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Preface

The past twenty years have witnessed a number of breakthroughs in Astrophysics
and Cosmology, that were awarded Nobel prizes: in 2019 “for theoretical discoveries in
physical cosmology” and “for the discovery of an exoplanet orbiting a solar-type star”; in
2017 “for decisive contributions to the LIGO detector and the observation of gravitational
waves”; in 2011 “for the discovery of the accelerating expansion of the Universe through
observations of distant supernovae”. How could we not mention the other two related
breakthroughs in physics, also awarded with Nobel prizes: in 2015 “for the discovery of
neutrino oscillations, which shows that neutrinos have mass”; in 2013 “for the theoretical
discovery of a mechanism that contributes to our understanding of the origin of mass
of subatomic particles, and which recently was confirmed through the discovery of the
predicted fundamental particle, by the ATLAS and CMS experiments at CERN’s Large
Hadron Collider”.

These physics triumphs serve to highlight our awareness that a Varenna School in
“Gravitation and Cosmology” should provide the students with a solid and broad knowl-
edge of the fundamentals of astrophysics and cosmology, without losing sight of the
basics of the fundamental interactions in Physics. Thus, the aim of the School, held in
the beautiful location of Villa Monastero from the 3rd to 12th of July 2017, was to expose
students to state-of-the-art research in the field of Gravitational Waves and Cosmology,
from both theoretical and experimental points of view. The choice of the subjects seemed
particularly timely, given the discovery of gravitational waves by the LIGO-Virgo collab-
oration and the release of the Planck data in 2015, that so strongly contributed to the
era of precision cosmology and to the adoption of a standard model of cosmology.

Twenty-four speakers participated in the School. We are very grateful to all of our
colleagues, both to those who contributed written papers to this volume, as well as to
those who participated in the School by just providing lectures. The level of the speakers
was very high, with their presentations offering a broad overview of the subject matter.

The lectures were organized in a way designed to foster the interactions between two

XV
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XVI Preface

different communities. This has been, in our opinion, one of the most notable added
values of the School. The School admitted more than 50 PhD students, selected from
all over the world, and also some Master students of the Erasmus Joint Master Program
“Astromundus”, funded by the EU and jointly provided by five European universities
(Innsbruck, Gottingen, Padua, Tor Vergata and Belgrade). The environment of Villa
Monastero naturally facilitates informal interactions between students and teachers. This
added value of the “Enrico Fermi” Schools has been particularly important in enabling
the case for integrating groups of students working in different fields and communities.

As will be obvious by going through the volume, there was a wide range of topics
addressed by our lecturers. For the Gravitational Waves section, the lectures covered
the experimental issues connected with gravitational wave detection and the new field of
multi-messenger astronomy, as well as more astrophysical aspects. Lectures in the first
category were provided by Fulvio Ricci, Viviana Fafone and Francesco Fidecaro, while the
contributions of Marica Branchesi on multi-messenger astronomy and of Michela Mapelli
about the open questions of black hole binaries covered the complementary aspects. In
the realm of Cosmology, there are contributions on the early universe, on the Cosmic
Microwave Background (CMB) and on redshift surveys. For the Early Universe, Jerome
Martin provided a review of the inflationary scenarios, Sabino Matarrese discussed the
non-Gaussian features of primordial density fluctuations, while Jens Chluba concentrated
on the physical mechanisms responsible for the spectral distortions of the blackbody
spectrum of the CMB. Regarding the CMB proper, the results of the Planck Legacy
were presented by Carlo Burigana, and their theoretical implications were discussed by
Douglas Scott, while the polarization modes of the CMB and the physical mechanisms
underlying them were introduced by Wayne Hu. On the redshift survey side, Will Percival
presented the wealth of information encoded in the large-scale structure of the universe,
while David Mota reviewed the effects of modified gravity theories, with a particular
focus on the effects on the non-linear regime on the structure formation process.

In conclusion, we are indebted to all our colleagues for their availability to participate
in the School and for delivering outstanding lectures. We are also indebted to all the
students that participated to the School with great enthusiasm and for expressing their
positive opinion about the choice of the topics to which they were exposed. We are
particularly thankful to the Italian Physical Society for hosting our School in the context
of the program of the “Enrico Fermi” Schools, and for the professional support we received
during our stay in Varenna.

Eugenio Coccia, Joe Silk and Nicola Vittorio
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Principles of gravitational wave detection

F. Fidecaro

Dipartimento di Fisica “Enrico Fermi”, Università di Pisa e INFN, Sezione di Pisa

Largo Bruno Pontecorvo 3, 56127 Pisa, Italy

Summary. — The principles of gravitational wave detection are presented. The
measurement of the propagating minute deformation of space-time remains an ex-
traordinary experimental challenge. After a brief introduction to signals and noise,
fundamental disturbances in the measurement are discussed, outlining how these
have been sufficiently reduced to achieve detection.

1. – The detection of gravitational waves

The General Theory of Relativity [1], formulated by Albert Einstein more than one
century ago, has proven to be very successful in describing gravitation as a property
of space-time. As discussed in previous lectures one of the outstanding predictions of
the theory is that the curvature of space-time due to the presence of mass does not
establish itself instantaneously everywhere but propagates from the source outwards at
the speed of light. This prediction was formulated by Einstein [2] discussing solutions of
the General Relativity equations for small deviations from the flat (Minkowski) space-
time, that is the one of Special Relativity. However only in 1957 at a conference in Chapel
Hill, Feynman, elaborating an idea by Pirani, convinced the audience that gravitational
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2 F. Fidecaro

waves were carrying energy and thus were real and detectable [3]. The extremely small
amplitude of the waves led Einstein to conclude

[. . .] so sieht man daß A in allen nur denkbare Fällen ein praktisch ver-
schwindenden Wert haben muß, [. . .] A. Einstein [2]

[. . .] one sees that [the amplitude] A must have in all cases, even only think-
able, a practically vanishing value [. . .]

With the knowledge available that was the only conclusion to be drawn. Crucial discov-
eries were yet to come: with the neutron very compact astrophysical objects could be
imagined, able to irradiate waves of significant amplitude. Then the availability of coher-
ent light from lasers suggested gains of orders of magnitude in measurement precision.
This stimulated a 50 year long experimental effort that culminated in the detection in
2015 by the LIGO interferometers of the inspiral and merge of two black holes of 36 and
29 solar masses [4].

The text begins with a discussion on how variations in the geometry of space-time can
be detected, continuing with the basic properties of gravitational radiation in relation
with the expected sources. Then follows a discussion on how to characterize noise when
measuring signals. The final part describes the main problems encountered in interfer-
ometric gravitational wave detection and how they have been addressed, outlining the
evolution of present and future instruments.

1.1. Gravitational waves. – The Einstein field equations state how masses generate
the curvature of space-time, connecting the Einstein tensor of curvature Gαβ to the
stress-energy tensor Tαβ through the Newton constant G = 6.674 × 10−11 kg−1 m3 s−2:

Gαβ =
8πG
c4

Tαβ .

These equations contain derivatives to be computed in space-time, whose curvature is
determined by the equations themselves. Only a few exact solutions are known and in
the general case one has to rely on approximations or on numerical solutions. In spite of
the strong action of gravitation on macroscopic bodies, the common experience is that
Euclidean geometry is verified at the highest level of precision.

This leads naturally to consider small perturbations to a flat space-time whose invari-
ant distance element would be otherwise

ds2 = −c2dt2 + dx2 + dy2 + dz2 = ηαβdxαdxβ .

In curved space-time

ds2 = gαβdxαdxβ ,

having the metric tensor gαβ deviating only slightly from the Minkowski space one ηαβ :

gαβ = ηαβ + hαβ , |hαβ | � 1.
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It is worth noting that while gαβ is a tensor in curved space-time, hαβ is not. However
hαβ behaves like a Lorentz tensor in a “background” Minkowski space.

Einstein’s equations can be expanded to first order in h: following for example [5],
one sets the trace of hαβ

h = hα
α

using the Minkowski metric tensor ηαβ to lower and raise indices. It is useful to define

h̄αβ = hαβ − 1
2
ηαβh.

Within the freedom in coordinate definition given by General Relativity, it is possible to
define coordinate transformations, called gauge transformations, that keep invariant the
tensor describing the curvature. By setting

h̄ = 0, h̄αβ ,α = ∂αh̄αβ = 0,

one chooses a “Transverse Traceless gauge” that allow to simplify considerably Einstein’s
equations. Using the D’Alembert operator � = ∂α

α = ∂2
x + ∂2

y + ∂2
z − 1/c2∂2

t , the result
is a wave equation

� h̄αβ = −16πG
c4

Tαβ ,

with source given by the stress-energy tensor Tαβ . The metric perturbation h̄αβ origi-
nated by Tαβ propagates at the speed of light c.

In this coordinate system, a plane wave travelling in the z direction with frequency
Ω and corresponding wave number k is described by

h̄TT
αβ = ATT

αβ e−i(Ωt−kz) =

⎛
⎜⎜⎜⎝

0 0 0 0
0 Axx Axy 0

0 Ayx −Ayy 0

0 0 0 0

⎞
⎟⎟⎟⎠ e−i(Ωt−kz).

There are two independent amplitudes A+ = Axx = −Ayy and A× = Axy = Ayx

corresponding to two polarization states + and ×. ATT
αβ is invariant under a rotation

of π radians, which means in terms of rotation representations that a spin 2 is to be
assigned to ATT

αβ or to the graviton, the quantum of the gravitational field. Furthermore,
while a spin 2 massive particle has 5 different values for the spin projection, with only
two degrees of freedom available, corresponding to opposed helicities, a zero mass has to
be assigned to the graviton.
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4 F. Fidecaro

1.2. Effect on a single mass . – The choice of the Transverse Traceless (TT) gauge
determines the coordinate system used to describe the motion of a mass. It is interesting
and useful to see how a mass behaves in presence of a gravitational wave. Considering
the equation for a body that follows a geodetic line, or geodetic equation,

∂2

∂τ2
xα + Γα

βγ

∂xβ

∂τ

∂xγ

∂τ
= 0,

one can compute the Cristoffel symbol Γα
βγ using

Γα
βγ =

1
2
gαρ [gβρ,γ + gγρ,β − gβγ,ρ]

With a mass initially at rest, �u → (−1, 0, 0, 0), only the value of Γα
00 is useful. With the

GW metric,

Γα
00 = 0.

A mass initially at rest, or better, with constant coordinates, will maintain the same
coordinates.

1.3. Effect on a pair of masses . – Consider two masses at some distance one from the
other. Their separation can be measured using a light ray going from one mass toward
the other and bouncing back to the first mass. A clock in the local frame of the first
mass can then measure the round trip time, giving the distance. For events of emission
and reception of a light ray

ds2 = gαβdxαdxβ = 0.

This can be applied to the case of a gravitational wave propagating along the z-direction
in an otherwise flat space by writing:

ds2 = −c2dt2 + (1 + h+)dx2 + 2h×dxdy + (1 − h+)dy2 + dz2 = 0.

Specializing further to the wave + polarization and masses along the x-direction, always
in the TT gauge, this becomes:

0 = c2dt2 − (1 + h+)dx2

For an infinitesimal separation, h+(t) can be taken constant and the clock measures a
round trip time

cdt = 2
√

1 + h+(t)dx = 2(1 + h+(t)/2)dx.

Repeating the measurement allows to follow the value of h+(t) with time, a varying
metric being the signal of a wave passage.
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Principles of gravitational wave detection 5

For a finite separation L between masses, the previous expression can be integrated
along the unperturbed ray path, given by

x(t) = x0 + ct

neglecting second order effects. For h+(t) approximately constant during the round trip,
that is for a gravitational wavelength λGW � L

t1 − t0 =
2L

c

[
1 +

h+(t)
2

]
.

Without loss of generality one can consider a monochromatic plane wave h+(t, z) =
h cos(Ωt + φ). The integration along the previous path gives

t1 − t0 =
∫ x=L

x=0

(
1 +

h+

2

)
dx =

2L

c

{
1 − h

2
sin(ΩL/c)

ΩL/c
cos [Ω (t1 − L/c) + φ]

}
.

The resulting time measurement reproduces the shape of the wave at the time light
reaches the second mass but for a frequency-dependent attenuation factor

sinc (ΩL/c) =
sin(ΩL/c)

ΩL/c
=

sin(2πL/λGW )
2πL/λGW

.

If ΩL/c � 1, or 2πL/λGW � 1 the round trip time reproduces faithfully the signal
shape. Otherwise, the high frequency components are attenuated.

Within the limits just discussed it is possible to increase the response to h increasing
L, as the effect is in first instance equal to

L
h

2
.

In a multiple delay line one can have N round trips and the same results apply, with NL

in place of L.
Note that if Ω2NL/c = kπ, with k integer, that is 2NL = kλGW , the response is zero:

the variation in round trip time accumulated when h+(t) > 0 is reduced when h+(t) < 0
and becomes zero when the above condition is verified, that is when fGW = kc/2NL;
the response remains within an envelope proportional to 1/Ω. It will be shown when
discussing the Fabry-Perot optical cavity, where on average light travels a distance 2NL,
the response to a monochromatic gravitational wave does not have zeroes any more, as
they are smoothed out in the averaging process, but the envelope remains. The light
stays on average a time τFP = 2NL/c so the cavity acts as a low-pass filter with pole at
fP = 1/4πτFP .

The method can be described in graphical form by drawing the world lines of the two
masses in the TT gauge. Since the coordinates of each mass do not change, the world
lines are parallel to the x = 0 line, but the light trajectory has a slope that depends on
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x

t

Pulse emission
at constant frequency

Variable trip �me
Pulse recep�on
at variable frequency

Earth Pulsar

x

t

Fixed frequency
Variable round trip �me

Variable frequency

m1 m2

Fig. 1. – Left: space-time diagram for two free masses and a light ray bouncing back and forth
between them. Coordinates are in the TT gauge. m1 and m2 have fixed spatial coordinates and
light is emitted by m1 at constant frequency. The apparent speed of light, the slope of the rays,
changes with h(t), resulting in a variable round trip time and a variable reception frequency.
Right: one way light trip from a pulsar. The result is a variable reception frequency.

the value of hx. As shown in fig. 1, left, timings are measured in a single place so that
comparisons with a reference can be easily made. In a Michelson interferometer, the light
is sent out in perpendicular directions and returns to the same place. There interference
by spatial superposition of the beams allows to compare travel times looking at optical
phase differences.

By having stable clocks attached to both masses it is possible to make measurements
using one way light transmission. The timing relies on having pulses sent in a precisely
known way, for example with a well defined period. Variations in mass separation are
then measured comparing the time of arrival with a highly stable clock (fig. 1, right).
Radiotelescopes on Earth are receiving signals from pulsars that show a stability com-
parable to the best atomic clocks built. Correlations between different sources of timing
noise could point to low-frequency gravitational waves crossing our Galaxy. The use of
Pulsar Timing Arrays (PTA) is discussed for example in [6] and references therein.

1.4. The laboratory frame. – The detection method illustrated above is easy to un-
derstand for free falling masses that follow their world line. But in the ground-based
laboratory masses are suspended and are anyway subject to forces from the environment
through chemical bonds, van der Waals forces, electric or magnetic fields. Ultimately
these are all electromagnetic interactions which are more easily described in the absence
of gravitation, that is in a flat Minkovski space. For example the rest length of a spring
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Principles of gravitational wave detection 7

is determined by the electromagnetic interaction between its components that will result
in a difference in coordinates for the two extremities in flat space. Hooke’s law is then
easily described in that space, and this is true for other forces too. For an observer in
free fall, space-time is flat, so this is the natural choice for the laboratory reference frame
(static gravity is not a concern, once masses are suspended).

This brings to choose a reference frame in free fall, where one of the masses is at rest.
In that frame and for slow motion Newton’s second law can be used, determining the
motion of the other test masse in that frame, including the “apparent force” (in classical
mechanics language) from gravitation. For that purpose one starts from the expression
that describes how two nearby test masses change their separation while following their
world line in a curved space-time:

DUDUξα = Rα
μνβUμUνξβ ,

where Uμ → (−c, 0, 0, 0) is the 4-velocity of the local reference frame, DU is the covariant
derivative along U and Rα

μνβ is the Riemann curvature tensor. In flat space the covariant
derivatives become normal derivatives with respect to the proper local time τ . The
equation becomes

d2

dτ
ξα = Rα

μνβUμUνξβ = Rα
00βξβ .

For a separation from the origin of the second mass ξ → (0, ε, 0, 0) one has

d2

dτ
ε = Rα

00xε = −Rα
0x0ε.

The components of the Riemann tensor, being gauge invariant, can be computed in the
TT gauge, giving

Rx
0x0 = Rx0x0 = −1

2
hTT

xx,00,

Ry
0x0 = Ry0x0 = −1

2
hTT

xy,00,

Ry
0y0 = Ry0y0 = −1

2
hTT

yy,00 = Rx0x0.

In Newton dynamics terms an apparent force changes the separation of the second mass
from the first according to

d2

dτ2
ξx =

1
2
hTT

xx,00ε,

d2

dτ2
ξy =

1
2
hTT

xy,00ε.
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8 F. Fidecaro

If the mass m1 feels a non-gravitational force F1 while the mass m2 is at (0, ε, 0, 0), these
can be written as an equation of motion for the mass separation

d2

dτ2
ξx =

1
2
hTT

xx,00ε +
F x

1

m1
− F x

2

m2
,

d2

dτ2
ξy =

1
2
hTT

yx,00ε +
F y

1

m1
− F y

2

m2
.

The rigid rulers of the laboratory frame that are used as coordinate axes can be
modeled by masses kept at a fixed distance one from the other by electric interaction
and quantum mechanics, which are Lorentz invariant. So the length of the spring must
be the proper length in any reference frame. Changes in the separation between the
extremities of the spring are changes in the proper length that call for a restoring force
according to Hooke’s law. Since the electric forces that bind atoms together are way
much stronger than the apparent force of geodetic deviation, the ruler stays rigid and
the second mass moves against it.

In the lab frame of the first mass (not in TT gauge) the passage of the gravitational
wave corresponds to a displacement of the second mass

δx = L
h

2
sin ΩL/c

ΩL/c
cos [Ω (t1 − L/c) + φ] .

For a wave with amplitude h ≈ 10−21 and a separation of 3 km

δx = L
h

2
≈ 1.5 × 10−18 m.

This length is three orders of magnitude smaller than the proton diameter, and has to
be measured between the center of mass of macroscopic objects, that should be as far
apart as possible to increase the effect of the gravitational wave.

2. – Essential properties

Among fundamental interactions, gravitation is by far the weakest, when compared
to the interactions of components of the standard model of particle physics. The ratio
of the electric to gravitational force between two electrons is

Gm2
e

ke2
=

6.67 × 10−11

8.99 × 109

(
9.1 × 10−31

1.6 × 10−19C

)2

≈ 10−42.

Gravitation becomes dominant when the total mass involved becomes larger; there are
no “negative” masses that would give “gravity-neutral” bodies, while these same bodies
are stable and have zero charge.
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Principles of gravitational wave detection 9

The solution of the wave equation in the non-relativistic case is

hjk =
G2
c4R

d2Qjk

dt2
,

where Qjk is the traceless quadrupole moment of the system computed at the retarded
time t − R/c. In a way similar to electromagnetism, gravitational radiation is produced
by accelerated masses, with an amplitude proportional to the coupling constant G, the
radiating mass and its acceleration. A pair of rotating masses in the laboratory irradiates
gravitationally, and as consequence of quadrupole emission, the frequency of gravitational
radiation is twice the rotation speed of the system. When using real numbers and pushing
stress in materials at the limit of disruption, the computed amplitude is many orders of
magnitude lower than the noise in current detectors. In addition, the requirement to be
in the radiation zone at a distance much larger than one wavelength lowers further the
amplitude at the detector.

Possible sources have to be much more massive and their motion can only be driven
by gravitation. High acceleration is obtained only if the object is compact, that is has
a size much lower than the radiation wavelength. Systems of compact objects such
as black holes and neutron stars were already known and their gravitational radiation
has been recently detected, but these systems are rare and the rate of these observed
events is low. To accumulate even a few events per year the volume of Universe hosting
potential sources has to be increased, attempting to record events that occurred at large
distance R: the volume grows as R3, neglecting cosmological effects and variation in the
population with time. But the gain in mass and acceleration from solar mass objects is
much reduced by the distance R from the source as the wave amplitude goes as R−1.
A discussion of detectable sources of gravitational waves needs a brief description of the
scale of distances in the Universe.

2.1. Distance ladder . – While angles in the sky are measured with increasing pre-
cision and larger telescopes achieve impressive angular resolutions, the measurement of
astronomical distances is a difficult problem. Indeed, by observing the variation of the
position in the sky of a star while the Earth orbits around the Sun, the effect of the
parallax allows to reconstruct geometrically its distance. The parsec is the unit of dis-
tance corresponding to the distance of an object that undergoes a parallax error of one
arcsecond when the Earth changes its position by one Astronomical Unit. To extend the
distance measurements astronomers rely on indirect methods like measuring the energy
flow from of standard candles whose luminosity is evaluated by measuring some other
observable parameter. A single method is not able to cover the full range of observed
distances, the distance ladder is extended in steps, leading to systematic errors. As of
today, depending on which “ladder” is used, there are appreciable differences in distance
estimation. Further the possible contribution of gravitational wave detection to the cos-
mic distance ladder determination will be discussed. For the present introduction a rough
view is presented in table I.
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10 F. Fidecaro

Table I. – The cosmic distance ladder.

Quantity Value Note

1 Astronomical Unit (AU) 1.50 × 1011 m Approximately Sun-Earth distance

exactly 149597870700m

1 light-year 0.946 × 1016 m

1 parsec (pc) 3.086 × 1016 m 3.262 light-year:

observed parallax error of

one arcsecond when the Earth

moves transversally by 1AU

Galactic center 10 kpc High stellar density, massive black hole

Galaxy diameter ∼ 30 kpc There are of the order of

109 neutron stars in our Galaxy

Galaxies of the Local Group 50 kpc–1.4 Mpc 50 galaxies

Virgo galaxy cluster ∼ 20 Mpc 2500 galaxies

GW170817 ∼ 40 Mpc Host galaxy NGC 4993

GW150914 ∼ 410 Mpc 36–29 M� binary black holes

Horizon ∼ 5 Gpc 15 billion light-year

The distance of the binary black hole event GW150914 was determined from the sig-
nal amplitude, once the masses were determined from the signal shape, but in absence
of an electromagnetic counterpart, this events and others of the same type provide in-
formation on black hole population only. The distance of the binary neutron star event
GW170817 has been determined by associating the event to an optical transient found
in the three dimensional error box given by the gravitational wave network of LIGO and
Virgo and associated to the host galaxy NGC 4993. In this case gravitational waves
provide an independent measurement of distance that can be used to improve Hubble’s
law.

2.2. Expected amplitude. – When considering the static case of the Schwarzschild
metric, the deviation h from flat space-time generated by the mass M is

h =
2G
c2

M�
R

,

or about 4× 10−6 at the surface of the Sun (R = 3.5× 108 m). The same mass generates
at 10 Mpc, or 3 × 1023 m, a static h ≈ 4 × 10−21.
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For gravitational wave emission by accelerated masses in a non-relativistic system a
rough estimate is obtained through [5]:

hjk =
2G
c4R

d2Qjk

dt2

� 2G
c2R

2Mv2

c2r

∼ 2GM

c2R

2GM

c22r

=
rS

R

rS

d

= φextφint.

The second line is obtained going from the second time derivative of the quadrupole
moment to the expression of the force for circular motion. Then the kinetic energy term,
divided by the mass, is substituted by the gravitational potential φint = GM/r of one
mass making use of the virial theorem. rS is a typical Schwarzschild radius of the system
and d is the distance between the two masses. φext is the gravitational potential of the
system at the observer, which scales inversely with the distance, resulting in a simple
formula for order of magnitude estimates.

Compact binary white dwarf systems have been identified by astronomers, who can
measure directly the orbital frequency. From these data the amplitude of the wave can
be deduced, as discussed in [7].

h � 4(GM)5/3

c4R

(ω

2

)2/3

,

where M = μ3/5M2/5 is the chirp mass, and M is the total mass of the system.
For binary black holes of 30M� (rS = 3 km) at 400 Mpc, forming a system of size

600 km

h ∼ 10−21.

One has to consider such a distance because finding a binary system of two black
holes that coalesce right at the time of observation is very rare at the level of a single
galaxy. The order of magnitude of the rate of Binary Black Hole mergers on the base of
the observed events has been estimated to be 2–600 Gpc−3 yr−1.

2.3. Compact objects. – The previous discussion has indicated that gravitational at-
traction is the only force that can make a system emitting significant gravitational radi-
ation. Going in more detail, in the simple case of a binary system, the size of the object
is a limiting factor for the emission amplitude. In order to achieve high accelerations the
bodies need to be at a short distance, as the force between them goes as R−2. Their size
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sets a lower limit to R: tidal forces disrupt the orbiting masses, even before contact of
their outer layers.

White dwarfs are objects where matter resists to gravitational collapse through elec-
tron degeneracy pressure with a typical mass of a fraction of one solar mass and a radius
comparable with Earth’s. For a system in our Galaxy at 10 kpc consisting of two white
dwarfs of 1 solar mass each orbiting at 105 km one from the other, the estimate for the
wave amplitude is

h � RS

R

RD

rD
=

3km
105 km

3km
1020 m

∼= 3 × 10−22.

The wave generated by such a system could be detected by current interferometers, that
are able to measure displacements of that order. Whether the test masses faithfully
reproduce the varying geometry of space-time depends much on the frequency of the
signal. Treating this system in a classical way the frequency of the emitted wave can be
computed. The second Newton law states for a circular motion

GM2
�

4R2
= μω2(2R),

or

ω2 =
GM�
4r3

,

where μ is the reduced mass. The resulting angular frequency is

ω = 4 × 10−3 rads−1

or a period of about 600 s, resulting in a signal with a period of 300 s. As will be discussed
later, the local gravity fluctuations present on Earth generate at this frequency metric
changes that are orders of magnitude higher than the wave generated by the binary
white dwarf system. Indicatively current ground based interferometers aim at recording
gravitational waves down to 10 Hz, while future project are attempting to push this limit
to 1 Hz.

The discovery of the neutron in 1932 by Chadwick induced Baade and Zwicky to
propose the existence of neutron stars, as the result of the core collapse of a star. Neutron
stars are formed when a massive star undergoes core collapse when a supernova event
occurs. Matter gets compressed under gravitational pressure and the inverse β decay
reaction

e− + p → n + νe

is energetically favoured leading to a compact body composed mostly of neutrons. The
typical mass is 1.4M� and the radius 10 km, resulting in a density of the order of
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1015 g/cm3. Models point to the existence of a solid crust made of atomic nuclei with
a sea of electrons, while the inner layers contain nuclei that are richer in neutrons but
would show radioactive decay if not bound by gravity. Current understanding is that
the progenitor star with a mass between ∼ 8–30M� is likely to have in its remnants a
neutron star.

To estimate the final orbital frequency one can consider a system of 1.4M� bodies of
10 km radius. Then

ω2 =
G1.4M�

4r3

with the radius of the single object being now 104 m,

ω = 1.6 × 10−2 rads−1

or a period of the order of 1 ms. The gravitational wave has itself double frequency, or a
period of 0.5 ms, or 2 kHz.

Encountering a system of two neutron stars, about to coalesce, is going to be very
rare for a single Galaxy. A sphere of 100 Mpc radius might show in one year one such
event.

For binary black holes of 30M� (rS = 3 km) at 400 Mpc, forming a system of size
600 km

h ∼ 10−21.

Neutron stars and black holes are the heaviest and most compact astrophysical objects
known. For neutron stars the typical mass is 1.4M� with a radius of 10 km. If the
progenitor star has a mass greater than ∼ 25M�, matter does not resist to compression
and a black hole forms. Black holes dimensions are given by their Schwarzschild radius
rS = 2GM/c2: for a 30M� black hole rS = 90 km. From these sizes the highest frequency
emitted can be estimated or, the other way around, a lower limit on the frequency of
the signal to be detected sets an upper limit to the mass of the black hole system to be
observed.

2.4. Single compact objects. – The collapse of a stellar core sees the motion of large
quantities of matter driven by gravity toward the star center, giving birth to a Supernova.
These catastrophic events were among the first sources of gravitational waves being
looked for with resonant bars, that could detect signals around 1 kHz. The amount of
energy emitted was estimated to be quite high, of the order of 0.01 solar mass equivalent.
Extremely complex hydrodynamic simulations showed that this energy was significantly
overestimated, as only the non-axisymmetric component of the quadrupole derivative is
emitting radiation. The current estimate is that only 10−8 M� or less energy equivalent is
emitted in a stellar core collapse, consequently the emitted amplitude for a source 10 kpc
away is � 10−21. Unfortunately the rate of supernovae in our Galaxy is about 1 every
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40 years, which requires being able to detect sources from the surrounding galaxy clusters.
The observation of such an event, in particular if accompanied with the detection of the
associated neutrinos and the observation of the light curves at various wavelengths would
provide otherwise inaccessible information about these processes.

Angular-momentum conservation during the core collapse leads to a rapidly rotating
object. With a sufficiently high mass progenitor, the remnant is likely to be a rapidly
spinning neutron star. This in turn may turn out not to be axisymmetric and thus
emit gravitational waves during very long times. The quadrupole magnitude depends on
the formation and evolution history. On top of an axisymmetric surface it is expected
that asperities, or “mountains”, of a few mm stand gravity thanks to the solid crust, or
hydrodynamically generated deformations result in a small but non-zero ellipticity:

ε =
Iyy − Ixx

Ixx
< 10−6

Ixx and Iyy are the principal moments of inertia perpendicular to the one nearly aligned
with the angular momentum vector. The expected amplitude is very low

h ∼ 4 · 10−27

(
f

100 Hz

)2 (
10 kpc

r

)(
Izz

1038 kg m2

)( ε

10−6

)
.

The different scale of distances with respect to binary systems places the source candi-
dates inside our Galaxy. Currently only upper limits have been placed on the emitted
amplitude of electromagnetically identified pulsar, as no periodic source has been de-
tected yet.

The fascinating point about these sources is that they are continuous and can be
observed in principle for years, allowing to average noise.

From stellar evolution it is estimated that there are of the order of 109 neutron
stars in our Galaxy; on the other hand about two thousand pulsar have been identified
by radiotelescopes and more recently by gamma ray satellites. This can be explained
by the strong beaming of the electromagnetic radiation present in pulsars, that makes
most of them going undetected. For gravitational radiation the antenna pattern is much
broader, giving access to a much larger number of rotating neutron stars, provided the
emitted amplitude is sufficient. The number of neutron stars with a significant emission
amplitude is very uncertain, a year long observing period with the improved sensitivity
of second generation interferometers might lead to identify the first continuous source of
gravitational waves.

2.5. Supernovae. – During stellar-core collapse a large amount of mass undergoes high
acceleration. However most of this motion is axisymmetric and not coherent over the
whole star volume, resulting in low gravitational wave emission. An intense theoretical
and numerical effort is going on since many years to model the stellar-core collapse and
supernova explosion. This is a complex and computer time consuming task that has

 EBSCOhost - printed on 2/13/2023 8:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



Principles of gravitational wave detection 15

Fig. 2. – Cumulative shift in the periastron period in seconds for the binary star system PSR
B1913+16.

to include tens and tens of fundamental processes and nuclear reactions, magnetohy-
drodynamics and relativistic effects. The radiated energy is of the order of 10−8 solar
masses, still detectable if the source is in our Galaxy, with a very low rate (1 every
40 years). First searches for a supernova signal were tuned for a bipolar spike lasting
a few milliseconds. Simulations are now showing that together with the spike there is
emission at lower frequency lasting up to one second.

Observation of gravitational waves from a stellar core collapse, together with asso-
ciated neutrinos and full spectrum electromagnetic radiation can enable the study of
a wealth of phenomenta, from relativistic magnetohydrodynamics to nuclear physics to
probing neutrino mass and structure. Present and future detectors have to keep as high
as possible the probability of recording such a rare event.

2.6. The indirect evidence for gravitational radiation: PSR 1913+16 . – Nowadays
gravitational waves have been observed on Earth, recording precisely the signal emit-
ted during the coalescence of two compact objects. The first evidence for gravitational
radiation came much earlier, in 1975, with the observation of periodic electromagnetic
pulses, as expected from a pulsar, showing a frequency modulation on regular base of
7.7 hours. This was immediately interpreted as coming from a tight eccentric binary
system containing a pulsar and another neutron star, with an orbital period decreasing
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Table II. – Physical parameters of PSR1913+16.

Parameter Symbol

(units) Value

i) “Physical” Parameters

Right Ascension α 19h15m28.s00018(15)

Declination δ 16◦06′27.′′.4043(3)

Pulsar Period Pp (ms) 59.029997929613(7)

Derivative of Period Ṗp 8.62713(8) × 10−18

ii) “Keplerian” Parameters

Projected semimajor axis ap sin ι (s) 2.3417592(19)

Eccentricity e 0.6171338(4)

Orbital Period Pb (day) 0.322997462727(5)

iii) “Post-Keplerian” Parameters

Mean rate of periastron advance 〈ω̇〉(◦yr−1) 4.226607(7)

Redshift/time dilation γ′ (ms) 4.294(1)

Orbital period derivative Ṗb(10−12) −2.4211(14)

with time, in contrast with a classical Keplerian motion. Figure 2 shows the difference
of periastron epoch with respect to what expected for a constant orbital period [8]. The
parabolic behaviour comes from a linear variation of the period.

The results of a detailed analysis are summarized in table II. Other non-Newtonian
effects are worth noting: the high periastron precession of 4◦ yr−1 to be compared with
0.44 arcsec yr−1 of the orbit of Mercury, and the variable periodic time delay due to the
redshift due to the companion.

3. – Signals and noise

The first conclusion drawn about gravitational waves was that “in all thinkable cases
the amplitude must have a practically vanishing value” [2]. This was in 1916, the atomic
nucleus had been discovered 5 years earlier, the Schwarzschild solution of Einstein’s field
equations had just been published, and it would have taken more than one decade to
learn of the existence of neutrons.

These discoveries would pave the way toward identifying the sources of gravitational
waves discussed previously. Important experimental discoveries allow now to achieve
extremely precise measurements of length and time using lasers, but gravitational wave
detection is still limited by noise in the detectors. A full treatment of noise is beyond
the scope of these lectures, but the main questions encountered when designing a grav-
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itational wave detector and analyzing the data it produces can be discussed in terms of
a few general ideas: the noise power spectrum and Wiener optimal filtering.

3.1. Noise power spectrum. – A signal from the transducer of a noisy physics instru-
ment can be represented as a random process, a function s(t,X) of time and of a vector
of random variables X = (X1, X2, . . . , Xn). A single observation, called a realization of
the process, is obtained by drawing a value x for the random vector X. Signal properties
like the average value and the variance can then be obtained using the relevant ensemble
averages of s(t,x) obtained drawing the random vector X.

Besides computing average and variance at a fixed time, it is important to consider
correlations between different times. The autocorrelation is obtained from the ensemble
average

R(t, τ) = 〈n(t,K)n(t + τ,K)〉.

It is assumed in the following that these properties do not vary with time, that is the
random process is stationary (in a wide sense [9]).

In this case the autocorrelation is an even function of the delay τ only:

Rn(τ) = 〈n(t)n(t + τ)〉 = 〈n(t − τ)n(t)〉.

The zero delay correlation

Rn(0) = 〈n(t)n(t)〉 = Var[n(t)]

is the variance of n(t).
If the signal shows no correlation with what happened immediately before,

Rn(τ) = 0, τ �= 0.

The system that produces this signal has no memory: such is the autocorrelation for in-
dependent radioactive decays. When the decay product interacts with matter producing
an electromagnetic signal, the dynamics of the physical system has memory of the past
states. There are time constants in the system making Rn(τ) �= 0 for |τ | > 0.

The Fourier transform of the autocorrelation results in what is called the power spec-
trum Sn(f) of the signal n(t):

Sn(f) =
∫ +∞

−∞
Rn(τ) exp(−i2πfτ)dτ , −∞ < f < +∞.

As Rn(τ) is even, Sn(f) is real. The autocorrelation function can be obtained from the
power spectrum as

R(τ) =
∫ +∞

−∞
S(ω) exp(i2πfτ)df.
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Table III. – Some properties of autocorrelation functions and power spectra (ω = 2πf).

n(t) R(τ) S(ω)

an(t) |a|2R(τ) |a|2S(ω)

dn(t)
dt

−d2R(τ)

dτ2 ω2S(ω)

dkn(t)

dtk (−1)k dkR(τ)

dτk ω2kS(ω)

n(t) exp[±iω0t] R(τ) exp[±iω0τ ] S(ω ∓ ω0)

n(t) cos ω0t R(τ) cos ω0τ (S(ω + ω0) + S(ω − ω0))/2

For τ = 0, using Parseval theorem:

∫ +∞

−∞
S(f)df = R(0) = E[n2(t)] = Var[n(t)] ≥ 0.

The integral of the power spectrum is the average power of n(t), thinking of n(t) being
the current flowing through a 1 Ω resistor. Table III shows some useful properties of
autocorrelation functions and power spectra.

Electric circuits that process a signal are causal, usually time invariant, linear systems.
Their output y(t) is the convolution of the input n(t) with the impulse response of the
system L(t):

y(t) =
∫ +∞

0

L(τ)n(t − τ)dτ =
∫ 0

−∞
L(t − τ)n(τ)dτ.

From the properties of the Fourier transform it can be shown [9] that

Sy(f) = |H(f)|2Sn(f),

where H(f) =
∫ +∞
0

L(t) exp(−i2πft)dt is the complex transfer function of the linear
system, which is causal.

A few autocorrelation functions and power spectra frequently encountered are listed
in table IV. The case of a memoryless process results in a flat power spectrum, and one
speaks of white noise, all frequency components are present, as in white light.

Using the transfer function of a band pass filter HBP (f) = 1 for f0 < |f | < f0 + 1 Hz
and zero otherwise, it is possible to compute the power “localized” in a given frequency
band and justify the name of power spectrum given to S(f). Consider the voltage output
of a channel n(t) and distribute it to a battery of bandpass filters 1 Hz wide as in fig. 3.
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Table IV. – A few autocorrelation functions and power spectra (ω = 2πf).

R(τ) S(ω)

exp[−αt] 2α/(α2 + ω2)

exp[−αt] cos ω0t α/(α2 + (ω − ω0)
2)

|t| ≤ T : 1 − |t|/T |, |t| > T : 0 4 sin2(ωτ/2)/Tω2

δ(τ) 1

1 2πδ(ω)

cos ω0t πδ(ω + ω0) + πδ(ω − ω0)

For each filter the power dissipated on a 1 Ω resistor is

∫ +∞

−∞
Sn(f)|H(f)|2df = 2

∫ f0+1Hz

f0

Sn(f)df

� 2Sn(f0).

If [n(t)] indicates the units in which the signal is measured, from the definition of
power spectrum the units of Sn(f) are

[Sn(f)] = [n(t)]2 s =
[n(t)]2

Hz
.

For example, if the output of the detector is in Volt, the power spectrum is measured in
V2/Hz.

To compare the noise of an instrument to the amplitude of a signal, one uses the
Linear Power Spectrum (LPS) which is defined as

ñ(f) =
√

Sn(f).

Instead of indicating the variance of the noise in a 1 Hz bin, one quotes the standard
deviation or rms of the signal in that same band, allowing a direct comparison between
signal and noise. With Sn(f) having units [n(t)]2/Hz, the units of ñ(f) are

[ñ(f)] =
[n(t)]√

Hz
.

For example, the noise in an operational amplifier is measured in nV/
√

Hz.
If there is more than one noise source that contributes to the output of a device, and

if these sources are uncorrelated, to find the total noise the power from each of them
has to be summed, like the dissipated power in a resistor is the sum of the powers of the
various contributions. The power spectra can be summed, the LPS cannot, these should
be summed in quadrature.
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Fig. 3. – The noisy channel n(t) is distributed to 1 Hz wide pass band filters. The power
dissipated on a 1 Ω resistor is measured.

The previous discussion is about the level of noise in a 1 Hz band, however expected
signals are not confined in a band of one frequency unit. A signal of characteristic
duration τc has frequency components up to fc � 1/τc. To obtain the instrumental
noise, the power spectrum over the frequency band must be integrated up to fc. In the
approximation of a flat spectrum the total power is fcSn(f). For a signal of amplitude
A to be compared with noise, one obtains an estimate

SNR ∼ A√
Sn(fc)fc

.

For a 1 ms duration signal of amplitude A and detector with linear noise n, SNR � A/30n.

3.2. Power spectra in practice. – The above definitions make use of Fourier trans-
forms that are defined for positive and negative frequencies. On the other hand, physical
measurements involve real quantities and only positive frequencies. For a noise measure-
ment at a frequency f there are contributions from both equal power spectra Sn(f) and
Sn(−f), giving as total noise power twice the power spectrum. The result is the so-called
one-sided spectrum. When manipulating power spectra it is advised to verify whether
the factor of 2 is already included: the LPS defined using only positive frequencies is

√
2

times the LPS defined for −∞ < f < +∞.
In practical cases the estimate of the power spectrum is not based on the autocorre-

lation but uses directly the power in the various frequency bands, averaged over time.
This is under the hypothesis that the system is ergodic, implying that an average over
an ensemble of realizations of the stochastic process is equal to that same average over
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time. The estimate of the power spectrum Ŝn(f) is then computed as

Ŝn(f) =
1
N

N∑
1

1
T

∣∣∣∣∣
∫ +T/2

−T/2

n(t) exp(i2πft)dt

∣∣∣∣∣
2

.

Two scales of time are involved in this process: the duration of the Fourier transform
T which determines the frequency resolution Δf = 1/T , and the overall duration of the
measurement τ = NT , which is determined by the number of desired averages. Increasing
the number of averages reduces the fluctuations of the measured Sn(f) but increases the
total measurement time τ , which can be a problem in the presence of non-stationarity,
as can happen in practice.

This procedure considers signals that start and end sharply at −T/2 and T/2 respec-
tively: one says a rectangular time window W (t) is used. This creates problems in the fre-
quency domain and windows with specific weights (e.g., Hann, Hamming, . . .) are applied.
Data at the beginning and at the end of the window are weighted less and to improve
statistical accuracy time windows are overlapped. To estimate in practice a power spec-
trum it is necessary to specify the duration of the single Fourier transform T , the number
of averages N , the window used and the amount of overlap between windowed data.

3.3. Power spectrum in digitized signals. – Nowadays most signals from transducers
are recorded digitally and then treated numerically. These signals are sampled at some
frequency fs and converted from analog to an integer number with some rounding off.
This introduces an additional white noise that has rms error ΔA/

√
12, where ΔA is

the minimal step in the analog-to-digital conversion. In addition, if the signal hits the
maximum amplitude that can be converted distortion can occur.

Sampling at some frequency fs causes further information loss: fs determines what
are the fastest variations that can be recorded. Simply speaking, it is possible to keep
track of an oscillating signal if a positive variation is followed by a negative one. At
least three samples are needed and the maximum recordable frequency, called Nyquist
frequency, is 1/2τs = fs/2. If the analog signal oscillates with f > fN it will not be
recorded faithfully. An oscillating signal with a frequency lower than fN appears. This
is called frequency aliasing.

Assume to sample a sinusoidal signal of frequency 0 < f < fN . Between one sample
and the other the phase changes by

Δφ = 2πfτs = 2πf/fs, |Δφ| < π

but the frequency of the sampled function is the same if the original phase changes
instead by

Δφ = ±(2πf/fs + 2kπ) = ±(2π(f + kfs)/fs),

k integer (positive and negative frequencies are not distinguishable).

 EBSCOhost - printed on 2/13/2023 8:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



22 F. Fidecaro

Any signal with frequency ±(f+kfs) gives a sampled signal with frequency f . In other
words, a sampled signal with frequency f contains contributions from signal components
at kfs +f and kfs−f , for any integer k. Signals with frequency kfs +fN < f < (k+1)fs

appear at fN − f (note the minus sign in front of f), signals with frequency kfs < f <

kfs + fN appear instead at frequency f .
To obtain the correct power spectrum of a signal from its samples there should be no

contribution from the frequency band above the Nyquist frequency. If present it must
be strongly attenuated by a low pass filter BEFORE sampling. Failure to do so can lead
to a noise increase in the sampled signal spoiling dramatically the gravitational wave
detector sensitivity.

3.4. Signal and noise. – The present gravitational wave detectors look for rare tran-
sient signals among noise or long-lasting faint signals. For a signal present among the
noise, the detector output is

s(t) = n(t) + h(t).

One procedure to detect such a signal is to compute the likelihood of observing s(t) in
both hypotheses of presence and absence of a signal. As in the case of discrete measure-
ments, this can be expressed in terms of a distance between the observed signal and the
hypothetical waveform. For digital signals this amounts to minimizing a quadratic form
defined by the inverse of the covariance matrix C(iτs, jτs) between samples at different
times:

χ2 =
∑
i,j

[s((i − j)τs) − h((i − j)τs)]
(
C−1

)
i−j,i

[s((i)τs) − h((i)τs)].

In the continuous case the distance is obtained dividing by the inverse of the autocorre-
lation function: ∫ t

0

∫ τ

0

(s(t − τ) − αh(t − τ))(s(t) − αh(t))
R(t, t − τ)

dτ dt.

This is an example with a fixed waveform h(t) with unknown amplitude α. The value of
α that minimizes this distance designates the best waveform that fits the data.

Minimizing with respect to α amounts to solve∫ t

0

∫ τ

0

(s(t − τ) − αh(t − τ))h(t)
R(t, t − τ)

dτ dt = 0.

The solution for α is

α =

∫ t

0

∫ τ

0

s(t − τ)h(t)/R(t, t − τ)dτ dt∫ T

0

∫ t

0

h(t − τ)h(t)/R(t, t − τ)dτ dt

= 0.
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3.5. Optimal filtering . – The above procedure can be translated to the frequency
domain. In the general case the known signal h(t) is a function of several parameters
(coalescence time, masses, . . . ). Then the optimal filter for a deterministic signal, fully
determined by its parameters, requires to compute

sW = 2
∫ +∞

0

s̃(f)h̃∗(f)
Sn(f)

df

=
∫

h(t)
∫

s(τ)w(t − τ) dτ dt,

h̃∗(f) is the complex conjugate of the Fourier transform of h(t). w(t) weighs s(t) more
at frequencies where the detector is less noisy.

sW is Gaussian distributed with mean zero and standard deviation 1 if the template
h(t) is properly normalized. A simple detection procedure would then consist in defining
an appropriate threshold for |sW | for a given choice of probability of false alarm.

The expected signal-to-noise ration SNR is given by

SNR2 = 4
∫ +∞

0

|h̃(f)|2
Sn(f)

df.

The SNR2 builds up integrating over frequency, weighted with the inverse of the detector
noise power spectrum. To achieve a reliable detection, the noise has to be low, possibly
over the full frequency band spanned by the signal. Once a detection is claimed the
parameters of the system can be estimated as those giving the maximum |sW |.

The subject of signals and noise saw a rapid development during World War II in
particular thanks to Norbert Wiener, after whom the optimal filter is named. More
detailed treatment is to be found in textbooks on Stochastic Processes, Digital Filters,
Statistical Signal Processing, Detection theory.

4. – Primary noise sources in gravitational wave interferometers

As discussed at the beginning, gravitational waves are tiny perturbations of the space-
time metric that are observed looking at the separation between two free masses. The
waveform is recorded by measuring, as a function of time, a variation of the order of
10−18 m of their distance. A ground-based detector uses pairs of suspended masses free
to move in the horizontal plane and as much as possible insensitive to local perturbations.
The apparatus has then to ensure that:

– local effects do not move the masses,

– mass separation is well measured.

The size of the expected effect is hard to imagine, ten billionths of the size of an atom,
to be measured between macroscopic masses. As will be seen, this compares badly with
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Earth ground motion, and hits physical limits coming from thermal motion and local
gravity fluctuations.

In current detectors the distance measurement relies on the use of light with wave-
length of the order of 10−6 m. Optical interference is used to measure the phase of the
electromagnetic field returning from the remote mass at the level of 10−11 rad. How-
ever phase is obtained from the light intensity in the interference pattern, with precision
limited by quantum mechanics.

Noise in test mass position is discussed first, starting form seismic noise, that is
definitely prevalent at low frequency. Then other fundamental noise sources will be en-
countered. The description of the optical measurement concludes the section. Needless
to say that an ideal world is described, current instruments receive many other contribu-
tions to the observed noise, called generically technical noise, coming from the associated
control equipment or the residual environmental coupling. There the best textbook is
the laboratory floor.

5. – Position noise

5.1. Seismic noise. – Gravitational wave detection asks for masses that move less
than 10−18 m in the laboratory reference frame in the detection frequency band. Seismic
activity, on the other hand, results in the surface of the Earth moving by 0.1–1μm over a
1 s time scale. This is a random superposition of many elastic waves that travel through
the Earth crust and its interior, originated by earthquakes, tectonic plate motion, but also
by pressure variation on soil due to sea motion, ocean swell, wind. On longer time scales,
tides of the solid Earth change by tens of microns the distance between two points a few
km apart. Human activity, from car traffic to manufacturing plants, when not planes,
helicopters, trains and underground tunnels, is also an important source of vibrations,
that may have varying intensity depending on time. Different locations may exhibit
different vibration characteristics, depending on general seismic activity and mechanical
soil response (speed of sound, attenuation).

The microseismic spectrum at the Virgo location near Pisa, in Central Italy, is usually
parametrized as

x̃s(f) = 10−7

(
1Hz
f

)2

m/
√

Hz,

for f > 1 Hz. Below 1 Hz, wind and sea introduce a seismic component around 140 mHz,
corresponding to a period of 7 s. The amplitude of the microseism is then 11 orders
of magnitude higher than the expected signal. This is a rather unusual situation: for
example the human ear can stand only 6 orders of magnitude in pressure above the
earing threshold, or typical analog electronic devices can manipulate signals that span
6–7 orders of magnitude. The amplitude of the motion of the mass with respect to an
inertial frame must be strongly reduced, but the ground moves enormously. Signals in
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the instrument have to cover a large dynamic range, and this is one of the main practical
difficulties of gravitational wave detectors.

5.2. Seismic attenuation. – The reduction of seismic motion is achieved by applying
a cascade of mechanical filters that give in steps the required attenuation [10]. These
are essentially harmonic oscillators, that operate as low-pass filters above the resonance
frequency, using the inertia of the attached mass to attenuate motion. Consider a pen-
dulum with a moving suspension point xs(t) and neglecting damping. The position x(t)
of the pendulum mass follows:

ẍ +
g

l
x =

g

l
xs(t),

where dots indicate time derivatives. The pendulum length is l and g is the acceleration
of gravity. In the frequency domain the solution for an excitation xs(t) = x0 exp(iωt)
has an amplitude

x(ω) = x0
ω2

0

|ω2 − ω2
0 |

, ω2
0 =

g

l
.

At high frequency with ω � ω0, the amplitude becomes

x(ω) = x0
ω2

0

ω2
= x0

k

mω2
,

attenuation is achieved through inertia. Dissipation should be avoided, as it introduces
a correlation between the pendulum and the suspension point or the environment, de-
creasing the filter performance. Furthermore, as discussed below, it is intrinsically noisy.

By cascading n pendula one has a system with n normal modes. Above the frequency
of the highest normal mode the back action of pendulum i on pendulum i − 1 becomes
negligible. Each filter acts independently and attenuations can be multiplied. The total
attenuation A can be estimated: for a 1 m pendulum

ω2
0 =

g

l
= 10 rad2 s−2

and for n filters

A ∼
(

ω2
0

ω2

)n

=
(

10
4π2f2

)n

.

The spectrum has a power dependence f−2n making it a “seismic wall” toward low
frequency.

As an example, seven filters provide at 4 Hz an attenuation factor

A =
(

ω2
0

(2πf)2

)7

=
(

10
640

)7

= 2.3 × 10−13.
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The last filter is the suspended test mass, so a six filter suspension allows to attenuate
seismic noise down to 4 Hz. Below that frequency attenuation is greatly reduced and,
worse, at the resonant frequency of the normal modes, seismic motion is amplified.

The system must be able to precisely position each mirror while damping all the
resonant modes. These two functions deal with completely different ranges of displace-
ment: the position must be controlled at the level of 10−12 m for adequate interferometer
tuning, and at the level of 10−6 m when controlling seismically excited modes, without
introducing noise at the level of 10−18 m. The dynamic range required cannot be pro-
vided by a single actuator: well designed analog electronics covers typically seven orders
of magnitude when at least twelve are needed. Moreover the Earth elastic deformation
due to the Moon and Sun tides introduces a distance change of several tens of microns
over a distance of 3 km and a timescale of hours. The development of mirror suspensions
able to meet these and other requirements has taken a long time. Different approaches
have been pursued, the major conceptual difference being the selected solution to control
the motion of the suspension point. Here the solution developed for Virgo is presented,
based on a mostly passive approach, while LIGO adopted for the first attenuation stage
an active inertial platform.

5.3. The Virgo Superattenuator . – The Virgo Superattenuator (see [11]) was designed
to provide sufficient seismic attenuation at a frequency as low as 10 Hz, avoiding as much
as possible elements that could reintroduce noise or represent a bypass for vibrations. It
was realized very early that attenuation should occur in all six degrees of freedom of the
suspended mirror, even if the measurement involves only displacement along the beam
axis. Indeed finite mechanical precision results in residual coupling between degrees of
freedom, so high motion in one degree of freedom may then leak into the longitudinal
direction, nullifying the filter action. Attenuation in the vertical direction is particularly
important: the ultimate vertical-to-horizontal coupling is given by the Earth curvature:
at a distance of 3 km the directions of the local vertical differ by 4.5 × 10−4 rad; motion
in that direction couples directly to the horizontal axis. As a matter of fact, due to
construction imperfections, mechanical coupling is usually much higher than this.

Vertical attenuation is a challenge: attenuation is higher with a low resonance fre-
quency, obtained using a soft spring. But the suspension must be stiff enough to hold
several hundred kilograms, so a specific solution, called antispring, was developed. The
suspension spring is softened by introducing an element that has, over a small region, a
“negative” elastic constant, producing a force

F = +k(y − y0), |y − y0| < d.

In the Virgo Superattenuator this is achieved using the repulsive force of magnets [12].
If magnets are perfectly aligned, the transverse force is zero, otherwise a component
proportional to displacement appears. A similar behaviour is obtained with compressed
springs perpendicular to the vertical axis.

The Virgo Superattenuator includes an inverted pendulum [13] that supports the
suspension point of the filter chain. Elastic joints keep vertical the legs that support
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Fig. 4. – Perspective view of the Virgo Superattenuator. The inverted pendulum legs are 6 m
long.

the top table of the suspension. Gravity acts as destabilising element, reducing at will
the resonance frequency which is tuned around 30 mHz ensuring significant horizontal
attenuation. The resulting elastic constant is very low, and only small forces are needed to
move the top platform by tens of microns, as required to follow crust tidal deformations.
These forces are applied over hours, moving the average position of the mirror. Being
applied upstream in the filter chain, any noise component at higher frequency is filtered
and does not reach the mirror. This split of the control signal into a high-amplitude and
low-frequency component, and a low-amplitude high-frequency one, gives the dynamic
range needed. The resulting structure of a long superattenuator is shown in fig. 4.

The transfer function

A(f) =
∣∣∣∣xm(f)
xs(f)

∣∣∣∣
for the Virgo Superattenuator is shown in fig. 5. A(f) is 1 in the band below the resonance
of the inverted pendulum, at 30 mHz. At increasing frequency further resonance peaks are
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Fig. 5. – Superattenuator transfer function.

visible, with the attenuation slope increasing. At high frequency the internal mechanical
resonances of the filters reduce the performance of the suspension. In ultimate analysis,
the low-frequency performance relies on the distance between filters, which is proportional
to the square root of the oscillation period. Pushing the seismic wall down to 2 or 1 Hz
may turn out to be very difficult for practical reasons.

5.4. Thermal noise. – One of the limitations that are present in measurement devices
is thermal noise, coming from being in thermal equilibrium with the environment. The
test mass suffers no exception and its position and velocity degrees of freedom store on
average an energy of

kBT = 3.9 × 10−21 J

at room temperature. For a 40 kg mirror suspended by a 1 m pendulum, the elastic
constant of the equivalent harmonic oscillator is

mg/l = 400N/m

and the corresponding oscillation amplitude xT is

xT =

√
kBT

k
=

√
kBT l

mg
= 3.1 × 10−12 m.

This is a root mean square value which can be thought to be averaged over all frequency
components of the motion. Intuitively one understands that different frequency bands,
for example on and off resonance, contribute differently to the total kinetic energy. This
is discussed in more detail in the following section.
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5.5. Fluctuation-Dissipation theorem. – There is a connection between the dissipation
of the energy stored in a system and its fluctuations when in equilibrium with a thermal
bath: the dissipation mechanism lets energy flow at some rate toward the environment,
but it also connects the heat bath to the system, creating a single body subject to
thermodynamic fluctuations. The Fluctuation-Dissipation theorem [14] links the power
spectrum of noise from thermal origin to the dynamics of the system and the amplitude
of noise is determined by the “width” of the dissipation channel. The theorem states [15]
that if Y (ω) is the mechanical admittance, or the inverse of the impedance Z(ω),

Y (ω) =
1

Z(ω)
=

ẋ

F

the power spectrum Sẋ(ω) of the quantity ẋ, proportional to the force and to the admit-
tance, is

SẋT
(ω) = 2kBT�Y (ω),

where T is the equilibrium temperature, and �Y (ω) the real part of Y (ω).
Consider a pendulum in vacuum, with dissipation proportional to displacement rather

than to velocity, as is internal friction in solids. The equation of motion is

ẍ + ω2
0 [1 + iφ(ω)]x = F/m

with the so-called loss angle φ ∼ 10−3−10−6 for materials typically used in gravitational
wave interferometers. The loss angle, times 2π, measures the fraction of mechanical
energy dissipated during one oscillation.

The motion is given by

x(ω) =
F

m

ω2
0 − ω2 − iφ(ω)ω2

0

(ω2
0 − ω2)2 + φ2(ω)ω4

0

,

so

�Y (ω) =
ω

m

φ(ω)ω2
0

(ω2
0 − ω2)2 + φ2(ω)ω4

0

.

Applying the Fluctuation-Dissipation theorem, the linear power density for the position
thermal noise is given by

x̃T (ω) =

√
SẋT

(ω)
ω

=

√
4kBTφ(ω)ω2

0

mω[(ω2
0 − ω2)2 + φ2(ω)ω4

0 ]
,

for ω ≥ 0. The position frequency spectrum has a very high and narrow peak at the
normal mode resonance frequency and low tails away from it. If φ has little frequency
dependence, below resonance the noise goes as f−1/2 while at high frequency the depen-
dence is as f−5/2.
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5.6. Thermal noise mitigation. – To mitigate the effects of thermal noise one can
act on the temperature T , which enters as T 1/2 in the linear spectrum. Cooling a
mass suspended using thin wires is complex and is a field of active research. Moreover
additional complications are introduced, mainly due to the vibrations generated by the
refrigeration equipment. Currently the large interferometers LIGO and Virgo operate
at room temperature, but the Japanese detector KAGRA features test masses cooled to
around 20 K.

Otherwise thermal noise can be reduced working on the dissipation itself, for example
selecting suitable materials. For a test mass suspension, energy dissipation is through
the silica suspension fibers that bend during oscillations. The bending energy is a few
percent of the total energy of the pendulum, so the overall loss angle can be extremely
low.

Current test masses are also made out of fused silica which ensures low thermal noise.
However these masses are used as mirrors with a reflective surface obtained with thin
coating layers of other materials, like oxides, that have much higher dissipation. This
thermal noise from the mirror coatings is currently the main limitation in sensitivity in
most of the detection band and intense research of new materials is in progress.

5.7. Newtonian noise. – Variations with time of the local gravitational field cannot be
shielded and can mimic perfectly the effect of gravitational waves; the resulting noise is
called Newtonian noise. These fluctuations are generated by the motion of large masses,
or of small masses in the proximity of the mirrors, or by density variations in the volume
surrounding the mirrors. For a mirror suspended near the ground surface, seismic waves
are particularly relevant: ground is raised on the crest and lowered in the through.
There is more gravitational mass associated with the crest, and it attracts the mirror
more than the through. Density variations can also be found in the atmosphere, due to
wind, humidity and rain. In general the noise increases with decreasing frequency, as
higher masses are involved, setting a limit to the lowest detectable frequency for Earth
detectors.

If the mirror is surrounded by material in a symmetric way the effect can be cancelled,
and this motivates locating detectors underground, although compression seismic waves
would still vary the density asymmetrically. Also, massive objects at short distance
can introduce additional Newtonian noise. Research is going on to understand how, by
monitoring the ground or air motion with arrays of sensors, the effect of local gravity
fluctuations can be predicted and appropriately subtracted.

6. – Measurement noise

6.1. Michelson-Morley interferometry. – In principle changes in the metric can be
measured in a single direction by looking at the light reflected by a remote mass. Wave-
fronts sent by a reference source would come back at times different than expected,
exhibiting a phase difference with respect to the source. The phase difference is observed
by looking at the intensity of the beam resulting from the interference between the source
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and the reflected beam. The achievable precision is limited by the stability of the basic
unit of length, which is the source wavelength.

Space-time deformation by gravitational waves varies with direction, making the com-
parison between optical paths a much better detection procedure. Sending light beams
in two arms of identical length and having them interfere at the end of their return trip
allows a much higher precision, as many effects that are common to both arms, like those
from the source itself, cancel. The intensity from interference provides the relative phase
measurement. This makes the Michelson-Morley interferometer an ideal configuration
for detection.

Consider an interferometer where light with power Pin impinges on a beam splitter,
while the power coming out is Pout. Suppose that there is a phase difference between the
two beams

Δϕ = π + α + φOG,

where the static phase π + α can be chosen and φGW is the phase difference generated
by the gravitational wave. α = 0 means destructive interference in transmission, it is
usually said that the interferometer is “on the dark fringe”. Then

Pout = Pin sin2

(
α + φOG

2

)
.

For φOG � 1:

Pout = Pin

(
sin2 α

2
+

1
2
φOG sin α

)
.

The interferometer shows a sensitivity of the output power to changes in φGW

dPout

dφGW
= Pin sin

(
α + φGW

2

)
cos

(
α + φGW

2

)
= sin (α + φGW ) ,

which is maximum for α = π/2. This happens when the instrument is at half fringe:
Pout = P ¯out = Pin/2, that is when half of the light is reflected toward the light source
and the other half reaches the output photodiode. Note: in the field of GW sensitivity
denotes the minimum gravitational wave amplitude that can be detected. As will be
shown below this is set by the noise present in the detector.

In an ideal interferometer the output intensity is subject to statistical fluctuations
of the number of detected photons. This sets the precision that can be achieved in the
measurement. With a normal laser source the number of photons detected per unit time
has a Poisson distribution. If there are on average N pulses per second, it can be shown
that the noise spectrum over positive and negative frequencies is

Sγ(ω) = 2πN2δ(ω) + N.
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Leaving aside the first term δ(ω) corresponding to the average DC current, one has that
the variance per Hz is N . In the absence of signal the noise present in the photocurrent is

σPout =

√
ηPin

hν

∣∣∣sin α

2

∣∣∣ ,
where η is the quantum efficiency of the photodiode.

The signal-to noise ratio in a 1 Hz band, that is for 1 s measurement time is

SNR =

√
ηPin

2hν

∣∣∣cos
α

2

∣∣∣φOG,

which is maximum for α = 0: it is more convenient to work on the dark fringe (α = 0
however kills the signal, so a little offset is present).

In the GW field the sensitivity is the gravitational wave signal that has the same
spectral amplitude of the detector noise, that is, the signal-to-noise ratio is 1. The phase
sensitivity measured in 1 second is then

φmin
OG =

√
2hν

ηPin
.

Consider for example a laser source of infrared light with λ = 1064 nm, incident power
of 10 W and an ideal detector (η = 1). The resulting phase noise is

φmin
OG � 2.0 × 10−10 rad Hz−1/2.

For a wave arriving perpendicularly to the interferometer plane, with + polarization
acting with opposite signs on the two arms

φOG =
2π

λ
2L

h

2
× 2.

One has

hmin =
λ

4πL

√
2hν

ηPin
.

This is, as expected, a spectral density with units Hz−1/2. Moving from the table top
instrument to the Virgo interferometer one sees that the km scale interferometer is still
off the 10−23 Hz−1/2 target by several orders of magnitude (table V).
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Table V. – Table top and Virgo interferometer shot noise.

L hmin Hz−1/2

Table top 1 m 1.6 × 10−17

Virgo 3 km 5.3 × 10−21

6.2. Fabry-Perot cavities. – The response to gravitational waves increases with the
effective optical path between the two test masses. The simplest way is to have multiple
reflections, building a delay line. A large interferometer, GEO600 near Hannover, has
its arms folded once to double their length, building a Michelson-Morley interferometer
with 1.2 km arms. However a larger arm length leads to an increased beam size caused
by diffraction. This requires that the multiple reflections occur in well-separated areas,
implying large-size mirrors, for a relatively small spot size.

The current approach is to use Fabry-Perot resonant cavities, made by a semitrans-
parent mirror at the input and an essentially totally reflective mirror at the end. This is
a device frequently used when one has to have precise wavelength measurements, having
a sharp phase response to length variations.

A simplified treatment of the Fabry-Perot Cavity considers the incoming and outgoing
electric fields Ein and Eout at the input mirror, leaving out the temporal dependence given
by exp(−iωt), and those inside the cavity E1, E2, E3 e E4. The relations between the
various fields are listed in table VI. It is assumed that optical losses are negligible so
that r2

i + t2i = 1, ri and ti real. The π/2 phase lag between transmitted and reflected
amplitude is required for dielectric materials. In gravitational wave interferometers r2 is
usually 1 minus a few parts per million.

Solving for E1 yields

E1 =
t1

1 + r1r2 exp(2ikl)
Ein,

which, when exp(2ikl) = −1, reaches the maximum value

E1 =
t1

1 − r1r2
Ein.

Table VI. – Fields in a Fabry-Perot cavity.

E1 = t1Ein + ir1E4

E2 = exp(ikL)E1

E3 = ir2E2

E4 = exp(ikl)E3

Eout = ir1Ein + t1E4

Ein E1 E2

E3E4Eout
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Fig. 6. – Fabry-Perot cavity circulating power with different finesse. Note the slope difference
near the maximum.

The various resonances are at optical frequencies

νn =
(

n +
1
2

)
c

2L

or for a cavity length L0 = kλ/2. The separation between resonances is called free spectral
range (FSR) which, for a 3 km cavity, is 50 kHz. The circulating power at resonance is

P1 =
ε0c

2
|E1|2 =

(
t1

1 − r1r2

)2

Pin,

which can be written as

P1 =
(

t1
1 − r1r2

)2
Pin

1 + 4F2

π2 sin2 [x/2]
,

where x := 2πL/λ−kπ is the length detuning from resonance expressed in radians, while
F defines the finesse of the cavity

F :=
π
√

r1r2

1 − r1r2
.

Figure 6 shows the power circulating in the cavity as function of x.
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The reflected field Eout is

Eout = ir1Ein + ir2t1 exp(i2kL)E1 = iREin

with

R =
r1 + r2 exp(i2kL)
1 + r1r2 exp(i2kL)

For F � 1, r1r2 � 1 − π/F and

r2R =
1 − π/F exp(i2kL)

1 − (1 − π/F) exp(i2kL)
.

Near the resonance the sensitivity of the reflected phase φ to length variations can be
computed, giving

δφ

δL
=

8F
λ

.

This is obtained, assuming negligible absorption, for (1 − r2
2)F/π � 1, that is for mod-

erate finesse and low losses.
As in the case of the simple Michelson interferometer, this does not correspond to the

maximum precision, as little light is reflected from the cavities, increasing noise in the
measurement. Working out the details, that can be found for example in [16, 17], one
sees that typically there is a factor 2 reduction in the phase response of the cavity.

The phase difference between two cavities leads to the level

hmin =
λ

4FL

√
hν

ηPin

√
1 +

4F2

π2
sin2

(
ΩL

c

)
,

to be compared with the Michelson case

hmin =
λ

2πL

√
hν

ηPin

At low frequency Ω � c/L the sensitivity gain is

2F
π

.

For F = 450 the gain is 286, bringing the sensitivity of Advanced Virgo to

1.9 × 10−23 Hz−1/2.
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6.3. Power recycling . – According to the initial discussion the sensitivity of gravita-
tional wave interferometer increases with the laser power. It is possible to recycle the
light coming from the input port of the interferometer, which is intense since we have
a dark fringe at the output port. By positioning another semitransparent mirror before
the beam splitter one creates a resonant cavity made of the full Michelson-Morley in-
terferometer with Fabry-Perot arms, that reflects light with a well-defined phase. By
positioning this recycling mirror suitably one can build another resonant cavity in which
light power can build up. The total absorption in the optical system will ultimately
limit the available circulating power: however recycling gains C = 30–50 are currently
achieved. The resulting sensitivity is

hmin =
λ

4FL

√
hν

ηCPin

√
1 +

4F2

π2
sin2

(
ΩL

c

)
.

6.4. Standard quantum limit . – In the above discussion it appears that having a high
power entering the interferometer reduces the shot noise contribution. However this
increases the size of the quantum fluctuations in the photon number, causing radiation
pressure variations.

One reflected photon per unit time gives an acceleration to a mirror of mass M

a =
2hν

Mc
.

As seen before the one-sided noise spectrum for photon counting is

2Pin

hν
.

Then the acceleration spectrum is

Sa(f) =
(

2hν

Mc

)2 2Pin

hν
=

8Pinh

M2λc
.

The resulting position noise spectrum is

Sx(f) =
Pinh

2π4M2λc2f4
,

giving a f−2 behaviour in the linear power spectrum. Taking into account that there
are two mirrors per arm and that the arms are anticorrelated, the resulting noise from
radiation pressure is

hRP (f) =

√
2Pinh

λc

1
π2LMf2

.
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Fig. 7. – Standard quantum limit.

On the other hand it was found that at low frequency the shot noise leads to a spectrum

hmin =
λ

4FL

√
hν

Pin
.

The sum in quadrature of these two contributions is shown in fig. 7, varying the input
power on the beam splitter. This results relies on the photon statistics followed for nor-
mal laser light. Nowadays the large interferometers have introduced optical schemes that
manipulate the quantum states of light, reducing the uncertainty of the phase measure-
ment at the cost of an increased variance of the intensity. This makes use of squeezed
quantum states of light, that are a fascinating application of the quantum theory of light
using materials with non-linear dielectric response, but is definitely a more advanced
subject (see for example [18] and references therein).

7. – Noise curve

In the previous paragraphs the various fundamental contributions to the noise of a
gravitational wave interferometer were discussed. A detector able to record gravitational
waves over a broad frequency band is the result of many compromises between conflicting
requirements. In fig. 8 the fundamental contributions to the noise of Advanced Virgo in
its design configuration, including a signal recycling scheme, are presented. In a non-
ideal apparatus there are many paths for external disturbances to enter the instrument.
Reducing these takes a long experimentation time, that is in contrast with observation
time to provide gravitational wave data to the scientific community. A future with a
redundant network of interferometers will allow to spend the time necessary to bring
each instrument to its design level of performance.
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Fig. 8. – Fundamental noise curve.

8. – Ending remarks

These lectures aimed at being a starting point to experimental gravitational wave
research. Measuring changes in space-time asks for understanding a variety of physics
subjects, from quantum mechanics, to statistical physics, to cosmology. It is the place
for curiosity, ingenuity, perseverance, while looking for the unexpected. The wish is that,
at the end, new horizons opened and new, fascinating fields of research will attract the
reader.
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Summary. — Despite the simple detection principle, a gravitational wave inter-
ferometer is an extremely complex instrument. In these lectures we will try to
summarise some of the main features of the detector. We will start from the very
basic concepts and gradually advance to a more general treatment. We will focus
our discussion on the solutions adopted in the second generation of instruments,
by means of which now the era of the gravitational astronomy has started. In the
final sections, in view of the development of the future gravitational wave detectors,
we will discuss how to reduce two main noise sources: the thermal noise via the
use of cryogenic techniques and the readout noise via the strategies conceived to
circumvent the quantum limit of the detector.

1. – Introduction

The interferometers for the detection of gravitational waves (GW) as advanced LIGO
and Virgo [1, 2] are transducers, which convert the GW space-time strain, a signal at
frequency ω in acoustic bandwidth, into an optical signal by modulating the optical
field, which oscillates at frequency Ω. It has been pointed out in an elegant paper by
Peter Saulson in 1997 [3], that the conversion of the GW strain into an output at the light
frequencies Ω ± ω is reminiscent of the class of devices known as parametric amplifiers.
The key component of a parametric amplifier is a nonlinear reactance, to which both the

c© Società Italiana di Fisica 41

 EBSCOhost - printed on 2/13/2023 8:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



42 Fulvio Ricci

Fig. 1. – The modulation scheme.

input signal and a pump signal of a much higher power level are applied. The nonlinear
reactance produces other signals at the combination frequencies mΩ±nω, where m and n

are integers. The signal process at the basis of a parametric transducer is the modulation
and for this reason we will start our primer on the real GW detector with a laudatio of
the modulation principle. Then we describe the optical configuration of the GW and its
limits in more details. In the second part we will focus on two intrinsic limitations of the
instrument sensitivity, which are due to the thermal and readout (optical) noise.

2. – The modulation

The basic method for transmitting information, i.e. a signal in the audio bandwidth,
is to imprint it in another signal at higher frequency, the carrier or pump signal (see
fig. 1). The modulation, permits to have a frequency translation, where the modulation
wave at lower frequency, the baseband signal, is imprinted in the signal transporting the
information, the carrier, at higher frequency. To do that some characteristics of the
carrier are varied in accordance with the modulation wave.

Different modulation approaches exist: Amplitude Modulation (AM), Frequency
Modulation (FM) and Phase modulation (PM). All of those are nonlinear process and
among them the AM is the simplest one, whose analytical representation is

(1) E(t) = Ac[1 + m(t)M ] cos(Ωt + θ], with m(t) = cos(ωt + φ) and ω � Ω.

The bandwidth associated to the amplitude modulation is limited to 2ω around the
carrier frequency Ω and this is the main reason why, in order to transmit high fidelity
sound the radio stations are using the FM approach. For FM the carrier’s frequency
varies with the signal’s input, while for PM the carrier’s phase varies with the signal’s
input. As we said, the two modulations differ mainly in the transmission bandwidth.
We focus our attention on PM and on the simplest case of a phase modulated by a
monochromatic signal, i.e.

(2) E(t) = Ac cos[Ωt + M m(t)], with m(t) = cos(ωt + φ) and ω � Ω,
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Fig. 2. – The spectrum of a phase modulated signal with a monochromatic line.

where the parameter M � 1 is the modulation depth. At the first order in M , the
amplitude of the PM modulated signal, which is given in the complex plane by the
following formula

(3) Eo(t) =
Ac√

2
eiM [ωt+φ],

has as quadrature components Ec and Es,

Ec � Ac√
2

, Es � Ac√
2
M sin(ωt + φ)

and it is evident that the modulation signal is present just in one of the two quadratures.
In the case of a monochromatic modulation the representations of AM and PM signals
in the Fourier domain are different. In the first case we are dealing just with three lines
at frequency Ω, Ω + ω and Ω−ω, while in the PM case the expansion of eq. (3) in series
of Bessel functions,

(4) Eo(t) � Ac√
2
eiM [ωt+φ] = Jo(M) + iJ1(M)eiωt+φ + iJ−1(M)e−iωt+φ + . . . ,

with Jo(M) = 1 and J1(M) = J−1(M) � M/2, defines a spectrum with equally spaced
lines around the carrier at distance ω (see fig. 2). We note that in the case of PM,
sideband fields have π/2 constant phase shift with respect to the carrier field expressed
by the factor i in front of the corresponding terms in the formula (4); therefore its sum
is always orthogonal to the carrier field.

Let us now explain why modulation is crucial for the GW detection.
Two optical elements are crucial in an interferometer: the mirror and the 50% beam

splitter. Both of them act as four port linear devices, connecting the input to the trans-
mitted and reflected fields on both sides of the optical element. In the mirror case (see
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Fig. 3. – Mirror and beam splitter modelled as four port devices of the input-output optical
fields.

fig. 3) the quadratures of input light Ein impinging on a mirror are related to those of
the output beam Eout via a matrix whose elements depend on the reflectivity R and the
transmittivity T

(5)

⎛
⎜⎜⎜⎜⎝

Eout
1c

Eout
1s

Eout
2c

Eout
2s

⎞
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⎛
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−√
R 0

√
T 0

0 −√
R 0

√
T√

T 0 −√
R 0

0
√

T 0
√

R

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

Ein
1c

Ein
1s

Ein
2c

E2
1s

⎞
⎟⎟⎟⎟⎠ ,

while, in the case of the 50% beam splitter, the transfer function matrix between input
and output is

(6)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
√

1
2

0
√

1
2

0

0 −
√

1
2

0
√

1
2√

1
2

0 −
√

1
2

0

0
√

1
2

0
√

1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

When the mirror is displaced by a quantity x(t) � ω/2πc, the input and out field
change: the mirror motion determines a dephasing of the reflected contributions of the
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Fig. 4. – The reflected signal modulated by the mirror motion.

input optical fields to the output ones

Eout
1 (t) = −

√
R Ein

1 (t − 2x(t)/c) +
√

T Ein
2 (t),

Eout
2 (t) =

√
T Ein

1 (t) +
√

R Ein
2 (t + 2x(t)/c).

In fig. 4 we sketch the output electric fields phase modulated by the mirror motion.
Once we analyse the input and output fields in terms of quadrature components, we end
up with the same results obtained before for the PM modulation signal: the modulation
effect due to the mirror motion is encoded just in the s-quadrature of the electric field.

The simple considerations made before were related to the case of a single modulation
frequency. The generalisation is made passing to the frequency domain via the Fourier
transform of the modulation signal and the corresponding optical field. The complete
treatment of this problem ends up by deriving the spectral component Ls(ω) of the light,
which contains the information of the mirror motion: it results that it is proportional to
X(ω), the Fourier transform of x(t), weighted by the amplitude of the optical field

Ls(ω) = EoX(ω)
(

Ω
2πc

)
.

3. – The detection of the modulation component

In the case of a light modulation, if we send directly the beam to a photodiode, we
cannot extract information associated to the modulation signal. In fact we have

EE∗ =
Ac

2

2
ei[Ωt+M cos(ωt+φ)]e−i[Ωt+M cos(ωt+φ)] = constant.

The consequence is that we need to consider a more sophisticated approach. In a Michel-
son interferometer a modulated light is divided in two beams by a 50% beam splitter,
then the two beams are recombined on the same optical elements after having travelled
along the two arms of the optical device. Let us define the reflectivity of the two end
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Fig. 5. – The reflected signal modulated by the mirror motion.

mirrors R1 and R2 and the two arm lengths l1 and l2 (see fig. 5). The optical fields ψ at
the input and output of the interferometer are

ψin =Keiχ, ψ1 =
1√
2
ψin, ψ2 = ψ1e

−ikl1 , ψ3 = i
√

R1ψ2, ψ4 = ψ3e
−ikl1 ,

ψ5 = i
1√
2
ψin, ψ6 = ψ5e

−ikl2 , ψ7 = i
√

R2ψ6, ψ8 = ψ8e
−ikl2

and finally

ψout = i
1√
2
ψ4 +

1√
2
ψ8.

With a bit of algebra we derive the well known formula for the intensity of the optical
field at the output

(7) |ψout|2 =
1
4
|ψin|2(R1 + R2) [1 + C cos(2kδl)] ,

where δl = l1 − l2 and C is the interferometer contrast,

(8) C =
2
√

R1R2

R1 + R2
=

|ψout|2max − |ψin|2min

|ψout|2max + |ψin|2min

.

The GW interferometer with l = l1+l2
2 has almost equal arms l1 � l2 and it set to

fulfil the dark fringe condition, i.e. δl = 0, since in this way it is insensitive to the noise
fluctuations of the injected light. In the absence of a modulated light, the gravitational
wave signal changes the difference in the arm length by a quantity h l � 1 and the light
intensity at the output of the interferometer given by eq. (7) results to be proportional
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to h2, making the signal detection impossible. We note also that even for the case of an
injected modulated light, in the case of a perfect symmetric interferometer (l1 = l2), the
dark condition is verified for all the frequency components of the output light, making
again the detection impossible.

To overcome this problem we consider a slightly asymmetric interferometer on which
we have injected a modulated light. We call this static difference between the two arms
the Schnupp asymmetry ΔlSc = l1 − l2, that we choose of the order of ΔlSc ∼ 10−3l.
The asymmetry plays the crucial role of releasing the frequency degeneracy: it makes
the output field no longer dark for the sidebands even if the carrier is at dark.

When a GW signal is present and the difference in the arm length is δl = ΔlSc + h l,
the output of the Michelson interferometer is

(9) ψm
out = i ψin eiΩl/c

[
Jo l h

Ω
c

+ 2J1 sin
(ω

c
ΔlSc

)
cos

(
ωt + 2

ω

c
l
)]

,

with the corresponding intensity

|ψm
out|2 = |ψin|2

{[
Jo l h

Ω
c

]2

+ 2J1
2
[
1 + 2 cos

(
2ωt + 4

ω

c
l
)]

sin2
(ω

c
ΔlSc

)
(10)

+2Jo J1 l h
Ω
c

sin
(ω

c
ΔlSc

)
cos

(
ωt + 2

ω

c
l
)}

.

The last term in parentheses of this long formula shows that in a phase component of
the modulation we can extract at the interferometer output a signal linearly dependent
on the product of the arm length l and the GW strain h.

4. – The readout of the output signal

Now the question is how to extract this signal, which oscillates at the modulation
frequency ω. In the present experiments there are two main approaches: heterodyne
and DC readout. The general scheme of both systems is sketched in fig. 6. In the case
of the first generation of LIGO and Virgo a heterodyne readout scheme was adopted
employing radio frequency (RF) modulation-demodulation techniques. The most serious
limitation of this system is due to phase noise of the RF modulation and for this reason a
new approach has been adopted in the advanced detectors. The DC readout system is a
special case of homodyne detection, which makes use of the highly stabilised and filtered
carrier light as local oscillator for the readout. We take advantage of the slight detuning
of the interferometer arms, so that in practice the role of the local oscillator is played by
the fraction of the light that leaks into the signal port due to the residual interferometer
asymmetry of the arms.

 EBSCOhost - printed on 2/13/2023 8:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



48 Fulvio Ricci

Fig. 6. – On the left we show the sketch of a heterodyne readout, on the right the DC one.

5. – The Fabry-Perot cavities as Michelson arms

The signal detected at the output of the Michelson is due to the light phase shift
induced by the GW signal, which is proportional to the arm length l. To increase the
phase shift in the GW detectors the light is trapped in each arm into a Fabry-Perot (FP)
cavity whose length is ∼ l. In practice this implies adding two semi-trasparent mirrors
near the beam splitter with reflectivity and transmittivity Rin = r2

in and Tin = t2in. The
computation of the optical fields transmitted and reflected by the cavity is done using the
same approach applied in the Michelson case. The FP end mirrors are the Michelson ones
at very high reflectivity. For simplicity we also indicate the transmittivity and reflectivity
of these mirrors as Rend = r2

end and Tend = t2end and we relate our consideration to fig. 7.
Here we have

ψin = Keiχ, ψ1 = tinψin + i rinψ4, ψ2 = ψ1e
−ikl, ψ3 = i rendψ2, ψ4 = ψ3e

−ikl,

starting from which, we obtain

ψr = irinψin + tinψ4 = iψin
rin + rend e−i 2 k l

1 + rinrend e−i 2 k l
,(11)

ψt = tendψ2 = ψin
tintend e−ikl

1 + rinrend e−i2kl
(12)
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Fig. 7. – The reference scheme for a Fabry-Perot cavity.

and the corresponding intensities are

|ψr|2 =
r2
inr2

end + 2 rinrend cos 2kl

1 + r2
inr2

end + 2 rinrend cos 2kl
,(13)

|ψt|2 =
t2int2end

1 + r2
inr2

end + 2 rinrend cos 2kl
.(14)

Here the resonance effect is evident when the light phase is increased by exactly 2 π each
two reflections. We are dealing with another interferometric effect and the sharpness of
the resonance lines depends on the reflectivity of the mirrors.

To qualify the status of the optical cavity we plot in the complex plane the ratio
ψr/ψin, derived from formula (11). The resulting curve depends on the relative values of
rin and rend and, in the optical jargon originally born in the radio frequency community,
the cavity state can be classified as under- or overcoupled (see fig. 8). In the FP cavities
installed in the arms of a GW Michelson interferometer the mirror parameters are such
that we have rin < rend. This implies that the GW FP cavities are overcoupled and
almost all the light is reflected back by the cavity.

Fig. 8. – The ratio ψr/ψin plotted in the complex plane for different values of rin and rend.
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Moreover, the main features of the cavity are quantified in terms of few important
parameters: FSR, the Free Spectral Range accounting for the distance between two
adjacent resonance peaks, the full width at half of the maximum of the resonance curve
FWHM, the Finesse F and the light storage time τs in the cavity:

FSR =
c

2 l
FWHM � c

2πl

(
1 − rinrend√

rinrend

)
,

F =
FSR

FWHM
� π

√
rinrend

1 − rinrend
,(15)

τs =
1
π

2lF
c

.(16)

Often the phase delay associated to the light trap is interpreted in terms of an effective
number of bunches of the light between the two mirror, Neff , or even in terms of and
effective optical path of the light, leff . This approach permits an intuitive calculation of
the GW signal amplification factor. Finally, we recall that a more detailed mathematical
treatment of the GW signal interaction with the cavity shows that it acts as a low pass
filter; the effect is clearly stated by the formula of the effective cavity length expressed
as a function of the signal frequency

(17) leff =
1
π

2lF√
1 + (ωτs)2

.

In conclusion, the product F l increases the GW signal amplification of the linear depen-
dence to leff (eq. (17)), while the existence of the lower angular frequency cut-off of the
cavity ωc = 1/τs (eq. (16)) reduces the detector bandwidth.

5.1. More about the Fabry-Perot cavities. – In the GW FP cavity the light should
bunches back and forth along the same path, but this is just the ideal case if the beam
has not a transversal dimension and the two mirrors are perfectly aligned. In a real
experiment, the stationary electromagnetic wave in the cavity has an extended spatial
profile and bunches between mirrors slightly misaligned. If the mirror surfaces are plane
the cavity is far from being stable. In fact, a cavity is stable if a ray launched inside the
resonator parallel to the optical axis remains inside the resonator after an infinite number
of bounces. If the ray is slightly off axis, we can have still a stable cavity, provided that
the ray is reflected in a direction to bring it back toward the cavity center.

It can be demonstrated that the cavity is stable if the product of gin = 1 − Cin and
gend = 1 − Cend is in the interval (0, 1), where Cin and Cend are the ratio between the
distance between the two mirrors and the curvature radius of the mirror internal surface.
For gingend = 1 the cavity are marginally stable.

In all the previous consideration we have done the implicit assumption that the fields
are infinite plane waves. To give a complete picture of the FP optical properties, we have
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Fig. 9. – The beam profile in a Fabry-Perot cavity.

to treat the stationary light beam in the cavity in the diffraction limit. A resonator gener-
ally supports electromagnetic modes having a well-defined and discrete spatial structure
and the spatial distribution of the fields of a resonator depends on the shape of its mirrors.
In the case of resonators with spherical elements, when we feed the cavity with an almost
monochromatic wave along the z-axis, the modes are described by Hermite-Gaussian
functions. This result is derived by solving the equation ∇2ψ(x, y, z) + k2ψ(x, y, z) = 0,
which ends up with the beam profile in the cavity (see fig. 9).

The complete set of solutions of the differential equation for ψ along the propagation
z-axis is

ψm,n(x, y, z) =

√
2

w2(z)

√
1

2m+nm!n!
exp

[
−x2 + y2

w2(z)

]
exp

[
ik

x2 + y2

R(z)

]
(18)

× exp
[
ikz − i(m + n + 1) tan−1

(z

b

)]
Hm

(√
(2)

x

w(z)

)

×Hn

(√
(2)

y

w(z)

)
,

where Hk is the Hermite polynomial of order k.
The first exponential term in (18), exp [−x2+y2

w2(z) ], defines the Gaussian envelope of the
beam profile. It depends on the function w(z) = wo

√
1 + ( z

b )2, which is the half-width
of the beam, where b = πw2

o/λ is the Rayleigh parameter.
The second exponential term, exp [ik x2+y2

2 R(z) ], is the parabolic wavefront of the beam

weighted by the curvature radius function R(z) = z + b2

z .
It follows that the intensity profile of the light beam is characterised by a radius w(z),

which is a function of the position along the beam propagation direction. At a radius of
x2 + y2 = w2 the beam intensity is down by a factor of 1/e2 relative to its peak value
and 2w is called the spot size. At z = 0 the beam has its minimum radius. This value
wo is the waist radius and the corresponding diameter is called the waist size. At a
position z = b the spot size has increased by a factor of

√
2 and continues to increase

monotonically. For distances much larger than a Rayleigh parameter the spot size grows
linearly with distance and θo = wo/b = λ/πwo is the beam divergence.
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Fig. 10. – The intensity profiles of Hermite-Gauss modes with mode numbers n, m. In this case
we present only the non-astigmatic modes (x = y).

The other two exponentials of the formula (18) concur to define the Gouy phase of
the wave

(19) φ(x, y, z) = kz − (m + n + 1) tan−1
(z

b

)
+ k

x2 + y2

R(z)
,

which, after a round trip between the two mirrors located in zin and zend, in the center
is changed of the quantity

(20) Δφ2l = 2kl − (m + n + 1)
[
tan−1

(zend

b

)
− tan−1

(zin

b

)]
.

The TEM00 with a pure Gaussian profile is selected as the main actor of a GW
detector: it is just the basic parent of the mode family. One can easily detect the higher-
order transverse modes when the cavity is not perfectly aligned or in general, since the
higher-order modes have different resonance frequencies. On resonance the round trip
phase change must be Δφ2l = 2qπ with q arbitrary integer and it can be shown that the
Gouy phase contribution can be written in terms of the g factors of the cavity

ν = νFSR

[
(q + 1) +

m + n + 1
π

cos−1 √gingend

]
.

The first term, q νFSR, is the planar resonance condition. The second term is an overall
shift of the spectrum that depends on the cavity geometry, characterised by gin and gend

and mode numbers m and n. In practice, except for confocal or concentric cavities, this
implies that different modes with the same frequency will be resonant with a cavity at
different lengths and by scanning the resonator length the mode can be seen to appear
in sequence (for example, see the mode profiles shown in fig. 10).
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Fig. 11. – The scheme of the Pound-Drever-Hall method to control the FP length.

As we will see later, the detection of the higher modes of the cavity plays a crucial
role in the control of the angular degrees of freedom of the GW mirrors.

6. – How to keep the FP cavities in resonance

As we have seen in the previous section the FP resonance condition is obtained when
the cavity length, 103 m for a GW interferometer, is a multiple of the light wavelength,
10−6 m, within an accuracy significantly better than the cavity FWHM ∼ 10−8–10−9 m.
This implies to control the cavity length in a stable way with a relative error of the order
of 10−12. Again the light modulation provides us with the tool to do it.

In 1946 R. Pound defined the strategy, widely used in radio physics, that today is the
method, known as Pound-Drever-Hall, to stabilise the lasers and in general the optical
cavities. We refer in particular to the scheme presented in fig. 11. The light is PM
modulated at the frequency ω and, as we discussed before, its spectrum is essentially
given by a central line, the carrier at Ω, and the two sidebands at Ω ± ω. The cavity
length is set such that the carrier is resonant e−i2kl = −1, while the sidebands are
anti-resonants, e±2ω/c = e±π.

In the presence of a perturbation z of the cavity length the transmitted optical field
is

(21) ψt = i ψin
rin + rend ei(−2kl−2kz± 2ωl

c )

1 + rinrend ei(−2kl−2kz± 2ωl
c )

and as consequence we have on the detection photodiode of fig. 11 the in-phase component
of the transmitted signal proportional to

{|ψt|2
}

in phase
=(22)

−4|ψin|2J0J1tinrinrend(1 + rend
2)

sin 2kz

1 + (rinrend)4 − 2(rinrend)2 cos 4kz
,

while the in quadrature component q = {|ψt|2}in quadrature is equal zero.
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If we manipulate the previous formula in the case of finesse higher than 1 and z � l,
we derive a simple relation showing what are the parameters affecting the sensitivity of
the signal control:

d
dz

{|ψt|2
}

in phase
� JoJ1

8F
λ

|ψin|2.

In practice higher finesse means higher sensitive to length variation; on the other hand
higher finesse means also lower FWHM concurring to define the linearity interval of the
control feedback loop.

7. – The gravitational wave interferometer

As we said in the previous sections, the FP cavities are used to enhance the optical
path of the light, which interacts with the gravitational waves. Thus, in the real configu-
ration of the GW detector we have to deal with several different lengths (see fig. 12): the
Michelson arm lengths, lx and ly, are in the meter range, while the FP cavity lengths, Lx

and Ly, are kilometres. The Schunpp asymmetry, Δlxy = lx − ly is tens of centimetres.
The FP cavities are overcoupled so that the carrier, in resonance in the cavity, is reflected
back toward the beam splitter where the two beams are recombined with the carrier on
the dark fringe and toward the laser as bright fringe. To gain in terms of light intensity
in the interferometer, the light reflected back is recycled by adding the recycling mirror
(see fig. 12) between the laser and the beam splitter. We are dealing now with an extra
FP cavity where the end mirror is the whole Michelson + FP interferometer and the
cavity length is lrc = lrb + lx+ly

2 . The mathematical treatment of the optical system is
the combination of what it has been presented in the previous sections and, in view of the
detection, the computation is focused on the transmittivity of the FP recycling cavity

(23) trc =
trmtifoe

iΩolrc

1 − rrmrifoeiΩolrc
,

where trm and rrm are the usual recycling mirror parameters, while tifo and rifo are those
of the Michelson interferometer with the FP arms, which assume different expressions
for the sidebands

(24) rifo
± = −e±i ω

c (lx+ly) cos
(
Δ

ω

c
lSc

)
, tifo

± = ∓e±i ω
c (lx+ly) sin

(
Δ

ω

c
lSc

)

and for the carrier

(25) rifo
c = ei Ω

c (lx+ly)

(
1 − F

π
ε

)
, tifo

c = iei Ω
c (lx+ly)2

F l h

π

Ω
c

(
1 − F

π
ε

)
.
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Fig. 12. – The Michelson + the Fabry-Perot cavities + the recycling cavity.

Here we have included in the computation also the optical cavity losses ε. Using
eqs. (24), (25) in (23) and imposing the resonance conditions

ei Ω
c (2lrc+lx+ly) = 1, ei ω

c (2lrc+lx+ly) = −1,

and introducing the finesse Frc of the recycling cavity, we conclude that at the output
we have the signal

(26) |ψout
GW|2 = 2JoJ1|ψin|2

√
Frc

π

Ω
c

F
π

l h,

with a spectral behaviour with respect of the GW signal frequency ν given by

(27) |Ψout
GW|2(ν) = 2JoJ1|ψin|2

√
Frc

π

Ω
c

F
π

l

√
ν2

ν2 + νs
2
H(ν),

where νs = c
4lF is the cut-off frequency of the FP arm cavities (see formula (16) in

sect. 5).

8. – The interferometer control

In sect. 6 we presented the method for keeping a single FP cavity in resonance. To
acquire a stable mirror lock there are several constraints that we can express following
different points of view. For example we should verify that the time to cross resonance
is higher then the light storage time; this condition can be translated into an upper limit
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Fig. 13. – The GW interferometer equipped with the photodiode for the longitudinal control.

of the mirror velocity vmaxa
, which depends on the length Lc and finesse of the cavity

Fc, i.e.

vmaxa
=

πλc

4LcFc
2 .

It is useful also to look at the maximum oscillation velocities of the mirror that can be
compensated by the feedback, vmaxb

: this is a quantity directly related to the feedback
loop bandwidth Δνfb

vmaxb
=

πλ Δνfb

Fc
.

Indeed, the GW optical system must have more cavities in resonance and the Michel-
son interferometer output has to be kept on the dark fringe. This implies that we need
a much more complicated feedback strategy also because we are dealing with suspended
optics and we need to achieve a typical lock accuracy in the root mean square displace-
ment of the order of 10−12 m. In addition we must impose that the control system has
to act on the mirrors without reintroducing noise in the detection bandwidth.

The suspended optical elements are swinging and the first action is to damp their
motion with respect to a local reference frame. This action is performed using the so-
called Local Control : the mirrors are controlled by means of independent ground-based
sensors and quasi-inertial actuators. In this way we have the mirror position referred to
the laboratory ground (generally affected by the seismic noise).
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Then, the operation point of the GW interferometer is locked by using the Global
Control, i.e. the relative position of mirrors is correlated by light itself. To complete this
last task we have to control 4 independent lengths:

– 2lrc + lx + ly, the recycling cavity,

– lx + ly, the Michelson in the dark fringe,

– Lx, the x FP arm in resonance,

– Ly, the y FP arm in resonance.

To implement the strategy we make use of several photodiodes picking up signals leaking
from the interferometer in different points (see fig. 13). The extracted signals, which
concur to define the control matrix, are

– PRCL, i.e. the length of the power recycling cavity,

– DARM, i.e. the differential mode of the interferometer, in practice the length dif-
ference of the FP two arms,

– CARM, i.e. the common mode of the interferometer or in practice the mean length
of the FP two arms,

– MICH, i.e. the difference in the length of the Michelson arms.

They are used to actuate on the mirrors and the beam splitter up to a maximum fre-
quency of few tens of hertz. The difficulty to acquire the stable configuration with the
longitudinal control feedback engaged depends on the finesse of the cavities. Different
procedures have been developed. Here we cite just the one used in Virgo: the variable
finesse method [4]. The idea is to take advantage of the fact that the finesse of the
recycling cavity changes during the lock acquisition sequence. Two are the main steps
of the locking strategy. The first is to lock the interferometer on the half-fringe, so that
a large fraction of light escapes through the output port and the power build-up inside
the recycling cavity is extremely low. In this way we can operate with all the degrees of
freedom weakly coupled, making the control scheme much easier. At the end of this step,
the four longitudinal degrees of freedom of the ITF are stably locked in a configuration
with a very low recycling gain. Then, the interferometer is adiabatically brought to the
operating point with the Michelson on the dark fringe.

Finally, we note that the force needed to acquire the lock is much larger than that
to keep it in position, because we need momentum to slow down the mirror oscillations.
Strong actuation force implies large electronic noise. For this reasons, once the lock is
acquired, in the stable configuration forces are applied mainly on the upper stages of the
suspension system, avoiding to actuate directly on the mirror.

All these considerations are applied to control the longitudinal coordinated, the most
important one since it concerns the detection of the GW signal. However, other feedback
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Fig. 14. – A generic sensitivity curve of a GW interferometer, where the frequency range of some
of the main noise contributions are shown.

loops are needed to control the angular degrees of freedom of the mirrors. This is done
essentially, again, with respect to the light into the interferometer by means of beam
wavefront sensing, i.e. using quadrant photodiodes sensitive to the higher Hermite-Gauss
mode of the light, which are present because of the cavity misalignment.

9. – The sensitivity curve

The sensitivity curve of the GW detector is obtained by considering the noise sources
present in the detector and computing their contributions at the input of the system, i.e.
in terms of the equivalent strain noise of the interferometer. The simplified assumption is
that all these different contributions are independent, so that the total spectral density of
the noise strain is derived by summing the spectral densities of the different contributions.
It comes out that the sensitivity is presented as the square root of this spectral density
as a function of the GW signal frequency (see fig. 14).

Here we do not discuss the noise sources, since these have been presented in other
contributions to these proceedings. We notice just that the main noise contributions in
all the predicted sensitivities of the present and future detectors on the Earth are the
readout noise (radiation pressure and shot noise) and the thermal noise (suspension and
mirror thermal noise), and in addition, in the lowest part of the detector bandwidth, the
residual seismic noise filtered by the suspensions and the gravity gradient noise [5].

This schematic approach permits to discuss the strategies to be pursued for improving
the sensitivity and these are the topics discussed shortly in the following sections.
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10. – Thermal noise and cryogenics for future gravitational wave detectors

The best sensitivity values of an advanced interferometric detector of gravitational
waves are achieved in the frequency range where the dominant source of noise is the
thermal one. This is due to the oscillation modes of the suspended mirror; we have to
focus our attention mainly on the pendulum mode of the mirror suspended by four wires,
which has a characteristic frequency below 1 Hz, and on the thermal fluctuation of the
mirror itself contributing to the longitudinal sensitivity of the detector. The mirror is an
elastic thick plate whose first symmetric mode of oscillation, moving back and forward
the mirror surface, is at around ∼ 5 kHz. Both displacement noise spectra are strongly
peaked but in different frequency regions and the GW sensitivity curve is mainly defined
by the overlap of the two tails of the noise spectra: for the suspension on the tail on
the right side of the 1 Hz peak and for the ∼ 5 kHz mirror mode on the its left. In both
cases, the physics parameters acting on which we can reduce significantly these noise
contributions are essentially two: the dissipation mechanisms and the temperature. This
is stated by the fluctuation-dissipation theorem, which defines the spectral behaviour of
the stochastic force acting on a mechanical linear system.

To define the dynamics of the mechanical system in the frequency domain, we use the
force-displacement transfer function H(ω) and the force-velocity mechanical impedance
Z(ω) as parameters

H(ω) =
F (ω)
X(ω)

, Z(ω) =
F (ω)
v(ω)

.

In synthesis the theorem states that the spectral densities of the stochastic force and
displacement are

Sff (ω) = 4kBT Re[Z(ω)], Sxx(ω) = 4kBT Im[H(ω)],

where kB is the Boltzmann constant and T the equilibrium temperature of the system.
If we apply this theorem to the case of a simple harmonic oscillator, which is a good

model for both the pendulum mode of the suspended mirror and the disk vibration mode,
we end up to the following results:

Sxx(ω) =
4πkBT

mpωo
4

βp(ω)
mp

for ω � ωo,(28)

Sxx(ω) =
4πkBT

mdω4

βd(ω)
md

for ω � ωo,(29)

where mp and md are the equivalent masses of the two oscillation modes of resonance
frequency ωo and βp(ω), βd(ω) the dissipation factors.

The advanced detectors LIGO and Virgo operate at room temperature, so that the
main effort has been concentrated on the reduction of the dissipation factors β(ω). Here
we do not review the results obtained in this context. We notice that the dissipation
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associated to the disk vibration is dominated by the mirror coating and an extended
research campaign is ongoing to find the good receipt for having both lower optical and
acoustic losses [6].

Up to now only the Japanese collaboration KAGRA focused the attention on the
second parameter, the temperature. They plan to cool the mirrors at 20 K and this is
the new frontier of the GW interferometric detectors. Cooling the mirrors at cryogenic
temperatures drastically reduces thermal lensing effect. Below 50 K the material thermal
expansion coefficient is so low that the deformation effect of the mirrors can be neglected.
In addition, provided a suitable choice of materials compatible with the cryogenic en-
vironment, we can obtain a significant reduction of this noise source beyond the simple
linear dependence of the noise spectra (28), (29). This was demonstrated in the past by
resonant cryogenic detectors, for which at low temperature the acoustic dissipation factor
of the selected materials was reduced and the consequent thermal noise contribution was
strongly depressed.

Indeed, the cryogenic operation of a GW interferometer represents the main challenge
of the new GW interferometer. The use of cryogenic techniques in the interferometer
implies to solve several problems:

– use crystal mirrors (instead of amorphous SiO2) whose optical, elastic and cryogenic
properties are compatible with a GW detector requirements;

– define a suitable cooling configuration to reduce the cooling time and, in the sta-
tionary condition, to compensate the thermal load due do the mirror absorption of
the light;

– design of heat sinks in such a way to bring sufficient refrigeration power with-
out increasing the mechanical dissipations and without compromising the seismic
insulation of the suspension;

– protect the system from the vibrations generated by the cooling system.

In the KAGRA detector [7] these items have been analysed and the international
collaboration around the project is almost ready to operate the interferometer at 20 K.
The mirrors are made of sapphire crystal: the material is harder than SiO2 but it has
been demonstrated that the quality of the mirror surface via polishing can achieve a
root mean square below 1 nm as in the case of fused silica substrates. The most critical
parameter of the sapphire is the optical absorption: it is ranging from 40 ppm/cm up
to 90 ppm/cm in the crystals delivered to KAGRA, values to be compared with few
ppm/cm for the SiO2 case. If the absorption is not decreased the laser power inside
the FP arms must be lowered, unless they are able to increase the efficiency to extract
the heat absorbed by the mirror. The effort is to get test masses with an absorption of
30 ppm/cm, which implies extracting 0.4 W from each of the arm input mirrors in the
low temperature stationary state.

The sapphire mirrors are located in cryostats which include two inner shields: an
outer one at 80 K and an inner one at 8 K [8]. Shields and payload are cooled by means
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of four pulse tube cryo-coolers. The heat is extracted from the mirror primary via the
suspension wires. Thus, the design of the cryogenic suspension is driven by the need to
cool down the mirror while keeping its thermal noise as low as possible. The mirror is
suspended using four thin rods made of sapphire (35 cm long and 1.6 mm in diameter).

The cooling time is another important parameter since the mirrors will have to be
heated up and cooled down once a year to remove the water deposited on the optical
surface due to adsorption [9]. Their strategy is to cool the mirror via radiation down to
150 K. The radiation cooling efficiency can be improved by coating the payload (with the
exception of the mirror) with diamond-like carbon (DLC). Then, to achieve the mirror
temperature of 20 K they rely on appropriate heat links. The heat links are a potential
path for the transmission of the cryostat vibrations. This is one of the main challenges
whenever cryostats are used in conjunction with an apparatus requiring a very low level
of vibrations and it is far from obvious that, as far as the GW sensitivity is improved,
the constraints on the mechanical noise transmission of the links became more severe.

At present the strategy for cooling down the payloads, which includes the 23 kg mirror,
should permit to reduce the total cooling time from nearly two months to 39 days. The
future generation of GW detectors (3G) will host heavier and larger mirrors. A brute
force calculation tells us that, if we plan to use the same materials for the payload, a ten
times increase of its mass implies a similar multiplication factor in the cooling time. It is
far from obvious that 1 year of cooling time is an unacceptable number. Indeed, we have
to notice that this is the most pessimistic scenario, because in a 3G configuration the
surface of the new payload will be higher than that of KAGRA, contributing to reduce
the cooling time. The conclusion is that the cooling efficiency and time is strictly related
to the 3G payload design and a robust R&D activity on this domain is needed. We
conclude by listing some of the crucial items to be covered by the R&D program focused
on a cryogenic suspended mirror:

– develop a suspension last stage prototype working in a cryogenic environment;

– design and test the whole cryogenic system to cool the suspension last stage;

– design and test an attenuation chain of a few mechanical filters able to work in
cryogenic environment and to bring sufficient refrigeration power from the top to
the bottom;

– develop sensors and actuators needed for the position control of the mirror that
are compatible with the cryogenic environment;

– compensate at low temperature the additional noise generated by the refrigeration
system;

– low temperature measurements of the heat absorption of the mirror substrates.
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11. – Reduction of the readout noise

In the usual classification of the noise sources of a GW detector the readout noise is
the sum of the two spectral densities due to the shot noise and radiation pressure noise
of the photons impinging on the suspended mirrors of mass M . While the shot noise
contribution, Shsh decreases with optical power P , the radiation pressure contribution,
Shrad increases. In fact, in the case of a simple Michelson we have

(30) Shsh(ν) =
1
L2

(
h̄ c λ

2πP

)
, Shrad(ν) =

1
M ν2 L2

(
h̄P

2π3 c λ

)
.

Both noises are related to the quantum nature of the e.m. field which interacts with
a classical object, the mirror, to monitor continuously its displacement. Thus, it is
not surprising that both noises concur to define the quantum limit of the measurement
strategy. For a fixed value of P , the crossover of the two curves defines the minimum
noise achievable by the readout system, the so-called standard quantum limit (SQL).
This is the minimal sum of shot noise and radiation pressure noise. In other words, the
light fields enforce Heisenberg uncertainty through complementarity between shot and
radiation pressure noise.

The standard quantum limit (SQL) is a concept introduced for the first time in the
GW community by V. Braginsky [10,11]. In a semi-classical vision the measurement can
be described via a Hamiltonian interaction term where mechanical and e.m. variables
are coupled. This implies that the e.m. transducer converts the mechanical information
into an electromagnetic signal and, at the same time, back-acts to the mechanical system.
Now, let us consider again the quadrature components of both the mirror position Xp

and Xq and those of the e.m. field Ep and Eq. To circumvent the Heisenberg principle
we should be able to develop a strategy scheme playing with the different phases: for
example we can try to transfer the signal information embedded in the Xp phase of the
mechanical variable to the Eq e.m. phase, while the back-action noise to the Ep phase
influences just the Xq (see fig. 15).

In this way it is possible to set transducers by means of which we reduce the variance
of Xq counterbalanced by an equivalent increase of the Xp variance, in accordance to the
Heisenberg principle [12].

This strategy is called quantum non-demolition technique and it was tested in the
case of the low temperature resonant detectors [13]. The first to approach the problem
of beating SQL for the optical interferometers was Unruh [14] while, at about the same
time, Yuen pointed out that the trick is to correlate the uncertainties in position and
momentum in a particular way [15]. This is an important remark on which we will come
back later.

Indeed, for a deep comprehension on how to develop a quantum strategy of measure-
ments in a GW interferometer, a quantum optics approach must be followed [16], where
the two quadrature components of the e.m. field are written in terms of the creation, â†,
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Fig. 15. – The scheme of a back-action evading strategy.

and annihilation, â, operators

Êp = Eo

[
â† + â

]
, Êq = i Eo

[
â† − â

]
and the product of the standard deviations of two such operators obeys the uncertainty
principle.

In quantum optics the coherent state refers to a minimum uncertainty state, with the
single free parameter chosen to make the variance equal for the two quadrature compo-
nents of the field. It means that the uncertainty of a coherent state in the quadrature
phase space is a circle (fig. 16). To do a more accurate measurement of one of the two
phases means to be able to deforme the circle into an ellipse of equal area, so that the
variance of one of the two phases is squeezed. Thus, diminishing the quantum noise at a
specific quadrature of the wave has as direct consequence an enhancement of the noise
of the complementary quadrature.

Depending on the phase angle at which the state’s width is reduced, one can distin-
guish amplitude-squeezed, phase-squeezed, and general quadrature-squeezed states.

Squeezed states of light can be divided into squeezed vacuum and bright squeezed
light, depending on the absence or presence of a non-zero mean field. In other words, if
the squeezing is applied directly to the electromagnetic vacuum, rather than to a coherent
state, the result is called squeezed vacuum.

The vacuum state is present in any region in space where there is no other occupying
light state and this is important for GW detector readout. In fact, we recall that the
Michelson interferometer of the GW detector is controlled in such way to be its output
on the dark fringe. This condition reflects the incident vacuum state back towards the
readout photodetector. Thus, quantum noise in a GW detector arises from the vacuum
state entering at the dark port of the interferometer.
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Fig. 16. – We show in the phase plane an example of coherent and bright squeezed states state of
the e.m. signal (upper diagrams) and the vacuum and squeezed vacuum states (lower diagrams).

We conclude that a squeezed vacuum state injected into the interferometers dark port
modifies the overall quantum noise: a phase squeezed state can reduce the shot noise at
the expense of the radiation pressure noise, conversely an amplitude squeezed state can
reduce the radiation pressure noise at the expense of the shot one.

Following the line of thinking of Yuen cited above [15], again the modulation concept
helps to depict the light fluctuation and the squeezing process. A laser light beam is
a photon ensemble characterised by an average frequency and amplitude with individ-
ual photons that may have slightly different frequency or amplitude. This implies that
quantum noise can be seen as a continuum of sidebands around the carrier Ω, spanning
all frequencies ω ± Ω due to the beating between the carrier and the vacuum fluctu-
ations. These sidebands are uncorrelated and have white amplitude and phase noise
with the same statistical distribution. The squeezing process introduces a certain level
of correlation between randomly fluctuating upper and lower sideband pairs. This con-
cept is present in the full quantum optics treatment of the squeezing problem [16] and
the correlation term of the uncertainties allows for improving the precision from the
SQL.

There are several methods to produce squeezing states (for a review of this topic
see [17,18]), but at present the most advanced technology for producing squeezed states
for GW detection is based on the use of optical parametric oscillators (OPOs).

In more details the squeezed vacuum is produced via a process called parametric down-
conversion, where a pump photon with frequency ωp, incident on a dielectric with a χ2

nonlinearity [19], breaks up into two new photons: a signal photon of frequency ωs and
an idler photon of frequency ωi, where ωp = ωi + ωs. For degenerate parametric down-
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Fig. 17. – The degenerate optical parametric amplifier is pumped by two light beams both
controlled in phase with respect to the laser of the GW interferometer. The first beam is at the
same frequency as the GW laser, while the second one is at half of this frequency. The OPO
mixes the two beams generating a vacuum state with a suitable level of correlation between the
two quadratures of the field.

conversion, the idler and signal photons are indistinguishable in frequency (ωi = ωs) and
polarisation. A degenerate OPO, where this process takes place inside an optical cavity,
has proven to be the most efficient source of quadrature squeezed light: in fact, it acts
by introducing correlation between randomly fluctuating sidebands.

Being the signal frequency exactly half the pump frequency, the phase relationship
between signal and pump determines whether there is amplification or de-amplification
of the signal. We stress that this phase-sensitive amplification occurs only in the case of
degenerate amplifiers.

The simplified diagram in fig. 17 shows the principle on the basis of which a vacuum
squeezed state is generated.

The squeezed quadrature generated from an OPO squeezers is constant across the
frequency spectrum and, since 2012, it is injected successfully in the Anglo-German GW
interferometer GEO, improving its shot noise limit [20]. Indeed, an optimised squeezed
source for a GW interferometer should have the squeezed ellipse with a rotation angle
optimised as a function of the detection frequency. This is called frequency-dependent
squeezing, which implies filtering the squeezed vacuum generated by the OPO via an
external device with a suitable phase dispersion. An optical cavity, or a sequence of
cavities with the carrier frequency locked on the side of the cavity resonance, provide
such a dispersion: these are referred to as filter cavities that typically need to be ∼ 100 m
in length to achieve the dispersion over the GW detection bandwidth. The R&D devoted
to these filter cavities is an active area of investigation: they need to have extremely low
optical loss, to limit the degradation of the produced vacuum squeezing. In addition,
their line widths has to be of the order of tens of Hz to be able to rotate the squeezing
around the frequency crossover of the spectra of the radiation pressure noise and shot
noise.
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12. – Conclusion

The era of gravitational wave astronomy is born with the detection of the GW signals
emitted by the coalescence of binary systems. After this scientific breakthrough, it is
more and more important to improve the performance of the detectors, their sensitivity
and reliability for increasing the overall observational time and explore a larger volume
of the universe. Indeed, with the advanced detectors we will alternate time periods
of data taking to those devoted to the implementation of new experimental solutions.
The use of new technologies will bring the advanced detectors to the limit given by the
present infrastructures and then a new generation of detectors will get into action. The
Einstein Telescope [21] is a European design study project for building a 3G ground-
based interferometer. Our wish is that it will be located in the area of the Sos Enattos
mine in Sardinia, a site characterised by a very low seismic and environmental noise.

Other ideas for 3G detectors have been presented [22], but all new projects need
a robust R&D program, coordinated at international level and carried out by a new
generation of researchers. This will permit to progress in the design of a new class of
GW instruments, which will make it possible to observe gravitational phenomena up to
the border of the universe.

∗ ∗ ∗
This work has been supported by Centro Amaldi di fisica e astrofisica della gravi-

tazione, INFN and the grant Ateneo 2017 - Sapienza.

REFERENCES

[1] Aasi J. et al., Advanced LIGO, Class. Quantum Grav., 32 (2015) 074001.
[2] Acernese F. et al., Advanced Virgo: a second generation interferometric gravitational

wave detector, Class. Quantum Grav., 32 (2015) 024001.
[3] Saulson P., How an interferometer extracts and amplifies power from a gravitational

wave, Classical Quantum Grav., 14 (1997) 2435.
[4] Acernese F. et al., The variable finesse locking technique, Class. Quantum Grav., 23

(2006) S85.
[5] Harms J., Terrestrial Gravity Fluctuations, Living Rev. Relat., 18 (2015) 3.
[6] Optical Coatings and Thermal Noise in Precision Measurement, Harry G., Bodiya T. P.

and DeSalvo R. (Editors) (Cambridge University Press) 2012.
[7] Somiya K., Detector configuration of KAGRA - the Japanese cryogenic gravitational-wave

detector, Class. Quantum Grav., 29 (2012) 124007.
[8] Sakakibara Y. et al., Progress on the cryogenic system for the KAGRA cryogenic

interferometric gravitational wave telescope, Class. Quantum Grav., 31 (2014) 224003.
[9] Flaminio R., The cryogenic challenge: status of the KAGRA project, J. Phys.: Conf.

Ser., 716 (2016) 012034.
[10] International School of Cosmology and Gravitation, Topics in theoretical and experimental

gravitation physics. Proceedings of the School held in Erice, Trapani, Sicily, March 13–25,
1975, edited by De Sabbata V. and Weber J. (Plenum Press, New York) 1977.

[11] Atti dei convegni Lincei 34: International Meeting on Experimental Gravitation (Pavia,
17–20 September 1976), edited by Bertotti B. (Accademia dei Lincei) 1977.

 EBSCOhost - printed on 2/13/2023 8:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



A primer on a real gravitational wave detector 67

[12] Cinquegrana C. et al., Back-action-evading transducing scheme for cryogenic
gravitational wave antennas, Phys. Rev. D, 8 (1993) 448.

[13] Bonifazi P. et al., Test of a back-action evading scheme on a cryogenic gravitational wave
antenna, Phys. Lett. A, 215 (1996) 141.

[14] Unruh W. G., in Quantum Optics, Experimental Gravitation, and Measurement Theory,
edited by Meystre P. and Scully M. (Plenum, New York) 1983, pp. 647–60.

[15] Yuen H., Contractive States and the Standard Quantum Limit for Monitoring Freemass
Positions, Phys. Rev. Lett., 51 (1983) 719 and Erratum at Phys. Rev. Lett., 51 (1983)
1603.

[16] Luis A. and Sánchez-Soto L., Breaking the standard quantum limit for interferometric
measurements, Opt. Commun., 89 (1992) 140.

[17] Anderson U. L. et al., 30 years of squeezed light generation, Phys. Scr., 91 (2016) 053001.
[18] Chua S. S. Y. et al., Quantum squeezed light in gravitational-wave detectors, Class.

Quantum Grav., 31 (2014) 183001.
[19] Sutherland R. L., Handbook of Nonlinear Optics, 2nd edition (Marcel Dekker, New

York) 2003.
[20] Khalaidovski A. et al., Status of the GEO 600 squeezed-light laser, J. Phys.: Conf. Ser.,

363 (2012) 012013.
[21] Punturo M. et al., The Einstein Telescope: a third-generation gravitational wave

observatory, Class. Quantum Grav., 27 (2010) 194002.
[22] Dwyer S. E., Sigg D., Ballmer S., Barsotti L., Mavalvala N. and Evans M., A

Gravitational Wave Detector with Cosmological Reach, Phys. Rev. D, 91 (2015) 082001.

 EBSCOhost - printed on 2/13/2023 8:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



This page intentionally left blank

 EBSCOhost - printed on 2/13/2023 8:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



Proceedings of the International School of Physics “Enrico Fermi”
Course 200 “Gravitational Waves and Cosmology”, edited by E. Coccia, J. Silk and N. Vittorio
(IOS, Amsterdam; SIF, Bologna) 2020
DOI 10.3254/ENFI200004

Optical aberrations in gravitational wave detectors
and a look at the future

Viviana Fafone
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Summary. — In this lecture we will focus our attention on a specific issue con-
nected with the optical properties of the test masses in ground-based interferometers,
namely the presence of optical aberrations that can have a relevant impact on the
possibility to operate the detector. The second part will present an overview on the
medium- and long-term evolution of terrestrial interferometers.

1. – Introduction

The performances of the gravitational wave (GW) detectors are strongly determined
by the quality of the materials adopted in the main optical components. The nominal
sensitivity of the current and future ground-based detectors is limited by the thermo-
mechanical characteristics of the optical coatings which determine the level of the ther-
mal noise in the detector. Several approaches to reducing the mechanical loss are being
explored, such as improved processing of conventional amorphous oxide or doped amor-
phous oxide materials, possibly deposited in nanolayer structures, alternative amorphous
materials —typically semiconductors like amorphous silicon or silicon nitride, or crys-
talline semiconductor mirrors.
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The choice of the coatings material has to consider also optical absorptions and uni-
formity which determine additional effects that can spoil the ultimate performances of
the detector. These “thermal effects” have already been observed in the first generation
of ground-based interferometers and have become more relevant in the second generation,
due to the higher circulating power. Their origin and solutions adopted to mitigate them
are described in the two following sections.

2. – Optical aberrations and their effects

The absorption by the high-reflectivity coating of a fraction of the power of the sensing
team circulating in the interferometer produces a gradient of temperature inside the
substrate. Two different effects originate from this heating:

– Non-uniform optical path length distortions (thermo-optic effect, also termed ther-
mal lensing) due to the temperature dependency of the index of refraction and to
the non-zero thermal expansion coefficient of the substrate.

This effect can be understood if we consider a body at uniform temperature T0,
thickness l, refraction index n and non-zero thermo-optic coefficient (dn/dT �= 0).
The optical path length through the body is OPL = n · l. If we increase uniformly
the temperature of the body by a quantity ΔT , since the refraction index depends
on the temperature (neglecting at first approximation the thermal expansion), the
new OPL through the body becomes:

(1) OPL1 = n1 · l,

where

(2) n1 = n +
dn

dT
ΔT,

thus

(3) OPL1 =
(

n +
dn

dT
ΔT

)
· l = n · l +

dn

dT
ΔT · l = OPL + ΔOPL,

and we can define the quantity optical path length increase as

(4) ΔOPL =
dn

dT
ΔT · l.

If we include the thermal expansion, eq. (4) becomes [1]

(5) ΔOPL =
dn

dT
ΔT · l + α(1 + σ)(n − 1)ΔT · l
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where α is the thermal-expansion coefficient and σ the Poisson’s ratio. In the most
general case of a non-uniform heating, the expression for the optical path length
increase reads

(6) ΔOPL(r, θ) =
dn

dT

∫ l

0

ΔT (r, θ, z)dz + α(1 + σ)(n − 1)
∫ l

0

ΔT (r, θ, z)dz.

– Change of the profile of the optics surface, due to thermal expansion (thermo-elastic
deformation).

A fraction of the power is also absorbed in the bulk of the optics thus generating
the same effects. However this absorption is typically smaller than that occurring in the
coatings. As a reference, the power absorbed in the coatings of the Advanced Virgo test
masses at the design input power (125 W) will be about 0.35 W to be compared with
absorptions of the order of 0.03 W in the bulk.

Thermal lensing can be computed analytically in simple cases, for example when we
consider uniform absorptions and an impinging Gaussian beam. In the following the
computation is reported. References for more comprehensive studies can be found in [1]
and [2].

For a Gaussian profiled beam (fundamental TEM00 mode), the intensity as a function
of the radial coordinate can be expressed as

(7) I(r) =
2P

πw2
e−

2r2

w2 .

It does not depends on any angular coordinate nor on z. Thus we can exploit the
symmetry of the problem and use cylindrical coordinates (r, z, θ), with 0 < r < a and
−h/2 < z < h/2, with a the radius and h the thickness of the mirror.

In the most general case, the time evolution of the temperature field is found by
solving the Fourier equation:

(8)
[
ρC∂t − Kc∇2

]
T (r, z, t) = p(r, z, t),

where T is the temperature increase (it was ΔT ), ρ the density, C the specific heat, Kc

the thermal conductivity, p is the possible heat source inside the mirror and ∂t = ∂/∂t.
We want to determine the steady-state (∂t → 0) temperature field, when the heat

lost by radiation balances the power absorbed by the mirror. If we limit ourselves only
to the heat absorbed by the mirror surface, then there are no internal heat sources and
the Fourier equation becomes the Laplace one

(9) ∇2T (r, z) = 0,

which in cylindrical coordinates can be rewritten as

(10)
(

∂2
r +

1
r
∂r + ∂2

z

)
T (r, z) = 0.
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The general solution to eq. (10) is a harmonic function of the kind

(11) T (r, z) = J0(kr)
(
Aekz + Be−kz

)
,

where J0(x) are the Bessel functions of the first kind, A, B e k the constants determined
by the boundary conditions.

On the mirror surface hit by the laser beam (z = −h/2), the boundary condition
will be

(12) −Kc

[
∂T (r, z)

∂z

]
z=−h/2

= −σe

(
[T0 + T (r,−h/2)]4 − T 4

0

)
+ εI(r),

ε is the absorption coefficient of the mirror high-reflectivity coating and σe is the emis-
sivity of fused silica. Since T � T0, because T represents the temperature increase and
T0 the room temperature, it is possible to linearize the term relative to irradiance and
rewrite eq. (12) as

(13) −Kc

[
∂T (r, z)

∂z

]
z=−h/2

= −4σeT
3
0 T (r,−h/2) + εI(r).

On the opposite surface (z = h/2), it will be

(14) −Kc

[
∂T (r, z)

∂z

]
z=h/2

= 4σeT
3
0 T (r, h/2) + εI(r).

And finally, the irradiance boundary condition on the barrel of the mirror (r = a) reads

(15) −Kc

[
∂T (r, z)

∂r

]
r=a

= 4σeT
3
0 T (a, z).

Let us consider eq. (15): we know that the general solution is described by eq. (11)
and that a Bessel function has the following property:

(16) ∂xJ0(x) = −J1(x).

By inserting eq. (11) into eq. (15) and using the property (16), it is straightforward to
get

(17) KckJ1(ka) = 4σeT
3
0 J0(ka).

If we define χ ≡ 4σeT 3
0 a

Kc
and ζ = ka, the previous equation becomes

(18) ζJ1(ζ) − χJ0(ζ) = 0,
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which has a discrete and infinite set of solutions {ζn, n = 1, 2 . . .}. Thus the constant k

gets values kn = ζn/a and the general solution to eq. (10) can be written as

(19) T (r, z) =
∑

n

(
Aneknz + Be−knz

)
J0(ζnr/a).

It can be shown from the Sturm-Liouville theorem that the functions {J0(ζnr/a), n =
1, 2 . . .} form a complete orthogonal basis for functions defined in the interval [0, a]. Thus,
any function I(r) can be expanded in series of J0 in [0, a] (Fourier-Bessel series).

(20) I(r) =
∞∑

n=0

InJ0(ζnr/a)

and

(21) In =
2ζ2

n

a2 (χ2 + ζ2
n) J0(ζn)2

∫ a

0

I(r)J0(ζnr/a)r dr.

In the case of interferometric detectors, I(r) is given by eq. (7), so that

(22) In =
2ζ2

n

a2 (χ2 + ζ2
n) J0(ζn)2

∫ a

0

2P

πw2
e−

2r2

w2 J0(ζnr/a)r dr.

Moreover, to minimize clipping losses the radius of the mirrors is chosen to be much
larger than the size of the Gaussian laser beam. So that in eq. (22) it is possible to
replace the upper integration limit with ∞, getting

(23) In =
P

πw2

2ζ2
n

a2 (χ2 + ζ2
n) J0(ζn)2

e−
w2ζ2

n
8a2

and finally, the intensity profile of the laser Gaussian beam becomes

(24) I(r) =
P

πw2

∞∑
n=0

2ζ2
n

a2 (χ2 + ζ2
n) J0(ζn)2

e−
w2ζ2

n
8a2 J0(ζnr/a).

Using eqs. (19) and (24), the boundary conditions (13) and (14) reduce to a linear system
of equations, where An and Bn are the unknowns:

(ζn − χ) Γ2
nAn − (ζn + χ)Bn =

−εInaΓn

Kc
,(25)

(ζn + χ)An − (ζn − χ) Γ2
nBn = 0,(26)

having defined, for sake of simplicity, Γn = e−
ζnh
2a . Solving for An and Bn is straightfor-

ward and we are finally able to write the equation describing the temperature field into
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Fig. 1. – Optical path length increase inside a Virgo mirror for 0.2 W total absorbed power as
a function of the radial coordinate (0 is the center of the mirror).

a cylindrical mirror that absorbs a fraction ε of the power stored in a Gaussian-profiled
laser beam:

(27) T (r, z) =
∑

n

εIna

Kc
e−

ζnh
2a

(ζn − χ)e−
ζn(h−z)

a + (ζn + χ)e−
ζnz

a

(ζn + χ)2 − (ζn − χ)2e−
2ζnh

a

J0(ζnr/a).

In a very similar manner, it is possible to determine the temperature field when the
heating occurs inside the bulk of the mirror [1].

We are now able to evaluate the optical path length increase. Inserting eq. (27) into (6)
and performing the integration along the z direction, that represents the thickness of the
mirror, one gets

ΔOPL(r) =
(

dn

dT
+ α(1 + σ)(n − 1)

)
(28)

·
∑

n

εIna2

Kcζn

1 − e−
ζnh

a

ζn + χ − (ζn − χ) e−
ζnh

a

J0(ζnr/a)

An analogue expression can be found for the optical path length increase due to substrate
absorption [1]. The total ΔOPL is the sum of these two contributions.

Figure 1 shows the optical path length increase due to coating absorption in a Virgo
mirror for 0.2 W of absorbed power.
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Fig. 2. – Linear scheme of a power recycled Michelson interferometer with Fabry-Perot arm
cavities.

Fig. 3. – Resonant conditions of the fields circulating in the interferometer.

One important thing to notice is that thermal lensing does not create a spherical lens.
Another important point to clarify is where thermal effects arise in a GW interfero-

metric detector.
Concerning the thermal lensing, let us consider the scheme shown in fig. 2, where the

interferometer has been “linearized”, i.e. only two coupled cavities, the power recycling
and one Fabry-Perot, are drawn. The Power Recycling (PR) mirror will absorb for sure
some power on its high reflectivity surface and in its bulk. So, the refraction index inside
the substrate will change due to the temperature increase and some thermal lensing
will appear. However, the PR bulk lies outside the interferometer. In fact, the Power
Recycling cavity is defined by the High-Reflectivity (HR) surfaces of the PR mirror and
input test mass. We can thus conclude that the thermal lensing in the PR mirror does
not affect the interferometer.

Similar considerations apply to the End Test Masses (ETM): their substrate is out of
the Fabry-Perot cavity, thus out of the interferometer and is not crossed by the beam.

Input Test Masses (ITM) absorb some of the power stored in the recycling cavity in
their substrates, plus they absorb some of the Fabry-Perot cavity power on the high-
reflectivity coating. So, the ITM substrate is where the thermal lensing occurs, as it is
inside the power recycling cavity.

As explained in other lectures, three fields circulate inside the interferometer: the
carrier and the lower and upper radio-frequency sidebands. Thermal lensing will affect
only the control sidebands. To help understand this sentence, we can give a look at fig. 3.
The carrier resonates both in the recycling and in the Fabry-Perot cavities. It will sense
the thermal lensing in the ITM substrate, but when it enters the FP cavity it will be
cleaned by the Finesse of the cavity itself that acts as a filter.
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Fig. 4. – Amplitude images of a sideband field. Left: with no thermal lensing. Right: in the
presence of strong thermal lensing. Lack of cylindrical symmetry may be due to some tilted
optic.

Fig. 5. – Typical transient decrease of the sidebands amplitude as observed during a Virgo lock
acquisition.

On the contrary, the sidebands only resonate in the recycling cavity and, so, they do
not take advantage of the filtering effect of the FP cavity. Radio-frequency sidebands
fully sense the thermal lens in the ITM substrate. Since thermal effects give raise to a
non-spherical lens, the sidebands fields in the recycling cavity are strongly aberrated (see
fig. 4).

The cavity, seen by the sidebands, is “less” resonant and so the sidebands power
decreases (as shown in fig. 5). At certain level, the sidebands amplitude becomes too
low to keep the interferometer locked. In this situation, the only solution is to decrease
the power at the input of the interferometer, to reduce the strength of the thermal lens.
However, in this way, the sensitivity of the detector is degraded because of the increase
of the shot noise.

Concerning the thermo-elastic deformation, the main effect seen by the interferometer
is the change of the radius of curvature (RoC) of the ITM and ETM. This deformation was
not relevant at the time of Virgo, but it increases the radius of curvature by about 40 m
in Advanced Virgo at nominal design input power. As a consequence, the Fabry-Perot
cavity will become less concentric, and the spot sizes at the mirrors will shrink, leading
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Fig. 6. – Left: substrate transmission map measured at LMA on an Advanced-LIGO test mass,
the color scale is 10−7 m. Right: simulated surface map. Color scale in nanometers.

Fig. 7. – Left: coating absorption map measured at LMA on an Advanced-LIGO test mass.
Right: resulting non-uniformity of the OPL for 125 W of ITF input power. Color scale in
nanometers.

to an increase of thermal noise. Moreover, higher order modes can become resonant in
the arm cavities, considerably increasing round trip losses.

So far, we have focused our attention only on thermal effects, both for the optical
path length increase in the recycling cavity and for the increase of the test masses RoCs
in the Fabry-Perot cavity. Moreover, up to now we have considered only effects arising
from uniform absorption, i.e. with cylindrical symmetry.

However, in an ITF there are several sources of optical defects, often without any
symmetry, arising from imperfections in the production and polishing of the glass used
for the various substrates in the recycling cavity. Surface figure errors on reflective and
transmissive surfaces do contribute to the aberrations as well as spatial variations in the
index of refraction of the substrates (see fig. 6).

Finally, we also have to consider the non-homogeneity of the high-reflectivity coating
absorptions, that generates a non-symmetric optical path length increase, as shown in
fig. 7.
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All these effects have to be considered in the aberration budget of the interferometer
and their impact properly evaluated in order to understand the behaviour of the detector
and to design a suitable system to minimise them.

3. – Correction of optical aberrations

The general guideline to design a system able to correct optical aberrations is to in-
troduce in the interferometer a suitable “optical power” that can compensate the defects
due to thermal effects or structural imperfections. This system, named Thermal Com-
pensation System (TCS) must be adaptive, in order to be able to change at will the
strength and shape of the corrective optics, to follow the different interferometer operat-
ing conditions.

In order to correct the thermal lensing, we must somehow induce in the input mirrors
a “lens” equal but opposite to the one coming from aberrations, reminding that thermal
lensing generates a lens that is not spherical. Another important point to establish is to
what extent the optical defects must be compensated. The input mirrors are cylinders
with a radius of 175 mm, is it necessary to correct the optical path length up to the edge?
The answer to this question comes from optical simulations. In fact, we must recall that
the size of the interferometer beam is much smaller than that of the mirror. So, the
beam will sense optical path length distortions only where it exists. In practice, it turns
out that the extent over which the aberration effects must be corrected is approximately
1.5 times the size of the beam on the ITMs. For instance, in Virgo the YAG laser radius
on the ITM was about 22 mm, thus the area to be compensated had a radius of about
33 mm. In advanced Virgo the laser spot on the mirror has a radius of about 50 mm and
the compensated area must increase accordingly.

The correction chosen in Virgo and advanced Virgo to compensate for the axisym-
metric aberrations (as those induced by the adsorption of the Gaussian sensing beam) is
an annular heating pattern generated by a CO2 laser (λ = 10.6 μm).

The CO2 beam was impinging directly on the input test masses [3] in Virgo, while in
advanced Virgo the CO2 beam shines an additional transmissive optics, named Compen-
sation Plate (CP) that has been added in the recycling cavity, in order to avoid that the
noise introduced by the CO2 laser beam is amplified by the factor 2F/π (where F if the
finesse of the Fabry-Perot cavity) and to make it compliant with the higher sensitivity of
the interferometer. The thickness of the CP has been optimized by minimizing the heat
escaping from its barrel and taking into account the need to accumulate enough optical
path length. The distance between CP and ITM is 20 cm, this allows to minimize the
radiative coupling between the two optics. In fact, the heated CP radiates heat towards
the test mass. The heating of the TM is uniform, but since the barrel of the input mirror
radiates a part of the heat away, a radial temperature gradient is established. This gives
rise to an increase of optical path length that adds to the thermal lensing.

The corrective annular pattern is generated with an axicon lens (an optic with a

 EBSCOhost - printed on 2/13/2023 8:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



Optical aberrations in gravitational wave detectors and a look at the future 79

Fig. 8. – Left: working principle of an axicon lens. Right: intensity profile of a laser beam after
passing through an axicon.

conical surface) that converts the laser Gaussian beam into an annular beam(1).
The left image of fig. 8 shows the working principle of an axicon lens, while on the

right a measured intensity profile of a CO2 laser after going through an axicon is reported.
An acousto-optic modulator(2) is used to reduce the intensity noise of the laser, while
DC control of the power content of the beam is accomplished using a half-wave plate and
a fixed polarizer. Such a system allows to significantly reduce the deviation of the beam
impinging on the axicon, which would otherwise result in a non-homogeneous intensity
distribution inside the annular pattern.

The efficiency of the TCS has been tested already at the time of Virgo [4] by pro-
gressively increasing the CO2 power, while looking at the behaviour of the interferometer
and at the optical phase and amplitude of the carrier and modulation sidebands recorded
by a phase camera [5]. The TCS power was increased until the thermal effects in the
input mirrors were totally compensated [3, 6], as if the interferometer was operating at
low power. In the upper left plot of fig. 9 it is possible to see that when no correction
is applied the sideband field is strongly aberrated. The other plots in the same figure
show that, as the TCS power is increased, the sidebands amplitude recovers the expected
Gaussian shape.

The performances of the TCS allowed the interferometer to run VSR2 [7] with 17 W
input power compared to 8 W during VSR1 [8].

(1) Two axicon lenses are actually used in Advanced Virgo to better tune the shape of the
heating pattern.
(2) An acousto-optic modulator (AOM), also called a Bragg cell, uses the acousto-optic effect
to diffract and shift the frequency of light using sound waves (usually at radio-frequency). A
piezoelectric transducer is attached to a material such as glass. An oscillating electric signal
drives the transducer to vibrate, which creates sound waves in the glass. These can be thought
of as moving periodic planes of expansion and compression that change the index of refraction.
Incoming light scatters off the resulting periodic index modulation and interference occurs similar
to Bragg diffraction. The interaction can be thought of as four-wave mixing between phonons
and photons.
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Fig. 9. – Amplitude images of the sidebands recorded with a phase camera. Upper left: no TCS
(one only is shown for simplicity). The other plots show the change in shape as a function of
the TCS power.

The actuator chosen to control the radius of curvature of the test mass follows from
the same concept already used in the past in GW interferometric detectors [9]: a ring
heater (RH) that radiates power on the test mass. Four ring heaters are installed in
Advanced Virgo, one around each test mass. The position of the RH along the barrel of
the TM is such as to maximize its efficiency. The input mirror RH also provides limited
compensation of thermo-optic effect in the recycling cavities. The Advanced Virgo RH is
equipped with a reflecting shield to maximize the amount of power reaching the test mass.

The conceptual actuation scheme of the compensation system of Advanced Virgo [10,
11] is shown in fig. 10, left. A pictorial view of the input payload, with the ITM, RH
and CP, is shown in fig. 10, right.

This scheme also allows to reduce the coupling between the two degrees of freedom
(lensing and RoC), so to have a control matrix as diagonal as possible.
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Fig. 10. – Left: Actuation scheme of the Advanced-Virgo TCS: blue rectangles represent the CPs
(heated by the CO2 lasers) while the green dots around the test masses are the ring heaters.
Right: Picture of the input payload, comprising the ITM with the RH and the CP. Figure
from [11].

The aberrations in the recycling cavity optics are sensed by several complementary
techniques. The amplitude of the optical path length variation appears in some ITF
channels, such as the power stored in the radio frequency sidebands. These are scalar
quantities that can only give a measurement of the amount of power scattered into higher-
order modes. Moreover, phase cameras [5] sense the intensity distribution and phase of
the fields in the recycling cavity (carrier and sidebands). In addition, each optic with a
significant thermal load is independently monitored. The HR face of each test mass is
monitored in reflection for deformation. The input test mass/compensation plate phase
profile are monitored on reflection on-axis from the recycling cavity side.

The TCS sensors, dedicated to the measurement of thermally induced distortions,
consist of a Hartmann Wavefront Sensor (HWS) and a probe beam (at a different wave-
length than the ITF beam) whose wavefront contains the thermal aberration information
to be sensed. The working principle of the HWS is shown in the left panel of fig. 11. An
aberrated wavefront W’ is incident on a Hartmann plate (essentially a plate containing
a series of apertures, see the right picture of fig. 11). The resulting rays propagate a
distance L, normal to the wavefront, and are incident on a CCD. The new spot posi-
tion, x′

i, is measured and compared to a reference spot positions, xi, determined using
a non-aberrated wavefront W . The wavefront gradient in the i-th position is given by

(29)
∂ΔW

∂x
=

Δxi

L
.

The Hartmann sensor selected for Advanced Virgo is that already developed and char-
acterized on test bench experiments and in the Gingin High-Optical-Power Test Facility
for the measurement of wavefront distortion [12].

 EBSCOhost - printed on 2/13/2023 8:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



82 Viviana Fafone

Fig. 11. – Left: working principle of the Hartmann Wavefront Sensor. Right: close view of a
Hartmann plate.

4. – Mid and longer term perspective for ground-based detectors

At the time of writing this report, two observing runs have been completed. The first
observing run (O1) of Advanced LIGO, which took place from September 12th, 2015
until January 19th, 2016 realized the first detections of gravitational waves from stellar-
mass binary black holes (BBHs) [13-16]. After an upgrade and commissioning period,
the second observing run (O2) of the Advanced LIGO detectors [17] started on November
30th, 2016, and ended on August 25th, 2017. On August 1st, 2017 Advanced Virgo [18]
joined the observing run, enabling the first three-detector observations of GWs [19].
The joint LIGO-Virgo O3 run is scheduled to start in April 2019 with an approximate
duration of one year.

At present, all data collected in the two observing runs have been deeply reanalyzed
with improved search algorithms in order to reevaluate the significance of previously
identified GW events and to potentially discover new ones [20]. The searches identi-
fied a total of ten BBH mergers and one binary neutron star (BNS) signal. The GW
events are identified as follows: GW150914 (the first binary black hole merger detected),
GW151012, GW151226, GW170104, GW170608, GW170729, GW170809, GW170814
(the first binary black hole merger detected by three interferometers), GW170817 (the
first — and only, for the time being — binary neutron star detected by LIGO and Virgo),
GW170818 and GW170823.

Apart from the three mot famous events, GW170729’s mass has been estimated to be
85.1+15.6

−10.9M�, making it the highest-mass BBH observed to date. GW170818 is the second
BBH observed in triple-coincidence between the two LIGO observatories and Virgo after
GW170814. As the sky location is primarily determined by the differences in the times
of arrival of the GW signal at the different detector sites, LIGO-Virgo coincident events
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have a vastly improved sky localization, which is crucial for electromagnetic follow-up
campaigns.

Gravitational waves from compact binaries carry information about the properties of
the source such as the masses and spins. The observation of these GW events allows us to
place constraints on the rates of stellar mass BBH and BNS mergers in the Universe and
probe their mass and spin distributions, putting them into astrophysical context. The
non-observation of GWs from a neutron star-black hole binary (NSBH) yields a stronger
90% upper limit on the rate.

From the signals observed till now it is evident how relevant is the presence of a
fully operating network: the presence of at least three detectors is in fact crucial to
maximise the scientific outcome. For this reason the GW community is working toward
an internationally coordinated effort for the upgrade of the present infrastructures and
for the design and realization of future GW observatories, the so-called third generation
(3G).

In the mid term timeline, the “plus” versions of Advanced Virgo and Advanced LIGO
will exploit at best the present infrastructures, by implementing solutions to decrease the
most offending noise sources: thermal noise in the mirrors, quantum noise, newtonian
noise. The Advanced Virgo plus (AdV+) program will take the next 10 years, and
will develop, in parallel with LIGO A+ and KAGRA, in two phases. The first-phase
upgrades will include frequency-dependent squeezing, Newtonian noise cancellation, and
signal recycling and will conclude with an observing run with a projected BNS range
above 160 Mpc (roughly three times O2 sensitivity) in the mid-2020s. Then, phase 2
will demand better mirror coatings as well as larger beams and test masses which are
projected to yield a BNS range around 260 Mpc (four times O2 sensitivities), in the
timeline 2026-2027.

A further increase of the sensitivity of the ground-based interferometers requires
changes in the infrastructures pushing toward a third generation detectors. The Eu-
ropean project, named Einstein Telescope (ET) is in the middle of its second decade
since its conception. The idea was formulated in 2004 and was studied in detail in an
EU funded Design Study (2008–2011) [21].

From the US side, the 3G solution is focusing toward Cosmic Explorer [22], a 40 km-
arm-length interferometer to be housed in a new observatory facility. An intermediate
step is also being considered: LIGO Voyager [23] which is intended for the existing
LIGO Observatories, with the aim to reach the existing facility sensitivity limits. It
will take advantage of new technologies currently being researched, including silicon
mirrors operated at 123 K temperatures, and high power 1.5–2 mm wavelength lasers
with squeezed light injection.

The ET concept relies on a triangular-shaped facility (which allows to resolve the
polarization of gravitational waves without the need of additional detectors), with 10 km
long arms and three co-located instruments. Each instrument comprises of two detec-
tors each, in a xylophone configuration in which one detector maximizes the sensitivity
at low frequency, while the other detector maximizes the high-frequency performance.
The output of the two detectors are then combined to provide a broadband sensitivity.
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Fig. 12. – Astrophysical reach of Cosmic Explorer and ET for equal-mass (non-spinning) compact
binary inspiral systems. The maximum observable distance is shown as a function of the total
intrinsic mass of the system. Baring a large number of primordial black holes, at redshifts larger
than z � 10 there will be few sources. Thus a horizon of z > 20 for a given mass should be taken
to indicate that essentially all compact binary coalescence in the universe will be observable by
a network of similar detectors, many with a high signal-to-noise ratio. Similar curves for a
second-generation interferometer (aLIGO) are shown for comparison. A Hubble constant of
67.9 km/s/Mpc and a ΛCDM model of expansion was assumed. Figure from [23].

The main advantage of the xylophone configuration is to decouple technologies that are
difficult to coexist in a single detector, like, for example, cryogenics (about 20 K) and
high power operations. The ET xylophone concept calls for a low frequency cryogenic
detector, with low circulating power, and a high-frequency room temperature detector
with high circulating power. The other main features envisaged for ET are: underground
operation to limit the effect of the seismic noise and mirrors cooled at low temperature
to directly reduce the thermal vibration of the test masses.

The Cosmic Explorer concept relies on an L-shaped configuration with 40 km arms.
Increasing the arm length beyond the existing 4 km facilities is crucial to take advantage
of the scaling of fundamental noise with length [22].

The 3G detectors aim to improve the sensitivity over the present 2G network by more
than a factor of 10, with their astrophysical reach targeting cosmological distances. The
astrophysical reach for binary systems can be represented by redshift vs. source mass, as
illustrated in fig. 12, showing how ET and Cosmic Explorer cover a wide range of binary
sources.
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Fig. 13. – A schematic illustration of the gravitational-wave signal emitted during the late
stages of a binary neutron star inspiral at 100 Mpc. The effective signal strain is compared to
the sensitivity of different generations of detectors at their design sensitivity. Above 100Hz or
so the tidal compressibility is expected to leave a secular imprint on the signal. The eventual
merger involves violent dynamics, which also encodes the matter equation of state. The merger
signal is expected at a few kHz, making it difficult to observe with the current generation of
detectors, but it should be within reach of third generation detectors like the Einstein Telescope.
Figure from [24].

The 3G detectors will be able to shed light on hot sectors of physics and astrophysics
and will be a fundamental tool to:

– investigate nature of gravity, compact objects and dark matter;

– assess the physics of densest, hottest matter in nature;

– provide the first ever cosmic census of stellar mass binary black holes, star remnants
and seeds to supermassive black holes;

– understand the physics of the early Universe, probe its dark sectors and relevant
particle physics at the highest energy scales.

All these topics will greatly benefit from the improvement in sensitivity of 3G detec-
tors. As an example, fig. 13 shows the GW signal from a BNS merger compared with
the sensitivity curves of first-, second- and third-generation interferometers. The goal of
getting a 10× better sensitivities with respect to the advanced detectors, relies on an ef-
fective research and development program focused on fundamental technological aspects:
development of high-quality, massive-mirror substrates (suitable for operation at cryo-
genic temperatures, with sensing laser wavelengths different from the present 1 micron);
development of low optical and mechanical loss coatings deposited on large areas; suitable
light sources (lasers and squeezers) and low-noise suspensions and cryogenic systems.
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Summary. — On September 14,2015, the LIGO interferometers captured a gravi-
tational wave (GW) signal from two merging black holes (BHs), opening the era of
GW astrophysics. Five BH mergers have been reported so far, three of them involv-
ing massive BHs (> 30M�). According to stellar evolution models, such massive
BHs can originate from massive relatively metal-poor stars. Alternatively, gravita-
tional instabilities in the early Universe were claimed to produce BHs in this mass
range. The formation channels of merging BH binaries are still an open question:
a plethora of uncertainties affect the evolution of massive stellar binaries (e.g. the
process of common envelope) and their dynamics. This review is intended to discuss
the open questions about BH binaries, and to present the state-of-the-art knowledge
about the astrophysics of black holes for non-specialists, in light of the first LIGO
detections.

1. – Lesson learned from the first direct gravitational wave detections

On September 14,2015, the LIGO interferometers captured a gravitational wave (GW)
signal from two merging black holes (BHs [1]). This event, named GW150914, is the
first direct detection of GWs, about hundred years after Einstein’s prediction. To date,
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Fig. 1. – A compilation of BH masses mBH from observations. Red squares: BHs with dynamical
mass measurement in X-ray binaries [20,21]. This selected sample is quite conservative, because
uncertain and debated results are not being shown (e.g. IC10 X-1 [22]). Blue circles: BHs in
the first four published GW events [3, 5, 6].

four more BH mergers have been observed (GW151226, GW170104, GW170608 and
GW170814 [2-5]), plus a sixth non-confirmed signal (LVT151012 [6]).

Astrophysicists have learned a bunch of breakthrough concepts from GW detec-
tions [7]. We now know that double BH binaries (BHBs, i.e. binaries composed of
two BHs) exist. They have been studied and modelled for a long time (e.g. [8-15]), but
their observational confirmation was still missing. Moreover, GW detections imply that
some BHBs are able to merge within a Hubble time. Finally, three out of five merging
BHBs detected so far (GW150914, GW170104 and GW170814) host BHs with mass in
excess of 20M�.

This result is surprising under many respects. First, the only BHs for which we have a
dynamical mass measurement, i.e. about a dozen of BHs in X-ray binaries, have all mass
well below 20M� (see fig. 1 for a compilation of measured BH masses). Second, most
population-synthesis codes did not predict the existence of BHs with mass mBH > 30M�.
Thus, the first GW detections have urged the astrophysical community to deeply revise
the models of BH formation and evolution.

This review discusses the formation channels of BHs and BHBs in light of the chal-
lenges posed by recent GW detections. It is aimed at students and non-expert of the
field, being the proceeding of the lecture held for the 200 Course on “Gravitational Waves
and Cosmology” at the International School of Physics “Enrico Fermi”.
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2. – The formation of compact remnants from stellar evolution and supernova
explosions

BHs and neutron stars (NSs) are expected to form as remnants of massive (� 8M�)
stars. An alternative theory predicts that BHs can form also from gravitational collapse
in the early Universe (the so called primordial BHs, e.g. [16-18]). In this review, we will
focus on BHs of stellar origin.

The mass function of BHs is highly uncertain, because it may be affected by a num-
ber of barely understood processes. In particular, stellar winds and supernova (SN)
explosions both play a major role for the formation of compact remnants. Processes
occuring in close binary systems (e.g. mass transfer and common envelope) are a further
complication and will be discussed in the next section.

2.1. Stellar winds and stellar evolution. – Stellar winds are outflows of gas from the
atmosphere of a star. In cold stars (e.g. red giants and asymptotic giant branch stars)
they are mainly induced by radiation pressure on dust, which forms in the cold outer
layers (e.g. [19]). In massive hot stars (O and B main-sequence stars, luminous blue
variables and Wolf-Rayet stars), stellar winds are powered by the coupling between the
momentum of photons and that of metal ions present in the stellar photosphere. A large
number of strong and weak resonant metal lines are responsible for this coupling (see
e.g. [23] for a review).

Understanding stellar winds is tremendously important for the study of compact
objects, because mass loss determines the pre-SN mass of a star (both its total mass and
its core mass), which in turn affects the outcome of a SN explosion [24-27].

Early work on stellar winds (e.g. [28-30]) highlighted that the mass loss of O and B
stars depends on metallicity as Ṁ ∝ Zα (with α ∼ 0.5–1.0, depending on the model).
However, such early work did not account for multiple scattering, i.e. for the possibility
that a photon interacts several times before being absorbed or leaving the photosphere.
Vink et al. [31] accounted for multiple scatterings and found a universal metallicity
dependence Ṁ ∝ Z0.85 vp

∞, where v∞ is the therminal velocity and p = −1.23 (p =
−1.60) for stars with effective temperature Teff � 25000 K (12000K � Teff � 25000 K).

The situation is more uncertain for post-main sequence stars. For Wolf-Rayet (WR)
stars, i.e. naked helium cores, [32] predict a similar trend with metallicity Ṁ ∝ Z0.86.
With a different numerical approach (which accounts also for wind clumping), [33] find
a strong dependence of WR mass loss on metallicity but also on the electron-scattering
Eddington factor Γe = κe L∗/(4π cGM∗), where κe is the cross section for electron
scattering, L∗ is the stellar luminosity, c is the speed of light, G is the gravity constant,
and M∗ is the stellar mass. The importance of Γe has become increasingly clear in the
last few years [34-36], but, unfortunately, only few stellar evolution models include this
effect.

For example, [37, 38] adopt a mass loss prescriptions Ṁ ∝ Zα, where α = 0.85
if Γe < 2/3 and α = 2.45 − 2.4Γe if 2/3 ≤ Γe ≤ 1. This simple formula accounts
for the fact that metallicity dependence tends to vanish when the star is close to be
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Fig. 2. – Evolution of stellar mass as a function of time for a star with ZAMS mass mZAMS =
90M� and seven different metallicities, ranging from 0.005Z� up to Z� (we assumed Z� = 0.02).
These curves were obtained with the SEVN population-synthesis code [39], adopting PARSEC
stellar evolution tracks.

radiation pressure dominated, as clearly shown by fig. 10 of [33]. Figure 2 shows the
mass evolution of a star with zero-age main sequence (ZAMS) mass mZAMS = 90M� for
seven different metallicities, as obtained with the SEVN code [39]. At the end of its life,
a solar-metallicity star (here we assume Z� = 0.02) has lost more than 2/3 of its initial
mass, while the most metal-poor star in the figure (Z = 0.005Z�) has retained almost
all its initial mass.

Other aspects of massive star evolution also affect the pre-SN mass of a star. For ex-
ample, surface magnetic fields appear to strongly quench stellar winds by magnetic con-
finement [40-42]. In particular, [42] show that a non-magnetic star model with metallicity
∼ 0.1Z� and a magnetic star model with solar metallicity and Alfvén radius RA ∼ 4R�
undergo approximately the same mass loss according to this model. This cannot be ne-
glected because surface magnetic fields are detected in ∼ 10 per cent hot stars [43], but
is currently not included in models of compact-object formation.

Finally, rotation affects the evolution of a massive star in several ways (e.g. [44-46]).
Describing the effects of rotation in detail is beyond the aims of this review. For this,
we refer to a recent review of Marco Limongi [46]. As a general rule of thumb, rotation
increases the stellar luminosity. This implies that mass loss is generally enhanced if
rotation is accounted for. On the other hand, rotation also induces chemical mixing,
which leads to the formation of larger Helium and Carbon-Oxygen cores. While enhanced
mass loss implies smaller pre-SN masses, the formation of bigger cores has also strong
implication for the final fate of a massive star, as we discuss in the following section.
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2.2. Supernovae (SNe). – The mechanisms triggering core-collapse SNe are still highly
uncertain. The basic framework and open issues are the following. As the mass of the
central degenerate core reaches the Chandrasekhar mass [47], the degeneracy pressure
of relativistic electrons becomes insufficient to support it against collapse. Moreover,
electrons are increasingly removed, because protons capture them producing neutrons
and neutrinos. This transforms the core into a new state, where matter is essentially
composed of neutrons, which support the core against collapse by their degeneracy pres-
sure. To reach this new equilibrium, the core collapses from a radius of few thousand km
down to a radius of few ten km in less than a second. The gravitational energy gained
from the collapse is W ∼ 5 × 1053 erg (MPNS/1.4M�)2 (10 km/RPNS) erg, where MPNS

and RPNS are the mass and radius of the proto-neutron star (PNS).
The main problem is to explain how this gravitational energy can be (at least par-

tially) transferred to the stellar envelope triggering the SN explosion [48, 49]. Several
mechanisms have been proposed, including rotationally-driven SNe and/or magnetically-
driven SNe (see, e.g., [50-52] and references therein). The most commonly investigated
mechanism is the convective SN engine. According to this model, the collapsing core
bounces, driving a shock. For the SN explosion to occur, this shock must reverse the
supersonic infall of matter from the outer layers of the star. Most of the energy in the
shock consists in a flux of neutrinos. As soon as neutrinos are free to leak out (because
the shock has become diffuse enough), their energy is lost and the shock stalls. The SN
occurs only if the shock is revived by some mechanism. If the region between the PNS
surface and the shock stalling radius becomes convectively unstable (e.g. because of an
entropy gradient), neutrinos can be injected more efficiently and deposit more energy
into the shock, possibly reviving it. In other words, if the convective region overcomes
the ram pressure of the infalling material, an explosion is launched. If not, the SN fails.

While this is the general idea of the convective engine, the truth is that fully self-
consistent simulations of core collapse with state-of-the-art treatment of neutrino trans-
port do not lead to explosions in spherical symmetry except for the lighter SN progenitors
(� 10M� [52,53]). Simulations which do not require the assumption of spherical symme-
try (i.e. run at least in 2D) appear to produce successful explosions from first principles
for a larger range of progenitor masses (see, e.g., [54, 55]). However, 2D and 3D simu-
lations are still computationally challenging and cannot be used to make a study of the
mass distribution of compact remnants.

Thus, in order to study compact-object masses, SN explosions are artificially induced
by injecting in the pre-SN model some amount of kinetic energy (kinetic bomb) or thermal
energy (thermal bomb) at an arbitrary mass location. The evolution of the shock is then
followed by means of 1D hydrodynamical simulations with some relatively simplified
treatment for neutrinos. This allows to simulate hundreds of stellar models.

Following this approach, O’Connor and Ott [56] propose a criterion to decide whether
a SN is successful or not, based on the compactness parameter:

ξM =
M/M�

R(M)/1000 km
,(1)
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where R(M) is the radius which encloses a given mass M . Usually, the compactness
is defined for M = 2.5M� (ξ2.5). Authors of [56] measure the compactness at core
bounce(1) in their simulations and find that the larger ξ2.5, the shorter the time to form
a BH (as shown in their fig. 6). This means that stars with a larger value of ξ2.5 are
more likely to collapse to a BH without SN explosion.

Rotating stellar models have lower values of ξ2.5 (because of the centrifugal force) but
produce lower neutrino luminosity and thus are more likely to form BHs without a SN
explosion than non-rotating models [56].

The work by Ugliano et al. [57] and Horiuchi et al. [58] indicate that the best threshold
between exploding and non-exploding models is ξ2.5 ∼ 0.2.

Finally [53] stress that a single criterion (e.g. the compactness) cannot capture the
complex physics of core-collapse SN explosion. They introduce a two-parameter criterion
based on

M4 =
m(s = 4)

M�
and μ4 =

[
dm/M�

dR/1000 km

]
s=4

,(2)

where M4 is the mass (at the onset of collapse) where the dimensionless entropy per
baryon is s = 4, and μ4 is the spatial derivative at the location of M4.

This choice is motivated by the fact that, in their 1D simulations, the explosion
sets shortly after M4 has fallen through the shock and well before the shell enclosing
M4 + 0.3M� has collapsed. They show that exploding models can be distinguished from
non-exploding models in the μ4 versus M4 μ4 plane (see their fig. 6) by a linear fit

y(x) = k1 x + k2,(3)

where y(x) = μ4, x = M4 μ4, and k1 and k2 are numerical coefficients which depend on
the model (see table 2 of [53]). The reason of this behaviour is that μ4 scales with the
rate of mass infall from the outer layers (thus the larger μ4, the lower the chance of the
SN to occur), while M4 μ4 scales with the neutrino luminosity (thus the larger M4 μ4,
the higher the chance of a SN explosion). Finally, [53] stress that the fallback is quite
inefficient (< 0.05M�) when the SN occurs.

The models discussed so far depend on quantities (ξ2.5, M4, μ4) which can be eval-
uated no earlier than the onset of core collapse. Thus, stellar evolution models are
required which integrate a massive star till the iron core has formed. This is prohibitive
for most stellar evolution models (with few remarkable exceptions, e.g. FRANEC [45]
and MESA [59]). Reference [60] propose a simplified approach. Based on their simula-
tions (see also [24,25,61]), they propose that the mass of the compact remnants depends
on two quantities: the carbon-oxygen core mass mCO and the total final mass of the
star mfin. In particular, mCO determines whether the star will undergo a core-collapse

(1) Authors of [57] show that ξ2.5 is not significantly different at core bounce or at the onset of
collapse.
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SN or will collapse to a BH directly (namely, stars with mCO > 7.6M� collapse to a
BH directly), whereas mfin determines the amount of fallback on the proto NS. In this
formalism, the only free parameter is the time to launch the shock. The explosion energy
is significantly reduced if the shock is launched � 250 ms after the onset of the collapse
(delayed SN explosion) with respect to an explosion launched in the first ∼ 250 ms (rapid
SN explosion [60]).

While this approach is quite simplified with respect to other prescriptions, [46] show
that there is a strong correlation between the final carbon-oxygen mass and the com-
pactness parameter ξ2.5 at the onset of collapse, regardless of the rotation velocity of the
progenitor star (see fig. 21 of [46]).

Finally, it is important to recall pair-instability and pulsational pair-instability
SNe [62-65]. If the helium core of a star grows above ∼ 30M� and the core temper-
ature is � 7 × 108 K, the process of electron-positron pair production becomes effective.
It removes photon pressure from the core producing a sudden collapse before the iron
core is formed. For MHe > 135M�, the collapse cannot be reversed and the star col-
lapses directly in to a BH [65]. If 135 � MHe � 64M�, the collapse triggers an explosive
burning of heavier elements, which has disruptive effects. This leads to a complete
disruption of the star, leaving no remnant (the so-called pair-instability SN [66]). For
64 � MHe � 32M�, pair production induces a series of pulsations of the core (pulsa-
tional pair instability SNe), which trigger an enhanced mass loss [65]. At the end of this
instability phase a remnant with non-zero mass is produced, significantly lighter than in
case of a direct collapse.

2.3. The mass of compact remnants. – The previous sections suggest that our knowl-
edge of remnant mass is hampered by severe uncertainties, connected with both stellar
winds and core-collapse SNe. Thus, models of the mass spectrum of compact remnants
must be taken with a grain of salt. However, few robust features can be drawn.

Figure 3 is a simplified version of figs. 2 and 3 of Heger et al. [67]. The final mass
of a star and the mass of the compact remnant are shown as a function of the ZAMS
mass. The left and the right-hand panels show the case of a solar metallicity star and of
a metal-free star, respectively. In the case of the solar metallicity star, the final mass of
the star is much lower than the initial one, because stellar winds are extremely efficient.
The mass of the compact remnant is also much lower than the final mass of the star
because a core-collapse SN always take place.

In contrast, a metal-free star (i.e. a Population III star) loses a negligible fraction of
its mass by stellar winds (the blue and the black line in fig. 3 are superimposed). As for
the mass of the compact remnant, fig. 3 shows that there are two regimes: below a given
threshold (≈ 30–40M�) the SN explosion succeeds even at zero metallicity and the mass
of the compact remnant is relatively small. Above this threshold, the mass of the star
(in terms of both core mass and envelope mass) is sufficiently large that the SN fails.
Most of the final stellar mass collapses to a BH, whose mass is significantly larger than
in the case of a SN explosion.
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Fig. 3. – Final mass of a star (mfin, blue lines) and mass of the compact remnant (mrem, red
lines) as a function of the ZAMS mass of the star. The thick black line marks the region where
mfin = mZAMS. Left-hand panel: solar metallicity star. Right-hand panel: metal-free star. The
red arrow on the left-hand panel is an upper limit for the remnant mass. Vertical thin black line
in the right-hand panel: approximate separation between successful and failed SNe at Z = 0.
This cartoon was inspired by figs. 2 and 3 of Heger et al. [67].

What happens at intermediate metallicity between solar and zero, i.e. in the vast ma-
jority of the Universe we know? Predicting what happens to a metal-free star is relatively
simple, because its evolution does not depend on the interplay between metals and stellar
winds. The fate of a solar metallicity star is more problematic, because we must account
for line-driven stellar winds, but most data we have about massive star winds are for
nearly solar metallicity stars, which makes models easier to calibrate. Instead, modelling
intermediate metallicities is significantly more complicated, because the details depend
on the interplay between metals and stellar winds and only limited data are available for
calibration (mostly data for the Large and Small Magellanic Clouds).

As a rule of thumb (see, e.g., [39, 60]), we can draw the following considerations. If
the zero-age main-sequence (ZAMS) mass of a star is large (mZAMS � 30M�), then the
amount of mass lost by stellar winds is the main effect which determines the mass of
the compact remnant. At low metallicity (� 0.1Z�) and for a low Eddington factor
(Γe < 0.6), mass loss by stellar winds is not particularly large. Thus, the final mass
mfin and the carbon-oxygen mass mCO of the star may be sufficiently large to avoid
a core-collapse SN explosion: this leads the star to form a massive BH (� 20M�) by
direct collapse, unless pair-instability and pulsational-pair instability SNe occur. At high
metallicity (≈ Z�) or large Eddington factor (Γe > 0.6), mass loss by stellar winds is
particularly efficient and may lead to a small mfin and mCO: the star is expected to
undergo a core-collapse SN and to leave a relatively small remnant.

 EBSCOhost - printed on 2/13/2023 8:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



Astrophysics of stellar black holes 95

If the ZAMS mass of a star is relatively low (7 < mZAMS < 30M�), then stellar winds
are not important (with the possible exception of super asymptotic giant branch stars),
regardless of the metallicity. In this case, the details of the SN explosion (e.g. energy of the
explosion and amount of fallback) are crucial to determine the final mass of the remnant.

This general sketch may be affected by several factors, such as pair-instability SNe,
pulsational pair-instability SNe (e.g. [65]) and an island scenario for core-collapse SNe
(e.g. [53]).

Taking these effects into account leads to a prediction for the mass spectrum of com-
pact remnants similar to the one shown in fig. 4. This figure shows that the mass
of the compact remnant strongly depends on the metallicity of the progenitor star if
mZAMS � 30M�. In most cases, the lower the metallicity of the progenitor, the larger
the maximum mass of the compact remnant [26, 27, 39, 67-69]. However, for metal-
poor stars (Z < 10−3) with ZAMS mass 230 > mZAMS > 110M� pair instability SNe
lead to the complete disruption of the star and no remnant is left. Only very massive
(mZAMS > 230M�) metal-poor (Z < 10−3) stars can collapse to a BH directly, producing
intermediate-mass BHs (i.e. BHs with mass � 100M�).

The mass spectrum of relatively low-mass stars (8 < MZAMS < 30M�) is not signifi-
cantly affected by metallicity. The assumed core-collapse SN model is the most important
factor in this mass range [60].

3. – Binaries of stellar black holes

Naively, one could think that if two massive stars are members of a binary system,
they will eventually become a double BH binary and the mass of each BH will be the
same as if its progenitor star was a single star. This is true only if the binary system is
sufficiently wide (detached binary) for its entire evolution. If the binary is close enough,
it will evolve through several processes which might significantly change its final fate.
Here, we will mention some of the most important ones.

3.1. Mass transfer . – If two stars exchange matter to each other, it means they undergo
a mass transfer episode. This might be driven either by stellar winds or by an episode
of Roche-lobe filling.

When a massive star loses mass by stellar winds, its companion might be able to
capture some of this mass. This will depend on the amount of mass which is lost and
on the relative velocity of the wind with respect to the companion star. Based on the
Bondi and Hoyle [71] formalism, Hurley et al. [72] describe the mean mass accretion rate
by stellar winds as

ṀA =
1√

1 − e2

(
GMA

v2
w

)2
αw

2 a2

1
[1 + (vorb/vw)2]3/2

ṀD,(4)

where e is the binary eccentricity, G is the gravitational constant, MA is the mass of the
accreting star, vw is the velocity of the wind, αw ∼ 3/2 is an efficiency constant, a is
the semi-major axis of the binary, vorb =

√
G (MA + MD)/a is the orbital velocity of the

 EBSCOhost - printed on 2/13/2023 8:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



96 Michela Mapelli

Fig. 4. – Mass of the compact remnant (Mrem) as a function of the ZAMS mass of the star
(MZAMS) from Spera and Mapelli [70]. Lower (upper) panel: pulsational pair-instability and
pair-instability SNe are (not) included. In both panels: dash-dotted brown line: Z = 2.0×10−2;
dotted dark orange line: Z = 1.7 × 10−2; dashed red line: Z = 1.4 × 10−2; solid red line:
Z = 1.0 × 10−2; short-dash-dotted orange line: Z = 8.0 × 10−3; short dotted light orange
line: Z = 6.0 × 10−3; short-dashed green line: Z = 4.0 × 10−3; dash-double-dotted green line:
Z = 2.0 × 10−3; dash-dotted light blue line: Z = 1.0 × 10−3; dotted blue line: Z = 5.0 × 10−4;
dashed violet line: Z = 2.0 × 10−4. A delayed core-collapse SN mechanism has been assumed,
following the prescriptions of [60]. From figs. 1 and 2 of [70].

binary (MD being the mass of the donor), and ṀD is the mass loss rate by the donor
in a given time span. Since ṀD is usually quite low (< 10−3M� yr−1) and vw is usually
quite high (> 1000 km s−1 for a line-driven wind) with respect to the orbital velocity,
this kind of mass transfer is usually rather inefficient.
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Mass transfer by Roche lobe overflow is usually more efficient. The Roche lobe of
a star in a binary system is the maximum equipotential surface around the star within
which matter is bound to the star. While the exact shape of the Roche lobe should be
calculated numerically, a widely used approximate formula [73] is

rL,1 = a
0.49 q2/3

0.6 q2/3 + ln(1 + q1/3)
,(5)

where a is the semi-major axis of the binary and q = m1/m2 (m1 and m2 are the masses
of the two stars in the binary).

The Roche lobes of the two stars in a binary are thus connected by the L1 Lagrangian
point. Since the Roche lobes are equipotential surfaces, matter orbiting at or beyond
the Roche lobe can flow freely from one star to the other. We say that a star overfills
(underfills) its Roche lobe when its radius is larger (smaller) than the Roche lobe. If a
star overfills its Roche lobe, a part of its mass flows toward the companion star which
can accrete (a part of) it. The former and the latter are thus called donor and accretor
star, respectively.

Mass transfer obviously changes the mass of the two stars in a binary, and thus the
final mass of the compact remnants of such stars, but also the orbital properties of the
binary. If mass transfer is non-conservative (which is the most realistic case in both mass
transfer by stellar winds and Roche lobe overflow), it leads to an angular-momentum
loss, which in turn affects the semi-major axis.

An important point about Roche lobe overflow is to estimate whether it is (un)stable
an on which timescale. A commonly used approach consists in comparing the following
quantities [72,74-76]:

ζad =
(

d lnRD

d lnMD

)
ad

,(6)

ζth =
(

d lnRD

d lnMD

)
th

,

ζL =
(

d ln rL,D

d lnMD

)
,

where ζad is the change of radius of the donor (induced by the mass loss) needed to
adiabatically adjust the star to a new hydrostatic equilibrium, ζth is the change of the
radius of the donor (induced by the mass loss) needed to adjust the star to a new thermal
equilibrium, and ζL is the change of the Roche lobe of the donor (induced by the mass
loss).

If ζL > ζad, then the star expands faster than the Roche lobe and mass transfer is
dynamically unstable. If ζad > ζL > ζth, then mass transfer becomes unstable over a
Kelvin-Helmholtz timescale. Finally, if ζad > ζth > ζL, mass transfer is stable until
stellar evolution causes a further expansion of the radius.
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Fig. 5. – Cartoon of the evolution of a BH binary which evolves through a CE phase. The
companion of the BH is initially in the main sequence (MS). When the companion evolves off
the MS, becoming a giant star, it overfills its Roche lobe. The BH and the giant star enter a
CE. The core of the giant and the BH spiral in because of the gas drag exerted by the envelope.
If the envelope is ejected, we are left with a new binary, composed of the BH and the naked
helium core of the giant. The new binary has a much smaller orbital separation than the initial
binary. If the naked helium core becomes a BH and its natal kick does not disrupt the binary,
then a double BH binary is born, possibly with a small semi-major axis. In contrast, if the
envelope is not ejected, the BH and the helium core spiral in, till they merge together. A single
BH is left, which will not be a source of GWs.

If mass transfer is dynamically unstable (ζL > ζad) or both stars overfill their Roche
lobe, then the binary is expected to merge (if the donor lacks a steep density gradient
between the core and the envelope) or to enter common envelope (CE).

3.2. Common envelope (CE). – If two stars enter in CE, their envelope(s) stop co-
rotating with their cores. The two stellar cores (or the compact remnant and the core
of the star, if the binary is already single degenerate) are embedded in the same non-
corotating envelope and start spiralling in as an effect of gas drag exerted by the envelope.
Part of the orbital energy lost by the cores as an effect of this drag is likely converted
into heating of the envelope, making it more loosely bound. If this process leads to the
ejection of the envelope, then the binary survives, but the post-CE binary is composed
of two naked stellar cores (or a compact remnant and a naked stellar core). Moreover,
the orbital separation of the two cores (or the orbital separation of the compact remnant
and the core) is considerably smaller than the initial orbital separation of the binary,
as an effect of the spiral in. This circumstance is crucial for the fate of a BH binary.
In fact, if the binary which survives a CE phase evolves into a double BH binary, this
double BH binary will have a very short semi-major axis, much shorter than the sum of
the maximum radii of the progenitor stars, and may be able to merge by GW emission
within a Hubble time.

In contrast, if the envelope is not ejected, the two cores (or the compact remnant and
the core) spiral in till they eventually merge. This premature merger of a binary during
a CE phase prevents the binary from evolving into a double BH binary. The cartoon in
fig. 5 summarizes these possible outcomes.

The αλ formalism [77] is the most common formalism adopted to describe a common
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envelope. The basic idea of this formalism is that the energy needed to unbind the
envelope comes uniquely from the loss of orbital energy of the two cores during the
spiral-in.

The fraction of the orbital energy of the two cores which goes into unbinding the
envelope can be expressed as

ΔE = α (Eb,f − Eb,i) = α
Gmc1 mc2

2

(
1
af

− 1
ai

)
,(7)

where Eb,i (Eb,f) is the orbital binding energy of the two cores before (after) the CE
phase, ai (af) is the semi-major axis before (after) the CE phase, mc1 and mc2 are
the masses of the two cores, and α is a dimensionless parameter which measures which
fraction of the removed orbital energy is transferred into the envelope. If the primary is
already a compact object (as in fig. 5), mc1 is the mass of the compact object.

The binding energy of the envelope is

Eenv =
G

λ

[
menv,1 m1

R1
+

menv,2 m2

R2

]
,(8)

where m1 and m2 are the masses of the primary and the secondary member of the binary,
menv,1 and menv,2 are the masses of the envelope of the primary and the secondary
member of the binary, R1 and R2 are the radii of the primary and the secondary member
of the binary, and λ is the parameter which measures the concentration of the envelope
(the smaller λ, the more concentrated is the envelope).

By imposing ΔE = Eenv we can derive which is the value of the final semi-major axis
af for which the envelope is ejected:

1
af

=
1

α λ

2
mc1 mc2

[
menv,1 m1

R1
+

menv,2 m2

R2

]
+

1
ai

.(9)

If af is lower than the sum of the radii of the two cores (or than the sum of the Roche lobe
radii of the cores), then the binary will merge during CE, otherwise the binary survives
and eq. (9) tells us the final orbital separation. This means that the larger (smaller) α λ,
the larger (smaller) the final orbital separation.

Actually, we have known for a long time (see [78] for a review) that this simple formal-
ism is a poor description of the physics of CE, which is considerably more complicated.
For example, there is a number of observed systems for which an α > 1 is required, which
is obviously unphysical. Moreover, λ cannot be the same for all stars. It is expected to
vary wildly not only from star to star but also during different evolutionary stages of the
same star. Several authors [79,80] have estimated Eenv directly from their stellar models,
which removes the λ parameter from eq. (9) and significantly improves this formalism.
However, even in this case, we cannot get rid of the α parameter.

Figure 6 shows the distribution of total masses of merging BHs obtained with the
same code (MOBSE [81]) by changing solely the value of αλ. The difference between the
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Fig. 6. – Distribution of total masses (M = m1 + m2) of merging BH binaries in the LIGO-
Virgo instrumental horizon, obtained with the MOBSE code [81]. Merging binaries come from
progenitors with different metallicity and were sampled as described in [86]. The only difference
between the three histograms is the value of αλ in the CE formalism. Red solid line: αλ = 0.1;
green dot-dashed line: αλ = 1.5; blue dotted line: αλ = 0.02.

three mass distributions is a clear example of how important is CE for the demography
of BH binaries.

Thus, it would be extremely important to model the CE in detail, for example with
numerical simulations. A lot of effort has been put on this in the last few years, but
there are still many open questions (see the review by [78]). For example, we do not
have self-consistent models of the onset of CE, when an unstable mass transfer prevents
the envelope from co-rotating with the core. Usually, hydrodynamical simulations of CE
start when the core of the companion is already at the surface of the envelope.

The only part of CE which has been successfully modelled by several authors (e.g., [82-
85]) is the initial spiral in phase, when the two cores spiral in on a dynamical time scale
(≈ 100 days).

However, at the end of this dynamical spiral in only a small fraction of the envelope
(∼ 25 per cent [85]) appears to be ejected in most simulations. When the two cores
are sufficiently close that they are separated only by a small gas mass, the spiral-in
slows down and the system evolves on the Kelvin-Helmholtz timescale of the envelope
(≈ 103−5 years). Simulating the system for a Kelvin-Helmholtz timescale is prohibitive
for current simulations. Thus, the description of CE remains the conundrum of massive
binary evolution.
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3.3. Alternative evolution to CE . – Massive fast-rotating stars can have a chemically
homogeneous evolution (CHE): they do not develop a chemical composition gradient
because of the mixing induced by rotation. This is particularly true if the star is metal
poor, because stellar winds are not efficient in removing angular momentum. If a binary
is very close, the spins of its members are even increased during stellar life, because of
tidal synchronisation. The radii of stars following CHE are usually much smaller than
the radii of stars developing a chemical composition gradient [87, 88]. This implies that
even very close binaries (few tens of solar radii) can avoid CE.

Authors of ref. [89] simulate very close binaries whose components are fast-rotating
massive stars. A number of their simulated binaries evolve into contact binaries where
both binary components fill and even overfill their Roche volumes. If metallicity is
sufficiently low and rotation sufficiently fast, these binaries may evolve as “over-contact”
binaries: the over-contact phase differs from a classical CE phase because co-rotation
can, in principle, be maintained as long as material does not overflow the L2 point. This
means that a spiral-in that is due to viscous drag can be avoided, resulting in a stable
system evolving on a nuclear timescale.

Such over-contact binaries maintain relatively small stellar radii during their evolution
(few tens of the solar radius) and may evolve into a double BH binary with a very short
orbital period. This scenario predicts the formation of merging BHs with relatively
large masses (> 20M�), nearly equal mass (q = 1), and with large aligned spins. The
latter prediction is quite at odds with the effective spins of GW150914, GW170104, and
GW170814.

4. – The dynamics of black hole binaries

In the previous sections of this review, we discussed the formation of BH binaries as
isolated binaries. There is an alternative channel for BH binary formation: the dynamical
evolution scenario.

4.1. Dynamically active environments. – Collisional dynamics is important for the
evolution of binaries only if they are in a dense environment (� 103 stars pc−3), such
as a star cluster. On the other hand, astrophysicists believe that the vast majority of
massive stars (which are BH progenitors) form in star clusters [90-93].

Most studies of dynamical formation of BH binaries focus on globular clusters
(e.g., [12, 13, 94-100]). Globular clusters are old stellar systems (∼ 12 Gyr), mostly very
massive (> 104M�) and dense (> 104M� pc−3). They are sites of intense dynamical
processes (such as the gravothermal catastrophe). However, globular clusters represent
a tiny fraction of the baryonic mass in the Universe (� 1 per cent [101]).

In contrast, only few studies of BH binaries (e.g. [102-107]) focus on young star
clusters. These young (� 100 Myr), relatively dense (> 103M� pc−3) stellar systems are
thought to be the most common birthplace of massive stars. When they evaporate (by
gas loss) or are disrupted by the tidal field of their host galaxy, their stellar content
is released into the field. Thus, it is reasonable to expect that a large fraction of BH
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binaries which are now in the field may have formed in young star clusters, where they
participated in the dynamics of the cluster. The reason why young star clusters have been
neglected in the past is exquisitely numerical: the dynamics of young star clusters needs
to be studied with direct N -body simulations, which are rather expensive (they scale
as N2), combined with population-synthesis simulations. Moreover, their dynamical
evolution may be significantly affected by the presence of gas. Including gas would
require a challenging interface between direct N -body simulations and hydrodynamical
simulations, which has been done in very few cases [108-115] and has been never used to
study BH binaries.

A third flavour of star cluster where BH binaries might form and evolve dynamically
are nuclear star clusters, i.e. star clusters which lie in the nuclei of galaxies. Nuclear star
clusters are rather common in galaxies (e.g. [116-118]), are usually more massive and
denser than globular clusters, and may co-exist with super-massive black holes. These
features make them unique among star clusters, for the effects that we shall describe in
the next sections.

4.2. Three-body encounters. – We now review what are the main dynamical effects
which can affect a BH binary, starting from three-body encounters.

Binaries have a energy reservoir, their internal energy:

Eint =
1
2

μ v2 − Gm1 m2

r
,(10)

where μ = m1 m2/(m1 +m2) is the reduced mass of the binary (whose components have
mass m1 and m2), v is the relative velocity between the two members of the binary, and
r is the distance between the two members of the binary. As shown by Kepler’s laws,
Eint = −Eb = −Gm1 m2/(2 a), where Eb is the binding energy of the binary (a being
the semi-major axis of the binary).

The internal energy of a binary can be exchanged with other stars only if the binary
undergoes a close encounter with a star, so that its orbital parameters are perturbed by
the intruder. This happens only if a single star approaches the binary by few times its
orbital separation. We define this close encounter between a binary and a single star as
a three-body encounter. For this to happen with a non-negligible frequency, the binary
must be in a dense environment, because the rate of three-body encounters scales with
the local density of stars.

Three-body encounters have crucial effects on BH binaries, such as exchanges, hard-
ening, and ejections.

4.3. Exchanges . – Dynamical exchanges are three-body encounters during which one
of the former members of the binary is replaced by the intruder (see fig. 7).

Exchanges may lead to the formation of new double BH binaries. As is shown in
fig. 7, if a binary composed of a BH and a low-mass star undergoes an exchange with
a single BH, this leads to the formation of a new double BH binary. This is a very
important difference between BHs in the field and in star clusters: a BH which forms as
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Fig. 7. – Cartoon of a dynamical exchange. A binary composed of a BH and a star interacts
with a BH, which replaces the star.

a single object in the field has negligible chances to become member of a binary system,
while a single BH in the core of a star cluster has good chances of becoming member of
a binary by exchanges.

Exchanges are expected to lead to the formation of many more double BH binaries
than they can destroy, because the probability for an intruder to replace one of the
members of a binary is ≈ 0 if the intruder is less massive than both binary members,
while it suddenly jumps to ∼ 1 if the intruder is more massive than one of the members
of the binary [119]. Since BHs are among the most massive bodies in a star cluster
(after their massive progenitors transform into them), they are very efficient in acquiring
companions through dynamical exchanges.

Thus, exchanges are a crucial mechanism to form BH binaries dynamically. By means
of direct N -body simulations, Ziosi et al. [102] show that > 90 per cent of double BH
binaries in young star clusters form by dynamical exchange.

Moreover, BH binaries formed via dynamical exchange will have some distinctive
features with respect to field BH binaries (see, e.g., [102]):

– double BH binaries formed by exchanges will be (on average) more massive than
isolated double BH binaries, because more massive intruders have higher chances
to acquire companions;

– exchanges trigger the formation of highly eccentric double BH binaries (eccentricity
is then significantly reduced by circularisation induced by GW emission, if the
binary enters the regime where GW emission is effective);

– double BH binaries born by exchange will likely have misaligned spins, because
exchanges tend to randomize the spins.

Zevin et al. [120] compare a set of simulations of field binaries with a set of simulations
of globular cluster binaries, run with the same population-synthesis code. The most
striking difference between merging BH binaries in their globular cluster simulations
and in their population-synthesis simulations is the dearth of merging BHs with mass
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< 10M� in the globular cluster simulations. This is due to the fact that exchanges tend
to destroy binaries composed of light BHs.

Spin misalignments are another possible feature to discriminate between field binaries
and star cluster binaries (e.g., [121, 122]). Unfortunately, there is no robust theory to
predict the magnitude of the spin of a BH given the spin of its parent star [123]. In
principle, we do not know whether BH spins are low (∼ 0) or high (∼ 1), given the spin
of the parent star. However, we can reasonably affirm that the orientation of the spin of
a BH matches the orientation of the spin of its progenitor star, if the latter evolved in
isolation and directly collapsed to a BH.

Thus, we expect that an isolated binary in which the secondary becomes a BH by
direct collapse results in a double BH binary with aligned spins (i.e. the spins of the
two BHs have the same orientation, which is approximately the same as the orbital
angular-momentum direction of the binary), because tidal evolution and mass transfer
in a binary tend to synchronise the spins [72]. On the other hand, if the secondary
undergoes a SN explosion, the natal kick may reshuffle spins. For dynamically formed
BH binaries (through exchange) we expect misaligned, or even nearly isotropic spins,
because any original spin alignment is completely reset by three-body encounters.

Currently, we have only poor constraints on BH spins for the first three GW detec-
tions. LIGO can only provide a measurement for the effective spin χeff which is the
sum of the components of the spins of the two BHs along the orbital angular-momentum
vector of the binary:

χeff =
c

G (m1 + m2)

(
�S1

m1
+

�S2

m2

)
·

�L

|�L| ≡
1

m1 + m2
(m1 χ1 + m2 χ2),(11)

where �S1 and �S2 are the spin angular-momentum vectors of the BHs, �L is the orbital
angular momentum of the binary, χ1 and χ2 are the dimensionless projections of the
individual BH spins, respectively. By construction, −1 ≤ χeff ≤ 1. A positive (negative)
value of χeff means that the spins of the two BHs are aligned (counter-aligned).

Only for GW151226, the measured value of χeff is significantly larger than zero,
indicating (at least partial) alignment. For GW150914, LVT151012, GW170104 and
GW170814, the effective spin is consistent with zero and may be either negative or
positive. With a Bayesian approach, [121] estimate that an isotropic distribution of
spins can be preferred with respect to an aligned distribution of spins at 2.4σ confidence
level, based on the first three detections and on the candidate event LVT151012.

4.4. Hardening . – If a double BH binary undergoes a number of three-body encounters
during its life, we expect that its semi-major axis will shrink as an effect of the encounters.
This process is called dynamical hardening.

Following [124], we call hard binaries (soft binaries) those binaries with binding energy
larger (smaller) than the average kinetic energy of a star in the star cluster. According to
Heggie’s law [124], hard binaries tend to harden (i.e. to become more and more bound)
via three-body encounters. In other words, a fraction of the internal energy of a hard

 EBSCOhost - printed on 2/13/2023 8:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



Astrophysics of stellar black holes 105

Fig. 8. – Time evolution of the orbital period of a simulated BH binary (from an N -body
simulation of a globular cluster). Adapted from fig. 3 of Hurley et al. [125].

binary can be transferred into kinetic energy of the intruders and of the centre-of-mass
of the binary during three-body encounters. This means that the binary loses internal
energy and its semi-major axis shrinks.

Most double BH binaries are expected to be hard binaries, because BHs are among the
most massive bodies in star clusters. Thus, double BH binaries are expected to harden
as a consequence of three-body encounters. The hardening process may be sufficiently
effective to shrink a BH binary till it enters the regime where GW emission is efficient:
a BH binary which is initially too loose to merge may then become a GW source thanks
to dynamical hardening.

Figure 8 is a clear example of this process. It shows the period evolution of a simulated
double BH binary in a globular cluster. The orbital period decreases till the binary
eventually merges. The decrease of the orbital period is not smooth, but proceeds by
smaller and larger steps, which indicate hardening due to three-body encounters and
even few exchanges.

It is even possible to make a simple analytic estimate of the evolution of the semi-
major axis of a double BH binary which is affected by three-body encounters and by GW
emission (eq. (9) of [14]):

da

dt
= −2π ξ

Gρ

σ
a2 − 64

5
G3 m1 m2 (m1 + m2)

c5 (1 − e2)7/2
a−3,(12)

where ξ ∼ 0.2–1 is a dimensionless parameter [126], ρ is the local mass density of stars,
σ is the local velocity dispersion, c is the light speed, e is the eccentricity. The first part
of the right-hand term of eq. (12) accounts for the effect of three-body hardening on the
semi-major axis. It scales as da/dt ∝ a2, indicating that the larger the binary, the more
effective the hardening. This can be easily understood considering that the geometric
cross section for three-body interactions with a binary scales as a2.
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Fig. 9. – Time evolution of the semi-major axis of three BH binaries estimated from eq. (12). Blue
dashed line: BH binary with masses m1 = 200M�, m2 = 30M�; red solid line: m1 = 36M�,
m2 = 29M�; black dotted line: m1 = 14M�, m2 = 7.5M�. For all BH binaries: ξ = 1,
ρ = 105M� pc−3, σ = 10 km s−1, initial semi-major axis of the BH binary ai = 10 AU.

The second part of the right-hand term of eq. (12) accounts for energy loss by GW
emission. It is the first-order approximation of the calculation by [127]. It scales as
da/dt ∝ a−3 indicating that GW emission becomes efficient only when the two BHs are
very close to each other.

In fig. 9 we solve eq. (12) numerically for three double BH binaries with different mass.
All binaries evolve through i) a first phase in which hardening by three-body encounters
dominates the evolution of the binary, ii) a second phase in which the semi-major axis
stalls because three-body encounters become less efficient as the semi-major axis shrink,
but the binary is still too large for GW emission to become efficient, and iii) a third
phase in which the semi-major axis drops because the binary enters the regime where
GW emission is efficient.

4.5. Dynamical ejections. – During three-body encounters, a fraction of the internal
energy of a hard binary is transferred into kinetic energy of the intruders and of the
centre-of-mass of the binary. As a consequence, the binary recoils. The recoil velocity is
generally of the order of few km s−1, but can be up to several hundred km s−1.

Since the escape velocity from a globular cluster is ∼ 30 km s−1 and the escape velocity
from a young star cluster or an open cluster is even lower, both the recoiling binary and
the intruder can be ejected from the parent star cluster. If the binary and/or the intruder
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Fig. 10. – Distribution of 2-dimensional distances (r2D) of stars from the centre of the parent
star cluster 100 Myr after the beginning of the simulation. This plot combines 300 simulations of
young star clusters discussed in [69]. All stars shown in the figure have distance > 10 pc from the
centre of the star cluster, indicating that they were ejected. Blue histogram: all ejected stars;
green histogram: ejected NSs; red histogram: ejected BHs. NSs are ejected both by SN kick
(50 per cent) and by dynamical recoil (50 per cent), while most BHs are ejected by dynamical
recoil.

are ejected, they become field objects and cannot participate in the dynamics of the star
cluster anymore. Thus, not only the double BH binary stops hardening, but also the
intruder, if it is another compact object, loses any chance of entering a new binary by
dynamical exchange.

Figure 10 shows that this process is particularly efficient in young star clusters, espe-
cially for NSs (which are lighter than BHs). In 100 Myr, about 90 per cent of NSs and
40 per cent of BHs are ejected from the parent cluster, either by dynamical recoil or by
SN kick [69,95].

Dynamical ejections of double NSs and of BH-NS binaries were proposed to be one of
the possible explanations for the hostless short gamma-ray bursts, i.e. gamma-ray bursts
whose position in the sky appears to be outside any observed galaxy [128]. Hostless
bursts may be ∼ 25 per cent of all short gamma-ray bursts.

In general, ejections of compact objects and compact-object binaries from their parent
star cluster can be the result of at least three different processes:
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– dynamical ejections;

– SN kicks [60,129];

– GW recoil [130-132].

GW recoil is a relativistic kick occurring when a BH binary merges. It results in kick
velocities up to thousands of km s−1 and usually of the order of hundreds of km s−1.

Ejections (by dynamics, SN kick or GW recoil) may be the main process at work
against mergers of second-generation BHs, where for second-generation BHs we mean
BHs which were born from the merger of two BHs rather than from the collapse of a
star [133]. In globular clusters, open clusters and young star clusters, a BH binary has
good chances of being ejected by three-body encounters before it merges (see [134] for
a detailed calculation) and a very high chance of being ejected by GW recoil after it
merges. The only place where merging BHs can easily avoid ejection by GW recoil are
nuclear-star clusters, whose escape velocity is hundreds of km s−1.

4.6. Formation of intermediate-mass black holes by runaway collisions. – In sect. 2.3,
we have mentioned that intermediate-mass black holes (IMBHs, i.e. BHs with mass
100 � mBH � 104M�) form from the direct collapse of metal-poor extremely massive
stars [70]. Other formation channels have been proposed for IMBHs and most of them
involve dynamics of star clusters. The formation of massive BHs by runaway collisions
has been originally proposed about half a century ago [135,136] and was then elaborated
by several authors (e.g. [103,137-142]).

The basic idea (see fig. 11 for a cartoon) is that if the most massive stars in a dense
young star cluster sink to the centre of the cluster by dynamical friction on a time shorter
than their lifetime (i.e. before core-collapse SNe take place, removing a large fraction of
their mass), then the density of massive stars in the cluster core becomes extremely
high. This makes collisions between massive stars extremely likely. Actually, direct
N -body simulations show that collisions between massive stars proceed in a runaway
sense, leading to the formation of a very massive (� 100M�) star [138]. The main open
question is: “What is the final mass of the collision product? Is the collision product
going to collapse to an IMBH?”.

There are essentially two critical issues: i) how much mass is lost during the collisions?
ii) how much mass does the very-massive star lose by stellar winds?

Hydrodynamical simulations of colliding stars [143, 144] show that massive star can
lose ≈ 25 per cent of their mass during collisions. Even if we optimistically assume that
no mass is lost during and immediately after the collision (when the collision product
relaxes to a new equilibrium), the resulting very massive star will be strongly radiation
pressure dominated and is expected to lose a significant fraction of its mass by stellar
winds. Recent studies including the effect of the Eddington factor on mass loss [70,103]
show that IMBHs cannot form from runaway collisions at solar metallicity. At lower
metallicity (Z � 0.1Z�) approximately 10–30 per cent of runaway collision products in
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Fig. 11. – Cartoon of the runaway collision scenario in dense young star clusters (see, e.g., [138]).
From left to right: (1) the massive stars (red big stars) and the low-mass stars (blue small stars)
follow the same initial spatial distribution; (2) dynamical friction leads the massive stars to sink
to the core of the cluster, where they start colliding between each other; (3) a very massive star
(� 100M�) forms as a consequence of the runaway collisions; (4) this massive star might be
able to directly collapse into a BH.

young dense star clusters can become IMBHs by direct collapse (they also avoid being
disrupted by pair-instability SNe).

The majority of runaway collision products do not become IMBHs but they end up
as relatively massive BHs (∼ 20–90M� [103]). If they remain inside their parent star
cluster, such massive BHs are extremely efficient in acquiring companions by dynamical
exchanges. Mapelli [103] find that all stable binaries formed by the runaway collision
product are double compact object binaries and thus are possibly important sources of
GWs in the LIGO-Virgo range.

4.7. Formation of intermediate-mass black holes by repeated mergers. – The runaway
collision scenario occurs only in the early stages of the evolution of a star cluster. How-
ever, it has been proposed that IMBHs form even in old clusters (e.g., globular clusters)
by repeated mergers of smaller BHs (e.g., [134,142]).

The simple idea is illustrated in fig. 12. A stellar BH binary in a star cluster is
usually a rather hard binary. Thus, it shrinks by dynamical hardening till it may enter
the regime where GW emission is effective. In this case, the BH binary merges leaving a
single more massive BH. Given its relatively large mass, the new BH has good chances
to acquire a new companion by exchange. Then, the new BH binary starts hardening
again by three-body encounters and the story may repeat several times, till the main BH
becomes an IMBH.

This scenario has one big advantage: it does not depend on stellar evolution, so we
are confident that the BH will grow in mass by mergers, if it remains inside the cluster.
However, there are several issues. First, the BH binary may be ejected by dynamical
recoils, received as an effect of three-body encounters. Recoils get stronger and stronger,
as the orbital separation decreases [134]. The BH binary will avoid ejection by dynamical
recoil only if it is sufficiently massive (� 50M� for a dense globular cluster [14]). If the
BH binary is ejected, the loop breaks and no IMBH is formed.

Second and even more important, the merger of two BHs involves a relativistic kick.
This kick may be as large as hundreds of km s−1 [130], leading to the ejection of the BH
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Fig. 12. – Cartoon of the repeated merger scenario in old-star clusters (see, e.g., [134, 142]).
From top to bottom and from left to right: (1) a BH binary undergoes three-body encounters
in a star cluster; (2) three-body encounters harden the BH binary, shrinking its semi-major
axis; (3) the BH binary hardens by three-body encounters till it enters the regime where GW
emission is efficient: the binary semi-major axis decays by GW emission and the binary merges;
(4) a single bigger BH forms as result of the merger, which may acquire a new companion by
dynamical exchange (if it is not ejected by GW recoil); (5) the new binary containing the bigger
BH starts shrinking again by three body encounters (1). This loop may be repeated several
times till the main BH becomes an IMBH.

from the parent star cluster (unless it is a nuclear star cluster). Also in this case, the
loop breaks and no IMBH is formed.

Finally, even if the BH binary is not ejected, this scenario is relatively inefficient: if the
seed BH is ∼ 50M�, several Gyr are required to form an IMBH with mass ∼ 500M� [134].

Monte Carlo simulations by [142] show that both the runaway collision scenario and
the repeated-merger scenario can be at work in star clusters. Figure 13 clearly shows
that two classes of IMBHs form in simulations: i) runaway collision IMBHs form in the
first few Myr of the life of a star cluster and grow in mass very efficiently; ii) repeated-
merger IMBHs start forming much later (� 5 Gyr) and their growth is less efficient. It
is important to note that these simulations do not include prescriptions for GW recoils,
which might dramatically suppress the formation of IMBHs by repeated mergers [145].

4.8. Kozai-Lidov resonance. – Unlike the other dynamical processes discussed so far,
Kozai-Lidov (KL) resonance [146, 147] can occur both in the field and in star clusters.
KL resonance appears whenever we have a stable hierarchical triple system (i.e. a triple
composed of an inner binary and an outer body orbiting the inner binary), in which the
orbital plane of the outer body is inclined with respect to the orbital plane of the inner
binary. Periodic perturbations induced by the outer body on the inner binary cause
i) the eccentricity of the inner binary and ii) the inclination between the orbital plane of
the inner binary and that of the outer body to oscillate.
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Fig. 13. – IMBH mass growth as a function of time in Monte Carlo simulations of globular
clusters [142]. The red (blue) box highlights IMBHs formed by runaway collisions (repeated
mergers). Dashed lines: models with reduced mass accretion on to the IMBH and reduced star
expansion after merger events. Solid lines: models with the standard prescription for IMBH
mass accretion rates and post-merger expansion. See [142] for further details. Adapted from
fig. 6 of [142].

Figure 14 is an example of KL oscillations in three-body simulations. It is worth
noting that the semi-major axis is not affected, because KL resonance does not imply an
energy exchange between inner and outer binary.

KL oscillations may enhance BH binary mergers because the timescale for merger by
GW emission strongly depends on the eccentricity e of the binary [127]:

tGW =
5

256
c5 a4 (1 − e2)7/2

G3 m1 m2 (m1 + m2)
.(13)

It might seem that hierarchical triples are rather exotic systems. This is not the
case. In fact, ∼ 10 per cent of low-mass stars are in triple systems [148-150]. This
fraction gradually increases for more massive stars [151], up to ∼ 50 per cent for B-type
stars [152-155]. In star clusters, stable hierarchical triple systems may form dynamically,
via four-body or multi-body encounters.

Kimpson et al. [104] find that KL resonance may enhance the BH merger rate by
≈ 40 per cent in young star clusters and open clusters. On the other hand, Antonini et
al. [156] find that KL resonance in field triples can account for � 3 mergers Gpc−3 yr−1.
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Fig. 14. – Simulation of three hierarchical triples undergoing Kozai-Lidov (KL) resonance. Black
solid line: simulation without post-Newtonian terms. Red dashed line: simulation with 2.5 Post-
Newtonian term. From top to bottom: time evolution of semi-major axis; time evolution of the
eccentricity of the inner binary; time evolution of the inclination between the orbital plane of the
inner and outer binary; time for coalescence by GW emission as a function of time, expressed
as in [127]. From fig. 5 of [104].

The main signature of the merger of a KL system is the non-zero eccentricity until
very few seconds before the merger. Eccentricity might be significantly non-zero even
when the system enters the LIGO-Virgo frequency range, as shown in fig. 15.

KL resonances have an intriguing application in nuclear-star clusters. If the stellar
BH binary is gravitationally bound to the super-massive BH (SMBH) at the centre of
the galaxy, then we have a peculiar triple system where the inner binary is composed
of the stellar BH binary and the outer body is the SMBH [157]. Also in this case, the
merging BH has good chances of retaining a non-zero eccentricity till it emits GWs in
the LIGO-Virgo frequency range.

4.9. Summary of dynamics and open issues. – In this section, we have seen that dy-
namics is a crucial ingredient to understand BH demography. Dynamical interactions
(three- and few-body close encounters) can favour the coalescence of BH binaries through
dynamical hardening. New BH binaries can form via dynamical exchanges. Both pro-
cesses suggest a boost of the BH binary merger rate in a dynamically active environment.
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Fig. 15. – Evolution of the eccentricity in the last few seconds before the last stable orbit
(LSO) of the three hierarchical triples already shown in fig. 14. The LSO was estimated as
aLSO = 6 G (m1 + m2)/c2. The eccentricity at the LSO is e = 0.3246 for the system with m1,
m2 = 39, 18M�, e = 0.0068 for m1, m2 = 72, 20M�, and e = 0.5497 for m1, m2 = 61, 20M�.

Moreover, exchanges favour the formation of more massive binaries, with higher initial
eccentricity and with misaligned spins. Also KL resonances favour the coalescence of
more massive binaries and with higher eccentricity, even close to the last stable orbit.

On the other hand, three-body encounters might trigger the ejection of compact-object
binaries from their natal environment, inducing a significant displacement between the
birth place of the binary and the location of its merger.

Finally, dynamics can lead to the formation of IMBHs, with mass of few hundreds
solar masses.

We expect dynamics to be important for BH binaries also because massive stars (which
are the progenitors of BHs) form preferentially in young star clusters [93], which are
dynamically active places. Despite this, the vast majority of studies of BH demography
either do not include dynamics or focus only on old globular clusters. Globular clusters
are indeed systems where dynamics is tremendously important for BH binaries, but
they represent a small fraction of the stellar mass in the Universe (less than ∼ few per
cent [101]).

In contrast, young star clusters are the most common birthplace of massive stars, but
only few works focus on BH binaries in young star clusters [102,103,105-107]. Even these
studies assume overly simplified initial conditions for their simulations. For example, they
do not include gas, which is a fundamental component of young star clusters. The main
reason for this “omission” is purely numerical. Old massive globular clusters are relaxed
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(nearly) spherically symmetric structures with no gas. For most of their life, they host
only low-mass stars and compact remnants. They can be evolved with Monte Carlo
codes (e.g. MOCCA [158]), which are considerably faster than direct N -body codes.
In contrast, young star clusters are asymmetric, not yet relaxed, rich of gas and of
substructures. Direct N -body codes, which scale as N2, are required to model young star
clusters. Adding gas to the general picture requires to combine expensive direct N -body
simulations with hydrodynamical simulations. Only few authors attempted to model
young star clusters with both direct N -body and hydrodynamics, in most cases simply
by dividing the integration in the two separate parts: first the hydrodynamics and then
the direct N -body dynamics, after most gas has been converted into stars [108-115,159].
Last but not least, young star clusters host short-lived massive stars. Thus, stellar
evolution processes are very fast in young star clusters and they have a dramatic impact
on the (hydro)dynamics of the system. A heroic theoretical effort is needed to properly
model young star clusters and their impact on the demography of BH binaries.

5. – Black hole binaries in cosmological context

Population synthesis codes model BH binaries as isolated systems, with essentially no
information on the environment. Even dynamical simulations are restricted to a limited
environment: the parent star cluster. On the other hand, BH binaries merging within the
LIGO-Virgo instrumental horizon (typically at redshift z ∼ 0.1–0.2) might have formed
at much higher redshift. Moreover, third-generation ground-based gravitational-wave
detectors (e.g., Einstein Telescope [160]) will be able to observe merging BH binaries up
to redshift z ≈ 10. Thus, the cosmological framework in which BH binaries and their
progenitors evolve cannot be neglected.

Accounting for cosmology in models of stellar-size BH binaries appears as a desperate
challenge, because of the humongous dynamical range: orbital separation of BH binaries
are of the order of few astronomical units, while cosmic structures are several hundreds of
Mpc. Few theoretical studies have faced this challenge, adopting two different procedures.

5.1. Analytic prescriptions. – Some authors (e.g., [161-164]) combine the outputs
of population synthesis codes with analytic prescriptions. The main ingredients are
the cosmic star formation rate density and the average evolution of metallicity with
redshift [165]. In some previous work (e.g., [161, 164]) a Press-Schechter–like formalism
is adopted, to include the mass of the host galaxy in the general picture. Lamberts et
al. [164] even include a redshift-dependent description for the mass-metallicity relation
(hereafter MZR), to account for the fact that the mass of a galaxy and its observed
metallicity are deeply connected. The main advantage of this procedure is that the star
formation rate and the metallicity evolution can be derived more straightforwardly from
the data. The main drawback is that it is extremely difficult, if not impossible, to trace
the evolution of the host galaxy of the BH binary, through its galaxy merger tree.

5.2. Cosmological simulations. – The alternative approach feeds the outputs of popu-
lation synthesis simulations into cosmological simulations [86,166,167], through a Monte
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Fig. 16. – Cosmic merger rate density of BH binaries in the comoving frame (RBHB) as a
function of the look-back time (tlb, bottom x-axis) and of the redshift (z, top x-axis) for several
population synthesis models [81] interfaced with the Illustris simulation. Red solid line: model
D (delayed SN model [60], CE parameters α λ = 0.1, fiducial distribution for the natal kicks
of the BHs). Black dashed line: model R, same as model D but for a rapid SN model [60].
Green dot-dashed line: model D1.5 (same as model D but for α λ = 1.5). Violet dot-dashed
line: model DHG (same as model D but assuming that Hertzsprung gap donors can survive a
CE phase). Orange dashed line: model DK (same as model D but with maximum BH natal
kicks). Right-hand y-axis: cosmic star formation rate density in the Illustris, shown as a thin
grey line. From fig. 1 of [86].

Carlo approach. This has the clear advantage that the properties of the host galaxies can
be easily reconstructed across cosmic time. However, the ideal thing would be to have
a high-resolution cosmological simulation (sufficient to resolve also small dwarf galaxies)
with a box as large as the instrumental horizon of the GW detectors. This is obviously
impossible. High-resolution simulations have usually a box of few comoving Mpc3, while
simulations with a larger box cannot resolve dwarf galaxies. Moreover, this procedure
requires to use the cosmic star formation rate density and the redshift-dependent MZR
which are intrinsic to the cosmological simulations. While most state-of-the-art cosmo-
logical simulations reproduce the cosmic star formation rate density reasonably well, the
MZR is an elusive feature, creating more than a trouble even in the most advanced
cosmological simulations.

Recently, [86] combined their population-synthesis simulations with the Illustris cos-
mological box [168-170]. The size of the Illustris (length = 106.5 comoving Mpc) is
sufficient to satisfy the cosmological principle, but galaxies with stellar mass � 108M�
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are heavily under-resolved. The Illustris matches the cosmic star formation rate density
and recover a MZR. However, the simulated MZR is sensibly different from the observed
relation: the curve is relatively steeper at low metallicity and there is no flattening at
high mass [171, 172]. Uncertainties connected with the MZR are estimated to affect the
BH merger rate by ∼ 20 per cent. Keeping these caveats in mind [115] are able to
reconstruct the BH merger rate across cosmic time.

Figure 16 shows the cosmic merger rate of BH binaries in the comoving frame ob-
tained by [86] for several different population-synthesis models (the assumptions for CE
treatment, natal kick distribution and SN recipes are changed from model to model). In
all considered models, the cosmic BH merger rate has a peak at relatively large redshift
(z ∼ 2–4) and then decreases slowly down to the current time. The trend of the cosmic
merger rate is quite similar to the trend of the cosmic star formation rate density curve.

Authors of ref. [167] adopt a complementary approach to study the importance of
dwarf galaxies for GW detections. They use the GAMESH pipeline to produce a high-
resolution simulation of the Local Group (length = 4 Mpc comoving). This means that
the considered portion of the Universe is strongly biased, but the resolution is sufficient to
investigate BH binaries in small (> 106M�) dwarf galaxies. One of their main conclusions
is that GW150914-like events originate mostly from small metal-poor galaxies.

The approach of comparing the results of large-box cosmological simulations with
small-box high-resolution simulations is surely crucial to understand how BH binaries
populate the galaxies across cosmic time.

6. – Summary and outlook

We reviewed our current understanding of the astrophysics of stellar-mass BHs. The
era of gravitational-wave astrophysics has just begun and has already produced two
formidable results: BH binaries exist and can host BHs with mass > 30M� [1, 7].

According to nowadays stellar evolution and supernova theories, such massive BHs
can form only from massive relatively metal-poor stars. At low metallicity, stellar winds
are quenched and stars end their life with a larger mass than their metal-rich analogues.
If the final mass and the final core mass are sufficiently large, these stars can directly
collapse into BHs, producing BHs with mass � 30M� [26, 27]. An alternative scenario
predicts that ∼ 30–40M� BHs are the result of gravitational instabilities in the very
early Universe (primordial BHs, e.g. [17]).

The formation channels of merging BH binaries are still an open question. All pro-
posed scenarios have several drawbacks and uncertainties. While mass transfer and
common envelope are a major issue in the isolated binary evolution scenario, even the
dynamical evolution is still effected by major issues (e.g. the small statistics about BHs
in young star clusters, and the major simplifications adopted in dynamical simulations).

Finally, a global picture is missing, which combines stellar and binary evolution with
dynamics and cosmology, aimed at reconstructing the BH merger history across cosmic
time. This is crucial for the astrophysical interpretation of LIGO-Virgo data and for
meeting the challenge of third-generation ground-based GW detectors.
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Not. R. Astron. Soc., 464 (2017) L36.

[101] Harris W. E., Harris G. L. H. and Alessi M., Astrophys. J., 772 (2013) 82.

[102] Ziosi B. M., Mapelli M., Branchesi M. and Tormen G., Mon. Not. R. Astron. Soc.,
441 (2014) 3703.

[103] Mapelli M., Mon. Not. R. Astron. Soc., 459 (2016) 3432.

[104] Kimpson T. O., Spera M., Mapelli M. and Ziosi B. M., Mon. Not. R. Astron. Soc.,
463 (2016) 2443.

[105] Banerjee S., Mon. Not. R. Astron. Soc., 467 (2017) 524.

[106] Banerjee S., arXiv:1707.00922 (2017).

[107] Fujii M., Tanikawa A. and Makino J., arXiv:1709.02058 (2017).

[108] Moeckel N. and Bate M. R., Mon. Not. R. Astron. Soc., 404 (2010) 721.

[109] Fujii M. S. and Portegies Zwart S., Mon. Not. R. Astron. Soc., 449 (2015) 726.

[110] Fujii M. S. and Portegies Zwart S., Astrophys. J., 817 (2016) 4.

[111] Parker R. J. and Dale J. E., Mon. Not. R. Astron. Soc., 432 (2013) 986.

[112] Parker R. J., Dale J. E. and Ercolano B., Mon. Not. R. Astron. Soc., 446 (2015)
4278.

[113] Parker R. J. and Dale J. E., Mon. Not. R. Astron. Soc., 451 (2015) 3664.

[114] Parker R. J. and Dale J. E., Mon. Not. R. Astron. Soc., 470 (2017) 390.

[115] Mapelli M., Mon. Not. R. Astron. Soc., 467 (2017) 3255.
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Summary. — On 2017 August 17 the Advanced LIGO and Advanced Virgo de-
tectors detected for the first time the signal, GW170817, from the coalescence of a
binary system of neutron stars (Abbott B. P. et al., Phys. Rev. Lett., 119 (2017)
161101). Exactly 1.7 s after the merger time (12:41:04 UTC) the Fermi Gamma-ray
Burst Monitor independently detected a gamma-ray burst, GRB170817A (Abbott
B. P. et al., Astrophys. J. Lett., 848 (2017) L13; L14). An extensive observing
campaign involving more than 70 world-wide ground and space observatories was
performed leading to the discovery of the counterpart signals across all the electro-
magnetic spectrum (Abbott B. P. et al., Astrophys. J. Lett., 848 (2017) L12). This
observational campaign marks the birth of multi-messenger astronomy, which uses
gravitational waves and electromagnetic emission. The collected multi-messenger
data confirmed ten-year-old theoretical models. And at the same time, the richness
of details of the taken data will require to develop new theory and to make other
observations in the coming years to be interpreted.
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1. – The first gravitational-wave observation of the coalescence of a binary
system of neutron stars

This gravitational-wave signal GW170817 (about 100 s starting from 24 Hz) was the
loudest yet observed, with a combined signal-to-noise ratio (SNR) of 32.4 and a false-
alarm-rate estimate of less than one per 8.0×104 years [1]. The signal carried information
about the astrophysical source: masses, tidal deformability, distance, inclination, and
sky localization. The component masses were inferred to be between 0.86 and 2.26M�,
and when restricting the component spins to a range consistent with the BNS observed
population, the component masses result in the range 1.17–1.60M�. These masses are in
agreement with the dynamically measured masses of known neutron stars in binaries [5],
and their inconsistency with the masses of known black holes in galactic binary systems
[6], suggesting that the GW170817 source was composed of two neutron stars.

However, the masses and lower limit on the compactness estimated from the
gravitational-wave observations does not allow us to exclude objects more compact than
neutron stars such as quark stars, black holes, or more exotic objects. The detection of
the electromagnetic counterpart demonstrates the presence of matter confirming at least
the presence of a neutron star in the system.

Details of the objects’ internal structure become important as the orbital separation
approaches the size of the bodies. As the gravitational-wave frequency increases, tidal
effects in binary neutron stars increasingly affect the phase and become significant above
fGW � 600 Hz. Unfortunately, the noise of the LIGO and Virgo detectors at these
frequencies made it difficult to extract signal information and only a lower bound on
the energy emitted Erad > 0.025M�c2 was set before the onset of strong tidal effects.
Estimates of the tidal deformability (or polarizability) disfavor equations of state that
predict less compact stars.

The luminosity distance estimate of 40+8
−14 Mpc set this GW signal as the closest

ever observed and, by association, the closest short gamma-ray burst with a distance
measurement. The viewing angle is constrained to be less than 56 degrees. The source
was localized by the Advanced LIGO and Virgo network within a sky region of 28 deg2

(90% probability) near the southern end of the constellation Hydra. The advanced Virgo
interferometer was essential for the sky localization. The low signal amplitude observed
(SNR=2) in Virgo with respect to the signal detected by the LIGO detectors indicated
that the source was close to a blind spot of the interferometer significantly constraining
the sky position. Distance and sky position located the source to within a volume of
380 Mpc3. A region of the local Universe where properties and distribution of the galaxies
are known. This played a key role to drive the successful optical search, which identified
the counterpart and the host galaxy.

Binary neutron star mergers may result in a black hole, or short- or long-lived neutron
star. In all these cases the remnant is expected to emit gravitational waves. However,
the ringdown of a black hole produces gravitational waves at frequencies around 6 kHz,
where the interferometer response is strongly reduced making its observation unfeasible.
Searches have been made for short (tens of ms) and intermediate duration (≤ 500 s)
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gravitational-wave signals from a neutron star remnant at frequencies up to 4 kHz without
evidence of a postmerger signal of astrophysical origin. The upper limits placed on the
strength of the signal cannot definitively rule out the existence of a short- or long-lived
postmerger neutron star.

The detection of GW170817 enables to estimate the local coalescence rate density of
binary systems of neutron stars to 15403200

−1220Gpc−3yr−1 [1].

2. – Discovery of the high-energy counterpart

A hard-X-ray electromagnetic (EM) counterpart, short-duration, sub-luminous
Gamma Ray Burst, GRB170817A, was detected by the Fermi-GBM at 12:41:06 UTC,
and announced automatically just 14 s after. It was also detected by the International
Gamma-Ray Astrophysics Laboratory (INTEGRAL) through an offline search [7] initi-
ated by the LIGO-Virgo and Fermi-GBM notice.

The probability of the near-simultaneous temporal and spatial observation of
GRB170817A and GW170817 occurring by chance is 5.0 × 10−8. The association of
GW170817 and GRB170817A provides insight into the origin of short gamma-ray bursts
and fundamental physics. These observations are the first firm evidence that at least a
fraction of short-duration GRBs are associated with compact star mergers [2].

The arrival delay of only (+1.74 ± 0.05) s between high-energy and GW signal and
travelled distance places stringent constraints on the difference between the speed of
gravity and the speed of light to be between +3× 10−15 and +7× 10−16 times the speed
of light. The measurement is consistent with GWs propagating at the speed of light as
predicted by general relativity. The strong constraint on the speed of GWs ruled out
many classes of modified gravity models (see, e.g. [8, 9]).

GRB170817A is the closest short GRB with known distance. Its fluence of 2.2 ×
10−7erg cm−2 in the 10–1000 keV energy range corresponds to a gamma-ray isotropic
equivalent energy Eiso 4.3 × 1046 erg, which makes it three to four orders of magnitude
smaller than the average energy of short GRBs with known redshift. The low luminosity
has been interpreted as:

• uniform jet observed at large angles, provided that the jet bulk Lorentz factor is
significantly smaller than usually assumed (see, e.g. [10]);

• emission from a structured jet, with a fast and energetic inner part surrounded by
a slower component [11]. The slower component can be a cocoon, formed by the
deposit of the energy of the jet when it excavates its way through the merger (dy-
namical) and post-merger (disk-viscosity-driven and neutrino-driven) ejecta. This
shocked jet material may produce a quasi-isotropic prompt, high-energy EM signal
(see, e.g. [12, 13]);

• jet-less scenario where an isotropic fireball expands ahead of the kilonova ejecta [14].
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3. – The multi-wavelength electromagnetic follow-up campaign

The LIGO-Virgo sky localization of GW170817 (placing the source in a region of about
30 sq. degrees and at a distance of 40 Mpc) were sent to the astronomers at 17:54:51
UTC and became observable to telescopes in Chile about 10 hr after the merger. Imme-
diately, the One-Meter, Two-Hemisphere (1M2H) team using the 1 m Swope Telescope
started to observe the galaxies in the volume corresponding to the GW170817 signal.
The galaxies were ranked based on stellar mass and star formation rate. In one of
them, NGC4993, an early-type galaxy at the same distance as the gravitational-wave
signal, they discovered a new and bright blue optical transient (SSS17a, now with the
International Astronomical Union identification of AT 2017gfo) at 23:33 UTC. The op-
tical transient was independently detected by multiple teams during the same night.
Then, all the telescopes and satellites around the world started the most extensive ob-
serving campaign ever across the electromagnetic spectrum pointing at AT 2017gfo for
weeks [4]. The observations taken by a network of ground-based telescopes, from 40 cm
to 10 m, and space-based observatories in the ultraviolet (UV), optical, and near-infrared
showed a peculiar spectral energy evolution: a rapid dimming of initial UV-blue emission
(see, e.g. [15]), brightening of the red and near-infrared emission, which began to fade
after a few days to a week (see, e.g. [16]). The telescopes involved in the photomet-
ric observation include: CTIO1.3 m, DECam, IRSF, the Gemini-South FLAMINGO2,
Gemini-South GMOS, GROND, HST, iTelescope.Net telescopes, the Korea Microlens-
ing Telescope Network, Las Cumbres Observatory, the Lee Sang Gak Telescope, the
Magellan-Baade and Magellan-Clay 6.5 m telescopes, the Nordic Optical Telescope, Pan-
STARRS1, REM/ROS2 and REM/REMIR, SkyMapper, Subaru Hyper Suprime-Cam,
ESO-VISTA, ESO-VST/OmegaCAM, and ESO-VLT/FORS2.

The first spectrum of AT 2017gfo was taken by the Magellan-Clay telescope. It showed
a blue and featureless continuum between 4000 and 10000 Å. It appeared as an un-
usual spectrum, but common to cataclysmic-variable stars and young core-collapse su-
pernovae. The following spectra taken 24–48 hrs later (by the SALT-RSS, ePESSTO with
the EFOSC2 instrument in spectroscopic mode at the ESO New Technology Telescope,
the X-shooter spectrograph on the ESO Very Large Telescope, and the Goodman Spec-
trograph on the 4 m SOAR telescope) were crucial to exclude any transient contaminant
and firmly associate AT 2017gfo with GW170817. The spectra showed an exceptionally
fast spectral evolution in the blue part and absence of any features identifiable with ab-
sorption lines common in supernova-like transients. The rapid fading in the blue, the
spectral energy evolution and appearance of broad spectral features in the red near-IR
reproduced the expectations of disk wind outflow and dynamical ejecta kilonovae mod-
els (see, e.g. [17-20]). During the coalescence of two neutron stars, the mass ejected at
extremely high velocity in the interstellar medium is the ideal site for the formation of
heavy elements for rapid neutron capture. While the radioactive decay of such elements
determines the emission called kilonova, the Universe is enriched with elements heav-
ier than iron, the r-process nucleosynthesis elements. The ESO-VLT/X-shooter spectra,
which simultaneously cover the wavelength range 3200–24800 Å and were taken over 2
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weeks with a close to daily sampling revealed signatures of the radioactive decay of these
elements [10, 21]. Coalescences of two neutron stars are very rare events; in Milky Way
equivalent galaxies, they can happen with a rate of 32–474 Myr−1 [22], but the quantity
of r-process materials that can be formed are enough to explain the abundance of heavy
elements in the Universe (see, e.g. [25, 26,23,24]).

The UV/optical/infrared observations of GW170817 compared with kilonova mod-
els and numerical relativity results were used to estimate a lower bound on the tidal
deformability parameter. Together with the upper bound from the GW signal, both
extremely stiff and soft NS equations of state, can be ruled out [27].

After a significant upper limit on the emission associated to no detections by Swift-
XRT and the Chandra X-ray Observatory, on 26 Aug 2017 Chandra detected X-ray
emission at the position of AT 2017gfo.

The observed X-ray flux implies an isotropic luminosity of 9×1038erg s−1 if located in
NGC 4993 [28]. Further Chandra observations, performed between 1 and 2 Sept. 2017,
confirmed the presence of continued X-ray activity, and suggested a slight increase in
luminosity.

On September 2 and September 3 (16 days after the merger) a radio emission appeared
in the Karl G. Jansky Very Large Array (VLA) data at a frequency of 3 GHz and at a
frequency of 6 GHz. The Australia Telescope Compact Array (ATCA) also detected the
source on September 5 in the 5.5–9 GHz band. In observations at 3 GHz with the VLA,
the source shows evidence of an increase in flux density over a timescale of 2 weeks [29].
The observed X-ray radio emissions are consistent with the emission from a relativistic
collimated jet viewed off-axis. The observer not being aligned with the opening angle
of the jetted outflow is expected to observe the afterglow when the jet has spread and
decelerated enough so that the beaming cone of the emission includes the observer’s
line of sight; the onset of the afterglow is delayed by several days or weeks and the
emission weaker with respect to an on-axis observer. The X-ray and radio detection were
interpreted as the first observations of an off-axis GRB (see, e.g. [28, 30]), a scenario
theorized for about two decades but never observed before. Both the X-ray and radio
emission were also consistent with a cocoon that breaks out when the jet transfers a large
fraction of its energy into the surrounding ejecta. The cocoon expands over a wide angle
at mildly relativistic velocities [31].

No ultra-high-energy gamma rays and no neutrino candidates consistent with the
source were found in follow-up searches.

The proximity to the Sun did not allow the optical and X-ray observations of the
GW source for about 3 months. Observations of GW170817 continued in the radio
band (0.6–18 GHz frequency range) with the VLA, the ATCA and the upgraded Giant
Metrewave Radio Telescope, showing a steady rise of the light curve and a spectrum
consistent with optically thin synchrotron emission [32]. These observations completely
exclude the collimated ultra-relativistic uniform jet viewed off-axis and an isotropic thin
and uniform fireball, and requires a mildly relativistic wide-angle outflow moving towards
the observer. This outflow could be the high-velocity tail of the neutron-rich material
dynamically ejected during the merger (isotropic outflow with velocity profile) but the
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most likely scenario remains the cocoon able to explain also the prompt gamma-rays.
Chandra observations during the first days of December 2017 showed brightening X-ray
emission [33, 30, 28]. The similar, slow rising of both the X-ray and radio emissions
indicate a common (synchrotron) source as origin. On December 6, AT 2017gfo was also
detected in the optical band by the HST [34].

The multi-messenger campaign of GW170817 marked also the beginning of cosmology
with gravitational waves [35]. Combining the distance to the source inferred from the
gravitational-wave signal with the recession velocity of the galaxy inferred from measure-
ments of the redshift using electromagnetic data, the present-day expansion rate of the
Universe has been determined as given by the Hubble constant of 70.0+12.0

−8.0 km s−1Mpc−1

(maximum a posteriori and 68% credible interval). The Hubble constant estimate is
consistent with existing measurements, including the cosmic microwave background mea-
surements from Planck [36], the Type Ia supernova measurements from SHoES [37], the
baryon acoustic oscillations measurements from SDSS [38], the strong lensing measure-
ments from H0LiCOW [39], while being completely independent of them. The large
uncertainty in the H0 measurement with GWs due to the degeneracy between distance
and inclination in the GW measurements could improve with precise polarization mea-
surements, and additional standard-siren measurements from future gravitational-wave
sources will provide more precise constraints of this cosmological parameter.

As described above, the first multi-messenger campaign had and will have strong
impact in many astrophysics fields starting from emission process physics and nuclear
astrophsyics, to fundamental physics and cosmology. This campaign demonstrated
the importance of the development, coordination and collaboration of a network of
gravitational-wave, electromagnetic, and neutrino observatories, the importance of joint
analysis and interpretation of the multi-messenger data. We are in an exciting new era
of multi-messenger, time-domain astronomy.
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Summary. — The status of the standard cosmological model, also known as
“ΛCDM” is described. With some simple assumptions, this model fits a wide range
of data, with just six (or seven) free parameters. One should be skeptical about this
claim, since it implies that we now have an astonishingly good picture of the sta-
tistical properties of the large-scale Universe. However, the successes of the model
cannot be denied, including more than 1000 σ worth of detection of CMB anisotropy
power. The model is older than most modern astrophysicists seem to appreciate,
and has not fundamentally changed for more than a quarter of a century. Tensions
and anomalies are often discussed, and while we should of course be open to the
possibility of new physics, we should also be skeptical about the importance of 2–3 σ
differences between data sets until they become more significant. Still, today’s SMC
is surely not the full story and we should be looking for extensions or new ingredients
to the model, guided throughout by a skeptical outlook.

1. – What is the standard model of cosmology?

The currently best-fitting picture for describing the statistics of the Universe on large
scales, the standard model of cosmology (or SMC), is often known as ΛCDM, since it
is a model in which the matter is mostly cold and dark (i.e. effectively collisionless and
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with no electromagnetic interactions, CDM), with the bulk of the energy density of the
Universe behaving like vacuum energy (i.e. like the cosmological constant of general
relativity, Λ). But things are even more specific than that, with the values of only about
half-a-dozen free parameters being enough to make a Universe that looks statistically
just like the one we live in — and several of those parameters are now known to a really
impressive level of precision. So the “SMC” is now quite precisely prescribed.

It is an astonishing achievement of modern cosmology that we have come to have such
a successful model, especially when one considers that there is no a posteriori reason to
expect things to be this simple. In physics we are driven to accept a model for several
reasons — certainly that it fits the data, but also because of some less well defined
notion of æsthetics. The simple group-theoretical underpinnings of the standard model
of particle physics and the elegance of the field equations of general relativity are obvious
examples of this. Sure, they fit lots and lots of experimental data, but they are also
really nice! But for cosmology, no one would claim that the SMC is beautiful, or even
that it has to be correct because all alternatives are uglier. Certainly the SMC has some
degree of simplicity (since it does not need many free parameters), but why do those
parameters have the values that they do (see sects. 2 and 3)? And why are there not
lots of other parameters required (see sect. 4)? Despite the fact that nothing in the
basic cosmological picture has changed since the early-to-mid-1990s (see sect. 5), most
cosmologists are expecting something else to be just around the corner. After all, surely
the SMC can not be all there is?

In these notes I would like to bring some attention to the idea that we should be
skeptical(1) here, since we are dealing with very large themes. A model that purports
to describe the whole of the observable Universe should be met with a decent dose of
incredulity! It is important that we retain a healthy level of skepticism when discussing
any such claims. But at the same time we should also remember to be skeptical about
counter -claims (sects. 6 and 7) that have not passed the same level of scrutiny. And
we should keep in mind criteria that define what skepticism is (sect. 8), so that we can
isolate the successes of the SMC, while remembering that parts of modern cosmology’s
lore remain quite speculative (sect. 9).

2. – The parameters and assumptions of the SMC

Let us be explicit about the standard model by giving the modern values of its basic
parameters. Right now the determination of these quantities is driven by cosmic mi-
crowave background (CMB) anisotropy experiments, and in particular by results from
the Planck satellite [1] (supported by many other kinds of data) on the CMB power
spectra (which are discussed further in sect. 4). Because of this, the basic parameter set
is currently given in terms of the quantities that are most directly measured by CMB

(1) I am going to use the American English spelling of this word, since to many non-British
people, “sceptic” looks too much like “septic”.
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Table I. – Basic cosmological parameters, from a combination of Planck 2015 data and other
constraints from BAO, SNe and H0 data (see ref. [2]). The CMB temperature comes from an
analysis of the monopole spectral data by Fixsen [3].

Physical baryon density Ωbh2 0.02227 ± 0.00020

Physical CDM density Ωch
2 0.1184 ± 0.0012

Angular parameter 100θ∗ 1.04106 ± 0.00041

Reionisation optical depth τ 0.067 ± 0.013

Power spectrum amplitude ln(1010As) 3.064 ± 0.024

Power spectrum slope ns 0.9681 ± 0.0044

CMB temperature T0 [K] 2.7255 ± 0.0006

experiments. This means that the parameters most often discussed in relation to ob-
servational constraints are not necessarily the ones that are simplest to explain to the
general public, or that are the focus of non-CMB cosmologists. These parameters are
listed in table I. The set consists of: two densities, Ωbh2 and Ωch

2 (for baryonic matter
and cold dark matter separately, since they have distinct effects on the CMB power spec-
tra), including a scaling of physical density with the dimensionless Hubble parameter,
h ≡ H0/100 km s−1 Mpc−1; a parameter θ∗ that corresponds to the sound horizon divided
by the angular diameter distance to last scattering, which quantifies sliding the CMB
power spectra left and right; the amplitude As of the initial power spectrum of density
perturbations, defined at a particular scale, and often given as a logarithm; the slope n

of the initial power spectrum as a function of wavenumber; and a parameter τ describing
how much the primary CMB anisotropies are scattered by the reionised medium at low
redshifts.

By far the best determined of these parameters is θ∗, with a signal-to-noise ratio
(S/N) of about 2500 (from table I, or about 2300 from the CMB alone). Then follows
As, Ωbh2 and Ωch

2, with S/N � 100, while ns and τ only differ from their default values
(of 1 and 0, respectively) at S/N � 5. Other cosmological parameters that are often
discussed include H0, t0, Ωm, ΩΛ, zreion, etc., which are not independent, but can be
determined from the six parameters in the context of the SMC.

Although it is often stated that there are six basic parameters, there is a seventh that
is often ignored. This is the temperature of the CMB today (or equivalently the radia-
tion density), which is constrained using data from the COBE -FIRAS instrument [4], as
well as from several other experiments (see ref. [3]). The determination is systematics
dominated, with S/N � 5000. It is hence more precise than other parameters, and dra-
matically better determined than other densities. For that reason it is usually considered
to be fixed, and not a free parameter at all. However, the precision is starting to approach
the cosmic-variance limit, and so if T0 was measured with much smaller errors, we should
have to consider the fact that we can only measure parameters within our Hubble patch
and not actually “background” parameter values (see ref. [5] for discussion).
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Table II. – Some assumptions of the SMC. Note that several of these apply to our observable
volume (which is the only part of the Universe that we can test) only.

Understanding the Cosmos is possible for human beings

Physics is the same everywhere and at all times

General relativity is the correct theory of gravity on cosmological scales

The Universe is approximately statistically homogeneous and isotropic

The Universe is spatially flat on large scales

The dark energy behaves like a cosmological constant, with w = −1

The dark matter is collisionless and cold for the purposes of cosmology

There are three species of nearly massless neutrinos

There are no additional light particles contributing to the background

Density perturbations are adiabatic in nature

The initial conditions were Gaussian

The running of the primordial power spectrum is negligible

The contribution of gravitational waves is negligible

Topological defects were unimportant for structure formation

The physics of recombination is fully understood

One parameter is sufficient to describe the effects of reionisation

But (to be skeptical about this), we might wonder whether there are other hidden
parameters. There definitely are, to some extent, but mostly any additions to the SMC
are better cast as assumptions. In fact there are many of these, and it is important to be
clear that the six (or seven) parameters of the SMC are only descriptive of the Universe
within a specific framework. A list of these assumptions is given in table II (and the
reader can probably think of more).

All of these assumptions are testable, and they all have been investigated. Many of
them are tested through putting limits on extensions to the SMC, e.g. checking whether
the curvature is consistent with flat space, whether there is evidence for modified gravity,
non-trivial dark energy (i.e. w �= −1), or non-Gaussianity, or whether there are signs of
the effects of massive neutrinos or cosmic strings (e.g. see refs. [6, 2]).

Nevertheless, this is definitely a place where we need to exercise caution. The confi-
dence with which we know the values of the basic set of six (or seven) parameters depends
on this being the full parameters space. If there are more ingredients in the actual model,
then the parameters in the basic set will have larger uncertainties. For example, if we
consider models that allow curvature then the constraints on w are very much weakened.
Hence we need to look carefully at these tests. Right now there is no strong evidence
for any additional parameter, but we fully expect that there will be more ingredients
required as the data improve, e.g. that the effects of massive neutrinos or primordial
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gravitational waves will eventually be measured. And there may be genuine surprises of
course, like multiple kinds of dark matter or dark energy, or important extra components,
such as magnetic fields or isocurvature modes.

Nevertheless, there has been caution exercised, and despite attempts to find evidence
for additional parameters, the basic set continues to fit very high signal-to-noise data —
particularly the CMB power spectra.

3. – The numbers that describe the Universe

Since it appears that the set of numbers required to statistically describe the cosmo-
logical model has just seven elements, then these values become important quantities
that should be better known, among astronomers and non-astronomers alike. Many peo-
ple follow the detailed statistics of their favourite sports teams, or can name the capital
cities of various countries, or give the sequence of colours of the rainbow, or list the
wives of Henry VIII in order, or name the actors who have played their favourite time-
travelling alien. Almost everyone learns the list of planets in the Solar System, through
the mnemonic about pizzas (that no longer includes pizza!). So why do most humans
not know the numbers that describe the Universe that we live in?

Perhaps one of the problems is that the usual six parameters coming from CMB
anisotropies are quite esoteric. This becomes apparent as soon as one tries to explain
the values in table I to the general public. However, these six arcane numbers (together
with the assumptions that we have already discussed) span the space of all parameters,
and hence it is easy to present versions that are simpler (like the age of the Universe,
t0, or the density of some component, like ρM) in more familiar units. Let us highlight
a few variants of quantities that are useful in describing our Universe (table III), in the
hope that some of them may catch on! Further examples along these lines can be found
in the paper “Cosmic Mnemonics” [7].

With enough effort, it is easy to find numerological coincidences. One should obviously
be skeptical about claims of significance for such things though! For example, from the
table we see that the number of particles in the observable Universe (mostly photons)
is about α−42 (where α is the fine-structure constant), and additionally in the standard
model, the Earth forms at a redshift corresponding to z = 0.42. These facts could be
used to suggest a link with Douglas Adams’ universal answer.

4. – Information in the SMC

Cosmological information comes from many sources. However, at the present time,
the CMB dominates the constraints on the SMC. This “era of precision cosmology” can
be seen through plots of the current status of the power spectra coming from the CMB.
Figure 1 shows the TT (which dominates the information) and TE (which is catching
up) spectra, while fig. 2 shows the EE (now also impressive) and BB (still in its infancy)
spectra. The grey line is the 6-parameter ΛCDM model fit to the Planck TT data, and
one can see how well it matches the other power spectra.
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Table III. – Variants on the numbers that describe our Universe.

Characteristic scale on the CMB sky, θ∗ � 0.6◦ (think eclipse!)

Radius of observable Universe � 400Ym

Age of the Universe t0 � 5 trillion days � 5 × 2200tPl

Age of the Universe is triple the age of the Earth, t0 � 3 t⊕

H0 t0 is slightly less than 1, and H t will be unity in about 1 billion years

H0 will asymptote to the value 56 km s−1 Mpc−1 in the far future

Cosmological constant, Λ � 10−35 s−2 (“ten square attohertz”)

Critical density, ρcrit, corresponds to 5 proton masses per cubic metre

Density ratios, Ωc/Ωb � 2ΩΛ/Ωm � 5.3

Density parameter for photons, Ωγ � α2

Variance of density in spheres is unity at about 9 Mpc (no h−1)

Amplitude of position-space density perturbations on Hubble scale, σ � 6 × 10−6

Temperature at last scattering epoch TCMB � 3000 K (think M giant!)

Age at last-scattering epoch, trec � 370 kyr

Age at reionisation, treion � 600 Myr

Number of particles in observable Universe � α−42

When we add up the total (S/N)2 from the Planck CMB power spectra, over the
part of the sky conservatively believed to be free of foreground emission, we find that
the Planck TT , TE and EE measurements together correspond to about 900σ. Adding
the higher multipole measurements from ACTPol and SPTPol means that today’s CMB
power spectrum determinations together represent more than 1000σ of detection. If we
were skeptical about the success of the SMC, then we should take note that it requires
just a few simplifying assumptions and seven free parameters to fit this huge amount of
information — quite a remarkable achievement.

How does the constraining power of the CMB work? The simple answer is that it
just depends on the number of modes that are measured, where the mode amplitudes
am come from expanding the sky as T (θ, φ) =

∑
m amYm. Since the anisotropies are

Gaussian, then each am gives just a little bit of information about the expectation value
of the power in the ams, C (or equivalently, the variance), and the total constraining
power is just about counting the number of modes. In more detail, if we have a cosmic-
variance-limited experiment, with ΔC =

√
2/(2� + 1)C, then the total signal-to-noise

ratio in the power spectrum is

(S/N)2 ≡
max∑
=2

(C/ΔC)2 =
1
2

max∑
=2

(2� + 1) =
1
2

[�max(�max + 2) − 3] � �2max.(1)

But since the number of modes is just
∑max

=2

∑+
m=−, then this means that the total

(S/N)2 is just half the number of modes.
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Fig. 1. – CMB temperature anisotropy power spectrum (left) and temperature-polarisation cross-
power spectrum (right), from Planck, WMAP, BICEP/Keck, ACT and SPT (see ref. [8] for full
references). This demonstrates the current precision with which these power spectra have been
measured.

To the extent that through Planck, we have measured all the modes out to � � 1500
(over a large fraction of the sky), and the damping plus foregrounds means that we can
not go far beyond � � 3000 (say) for primary CMB anisotropy measurements, then we
are a good way through gathering all the information we can get from CTT

 . But what
about polarisation? Assuming for the moment that CBB

 is negligible, then the existence
of both CTE

 and CEE
 would seem to confuse matters. But really the situation is simply

that we can measure the scalar field E, in addition to T , for each pixel. And hence,
provided that we measure both CTE

 and CEE
 out to some �max, then we have exactly

twice as much information as we would obtain from CTT
 alone. This means that the

Fig. 2. – Polarisation EE (left) and BB (right) power spectra from several experiments (see
ref. [8] for references). The BB spectrum here is scaled by a power of � that makes it possible
to see all three of the expected peaks (from reionisation, recombination and lensing).
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Fig. 3. – Square of signal-to-noise ratio for each multipole, for a cosmic-variance-limited exper-
iment covering half the sky. The results for the TT , TE and EE power spectra are shown on
panels for each of the six parameters of the SMC, with a logarithmic horizontal axis for the
first 30 multipoles. Vertical lines mark peaks and troughs in the TT power spectrum. These
panels show the complex mapping of power spectrum constraints onto parameters over different
multipole ranges.

total “information content” can be defined to be just a count of the number of modes
probed, in any of the CMB fields.

Of course not all information is equal. For example, any large-angle BB measurement
would provide us with an entirely new kind of information, enabling us to determine an
additional parameter (r, the tensor-to-scalar ratio) that is otherwise hard to constrain.
Moreover, it is well known that adding polarisation data helps to break some parameter
degeneracies. So we should like to know how the parameter constraints map onto the
power spectrum modes. The proper way to discuss this is through the Fisher matrix,
which includes derivatives of the power spectra with respect to the cosmological param-
eters; this is demonstrated in fig. 3 and discussed fully in ref. [9]. One can see that some
multipole ranges are particularly important for some parameters, and as we go up in �, so
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that new peaks or troughs are included, the constraining power can change dramatically.
To focus on one example, the behaviour of the As panel is simple — if there was

only an overall normalisation to measure, then the constraints would just come from
the S/N (and mode counting) expression given in eq. (1), with polarisation giving equal
constraining power to temperature. In that sense, As is a “linear” parameter, since there
is a simple relationship between its total S/N and the parameter constraint. However,
if the dependence is less trivial, then the relationship is “non-linear”, and hence the
way that the total (S/N)2 is shared out among the parameters is more complicated. A
good example is θ∗, which determines the amount by which the power spectra can be
slid left and right in multipole — this can be determined to a great precision (because
of the relative sharpness of the acoustic peak structure), which is why this is the best
determined parameter of the SMC today. In fact the total S/N in θ∗ from Planck is
around 2500, which is considerably more than the total S/N in the power spectra!

CMB polarisation has yet to become particularly constraining for the parameters of
the SMC. But that situation will change as new experiments add modes, doubling at least
(or more, since high-� E-mode measurements are not as limited by foregrounds) the infor-
mation achievable from temperature alone, and providing specifically useful degeneracy-
breaking capability. The discussion above can be extended to the BB spectrum, as well
as the lensing spectrum Cφφ

 (which comes from the temperature trispectrum, and gives
an additional field, φ). This approach is useful for discussing future experimental con-
straints, and how they map onto parameters. But one thing it tells us is that eventually
we shall run out of CMB information. This is essentially because the CMB information
is almost entirely restricted to two dimensions. The same thinking can also inform dis-
cussions of more ambitious attempts to extract the much larger amount of information
contained in 3d surveys — around (c kmax/H0)3, if we can get all the k modes down to
scales kmax [10]. This means that in principle we could one day measure enough modes
to give � 106 σ of power detection.

5. – The venerableness of the SMC

It is clear that the standard model of cosmology is now well established. So well
established in fact that a great deal of effort in modern cosmology is directed towards
trying to find extensions to the model. For example, searching for evidence that the
dark energy is evolving or that more than two parameters are needed to characterise the
perturbations. Such searches for “physics beyond the standard model” makes one think
of similar endeavours to find evidence to extend the Standard Model of particle physics.
When this sort of thing comes up, it has been traditional for cosmologists to claim that
the SMC is relatively young and still in an exploratory stage — so it is nothing like the
chasing of 3σ effects that appears to have motivated much experimental particle physics
for decades. But in fact the SMC is actually quite long in the tooth itself by now!

So how old is the SMC? Certainly if one goes back a dozen years to a previous
overview by this same author [11], one finds little that has changed. The model is much
more precisely determined of course, but all the ingredients are already in place. Indeed,
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one can go back earlier, e.g. to the paper “What Have We Already Learned from the
Cosmic Microwave Background?” (also known as “What Has the CMB Ever Done For
Us?”) written in 1998 [12], and find that the basic picture is just the same. In fact
many expositions of the history of cosmology state that the model became established
with the detection of cosmic acceleration in 1998. Of course that was an important
part of the story, but I think it is clear that what we now call ΛCDM was already the
best-fitting model when the supernova data came in and confirmed it — to the extent
that even the most skeptical cosmologists had to take Λ seriously. Many papers had
already pointed out before 1998 that a collection of results pointed to a flat Λ model
being the best way of extending what had previously been called “standard CDM” (or
sCDM), i.e. a CDM-dominated model with ΩM = 1 and an initial power spectrum of
exactly the Harrison-Zeldovich-Peebles form (n = 1). Among these results were: the
need for more power on large scales (to match galaxy clustering data); the fact that most
measurements of the density parameter tended to give Ω � 0.3; that few measurements of
H0 gave values in the � 50 km s−1 Mpc−1 range that were needed to make the age of the
Universe old enough for the stars within it; that the amplitude of density perturbations
from the COBE satellite’s CMB anisotropies pointed towards adiabatic perturbations in
a Λ-dominated (rather than open) model; and that indications from smaller-scale CMB
anisotropies were suggesting an acoustic scale consistent with flat geometry [13,14].

Several of these arguments were compiled in two essays in 1995, one by Ostriker and
Steinhardt [15] and the other by Krauss and Turner [16]. Not everyone was convinced of
course, and some nostalgic theorists still tried to cling to the Einstein-de Sitter elegance
of sCDM [17, 18]. However, the writing was on the wall, and of all the flavours to add
to sCDM, it was apparent by the mid-90s that ΛCDM gave the best fit (even if you
did not necessarily like it!). Indeed it is possible to find earlier papers pointing to this
model being preferred by a combination of data — and here the 1990 Nature paper by
Efstathiou, Maddox and Sutherland [19] is a particular standout. That is not to say that
there were not papers proposing quite different models at the same time, but just that
the currently understood SMC was already there in the early 90s, with reasons to believe
that it provided the “best-buy” cosmology.

What this means is that the SMC is older than most people appreciate — something
like a quarter of century old, making it more than half the age of the SM of particle
physics! As an indication of just how long ago that was, in the early 90s we were using
dial-up modems to connect with the internet, the main browser was (the pre-Netscape)
Mosaic and the world’s first text message was being sent!

6. – Tensions

The idea of “tensions” has already come up. So let us take that particular bull by
the horns right now. There are several different minor chinks in the armour of the SMC
that are pointed to by various researchers. A list of some of them is given in table IV.
None are sufficiently significant to call them an actual discrepancy, hence the use of the
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Table IV. – List of claimed tensions (not complete!). Are any of these of consequence?

The amplitude σ8 between CMB and cluster abundance

Galaxy cosmic shear versus CMB constraints on σ8Ω
0.5
m

H0 between traditional direct estimates and indirect CMB estimates

Planck versus WMAP TT power spectra

Planck high-� versus low-� data

Preference for AL > 1 (apparent lensing effect) in Planck data

Small-scale galaxy formation controversies

word “tension”(2). What should a skeptic make of an apparent disagreement between
different data sets at the 2–3 σ level?

Well, let us remember that today’s CMB data contains more than 1000σ worth of
detection. We can ask how many 3σ results there are in 1000σ. Since signal-to-noise
ratios add quadratically, the answer is the number of times that 32 goes into 10002, and
the answer is more than 100000. So why is there so much focus on specific issues that
are barely at the 3σ level?

Of course part of the answer is that we should not accept that the SMC is the last word,
but should keep an open mind to other possibilities. There is also a strong motivation
to look for flaws that require revisions, since we are all hoping to find fundamentally
new physics by further confronting the SMC with cosmological data. And there may be
evidence of such things lurking in low S/N disparities. The trick of course is to find the
hints of disparity that grow from mere “tensions” into genuinely significant differences.

However, concentrating on a few of the > 100000 potential 3-ish σ effects seems like
a misplaced kind of skepticism. Trying to find minor deficiencies in conventional wisdom
seems to me to be a bit like chasing conspiracy theories. In any situation, you can always
find something that does not seem to make sense — but you should be assessing the
evidence carefully, bearing in mind the context. Here the context is: 1) that the model
(the SMC) fits a number of observational phenomena very well; 2) that some of the
uncertainties are of a systematic rather than statistical nature; and 3) that there are
a very large number of potential tensions that could be selected from the > 1000σ of
measured information.

Let us look at a couple of aspects of the history of the development of the SMC in order
to see if there are any lessons we can learn. Although the SMC was already in place by the
early 1990s, there are some observations that have changed considerably since that time.
In particular, determinations of the age of the Universe (from estimating the ages of the
oldest globular clusters) and determinations of the baryon abundance (coming from Big

(2) I am reminded of the skeptics’ joke that when “alternative medicine” works it is just called
“medicine”. In the same way, if a “tension” was actually big enough to be significant, then it
would be called a “difference”.
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Fig. 4. – Estimated ages of the oldest globular clusters, taken from a representative set of review-
like articles. The preferred value dropped dramatically in the mid-1990s. The blue band is the
current best-fitting value for the age of the Universe, based on the 2015 Planck data (including
uncertainty).

Bang nucleosynthesis) changed in value in the mid-1990s. Figure 4 shows the situation for
cluster ages. The values plotted come from a representative selection of papers by several
of the groups working on this problem at that time. In the early 90s the oldest clusters
were stated to be perhaps 17 billion years old, with lower limits at around the 15 billion
year level. However, in hindsight it is clear that those estimates were incorrect because
they were dominated by systematic uncertainties. As other cosmological measurements
improved, and it became clear that the Universe had an age that was probably no more
than 14 billion years, the cluster ages were revised to become consistent. One might
imagine that the change could be traced to one particular effect that was fixed — but
that really is not the case. Instead there were several tweaks made over the years, most
of which had the same sign and resulted in the ages of the oldest clusters coming down
to around 12 billion years. The situation is really not very satisfying! But I suspect
this is often the way things are when the uncertainties are to do with assumptions and
approximations in the analysis, rather than just being statistical.

The situation with baryon abundance is fairly similar. But here it is harder to make
a plot of the values, since often there were no clear errors given! Instead it was common
to write down some feasible range for the baryon-to-photon ratio, which was bracketed
by different light-element abundances (with little effort made at that time to designate
95% confidence ranges, or give ±1σ values, or the equivalent). Despite this difficulty in
interpreting the uncertainties in the old results, what is clear is that the preferred value
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Fig. 5. – Estimates of the Hubble constant between 1997 and 2010, compiled by John Huchra
(black points [20]). These values were combined into a best estimate (using practices for com-
bining nuclear physics data) by Pritychenko [21], with this value and uncertainty represented
by the hatched region. The new value published by Riess et al. in 2011 [22] is shown by the red
point. The estimate derived from the full WMAP data set is shown in green [23]. The values
obtained from the 2013 [6] and 2015 [2] Planck data releases are the two blue points.

around 1990 was something like Ωbh2 � 0.012, while 10 years later it was around 0.022.
The change corresponded to a lot of σ (with whatever value of uncertainty you used).
Again, there was not one reason for this change, but probably a list of things contributed
to the increase (the availability of damped Ly α systems for deuterium abundance mea-
surements being part of it).

The tension that perhaps attracts the most current attention is that some of the most
recent and precise values for the Hubble constant, determined using standard distance-
estimation techniques, appear higher than the value determined from the SMC parame-
ters that best fit CMB data. Figure 5 shows a large collection of published H0 determi-
nations from the period 1997–2010, including the error bars. The horizontal band gives
an average of these data (using procedures developed to deal with apparently disparate
nuclear and particle physics data [21]). The newer value from Riess et al. (2011) [22]
is indicated, together with values coming from WMAP and Planck. Other recent val-
ues could be added, but would not change the basic picture. Placed in this context we
can see the systematics-dominated history of attempts to directly determine H0 (which
certainly goes back earlier than 1997!). We have to assume that most sets of authors of
historical values believed that their published uncertainties were a fair representation of
their confidence in the data. And yet it is clear that at any given time the errors were

 EBSCOhost - printed on 2/13/2023 8:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



146 Douglas Scott

being underestimated by most groups. Perhaps the situation is genuinely different now,
and the new (smaller) error bars are correct. But it is hard not to be skeptical.

In any case, we know that measurement techniques are continuing to improve, and
that if this CMB-versus-direct-determination tension in H0 arises from some genuinely
new physics, then the statistical confidence in the differences will grow. Time will tell.

Turning to the example of Planck ’s large-scale versus small-scale constraints, there
are some additional issues for the skeptic to keep in mind. As discussed in the Planck
Collaboration Intermediate LI paper [24], this situation is not as simple as it might at first
seem. There are certainly parameter shifts when one considers Planck low-� versus Planck
high-� data, and these shifts may seem to be at the 2–3 σ level. However, the parameter
space has six (or maybe five, considering that τ is hardly measured) dimensions, with
many other directions in this space corresponding to particular parameter combinations.
So one will see a 2 σ deviation in some direction more than 5% of the time, and hence
it is necessary to take into account the whole parameter set when assessing this kind
of tension. When that is done, the differences of low-� versus high-� parameters have
a probability to exceed above 10% (i.e. nothing to write home about). On top of that,
it is unclear how one is choosing the angular scale to look for a split. And there is
also a difficulty in assessing how unlikely it might be for a data excursion to map onto a
parameter shift. The conclusion is that Planck and WMAP are in spectacular agreement
where they overlap, and the shifts seen at higher multipoles are just about as big as you
would expect the shifts to be. That is not to say that there might not also be problems
with some of the foreground modelling, or indeed some physics missing from the SMC
— it is just that the data do not require these things at the moment.

7. – Anomalies

The other word that is much heard when discussing the CMB is “anomalies”. What
is meant here is a feature (at a low level of significance) that appears to be unexpected
in the SMC, pointing to perhaps some kind of non-Gaussianity or breaking of statistical
isotropy. There are several examples that have been suggested over the years, with
different researchers claiming importance for one or other. Table V gives a partial list.
It seems extremely hard to believe that all of these are pointing to deficiencies in the
conventional picture. One should be skeptical about each of them, particularly because
of the issue of a posteriori statistics. This issue is one that causes enough debate among
cosmologists, that I am going to discuss it in some detail.

The problem is that all of these “anomalies” had their statistical significance assessed
after they were discovered. Hence, in order to fairly determine how unlikely they are, it
is necessary to consider other anomalies that may have been discovered instead. Statis-
ticians call this the “multiplicity of tests” issue, which I think is the most helpful way to
think about it.

Let us take the so-called CMB Cold Spot as an example (as shown in the left-hand
panel of fig. 6). The probability of finding a cold region of exactly this size and shape in
exactly this particular direction is obviously vanishingly small. No one would consider

 EBSCOhost - printed on 2/13/2023 8:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



The standard model of cosmology: A skeptic’s guide 147

Table V. – List of claimed temperature anomalies. This is not intended to be a complete list
(and several of these anomalies are related to each other).

Low quadrupole and other low-� modes

Deficit in power at � � 20–30

Low variance

Lack of correlation at large angular scales

The Cold Spot

Other features on the CMB sky

Hemispheric asymmetry

Dipole modulation

Alignment of low-order multipoles

Odd-even multipole asymmetry

Other features in the power spectrum

such a calculation to be useful, and at the very least would appreciate that the spot
could have been found in any direction — hence to assess the significance one could look
in simulated skies for similarly extreme cold spots that occur anywhere. The probability
determined in this way then becomes of order 0.1%. However, a specific scale was chosen
for the spot, or to be more explicit, a filter of a particular shape and scale was chosen. It
turns out that the Cold Spot is not very extreme if a purely Gaussian filter is used, but
is pulled out at higher amplitude by a “compensated” filter (e.g. what is often called a
“Mexican hat”) with a scale of about 5◦. This means that one should marginalise over
the scale (within some reasonable bounds) and over a set of potential filter shapes (that
one might have chosen) as well. On top of all this it is obviously clear that one needs to
consider hot spots as well as cold spots (this may seem so self-evident that it does not
need to be stated, but in fact several papers have only assessed the significance of cold
spots). And the situation is more complicated than that, since if there had been a fairly
conspicuous pair of neighbouring spots, or a hot spot diametrically opposite a cold spot,
or even a triangle of spots, then one might equally well have been writing papers about
the anomalous feature that was discovered.

The point is that in each Hubble patch (with the CMB sky being an independent
realisation of the underlying power spectrum), there will be features on the sky or in
the power spectrum, that appear anomalous. One has to consider the set of potential
anomalies in each patch in order to assess whether a feature is extreme enough to get
excited about. In practice 2–3σ anomalies go away when you marginalise over these
possibilities, but � 5σ anomalies would remain anomalous after maginalisation.

A criticism of this way of thinking is that it is just too skeptical! The argument
is that if you try hard enough to marginalise over possible tests then you can make
anything appear to be insignificant. I do not think this is true, since you have to be
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Fig. 6. – Left: map of the CMB sky from Planck, with the position of the so-called “Cold Spot”
indicated. Right: the first 900 digits of π, showing the “hot spot” of six 9s (also known as the
Feynman point).

reasonable here (as in any assessment of statistical evidence, where there is always some
subjectivity). And I stand by the claim that it is hard to make 5σ effects go away,
while 2–3σ effects that are subject to a posteriori statistics should always be viewed
with extreme skepticism.

Another way to look at this is to make an analogous study of something that you
are confident is genuinely random. This was done in the paper with Dr. Frolop [25],
comparing the CMB anomalies with patterns in the digits of π. Several examples are
given there, but let us just pick one. As illustrated in the right panel of fig. 6, there are
six consecutive occurrences of the digit “9” at the 762nd digit of π. Assuming that the
digits are random, a simple calculation (considering the number of ways of placing the
run of 9s in the first 762 digits, and the number of ways of picking the other 756 digits)
gives a probability of 756/106. Of course the run of six numbers did not have to be 9
(even although you could consider 9 to be special because it is the highest), and hence
the probability for any run of six is 10 times greater — but that is still less than 1%! So
why does this not shake our faith in the digits of π being random? The answer is that a
posteriori statistical effects can be subtle. In this particular case, we would have found an
equal probability for obtaining a run of five 9s at an earlier digit, or four 9s even earlier,
and so on. When including this hidden “multiplicity of tests”, the probability becomes of
order 10%, i.e. not small enough to decide that there are messages written in the digits
of π! And in addition to all of that, there are other patterns that might also have been
remarked upon if they had been found, a run of “123456” for example, or an alternating
series like “9090909”. Perhaps these are not quite as striking as six 9s, but they should get
some weight in considering the set of tests, and hence in the assessment of the significance
of the anomaly. I am convinced that if one went to the trouble of looking for such things,
there would appear to be something conspicuous in most chunks of π (in every 1000 digits,
say) — just like there are some apparent “anomalies” in every Hubble patch’s CMB sky.

Despite all these words of caution, let me add that one should still continue the
search for anomalies, since any genuinely significant large-scale oddities could be signs
of exciting new physics (e.g. see discussion in ref. [26]). And of course sometimes 3 σ
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things will become 5 σ when more data are included — so it is worth continuing these
investigations. A problem is that the large-angle temperature field has already been well
mapped, and those data are now limited by cosmic variance. So the only way to make
progress is to include new data, such as from CMB polarisation [27]. What would be
particularly good would be to find some kind of natural explanation for an anomaly,
with no (or very few) free parameters, which also makes a clear prediction for some
new observable, such as polarisation, lensing, or 21 cm observations. If there is such a
prediction, and a 3σ result is found, then that really would mean 99.7% confidence.

8. – The nature of skepticism

I have said a lot about being skeptical — but what does that really mean? What
I am talking about here is the concept philosophers might call “scientific skepticism”,
which involves questioning assertions that lack empirical evidence. I believe this to
be a fundamental part of scientific inquiry. It can be summed up through the phrase
“extraordinary claims require extraordinary evidence” (popularised by Carl Sagan) —
and obviously that applies well to cosmology, through its grandiose themes, just as it
does to pseudo-science. Science is not completely mechanical and dispassionate, since
it includes speculation and creativity as part of the process of development — but that
is not the same as accepting every new idea that comes along. At the other end of the
spectrum, it is also important not to fall into the trap of “denialism”, i.e. adopting a
position that rejects every claim even if there is good evidence to support it (like climate
change, or dark matter perhaps).

To be a bit more explicit about skepticism, let me pick the writings of a particular
modern philosopher, namely Mario Bunge, who has written extensively on the topic of
scientific epistemology. Among other definitions, he describes how any authentic science
must include “changeability, compatibility with the bulk of the antecedent knowledge,
partial intersection with at least one other science, and control by the scientific com-
munity” [28]. These ideas give a little more content to the notions of hypothesis test-
ing, falsifiability, parsimony, etc., that we learn about in school. And they make clear
that the skeptical approach is central to the establishment and evolution of scientific
ideas.

As examples of topics that fail to meet these criteria and land up in the pseudo-science
category, Bunge lists “astrology, alchemy, parapsychology, characterology, graphology,
creation ‘science’, ‘intelligent design’, Christian ‘Science’, dowsing, homeopathy, and
memetics”. However, Bunge also states that “cosmology is still rife with speculations
that contradict solid principles of physics”! He says that for good reason — the SMC
lives within the domain of “physical cosmology” and has passed a wide array of tests,
but, on the other hand, the most theoretical aspects of cosmology are indeed in an
entirely different conjectural realm. Hence it is important to separate the concrete parts
of modern cosmology (the answers to the “what” questions) from the areas where we are
still speculating wildly (and trying to find answers to the “why” questions).
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9. – Beyond the SMC

We should all like to understand where the whole Universe comes from, or explain
away the dark matter and dark energy. Speculation is certainly good, but believing your
speculation (before it has passed any tests) is bad science! The correct approach should
be to investigate the consequences of your idea and try to determine if there are definitive
predictions that can be confronted with data.

I feel that there is a kind of malady that infects some cosmologists, where pretty much
any outlandish and unorthodox idea is considered at the same level as the conventional
picture — rather than giving it a higher degree of skepticism, like all extraordinary claims
deserve. Perhaps part of the blame here is that modern physics in general, and the SMC
in particular, contain some fairly bizarre-sounding concepts. We teach students about
quantum mechanics and black holes, that we can build a model for the whole observable
Universe, that there are hypothetical particles that dominate all matter and that a
negative-pressure fluid is driving the cosmic acceleration. So perhaps students start to
think that any hare-brained scheme is equally worth pursuing?

I can not shake the feeling that a good dose of skepticism would help keep things in
perspective.

An example of this is inflation (see [29] and [30] for discussions). It is undoubtedly an
appealing idea, and there is a great deal of circumstantial evidence to support it — so I
think it is entirely reasonable to be a fan of inflationary cosmology. But since inflation is
really a framework rather than a model, we can not assert that any of the observations
actually prove that inflation is correct(3). It seems reasonable to assume that whatever
picture turns out to describe the early Universe, and generates the perturbations, it will
contain some of the features of the current inflationary paradigm. But I do not think we
can proclaim that we know that it will include all the ingredients — not until we have
some more direct evidence.

However, one of the problems with assessing the merits of inflation is that there is
not a good alternative. Sure, there might be some ideas suggested as counter-proposals,
but they tend to seem much more ad hoc, or create more problems than they solve, or
have predictions that are less well developed. And the same issue applies more broadly
across other “alternative” theories. The SMC has been developed over decades and
the calculations are relatively straightforward (involving Gaussian perturbations, linear
theory, well-understood physics, etc.) — but there is no reason to expect the same to be
true for some unconventional new idea. So if an alternative is proposed, then it is not
trivial to determine whether it can match the precision tests of the SMC. We just have
to be a little patient until the calculations can be done accurately enough.

Despite the need to be open to alternatives, when there are clear predictions, it is

(3) I have spent a long time trying to determine just what we have learned regarding inflation
and hence where we are on the spectrum of proof for this concept, and I have come up with
the following statement (which I challenge anyone to disagree with): “something like inflation
is something like proven”.
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still important to be skeptical if they just do not fit the data. As an example, we call
the dominant form of energy in the Universe “dark energy”, as though its properties
were mysterious and unknown — and a huge amount of effort is going into measuring
its equation of state (w as a function of redshift) with increasing precision. But the
reality is that all measurements so far are consistent with this component being simply
vacuum energy with w = −1. I have heard people say that it is much more likely to be
a model with w �= −1, since w = −1 has zero probability! But really, there is no sensible
model that gives a definite prediction other than pure vacuum, and so we are left with
the notion that there is just a universal constant, Λ, that gives a small (but non-zero)
energy density to empty space.

Another example is dark matter. It is obvious that an alternative explanation for
galaxy rotation curves might be that we can modify our theory of gravity. And there have
been several suggestions along those lines (see, e.g., [31]). However, the evidence for dark
matter comes from a lot more than rotation curves of galaxies, e.g. the depth of cluster
potential wells and measurements of gravitational lensing. But in fact the most robust
evidence for dark matter comes from the CMB anisotropies — there is no model for fitting
the power spectra that does not include a lot more CDM than baryonic matter. Here
we have a choice between abandoning GR (or even Newtonian gravity) or just imagining
that there is a component of matter that is not very shiny! Even without guidance from
data, it seems fairly clear that the parsimonious explanation is to have a particle that is
like a heavier version of the neutrino. But the skeptic should come down more heavily on
the side of CDM when comparing with clustering, lensing and (particularly) CMB data.

A related issue is the evaluation of some of the small-scale puzzles associated with
galaxies. It has become common to propose models ascribing these to some property of
the dark matter (just strong enough to detect, without messing up the SMC predictions
entirely). However, galaxy formation is a complicated business [32], involving non-linear
complexity, hydrodynamics, feedback processes, etc. Since we know that we do not
fully understand baryonic physics, we should be skeptical about assertions that some
new property of dark matter has been discovered because of indications coming from
non-linear scales.

Despite the examples given here, the SMC is in no sense a complete model, and
there will surely be several additions eventually. Table VI lists some potential questions
relating to physics beyond the SMC. Will one of these lead to the next breakthrough?
Right now the path to progress is not at all clear. Maybe it will turn out to be something
else entirely, something unexpected and outlandish — but only if the evidence strongly
supports that.

10. – Conclusions

I have given an overview of the current status of the Standard Model of Cosmology,
the SMC, and stressed how important it is to maintain a healthy level of skepticism when
assessing the successes of this model, and in evaluating the merits of extensions to it.

So when should one be skeptical and when not? That is the trick of course! Obviously
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Table VI. – Physics beyond the SMC. Which of these questions will turn out to be fruitful?

Where did the parameters come from?

Did inflation happen?

Can we explain the value of Λ?

Why is Ωc/Ωb � 5.3?

Are any anomalies or tensions worthy of attention?

Can we detect primordial gravitational waves?

Can we detect primordial non-Gausianity?

Are there missing ingredients to the SMC?

Will neutrino properties be measurable?

Can we predict reionisation from first principles?

the aim is to be right, and it is never clear how to forecast the future. There was a time
when hardly anyone believed that the solution to the solar neutrino problem lay in the
properties of neutrinos — but a small number of people got it right before the rest of
us. Similarly, some people saw that ΛCDM fit most of the data while many others in
cosmology were working on things like “open CDM” or “mixed dark matter”. Since no
practicing cosmologist believes that the current SMC will be the last word on a statistical
description of the Universe, then there are surely developments that are yet to come. The
goal is (somehow) to pick the 2–3σ effects that grow to be important parts of the model
— and by implication, part of this process involves ignoring most of the other claims for
chinks in the SMC’s armour.

There were times in the history of cosmology when it was fairly clear what directions
were going to be fruitful for pursuing calculations or observations. I think it is not
just that we have the benefit of hindsight — it really was the case that at one time
studying hot versus cold dark matter was obviously a good idea, and at some other time
developing the theory of CMB anisotropies or building experiments to probe degree-scale
anisotropies were clearly worthwhile. However, right now it is not at all obvious where
cosmology is going next.

This means that this is either the worst time or the best time to be a cosmologist! If
you have a good idea (and it turns out to be right) you could find yourself on your own
making the next major contribution to our understanding of the whole of the Cosmos.

∗ ∗ ∗
I acknowledge many enjoyable discussions about some of the issues contained in this

contribution with members of the Planck Collaboration, including those who were at
UBC, particularly Dago Contreras, Ali Narimani and Jim Zibin.
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98 bis boulevard Arago, 75014 Paris, France

Summary. — This article contains a concise review of the theory of inflation. We
discuss its main theoretical aspects as well as its observational predictions. We also
explain how the most recent astrophysical observations constrain the inflationary
scenario.

1. – Introduction

The theory of inflation was invented at the end of the 70’s and beginning of the 80’s
in order to improve the hot Big Bang model [1-6]. It consists in a phase of accelerated
expansion taking place in the early Universe, at very high-energy scales, possibly as
high as 1015 GeV. Not only inflation solves the puzzles of the standard model but it
also provides a convincing mechanism for structure formation [7-12] (for reviews, see,
e.g., refs. [13, 14]) which, interestingly enough, is based on General Relativity (GR) and
Quantum Mechanics (QM), two theories notoriously difficult to combine.
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On the observational front, the progresses have also been enormous, culminating
recently with the publication of the high-accuracy measurement of the Cosmic Micro-
wave Background (CMB) anisotropies by the European Space Agency (ESA) satellite
Planck [15-18]. For the first time, this satellite has been able to show that the spectral
index of the scalar power spectrum is close to one (exact scale invariance) but not exactly
one, the deviation from one being detected at a statistically significant level, namely at
more than 5σ. This is a crucial landmark because this was a prediction of inflation (and
not a post-diction). This is the reason why inflation is now viewed as the front-runner
candidate for describing the physical conditions that prevailed in the early Universe [19].

The aim of these lectures is to give a brief introduction to the theory of inflation. It is
organized as follows. In the next section, sect. 2, we discuss the motivations for inflation.
In sect. 2.1, we first present the standard model of Cosmology, the hot Big Bang phase,
as it was prior to the invention of inflation. Then, in sect. 2.2, we discuss the puzzles of
the hot Big Bang phase and why a phase of accelerated expansion can solve them. In
sect. 2.3, we discuss how inflation can be realized in practice and how it comes to an end
(the theory of reheating). In sect. 3, we discuss the theory of inflationary cosmological
perturbations of quantum-mechanical origin. We first show that the quantum state of
the perturbations at the end of inflation is peculiar (a two-mode squeezed state) and then
we calculate the power spectrum in the slow-roll approximation. In sect. 4, we briefly
describe more complicated ways to realize inflation, in particular multiple field inflation.
In sect. 5, we discuss the observational status of inflation. We argue that the simplest
class of scenarios is the preferred one and present observational constraints on the shape
of the potential and on the reheating phase. Finally, in sect. 6, we recap the main points
and briefly discuss the future of inflation.

2. – Why inflation?

2.1. The pre-inflationary standard model . – Among the four fundamental interactions
that have been identified in Nature, gravity is the important one when it comes to
Cosmology. Indeed, the Universe being neutral, this is the only force left with an infinite
range and, therefore, the only one which can shape the Universe on astrophysical scales.
The gravitational interaction being described by GR, any attempt to construct a model of
the cosmos must be based on this theory. In addition, the standard model of Cosmology,
the so-called hot Big Bang model, is based on a second fundamental assumption, namely
the cosmological principle which states that, on large scales, the Universe is homogeneous
and isotropic. This means that the general relativistic metric describing our Universe
can be taken to be the Friedman-Lemaitre-Robertson-Walker (FLRW) one, namely

ds2 = −dt2 + a2(t)
(

dr2

1 −Kr2
+ r2dθ2 + r2 sin2 θdϕ2

)
,(1)

where a(t) is the scale factor and K is a constant related to the curvature radius of
space rcurv = a(t)/

√|K|. Assuming that matter is described by perfect fluids, the
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corresponding Einstein equations read

ȧ2

a2
+

K
a2

=
1

3M2
Pl

N∑
i=1

ρi +
ΛB

3
,(2)

−
(

2
ä

a
+

ȧ2

a2
+

K
a2

)
=

1
M2

Pl

N∑
i=1

pi − ΛB,(3)

where MPl is the Planck mass and ΛB is the bare cosmological constant. The quantities
ρi and pi are respectively the energy density and pressure of the fluid “i”. In the hot Big
Bang model, one has five species, photons, neutrinos (which form radiation) and cold
dark matter (cdm) and baryons (which form pressure-less matter) plus dark energy (given
by the cosmological constant). Photons and neutrinos have a constant equation of state
equal to 1/3, which means that pγ = ργ/3 and pν = ρν/3. As already mentioned cdm
and baryons have vanishing pressure. Finally dark energy (de) has a vacuum equation
of state, meaning that pde = −ρde. The standard model is also such that the spatial
curvature vanishes, K = 0. The free parameters are H0 ≡ ȧ/a|now (a dot denotes a
derivative with respect to cosmic time), ΛB, ργ , ρν , ρcdm, ρb and τ the optical depth
that describes how the universe re-ionizes. We also have two extra parameters describing
the perturbations, AS and nS that will be introduced later on. This means a total of
nine parameters. However, introducing the critical energy density ρcri = 3H2M2

Pl and
defining Ωi ≡ ρi/ρcri, the fact that K = 0 means that the Friedman equation (2) can
be rewritten as a constraint, Ωγ + Ων + Ωcdm + Ωb + Ωde ≡ Ωtot = 1. So, in fact, we
have eight free parameters (often, ργ and ρν are not viewed as free parameters because
they are precisely determined by the CMB measurement and the number of neutrinos
family; in that case we have a six-parameter model). These free parameters have now
been measured with good precision (at the percentage level) [15, 17]. For the expansion
rate, one has H0 = 100h km × s−1 × Mpc−1 with h � 0.67, and for the matter content
in the present day Universe, Ωγh2 � 2.47 × 10−5, Ωνh2 � 1.68 × 10−5 (assuming three
families of neutrinos), Ωcdmh2 � 0.1198, Ωbh2 � 0.02255 and Ωdeh

2 � 0.306.
Knowing the matter content, by integrating the Einstein equations, we can infer the

history of the Universe. The early Universe was dominated by radiation, with a scale
factor given by a(t) ∝ t1/2 from the initial singularity until a redshift zeq � 3400. Then,
pressure-less matter took over with a scale factor a(t) ∝ t2/3 until a redshift of order
one. Then, dark energy started to dominate and we still live in this epoch. The history
of the Universe is thus made of three successive eras.

This simple model, except for the presence of dark energy, was already known before
the 80’s (although, at that time, the parameters were not measured with today accuracy)
and has a great explanatory power. As mentioned before, it is known as the hot Big Bang
model or the ΛCDM model in its most modern incarnation and is considered as the
most convincing model for Cosmology. Why, then, the simple version presented above
is nevertheless considered as not fully satisfactory thus motivating the introduction of
inflation? We now turn to this question.
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2.2. The puzzles of the standard model . – With a few parameters, the pre-inflationary
standard model of Cosmology was (is) able to explain a very large number of observational
facts. Therefore it may seem strange to view it as not totally satisfactory. In fact, the
difficulties of the hot Big Bang model are all related to the initial conditions. For instance,
it is difficult to understand why spatial curvature is so small today. Indeed, the expansion
during the hot Big Bang phase is decelerated and this means that Ωtot − 1 is growing.
Therefore, since Ωtot − 1 is, today, very close to zero, this implies that it was in fact
incredibly small in the early Universe (say, at BBN). Of course, it is always possible to
postulate that the initial conditions were just such that it was the case. However, there
is another explanation which consists in assuming that there was an accelerated phase
of expansion, ä > 0, prior to the hot Big Bang epoch. This new phase of accelerated
expansion is called “inflation”. Then, the initial conditions at the beginning of the hot Big
Bang epoch are now viewed as the “final conditions” at the end of inflation. Moreover,
during a phase of accelerated expansion Ωtot − 1 is decreasing. Therefore, if Ωtot − 1
sufficiently decreases during inflation, it can entirely compensate the subsequent growth
during the hot Big Bang phase and we understand why it is still small today. One can
show that the compensation occurs if we have more than 60 e-folds of inflation. In some
sense, inflation is a physical mechanism which puts the hot Big Bang phase on the “right
tracks” by automatically single outing the right initial conditions.

Quite remarkably, one can show that all the puzzles of the standard model can be
solved by the same mechanism [3]. For instance, this is the case of the so-called horizon
problem. According to the hot Big Bang model, the angular scale of the horizon on the
last scattering surface (where the CMB radiation was emitted) is � 1◦. This means that
we should expect the temperature to be strongly inhomogeneous on this scale all over the
sky. As is well known, this is not the case since the CMB is, on the contrary, extremely
homogeneous and isotropic. However, if one has 60 e-folds of inflation before the hot
Big Bang phase, then the horizon at the last scattering surface covers the entire celestial
sphere today and the problem is gone. We stress again that the number of e-folds needed
to solve the problem turns out to be the same as for the flatness problem, namely 60.

Of course, postulating an accelerating phase is not sufficient. One must also identify
a physical mechanism that could be responsible for it. In the next section, we discuss
this question.

2.3. Basics of inflation. – We have seen before that, if there is a phase of accelerated
expansion in the early Universe, then the puzzles of the hot Big Bang model can be
explained. As long as the gravitational field is described by GR and the cosmological
principle valid, the acceleration of the scale factor can be expressed as

ä

a
= − 1

6M2
Pl

N∑
i=1

(ρi + 3pi) +
1
3
ΛB.(4)

Assuming that the cosmological constant does not play a role in the early Universe (given
its present-day value), the condition for having ä > 0 reads
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ρT + 3pT < 0,(5)

where ρT =
∑N

i=1 ρi and pT =
∑N

i=1 pi denote the total energy density and pressure.
Given that the energy density must be positive, we are left with the condition that the
pressure must be negative.

In usual situations, the pressure of a fluid is positive. This is for instance the case
of radiation. However, inflation is supposed to take place in the very early Universe, at
extremely high redshifts, and at those energies, hydrodynamics is clearly not the appro-
priate framework to describe matter. We should rather use field theory. The simplest
type of field, compatible with the cosmological principle and the FLRW symmetries is
a scalar field. We therefore assume that the matter content of the early Universe was
dominated by a homogeneous scalar field φ(t) called, for obvious reasons, the “inflaton”.
The corresponding action is given by

L = −1
2
gμν∂μφ∂νφ − V (φ) + Lint(φ,Aμ,Ψ),(6)

where V (φ) is the inflaton potential and Lint describes the interaction of the inflaton field
with the other fields present such as gauge bosons Aμ or fermions Ψ. Then, by varying
this action with respect to the metric tensor, one can calculate the energy momentum
tensor and, therefore, the energy density and the pressure of the system. Ignoring for
the moment the interaction term, this leads to

ρ =
φ̇2

2
+ V (φ), p =

φ̇2

2
− V (φ).(7)

We see that energy density is positive definite as it should (of course, V (φ) > 0) but this
is not the case of pressure. If the potential energy dominates over the kinetic energy,
then p < 0. This will be the case if the kinetic energy is small or, in other words, if the
inflaton moves slowly along its potential. And this will happen if the potential is nearly
flat. We conclude that, if the inflaton dominates the energy budget at early times and
if its potential is almost flat, then a phase of inflation can occur. This is the basics idea
that underlies the theory of inflation.

At the technical level, the evolution of the system is controlled by the Friedmann and
Klein-Gordon equations, namely

H2 =
1

3M2
Pl

[
φ̇2

2
+ V (φ)

]
, φ̈ + 3Hφ̇ + Vφ = 0,(8)

where the subscript φ means the derivative with respect to the inflaton field. Unfortu-
nately, this system of equations cannot be solved analytically unless the potential has
a very specific form (for instance, V (φ) ∝ e−αφ, a model called power law inflation).
Therefore, we have to use either numerical calculations or a perturbative method. In

 EBSCOhost - printed on 2/13/2023 8:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



160 J. Martin

general, a perturbative method is based on an expansion of the relevant physical quan-
tities in terms of a small parameter (or several) naturally present in the problem (for
instance a coupling constant in field theory). Here, one can use the fact that the potential
is nearly flat. If it is exactly flat, then the scalar field acts as a cosmological constant
and the corresponding solution is de Sitter. One can then expand the solution of the
system (8) around de Sitter. Since the de Sitter solution corresponds to a constant Hub-
ble parameter, one can define small parameters by considering the derivatives of H and,
then, expand the solution in these parameters. They are called horizon flow parameters
or slow-roll parameters and are defined by [20,21]

εn+1 ≡ d ln |εn|
dN

, n ≥ 0,(9)

where ε0 ≡ Hini/H stands at the top of the hierarchy and N ≡ ln(a/aini) is the number
of e-folds. The first Hubble flow parameter can be expressed as

ε1 = − Ḣ

H2
= 1 − ä

aH2
=

3φ̇2

2
1

φ̇2/2 + V (φ)
.(10)

As mentioned above, it is related to the first derivative of the Hubble parameter. The
second Hubble flow parameter, ε2, would be related to Ḧ and so on. We also see on the
second expression of ε1 that ε1 < 1 when ä > 0, that is to say when inflation occurs. Of
course, ε1 � 1 when the inflationary expansion is close to that of de Sitter. Finally, the
third expression of ε1 makes clear that it is a very small quantity when the kinetic energy
is small compared to the total energy and, therefore, compared to the potential energy.
In fact, there is yet another way to express the Hubble flow parameters. If one assumes
that εn � 1 (the following expressions are therefore approximate contrary to eqs. (10)
which are exact), then the first three Hubble flow parameters can be written as [22]

ε1 � M2
Pl

2

(
Vφ

V

)2

,(11)

ε2 � 2M2
Pl

[(
Vφ

V

)2

− Vφφ

V

]
,(12)

ε2ε3 � 2M4
Pl

[
VφφφVφ

V 2
− 3

Vφφ

V

(
Vφ

V

)2

+ 2
(

Vφ

V

)4
]

.(13)

It is then clear that, when the inflaton potential is nearly flat, one has εn � 1. The
Hubble flow parameters are in fact nothing but a measure of the flatness of the inflaton
potential.

Having identified the small parameters of the problem, one can now use them and
design a method of approximation based on an expansion in terms of the εn’s. This is
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called the slow-roll approximation. The first step consists in re-writing the Friedman and
Klein-Gordon equations (8) in terms of the εn’s. This leads to

H2 =
V

M2
Pl(3 − ε1)

,(14)

(
1 +

ε2
6 − 2ε1

)
dφ

dN
= −M2

Pl

d lnV

dφ
.(15)

At this stage, these expressions are exact. Then, we expand them at leading order in the
Hubble flow parameters. This gives

H2 � V

3M2
Pl

,
dφ

dN
� −M2

Pl

d lnV

dφ
.(16)

Unsurprisingly, we now see that the expansion rate of the Universe is solely controlled
by the potential energy. One great advantage of the above equations is that they can be
integrated exactly. The solution reads

N − Nini = − 1
M2

Pl

∫ φ

φini

V (χ)
Vχ(χ)

dχ,(17)

φini being the initial value of the inflaton. If the above integral can be performed, then
one obtains N = N(φ) and by inverting it, one arrives at the trajectory, φ = φ(N). If
one assumes a potential V (φ), this solution can be compared with the exact solution
obtained by a numerical integration. In practice, as long as εn � 1, eq. (17) turns out
to be an excellent approximation.

We now turn to another crucial question of the inflationary scenario, namely how it
comes to an end [23-26]. At this stage, let us recall that inflation is not an alternative to
the ΛCDM model but just an additional ingredient. A phase of inflation is supposed to
take place in the early Universe for the reasons explained in sect. 2.2 but, then, it must
be smoothly connected to the standard ΛCDM phase. On a more practical side, it is
known that the expansion of the Universe was radiation dominated during the Big Bang
Nucleosynthesis (BBN) (otherwise the production of light elements, which is known to be
in good agreement with the data, would be drastically modified) and, therefore, inflation
must have stopped by that time.

There exists different mechanisms to stop inflation but the simplest one is just that,
at some point, the potential is no longer flat enough to support inflation. Usually this
happens in the vicinity of the minimum of the potential. Technically, this means that
the slow-roll approximation is no longer valid. In fact, from eq. (10), one sees that the
expansion is no longer accelerated when ε1 = 1 which, therefore, defines the time at
which inflation comes to an end. Then, the field starts oscillating at the bottom of its
potential. If m2 = d2V/dφ2 is the mass around the local minimum, the field behaves
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as [23]

φ(t) = φend

(aend

a

)3/2

sin(mt),(18)

namely the field oscillates with a frequency given by its mass. Of course, in this regime,
the kinetic energy is no longer sub-dominant compared to the potential energy. In fact,
there is now equipartition between them which means that 〈p〉t = 0. This implies that
the averaged energy density behaves as dust as also revealed by the fact that the overall
amplitude of the inflaton is proportional to a−3/2.

The above behavior is valid if one neglects the interaction of the inflaton with the
other fields or, in other words, for times much smaller than the inflaton life time Γ−1,
where Γ is the total inflaton decay rate. If this is taken into account, then eq. (18)
becomes

φ(t) = φende−Γt
(aend

a

)3/2

sin(mt),(19)

which shows that the total energy density stored in the inflaton field quickly goes to zero.
This energy is transferred to the inflaton decay products. Then, these decay products
thermalize and the radiation-dominated epoch starts at a temperature which is known as
the reheating temperature Trh. This is the first time that a temperature can be defined
in the history of the Universe. Equivalently, this also determines the reheating energy
density, ρreh, that is to say the energy density at which one starts the ΛCDM model. It
is given by

ρreh = g∗
π2

30
T 4

reh,(20)

where g∗ encodes the number of relativistic degrees of freedom.
It is also interesting to study the evolution of the equation of state during the reheat-

ing. We know it must transit between −1 and 1/3. In fact, observationally speaking, the
mean equation of state is easier to probe. It is defined by [27-30]

wreh ≡ 1
ΔN

∫ Nreh

Nend

wreh(n)dn,(21)

where ΔN ≡ Nreh − Nend is the total number of e-folds during reheating and wreh ≡
pT/ρT is the instantaneous equation of state. The quantity wreh controls the evolution
of the total energy density since one has

ρreh = ρend e−3(1+wreh)ΔN ,(22)

where ρend is the energy density at the end of inflation, namely when ε1 = 1. If one is
given a model of inflation, then this quantity can be easily calculated.
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It is also relevant to introduce the reheating parameter which is a quantity depending
on ρreh and wreh. Explicitly, it reads [27-30]

Rrad ≡
(

ρreh

ρend

)(1−3wreh)/(12+12wreh)

.(23)

The reason why this parameter is important can be found in refs. [27-29,19,30]. It turns
out that, when one tries to constrain reheating with the CMB, we end up constraining this
parameter. As simple check allows us to understand why. Observationally speaking there
should not be any difference between a model where reheating proceeds instantaneously
and a model where reheating proceeds with an equation of state 1/3. If Rrad is the only
combination of parameters we can access to, it should therefore have the same value
for those two situations. And, indeed, it is easy to check that Rrad = 1 if ρreh = ρend

(instantaneous reheating) or wreh = 1/3 (radiative reheating).
Let us now illustrate the previous considerations on a simple example. Suppose the

inflaton potential is given by V (φ) = m2φ2/2. Then, it is easy to perform the integral
in eq. (17) and the corresponding trajectory reads

φ(N) =
√

φ2
ini − 4M2

Pl(N − Nini).(24)

As explained before, inflation stops when ε1 = 1 which, in this case, means φend =√
2MPl. From this result, one can also compute the total number of e-folds. One finds

NT ≡ Nend − Nini =
1
4

φ2
ini

M2
Pl

− 1
2

.(25)

This relation means that, in order to have more than 60 e-folds, one should start
from φini � 15MPl. Finally, the reheating will be completed when H � Γ, namely
g∗π2T 4

reh/30 � M2
PlΓ

2 or

Treh �
(

30
g∗π2

)1/4

M
1/2
Pl Γ1/2.(26)

We see that the reheating temperature scales as the square root of the decay rate.

3. – Inflationary cosmological perturbations

We now turn to the theory of cosmological perturbations of quantum-mechanical
origin. This part of the inflationary scenario makes use of GR and QM and as such
is particularly interesting. Moreover, it allows us to build a bridge between theoretical
considerations and actual astrophysical measurements. Therefore, it plays a crucial role
in our attempts to observationally probe inflation.

So far, we have considered that the Universe was homogeneous and isotropic. Clearly,
in the real world, this is not the case. Going beyond the cosmological principle is a priori
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technically challenging since this means solving Einstein equations in an inhomogeneous
and anisotropic situation. Fortunately, we know that the amplitude of these inhomo-
geneities were small in the early Universe as revealed by the fact that δT/T � 10−5 on
the last scattering surface located at a redshift of zlss � 1100. Since the amplification of
the fluctuations proceeds by gravitational collapse, the amplitude of the inhomogeneities
were even smaller during inflation. As a consequence, one can study their behavior
perturbatively. Moreover, restricting ourselves to linear perturbations (leading order) is
sufficient. Based on the previous considerations, we can then write [31]

gμν(η,x) = gFLRW
μν (t) + δgμν (η,x) + . . . ,(27)

with the assumption that |δgμν(η,x)| � |gFLRW
μν (t)|. The tensor δgμν can be decom-

posed into three types of fluctuations, scalar, vector and tensor or gravitational waves.
The study of scalar perturbations can be reduced to the study of a single quantity, the
curvature perturbation ζ(η,x) and the primordial gravitational waves can be described
by a transverse and traceless two rank tensor hij(η,x), hi

i = ∂ih
i
j = 0. Vector per-

turbations do not play a role during inflation. As was already mentioned, the evolution
of the Universe is controlled by the Einstein equations, Gμν = Tμν . Since we expand
the metric tensor in terms of the perturbations, one must do the same for the Einstein
tensor, Gμν = GFLRW

μν + δGμν and for the stress energy tensor, Tμν = TFLRW
μν + δTμν .

Then, the equations describing the behavior of the perturbations are

δGμν = δTμν .(28)

Of course, these equations are now partial differential equations since the perturbations
are supposed to describe the early inhomogeneous and anisotropic Universe. But since
these equations are linear, they can be solved by going to Fourier space.

Then, the idea is to quantize the system. The motivation is that this will provide a
source for the cosmological perturbations (in other words, this will fix the initial con-
ditions). This source will be the unavoidable quantum fluctuations of the inflaton and
gravitational fields at the beginning of inflation. On the technical front, this means that
δgμν will be promoted to a quantum operator, δgμν → δĝμν . As a consequence, curvature
perturbations and gravitational waves also become quantum operators, ζ̂ and ĥij .

One fundamental assumption of inflation is that, initially, the quantum perturbations
are placed in the vacuum state. Then, this state will evolve as the Universe expands.
At the end of inflation, the system will be placed into a strongly two-mode squeezed
state. This state is a very peculiar state and is defined as follows (here, we follow the
presentation of ref. [32]). Let us consider a one-dimensional quantum oscillator. As is
well known, its vacuum state is a Gaussian state whose wave function is given by

Ψ0(x) =
1

π1/4
e−x2/2,(29)
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where x is the position of the oscillator. This state, written in the momentum basis,
reads

Ψ̃0(p) =
1

π1/4
e−p2/2,(30)

where p is the conjugate momentum of x. An interesting feature of the vacuum state is
that the dispersion in position and momentum are equal, namely

〈Δx̂2〉 = 〈Δp̂2〉 =
1
2

(31)

and saturates the Heisenberg inequality 〈Δx̂2〉〈Δp̂2〉 = 1
4 . A one-mode squeezed state is

also a Gaussian state but, in position basis and momentum basis, its wave function is
given by

ΨR(p) =
√

R

π1/4
e−R2x2/2, Ψ̃R(p) =

1
π1/4

√
R

e−p2/(2R2).(32)

We see that the wave function now depends on an additional parameter, R. As a conse-
quence, the dispersion in position and momentum are no longer equal,

〈Δx̂2〉 =
1

2R2
, 〈Δp̂2〉 =

R2

2
,(33)

although they still saturates the Heisenberg inequality. If R > 1, then the dispersion
in position is smaller than that of the vacuum. We say that the state is squeezed in
position, hence its name. Of course, since one has to satisfy the Heisenberg inequality,
the price to pay is that the dispersion in momentum is larger. If R < 1, we have the
opposite situation and the state is squeezed in momentum.

Then, let us consider two oscillators. The vacuum state of this system in position
basis (namely the position of the first oscillator also referred to as the position of Alice
and the position of the second oscillator also referred as to the position of Bob) can be
written as

Ψ0(x1, x2) =
1√
π

e−x2
1/2−x2

2/2 =
1√
π

e−(x1−x2)
2/4e−(x1+x2)

2/4.(34)

We see that the position of Alice and Bob are uncorrelated. From this expression, we
are now in a position to introduce the two-mode squeezed state which is given by

ΨR(x1, x2) =
1√
π

e−R2(x1−x2)
2/4e−(x1+x2)

2/(4R2),(35)

where the squeezing factor R appears again and is related to the squeezing parameter r

by R = ln r. We see that the position of Alice and Bob are now correlated. It is also
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interesting to notice that the two-mode squeezed state does not imply squeezing for Alice
or Bob. Indeed, it is easy to check that

〈Δx̂2
1〉 = 〈Δx̂2

2〉 =
1 + R4

4R2
.(36)

These dispersions are always larger than those one would obtain from the vacuum state.
This is related to the fact that, if one traces out, say, Alice’s degree of freedom, the
obtained state of Bob is not a one-mode squeezed state but a thermal state.

The quantum-mechanical properties of inflation discussed above are clearly fascinat-
ing. Based on this aspect of the theory, one can wonder whether it would be possible
to exhibit quantum effects in the sky. This was first discussed in refs. [33,34] and, more
recently, in refs. [35-40].

Let us now turn to a quantitative characterization of the cosmological fluctuations
originating from inflation. As usual this will be done by computing the various correlation
functions of scalar and tensor perturbations (in the following, we mainly focus on the
scalar sector). The simplest correlation function is evidently the two-point correlation
function which is given by

〈ζ2(η,x)〉 =
∫ +∞

0

dk

k
Pζ(k),(37)

where brackets mean quantum averages in the two mode squeezed state described above
and where Pζ(k) = k3|ζk|2/(2π2) is, by definition, the power spectrum of scalar per-
turbations. This scalar power spectrum is a very important quantity because it can be
probed observationally by measuring the CMB anisotropies or by measuring the distri-
butions of galaxies across our Universe. Using the slow-roll approximation introduced
above, it can also be calculated for an arbitrary potential V (φ) and the result reads

Pζ(k) = Pζ0(kP)

[
a
(S)
0 + a

(S)
1 ln

(
k

kP

)
+

a
(S)
2

2
ln2

(
k

kP

)
+ . . .

]
,(38)

where kP is a pivot scale and the global amplitude can be expressed as

Pζ0 =
H2

∗
8π2ε1∗M2

Pl

.(39)

In the above formula, a star means that the corresponding quantity has been calculated
at the time at which the pivot scale crossed out the Hubble radius during inflation.
We notice that the amplitude of the correlation function depends on the square of the
Hubble rate during inflation (measured in Planck units) and is inversely proportional to
the first slow-roll parameter. All these quantities are scale independent and so is the
global amplitude. This result is viewed as one of the most important success of inflation.
Indeed, before the invention of inflation, it was already known that a scale-invariant
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power spectrum (or Harrisson-Zeldovitch power spectrum) is a good fit to the data. But
its origin was mysterious and there was no convincing physical mechanism to produce it.
Inflation, on the contrary, naturally implies this property. In fact, generically, exact scale
invariance is not a prediction of inflation because, as can be seen in eq. (38), the overall
amplitude receives small, scale dependent, logarithmic corrections. The amplitudes of
those corrections is determined by the Hubble flow parameters, namely [20,41-45,21,46,
47],

a
(S)
0 = 1 − 2 (C + 1)ε1∗ − Cε2∗ +

(
2C2 + 2C +

π2

2
− 5

)
ε21∗(40)

+
(

C2 − C +
7π2

12
− 7

)
ε1∗ε2∗ +

(
1
2
C2 +

π2

8
− 1

)
ε22∗

+
(
−1

2
C2 +

π2

24

)
ε2∗ε3∗ + . . . ,

a
(S)
1 = −2ε1∗ − ε2∗ + 2(2C + 1)ε21∗ + (2C − 1)ε1∗ε2∗ + Cε22∗ − Cε2∗ε3∗ + . . . ,(41)

a
(S)
2 = 4ε21∗ + 2ε1∗ε2∗ + ε22∗ − ε2∗ε3∗ + . . . ,(42)

a
(S)
3 = O(ε3n∗),(43)

where C ≡ γE + ln 2 − 2 ≈ −0.7296, γE being the Euler constant. Therefore, the exact
prediction of inflation (really a prediction since it was made before it was checked) is that
the power spectrum should be almost scale invariant but not exactly scale invariant. This
prediction has been recently confirmed for the first time by the Planck data. Technically,
one defines the spectral index, which is the logarithmic derivative of lnPζ(k), namely

nS = 1 − 2ε1∗ − ε2∗,(44)

where nS = 1 corresponds to exact scale invariance. As will be discussed in more details
in the following, Planck has measured nS � 0.96 and nS = 1 is now excluded at more than
5σ. We also see that the spectral index depends on the two first Hubble flow parameters.
As a consequence, a measurement of nS is also a measurements of ε1∗ and ε2∗, that is
to say of the first and second derivative of the inflaton potential. This explains how
astrophysical measurements can constrain the theory of inflation.

The treatment of tensor modes (primordial gravitational waves) proceeds in the very
same way. One can compute the two-point correlation and the power spectrum using the
slow-roll approximation. One then arrives at the following expression:

Ph(k) = Ph0(kP)

[
a
(T)
0 + a

(T)
1 ln

(
k

kP

)
+

a
(T)
2

2
ln2

(
k

kP

)
+ . . .

]
,(45)
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where the amplitude Ph0(kP) is given by

Ph0 =
2H2

∗
π2M2

Pl

.(46)

As was the case for scalar perturbations, the overall amplitude is also given by the
square of the expansion rate during inflation measured in Planck units. Of course the
big difference is that the first slow-roll parameter ε1∗ is now absent. This means that a
measurement of the tensor modes would immediately provide the energy scale of inflation.
Notice that Ph0(kP) is also scale independent and, at leading order, the tensor power
spectrum is therefore scale invariant. However, as was also the case for scalar modes,
this scale-invariant amplitude receives small, scale-dependent, logarithmic corrections the
amplitude of which can be expressed as [21]

a
(T)
0 = 1 − 2 (C + 1)ε1∗ +

(
2C2 + 2C +

π2

2
− 5

)
ε21∗(47)

+
(
−C2 − 2C +

π2

12
− 2

)
ε1∗ε2∗ + . . . ,

a
(T)
1 = −2ε1∗ + 2(2C + 1)ε21∗ − 2(C + 1)ε1∗ε2∗ + . . . ,(48)

a
(T)
2 = 4ε21∗ − 2ε1∗ε2∗ + . . . ,(49)

a
(T)
3 = O(ε3n∗).(50)

From the coefficient a
(T)
1 , one can read the tensor spectral index (at first order in slow-

roll). One obtains

nT = −2ε1.(51)

Exact scale invariance corresponds to nT = 0 (for historical reasons, the convention
differs from that of scalars). Another difference is that nT depends on ε1∗ only while nS

depends on ε1∗ and ε2∗. Given that ε1∗ is always positive, this implies that nT is always
negative (or red).

Finally, one can also calculate the tensor amplitude to scalar amplitude r. Using the
previous expressions, one obtains

r ≡ Ph

Pζ
= 16ε1∗.(52)

Since, by definition, ε1∗ � 1, this means that gravitational waves are sub-dominant
(which explains why they have not yet been detected [48, 49]). Notice that there is
a priori no lower bound on r. Therefore, if r turns out to be very small, primordial
gravitational waves will probably never been detected but this would be in no way in
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contradiction with the predictions of inflation. At the time of writing, it is believed that
the next generations of telescope and satellites will be able to reach the level r ∼ 10−3

maybe a bit smaller. Let us hope that Nature has produced an r larger than this limit!
To conclude this section, let us mention Non-Gaussianities (NG). So far, we have

restricted our considerations to two-point correlation functions. Of course, higher corre-
lation functions are also of great interest. Usually, the three-point correlation function
(bispectrum) and the four-point correlation function (trispectrum) are considered. For
the models described previously, NG are very small (of the order of the slow-roll param-
eters) [50-53]. The reason is easy to understand. We have started from a Gaussian state
and the evolution of the perturbations is linear. As a consequence, the appearance of
any NG is necessarily related to non-linearities, which are very small.

4. – Extensions

So far, we have described the simplest way to realize inflation. However, since the
invention of inflation in the 80’s, more complicated scenarios have been imagined. In this
section, we say a few words about them.

The most generic extension is probably to consider models where, instead of having
one scalar field, one has several ones playing an active role during inflation [54]. This
appears to be a natural approach given that inflation can occur at energy scales as high
as 1015 GeV. At those scales, it is believed that particle physics is no longer described
by the standard model but by its extensions (SUSY, SUGRA, string theory, etc., . . . ).
And, usually, in these alternative frameworks, there are plethora of scalar fields.

Clearly, multiple-field inflation scenarios are more complicated and it is more difficult
to make generic predictions. However, one can list three main modifications. Firstly,
there is the possibility of having non-adiabatic perturbations, which is impossible for
single field models. The reason is that, if several scalar fields are present during infla-
tion, then the corresponding decay products can have different origin resulting in the
possible presence of non-adiabatic perturbations. Secondly, non-adiabatic perturbations
can source the evolution of curvature perturbations. As a result, if they are present
during inflation and reheating, ζ(η,x) on large scales is no longer a conserved quantity.
This has drastic consequences, especially for reheating, which then becomes potentially
dependent on the details of physical processes going on on scales smaller than the Hubble
radius. Thirdly, it is possible to produce non-negligible NG. As already mentioned, these
modifications are not mandatory and must be analyzed on a model by model basis.

Yet other extensions are also possible such that having a non-canonical kinetic term
for the scalar field. They are called K-inflation models [55, 56] (for the observational
status of this class of models, see refs. [46, 57, 47]). It is also possible to have models
with features [58, 59]. This means a model of inflation where, in some limited region,
the potential is not flat. This usually causes a transitory violation of the slow-roll ap-
proximation which can result in oscillations in the power spectrum and non-negligible
NG [60-62]. More complicated models are possible, for instance by combining the var-
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Fig. 1. – Multipole moments versus angular scale from Planck 2015 data. The multipole mo-
ments are obtained from the CMB map by Fourier transforming it according to: 〈δT/T (e1)δT/
T (e2)〉 = (4π)−1 P

�(2� + 1)C�P�(cos θ), where θ is the angle between two directions e1 and e2

and P� is a Legendre polynomial. The multipole moments C� are interpreted as the power of
the signal at a given angle θ. Notice that D� is related to C� by D� = �(� + 1)C�/(2π). The red
curve corresponds to the best fit and is consistent with the predictions of single field, slow-roll,
inflation. Figure taken from ref. [17].

ious ingredients discussed above [63], but we will not discuss them here. We now turn
to another question, namely how the observations can discriminate among these various
possibilities.

5. – Inflation and CMB observations

The Planck satellite has recently measured the CMB temperature, see fig. 1, and
polarization, see figs. 2 and 3, anisotropies with unprecedented accuracy. These new data
allow us to constrain inflation and to learn which was the version of inflation realized in
the early Universe.

In brief, Planck has shown that the Universe is so spatially flat, that the perturbations
are adiabatic and Gaussian [18]. These results are all consistent with single field (with
minimal kinetic term), slow-roll, inflation which, therefore, appears to be the preferred
class of models. This does not mean that the more complicated versions discussed in
sect. 4 are ruled out but just that, at the moment, they are not needed in order to
explain the data.
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Fig. 2. – Multipole moments corresponding to the correlation between temperature and E-mode
polarization anisotropies. The red solid line is obtained from temperature measurements only,
see fig. 1. The lower panel shows the residual with respect to this best fit. Figure taken from
ref. [17].

With regards to inflation, probably the most important discovery made by the Planck
satellite is the measurement of the scalar spectral index [18]

nS = 0.969 ± 0.005.(53)

For the first time, the value nS = 1 is excluded at more than 5σ. As was already discussed
above, the fact that the power spectrum must be scale invariant (the so-called Harrisson-
Zeldovitch power spectrum) was known long ago (before the invention of inflation). But
the non-trivial prediction of inflation was that nS should be close to one but not exactly
one. And this is exactly what has been observed for the first time by the Planck satellite.

Another important of piece of information is that, unfortunately, so far, no gravita-
tional wave has been detected. This means the following upper bound on the tensor to
scalar ratio r [48]

r � 0.08.(54)

From the measurements of those quantities, one can also infer constraints on the
Hubble flow parameters, see fig. 4 and refs. [64,65,19]. We see that P∗ ≡ Pζ0a

(S)
0 and ε2∗

are constrained while there only exists an upper bound on ε1∗. Of course, P∗ is determined
because one knows the amplitude of CMB fluctuations (namely δT/T � 10−5). On the
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Fig. 3. – Same as in fig. 2 but for the E-mode power spectrum obtained from Planck 2015.
Figure taken from ref. [17].

other hand, the upper bound on ε1∗ originates from eq. (52) and the fact that we only
have an upper bound on r. Given that H2

∗/M2
Pl � 8π2ε1∗P∗, this means that we only

have an upper bound on the energy scale of inflation, namely

H∗ � 1.2 × 1014 GeV,(55)

or ρ
1/4
∗ � 2.2×1016 GeV. Finally, the third slow-roll parameter, ε3∗ is not well constrained

which means that we do not have yet a detection of a running.
We have seen before that the slow-roll parameters carry information about the shape

of the inflaton potential. Since we have obtained constraints on these parameters, we
must be able to say something about the shape of the inflaton potential itself [64,65,19].
In order to answer this question, one can calculate the Bayesian evidence of the various
models of inflation. The Bayesian evidence is the integral of the likelihood function
over the prior space. It characterizes the performance of a model and its ability to fit the
data [66]. The larger the evidence, the better the model. In refs. [64,65,19], the Bayesian
evidence of nearly two hundred models were computed. The result of this computation
is displayed in figs. 5 where the number of unconstrained parameters is also indicated. A
detailed analysis of those results has been published in refs. [64, 65, 19], but the bottom
line is that plateau inflationary models are the “best” models according to the Planck
data. A plateau potential is a potential which flattens out at infinity. The prototype of
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Fig. 4. – Posterior distributions of the parameters ε1∗, ε2∗, ε3∗ and P∗ ≡ a
(S)
0 Pζ0. The posteriors

are taken to be Jeffreys’s priors for P∗ and ε1∗ and flat priors for ε2∗ and ε3∗.

this class of models is the so-called Starobinsky model given by

V (φ) = M4
(
1 − e−

√
2/3φ/MPl

)2

.(56)

This conclusion is non-trivial since models that were historically considered as leading
candidates, such as V (φ) = m2φ2/2, are now strongly disfavored compared to plateau
models.

Let us also notice another interesting point. The prediction of plateau models for r

is, roughly speaking, r � 10−3. As indicated before, this value is in principle reachable
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Fig. 5. – Bayesian evidence versus number of unconstrained parameters for different models
of inflation. Each circle represents a given inflationary scenario (the size of the circle has no
meaning). The upper right panel is a zoom on the “best” region (the square delimited by the
dashed black line) of the upper left panel. In the same way, the bottom left plot is a zoom on
the “best” region of the upper right. Finally, the bottom right is a zoom on the “best” region
of the bottom left figure.

by the next generation of instruments. This means that there is maybe a good chance
to detect primordial gravitational in a non too distant future (say, a decade).

Finally, let us discuss what the Planck data imply for reheating. As was discussed
before, constraints on reheating are expressed through constraints on the reheating pa-
rameter Rrad defined in eq. (23). In refs. [27-30], the posterior distributions was derived
for the nearly two hundred models already considered before for the calculation of the
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Fig. 6. – Kullback-Leibler DKL divergence versus Bayesian evidence for various models of in-
flation. The mean value is given by 〈DKL〉 = 0.82 ± 0.13 and the yellow band represents the
one-sigma deviation around this mean value.

Bayesian evidence. The situation is summarized in fig. 6. It represents the Kullback-
Leibler divergence between the prior distribution and the posterior versus the Bayesian
evidence for different models of inflation (represented by circles). The Kullback-Leibler
divergence is defined by

DKL =
∫

P (ln Rreh|D) ln
[
P (ln Rreh|D)
π (ln Rreh)

]
d lnRreh,(57)

where Rreh is given by lnRreh = lnRrad + ln(ρend/M4
Pl)/4 and is therefore, for a given

model of inflation, in a one-to-one correspondence with Rrad. The quantity π represents
the prior on Rreh and P the posterior. The Kullback-Leibler divergence measures the
“distance” between the prior and the posterior and, as a consequence, also represents
the amount of information provided by the data D (of course, here, the Planck data)
about lnRreh. The constraints are model dependent and one has a posterior distribution
per model of inflation, an amount of information which, given the number of scenarios
analyzed, is difficult to deal with. The value of DKL is one way to summarize the
information about reheating for a given model to one number. In this sense, fig. 6

 EBSCOhost - printed on 2/13/2023 8:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



176 J. Martin

completely describes what, for each known model of inflation, the Planck data implies
with regards to the ability to fit the data and to reheating. Let us also notice that one
can calculate the mean value of DKL. One finds 〈DKL〉 = 0.82 ± 0.13, which expresses
the fact that reheating is globally constrained by the Planck data.

6. – Conclusions

In this short review, we have discussed the theory of inflation. Over the years, the
inflationary scenario has become a crucial ingredient in our understanding of Cosmology.
It is important to stress that inflation is not an alternative to the standard model of
Cosmology, it is rather a new part of it.

Invented in the 80’s, inflation has recently witnessed new developments with the publi-
cation of the high accuracy Planck data. Clearly, these data have boosted our confidence
in inflation. In particular, the measurement of the spectral index to be close but not
equal to one is an important confirmation of an inflationary prediction. Admittedly, it
is probably not the final proof that inflation actually occurred in the early Universe but
it nevertheless represents a very strong argument in its favor. From the Planck data, we
have also learned that inflation is probably realized in its simplest version (single field,
slow-roll, with minimal kinetic term) and that the best scenario is a plateau model for
which the potential flattens out at very large values of the field.

What is then the next step? Clearly, the detection of primordial gravitational waves
will play a crucial role. It is an unambiguous prediction of inflation that has not yet been
confirmed. Future missions will be able to reach r ∼ 10−3. Unfortunately, inflation, as
a paradigm, does not predict the value of r even if r is predicted if a precise scenario is
given. However, the best model of inflation, the Starobinsky model, predicts a value of
r which, in principle, could be detected in the future.

Let us also add that the detection of NG will also certainly play an important role in
the future. Given that we deal with the simplest class of models, the expected signal is
very small and its detection will be challenging (if possible). But, obviously, this would
be of crucial importance.

Of course, inflation is not a perfect scenario and some of its aspects remain unclear.
But, as an effective model of the early Universe, it scores pretty well. Let us see whether
its performances remain so efficient in the future.

∗ ∗ ∗
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Summary. — Here we review the present status of modelling of and searching for
primordial non-Gaussianity of cosmological perturbations. After introducing the
models for non-Gaussianity generation during inflation, we discuss the search for
non-Gaussian signatures in the Cosmic Microwave Background and in the Large-
Scale Structure of the Universe.

1. – Introduction

According to Planck 2018, “the 6-parameter ΛCDM model provides an astonishingly
accurate description of the Universe form times prior to 380000 years after the Big
Bang, defining the last-scattering surface observed via the Cosmic Microwave Background
(CMB) radiation, to the present day at an age of 13.8 billion years” [1].
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Actually, the concordance model describes the evolution of tiny fluctuations on top
of a homogeneous and isotropic background from the early Universe to the time of ob-
servation. Specifically, we can study how these modes looked like at the last-scattering
surface, by analyzing the inhomogeneities in the CMB, and, in recent times, by observing
the Large-Scale Structure (LSS) of the Universe.

In the standard model of cosmology, the primordial perturbations, corresponding
to the seeds for the LSS, are chosen from a Gaussian distribution with random phases.
This assumption is justified from experimental evidences as deviations from this Gaussian
hypothesis, i.e. Primordial Non-Gaussianity (PNG), have not been observed yet.

Note that from the theoretical point of view, it is not surprising that “a Gaussian
random field may provide a good description of the properties of density fluctuations” [2].
Actually, “the central limit theorem implies that a Gaussian distribution arises whenever
one has a variable [. . . ] which is a linear superposition of a large number of independent
random variables [. . . ] which are all drawn from the same distribution” [2].

For this reason, deviations from perfect Gaussianity can provide relevant informa-
tion on the early Universe and research on PNG is particularly important, especially if
these initial conditions were generated by some dynamical process, such as, for example,
inflation in the Early Universe.

Actually, while “small-amplitude curvature perturbations generated by quantum fluc-
tuations in an inflationary phase [. . . ] would yield a nearly Gaussian random density
field” [2], direct measurements of non-Gaussianity would allow us to go beyond the
free-field limit, providing information concerning the degrees of freedom, the possible
symmetries and the interactions characterizing the inflationary action.

1.1. Historical outline. – To be, or not to be Gaussian? The quest for Non-Gaussianity
(NG) has a long story, already during the late seventies observations indicated that the
patterns in the LSS could not be related to a Gaussian distribution. More precisely, NG
in the LSS was measured in 1977 by Groth and Peebles [3] who computed the 3-point
function of galaxies, raising the question whether this feature was only associated to
non-linear gravitational clustering or it also included some signature of primordial NG.

In the subsequent years, and especially during the late eighties, the consequences of
strongly non-Gaussian initial conditions were investigated in order to explore alternative
structure formation models. However, these extreme possibilities were later excluded by
CMB and LSS observations with increased accuracy.

Remarkably, the early nineties featured the beginning of a new era of non-Gaussian
models from inflation, characterized by a small fNL, compatible with observations [4-8].
At the same time, N -body simulations started to play a crucial role determining the
LSS of the Universe arising from the non-linear gravitational clustering of non-Gaussian
Cold Dark Matter perturbations. The view on NG using N -body simulations around
1990 can be depicted in fig. 1. From the theoretical point of view, this line of research
continued until the new millennium, when PNG finally emerged as a new “smoking
gun” of (non-standard) inflation models [10,11], probing interactions among fields at the
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Fig. 1. – Projected particle positions in slices of depth one sixteenth of the computational box-
size at the present time t0. The slices refer to different models. From [9].
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highest energy scales, which complements the search for primordial gravitational waves
(PGW).

As for the experimental and observational side, the bispectra for PSCz [12] and the
IRAS [13] redshift catalogues were determined in 2001, and for 2dF galaxies in 2002 [14].
More recently, the three-point correlation functions for the WiggleZ spectroscopic galaxy
survey and the Baryon Oscillation Spectroscopic Survey were determined in [15] and [16,
17], respectively(1).

Finally, the very stringent Planck constraints on PNG [26, 27] rose the question
whether this route is still viable or not, and the present-day challenge is to detect (or
constrain) mild or weak deviations from primordial Gaussian initial conditions.

2. – Non-Gaussianity in the initial conditions

The inflationary paradigm, a phase of accelerated expansion in the early Universe,
was originally proposed at the end of the seventies in order to overcome some incon-
sistencies of the hot Big Bang model, which was plagued by the so-called flatness and
horizon problems. At the same time, inflation suggested a quantum origin for the density
fluctuations in the Universe, thereby providing a convincing dynamical mechanism for
structure formation. Generally, the testable predictions of inflationary models are

– a critical value for the total energy density;

– almost, but not exact, scale-invariant and nearly Gaussian adiabatic density fluc-
tuations;

– almost, but not exact, scale-invariant stochastic background of relic gravitational
waves.

Note that Planck data have confirmed these predictions, for example the measured spec-
tral index of the scalar power spectrum is ns = 0.9649 ± 0.0042 at 68% CL and no
evidence for a scale dependence of ns has been found [28].

Also spatial flatness is confirmed at a precision of 0.4% at 95% CL with the com-
bination of BAO data [28]. Prospects for further improving measurements of spatial
curvature are discussed in [29].

While primordial gravitational waves have not been yet detected, the upper limit
on the tensor-to-scalar ratio from the BICEP2/Keck CMB polarization experiments is
r0.05 < 0.07 at 95% confidence, which tightens to r0.05 < 0.06 in conjunction with Planck
temperature measurements and other data [28,30].

(1) Note that even if the sensitivity is not competitive with CMB data [7], interesting bounds
on local fNL from current power spectrum constraints can be found in [18-25].
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In order to reconstruct the inflationary action, we need two ingredients:

– the stochastic GW background, providing information on the inflationary energy
scales;

– deviations from Gaussian initial conditions, providing information on the possible
interactions. Moreover, PNG features can help us to distinguish inflation models
which would yield the same predictions for ns and r.

Many primordial (inflationary) models of non-Gaussianity can be represented in config-
uration space by the simple formula [4-8]

(1) Φ = ϕL + fNL

(
ϕ2

L − 〈
ϕ2

L

〉)
+ gNL

(
ϕ3

L − 〈
ϕ2

L

〉
ϕL

)
+ . . . ,

where Φ is the large-scale gravitational potential (or equivalently in terms of the gauge-
invariant comoving curvature perturbation ζ which on super-horizon scales satisfies the
relation Φ = 3 ζ/5), ϕL its linear Gaussian contribution and fNL the dimensionless non-
linearity parameter (or more generally non-linearity function).

2.1. Non-Gaussianity and higher-order statistics. – The simplest statistics measuring
NG is the 3-point function or its Fourier transform, the “bispectrum”:

(2) 〈Φ(k1)Φ(k2)Φ(k3)〉 = (2π)3δ(3)(k1 + k2 + k3)BΦ(k1, k2, k3),

which carries shape information. In the simple linear and quadratic model, parametrized
by ϕL and fNL, the bispectrum of the gravitational potential reads

(3) BΦ(k1, k2, k3) = 2fNL[PΦ(k1)PΦ(k1) + cyclic terms]

where we applied Wick’s theorem and

(4) 〈Φ(k1)Φ(k2)〉 = (2π)3δ(3)(k1 + k2)PΦ(k1).

In order to evaluate NG from the early Universe to the present time, we need, first of
all, to calculate non-Gaussianity during inflation using a self-consistent method.

Then, we need to evolve scalar (vector) and tensor perturbations to second order
outside the horizon, matching conserved second-order gauge-invariant variables, such as
the comoving curvature perturbation ζ(2) (or non-linear generalizations of it), to its value
at the end of inflation (accurately accounting for reheating).

Finally, we consistently study the evolution of the perturbations after they re-entered
the Hubble radius, by computing the second-order radiation transfer function for the
CMB and the second-order matter transfer function for the LSS.

Although this procedure is involved, PNG represents a fundamental tool to probe
fundamental physics (e.g. UV completion of the standard model of particle physics or
general relativity such as string theory) during inflation at energies from the Grand
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Unified Theories (GUT) scale ∼ 1015 GeV to the Planck scale ∼ 1019 GeV, as different
inflationary models predict different amplitudes and shapes of the bispectrum. For ex-
ample, even tough standard models of slow-roll inflation predict tiny deviations from
Gaussianity [4-8,10,11], consistent with the 2013 and 2015 Planck results, specific oscil-
latory PNG features can point to particular string-theory models as shown in [31,32].

In conclusion, searching for PNG is interesting per-se for theoretically well-motivated
models of inflation and, as shown in Planck 2015 results [27] (see also [28]), can severely
limit various classes of inflationary models beyond the simplest paradigm.

2.2. Bispectrum of a self-interacting scalar field in de Sitter space. – Consider a scalar
field χ with cubic self-interactions, i.e. with an interaction term of the form λχ3/6 in
the Lagrangian.

Writing the field as χ = χ0 + δχ, where δχ represent the fluctuations around its
vacuum expectation value χ0 = 〈0|χ|0〉, the two- and three-point functions in Fourier
space [33,6, 34], after the rescaling δχ = δχ̂/a are given by

〈0|δχ̂(τ,k)δχ̂(τ ′,k′)|0〉 = δ(3)(k + k′)G(k, τ, τ ′),(5)

〈δχ̂k1δχ̂k2δχ̂k3〉 = i λ δ(3)(k1 + k2 + k3)

×
∫ τ

−∞

dτ ′

Hτ ′

[
3∏

i=1

G(ki, τ, τ
′) −

3∏
i=1

G∗(ki, τ, τ
′)

]
,

where the Green’s function reads

(6) G(ki, τ, τ
′) =

1
2ki

(
1 − i

kiτ

)(
1 +

i

kiτ ′

)
eiki(τ

′−τ).

The bispectrum is (ζ being a function of order 1)

(7) 〈δχk1δχk2δχk3〉 =
∑

i

ν3(ki)
∏
j �=i

H2

2k3
j

,

where

(8) ν3(ki) =
λ

3H2
[γ + ζ(ki) + log(−kT τ)] .

Historically, in [33] it was found fNL ∼ ε2 for the standard single-field slow-roll scenario
(from non-linearity in the inflaton potential in a fixed de Sitter space-time).

Later, calculations from second-order gravitational corrections during stochastic infla-
tion indicated fNL ∼ ε, η [6]. This result has been confirmed in [10, 11], up to numerical
factors and momentum-dependent terms, with a full second-order approach.

Finally, Weinberg extended the calculation of the bispectrum to 1-loop [35]. Remark-
ably, one of the terms gives rise to the so-called “consistency relation”, according to
which fNL = −5 (ns − 1)/12.
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However, it has been shown that the “consistency relation” term can be gauged away
by a non-linear rescaling of coordinates, up to sub-leading terms. Hence the only residual
term is proportional to ε i.e. to the amplitude of tensor modes; see comments on this
point, later on.

2.3. Shapes of non-Gaussianity from inflation. – In order to extract the relevant
information regarding the amplitude and shape of PNG, it is convenient to write the
bispectrum of primordial curvature perturbations as

(9) 〈ζ(k1)ζ(k2)ζ(k3)〉 = (2π)3δ(3)(k1 + k2 + k3)fNLF (k1, k2, k3),

where fNL represents the amplitude, while F (k1, k2, k3) encodes the shape of PNG. Note
that, usually, we study the function F (1, x2, x3)x2

2x
2
3 in terms of the rescaled coordinates

x2 = k2/k1 and x3 = k3/k1, where momenta satisfy the triangle inequality x2 + x3 > 1.
Remarkably, there are several possible shapes of non-Gaussianity from inflation, say

more than . . . stars in the sky. The most famous are:

– local NG, characteristic for multi-field, curvaton, ekpyrotic and cyclic models;

– equilateral NG, associated to non-canonical kinetic and higher-derivative terms,
DBI and K-inflation, ghost inflation and EFT approaches;

– orthogonal NG, which distinguishes between variants of non-canonical kinetic term
and higher-derivative interactions;

– flattened or folded NG.

More specifically, the bispectrum for the local shape [4,6-8] peaks for squeezed triangles
k3 � k1 ∼ k2, see fig. 1 in [36]. In this case, non-linearities develop outside the horizon
during or immediately after inflation (e.g. multifield models of inflation). On the other
hand, the bispectrum for the equilateral shape [38], see fig. 2, peaks for equilateral
triangles k1 = k2 = k3. Generally, in the equilateral family we can find single field
models of inflation with non-canonical kinetic term L = P (φ,X) with X = −1

2∂μφ ∂μφ

(e.g. DBI or K-inflation) where NG comes from higher-derivative interactions of the
inflaton field, such as

(10) L ⊃ δφ̇(∇δφ)2.

Finally, the bispectrum for the flattened shape peaks for flattened (or folded) triangles
k1 = k2 + k3, see fig. 3, and can be written in terms of the equilateral and orthogonal
shapes [39]. It is characteristic for excited initial states (see [40-42]), higher derivative
interactions [37] or models where a Galilean symmetry is imposed [43].

However, there are many other shapes: e.g. directionally dependent bispectra, tensor
bispectra, etc.
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Fig. 2. – Plot of the function F (1, x2, x3)x
2
2x

2
3 for non-Gaussianities generated by higher deriva-

tive interactions. The figure is normalized to have value 1 for equilateral configurations
x2 = x3 = 1 and set to zero outside the region 1 − x2 ≤ x3 ≤ x2. From [37].

Fig. 3. – The folded template shape F (x2, x3)x
2
2x

2
3, the maximum is in the flat configuration

(k1 = 1, k2 = k3 = 1
2
). From [37].
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2.4. The role of fNL and the detection of primordial non-Gaussianity . – Clearly, de-
tecting a non-zero primordial bispectrum (e.g. fNL �= 0) proves that the initial seeds were
non-Gaussian. Similarly, for the trispectrum and n-point correlation functions.

However, the opposite is not true, namely detecting fNL ≈ 0 does not prove Gaus-
sianity. Actually, there are infinitely many ways PNG can evade observational bounds
optimized to search for fNL and similar higher-order parameters.

As an example, consider the situation where the linear density contrast δ is non-
Gaussian [44]. In this case, by the central-limit theorem, the gravitational potential Φ
(which yields large-scale CMB anisotropies) tends to be much more Gaussian. Indeed,
consider the non-Gaussian distribution of densities [44]

(11) δ(r) =
∫

f(|r − r′|)Δ(r′)d3r′,

where Δ(r) is an uncorrelated field with a gamma distribution, and f is chosen to give
a Zel’dovich power spectrum (P (k) ∝ k) for the density field. By solving Poisson’s
equation, we get for the gravitational potential

(12) Φ(r) = −Ga2ρ̄

∫
δ(r′)d3r′

|r − r′|

with the resulting distribution very close to be Gaussian, see fig. 1(a) and 1(b) in [44].

3. – Non-Gaussianity and Cosmic Microwave Background

As mentioned before, the Planck satellite has provided accurate measurements of
higher-order CMB correlations, resulting in very stringent constraints on PNG.

Planck is a project of the European Space Agency, with instruments provided by
two scientific Consortia funded by ESA member states (in particular the lead countries:
France and Italy) with contributions from NASA (USA), and telescope reflectors provided
in a collaboration between ESA and a scientific Consortium led and funded by Denmark.
The Planck satellite has measured the CMB temperature and polarization anisotropies
with great accuracy, and, since PNG affects both, we can compare the data with the NG
CMB simulated maps, shown in fig. 4.

The latest release regarding non-Gaussianity [27] tested the local, equilateral, orthog-
onal (and many more) shapes for the bispectrum and provided new constraints on the
primordial trispectrum parameter gNL (while τNL was constrained in the previous re-
lease [26]). A new Planck legacy release, which will improve the 2015 results in terms of
more refined treatment of E-mode polarization, is in preparation.

The standard representation used in the Planck analysis for the CMB bispectrum is

(13) Bm1m2m3
123

≡ 〈a1m1a2m2a3m3〉 = G123
m1m2m3

b123 ,
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Fig. 4. – Left column: temperature and polarization intensity Gaussian CMB simulations. Right
column: temperature and polarization non-Gaussian maps with the same Gaussian seed as in
the left column and fNL = 3000. Temperatures are in mK. From [45].

where G123
m1m2m3

are the Gaunt integrals

(14) G123
m1m2m3

≡
∫

Y1m1(n̂)Y2m2(n̂)Y3m3(n̂)d2n̂ = h123

(
�1 �2 �3
m1 m2 m3

)

and the �j satisfy the following conditions, see fig. 5:

– triangle condition: �1 ≤ �2 + �3 for �1 ≥ �2, �3 and permutations,

– parity condition: �1 + �2 + �3 = 2n with n ∈ N,

– resolution: �1, �2, �3 ≤ �max with �1, �2, �3 ∈ N.

As noticed before, the search for PNG is optimized in terms of fNL. Leaving aside
complications coming from breaking of statistical isotropy (sky-cut, noise, etc.), the
general procedure is to fit the theoretical bispectrum template
(15)

f̂NL =
1
N

∑
Bm1m2m3

123

[
(C−1a)m1

1
(C−1a)m2

2
(C−1a)m3

3
− 3C−1

1m12m2
(C−1a)m3

3

]
to the 3-point function obtained analyzing the data. Unfortunately, a brute force imple-
mentation scales like �5max, unfeasible at Planck (or WMAP) resolution. On the other
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Fig. 5. – Permitted observational domain for the CMB bispectrum b�1�2�3 . Allowed multipole
values (�1, �2, �3) lie inside the shaded “tetrapyd” region (tetrahedron+pyramid), satisfying both
the triangle condition and the experimental resolution. From [26].

hand, we can achieve a massive speed improvement (�3max scaling) if the reduced bispec-
trum is separable. Generally, there are different ways to write the theoretical template
in separable form:

– the KSW [46] separable template fitting and the Skew-Cl extension [47];

– the binned bispectrum presented in [48];

– the modal expansion described in [49].

The alternative implementations differ basically in terms of the separation technique
adopted and of the projection domain.

More recent improvements can be found in [50] where the interested reader can find
an exact expression for the multi-variate joint probability distribution function (PDF) of
non-Gaussian fields, primordially arising from local transformations of a Gaussian field.
This expression has been applied to the non-Gaussianity estimation from CMB maps and
the halo mass function, obtaining both analytical expressions as well as approximations
with specified range of validity.

The results for the CMB gave a fast way to compute the PDF, valid up to more than
7σ for fNL values not ruled out by current observations, expressed as a combination of
bispectrum and trispectrum of the temperature maps. Note that such expression is valid
for any kind of non-Gaussianity and is not limited to the local type, providing a useful
basis for a fully Bayesian analysis of the NG parameter.

Finally, note that, in principle, we could go to higher order. In fact, this may become
important if we want to detect NG in observables characterized by a large fNL (e.g. in
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Fig. 6. – CMB temperature and polarization bispectrum reconstructions for Planck SMICA maps
using the full set of polynomial modes with nmax = 2001 and with signal-to-noise weighting.
From [27].

high-redshift probes) and/or if fNL (leading-order bispectrum) and gNL (leading-order
trispectrum) are both depending on the same underlying physical coupling constant that
we aim at determining. However, the expressions are rather involved and we refer the
reader to [50] for details.

3.1. Planck results on primordial non-Gaussianity. – In this section, we briefly present
some of the Planck results on PNG, focusing on the improvements compared to the
2013 release and the differences between the methods used in the analysis, particularly
concerning the Integrated Sachs-Wolfe (ISW) effect.

Let us start with the 2015 Planck analysis for the bispectrum in the modal represen-
tation, described in fig. 6, for the various combinations TTT , EEE, TTE, EET .

Note that compared to Planck 2013 the new constraints on local, equilateral, orthog-
onal bispectra have improved by up to 15%.

In the 2015 analysis particular attention was devoted to investigate the ISW-lensing
effect which strongly affects the constraints on fNL from Planck bispectrum. The results
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Table I. – Results for the amplitude of the lensing-ISW bispectrum from the SMICA, SEVEM,
NILC, and Commander foreground-cleaned maps, for different bispectrum estimators. Error bars
are 68% CL. From [27].

Method Lensing-ISW amplitude

SMICA SEVEM NILC Commander

T

KSW . . . . 0.79 ± 0.28 0.78 ± 0.28 0.78 ± 0.28 0.84 ± 0.28

Binned . . 0.59 ± 0.33 0.60 ± 0.33 0.68 ± 0.33 0.65 ± 0.36

Modal2 . . 0.72 ± 0.26 0.73 ± 0.26 0.73 ± 0.26 0.78 ± 0.27

T + E

Binned . . 0.82 ± 0.27 0.75 ± 0.28 0.85 ± 0.26 0.84 ± 0.27

are confirmed using several fNL estimators and CMB maps. Actually, different maps
have been produced by the SMICA, NILC, SEVEM and Commander-Ruler (or C-R) pipelines.
Notice that the SMICA product is considered the preferred one overall. Having said this,
the amplitude of the ISW-lensing bispectrum from the SMICA, NILC, SEVEM, and C-R
foreground-cleaned maps, for the KSW, binned, and modal (polynomial) estimators are
summarized in table I. Remarkably, the coupling between weak lensing and ISW effect is
the leading contamination to local NG, as the ISW lensing bispectrum has been detected
with a significance of 2.8σ (see fig. 7), and improves to 3.0σ when including polarization.
In conclusion, the bias in the three primordial fNL parameters due to the ISW-lensing
signal is described in table II.

Actually, the new analysis was the first adopting also polarization data for PNG, and
the Planck 2015 constraints on T +E have confirmed T results with significantly reduced
error bars, see table III for the latest constraints on fNL for the various shapes.

Specifically, the Planck 2013 hints of NG in oscillatory feature models remain in T ,
but decrease significantly when polarization is included. Also, new estimators for high-
frequency oscillations cover 10 times more parameter space, compared to the previous
analysis.

Remarkably, the improvements in the Planck 2015 results have allowed to put new
constraints on:

– isocurvature NG, where polarizartion data were crucial in this respect;

– tensor NG, where parity-odd T limits are consistent with WMAP (null result);

– trispectrum due to cubic NG (in particular gNL for a variety of shapes).

Finally, with the 2015 release we could also constraint the three fundamental shapes of
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Fig. 7. – The skew-Cl spectrum for the lensing-ISW effect (red line with data points), from the
temperature map. The blue curve is the theoretically-expected spectrum. From [27].

Table II. – Bias in the three primordial fNL parameters due to the lensing-ISW signal for the
four component separation methods. From [27].

Shape Lensing-ISW fNL bias

SMICA SEVEM NILC Commander

T Local . . . . . . . 7.5 7.5 7.3 7.0

T Equilateral . . . . 1.1 1.2 1.3 1.8

T Orthogonal . . . . −27 −27 −26 −26

E Local . . . . . . 1.0 1.1 1.0 1.1

E Equilateral . . . . 2.6 2.7 2.5 2.9

E Orthogonal . . . . −1.3 −1.3 −1.2 −1.5

T + E Local . . . . . 5.2 5.5 5.1 4.9

T + E Equilateral 3.4 3.4 3.4 3.6

T + E Orthogonal −10 −11 −10 −10
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Table III. – Results for the fNL parameters of the primordial local, equilateral, and orthogonal
shapes, determined by the KSW estimator from the SMICA foreground-cleaned map. Error bars
are 68% CL. From [27].

Shape and method fNL(KSW)

Independent ISW-lensing subtracted

SMICA (T )

Local . . . . . . 10.2 ± 5.7 2.5 ± 5.7

Equilateral . . . . −13 ± 70 −16 ± 70

Orthogonal . . . . −56 ± 33 −34 ± 33

SMICA (T + E)

Local . . . . . . 6.5 ± 5.0 0.8 ± 5.0

Equilateral . . . . 3 ± 43 −4 ± 43

Orthogonal . . . . −36 ± 21 −26 ± 21

the trispectrum

glocal
NL = (−9.0 ± 7.7) × 104,(16)

gσ̇4

NL = (−0.2 ± 1.7) × 106,

g
(∂σ)4

NL = (−0.1 ± 3.8) × 105.

In conclusion, the Planck 2015 release contains a largely extended analysis of NG tem-
plates, and we expect that the upcoming release (the “Planck legacy” paper) will further
improve the constraints on standard shapes (owing to refined treatment of E-mode po-
larization maps) and add some extra shapes (such as scale-dependent fNL, conformal
symmetry), looking for features both in the power spectrum and the bispectrum.

3.2. Implications for inflation. – One of the most important consequence from Planck
data is that the simplest inflationary models (standard inflation) are still alive . . . and
in very good shape!

Specifically, for standard inflation we refer to a single scalar field φ (representing
a single clock), characterized by a Bunch-Davies initial vacuum state and a canonical
kinetic term X = − 1

2∂μφ ∂μφ, performing a slow-roll dynamics by means of a potential
V(φ), minimally coupled to gravity, described by general relativity (GR)

(17) S =
∫

d4x
√−g

[
X − V(φ) + Lint(φ,Aμ,Ψ) +

M2
Pl

2
R

]
,
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where Lint is the interaction term between the inflaton and other fields such as gauge
bosons Aμ or fermions Ψ.

Actually, standard inflation predicts tiny (O(10−2), thus no presently detectable)
PNG.

However, alternatives to standard inflation have also been considered. In particu-
lar, results from Planck 2015 (which increased the number of modes from 600 to 2000
with respect to Planck 2013) constrained fNL for a large number of inflationary models
including:

– the equilateral family (DBI, EFT, ghost and K-inflation);

– the flattened shapes (non-Bunch Davies);

– feature models (oscillatory or scale-dependent bispectra);

– direction dependence;

– quasi-single-field;

– parity-odd models.

Since no evidence for NG has been found, we could only put tighter constraints on the
parameters from the models above, for example on:

– the curvaton decay fraction rD > 19% (from local fNL, T + E),

– the speed of sound in the Effective Field Theory of Inflation [51] cS > 0.024 (from
equilateral and orthogonal fNL),

– the speed of sound in DBI inflation cS > 0.087 (from T + E).

3.3. Primordial non-Gaussianity with CMB spectral distorsions. – Possible measure-
ments to improve the constraints on PNG include CMB spectral distorsions from acoustic
wave dissipation that can probe a large range of scales, much more than CMB/LSS [52].

Actually, if μ-anisotropies were measured we would access to

– Tμ correlations, useful to investigate the primordial local fNL (see [53]) or other
squeezed shapes, e.g., excited initial states [54],

– μμ correlations, associated to the primordial local trispectrum, τNL [55],

– TTμ bispectrum, related to the primordial local trispectrum gNL [55].

While for Gaussian initial conditions the dissipated power in small patches (from ≈
50 Mpc−1 to ≈ 104 Mpc−1) is isotropically distributed, squeezed bispectra associated to
local NG generate couplings between large and small scales.

As a consequence of these coupling between long and short modes, the CMB tem-
perature fluctuations on large scales can be coupled to spectral distortions arising from
acoustic wave dissipation at very small scales, resulting in Tμ correlations [56,53,57].
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More specifically, following [57], consider the curvature perturbation at position �x in
terms of a Gaussian random variable z(�x )

(18) ζ(�x ) = z(�x ) +
3
5
f loc
NLz2(�x ).

Splitting ζ(�x ) in long-wavelength and short-wavelength modes as ζ(�x ) = ζL(�x )+ ζS(�x ),
and similarly writing z(�x ) = zL(�x ) + zS(�x ) we get

(19) ζL + ζS = zL + zS +
3
5
f loc
NL[z2

L + 2zLzS + z2
S ],

and we conclude that, in the presence of f loc
NL �= 0, long and short modes can be coupled.

In particular, to linear order in f loc
NL, the small-scale curvature fluctuation in the presence

of some fixed long-wavelength curvature fluctuation is

(20) ζS = zS

(
1 +

6
5
f loc
NLζL

)

thus modulating the (fractional) chemical-potential fluctuation, given by [56-58]

(21)
δμ

μ
≈ δ〈ζ2〉

〈ζ2〉 ≈ 12
5

f loc
NLζL.

Similarly, for the large-angle (� � 100, probing causally disconnected regions at the last
scattering surface) the temperature fluctuation is determined primarily by the curvature
fluctuation at the surface of last scatter, given by δT/T ≈ ζ/5 [56,57].

As a consequence, the fractional chemical potential fluctuation δμ
μ and the temper-

ature fluctuation δT
T are cross correlated with an angular power spectrum CμT

 equal
to [56,57]

(22) CμT
 = 12f loc

NLCTT
 .

4. – Primordial Non-Gaussianity and the Large-Scale Structure

Non-Gaussianity in Large-Scale Structure can be either of primordial origin or asso-
ciated to gravitational instability.

In particular, to make contact with the CMB definition, PNG in LSS can be defined
starting from the DM density fluctuation δ through the Poisson’s equation

(23) δ = −
(

3
2
ΩmH2

)−1

∇2Φ

where we have used the comoving gauge for density fluctuation [59].
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As before, we can write

(24) Φ = φL + fNL(φ2
L − 〈φ2

L〉) + gNL(φ3 − 〈φ2
L〉φL) + . . . ,

where φL is the linear Gaussian contribution and fNL and gNL are dimensionless non-
linearity parameters(2).

In order to investigate PNG in LSS, generally N -body simulations have been playing
a crucial role [60-67]. The standard equations are

Φ = φL + fNL(φ2
L − 〈φ2

L〉),(25)

∇2(Φ ∗ T )g(z) = −4πGa2δρDM ,

where T is the matter transfer function and g is the growth suppression factor. Typical
results are shown in fig. 8.

However, in the mild non-linear regime, analytical approaches have been developed
to study the PNG effects on the matter power spectrum. Results for the local shape
calculated using the Time Renormalization Group theory [68, 69] compared to N -body
are shown in fig. 9, while for the equilateral and folded shapes see fig. 10.

Similar techniques include the renormalized perturbation theory [70-72], renor-
malization group approach [73], closure theory [74], Lagrangian perturbation the-
ory [75-77], the time-sliced perturbation theory [78] and the Effective Field Theory of
LSS (EFTofLSS) [79,80]. Specifically, the EFTofLSS for non-Gaussian initial conditions
have been developed in [81], see also [82-88].

4.1. Non-Gaussianity and halo mass function. – Besides using the standard statistical
estimators, like the (mass) bispectrum, trispectrum, etc., one can look at the tails of the
distribution, i.e. at rare events.

Rare events have the advantage that they often maximize deviations from what is
predicted by a Gaussian distribution, but have the obvious disadvantage of being rare!
But remember that, according to the Press-Schechter-like schemes, all collapsed DM
halos correspond to (rare) high peaks of the underlying density field.

In [91, 92] it was shown that clusters at high redshift (z > 1) can probe NG down to
fNL ∼ 102, see also [93] for an alternative approach. Actually, many methods have been
developed for the determination of mass function, such as

– the stochastic approach (first-crossing of a diffusive barrier) [94-97],

– the ellipsoidal collapse method [98,99],

– a combination of saddle-point and diffusive barrier [100],

– the Log-Edgeworth expantion [101],

– the excursion sets studied with correlated steps [102,103].

(2) CMB and LSS conventions may differ by a factor 1.3 for fNL, (1.3)2 for gNL.
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Fig. 8. – Slice maps of simulated mass density fields at z = 5.15 (top), z = 2.13 (middle) and
z = 0 (bottom). The number of pixels at a side length is 512 (500h−1 Mpc) and that of the
thickness is 32 (31.25h−1 Mpc). The panels in the middle row show the log of the projected
density smoothed with a Gaussian filter of 10 pixels width, corresponding to 9.8h−1 Mpc. The
left and right panels are the relative residuals for the fNL = ±1000 runs. Each panel has the
corresponding color bar and the range considered are different from panel to panel. From [61].

Remarkably, excellent agreement of analytical formulae with N -body simulations (e.g.,
see fig. 11 for DM halos in NG simulations and fig. 12 for the ration of the non-Gaussian
fNL to Gaussian mass function) have been found in [89,64,62], and in many other papers
afterwards, e.g., [104-106].
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Fig. 9. – Ratio of the non-Gaussian to Gaussian power spectrum for several values of fNL in
the local model. The dots correspond to the data from the N -body simulations of [89]. The
red (continuous) line is the TRG result of this paper and the blue (dashed) line is the one-loop
result. From [90].

Fig. 10. – Ratio of the non-Gaussian to Gaussian power spectrum for several values of fNL in
the equilateral (top panels) and folded (bottom panels) models. The red (continuous) lines are
the TRG result of this paper and the blue (dashed) lines are the one-loop result. From [90].
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Fig. 11. – Mass density distribution and halo positions in a slice cut across the simulation
box. The color-coded contours indicate different density levels ranging from dark (deep blue)
underdense regions to bright (yellow) high density peaks. The halo positions are indicated by
open circles with size proportional to their masses. Left panels: NG model with fNL = −1000.
Central panels: Gaussian model. Right panels NG model with fNL = +1000. The mass and halo
distributions are shown at various epochs, characterized by increasing redshifts (from bottom
to top), as indicated in the panels. From [60].
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Fig. 12. – Ratio of the non-Gaussian (fNL = ±100) to Gaussian mass function for different
redshift snapshots: top left z = 0.61; top right z = 1.02; bottom left z = 1.53; bottom right
z = 1.86. The dashed line is the mass function of [92] and the dot-dashed lines are that of [93],
both including the q-correction. From [64].

Moreover, halo (galaxy) clustering and halo (galaxy) higher-order correlation func-
tions represent further and more powerful implementations of this general idea.

Actually, the halo mass function (à-la-Press-Schechter) can be a useful tool to probe
PNG as it essentially depends exponentially on the PNG parameters [92], by modulat-
ing the critical overdensity for collapse. Its calculation can be done along the lines of
the original Press-Schechter approach, using a steepest-descent approximation to deal
with (small) PNG. However, several effects have to be carefully considered such as non-
Markovianity, already there in the Gaussian case, but unavoidable in NG case, or the
details of the non-spherical collapse. While analytical treatments are welcome, the val-
idation with N -body simulations is crucial. Still we need to better understand the con-
nection between analytical and numerical quantities and real observables, and to what
level is this affecting NG measurements.
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– Should we necessarily go on with (extended) Press-Schechter-like approaches?

– Are alternative approaches viable such as Smoluchowski equation for the non-
Poissonian random process (or the earliest attempt proposed in [107])?

In conclusion, rare events (e.g., high-z and massive clusters) offer interesting and promis-
ing opportunities for the detection of PNG, as both the mass-function of massive haloes
and the number-counts of massive haloes are affected.

4.2. Halo bias in NG models. – As it is well known, halos (galaxies) do not trace
the underlying (dark) matter distribution. For this reason, following the original pro-
posal [108], we introduce the “bias” parameters or Eulerian bias for galaxy clusters and
later for galaxies (for a review see [109]):

(26) δhalo(x) = b1δmatter(x) + b2δ
2
matter(x) + . . .

that allow to parametrize our ignorance about the way in which dark matter halos cluster
in space with respect to the underlying dark matter.

Note that a complete set of the local bias terms (representing all possible local gravi-
tational observables along the fluid trajectory) was presented in [110-112]. For the most
general expansion up to second order in the Eulerian framework with Gaussian initial
condition see also [113-121]. The various bias parameters can be generally regarded ei-
ther as purely phenomenological ones (i.e. to be fitted to observations) or predicted by
a theory (e.g. Press-Schecter together with Lagrangian perturbation theory).

Specifically, considering δhalo(x) = b δmatter(x), it is possible to show that the halo
bias is sensitive to PNG through a scale-dependent correction term (in Fourier space),
see e.g. [122,19,123-129]. In particular, we have

(27)
δb(k)

b
∼ 2fNLδc

k2
.

This opens interesting prospects for constraining or measuring NG in LSS but demands
for an accurate evaluation of the effects of (general) NG on halo biasing.

The idea is to start from the results obtained in the 80s in [130,131] giving the general
expression for the peak 2-point function as a function of N -point connected correlation
functions of the background linear (i.e. Lagrangian) mass-density field
(28)

ξh,M (|x1 − x2|) = −1 + exp

{ ∞∑
N=2

N−1∑
n=1

νNσ−N
R

j!(N − 1)!
ξ(N)

[
x1, . . . ,x1

j times
, x2, . . . ,x2
(N−j) times

]}
,

which requires many techniques such as the path-integral, the cluster expansion, the
multinomial theorem and asymptotic expansion. The analysis of NG models was moti-
vated in [132] on bulk flows.

In [123] this relation was applied to the case of NG of the gravitational potential,
obtaining the power-spectrum of dark matter halos modeled as high “peaks” (up-crossing
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regions) of height v = δc/σR of the underlying mass density field (Kaiser’s model). Here
δc(z) is the critical overdensity for collapse (at redshift z) and σR is the root mean square
mass fluctuation on scale R (M ∼ R3).

The motion of peaks (going from Lagrangian to Eulerian space), which implies [116]

(29) 1 + δh(xEulerian) = (1 + δh(xLagrangian))(1 + δR(xEulerian))

and (to linear order) b = 1 + bL [133], allows to derive the scale-dependent halo bias in
the presence of NG initial conditions. Corrections may arise from second-order bias and
GR terms.

Alternative approaches (e.g. based on 1-loop calculations) have been developed
in [74,134,76,135]. Improvements in the fit with N -body simulations by assuming depen-
dence on gravitational potential have been carried out in [63], while for the extension to
bispectrum see [136]. Finally, the inclusion of gNL and fNL in analysis of QSO clustering
was performed in [25].

Note that the extension to general (scale and configuration dependent) NG is
straightforward [123]. Actually, we can write, in full generality, the f bispectrum as
Bf (k1, k2, k3). Then, the relative NG correction to the halo bias is

Δbh

bh
=

Δc(z)
D(z)

1
8π2σ2

R

∫
dk1 k2

1MR(k1)(30)

×
∫ 1

−1

dμ
MR(

√
α)

MR(k)
Bφ(k1,

√
α, k)

Pφ(k)
,

where α = k2
1 + k2

2 + 2k1kμ, Pφ is the power-spectrum of a Gaussian gravitational
potential, while MR is the factor connecting the smoothed linear overdensity with the
primordial potential by means of the factor

(31) MR(k) =
2
3

T (k)k2

H2
0Ωm,0

WR(k),

where T (k) is the transfer function and WR(k) is the window function defining the radius
R of a proto-halo of mass M(R). It also applies to non-local (e.g. “equilateral”) PNG
(corresponding to DBI or ghost inflation) and universal PNG term (see also [126, 137-
139]). The halo bias in NG models has been calculated in [123], the result is

(32) bfNL
h = 1 +

Δc(z)
σ2

RD2(z)

[
1 + 2fNL

Δc(z)
D(z)

FR(z)
MR(z)

]
,

where the form factor is given by

(33) FR(k) =
1

8π2σ2
R

∫
dk1k

2
1MR(k1)Pφ(k1)

∫ 1

−1

dμMR(
√

α)
[
Pφ(

√
α)

Pφ(k)
+ 2

]

and plotted, for three different masses, in fig. 13.
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Fig. 13. – The function FR(k) for three different masses: 1 × 1014M� (solid), 2 × 1014M�
(dotted), 1 × 1014M� (dashed). From [123].

4.3. PNG with LSS: the galaxy bispectrum. – The bispectrum of galaxies can be used
to forecast the constraining power of LSS surveys on measuring the amplitude of PNG,
see e.g. [140,141]. In this section, we derive, following [142], the galaxy bispectrum.

The starting point is the relation between the linearly evolving density field δlin and
the primordial gravitational potential

(34) δlin(k, z) = α(k, z)Φin(k)

with α(k, z) defined as

(35) α(k, z) ≡ 2k2c2T (k)D(z)
3ΩmH2

0

,

where T (k) is the transfer function. Since the linearly evolving density includes non-
Gaussian terms in presence of PNG, we can define the Gaussian part as

(36) δG(k, z) = α(k, z)ϕG(k).

With this definition, using second-order (Eulerian) perturbation theory, we get [143]

δ(2)(k, z) =
∫

dk1

(2π)3

∫
dk2

(2π)3
δD(k − k1 − k2)(37)

×
[
F2(k1,k2) + fNL

α(k)
α(k1)α(k2)

]
δG(k1, z)δG(k2, z),
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where the 2-nd order gravity-kernel F2 is given by

(38) F2(k1,k2) =
5
7

+
1
2
k1 · k2

k1k2

(
k1

k2
+

k2

k1

)
+

2
7

(k1 · k2)2

k2
1k

2
2

.

The quantity δ(x) is expressed in the Eulerian frame, with the initial spatial coordinate
q in the Lagrangian frame being related to the evolved Eulerian coordiate x through the
formula

(39) x(q, τ) = q + Ψ(q, τ),

where Ψ is the displacement field. Using this relation, we can rewrite the second-order
solution appearing in (37) as [144,145]

(40) δ(2)(x, τ) =
17
21

(δlin(x, z))2 +
2
7
s2(x, z) − Ψ(x, z) · ∇δ(x, z),

where s2 = sijs
ij and sij is the trace-free tidal tensor, defined as

(41) sij ≡
(
∇i∇j − 1

3
δK
ij ∇2

)
∇−2δ

and δK
ij is the Kronecker delta. In the following, we will omit the redshift dependence in

the density and velocity fields.
We can introduce a long-short splitting of the gravitational potential and DM density

field, such that, for local NG one easily finds (for local NG)

(42) δlin,(k) = δG, + fNLα(ϕ2
G, − 〈ϕ2

G,〉)

with

(43) ϕG(q) = ϕG,(q) + ϕG,s(q).

In the Lagrangian space one can then introduce the expansion

δL
g (q) =

ng(q) − 〈ng〉
〈nh〉(44)

= bL
10δlin + bL

01ϕG + bL
20(δlin)2 + bL

11δlinϕG + bL
02ϕ

2
G + . . . ,

where the 5 bij represent our (generally unknown) bias parameters.
The final Eulerian position of the galaxy can be obtained by using the conservation

law [116]

(45) 1 + δE
g (x, z) = [1 + δ(x, z)][1 + δL

g (q, z)]
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to find

(46) δE
g (k) = δE

10δ + bE
01ϕG + bE

20δ ∗ δ + bE
11δ ∗ ϕG + bE

02ϕG ∗ ϕG − 2
7
bL
10s

2 − b01n
2,

where s2 and n2 are suitable expansion terms and the Eulerian bias parameters read:

bE
10 = 1 + bL

10,(47)

bE
01 = bL

01,

bE
20 =

8
21

bL
10 + bL

20,

bE
11 = bL

01 + bL
11,

bE
20 = bL

02.

Using the standard definitions for the galaxy power spectrum Pgg and bispectrum Bggg〈
δE
g (k1)δE

g (k2)
〉

= (2π)3δD(k1 + k2)Pgg(k1),(48) 〈
δE
g (k1)δE

g (k2)δE
g (k3)

〉
= (2π)3δD(k1 + k2 + k3)Bggg(k1,k2,k3).

we can simply write at tree level

Pgg(k1) = E2
1(k1)P (k1),(49)

Bggg(k1,k2,k3) = 2E1(k1)E1(k2)E2(k1,k2)P (k1)P (k2) + 2 cyc.,

where P (k) is the matter power spectrum for the Gaussian source field ϕG, while the
kernels Ei are defined as

(50) E1(k1) = b10 +
b01

α(k1)

with the scale dependent bias term b01/α(k1) ∝ fNL/k2
1, and

E2(k1,k2) = b10

[
F2(k1,k2) + fNL

α(|k1 + k2|)
α(k1)α(k2)

]
(51)

+
[
b20 − 2

7
bL
10S2(k1,k2)

]
+

b11

2

[
1

α(k1)
+

1
α(k2)

]

+
b02

α(k1)α(k2)
− b01

[
N2(k1,k2)

α(k2)
+

N2(k2,ka)
α(k1)

]
.

Note that, general relativistic effects (including also redshift-space distortions, lensing,
etc.) have to be taken into account both in the galaxy power-spectrum and bispectrum,
as well as in the dark matter evolution.
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Table IV. – Forecasts for σfNL , the accuracy of the determination of local fNL, from the bispec-
trum of BOSS, eBOSS, DESI and Euclid. From [142].

Sample Power Spectrum Bispectrum

σfNL σfNL σfNL σfNL

bias float bias fixed bias float bias fixed

BOSS 21.30 13.28 1.04
(0.65)

(2.47) 0.57
(0.35)

(1.48)

eBOSS 14.21 11.12 1.18
(0.82)

(2.02) 0.70
(0.48)

(1.29)

Euclid 6.00 4.71 0.45
(0.18)

(0.71) 0.32
(0.12)

(0.35)

DESI 5.43 4.37 0.31
(0.17)

(0.48) 0.21
(0.12)

(0.37)

BOSS + Euclid 5.64 4.44 0.39
(0.17)

(0.59) 0.28
(0.11)

(0.34)

The complete expression (very involved) for the galaxy bispectrum was written down
for the first time recently, and can be found in [146] to be soon compared with observa-
tions, see also [147-149].

We conclude this section describing, following [142], the Fisher matrix forecasts on
σfNL (the accuracy of the determination of local non-linear parameter fNL) from mea-
surements of the galaxy bispectrum, as well as the constraints on PNG from the galaxy
power spectrum and bispectrum in future radio continuum and optical surveys [150]. See
also [151] for the constraining power on primordial non-Gaussianity of the Dark Energy
Survey (DES) as well as Euclid and WFIRST.

Particularly, the tree-level bispectra with local non-Gaussian initial conditions are
shown in table IV in redshift space, where the covariance between different triangles has
been neglected.

While many issues are still present (such as the need for full covariance, a better
understanding of accurate bias model, the inclusion of general relativistic effects, or the
proper implementation of the estimators), still moving from the 2D Planck data to the
3D maps of the forthcoming surveys represent a great potential as

– the bispectrum could do better than the power-spectrum,

– we might increase the accuracy to achieve fNL ∼ 1.

In particular, the LSS bispectrum allows in principle tight constraints also on non-local
shapes (e.g., equilateral). However, even if naive mode counting suggest that σfNL ∼ 1
for the equilateral shape might be achievable by pushing kmax high enough, modeling the
gravitational bispectrum in the non-linear regime with high accuracy is very challenging,
as the equilateral shape is more correlated than local to the non-linear gravitational
bispectrum.
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Table V. – Summary of 1 σ limits for the three PNG types considered, from radio continuum
and optical surveys derived from combining the power spectrum and bispectrum and accounting
for RSD, the trispectrum term and theoretical errors. From [150].

Planck 1 μJy 10 μJy Spectroscopic Photometric

Local 5.0 0.2 0.6 1.3 0.3

Equilateral 43 244 274 57 184

Orthogonal 21 18 29 18 38

Finally, possible future constraints on the amplitude fNL for the local, equilateral
and orthogonal shapes, through galaxy power spectrum and bispectrum measurements
on large scales based on radio continuum (with 10μJy and 1μJy flux limits) and optical
(spectroscopic and photometric) surveys are presented in table V, see [150] for details.
Remarkably, for the local shape, LSS measurements can provide significant improvements
over current Planck constraints on PNG.

5. – Controversial issues on non-Gaussianity

In this section, we present some aspects regarding non-Gaussianity which we think
are still controversial or require further clarifications.

5.1. Single-field consistency relation. – The first issue concerns the single-field consis-
tency relation. Actually, as mentioned before, the common lore is that the “consistency
relation”, implying fNL = −5 (ns − 1)/12, can be gauged away by a non-linear rescaling
of coordinates, up to sub-leading terms. As a consequence, the only residual term is
proportional to ε thus of the same order of the amplitude of tensor modes.

More precisely, the bispectrum for single-field inflation can be represented as [6,10,11]

Bζ(k1, k2, k3) ∝
(Δ2

ζ)
2

(k1k2k3)2

[
(1 − ns)Sloc.(k1, k2, k3) +

5
3
εSequil.(k1, k2, k3)

]
,(52)

ns = 1 − η − 2ε, with ε ≡ Ḣ

H2
, η ≡ ε̇

Hε
.

The observability of the so-called “Maldacena consistency relation”, related to the above
bispectrum for single field inflation, in CMB and LSS data, has led to a long-standing
controversy.

Recently, various groups have argued that the (1 − ns) term is totally unobservable
(for single-clock inflation), as, in the strictly squeezed limit (one of the wave-numbers,
say ki, going to 0, ki → 0), this term can be gauged away by a suitable coordinate
tranformation.

However, in [152] it has been argued that the term survives up to a “renormalization”
which further reduces it by a factor of ∼ 0.1 if one applies Conformal Fermi Coordinates
(CFC) to get rid of such a “gauge mode”.
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– Is this (CFC approach) the only way to deal with this term?

– Can we aim at an exact description, which is not affected by “spurious PNG”?

5.2. Non-Gaussian fNL-like terms generated by non-linear general relativistic evolu-
tion. – An other important issue regards the role of the non-linear evolution of the matter
perturbations in general relativity. Actually, second order DM dynamics in GR leads to
(post-Newtonian) δζ-like terms which mimic local primordial non-Gaussianity [153]. For
instance, these terms have been included in the halo bias in [125].

For a recent estimate of the effective non-Gaussianity due to general-relativistic light-
cone effects mimicking a PNG signal, see [154](3).

Remarkably, these GR terms can be recovered by a short-long mode splitting (λS

and λL, respectively) leading to a resummed non-linear contribution δe−2ζ [157]. This
comes from the modulation of sub-horizon scales due to modes entering the horizon at
any given time. In the comoving gauge (suitable for calculation of halo bias) this would
correspond to an fNL = −5/3 in the pure squeezed limit.

Then, we may ask the following question

– is such relativistic NG signature detectable via some cosmological observables?

Consider a patch of the Universe, where the comoving spatial element is given by

(53) ds2
(3) = e2ζδijdxidxj .

There is a global background which must be defined with respect to some scale λ0, at
least as large as all the other scales of interest, i.e., at least as large as our presently
observable Universe.

Then, there is an other important scale, the separate Universe patches, λP , distin-
guished from λ0 and we assume λ0 � λP � λS . This is large enough for each patch to
be treated as locally homogeneous and isotropic, but patches must be stitched together
to describe the long-wavelength perturbations on a scale λL � λP , see fig. 14. Thus,

(54) λ0 > λL � λP � λS .

The local observer in a separate Universe patch cannot observe the effect of ζL, which
is locally homogeneous on the patch scale λP . However, local coordinates can be defined
only locally and the long mode curvature perturbation is observable through a mapping
from local to global coordinates.

In the halo bias case the effect is unobservable. Indeed, as pointed out in [159-161], a
local physical redefinition of the mass gauges away such a NG effect (in the pure squeezed
limit), similarly to Maldacena’s single-field NG contribution. This is true provided the
halo bias definition is strictly local. We may ask the following questions:

(3) Note that also dark energy could in principle introduce degeneracies with PNG, see,
e.g., [155,156].
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Fig. 14. – Schematic of the various scales in eq. (54). From [158].

– are there significant exceptions?

– are all non-linear GR effects fully accounted for by “projection effects”?

In general, this dynamically generated GR non-linearity is physical and cannot be gauged
away by any local mass-rescaling, provided it involves scales larger than the patch re-
quired to define halo bias, but smaller than the separation between halos (and the distance
of the halo to the observer).

Hence one would expect it to be in principle detectable in the matter bispectrum.
Similarly, the observed galaxy bispectrum obtained via a full GR calculation must include
all second-order GR non-linearities on such scales (only as projection effects?).

In conclusion, the separate Universe approach is very useful for many applications,
but the effect of the external world cannot be always described by linear theory, thus
the usual identification of large scales with the linear theory is only qualitative and can
become misleading in some cases.

For example, on the one hand, perturbations of order N � 1 give the leading con-
tribution to N -th order moments, such as 〈δN 〉c. On the other hand, we know from
non-linear Newtonian dynamics that 〈δN 〉c ∼ 〈δ2〉N−1 on all scales (for scale-free spec-
tra). Well inside a given separate Universe, the assumption that the only non-linearity is
described by Newtonian physics might be too restrictive, as the relevance of non-linear
GR effects in sub-patch dynamics depends upon the specific problem.

It would be interesting to see the effects of using, for example, the silent Universe
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description ([162]) to account for deviations of the patch from purely spherical behavior.
Recall that over-dense patches evolve towards oblate ellipsoids and even under-dense ones
can collapse to oblate ellipsoids, owing to tidal effects of surrounding matter. Recent
approaches using the local tide approximation [163] go in this direction.

6. – Concluding remarks

The concordance ΛCDM cosmological model describes the evolution of the Universe
from 380000 years after the Big Bang to the present time with astonishingly accuracy.
However, the mechanism that generated the primordial fluctuations representing the
seeds of the structures we observe in the CMB and in the LSS is unknown. Remarkably,
inflation provides a causal mechanism for the generation of cosmological perturbations,
whose detailed predictions are fully supported by CMB and LSS data.

Clearly, the direct detection of PGW and PNG with the specific features predicted
by inflation would provide strong independent support to this framework.

In the previous sections, we have summarized the theoretical motivations for PNG
and the present observational status. As stated before, Planck has provided stringent
limits on fNL which will be improved with polarization maps and using the full data in
the upcoming “Planck legacy” paper.

In conclusion, among the short term goals, we need to look for more non-Gaussian
shapes, such as scale-dependent fNL, make use of the bispectrum in 3D data and improve
the constraints on gNL.

The final goal is to reconstruct the inflationary action by improving the sensitivity
on NG parameters, searching for fNL ∼ 1 for all shapes, taking into account non-linear
general relativistic effects and second-order radiation transfer function contributions.
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Summary. — I review the sources of CMB polarization in the acoustic regime,
reionization and gravitational waves from inflation and their distortion by gravita-
tional waves using the ΛCDM model as an illustration.

1. – Introduction

In these Proceedings of the Varenna School, I review the theory of CMB polarization
anisotropy as it applies to the standard inflationary ΛCDM model of cosmology (ΛCDM
for short). Since the discussion of the current status of CMB measurements and the
observational successes and tensions of the ΛCDM paradigm have already become out of
date between the time the lectures were given in Summer 2017 and when these Proceed-
ings were written in Summer 2018 (and will only get further out of date by the time they
are published), I have retained only the basic theory of polarization anisotropy under the
ΛCDM paradigm here from the more widely ranging topics in the lectures themselves,
which are available online.

This treatment is based in part on the more extensive reviews in [1,2] where references
to the original literature can be found; citations here will only be to other works from
which I have adapted figures.
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Fig. 1. – The trinity of polarization sources and their latter-day distortion: acoustic polarization
(pressure wave E-modes at recombination), reionization (rescattered Sachs-Wolfe quadrupoles),
inflation (gravitational wave B-modes), and lensing (distortion of acoustic E-modes to B-modes
by deflection). The Varenna school was held in Villa Monastero, a former monastery; to balance
the implicit Western bias, let me recount the Four Noble Truths of Polarization: the measure
of polarization is suffering, the origin of suffering is desire (for the Nobel prize for inflation),
the cessation of suffering is the nirvana of theory, the path to cessation of suffering is deflection.
Adapted from [3].

2. – Sources of CMB polarization

Fundamentally the CMB is polarized since we receive its photons after having last
scattered off free electrons via Thomson scattering. This last scattering event mostly
occurs at recombination, the epoch of which free electrons recombine with protons to
form neutral hydrogen, and for a few percent of photons at the epoch of reionization
(see fig. 1). The CMB anisotropy is polarized at only a small level since polarization
by Thomson scattering requires, but also destroys, anisotropic radiation. Scattering
isotropizes radiation and eliminates quadrupole moments.

More precisely, the local quadrupole of the radiation intensity plays a special role
in polarization formation as can be seen from fig. 2 and the Thomson differential cross
section

(1)
dσ

dΩ
=

3
8π

|Ê′ · Ê|2σT ,
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Fig. 2. – Thomson scattering: the originator and the devourer of polarization’s source. Scatter-
ing of incoming radiation with a quadrupole anisotropy in intensity leads to linear polarization in
the outgoing radiation that is aligned with the less intense (red) or “cold” axis of the quadrupole.
Polarization can be decomposed into modes that are aligned with their wave vectors l̂ (direc-
tion of variation) or crossed, known as E- and B-modes respectively. The level of polarization
is at best a small fraction of the temperature anisotropy since quadrupoles are necessary for
scattering to create polarization but scattering also randomizes photon directions and destroys
the quadrupoles themselves, like Saturn devouring his Son.

where σT = 8πα2/3me is the Thomson cross section, Ê′ and Ê denote the incoming
and outgoing directions of the electric field or polarization vector. In the semi-classical
approximation, incoming radiation shakes an electron in the direction of its electric field
vector Ê′ causing it to radiate with an outgoing polarization parallel to that direction.
However since the outgoing polarization Ê must be orthogonal to the outgoing direction,
incoming radiation that is polarized parallel to the outgoing direction cannot scatter,
leaving only one polarization state. If the intensity were completely isotropic the missing
polarization state is supplied by radiation incoming from the direction orthogonal to the
original one. Only a quadrupole anisotropy in the radiation intensity generates a net
linear polarization from Thomson scattering. In particular, the polarization is oriented
along the cold axis of the quadrupole moment in the plane transverse to the outgoing
direction.

We can formally describe the statistics of the CMB intensity and polarization an-
isotropy with Stokes parameters based on the intensity matrix. The CMB radiation is
measured to be a blackbody and so it is convenient to characterize the intensity in terms
of the brightness temperature and the intensity matrix using the Pauli matrices σi

P = C
〈
E(n̂)E†(n̂)

〉
(2)

= Θ(n̂)I + Q(n̂)σ3 + U(n̂)σ1 + V (n̂)σ2,

where n̂ denotes direction on the sky (θ, φ) in spherical polar coordinates, and we have
chosen the constant of proportionality so that the Stokes parameters (Θ, Q, U, V ) are
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Fig. 3. – E- and B-modes differ geometrically in their symmetry. For E-modes, polarization
only knows how to point in the direction to the variation (blue bands representing a crest of a
plane wave decomposition) or orthogonal to it. When harmonic modes are superimposed, the
result is that the polarization direction is radial or tangential to spots where the polarization is
the strongest. For B-modes, the direction is crossed to the variation and lead to a handed swirl
pattern around spots.

normalized to the brightness temperature, e.g. Θ(n̂) ≡ ΔT (n̂)/T averaged over polar-
ization states. Note that the circular polarization V is absent cosmologically and under
a counterclockwise rotation of the coordinate axes by ψ, Q± iU → e∓2iψ(Q± iU). This
reflects the rotation of linear polarization that Q and U mutually represent.

Since the Stokes parameters depend on the coordinate choice one should choose a
coordinate system that carries a geometric meaning. In general, linear polarization is a
tensor field with two characteristic directions: the direction along which the polarized
fraction varies in space and the direction that the polarization vector is pointing (see
fig. 2). In a Fourier decomposition of the field, this former corresponds to the direction
of the wave vector (see fig. 2). An E-mode is defined as Q polarization in the coordinates
defined by the wave vector and a B-mode is defined as U polarization in that system.
Importantly, E-modes possess even parity and when the Fourier modes are resummed
display a pattern where the polarization vector is either radial or tangential around
regions of high polarization, whereas B-modes display a swirl pattern that carries a
handedness or odd parity (see fig. 3).

The final point is that Fourier harmonics must be replaced with spherical harmon-
ics on the sky due to sky curvature. These harmonics are the eigenfunctions of the
Laplace operator on the sphere for scalar and tensor fields. Specifically we decompose
the temperature and polarization as

Θlm =
∫

dn̂Y ∗
lm(n̂)Θ(n̂),(3)

Elm ± iBlm = −
∫

dn̂±2 Y ∗
lm(n̂)[Q(n̂) ± iU(n̂)],

in terms of the complete and orthogonal set of spin harmonic functions, sYlm, which are
eigenfunctions of the Laplace operator on a rank s tensor. Ylm = 0Ylm is the ordinary
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Fig. 4. – Polarization harmonics on the curved sky follow spin spherical harmonics rather than
Fourier plane waves. Both are the eigenfunctions of the Laplace operator on a tensor in their
respective curved and flat spaces. The fundamental pattern for E-modes in the CMB is based on
its (l = 2, m = 0) harmonic. Higher harmonics result when this pattern is modulated in ampli-
tude by the variation across the sky induced by the wavemode of the perturbation (see fig. 10).

spherical harmonic. An example of an E-mode with l = 2, m = 0 is shown in fig. 4. Note
that the E-mode symmetry is manifest in that the polarization both varies and points
in the same north-south direction. For small sections of sky, we can make the corre-
spondence to the Fourier discussion above more explicit. The spin-harmonic expansion
becomes a Fourier expansion with Ylm → eil·n̂ and ±2Ylm → −e±2iφleil·n̂, where φl is
the azimuthal angle of the Fourier wave vector l.

Conversely we can also make the all-sky connection to the quadrupole moment sources
in fig. 2. In fig. 5 we show a cross section of the sky along a great circle passing from the
equator through the north pole. As with the local scattering discussion, linear polariza-
tion is generated in the direction of the cold lobe of the quadrupole in projection on the
plane of the sky, orthogonal to the outgoing direction of the scattered photon. Notice
that as we sweep through the polar angle θ, the linear polarization from a projection of
an l = 2, m = 0 quadrupole takes on the pattern of the l = 2, m = 0 E-mode shown
in fig. 4. We can therefore understand polarization patterns through the quadrupole
moments that generate then.

3. – Acoustic source

Before recombination, the abundance of free electrons keeps photons trapped in the
baryons due to their relatively short comoving mean free path

(4) λC ≡ τ̇−1 =
1

neσT a
≈ 2.5

(
xe

Ωbh
2

0.02

)−1 ( a

10−3

)2

Mpc.

Overdots here and below represent derivatives with respect to conformal time η, xe is
the ionization fraction and the scale factor a is scaled to the epoch of recombination.
Electrons are coupled to baryons by Coulomb interactions and so on scales larger than
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Fig. 5. – The fundamental l = 2, m = 0 polarization pattern is the projection on the sky of
the cold lobe of an l = 2, m = 0 quadrupole moment, just like one would expect from fig. 2 for
generation by scattering. Near the equator at polar angle θ = π/2, the lobes are maximal in
projection as is the linear polarization. At the poles θ = 0 and the azimuthal symmetry of the
quadrupole demands that the projection vanishes as does the linear polarization.

λC , the photon-baryon plasma can be considered a nearly perfect fluid. In particular,
rapid scattering keeps the photons isotropic in the baryon rest frame and so sets its
dipole moment equal to the baryon velocity. In this regime, the quadrupole moment of
the temperature fluctuations is small and so polarization can only be generated at the
end of this epoch, when the photons last scatter.

During this epoch, evolution of the anisotropy sources is governed by simple fluid dy-
namics for the density or monopole temperature fluctuation Θ(k) ≡ √

4π Θ00(k), and the
dipole or bulk velocity vγ(k) = −i

√
4π/3 Θ10(k). The quadrupole or anisotropic stress

πγ(k) = −(12/5)
√

4π/5 Θ20(k) is small but important for understanding the polariza-
tion. We will hereafter drop the argument k with the understanding that the Fourier
representation is always assumed. For convenience we have chosen the coordinate system
so that z ‖ k so that the plane waves are azimuthally symmetric and stimulate only the
m = 0 mode. Likewise we have suppressed the vector dependence of the bulk velocity by
the same assumption vγ = −ivγ k̂. The analogous quantities for the baryons are the den-
sity perturbation δb and bulk velocity vb. For gravity, we choose a conformal Newtonian
representation where the line element in a spatially flat universe is

(5) ds2 = a2[−(1 + 2Ψ)dη2 + (1 + 2Φ)dx2],

the gravitational potential perturbations are defined by the Newtonian potential Ψ (time-
time metric fluctuation) and the curvature fluctuation Φ (space-space metric fluctuation
≈ −Ψ).

Covariant conservation of energy and momentum requires that the photons and
baryons satisfy separate continuity equations

(6) Θ̇ = −k

3
vγ − Φ̇, δ̇b = −kvb − 3Φ̇,
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and coupled Euler equations

(7) v̇γ = k(Θ + Ψ) − k

6
πγ − τ̇(vγ − vb), v̇b = − ȧ

a
vb + kΨ + τ̇(vγ − vb)/R,

where R = (pb +ρb)/(pγ +ργ) ≈ 3ρb/4ργ is the photon-baryon momentum density ratio.
The continuity equations represent particle number conservation. For the baryons,

ρb ∝ nb. For the photons, T ∝ n
1/3
γ , which explains the 1/3 in the velocity divergence

term. The Φ̇ terms come from the fact that Φ is a perturbation to the scale factor and so
they are the perturbative analogues of the cosmological redshift and density dilution from
the expansion. The Euler equations have similar interpretations. The expansion makes
particle momenta decay as a−1. The cosmological redshift of T accounts for this effect in
the photons. For the baryons, it becomes the expansion drag on vb (ȧ/a term). Potential
gradients kΨ generate potential flow. For the photons, stress gradients in the fluid, both
isotropic (kδpγ/(pγ+ργ) = kΘ) and anisotropic (kπγ) counter infall. Thomson scattering
exchanges momentum between the two fluids (τ̇ terms).

For scales much larger than the mean free path τ̇−1, the Euler equation may be
expanded to leading order in k/τ̇ , such that the photons are isotropic in the baryon rest
frame vγ = vb and so the joint Euler equation becomes

(8)
d
dη

[(1 + R)vγ ] = k[Θ + (1 + R)Ψ].

Combining this with the continuity equation leads to the oscillator equation

(9)
d
dη

[(1 + R)Θ̇] +
k2

3
Θ = −k2

3
(1 + R)Ψ − d

dη
[(1 + R)Φ̇].

Note that the effective temperature Θ + Ψ is the local temperature Θ compensated for
the loss of energy the photon experiences in climbing out of gravitational potential Ψ at
recombination. This combination gives the Sachs-Wolfe effect for modes that are above
the horizon at recombination.

Equation (9) is the fundamental relation for acoustic oscillations (see fig. 6). The
change in the momentum of the photon-baryon fluid is determined by a competition
between the pressure restoring and gravitational driving forces which causes the system
to oscillate around its equilibrium. Note that the frequency of the oscillation

(10) ω2 =
1

3(1 + R)
k2 = c2

sk
2,

where cs is the sound speed of the fluid.
Now let us consider the effects of the finite mean free path of the photons from (4).

On scales λ � λC , the photon and baryon bulk velocities are equal and the photons
carry no anisotropy in the rest frame of the baryons due to rapid scattering. For the
fluid model this implies that the photon-baryon fluid is nearly ideal: there is no heat
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Fig. 6. – The landscape of temperature and polarization anisotropies plotted as the rms fluctua-
tion or [l(l+1)Cl/2π]1/2 with forecasted measurements based on ΛCDM for the post-Planck era
from [2] in 2002. These forecasts have largely come to pass through the remarkable experimental
and instrumental progress and the ΛCDM model has surviving stringent tests with only mildly
significant hints of internal and external tension. The main exception is the interpretation of
the first detection of BB power at l < 100 on the sky by the BICEP experiment as gravitational
waves in the BB spectrum, which turned to dust.

conduction or viscosity in the fluid. Imperfections in the fluid related to the mean free
path first appear at the diffusion length, where photons from hot and cold regions meet
and dissipate their fluctuations. In the random walk approximation this is given by the
square root of the number of scattering events N in the time period η,

(11) λD =
√

NλC =
√

η/λC λC =
√

ηλC ,

so that the diffusion length λD = 2π/kD is the geometric mean between the horizon and
mean free path. Since λD/η∗ ∼ few % at recombination, we would expect the acoustic
peaks beyond the third to be affected by dissipation.

Microphysically, the dissipation is due to viscosity and heat conduction. The former
is characterized by πγ the quadrupole moment of the photons and therefore leads to
polarization. The dissipation of the acoustic oscillations therefore leaves a signature in
the polarization of the CMB in its wake. We expect from fig. 7 that πγ is generated
by streaming of photons when gradients in the dipole or bulk velocity meet. But this
generation is suppressed by the isotropization effects of scattering as 1/τ̇ . Thus the net
effect should scale as πγ ∼ vγ

k
τ̇ . The full Boltzmann or radiative transfer equations
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Fig. 7. – The fundamental l = 2, m = 0 temperature quadrupole is formed from scalar (density)
fluctuations when the originally isotropic photons in crests (hot) and troughs (cold) of the plane
wave lead to a dipole or bulk motion of the photons and then to a quadrupole as the dipoles
flows reverse at the center. Since bulk flows must follow the original direction of temperature
variation, the quadrupole is azimuthally symmetric (m = 0) around the axis of the plane wave
and hence generates an E-mode polarization. If scattering is rapid then this anisotropy is rapidly
destroyed by its tendency to randomize photon directions.

expanded to first order in k/τ̇ in fact give Av = 16/15 of this expectation

(12) πγ = Av
k

τ̇
vγ .

Expanding the photon and baryon velocity difference in k/τ̇ gives a similar contribution
weighted by Ah = R2/(1 + R) correcting the oscillator equation (9) at order k/τ̇ to

c2
s

d
dη

(c−2
s Θ̇) +

k2c2
s

τ̇
(Av + Ah)Θ̇ + k2c2

sΘ = −k2

3
Ψ − c2

s

d
dη

(c−2
s Φ̇),

and the dispersion relation (10) to

(13) −ω2 +
k2c2

s

τ̇
(Av + Ah)iω + k2c2

s = 0.

The imaginary component implies an exponential dissipation of the acoustic amplitude.
In fig. 8 we show the numerical solution for acoustic oscillations in temperature and

the quadrupole moment. Because the quadrupole moment is azimuthally symmetric
around the wave vector, the acoustic polarization is a pure E-mode. The fact that the
polarization source is the quadrupole also explains the shape and height of the polariza-
tion spectra in fig. 6. Since the quadrupole is of order kvγ/τ̇ ∼ (k/kd)(kDη∗)−1vγ , the
polarization spectrum rises as l/lD to peak at the damping scale with an amplitude of
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Fig. 8. – Polarization arises in the wake of the dissipation of acoustic oscillations. If you were
expecting a diagram with balls and springs, you are too old to be reading this; but if you read
this far at all, send me a message. Gravitational potentials (Ψ) drive the acoustic oscillation
in the local CMB temperature (Θ = ΔT/T ) in the radiation-dominated regime leading to
compression and rarefaction in potential wells. As the photon mean free path becomes large
enough due to the reduction in the free electron density, diffusion dissipates the oscillations and
allows quadrupole moments (πγ) to grow. These quadrupole moments then scatter into linear
polarization with a structure that reflects the oscillations in πγ and the gradients in bulk velocity
that generate it.

about 10% of the temperature fluctuations before falling due to the elimination of the
acoustic source itself due to damping. Since vγ is out of phase with the temperature,
the polarization peaks are also out of phase with the temperature peaks (see fig. 6).
Furthermore, the phase relation also tells us that the polarization is correlated with the
temperature perturbations. The correlation power CΘE

l being the product of the two,
exhibits oscillations at twice the acoustic frequency.

These acoustic peaks in the polarization have several advantages over those in the
temperature. The first involves the fact that polarization only arises due to scatter-
ing and so it comes from recombination (and reionization, see below) and is unaffected
by gravitational effects like the early integrated Sachs-Wolfe effect that can blur out
features.

Moreover E-mode polarization from recombination has an intrinsically sharper trans-
fer of features in k space to l space (see fig. 9). We can understand the much cleaner
transfer geometrically. For the temperature fluctuations, the spherical decomposition of
a plane wave tells us that the multipole components of the plane wave follow the decom-
position eik·x → jl(kD)Ylm, where jl is the spherical Bessel function. Mathematically
then jl(kD) gives the transfer of k onto l and it has contributions for l < kD. Geo-
metrically in fig. 5, if we imagine a plane wave going north-south from the equator to
the pole, the projection of the plane wave on to the spherical shell implies that a single
k-mode will generate a range of multipoles —the largest multipoles l ∼ kD come from
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Fig. 9. – CMB transfer function which takes initial power in wave number k-space into multipole
l-space. Due to projection effects, a single k-mode in the temperature field contributes to a broad
range of multipoles l < kD, where D is the distance to the source, even in the acoustic regime and
even more so at lower multipoles where the early and late ISW effects contribute. Polarization
exhibits a cleaner, more one-to-one, transfer especially in the acoustic regime due to the way in
which quadrupole moments project onto polarization (see fig. 5). Adapted from [4].

the equator with a tail of lower multipole contributions as we sweep toward the poles.
This broad transfer is even broader for the Doppler effect jl → j′l —so much so that
“Doppler” peaks from recombination cannot exist just due to geometry. The sum of all
of these temperature contributions is shown in fig. 9 leading to the off-diagonal spread
of power to the upper left.

Now consider the E-mode polarization from the projection of quadrupole moments
(see fig. 10). At the equator, we have the same effect where the k-mode projects onto the
maximum l mode. However the projection of the quadrupole vanishes as we go toward
the poles, leaving only highly suppressed contributions at lower multipole moments.
Mathematically this is described by the radial eigenfunction

(14)

√
3
8

(l + 2)!
(l − 2)!

jl(kD)
(kD)2

.

Therefore even though the temperature and polarization acoustic peaks depend on the
same physics and the same parameters of ΛCDM, there are advantages for parameter
estimation from the polarization. In fig. 11 we highlight the ultimate, cosmic variance
limited, sensitivity to Ωch

2 and hence to H0 within ΛCDM. Beyond ΛCDM the consis-
tency between acoustic temperature and polarization is a trigger for new physics.
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Fig. 10. – The observed polarization from a given scalar k-mode is the product of the fundamental
l = 2, m = 0 pattern of fig. 4 with the modulation of the amplitude with the crests and troughs of
the wave (shaded blue region). The modulation determines the angular scale of the polarization
anisotropy and for the scalar pattern is dominated by equatorial lines of sight where the spatial
variation is nearly in the plane of the sky l ∼ kD. For lines of sight near the pole, where l < kD,
the polarization is suppressed by the symmetry of the projected quadrupole moment. This leads
to the clean transfer of power for the acoustic polarization shown in fig. 9 and characterized by
a pure E-mode. The same considerations for tensor l = 2, m = 2 fluctuations lead to a much
broader transfer onto both E- and B-modes with a geometrically determined ratio between the
two (see sect. 4).

4. – Inflation source

Inflation provides not only a source of cosmological density perturbations but also
primordial gravitational wave perturbations. These gravitational wave perturbations
carry their own polarization and their effect on the temperature quadrupole anisotropy
at recombination (and reionization) leaves a B-mode imprint in the CMB polarization.

The gravitational wave amplitudes, e.g. in the + and × polarization states h+,× obey
the same Klein-Gordon type equation as the inflaton φ, a scalar field. Just like the
inflaton, quantum fluctuations freeze out at horizon crossing during inflation with the
power per ln k given by the Hubble scale H during inflation

(15) Δ2
δφ =

H2

(2π)2
, Δ2

+,× =
2

M2
pl

H2

(2π)2
,

where the different factors of the reduced Planck mass factor Mpl = 1/
√

8πG come from
the canonical normalization of the fields. From the Friedmann equation, we can relate
H to the potential energy scale of inflation Ei = V 1/4

(16) H2 =
ρ

3M2
pl

≈ V

3M2
pl

,

and so a measurement of the gravitational wave amplitude will tell us the energy scale
of inflation.
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Fig. 11. – Acoustic spectra for ΛCDM and their sensitivity to the parameters of the model
(in units of the cosmic variance errors per multipole σl). Highlighted in red is the sensitivity
to Ωch

2 which controls the inference for H0 from the CMB. Note that the sharper transfer of
power creates a sharper response especially around l ∼ 200. This allows polarization to both
improve on ΛCDM parameter estimation and provides a sharp consistency test for the model
itself. Adapted from [5].

Gravitational waves are frozen in amplitude outside the horizon and begin oscillating
and decaying once they cross back into the horizon after inflation, behaving thereafter
like radiation. The change in the gravitational wave amplitude leaves a quadrupolar
distortion in the temperature anisotropy of the CMB, much like the deformation of a
test ring of particles (see fig. 12). The crucial difference between this type of quadrupole
and that of scalar fluctuations (cf. fig. 7) is that the quadrupole is no longer azimuthally
symmetric around the plane wave direction k. Instead, once aligned to this axis, the
quadrupole moment appears as an m = ±2 state. During the breakdown of tight cou-
pling that occurs at last scattering, any gravitational waves present will also imprint a
local quadrupole anisotropy to the photons and hence a linear polarization to the CMB
according to the projection of the cold lobe of the quadrupole moment.

In fig. 13, we show the pattern of an l = 2, m = 2 E-polarization field on the sky.
Notice that there are now both Q and U components in the coordinate system of the plane
wave. While this corresponds to the infinite wavelength limit with the U contribution
being part of an E-mode, if we now consider that for a finite wavelength, the plane wave
itself modulates the amplitude of the polarization between crests and troughs of the wave,
this becomes a B-mode on the sky.

The gravitational wave contributions to the temperature and polarization power spec-
tra are shown in fig. 14. The peak in the B-mode power spectrum occurs around l ∼ 102
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Fig. 12. – A change in the gravitational waves amplitude produces a quadrupolar distortion in
the temperature of the CMB, just like its effect on a ring of test particles (inset ellipses). In
the coordinate system where ẑ ‖ k̂ (the wave vector of the gravitational wave), the quadrupole
is l = 2, m = ±2. Since polarization follows the projection of the quadrupole, there are now
two directions to consider: k̂ (along which the amplitude varies) and the polarization direction
of the gravitational wave which is responsible for the direction of the CMB polarization after
scattering.

Fig. 13. – Gravitational waves imprint an l = 2, m = ±2, E-mode pattern to the polarization
direction once projected on the sky in the coordinate system where the poles are aligned with its
wave vector k̂. The polarization has both Q and U components in this system. Once modulated
by the gravitational wave plane wave amplitude, as in fig. 10, the U -component becomes a
B-mode in the polarization anisotropy.

since this corresponds to gravitational waves that cross the horizon around recombina-
tion. The peak amplitude can be translated into the energy scale of inflation roughly as

(17) Bpeak ≈ 0.024
(

Ei

1016 GeV

)2

μK.

For the temperature and E-modes of course the observed spectrum will be the sum
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Fig. 14. – Temperature and polarization power spectrum from scale-invariant gravitational waves
from inflation. The temperature anisotropy comes from the quadrupolar distortion which their
decay inside the horizon produces, modulated by their plane wave amplitude in projection on the
sky; for l > 100 the waves enter the horizon before recombination and have oscillated and decayed
during the fluid epoch when quadrupoles are suppressed by scattering. On the horizon scale at
recombination, the quadrupole moments most efficiently transfer onto polarization leading to
both EE and BB power leaving peaks in both.

of the scalar and tensor contributions to the power spectrum. This is conventionally
characterized by the tensor-scalar ratio

(18) r = 4
Δ2

+

Δ2
R

= 16ε,

where Δ2
R is the power spectrum of comoving curvature fluctuations

(19) Δ2
R =

1
2M2

plε
Δ2

δφ =
H2

8π2M2
plε

and ε is the slow roll parameter

(20) ε =
1

2M2
pl

(
dφ

d ln a

)2

.

Since linear scales span d ln a = d ln k ∼ 5, the inflaton must roll by at least

(21) Δφ > 5
dφ

d ln a
≈ 5

(r

8

)1/2

Mpl ≈ 0.6
( r

0.1

)1/2

M2
pl.
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Fig. 15. – When the universe reionizes (transition from black to white), the free electrons in
the ionized medium (green) can again scatter CMB photons (orange), but only a small fraction
of them due to the density dilution of the expansion since recombination. The photons that
are scattered out of the line of sight are replaced by photons from random directions, which
were last scattered during recombination in regions with different temperature anisotropy (inset
circles). These fluctuations average out, leaving the anisotropy from recombination suppressed
by e−τ in amplitude.

Therefore for tensors to be observable near the current bounds of r < 0.1, the inflaton
must roll by a Planck distance. A detection at the level would have dramatic implications
for the UV completion of inflation as an effective theory. An example of a scalar-tensor
ratio that is slightly larger than this bound is shown in fig. 6.

5. – Reionization source

From the lack of a Gunn-Peterson trough in quasar spectra, we have long known
that the universe is reionized at low redshift, with current bounds requiring nearly full
ionization by z ∼ 6. Even at this minimal level, a few percent of CMB photons will have
last scattered during reionization rather than recombination.

The impact of reionization on the acoustic temperature and polarization is to suppress
power spectra by e−2τ , where τ is the optical depth through reionization. In fig. 15 we
illustrate the suppression effect in a way that will also illuminate the regeneration of
polarization on large scales. Here the universe undergoes sudden reionization, depicted
by the transition from black to white. Given the low mean density of the universe
at low redshift, most photons do not rescatter but rather stream directly toward the
observer in the center. A few percent of photons rescatter of free electrons (green)
during reionization. The photons that are scattered out of the line of sight are replaced
by photons that are scattered into the line of sight. Since the original directions of these
photons are randomized, these photons come from different places at recombination with
different temperature anisotropies, shown as the smaller inscribed circles (which are
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Fig. 16. – On scales near the horizon at the reionization scattering epoch zi, the photons de-
flected into the line of sight have a quadrupole anisotropy from their last scattering surface at
recombination (inset circles). Rescattering of the azimuthally symmetric quadrupole anisotropy
leads to E polarization as usual leaving an imprint on its power spectrum corresponding to the
projected scale of the horizon (right panel). The shape of the EE power spectrum thus carries
information on both the total optical depth τ during reionization and the ionization history
xe(z). Adapted from [6].

the next-to-last scattering surfaces), and their contributions average to zero. Therefore
the original fine scale acoustic anisotropy from the last scattering surface is reduced by
rescattering as e−τ in amplitude or e−2τ in power. Note that since a long wavelength
perturbation generates a nearly uniform temperature inhomogeneity on the scale of the
inset last scattering surface, this suppression applies to fluctuations that were subhorizon
at reionization.

Now consider fluctuations that are horizon scale or larger at recombination. From
our general discussion of polarization generation, we know that if there is a quadrupole
anisotropy on these next-to-last scattering surfaces, then the result of rescattering will be
the generation of linear polarization. This is depicted in fig. 16. In this case the Sachs-
Wolfe temperature anisotropy appears as a quadrupole moment to the free electrons
whose projection gives the E-mode polarization pattern shown in the center. Wave-
lengths around the horizon at rescattering produce the largest quadrupoles and hence
reionization polarization provides a handle on both the amount of rescattering and its
redshift. Furthermore, since the origin of the quadrupole moment is the Sachs-Wolfe
effect, the polarization is correlated with the temperature fluctuations that come from
photons that were not rescattered during reionization.

In fig. 16 we show the transfer function of scattering at a given redshift zi onto the
E-mode spectrum

(22) T =
∂ lnCEE

l

∂xe(zi)
.
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The amplitude and shape of the E-mode power spectrum therefore give information not
only on τ but also on the ionization history which is especially useful in constraining any
contribution from high redshifts which would be otherwise difficult to detect with other
techniques. To recover the full CMB information on reionization from this effect requires
cosmic variance limited E-mode measurements out to multipoles l < 30.

6. – Lensing distortion

The intervening mass along the line of sight gravitationally lenses the CMB photon
trajectories and hence distorts both the temperature and polarization anisotropy fields
from recombination. The photons are deflected according to the angular gradient of the
potential projected along the line of sight

(23) φ(n̂) =
∫ ηa=1

η∗
dη

(D∗ − D)
D D∗

[Φ − Ψ](Dn̂, η),

where D∗ denotes the distance to recombination and D = η0 − η. Because surface
brightness is conserved in lensing, the deflection simply remaps the observed fields as

(24) X(n̂) → X(n̂ + ∇φ),

where X ∈ {Θ, Q, U}. The typical deflection angle is of order a few arcminutes but the
lines of sight are coherently deflected across scales of a few degrees. Since the coherence
scale of the acoustic features is larger than the deflection angle, the lensing effect can
be approximated to leading order by Taylor expanding eq. (24). The result is a product
of fields so that in harmonic space the modes are coupled to each other across a range
Δl ≈ 60 set by the coherence of the deflection. Heuristically, lensing distorts the hot and
cold spots formed by the acoustic oscillations and hence the mapping of k to l.

In the temperature power spectrum, this mode coupling smooths the acoustic peaks
slightly. For the polarization, the remapping not only smooths the E-polarization peaks
but actually generates B-mode polarization (see fig. 17). Remapping by the lenses pre-
serves the orientation of the polarization but warps its spatial distribution and hence
does not preserve the symmetry of the original E-mode. Gravitational lensing B-modes
represent a fundamental obstacle to the detection of a small tensor-scalar ratio r from
inflation (see fig. 6).

Because the lensed CMB distribution is not linear in the fluctuations, the lensed CMB
fields are non-Gaussian. In particular, the coupling of multipoles separated by Δl can
be used to construct a minimum variance estimator of the deflection potential φ(n̂) out
of pairs of moments which can be iteratively improved.

These lensing effects are easiest to see with the temperature field in the flat-sky limit.
Here the Taylor expansion gives

Θ(n̂) = Θ̃(n̂ + ∇φ)

= Θ̃(n̂) + ∇iφ(n̂)∇iΘ̃(n̂) +
1
2
∇iφ(n̂)∇jφ(n̂)∇i∇jΘ̃(n̂) + . . . ,
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Fig. 17. – Gravitational lensing deflects the paths of CMB photons leading to a distortion of
the acoustic polarization from recombination. In this exaggerated example of a spherically
symmetric lens, the image in the center is magnified and the edges sheared (left). The radial
direction of the lens deflection breaks the symmetry of the intrinsic E-mode (center) and creates
a B-mode (right). Adapted from [7].

where tildes denote unlensed fields. In Fourier space

Θ(l) =
∫

dn̂Θ(n̂)e−il·n̂

= Θ̃(l) −
∫

d2l1
(2π)2

Θ̃(l1)L(l, l1),

where

L(l, l1) = φ(l − l1) (l − l1) · l1
+

1
2

∫
d2l2
(2π)2

φ(l2)φ∗(l2 + l1 − l) (l2 · l1)(l2 + l1 − l) · l1.

The temperature power spectrum then becomes

CΘΘ
l =

(
1 − l2R

)
C̃ΘΘ

l +
∫

d2l1
(2π)2

C̃ΘΘ
|l−l1|C

φφ
l1

[(l − l1) · l1]2,

where

R =
1
4π

∫
dl

l
l4Cφφ

l .

If C̃ΘΘ
l slowly varies then two term cancel

C̃ΘΘ
l

∫
d2l1
(2π)2

Cφφ
l (l · l1)2 ≈ l2RC̃ΘΘ

l .

So lensing acts to smooth features in the power spectrum with a smoothing width of
L ∼ 60, the peak of deflection power spectrum. Lensing also correlates the modes so
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Fig. 18. – Lensing-induced correlations between multipole moments of the temperature and
polarization fields can be used to reconstruct the projected mass distribution or convergence
field. Because the intrinsic B-modes from recombination are small even with the maximal
allowed tensor-scalar ratio r, the highest signal-to-noise pairs involve the observed E- and B-
fields (right) leading to a better reconstruction than is available from the temperature multipole
pairs. Adapted from [7].

that

(25) 〈Θ(l)Θ′(l′)〉CMB = f(l, l′)φ(L),

where L = l + l′ and

(26) f(l, l′) = C̃ΘΘ
l1 (L · l1) + C̃ΘΘ

l2 (L · l2).

Here the average 〈. . .〉CMB denotes an ensemble average over realizations of the unlensed
CMB. Each pair of multipoles therefore provides a noisy estimate of φ(L). We can
generalize this to the polarization fields

(27) 〈x(l)x′(l′)〉CMB = fα(l, l′)φ(L),

where x ∈ Θ, E,B. Combining all of the estimators with minimum variance weights
gives the optimal quadratic estimator.

Since small-scale polarization anisotropy is otherwise free of cosmological B-modes,
most of the signal-to-noise in the reconstruction lies in the pairing of E-modes to neighbor-
ing lensing-generated B-modes. In fig. 18 we show a comparison of lensing reconstruction
from the ΘΘ modes vs. EB modes.

Once the lenses are reconstructed, the polarization of the CMB can be delensed,
allowing for a much better measurement or limits on the inflationary tensor-scalar ratio r

than can be achieved from just modeling their contribution assuming Gaussian statistics.
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7. – Discussion

In these Proceedings, I have reviewed the sources of CMB polarization in the acoustic
regime, reionization and gravitational waves from inflation and their distortion by grav-
itational waves. Throughout I have used the ΛCDM model to illustrate these effects.
Whereas scalar fluctuations at recombination provide a source of E-mode polarization
only, gravitational waves produce both E- and B-modes and gravitational lensing converts
acoustic E-modes into B-modes. The non-Gaussianity of the lensed CMB fields allows
the gravitational lenses to be reconstructed from quadratic and higher-order temperature
and polarization estimators. Using this reconstruction, the observed polarization can be
delensed and the gravitational wave B-modes largely removed. If their removal uncov-
ers the B-modes from inflation, then the inflationary energy scale and field excursion
will be determined which would provide invaluable information on the UV completion of
inflation as an effective theory.
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Summary. — While the final release of products and papers from the Planck mis-
sion is forthcoming, new much more ambitious projects dedicated to the Cosmic Mi-
crowave Background (CMB) are in preparation for the next decade and beyond. We
review the Planck products, in form of source catalogs and maps, briefly discussing
the methods to produce them and extracting the various types of astrophysical and
cosmological signals, presenting their main implications. The limits on primordial
B-modes associated to stochastic field of gravitational waves expected in inflationary
scenarios and the perspectives open by the investigations of expected tiny spectral
distortions are discussed. Finally, the studies carried out in the last decade towards
future CMB space missions are described.
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1. – Introduction

Since the discovery of the Cosmic Microwave Background (CMB) in 1964, and in par-
ticular in the past two decades, the improved measurements in temperature fluctuations
achieved an unprecedented accuracy in constraining the majority of the cosmological
parameters values [1]. Together with the cosmic expansion and the primordial nucle-
osynthesis, the CMB is one of the fundamental observational evidence of the hot big
bang theory [2], representing a powerful tool of investigation in a cosmological context.
The presence of small CMB temperature anisotropies would have been, as realized, the
seeds for galaxy formation, hence, a direct probe of the formation and evolution of the
structures we observe today.

In early 1990’s the NASA COsmic Background Explorer (COBE) satellite inaugurated
the “precision cosmology” era, determining the CMB spectrum temperature of T0 =
2.72548± 0.00057 K [3-5] and then discovering the CMB temperature fluctuations of few
tens of μK on angular scales larger than 7◦ [6], the so-called anisotropies. Remarkably,
already in 1990 [7] argued that a positive cosmological constant is necessary to jointly
explain large scale structures observations and CMB anisotropy upper limits at small
angular scales in a spatially flat cosmology, anticipating the paradigm transition from a
Cold Dark Matter (CDM) to a cosmological constant plus CDM (ΛCDM) model of the
Universe accounting for the evidence of the recent cosmic acceleration derived through
Type-Ia Supernovae (SNIa) observations [8] and the flatness of the Universe determined
by the Balloon Observations Of Millimetric Extragalactic Radiation and Geophysics
(BOOMERanG) CMB anisotropy experiment [9].

The great amount of more recent available data coming from ground-based and
balloon-borne experiments to space-borne experiments, as the Wilkinson Microwave
Anisotropy Probe (WMAP) and Planck missions, allows to explore key aspects of cosmol-
ogy and fundamental physics and to contribute to trace the roadmap for future microwave
projects in the coming decades. Indeed, the wealth of information encoded in the CMB
has significantly helped cosmology to turn into a precision science, and allowed us to de-
scribe cosmic evolution starting from its very primordial stages. The linear polarization
pattern of CMB anisotropies [10] has been generated in two distinct cosmological epochs:
the recombination era (z � 1100) during which, as the Universe expanded and cooled, the
diffusion length of photons in an increasingly neutral medium became large enough to re-
veal the quadrupole moment of the local anisotropy pattern at the last scattering surface
and the Universe then became almost neutral and transparent to radiation, since Thom-
son scattering, the main physical process involved, was no longer efficient in coupling
matter and radiation; much later, during the early phases of galaxy and star formation,
when photoionizing radiation able to escape from the bound structures was injected in
the intergalactic medium that became ionized again (reionization epoch). During this
period, free electrons interacted, through Thomson scattering, with CMB photons once
more. Owing to the size of the Hubble horizon at reionization, this new contribution is
seen at large angular scales, as a characteristic bump at low multipoles (� � 10) in the
pure polarization CMB spectra, as well as in the temperature to polarization correlation.
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2. – The Planck mission

Planck(1) is a project of the European Space Agency (ESA) and a third-generation
mission in terms of precision cosmology, designed for the CMB anisotropy analysis. The
satellite, launched in 2009, was equipped with a Gregorian dual reflector telescope of
1.5 m diameter, whose focal plane were able to collect the microwave photons owing to
two wide band cooled receiver arrays, the Low-Frequency Instruments (LFI) made up
of radiometers operative at 20 K, and the High-Frequency Instruments (HFI) composed
of bolometers working at 100 mK. Together, the two instruments scanned the sky in 9
frequency bands, performing, respectively 8 and 5 nearly all sky surveys, LFI at 30, 44 and
70 GHz and HFI at 100, 143, 217, 353, 545, 857 GHz, with telescope optical axis pointing
at 85◦ from the spin axis [11, 12]. Planck observed the sky from a large Lissajous orbit
around the Sun-Earth L2 Lagrange point designed to offer stable observing conditions
and avoids contamination from side lobe pick-up of stray radiation originating from the
Sun, Earth, and Moon, scanning the sky while spinning at 1 rpm in almost great circles
with a full width half maximum (FWHM) resolution ranging from 33.3′ to 4.3′ from
30 GHz to 857 GHz, and a final sensitivity per FWHM2 resolution element spanning
∼ 2–14 μK/K in terms of δT/T for frequencies ν ≤ 353 GHz.

Reprocessing LFI and HFI data, the Planck Collaboration released maps in temper-
ature at the nine frequency bands and in polarization at the seven polarization sensi-
tive bands up to 353 GHz, then extracting Stokes T , Q, U parameter maps of CMB
anisotropies on the whole sky with an unprecedented sensitivity and resolution. For
many investigations, the anisotropy signals of billions of pixels are compressed in sev-
eral thousand of numbers, namely the correlators CXY

 , where X and Y stands for T ,
E, B, mainly related to the anisotropy amplitude at the multipole � ∼ 180◦/θ, θ be-
ing the angular scale of interest. A linear combination of Q, U allows us to define, in
Fourier space, the E-mode (gradient component) and B-mode (curl component) polar-
ization patterns and to identify, together with temperature anisotropies, four angular
power spectra (APS), CTT , CEE , CBB , CTE , the latter being the temperature polar-
ization cross correlation(2). Scalar perturbations generate E-mode polarization, tensor
perturbations generate both E- and B-mode polarization(3).

(1) Planck hosted instruments provided by two scientific Consortia funded by ESA member
states (in particular the lead countries: France and Italy) with contributions from NASA (USA),
and telescope reflectors provided in a collaboration between ESA and a scientific Consortium
led and funded by Denmark.
(2) Other cross-correlators, CTB and CEB, expected to vanish due to the different handedness
of the B and (T, E) harmonics because of the parity conserving of standard physics of CMB
fluctuations, may be induced by parity-asymmetric gravity dynamics during inflation in the case
of a discrepancy among left and right-handed gravitational waves or in particle physics models
with non-standard parity-violating interactions, while the presence of a primordial homogeneous
or helical magnetic field which would induce Faraday rotation and non-zero TB correlations (see,
e.g., [13] and references therein).
(3) Vector perturbations generate both modes, but, except for particular scenarios, they are
expected to be typically subdominant.
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Besides the so-called cosmic variance limit, an intrinsic error which has an impact
on, primarily, the low multipoles, the main original goal of Planck was the accurate,
almost definitive measure of the CMB temperature fluctuations, but the increasing rel-
evance of polarization motivated a stringent analysis of polarization performance in the
various steps of the mission, from design and ground tests to in flight data analysis and
scientific interpretation. The development and refinement of new and already existing
methodologies were crucial for the success of the cosmological investigations. The large
majority of scientific analyses of sky maps requires suitable pixelization schemes of the
sphere improving over previous ones [14-16] to include efficient methods to pass from the
real space to the harmonic space representation. It is worthy to mention in this context
the crucial development of fast analysis methods based on the relationship between fast
Fourier transforms and spherical harmonic expansion [17] for anisotropy maps discretized
through pixels located on the sphere parallels and of suitable pixelization schemes also
satisfying other extremely useful features, such as pixel area equality and pixel hierar-
chical structure in passing from different resolutions, and complemented with a wide set
of tools and facilities as in the HEALPix tesselation [18, 19], widely adopted in CMB
projects and astrophysical studies, or variants implementing an IGLOO scheme [20] or
with pixel centers located to optimize quadrature with Gaussian-Legendre method for
converting T , Q, U maps into spherical harmonics or spin ±2 spherical harmonics ex-
pansions coefficients as in the GLESP-pol pixelization [21].

3. – Control of systematic effects

To look at this extremely faint signal, it is crucial the almost optimal control of sys-
tematics effects, one of the main task in data reduction and interpretation [24-27]. Table I
lists the main systematic effects in Planck according to their source and summarizes their
control and residual impact on science. Systematic effects can be additive or multiplica-
tive spurious contributions independent of the sky signal, or coupled with the sky signal
and related with the observational strategy. Furthermore, in the microwaves, different
kinds of astrophysical contamination emissions can, in principle, veil the cosmological
information. This foreground signal can be diffuse, coming from the Solar System and
from the Galaxy, or discrete, due to Galactic sources and extragalactic sources at various
cosmic distances.

Table II report the main characteristics of LFI and HFI. Figure 1 shows potential
residuals for the EE auto-power spectra of systematic effects for HFI. The level of sys-
tematics effects has been in line with expectations, therefore confirmed the belief of a
full science exploitation of the CMB signal.

4. – Astrophysical foregrounds

To investigate a great variety of astrophysical and cosmological processes it is crucial
the analysis of the microwave to sub-millimetre sky and of the evidences carried by
the CMB. The data acquired from different sky signals and at various epochs or maps
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Table I. – Main systematic effects in Planck data.

Category Effect Notes – Control/Removal

Effects coupled with sky
Main beam distortions . . . . . . . . . . . . . Relevant in both temperature and

polarization maps. Accounted for in
window function for APS estimation.

Nearly-lobes pickup . . . . . . . . . . . . . . . . Optical response at angles < 5◦

from the main beam. Main effect
from Galaxy and point sources. Ac-
counted through simulations.

Side-lobes pickup . . . . . . . . . . . . . . . . . . Galaxy and CMB dipole pickup by
main and sub-reflector spillovers.
Small effect on temperature maps,
relevant effect for polarization study,
particularly at large angular scales.
Accounted through simulations.

Polarization angle uncertainty . . . . . Uncertainty in the polarization angle
in-flight measurement.

Bandpass mismatch . . . . . . . . . . . . . . . Affects primarily radiometric detec-
tors. Negligible impact on temper-
ature. Corrected in polarization at
map level exploiting source measure-
ments (e.g. Crab Nebula).

Imperfect photometric calibration . Optics, receiver noise properties
changes, and other non-idealities.
Adaptive smoothing algorithm us-
ing beam characterization, 4-K ref-
erence load voltage output, tempera-
ture sensor data.

Pointing . . . . . . . . . . . . . . . . . . . . . . . . . . . Uncertainties in pointing reconstruc-
tion, thermal changes affecting fo-
cal plane geometry. Small impact on
anisotropy measurements.

Receiver time response . . . . . . . . . . . . In HFI, bolometer memory is coupled
with beam shape. Filters, window
function.

Detectors
Cosmic ray hits . . . . . . . . . . . . . . . . . . . . Affect bolometric detectors. Time-

lines cleaning via template fitting.
1/f-type noise. . . . . . . . . . . . . . . . . . . . . . Affects radiometric and bolometric

detectors. In LFI, 1/f contribu-
tion limited to max 3% by differ-
ential measurement strategy. De-
striping/map-making algorithms.

Orthomode transducer cross-
polarization

In LFI, imperfect polarization sepa-
ration. Negligible impact.

Electronics
1Hz spikes . . . . . . . . . . . . . . . . . . . . . . . . . Affects LFI data. Removed from

timelines by template fitting.
Analogue-to-digital converter (ADC)
nonlinearity . . . . . . . . . . . . . . . . . . . . . . .

Reduced/removed through template
fitting.

Thermal(a)

300K fluctuations . . . . . . . . . . . . . . . . . . In principle affect both instruments.
Inherent hardware stability is com-
pliant with scientific requirements.

20K fluctuations . . . . . . . . . . . . . . . . . . . Affect mainly LFI. Inherent hard-
ware stability is compliant with sci-
entific requirements.

4K fluctuations . . . . . . . . . . . . . . . . . . . . Affect both instruments. Inherent
hardware stability is compliant with
scientific requirements.

(a) A combination of differential measurement strategy (specifically for LFI) with calibration and de-striping
further reduce the effect.
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Table II. – Main characteristics of LFI and HFI full mission maps.

Frequency band

Characteristic 30GHz 44GHz 70GHz

Centre frequency [GHz] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28.4 44.1 70.4

Effective beam FWHMa [arcmin] . . . . . . . . . . . . . . . . . . . . 32.29 27.00 13.21

Effective beam ellipticitya . . . . . . . . . . . . . . . . . . . . . . . . . . 1.32 1.04 1.22

Temperature noise (1 deg)b [μKCMB] . . . . . . . . . . . . . . . . 2.5 2.7 3.5

Polarization noise (1 deg)b [μKCMB] . . . . . . . . . . . . . . . . . 3.5 4.0 5.0

Overall calibration uncertaintyc [%] . . . . . . . . . . . . . . . . . 0.35 0.26 0.20

Systematic effects uncertainty in Stokes Id [μKCMB] 0.19 0.39 0.40

Systematic effects uncertainty in Stokes Qd [μKCMB] 0.20 0.23 0.45

Systematic effects uncertainty in Stokes Ud [μKCMB] 0.40 0.45 0.44

Reference frequency

Characteristic 100GHz 143GHz 217GHz 353GHz 545GHz 857GHz Notes

Number of bolometers . . . . . . . . . . . . . . . . 8 11 12 12 3 4 a1

Effective beam FWHM1 [arcmin] . . . . . . 9.68 7.30 5.02 4.94 4.83 4.64 b1

Effective beam FWHM2 [arcmin] . . . . . . 9.66 7.22 4.90 4.92 4.67 4.22 b2

Effective beam ellipticity ε . . . . . . . . . . . . 1.186 1.040 1.169 1.166 1.137 1.336 b3

Noise per beam solid angle [μKCMB] . . 7.5 4.3 8.7 29.7 – – c1

[kJy sr−1] . . – – – – 9.1 8.8 c1

Temperature noise [μKCMB deg] . . . . . . . 1.29 0.55 0.78 2.56 – – c2

[kJy sr−1 deg] . . . . . . . – – – – 0.78 0.72 c2

Polarization noise [μKCMB deg] . . . . . . . . 1.96 1.17 1.75 7.31 – – c3

Calibration accuracy [%] . . . . . . . . . . . . . . 0.09 0.07 0.16 0.78 1.1(+5) 1.4(+5) d1

CIB monopole prediction [MJy/sr] . . . . . 0.0030 0.0079 0.033 0.13 0.35 0.64 e1

Zodiacal light level correction [KCMB] . 4.3×10−7 9.4×10−7 3.8×10−6 3.4×10−5 – – e2

[MJy/sr] – – – – 0.04 0.12 e2

a Calculated from the main beam solid angle of the effective beam, Ωeff = mean(Ω). These values are used in
the source extraction pipeline.
b Noise rms computed after smoothing to 1◦.
c Sum of the error determined from the absolute and relative calibration.
d Estimated rms values over the full sky and after full mission integration. Not included here are gain recon-
struction uncertainties, estimated to be of order 0.1%.
a1 Number of bolometers whose data were used in producing the channel map.
b1 FWHM of the Gaussian whose solid angle is equivalent to that of the effective beams.
b2 FWHM of the elliptical Gaussian fit.
b3 Ratio of the major to minor axis of the bestfit Gaussian averaged over the full sky.
c1 Estimate of the noise per beam solid angle, as given in b1.
c2 Estimate of the noise in intensity scaled to 1◦ assuming that the noise is white.
c3 Estimate of the noise in polarization scaled to 1◦ assuming that the noise is white.
d1 Calibration accuracy (at 545 and 857GHz, the 5% accounts for the model uncertainty).
e1 Cosmic Infrared Background (CIB) according to the model by [22], whose uncertainty is estimated to be at
the 20% level (also for constant νIν).
e2 Zero level correction to be applied on Zodiacal Light corrected maps. From [23]. Credit: Planck Collabora-
tion, A&A 594, A1, 2016, reproduced with permission c© ESO.
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Fig. 1. – Residual EE auto-power spectra of systematic effects from the HFI pre-2016 end-to-
end simulations computed on 50% of the sky (colours specified in the top left panel apply to all
panels). The purple line (ADC NL total residual) shows the sum of all effects associated with
ADC nonlinearity. The dark blue line (ADC NL — Analogue-to-digital converter nonlinearity
— no distortion) shows the level without the dominant dipole distortion. The plots show also
the F-EE fiducial model from best-fit Planck 2015 cosmological parameter [28] (black curves).
The 100-GHz and 143-GHz model scaled to 353 GHz with a dust SED is shown as dashed and
dotted lines, respectively. From [29]. Credit: Planck Collaboration, Astron. Astrophys., 596
(2016) A107, reproduced with permission c© ESO.

are compared, because of the time dependence and relative positions of observer-source
or -interplanetary dust cloud, in order to extract relatively bright variable sources, the
diffuse Zodiacal Light Emission and solar system bodies. Once the maps are averaged
over valuable number of surveys, several point-like sources and specific diffuse emissions
filters are applied to disentangle between all other astrophysical foregrounds and the CMB
anisotropies, possibly supplemented by external catalogs. These algorithms exploit the
signal frequency dependence and angular correlation, in combination (if feasible) with
other frequency bands templates.

4.1. Catalogs of sources and clusters of galaxies. – The Second Planck Catalogue of
Compact Sources (PCCS2), based on the full mission data, lists Galactic and extragalac-
tic sources detected in single-frequency maps over the entire sky (see fig. 2). At the HFI
frequencies this is divided into two sub-catalogues depending on sources sky positions
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Fig. 2. – Sensitivity (the flux density at 90% completeness) of the PCCS2, PCCS, ERCSC,
WMAP and others. For the LFI channels, the sensitivities refer to the full sky. For the HFI
channels, the 90% completeness limits plotted for the PCCS were evaluated in a selected extra-
galactic zone; the regions of sky to which the 90% completeness limits apply are similar but not
identical to those of the PCCS2. From [30]. Credit: Planck Collaboration, Astron. Astrophys.,
594 (2016) A26, reproduced with permission c© ESO.

and reliability, the PCCS2, identified by an integral reliability of 80% or greater, and
the PCCS2E, classified by unknown reliability due to diffuse emission contamination. To
extract the objects, the sky maps are convolved with a cleaning and denoising algorithm,
the Mexican Hat Wavelet 2 (MHW2) [31,32], specific for each sky map because of their
individual characteristics. The filters are applied to square patches, the full maps pro-
jections [33], overlapped such to cover the entire sky and avoid multiple detection of the
same sources. In LFI, a first comparison of the detection with existing radio sources cat-
alogues is completed and then, for those unclassified outside the Galactic cut, a manual
individual source inquiry into archival repositories is carried out. In HFI, because of the
absence of external full sky catalogue, two different methods are applied, the simulation
and injection reliability. The first represents the number of revealed sources that, injected
into simulated maps, match the injected target positions. In the second, the injection
occurs on real maps [30]. The first technique, preferable, is dependent on the quality
of the simulations and, in the worst cases, the second approach is required. The maps
have been masked on the Galactic plane extended to external filamentary structures and
all sources located in this masked region categorized in the PCCS2E. The catalogues,
based on total intensity measurements, include polarized flux densities estimated at the
sources position and at frequencies 30 GHz ≤ ν ≤ 353 GHz. The analysis of the recov-
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ered spectral indexes shows that synchrotron emitters dominate at low frequencies and
in the bright tail of extragalactic sources at high frequencies (ν ≤ 217 GHz) while dusty
galaxies prevail at high frequencies. At ν ∼ 50 GHz, blazar spectra considerably steep-
ens. Characterizing the contamination of unresolved polarized extragalactic sources is
a crucial step for accurate CMB polarization analyses and to detect the primordial B-
modes. The PCCS2 includes more than 120 polarized objects at > 99.99% confidence
level (c.l.), mainly located at low Galactic latitudes, while the detection of extragalactic
polarized sources is still very poor, ranging the unity at 353 GHz. However, it is possible
to overcome this lack of information by statistically estimating fainter sources polariza-
tion fraction, Π, with different approaches. The first one is the stacking technique, a
method to evaluate the polarization behaviour of compact sources by adding up numer-
ous sky regions surrounding previous selected positions, such to increase the signal and
reduce the background, and dealing with the noise bias [34,35]. This led to a radio source
(dusty galaxies) median Π of � 1.9% (� 1.3% and � 2.0% at 217 and 353 GHz). The
second approach, the Intensity Distribution Analysis, validated on other radio source
catalogs with polarization data, evaluates the signals at provided sources positions and
compares them with random sky locations far from the sources (control fields), assessing
the two distributions difference significance with the one-sided Kolmogorov-Smirnov test.
Averaging over the frequencies, the radio sources median polarization fraction resulted
to be � 2.83%, consistent with previous analyses, while for dusty galaxies a 90% c.l.
upper limit of median Π of � 2.2% at 353 GHz and of � 3.9% at 217 GHz (where dusty
galaxies are fainter) was derived [36].

The Second Planck catalogue of Sunyaev-Zeldovich (SZ) galaxy clusters (PSZ2), the
largest and deepest all-sky selected galaxy clusters archive, encloses 1653 sources. Typi-
cally, a cluster emits in optical and infrared (IR), being formed by different components
such as dark matter, cold gas and dust in the galaxy, while it emits in the X-ray band
owing to ionized intra cluster medium thermal bremsstrahlung and gives rise to energy
boosts of CMB photons via inverse Compton, the so-called thermal SZ effect [37, 38].
This effect induces an intensity spectrum increase above 220 GHz and a decrease at
lower frequencies, a suitable range at HFI frequencies to provide high-precision data. The
extraction algorithm, divided into 3 steps, consists of a Matched-Multi Filters (MMF)
technique [39-41] and a fast, fully Bayesian, multifrequency detection approach, the Pow-
ellSnakes (PwS) method [42], designed to identify and characterize compact objects in a
diffuse background.

Among the measured sources, 1203 have revealed a counterpart in other datasets
external to Planck once analyzed in other wavelengths. In particular, the SZ selection
recognized a low-redshift X-ray under-luminous clusters population with abundant mass
content characteristics, as revealed in optical surveys but absent in X-ray samples. Fig-
ure 3 compares PSZ2 with deeper SZ catalogs obtained with South Pole and Atacama
Cosmology Telescopes (SPT and ACT) on selected areas. Microwave and X-ray clus-
ter data have been jointly used to independently constrain cosmological parameters. A
fundamental property of galaxy cluster abundance is that from their mass and redshift
evolution one can infer constraints on matter density fluctuation normalization, mean
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Fig. 3. – Distribution of PSZ2 clusters with associated redshift in the mass-redshift (M500 – z)
plane compared to SPT and ACT catalogues. Black circles: PSZ2 clusters; red (green) filled
circles: common SPT/PSZ2 (ACT/PSZ2) clusters. Red (green) empty squares: the remaining
SPT (ACT) clusters not detected by Planck. See also the text. From [45]. Credit: Planck
Collaboration, Astron. Astrophys., 594 (2016) A27, reproduced with permission c© ESO.

matter density, dark energy density and state equation and on extensions of the min-
imal cosmological model, including e.g. massive neutrinos and modified gravity. The
Comptonization parameter, y, and its full-sky Planck maps fluctuations [12] represent
important tools to investigate integrated information on clusters physics and cosmo-
logical evolution as well as to analyze the SZ effect through selected clusters. High-z
galaxy evolution and star formation history can be studied in the sub-millimetre/far-IR
background fluctuations, specially when performed in privileged Planck areas [43]. To
investigate these topics, it is also crucial the CMB polarization study, which encloses
valuable information on cosmic reionization history [23,44], structure and star formation
and evolution and the ionizing photons they originate in the intergalactic medium.

4.2. Galactic diffuse components. – In order to separately reveal CMB anisotropies and
astrophysical diffuse components, the Planck single-frequency full-sky maps, have been
reduced with four different algorithms of component separation [46]. They have been de-
veloped in real space (SEVEM and COMMANDER), real and harmonic (needlet) space
(NILC), in harmonic or needlet domain (SMICA) [47]. Even though the cleaned maps
were in good agreement, the COMMANDER maps turned out to be the most suitable to
trace the sky astrophysical processes owing to the real-space Bayesian technique that al-
lows a priori foreground parameters representation [48]. Aiming at synchrotron, spinning
and thermal dust, free-free and CO emissions, temperature Planck and WMAP [49] mea-
surements were merged together with 408 MHz [50] maps. Among the various polarized
diffuse emissions only synchrotron and thermal dust maps were resolved (see fig. 4).
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Fig. 4. – Stokes Q and U polarization parameters for the synchrotron at 30GHz (upper line)
and thermal dust at 353 GHz (bottom line). From [23]. Credit: Planck Collaboration, Astron.
Astrophys., 594 (2016) A1, reproduced with permission c© ESO.

In Planck LFI data, the applied methods of component separation were able to re-
veal and describe a distinct and non-negligible emitting constituent close to the Galactic
centre, the so-called “haze” [51]. Recent Fermi observations evidenced a strong morpho-
logical correlation between the haze and gamma-ray haze/bubbles, supporting the idea
of two multi-wavelength views of the same phenomenon.

Figure 5 displays the foreground contribution to the sky fluctuations. The Planck
mission had the capability to estimate the microwave sky complexity, requiring, for fu-
ture CMB experiments, an increased number of frequency channels in order to accurately
characterize the foregrounds and the tiny CMB polarization features, such as primordial
B-modes. Planck data also changed our comprehension of the relative weights of the
various components. Indeed, in temperature synchrotron fluctuations are smaller than
free-free and spinning dust around 30 GHz. The synchrotron and dust polarized emissions
APS has been precisely outlined for a variety of wide sky areas [52] and the synchrotron
frequency dependence has been investigated as a function of the Galactic latitude [53].
At frequencies above 70 GHz, polarized emission from Galactic dust prevails extensively
in the sky and, even though previously occasionally underestimated, Planck maps ac-
curately supplied its contamination level in CMB APS [54] for polarization projects,
turned to be crucial for BICEP2 and Keck array observations [55]. Furthermore, syn-
chrotron and dust polarized emissions APS have been accurately described analyzing
different patches in the sky [52] and the synchrotron Galactic latitude dependence was
investigated [56].
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Fig. 5. – Brightness temperature rms as a function of frequency and component for temperature
(left), where each component is smoothed to an angular resolution of 1◦ FWHM and the lower
and upper edges of each line are defined by masks covering respectively 81% and 93% of the sky,
and polarization (right), where the corresponding smoothing scale is 40′ and the sky fractions
are 73% and 93%. From [23]. Credit: Planck Collaboration, Astron. Astrophys., 594 (2016)
A1, reproduced with permission c© ESO.

5. – Main implications for cosmology and fundamental physics

Latest measurements of CMB in temperature and polarization from Planck satel-
lite [28], complemented at smaller scales by recent ground-based experiments [55, 57-59]
and combined with other cosmological information coming from, e.g., SNIa, galaxy and
galaxy cluster surveys, have reached high precision in estimating all the parameters
that describe the current so-called standard cosmological model. Far from represent-
ing a fully, physically exhaustive interpretation of the Universe properties, the ΛCDM
model phenomenologically describes reasonably well existing data with a simple set of
six parameters.

The first step for the extraction of the cosmological parameters from Planck maps
is represented by the estimation of the CMB APS, CXY

 . Under the assumption of
random Gaussian fluctuations, the CXY

 contain all the relevant statistical information.
Particularly important for multifrequency experiments is also the analysis of the correla-
tion between different channels. Under the assumption of a blackbody spectrum, CMB
anisotropies are expected to be frequency independent when expressed in terms equiva-
lent thermodynamic temperature (denoted also as CMB temperature), thus correlating
different frequency channels is a power diagnostic for potential residual systematic effects
or imperfect foreground subtraction. Specific methods have been developed to deal with
large and small scales (i.e. low and high multipoles) anisotropies (hybrid approach). Low
multipoles are better analyzed through formally exact maximum-likelihood approaches
implemented in real space that allow to exploit the data full covariance matrix as well as
to accurately deal with the effect of sky masking necessary to exclude regions potentially
affected by residual foregrounds, while at high multipoles, where the size of the full co-
variance matrix prevents the use of these methods and the very large number of modes
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Fig. 6. – Planck 2015 CMB spectra, compared with the base ΛCDM fit to Planck TT data (red
line). The upper panels show the spectra and the lower panels the residuals. In all the panels,
the horizontal scale changes from logarithmic to linear at the “hybridization” scale, � = 29 (the
division between the low-� and high-� likelihoods). For the residuals, the vertical axis scale
changes as well, as shown by different left and right axes. We show D� = �(�+1)C�/(2π) for TT
and TE, but C� for EE, which also has different vertical scales at low- and high-�. From [60].
Credit: Planck Collaboration, Astron. Astrophys., 594 (2016) A11, reproduced with permission
c© ESO.

together with the increasingly Gaussian behaviour of the likelihood function alleviates
the need for full covariance matrix inclusion, pseudo-CXY

 estimators, debiased and de-
convolved to account for the mask and noise, provide accurate results. Figure 6 shows
the Planck CMB APS derived in [60].

5.1. Cosmological results. – Markov chain Monte Carlo analyses ingesting the theo-
retical predictions of Boltzmann codes for CMB APS depending on cosmological model
and parameters are then used to estimate cosmological parameters, marginalizing also
over instrument and foreground residual parametrizations [28].

Cosmological results based on full-mission Planck observations of CMB temperature
and polarization anisotropies were presented in the 2015 release. In particular, in the
2015 release the first results of polarization measurements with the LFI at large angular
scales were presented. They are in very good agreement with the 2013 analysis of the
Planck nominal-mission temperature data, but with increased precision.

The temperature and polarization CMB APS are consistent with the standard
spatially-flat 6-parameter ΛCDM cosmology with a power-law spectrum of adiabatic
scalar perturbations (denoted “base ΛCDM” in this work). For this cosmological
model, from the temperature data combined with Planck lensing, Planck Collaboration
found a Hubble constant, H0 = (67.8 ± 0.9) km s−1 Mpc−1, a matter density parameter
Ωm = 0.308±0.012, and a tilted scalar spectral index with ns = 0.968±0.006, consistent
with the 2013 analysis(4).

Combined with the Planck temperature and lensing data, these measurements give a
reionization optical depth of τ = 0.066 ± 0.016, corresponding to a reionization redshift
of zre = 8.8+1.7

−1.4. These results are consistent with those from WMAP polarization

(4) We report 68% confidence limits on measured parameters and 95% upper limits on other
parameters.
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Table III. – Parameters of the base ΛCDM cosmology computed from the 2015 baseline Planck
likelihoods, illustrating the consistency of parameters determined from the temperature and po-
larization spectra at high multipoles. Column [1] uses the TT spectra at low and high multipoles.
Columns [2] and [3] use only the TE and EE spectra at high multipoles, and only polarization at
low multipoles. Column [4] uses the full likelihood. The last column lists the relative deviations
of the cosmological parameters determined from the Planck TT and Planck full likelihoods. H0

expressed in km s−1 Mpc−1. From [28]. Credit: Planck Collaboration, Astron. Astrophys., 594
(2016) A13, reproduced with permission c© ESO.

Parameter [1] TT + lowP [2] TE + lowP [3] EE + lowP [4] TT, TE, EE + lowP ([1] − [4])/σ[1]

Ωbh2 . . . . . 0.02222 ± 0.00023 0.02228 ± 0.00025 0.0240 ± 0.0013 0.02225 ± 0.00016 −0.1

Ωch2 . . . . . 0.1197 ± 0.0022 0.1187 ± 0.0021 0.1150+0.0048
−0.0055 0.1198 ± 0.0015 0.0

100θMC . . . 1.04085 ± 0.00047 1.04094 ± 0.00051 1.03988 ± 0.00094 1.04077 ± 0.00032 0.2

τ . . . . . . . . . 0.078 ± 0.019 0.053 ± 0.019 0.059+0.022
−0.019 0.079 ± 0.017 −0.1

ln(1010As) 3.089 ± 0.036 3.031 ± 0.041 3.066+0.046
−0.041 3.094 ± 0.034 −0.1

ns . . . . . . . . 0.9655 ± 0.0062 0.965 ± 0.012 0.973 ± 0.016 0.9645 ± 0.0049 0.2

H0 . . . . . . . 67.31 ± 0.96 67.73 ± 0.92 70.2 ± 3.0 67.27 ± 0.66 0.0

Ωm . . . . . . . 0.315 ± 0.013 0.300 ± 0.012 0.286+0.027
−0.038 0.3156 ± 0.0091 0.0

σ8 . . . . . . . . 0.829 ± 0.014 0.802 ± 0.018 0.796 ± 0.024 0.831 ± 0.013 0.0

109Ase
−2τ 1.880 ± 0.014 1.865 ± 0.019 1.907 ± 0.027 1.882 ± 0.012 −0.1

measurements cleaned for dust emission using 353 GHz polarization maps from the
HFI. The spatial curvature of our Universe is found to be very close to zero, with
|ΩK | < 0.005. The addition of Planck polarization data leads to strong constraints on
deviations from a purely adiabatic spectrum of fluctuations. No significant evidence
for any contribution from isocurvature perturbations or from cosmic defects was found.
Combining Planck data with other astrophysical data, including SNIa, the equation of
state of dark energy is constrained to w = −1.006 ± 0.045, consistent with the expected
value for a cosmological constant.

The Planck results for base ΛCDM are in good agreement with baryon acoustic
oscillation data and with the Joint-Light-curves-Analysis sample of SNIa. However, as in
the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than
that inferred from some analyses of rich cluster counts and weak gravitational lensing.
These tensions cannot easily be resolved with simple modifications of the base ΛCDM
cosmology. Apart from these tensions, the base ΛCDM cosmology provides an excellent
description of the Planck CMB observations and many other astrophysical data sets.

Table III summarizes the cosmological parameters found for the base ΛCDM cosmol-
ogy computed from the 2015 baseline Planck likelihoods [28].

Cosmic reionization has been subsequently widely studied combining the Planck data
in temperature with the low-multipole polarization data, including also HFI channels,
to fit ΛCDM models with various parameterizations of the reionization history [61]. A
Thomson optical depth τ = 0.058 ± 0.012 was derived for the commonly adopted in-
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Fig. 7. – Constraints on ionization fraction during reionization. The allowed models, in terms
of zre and Δz, translate into an allowed region in xe(z) (68% and 95% in dark blue and light
blue, respectively), including the zend > 6 prior here. Left: Constraints from CMB data using a
redshift-symmetric function (xe(z) as a hyperbolic tangent with δz = 0.5). Centre: Constraints
from CMB data using a redshift-asymmetric parameterization (xe(z) as a power law). Right:
Constraints from CMB data using a redshift-symmetric parameterization with additional con-
straints from the kSZ effect. From [61]. Credit: Planck Collaboration, Astron. Astrophys., 596
(2016) A108, reproduced with permission c© ESO.

stantaneous reionization model, in agreement with Planck 2015 results combined with
other data sets, but reducing the uncertainties. The history of the ionization fraction was
reconstructed using either a symmetric or an asymmetric model for the transition be-
tween the neutral and ionized phases (see fig. 7). To determine better constraints on the
duration of the reionization process, the amplitude of the kinetic SZ (kSZ) effect was in-
cluded using additional information from the high-resolution ACT and SPT experiments.
The derived average redshift at which reionization occurs lies between z = 7.8 and 8.8,
depending on the model. Using kSZ constraints and a redshift-symmetric reionization
model, the upper limit to the width of the reionization period turned to be Δz < 2.8.
The Universe is found to be ionized at less than the 10% level at z � 10, strongly dis-
favouring an early onset of reionization. This result also reduces the tension between
CMB-based analyses and constraints from other astrophysical sources.

A remarkable example of the success of current cosmology has been obtained from
Planck data analysing the Integrated Sachs-Wolfe (ISW) effect [62]. Such intrinsically
weak predicted signal has been in fact clearly recognized in two classical cosmological
probes, CMB anisotropies and galaxy surveys, and in their cross-correlations. The cor-
relation between the gravitational lensing of the CMB anisotropies and the ISW effect
gives rise to a secondary CMB bispectrum, clearly detected in Planck maps [63]. Sub-
tracting this cosmological secondary non-Gaussian signal and with a careful foreground
mitigation performed with different types of estimators, the currently strongest limits
on primordial non-Gaussianities have been set from Planck maps. The constraints on
the amplitudes of local, equilateral, and orthogonal bispectrum as well as of primordial
trispectrum in the local configuration and the analysis of trispectrum beyond local con-
figuration [63] are in agreement with ΛCDM model, with cosmological structures sourced
by adiabatic, passive, Gaussian, and primordial seed perturbations.
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5.2. Fundamental physics results. – Looking at fine signatures in the CMB it is possible
to carry out a sort of laboratory tests to constrain particle and fundamental physics.

Planck observations combined with other astrophysical data found no evidence for
any departure from base ΛCDM in the neutrino sector of the theory [28]; for example,
Neff = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent
with the value Neff = 3.046 of the Standard Model of particle physics. The sum of
neutrino masses is set to

∑
mν < 0.23 eV.

The standard big bang nucleosynthesis predictions for the helium and deuterium
abundances for the best-fit Planck base ΛCDM cosmology are in excellent agreement
with observations [28].

Planck data set also stringent constraints on variations in fundamental constants [64],
annihilating dark matter and on possible deviations from the standard recombination his-
tory [28], and on parity-violating extensions of the standard electromagnetic theory [65],
with no evidence for new physics.

5.3. Constraints on primordial B-modes. – The theory of inflation, originally proposed
as a solution of the cosmological horizon, smoothness and monopole problems, seems to be
a good explanation for the Gaussian nature of primordial perturbations and the density
perturbations nearly scale-invariant spectrum. Moreover, it implies that gravitational
waves should originate from scalar field perturbations, whose amplitude is expressed in
terms of the parameter rk = T/S, i.e. the ratio between the amplitudes of primordial
tensor and scalar perturbations typically specified at a given scale or wavenumber k.

Adding a tensor component as a single-parameter extension to base ΛCDM, the upper
limit on the tensor-to-scalar ratio found from Planck 2015 release is r0.002 < 0.11 [66],
consistent with the Planck 2013 results and with the B-mode polarization constraints
from a joint analysis of BICEP2, Keck Array, and Planck data discussed below.

BICEP2 and Keck Array have observed the same approximately 400 deg2 patch of sky
centered on RA 0h, Dec. −57.5◦, together achieving a sensitivity of � 57 nK deg in Stokes
Q and U parameters in a band centered at 150 GHz. A cross-correlation in B-modes at
high significance level was detected considering the 150 GHz and the Planck 353 GHz
map in the same region. The single- and cross-frequency APS at frequencies ≥ 150 GHz
were fitted to a lensed-ΛCDM model that includes dust and a possible contribution
from inflationary gravitational waves, using a priori on the frequency spectral behavior
of polarized dust emission from previous Planck analysis of other regions of the sky.
As previously mentioned, a strong evidence for dust contamination was found with no
statistically significant evidence for tensor modes. Exploiting various models including
also a synchrotron component, in combination with lower frequency data, and performing
an alternative analysis similar to a map-based cleaning of the dust contribution did not
change significantly the constraints on r. The final result (see fig. 8), expressed as a
likelihood curve for r, yields an upper limit r0.05 < 0.12 (or r0.002 < 0.09) at 95%
c.l. [55], disfavouring inflationary models with a V (φ) ∝ φ2 potential.
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Fig. 8. – Left: BB APS of the BICEP2/Keck Array maps before and after subtraction of the
dust contribution, estimated from the cross-spectrum with Planck 353 GHz. The error bars are
the standard deviations of simulations, which, in the latter case, have been scaled and combined
in the same way. The inner error bars are from lensed-ΛCDM+noise simulations as in the
previous plots, while the outer error bars are from the lensed-ΛCDM+noise+dust simulations.
The red curve shows the lensed-ΛCDM expectation. Right: constraint on r derived from the
cleaned spectrum compared to the fiducial analysis. From [55].

6. – Towards future CMB missions

The energy scale probed by ultra-precise observations of the B-mode polarization of
the CMB radiation is ∼ 1016 GeV, more than 12 orders of magnitude beyond the energy
scales accessible to the Large Hadron Collider at CERN. This is also the energy scale
where quantum gravity effects start to become relevant. Long-wavelength gravity waves
have not yet been detected, despite a vigorous sub-orbital observation programme that
has been actively pursued for more than a decade. Cosmic inflation does not provide a
unique prediction for the amplitude of the primordial tensor mode, parameterized by r.
A precise measurement of, or upper bound on r is essential for constraining inflationary
physics, substantially restricting the field of inflationary models allowed by current ob-
servations. Because of the uncertainty in the expected value of r, it is not possible to
predict which experiment will deliver a first statistically significant detection. However,
the comprehensive study of the CMB polarization is a crucial scientific theme that re-
quires observations by a space mission with exquisite sensitivity, control of systematic
errors, and broad frequency coverage. A possible detection by a suborbital experiment
will require a confirmation from space because of ambiguities in the removal of foreground
contamination and would imply to move in the direction of a precise characterization.

To reveal the primordial inflationary B-modes, it is crucial to observe the sky looking
for the reionization bump and the recombination epoch, respectively, at � = 2–10 and
� = 20–100 (angular scales larger than � 1◦). The main requirements for a B-modes
detection mission, to reveal a tensor to scalar ratio r ∼ 10−3, are an improvement in
sensitivity of a factor ∼ 100 with respect to Planck a control of systematics effects of the
order of few tens of nK and an accurate understanding of polarized foregrounds at the
level of 1%.
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The excellent agreement between the microwave sky emission and the perfect black-
body observed by the COBE/FIRAS instrument is rightfully highlighted as a crucial con-
firmation of big bang cosmology. However theory predicts that at higher sensitivity this
agreement breaks down. Energy injection at any redshift z � (few) × 106 superimposes
spectral distortions relative to a perfect CMB blackbody spectrum. Detecting and char-
acterizing them will represent a powerful way to study dissipation processes at various
cosmic times. Remarkably, Thomson scattering of CMB photons from free electrons
at the epoch of reionization, producing E-mode polarization on large angular scales,
necessarily distorts the unpolarized CMB away from a blackbody.

A secondary, but also important, objective is the collection of high quality full-sky
data for a large variety of applications by the astronomical community. They will allow
the exploitation of various Galactic and extragalactic science cases. While improved sen-
sitivity and frequency channel number and coverage will allow a better characterization
of diffuse emissions, sub-degree (possibly up to ∼ few arcmin or better) angular resolution
is crucial for producing richer compact source catalogs, both Galactic and extragalactic,
and to map the very small scales of diffuse emissions, including galactic magnetic fields,
interstellar medium cold dust grain emission and synchrotron emission fine structure.
Furthermore, experiments with a fine spectral resolution can assess the study of fore-
ground emission lines and, in principle, going at extreme sensitivity, the chemistry at the
recombination epoch, so opening a new window of cosmological investigation.

The above objectives are potentially achievable by different classes of missions pro-
posed to space agencies, described below. The studies carried out to design them largely
contributed to define the perspectives of future CMB challenges. Except the Primordial
Inflation Explorer (PIXIE), in all the other proposals the spacecraft will observe the sky
from an orbit around L2, according to WMAP and Planck lessons.

6.1. CMB mission proposals at degree resolution. – In 2009, in response to the ESA
Cosmic Vision 2015-2025 call for Proposals, a medium-class space mission has been pre-
sented, B-Pol [67], aimed at detecting the primordial gravitational waves occurred during
the inflationary epoch on cosmological scales through the detection of the primordial B-
mode polarization, thus confirming the quantum origin of the CMB fluctuations. It was
designed to host six broad frequency bands detectors, from 45 GHz to 353 GHz, coupled
to a set of lens.

PIXIE is an Explorer-class mission submitted to NASA aimed at the CMB mapping
in absolute intensity and linear polarization and the diffuse astrophysical foregrounds
over the full sky, from 30 GHz to 6 THz (1 cm to 50 μm wavelength), to derive high
signal-to-noise ratio polarization maps of the CMB and every Galactic foreground [68].
The four dominant CMB foreground contamination, synchrotron, polarized dust, free-
free and electric dipole due to rapidly spinning dust grains emission, are characterized by
smooth frequency-dependent functions, and then removed in multi-frequency combined
observations. As COBE, the spacecraft will spin from a low Earth orbit (of ∼ 660 km
altitude, ∼ 3/4 of that of COBE) but at 4 rpm around the spin axis.
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Fig. 9. – Left: CMB APS. The dashed red line shows the PIXIE sensitivity to B-mode po-
larization. The sensitivity estimate assumes a 4-year mission and includes the effects of fore-
ground subtraction within the cleanest 75% of the sky combining PIXIE data at frequencies
ν < 600 GHz. Red points and error bars show the response within broader � bins to a B-mode
APS with amplitude r = 0.01. PIXIE will reach the confusion noise (blue curve) from the
gravitational lensing of the E-mode signal by cosmic shear along each line of sight, and has the
sensitivity and angular response to measure even the minimum predicted B-mode APS at high
statistical confidence. From [68]. c© SISSA Medialab Srl. Reproduced by permission of IOP
Publishing. All rights reserved. Right: the LiteBIRD band locations centre and the sensitivities
for each band. It is also shown the contamination from synchrotron and dust emissions, the CMB
signal and the most suitable cosmological frequency channels. We warmly acknowledge Prof.
Satoru Uozumi for the kind permission to reproduce this figure. From http://litebird.jp/wp-

content/uploads/2012/03/LNPC LiteBIRD uozumi small.pdf.

PIXIE uses a polarizing Michelson interferometer to measure the difference spectrum
between two orthogonal linear polarizations from two co-aligned beams [69] to detect in-
flationary epoch polarization with r < 10−3. The PIXIE mission concept is an improved
version of the FIRAS spectrometer by adding large area detectors, which aims at per-
forming absolute spectroscopy and measuring large-scale CMB B-modes simultaneously.
It is designed to be perfectly symmetric in order to reduce its sensitivity to potential
systematics since the rotation of a non-circular beam around a non polarized sky induces
a spurious polarization signal. Hence, PIXIE distinctive scheme can gather breakthrough
sensitivity both in polarization and spectral distortions [70]. Figure 9 (left panel) shows
the PIXIE sensitivity compared to the CMB APS.

PIXIE will provide crucial constraints on Universe ionization history and on CIB
spectrum and anisotropies, tracing its monopole, dipole and higher order power spectrum
to test the matter distribution at z ∼ 3. Moreover, more stringent constraints on the
optical depth parameter, the gas temperature and the Universe reionization at z ∼ 10
will be performed owing to the cross correlation analysis of the temperature polarization
anisotropies.
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In February 2015, LiteBIRD, a Lite (Light) Satellite for the studies of B-mode po-
larization and Inflation from cosmic background Radiation Detection at the extremely
early universe, has been formally proposed as a strategic mission to the ISAS, JAXA,
and one year later it has started the conceptual design phase-A1 [71, 72]. LiteBird is a
highly-targeted, low-cost Japanese B-mode mission concept, in many scientific respects
similar to the B-Pol mission. It is designed to detect B-modes at the level of r ∼ 10−3,
a sensitivity that it should be able to achieve assuming that the foregrounds are not
too complicated. Its main scientific goal will be the probe of the B-mode range down
to one order of magnitude lower than what can be done from the ground. The instru-
ment on board the satellite is equipped with a superconducting detector array cooled
to 4 K in order to achieve a target sensitivity of 2μK · arcmin over 15 frequency bands
from 40 GHz to 400 GHz [71]. Within the assumption Δν/ν ∼ 30%, each centre band is
chosen according to fig. 9 (right panel).

In December 2014, the US team presented the project to the NASA’s mission of
opportunity to supply the focal plane detectors and the refrigerator system of LiteBIRD,
that were partially covered. LiteBIRD is currently in conceptual study phase-A. Other
contributions come, or will be likely available, from various European countries.

While the specific B-modes pattern from the primordial gravitational waves is im-
printed at angular scales larger than about one degree, gravitational lensing of the CMB
by intervening massive structures also generates B-modes, peaking on 10 arcmin angular
scales. The major limitation of CMB space missions at degree resolution is represented
by their difficulty in accurately subtracting the lensing contribution to B-mode. This
problem can be partially solved in combination with ground based super telescopes,
as foreseen for CMB-S4 [73]. On the other hand, the atmosphere (with the possible
exception of some selected narrow frequency ranges) prevents accurate observations at
frequencies above ∼ 250 GHz, thus significantly limiting the understanding of Galactic
and extragalactic foreground emissions. At small angular scales, this could be a serious
problem affecting also an extremely accurate lensing subtraction, crucial at very low
values of r.

6.2. CMB mission proposals at sub-degree resolution. – A precise measurement of the
lensing effect, required to distinguish between these two sources of B-modes, also pro-
vides the opportunity to derive a high-fidelity map of dark matter distribution at times
and scales inaccessible otherwise [74, 75], and to address fundamental questions such
as the absolute scale of the neutrino masses, possibly better than in laboratory experi-
ments. CMB lensing will also provide crucial inputs concerning the early stages of galaxy
formation and their arrangement into large-scale structures. Also, with precise CMB po-
larization measurements it will be possible the search for primordial non-Gaussianities,
with the potential to uncover novel physics. These scientific goals can be achieved with
extremely sensitive requirements, full sky measurements, an extremely high level of con-
trol of instrumental systematic effects and a broad frequency coverage that only a space
mission such with a resolution of (at least) some arcminutes can satisfy.

In December 2010, a new proposal has been submitted to ESA to trace the polarization
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in the microwaves [76], the Cosmic Origin Explorer (COrE). The spacecraft, designed to
host 15 frequency bands from 45 GHz to 795 GHz with angular resolution comparable to
Planck and a sensitivity from 10 to 30 times better than Planck is addressed to look for
primordial gravitational waves generated during inflation up to r ∼ 10−3 at more than
3σ level.

Few years later, in May 2013, a large class mission has been proposed to ESA,
the Polarized Radiation Imaging and Spectroscopy Mission (PRISM) [77], a full sky,
high-sensitivity and -resolution observer, in total intensity and polarization, from the
microwaves to the IR. PRISM was conceived as the almost definitive CMB/far-IR space
mission, able to cover almost all the topics affordable with a single satellite. PRISM con-
sists of two instruments: i) a polarimetric imager with a 3.5 m usable diameter telescope,
cooled to below 10 K to maximally reduce the photon noise due to the thermal emission
of the mirrors, to map the intensity and polarization anisotropies on the whole sky in
32 broad frequency bands between 30 GHz (1 cm) and 6 THz (50 microns) with unprece-
dented sensitivity and with an angular resolution ranging from about 17 arcminutes to
about 6 arcseconds; ii) a lower-angular-resolution (1.4◦) spectrometer that will compare
the sky frequency spectrum to a nearly perfect reference blackbody and measure the ab-
solute sky emission over the same frequency range more than three orders of magnitude
better than FIRAS.

Because of its broad frequency coverage and extreme stability, PRISM will be able to
detect B-modes at 5σ for r = 5 × 10−4, even under pessimistic assumptions concerning
the complexity of the astrophysical foreground emissions that must be reliably removed.

While y-distortions from the re-ionized gas as well as from hot clusters constitute a
certain detection, μ-distortions and more general spectral distortions (see fig. 10) have the
potential to uncover decaying dark matter and to probe the primordial power spectrum
on very small scales that cannot be measured by other means, being contaminated by
the nonlinearity of gravitational clustering at late times. Finally, the PRISM spectral
resolution will range from about 0.5 GHz to 15 GHz at 1.4◦ angular resolution, and from
δν/ν � 0.025 to 0.25 at the diffraction limit of a 3.5 m telescope (from ∼ 6′′ to 17′),
making in principle possible to detect the most prominent hydrogen and helium lines at
recombination (see [77] and references therein).

In 2015, a medium-class space mission, Cosmic Origins Explorer + (COrE+), was
proposed to ESA to perform full sky observations of the polarized microwave and sub-
millimetre sky between 60 and 600 GHz in order to explore the origin of stars and cosmic
structures on large scales. The primary science goal of COrE+ is to investigate the
physics of the very early Universe, which is the source of the entire cosmic web we
observe today.

Starting from the COrE and COrE+ studies, in October 2016 the Cosmic ORigins Ex-
plorer (CORE) was submitted [78] in response to a call for future medium-sized space mis-
sion proposals for the M5 launch opportunity of ESA’s Cosmic Vision programme, with
the aim of providing the definitive full-sky maps of the CMB polarization anisotropies at
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Fig. 10. – Spectral distortions for different scenarios expressed in terms of spectral radiance.
Thick lines denote positive, and thinner lines negative signal. The 1σ sensitivities of PRISM for
different designs are also indicated. The largest distortion is from the heating of the medium
during reionization and structure formation, here for y ≈ 5×10−7. The decaying particle scenario
is for lifetime tX ≈ 3.6 × 10−9 s and total energy release Δργ/ργ ≈ 6.3 × 10−7. Two cases for
the distortion caused by dissipation of small-scale curvature perturbations are shown, one for
the standard power spectrum, extrapolated from large-scale CMB measurements all the way to
k ≈ few × 104 Mpc−1, the other assuming an additional step ΔAζ = 10−8 at k = 30 Mpc−1 in
the power spectrum. The signal caused by recombinations of hydrogen and helium is also, in
principle, directly detectable (combining adjacent frequencies). From [77]. c© SISSA Medialab
Srl. Reproduced by permission of IOP Publishing. All rights reserved.

large and medium angular scales(5). CORE [79] is designed to achieve a mean noise level
of approximately 2μK · arcmin (25 times better than the Planck mission) with an angular
resolution of order 5 arcmin at around 200 GHz, able to allow a significant improvement
in cosmological parameter estimation including a variety of model extensions [80] and, in
case of a detection of primordial gravitational waves, a determination of the shape of their
spectrum over the largest possible range of cosmological scales [81]. The instrument [82]
will host about 19 frequency channels, distributed over a broad frequency range span-

(5) Almost in the same period, the Probe of Inflation and Cosmic Origin (PICO) was pro-
posed to NASA (see https://zzz.physics.umn.edu/ipsig/ media/missionstudyproposal

science.pdf). It is currently one of the 8 Probe-Scale – $ 400 M – $ 1000M – space missions
whose study is being funded by NASA. The concept and performance of PICO is similar to that
of CORE regarding CMB polarization anisotropies, but also the possibility of CMB absolute
measurements to carry out spectrum studies with a sensitivity similar or slightly better than
that proposed for PIXIE is under investigation.
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ning the 60–600 GHz interval, to control astrophysical foreground emission [83]. Indeed,
more than 99% of the Galactic emission must be removed from the observed maps, i.e.
the foreground contribution to the APS of the observations must be modelled with 10−4

accuracy. Another key requirement is the measurement accuracy: all systematic effects
will be controlled so that no more than approximately 10−4 of the intensity leaks into
polarization maps, and that no more than about 1% of E-type polarization leaks into
B-type modes. The entire sky will be observed repeatedly during four years of continu-
ous scanning, with a combination of three rotations of the spacecraft over different time
scales so that each sky pixel is crossed frequently and from many different directions,
providing polarization measurements at many different angles. With about 50% of the
sky covered every few days, this scan strategy also provides a powerful mitigation of
systematic effects to be further corrected [84] in combination with data processing. The
feasibility of this approach is already supported by a fairly extensive set of simulations
carried out by modifying the Planck simulation chain.

Precise inter-frequency calibration foreseen for a mission like CORE will also offer
the opportunity to constrain or even detect CMB spectral distortions, particularly from
the cosmological reionization epoch, and to significantly refine the determination of CIB
spectrum exploiting the frequency dependence of the dipole spectrum [85]. The expected
improvement with respect to FIRAS in the recovery of distortion parameters (up to a
factor of several hundred for an ideal experiment with the CORE configuration) ranges
from a factor of several up to about 50, depending on the quality of foreground removal
and relative calibration. Even in the worst case of � 1% accuracy in both foreground
removal and relative calibration at an angular scale of 1◦, dipole analyses for a mission
like CORE will be able to improve the recovery of the CIB spectrum amplitude by a
factor � 17 in comparison with current results based on FIRAS. This, in combination
with the (only) diffraction-limited resolution up to the highest frequencies implying a
considerable decrease of the source confusion and then substantially fainter detection
limits, will allow to significantly improve our understanding of galaxy evolution [86], in
particular of the high redshift, dust obscured phase.
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Summary. — Since the measurements of COBE/FIRAS in the mid-90’s we know
that the energy spectrum of the cosmic microwave background (CMB) is extremely
close to that of a perfect blackbody at an average temperature T0 � 2.726 K. How-
ever, a number of early-universe processes are expected to create CMB spectral dis-
tortions —departures of the average CMB energy spectrum from a blackbody— at a
level that is within reach of present-day technology. This provides strong motivation
to study the physics of CMB spectral distortions and ask what these small signals
might be able to tell us about the Universe we live in. In this lecture, I will give a
broad-brush overview of recent theoretical and experimental developments, explain-
ing why future spectroscopic measurements of the CMB will open an unexplored new
window to early-universe and particle physics. I will give an introduction about the
different types of distortions, how they evolve and thermalize and highlight some
of the physical processes that can cause them. I hope to be able to convince you
that CMB spectral distortions could open an exciting new path forward in CMB
cosmology, which is complementary to planned and ongoing searches for primordial
B-mode polarization signals. Spectral distortions should thus be considered very
seriously as part of the activities in the next decades.
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1. – Overview and motivation

Cosmology is now a precise scientific discipline, with detailed theoretical models that
fit a wealth of very accurate measurements. Of the many cosmological data sets, the cos-
mic microwave background (CMB) temperature and polarization anisotropies provide the
most stringent and robust constraints to theoretical models, allowing us to determine the
key parameters of our Universe with unprecedented precision and address fundamental
questions about inflation and early-universe physics. Clearly, by looking at the statis-
tics of the CMB anisotropies with different experiments over the past decades we have
learned a lot about the Universe we live in, entering the era of precision cosmology and
establishing the ΛCDM concordance model [1-3].

But the quest continues. Today we are in the position to ask exciting questions
about extensions of the standard cosmological model [4-7]. For instance, what do the
CMB anisotropies tell us about Big Bang Nucleosynthesis (BBN) and in particular the
primordial helium abundance, Yp? How many neutrino species are there in our Universe?
This question is often addressed through the effective number of relativistic degrees of
freedom, Neff . What are the neutrino masses and their hierarchy? Are there some
decaying or annihilating particles? What about dark radiation? And regarding the initial
conditions of our Universe: what is the running of the power spectrum of curvature
perturbations? How about the gravitational wave background, parametrized through
the tensor-to-scalar ratio, r, which determines the energy scale of inflation, at least when
assuming the standard inflation scenario. And to top it up, what about dark energy and
the accelerated expansion of our Universe?

All these questions are extremely exciting and define todays cutting-edge research
in cosmology, driving present-day theoretical and experimental efforts. The CMB
anisotropies in combination with large-scale structure, weak lensing and supernova ob-
servations deliver ever more precise answers to these questions [8, 9]. But the CMB
holds another, complementary and independent piece of invaluable information: its fre-
quency spectrum. Departures of the CMB frequency spectrum from a pure blackbody —
commonly referred to as spectral distortion— encode information about the thermal his-
tory of the early Universe (from when it was a few month old until today). Since the mea-
surements with COBE/FIRAS in the early 90’s, the average CMB spectrum is known to
be extremely close to a perfect blackbody at a temperature T0 = (2.726±0.001) K [10,11]
at redshift z = 0, with possible distortions limited to one part in 105. This impres-
sive measurement was awarded the Nobel Prize in Physics 2006 and already rules out
cosmologies with extended periods of significant energy release, disturbing the thermal
equilibrium between matter and radiation in the Universe.

1.1. Why are spectral distortions so interesting today. – So far no spectral distortion of
the average CMB spectrum was found. Thus, why is it at all interesting to think about
spectral distortions now? First of all, there is a long list of processes that could lead
to spectral distortions. These include: reionization and structure formation; decaying
or annihilating particles; dissipation of primordial density fluctuations; cosmic strings;
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Fig. 1. – CMB spectral distortions probe the thermal history of the Universe at various stages
during the pre- and post-recombination era. Energy release at z � few×106, when the Universe
was only a few month old, merely causes a change of the CMB temperature. A μ-type distortion
arises from energy release at 3 ×105 � z � few ×106, while y-type distortions are created at
z � 104. The signal caused during the μ/y-transition era (104 � z � 3 ×105) is described by a
superposition of μ- and y-distortion with some small residual distortion that allows probing the
time-dependence of the energy-release mechanism. In the recombination era (103 � z � 104),
additional spectral features appear due to atomic transitions of hydrogen and helium. These
could allow us to distinguish pre- from post-recombination y-distortions.

primordial black holes; small-scale magnetic fields; adiabatic cooling of matter ; cosmo-
logical recombination; and several new physics examples [12-17]. This certainly makes
theorists very happy, but most importantly, many of these processes (e.g., reionization
and cosmological recombination) are part of our standard cosmological model and there-
fore should lead to guaranteed signals to search for. This shows that studies of spectral
distortions offer both the possibility to constrain well-known physics but also to open
up a discovery space for non-standard physics, potentially adding new time-dependent
information to the picture (fig. 1).

The second reason for spectral distortion being interesting is due to impressive tech-
nological advances since COBE. Although measurements of the CMB temperature and
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Fig. 2. – Over the past decades, CMB experiments have seen a dramatic improvement in sensitiv-
ity and angular resolution, illustrated here with a comparison of COBE, WMAP and PLANCK.
In contrast, CMB spectral distortion measurements are still in the state of some 25 years ago,
with COBE/FIRAS defining the unchallenged standard.

polarization anisotropies have improved significantly in terms of angular resolution and
sensitivity since COBE/DMR, our knowledge of the CMB energy spectrum is still in a
similar state as more than 25 years ago (fig. 2). Already in 2002, improvements by a
factor of � 100 over COBE/FIRAS were deemed feasible [18], and today even more am-
bitious experimental concepts like PIXIE [19,20] and PRISM [4], possibly reaching � 103

in spectral sensitivity, are being seriously considered. These types of experiments provide
a unique way to learn about processes that are otherwise hidden from us. At this stage,
CMB spectral distortion measurements at high frequencies are furthermore only possible
from space, so that, in contrast to B-mode polarization science, competition from the
ground is largely excluded, making CMB spectral distortions a unique target for future
CMB space missions [21]. These efforts could be complemented from the ground at low
frequencies (ν � 10 GHz), targeting the cosmological recombination ripples, as suggested
for APSERa [22], or μ and y-distortions using COSMO.

The immense potential of spectral distortions was realized in the NASA 30-year
Roadmap study, where improved characterization of the CMB spectrum was declared
as one of the future targets [23]. The strong synergy between spectral distortion and
B-mode polarization measurements in terms of challenges related to foregrounds and
systematic effects further motivate serious consideration of both science cases as part of
the future experimental activities.
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1.2. Overview and goal of the lecture. – The main goal of the lectures is to convince you
that CMB spectral distortion studies provide us with a new and immensely rich probe of
early-universe physics, making it an exciting direction of cosmology for the future. These
notes are based on extensive lectures on thermalization physics given as part of the CUSO
lecture series in 2014, with extended lecture notes available at www.chluba.de/science.
I will briefly review the physics of CMB spectral distortions, explaining the different
types of distortions and how to compute them for different scenarios. I will then high-
light different sources of distortions and what we might learn by measuring distortion
signals in the future. Particular attention will be payed to the dissipation of small-scale
perturbations and decaying particle scenarios, which illustrate the potential of distortion
science. I will also briefly talk about the recombination era and the associated distortion
signals and then mention a few of the challenges related to CMB foregrounds. This will
also emphasize some of the synergies of distortion and B-mode searches.

2. – The physics of CMB spectral distortions

In this section, I briefly review the main ingredients to describe CMB spectral distor-
tions. The pioneering works on this topic are mainly due to Yakov Zeldovich and Rashid
Sunyaev in the 60’s and 70’s [24-27]. These early works were later extended by [28, 29],
to include the effect of double Compton emission, and [30, 31], with refined numerical
and analytical treatments. Latest considerations of spectral distortion and their science
can be found in [12-17] and [32-34] for the recombination radiation.

2.1. Simple blackbody relations. – Before talking about CMB spectral distortions, let
us briefly remind ourselves of a few important blackbody relations. We shall denote
the blackbody intensity or Planckian as, Bν(T ), where ν is the frequency and T the
blackbody temperature. The Planck law reads:

Bν(T ) =
2h

c2

ν3

ehν/kT − 1
=

2h ν3

c2
nbb

ν (T ) = I0
x3

ex − 1
,(1)

having units [Bν(T )] = ergs s−1 cm−2 Hz−1 sr−1 = 1017 MJy sr−1. The spectrum of the
Sun is approximately represented by this expression (let us be theorists and forget about
all the Fraunhofer lines and existence of the atmosphere with all its absorption bands)
with a temperature Tph � 6000 K (photosphere). Also, we already heard about the
CMB blackbody spectrum, which is unbelievably close to a blackbody at a temperature
T0 = 2.726 K [10,11].

In eq. (1), we also indicate the connection of Bν to the blackbody occupation num-
ber, nbb

ν (T ) = 1/(ehν/kT − 1) = 1/(ex − 1), and transformed to the dimensionless
frequency, x = hν/kT (redshift-independent), introducing I0(T ) = (2h/c2)(kT/h)3 ≈
270MJy sr−1(T/2.726K)3. It is useful to remember that x = 1 corresponds to ν ≈
56.8 GHz for the CMB. Also, the maximum of the blackbody spectrum (Wien’s displace-
ment law) is located at νmax ≈ 160GHz[ T

2.726K] or xmax ≈ 2.821. We furthermore have
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the important limiting cases

Bν(T ) ≈

⎧⎪⎪⎨
⎪⎪⎩

2ν2

c2
kT, for hν � kT (Rayleigh-Jeans limit),

2hν3

c2
e−hν/kT , for hν � kT (Wien law),

(2)

for the blackbody spectrum. In the Wien part of the spectrum, very few photons are
found but their energy is large. The opposite is true in the Rayleigh-Jeans part.

2.2. Photon energy and number density . – For our discussions, the total photon num-
ber and energy densities, ργ and Nγ , will be important. These are defined by the integrals,
ργ =

∫
Iν

c dν dΩ and Nγ =
∫

Iν

c hν dν dΩ, over all photon energies and directions. Here, Iν

is the photon intensity. For blackbody radiation, this simply gives

ρPl
γ =

2h

c3

∫
ν3

ex − 1
dν dΩ =

8πh

c3

(
kT

h

)4 ∫
x3dx

ex − 1
=

8π5(kT )4

15 c3h3
(3a)

= aRT 4 ≈ 5.10 ×10−7 mec
2 cm−3

(
T

2.726K

)4

≈ 0.26 eV cm−3

(
T

2.726K

)4

NPl
γ =

2
c3

∫
ν2

ex − 1
dν dΩ =

8π

c3

(
kT

h

)3 ∫
x2dx

ex − 1
=

16πζ3(kT )3

c3h3
(3b)

= bRT 3 ≈ 410 cm−3

(
T

2.726K

)3

,

where ζi denotes the Riemann ζ-function. Here, aR = 4σ/c ≈ 7.566×10−15 ergs cm−3 K−4

is the radiation constant, where σ is the Stefan-Boltzmann constant. We also have the
useful relation ρPl

γ ≈ 2.701kTNPl
γ . In particular, we have ρPl

γ ∝ T 4 and NPl
γ ∝ T 3, the

crucial blackbody relations.

2.3. What we need to do to change the blackbody temperature . – The blackbody spec-
trum is fully characterized by one number, its temperature T . Thus, one simple question
is, what do we have to do to shift the temperature to T ′ �= T? Let us suppose we increase
the temperature by adding some energy to the photon field (let us say we just move all
photons upwards in frequency in some way; no change of the volume or photon number),
ε = Δργ/ρPl

γ (T ) ≡ (T ′/T )4 − 1, then the expected change in the photon temperature is

ΔT

T
= (1 + ε)1/4 − 1 ≈ 1

4
Δργ

ρPl
γ

,(4)

for small Δργ/ρPl
γ . Clearly, if we stopped here, the new spectrum cannot be a black-

body anymore, since we did not change the photon number density. Thus, pure energy
release/extraction inevitably leads to a spectral distortion, no matter how the photons
are distributed in energy.
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To keep the blackbody relation, NPl
γ ∝ T 3, unchanged we simultaneously need to add

ΔNγ

NPl
γ

= (T ′/T )3 − 1 = (1 + ε)3/4 − 1 ≈ 3
ΔT

T
=⇒ ΔNγ

NPl
γ

≈ 3
4

Δργ

ρPl
γ

(5)

of photons to avoid creating a non-blackbody spectrum. This condition is necessary but
not sufficient, since it does not specify how the missing photons are distributed in energy!
For example, let us assume we add photons to the blackbody spectrum at one frequency
only. Then Δργ = hνΔNγ and ε ≈ (hν/2.701kT )ΔNγ/NPl

γ . To satisfy the condition
eq. (5), we just need to tune the frequency to hν/kT ≈ (4/3) 2.70 ≈ 3.60. Clearly, a
blackbody spectrum with a single narrow line at hν � 3.6 kT is no longer a blackbody
even if eq. (5) is satisfied. We thus also need to add photons to the CMB spectrum in
just the right way and the question is how?

To go from one blackbody with temperature T to another at temperature T ′, we need
to have a change of the photon occupation number by

Δnν = nbb(T ′) − nbb(T ) =
1

ex′ − 1
− 1

ex − 1
= −x∂xnbb

ΔT

T
+ O

(
ΔT

T

)2

=
xex

(ex − 1)2
ΔT

T
+ O

(
ΔT

T

)2

with x′ = x T/T ′. In what follows, we will frequently use the definition

G(x) = −x∂xnbb =
x ex

(ex − 1)2
≈

⎧⎨
⎩

1
x

, for x � 1,

x e−x, for x � 1,
(6)

which determines the spectrum of a temperature shift : T∂T Bν ∝ x3G(x), for small ΔT/T .
Its spectral shape is shown in fig. 5. It is easy to prove that a change with this spectral
distribution does not lead to any distortion as long as ΔT/T is sufficiently small. We
will thus refer to G(x) as the spectrum of a temperature shift. In the thermalization
problem, it is created through the combined action of Compton scattering and photon
creation processes (i.e., double Compton and Bremsstrahlung emission).

2.4. What is the thermalization problem all about . – When considering the cosmologi-
cal thermalization problem we are asking: how was the present CMB spectrum really cre-
ated? Assuming that everything starts off with a pure blackbody spectrum, the uniform
adiabatic expansion of the Universe alone (absolutely no collisions and spatial perturba-
tions here!) leaves this spectrum unchanged —a blackbody thus remains a blackbody at
all times. However, as the simple discussion in the proceeding section already showed,
processes leading to photon production/destruction or energy release/extraction should
inevitably introduce momentary distortions to the CMB spectrum. Then the big ques-
tion is: was there enough time from the creation of the distortion until today to fully
restore the blackbody shape, pushing distortions below any observable level? For this, we
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need to redistribute photons in energy through Compton scattering by free electrons.
However, this is not enough to restore the blackbody spectrum. We also need to adjust
the number of photons through double Compton and Bremsstrahlung. By understanding
the thermalization problem and studying the CMB spectrum in fine detail we can thus
learn about different early-universe processes and the thermal history of our Universe.
This can open a new window to the early Universe, allowing us to peek behind the last
scattering surface which is so important for the formation of the CMB temperature and
polarization anisotropies.

2.5. General conditions relevant to the thermalization problem. – In the early Uni-
verse, photons undergo many interactions with the other particles. We shall mainly con-
cern ourselves with the average CMB spectrum and neglect distortion anisotropies when
describing their evolution(1). Distortion anisotropies can be created through anisotropic
energy release processes; however, these are usually very small, such that we only briefly
touch on them below. We also assume that the distortions are always minor in amplitude,
so that the problem can be linearized. This allows us to resort to a Green’s function ap-
proach when solving the thermalization problem [38,39], which greatly simplifies explicit
thermalization calculations for different energy release scenarios as can be carried out
using the full thermalization code CosmoTherm [12].

We furthermore assume the standard ΛCDM background cosmology [9] with standard
ionization history computed using CosmoRec [40]. Also, the electron and baryon distribu-
tion functions are given by Maxwellians at a common temperature, Te, down to very low
redshifts (z � 10), when thermalization process is already extremely inefficient. We fur-
thermore need not worry about the evolution of distortions before the electron-positron
annihilation era (z � 107–108), since in this regime rapid thermalization processes always
ensure that the CMB spectrum is very close to that of a blackbody. We are thus just
dealing with non-relativistic electrons, protons and helium nuclei immersed in a bath of
CMB photons. We can also neglect the traces of other light elements for the thermaliza-
tion problem and usually assume that neutrinos and dark matter are only important for
determining the expansion rate of the Universe.

2.6. Photon Boltzmann equation for average spectrum. – The study of the forma-
tion and evolution of CMB fluctuations in both real and frequency space begins with
the radiative transport, or Boltzmann equation for the photon phase space distribution,
n(xμ, pμ). Here, we are only interested in the evolution of the average spectrum. In this
case, perturbations can be neglected, such that n(xμ, pμ) → n(t, p) and we may express
the photon Boltzmann equation as

∂n

∂t
− H p

∂n

∂p
= C[n],(7)

(1) Some distortion anisotropies are created by SZ clusters [35]. Primordial distortion
anisotropies can also be created by anisotropic acoustic heating [36,37].
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omitting any spatial dependence. Here, H(t) is the standard Hubble expansion rate and
C[n] denotes the collision term, which accounts for interactions of photons with the other
species in the Universe. The collision term incorporates several important effects. Most
importantly, Compton scattering couples photons and electrons, keeping the two in close
thermal contact until low redshifts, z � 100–200. Bremsstrahlung and double Compton
emission allow adjusting the photon number and are especially fast at low frequencies,
as we explain below.

Neglecting collisions (C[n] = 0), we directly recover n(t, p) = n[t0, p a(t)/a(t0)], which
means that the shape of the photon distribution is conserved by the universal expansion
and only the photon momenta are redshifted. Introducing the variable x = p/kTγ(t) =
hν/kTγ(t), with Tγ(t) = Tγ(t0) a(t0)/a(t) ∝ (1 + z), the photon Boltzmann equation
takes the more compact form ∂n(t, x)/∂t = C[n(t, x)] (see [12] for more details), which
highlights the conservation law.

2.7. Collision term for Compton scattering. – We already mentioned that Compton
scattering is responsible for redistributing photons in energy. This problem has been stud-
ied a lot in connection with X-rays from compact objects [41,42] and the cosmological con-
text [24,25]. In reality, electron-photon scattering also helps isotropizing the photon field
(Thomson scattering limit), although for this energy exchange is not as crucial [43, 44].

To account for the Comptonization of photons by free thermal electrons, we can use
the so-call Kompaneets equation [45]:

∂n

∂τ

∣∣∣∣
CS

≈ θe

x2
e

∂

∂xe
x4

e

[
∂

∂xe
n + n(1 + n)

]
≡ θe

x2

∂

∂x
x4

[
∂

∂x
n +

Tγ

Te
n(1 + n)

]
,(8)

where dτ = NeσTcdt is the Thomson optical depth, θe = kTe/mec
2 is the dimensionless

electron temperature and xe = hν/kTe is the chosen frequency variable. This expression
can be obtained by computing the Compton collision term in the limit hν � kTe and
kTe � mec

2, keeping only terms up to first order in θe and hν/mec
2 [46]. This is

equivalent to considering the first two moments of the photons frequency shift, Δν/ν

over the scattering kernel [47]. The Kompaneets equation can be used to describe the
repeated scattering of photons by thermal electrons in the isotropic medium. The first
term in the brackets describes Doppler broadening and Doppler boosting and the last
term accounts for the recoil effect and stimulated recoil. These latter terms are especially
important for reaching full equilibrium in the limit of many scatterings.

Below we discuss some analytic solutions of the Kompaneets equation in limiting cases.
Here, a couple of words about limitations of this equation. First of all, we assumed that
the change in the energy of the photon by the scattering is small. For hot electrons
this is no longer correct and one has to go beyond the lowest orders in Δν/ν. This is
for example important for the Sunyaev-Zeldovich effect of very hot clusters [48-50], but
this procedure only converges asymptotically [51, 52]. The second limitation is that if
the photon distribution has sharp features (narrower than the width of the scattering
kernel) then the shape of the scattered photon distribution is not well represented with
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Fig. 3. – Comparison of the Thomson scattering time-scale with the Hubble expansion time-scale.

the diffusion approximation. In this case, a scattering kernel approach can be used
to describe the scattering problem [47], although efficient numerical scheme for many
scatterings are cumbersome.

2.7.1. Comptonization efficiency. With the Kompaneets equation, we can already un-
derstand some of the important aspects of Comptonization, by simply looking at char-
acteristic time-scales. One important quantity is the Thomson scattering time-scale,
tT = (σTNec)−1. It describes how rapidly photons scatter with electrons. For the
standard cosmology with 24% of helium (by mass), we have

tT = (σTNec)−1 � 2.7 ×1020 X−1
e (1+z)−3 s � 4.0 ×104

[
Xe

0.16

]−1 [
1+z

1100

]−3

years,(9)

where Xe = Ne/NH is the free electron fraction relative to the number of hydrogen
nuclei. At z = 1100, this corresponds to � 40 000 years between scatterings! To put this
into perspective we have to compare with the typical expansion time-scale given by the
inverse Hubble rate:

texp = H−1 �
⎧⎨
⎩

4.8 ×1019 (1 + z)−2 s (radiation domination),

8.4 ×1017 (1 + z)−3/2 s (matter domination),
(10)
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where the transition between matter and radiation (photons + neutrinos) domination
occurs around zeq � 3400. From fig. 3 we see that the Thomson scattering rate (shorter
time-scales) is much higher than the Hubble expansion rate until after decoupling around
z � 103. But even then, the time-scale for scattering only exceeds the expansion time
by a factor of � 102–104. However, this is when the isotropization process of CMB
temperature and polarization anisotropies becomes inefficient and we start seeing the
primordial CMB fluctuations.

The most important aspect of Comptonization is energy exchange between electrons
and photons. The time-scale on which electrons transfer energy to the photons is [24,53]

teγ ≈ tT
4θe

� 4.9 ×105 tT

[
1 + z

1100

]−1

� 1.2 ×1029(1 + z)−4 s.(11)

In simple words, the time-scale for scattering is tT � [NeσTc]−1 and per scattering the
fractional energy-exchange between photons and electrons is Δν/ν � 4θe. Comparing
teγ with the Hubble rate one finds that at zμy � 5 × 104, Comptonization becomes
inefficient (see fig. 4). At this redshift, the characteristic of spectral distortions changes,
transitioning from a so-called μ-distortion to a y-type distortion (see below). Evidently,
the transition is not abrupt and the characteristic shape of the distortion changes over a
range of redshift between z � 104–3 ×105 (e.g., see [38]).

The Comptonization time-scale is quite long compared to the time-scale over which
electrons are heated by photons. The big difference is that every electron has � 1.9×109

photons to scatter with, making the number of interactions much larger. This fact
influences many phases in the history of the Universe. For example, the cosmological
recombination process is delayed until the temperature of the CMB has dropped below
kTγ � 0.26 eV, which is two orders of magnitude smaller than the ionization potential,
Eion � 13.4 eV. Similarly, BBN occurs significantly later than what is expected from
naively assuming kT � mc2.

From ρth = (3/2)
∑

i NikTe = (3/2)NH(1 + fHe + Xe) kTe for the thermal energy of
the plasma, by comparison with the energy density of photons, we have

tγe =
ρth

ργ
teγ � 3NH(1 + fHe + Xe)

8ργ/(mec2)
tT � 0.31 tT (1 + z)−1 � 7.3 ×1019(1 + z)−4 s,(12)

where for the estimate we used Xe = 1+2fHe (fully ionized) and fHe ≈ Yp/[4(1−Yp)] ≈
0.079. Before recombination, the Compton cooling time is about � 1.6 × 109 times
shorter than the Comptonization time. This means that electrons and baryons (through
Coulomb scatterings) remain in full thermal contact with the photon field until very late.
From fig. 4 one can see that thermal decoupling is expected to happen somewhere around
z � 100–200 [54]. This is when the earliest signals from the 21 cm era are produced [55].

2.8. Bremsstrahlung and double Compton emission. – So far we have only considered
the redistribution of photons in energy. As discussed above, this alone is insufficient for
thermalizing the radiation field. In addition, we need to adjust the photon number, which
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Fig. 4. – Comparison of the Comptonization, Compton cooling and Hubble expansion time-scale.

in the expanding early Universe is achieved by thermal Bremsstrahlung (BR) and double
Compton (DC) emission. BR is the first and most obvious suspect for photon production
and absorption in the early Universe. However, it turns out that in our Universe DC
emission is much more important [29]. Nevertheless, at late times BR has to be included
for accurate computations [30,31,12].

The collision term for BR and DC emission can be expressed as

∂n(τ, x)
∂τ

∣∣∣∣
em/abs

=
KBR e−xe + KDC e−2x

x3
[1 − n(τ, x) (exe − 1)] ,(13a)

KBR=
α

2π

λ3
e√

6πθ
7/2
e

(
Te

Tγ

)3∑
i

Z2
i Ni ḡff(Zi, Te, Tγ , xe), KDC=

4α

3π
θ2

γIdcgdc(Te, Tγ , x),(13b)

ḡff(xe) ≈

⎧⎪⎨
⎪⎩

√
3

π
ln

(
2.25
xe

)
for xe ≤ 0.37,

1 otherwise,

gdc ≈
1 + 3

2x + 29
24x2 + 11

16x3 + 5
12x4

1 + 19.739θγ − 5.5797θe
.(13c)

where α ≈ 1/137, Idc =
∫

x4n(1 + n)dx ≈ 4π4/15 and λe = h/mec � 2.43 ×10−10 cm.
The approximation for the DC Gaunt factor, gdc, was taken from [12] and is based on [56].
It should provide a very good approximation for our purpose. For the BR Gaunt factors,
ḡff , we normally use fits from [57] in numerical calculations or the above approximation
for estimates.
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One can already see that both BR and DC push the radiation field into equilibrium
with a blackbody at the temperature of the electrons, ne = 1/(exe − 1). Also, due to the
1/x3 scaling of the emissivity it is clear that BR and DC emission both are most important
at low frequencies. Inserting typical numbers for z � 103 and assuming Te ≈ Tγ , we have

KBR � 1.4 ×10−6
[ ḡff

3.0

] [
Ωbh2

0.022

]
(1 + z)−1/2,(14a)

KDC � 1.7 ×10−20 (1 + z)2.(14b)

This implies that at zdc,br � 3.7 ×105([ ḡff
3.0 ][Ωbh2

0.022 ])2/5 BR and DC emission are similarly
important [30, 31]. At z > zdc,br, DC emission is more crucial, while at lower redshifts
BR dominates.

3. – Types of spectral distortions from energy release

We are now in the position to discuss the main types of spectral distortions created
by energy release. In sect. 2.7, we learned that around zμy � 5×104 the Comptonization
time-scale (transfer of energy from electrons to photons) becomes longer than the Hubble
time. It is clear that this marks an important transition in the efficiency of Compton
scattering and redistribution of photons. Let us try to quantify this a little better by
looking at the photon evolution equation, for now neglecting photon emission

∂n

∂τ
≡ θe

x2

∂

∂x
x4

[
∂

∂x
n +

Tγ

Te
n(1 + n)

]
,(15)

setting n = n(τ, x). This equation has no general analytic approximation, but we can
solve it for limiting cases. As we explain next, the Compton-y distortion is created
by scatterings with inefficient energy exchange between electrons and photons, while
the chemical potential μ-distortion is formed in the regime of extremely efficient energy
exchange.

3.1. Scattering of CMB photons in the limit of small y-parameter . – Assuming that
at τ = 0 we start with n = nbb = 1/(ex − 1), then after a very short time Δτ � 1 we
find

Δn≈ Δτθe

x2

∂

∂x
x4

[
∂

∂x
nbb+

Tγ

Te
nbb(1+nbb)

]
≈ Δτ(θγ − θe)

x2

∂

∂x
x4nbb(1 + nbb)(16)

≈ Δτ (θγ − θe)
[
4xnbb(1 + nbb) − x2nbb(1 + nbb)(1 + 2nbb)

]
≈ Δτ (θe − θγ)G(x)

[
x

ex + 1
ex − 1

− 4
]
≡ Δτ (θe − θγ)YSZ(x),

where we used ∂xnbb = −nbb(1 + nbb) = −ex/(ex − 1)2 = −G(x)/x and (1 + 2nbb) =
(ex+1)/(ex−1) = coth(x/2). This is the definition of the so-called Compton-y distortion,
YSZ(x), which arises in the limit of scatterings with inefficient energy exchange. This

 EBSCOhost - printed on 2/13/2023 8:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



278 Jens Chluba

distortion of the CMB was first studied by [24] and then applied to hot electrons residing
inside the potential wells of clusters of galaxies, giving rise to the thermal Sunyaev-
Zeldovich (SZ) effect. The important variable is the Compton-y parameter

y =
∫ τ

0

k(Te − Tγ)
mec2

dτ ′ =
∫ t

0

k(Te − Tγ)
mec2

σTNecdt′,(17)

which depends on the number of scattering (related to τ) and the net energy exchange(2),
Δν/ν � 4(θe−θγ) � 1, per scattering. Clearly, for Te ≡ Tγ one has y = 0 and Δn = 0, no
matter how many scattering actually take place! The solution eq. (16) for the distortion
is thus valid as long as |y| � 1. This also ensures that the electron temperature does
not change much by the scattering. One possible way to violate this condition even
if the number of scattering is tiny (τ � 1) is by having a very large difference in the
electron and photon temperature. Note, however, that θe � 1 is needed since otherwise
relativistic corrections to the Compton process appear, which are not accounted for by
the Kompaneets equation [58]. For the cosmological thermalization problem, we are
always in the situation that the y-parameter is increased beyond unity by increasing the
number of scatterings. In this case, Compton scattering pushes electrons and photons
into kinetic equilibrium until a μ-distortion is formed (sect. 3.2).

Assuming that we are in the regime |y| � 1, there are two cases of interest:

– y > 0: energy transferred from the electrons to the photons → Comptonization,

– y < 0: energy flows from the photons to the electrons → Compton cooling.

For most conditions in our Universe, y > 0 is relevant, since most processes tend to
heat the matter in the Universe. Therefore negative y-distortions are usually not being
considered, however, the adiabatic cooling of matter in the expanding Universe (in the
absence of heating) allows Te < Tγ , so that y < 0 does occur [59,12,60].

In fig. 5, we illustrate the frequency dependence of the y-distortion for T0 = 2.725 K.
It has a very characteristic shape, with a deficit of photons in the Rayleigh-Jeans part and
an increment of photon in the Wien tail of the CMB spectrum. The limiting behaviors
are

YSZ(x) = G(x)
[
x

ex + 1
ex − 1

− 4
]
≈

⎧⎪⎨
⎪⎩
− 2

x
, for x � 1,

x(x − 4)e−x, for x � 1.

(18)

This corresponds to ΔI/I � ΔT/T � −2y for x � 1 and ΔT/T � (x − 4)y for x � 1.
The y-distortion vanishes close to ν � 217 GHz (≡ x � 3.830), which in principle makes

(2) To some extent it would be better to immediately write y∗ =
R τ

0
4

k(Te−Tγ)

mec2
dτ ′, so that

y∗ = 4y = Δργ/ργ evidently gives the total amount of energy transfer.

 EBSCOhost - printed on 2/13/2023 8:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



Future steps in cosmology using spectral distortions etc. 279

Fig. 5. – Comparison of a Compton y-distortion, YSZ(x), and μ-distortion, M(x), with the
blackbody spectrum and temperature shift, G(x). For convenience, we plot the spectrum
as a function of x = hν/kT and normalize the left y-axis by I0(T ) = (2h/c2)(kT/h)3 ≈
270MJy sr−1(T/2.726 K)3. The y-distortion has its crossover frequency around x � 3.830
(≡ 217GHz), while the μ-distortion has its zero around x � 2.192 (≡ 124 GHz). The up-
per x-axis and right y-axis also give the corresponding frequency and spectral intensity for
T = 2.726 K.

it distinguishable from the μ-distortion (sect. 3.2). One can easily verify that for a y-
distortion ΔNγ = 0 ∝ ∫

x2YSZ(x) and Δργ = 4y ρPl
γ ∝ ∫

x3YSZ(x)dx. Clearly, Compton
scattering should not change the number of photons, as reflected by ΔNγ = 0. The
second relation means that 4y ≡ Δργ/ρPl

γ defines the fractional energy exchange of the
electrons with the initial blackbody spectrum. Thus, starting from a pure blackbody, by
computing y = (1/4)Δργ/ρPl

γ � 1 one can directly give a simple approximation for the
distortion [24]. In detail, it may be a little more involved to compute Δργ/ρPl

γ for some
process, but all one really needs to know is how much energy was pumped into the CMB
by energy exchange with the thermal electrons.

3.1.1. Thermal Sunyaev-Zeldovich effect. Clusters of galaxies are the largest virialized
objects in our Universe, with typical masses M � (1013–1014)M� (M� ≈ 2×1033 g) and
up to � 103 galaxies. Cluster also host a hot plasma with free electrons at temperature
Te � few ×107 K (≡ few × keV) at typical densities Ne � 10−3 cm−3. We know this
already for a while since clusters show a X-ray glow produced by thermal Bremsstrahlung.
The hot electrons can scatter CMB photons and create a Compton-y distortion. The
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typical y-parameter of massive clusters is y � few ×10−5 − 10−4 with θe � few ×10−2

and τ � few ×10−3. Because for clusters Te � Tγ , the y-parameter reduces to

y =
∫ τ

0

kTe

mec2
dτ ′ ≈ θe τ(19)

and thus directly probes the integrated electron pressure, P̄e �
∫

NeTe dl, through the
cluster medium. More than 103 clusters have been now seen using the SZ effect [61].

One of the great properties of the thermal SZ effect that is it independent of redshift
(ignoring evolutionary effects) [62,63,35]. The reason is that CMB temperature increases
∝ (1 + z) with redshift, so that the “light bulb” illuminating the hot electrons residing
inside the cluster becomes brighter the higher the redshift. The cosmological redshift
dimming of the signals, which for example reduces the X-ray fluxes for high redshift
clusters, is therefore compensated since the CMB itself brightens, and no matter what
the redshift of the cluster is it will have the same signal relative to the CMB. The redshift-
independence of the SZ signal makes SZ clusters a powerful cosmological probe, since
one can in principle track the growth of structures out to high redshifts (z � 1–2) and
thus constrain cosmological parameters and the evolution of dark energy [64,35,65].

But the thermal SZ effect is even more rich. For a cluster with kTe = 5 keV, the
thermal velocities of the electrons are vth � √

2θec � 0.14c. That is quite fast and
relativistic corrections become important. In this regime the Kompaneets equation is no
longer valid and one has to include higher order corrections [50, 49, 48, 66]. In addition,
if the cluster is moving with respect to the CMB, the Doppler kick adds a change in the
CMB temperature towards the cluster by ΔI � βcτ T∂T Bν(T ), also knows as kinematic
SZ effect [62]. This can in principle be used to study large-scale bulk flows in the Universe.

3.2. Chemical potential or μ-distortion. – We now understand that for inefficient
energy exchange between electrons and photons (i.e., y � 1) the shape of the
distortion is determined by the y-parameter and has a spectral dependence, YSZ(x) =
G(x)[x coth(x/2) − 4], shown in fig. 5. Let us now consider the other extreme, when
many scatterings are taking place and the redistribution of photons in frequency is very
efficient (i.e., y � 1). In the early Universe, this regime is found at z � 5 ×104 and the
distortion is given by a μ-distortion.

3.2.1. Compton equilibrium solution. When many scatterings occur, the spectrum is
driven towards an equilibrium with respect to Compton scattering. Neglecting emission
and absorption processes, the kinetic equation thus becomes quasi-stationary

0 ≈ θe

x2

∂

∂x
x4

[
∂

∂x
n +

Tγ

Te
n(1 + n)

]
.(20)

One solution of this equation is nbb = 1/(ex−1) if Te ≡ Tγ , since ∂xnbb = −nbb(1+nbb),
as it should be for full equilibrium. However, this is not the general solution of the
problem. To find a more general solution we have to solve the equation ∂xn = −Tγ

Te
n(1+
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n). The factor Tγ/Te can be absorbed by redefining the frequency scaling x → xe so that
this becomes ∂xen = −n(1+n). This can be integrated to ln(1+n)− ln(n) ≡ xe +const,
or

nBE =
1

exe+μ0 − 1
,(21)

where we introduced the integration constant μ0. This is a Bose-Einstein spectrum with
constant chemical potential(3) μ0. Let us pause for a moment. Photons have no rest
mass, so the chemical potential should vanish, shouldn’t it? This statement is only true
if we are in full equilibrium, i.e., we have a blackbody at the temperature of the medium.
More generally, for fixed photon number and energy densities the chemical potential can
be non-zero.

The chemical potential can in principle be both positive or negative:

– μ0 > 0: fewer photons than a in blackbody at Te → energy release/photon destruction,

– μ0 ≡ 0: blackbody at temperature Te → full equilibrium,

– μ0 < 0: more photons than a in blackbody at Te → energy extraction /photon injection.

In practice, the solution μ0 < 0 is unphysical unless μ0 is actually a function of
frequency. The reason is that xe +μ0 can vanish at xe = −μ0 > 0, but this state is never
reached or even passed through during the evolution, since instead excess photons would
form a Bose-condensate at x = 0 with μ0 = 0 elsewhere [67, 68]. In a real plasma, BR
and DC emission will prevent this from happening though [27,69].

3.2.2. Definition of the μ-distortion. In the previous section, we found that n =
1/(exe+μ0 − 1) is approached for many scatterings in the plasma. But how do we fix
the constant μ0 and what is the definition of the distortion really? Let us assume we
start with a blackbody and electrons at temperature Tγ = Te = Ti. Let us change
the number and energy densities of the photon field by some εN = ΔNγ/NPl

γ (Ti) and
ερ = Δργ/ρPl

γ (Ti), respectively, and then wait until everything has equilibrated by Comp-
ton scattering. This means

NBE
γ = NPl

γ (Ti)(1 + εN ) ≡ NPl
γ (Tf )
GPl

2

∫
x2

f dxf

exf+μ0 − 1
,(22a)

ρBE
γ = ρPl

γ (Ti)(1 + ερ) ≡
ρPl

γ (Tf )
GPl

3

∫
x3

f dxf

exf+μ0 − 1
,(22b)

where Tf is the final electron temperature in the distorted (Bose-Einstein spectrum)
radiation field, xf = hν/kTf and GPl

2 ≈ 2.404 and GPl
3 ≈ 6.494. These two equations

(3) Notice that the sign is different from the normal convention used in thermodynamics.
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allow us to fix Tf and μ0 as a function of the parameters εN and ερ. Assuming that all
changes are small we have

NBE
γ ≈ NPl

γ (Tf ) [1 − μ0Mc
2] ≈ NPl

γ (Ti)
[
1 + 3

ΔT

Ti
− μ0Mc

2

]
,(23a)

ρBE
γ ≈ ρPl

γ (Tf ) [1 − μ0Mc
3] ≈ ρPl

γ (Ti)
[
1 + 4

ΔT

Ti
− μ0Mc

3

]
,(23b)

where Mc
2 ≈ 1.3684 and Mc

3 ≈ 1.1106. With the conditions eq. (22), we then find [25,53]

μ0 ≈ 3
κc

[
Δργ

ργ
− 4

3
ΔNγ

Nγ

]
≈ 1.401

[
Δργ

ργ
− 4

3
ΔNγ

Nγ

]
,(24a)

ΔT

Ti
≈ Mc

2

κc

Δργ

ργ
−Mc

3

κc

ΔNγ

Nγ
≈0.6389

Δργ

ργ
−0.5185

ΔNγ

Nγ
≈ 0.4561μ0+

1
3

ΔNγ

Nγ
(24b)

with κc = 4Mc
2−3Mc

3 ≈ 2.1419. From eq. (24a) we see that for Δργ/ργ ≡ (4/3)ΔNγ/Nγ

we have no distortion (μ0 = 0), as we already understood from the adiabatic condition,
eq. (5). In this case, only the temperature of the blackbody is increased(4) after Compton
scattering redistributed all photons, ΔT/Ti ≈ 1

3ΔNγ/Nγ .
In fig. 6 we illustrate a Bose-Einstein spectrum with μ0 = 0.5 and Ti = T0 = 2.726 K.

Only energy was added to the photons but the number of photons was not changed with
respect to the initial CMB spectrum. One can see that in the Rayleigh-Jeans tail of
the CMB the Bose-Einstein spectrum shows a deficit of photons, while in the Wien tail
more photons than in the CMB blackbody spectrum are present. We have nBE ≈ nbb

at νμ ≈ 124 GHz although for large chemical potential νμ ≈ 124 GHz (1− 0.304μ ln μ) is
more accurate [58].

3.2.3. But how do we define the distortion? To derive the expressions from above, we
used

nBE =
1

exe+μ0 − 1
≈ 1

exe − 1
− G(xe)

xe
μ0 + O(μ2

0)(25)

for μ0 � 1. This suggest that Δn = −G(xe)μ0/xe could be called the distortion with
respect to the blackbody part at temperature Te and in fact this definition has been used
frequently. However, since also the final electron temperature, Te = Tf , depends on μ0,
this definition does not separate the distortion cleanly. Motivated by the fact that Comp-
ton scattering conserves photon number, one natural definition is to fix the μ-distortion
such that

∫
x2M(x)dx = 0. Integrating Δn gives

∫
x2Δndx = −2μ0

∫
xdx/(ex − 1) =

−μ0 π2/3 ≈ −3.2899μ0, so that M(x) = G(x)[αμ − 1/x] with αμ = π2/18ζ(3) ≈ 0.4561

(4) We neglect the small heat capacity of the electrons and baryons.
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Fig. 6. – Bose-Einstein spectrum for large chemical potential μ = 0.5 and Ti = T0 = 2.726 K.
Only energy was added to the photon field, but the number of photons was not changed with
respect to the initial CMB spectrum. For large chemical potential, the cross over frequency
shifts towards higher frequencies according to νμ ≈ 124GHz (1 − 0.304 μ ln μ) ≈ 158 GHz. The
figure was taken from [58].

fulfills
∫

x2M(x)dx = 0. If in addition we now normalize the relative change of the
photon energy density to unity (ΔρM/ρPl = 1), we obtain the spectral shape of the
μ-distortion

M∗(x) =
3
κc

M(x) ≈ 1.401G(x)
[
0.4561 − 1

x

]
≈

⎧⎪⎨
⎪⎩
−1.401

x2
, for x � 1,

0.6390x e−x, for x � 1,

(26)

where 3/κc ≈ 1.401. This implies ΔI/I � ΔT/T � −μ0/x for x � 1 and ΔT/T �
0.4561μ0 at x � 1. The frequency dependence of M(x) is illustrated in fig. 5 in compar-
ison with the y-distortion and spectrum of a temperature shift. The important feature
of a μ-distortion is that it is shifted towards lower frequencies with respect to the y-
distortion. This makes it in principle distinguishable and observing a μ-distortion is a
clear indication for a signal created in the pre-recombination era, deep into the thermal
history of our Universe.

3.3. Simple description of primordial distortions. – We now have all the pieces for a
simplest, zeroth-order description of primordial distortions. At late times, (z � zμy �
5 ×104), the redistribution of photons by Compton scattering becomes inefficient and a

 EBSCOhost - printed on 2/13/2023 8:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



284 Jens Chluba

Fig. 7. – Simplest zeroth-order picture for the formation of primordial distortions. At low
redshifts (z � 5×104), a y-distortion is formed, while at high redshifts we expect a μ-distortion.
At this point we have not included any photon production and we will see that this strongly
attenuates the amplitude of the μ-distortion at z � 2 ×106.

y-type distortion is formed, in the other extreme we have a μ-distortion (see fig. 7) with
the approximations [24,25]

y ≈ 1
4

Δργ

ργ

∣∣∣∣
y

,(27a)

μ0 ≈ 1.401

[
Δργ

ργ

∣∣∣∣
μ

− 4
3

ΔNγ

Nγ

∣∣∣∣
μ

]
,(27b)

such that the total distortion is given by Δn ≈ YSZy + M(x)μ0. Here, we indicate that
to estimate the distortion one needs to consider the partial energy release and photon
production relative to the CMB blackbody in the respective y- and μ-era. If extra photons
are injected in the y-era (e.g., by particle decay), the distortion generally is not just a
y-distortion, since these extra photons are not redistributed very efficiently, but in the
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μ-era they can be ingested and modify the effective chemical potential. Photon injection
during the y-era was considered in detail in [39].

Two important aspects are still missing. Firstly, we have not included any thermal-
photon production by BR or DC but assumed that only Compton scattering changes
the photon field. Photon production will be mostly relevant for the evolution of μ-
distortions, implying that not all energy release or photon production is eventually visible
as a distortion. That is, at very early phases the distortion visibility (see explanation
below) is smaller than unity because thermalization reduces the effective amount of
energy release that survives as a distortion. This is implicitly hidden in the definition
of Δργ/ργ |μ and ΔNγ/Nγ |μ. We will consider this problem in sect. 3.3.1. The second
point is that the transition between μ and y distortions is not abrupt at z � 5×104 but
occurs over a range of redshifts, where in the intermediate regime the distortion is not
only given by the superposition of μ and y-distortion. This makes the distortion signal
much richer, as pointed out only recently [12, 70, 38]. We will consider this problem in
sect. 3.4.

3.3.1. Inclusion of photon production in the μ-era. It is straightforward to approximately
include the effect of BR and DC in the μ-distortion era. For a detailed discussion of the
approximations and its limitations we refer the interested reader to [58]. Since scattering
is efficient, we can assume that the spectrum evolves along a sequence of quasi-stationary
stages. However, now we also have to account for emission and absorption, such that

0 ≈ θe

x2

∂

∂x
x4

[
∂

∂x
n +

Tγ

Te
n(1 + n)

]
+

K

x3
[1 − n(exe − 1)](28)

determines the CMB spectrum. Inserting n ≈ 1/(exe − 1) − μ(z, xe)G(xe)/xe and as-
suming xe � 1 yields a simple differential equation for μ(z, xe) � 1, which has the
approximate solution

μ(z, xe) ≈ μ0(z) e−xc(z)/xe .(29)

This solution was first derived by [25]. Including both DC and BR, the critical frequency,
xc, which is determined by the competition between photon emission and absorption and
Compton up-scattering of photons, is usually xc(z) � 10−3–10−2 during the thermaliza-
tion period [30,31].

Equation (29) shows that at x � xc, the chemical potential becomes constant,
μ(z, xe) ≈ μ0(z), while at low frequencies it vanishes exponentially, returning to a black-
body at the temperature of the electrons, with a smooth transition between these regimes
around x � xc. The solution has the expected limiting behavior, even if strictly speak-
ing it is only valid at low frequencies. Indeed, the correct high-frequency behavior is
μ(z, x) � μ∗

0(z) + C(z) ln x, where the coefficient, C(z), is related to the time derivative
of the electron temperature [58].

With eq. (29), one can now compute the total photon production rate at any redshift.
From that one can estimate how the high-frequency photon chemical potential is affected
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by photon production. This essentially boils down to a differential equation for μ0(z),
which for single energy release Δργ/ργ |i has the solution

μ0(z) ≈ 1.401
Δργ

ργ

∣∣∣∣
i

e−(zi/zμ)5/2+(z/zμ)5/2
= μi J (zi, z),(30)

with zdc ≈ 1.98 ×106 [30, 31]. Here, we defined μi = 1.401Δργ/ργ |i. The factor J (zi, z)
defines the spectral distortion visibility between the injection redshift zi and z (with
z < zi). It determines the fraction of energy injected at zi that is still visible as a
distortion at z. For J (zi, z) � 1, most of the energy is still stored in the distortion, while
for J (zi, z) � 1, most of the energy was thermalized and converted into a temperature
shift. This implies that after a single energy release event, today’s remaining chemical
potential is heavily suppressed if the energy injection happens at z � zdc ≈ 1.98×106 or
some � 3 months after the big bang. For continuous energy release in the μ-era, we can
then estimate the final distortion measured today using [25,30,31]

μ0 ≈ 1.401
Δργ

ργ

∣∣∣∣
μ

≈ 1.401
∫ ∞

zμy

d(Q/ργ)
dz

J (z′, 0)dz′.(31)

Here, d(Q/ργ)/dz describes the energy release relative to the CMB blackbody and de-
pends on the specific energy release mechanism (see sect. 4). We neglected any extra
photon production, but refer to [39] for additional discussion.

3.3.2. The importance of double Compton emission. In the above, the DC process dom-
inated in the definition of the thermalization redshift [29-31]

zdc ≈ 1.98 ×106

[
Ωbh2

0.022

]−2/5 [
T0

2.725K

]1/5 [
(1 − Yp/2)

0.88

]−2/5

,(32)

assuming Neff = 3.046. At z � zdc, thermalization is very efficient and the distortion
visibility drops exponentially. If alternatively we only include BR emission, we find [25,
29,31]

JBR(zh) = exp(−[zh/zbr]1.328),(33)

with zbr ≈ 5.27×106. In the classical result, given first by [25], the power-law coefficient is
5/4 = 1.25 because a different approximation for the BR Gaunt factor was utilized. This
shows that the thermalization redshift is significantly higher when only BR is included.
In addition, the distortion visibility function drops less steeply at z � 5.27 ×106.

In fig. 8 we compare the distortion visibility functions for DC and BR only with the
full numerical result for the distortion visibility obtained from CosmoTherm [12, 58].
Clearly, DC emission increases the thermalization efficiency significantly. If only BR were
taken into account, we would still expect to see some small distortion even from the tail
of the electron-positron annihilation era around z � 2×107! In full detail, this would be
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Fig. 8. – Distortion visibility function (adapted from [58]). We compare JDC(zh), JBR(zh)
and the numerical result obtained with CosmoTherm. DC emission significantly changes the
thermalization efficiency.

quite complicated to compute, but luckily the distortion visibility is exceedingly small,
even if only DC is included, providing a rough but tiny upper limit. Comparing with the
full numerical result, JDC(zh) = exp(−[zh/zdc]5/2), provides a very good approximation,
which, for simple estimates, is more than sufficient. Improvements to J can be added
analytically [58, 71], but for refined computations it is easier to simply use the Green’s
function method (e.g., [38, 39]), described in the next section.

3.4. Modeling the transition between μ and y. – In what was presented so far we
modeled the transition between μ- and y-era as a simple step-function around z � zμy.
Even in the early studies of the evolution of distortions it was realized that this is not
quite correct and that the transition is much more gradual [27, 30, 53]. However, only
more recently it was explicitly highlighted that the distortion in the intermediate-regime
(z � 104–3 ×105), contains valuable additional information, allowing us in principle to
distinguish different types of distortions [12,14,70,72].

In fig. 9, we illustrate the shape of the distortion caused by a decaying particle scenario
at different stages of the evolution. The final distortion is not simply given by the sum of
μ and y distortions and thus could allow determining the lifetime of the particle [12]. The
description of the distortion in the intermediate regime was later refined by [70] and [38].
For single energy release, the distortion response (↔ Green’s function) is illustrated
in fig. 10. Eliminating the leading-order μ- and y-distortion contributions, one is left
with a smaller signal, the so-called residual distortion or r-type distortion (see fig. 10),
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Fig. 9. – Spectral distortion signal (in terms of brightness temperature) caused by a decaying
particle scenario at different stages of the evolution (figure taken from [12]). The total energy
release was Δργ/ργ � 1.3×10−6 assuming a particle lifetime tX � 2.4×109 s or zX = 105. The
final distortion is not described by a simple superposition of μ and y and thus contains valuable
time-dependent information teaching us about the lifetime of the partcle.

which can be conveniently parametrized using distortion eigenmodes [72]. The r-type
distortion is what contains the extra time-dependent information and detection limits
for different energy release scenarios are presented in [72]. However, the thermalization
problem is even richer when including the effect of pre-recombination (z � 103) atomic
transitions [73, 74]. This might allow us to reach even deeper into the μ- and y-eras by
using spectral features of the cosmological recombination radiation [33].

For computational purposes, efficient modeling of the r-type distortion is best handled
using the Green’s function method [38]. For even more accurate results, the flexible
thermalization code CosmoTherm [12] can be used, which now runs in � 30 s for a given
model on a standard laptop. However, we can still improve the analytical description of
the μ- and y-distortion contributions using simple representations of the total distortion.
From the full Green’s function response, one can determine the best-fitting μ- and y-
distortion representation. The obtained approximation can then be used to improve the
distortion visibility functions in the different regimes. This approach was used in [38]
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Fig. 10. – Change in the CMB spectrum after a single energy release at different heating redshifts,
zh. Top panel: thermalization Green’s function, Gth(ν, zh); lower panel: residual distortion. At
z � few ×106, a temperature shift is created. Around z � 3 ×105 a pure μ-distortion appears,
while at z � 104 a pure y-distortion is formed. At all intermediate stages, the signal is given
by a superposition of these extreme cases with a small residual (non-μ/non-y) distortion that
contains information about the time-dependence of the energy-release process (figures adapted
from [38] and [72]).

 EBSCOhost - printed on 2/13/2023 8:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



290 Jens Chluba

and can be summarized using

y =
1
4

Δργ

ργ

∣∣∣∣
y

=
1
4

∫ ∞

0

Jy(z′)
d(Q/ργ)

dz′
dz′,(34a)

μ = 1.401
Δργ

ργ

∣∣∣∣
μ

= 1.401
∫ ∞

0

Jμ(z′)
d(Q/ργ)

dz′
dz′,(34b)

with the distortion visibilities

Jy(z) ≈

⎧⎪⎪⎨
⎪⎪⎩

(
1 +

[
1 + z

6 ×104

]2.58
)−1

, for zrec � 103 ≤ z,

0, otherwise,

(35a)

Jμ(z) ≈ Jbb(z)

[
1 − exp

(
−

[
1 + z

5.8 ×104

]1.88
)]

.(35b)

These expression should represent the exact fractions of μ and y to � 10%–20% precision.
To ensure full energy conservation (no leakage of energy to the r-distortion), instead one
can use Jμ(z) ≈ [1−Jy(z)]Jbb(z). These approximation were presented in [75] and [17].
The distortion visibilities are illustrated in fig. 11.

3.5. Distortions from photon injection. – To finish our discussion of spectral distortion
physics, we briefly mention distortions created by photon injection. As shown by [39],
these can have a much richer phenomenology than just the simple and broad μ- and
y-distortion created by energy release. This is illustrated in fig. 12 for several cases,
showing that the final distortion depends on both the injection time and frequency.

In terms of physics, distortions created by photon injection do not directly heat the
electrons or baryons. Only once Comptonization becomes relevant do the electrons start
heating or cooling. The net effect depends on the injection frequency of the photons. For
frequencies xi � 3.6–3.8, photons on average loose energy heating the matter. This causes
a broad μ- and y-type contribution to the total distortion signal, which for extremely
high-frequency injection, xi � 10, can dominate. At lower frequencies, cooling of the
medium occurs since photons are on average up-scattered. This can create negative μ-
and y-type contributions [39].

Photon injection distortions are by no means exotic. For example, the cosmological
recombination radiation [33], one of the standard ΛCDM distortions, is created by pho-
ton injection. Injection of photons can also occur in decaying or annihilating particle
scenarios or evaporation of primordial black holes. In light of recent measurements of
EDGES [76] and the ARCADE low-frequency excess [77-79], photon injection distor-
tions of the CMB could become very interesting. This is because these observations
potentially point towards a connection with photon injection (or absorption) from de-
caying or annihilating particles and their low energy by-products in form of non-thermal
Bremsstrahlung or synchrotron emission [39,80-82].
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Fig. 11. – Improved picture for the formation of primordial distortions. At low redshifts (z �
zμy � 5 ×104), a y-distortion is formed with distortion visibility close to unity, while at high
redshifts a μ-distortion appears. The energy release has to be weighted with distortion visibility
function which drops exponentially at zdc � 2×106, leading to a pure temperature shift in that
regime from inside the cosmic photosphere.

4. – CMB spectral distortion signals from various scenarios

Several exhaustive reviews on various spectral distortion scenarios exist [12-17], cov-
ering both standard and non-standard processes. Here we highlight some of the main
distortion signals expected within ΛCDM and only briefly mention more exotic sources
of distortions. A summary of the relevant ΛCDM distortions is shown in fig. 13. The
distortion templates are available at www.Chluba.de/CosmoTherm.

4.1. Reionization and structure formation. – The first sources of radiation during
reionization [84,85], supernova feedback [86] and structure formation shocks [87-90] heat
the intergalactic medium at low redshifts (z � 10), producing hot electrons (in a wide
range of temperatures Te � 104 K–106 K) that partially up-scatter CMB photons, caus-
ing a Compton y-distortion [24]. Although this is the largest expected average distortion
of the CMB caused within ΛCDM, its amplitude is quite uncertain and depends on the
detailed structure and temperature of the medium, as well as scaling relations (e.g., be-
tween halo mass and temperature). Several estimates for this contribution were obtained,
yielding values for the total y-parameter at the level y � few ×10−6 [89, 91,83,92,16].
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Fig. 12. – Spectral distortions created by photon injection at different frequencies and initial
redshifts. The figure is taken from [39].

Following [83], we use a fiducial value of y = 2×10−6 (see fig. 13). This is dominated by
the low-mass end of the halo function (M � 1013 M�) and the signal should be detectable
with a PIXIE-type experiment at more than 103 σ. The detection significance reduces to
a few hundred σ when including estimates for the CMB foregrounds [93], but still this
provide a sensitive probe of reionization and structure formation physics. Future CMB
imagers (e.g., CORE and PICO) furthermore have the potential to separate the spatially
varying signature caused by the warm hot intergalactic medium (often referred to as
WHIM) and proto-clusters [89, 91], if the challenge of accurate channel intercalibration
can be overcome.

Because the signal is so easily detectable, small corrections due to the high gas temper-
ature (kTe � 1 keV) become noticeable [83]. The relativistic correction can be computed
using the temperature moment method of SZpack [66,52] and differs from the distortions
produced in the early Universe (see fig. 14). This correction should be detectable with
PIXIE at � 10–20σ [83, 93] and could teach us about the average temperature of the
intergalactic medium, promising a way to solve the missing baryon problem [88]. Both
distortion signals are illustrated in fig. 13.

 EBSCOhost - printed on 2/13/2023 8:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



Future steps in cosmology using spectral distortions etc. 293

Fig. 13. – Comparison of several CMB monopole distortion signals produced in the standard
ΛCDM cosmology. The low-redshift distortion created by reionization and structure formation
is close to a pure Compton-y distortion with y � 2×10−6. Contributions from the hot gas in low-
mass haloes give rise to a noticeable relativistic temperature correction, which is taken from [83].
The damping and adiabatic cooling signals were explicitly computed using CosmoTherm [12]. The
cosmological recombination radiation (CRR) was obtained with CosmoSpec [34]. The estimated
sensitivity (ΔIν ≈ 5 Jy/sr) of PIXIE is shown for comparison (dotted line). The figure is taken
from [17].

4.2. Damping of primordial small-scale perturbations. – The damping of small-scale
fluctuations of the CMB temperature set up by inflation at wavelength λ < 1 Mpc causes
another inevitable distortion of the CMB spectrum [95-99]. The idea behind this mech-
anism is extremely simple and just based on the mixing of blackbodies with varying
temperatures through Thomson scattering (see fig. 15). However, the process was only
recently described rigorously [43,100], allowing us to perform detailed computations of the
associated distortion signal for different early-universe models [43, 101-103, 14, 104, 105].
The distortion is sensitive to the amplitude and shape of the power spectrum at very
small scales (wavenumbers 1Mpc−1 � k � 2 ×104 Mpc−1 corresponding to multipoles
105 � � � 108) and thus provides a promising new way for constraining inflation while
modes are still evolving in the linear regime.

In the early days of CMB cosmology, this effect was already used to derive first
upper limits on the spectral index of scalar perturbations, yielding nS � 1.6 from
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Fig. 14. – Illustration for the effect of relativistic temperature corrections on the distortion
signal. In the primordial Universe, electrons hardly reach temperatures � 1 keV during the
thermalization era (z � 106). Therefore even repeated Compton scattering cannot push the
distortion signals beyond the standard non-relativistic y-distortion signal. Inside clusters of
galaxies, electrons can have temperatures kTe � 1 keV. In this case, the distortion signals can
extend to much higher frequencies.

COBE/FIRAS [98]. Perturbation modes with 1Mpc−1 � k � 50 Mpc−1 create y-
distortions, while modes with 50Mpc−1 � k � 2 ×104 Mpc−1 yield μ-distortions. These
scales are hard to access by any other means but spectral distortions provide a new
sensitive probe in this regime (fig. 16).

For a given initial power spectrum of perturbations, the effective heating rate in
general has to be computed numerically [43]. However, at high redshifts the tight coupling
approximation can be used to simplify the calculation. An excellent approximation for
the effective heating rate can be obtained using(5) [43,106]

d(Q/ργ)
dz

≈ 4A2∂zk
−2
D

∫ ∞

kmin

k4dk

2π2
Pζ(k) e−2k2/k2

D ,(36)

where Pζ(k) = 2π2 As k−3 (k/k0)nS−1+ 1
2 nrun ln(k/k0) defines the usual curvature power

(5) Here, we define the heating rate such that
R ∞

z

d(Q/ργ)

dz
dz > 0.
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Fig. 15. – llustration for the superposition of blackbodies. We envision blackbody photons inside
a box at two temperatures T1 and T2, and mean Tb = 1

2
(T1 +T2) initially (left panel). Thomson

scattering mixes the two photon distributions without changing the photon number or energy.
The averaged distribution is not a pure blackbody but at second order in the temperature
difference exhibits a y-type distortion in the Wien tail (right panel). This then starts the
thermalization process and repeated Compton scattering slowly converts the distortion to a
μ-distortion.

Fig. 16. – Current constraints on the small-scale power spectrum. At large scales (k � 3 Mpc−1),
CMB anisotropies and large scale structure measurements provide very stringent limits on the
amplitude and shape of the primordial power spectrum. At smaller scales, the situation is
much more uncertain and at 3 Mpc−1 � k � 104 Mpc−1 which can be targeted with CMB
spectral distortion measurements wiggle room of at least two orders of magnitude is present.
CMB distortion measurements could improve these limits to a level similar to the large-scale
constraints. The figure is adapted from [94].
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spectrum of scalar perturbations and kD is the photon damping scale [107, 108], which
early on scales as kD ≈ 4.048×10−6 (1 + z)3/2 Mpc−1. For adiabatic modes, we obtain a
heating efficiency A2 ≈ (1+4Rν/15)−2 ≈ 0.813, where Rν ≈ 0.409 for Neff = 3.046. The
k-space integral is truncated at kmin ≈ 0.12 Mpc−1, which reproduces the full heating
rate across the recombination era quite well [14]. With this we can directly compute
the associated distortion using CosmoTherm [12]. The various isocurvature perturbations
can be treated in a similar manner [106]; however, in the standard inflation model these
should be small. Tensor perturbations also contribute to the dissipation process, but the
associated heating rate is orders of magnitudes lower than for adiabatic modes even for
very blue tensor power spectra and thus can be neglected [109,110].

For As = 2.207 ×10−9, nS = 0.9645 and nrun = 0 [9], we present the result in fig. 13.
The adiabatic cooling distortion (see sect. 4.3) was simultaneously included. The signal
is uncertain to within � 10% in ΛCDM, simply because of the remaining uncertainties
in the measurement of As and nS. It is described by a sum of μ- and y-distortion with
μ ≈ 2.0 ×10−8 and y ≈ 3.6 ×10−9 and a non-vanishing overall residual at the level of
� 20%–30% [17]. In terms of raw sensitivity, this signal is close to the detection limit
of a PIXIE-like experiment; however, foregrounds in particular at low frequencies make
a detection more challenging [93]. Still, a PIXIE-like experiment could place interesting
upper limits on the amplitude of scalar fluctuations around k � 103 Mpc−1 [101, 72],
potentially helping to shed light on the small-scale crisis [111] and rule out models of
inflation with increased small-scale power [104,112].

The damping signal is also sensitive to primordial non-Gaussianity in the squeezed-
limit, leading to a spatially varying spectral signal that correlates with CMB temperature
anisotropies as large angular scales [36, 37]. This effect therefore provides a unique way
for studing the scale-dependence of fNL [113-118]. CMB spectral distortions hence de-
liver a complementary and independent probe of early-Universe physics, which allows
capitalizing on the synergies with large-scale B-mode polarization measurements.

4.3. Adiabatic cooling for baryons. – The adiabatic cooling of ordinary matter con-
tinuously extracts energy from the CMB photon bath by Compton scattering, leading
to another small but guaranteed distortion that directly depends on the baryon density
and helium abundance. The distortion is characterized by negative μ- and y-parameters
at the level of � few ×10−9 [59, 12, 69]. The effective energy extraction history is given
by

d(Q/ργ)
dz

= −3
2

NtotkTγ

ργ(1 + z)
(37)

≈ −5.7 ×10−10

(1 + z)

[
(1 − Yp)

0.75

] [
Ωbh2

0.022

] [
(1 + fHe + Xe)

2.25

] [
T0

2.726K

]−3

,

where Ntot = NH(1 + fHe + Xe) is the number density of all thermally coupled baryons
and electrons; NH ≈ 1.881 × 10−6 (1 + z)3 cm−3 is the number density of hydrogen
nuclei; fHe ≈ Yp/4(1 − Yp) ≈ 0.0819 and Xe = Ne/NH is the free electron fraction,
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which can be computed accurately with CosmoRec [40]. For Planck 2015 parameters,
the signal is shown in fig. 13. It is uncertain at the � 1% level in ΛCDM and cancels
part of the damping signal; however, it is roughly one order of magnitude weaker and
cannot be separated at the currently expected level of sensitivity of next generation CMB
spectrometers.

Additional interactions of dark matter with photons, electrons or protons could further
increase the cooling distortion [60]. This allows placing interesting constraints on the
nature of dark matter and its interactions with the standard sectors. The recent EDGES
measurements [76] have spurred increased interest in this possiblity [119-121].

4.4. The cosmological recombination radiation. – The cosmological recombination pro-
cess is associated with the emission of photons in free-bound and bound-bound transitions
of hydrogen and helium [54,122,123]. This causes a small distortion of the CMB and the
redshifted recombination photons should still be visible as the cosmological recombina-
tion radiation (CRR), a tiny spectral distortion (� nK-μK level) present at mm to dm
wavelength (for overview see [33]). The amplitude of the CRR depends directly on the
number density of baryons in the Universe. The helium abundance furthermore affects
the detailed shape of the recombination lines, while the number of neutrinos has a minor
effect [34]. Finally, the line positions and widths depend on when and how fast the Uni-
verse recombined. The CRR thus provides an independent way to constrain cosmological
parameters and map the recombination history [124].

Several computations of this CRR have been carried out in the past [125-128, 32,
129-133]. These calculations were very time-consuming, taking a few days of supercom-
puter time for one cosmology [130, 133]. This big computational challenge was recently
overcome [134, 34], today allowing us to compute the CRR in about 15 seconds on a
standard laptop using CosmoSpec(6) [34]. The fingerprint from the recombination era
shows several distinct spectral features that encode valuable information about the re-
combination process (fig. 13). Many subtle radiative transfer and atomic physics pro-
cesses [130, 132, 40, 135] can now be included by CosmoSpec, yielding the most detailed
and accurate predictions of the CRR in the standard ΛCDM model to date (see fig. 17).
In ΛCDM, the CRR is uncertain at the level of a few percent, with the error being
dominated by atomic physics rather than cosmological parameter values [34].

The CRR is currently roughly � 6 times below the estimated detection limit of PIXIE
(cf. fig. 13) and a detection from space will require several times higher sensitivity [136].
In the future, this could be achieved by experimental concepts similar to PRISM [4] or
Millimetron [137]. At low frequencies (1GHz � ν � 10 GHz), the significant spectral
variability of the CRR may also allow us to detect it from the ground with APSERa [22].
This could open a new way for directly studying the conditions of the Universe at z � 103

(HI-recombination), z � 2000 (HeI-recombination) and z � 6000 (HeII-recombination).
Furthermore, if something unexpected happened during different stages of the recom-

(6) www.Chluba.de/CosmoSpec.
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Fig. 17. – CRR from hydrogen and helium for 500-shell calculations. The different curves show
individual contributions (without feedback) as well as the total distortion with and without
feedback processes. At low frequencies, free-free absorption becomes noticeable. The effect
is stronger for the contributions from helium due to the larger free-free optical depth before
recombination ends at z � 103. In total, some 6.1γ are emitted per hydrogen atom when all
emission and feedback are included. Hydrogen alone contributes about 5.4γ/NH and helium
� 0.7γ/NH (� 8.9γ/NHe). The figure is taken from [34].

bination epoch, atomic species will react to this [74] and produce additional distortion
features that can exceed those of the normal recombination process. This will provide a
unique way to distinguish pre- from post-recombination energy release [74,138].

To appreciate the importance of the cosmological recombination process at z � 103

a little more, consider that today measurements of the CMB anisotropies are sensitive
to uncertainties of the ionization history at a level of � 0.1%–1% [139, 140]. For a
precise interpretation of CMB data, uncertainties present in the original recombination
calculations had to be reduced by including several previously omitted atomic physics and
radiative transfer effects [141,139]. This led to the development of the new recombination
modules CosmoRec [40] and HyRec [135] which are used in the analysis of Planck
data [3]. Without these improve treatments of the recombination calculation the value
for nS would be biased by ΔnS � −0.01 to nS � 0.95 instead of � 0.96 [140]. We
would be discussing different inflation models [142] without these corrections taken into
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Fig. 18. – Decaying particle detection limits (1σ) for a PIXIE-like experiment. The eigenam-
plitudes μi characterize the non-μ/non-y distortion signal [72], which provides time-dependent
information of the energy release history. CMB distortion limits could be � 50 times tighter than
those derived from light element abundances [169, 143]. A separate determination of lifetime
and particle abundance could be possible for lifetimes tX � 108 s–1011 s, being complementary
to constraints derived using the CMB anisotropies [144-146]. The figure is adapted from [72].

account! Conversely, this emphasizes how important it is to experimentally confirm the
recombination process and CMB spectral distortions provide a way to do so.

4.5. Dark matter annihilation. – Today, cold dark matter is a well-established con-
stituent of our Universe [2, 3, 9]. However, the nature of dark matter is still unclear
and many groups are trying to gather any new clue to help unravel this big puz-
zle [147-151, 94, 152]. Similarly, it is unclear how dark matter was produced, however,
within ΛCDM, the WIMP scenario provides one viable solution [153, 154]. In this case,
dark matter should annihilate at a low level throughout the history of the Universe and
even today.

For specific dark matter models, the level of annihilation around the recombination
epoch is tightly constrained with the CMB anisotropies [148, 155-157, 151, 158, 159, 9].
The annihilation of dark matter can cause changes in the ionization history around
last scattering (z � 103), which in turn can lead to changes of the CMB temperature
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and polarization anisotropies [144, 145, 160, 161]. Albeit significant dependence on the
interaction of the annihilation products with the primordial plasma [162, 157, 163-165],
the same process should lead to distortions of the CMB [166, 138, 12]. Sadly, it turns
out that for the standard WIMP scenario with s-wave annihilation cross section, the
expected signal is even smaller than the adiabatic cooling distortion [14]. We will thus
not go into more details here.

4.6. Decaying particle scenarios. – The CMB spectrum also allows us to place stringent
limits on decaying particles in the pre-recombination epoch [167-170, 166, 138, 12]. This
is especially interesting for decaying particles with lifetimes tX � 108 s–1011 s [14,72], as
the exact shape of the distortion encodes when the decay occurred. Decays associated
with significant low-energy photon production could furthermore create a unique spectral
signature that can be distinguished from simple energy release [39]. This would provide
an unprecedented probe of early-universe particle physics (e.g., dark matter in excited
states [171, 172]), with many natural particle candidates found in supersymmetric mod-
els [173,174]. This could also shed light on gravitino physics [168,175], axions [176] and
primordial black holes [177,178].

The expected 1σ detection limits for a PIXIE-like experiment are illustrated in fig. 18.
The bounds obtained from measurements of light-elements [169,143] could be superseded
by more than one order of magnitude. Similar improvements from light-elements are
not expected any time soon, and most recent updated only improved the limits by �
10% [179]. Spectral distortions thus provide a powerful new probe of particle physics.

4.7. Anisotropic CMB distortions. – To close the discussion of different distortion
signals, we briefly mention anisotropic (↔ spectral-spatial) CMB distortions. Even in
the standard ΛCDM cosmology, anisotropies in the spectrum of the CMB are expected.
The largest source of anisotropies is due to the Sunyaev-Zeldovich effect caused by the hot
plasma inside clusters of galaxies [24, 62, 64, 35], as mentioned above. The y-distortion
power spectrum has already been measured directly by Planck [180, 181] and encodes
valuable information about the atmospheres of clusters [89, 182-186, 92]. Similarly, the
warm hot intergalactic medium contributes and should become visible [91,92].

In the primordial Universe, anisotropies in the μ- and y-distortions are expected to
be tiny (relative perturbations � 10−4, e.g., see [187]) unless strong spatial variations
in the primordial heating mechanism are expected [43]. As mentioned above, this could
in principle be caused by non-Gaussianity of perturbations in the squeezed limit [36,
37, 113-116]; however, a present detectable levels of non-Gaussianity are beyond ΛCDM
cosmology (see [117] for discussion of some of the foreground issues) and will not be
considered further.

Another guaranteed anisotropic signal is due to Rayleigh scattering of CMB photons
in the Lyman-series resonances of hydrogen around the recombination era [188,189]. The
signal is strongly frequency dependent, can be modeled precisely and may be detectable
with future CMB imagers (e.g., COrE+) or possibly PIXIE at large angular scales [189].
In a very similar manner, the resonant scattering of CMB photons by metals appearing

 EBSCOhost - printed on 2/13/2023 8:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



Future steps in cosmology using spectral distortions etc. 301

in the dark ages [190-193] or scattering in the excited levels of hydrogen during recom-
bination [194, 193] can lead to anisotropic distortions. To measure these signals, precise
channel intercalibration and foreground rejection is required.

Due to our motion relative to the CMB rest frame, the spectrum of the CMB dipole
should also be distorted simply because the CMB monopole has a distortion [195, 196].
The signal associated with the large late-time y-distortion could be detectable with PIXIE
at the level of a few σ [196]. Since for these measurements no absolute calibration
is required, this effect will allow us to check for systematics. In addition, the dipole
spectrum can be used to constrain monopole foregrounds [196,16,197].

Finally, due to the superposition of blackbodies of different temperatures (caused by
the spherical harmonic expansion of the intensity map), the CMB quadrupole spectrum
is also distorted, exhibiting a y-distortion related to our motion [198,199]. The associated
effective y-parameter is yQ = β2/6 ≈ (2.525 ± 0.012) ×10−7 and should be noticeable
with PIXIE and future CMB imagers [197].

5. – Conclusions

CMB spectral distortion measurements provide a unique way for studying physical
processes leading to energy release or photon injection in the pre- and post-recombination
eras. In the future, this could open a new unexplored window to early-universe and par-
ticle physics, delivering independent and complementary pieces of information about the
Universe we live in. We highlighted several processes that should lead to distortions at a
level within reach of present-day technology. Different distortion signals can be computed
precisely and efficiently for various scenarios using both analytical and numerical schemes.
Time-dependent information, beyond the standard μ- and y-type parametrization, may
allow us to independently constrain lifetime and abundance of decaying relic particles,
learn about the shape and amplitude of the small-scale power spectrum of primordial
perturbations and shed light on dark matter. The cosmological recombination radiation
will allow us to check our understanding of the recombination processes at redshifts of
z � 103. It furthermore should allow us to distinguish pre- from post-recombination
y-distortions. All this emphasizes the immense potential of CMB spectroscopy, both in
terms of discovery and characterization science, and we should make use of this invalu-
able source of information with the next CMB space mission and worldwide ground-based
efforts.

∗ ∗ ∗

JC cordially thanks the organizers of the Varenna International School of Physics
“Enrico Fermi”, Nicola Vittorio and Joseph Silk, for their great hospitality and continued
encouragement to finish these notes. JC would also like to thank Boris Bolliet and
Andrea Ravenni for their comments on the manuscript. JC is supported by the Royal
Society as a Royal Society University Research Fellow and an European Research Council
Consolidator Grant (CMBSPEC, No. 725456) at the University of Manchester, UK.

 EBSCOhost - printed on 2/13/2023 8:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



302 Jens Chluba

REFERENCES

[1] Smoot G. F., Bennett C. L., Kogut A., Wright E. L., Aymon J., Boggess N. W.,

Cheng E. S., de Amici G., Gulkis S., Hauser M. G., Hinshaw G., Jackson P. D.,

Janssen M., Kaita E., Kelsall T. and Keegstra P., Astrophys. J. Lett., 396 (1992)
L1.

[2] Bennett C. L., Halpern M., Hinshaw G., Jarosik N., Kogut A., Limon M.,

Meyer S. S., Page L., Spergel D. N., Tucker G. S., Wollack E., Wright E. L.,

Barnes C., Greason M. R., Hill R. S., Komatsu E., Nolta M. R., Odegard N.,

Peiris H. V. and Verde L., Astrophys. J. Suppl., 148 (2003) 1.
[3] Planck Collaboration, Ade P. A. R., Aghanim N., Armitage-Caplan C.,

Arnaud M., Ashdown M., Atrio-Barandela F., Aumont J., Baccigalupi C.,

Banday A. J. et al., Astron. Astrophys., 571 (2014) A16.
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[112] Clesse S. and Garćıa-Bellido J., Phys. Rev. D, 92 (2015) 023524.

[113] Biagetti M., Perrier H., Riotto A. and Desjacques V., Phys. Rev. D, 87 (2013)
063521.

[114] Emami R., Dimastrogiovanni E., Chluba J. and Kamionkowski M., Phys. Rev. D,
91 (2015) 123531.

[115] Chluba J., Dimastrogiovanni E., Amin M. A. and Kamionkowski M., Mon. Nat.
R. Astron. Soc., 466 (2017) 2390.

[116] Ravenni A., Liguori M., Bartolo N. and Shiraishi M., JCAP, 9 (2017) 042.

[117] Remazeilles M. and Chluba J., Mon. Nat. R. Astron. Soc. (2018).

[118] Cabass G., Pajer E. and van der Woude D., ArXiv e-prints 1805.08775 (2018).

[119] Barkana R., Nature, 555 (2018) 71.
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1. – Introduction

This review of recent developments in the analysis of galaxy surveys is meant to be
useful for someone who already has a basic understanding of the field. For a general
introduction see, for example, [1].

2. – The overdensity field

The dimensionless overdensity field is defined as

(1) δ(s) =
ρ(s) − 〈ρ(s)〉

〈ρ(s)〉 ,

where ρ(s) is the observed galaxy density and 〈ρ(s)〉 is the expected density.
At early times, and on large scales at present day, δ(s) has a distribution that is

close to that of Gaussian, adiabatic fluctuations [2], and in these limits the statistical
distribution is completely described by the two-point functions of this field.

In ref. [3] (commonly referred to as the FKP paper) the first full analysis pipeline for
a galaxy survey in Fourier space is presented. The start of this pipeline is to define the
function

(2) F (s) =
w(s)
I1/2

[n(s) − 〈n(s)〉] ,

where n(s) is the observed number density of galaxies around location s. The expected
value 〈n(s)〉 is commonly determined by means of a synthetic catalog of random points,
Poisson sampled with the same mask and selection function as the survey. In this case,
〈n(s)〉 ≡ αnr(s), where α normalizes the weighted random catalogue with density nr(s)
to match the weighted galaxy catalogue. The random catalogue is usually set to have
� 50 times as many points as galaxies in order that the shot noise contribution is sub-
dominant compared to that of the galaxy catalogue.

In contrast to δ(s) in eq. (1), the denominator in the expression for F (s) in eq. (2)
is not a function of s. Thus, fluctuations in the expected density of galaxies across
the survey are not normalised out, and we have to accept that the power spectrum of
the field F (s) is convolved with a window function. In general, it is not easy to divide
by the density when calculating the power spectrum as regions outside of the survey,
or where no galaxies are expected because of discreteness effects when using a random
catalogue to specific the survey selection function, would cause divide-by-zero problems
in the calculation of F (s).

The factor I normalizes this expression such that the observed monopole moment of
the power has the correct amplitude in a universe with no window, I ≡ ∫

dsw2n̄2(s).
The match between galaxy and random catalogues creates what is known as the

Integral Constraint (IC), forcing the average density within the survey region to be
zero, ignoring larger-than-survey fluctuations in density. In sect. 11, we discuss how to
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calculate α in such a way that the effect of this IC can be included in models to be fitted
to the data.

The FKP paper showed how the galaxies in the survey should be optimally weighted
to allow for variations in density across a survey, balancing sample variance and shot
noise. Each galaxy is weighted by

(3) wFKP(r) =
1

1 + n̄(r)P̄ (k)
,

where n̄(r) is the expected density of galaxies, and P̄ (k) the expected power spectrum,
usually fixed at a fiducial value. This optimal weight depends on a number of assumptions
—particularly that the galaxies Poisson sample the density field, and that the galaxies
all have the same clustering strength. Revised weighting schemes have been proposed
for more realistic models of these effects (e.g. [4, 5]).

3. – Line-of-sight assumptions

Most theoretical models (e.g. [6]) make predictions for an idealised survey in which
the line of sight (LOS) to every galaxy is assumed to be parallel. However, for a real
galaxy survey the LOS to different galaxies are not parallel, and analysing a survey
under the global plane-parallel assumption only gives results close to the theory for
distant surveys with small angular coverage (e.g. WiggleZ, [7]). For surveys covering a
wide angular region (e.g. the Baryon Oscillation Spectroscopic Survey BOSS, [8]), such
a global approximation gives a poor match to the standard theory.

In order to make a measurement that can be matched to theory (in which it is as-
sumed that LOS to galaxies are parallel), it is far better to make a local plane-parallel
approximation when analysing a survey: that is, when measuring 2-point clustering we
split the survey into pairs of galaxies, and make a local plane-parallel approximation for
each pair. This approximation will still break down for pairs of galaxies separated by a
wide angle, but gives results closer to the global plane-parallel clustering amplitude for
pairs whose angular separation is small. There is a subtlety in that when analysing data,
we can choose whether to define the single line of sight as matching that for one galaxy
in a pair, or as the direction to the pair centre, and then furthermore define how the pair
centre is calculated. However, this only produces a minor perturbation on the overall
effect.

The difference between clustering measurements made using the local plane-parallel
approximation (see next section), and the model provided in the global plane-parallel
framework, is commonly called the wide-angle effect. This gets worse for wide-angle
pairs, and the severity of the problem depends on the distribution of pair separation
angles in a survey. Note that the plane-parallel approximation is also commonly called
the distant observer approximation.

In order to allow for wide-angle effects, one could imagine trying to model the power
spectrum calculated under the local plane-parallel assumption using the full wide-angle

 EBSCOhost - printed on 2/13/2023 8:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



314 Will J. Percival

theory [9, 10]. However, it is not clear that there would be a gain compared with using
the correlation function, for which it would be simple to split pair counts into bins in
separation, pair-centre angle to the LOS, and angular separation, and then model these
directly.

4. – Multipole moments

Models of the Alcock-Packynski (AP, [11]) effect and of linear Redshift-Space Distor-
tions (RSD, [6]) show that, to first order, under the global plane-parallel assumption, the
cosmological information of interest is contained within the first three even power-law
moments of the correlation function or power spectrum with respect to μ, the cosine of
the angle that the pair or that the Fourier mode makes with respect to the line of sight
(LOS). Decomposing into a Legendre polynomial basis instead of power-law moments
has the advantage of giving independent moments of the power spectrum in the absence
of a window function in the global plane-parallel limit. Remembering that the first 3
even Legendre polynomials are

L0(μ) = 1,(4)

L2(μ) =
1
2
(3μ2 − 1) ,(5)

L4(μ) =
1
8
(35μ4 − 30μ2 + 3);(6)

we see that the Legendre polynomial moments can be determined by the trivial linear
combination of power-law moments. Thus we use both interchangeably in the following
depending on which is simplest to adopt.

The Legendre polynomial moments of the unconvolved correlation function and power
spectrum in the global plane-parallel approximation are related by

ξ(s) = (2� + 1)
∫ 1

0

dμ ξ(s)L(μs),(7)

P(k) = (2� + 1)
∫ 1

0

dμ P (k)L(μk),(8)

with reciprocal formulae

ξ(s) =
∑



ξ(s)L(μs),(9)

P (k) =
∑



P(k)L(μk).(10)

The power spectrum and correlation function moments are related by the Hankel trans-
form

(11) P(k) = 4πi
∫

ds s2ξ(s)j(sk).
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In the following, quantities that include the survey window function are denoted by a
prime, while unconvolved quantities are not. We do not make a distinction between
measured and model quantities as this should be clear from the context.

5. – Correlation function estimators in the local plane-parallel formalism

The correlation function is most commonly measured using the Landy-Szalay estima-
tor [12]

(12) ξ̄(s, μ) =
DD(s, μ) − 2DR(s, μ) + RR(s, μ)

RR(s, μ)
,

where we can define μ with respect to the LOS to the pair centre. DD(s) is the number
of galaxy-galaxy pairs within a bin with centre s normalised to the maximum possible
number of galaxy-galaxy pairs, and RR(s) and DR(s) are the normalised number of
random-random pairs, and galaxy-random pairs, respectively.

This estimate is biased by the integral constraint, a consequence of the fact that the
total number of galaxy-galaxy pairs is estimated from the sample itself (equivalent to
determining α in eq. (2) from the galaxies).

(13) 〈1 + ξ̄(s, μ)〉 =
1 + ξ(s, μ)
1 + ξΩ(s)

,

where ξΩ(s) is the mean of the two-point correlation function over the mask [12]. For
modern large galaxy surveys this correction is negligibly small unless we are interested
in the clustering on very large scales. See sect. 11 to see how this affects the power
spectrum measurement.

From this, we can calculate the multipoles by integrating over μ as in eq. (7). Note that
this integral should be carried out separately from the calculation of ξ(s, μ) of eq. (12)
because the distribution of pairs in a survey is usually not uniformly distributed in μ as
required by the integral in eq. (7). An alternative is to define a pseudo-multipole estima-
tor where the kernel is not exactly the Legendre polynomial, which generally complicates
the analysis.

Note that eq. (12) estimates the unconvolved correlation function, and so can be
directly compared with models. As we will see later, this is not necessarily true for direct
estimators of the power spectrum.

6. – Power spectrum estimators in the global plane-parallel formalism

The Quadratic Maximum Likelihood (QML) estimator [13] correctly accounts for
correlations between modes when optimally measuring the power spectrum from data.
In the limit of uncorrelated modes with equal noise per mode in each bin this simplifies
to the FKP estimator [3].
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The QML estimator is given by

(14) P (ki) =
∑

j

N−1
ij pj ,

where the power is a convolution of the inverse of a normalisation matrix Nij and a
weighted two-point function

(15) pj ≡
∑
α,β

F ∗(kα)Eαβ(kj)F (kβ).

The weight is given by the estimator matrix

(16) E(kj) = − ∂C−1

∂P (kj)
,

which describes how the inverse of the density field covariance matrix C changes with
respect to the prior of the power spectrum of the respective bin. If the QML normalisation
is proportional to the Fisher information,

(17) Nij = tr
{
C−1 ∂C

∂P (ki)
C−1 ∂C

∂P (kj)

}
,

the QML estimator is the optimal maximum likelihood estimator of the variance of a field
that obeys a multivariate Gaussian distribution [13]. I.e. assuming a Gaussian density
field, the QML estimator therefore provides an estimate of the power spectrum with
minimal errors.

Under the assumption that all modes are independent, the QML estimator reduces
to the FKP estimator

(18) P (ki) =
1
Ni

∑
kα∈bin i

|F (kα)|2 ,

which simply averages the power in the Fourier modes. The FKP-style estimator is
commonly applied even when the assumptions required for optimality are not valid.
This concept of averaging rather than performing the optimised combination of on- and
off-diagonal modes is also used in the estimator in the local plane-parallel formalism
given in the next section.

7. – Power spectrum estimators in the local plane-parallel formalism

Following the ethos behind the FKP power spectrum estimator, in the local plane-
parallel approximation, we can define as the statistic that we want to reduce the data to
as the order-n power-law moments of the window-convolved power spectrum [14]

(19) P ′
n(k) =

1
4π

∫
dΩk

∫
d3s1

∫
d3s2 (k̂ · ŝ1)nF (s1)F (s2)eik·(s1−s2) − Ps,
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where we have assumed that the LOS of the pair of galaxies lies along direction s1, dΩk is
the solid angle element in k-space, and we denote the window convolved power spectrum
P ′. Ps is the shot noise term. The local plane-parallel approximation is used to both
define a single LOS to each pair of galaxies, and to define that LOS as the direction to
one of the galaxies.

By writing the LOS in terms of only s1, we can split the integrals in eq. (19), such
that

(20) P ′
n(k) =

1
4π

∫
dΩkA′

n(k)[A′
0(k)]∗ − Ps,

where

(21) A′
n(k) =

∫
d3s F (s)(k̂ · ŝ)neik·s.

In refs. [15] and [16] it was shown that these can be solved using Fast Fourier Transforms
(FFTs) on a Cartesian grid after substituting the trivial decomposition

(22) k̂ · ŝ =
kxsx + kysy + kzsz

ks

into eq. (21). Recently, in ref. [17] a Legendre polynomial decomposition of k̂ · ŝ
was proposed which allowed fewer FFTs to be used than in the simple approach
above. Many FFT libraries are available, with FFTW being a commonly used exam-
ple (http://www.fftw.org/). Thus this statistic can be quickly measured for a given
catalogue.

8. – Grid assignment, aliasing and interlacing

When using FFTs to Fourier transform F (s) (eq. (2)) we must sample F (s) on a
grid. Small-scale modes, unresolved due to the finite grid can alias large-scale modes,
leading to the wrong power spectrum measurement. One way to avoid this is to use
direct summation rather then FFT for the Fourier transform. However this is slow for
large galaxy surveys, particularly when applied to a large random catalogue.

The effect of aliasing can be reduced through the choice of grid assignment scheme to
interpolate F (s) onto the regular grid, and by use of interlacing. In ref. [18] an excellent
review of these issues is provided, and is the source for the ideas presented in this section.
Considering calculating F (s) at the grid points sj , we see that we can assign galaxies to
n(s) as given by

(23) n(sj) =
1

H3

Ngal∑
i=1

W (p)(Δsx/H)W (p)(Δsy/H)W (p)(Δsz/H),
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where Δs = sj − si = (Δsx,Δsy,Δsz), and H is the grid size. If a random catalogue is
used to define the survey mask, then the assignment of these points to the grid follows
the same procedure.

It is common to consider piecewise polynomial functions for the 1-dimensional func-
tions W (p), which simply correspond to convolving a top-hat function with itself (p− 1)
times:

Nearest Grid Point (NGP)

(24) W (1)(t) =

⎧⎪⎨
⎪⎩

1, for |t| <
1
2

,

0, otherwise.

Cloud-In-Cell (CIC)

(25) W (2)(t) =

⎧⎪⎨
⎪⎩

1 − |t|, for |t| <
1
2

,

0, otherwise.

Triangular Shaped Cloud (TSC)

(26) W (3)(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

3
4
− t2, for |t| <

1
2

,

1
2

(
3
2
− |t|

)2

, for
1
2
≤ |t| <

3
2

,

0, otherwise.

Piecewise Cubic Spline (PCS)

(27) W (4)(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
6

(4 − 6 t2 + 3 |t|3), for 0 ≤ |t| < 1,

1
6

(2 − |t|)3, for 1 ≤ |t| < 2,

0, otherwise.

The interpolation function acts as a convolution in configuration-space, and hence
is a multiplicative factor in Fourier space and can be removed by dividing F (k) by the
Fourier transform of the window, W (p)(kx)W (p)(ky)W (p)(kz), where

(28) W (p)(k) =
[
sin(kH/2)
(kH/2)

]p

.
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While this corrects for the magnitude of the convolution its effects live on in the amplitude
of the aliasing effect.

A method to partially correct for aliasing based on the interlacing of two grids is dis-
cussed in the classic text of [19]. The key idea is to perform an additional, configuration-
space interpolation onto a grid shifted by H/2 in all spatial directions, and then take the
average of the two

(29) F (k) =
1
2

[F1(k) + F2(k)] ,

where F1(k) and F2(k) represent the individual transforms. This removes the leading-
order aliasing terms.

9. – Linking Fourier and Fourier-Bessel bases

The link between a Fourier-space decomposition and a decomposition into a basis
consisting of spherical harmonics and spherical Bessel functions (hereafter known as a
Fourier-Bessel basis) is given by the Rayleigh expansion of a plane wave. In terms of
Legendre polynomials this is written

(30) eik·s =
∑



i(2� + 1)j(ks)L(k̂ · ŝ),

and in terms of Spherical Harmonics

(31) eik·s = 4π
∑
m

ij(ks)Ym(k̂)Y ∗
m(ŝ).

Using this, we can see how eq. (21) can be solved using a Fourier-Bessel basis. As
explained by [20], consider differentiating eq. (31) with respect to ks n times to give

(32) in(k̂ · ŝ)neiks(k̂·ŝ) = 4π
∑
m

ij
(n)
 (ks)Ym(k̂)Y ∗

m(ŝ),

where j
(n)
 (ks) is the n-th derivative of the spherical Bessel function with respect to ks.

In ref. [20] the trick is used of taking the derivative of the plane wave expansion
to directly link power spectrum multipoles to a Fourier-Bessel decomposition. This was
applied to the linear model RSD to write δm(k) in terms of expansions in spherical Bessel
functions and their derivatives. The work of [20] was applied by [21, 22] to investigate
the impact of wide-angle effects from Fourier-based multipole measurements.

To see how this trick can allow us to measure the statistic in eq. (21), using a Fourier-
Bessel rather than Fourier basis, we substitute the plane-wave expansion into eq. (21) to
give

(33) A′
n(k) = 4π

∫
d3sF (s)

∑
m

i−nj
(n)
 (ks)Ym(k̂)Y ∗

m(ŝ).
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If we also expand F (s) in a basis of Spherical Harmonics and the n-th derivative of
spherical Bessel functions

(34) F
(n)
m (k) =

∫
d3s F (s)Y �

m(ŝ)j(n)
 (ks),

then we can write An(k) in terms of F
(n)
m (k) as

(35) A′
n(k) = 4π

∑
m

i−nF
(n)
m (k)Ym(k̂).

To intuitively see how the Fourier and Fourier-Bessel solutions for An(k) are related,
note that derivatives of spherical Bessel functions can be rewritten as the difference
between standard spherical Bessel functions. For example

(36) j
(1)
 (ks) = −j+1(ks) +

�

ks
j(ks).

Subsequent derivatives can be related to standard spherical Bessel functions by recursive
application of this formula. As �/(ks) is equal to k⊥/k defined locally at position s
for modes of wavenumber � in a Fourier-Bessel function decomposition, we can see that
taking the derivatives in eq. (32) is directly related to the local multipole expansion
as considered in eq. (22). I.e. instead of using the derivatives of the spherical Bessel
functions to get eq. (35), it would have instead been possible to use the local definition
of k̂ · ŝ in the integral to get the same result.

Substituting eq. (35) for n and n = 0 into eq. (20), and using the orthogonality
relations for spherical harmonics removes the angular integral and gives the simple result
that

(37) P ′
n(k) = 4π

∑
m

F
(n)
m (k)[F (0)

m (k)]∗ − Ps.

Thus we see that we can use either Fourier or Fourier-Bessel bases to measure P ′
n(k)

from a galaxy redshift survey under the local plane-parallel approximation. The use of a
Fourier-Bessel basis does not alleviate wide-angle effects: these are built in to the power
spectrum multipole definition (eq. (19)). Indeed, wide-angle effects are fundamentally
model dependent, so we cannot remove them completely using a model-independent or
fiducial-model based estimator.

Given the same end point for the measurements, the Fourier approach is preferred
as it allows the use of FFTs to perform the transforms required, saving computational
resources. Using a Fourier-Bessel basis may help when calculating the cross-power spec-
trum of a galaxy redshift survey with an angular survey.
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10. – Window convolution of models

Given that we measure the power spectrum convolved with the window function,
we need a fast mechanism to convolve models to be compared to P ′

n(k). In ref. [23] it
was shown that we can perform the required 3D convolution quickly using the Hankel
transform relation between the window-convolved multipole moments in configuration
and Fourier space,

(38) P ′
(k) = 4πi

∫
ds s2ξ′(s)j(sk).

Crucially, this equation holds for both the unconvolved and convolved power spectrum
and correlation function pairs in both the global plane-parallel [23] and local plane-
parallel [24] limits. The Hankel tranform can be quickly solved using a 1D FFT, although
care has to be taken given the oscillatory nature of the integrand, as described in [25].

By using this transform we can calculate the convolved model power spectra using
multiplications in real space. The Legendre moments of the convolved correlation func-
tion are defined

(39) ξ′(s) =
2� + 1

4π

∫
dΩs ξ(s)W 2(s)L(ŝ · x̂1),

where ξ(s) and W 2(s) are the anisotropic correlation function and window function. L

is the Legendre polynomial of order �, here written as a function of the LOS to one galaxy
in each pair x1, matching the assumptions of eq. (19).

We define the moments of the window function as

(40) W 2
p (s) =

2p + 1
4π

∫
dΩs

∫
dx1W (x1)W (x1 + s)Lp(μs),

which can be calculated by using the random catalogue to perform the integrations with
a Monte Carlo based technique. Substituting this into eq. (39), and also expanding the
unconvolved correlation function in Legendre moments means that we can rewrite this
equation as

(41) ξ′(s) = (2� + 1)
∑
L

ξL(s)
∑

p

1
2p + 1

W 2
p (s)ap

L,

where ap
L are the solutions to the equation L(μ)LL(μ) =

∑
p ap

LLp(μ), and can be
obtained by substituting in the polynomials and equating powers of μ. The window
convolution spreads the linear information to ξ′(s) with � > 4 and the ξ′(s) modes
with � ≤ 4 depend on higher-order moments. However, it is common to only fit to
the first three even multipoles, ignoring the potential information at higher orders, and
furthermore only apply the window convolution to the linear model, which is reasonable
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as the window effect diminishes to smaller scales. Expanding eq. (41) gives that the
relevant expansion components are

ξ′0(s) = ξ0W
2
0 +

1
5
ξ2W

2
2 +

1
9
ξ4W

2
4 ,(42)

ξ′2(s) = ξ0W
2
2 + ξ2

[
W 2

0 +
2
7
W 2

2 +
2
7
W 2

4

]
+ ξ4

[
2
7
W 2

2 +
100
693

W 2
4 +

25
143

W 2
6

]
,(43)

ξ′4(s) = ξ0W
2
4 + ξ2

[
18
35

W 2
2 +

20
77

W 2
4 +

45
143

W 2
6

]
(44)

+ξ4

[
W 2

0 +
20
77

W 2
2 +

162
1001

W 2
4 +

20
143

W 2
6 +

490
2431

W 2
8

]
,

keeping ξ terms with � ≤ 4, and including all of the relevant window multipole moments.
This matches the premise that linear theory is complete to � = 4, but the window
function has no such constraint. Given ξ′(s), the model power spectrum multipoles can
be calculated using eq. (38).

11. – Power spectrum integral constraint

This formalism for the window also makes it easy to see how the integral constraint
can be included in models [24]. For the power spectrum, the integral constraint is relevant
because, to formulate F (s) as in eq. (2), we have matched 〈n(s)〉 to the actual observed
density of galaxies. We can assume that the variations in the expected distribution of
〈n(s)〉 as a function of s are known, but that the normalisation is incorrect, so

(45) 〈n(s)〉assumed = (1 + C)〈n(s)〉true,

where C is a constant. The multiplicative nature of C with 〈n(s)〉 means that the constant
is inside the window function convolution and is equivalent to an additive contribution
to ξ0. We ignore the possibility that a mistake has also been made in the calculation of
I.

The size of the correction depends on how the randoms have been matched to the
galaxies. If the total number of weighted pairs has been matched, then we have forced
that P ′

0(0) = 0. In this case, the model to be compared to the data is

(46) P ′
,ic-corrected(k) = P ′

(k) − P ′
0(k = 0)

W 2
0 (k = 0)

W 2
 (k),

where

(47) W 2
 (k) = 4π

∫
ds s2W 2

 (s)j(sk).

Considering this from a different stand-point, by defining α by matching the total number
of weighted pairs in the estimator, we have a simple expression for the integral constraint
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to be included in the model to match the measurement. Thus this is the preferred method
for calculating α.

12. – Covariance matrix under Gaussian assumption

In order to make statistical inferences from the measured power, we need to model
the distribution from which it is drawn. It is common to assume that the power spec-
trum multipoles are drawn from a multi-variate Gaussian population, in which case the
Likelihood for the power spectrum is

(48) L(x|p,Ψtrue) =
|Ψtrue|√

2π
exp

[
−1

2
χ2(x,p,Ψtrue)

]
,

where

(49) χ2(x,p,Ψtrue) ≡
[
xd − x(p)

]
Ψtrue

[
xd − x(p)

]
.

In the example considered in these notes, the data xd, and model for the data x(p),
would be the power spectra (or correlation function), with the parameter p being the
cosmological parameters of interest. Ψtrue is the true inverse covariance matrix.

For power spectrum measurements the covariance is

(50) Cov [P ′
n(ki), P ′

n′(kj)] = 〈P ′
n(ki)P ′

n′(kj)〉 − 〈P ′
n(ki)〉〈P ′

n′(kj)〉,

where P ′
n(ki) is the window-convolved power-law moment of the power spectrum, cal-

culated in the local plane-parallel approximation, and binned into k-bin i. Each of the
window convolution (including weighting), local plane-parallel geometry, power-law mo-
ment and binning effects will complicate the covariance from the simple form without
these, which is given by

(51) Cov [P (k), P (k′)] =
2
V

[
P (k) +

1
n̄

]2

δD(k − k′).

Here, δD is the Dirac delta function and the shot noise term assumes that the galax-
ies Poisson sample the underlying matter field. V is the volume of the survey. This
expression follows from Wick’s theorem for a Gaussian random field with zero mean

(52) 〈δ1 δ2 δ3 δ4〉 = 〈δ1 δ2〉〈δ3 δ4〉 + 〈δ1 δ3〉〈δ2 δ4〉 + 〈δ1 δ4〉〈δ2 δ3〉,

and the standard expression for the variance of a Poisson sampling.
For the local plane-parallel power spectrum estimator of eq. (19), applying Wick’s

theorem to A′
n(k) leads to

Cov [P ′
n(ki), P ′

n′(kj)] =
1

(4π)2

∫
i

dΩk

∫
j

dΩk′〈A′
n(k)A′

n′(k′)∗〉〈A′
0(k)A′

0(k
′)∗〉(53)

+〈A′
n(k)A′

0(k
′)∗〉〈A′

0(k)A′
n′(k′)∗〉.
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No way of writing this equation in a form that allows its calculation using FFTs and
Hankel transforms has yet been found without also applying simplifying assumptions. A
common assumption to make is that the power spectrum is constant over the extent of
the window function, so that the convolution breaks down [3, 26, 27]. In ref. [27] it was
shown that this results in a form for the covariance that can be solved using only FFTs.

Because of these complications it is common to estimate the covariance matrix in a
brute-force way, from a large set of mock catalogues that match the survey geometry and
analysis method

(54) Cov [P ′
n(ki), P ′

n′(kj)]=
1

Nm − 1

Nm∑
m=1

[
P ′

n,m(ki)−P ′
n(ki)

][
P ′

n′,m(kj)−P ′
n′(kj)

]
,

where the sum is over Nm mock catalogues, and P ′ is the mean power spectrum over those
mocks. This method automatically includes all of the linear effects discussed above, and
can also include non-linear effects to the extent that they are included in the method
used to create the mocks, and the Gaussian assumption holds. Given fast methods
for creating the mocks and complications due to non-linear shot-noise, galaxy bias and
Redshift Space Distortions (RSD) there are many advantages to such an approach.

The disadvantages include that this covariance matrix lacks fluctuations caused by k-
modes larger than the simulation box —so-called supersample covariance [28]. This can
be included by adjusting the mocks to force each to have slightly different cosmological
parameters [26].

An additional problem is that the estimate of the covariance matrix has errors that
systematically distort the likelihood. Formally, eq. (54) gives an estimate drawn from a
Wishart distribution. We can allow for the bias induced using a perturbative analysis [29,
30], which has to be adjusted if parameter errors are estimated from the likelihood
surface [31]. Alternatively, as demonstrated by [32], one should perform a joint likelihood
analysis of both the power spectrum and covariance matrix. With the assumption of a
Jeffreys prior allowing us to use Bayes theorem to determine the distribution of the true
covariance matrix given our estimate from mocks, we need to adjust the likelihood of
eq. (48) to

(55) L(xd|x(p),Ψ) ∝
[
1 +

[xd − x(p)]Ψ[xd − x(p)]
Nm − 1

]−Nm
2

.

This offers a neater and statistically more rigorous method for correcting for the approx-
imate covariance matrix of eq. (54) compared with the perturbative solution.

13. – 1-point systematics

The measurement of the power spectrum from a galaxy survey is likely to be con-
taminated by systematic effects that alter the observed galaxy density such that the
fluctuations are not driven only by astrophysical processes. Due to the way most galaxy
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redshift surveys to date have been constructed by spectroscopic follow-up observation
of targets selected from imaging data, it is natural to think that there is a split in con-
taminants between angular and radial directions. However, this is not necessarily the
case: for example, removing faint targets in a patch of the sky would tend to remove
high-redshift galaxies in an apparent magnitude-limited sample. Consequently, we do
not make any such separation here.

Using the observed target distribution, coupled with maps of the distribution of
causes of potential problems —for example, imaging depth maps, or maps of bright
star locations— one can look for fluctuations in target density. We expect the cosmolog-
ical fluctuations to be independent of the systematics, and so any statistically significant
correlation is indicative of a problem in the sample. In refs. [33, 34] a careful analysis of
potential systematics in BOSS is under taken and a set of multiplicative weights is devel-
oped that correct the galaxy density for these fluctuations, in effect creating a different
window for the galaxies compared to the random catalogue, so that eq. (2) is changed to

(56) F (s) =
w(s)
I1/2

[wsysn(s) − 〈n(s)〉],

where wsys are the systematic weights. These weights increase the noise in our estimator.
This would be reduced by weighting instead the randoms to match the galaxies [35]. To
see this, consider the toy example of a Poisson distribution with mean and variance N ,
weighted by a set of weights with variance σ2

w. The variance of the weighted sample is
N(1 + σ2

w), and so is always greater than the unweighted field.
Weighting the randoms rather than the galaxies also shows that this multiplicative

weighting is equivalent to an additive contaminant [36]

(57) F (s) =
w(s)
I1/2

[n(s) − 〈n(s)〉] + fsys(s).

The benefit of writing the effect like this is that we can equate the weighting applied to
correct for systematics to the mode deprojection technique. Mode deprojection works by
setting the covariance of modes to be removed to be infinite in the covariance matrix of
the unbinned power

(58) Cov [P ′(k), P ′(k′)] → Cov [P ′(k), P ′(k′)] + lim
σ→∞σfsys(k)fsys(k′)∗.

In ref. [37] it was shown that this is mathematically equivalent to weighting the randoms,
modulo making the correct normalisation when calculating the power spectrum. The
standard procedure can easily be modified to include the required renormalisation when
measuring the power —adjusting the effective number of modes as required.

It is possible to extend these ideas to remove multiple contaminants, and to remove
sets of contaminants that span a space where systematic errors are suspected. However,
as discussed in [36], the problem in general lies not in removing the contaminants, but
knowing which modes are affected: the removal of contaminants only works for known
unknowns, and fails for unknown unknowns.
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14. – 2-point systematics

We now consider a common problem induced by the mechanics of fiber-fed multi-
object spectrographs. Most have a physical limit on how close the ends of fibers can
be placed in the focal plane of the telescope such that they cannot observe close targets
in a single pass of the instrument on the sky. Thus there is a geometrical difference
between the samples selected for observation and the parent sample from which it was
selected. Furthermore, in a sample of galaxies, close pairs tend to have a higher bias as
they are located in higher mass haloes compared with isolated galaxies. Thus the lack of
close pairs of galaxies due to fibre collisions changes the clustering between observed and
parent samples even at large separations due to the change in mean bias. This would
not be a problem if this difference occurred uniformly across the sky as we would then
be simply selecting a lower bias galaxy population compared with the full target sample.
However, this lack of pairs is often avoided in regions of overlapping observations, leading
to an anisotropic mean bias in the observed sample. In addition, obviously, the small-
scale clustering is strongly affected as we lose small-separation pairs, such that there are
no angular pairs with separation smaller than the instrumental cut-off in 1-pass regions.

The problem described above is inherently of higher order than the issues raised in
sect. 13. In that section, we considered issues that were equivalent to changing the
window through which the survey was observed. In contrast, close-pair effects are 2-
point in origin as they depend on the overdensity at two positions: we cannot observe
one galaxies if there is another nearby. To correct for these, we cannot easily use the
techniques described in sect. 13. Surveys such as DESI [38, 39] have more complicated,
but related problems due to experimental limitations on how the fibres can be placed in
the focal plane of the telescope.

In ref. [40] the Pairwise Inverse Probability (PIP) method is proposed to correct
for the kind of 2-point systematic arising from hardware limitations. For this we need a
complete parent sample from which the observed subsample is selected. The PIP method
estimates the probability that a pair of objects can be observed by counting how many
times it is observed in a set of possible surveys selected for observation from the parent
sample. This set can be created by translating or rotating the survey, or by rerunning the
algorithm used to select the observed subsample with different randomly chosen priorities
for different objects. The key thing is that all surveys in the set are equally likely, and the
number of pairs of objects in the parent sample that are never observed in any realisation
of the survey is negligible.

By weighting each pair by the inverse of this probability when counting pairs in order
to estimate the correlation function, we recover pair counts with the same expected value
as those of the full parent sample. As an example, consider the situation where close
pairs are only observed in parts of the survey. In order to ensure that there are no zero-
probability pairs in the parent catalogue, we need to move the survey when determining
the set of samples, so that any close-pair in the parent has a chance of falling into an
overlap region in some surveys in the set. Because they are only observed in selected
regions, close-pairs will be given a lower probability than wide-separation pairs, leading
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the counts to be upweighted in the sums for any realisation, correcting for this effect.
One issue with the technique is the time it takes to perform the calculation. For a

galaxy survey with 107 galaxies, there are 1014 pairs, and if we create a set of 103 possible
survey realisations, the PIP calculation is of order 1017. The computational burden can
be minimised by calculating the weights on-the-fly while pair counting to estimate the
correlation function, based on storing the selection of galaxies in each survey in a bit-
wise way (it is a yes/no decision on whether each object in the parent makes it into a
particular survey). The weight can then be quickly calculated using a bit-wise sum [40].

In ref. [41] it is shown how the angular clustering measurement in the parent can be
incorporated into the method to improve signal, while in [42] and [43] it was shown that
the method works for the Dark Energy Spectroscopic Survey mocks and the VIMOS
Public Extragalactic Redshift Survey (VIPERS), respectively.

A similar method to debias power spectrum measurements using only FFTs and
Hankel transforms has yet to be developed, and it would also be useful to have a method
to correct the overdensity field as used in reconstruction [44] for such effects.

15. – Binning in redshift and redshift-dependent weighting

Future surveys such as DESI [38,39] and Euclid [45] will cover a wide range in redshift,
such that there will be significant evolution in the populations of galaxies observed. Thus
we either need to allow for this evolution when analysing the data, or divide the survey in
redshift prior to analysis. Dividing galaxies based on their redshifts into shells will tend
to miss pairs of galaxies where galaxies are in different bins. It would also be possible to
split instead by radial pair-centre rather than galaxy position, which also mitigates for
the effect of the window on RSD measurements [46].

An alternative is to perform multiple analyses of the full sample using sets of weights
optimised to measure the evolving quantities of interest. I.e. binning can be seen as using
a set of top-hat weights in redshift, and this is not necessarily the optimal choice. Using
Fisher matrix based techniques, one can find sets of weights optimised for BAO [47],
RSD [48], and primordial non-Gaussianity [49] measurements.

These ideas were recently applied to the quasar sample in the extended-Baryon Os-
cillation Spectroscopic Survey (eBOSS), recovering BAO and RSD based measurements
on evolving parameters using multiple analyses with different sets of weights [50-53].

16. – Reconstruction

While the bulk motion of material in the Universe drives structure growth, it also
acts to smooth the primordial overdensity field, leading to the degradation of the BAO
feature on small scales. The basic idea behind reconstruction is to move the late-time
over-densities back to their initial positions, sharpening the BAO peak [44]. In terms of
information, the bulk motion moves the small-scale 2-point information into higher-order
terms, and reconstruction recovers this information [54].
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Reconstruction requires us to know the displacement field linking Eulerian and La-
grangian positions. This displacement field can be approximated using the standard
Zeldovich displacements

(59) ∇ · Ψ +
f

b
∇ (Ψ · r̂) r̂ = −δg

b
,

where Ψ is the displacement field, f = d lnD(a)/d ln a, D(a) is the linear growth rate,
and σ8 normalises the amplitude of the linear power spectrum.

Solving eq. (59) is complicated by the LOS-dependent RSD term, and that the RSD
field has a non-zero curl component. Two approaches have been proposed: solving this
equation on a grid spanning the survey using finite-difference techniques [55], and a
FFT based technique that iteratively solves for the LOS dependence [56]. Both of these
techniques have been successfully applied to the analysis of data (e.g. [57]). Equation (59)
is solved after smoothing the observed field in order to focus on the large-scale bulk
motions. This changes the shape of the recovered power spectrum, requiring changes in
BAO fitting routines [58].

It is easy to imaging that we can do better than solving eq. (59) as a way to recover
the bulk motions. For example there is extra information available —such as that the
initial distribution of over-densities was homogeneous. The development of algorithms
to reconstruct the initial density field from an evolved field has a long history (e.g. [59]),
stretching back even before the improvement of BAO observations was considered. Many
methods have been proposed. Recent highlights include: Iterative reconstruction [60,61],
which removes the need to specify a smoothing scale. More complicated schemes have
been proposed based on limiting the information used, allowing perturbation-theory-
based solutions [62-64]. The extension of such methods to biased tracers [65] and in-
cluding RSD [66], have also been recently considered. Clearly, for the next generation of
experiment, reconstruction will be improved compared to the algorithms used for BOSS,
and we will have many methods to choose from.

17. – Conclusions

This update on the lecture notes I provided 5 years ago at a previous graduate school
in Varenna [1] clearly shows that the best analysis method applied to measure clustering
in galaxy surveys continues to change, with better techniques being developed alongside
improvements in the experiments themselves. The techniques being used in analyses
now are very different and more robust than those used 5 years ago, and are resulting in
more accurate measurements. Given the excellent data becoming available in the next
few years from DESI and Euclid, it is clear that there is a strong driver for techniques
to continue to be developed. I look forward to writing the next set of notes in 5 years
time, if I am invited back to lecture again at a Varenna school.
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Summary. — We review the effects of modified gravity theories, in particular the
symmetron and f(R) gravity, on the nonlinear regime of structure formation. In
particular, we investigate the velocity dispersion of galaxy clusters as a function of
the halo masses, how the matter power spectra depends on the coupling, range, and
screening scale of the fifth force, and on possible ways of detecting violations of the
equivalence principle using the mass inferred via lensing methods versus the mass
inferred via dynamical methods. Furthermore, we show how one could use different
voids statistics as one of the most promising probes of modified gravity.

1. – Introduction

Extended theories of gravity have been considered as a new paradigm to cure short-
comings of General Relativity at infrared and ultraviolet scales. They are an approach
that, by preserving the undoubtedly positive results of Einstein’s theory, are aimed to
address problems recently emerged in astrophysics, cosmology and high-energy Physics.
In particular, problems like dark energy and dark matter [1-7].

Gravity theories beyond General Relativity may possibly explain several cosmological
puzzles, specifically the present accelerated expansion of the Universe [1]. Modified
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gravity must, however, comply with strong requirements: One is that the model must
have similar cosmological predictions to those of ΛCDM for the background evolution
and the linear large-scale structures [8]. Another condition is that the modifications to
General Relativity are suppressed at small scales [9]. This requirement is assured through
the so-called screening mechanisms [10].

Since different modified gravity theories can be degenerate with regard to both the
background cosmology and the growth rate of linear perturbations, it is crucial to identify
new probes that can be used to break these degeneracies. In this paper we study the
effects of a class of screened modified gravity models in the nonlinear regime of structure
formation. The aim is to predict possible smoking guns of modified gravity and of
screening mechanisms at cluster of galaxy scales.

2. – Theoretical models

Scalar-tensor theories are an extension of General Relativity that add a scalar field ϕ

to the standard Einstein-Hilbert Lagrangian. A general Lagrangian for the scalar field is

L = −1
2
∂μϕ∂νϕ − V (ϕ) + β(ϕ)Tμ

μ ,(1)

where V (ϕ) is the self-interacting potential, β(ϕ) is a coupling function and Tμ
μ is the

trace of the matter energy-momentum tensor. The scalar field gives rise to an additional
fifth force, which can be quantified by γ ≡ |FFifth|/|FN|, where FN is the Newtonian
force. Experiments constrain γ � 1 in the Solar System. A screening mechanism with
the aim to hide this field from local gravity experiments can be realised in two different
ways:

Density dependent mass: If the mass of the field m2(ϕ) is large in dense environments,
then the fifth force mediated by the scalar field is suppressed on scales above its Compton
wavelength. On the other hand, in low-density environments, the mass can be light
and the scalar field mediates a long-range fifth force. This is the so-called Chameleon
screening [11].

Density dependent coupling: If the coupling to matter β(ϕ) is small in the region
of high density, the strength of the fifth force FFifth is weak and the modifications to
gravity are suppressed. On the other hand, in low-density environments, the size of
the fifth force can be of the same order as standard gravity. This idea is the so-called
Symmetron mechanism [12].

2.1. Chameleon-f(R) gravity . – The Lagrangian for this theory is

S =
∫

d4x
√−g

1
16πG

(R + f(R)) + Sm(gμν , ψi).(2)

In the quasi-static and weak-field limits the equations of motion become

∇2Φ =
16πG

3
a2δρm +

1
6
a2δR, ∇2fR = −a2

3
[δR + 8πGδρm],(3)
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where δρm = ρm − ρ̄m and δR = R − R̄ are the density and Ricci scalar perturbations
(overbars denote background quantities), and fR = df(R)/dR. In this formulation, fR

plays the role of the scalar degree of freedom ϕ that determines the fifth force.
We choose the Hu-Sawicki model [13] as a working example, which is given by

f(R) = −m2 c1(R/m2)n

c2(R/m2)n + 1
,(4)

where m2 = H2
0Ωm is a mass scale and c1, c2 and n are model parameters. One recovers

a ΛCDM expansion history by setting c1/c2 = 6ΩΛ/Ωm. In this paper we consider n = 1,
and we consider models with |f̄R0| = 10−4, |f̄R0| = 10−5 and |f̄R0| = 10−6.

Notice that the modified Poisson equation, eq. (3), can also be written as

∇2Φ = ∇2ΦN − 1
2
∇2fR.(5)

This makes explicit that in f(R) models the total gravitational force is governed by
a modified gravitational potential Φ = ΦN − 1

2fR. It is the nonlinearity of f(R) in
eq. (4) that gives rise to the Chameleon screening, and the screening of the fifth force is
determined by the depth of the gravitational potential ΦN .

2.2. Symmetron. – The Symmetron model [12] action is given by

S =
∫

dx4√−g

[
R

16πG
− 1

2
(∂ϕ)2 − V (ϕ)

]
+ Sm(g̃μν , ψ).(6)

The matter fields ψ couple to the Jordan frame metric g̃μν , which relates to the Einstein
frame metric gμν as g̃μν = A2(ϕ)gμν . The coupling function A(ϕ) is

A(ϕ) = 1 +
1
2

( ϕ

M

)2

,(7)

where M is a mass scale. The total force felt by matter is given by

F = ∇
(

ΦN +
1
2

ϕ2

M2

)
= ∇ΦN +

ϕ∇ϕ

M2
.(8)

The potential is taken to be

V (ϕ) = V0 − 1
2
μ2ϕ2 +

1
4
λϕ4,(9)

where the value of V0 is determined by the condition that the model gives rise to the
observed accelerated expansion of the Universe [14]. The field equation for ϕ reads

�ϕ = Veff,ϕ,(10)
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where for nonrelativistic matter the effective potential is given by

Veff(ϕ) = V0 +
1
2

( ρm

M2
− μ2

)
ϕ2 +

1
4
λϕ4.(11)

In the quasi-static limit, eq. (10) becomes

∇2χ =
a2

2λ2
0

(
ρm

ρSSB
− 1 + χ2

)
χ,(12)

where χ = ϕ/ϕ0.
Screening in the Symmetron model is very similar to the Chameleon-f(R) case in the

sense that the condition for screening is determined by the local gravitational potential.
The important difference is that the coupling β(ϕ) = β0ϕ

ϕ0
, which is constant in f(R)

gravity, now depends on the local field value. In high-density regions, ρm > ρSSB, the
field falls into the minima ϕ = 0, and since the coupling is proportional to ϕ, the fifth
force vanishes.

We define three physical parameters L, β and zSSB which are the range of the field,
the coupling strength to matter and the redshift of symmetry breaking:

L =
λ0

Mpc/h
=

3000H0√
2μ

, β =
φ0Mpl

M2
=

μMpl√
λM2

, (1 + zSSB)3 =
μ2M2

ρm0
.(13)

We simulate four symmetron models: symm A (zssb = 1, β = 1, L = 1), symm B

(zssb = 2, β = 1, L = 1), symm C (zssb = 1, β = 2, L = 1), and symm D (zssb = 3,
β = 1, L = 1).

3. – Efficiency of screening mechanisms

The common feature to all the screening mechanisms proposed in the literature is that
they are built, and their efficiency tested, assuming the so-called quasistatic approxima-
tion for the field equations. For instance, in scalar-tensor theories, a scalar degree of
freedom is introduced into the standard Einstein-Hilbert action. This field follows the
Klein-Gordon equation of motion, which determines both its time and spatial variations.
When constructing screening mechanisms to hide the scalar field within the accurately
tested regimes, the quasistatic approximation is invariably applied to the equations of
motion for the field. This simplifies the calculations by implying that the scalar field is
at rest in the minimum of the local effective potential at all points in space and time.
This reduces the equation of motion to a Poisson-like equation, which is readily solved
to find the approximated scalar field value at any point.

Notice, however, that the full equation of motion for the scalar field is, in fact, a
second-order differential equation in time, more similar to a wave equation. There-
fore, ignoring the time evolution of the field, via the quasistatic approximation, is to
shortfall effects that are only possible to realize when considering the full equation of
motion [15,16].
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3.1. Solar System constraints. – In order to test how screening mechanisms work in the
Solar System, the community generally chooses a static, spherically symmetric matter
distribution to mimic the Galaxy. We follow this approach and choose the Navarro-
Frenk-White (NFW) density profile with the characteristics to represent the Milky Way
Galaxy, specifically with a virial radius of rvir = 137 kpc/h and concentration c = 28,
resulting in a halo mass of 1.0 × 1012M� and a circular velocity of 220 km/s at 8 kpc.
The reason for the high value of the concentration is simply that we are modeling not
only dark matter, but the total matter of the Milky Way, which is more concentrated
than the pure dark matter halo. We also did the calculations with an Einasto profile
with identical virial mass, and found that the results presented are not very sensitive
to the choice of distribution. Because of limitations of spherical symmetry, we did not
model a galactic disc.

One of the most precisely measured gravity parameters to probe deviations from
General Relativity is the parametrized post-Newtonian (PPN) parameter γ. It can be
expressed as the ratio of the metric perturbations in the Jordan frame, ΨJ and ΦJ . We
find the expression for γ − 1 to be

γ − 1 = − φ2

M2

2
φ2

M2 − 2ΨE − 2ΨE
φ2

M2

.(14)

In General Relativity, γ = 1 exactly. The strongest constraint to date, measured by the
Cassini spacecraft [17], is γ − 1 = (2.1 ± 2.3) × 10−5.

The screening mechanism of the symmetron model works by modifying the effective
potential such that the field value is pushed towards zero in high-density regions — like
the inner regions of the Galaxy. This results in γ − 1 → 0, such that the deviations from
General Relativity in the proximity of the Solar System are small. The same occurs for
the fifth force Fφ associated to the scalar field.

We calculate the γ parameter arising from the smoothed matter distribution of the
Milky Way. Note that, by using this method, we find an upper bound on the actual
value of |γ − 1| in the inner Solar System. This is because we do not include the pres-
ence of massive bodies like the Sun, which will increase the screening to some degree.
Nevertheless, most of the screening is believed to come from the matter distribution of
the Galaxy because, in the symmetron model, the Solar System cannot screen itself in
vacuum, and therefore, the theory depends on a working screening from the Galaxy.

3.2. Simulations. – Since the equation of motion is a hyperbolic partial differential
equation, it can be solved as an initial value and boundary condition problem. The
initial condition at t = 0 is chosen to be the static solution of the nonlinear Klein-
Gordon equation of motion. With a constant boundary condition, this would imply that
the field will stay at rest forever. The boundary condition at the edge of the simulation
at rmax is chosen to emulate incoming sinusoidal waves in the scalar field, specifically
χ(rmax, t) = χ0(rmax) + A sin(ωt). Possible sources of such waves will be discussed
later.
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Fig. 1. – The PPN parameter |γ − 1|, plotted against distance from the center of the Galaxy.
The curves show |γ − 1| in the quasistatic case (blue dashed line), as well as after a scalar wave
has entered the halo (black solid line). The vertical (green dotted) line indicates the position
of the Solar System, and the horizontal (red dotted) line indicates the highest allowed value of
γ − 1 in the Solar System from the Cassini experiment. When the wave enters the Milky Way,
it increases the value of |γ − 1| by several orders of magnitude [15].

We set up a radial grid, divided into linearly spaced steps Δr up to rmax = 4 Mpc/h.
On each of the grid points we specify the matter density according to the NFW halo.
Starting from the initial value and with the inclusion of incoming waves, we evolve eq. (10)
forward in time steps of size Δt, using the leapfrog algorithm for time integration in each
grid point. Tests of this technique applied to the symmetron are presented in [18,19]. We
are only interested in events that happen during the last few megayears of cosmic time,
meaning that we take the approximations z ≈ 0 and a ≈ 1 in all computations. Spatial
derivatives are found using a finite-difference method in spherical coordinates, assuming
all derivatives in the tangential directions vanish. The code outputs the evolution of
the scalar field and, more importantly, the value of |γ − 1| at 8 kpc from the center —
corresponding to the position of the Solar System in the Milky Way.

We confirm that the values used for technical parameters of our solver give a stable
solution by running convergence tests. These are performed by increasing the resolution
in factors of two (both temporal and spatial resolution separately) until the resulting
scalar field at some later time tmax does not change significantly with resolution.

3.3. Results. – Figure 1 shows an example of how the PPN parameter γ changes
when a wave enters the inner 100 kpc of the Milky Way. The vertical line shows the
position of the Solar System, which we assume to be 8 kpc from the Galactic Center. The
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Fig. 2. – Maximum increase in the PPN parameter |γ − 1| due to incoming scalar field waves
at the position of the Sun in the Galaxy (8 kpc from the center) as a function of amplitude and
frequency of the incoming waves. The color indicates by which factor |γ − 1| is increased when
compared to the quasistatic case with no waves [15].

modifications to gravity are initially screened very well in the regions around this position,
with |γ − 1| < 10−8 (blue dashed line). However, after the wave has arrived (black
solid line), the scalar field is perturbed enough to breach the Solar System constraints,
|γ − 1| > 2 × 10−5. In other words, the screening mechanism breaks down under these
circumstances. The wave in this particular simulation has an amplitude A = 0.01 and
a frequency ω = 40 Myr−1. The cusps are regions where the scalar field is zero, which
exist since the wave oscillates both above and below χ = 0.

When measuring γ arising from a single sinusoidal wave with low frequency, there is a
possibility that the local wave is between two extrema at the time of measurement. This
could render this kind of detection difficult for several thousand years. Nevertheless,
given that various astrophysical events — such as supernovae — can generate waves,
the probability that one of the wavefronts would bring us away from the minima at the
present time is not negligible.

In order to investigate how our result depends on the frequency ω and amplitude A

of the waves, we simulate incoming waves with several values of these two parameters.
Figure 2 shows the maximum growth of |γ − 1| that we found at 8 kpc from the Galactic
center. Brighter colors mean a larger increase of |γ − 1| compared to the quasistatic
approximation. The values of the frequency and amplitude that lie in the black region
of the plot, give waves that do not significantly impact γ compared to the quasistatic
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solution. Therefore, in this region of parameter space, the screening mechanism is efficient
and hides the extra degree of freedom from gravity experiments.

From fig. 2, it is possible to conclude that higher frequencies and amplitudes for the
incoming scalar waves give larger deviations from the General Relativity result (i.e., γ =
1). The limit where amplitude and frequency go to zero is equivalent to the quasistatic
limit, where no waves are produced and their energy is zero. As one goes into the high-
frequency and -amplitude regime, the waves carry more energy, and therefore, the PPN
parameter γ starts deviating significantly from the quasistatic limit. Note that, since in
the symmetron model, the fifth force is Fφ ∝ ∇φ2/M2, these values can be immediately
extrapolated to the impact of the waves on this quantity.

The dependence of the γ PPN parameter on the wave amplitude is straightforward
to understand: When a wave propagates through the screened regions of the halo, a
larger-amplitude wave will lead to larger displacements of the field from the screening
value φ ≈ 0. Therefore, |γ − 1| ∝ φ2 will increase accordingly.

The frequency dependence of the γ parameter is a consequence of the following: The
effective potential of the symmetron grows steeper and narrower in high-density areas.
In other words, the mass of the field increases towards the center of the halo. Therefore,
it becomes more difficult to perturb the field away from the minimum, and a higher wave
energy is needed to displace it. Specifically, if the energy of the external waves is small
compared to the mass of the field, the field will not be perturbed and the γ parameter
will not be affected.

The results obtained imply that if waves with sufficient amplitude or frequency can
somehow be generated in a given model for modified gravity, they will have to be taken
into account when constraining the model parameters. Cosmic tsunamis, resulting from
extreme events, could even completely ruin the screening mechanisms in modified gravity
by increasing the deviations from General Relativity by several orders of magnitude
compared to the quasistatic case. A subject that must be discussed now is the generation
of such waves. Extreme events on small scales, such as collision of neutron stars, stellar,
or super-massive black holes are obvious examples. Generation of waves by pulsating
stars are another possibility.

In the specific case of the symmetron model, it is possible to obtain waves from
events that occur on cosmological scales. First, the symmetron model undergoes a phase
transition when the density falls below a specific threshold. This transition first occurs
in voids when the expansion factor is close to aSSB [18, 19]. When this happens, the
scalar field receives a kick, which produces waves traveling from the center of the voids
towards the dark matter halos. By doing postprocessing of simulations presented in [20],
we find that, in a symmetron model with slightly different parameters, the amplitude
of cosmological waves is typically smaller that 0.1 and the associated frequencies are of
the order of 1/Myr. Note that these values depend on the model parameters and, hence,
must be taken only as indicative. Scalar waves can also be created through the collapse of
topological defects, which are known to exist in any model in which such phase transition
occurs.
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Fig. 3. – Acceleration |ẍ|Fifth in the f(R) and symmetron models as a function of radius for
three different mass bins. Also, the pure Newtonian gravitational force |ẍ|Newton is included
from the ΛCDM data set (black, unfilled circles) [21-24].

4. – Distribution of fifth force in dark matter haloes

To understand the main features of nonlinear structure formation within screened
modified gravity, it is important to investigate the magnitude of the fifth force inside the
dark matter haloes [2,21-24]. For that, we run N -body simulations for each model. The
simulations were run with the code Isis [25]. The background cosmology for all the
models is (Ωm0,ΩΛ0,H0) = (0.267, 0.733, 71.9). The data sets are taken at z = 0, and
all simulations were run with the same initial conditions.

The halos were identified using the spherical overdensity halo finder AHF [26] Amiga
Halo Finder. For the analysis we used only halos consisting of at least 100 particles
which limits the smallest halo we can probe to M ∼ 3 × 1012M�h−1. In the high-mass
end the simulation-box limits the maximum halo-masses we can study and the largest
halos in our simulations has mass M ∼ 2–3 × 1015M�h−1. We have checked that the
mass-function of our simulation agrees to ∼ 10%–20% to simulations with larger box-size
and also to the fit to the mass-function in the range M ∈ [1013, 8 × 1014]M�h−1. The
total number of halos in this mass range in our simulations, which is what we used for
the upcoming analysis, is ∼ 8000.

Figure 3 shows the value of the fifth force acceleration as a function of the cluster
radius at redshift z = 0. All the curves show a characteristic maximum, whose position
is dependent on the model parameters and the mass of the haloes. In the f(R) case, the
maximum of the fifth force profile moves towards larger radii when increasing mass, and
decreasing |fR0|. This is a consequence of the screening that is activated in the centre
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Fig. 4. – Acceleration |ẍ|Fifth in the f(R) and symmetron models as a function of halo mass for
two different radial bins. The black unfilled circles represent |ẍ|Newton [21-24].

of the haloes, and when decreasing |fR0|. For the symmetron model, an increase of β or
zSSB leads to a stronger fifth force. A greater β value increases the |ẍFifth| values by a
constant factor (symm A vs. symm C) while altering zssb changes the shape of the fifth
force profile in general.

We show in fig. 4 the acceleration |ẍFifth| as a function of halo mass as measured at
two different radii. It is clear that the fifth force is screened in large massive haloes (since
they have a higher density) while the force is active in the low-mass range (where the
density is lower).

The dependence of the symmetron fifth force on the redshift of symmetry breaking
zSSB is clear from the figure: the higher the symmetry breaking, the higher the masses
that are unscreened and affected by the fifth force. The low-mass end of the distribution is
insensitive to changes in zSSB, since in there the density is low and the force is unscreened.
Differences in the models are also dependent of the strength of the coupling β.

5. – The matter and the velocity power spectra

Due to the presence of the fifth force, it is expected in modified theories of gravity,
that the acceleration felt by particles is in general higher than in General Relativity [27].
Therefore, a promising observable and probe of modified gravity is the measure of velocity
distributions in galaxy clusters.

The global statistical properties of the velocity field are described by the velocity
divergence power spectrum. Normalising the divergence of the velocity field �∇ · v with
the Hubble parameter gives the dimensionless expansion scalar θ = 1

H
�∇ · v.
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Fig. 5. – The fractional difference of the velocity divergence (above) and matter (below) power-
spectra with respect to ΛCDM for the Symmetron and f(R) simulations [27].

We compute the power-spectrum of θ from our simulations. To characterize this quan-
tity, we study the relative particle velocity, which is simply defined as vrel =

√
(v − vH)2,

where v and vH are the particle velocity and its halo velocity, respectively. For the latter,
we use the core velocity of the halo.

In fig. 5 we show the fractional difference in the velocity divergence with respect to
ΛCDM for both modified gravity models. For comparison we also show the matter power-
spectrum. For our f(R) simulations we find that the difference with respect to ΛCDM in
the velocity divergence spectrum can be roughly two times as large as the difference in
the matter power spectrum. For the Symmetron the difference can be much larger. For
the symm C model (which is the model with the largest value of the coupling strength
β), we see that (ΔP/P )m ≈ 10% at k = 1h/Mpc while (ΔP/P )θ ≈ 200%. The symm C

model has a fifth force in unscreened regions four times that of the other Symmetron
models and this is likely why we get this extreme signal.

The reason why generally we have (ΔP/P )θ � (ΔP/P )m is that the velocity di-
vergence field is not mass-weighted in any way. Hence, low-density regions (voids) will
contribute a large part of the signal in the velocity divergence power-spectrum (since
voids contribute a large part of the volume in the Universe), which is not the case for the
matter power-spectrum. Now the fifth force is generally not screened in low-density re-
gions, so consequently velocities are boosted to significantly higher relative values (when
compared with ΛCDM) in voids opposed to in clusters. This indicates that low-density
regions like cosmic voids, as we would expect, is the place where the strongest signals of
modified gravity can be found.

6. – The dynamical and lensing masses

A general prediction of Modified Gravity theories with screening mechanisms is viola-
tions of the equivalence principle. The equivalence principle can be tested by observing
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differences between the gravitational mass and the inertial mass of objects, in cosmology
through measurements of galaxy clusters masses. Astronomers infer the masses of galaxy
clusters using lensing observations and dynamical methods. The former is a probe of the
gravitational mass, while the later is a measure of the inertial mass. Differences between
these two masses would be a smoking gun of modified gravity and screening mechanisms.
In order to make predictions within the chamleon-f(R) and the symmetron gravity, we
first need to compute the Bardeen potentials.

In the Jordan-frame we have

ds2 = a2(η)
[−dη2(1 + 2Φ) + (1 − 2Ψ)d�x2

]
,(15)

where Φ � ΦN + δA(φ), Ψ � ΦN − δA(φ), with

δA(φ) ≡ A(φ) − 1 =
1
2

(
φ

M

)2

.(16)

The fifth-force potential is given by the difference in the above two potentials

Φ− =
Φ − Ψ

2
= δA(φ).(17)

Lensing on the other hand is affected by the lensing potential

Φ+ =
Φ + Ψ

2
= ΦN ,(18)

which satisfies the Poisson equation

∇2Φ+ = 4πGa2δρm.(19)

This is the same equation as in GR since it is conformally invariant and therefore photons
are not affected by the fifth force. The lensing mass is defined as

ML =
1

4πGa2

∫
∇2Φ+dV,(20)

which is the gravitational mass of the halo. It is determined from the simulations by
counting the number of particles within a given radius. For spherical symmetry, using
the Stokes theorem, we have

ML(r) ∝ r2 dΦ+

dr
.(21)

The dynamical mass MD(r) of a halo is defined as the mass contained within a radius r

as inferred from the gravitational potential Φ, i.e.

MD(r) =
1

4πGa2

∫
∇2ΦdV,(22)
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where the integration is over the volume of the body out to radius r. For spherical
symmetry, and using Stokes theorem, we find

MD(r) ∝
∫

r2 dΦ(r)
dr

= r2

(
dΦN

dr
+

φ

M2

dΦ
dr

)
.(23)

The terms in the brackets are recognised as the sum of the gravitational force and the
fifth-force. Observationally, MD can be determined from measurements of velocity dis-
persion of galaxies in clusters.

In GR the lensing mass is the same as the dynamical mass, but they can be signifi-
cantly different in modified gravity. We follow [28] and define the relative difference

ΔM (r) =
MD

ML
− 1 =

dΦ−/dr

dΦ+/dr
.(24)

This allows us to quantify the difference between the two masses in the simulations. In
GR we have ΔM ≡ 0 while in the symmetron model ΔM will vary depending on the
mass of the halo and its environment. The theoretical maximum is achieved for small
objects in a low-density environment where the screening is negligible and reads

ΔMax
M (r) = 2β2.(25)

In fig. 6 we show ΔM (r340) as a function of the halo mass in both high-density (pur-
ple circles) and low-density (blue circles) environments. This figure shows that GR is
recovered for larger halos, independent of the environment. For low-mass halos we see a
significant dispersion of ΔM from 0 to the maximum value obtained in low-density en-
vironments for the same mass ranges. This is because low-mass halos cannot efficiently
screen themselves and must rely on the environment to get the screening. As expected,
we see a clear trend that the small halos which are efficiently screened generally reside
in high-density environments, while those which are less screened lie in low-density en-
vironments. Massive halos on the other hand can screen themselves efficiently and the
environment only plays a small role in their total screening.

In fig. 7 we show ΔM (r) as a function of the distance r from the halo centre, for small
and large halos in high- and low-density environments, respectively. Again we see a
large difference between large halos in dense environments and small halos in low-density
environments. The r-dependence of ΔM (r) is shown to be rather weak in high-density
environments since the value of the scalar field inside the halo is mainly determined by
the environment, while in low-density environments the value of the scalar field mainly
depends on the mass of the halo, which leads to a stronger r-dependence.

Note also that in all the figures above the deviation from GR is stronger for higher
symmetry-breaking redshift zSSB, and for larger values of the coupling β, which implies
a stronger fifth force and therefore a stronger effect.
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Fig. 6. – ΔM (r340)/ΔMax
M as a function of the halo lensing mass ML for high-density environments

(purple) and low-density environments (blue) where ΔMax
M = 2β2. The error bars are 1σ. For

the high-mass halos we recover GR independent of the environment as the effectiveness of the
screening increases with mass [28].
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Fig. 7. – ΔM (r)/ΔMax
M as a function of the rescaled halo radius r/r340, where ΔMax

M = 2β2, for
high- and low-density environments and small (red) and large (blue) halos. The error bars are
1σ [28].
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7. – Thermal versus lensing mass measurements

In order to compare the lensing and thermal mass of the clusters we took mea-
surements from [29] and [30]. These two data-sets provide both thermal and lens-
ing mass measurements and uncertainties for a total of 58 clusters in the mass range
M/M�h−1 ∈ [5 × 1013, 3 × 1015] so there was no need to combine the mass estimates in
a similar fashion as in the previous section. We divided the data for the thermal mass
measurements by the data for the lensing mass measurements while properly propagating
the error. As we’re interested in a systematic deviation, we binned the data in 6 (lensing)
mass bins which we stratified so that roughly the same number of halos are in each bin.

An important point to bear in mind when working with thermal mass estimates is
the fact that the measured quantity in this case is the temperature of the intracluster
gas. The conversion to a mass assumes hydrostatic-equilibrium, as done, e.g., in [29,30].
However, it has been shown that in reality the pressure of the intracluster medium
will have a significant non-thermal component generated by random gas motions and
turbulence. This means the inferred thermal mass given a temperature T will be slightly
lower than the true mass of the cluster.

While empirical models exist in order to quantify the magnitude of this deviation
(where the non-thermal component yield variations to the mass from 10% to 30%) we
want to stress that these were calibrated against pure ΛCDM simulations, and thus
their results cannot be taken into account when dealing with modified gravity. One
has to consider instead that if gravity is truly enhanced, the temperature of the intra-
cluster medium will be hotter and, thus, the inferred thermal mass will be greater (as
shown in sect. 5). This means the effect of any non-thermal physics (such as cosmic
rays) is degenerate with modified gravity and, consequently, at the present time thermal
measurements cannot be used to constrain modified gravity [31-33].

Figure 8 illustrates this degeneracy. Here, we compare the Mtherm/Mlens results of
the Symmetron D model and our ΛCDM simulation to hypothetical measurements where
we modelled the contribution of non-thermal pressure as

Pnon-thermal = Ptotalg̃(M200),(26)

which resembles the functional forms fitted to ΛCDM simulations (see also subsect. 7.1).
Thus, our proposed non-thermal contribution is not unreasonable. Modelling a non-
thermal contribution as given by eq. (26) while keeping the total pressure Ptotal =
Ptherm + Pnon-thermal (and, thus, the halo structure) constant is equivalent to rescaling
the temperature as T ← T (1 − g̃) since naturally Ptherm ∝ T .

As fig. 8 shows in the case of a non-thermal contribution the Mtherm measurement
(which is carried out the same way as done by observations, i.e., assuming no non-thermal
contribution) matches the lensing mass reasonably well in the case of modified gravity.
We achieved this by choosing the functional form of g̃ in eq. (26) as

g̃(M) =
1

1 + ãM α̃
13

,(27)
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Fig. 8. – Ratio of thermal and lensing mass for ΛCDM and Symmetron D, the symmetron
model with the largest deviations from ΛCDM. Also included is the hypothetical measurements
obtained by including the non-thermal contribution described in sect. 7 [31-33].

with M13 ≡ M/(1013M�h−1) and (ã, α̃) = (3/4, 2/3). This serves as an example of how
unknown non-thermal physics can cancel out any signal originating from modified gravity
— which is a severe problem when trying to place constraints on the modifications of
gravity using thermal measurements.

This problem will be alleviated once the contribution of non-thermal effects can be
directly quantified using observational data (e.g., by measuring directly the intra-cluster
turbulence). In the sequel of this subsection, we assume this has been done and is has
been shown the contribution of the non-thermal components is negligible. We do this in
order to show which constraints on modified gravity can be placed hypothetically using
thermal mass estimates.

7.1. Including the non-thermal pressure component . – It is known that the pressure
of the intracluster medium will have a significant non-thermal component generated by
random gas motions and turbulence, so that the total pressure PTot of a cluster is

PTot(< r) = Pthermal(r) + Pnon-thermal(r).(28)
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Fig. 9. – Ratio of the combined thermal and non-thermal mass and lensing mass for the analyzed
f(R) models (left panel) and Symmetron models (right panel) [31].

This results in the mass estimates will consist of a thermal and non-thermal component
as well

M(< r) = Mthermal(r) + Mnon-thermal(r),(29)

where

Mthermal(r) = − r2

Gρgas(r)
dPthermal(r)

dr
,(30)

Mnon-thermal(r) = − r2

Gρgas(r)
dPnon-thermal(r)

dr
.(31)

By using Pthermal = kngasTgas, where ρgas = μmpngas, we find that

dPthermal

dr
=

kTgas(r)
μmp

(
dρgas(r)

dr
+

ρgas(r)
Tgas(r)

dTgas(r)
dr

)
(32)

so that

Mtherm = −kBr2Tthermal(r)
μmpG

(
d ln ρthermal

dr
+

d lnTthermal

dr

)
,(33)

as show earlier in the paper.
Often, the non-thermal pressure is expressed as a fraction of the total pressure

Pnon-thermal(r) = g(r)Ptotal(r) =
g(r)

1 − g(r)
Pthermal ,(34)
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with the derivative

dPnon-thermal

dr
=

1
1 − g(r)

(
g(r)

dPthermal

dr
+

dg(r)
dr

Pthermal(35)

+
g(r)

1 − g(r)
dg(r)
dr

Pthermal

)
.(36)

A fit to the g-function has been found from ΛCDM simulations to be

g(r) = αnt(1 + z)βnt

(
r

r500

)nnt
(

M200

3 × 1014M�

)nm

,(37)

where the free variables have the ΛCDM best-fit values αnt = 0.18, βnt = 0.5, nnt = 0.8,
and nM = 0.2. The derivative of the g-factor is

dg(r)
dr

=
nnt

r
g(r).(38)

Using the best fit we redo the analysis from before, now including the non-thermal
pressure contribution.

As we can see the results now differs: with the non-thermal pressure component having
introduced a strong mass dependence. However, we want to stress that this is just one
particular example as the current expression of the non-thermal pressure contribution is
derived from standard gravity simulations is strongly model dependent. Thus, we cannot
simply use the expression as is for the modified gravity models.

In spite of this complication, we want to note that in principle it is possible to use
the ratio between the thermal and lensing mass to constrain screened modified gravity
theories, and also — when including the kinetic mass — to rule out certain combinations
of non-universal coupling. All this, however, requires the contribution of the non-thermal
pressure to be “under control”, i.e., the magnitude of the intra-cluster turbulence are at
least limited by observations.

8. – Modelling void abundance in modified gravity

Due to the fact that screening mechanisms are much less efficient in low-density
regions, then voids are clearly one of the most promising astrophysical objects to observe
signatures of a strong and active fifth force, and, therefore, to probe possible deviations
from General Relativity and evidence for Modified Gravity. In this section we review in
detail how one can use voids statistics to perform such work.

8.1. Linear power spectrum. – The spherical evolution model is usually the first step
to investigate the abundance of virialized objects tracing the Universe structure, such as
halos, and likewise it is a promising tool for voids [34]. It also offers a starting point to
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study the collapse of non-spherical structures and the parameters required to quantify
the abundance of these objects within extended models.

The large-scale structure of the Universe is well characterized by the evolution of dark
matter, which interacts only gravitationally and can be approximated by a pressureless
perfect fluid. The line element for a perturbed Friedmann-Lemâıtre-Robertson-Walker
(FLRW) metric in the Newtonian gauge is given by

ds2 = −a2(1 + 2Ψ)dτ2 + a2(1 − 2Φ)dl2,(39)

where a is the scale factor, τ is the conformal time related to the physical time t by
adτ = dt, dl2 is the line element for the spatial metric in a homogeneous and isotropic
Universe and Ψ and Φ are the gravitational potentials.

For a large class of modified gravity models, the perturbed fluid equations in Fourier
space are given by

δ̇ = −(1 + δ)θ,(40)

θ̇ + 2Hθ +
1
3
θ2 = k2Φ,(41)

−k2Φ = 4πGμ(k, a)ρ̄mδ,(42)

where δ = (ρm − ρ̄m)/ρ̄m is the matter density contrast, θ is the velocity divergence,
H = ȧ/a is the Hubble parameter and dots denote derivatives with respect to physical
time t.

The first is the continuity equation, the second the Euler equation and the last is the
modified Poisson equation, where modified gravity effects are incorporated within the
function μ(a, k). In general this function depends on the scale factor a as well as physical
scale or wave number k in Fourier space.

Combining these equations we obtain an evolution equation for spherical perturba-
tions in modified gravity given by

δ′′ +
(

3
a

+
E′

E

)
δ′ − 4

3
(δ′)2

1 + δ
=

3
2

Ωm

a5E2
μ(k, a)δ(1 + δ),(43)

where primes denote derivatives with respect to the scale factor a, E(a) = H(a)/H0,
H(a) is the Hubble parameter at a, H0 is the Hubble constant and Ωm is the present
matter density relative to critical. Clearly the growth of perturbations is scale-dependent
— a general feature of modified theories of gravity.

The linearized version of eq. (43) is given by

δ′′ +
(

3
a

+
E′

E

)
δ′ =

3
2

Ωm

a5E2
μ(k, a)δ,(44)

and can be used to determine linear quantities, such as the linear power spectrum. Notice
that this matter linear equation is valid more generally and does not not require spherical
perturbations.
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The function μ(k, a) above is given by

μ(k, a) =
(1 + 2β2)k2 + m2a2

k2 + m2a2
,(45)

where β is the coupling between matter and the fifth force and m is the mass of the
scalar field propagating the extra force.

It is important to stress that the parameterization in eq. (45) does not fully account for
modified gravity perturbative effects, containing only effects of the background and linear
perturbations for extra fields related to modified gravity. This is enough for the linearized
eq. (44), but is only an approximation in eq. (43). For instance the parameterization in
eq. (45) does not contain effects from the screening mechanisms, which would turn μ into
a function not only of scale k, but of e.g. the local density or gravitational potential.

We start by defining the linear density contrast field δ(R) smoothed on a scale R

around x = 0(1)

δ(R) =
∫

d3k

(2π)3
δ̃(k)W̃ (k,R),(46)

where tildes denote quantities in Fourier space and W (x, R) is the window function that
smooths the original field δ(x) on scale R.

The variance S(R) = σ2(R) of the linear density field can be written as

S(R) = 〈|δ(R)|2〉 =
∫

dk

2π2
k2P (k)|W̃ (k,R)|2,(47)

where P (k) is the linear power spectrum defined via

〈δ̃(k)δ̃(k′)〉 = (2π)3δD(k − k′)P (k),(48)

and δD(k − k′) is the Dirac delta function. Clearly the linear power spectrum will
play a key role in describing the effects of modified gravity on void properties. For GR
computations, we use CAMB to compute the linear power spectrum. For modified gravity,
we may use MGCAMB, a modified version of CAMB which generates the linear spectrum for
a number of alternative models, such as the Hu and Sawicki f(R) model [13] and others.
However it does not compute the linear spectrum for instance for the symmetron model.
Therefore we also construct the linear power spectrum independently for an arbitrary
gravity theory parametrized by eqs. (44) and (45).

Our independent estimation of the spectrum is accomplished by evolving eqs. (44)
and (45) with parameters from specific gravity theories (e.g. for f(R) and for symmetron

(1) The choice x = 0 is irrelevant because of translational invariance in a homogeneous Universe,
and is used for simplificity here, as we are interested in the behaviour of δ as a function of scale
R.
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Fig. 10. – Left: Relative percent deviation in the linear matter power spectrum P (k) at z = 0 of
f(R) modified gravity with respect to the GR spectrum PGR(k) in ΛCDM. Results are shown
for spectra obtained from MGCAMB (lines) as well as from evolving eq. (44) for dark matter
perturbations (open dots), for |fR0| = 10−4 (blue solid line and circles), 10−5 (green dashed
line and triangles) and 10−6 (red dot-dashed line and squares). Right: Percent deviation with
respect to GR of the mean square density σ(R) = S(R)1/2 smoothed at scale R, computed from
eq. (47) at z = 0 for the f(R) model. In this case, the power spectrum was evaluated from
eq. (44) [34].

models) for a set of initial conditions at matter domination. Since at sufficiently high
redshifts viable gravity models reduce to GR, we take initial conditions given by CAMB
at high redshifts (z ≈ 100), when gravity is not yet modified and the Universe is deep
into matter domination. We also compute initial conditions for δ̇ numerically by using
the ΛCDM power spectrum at two closeby redshifts, e.g. at z = 99 and z = 100.

The results of using this procedure are shown (open dots) on the left panel of fig. 10
and compared with the results from MGCAMB (lines) for the Hu and Sawicki model with
n = 1 and three values of the parameter |fR0| = 10−4, 10−5, 10−6. We can see that solving
eq. (44) for the power spectrum produces results nearly identical to the full solution from
MGCAMB on all scales of interest. The percent level differences may be traced to the fact
that the simplified equation solved does not contain information about photons and
baryons, but only dark matter. For our purposes, this procedure can be used to compute
the linear power spectrum for other modified gravity models that reduce to GR at high
redshifts, such as the symmetron model.

On the right panel of fig. 10 we see that the relative difference of σ(R) = S(R)1/2 for
the f(R) model with respect to GR can be significant on the scales of interest (1 Mpc/h<

R < 20 Mpc/h). Therefore we expect a similar impact on void properties derived from
σ and the linear power spectrum.
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8.2. Spherical collapse. – Because of the void-in-cloud effect(2), the linearly extrapo-
lated density contrast δc for the formation of halos is important in describing the prop-
erties of voids as both are clearly connected. Within theoretical calculations of the void
abundance using the excursion set formalism, δc corresponds to another absorbing bar-
rier, whose equivalent is not present for halo abundance. Therefore calculating δc in the
gravity theory of interest gives us important hints into the properties of both halos and
voids.

The computation of δc is done similarly to that of the GR case, but using eqs. (43)
and (44) with the appropriate modified gravity parameterization μ(k, a) (GR is recovered
with μ(k, a) = 1).

We start with appropriate initial conditions(3) for δ and δ̇ and evolve the linear
eq. (44) until ac. The value of δ obtained is δc, the density contrast linearly extrapolated
for halo formation at a = ac. In this work, since we only study simulation outputs
at z = 0, we take ac = 1 in all calculations. The only modification introduced by a
nontrivial parameterization μ(k, a) is that the collapse parameters will depend on the
scale k of the halo. As mentioned previously, the parameterization of eq. (45) only takes
into account the evolution of the scalar field in the background, and does not account
for the dependence of the collapse parameters on screening effects. Even though our
calculation is approximated, it does approach the correct limits at sufficiently large and
small scales.

For a Universe with only cold dark matter (CDM) under GR, the collapse equations
can be solved analytically yielding δc = 1.686. For a ΛCDM Universe, still within GR, δc

changes to a slightly lower value, whereas for stronger gravity it becomes slightly larger.
In fig. 11 we show δc as a function of scale for the f(R) model. The value of δc starts at
its ΛCDM value δc = 1.675 on scales larger than the Compton scale (k/a � m; weak-
field limit where μ ≈ 1) and approaches the totally modified value δc = 1.693 on smaller
scales (k/a � m; strong-field limit where μ ≈ 1 + 2β2 = 4/3) where the modification
to the strength of gravitational force is maximal. These values were computed at the
background cosmology described in subsect. 8.4. Note that δc reaches its strong field
limit faster for larger values of |fR0| (value of the extra scalar field today), as expected.
In the approximation of eq. (43), δc varies with k less than in the full collapse, indicating
that the no-screening approximation may not be sufficient. As a full exact calculation
is beyond the scope of this work and given that δc does not change appreciably, in our
abundance models we will fix δc to its ΛCDM value and encapsulate modified gravity
effects on the linear power spectrum and on other model parameters.

8.2.1. Spherical expansion. We now compute δv, the analog of δc for voids, i.e. the
density contrast linearly extrapolated to today for the formation of a void. We follow
a procedure similar to spherical collapse, but in this case the initial values for δi are

(2) The fact that voids inside halos are eventually swallowed and disappear.
(3) This initial condition is actually determined by a shooting method, evolving the nonlinear
eq. (43) for multiple initial values and checking when collapse happens (δ → ∞) at a = ac.
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Fig. 11. – Left: The critical density δc for collapse of a halo at z = 0 as a function of halo
scale k in f(R) modified gravity with |fR0| = 10−4 (blue dotted line), 10−5 (green dashed line)
and 10−6 (red dot-dashed line). The upper horizontal black line is the value expected for the
strong-field limit (μ = 4/3) and the lower line for the weak-field limit, i.e. GR (μ = 1). The
vertical lines indicate the Compton scales for each gravity with the same corresponding line
colors. Right: Same for the critical density δv for void formation at z = 0 [34].

negative. We also set a criterium in the nonlinear field δ for the formation of a void
to be δsc = −0.8 or equivalently Δsc = 1 + δsc = 0.2. This quantity is somewhat the
analogue for voids of the virial overdensity Δvir ≈ 180 for halo formation in an Einstein-
de-Sitter (EdS) Universe. Despite the value of Δvir being only strictly appropriate
for an EdS Universe, halos are often defined with this overdensity or other arbitrary
values that may be more appropriate for specific observations. Similarly, δsc = −0.8
is only strictly appropriate for shell-crossing in an EdS Universe. Here we will employ
δsc = −0.8, but we should keep in mind that this is an arbitrary definition of our
spherical voids. When we fix this criterium for void formation we also fix the factor by
which the void radius R expands with respect to its linear theory radius RL. This factor
is given by R/RL = (1 + δsc)−1/3 = 1.717, and comes about from mass conservation
throughout the expansion. Differently from halos, voids are not virialized structures and
continue to expand faster than the background. Again environmental dependences are
not incorporated in our computations as these values will depend only on scale factor a

and the scale k or size of the void.
The right panel of fig. 11 displays the behaviour of δv as a function of k, which is very

similar to that of δc. This is important when modelling the absorbing barriers used for
evaluating the void abundance distribution function. Again the values of δv vary with k

less than in the full calculation.
The spherical collapse and expansion calculations can be performed similarly for the

symmetron model, with the appropriate change in the expression for the mass and cou-
pling of the scalar field. For f(R) gravity the change in parameters does not seem to
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be relevant and we fix these parameters to their ΛCDM values. In order to treat both
gravity models in the same way, we do the same for the symmetron model. Therefore we
do not show explicit calculations of δc and δv for symmetron.

8.3. Void abundance function. – We now compute the void abundance distribution
function as a function of void size using an extended Excursion Set formalism, which
consists in solving the Fokker-Planck equation with appropriate boundary conditions(4).

Differently from the halo description, for voids it is necessary to use two bound-
ary conditions, because of the void-in-cloud effect. In this case we use two Markovian
stochastic barriers with linear dependence in the density variance S, which is a simple
generalization from the conventional problem with a constant barrier. The barriers can
be described statistically as

〈Bc(S)〉 = δc + βcS,(49)

〈Bc(S)Bc(S′)〉 = Dc min(S, S′),

〈Bv(S)〉 = δv + βvS,

〈Bv(S)Bv(S′)〉 = Dv min(S, S′),

where Bc(S) is the barrier associated with halos and Bv(S) the barrier associated with
voids. Notice that the two barriers are uncorrelated, i.e. 〈Bc(S)Bv(S′)〉 = 0. Here βc

describes the linear relation between the mean barrier and the variance S, δc,v is the
mean barrier as S → 0 (R → ∞), and Dc,v describes the barrier diffusion coefficient.

As we consider different scales R, the smoothed density field δ(R) performs a random
walk with respect to a time coordinate S, and we have(5)

〈δ(S)〉 = 0,(50)

〈δ(S)δ(S′)〉 = min(S, S′).

The field δ satisfies a Langevin equation with white noise and therefore the probability
density Π(δ, S) to find the value δ at variance S is a solution of the Fokker-Planck equation

∂Π
∂S

=
1
2

∂2Π
∂δ2

,(51)

(4) This procedure is valid when the barrier (boundary conditions) is linear in S and the random
walk motion is Markovian.
(5) This occurs when the window function in eq. (46) S is sharp in k-space. For a window that
is sharp in real space the motion of δ is not Markovian and the second equation in (50) is not
true. In that case a more sophisticated method is necessary, and the solution presented here
represents the zeroth-order approximation for the full solution.
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with boundary conditions

Π(δ = Bc(S), S) = 0 and Π(δ = Bv(S), S) = 0,(52)

and initial condition

Π(δ, S = 0) = δD(δ),(53)

where δD is the Dirac delta function and notice that S → 0 corresponds to void radius
R → ∞. In order to solve this problem, it is convenient to introduce the variable

Y (S) = Bv(S) − δ(S).(54)

Making the simplifying assumption that β ≡ βc = βv(6) and using the fact that all
variances can be added in quadrature, the Fokker-Planck equation, eq. (51), becomes

∂Π
∂S

= −β
∂Π
∂Y

+
1 + D

2
∂2Π
∂Y 2

,(55)

where D = Dv + Dc.
We define δT = |δv|+δc and notice that δ(S) = Bv(S) implies Y (S) = 0, δ(S) = Bc(S)

implies Y (S) = −δT (only occurs because we set βc = βv) and δ(0) = 0 implies Y (0) = δv.
Therefore the boundary conditions become

Π(Y = 0, S) = 0 and Π(Y = −δT , S) = 0,(56)

and the initial conditions

Π(Y, 0) = δD(Y − δv).(57)

Rescaling the variable Y → Ỹ = Y/
√

1 + D and factoring the solution in the form
Π(Ỹ , S) = U(Ỹ , S) exp[c(Ỹ − cS/2 − Ỹ0)] where c = β/

√
1 + D and Ỹ0 = δv/

√
1 + D.

The function U(Ỹ , S) obeys a Fokker-Planck equation like eq. (51), for which the solution
is known. Putting it all together the probability distribution function becomes

Π(Y, S) = exp
[

β

1 + D

(
Y − βS

2
− δv

)]
(58)

×
∞∑

n=1

2
δT

sin
(

nπδv

δT

)
sin

(
nπ

δT
Y

)
exp

[
−n2π2(1 + D)

2δ2
T

S

]
.

(6) Notice that β here should not be confused with the coupling between matter and the extra
scalar in eq. (45).
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The ratio of walkers that cross the barrier Bv(S) is then given by

F(S) =
∂

∂S

∫ 0

∞
dY Π(Y, S) =

1 + D

2
∂Π
∂Y

∣∣∣∣
Y =0

,(59)

where we used the modified Fokker-Planck equation, eq. (55), and the first boundary
condition from eq. (56). The void abundance function, defined as f(S) = 2SF(S), for
this model is then given by

f(S) = 2(1 + D) exp
[
− β2S

2(1 + D)
+

βδv

(1 + D)

]
(60)

×
∞∑

n=1

nπ

δ2
T

S sin
(

nπδv

δT

)
exp

[
−n2π2(1 + D)

2δ2
T

S

]
.

There are four important limiting cases to consider:

– D = β = 0: This is the simplest case of two static barries. It is given by

fD=β=0(S) = 2
∞∑

n=1

nπ

δ2
T

S sin
(

nπδv

δT

)
(61)

× exp
(
−n2π2

2δ2
T

S

)
,

This is one of the functional forms tested in this work and the only case with no
free parameters. We refer to this case as that of 2 static barriers (2SB).

– D = 0 and β �= 0: This case considers that the barriers depend linearly on S but
are not difusive. In this case the expression is given by

fD=0(S) = 2e−
β2S
2 eβδv

∞∑
n=1

nπ

δ2
T

S sin
(

nπδv

δT

)
(62)

× exp
(
−n2π2

2δ2
T

S

)

Note that these authors define the barrier with a negative slope, therefore our β is
equal to their −β, but δv < 0 in our case;

– β = 0 and D �= 0: Here we have a barrier that does not depend on S but which is
diffusive. In this case we have

fβ=0(S) = 2(1 + D)
∞∑

n=1

nπ

δ2
T

S sin
(

nπδv

δT

)
(63)

× exp
(
−n2π2(1 + D)

2δ2
T

S

)
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Fig. 12. – Ratio of multiple models for void abundance relative to the model with two static
barriers (2SB) eq. (61) (β = D = 0). We show models with only D �= 0 (green solid line), with
only β �= 0 (red dotted line), the 1LDB model (purple dotted-dashed line) and the 2LDB model
(blue dashed line). The latter two cases are the main models considered in this work and differ
only at small radii (R � 4 Mpc/h), as a manifestation of the void-in-cloud effect [34].

– Large void radius: As discussed in [35] and [36], for large radii R the void-in-cloud
effect is not important as we did not expect to find big voids inside halos. In others
words, when S → 0 (R → ∞) the abundance becomes equal to that of a one-
barrier problem. Even though we do not attempt to properly consider the limit of
eq. (60) when S → 0, this expression can be directly compared to the function of
the problem with one linear diffusive barrier (1LDB), given by

f1LDB(S) =
|δv|√

S(1 + Dv)

√
2
π

exp
[
− (|δv| + βvS)2

2S(1 + Dv)

]
(64)

In fig. 12, we compare the void abundance from multiple cases by taking their ratio
with respect to the abundance of the 2SB model. The abundance of the model with
D �= 0 is substantially higher than 2SB, whereas that of the model with β �= 0 is
significantly lower. The cases with two linear diffusive barriers (2LDB) eq. (60) and one
linear diffusive barrier (1LDB) eq. (64) are the main models considered in this work. The
void abundance of the 1LDB and 2LDB models are nearly identical for R > 4 Mpc/h,
when the same values of β and D are used.

Given the ratio of walkers that cross the barrier Bv(S) with a radius given by S(R),
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the number density of voids with radius between RL and RL + dRL in linear theory is
given by

dnL

d lnRL
=

f(σ)
V (RL)

d lnσ−1

d lnRL

∣∣∣∣
RL(R)

,(65)

where the subscript L denotes linear theory quantities, V (RL) is the volume of the
spherical void of linear radius RL and recall S = σ2.

Whereas for halos the number density in linear theory is equal to the final nonlinear
number density, for voids this is not the case. In fact, Jennings et al. [36] shows that
such criterium produces nonphysical void abundances, in which the volume fraction of
the Universe occupied by voids becomes larger than unity. Instead, to ensure that the
void volume fraction is physical (less than unity) the authors of [36] impose that the
volume density is the conserved quantity when going from the linear-theory calculation
to the nonlinear abundance. Therefore, when a void expands from RL → R it combines
with its neighbours to conserve volume and not number. This assumption is quantified
by the equation

V (R)dn = V (RL)dnL

∣∣
RL(R)

,(66)

which implies

dn

d lnR
=

f(σ)
V (R)

d lnσ−1

d lnRL

d lnRL

d lnR

∣∣∣∣
RL(R)

,(67)

where recall in our case R = (1+δsc)−1/3RL = 1.717RL is the expansion factor for voids.
Therefore we have trivially d lnRL/d lnR = 1 above.

The expression in eq. (67) — referred as the Vdn model — along with the function in
eq. (60) provide the theoretical prediction for the void abundance distribution in terms
of void radius, which will be compared to the abundance of spherical voids found in
N -body simulations of GR and modified gravity.

8.4. Voids from simulations. – We used the N -body simulations that were run with
the Isis code [25] for ΛCDM, f(R) Hu-Sawicki and symmetron cosmological models. For
the f(R) case we fixed n = 1 and considered |fR0| = 10−4, 10−5 and 10−6. For sym-
metron, we fix β0 = 1 and L = 1 and used simulations symm A, symm B, symm D,
which have zSSB = 1, 2, 3, respectively. Each simulation has 5123 particles in a box
of size 256 Mpc/h, and cosmological parameters (Ωb,Ωdm,ΩΛ,Ων , h, TCMB , ns, σ8) =
(0.045, 0.222, 0.733, 0.0, 0.72, 2.726K, 1.0, 0.8). These represent the baryon density rela-
tive to critical, dark matter density, effective cosmological constant density, neutrino
density, Hubble constant, CMB temperature, scalar spectrum index and spectrum nor-
malization. The normalization is actually fixed at high redshifts, so that σ8 = 0.8 is
derived for the ΛCDM simulation, but is larger for the modified gravity simulations. In
terms of spatial resolution, seven levels of refinement were employed on top of a uniform
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Fig. 13. – Relative difference between void abundance in modified gravity models and in standard
GR (ΛCDM model). Left: Relative difference of f(R) theories, for parameters |fR0| = 10−6 (red
squares with dotted-dashed line), 10−5 (green triangles with dashed line) and 10−4 (blue circles
with solid line). Right: Relative difference of symmetron theories, for parameters zSSB = 1 (red
squares with dotted-dashed line), 2 (green triangles with dashed line) and 3 (blue circles with
solid line) [34].

grid with 512 nodes per dimension. This gives an effective resolution of 32678 nodes per
dimension, which corresponds to 7.8 kpc/h. The particle mass is 9.26 × 109M�/h.

We ran the ZOBOV void-finder algorithm — based on Voronoi tessellation — on the
simulation outputs at z = 0 in order to find underdense regions and define voids, and
compared our findings to the Vdn model of eq. (67) [36] with the various multiplicity
functions f(σ) proposed above (2SB, 1LDB and 2LDB models).

First, we used ZOBOV to determine the position of the density minima locations within
the simulations and rank them by signal-to-noise S/N significance. Next, we started from
the minimum density point of highest significance and grew a sphere around this point,
adding one particle at a time in each step, until the overdensity Δ = 1 + δ enclosed
within the sphere was 0.2 times the mean background density of the simulation at z = 0.
Therefore we defined spherical voids, which are more closely related to our theoretical
predictions based on spherical expansion.

We also considered growing voids around the center-of-volume from the central
Voronoi zones. The center-of-volume is defined similarly to the center-of-mass, but each
particle position is weighted by the volume of the Voronoi cell enclosing the particle,
instead of the particle mass. Using the center-of-volume produces results very similar to
the previous prescription, so we only present results for the centers fixed at the density
minima.

In fig. 13 we compare the void abundance inferred from simulations for the three f(R)
and the three symmetron theories relative to the ΛCDM model. Since the differential

 EBSCOhost - printed on 2/13/2023 8:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



Nonlinear astrophysical probes of screened modified gravity 361

Fig. 14. – Left: Average barrier 〈Bc〉 for halos as a function of variance S, for the f(R) parame-
ters: |fR0| = 10−6 (red squares), 10−5 (green triangles) and 10−4 (blue circles), and correspond-
ing fits for each case in same colors and with dotted-dashed, dashed and solid lines, respectively.
Vertical lines indicate the limits used for the fits, which also correspond to the range of interest
for the study of voids in our case (2.0–14.0 Mpc/h). Right: Same for the void barrier 〈Bv〉 [34].

abundance as a function of void radius is denoted by dn/d lnR, we denote the relative
difference between the f(R) and ΛCDM abundances by dnf(R)/dnΛCDM − 1 and show
the results in terms of percent differences. The error bars shown here reflect shot-noise
from voids counts in the simulation runs. In the f(R) simulation this relative difference
is around 100% at radii R > 10 Mpc/h (for the |fR0| = 10−4 case). In the symmetron
simulation, the difference is around 40% (for the zSSB = 3 case), for radii R ∼ 8 Mpc/h.
This indicates that void abundance is a potentially powerful tool for constraining modified
gravity parameters.

8.5. Results

8.5.1. Fitting β and D from simulations. In order to use the theoretical expression in
eq. (60) to predict the void abundance we need values for the parameters β and D. The
usual interpretation of β is that it encodes, at the linear level, the fact that the true
barrier in real cases is not constant. In other words, the contrast density for the void
(or halo) formation depends on its size/scale. This can occur because halos/voids are
not perfectly spherical and/or because the expansion (or collapse) intrinsically depends
on scale (Birkhoff’s theorem is generally not valid in modified gravity). The scale de-
pendency induced by modified gravity can be calculated using our model for spherical
collapse (expansion) by fitting a linear relationship between δc (δv) or average barrier
〈Bc〉 (〈Bv〉) as a function of the variance S(R). Here we use k = 2π/R to convert wave
number to scale R.

In fig. 14 we show the average barriers 〈Bc〉, 〈Bv〉 as functions of variance S for mul-
tiple gravity theories, and empirical fits for the parameters δc, δv, βc, βv from eqs. (49).
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These fits indicate that the barriers depend weakly on scale in the range of interest.
The values of δc, δv are nearly constant and those of βc, βv are of order 10−3 while the
corresponding values for halos in ΛCDM are of order 10−1. Even though voids are quite
spherical, the small values of β indicate that the main contribution to β may come from
more general aspects of nonspherical evolution. The small fitted values of β can also be
due to errors induced by the approximations in the nonlinear equation eq. (43), which
does not capture screening effects of modified gravity.

Given these issues, and as it is beyond the scope of this work to consider more general
collapse models or study the exact modified gravity equations, we will instead keep the
values of δc and δv fixed to their ΛCDM values and treat β as a free parameter to be
fitted from the abundance of voids detected in the simulations.

Likewise, the usual interpretation of D is that it encodes stochastic effects of possible
problems in our void (halo) finder [37], such as an intrinsic incompleteness or impurity
of the void sample, or other peculiarities of the finder, which may even differ from one
algorithm to another. Therefore D is also taken as a free parameter in our abundance
models.

In fig. 15 we show the abundance of voids dn/d lnR as measured from simulations
(open dots), as well as three theoretical models, namely the 2SB [36], 1LDB eq. (64) and
2LDB eq. (60) models. Multiple panels show results for ΛCDM and f(R) models. In
fig. 16 we show the same for ΛCDM and symmetron models.

We can see that linear-diffusive-barrier models (1LDB and 2LDB) work best in all
gravities, relative to the static barriers model (2SB). In fact, these two models describe
the void abundance distribution within 10% precision for R � 10 Mpc/h. As expected,
the model with two linear diffusive barriers (2LDB) better describes the abundance of
small voids (R � 3 Mpc/h), due to the void-in-cloud effect, more relevant for small
voids [35].

As both parameters β and D have an explicit dependence on the modified gravity
strength, next we fit a relationship between the abundance parameters β and D and the
gravity parameters log10 |fR0| and zSSB. In these fits we set the value log10 |fR0| = −8
to represent the case of ΛCDM cosmology, as this is indeed nearly identical to ΛCDM
for purposes of large-scale structure observables, i.e. log10 |fR0| = −8 � −∞.

As we expect β and D to depend monotonically on the modified gravity parameters,
we fit for them using simple two-parameter functions. For β case we use a straight line,
and for D a second-order polynomial with maximum fixed by the ΛCDM value. These
fits are shown in the multiple panels of fig. 17.

Our values of β and D as a function of gravity parameters fluctuate considerably
around the best fit. This occurs at least partially because we have used only one simu-
lation for each gravity model, and we expect this oscillation to be reduced with a larger
number of simulations. At present, the use of the fits is likely more robust than the use
of exact values obtained for each parameter/case.

8.5.2. Constraining modified gravity. Given the fits for β and D obtained in the last
subsection, we now check for the power of constraining modified gravity from the void
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Fig. 15. – Top left: The upper sub-panel shows the void differential abundance distribution
dn/d ln R as a function of void radius R for GR (ΛCDM) from simulations (open dots), along
with theory predictions from the 2SB model [36] (red solid curve), from the 1LDB eq. (64)
(purple dotted-dashed curve) and the 2LDB model eq. (60) (blue dashed line). The lower sub-
panel shows the relative difference between simulation data and each theory model. Top right:
Same for f(R) modified gravity with |fR0| = 10−6. Bottom left: Same for |fR0| = 10−5 Bottom
right: Same for |fR0| = 10−4 [34].

distribution function in each of the three void abundance models considered, namely
2SB, 1LDB and 2LDB. We take the abundance of voids actually found in simulations
(described in sect. 4) to represent a hypothetical real measurement of voids and com-
pare it to the model predictions, evaluating the posterior for log10 |fR0| and zSSB, thus
assessing the constraining power of each abundance model in each gravity theory. Obvi-
ously the constraints obtained in this comparison are optimistic — since we are taking
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Fig. 16. – Same as fig. 15, but for the symmetron model with zSSB = 1 top right, 2 bottom left
and 3 bottom right [34].

as real data the same simulations used to fit for the abundance model parameters — but
they provide us with idealized constraints similar in spirit to a Fisher analysis around a
fiducial model.

The posteriors for the gravity parameters are shown in figs. 18 and 19, as well as
the mean values and 1σ errors in each case. For the results shown here all cosmological
parameters from subsect. 8.4 have been fixed to their true values. We also considered
the case where we apply Planck priors on Ωdm and h and let them vary freely in the
MCMC, keeping other parameters fixed. In the latter case, the mean values and errors
found for log10 |fR0| are slightly worse, but the errors remain less than twice those found
for the case of all fixed parameters. Moreover, the errors derived for Ωdm and h reduce
to half of their original Planck priors.
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Fig. 17. – Top row: Fits of D and β as a function of log10 |fR0| in f(R) gravity. These fits
are shown for D in the 1LDB and 2LDB models, and for β in the 1LDB and 2LDB models,
respectively from left to right. Bottom row: Same for fits as a function of zSSB in symmetron
gravity [34].

In fig. 18 we can see that the 2SB model predicts values for the f(R) parameter
(log10 |fR0|) which are incorrect by more than 3σ for all cases. In fact, this model
predicts incorrect values even for general relativity. Therefore we find this model to
be highly inappropriate to describe the abundance of dark matter voids, and focus on
models with linear diffusive barriers.

Both the 1LDB and 2LDB models predict correct values for the gravity parameters
within 1σ in most cases. We find that the 1LDB model presents results similar to 2LDB,
despite being a simpler model and providing a worse fit to the data (larger reduced χ2).
For ΛCDM both posteriors go to log10 |fR0| = 10−8, which represents the GR case by
assumption. This shows that within the f(R) framework, we can also constrain GR with
reasonable precision from void abundance, using one of these two abundance models with
diffusive barriers (1LDB, 2LDB).

For the symmetron Model, we can see in fig. 19 that the parameter zSSB is also well
constrained, similarly to fR0 in f(R). Again the 2SB model has the worst result in all
cases, and the 1LDB and 2LDB models produce similar results.

8.5.3. Voids in galaxy samples. In real observations it is much harder to have direct
access to the dark matter density field. Instead we observe the galaxy field, a biased
tracer of the dark matter. Therefore it is important to investigate the abundance of
voids defined by galaxies and the possibility of constraining cosmology and modified
gravity in this case.

We introduce galaxies in the original dark matter simulations using the Halo Occu-
pation Distribution (HOD) model from [38]. In [39] the authors investigated similar void
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Fig. 18. – Posterior distribution for log10 |fR0| and for the three abundance models considered
in the text, 2SB model [36] (red continuous line), 2LDB model eq. (60) (blue dashed line) and
1LDB model eq. (64) (purple dotted dashed line). The mean and 1σ values of log10 |fR0| in
each case are indicated in the legend. Top left: Posterior for the ΛCDM simulation. Top right:
Posterior for the |fR0| = 10−6. Bottom left: Posterior for the |fR0| = 10−5. Bottom right:
Posterior for the |fR0| = 10−4 [34].

properties but did not considered spherical voids, using instead the direct outputs of the
VIDE [40] void finder.

In our implementation, first we find the dark matter halos in the simulations using the
overdensities outputted by ZOBOV. We grow a sphere around each of the densest particles
until its enclosed density is 200 times the mean density of the simulation. This process
is the reverse analog of the spherical void finder described in sect. 4, the only difference
being the criterium used to sort the list of potential halo centers. Here we sort them
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Fig. 19. – Same as fig. 18, but for the symmetron model with zSSB = 1 top right, 2 bottom left
and 3 bottom right [34].

using the value of the point density, not a S/N significance, as the latter is not provided
by ZOBOV in the case of halos.

We populate these halos with galaxies using the HOD model of [38]. This model
consists of a mean occupation function of central galaxies given by

〈Ncen(M)〉 =
1
2

[
1 + erf

(
log M − log Mmin

σlog M

)]
,(68)

with a nearest-integer distribution. The satellite galaxies follow a Poisson distribution

 EBSCOhost - printed on 2/13/2023 8:55 PM via . All use subject to https://www.ebsco.com/terms-of-use



368 David F. Mota

with mean given by

〈Nsat(M)〉 = 〈Ncen(M)〉
(

M − M0

M ′
1

)α

.(69)

Central galaxies are put in the center of halo, and the satellite galaxies are distributed
following a Navarro Frenk and White profile.

We use parameter values representing the sample Main 1 of [39], namely:
(log Mmin, σlog M , log M0, log M ′

1, α) = (12.14, 0.17, 11.62, 13.43, 1.15). These parame-
ters give a mock galaxy catalogue with galaxy bias bg = 1.3 and mean galaxy density
n̄g = 5.55 × 10−3 (h/Mpc)3 in ΛCDM.

We then find voids in this galaxy catalogue using the same algorithm applied to the
dark matter catalogue (described in sect. 4). We use the same criterium that a void is a
spherical, non-overlapping structure with overdensity equal to 0.2 times the background
galaxy density. However, as the galaxies are a biased tracer of the dark matter field, if
we find galaxy voids with 0.2 times the mean density, we are really finding regions which
are denser in the dark matter field. In fact, if δg = bgδ is the galaxy overdensity, with
galaxy bias bg and δ is the dark matter overdensity we have

Δ = 1 + δ = 1 +
δg

bg
.(70)

Therefore, if we find voids with δg = −0.8 and bg = 1.3 we have Δ = 0.38, i.e. the
galaxy voids enclose a region of density 0.38 times the mean density of the dark matter
field. Therefore it is this value that must be used in the previous theoretical predictions.

Using this value, the relation between linear and nonlinear radii is R = 1.37RL, and
the density parameter for the spherical void formation —calculated using the spherical
expansion equations— is δv = −1.33. We insert these new values into the theoretical
predictions and compare to the measured galaxy void abundance. The result is shown
in fig. 20 for the ΛCDM case. We see that both original models, 2SB and 2LDB (blue
curves), with R = 1.71RL and δv = −2.788, provide incorrect predictions for the abun-
dance of galaxy voids. However when corrected for the galaxy bias (red curves), these
models are in good agreement with the data. We also see that the 2LDB provides a
slightly better fit, which is not significant given the error bars.

The main problem of our galaxy catalogues is the low number density of objects.
Larger box sizes (or a galaxy population intrinsically denser) might help decrease the error
bars sufficiently in order to constrain modified gravity parameters. In fig. 21 we show the
relative difference between the abundance for the three modified gravity models and GR
as inferred from our simulations. We see that it is not possible to constrain the gravity
model using the abundance of galaxy voids, as extracted from mock galaxy catalogues
of the size considered here, due to limited statistics. Further investigations using larger
or multiple boxes, or else considering a galaxy population with larger intrinsic number
density should decrease Poisson errors significantly, allowing for a better investigation of
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Fig. 20. – Void abundance distribution as a function of void radius for voids detected in the
galaxy mock catalogue for ΛCDM (open circles). Also shown are the abundance predictions
from the 2SB and 2LDB models with no corrections due to galaxy bias (blue solid and dashed
lines, respectively), as well as the same model predictions with the bias corrections (red dotted
dashes and dotted lines, respectively) [34].

void abundance in the large data sets expected for current and upcoming surveys, such
as the SDSS-IV, DES, DESI, Euclid and LSST.

9. – Conclusions and perspectives

The rise of a fifth force in modified gravity theories leads to a stronger clustering of
matter. Therefore, the matter power spectra has in general a higher amplitude than in
GR. In screened modified gravity theories, the range of the fifth force at cosmological
scales is around Mpc (in order to avoid the strong local gravity constraints); therefore,
the linear power spectra is similar to ΛCDM, and the differences occur in the small scales
of the nonlinear regime.

Overall, we find that halo velocity profiles are an excellent direct tracer of the fifth
force: large deviations in the relative velocity of particles are found. Moreover, we find
that the velocity field in modified gravity simulations is more affected by the presence
of the fifth force than the density field for f(R)-gravity. For the Symmetron model we
found this to be even more apparent. A particular striking example of this is the Symm C

model, with boosts of up to (ΔP/P )θ � 3, whereas (ΔP/P )m ∼ 0.1.
In order to find smoking guns of screening mechanisms, we studied the environ-

ment dependence of the masses of dark matter halos in the symmetron modified gravity
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Fig. 21. – Relative difference in galaxy void abundance as measured in f(R) gravity simulations
and GR simulations. The difference is shown for |fR0| = 10−6 (red squares), 10−5 (green
triangles) and 10−6 (blue circles) [34].

scenario. The potential governing the dynamics of the matter fields (Φ− +Φ+) can differ
significantly from the lensing potential Φ+ in this model, which leads to a clear difference
between the mass of the halo as obtained from dynamical measurements and that ob-
tained from gravitational lensing. Such an effect found in the symmetron model can be
significantly stronger than in f(R) gravity. This signature, which is unique to modified
gravity, can in practice be measured by combining dynamical (e.g., velocity dispersion)
and lensing mass measurements of clusters of galaxies or even single galaxies. We find
that the environmental dependence is strongest for small halos as very large halos are
sufficiently massive to be able to screen themselves.

This discovered feature of environmental dependence also allows us, in principle,
to distinguish between different modified gravity scenarios such as f(R), more general
chameleons, and the symmetron. In f(R) the maximum fraction of the fifth force to the
Newtonian force in halos are around 30% while in chameleon/symmetron scenarios this
fraction can be either smaller or larger, depending on the value of the coupling strength β.

Although the theoretical nature of screening mechanisms is different, we find common
features in both the matter and the velocity properties. In particular, our findings suggest
that one can classify screening mechanisms into three general categories: 1) the fully
screened regime where GR is recovered, 2) an unscreened regime where the strength of
the fifth force is large, and, 3) a partially screened regime where screening occurs in the
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inner part of a halo, but the fifth force is active at larger radii. Any observable sensitive
to this regimes and environments can be a future probe of screening mechanisms and
modified gravity theories beyond General Relativity.
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Vladimir Luković Università di Roma “Tor Vergata”, Italy
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