the global module fragment may precede
this declaration:

// --- geometry-core.ixx/.cppm ---
export module geometry:core;

import std.core;

export template <class T,
 typename = typename std::enable_if_t<std::is_arithmetic_v<T>,
T>>
struct point
{
 T x;
 T y;
};
export using int_point = point<int>;

export constexpr int_point int_point_zero{ 0,0 };

export template <class T>
double distance(point<T> const& p1,
 point<T> const& p2)
{
 return std::sqrt((p2.x - p1.x) * (p2.x - p1.x) +
 (p2.y - p1.y) * (p2.y - p1.y));
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

C++20 Core Features

[652]

// --- geometry-literals.ixx/.cppm ---
export module geometry:literals;

import :core;

namespace geometry_literals
{
 export int_point operator ""_ip(const char* ptr,
 std::size_t size)
 {
 int x = 0, y = 0;
 while (*ptr != ',' && *ptr != ' ')
 x = x * 10 + (*ptr++ - '0');
 while (*ptr == ',' || *ptr == ' ') ptr++;
 while (*ptr != 0)
 y = y * 10 + (*ptr++ - '0');
 return { x, y };
 }
}

• In the primary module interface unit, import and then export the partitions
with statements of the form export import :partitionname, such as in the
following example:

// --- geometry.ixx/.cppm ---
export module geometry;

export import :core;
export import :literals;

• The code importing a module composed from multiple partitions only sees
the module as a whole if it was built from a single module unit:

// --- main.cpp ---
import std.core;
import geometry;

int main()
{
 int_point p{ 3, 4 };
 std::cout << distance(int_point_zero, p) << '\n';

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 12

[653]

 {
 using namespace geometry_literals;
 std::cout << distance("0,0"_ip, "30,40"_ip) << '\n';
 }
}

• It is possible to create internal partitions that do not export anything but
contain code that can be used in the same module. Such a partition must
start with a statement of the form module modulename:partitionname;
(without the keyword export). Different compilers may also require a
different extension for the file containing an internal partition. For VC++,
the extension must be .cpp:

// --- geometry-details.cpp --
module geometry:details;

import std.core;

std::pair<int, int> split(const char* ptr,
 std::size_t size)
{
 int x = 0, y = 0;
 while (*ptr != ',' && *ptr != ' ')
 x = x * 10 + (*ptr++ - '0');
 while (*ptr == ',' || *ptr == ' ') ptr++;
 while (*ptr != 0)
 y = y * 10 + (*ptr++ - '0');
 return { x, y };
}
// --- geometry-literals.ixx/.cppm ---
export module geometry:literals;

import :core;
import :details;

namespace geometry_literals
{
 export int_point operator ""_ip(const char* ptr,
 std::size_t size)
 {
 auto [x, y] = split(ptr, size);
 return {x, y};
 }
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

C++20 Core Features

[654]

How it works...
The code shown earlier is a follow-up of the modules example presented in the
previous recipe. The geometry module has been split into two different partitions
called core and literals.

However, when you declare the partition, you must use the name in the form
modulename:partitionname, such as in geometry:core and geometry:literals. This is
not necessary when you import a partition elsewhere in the module. This can be seen
both in the primary partition unit geometry.ixx and in the module interface partition
geometry-literals.ixx. Here are the snippets again, for clarity:

// --- geometry-literals.ixx/.cppm ---
export module geometry:literals;

// import the core partition
import :core;

// --- geometry.ixx/.cppm ---
export module geometry;

// import the core partition and then export it
export import :core;

// import the literals partition and then export it
export import :literals;

Although module partitions are distinct files, they are not available as separate
modules or submodules to translation units using a module. They are exported
together as a single, aggregated module. If you compare the source code in the
main.cpp file with the one from the previous recipe, you will see no difference.

Partitions, just like modules, may contain code that is not exported from the module.
A partition may contain no exports at all, in which case it is an internal partition
only. Such a partition is called a module implementation partition. It is defined without
using the export keyword in the module's declaration.

As with module interface units, there are no rules for naming
the files containing partitions. However, compilers may require
different extensions or support some particular naming schemes.
For instance, VC++ uses the scheme <module-name>-<partition-
name>.ixx, which simplifies build commands.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 12

[655]

An example of an internal partition is the geometry:details partition shown earlier.
It provides a helper function, called split(), for parsing two integers separated with
a comma from a string. This partition is then imported into the geometry:literals
partitions, where the split() function is used to implement the user-defined
literal _ip.

There's more...
Partitions are divisions of a module. However, they are not submodules. They do not
logically exist outside of the module. There is no concept of a submodule in the C++
language. The code shown in this recipe using partitions could be written slightly
differently using modules:

// --- geometry-core.ixx ---
export module geometry.core;

import std.core;

export template <class T,
 typename = typename std::enable_if_t<std::is_arithmetic_v<T>, T>>
struct point
{
 T x;
 T y;
};

export using int_point = point<int>;

export constexpr int_point int_point_zero{ 0,0 };

export template <class T>
double distance(point<T> const& p1,
 point<T> const& p2)
{
 return std::sqrt(
 (p2.x - p1.x) * (p2.x - p1.x) +
 (p2.y - p1.y) * (p2.y - p1.y));
}

// --- geometry-literals.ixx ---
export module geometry.literals;

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

C++20 Core Features

[656]

import geometry.core;

namespace geometry_literals
{
 export int_point operator ""_ip(const char* ptr,
 std::size_t size)
 {
 int x = 0, y = 0;
 while (*ptr != ',' && *ptr != ' ')
 x = x * 10 + (*ptr++ - '0');
 while (*ptr == ',' || *ptr == ' ') ptr++;
 while (*ptr != 0)
 y = y * 10 + (*ptr++ - '0');
 return { x, y };
 }
}

// --- geometry.ixx ---
export module geometry;

export import geometry.core;
export import geometry.literals;

In this example, we have three modules: geometry.core, geometry.literals, and
geometry. Here, geometry imports and then re-exports the entire content of the
first two. Because of this, the code in main.cpp does not need to change. By solely
importing the geometry module, we get access to the content of the geometry.core
and geometry.literals modules.

However, if we do not define the geometry module any more, then we need to
explicitly import the two modules, as shown in the following snippet:

import std.core;
import geometry.core;
import geometry.literals;

int main()
{
 int_point p{ 3, 4 };
 std::cout << distance(int_point_zero, p) << '\n';

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 12

[657]

 {
 using namespace geometry_literals;
 std::cout << distance("0,0"_ip, "30,40"_ip) << '\n';
 }
}

Choosing between using partitions or multiple modules for componentizing your
source code should depend on the particularities of your project. If you use multiple
smaller modules, you provide better granularity for imports. This can be important
if you're developing a large library because users should only import things they use
(and not a very large module when they only need some functionalities).

See also
• Working with modules, to explore the fundamentals of C++20 modules.

Specifying requirements on template
arguments with concepts
Template metaprogramming is an important part of the C++ language, empowering
the development of general-purpose libraries, including the standard library.
However, template metaprogramming is not trivial. On the contrary, complex tasks
could be tedious and difficult to get right without a lot of experience. In fact, the
C++ Core Guidelines, an initiative created by Bjarne Stroustrup and Herb Sutter,
have a rule called Use template metaprogramming only when you really need to, which
reasons that:

"Template metaprogramming is hard to get right, slows down compilation, and is
often very hard to maintain."

An important aspect concerning template metaprogramming has been the
specification of constraints for type template parameters in order to impose
restrictions on the types a template can be instantiated with. The C++20 concepts
library is designed to solve this problem. A concept is a named set of constraints and
a constraint is a requirement for a template argument. These are used to select the
appropriate function overloads and template specializations.

In this recipe, we will see how we can use C++20 concepts to specify requirements
on template arguments.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

C++20 Core Features

[658]

Getting ready
Before we begin learning about concepts, let's consider the following class template,
called NumericalValue, which is supposed to hold a value of an integral or floating-
point type. This C++11 implementation employs the use of std::enable_if to specify
requirements for the T template argument:

template <typename T,
 typename = typename std::enable_if_t<std::is_arithmetic_v<T>,
T>>
struct NumericalValue
{
 T value;
};

template <typename T>
NumericalValue<T> wrap(T value) { return { value }; }

template <typename T>
T unwrap(NumericalValue<T> t) { return t.value; }

auto nv = wrap(42);
std::cout << nv.value << '\n'; // prints 42

auto v = unwrap(nv);
std::cout << v << '\n'; // prints 42

using namespace std::string_literals;
auto ns = wrap("42"s); // error

This snippet will be the basis for the examples shown in this recipe.

How to do it...
You can specify requirements for template arguments as follows:

• Create a concept using the concept keyword with the following form:
template <class T>
concept Numerical = std::is_arithmetic_v<T>;

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 12

[659]

• Alternatively, you can use one of the standard-defined concepts, available
in the header <concepts> (or one of the other standard library headers):

template <class T>
concept Numerical = std::integral<T> || std::floating_point<T>;

• Use the concept name instead of the class or typename keywords in function
templates, class templates, or variable templates:

template <Numerical T>
struct NumericalValue
{
 T value;
};

template <Numerical T>
NumericalValue<T> wrap(T value) { return { value }; }

template <Numerical T>
T unwrap(NumericalValue<T> t) { return t.value; }

• Instantiate class templates and call function templates with no changes in
syntax:

auto nv = wrap(42);
std::cout << nv.value << '\n'; // prints 42

auto v = unwrap(nv);
std::cout << v << '\n'; // prints 42

using namespace std::string_literals;
auto ns = wrap("42"s); // error

How it works...
A concept is a set of one or more constraints that is always defined in a namespace
scope. The definition of a concept is similar to a variable template. The following
snippet shows a concept being used for a variable template:

template <class T>
concept Real = std::is_floating_point_v<T>;

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

C++20 Core Features

[660]

template<Real T>
constexpr T pi = T(3.1415926535897932385L);

std::cout << pi<double> << '\n';
std::cout << pi<int> << '\n'; // error

Concepts cannot be constrained themselves, nor can they refer to themselves
recursively. In the examples shown so far, the Numerical and Real concepts are
composed of a single, atomic constraint. However, concepts can be created from
multiple constraints. A constraint created from two constraints using the && logical
operator is called a conjunction, while a constraint created from two constraints using
the || logical operator is called a disjunction.

The Numerical concept defined in the How to do it... section was defined using the
std::is_arithmetic_v type trait. However, we could have two concepts, Real and
Integral, as follows:

template <class T>
concept Integral = std::is_integral_v<T>;

template <class T>
concept Real = std::is_floating_point_v<T>;

From these two, we can compose the Numerical concept, using the && logical
operator. The result is a disjunction:

template <class T>
concept Numerical = Integral<T> || Real<T>;

Semantically, there is no difference between these two versions of the Numerical
concept, although they are defined in different ways.

To understand conjunctions, let's look at another example. Consider two base
classes, IComparableToInt and IConvertibleToInt, that are supposed to be derived
by classes that should support comparison or conversion to int. These could be
defined as follows:

struct IComparableToInt
{
 virtual bool CompareTo(int const o) = 0;
};

struct IConvertibleToInt
{

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 12

[661]

 virtual int ConvertTo() = 0;
};

Some classes may implement both of them, others only one or the other. The
SmartNumericalValue<T> class here implements both while DullNumericalValue<T>
only implements the IConvertibleToInt class:

template <typename T>
struct SmartNumericalValue : public IComparableToInt, IConvertibleToInt
{
 T value;

 SmartNumericalValue(T v) :value(v) {}

 bool CompareTo(int const o) override
 { return static_cast<int>(value) == o; }

 int ConvertTo() override
 { return static_cast<int>(value); }
};

template <typename T>
struct DullNumericalValue : public IConvertibleToInt
{
 T value;

 DullNumericalValue(T v) :value(v) {}

 int ConvertTo() override
 { return static_cast<int>(value); }
};

What we want to do is write a function template that only accepts arguments that
are both comparable and can be converted to int. The IComparableAndConvertible
concept shown here is a conjunction of the IntComparable and IntConvertible
concepts. They can be implemented as follows:

template <class T>
concept IntComparable = std::is_base_of_v<IComparableToInt, T>;

template <class T>
concept IntConvertible = std::is_base_of_v<IConvertibleToInt, T>;

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

C++20 Core Features

[662]

template <class T>
concept IntComparableAndConvertible = IntComparable<T> &&
IntConvertible<T>;

template <IntComparableAndConvertible T>
void print(T o)
{
 std::cout << o.value << '\n';
}

Conjunctions and disjunctions are evaluated left to right and are short-circuited. This
means that for a conjunction, the right constraint is evaluated only if the left one is
satisfied, and for a disjunction, the right constraint is evaluated only if the left one is
not satisfied.

The Standard Library defines a series of concepts that can be used to define compile-
time requirements on template arguments. Although most of these concepts impose
both syntactic and semantic requirements, the compiler can usually ensure only the
former. When the semantic requirements are not met, the program is considered
ill-formed and the compiler is not required to provide any diagnostics about the
problem. The standard concepts are available in several places:

• In the concepts library, in the <concepts> header and the std namespace. This
includes core language concepts (such as same_as, integral, floating_point,
copy_constructible, and move_constructible), comparison concepts (such
as equality_comparable and totally_ordered), object concepts (such as
copyable, moveable, and regular), and callable concepts (such as invocable
and predicate).

The third category of constraints is atomic constraints. These are
composed of an expression E and a mapping between the type
parameters from E and the template arguments of the constrained
entity, called parameter mapping. The atomic constraints are
formed during constraint normalization, which is the process
of transforming a constraint expression into a sequence of
conjunctions and disjunctions of atomic constraints. An atomic
constraint is checked by substituting the parameter mapping and
the template arguments into the expression E. The result must be
a valid prvalue constant expression of type bool; otherwise, the
constraint is not satisfied.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 12

[663]

• In the algorithms library, in the <iterator> header and the std namespace.
This includes algorithm requirements (such as sortable, permutable, and
mergeable) and indirect callable concepts (such as indirect_unary_predicate
and indirect_binary_predicate).

• In the ranges library, in the <ranges> header and the std::ranges namespace.
This includes concepts specific for ranges, such as range, view, input_range,
output_range, forward_range, and random_access_range.

There's more...
The concepts defined in this recipe used the already available type traits. However,
there are many cases when requirements on template arguments cannot be described
in this way. For this reason, concepts can be defined with a requires expression, which
is a prvalue expression of type bool describing a template argument requirement.
This will be the topic of the next recipe.

See also
• Using requires expressions and clauses, to learn about in-place constraints.

Using requires expressions and clauses
In the previous recipe, we introduced the topic of concepts and constraints, and
learned about them with the help of several examples that were solely based on
already existing type traits. Moreover, we also used the terser syntax for specifying
concepts, with the concept name used instead of the typename or the class keyword
in the template declaration. However, it is possible to define more complex concepts
with the help of requires expressions. These are prvalues of the type bool that describe
the constraints on some template arguments.

In this recipe, we will learn how to write requires expressions and an alternative way
to specify constraints on template arguments.

Getting ready
The class template NumericalValue<T> and the function template wrap() defined in
the previous recipe will be used in the code snippets presented in this recipe.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

C++20 Core Features

[664]

How to do it...
To specify requirements for template arguments, you can use requires expressions,
introduced with the requires keyword, such as the following:

• Use a simple expression that the compiler validates for correctness. In the
following snippet, the operator + must be overloaded for the T template
argument:

template <typename T>
concept Addable = requires (T a, T b) {a + b;};

template <Addable T>
T add(T a, T b)
{
 return a + b;
}

add(1, 2); // OK, integers
add("1"s, "2"s); // OK, std::string user-defined literals

NumericalValue<int> a{1};
NumericalValue<int> b{2};
add(a, b); // error: no matching function for call to 'add'
 // 'NumericalValue<int>' does not satisfy 'Addable'

• Use a simple expression to require the existence of a particular function. In
the following snippet, a function called wrap(), which is overloaded with a
parameter of the T template argument, must exist:

template <typename T>
concept Wrapable = requires(T x) { wrap(x); };

template <Wrapable T>
void do_wrap(T x)
{
 [[maybe_unused]] auto v = wrap(x);
}

do_wrap(42); // OK, can wrap an int
do_wrap(42.0); // OK, can wrap a double
do_wrap("42"s); // error, cannot wrap a std::string

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 12

[665]

• Use a type requirement, specified with the keyword typename, followed by
the name of a type, optionally qualified, to specify requirements such as
member names, class template specializations, or alias template substitutions.
In the following snippet, the T template argument must have two inner types
called value_type and iterator. Additionally, two functions, begin() and
end(), which take a T argument, must be available:

template <typename T>
concept Container = requires(T x)
{
 typename T::value_type;
 typename T::iterator;
 begin(x);
 end(x);
};

template <Container T>
void pass_container(T const & c)
{
 for(auto const & x : c)
 std::cout << x << '\n';
}

std::vector<int> v { 1, 2, 3};
std::array<int, 3> a {1, 2, 3};
int arr[] {1,2,3};

pass_container(v); // OK
pass_container(a); // OK
pass_container(arr); // error: 'int [3]' does not satisfy
 // 'Container'

• Use a compound requirement to specify the requirements of an expression,
as well as the result of the evaluation of the expression. In the following
example, there must be a function called wrap() that can be called with an
argument of the T template argument type, and the result of calling the
function must be of the NumericalValue<T> type:

template <typename T>
concept NumericalWrapable =
requires(T x)
{
 {wrap(x)} -> std::same_as<NumericalValue<T>>;
};

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

C++20 Core Features

[666]

template <NumericalWrapable T>
void do_wrap_numerical(T x)
{
 [[maybe_unused]] auto v = wrap(x);
}

template <typename T>
class any_wrapper
{
public:
 T value;
};

any_wrapper<std::string> wrap(std::string s)
{
 return any_wrapper<std::string>{s};
}

// OK, wrap(int) returns NumericalValue<int>
do_wrap_numerical(42);

// error, wrap(string) returns any_wrapper<string>
do_wrap_numerical("42"s);

Constraints on the template arguments can be also specified using a syntax involving
the requires keyword. These are called requires clauses and can be used as follows:

• Use a requires clause after the template parameter list:
template <typename T> requires Addable<T>
T add(T a, T b)
{
 return a + b;
}

• Alternatively, use the requires clause after the last element of a function
declarator:

template <typename T>
T add(T a, T b) requires Addable<T>
{
 return a + b;
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 12

[667]

• Combine a requires clause with a requires expression, instead of a named
concept. In this case, the requires keyword appears twice, as shown in the
following snippet:

template <typename T>
T add(T a, T b) requires requires (T a, T b) {a + b;}
{
 return a + b;
}

How it works...
The new requires keyword has multiple purposes. On one hand, it is used
to introduce a requires clause that specifies constraints on template arguments.
On the other hand, it is used to define a requires expression that is a prvalue of type
bool used to define constraints on template arguments.

In a requires clause, the requires keyword must be followed by a constant
expression of the type bool. The expression must be either a primary expression
(such as std::is_arithmetic_v<T> or std::integral<T>), an expression in
parentheses, or any sequence of such expressions joined with either the &&
or the || operator.

A requires expression has the form requires (parameters-list) { requirements
}. The parameters list is optional and can be entirely omitted (including the
parentheses). The specified requirements may refer to:

• The template parameters that are in scope
• The local parameters introduced in parameters-list
• Any other declarations that are visible from the enclosing context

The requirements sequence of the requires expression can contain requirements
of the following types:

• Simple requirements. These are arbitrary expressions that do not start with
the requires keyword. The compiler only checks its language correctness.

If you are not familiar with C++ value categories (lvalue, rvalue,
prvalue, xvalue, glvalue), you are recommended to check https://
en.cppreference.com/w/cpp/language/value_category. The
term prvalue, meaning pure rvalue, specifies an rvalue that is not
an xvalue (expiring value). An example is the result of calling a
function whose return type is not a reference.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://en.cppreference.com/w/cpp/language/value_category
https://en.cppreference.com/w/cpp/language/value_category

C++20 Core Features

[668]

• Type requirements. These are expressions that start with the keyword
typename followed by a type name, which must be valid. This enables the
compiler to validate that a certain nested name exists, or that a class template
specialization or an alias template substitution exists.

• Compound requirements. They have the form {expression} noexcept
-> type-constraint. The noexcept keyword is optional, in which case
the expression must not be potentially throwing. The requirement for the
return type, introduced with ->, is also optional. However, if it is present,
then decltype(expression) must satisfy the constraints imposed by type-
constraint.

• Nested requirements. These are more complex expressions that specify
constraints defined as a requires expression, which can, in turn, be another
nested requirement. A requirement that starts with the keyword requires is
considered a nested requirement.

Before they are evaluated, the body of every name concept and every requires
expression is substituted until a sequence of conjunctions and disjunctions of atomic
constraints is obtained. This process is called normalization. The actual details of
normalization and the analysis the compiler is performing are beyond the scope
of this book.

See also
• Specifying requirements on template arguments with concepts, to explore the

fundamentals of C++20 concepts.

Iterating over collections with the ranges
library
The C++ Standard Library provides three important pillars—containers, iterators,
and algorithms—that enable us to work with collections. Because these algorithms
are for general purpose and are designed to work with iterators, which define a
range, they often require writing explicit and sometimes complex code to achieve
simple tasks. The C++20 ranges library has been designed to solve this problem by
providing components for handling ranges of elements. These components include
range adapters (or views) and constrained algorithms that work with a range instead
of iterators. In this recipe, we will look at some of these views and algorithms and
see how they can simplify coding.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 12

[669]

Getting ready
In the following snippets, we will refer to a function called is_prime(), which takes
an integer and returns a Boolean indicating whether the number is prime or not. A
simple implementation is shown here:

bool is_prime(int const number)
{
 if (number != 2)
 {
 if (number < 2 || number % 2 == 0) return false;
 auto root = std::sqrt(number);
 for (int i = 3; i <= root; i += 2)
 if (number % i == 0) return false;
 }
 return true;
}

The ranges library is available in the new <ranges> header, in the std::ranges
namespace. For simplicity, the following namespace aliases will be used in this
recipe:

namespace rv = std::ranges::views;
namespace rg = std::ranges;

We will explore various uses of the ranges library in the next section.

How to do it...
The ranges library can be used to iterate through ranges with operations such as the
following:

• Generate a sequence of consecutive integers with the iota_view /
views::iota view. The following snippet prints all integers from 1 to 9:

for (auto i : rv::iota(1, 10))
 std::cout << i << ' ';

For an efficient algorithm, which is beyond the scope of this recipe,
I recommend the Miller–Rabin primality test.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

C++20 Core Features

[670]

• Filter the elements of a range with filter_view / views::filter, by retaining
only those that satisfy a predicate. The first snippet here prints all the prime
numbers from 1 to 99. However, the second snippet retains and prints all the
prime numbers from a vector of integers:

// prints 2 3 5 7 11 13 ... 79 83 89 97
for (auto i : rv::iota(1, 100) | rv::filter(is_prime))
 std::cout << i << ' ';

// prints 2 3 5 13
std::vector<int> nums{ 1, 1, 2, 3, 5, 8, 13, 21 };
for (auto i : nums | rv::filter(is_prime))
 std::cout << i << ' ';

• Transform the elements of a range with transform_view / views::transform
by applying a unary function to each element. The following snippet prints
the successor of all the prime numbers from 1 to 99:

// prints 3 4 6 8 12 14 ... 80 84 90 98
for (auto i : rv::iota(1, 100) |
 rv::filter(is_prime) |
 rv::transform([](int const n) {return n + 1; }))
 std::cout << i << ' ';

• Retain only the first N elements of a view with take_view / views::take. The
following snippet prints only the 10 first prime numbers from 1 and 99:

// prints 2 3 5 7 11 13 17 19 23 29
for (auto i : rv::iota(1, 100) |
 rv::filter(is_prime) |
 rv::take(10))
 std::cout << i << ' ';

• Iterate a range in reverse order with reverse_view / views::reverse.
The first snippet here prints the first 10 prime numbers from 99 to 1 (in
descending order), while the second snippet prints the last 10 prime numbers
from 1 to 99 (in ascending order):

// prints 97 89 83 79 73 71 67 61 59 53
for (auto i : rv::iota(1, 100) |
 rv::reverse |
 rv::filter(is_prime) |
 rv::take(10))
 std::cout << i << ' ';

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 12

[671]

// prints 53 59 61 67 71 73 79 83 89 97
for (auto i : rv::iota(1, 100) |
 rv::reverse |
 rv::filter(is_prime) |
 rv::take(10) |
 rv::reverse)
 std::cout << i << ' ';

• Skip the first N elements of a range with drop_view / views::drop. The
snippet here prints, in ascending order, the prime numbers between 1 and 99,
but skips the first and last 10 primes in the sequence:

// prints 31 37 41 43 47
for (auto i : rv::iota(1, 100) |
 rv::filter(is_prime) |
 rv::drop(10) |
 rv::reverse |
 rv::drop(10) |
 rv::reverse)
 std::cout << i << ' ';

The ranges library can also be used to call algorithms using a range instead of
iterators. Most algorithms have overloads for this purpose. Examples are shown
here:

• Determine the maximum element of a range:
std::vector<int> v{ 5, 2, 7, 1, 4, 2, 9, 5 };
auto m = rg::max(v); // 5

• Sort a range:
rg::sort(v); // 1 2 2 4 5 5 7 9

• Copy a range. The following snippet copies the elements of the range to the
standard output stream:

rg::copy(v, std::ostream_iterator<int>(std::cout, " "));

• Reverse the elements of a range:
rg::reverse(v);

• Count the elements of a range (that verify a predicate):
auto primes = rg::count_if(v, is_prime);

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

C++20 Core Features

[672]

How it works...
The C++20 ranges library provides various components for dealing with ranges of
elements. These include:

• Range concepts, such as range and view.
• Range access functions, such as begin(), end(), size(), empty(), and data().
• Range factories that create sequences of elements, such as empty_view,

single_view, and iota_view.
• Range adaptors, or views, that create a lazy evaluated view from a range,

such as filter_view, transform_view, take_view, and drop_view.

A range is defined as a sequence of elements that can be iterated over with an iterator
and an end sentinel. Ranges are of different types, depending on the capabilities of
the iterators that define the range. The following concepts define types of ranges:

Concept Iterator type Capabilities
input_range input_iterator Can be iterated at least

once for reading.
output_range output_iterator Can be iterated for

writing.
forward_range forward_iterator Can be iterated multiple

times.
bidirectional_range bidirectional_iterator Can be iterated also in

reverse order.
random_access_range random_access_iterator Elements can be accessed

randomly in constant
time.

contiguous_range contiguous_iterator Elements are stored
contiguously in memory.

Because a forward_iterator satisfies the requirements of an input_iterator, and
a bidirectional_iterator satisfies those of a forward_iterator and so on (from
top to bottom in the preceding table), so do the ranges. A forward_range satisfies
the requirements of an input_range, and a bidirectional_range satisfies those of
a forward_range, and so on. Apart from the range concepts listed in the preceding
table, there are other range concepts. One worth mentioning is sized_range, which
requires that a range must know its size in constant time.

The standard containers meet the requirements of different range concepts. The most
important of them are listed in the following table:

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 12

[673]

Input
range

Forward
range

Bidirectional
range

Random
access
range

Contiguous
range

forward_list YES YES

list YES YES YES

dequeue YES YES YES YES

array YES YES YES YES YES
vector YES YES YES YES YES
set YES YES YES

map YES YES YES

multiset YES YES YES

multimap YES YES YES

unordered_set YES YES

unordered_map YES YES

unordered_multiset YES YES

unordered_multimap YES YES

A central concept of the ranges library is the range adaptor, also called a view. A view
is a non-owning wrapper of a range of elements that requires constant time to copy,
move, or assign elements. Views are composable adaptations of ranges. However,
these adaptations happen lazily, only when the view is iterated.

In the previous section, we have seen examples of using various views: filter,
transform, take, drop, and reverse. There is a total of 16 views available in the
library. All the views are available in the namespace std::ranges and have names
such as filter_view, transform_view, take_view, drop_view, and reverse_view.
However, for simplicity of use, these views can be used with expressions of the form
views::filter, views::take, views::reverse, and so on. Notice that the types and
values of these expressions are unspecified and are a compiler implementation detail.

To understand how the views work, let's take a look at the following example:

std::vector<int> nums{ 1, 1, 2, 3, 5, 8, 13, 21 };
auto v = nums | rv::filter(is_prime) | rv::take(3) | rv::reverse;
for (auto i : v) std::cout << i << ' ';

The object v in this snippet represents a view. It does not evaluate the range it adapts
until we start iterating over the elements. This is done, in this example, with the
for statement. The views are said to be lazy. The pipe operator (|) is overloaded to
simplify the composition of views.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

C++20 Core Features

[674]

The composition of views is equivalent to the following:

auto v = rv::reverse(rv::take(rv::filter(nums, is_prime), 3));

In general, the following rules apply:

• If an adaptor A takes only one argument, a range R, then A(R) and R|A are
equivalent.

• If an adaptor A takes multiple arguments, a range R and args..., then
the following three are equivalent: A(R, args...), A(args...)(R), and
R|A(args...).

Apart from ranges and range adaptors (or views), overloads of the general-purpose
algorithms are also available in C++20, in the same std::ranges namespace. These
overloads are called constrained algorithms. A range can be provided either as a single
argument (as seen in the examples in this recipe) or as an iterator-sentinel pair.
Also, for these overloads, the return type has been changed to provide additional
information that's computed during the execution of the algorithm.

There's more...
The standard ranges library has been designed based on the range-v3 library,
created by Eric Niebler and available on GitHub at https://github.com/
ericniebler/range-v3. This library provides a larger set of range adaptors
(views), as well as actions that provide mutating operations (such as sorting,
erasing, shuffling, and so on). The transition from the range-v3 library to the C++20
ranges library can be very smooth. In fact, all the samples provided in this recipe
work with both libraries. All you have to do is include the appropriate header files
and use the range-v3-specific namespaces:

#include "range/v3/view.hpp"
#include "range/v3/algorithm/sort.hpp"
#include "range/v3/algorithm/copy.hpp"
#include "range/v3/algorithm/reverse.hpp"
#include "range/v3/algorithm/count_if.hpp"
#include "range/v3/algorithm/max.hpp"

namespace rv = ranges::views;
namespace rg = ranges;

With these replacements, all the snippets from the How to do it... section will continue
to work using a C++17 compliant compiler.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/ericniebler/range-v3
https://github.com/ericniebler/range-v3

Chapter 12

[675]

See also
• Creating your own range view, to see how to extend the ranges library's

capabilities with user-defined range adaptors.
• Specifying requirements on template arguments with concepts, to explore

the fundamentals of C++20 concepts.

Creating your own range view
The C++20 ranges library simplifies the handling of ranges of elements. The 16 range
adaptors (views) defined in the library provide useful operations, as seen in the
previous recipe. However, you can create your own view that can be used together
with the standard ones. In this recipe, you will learn how to do that. We will create
a view called trim that, given a range and a unary predicate, returns a new range
without the front and back elements that satisfy the predicate.

Getting ready
In this recipe, we will use the same namespace aliases used in the previous one, with
rg as an alias for std::ranges and rv as an alias for std::ranges::views.

How to do it...
To create a view, do the following:

• Create a class template, called trim_view, derived from std::ranges::view_
interface:

template<rg::input_range R, typename P>
 requires rg::view<R>
class trim_view :
 public rg::view_interface<trim_view<R, P>>
{
};

• Define the internal state of the class, which, at a minimum, should include a
begin and end iterator and the viewable range that is adapted by the view.
For this adapter, we also need a predicate, and a Boolean variable to flag
whether the iterators have been evaluated or not:

private:
 R base_ {};
 P pred_;

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

C++20 Core Features

[676]

 mutable rg::iterator_t<R> begin_ {std::begin(base_)};
 mutable rg::iterator_t<R> end_ {std::end(base_)};
 mutable bool evaluated_ = false;

 void ensure_evaluated() const
 {
 if(!evaluated_)
 {
 while(begin_ != std::end(base_) && pred_(*begin_))
 {begin_ = std::next(begin_);}
 while(end_ != begin_ && pred_(*std::prev(end_)))
 {end_ = std::prev(end_);}
 evaluated_ = true;
 }
 }

• Define a default constructor (that can be defaulted) and a constexpr
constructor with the required parameters. The first parameter is always
the range. For this view, the other parameter is a predicate:

public:
 trim_view() = default;

 constexpr trim_view(R base, P pred)
 : base_(std::move(base))
 , pred_(std::move(pred))
 , begin_(std::begin(base_))
 , end_(std::end(base_))
 {}

• Provide accessors to the internal data, such as the base range and the
predicate:

 constexpr R base() const & {return base_;}
 constexpr R base() && {return std::move(base_);}
 constexpr P const & pred() const { return pred_; }

• Provide functions to retrieve the begin and end iterators. To make sure the
view is lazy, these iterators should only be evaluated by their first use:

 constexpr auto begin() const
 { ensure_evaluated(); return begin_; }
 constexpr auto end() const
 { ensure_evaluated(); return end_ ; }

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 12

[677]

• Provide other useful members, such as a function, to return the size of the
range:

 constexpr auto size() requires rg::sized_range<R>
 { return std::distance(begin_, end_); }
 constexpr auto size() const requires rg::sized_range<const R>
 { return std::distance(begin_, end_); }

Put all together, the view appears as follows:

template<rg::input_range R, typename P> requires rg::view<R>
class trim_view : public rg::view_interface<trim_view<R, P>>
{
private:
 R base_ {};
 P pred_;
 mutable rg::iterator_t<R> begin_ {std::begin(base_)};
 mutable rg::iterator_t<R> end_ {std::end(base_)};
 mutable bool evaluated_ = false;

private:
 void ensure_evaluated() const
 {
 if(!evaluated_)
 {
 while(begin_ != std::end(base_) && pred_(*begin_))
 {begin_ = std::next(begin_);}
 while(end_ != begin_ && pred_(*std::prev(end_)))
 {end_ = std::prev(end_);}
 evaluated_ = true;
 }
 }

public:
 trim_view() = default;

 constexpr trim_view(R base, P pred)
 : base_(std::move(base))
 , pred_(std::move(pred))
 , begin_(std::begin(base_))
 , end_(std::end(base_))
 {}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

C++20 Core Features

[678]

 constexpr R base() const & {return base_;}
 constexpr R base() && {return std::move(base_);}
 constexpr P const & pred() const { return pred_; }

 constexpr auto begin() const
 { ensure_evaluated(); return begin_; }
 constexpr auto end() const
 { ensure_evaluated(); return end_ ; }

 constexpr auto size() requires rg::sized_range<R>
 { return std::distance(begin_, end_); }
 constexpr auto size() const requires rg::sized_range<const R>
 { return std::distance(begin_, end_); }
};

To simplify the composability of this user-defined view with the standard ones and
the simplicity of use, the following should also be done:

• Create a user-defined deduction guide for class template argument deduction
of the trim_view class template:

template<class R, typename P>
trim_view(R&& base, P pred)
 -> trim_view<rg::views::all_t<R>, P>;

• Create function objects that can instantiate the trim_view adaptor with the
proper arguments. These can be made available in a separate namespace
because they represent implementation details:

namespace details
{
 template <typename P>
 struct trim_view_range_adaptor_closure
 {
 P pred_;
 constexpr trim_view_range_adaptor_closure(P pred)
 : pred_(pred)
 {}

 template <rg::viewable_range R>
 constexpr auto operator()(R && r) const
 {
 return trim_view(std::forward<R>(r), pred_);
 }

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 12

[679]

 };

 struct trim_view_range_adaptor
 {
 template<rg::viewable_range R, typename P>
 constexpr auto operator () (R && r, P pred)
 {
 return trim_view(std::forward<R>(r), pred) ;
 }

 template <typename P>
 constexpr auto operator () (P pred)
 {
 return trim_view_range_adaptor_closure(pred);
 }
 };
}

• Overload the pipe operator for the trim_view_range_adaptor_closure class
defined previously:

namespace details
{
 template <rg::viewable_range R, typename P>
 constexpr auto operator | (
 R&& r,
 trim_view_range_adaptor_closure<P> const & a)
 {
 return a(std::forward<R>(r)) ;
 }
}

• Create an object of the trim_view_range_adator type that can be used to
create trim_view instances. This can be done in a namespace called views to
create a similarity with the namespaces of the ranges library:

namespace views
{
 inline static details::trim_view_range_adaptor trim;
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

C++20 Core Features

[680]

How it works...
The trim_view class template we defined here is derived from the
std::ranges::view_interface class template. This is a helper class in the ranges
library for defining views, using the curiously recurring template pattern (CRTP).
There are two template arguments for the trim_view class: the range type, which
must satisfy the std::ranges::input_range concept, and the predicate type.

The trim_view class stores the base range and the predicate internally. Additionally,
it requires a begin and end (sentinel) iterator. These iterators must point to the
first element and the ones past the last element of the range that do not satisfy
the trimming predicate. However, because the view is a lazy object, these iterators
should not be resolved before they are needed to iterate over the range. The
following diagram shows the positions of these iterators in a range of integers,
for when the view must trim the odd numbers from the beginning and end of the
range {1,1,2,3,5,6,4,7,7,9}:

Figure 12.2: A visual conceptual representation of the range and the position of the
start and end iterators before the iteration starts (above) and after (below)

We can use the trim_view class to write the following snippets:

auto is_odd = [](int const n){return n%2 == 1;};
std::vector<int> n { 1,1,2,3,5,6,4,7,7,9 };

auto v = trim_view(n, is_odd);
rg::copy(v, std::ostream_iterator<int>(std::cout, " "));
// prints 2 3 5 6 4

for(auto i : rv::reverse(trim_view(n, is_odd)))
 std::cout << i << ' ';
// prints 4 6 5 3 2

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 12

[681]

Using the trim_view class, as well as composition with other views, is simplified
through the use of the function objects declared in the details namespace, which
represent implementation details. However, these, together with the overloaded pipe
operator (|), make it possible to rewrite the preceding code as follows:

auto v = n | views::trim(is_odd);
rg::copy(v, std::ostream_iterator<int>(std::cout, " "));

for(auto i : n | views::trim(is_odd) | rv::reverse)
 std::cout << i << ' ';

It should be mentioned that the range-v3 library does contain a range view called
trim, but it was not ported to the C++20 ranges library. This may happen in a future
version of the standard.

See also
• Iterating over collections with the ranges library, to learn about the fundamentals

of the C++ ranges library.
• Specifying requirements on template arguments with concepts, to explore the

fundamentals of C++20 concepts.
• Static polymorphism with the curiously recurring template pattern in Chapter 10,

Implementing Patterns and Idioms, to see how the CRTP works.

Creating a coroutine task type for
asynchronous computations
A major component of the C++20 standard is represented by coroutines. Simply
put, coroutines are functions that can be suspended and resumed. Coroutines are
an alternative to writing asynchronous code. They help simplify asynchronous
I/O code, lazy computations, or event-driven applications. When a coroutine is
suspended, the execution returns to the caller and the data necessary to resume
the coroutine is stored separately from the stack. For this reason, the C++20
coroutines are called stackless. Unfortunately, the C++20 standard does not define
actual coroutines types, but only a framework for building them. This makes
writing asynchronous code with coroutines difficult without relying on third-party
components.

In this recipe, you will learn how to write a coroutine task type that represents
an asynchronous computation that starts executing when the task is awaited.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

C++20 Core Features

[682]

Getting ready
The several standard library types and functions that define the coroutines
framework are available in the <coroutine> header, in the std namespace. However,
at the time of writing this book, not all compilers support coroutines other than as an
experimental feature. Therefore, if you are using VC++ or Clang, you need to include
the <experimental/coroutine> header and use the std::experimental namespace.
In the samples shown in this recipe, stdco is an alias for either the std or the
std::experimental namespace.

The goal of this recipe is to create a task type that enables us to write asynchronous
functions, as follows:

task<int> get_answer()
{
 co_return 42;
}

task<> print_answer()
{
 auto t = co_await get_answer();
 std::cout << "the answer is " << t << '\n';
}

template <typename T>
void execute(T&& t)
{
 while (!t.is_ready()) t.resume();
};

int main()
{
 auto t = get_answer();
 execute(t);
 std::cout << "the answer is " << t.value() << '\n';

 execute(print_answer());
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 12

[683]

How to do it...
To create a task type that supports coroutines that return nothing (task<>), a value
(task<T>), or a reference (task<T&>), you should do the following:

• Create a class called promise_base with the following content:
namespace details
{
 struct promise_base
 {
 auto initial_suspend() noexcept
 { return stdco::suspend_always{}; }

 auto final_suspend() noexcept
 { return stdco::suspend_always{}; }

 void unhandled_exception()
 { std::terminate(); }
 };
}

• Create a class template called promise, derived from promise_base, that adds
the methods get_return_object() and return_value() and holds the value
returned from the coroutine:

namespace details
{
 template <typename T>
 struct promise final : public promise_base
 {
 auto get_return_object()
 {
 return stdco::coroutine_handle<promise<T>>::
 from_promise(*this);
 }

 template<typename V,
 typename = std::enable_if_t<
 std::is_convertible_v<V&&, T>>>
 auto return_value(V&& value)
 noexcept(std::is_nothrow_constructible_v<T, V&&>)
 {
 value_ = value;

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

C++20 Core Features

[684]

 return stdco::suspend_always{};
 }

 T get_value() const noexcept { return value_; }
 private:
 T value_;
 };
}

• Specialize the promise class template for the void type, and provide
implementations for the get_return_object() and return_void() methods:

namespace details
{
 template <>
 struct promise<void> final : public promise_base
 {
 auto get_return_object()
 {
 return stdco::coroutine_handle<promise<void>>::
 from_promise(*this);
 }

 void return_void() noexcept {}
 };
}

• Specialize the promise class template for T&. Provide implementations for
get_return_object() and return_value() and store a pointer to the reference
returned by the coroutine:

namespace details
{
 template <typename T>
 struct promise<T&> final : public promise_base
 {
 auto get_return_object()
 {
 return stdco::coroutine_handle<promise<T&>>::
 from_promise(*this);
 }

 void return_value(T& value) noexcept
 {

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 12

[685]

 value_ = std::addressof(value);
 }
 T& get_value() const noexcept { return *value_; }

 private:
 T* value_ = nullptr;
 };
}

• Create a class template called task, with the stub content shown below. This
type must have an inner type called promise_type, and must hold a handle
to the executing coroutine. The task_awaiter and the class members are
listed here:

template <typename T = void>
struct task
{
 using promise_type = details::promise<T>;

 // task_awaiter

 // members

private:
 stdco::coroutine_handle<promise_type> handle_ = nullptr;
};

• Create an awaitable class called task_awaiter that implements the await_
ready(), await_suspend(), and await_resume() methods:

struct task_awaiter
{
 task_awaiter(stdco::coroutine_handle<promise_type> coroutine)
 noexcept
 : handle_(coroutine)
 {}

 bool await_ready() const noexcept
 {
 return !handle_ || handle_.done();
 }

 void await_suspend(
 stdco::coroutine_handle<> continuation) noexcept

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

C++20 Core Features

[686]

 {
 handle_.resume();
 }

 decltype(auto) await_resume()
 {
 if (!handle_)
 throw std::runtime_error{ "broken promise" };

 return handle_.promise().get_value();
 }

 friend class task<T>;
private:
 stdco::coroutine_handle<promise_type> handle_;
};

• Provide class members, including a conversion constructor, move constructor
and move assignment operator, destructor, co_await operator, a method to
check whether the coroutine has completed, a method to resume a suspended
coroutine, and a method to get the value returned from the coroutine:

explicit task(stdco::coroutine_handle<promise_type> handle)
 : handle_(handle)
{
}

~task()
{
 if (handle_) handle_.destroy();
}

task(task&& t) noexcept : handle_(t.handle_)
{
 t.handle_ = nullptr;
}

task& operator=(task&& other) noexcept
{
 if (std::addressof(other) != this)
 {
 if (handle_) handle_.destroy();

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 12

[687]

 handle_ = other.handle_;
 other.handle_ = nullptr;
 }

 return *this;
}

task(task const &) = delete;
task& operator=(task const &) = delete;

T value() const noexcept
{ return handle_.promise().get_value(); }

void resume() noexcept
{ handle_.resume(); }

bool is_ready() noexcept
{ return !handle_ || handle_.done(); }

auto operator co_await() const& noexcept
{
 return task_awaiter{ handle_ };
}

How it works...
Functions are blocks of code that execute one or more statements. You can assign
them to variables, pass them as arguments, take their address, and, of course, invoke
them. These features make them first-class citizens in the C++ language. Functions
are sometimes called subroutines. Coroutines, on the other hand, are functions that
support two additional operations: suspending and resuming their execution.

In C++20, a function is a coroutine if it uses any of the following:

• The co_await operator, which suspends the execution until resumed
• The co_return keyword, to complete the execution and optionally return

a value
• The co_yield keyword, to suspend the execution and return a value

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

C++20 Core Features

[688]

Not every function, however, can be a coroutine. The following cannot be coroutines:

• Constructors and destructors
• Constexpr functions
• Functions with a variable number of arguments
• Functions that return auto or a concept type
• The main() function

A coroutine consists of the following three parts:

• A promise object, which is manipulated inside the coroutine and is used
to pass the return value or an exception from the coroutine.

• A coroutine handle, which is manipulated outside the coroutine and is used
to either resume the execution or destroy the coroutine frame.

• The coroutine frame, typically allocated on the heap and containing the
promise object, the coroutine parameters copied by value, local variables,
and temporaries whose lifetimes exceed the current suspension point, and
a representation of the suspension point, so that resuming and destroying
can be performed.

The promise object can be any type that implements the following interface,
as expected by the compiler:

Default constructor The promise must be default constructible
initial_suspend() Indicates whether suspension happens at the initial

suspend point
final_suspend() Indicates whether suspension happens at the last

suspend point
unhandled_exception() Called when an exception propagates out of a

coroutine block
get_return_object() The return value of the function
return_value(v) Enables the co_return v statement
return_void() Enables the co_return statement
yield_value(v) Enables the co_yield v statement

The implementation of initial_suspend() and final_suspend() we have seen
for the promise type implemented here are returning an instance of std::suspend_
always. This is one of the two trivial awaitables that the standard defines, the other
being std::suspend_never. Their implementation is as follows:

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 12

[689]

struct suspend_always
{
 bool await_ready() noexcept { return false; }
 void await_suspend(coroutine_handle<>) noexcept {}
 void await_resume() noexcept {}
};

struct suspend_never
{
 bool await_ready() noexcept { return true; }
 void await_suspend(coroutine_handle<>) noexcept {}
 void await_resume() noexcept {}
};

These types implement the awaitable concept, which enables the use of the co_await
operator. There are three functions required by this concept. These can be either free
functions or class member functions. They are listed in the following table:

await_ready() Indicates whether the result is ready. If the return value is false
(or a value convertible to false), then await_suspend() is called.

await_suspend() Schedules the coroutine to resume or to be destroyed.
await_resume() Provides the result for the entire co_await e expression.

The task<T> type we built in this recipe has several members:

• An explicit constructor that takes an argument of the std::coroutine_
handle<T> type, representing a non-owning handle to the coroutine.

• A destructor that destroys the coroutine frame.
• A move constructor and move assignment operator.
• A deleted copy constructor and copy assignment operator, making the class

moveable-only.
• The co_await operator, which returns a task_awaiter value that implements

the awaitable concept.
• is_ready(), a method that returns a Boolean value indicating whether the

coroutine value is ready.
• resume(), a method that resumes the execution of the coroutine.
• value(), a method that returns the value held by the promise object.
• An inner promise type called promise_type (this name is mandatory).

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

C++20 Core Features

[690]

If an exception occurs during the execution of the coroutine, and this exception
leaves the coroutine without being handled, then the unhandled_exception()
method of the promise is invoked. In this simple implementation, this situation
is not handled and the program is abnormally terminated with a call to
std::terminate(). In the following recipe, we will see an awaitable implementation
that handles exceptions.

Let's take the following coroutine as an example to see how the compiler handles it:

task<> print_answer()
{
 auto t = co_await get_answer();
 std::cout << "the answer is " << t << '\n';
}

Because of all the mechanisms we built in this recipe, the compiler transforms this
code into the following (this snippet is pseudocode):

task<> print_answer()
{
 __frame* context;

 task<>::task_awaiter t = operator co_await(get_answer());

 if(!t.await_ready())
 {
 coroutine_handle<> resume_co =
 coroutine_handle<>::from_address(context);

 y.await_suspend(resume_co);

 __suspend_resume_point_1:
 }

 auto value = t.await_resume();

 std::cout << "the answer is " << value << '\n';
}

As mentioned earlier, the main() function is one of the functions that cannot be a
coroutine. For this reason, it is not possible to use the co_await operator in main().
This means that waiting for a coroutine to complete must be done differently in
main().

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 12

[691]

This is handled with the help of a function template called execute() that runs the
following loop:

while (!t.is_ready()) t.resume();

This loop ensures that the coroutine is resumed after each suspension point, until its
final completion.

There's more...
The C++20 standard does not provide any coroutine types, and writing your own
is a cumbersome task. Fortunately, third-party libraries can offer these abstractions.
Such a library is cppcoro, an open source experimental library that provides a set
of general-purpose primitives for making use of the coroutines described in the
C++20 standard. The library is available at https://github.com/lewissbaker/
cppcoro. Among the components it provides is the task<T> coroutine type, similar
to what we built in this recipe. Using the cppcoro::task<T> type, we can rewrite
our examples as follows:

#include <iostream>
#include <cppcoro/task.hpp>
#include <cppcoro/sync_wait.hpp>

cppcoro::task<int> get_answer()
{
 co_return 42;
}

cppcoro::task<> print_answer()
{
 auto t = co_await get_answer();
 std::cout << "the answer is " << t << '\n';
}

cppcoro::task<> demo()
{
 auto t = co_await get_answer();
 std::cout << "the answer is " << t << '\n';

 co_await print_answer();
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/lewissbaker/cppcoro
https://github.com/lewissbaker/cppcoro

C++20 Core Features

[692]

int main()
{
 cppcoro::sync_wait(demo());
}

As you can see, the code is very similar to what we wrote in the first part of this
recipe. The changes are minimal. By using this cppcoro library or others that are
similar, you do not need to be concerned with the details of implementing coroutine
types and instead focus on their use.

See also
• Creating a coroutine generator type for sequences of values, to learn how to enable

the use of co_yield to return multiple values from a coroutine.

Creating a coroutine generator type for
sequences of values
In the previous recipe, we saw how to create a coroutine task that enables
asynchronous computations. We used the co_await operator to suspend execution
until resumed and the co_return keyword to complete execution and return a value.
However, another keyword, co_yield, also defines a function as a coroutine. It
suspends the execution of the coroutine and returns a value. It enables a coroutine to
return multiple values, one each time it is resumed. To support this feature, another
type of coroutine is required. This type is called a generator. Conceptually, it's like
a stream that produces a sequence of values of a type T in a lazy manner (when
iterated). In this recipe, we will see how we can implement a simple generator.

Getting ready
The goal of this recipe is to create a generator coroutine type that enables us to write
code like the following:

generator<int> iota(int start = 0, int step = 1) noexcept
{
 auto value = start;
 for (int i = 0;; ++i)
 {
 co_yield value;
 value += step;

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 12

[693]

 }
}

generator<std::optional<int>> iota_n(
 int start = 0, int step = 1,
 int n = std::numeric_limits<int>::max()) noexcept
{
 auto value = start;
 for (int i = 0; i < n; ++i)
 {
 co_yield value;
 value += step;
 }
}

generator<int> fibonacci() noexcept
{
 int a = 0, b = 1;
 while (true)
 {
 co_yield b;
 auto tmp = a;
 a = b;
 b += tmp;
 }
}

int main()
{
 for (auto i : iota())
 {
 std::cout << i << ' ';
 if (i >= 10) break;
 }

 for (auto i : iota_n(0, 1, 10))
 {
 if (!i.has_value()) break;
 std::cout << i.value() << ' ';
 }

 int c = 1;

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

C++20 Core Features

[694]

 for (auto i : fibonacci())
 {
 std::cout << i << ' ';
 if (++c > 10) break;
 }
}

It is recommended that you follow the previous recipe, Creating a coroutine task type
for asynchronous computations, before you continue with this one.

How to do it...
To create a generator coroutine type that supports synchronous lazy production of
a sequence of values, you should do the following:

• Create a class template, called generator, with the following content
(the details of each part are presented with the following bullets):

template <typename T>
struct generator
{
 // struct promise_type

 // struct iterator

 // member functions

 // iterators
private:
 stdco::coroutine_handle<promise_type> handle_ = nullptr;
};

• Create an inner class called promise_type (the name is mandatory) with the
following content:

struct promise_type
{
 T const* value_;
 std::exception_ptr eptr_;

 auto get_return_object()
 { return generator{ *this }; }

 auto initial_suspend() noexcept

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 12

[695]

 { return stdco::suspend_always{}; }

 auto final_suspend() noexcept
 { return stdco::suspend_always{}; }

 void unhandled_exception() noexcept
 {
 eptr_ = std::current_exception();
 }

 void rethrow_if_exception()
 {
 if (eptr_)
 {
 std::rethrow_exception(eptr_);
 }
 }

 auto yield_value(T const& v)
 {
 value_ = std::addressof(v);
 return stdco::suspend_always{};
 }

 void return_void() {}

 template <typename U>
 U&& await_transform(U&& v)
 {
 return std::forward<U>(v);
 }
};

• Create an inner class called iterator with the following content:
struct iterator
{
 using iterator_category = std::input_iterator_tag;
 using difference_type = ptrdiff_t;
 using value_type = T;
 using reference = T const&;
 using pointer = T const*;

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

C++20 Core Features

[696]

 stdco::coroutine_handle<promise_type> handle_ = nullptr;

 iterator() = default;
 iterator(nullptr_t) : handle_(nullptr) {}

 iterator(stdco::coroutine_handle<promise_type> arg)
 : handle_(arg)
 {}

 iterator& operator++()
 {
 handle_.resume();
 if (handle_.done())
 {
 std::exchange(handle_, {}).promise()
 .rethrow_if_exception();
 }

 return *this;
 }

 void operator++(int)
 {
 ++* this;
 }

 bool operator==(iterator const& _Right) const
 {
 return handle_ == _Right.handle_;
 }

 bool operator!=(iterator const& _Right) const
 {
 return !(*this == _Right);
 }

 reference operator*() const
 {
 return *handle_.promise().value_;
 }

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 12

[697]

 pointer operator->() const
 {
 return std::addressof(handle_.promise().value_);
 }
};

• Provide a default constructor, an explicit constructor from a promise_type
object, a move constructor and a move assignment operator, and a destructor.
Delete the copy constructor and copy assignment operator so that the type is
moveable-only:

explicit generator(promise_type& p)
 : handle_(
 stdco::coroutine_handle<promise_type>::from_promise(p))
{}

generator() = default;
generator(generator const&) = delete;
generator& operator=(generator const&) = delete;

generator(generator&& other) : handle_(other.handle_)
{
 other.handle_ = nullptr;
}

generator& operator=(generator&& other)
{
 if (this != std::addressof(other))
 {
 handle_ = other.handle_;
 other.handle_ = nullptr;
 }
 return *this;
}

~generator()
{
 if (handle_)
 {
 handle_.destroy();
 }
}

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

C++20 Core Features

[698]

• Provide the begin() and end() functions to enable iterating over the
generator sequence:

iterator begin()
{
 if (handle_)
 {
 handle_.resume();
 if (handle_.done())
 {
 handle_.promise().rethrow_if_exception();
 return { nullptr };
 }
 }

 return { handle_ };
}

iterator end()
{
 return { nullptr };
}

How it works...
The promise type implemented in this recipe is similar to the one from the previous
recipe, although there are some differences:

• It is implemented as an inner type, so the name is promise_type, since the
coroutine framework requires the coroutine type to have an inner promise
type with this name.

• It supports handling exceptions that leave the coroutine block uncaught.
In the previous recipe, this situation was not treated and unhandled_
exception() called std::terminate() to abnormally terminate the process.
This implementation, however, retries a pointer to the current exception and
stores it in an std::exception_ptr object. This exception is rethrown when
iterating through the generated sequence (either when calling begin() or
when incrementing the iterator).

• The functions return_value() and return_void() are not present, but
replaced with yield_value(), which is called when the co_yield expr
expression is resolved.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 12

[699]

The generator class also bears some similarities to the task class from the previous
recipe:

• It is default constructible
• It can be constructed from a promise object
• It is not copy-constructible and copyable
• It is move-constructible and moveable
• Its destructor destroys the coroutine frame

This class does not overload the co_await operator, as it does not make sense to
await on the generator, but provides the functions begin() and end(), which return
iterator objects that enable iterating over the sequence of values. This generator
is said to be lazy because it does not produce new values until the coroutine is
resumed, either by calling begin() or incrementing an iterator. The coroutine is
created suspended and its first execution begins only when calling the begin()
function. The execution continues either until the first co_yield statement or until
the coroutine completes its execution. Similarly, incrementing the iterator will
resume the execution of the coroutine, which continues either until the next co_yield
statement or until its completion.

The following example shows a coroutine that produces several integer values.
It does so not by using a loop but by repeating co_yield statements:

generator<int> get_values() noexcept
{
 co_yield 1;
 co_yield 2;
 co_yield 3;
}

int main()
{
 for (auto i : get_values())
 {
 std::cout << i << ' ';
 }
}

An important thing to note is that the coroutine can only use the co_yield keyword
and produce values synchronously. The use of the co_await operator within the
coroutine is not supported with this particular implementation. To be able to
suspend execution by using the co_await operator, a different implementation
is required.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

C++20 Core Features

[700]

There's more...
The cppcoro library, mentioned in the previous recipe, has a generator<T> type
that can be used instead of the one we created here. In fact, by replacing our
generator<T> with cppcoro::generator<T>, the snippets of code shown previously
will continue to work as expected. Moreover, the cppcoro library also features an
async_generator<T> type, which supports the co_await operator and, therefore,
producing values asynchronously, as well as a recursive_generator<T> type, which
efficiently supports yielding the elements of a nested sequence as elements of an
outer sequence.

See also
• Creating a coroutine task type for asynchronous computations, to get an

introduction to the C++20 coroutines.

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

[701]

Bibliography

Websites
• C++ reference http://en.cppreference.com/w/
• ISO C++ https://isocpp.org/
• More C++ Idioms https://en.wikibooks.org/wiki/More_C%2B%2B_Idioms
• Boost http://www.boost.org/
• Catch2 https://github.com/catchorg/Catch2
• Google Test https://github.com/google/googletest
• CppCoro https://github.com/lewissbaker/cppcoro
• range-v3 https://github.com/ericniebler/range-v3

Articles and books
• David Abrahams, 2001. Lessons Learned from Specifying Exception-Safety for the

C++ Standard Library http://www.boost.org/community/exception_safety.
html

• Michael Afanasiev, 2016. Combining Static and Dynamic Polymorphism with
C++ Mixin classes https://michael-afanasiev.github.io/2016/08/03/
Combining-Static-and-Dynamic-Polymorphism-with-C++-Template-Mixins.
html

• Alex Allain, 2011. Constexpr - Generalized Constant Expressions in C++11
http://www.cprogramming.com/c++11/c++11-compile-time-processing-
with-constexpr.html

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://en.cppreference.com/w/
https://isocpp.org/
https://en.wikibooks.org/wiki/More_C%2B%2B_Idioms
http://www.boost.org/
https://github.com/catchorg/Catch2
https://github.com/google/googletest
https://github.com/lewissbaker/cppcoro
https://github.com/ericniebler/range-v3
http://www.boost.org/community/exception_safety.html
http://www.boost.org/community/exception_safety.html
https://michael-afanasiev.github.io/2016/08/03/Combining-Static-and-Dynamic-Polymorphism-with-C++-Te
https://michael-afanasiev.github.io/2016/08/03/Combining-Static-and-Dynamic-Polymorphism-with-C++-Te
https://michael-afanasiev.github.io/2016/08/03/Combining-Static-and-Dynamic-Polymorphism-with-C++-Te
http://www.cprogramming.com/c++11/c++11-compile-time-processing-with-constexpr.html
http://www.cprogramming.com/c++11/c++11-compile-time-processing-with-constexpr.html

Bibliography

[702]

• Matthew H. Austern, 2001. The Standard Librarian: Defining a Facet http://
www.drdobbs.com/the-standard-librarian-defining-a-facet/184403785

• Thomas Badie, 2012. C++11: A generic Singleton http://enki-tech.blogspot.
ro/2012/08/c11-generic-singleton.html

• Lewis Baker, 2019. Coroutine Theory https://lewissbaker.github.
io/2017/09/25/coroutine-theory

• Lewis Baker, 2017. C++ Coroutines: Understanding operator co_await https://
lewissbaker.github.io/2017/11/17/understanding-operator-co-await

• Eli Bendersky, 2016. The promises and challenges of std::async task-based
parallelism in C++11 http://eli.thegreenplace.net/2016/the-promises-and-
challenges-of-stdasync-task-based-parallelism-in-c11/

• Eli Bendersky, 2011. The Curiously Recurring Template Pattern in C++ http://
eli.thegreenplace.net/2011/05/17/the-curiously-recurring-template-
pattern-in-c

• Joshua Bloch, 2008. Effective Java (2nd Edition) Addison-Wesley
• Fernando Luis Cacciola Carballal, 2007. Boost.Optional http://www.boost.

org/doc/libs/1_63_0/libs/optional/doc/html/index.html

• Bruce Dawson, 2012. Comparing Floating Point Numbers, 2012 Edition https://
randomascii.wordpress.com/2012/02/25/comparing-floating-point-
numbers-2012-edition/

• Kent Fagerjord. 2016. How to build Boost 1.62 with Visual Studio 2015 https://
studiofreya.com/2016/09/29/how-to-build-boost-1-62-with-visual-
studio-2015/

• Bartlomiej Filipek, 2018. The Amazing Performance of C++17 Parallel Algorithms,
is it Possible? https://www.bfilipek.com/2018/11/parallel-alg-perf.html

• Eric Friedman and Itay Maman, 2003. Boost.Variant http://www.boost.org/
doc/libs/1_63_0/doc/html/variant.html

• Vanand Gasparyan, 2019. A little bit of code [C++20 Ranges] https://itnext.
io/a-little-bit-of-code-c-20-ranges-c6a6f7eae401

• Wilfried Goesgens, 2015. Comparison: Lockless programming with atomics in C++
11 vs. mutex and RW-locks https://www.arangodb.com/2015/02/comparing-
atomic-mutex-rwlocks/

• Corentin Jabot, 2018. A can of span https://cor3ntin.github.io/posts/span/
• Corentin Jabot, 2020. A Universal I/O Abstraction for C++ https://cor3ntin.

github.io/posts/iouring/

• Kevlin Henney, 2001. Boost.Any http://www.boost.org/doc/libs/1_63_0/
doc/html/any.html

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.drdobbs.com/the-standard-librarian-defining-a-facet/184403785
http://www.drdobbs.com/the-standard-librarian-defining-a-facet/184403785
http://enki-tech.blogspot.ro/2012/08/c11-generic-singleton.html
http://enki-tech.blogspot.ro/2012/08/c11-generic-singleton.html
https://lewissbaker.github.io/2017/09/25/coroutine-theory
https://lewissbaker.github.io/2017/09/25/coroutine-theory
https://lewissbaker.github.io/2017/11/17/understanding-operator-co-await
https://lewissbaker.github.io/2017/11/17/understanding-operator-co-await
http://eli.thegreenplace.net/2016/the-promises-and-challenges-of-stdasync-task-based-parallelism-in-
http://eli.thegreenplace.net/2016/the-promises-and-challenges-of-stdasync-task-based-parallelism-in-
http://eli.thegreenplace.net/2011/05/17/the-curiously-recurring-template-pattern-in-c
http://eli.thegreenplace.net/2011/05/17/the-curiously-recurring-template-pattern-in-c
http://eli.thegreenplace.net/2011/05/17/the-curiously-recurring-template-pattern-in-c
http://www.boost.org/doc/libs/1_63_0/libs/optional/doc/html/index.html
http://www.boost.org/doc/libs/1_63_0/libs/optional/doc/html/index.html
https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
https://studiofreya.com/2016/09/29/how-to-build-boost-1-62-with-visual-studio-2015/
https://studiofreya.com/2016/09/29/how-to-build-boost-1-62-with-visual-studio-2015/
https://studiofreya.com/2016/09/29/how-to-build-boost-1-62-with-visual-studio-2015/
https://www.bfilipek.com/2018/11/parallel-alg-perf.html
http://www.boost.org/doc/libs/1_63_0/doc/html/variant.html
http://www.boost.org/doc/libs/1_63_0/doc/html/variant.html
https://itnext.io/a-little-bit-of-code-c-20-ranges-c6a6f7eae401
https://itnext.io/a-little-bit-of-code-c-20-ranges-c6a6f7eae401
https://www.arangodb.com/2015/02/comparing-atomic-mutex-rwlocks/
https://www.arangodb.com/2015/02/comparing-atomic-mutex-rwlocks/
https://cor3ntin.github.io/posts/span/
https://cor3ntin.github.io/posts/iouring/
https://cor3ntin.github.io/posts/iouring/
http://www.boost.org/doc/libs/1_63_0/doc/html/any.html
http://www.boost.org/doc/libs/1_63_0/doc/html/any.html

Bibliography

[703]

• Howard Hinnant, (library on GitHub) https://github.com/HowardHinnant/
date

• Nicolai M. Josuttis 2012. The C++ Standard Library: Utilities http://www.
informit.com/articles/article.aspx?p=1881386&seqNum=2

• Nicolai Josutis, 2012. The C++ Standard Library, 2nd Edition Addison Wesley
Danny Kalev, 2012. Using constexpr to Improve Security, Performance and
Encapsulation in C++ http://blog.smartbear.com/c-plus-plus/using-
constexpr-to-improve-security-performance-and-encapsulation-in-c/

• Danny Kalev, 2012. C++11 Tutorial: Introducing the Move Constructor and the
Move Assignment Operator http://blog.smartbear.com/c-plus-plus/c11-
tutorial-introducing-the-move-constructor-and-the-move-assignment-
operator/

• David Kieras, 2013. Why std::binary_search of std::list Works, But You Shouldn't
Use It! EECS 381

• Matt Kline 2017. Comparing Floating-Point Numbers Is Tricky, http://
bitbashing.io/comparing-floats.html

• Andrzej Krzemienski, 2016. Another polymorphism https://akrzemi1.
wordpress.com/2016/02/27/another-polymorphism/

• Andrzej Krzemienski, 2011. Using noexcept https://akrzemi1.wordpress.
com/2011/06/10/using-noexcept/

• Andrzej Krzemienski, 2014. noexcept--what for? https://akrzemi1.wordpress.
com/2014/04/24/noexcept-what-for/

• Andrzej Krzemienski, 2013. noexcept destructors https://akrzemi1.
wordpress.com/2013/08/20/noexcept-destructors/

• John Maddock and Steve Cleary, 2000. C++ Type Traits http://www.drdobbs.
com/cpp/c-type-traits/184404270

• Arne Mertz, 2016. Modern C++ Features – constexpr https://arne-mertz.
de/2016/06/constexpr/

• Scott Meyers, 2014. Effective Modern C++, O'Reilly
• Scott Meyers and Andrei Alexandrescu, 2004. C++ and the Perils of Double-

Checked Locking http://www.aristeia.com/Papers/DDJ_Jul_Aug_2004_
revised.pdf

• Bartosz Milewski, 2009. Broken promises–C++0x futures https://
bartoszmilewski.com/2009/03/03/broken-promises-c0x-futures/

• Bartosz Milewski, 2008. Who ordered sequential consistency? https://
bartoszmilewski.com/2008/11/11/who-ordered-sequential-consistency/

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/HowardHinnant/date
https://github.com/HowardHinnant/date
http://www.informit.com/articles/article.aspx?p=1881386&seqNum=2
http://www.informit.com/articles/article.aspx?p=1881386&seqNum=2
http://blog.smartbear.com/c-plus-plus/using-constexpr-to-improve-security-performance-and-encapsulat
http://blog.smartbear.com/c-plus-plus/using-constexpr-to-improve-security-performance-and-encapsulat
http://blog.smartbear.com/c-plus-plus/c11-tutorial-introducing-the-move-constructor-and-the-move-ass
http://blog.smartbear.com/c-plus-plus/c11-tutorial-introducing-the-move-constructor-and-the-move-ass
http://blog.smartbear.com/c-plus-plus/c11-tutorial-introducing-the-move-constructor-and-the-move-ass
http://bitbashing.io/comparing-floats.html
http://bitbashing.io/comparing-floats.html
https://akrzemi1.wordpress.com/2016/02/27/another-polymorphism/
https://akrzemi1.wordpress.com/2016/02/27/another-polymorphism/
https://akrzemi1.wordpress.com/2011/06/10/using-noexcept/
https://akrzemi1.wordpress.com/2011/06/10/using-noexcept/
https://akrzemi1.wordpress.com/2014/04/24/noexcept-what-for/
https://akrzemi1.wordpress.com/2014/04/24/noexcept-what-for/
https://akrzemi1.wordpress.com/2013/08/20/noexcept-destructors/
https://akrzemi1.wordpress.com/2013/08/20/noexcept-destructors/
http://www.drdobbs.com/cpp/c-type-traits/184404270
http://www.drdobbs.com/cpp/c-type-traits/184404270
https://arne-mertz.de/2016/06/constexpr/
https://arne-mertz.de/2016/06/constexpr/
http://www.aristeia.com/Papers/DDJ_Jul_Aug_2004_revised.pdf
http://www.aristeia.com/Papers/DDJ_Jul_Aug_2004_revised.pdf
https://bartoszmilewski.com/2009/03/03/broken-promises-c0x-futures/
https://bartoszmilewski.com/2009/03/03/broken-promises-c0x-futures/
https://bartoszmilewski.com/2008/11/11/who-ordered-sequential-consistency/
https://bartoszmilewski.com/2008/11/11/who-ordered-sequential-consistency/

Bibliography

[704]

• Bartosz Milewski, 2008. C++ atomics and memory ordering https://
bartoszmilewski.com/2008/12/01/c-atomics-and-memory-ordering/

• Oliver Mueller, 2014. Testing C++ With A New Catch http://blog.coldflake.
com/posts/Testing-C++-with-a-new-Catch/

• Jonathan Müller, 2018. Mathematics behind Comparison #1: Equality and
Equivalence Relations https://foonathan.net/2018/06/equivalence-
relations/

• Ashwin Nanjappa, 2014. How to build Boost using Visual Studio https://
codeyarns.com/2014/06/06/how-to-build-boost-using-visual-studio/

• Billy O'Neal, 2018. Using C++17 Parallel Algorithms for Better Performance
https://devblogs.microsoft.com/cppblog/using-c17-parallel-algorithms-
for-better-performance/

• M.E. O'Neill, 2015. C++ Seeding Surprises http://www.pcg-random.org/posts/
cpp-seeding-surprises.html

• M.E. O'Neill, 2015. Developing a seed_seq Alternative http://www.pcg-random.
org/posts/developing-a-seed_seq-alternative.html

• M.E. O'Neill, 2015. Everything You Never Wanted to Know about C++'s random_
device http://www.pcg-random.org/posts/cpps-random_device.html

• M.E. O'Neill, 2015. Simple Portable C++ Seed Entropy http://www.pcg-random.
org/posts/simple-portable-cpp-seed-entropy.html

• John Pearce, Floating Point Numbers http://www.cs.sjsu.edu/~pearce/
modules/lectures/co/ds/floats.htm

• Jeff Preshing, 2013. Double-Checked Locking is Fixed In C++11 http://
preshing.com/20130930/double-checked-locking-is-fixed-in-cpp11/

• Rick Regan, 2010. Hexadecimal Floating-Point Constants http://www.
exploringbinary.com/hexadecimal-floating-point-constants/

• Barry Revzin, 2019. Comparisons in C++20 https://brevzin.github.io/
c++/2019/07/28/comparisons-cpp20/

• Eugene Sadovoi, 2015. Building and configuring boost in Visual Studio (MSBuild)
https://www.codeproject.com/Articles/882581/Building-and-configuring-
boost-in-Visual-Studio-MS

• David Sankel, 2015. A variant for the everyday Joe http://davidsankel.com/c/
a-variant-for-the-everyday-joe/

• Arpan Sen, 2010. A quick introduction to the Google C++ Testing
Framework http://www.ibm.com/developerworks/aix/library/au-
googletestingframework.html

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://bartoszmilewski.com/2008/12/01/c-atomics-and-memory-ordering/
https://bartoszmilewski.com/2008/12/01/c-atomics-and-memory-ordering/
http://blog.coldflake.com/posts/Testing-C++-with-a-new-Catch/
http://blog.coldflake.com/posts/Testing-C++-with-a-new-Catch/
https://foonathan.net/2018/06/equivalence-relations/
https://foonathan.net/2018/06/equivalence-relations/
https://codeyarns.com/2014/06/06/how-to-build-boost-using-visual-studio/
https://codeyarns.com/2014/06/06/how-to-build-boost-using-visual-studio/
https://devblogs.microsoft.com/cppblog/using-c17-parallel-algorithms-for-better-performance/
https://devblogs.microsoft.com/cppblog/using-c17-parallel-algorithms-for-better-performance/
http://www.pcg-random.org/posts/cpp-seeding-surprises.html
http://www.pcg-random.org/posts/cpp-seeding-surprises.html
http://www.pcg-random.org/posts/developing-a-seed_seq-alternative.html
http://www.pcg-random.org/posts/developing-a-seed_seq-alternative.html
http://www.pcg-random.org/posts/cpps-random_device.html
http://www.pcg-random.org/posts/simple-portable-cpp-seed-entropy.html
http://www.pcg-random.org/posts/simple-portable-cpp-seed-entropy.html
http://www.cs.sjsu.edu/~pearce/modules/lectures/co/ds/floats.htm
http://www.cs.sjsu.edu/~pearce/modules/lectures/co/ds/floats.htm
http://preshing.com/20130930/double-checked-locking-is-fixed-in-cpp11/
http://preshing.com/20130930/double-checked-locking-is-fixed-in-cpp11/
http://www.exploringbinary.com/hexadecimal-floating-point-constants/
http://www.exploringbinary.com/hexadecimal-floating-point-constants/
https://brevzin.github.io/c++/2019/07/28/comparisons-cpp20/
https://brevzin.github.io/c++/2019/07/28/comparisons-cpp20/
https://www.codeproject.com/Articles/882581/Building-and-configuring-boost-in-Visual-Studio-MS
https://www.codeproject.com/Articles/882581/Building-and-configuring-boost-in-Visual-Studio-MS
http://davidsankel.com/c/a-variant-for-the-everyday-joe/
http://davidsankel.com/c/a-variant-for-the-everyday-joe/
http://www.ibm.com/developerworks/aix/library/au-googletestingframework.html
http://www.ibm.com/developerworks/aix/library/au-googletestingframework.html

Bibliography

[705]

• Bjarne Stroustrup, 2000. Standard-Library Exception Safety Addison Wesley
http://stroustrup.com/3rd_safe.pdf

• Herb Sutter, 2013. GotW #90 Solution: Factories https://herbsutter.
com/2013/05/30/gotw-90-solution-factories/

• Herb Sutter, 2002. A Pragmatic Look at Exception Specifications C/C++ Users
Journal, 20(7) http://www.gotw.ca/publications/mill22.htm

• Herb Sutter, 2012. GotW #102: Exception-Safe Function Calls https://
herbsutter.com/gotw/_102/

• Herb Sutter, 2013. My Favorite C++ 10-Liner https://channel9.msdn.com/
Events/GoingNative/2013/My-Favorite-Cpp-10-Liner

• Herb Sutter, 2001. Virtuality, C/C++ Users Journal, 19(9) http://www.gotw.
ca/publications/mill18.htm

• Andrey Upadyshev, 2015. PIMPL, Rule of Zero and Scott Meyers http://
oliora.github.io/2015/12/29/pimpl-and-rule-of-zero.html

• Todd Veldhuizen, 2000. Techniques for Scientific C++ http://www.cs.indiana.
edu/pub/techreports/TR542.pdf

• Baptiste Wicht, 2014. Catch: A powerful yet simple C++ test framework https://
baptiste-wicht.com/posts/2014/07/catch-powerful-yet-simple-cpp-test-
framework.html

• Anthony Williams, 2009. Multithreading in C++0x part 7: Locking multiple
mutexes without deadlock https://www.justsoftwaresolutions.co.uk/
threading/multithreading-in-c++0x-part-7-locking-multiple-mutexes.
html

• Anthony Williams, 2008. Peterson's lock with C++0x atomics https://www.
justsoftwaresolutions.co.uk/threading/petersons_lock_with_C++0x_
atomics.html

• Benjamin Wolsey, 2010. C++ facets http://benjaminwolsey.de/node/78
• Victor Zverovich, 2019. std::format in C++20 https://www.zverovich.

net/2019/07/23/std-format-cpp20.html

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://stroustrup.com/3rd_safe.pdf
https://herbsutter.com/2013/05/30/gotw-90-solution-factories/
https://herbsutter.com/2013/05/30/gotw-90-solution-factories/
http://www.gotw.ca/publications/mill22.htm
https://herbsutter.com/gotw/_102/
https://herbsutter.com/gotw/_102/
https://channel9.msdn.com/Events/GoingNative/2013/My-Favorite-Cpp-10-Liner
https://channel9.msdn.com/Events/GoingNative/2013/My-Favorite-Cpp-10-Liner
http://www.gotw.ca/publications/mill18.htm
http://www.gotw.ca/publications/mill18.htm
http://oliora.github.io/2015/12/29/pimpl-and-rule-of-zero.html
http://oliora.github.io/2015/12/29/pimpl-and-rule-of-zero.html
http://www.cs.indiana.edu/pub/techreports/TR542.pdf
http://www.cs.indiana.edu/pub/techreports/TR542.pdf
https://baptiste-wicht.com/posts/2014/07/catch-powerful-yet-simple-cpp-test-framework.html
https://baptiste-wicht.com/posts/2014/07/catch-powerful-yet-simple-cpp-test-framework.html
https://baptiste-wicht.com/posts/2014/07/catch-powerful-yet-simple-cpp-test-framework.html
https://www.justsoftwaresolutions.co.uk/threading/multithreading-in-c++0x-part-7-locking-multiple-mu
https://www.justsoftwaresolutions.co.uk/threading/multithreading-in-c++0x-part-7-locking-multiple-mu
https://www.justsoftwaresolutions.co.uk/threading/multithreading-in-c++0x-part-7-locking-multiple-mu
https://www.justsoftwaresolutions.co.uk/threading/petersons_lock_with_C++0x_atomics.html
https://www.justsoftwaresolutions.co.uk/threading/petersons_lock_with_C++0x_atomics.html
https://www.justsoftwaresolutions.co.uk/threading/petersons_lock_with_C++0x_atomics.html
http://benjaminwolsey.de/node/78
https://www.zverovich.net/2019/07/23/std-format-cpp20.html
https://www.zverovich.net/2019/07/23/std-format-cpp20.html

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

[707]

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Extreme C

Kamran Amini

ISBN: 9781789343625

• Build advanced C knowledge on strong foundations, rooted in first principles
• Understand memory structures and compilation pipeline and how they

work, and how to make most out of them
• Apply object-oriented design principles to your procedural C code
• Write low-level code that's close to the hardware and squeezes maximum

performance out of a computer system

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/product/extreme-c/9781789343625

[708]

Other Books You May Enjoy

• Master concurrency, multithreading, multi-processing, and integration with
other languages

• Unit Testing and debugging, build systems, and inter-process
communication for C programming

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

[709]

Other Books You May Enjoy

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

Mark J. Price

ISBN: 9781788478120

• Build cross-platform applications for Windows, macOS, Linux, iOS, and
Android

• Explore application development with C# 8.0 and .NET Core 3.0
• Explore ASP.NET Core 3.0 and create professional web applications
• Learn object-oriented programming and C# multitasking
• Query and manipulate data using LINQ
• Use Entity Framework Core and work with relational databases
• Discover Windows app development using the Universal Windows Platform

and XAML
• Build mobile applications for iOS and Android using Xamarin.Forms

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/product/c-8-0-and-net-core-3-0-modern-cross-platform-development-fourth-edition/9781788478120

[710]

Other Books You May Enjoy

Leave a review - let other readers know
what you think
Please share your thoughts on this book with others by leaving a review on the site
that you bought it from. If you purchased the book from Amazon, please leave us
an honest review on this book's Amazon page. This is vital so that other potential
readers can see and use your unbiased opinion to make purchasing decisions, we
can understand what our customers think about our products, and our authors can
see your feedback on the title that they have worked with Packt to create. It will only
take a few minutes of your time, but is valuable to other potential customers, our
authors, and Packt. Thank you!

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

[711]

Index
A
Active Template Library (ATL) 572
alias templates

creating 7-10
alignas specifier

applying 26, 27
uses 28
using, restrictions 26

almost always auto (AAA) 2
asserting

with Boost.Test 593-597
with Catch2 632-637
with Google Test 613-617

asynchronous computations
used, for creating coroutine

task type 681, 682-686, 691, 692
atomic types

using 434-443
attorney-client idiom

friendship, handling with 567-571
attributes

used, for providing metadata to
compiler 212-217

auto specifier
benefits 3, 4
gotchas 5
using, as placeholder 2, 3
working 3-7

B
behavior-driven development (BDD) 624
bidirectional iterators 268
binary files

objects, reading and writing from 345-350
objects, reading and writing to 345-350

raw data, reading and writing from 336-343
raw data, reading and writing to 336-343

bit manipulation utilities
using 237-239

bitset
using, for fixed-size sequences

of bits 225-229
Boost library

URL 583
Boost.Test 582-585

fixtures, using 597-601
outputs, controlling with 601-605
tests, invoking with 587-593
tests, writing with 587-593
used, for asserting 593-597

brace-initialization. See also uniform
initialization

branches
selecting, at compile time with

constexpr if 208-212

C
C++17

list initialization rules 16, 17
calendars

working with 282-286
callable object

invoking, in uniform manner 186-189
cancellation mechanisms 469-474
casts

used, for performing type
conversions 511-516

Catch2 624, 625
outputs, controlling with 637-641
tests, invoking with 627-631
tests, writing with 627-631

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

[712]

used, for asserting 632-637
Catch2, reporters

automake reporter 641
SonarQube reporter 641
TeamCity reporter 641
Test Anything Protocol (TAP) reporter 641

chrono 278
classes

compiling, with enable_if 202-206
class template argument deduction 62

used, for simplifying code 62-65
collections

iterating, with ranges library 668-674
compile-time assertion checks

performing, with static_assert 199, 201
compile-time constant expressions

creating 502-507
URL 505

compile time polymorphism 571
concatenating operator 196
constant correctness, program

benefits 497
ensuring 496-501

constant expression (constexpr) 502
const_cast conversion 501
constexpr if 208

used, for selecting branches at
compile time 208-212

constinit specifier 506
constrained algorithms 674
container access

with non-member functions 270-275
content

removing, from files 382-385
content of directory

enumerating 390-393
contiguous sequences of objects

std::span, using for 316-319
control class 555-561
conversion constructor 12
conversion operators

used, for avoiding implicit conversion 44-49
cooked user-defined literals

creating 88-93
copy-list-initialization 16
coroutine generator type

creating, for value sequence 692-700

coroutine task type
creating, for asynchronous

computations 681-692
functions, working 687-690

cppcoro library 691, 692, 700
reference link 691

C-style casting (static casting) 513
curiously recurring template

pattern (CRTP) 572, 579, 680
objects of types, implementing 575, 576
static polymorphism, with 571-575

custom types
hash values, generating for 295-298
range-based for loops, enabling 39-43

D
default container

vector, using as 220-225
defaulted functions 144-148
default member initialization 17, 21
deleted functions 144-148
digits constants

versus digits10 constants 78
direct initialization 10
direct-list-initialization 16
distributions 82
divide-and-conquer algorithm 462
double-checked locking pattern (DCLP) 578
dynamic extent 317

E
early binding 571
elements

finding, in range 240-245
enable_if

classes, compiling with 202-206
functions, compiling with 202-206

entropy() method 81
enumerators 28
epoch 292
error handling

exceptions, using 484-491
escaping characters

avoiding, raw string literals used 101, 102
exceptions

handling, from thread functions 415-418

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

[713]

used, for error handling 484-491
existing directory

properties, checking 385-389
existing file

properties, checking 385-389
explicit constructors

used, for avoiding implicit conversion 44-49
explicit type conversion. See also C

style casting (static casting)
external linkage 51

F
factory patterns

if...else statements, avoiding in 546-550
files

content, removing from 382-385
finding 396-398

files and directories
copying 377-381
creating 377-381
deleting 377-381

filesystem paths
working with 372-376

final special identifier
using, for virtual methods 32-36

fixtures
using, in Boost.Test 597-601

fold
implementing, with standard parallel algo-

rithms 464-467
implementing, with tasks 453-457, 460
implementing, with threads 444-452

fold expressions
writing, to simplify variadic function

templates 169-172
format specifiers 137
format specifiers, chrono library

reference link 138
forward iterators 268
function execution time

measuring, with standard clock 290-294
functions

compiling, with enable_if 202-206
composing, into higher-order

function 182-184
executing, asynchronously 429-433

function template
writing, with variable number of

arguments 163-168
function, to be called

registering, on program exit 319-322
futures

values, returning from threads 426-429

G
generator 692
generic lambdas 7

using 155-159
geometry module 649
Google Test 606-609

outputs, controlling with 620-623
tests, invoking with 610-613
tests, writing with 610-613
text fixtures, using with 617-620
used, for asserting 613-617

H
hash values

generating, for custom types 295-298
higher-order function

functions, composing into 182-184
higher-order functions fold

implementing 174-179
higher-order functions map

implementing 174-179
Howard Hinnant's date library

reference link 282
human-readable format (HRF) 603

I
if...else statements

avoiding, in factory patterns 546-550
immediate functions 508

creating 508-510
implicit conversion

avoiding, with conversion operators 44-49
avoiding, with explicit constructors 44-49

include 607
indirection pattern

using, for preprocessor
concatenation 196-199

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

[714]

using, for preprocessor
stringification 196-199

inline namespaces 53
used, for symbol versioning 53-56

input iterators 268
Intel Advanced Vector Extensions

(Intel AVX) 23
International Software Testing Qualifications

Board (ISTQB) 608
I/O manipulators

using, to control output of stream 357-364
iterators 695

used, for inserting elements into
container 258-261

J
joinable threads

using 469-474

L
lambda closure 150
lambdas

using, with standard algorithms 149-154
late binding 571
literal operators 88
localized settings

using, for streams 351-356
locks

access, synchronizing to shared
data 405-411

M
manipulators 357
memory ordering functions 441

reference link 440
merging 196
metadata

providing, to compiler with attributes 212-217
module implementation partition 651
module interface unit (MIU) 645
module partitions 650-653

working 654-656
modules

advantages 644

working with 644-650
monetary I/O manipulators

using 365-367
move semantics 529

implementing 529-535
multi-return values

handling with structured bindings 57-61
mutable iterators 268
mutexes

access, synchronizing to shared
data 405-411

N
named parameter idiom 557
noexcept

benefits 495
exception specification rules 495
using, for functions that do not throw

exceptions 491-494
non-member functions

for container access 270-275
non-static member initialization

ways 17-22
non-virtual interface idiom

interfaces and implementations,
separating with 562-566

notifications
sending, between threads 418-425

nullable 306
numeric types

and string types, converting between 68-74
limits 74-78
properties, querying 75-78

O
object alignment

controlling 22-28
querying 22-28

optional values
storing, with std::optional 303-307

output iterators 268
override special identifier

using, for virtual methods 32-36
own type traits

writing 327-330

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

[715]

P
parallel map

implementing, with standard parallel
algorithms 464-467

implementing, with tasks 453-459
implementing, with threads 444-452

pimpl idiom
implementing 550-555

Plain Old Data (POD) type 13, 327
pointer declarations 498
pointer to implementation (pimpl) 550
preprocessor concatenation

indirection pattern, using for 196-199
preprocessor stringification

indirection pattern, using for 196-199
promises

values, returning from threads 426-429
promise_type 694
pseudo-random number generator

initializing, to produce uniformly distributed
sequence of pseudo-random
numbers 87, 88

pseudo-random number library , components
distributions 80
engines 80

pseudo-random numbers 79
generating 79-86

R
random-access iterator

writing 261-268
range

elements, finding in 240-245
initializing 250-252
set operations, using on 253-257
sorting 246-250

range-based for loops 36
enabling, for custom types 39-43
used, for iterating on range 36-39

ranges library
used, for iterating collections 668-674

range-v3 library 674, 681
reference link 674

range view
creating 675-681

raw string literals
using, to avoid escaping characters 101, 102

raw user-defined literals
creating 95, 98-100

recursive lambda
writing 160-163

recursive mutexes
usage, avoiding 412-415

regular expressions
reference link 110
structure 111
used, for parsing content of string 118-123
used, for replacing content of string 124-127
used, for verifying format of string 110-118

regular expressions standard library
algorithms 117
classes 117
iterators 117

requires clauses
using 663-668

requires expressions
using 663-668

requires expressions, types
Compound requirements 668
Nested requirements 668
Simple requirements 667
Type requirements 668

requires keyword
working 667

resource acquisition is
initialization (RAII) 488

Rule of Five 148
runtime polymorphism 571
run-time type information (RTTI) 511

S
scoped enumerations

using 28-32
set operations

using, on range 253-257
shared_ptr

used, for sharing memory resource 522-529
source code

compiling, conditionally 192-196
spaceship operator (<=>) 536

implementing, guidelines 537

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

[716]

used, for comparison 535-543
standard clock

used, for measuring function
execution time 290-294

standard exception classes
URL 491

standard literal operators 94
standard parallel algorithms

fold, implementing 464-467
parallel map, implementing 464-467

static_assert
compile-time assertion checks,

performing with 199, 201
static extent 317
static members, of std::numeric_limits

versus C++ macros 77
static polymorphism 571

with curiously recurring template pattern
(CRTP) 571-575

std::any
used, for storing any value 299-302

std::chrono::duration class
used, for expressing time intervals 278-281

std::conditional
using, to select between types 331-334

std::format
used for formatting text 131-138
using, with user-defined types 138-142

std::initializer_list
used, for way initialization 14

std::invoke() function 186
std::logic_error 489, 490
std::numeric_limits<T>

using 75
working 76

std::optional
used, for storing optional values 303-307

std::runtime_error 489
std::span

using, for contiguous sequences of
objects 316-319

std::variant 311-316
using, as type-safe union 308-310

Streaming SIMD Extensions (SSE) 23
stream, output

controlling, with I/O manipulators 357-364

streams
localized settings, using for 351-356

string content
parsing, regular expression used 118-123
replacing, regular expression used 124-127

string format
verifying, with regular expressions 110-118

string helpers
library, implementing 103-109

stringizing operator 196
string to number (ston) format 70
string_view

using, instead of constant string
references 127-131

structured bindings 57
used, for handling multi-return values 57-61

subroutines 687
substitution failure is not an error

(SFINAE) 202
symbol versioning

inline namespaces, using 53-56

T
tasks

fold, implementing 453-459
parallel map, implementing 453-459

template arguments
requisites, specifying with concepts 657-663

template lambdas
using 155-159

template metaprogramming 657
template method 564
Test Anything Protocol (TAP) reporter 641
test case 608
test context 597
Test library

terms and concepts 584, 585
Test library, variants

shared library 584
single header 584
static library 584

text fixtures
using, with Google Test 617-620

test fixtures. See also test context
thread functions

exceptions, handling from 415-418

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

[717]

threads
fold, implementing 444-452
notifications, sending between 418-425
parallel map, implementing 444-452
working with 400-405

thread-safe singleton
implementing 576-580

thread synchronization mechanisms
using 474-481

three-way comparison. See also spaceship
operator (<=>)

time intervals
expressing, with std::chrono::duration

class 278-281
time I/O manipulators

using 368-371
times

converting, between time zones 287-289
token-pasting 196
trim 675
trim_view class

working 680
type aliases

creating 7-10
type casts

performing 510-515
typedef-name 9
type-safe union

std::variant, using as 308-310
type traits

using, to query properties of types 323-326

U
uniform initialization 10- 16

examples 11, 12
unique_ptr

used, for owning memory resource 516-522
units in the last place (ULP) 615
Universal Naming Convention (UNC) 375
unnamed namespaces

using, instead of static globals 49-52
unscoped enumerations 28

issues 30
user-defined conversion functions 44
user-defined literals

cooked 89

raw 89
user-defined types

std::format, using with 138-141

V
value categories

reference link 667
value sequence

used, for creating coroutine generator type
692-700

variadic functions 163
variadic function templates 163

simplifying, with fold expressions 169-172
vector

benefits 223
using, as default container 220-225

vector<bool>
using, for variable-size sequences

of bits 232, 233, 236
virtual methods

final special identifier, using 32-36
override special identifier, using 32-36

W
Windows Template Library (WTL) 572

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 10:14 AM via . All use subject to https://www.ebsco.com/terms-of-use

	Cover
	Copyright
	Packt Page
	Contributors
	Table of Contents
	Preface
	Chapter 1: Learning Modern Core Language Features
	Using auto whenever possible
	How to do it...
	How it works...
	See also

	Creating type aliases and alias templates
	How to do it...
	How it works...
	See also

	Understanding uniform initialization
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Understanding the various forms of non-static member initialization
	How to do it...
	How it works...
	See also

	Controlling and querying object alignment
	Getting ready
	How to do it...
	How it works...
	See also

	Using scoped enumerations
	How to do it...
	How it works...
	See also

	Using override and final for virtual methods
	Getting ready
	How to do it...
	How it works...
	See also

	Using range-based for loops to iterate on a range
	Getting ready
	How to do it...
	How it works...
	See also

	Enabling range-based for loops for custom types
	Getting ready
	How to do it...
	How it works...
	See also

	Using explicit constructors and conversion operators to avoid implicit conversion
	Getting ready
	How to do it...
	How it works...
	See also

	Using unnamed namespaces instead of static globals
	Getting ready
	How to do it...
	How it works...
	See also

	Using inline namespaces for symbol versioning
	Getting ready
	How to do it...
	How it works...
	See also

	Using structured bindings to handle multi-return values
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Simplifying code with class template argument deduction
	How to do it...
	How it works...
	See also

	Chapter 2: Working with Numbers and Strings
	Converting between numeric and string types
	Getting ready
	How to do it...
	How it works...
	See also

	Limits and other properties of numeric types
	Getting ready
	How to do it...
	How it works...
	See also

	Generating pseudo-random numbers
	Getting ready
	How to do it...
	How it works...
	See also

	Initializing all bits of internal state of a pseudo-random number generator
	Getting ready
	How to do it...
	How it works...
	See also

	Creating cooked user-defined literals
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating raw user-defined literals
	Getting ready
	How to do it...
	How it works...
	See also

	Using raw string literals to avoid escaping characters
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a library of string helpers
	Getting ready
	How to do it...
	How it works...
	See also

	Verifying the format of a string using regular expressions
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Parsing the content of a string using regular expressions
	Getting ready
	How to do it...
	How it works...
	See also

	Replacing the content of a string using regular expressions
	Getting ready
	How to do it...
	How it works...
	See also

	Using string_view instead of constant string references
	Getting ready
	How to do it...
	How it works...
	See also

	Formatting text with std::format
	Getting ready
	How to do it...
	How it works...
	See also

	Using std::format with user-defined types
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 3: Exploring Functions
	Defaulted and deleted functions
	Getting started
	How to do it...
	How it works...
	See also

	Using lambdas with standard algorithms
	Getting ready
	How to do it...
	How it works...
	See also

	Using generic and template lambdas
	Getting started
	How to do it...
	How it works...
	See also

	Writing a recursive lambda
	Getting ready
	How to do it...
	How it works...
	See also

	Writing a function template with a variable number of arguments
	Getting ready
	How to do it...
	How it works...
	See also

	Using fold expressions to simplify variadic function templates
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Implementing the higher-order functions map and fold
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Composing functions into a higher-order function
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Uniformly invoking anything callable
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 4: Preprocessing and Compilation
	Conditionally compiling your source code
	Getting ready
	How to do it...
	How it works...
	See also

	Using the indirection pattern for preprocessor stringification and concatenation
	Getting ready
	How to do it...
	How it works...
	See also

	Performing compile-time assertion checks with static_assert
	Getting ready
	How to do it...
	How it works...
	See also

	Conditionally compiling classes and functions with enable_if
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Selecting branches at compile time with constexpr if
	Getting ready
	How to do it...
	How it works...
	See also

	Providing metadata to the compiler with attributes
	How to do it...
	How it works...
	See also

	Chapter 5: Standard Library Containers, Algorithms, and Iterators
	Using vector as a default container
	Getting ready
	How to do it...
	How it works...
	See also

	Using bitset for fixed-size sequences of bits
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using vector<bool> for variable-size sequences of bits
	Getting ready...
	How to do it...
	How it works...
	There's more...
	See also

	Using the bit manipulation utilities
	Getting ready
	How to do it…
	How it works…
	See also

	Finding elements in a range
	Getting ready
	How to do it...
	How it works...
	See also

	Sorting a range
	Getting ready
	How to do it...
	How it works...
	See also

	Initializing a range
	Getting ready
	How to do it...
	How it works...
	See also

	Using set operations on a range
	Getting ready
	How to do it...
	How it works...
	See also

	Using iterators to insert new elements into a container
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Writing your own random-access iterator
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Container access with non-member functions
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 6: General-Purpose Utilities
	Expressing time intervals with chrono::duration
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Working with calendars
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Converting times between time zones
	Getting ready
	How to do it…
	How it works…
	See also

	Measuring function execution time with a standard clock
	Getting ready
	How to do it...
	How it works...
	See also

	Generating hash values for custom types
	Getting ready
	How to do it...
	How it works...
	See also

	Using std::any to store any value
	Getting ready
	How to do it...
	How it works...
	See also

	Using std::optional to store optional values
	Getting ready
	How to do it...
	How it works...
	See also

	Using std::variant as a type-safe union
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Visiting an std::variant
	Getting ready
	How to do it...
	How it works...
	See also

	Using std::span for contiguous sequences of objects
	Getting ready
	How to do it…
	How it works…
	See also

	Registering a function to be called when a program exits normally
	Getting ready
	How to do it...
	How it works...
	See also

	Using type traits to query properties of types
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Writing your own type traits
	Getting ready
	How to do it...
	How it works...
	See also

	Using std::conditional to choose between types
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 7: Working with Files and Streams
	Reading and writing raw data from/to binary files
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Reading and writing objects from/to binary files
	Getting ready
	How to do it...
	How it works...
	See also

	Using localized settings for streams
	Getting ready
	How to do it...
	How it works...
	See also

	Using I/O manipulators to control the output of a stream
	Getting ready
	How to do it...
	How it works...
	See also

	Using monetary I/O manipulators
	Getting ready
	How to do it...
	How it works...
	See also

	Using time I/O manipulators
	Getting ready
	How to do it...
	How it works...
	See also

	Working with filesystem paths
	Getting ready
	How to do it...
	How it works...
	See also

	Creating, copying, and deleting files and directories
	Getting ready
	How to do it...
	How it works...
	See also

	Removing content from a file
	Getting ready
	How to do it...
	How it works...
	See also

	Checking the properties of an existing file or directory
	Getting ready
	How to do it...
	How it works...
	See also

	Enumerating the content of a directory
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Finding a file
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 8: Leveraging Threading and Concurrency
	Working with threads
	Getting ready
	How to do it...
	How it works...
	See also

	Synchronizing access to shared data with mutexes and locks
	Getting ready
	How to do it...
	How it works...
	See also

	Avoiding using recursive mutexes
	Getting ready
	How to do it...
	How it works...
	See also

	Handling exceptions from thread functions
	Getting ready
	How to do it...
	How it works...
	See also

	Sending notifications between threads
	Getting ready
	How to do it...
	How it works...
	See also

	Using promises and futures to return values from threads
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Executing functions asynchronously
	Getting ready
	How to do it...
	How it works...
	See also

	Using atomic types
	Getting ready
	How to do it...
	How it works...
	See also

	Implementing parallel map and fold with threads
	Getting ready
	How to do it...
	How it works...
	See also

	Implementing parallel map and fold with tasks
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Implementing parallel map and fold with standard parallel algorithms
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using joinable threads and cancellation mechanisms
	Getting ready
	How to do it...
	How it works...
	See also

	Using thread synchronization mechanisms
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 9: Robustness and Performance
	Using exceptions for error handling
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using noexcept for functions that do not throw exceptions
	How to do it...
	How it works...
	There's more...
	See also

	Ensuring constant correctness for a program
	How to do it...
	How it works...
	There's more...
	See also

	Creating compile-time constant expressions
	Getting ready
	How to do it...
	How it works...
	There's more…
	See also

	Creating immediate functions
	How to do it…
	How it works…
	See also

	Performing correct type casts
	How to do it...
	How it works...
	There's more...
	See also

	Using unique_ptr to uniquely own a memory resource
	Getting ready
	How to do it...
	How it works...
	See also

	Using shared_ptr to share a memory resource
	Getting ready
	How to do it...
	How it works...
	See also

	Implementing move semantics
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Consistent comparison with the operator <=>
	Getting ready
	How to do it…
	How it works…
	See also

	Chapter 10: Implementing Patterns and Idioms
	Avoiding repetitive if...else statements in factory patterns
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Implementing the pimpl idiom
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Implementing the named parameter idiom
	Getting ready
	How to do it...
	How it works...
	See also

	Separating interfaces and implementations with the non-virtual interface idiom
	Getting ready
	How to do it...
	How it works...
	See also

	Handling friendship with the attorney-client idiom
	Getting ready
	How to do it...
	How it works...
	See also

	Static polymorphism with the curiously recurring template pattern
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Implementing a thread-safe singleton
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 11: Exploring Testing Frameworks
	Getting started with Boost.Test
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Writing and invoking tests with Boost.Test
	Getting ready
	How to do it...
	How it works...
	See also

	Asserting with Boost.Test
	Getting ready
	How to do it...
	How it works...
	See also

	Using fixtures in Boost.Test
	Getting ready
	How to do it...
	How it works...
	See also

	Controlling outputs with Boost.Test
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Getting started with Google Test
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Writing and invoking tests with Google Test
	Getting ready
	How to do it...
	How it works...
	See also

	Asserting with Google Test
	How to do it...
	How it works...
	See also

	Using test fixtures with Google Test
	Getting ready
	How to do it...
	How it works...
	See also

	Controlling output with Google Test
	Getting ready
	How to do it...
	How it works...
	See also

	Getting started with Catch2
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Writing and invoking tests with Catch2
	How to do it...
	How it works...
	See also

	Asserting with Catch2
	Getting ready
	How to do it...
	How it works...
	See also

	Controlling output with Catch2
	Getting ready
	How to do it…
	How it works...
	See also

	Chapter 12: C++20 Core Features
	Working with modules
	Getting ready
	How to do it...
	How it works...
	See also

	Understanding module partitions
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Specifying requirements on template arguments with concepts
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using requires expressions and clauses
	Getting ready
	How to do it...
	How it works...
	See also

	Iterating over collections with the ranges library
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating your own range view
	Getting ready
	How to do it...
	How it works...
	See also

	Creating a coroutine task type for asynchronous computations
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating a coroutine generator type for sequences of values
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Bibliography
	Websites
	Articles and books

	Other Books You May Enjoy
	Index

