
Learn
Quantum Computing
with Python and IBM
Quantum Experience
A hands-on introduction to quantum computing and
writing your own quantum programs with Python

Robert Loredo

Learn Q
uantum

 Com
puting w

ith Python
and IBM

 Q
uantum

 Experience
Robert Loredo

IBM Quantum Experience is a platform that enables developers to learn the basics of quantum
computing by allowing them to run experiments on a quantum computing simulator and a real
quantum computer. This book will explain the basic principles of quantum mechanics, the principles
involved in quantum computing, and the implementation of quantum algorithms and experiments
on IBM's quantum processors.

You will start working with simple programs that illustrate quantum computing principles and
slowly work your way up to more complex programs and algorithms that leverage quantum
computing. As you build on your knowledge, you'll understand the functionality of IBM Quantum
Experience and the various resources it off ers. Furthermore, you'll not only learn the diff erences
between the various quantum computers but also the various simulators available. Later, you'll
explore the basics of quantum computing, quantum volume, and a few basic algorithms, all while
optimally using the resources available on IBM Quantum Experience.

By the end of this book, you'll learn how to build quantum programs on your own and have gained
practical quantum computing skills that you can apply to your business.

Learn
Quantum Computing with Python
and IBM Quantum Experience

Things you will learn:

• Explore quantum computational
principles such as superposition and
quantum entanglement

• Become familiar with the contents and
layout of the IBM Quantum Experience

• Understand quantum gates and how
they operate on qubits

• Discover the quantum information
science kit (Qiskit) and its elements,
such as Terra and Aer

• Get to grips with quantum algorithms
such as Bell State, Deutsch-Jozsa,
Grover's algorithm, and Shor's algorithm

• How to create and visualize a
quantum circuit

C
o
p
y
r
i
g
h
t

2
0
2
0
.

P
a
c
k
t

P
u
b
l
i
s
h
i
n
g
.

A
l
l

r
i
g
h
t
s

r
e
s
e
r
v
e
d
.

M
a
y

n
o
t

b
e

r
e
p
r
o
d
u
c
e
d

i
n

a
n
y

f
o
r
m

w
i
t
h
o
u
t

p
e
r
m
i
s
s
i
o
n

f
r
o
m

t
h
e

p
u
b
l
i
s
h
e
r
,

e
x
c
e
p
t

f
a
i
r

u
s
e
s

p
e
r
m
i
t
t
e
d

u
n
d
e
r

U
.
S
.

o
r

a
p
p
l
i
c
a
b
l
e

c
o
p
y
r
i
g
h
t

l
a
w
.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 2/9/2023 8:33 AM via
AN: 2637711 ; Robert Loredo.; Learn Quantum Computing with Python and IBM Quantum Experience : A Hands-on Introduction to Quantum Computing and Writing Your
Own Quantum Programs with Python
Account: ns335141

Learn Quantum
Computing with Python
and IBM Quantum
Experience

A hands-on introduction to quantum computing and
writing your own quantum programs with Python

Robert Loredo

BIRMINGHAM—MUMBAI

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learn Quantum Computing with Python and
IBM Quantum Experience
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author(s), nor Packt Publishing or its dealers and
distributors, will be held liable for any damages caused or alleged to have been caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Alok Dhuri
Senior Editor: Rohit Singh
Content Development Editor: Rosal Colaco
Technical Editor: Gaurav Gala
Copy Editor: Safis Editing
Project Coordinator: Deeksha Thakkar
Proofreader: Safis Editing
Indexer: Priyanka Dhadke
Production Designer: Aparna Bhagat

First published: September 2020

Production reference: 1250920

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83898-100-6
www.packt.com

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.packt.com

To my father, Israel, my mother, Sadie, and brother, Pierre; without their
support throughout my life I would not have gotten to where I am today.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

Contributors

About the author
Robert Loredo is the IBM Quantum Global Technical Ambassador lead with over
20 years' experience in software architecture and engineering. He is also a Qiskit
Advocate and Master Inventor who holds over 160 patents and has presented various
workshops, lectures, and articles covering quantum computing, artificial intelligence, and
bioinformatics world-wide. As an adjunct professor, he has taught cloud computing and
software engineering at the Florida International University School of Computer Science.
He holds both a bachelor's and a master's degree in Computer and Electrical Engineering
from the University of Miami and is currently pursuing his PhD in Computer Science,
specializing in Machine Learning and Neuroscience, at Florida International University.

I want to thank Arvind Krishna, Dario Gil, Jay Gambetta, Bob Sutor,
Scott Crowder, Anthony Annunziata, Denise Ruffner, Mehdi Bozzo-Rey,

Tammy Cornell, Abe Asfaw, Andrew Wack, Bill Minor, Brian Eccles,
Brian Ingmanson, Bryce Fuller, Chris Nay, Chris Schnabel, Dan Maynard,
Enrique Vargas, Frederik Flöther, Gavin Jones, Hanhee Paik, Hassi Norlen,
Heather Cortes, Heather Higgins, Heike Riel, Ingolf Wittman, Ismael Faro,
James Weaver, James Wootton, Jeanette (Jamie) Garcia, Jerry Chow, Jody

Burks, Jules Murphy, Katie Pizzolato, Ken Wood, Liz Durst, Leron Gil,
Luuk Ament, M. Lewis Temares, Mark Ritter, Mei-Ling Shyu, Melissa
Turesky, Michele Grossi, Miguel Paredes Quiñones, Miroslav Kubat,

Mohammed Abdel-Mottaleb, Muir Kumph, Nick Bronn, Noam Zakay, Paco
Martin, Paul Kassebaum, Paul Nation, Pete Martinez, Rafael Nepomechie,
Rafael Sotelo, Reuven Lask, Reza Sanatinia, Robert Eades, Rudy Wojtecki,

Sarah Sheldon, Stefan Woerner, Suzie Kirschner, Talia Gershon, Walter
Riess, and Zaira Nazario for their continued support.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

About the reviewer
Michele Grossi is a Technical Architect and Quantum Technical Ambassador who
has worked for IBM Italy since 2015 with a focus on problem solving, innovation, and
technology.

Born in 1989, he received his MSc degree in Physics from the University of Pavia, where
he received a scholarship from the Istituto Nazionale di Fisica Nucleare (INFN). He's an
industrial PhD student at the University of Pavia specializing in high energy physics and
quantum computing. He is the co-author of several scientific publications, a conference
speaker, and a lecturer at various universities. In his current role, Michele collaborates
with customers to evaluate the latest technology utilization, ranging from machine
learning to quantum computing, and with research institutions, among them IBM
Research and CERN.

In 2019, Forbes selected Michele as the top "30 under 30s" brightest young Italian leaders.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we
are recruiting an author for, or submit your own idea.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://authors.packtpub.com
http://authors.packtpub.com

Table of Contents
Preface

Section 1:
Tour of the IBM Quantum Experience (QX)

1
Exploring the IBM Quantum Experience

Technical requirements 4
Navigating the IBM Quantum
Experience 4
Registering to the IBM Quantum
Experience 5
Understanding the Personal profile tab 7

Getting started with IBM
Quantum Experience 7

Learning about your backends 8
Learning about pending and latest
results 10

Exploring My Account 12
Summary 15
Questions 15

2
Circuit Composer – Creating a Quantum Circuit

Technical requirements 18
Creating a quantum circuit
using the Composer 18
Launching the Composer editor 18
Familiarizing yourself with the Circuit
Composer components 19

Creating our first quantum
circuit 26

Building a quantum circuit with
classical bit behaviors 26

Building a coin-flipping
experiment 32
Entangling two coins together 35

Summary 37
Questions 38

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

ii Table of Contents

3
Creating Quantum Circuits using Quantum Lab Notebooks

Technical requirements 40
Creating a quantum circuit
using Quantum Lab Notebooks 40
Launching a Notebook from the
Quantum Lab 41
Familiarizing yourself with the
Quantum Lab components 41
Opening and importing existing
Quantum Lab Notebook 47
Developing a quantum circuit on

Quantum Lab Notebooks 48

Reviewing the results of your
quantum circuit on Quantum
Lab Notebooks 51
Executing a quantum circuit on a
quantum computer 53

Summary 55
Questions 56

Section 2:
Basics of Quantum Computing

4
Understanding Basic Quantum Computing Principles

Technical requirements 60
Introducing quantum computing 60
Understanding superposition 62
Learning about classical randomness 62
Preparing a qubit in a superposition
state 64

Understanding entanglement 71
Learning about the effects of

interference between qubits 77

Creating a quantum
teleportation circuit 78
Executing the quantum teleportation
circuit 80

Summary 83
Questions 84

5
Understanding the Quantum Bit (Qubit)

Technical requirements 86
Learning about quantum bits
(qubits) 86
Reviewing the classic bit 86

Understanding the qubit 88

Visualizing the state vector of a
qubit 89

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents iii

Creating the Bloch sphere
representation of a qubit 91
Understanding multi-qubits 96
Learning about superconducting qubits 98

Coupling the qubits together 103

Summary 103
Questions 104

6
Understanding Quantum Logic Gates

Technical requirements 106
Reviewing classical logic gates 106
Understanding unitary operators 109

Summary 150
Questions 151

Section 3:
Algorithms, Noise, and Other Strange
Things in Quantum World

7
Introducing Qiskit and its Elements

Technical requirements 156
Understanding quantum
and classical system
interconnections 156
Reviewing the quantum programming
process 157
Understanding how to organize and
interact with Qiskit 158

Understanding Qiskit basics
and its elements 160
Terra 161
Aer 161
Ignis 164
Aqua 164

Installing and configuring Qiskit
on your local machine 166
Preparing the installation 166
Installing Anaconda 167
Installing Qiskit 167
Configuring your local Qiskit
environment 169

Getting support from the Qiskit
community 172
Introducing the Qiskit community 173
Contributing to the Qiskit community 174

Summary 175
Questions 176

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

iv Table of Contents

8
Programming with Qiskit Terra

Technical requirements 178
Understanding quantum
circuits 178
Creating a quantum circuit 178
Obtaining circuit properties and
analysis 183
Customizing and parameterizing
circuit libraries 188

Generating pulse schedules on
hardware 192
Learning about instructions 193

Understanding pulses and Pulse
libraries 194
Generating and executing schedules 197
Scheduling existing quantum circuits 202

Leveraging provider
information 210
Learning about the IBM Quantum
Experience components 210

Summary 220
Questions 220

9
Monitoring and Optimizing Quantum Circuits

Technical requirements 222
Monitoring and tracking jobs 222
Optimizing circuits using the
Transpiler 225
Transformation of a quantum circuit 225
Optimizing the circuit by leveraging
the layout optimizer 228
Leaning about backend configuration
and optimization 231

Understanding passes and pass
managers 235

Visualizing and enhancing
circuit graphs 248
Learning about customized visual
circuits 248
Drawing the DAG of a circuit 252

Summary 254
Questions 254

10
Executing Circuits Using Qiskit Aer

Technical requirements 258
Understanding the differences
between the Aer simulators 258
Viewing all available backends 260

Running circuits on the Qasm
simulator 262
Adding parameters to the backend
options 264
Initializing the qubits on a circuit 266

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents v

Running circuits on the statevector
simulator 272
Running circuits on the unitary
simulator 280
Running circuits on the pulse simulator 284

Generating noise models 287
Understanding decoherence (T1 and T2) 291
Understanding single-gate, multi-gate,
and readout errors 295

Building your own noise model 295
Executing quantum circuits
with custom noise models 298
Adding custom noise models to our
circuits 299

Summary 300
Questions 300

11
Mitigating Quantum Errors Using Ignis

Technical requirements 304
Generating noise effects of
relaxation 305
Generating noise models and test
circuits 305

Estimating T1 decoherence
times 311
Generating the noise effects of
dephasing 313
Generating and executing T2 circuits 313

Estimating T2 decoherence
times 318
Generating and executing T2* test
circuits 319

Estimating the T2* dephasing
time 323
Mitigating readout errors 324
Summary 332
Questions 333
Further reading 333

12
Learning about Qiskit Aqua

Technical requirements 336
Understanding the components
and their usability 336
Initializing a fixed quantum state 337

Creating a neural network
discriminator 340
Implementing state function operators 342

Using Aqua utilities to simplify
your work 346
Familiarizing yourself with the
quantum algorithms in Aqua 350
Implementing the Logical Expression
Oracle 350
Implementing a truth table Oracle 354

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

vi Table of Contents

Creating your first classical/
quantum application (Simon's) 356
Stating Simon's problem 356

Implementing Simon's algorithm 357

Summary 358
Questions 359

13
Understanding Quantum Algorithms

Technical requirements 363
Understanding the meaning
of outperforming classical
systems 363
Understanding the Bell states
algorithm 365
Learning about Deutsch's algorithm 371
Understanding the Deutsch-Jozsa
algorithm 384

Learning about the
foundational oracle-based
quantum algorithm 395
Learning about the Bernstein-Vazirani
algorithm 395

Summary 405
Questions 406

14
Applying Quantum Algorithms

Technical requirements 408
Understanding periodic
quantum algorithms 408
Learning Simon's algorithm 409
Learning about the Quantum Fourier
Transform algorithm 416
Understanding Shor's algorithm 424

Learning about Grover's search

algorithm 429
Learning about the problem 429
Understanding Grover's search
algorithm 430
Implementing Grover's search
algorithm 433

Summary 441
Questions 441

Appendix A
Resources
Assessments
Other Books You May Enjoy
Index

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface
IBM Quantum Experience is a platform that enables developers to learn the basics of
quantum computing by allowing them to run experiments on a quantum computing
simulator and a real device. This book will explain the basic principles of quantum
computing, along with one principle of quantum mechanics, entanglement, and the
implementation of quantum algorithms and experiments on IBM's quantum processors.

This book provides you with a step-by-step introduction to quantum computing using
the IBM Quantum Experience platform. You will learn how to build quantum programs
on your own, discover early use cases in your business, and help to get your company
equipped with quantum computing skills.

You will start working with simple programs that illustrate quantum computing principles
and slowly work your way up to more complex programs and algorithms that leverage
advanced quantum computing algorithms. As you build on your knowledge, you'll
understand the functionality of the IBM Quantum Experience and the various resources
it offers.

We'll explore quantum computing principles such as superposition, entanglement, and
interference, then we'll become familiar with the contents and layout of the IBM Quantum
Experience dashboard.

Then, we'll understand quantum gates and how they operate on qubits and discover the
Quantum Information Science Kit (Qiskit) and its elements such as Terra and Aer.

We'll then get to grips with quantum algorithms such as Deutsch-Jozsa, Simon, Grover,
and Shor's algorithms, and then visualize how to create a quantum circuit and run the
algorithms on any of the available quantum computers hosted on the IBM Quantum
Experience.

Furthermore, you'll learn the differences between the various quantum computers and
the different types of simulators available. Later, you'll explore the basics of quantum
hardware, pulse scheduling, quantum volume, and how to analyze and optimize your
quantum circuits, all while using the resources available on the IBM Quantum Experience.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

viii Preface

By the end of this book, you'll have learned how to build quantum programs on your
own and will have gained practical quantum computing skills that you can apply to your
research or industry.

Who this book is for
This book is for Python developers who are interested in learning about quantum
computing and expanding their abilities to solve classically intractable problems with the
help of the IBM Quantum Experience and Qiskit. Some background in computer science,
physics, and some linear algebra is required.

What this book covers
Chapter 1, Exploring the IBM Quantum Experience, will be your guide to the IBM Q
Experience dashboard. This chapter will describe the layout and what each section in the
dashboard means. The dashboard might alter over time, but the basic information should
still be available to you.

Chapter 2, Circuit Composer – Creating a Quantum Circuit, will help you learn about
Circuit Composer. This chapter will outline the user interface that will assist you in
learning about quantum circuits, the qubits, and their gates that are used to perform
operations on each qubit.

Chapter 3, Creating Quantum Circuits Using Quantum Lab Notebooks, will help you learn
how to create circuits using the Notebook with the latest version of Qiskit already installed
on the IBM Quantum Experience. You will learn how to save, import, and leverage
existing circuits without having to install anything on your local machine.

Chapter 4, Understanding Basic Quantum Computing Principles, will help you learn about
the basic quantum computing principles used by the IBM Quantum systems, particularly,
superposition, entanglement, and interference. These three properties, often used together,
serve as the base differentiators that separate quantum systems from classical systems.

Chapter 5, Understanding the Quantum Bit (Qubit), will help you learn about the basic
fundamental component of a quantum system, the quantum bit or qubit, as it is often
called. After reading this chapter, you will understand the basis states of a qubit, how they
are measured, and how they can be visualized both mathematically and graphically.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface ix

Chapter 6, Understanding Quantum Logic Gates, will help you learn how to perform
operations on a qubit. These operations are often referred to as quantum gates. This
chapter will enable you, via the IBM Quantum Experience, to get to grips with the
operations that each of these quantum gates performs on a qubit and the results of each of
those operations. Examples of the quantum principles such as reversibility, which is a core
principle for all quantum gates, will be included.

Chapter 7, Introducing Qiskit and its Elements, will help you learn about Qiskit and all
of its libraries that can help you develop and implement various quantum computing
solutions. Qiskit is composed of four elements, each of which has a specific functionality
and role that can be leveraged based on the areas you wish to experiment in. The elements
are Terra (Earth), Aer (Air), Ignis (Fire), and Aqua (Water). This chapter will also discuss
how to contribute to each of the elements and how to install it locally on your machine.

Chapter 8, Programming with Qiskit Terra, will help you learn about the basic foundational
element, Terra. Terra is the base library upon which all the other elements of Qiskit are
built. Terra allows a developer to code the base of an algorithm to the specific operator
on a qubit. This is analogous to assembly language with just a slightly easier set of library
functions. It will also include a section on the Pulse library, which allows you to create
pulse schedules to manipulate the quantum qubits via the hardware.

Chapter 9, Monitoring and Optimizing Quantum Circuits, will help you learn how to
monitor the job requests sent to either the simulator or the quantum computers on the
IBM Quantum Experience. Optimization features will also be covered here to allow you
to leverage many of the existing optimization features included in the Qiskit libraries or to
create your own custom optimizers.

Chapter 10, Executing Circuits Using Qiskit Aer, will help you learn about Qiskit Aer,
a high-performance framework that you will use to simulate your circuits on various
optimized simulator backends. You will learn what the differences are between the four
various simulators of Qasm, State vector, Unitary, and Pulse, and what functionality each
one exhibits. Aer also contains tools you can use to construct noise models, should you
need to perform some research to reproduce errors due to noise.

Chapter 11, Mitigating Quantum Errors Using Ignis, will help you learn about the
various errors that currently affect experiments on read devices, such as relaxation and
decoherence, so you can design quantum error correction codes. You will also learn about
readout error mitigation, which is a way to mitigate the readout errors returned from a
quantum computer.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

x Preface

Chapter 12, Learning about Qiskit Aqua, will, in essence, pull everything together so that
end users such as researchers and developers from the various domains of chemistry,
machine learning, finance, optimization, and more can run their computations on a
quantum computer system without having to know all the inner workings. Aqua is the
tool connected to quantum algorithms that has been created to do just that. You will learn
how to extend your classical application to include running a quantum algorithm.

Chapter 13, Understanding Quantum Algorithms, will dig into some basic algorithms
using the IBM Quantum Experience Composer. This chapter will start with some simple
algorithms that illustrate the advantages of superposition and entanglement, such as Bell's
state theorem, and extends into some more common algorithms to solve some problems
that illustrate uses of superposition and entanglement such as Deutsch-Josza and a few
others, each of which provides some variance to the different algorithm types.

Chapter 14, Applying Quantum Algorithms, describes the various quantum computing
properties and algorithms used to create some of the more well-known algorithms such as
Quantum Amplitude Estimation, Variational Quantum Eigensolvers, and Shor's algorithm.

Appendix A, Resources, will help you get familiar with all the available resources in
the IBM Quantum Experience and Qiskit community. These resources that have been
contributed either by the Qiskit open source community, or the IBM Quantum research
teams themselves. The information is laid out so anyone with basic to expert-level
knowledge can jump in and start learning. There is a full quantum course, textbook, and
Slack community that you can connect to in order to extend your learning and collaborate
with others.

Assessments contains the answers to the questions asked in the chapters.

To get the most out of this book
You will need to have internet access to connect to the IBM Quantum Experience. Since
the IBM Quantum Experience is hosted on the IBM Cloud, you will not need anything
more other than a supported browser and to register with the IBM Quantum Experience.
Everything else is taken care of on the IBM Quantum Experience.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing
so will help you avoid any potential errors related to the copying and pasting of code.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface xi

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit www.packtpub.
com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at www.packt.com.

2. Select the Support tab.

3. Click on Code Downloads.

4. Enter the name of the book in the Search box and follow the onscreen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using
the latest version of:

• WinRAR/7-Zip for Windows

• Zipeg/iZip/UnRarX for Mac

• 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-
Quantum-Experience. In case there's an update to the code, it will be updated on
the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Code in Action
Code in Action videos for this book can be viewed at https://bit.ly/35o5M80.

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781838981006_ColorImages.pdf.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.packt.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packt.com
https://github.com/PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-Quantum-Experience
https://github.com/PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-Quantum-Experience
https://github.com/PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-Quantum-Experience
https://github.com/PacktPublishing/
https://bit.ly/35o5M80
https://static.packt-cdn.com/downloads/9781838981006_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838981006_ColorImages.pdf

xii Preface

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "This will initialize our t1, a, and b parameters, which we will
use to generate T1Fitter."

A block of code is set as follows:

Initialize the parameters for the T1Fitter, A, T1, and B

param_t1 = t1*1.2

param_a = 1.0

param_b = 0.0

Any command-line input or output is written as follows:

[[1. 0. 0. ... 0. 0. 0.]

 [0. 1. 0. ... 0. 0. 0.]

 [0. 0. 1. ... 0. 0. 0.]

 ...

 [0. 0. 0. ... 1. 0. 0.]

 [0. 0. 0. ... 0. 1. 0.]

 [0. 0. 0. ... 0. 0. 1.]]

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"As shown in the following screenshot, ibmq_qasm_simulator can run wider circuits
than most local machines and has a larger variety of basis gates."

Tips or important notes
Appear like this.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface xiii

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://packt.com

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

In this section, we will tour all the features and resources available to you on the IBM
Quantum Experience. These will include some educational materials for all levels,
information on the many simulators and real devices available to you, and tools that you
can use to perform experiments from the many tutorials as you learn, or to simply create
experiments on your own.

This section comprises the following chapters:

• Chapter 1, Exploring the IBM Quantum Experience

• Chapter 2, Circuit Composer – Creating a Quantum Circuit

• Chapter 3, Creating Quantum Circuits Using Quantum Lab Notebooks

Section 1:
Tour of the

IBM Quantum
Experience (QX)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

1
Exploring the

IBM Quantum
Experience

Quantum computing has been growing in popularity over the past few years, most
recently since IBM released the IBM Quantum Experience (IQX) back in May 2016.
This release was the first of its kind, hosted on the cloud and providing the world with
the opportunity to experiment with a quantum computer for free. The IQX includes a
user interface that allows anyone to run experiments on both a simulator and on a real
quantum computer.

The goal of this chapter is to first introduce you to the IBM Quantum Experience
site, specifically the dashboard, which contains everything you need in order to run
experiments. It also allows you to experiment with existing experiments contributed
by other developers from around the world, the benefits of which can help you to
understand how others are experimenting, and you can perhaps collaborate with
them if the experiments correlate with your own ideas.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

4 Exploring the IBM Quantum Experience

This chapter will help you understand what actions and information are available in each
view. This includes creating an experiment, running experiments on a simulator or real
quantum device, information about your profile, available backends, or pending results
to experiments. So, let's get started!

The following topics will be covered in this chapter:

• Navigating the IBM Quantum Experience

• Getting started with IBM Quantum Experience

Technical requirements
Throughout this book, it is expected that you will have some experience in developing
with Python and, although it isn't necessary, some basic knowledge of classical and
quantum mechanics would help.

Most of the information will be provided with each chapter, so if you do not have
knowledge of classical or quantum mechanics, we will cover what you need to know here.

For those of you that do have knowledge, the information here will serve as a refresher.
The Python editor used throughout this book is Jupyter Notebook. You can, of course,
use any Python editor of your choice. This may include Watson Studio, PyCharm,
Spyder, Visual Studio Code, and so on. Here is the link for the CiA videos:
https://bit.ly/35o5M80

Here is the source code used throughout this book: https://github.com/
PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-
Quantum-Experience.

Navigating the IBM Quantum Experience
As mentioned earlier, the dashboard is your high-level view of what you will normally
see once you log in to IQX. It aggregates multiple views that you can see, and this helps
you to get an idea as to what machines you have access to and what experiments you
have pending, running, or completed.

In this section, we will go through the steps to get registered on IQX. Let's do that in
the next section.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://bit.ly/35o5M80
https://github.com/PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-Quantum-Experience
https://github.com/PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-Quantum-Experience
https://github.com/PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-Quantum-Experience

Navigating the IBM Quantum Experience 5

Registering to the IBM Quantum Experience
In this section, we will get registered and explain what happens in the background once
you sign up to IQX for the first time. This will help you understand what features and
configurations are prepared and available to you upon registration.

To register to the IBM Quantum Experience, follow these steps:

1. The first step is to head over to the IBM Quantum Experience site at the following
link: https://quantum-computing.ibm.com/

2. Sign-in to your account from the login screen, as shown in Figure 1.1. Your
individual situation will determine how to proceed from there.

If you already have an account or are already signed in, you can skip this section
and move on to the next one.

If you have not registered, then you can select the login method of your choice from
the sign-in screen. As you can see, you can register using various methods, such as
with your IBM ID, Google, GitHub, Twitter, LinkedIn, or by email.

If you do not have any of the account types listed, then you can simply register for
an IBMid account and use that to sign in:

Figure 1.1 – The IBM Quantum Experience sign-in page

3. Once you select the login method of your choice, you will see the login screen
for that method. Simply fill out the information, if it's not already there, and
select login.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://quantum-computing.ibm.com/

6 Exploring the IBM Quantum Experience

4. Once signed in, you will land on the Home page. This is the first page you will see
each time you log in to the IBM Quantum Experience site:

Figure 1.2 – The IBM Quantum Experience home page

Now that you have registered to the IBM Quantum Experience, let's take a quick tour and
delve into some features that make up the IQX home page. Let's start by reviewing the
home page, specifically the Personal profile tab. You can access your personal profile via
your avatar, located at the top right of the page (as pointed out in Figure 1.2).

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting started with IBM Quantum Experience 7

Understanding the Personal profile tab
This section explains the profile of the logged-in user. This is helpful if you have multiple
accounts and you wish to keep track of them. The provider limits the number of jobs that
can be executed or queued on a given device at any one time to a maximum, as specified
in the documentation. There are many ways to access all the various quantum devices;
those listed in the open group will see all freely available quantum devices, as illustrated
along the right side of Figure 1.2. For those who are members of the IBM Q Network, you
will have access to the open devices, as well as premium quantum devices such as the 65
qubit quantum computer.

Now that you have completed the sign-up process and successfully logged in, we can
start off by taking a tour of the IBM Quantum Experience application. This will be where
most of the work within this book will take place, so it will benefit you in understanding
where everything is so that you can easily make your way around it while developing your
quantum programs.

Getting started with IBM Quantum Experience
This section provides a quick way to launch either Circuit Composer or the notebooks
located in the Quantum Lab views, herein simply referred to as Qiskit notebooks, each
of which we will cover in detail in Chapter 2, Circuit Composer – Creating a Quantum
Circuit, and Chapter 3, Creating Quantum Circuits Using Qiskit Notebooks, respectively, so
hang in there. But as with other views, know that you can kick-start either from the main
dashboard view or from the left panel. Each button easily provides a quick launch for
either of the two circuit generators.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

8 Exploring the IBM Quantum Experience

Learning about your backends
This section lists the available backend quantum systems that are provisioned for your
use (as shown in Figure 1.3). It not only provides a list of the available backends but also
provides details for each, such as the status of each backend. The status includes whether
the device is online or in maintenance mode, how many qubits (quantum bits) each
device contains, and how many experiments are in the queue to be run on the device.
It also contains a color bar graph to indicate queue wait times, as illustrated between
ibmq_16_melbourne and ibmq_rome in the following screenshot. Be aware that the
quantum devices listed for you may be different from those listed here:

Figure 1.3 – Provisioned backend simulators and devices

From the preceding screenshot, you can see that another great feature that IQX has
with respect to the backend service is the ability to see the hardware details of each
real quantum device. If you hover your mouse over each device listed, you will see an
expansion icon appear at the top right of the device information block. If you select a
device (for example, ibmq_16_melbourne), you will see the device details view appear,
as shown in the following screenshot:

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting started with IBM Quantum Experience 9

Figure 1.4 – Device details view: The status (left) and configuration and error rates (right)

From the previous screenshot, you can see that the device details view contains some
very relevant information, particularly if you are working on any experiments that have
intricate connectivity between qubits or analyzing error mitigation techniques. On the
left of the screenshot (Figure 1.4), you can see the basic status information of the device.
This is similar to what you see before expanding the device information. In the square
on the right, we get into a little more detail with respect to the devices' configuration,
connectivity, and error rates.

As described in the shaded bar area, where the error rate range is illustrated by Single-
qubit U3 error rate, and CNOT error rate (single qubit and multi-qubit, respectively),
qubits are identified as the circles where the number specifies the qubit number in the
device. The arrows in between identify how each qubit is connected to the other qubits.
The connections are specific to how the multi-qubit operations are specified.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

10 Exploring the IBM Quantum Experience

For example, in the 15 qubit configuration in Figure 1.4 (on the right), you can see that
qubit number 4 is the source for target qubits 3 and 10 (we will get into what source and
target mean later, but for now just assume that actions to the target qubit are triggered by
the source qubit). You can also see that qubit 4 is the target qubit of qubit 5. This visual
representation is based on information provided by the device configuration, which you
can also access programmatically using Qiskit.

Another piece of information you can get here is the error rates. The devices are calibrated
at least once a day or so, and each time they are calibrated, they calculate the average error
rates for a single gate (u3) and multi-gates (CNOT). The error rates vary per qubit, or
qubits for multi-gates, and therefore, the diagram uses a color heat map to identify where
the qubit sits on the error rate scale. Each qubit has a different color associated with it. This
color makes it possible to visually identify where on the error rate scale that qubit falls. If
you are running an experiment on a qubit that requires low error rates, then you can see
from this diagram which of these qubits has the lowest error rate when last calibrated.

Below the qubit configuration, you will see a link that also allows you to download
the entire configuration information in a spreadsheet. The details there are very
specific to each qubit and they provide more information that isn't visible on the
qubit configuration diagram.

Finally, at the bottom of the view are the specifics of the device itself, which includes
the number of qubits, the date the device went online, and the basis gates available on
the device.

You can now close the device configuration diagram to return to the dashboard, where
we will next learn about the quantum programs and how to monitor them.

Learning about pending and latest results
The table shown in Figure 1.5 contains the experiments that are pending completion on
the backend devices. You can use this view to quickly see whether your experiments have
run, and if not, where in the queue your experiment is set to run next.

Under your pending results table is the table where all your latest results are stored. These
are the last few experiment results that were run on either the simulator or real devices
on the backend. Each device is initially sorted by creation date but can be sorted by either
backend or status, if need be.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting started with IBM Quantum Experience 11

Important Note
Details regarding job objects will be covered in Chapter 9, Executing Circuits
Using Qiskit Aer.

As well as this, the job ID is listed so that you can call back the details from that job at
a later time, as seen in the following screenshot:

Figure 1.5 – Pending results and latest results

In this section, you have learned where to find information about your experiments,
hardware details about the simulators and the real quantum devices. Next, we will
explore your account profile.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

12 Exploring the IBM Quantum Experience

Exploring My Account
In this section, you will explore your account details view, where you will find information
about your account and what services are available to you. This includes services such as
the ability to view the list of backend systems available to you, notification settings, and
resetting your password.

To open the account view, follow these steps:

1. Click on your avatar at the top right of the dashboard (as highlighted in the
following screenshot) and select My Account:

Figure 1.6 – The My Account option on the dashboard

2. Once the My Account view is loaded, you will see a page similar to this:

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Exploring My Account 13

Figure 1.7 – The My Account view

From the preceding screenshot, you can see that on your account page, you will see the
following information sections:

• Account details: This section has your account and contact information that you
used to register. It also includes options such as resetting your password, privacy
and security information, and the option to delete your account.

• Qiskit in IBM Quantum Experience: This includes a quick link to launch a Qiskit
notebook to run your experiments. We will review the Qiskit notebook later in
this book, but for now, just know that you can launch a Qiskit notebook from
here as well.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

14 Exploring the IBM Quantum Experience

• Qiskit in local environment: This section allows you to install Qiskit and run
experiments from your local machine without the need to connect to IQX via the
cloud. This is exceptionally helpful when you wish to run experiments but do not
have access to a network. By running experiments from your local machine, this
allows you to run simulators that are installed as part of the Qiskit installation.
However, keep in mind that in order to run the experiments on a real quantum
device, you will need network connectivity to those real devices.

If you want to run the experiments on a real device from your local machine, then
you will need to copy the token (highlighted in Figure 1.7) that was generated for
you in the background. You should then assign it to the Qiskit IBMQ provider
class. Details of the IBMQ provider class will be discussed in Chapter 9, Executing
Circuits Using Qiskit Aer, but for now, this is where you can copy the Application
Programming Interface (API) token.

Also, note that there is an option to regenerate the API token. If you choose to
regenerate the token, you will need to delete your old token and save the regenerated
one in your local IBMQ provider class. The save account method of the IBMQ
provider class will persist the value in your local machine, so you will only have to
save it once and then load the account each time you wish to use a real quantum
device for your experiment.

Since this book is written primarily for use on the IBM Quantum Experience site,
we will cover running and setting up on your local machine. Just in case you happen
to not have network connectivity, you can still run simulated experiments locally.

• Notification Settings: This section simply allows you to set your notifications and
how you prefer to receive information, such as when experiments have completed
or other information or surveys that you wish to contribute.

• Your accounts: This last section toward the bottom of the My Account view is an
overview of the accounts that you have and a list of the provisioned systems you
have access to. These provisions are selected and assigned as part of the sign-up
process. This includes information such as when you first signed up, the project that
you are associated with (main is usually the default project), provider information,
and the allocated backend systems that you have access to. These allocated backends
that you can see are either real devices, such as ibmq_16_melbourne, or simulators,
such as ibmq_qasm_simulator, which are running on the IQX cloud. We will
discuss the details of the simulators and devices in later chapters.

Now that we are done with our tour of the IBM Quantum Experience layout, we're ready
to get to work. In the following chapters, we will delve into each section and progress to
writing quantum programs.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summary 15

Summary
In this chapter, we reviewed the dashboard, which provides plenty of information to help
you get a good lay of the land. You now know where to find information regarding your
profile, details for each of the devices you have available, the status of each device, as well
as the status and results of your experiments.

Knowing where to find this information will help you monitor your experiments and
enable you to understand the state of your experiments by reviewing your backend
services, monitoring queue times, and viewing your results queues.

You also have the skills to create an experiment using either Circuit Composer or the
Qiskit notebooks. In the next chapter, we will learn about Circuit Composer in detail.

Questions
1. Which view contains your API token?

2. Which device in your list has the fewest qubits?

3. How many connections are there in the device with the fewest qubits?

4. What are the two tools called that are used to generate quantum circuits?

5. Which view would provide you with the list of basis gates for a selected device?

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

2
Circuit Composer –

Creating a Quantum
Circuit

In this chapter, you will learn how to use the Circuit Composer and what each of the
composer's component functions are with respect to creating and running experiments.
The composer will help you to visually create a quantum circuit via its built-in user
interface, which in turn will help you to conceptualize how the basic principles of
quantum mechanics are used to optimize your experiments. You will also learn how to
import quantum circuits, preview the results of each experiment, and create your first
quantum circuit.

The following topics will be covered in this chapter:

• Creating a quantum circuit using the Composer

• Creating our first quantum circuit

• Building a coin-flipping experiment

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

18 Circuit Composer – Creating a Quantum Circuit

By the end of this chapter, you will know how to create a quantum circuit using the
Graphical Editor to create experiments that simulate classic gates and some quantum
gates. You will also learn where to examine the various results of your experiment, such
as state vectors and their probabilities. This will help you understand how some quantum
gate operations affect each qubit.

Technical requirements
In this chapter, some basic knowledge of computing is assumed, such as understanding
the basic gates of a classic computing system; for example, bit flip (0 to 1), NOT gates,
and so on. Here is the full source code used throughout the book: https://github.
com/PacktPublishing/Learn-Quantum-Computing-with-Python-and-
IBM-Quantum-Experience. Here is the link for the CiA videos: https://bit.
ly/35o5M80

Creating a quantum circuit using the Composer
In this section, we will review the Composer layout so that you can understand the
functionality and behavior of the Composer when creating or editing your quantum
circuits. Here, you will also create a few circuits, leveraging the visualization features from
the Composer to make it easy for you to understand how quantum circuits are created.
So, let's start at the beginning: by launching the Composer editor.

Launching the Composer editor
To create a quantum circuit, let's first start by opening up the Circuit Composer. To open
the Composer view, click on the Circuit Composer icon located on the left panel as shown
in the following screenshot:

Figure 2.1 – Launching the Circuit Composer (left panel)

Now that you have the Composer open, let's take a tour of what each component of the
Composer editor provides you with.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-Quantum-Experience
https://github.com/PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-Quantum-Experience
https://github.com/PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-Quantum-Experience
https://bit.ly/35o5M80
https://bit.ly/35o5M80

Creating a quantum circuit using the Composer 19

Familiarizing yourself with the Circuit Composer
components
In this section, we will get familiar with each of the components that make up the
Composer. Each of these has features specific to the various components of the Composer
editor. These can provide insights by allowing you to do things such as visually inspecting
the results of your experiments by displaying the results in a variety of ways. Visualizing
the construction of the quantum circuit will help you conceptualize how each quantum
gate affects a qubit.

Understanding the Circuit Composer
In this section, we will review the various functionalities available to ensure you have a
good understanding of all the different features available to you.

In the following screenshot, you can see the landing page of the Circuit Composer
editor view:

Figure 2.2 – Circuit Composer view

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

20 Circuit Composer – Creating a Quantum Circuit

From the preceding screenshot, you can see at the center of the page is the Circuit
Composer view. In the following screenshot, you can see a series of gates and operations:

Figure 2.3 – Gates and Operations

As you can see in the preceding screenshot, each of these components has a specific
function or operation that acts upon the qubit(s), which we will cover in detail in
Chapter 6, Understanding Quantum Logic Gates.

As we can see in the following screenshot, below the collection of gates and operations,
we have the Circuit Composer itself:

Figure 2.4 – Circuit Composer

As you can see from the preceding screenshot, the default circuit includes three qubits, each
of which is labeled with a q, and the index appended in order from least significant bit (in this
case, q2, q1, q0). Each qubit is initialized to an initial state of 0 before running the experiment.

Next to the qubit you will see a line, which looks like a wire running out from each qubit,
in the circuit:

Figure 2.5 – Qubits and circuit wires

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a quantum circuit using the Composer 21

As you can from the preceding screenshot, this line is where you will be creating a circuit
by placing various gates, operations, and barriers on them. The circuit has three wires,
each of which pertains to one of the three qubits on the quantum computer. The reason it
is called a Composer is primarily due to the fact that it looks very similar to a music staff
used by musicians to compose their music. In our case, the notes on the music staff are
represented by the gates and operations used to ultimately create a quantum algorithm.

In the next section, we will review the various options you have available to customize
the views of the IQX. This will allow you to ensure you can only see what you need to see
while creating your quantum program.

Learning how to customize your views
Continuing with our Composer tour, at the top of the Composer view is the circuit view
menu option that allows you to save your circuit, clear the circuit, or share your quantum
circuit. First, we will cover how to save your circuit. To do this, simply click on the default
text at the top left of the circuit composer where it currently reads (Untitled circuit) and
type in any title you wish. Ideally, select a name that is associated with the experiment. In
this case, let's call it My First Circuit and save it by either hitting the Enter key or clicking
the checkmark icon to the right of the title.

Across the top of the Composer, you will see a list of drop-down menu options. We can
see these in the following screenshot:

Figure 2.6 – Composer menu options

The menu items in the preceding screenshot have the following options:

• File provides options to create, copy, open a new circuit, or view all
quantum circuits.

• Edit allows you to manage your circuit, clear all operators, and edit the
circuit description.

• Inspect provides the ability to step through your circuit, similar to debug mode.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

22 Circuit Composer – Creating a Quantum Circuit

• View enables the various view options.

• Share allows you to share your quantum circuit with others.

• Help provides various guides, tours, and content related to quantum computing.

Let's now take a look at each of the various views in the following sections.

The Graphical Editor view
The Graphical Editor view contains a few components used to create quantum circuits.
Which includes the following:

• Circuit Composer: UI components used to create quantum circuits

• Gates and Operators: A list of available drag and drop gates and operators available
to generate a quantum circuit

• Options: A list of options such as the gate glossary, collapse gates, and options for
downloading an image representation of your quantum circuit

The following is a screenshot illustrating each of the preceding components:

Figure 2.7 – Graphical Editor view

Now that we know where we can create a quantum circuit, let's move on to displays, which
provide the results of our quantum circuit.

The Statevector view
The Statevector view allows you to preview the state vector results of your quantum
circuit. The state vector view presents the computational basis states along the x axis, and
the Amplitude along the y axis. In this case, since we do not have any gates or operators
on our circuit, the state vector representation is that of the initial state. Where the initial
state indicates that all qubits are initialized to the 0 (zero) state and with an amplitude of 1,
we see that presented in the following screenshot:

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a quantum circuit using the Composer 23

Figure 2.8 – Statevector view

Other options available to us include various ways to download the state vector information,
as illustrated in the drop-down menu at the top right of the previous screenshot.

The state vector information is just one of the visual representations of your quantum
circuit. There are a couple of others we want to visit before moving on.

The Measurement Probabilities view
The next view is the Measurement Probabilities view. This view presents the expected
measurement probability result of the quantum circuit. As mentioned in the previous
description, and illustrated in the following screenshot, since we do not have any
operators on the circuit, the results shown are all in the initial state of 0:

Figure 2.9 – Measurement Probabilities view

The options here also provide various formats to download the measurement probabilities.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

24 Circuit Composer – Creating a Quantum Circuit

The Q Sphere view
Finally, the last of the state visualizations we have to review is the Q Sphere view. The
Q sphere is similar to the Bloch sphere; however, the Bloch sphere does have some
limitations, particularly when working with more than one qubit. The Bloch sphere is
used to represent the vector of the current state of a qubit. The Q sphere can be used to
represent the state information of a single qubit or multiple qubits, including the phase
information. The following screenshot shows a representation of the three qubits we have
in our circuit, all of which are in the initial state:

Figure 2.10 – Q Sphere view

The Q-sphere view has two components, the first is the Q-sphere itself that captures the
state vector of the various qubit states represented by a vector that originates at the center
of the sphere. At the end of the vector is a smaller sphere, which represents the details of
the state. The states represented by these small spheres are visible when hovered over. The
previous screenshot illustrates the 3 qubits in an initial state of 000, with a probability of 1,
and a phase angle of 0.

The second component is located at the bottom left, which is the legend that describes the
phase of the states. Since the small sphere represents the phase angle of 0, the color of the
sphere is blue, which is the same that the legend indicates for the phase of 0. If the states
were out of phase by a value of π, then the color of the sphere would be red.

There are various options here; to the top right you have various options to download
visualizations in different image formats, and at the bottom right you can select whether
to enable the state or phase angle information of the Q-sphere.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a quantum circuit using the Composer 25

One last thing to note is at the top left, you can see a dropdown that allows you to switch
between all the views we reviewed, such as the measurement probabilities and state vector.

Now that we are familiar with the various state representation views, let's look at the last
view that allows us to write code and execute our quantum circuits.

The Code Editor view
The last view we will cover here is the Code Editor view. Here we can write code to build
the circuit itself. At the top of the Code Editor view there are three tabs, namely, Code,
Docs, and Jobs. Each tab displays details about itself.

The Code tab has the code editor itself, which you can use to code using QASM or Qiskit
code, for which you make your selection with the drop-down menu at the top left of
the editor. The options available in the Code Editor provide a way to copy, import, and
export code. Also included is the QASM reference link, which redirects you to details of
the QASM language. The following screenshot illustrates the Code editor view with the
options expanded:

Figure 2.11 – Code Editor view

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

26 Circuit Composer – Creating a Quantum Circuit

The Docs tab displays the documentation available and the Jobs tab displays your pending
and completed job running on the simulators or quantum devices.

In this section, we learned about how to create a quantum circuit using the Composer. We
also learned about the views and components of the Circuit Composer views.

Now that you have an understanding of the various views and components that make up
the Circuit Composer views, we can start creating our first quantum circuit and leveraging
a lot of these views.

Creating our first quantum circuit
Now that we know where everything is in the Circuit Composer, we will create our
first quantum circuit. This will help you to get a better understanding of how all
these components work together and it will show you how these components provide
insights such as current state and probabilistic estimation as you build your first
quantum experiment.

Building a quantum circuit with classical bit behaviors
We are all familiar with some of the basic classic bit gates such as NOT, AND, OR,
and XOR. The behavior that these classic gates perform on a bit can be reproduced
on a quantum circuit using quantum gates. Our first experiment will cover these basic
building blocks, which will help you to understand the correlation between quantum
and classic algorithms.

Our first experiment will be to simulate a NOT gate. The NOT gate is used to flip the
value, in this case from |0〉 to |1〉, and vice versa. The gate we will use to do this is the NOT
gate. We will cover details on how this gate operates on qubits in Chapter 6, Understanding
Quantum Logic Gates.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating our first quantum circuit 27

To simulate the NOT gate on a quantum circuit, follow these steps:

1. From the open composer circuit that you previously created and titled My First
circuit, click and drag the NOT gate, which is visually represented by the ⊕ symbol,
from the list of gates down onto the first qubit, as shown in the following screenshot:

Figure 2.12 – Add an X (NOT) gate to the first qubit

2. Next, click and drag the measurement operation onto the first qubit, just after the
NOT gate. By taking a measurement of the qubit and having its value sent out to
the pertaining classic bit, we are essentially reading the state of the qubit.

A measurement occurs when you want to observe the state of the qubit. What
this means is that we will collapse the state of the qubit to either a 0 or a 1. In this
example, it is pretty straightforward that when we measure the qubit after the NOT
gate, the reading will be 1. This is because since the initial state is set to 0, applying a
NOT gate will flip it from 0 to 1. Therefore, we expect the measurement to read 1.

3. Click and drag another measurement operation onto the second qubit. We'll do this
just to contrast the difference between what we would see when we measure a qubit
in the initial state, and after a NOT gate.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

28 Circuit Composer – Creating a Quantum Circuit

4. Before we run this experiment, let's note a few things. First, note that the classic
bits are all on one line (as shown in the following screenshot). This is mostly to save
space. In lieu of having three additional wires where each represents a classic bit, a
single wire is used to denote the classic bits. They are labeled c3 to indicate a set of
three classic bits:

Figure 2.13 – Add a measurement operation to the first qubit
The second thing to notice is that the measurement operations match the qubit
number to the classic bit number; in this case, qubit 0 will read out to bit 0, and
qubit 1 will read out to bit 1, where bit 0 is the least significant bit.

5. Select the Run Settings drop-down option located at the top right of the circuit
composer view. This will display the run settings, illustrated as follows:

Figure 2.14 – Run settings drop-down view

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating our first quantum circuit 29

6. The run dialog provides you with three options:

First, to select which backend device you would like to run the experiment with,
the choices are either on a simulator called ibmq_qasm_simulator or on an actual
quantum device. Select any of the options you wish to run. In this example, we'll
select ibmq_valencia.

The second option allows you to select the Provider. There are different providers
– the open/main is for the open free quantum devices, and if you are a member of
the IBM Q Network then you'll have a provider that assigns you to the available
premium quantum devices. For now, leave it at the default setting.

The last option allows you to select how many shots of the quantum circuit you wish
to run. What this means is how many times you wish the quantum circuit to run
during your experiment. For now, since this is a simple experiment, let's simply set
it to the default value, 1024.

7. Now that you have selected your run options, let's run the circuit. Click Run on
ibmq_valencia. If you selected a different device, it will indicate it accordingly.

8. Once your experiment begins, you should see an entry of this experiment in the
Pending Jobs view to the right of the Composer view. This indicates that your
experiment is pending. Once completed, you will see it in the Results view shown
as follows:

Figure 2.15 – Results view displaying pending and completed jobs for the selected circuit

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

30 Circuit Composer – Creating a Quantum Circuit

While the job is in the Pending jobs list, it will display the status of the job. Once
completed, it will automatically move from the Pending jobs to the Completed
jobs list.

9. Upon completion, open your experiment from the Completed jobs list by clicking
on the job. This opens the experiment results view; you will see details regarding
your experiment at the top of the report, as illustrated in the following screenshot:

Figure 2.16 – Completed job result overview
This view provides details about the results such as the Time taken during each
task, the Backend system it had run on, the number of Shots, the current Status,
and the total time taken to execute. As you look further down the view you will see
a histogram of the results from the circuit you just ran on the backend, as illustrated
in the following screenshot:

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating our first quantum circuit 31

Figure 2.17 – Histogram representation of the circuit results
When you further scroll down the view/page you will see the diagram of the circuit
you created, illustrated in the following screenshot:

Figure 2.18 – Circuit diagram of the circuit
The diagram of the circuit is just one of the three representations of the circuit. The
other two tabs will display the QASM and Qiskit representations.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

32 Circuit Composer – Creating a Quantum Circuit

Now that we have the results from running our first quantum circuit, let's take a closer
look at our results and see what we got back.

Reviewing your results
The histogram result in Figure 2.21 provides information about the outcome of your
experiment. Some parts might seem straightforward, but let's review the details.

It may seem trivial now, but later on when we work on more elaborate quantum
algorithms, understanding the results will prove invaluable.

There are two axes to the results. Along the x axis, we have all the possible states of our
circuit. This is what the measurement operations observed when measuring the qubits.
Recall that we measured the first and second qubits, so from least significant bit (on the
far right), we see that the first two bits are set to 1 and 0 respectively. We know that this
is correct due to the fact we placed a NOT gate on the first qubit, which changes its state
from 0 to 1. For the second qubit, we simply took a measurement that equates to simply
measuring the initial state, which we know to be 0.

The y axis provides the probability of the measurement. Since we ran the experiment
1024 times, the results show that we have approximately a 95% probability of the first
qubit resulting in the state of 001. The reason why the probability is 95% and not 100% is
due to noise from the quantum device. We will cover the topic of noise in later chapters,
but for now we can be confident to a pretty high of probability that the NOT gate worked.

So, when would the probability be different? We'll explore this in the following experiment.

In this section, we simulated a simple NOT gate operation on a qubit and ran the circuit
on a quantum device. Pretty simple and straightforward. So now that you were able to
create and run your first quantum program, let's start learning something a little more
interesting than just changing the state of a qubit.

Building a coin-flipping experiment
If you've ever taken a course in probability and statistics, you might have seen the coin
flip example. In this example, you are given an unbiased coin to flip multiple times and
track the results of each flip (experiment) as either heads or tails. What this experiment
illustrates is that with an unbiased coin and enough samples, you will see that the
probability of either heads or tails start to converge to about 50%.

This means that, after running a sufficient number of experiments, the number of times
the coin lands on heads becomes very closely equal to the number of times that it lands
on tails.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a coin-flipping experiment 33

Let's take a moment to make an important note regarding the previously stated analogy
with respect to the reality of the preceding experiment. It has been proven that in many
ways, any coin could be easily made biased so that when it is flipped, it can land on the
same side each time.

That being said, I want to ensure that this is a basic example of an attempt to create a
classical analogy of a quantum computing principle in order to get an understanding of
the experiment we will be creating, and not to insinuate that this classical experiment
equates to a quantum experiment. I will cover these differentiations as we create the next
circuit that will simulate flipping a coin over 1,000 times. Let's give this a try:

1. Open the Composer Editor and create a new blank circuit.

2. Click and drag the Hadamard (H) gate onto the first qubit.

3. Click and drag the measurement operation onto the first qubit after the H gate. This
will indicate that you wish the value of this qubit to be measured, and assign its
resulting value of either 1 or 0 to the corresponding classic bit; in this case, the bit
at position 0, as shown in the following screenshot:

Figure 2.19 – Coin flip experiment

4. Name your circuit as Coin flip and save it.

5. Click Run Settings to expand the options.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

34 Circuit Composer – Creating a Quantum Circuit

6. Select the ibmq_qasm_simulator as the backend device and select the run count to
1024. This will run the experiment 1,024 times.

7. Click Run on ibmq_qasm_simulator.

8. Once completed, click on the completed experiment in the Completed jobs list.

The results will now show two different states. Remember that the Computational basis
states are represented along the x axis. The main difference you will now see is highlighted
by the first classic bit of the experiment (the least significant bit on the far right of each
state), which you can see is either a 0 or 1.

Another thing to note is the Probabilities (the y axis) of each of the two states. This
will differ each time you run the experiment. For example, the results in the following
screenshot will have a different result for the probability than your experiment:

Figure 2.20 – Coin flip results

That being said, one thing you will notice from the preceding screenshot is that the results
will fall fairly close to 50% each time you run the experiment. Rerun the experiment a few
more times and examine the results for yourself.

The reason for this is our use of the Hadamard gate. This special gate leverages one of
the two main quantum computing principles, superposition, that provides quantum
computers with the potential to solve complex computations. We will cover what and how
superposition works in Chapter 4, Understanding Basic Quantum Computing Principles,
and how the Hadamard gate performs this gate operation on the qubit in Chapter 6,
Understanding Quantum Logic Gates.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building a coin-flipping experiment 35

The use of the Hadamard gate, as you can see, allows your circuit to execute itself by
leveraging a linear combination of two states, 0 and 1. As mentioned earlier, this helps to
leverage superposition.

The second quantum computing principle used by quantum computers is entanglement.
This quantum mechanical phenomenon helps us to entangle two or more qubits
together. By entangling two qubits, we are in essence linking the value of one qubit and
synchronizing it with another qubit. By synchronizing it, we mean that if I measure
(observe) the value of one of the entangled qubits, then we can be sure that the other qubit
will have the same value, whether you measure it at the same time or sometime later. The
next experiment will cover this in more detail.

Entangling two coins together
Let's extend our coin-flipping example to include superposition by adding another coin
and entangling them together so that when we run our experiment, we can determine
the value of one coin without having to measure the other.

In the same way as our previous experiment, each qubit will represent a coin. In order to
do this, we will use a multi-qubit gate called a Control-Not (CNOT) gate (pronounced
see-not). The CNOT gate connects two qubits, where one is the source and the other the
target. We will cover these gates in detail in Chapter 6, Understanding Quantum Logic
Gates, but for now, here is a brief introduction so you can understand what you will
expect to see.

When the source qubit (the qubit that is connected to the source of the CNOT gate) has
a value equal to 1, then this enables the target of the CNOT, which as we can tell by the
name is a NOT gate. This gate performs the same operation as the X gate that we ran in
our previous first experiment, where we flipped the value of the qubit. Therefore, if the
target qubit was set to 0, then it would flip the target qubit to 1 and vice versa. Let's try
entangling our coins (qubits) to see how this works:

1. Open the Circuit Composer and create a new blank circuit.

2. Click and drag a Hadamard (H) gate onto the first qubit.

3. Click and drag the CNOT gate onto the first qubit (round white gate with crosshairs
on blue background). This will drop the source onto the first qubit. When selecting
the CNOT gate, the first qubit you drop it on will be set as the source. Visually, the
source of the CNOT gate is a solid dot on the qubit to which the gate was dragged
(see Figure 2.21).

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

36 Circuit Composer – Creating a Quantum Circuit

By default, the target will set itself to the next qubit. In this case, it will drop to qubit
2. Visually, the target for a CNOT is a large dot with a cross in the middle, made to
resemble a target.

4. Click and drag a measurement operator onto each of the two first qubits as shown
in the following screenshot:

Figure 2.21 – Entangled qubit circuit representing entangled coins

5. Title and save your experiment as Entangled coins.

6. Click Run Settings on the circuit to launch the Run Settings dialog.

7. Select the ibmq_qasm_simulator or any other device from the backend selection as
the backend device and select the run count to 1024. This will run the experiment
1,024 times.

8. Click Run on ibmq_qasm_simulator (or whichever device you selected in the
previous step).

9. Once completed click the Coin flip experiment from the Completed jobs list.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summary 37

Now let's review the results and see what happens when we entangle two qubits:

Figure 2.22 – Entangled coins results

As you can see in the preceding screenshot, the results still have two states, as they did
in the previous experiment. However, one thing to observe here is the results of the two
qubits. Note that the state of both qubits is either 000 or 011. Recall that the third bit
(the most significant bit) was not operated on, so it remains in the initial state of 0.

What makes this experiment interesting is when we flipped one coin in the previous
experiment, you saw that the results were 50% (0 or 1). However, now we are running the
same experiment, but we are entangling another coin. In effect, this results in both coins
becoming entangled together and thus their states will always be the same as each other.
This means that if we flip both coins and we observe one of the coin values, then we know
that the other entangled coin will be the same value.

Summary
In this chapter, you learned about the Circuit Composer view and its many components.
You created three circuits. The first one was an experiment that simulated a classic NOT
gate. The second one was an experiment in which a circuit was created using the Hadamard
gate, which leveraged superposition. You then viewed the results of the experiment.

The third one was a circuit in which you expanded on the second circuit in order to include
your first multi-gate, that is, a CNOT gate. From here, you demonstrated entanglement.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

38 Circuit Composer – Creating a Quantum Circuit

You were also able to review your results on a histogram, which allows you to examine
how both superposition and entanglement results map from your quantum circuit to the
classical bit outputs, as well as how to read the probabilities based on the results.

This has provided you with the skills to experiment with other gates and see what effect
each operation has on each qubit and what information might be determined or used
based on the results of the operation. This will be helpful when we look at some of the
quantum algorithms and how these operations are leveraged to solve certain problems.

In the next chapter, we will move away from the click-and-drag work of the user interface
and instead create experiments using Jupyter Notebooks, as well as beginning to program
quantum circuits using Python.

Questions
1. Using the entangled coin-flip experiment, re-run the experiment. What is the

statevector of the results?

2. What are the result states if you were to add a NOT gate before the Hadamard gate
in the entangled coin-flip experiment's circuit?

3. Using the entangled coin-flip experiment from the Circuit Editor, switch the
measurements so that the output of q0 reads out to classic bit 1, and q1 reads out to
classic bit 0. What are the two states in the result and what are their probabilities?

4. What would the result states be if you were to add a Hadamard gate to the second
qubit before the CNOT gate in the entangled coin-flip experiment's circuit?

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

3
Creating Quantum

Circuits using
Quantum Lab

Notebooks
In this chapter, you will learn how to create circuits using the Quantum Lab Notebooks
installed on the IBM Quantum Experience. You will learn how to save, import, and
leverage existing circuits without having to install anything on your own computer. This
will allow you to get a jump start on developing quantum circuits right away and ensure
that you will be able to run the tutorials based on the currently installed version.

The following Quantum Information Science Kit (Qiskit) notebook topics will be
covered in this chapter:

• Creating a quantum circuit using Quantum Lab Notebook

• Opening and importing existing Quantum Lab Notebook

• Developing a quantum circuit on Quantum Lab Notebook

• Reviewing results of your quantum circuit on the Quantum Lab Notebook

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

40 Creating Quantum Circuits using Quantum Lab Notebooks

After completing this chapter, you will be able to leverage the capabilities of the Quantum
Lab Notebooks, which will allow you to collaborate with others, share notebooks with
others, import notebooks such as those that accompany this book, and run them directly
from Quantum Lab. The Qiskit textbook is also capable of running on a Notebook, so as
new features are released, you can be assured that you will be able to run them directly
from your Notebook.

Technical requirements
In this chapter, some basic knowledge of programming is required, and some Python
development is preferred. If you are familiar with other Notebook applications such as
Jupyter Notebook then you may want to peruse this chapter, as most of the content here
might be familiar to you.

We will not be using much Python-specific code here yet, but there will be some Qiskit
code to help get you started in understanding and using the Qiskit Notebook. Here, I
will cover the Qiskit basics as we go along, but rest assured we will have plenty of time in
Chapter 7, Introducing Qiskit and Its Elements to review the many functions and features
of Qiskit. Here is the source code used throughout this book: https://github.com/
PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-
Quantum-Experience.

Here is the link for the CiA videos: https://bit.ly/35o5M80

Creating a quantum circuit using Quantum
Lab Notebooks
Quantum Lab Notebooks provided to you via the IBM Quantum Experience platform
will help you generate robust experiments that allow you to create quantum circuits
and integrate those circuits with classical experiments or applications. Quantum Lab
Notebooks generally contain a set of cells that you can use to write, test, and run your
code in each cell individually.

You can also include Markdown language in the cells to capture any notes or non-code
content, to help keep track of your learning or project. In this section, we will recreate the
same quantum circuit you completed in Chapter 2, Circuit Composer – Creating a Quantum
Circuit, only this time you will be using the Qiskit Notebook. So, let's get started!

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-Quantum-Experience
https://github.com/PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-Quantum-Experience
https://github.com/PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-Quantum-Experience
https://bit.ly/35o5M80

Creating a quantum circuit using Quantum Lab Notebooks 41

Launching a Notebook from the Quantum Lab
To create a quantum circuit, let's start by launching the Quantum Lab Notebook from the
Quantum Lab view. From the left panel under Tools, select Quantum Lab to launch the
view, as illustrated in the following screenshot:

Figure 3.1 – Launching the Quantum Lab view (left panel)

Now that you have the Quantum Lab view open, let's take a look at what each component
of the Notebook provides.

Familiarizing yourself with the Quantum Lab
components
In this section, we will become familiar with each of the components that make up the
Quantum Lab view. As you see in Figure 3.2 (starting from the top section, where you
can see there are quick links to the Qiskit tutorials), the quick links are grouped into
three sections, as follows:

• The first one is for starters, titled 1_start_here.ipynb. This will review the
introductory functions and features of Qiskit.

• The second group contains more advanced level tutorials.

• The third contains tutorials specific to certain fundamentals such as optimization,
artificial intelligence, and many other domains.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

42 Creating Quantum Circuits using Quantum Lab Notebooks

Under the quick links is the list of all previously saved notebooks. You can choose to open
any of those listed, or you can create or import notebooks by selecting either the New
Notebook + or Import button respectively, as illustrated in the following screenshot:

Figure 3.2 – Quantum Lab view

In the next step, we will create a new Notebook.

Creating a new Notebook
In this section, we will review the various functionalities available to ensure that you have
a good understanding of all the different features available to you.

In the following screenshot, we can see the landing page of the Circuit Composer
editor view:

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a quantum circuit using Quantum Lab Notebooks 43

Figure 3.3 – Notebook landing page

The following points provide a description of the functions and features and what they
contribute to the creation of a quantum circuit:

• When the Notebook loads up, you'll notice the first cell contains autogenerated
code that includes some from Qiskit. Qiskit will be discussed in detail in Chapter 7,
Introducing Qiskit and its Elements.

The autogenerated code functions help to get your code up and running by adding
some libraries and objects that are common when creating and running a quantum
circuit. We'll review details of these objects further so that you can understand what
each line pertains to and what the objects are generally used for.

Important note
Note that these may change as new features are added or updated to Qiskit, so
the content of these lines may alter over time.

• The following lines of code, which can also be seen in the preceding screenshot,
contain the most commonly used objects from the Qiskit library and the code for
loading of your account details so that you can connect to the quantum systems.

This is the first line of the autogenerated code block in your Notebook:
%matplotlib inline

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

44 Creating Quantum Circuits using Quantum Lab Notebooks

The preceding code imports the Matplotlib plotting library, which provides the
ability to embed plots and publication quality figures into applications. Details about
Matplotlib can be found on their home page here: https://matplotlib.org/

The next line imports four Qiskit objects that are commonly used to create and run
a quantum circuit. QuantumCircuit is used to create a new circuit, which is a list
of instructions bound to some registers. execute is an asynchronous call to run a
circuit and return a job instance handle. Aer and IBMQ are providers for backend
simulators and devices and to manage account details, respectively.

In the following code snippet, you can see we import each of these from the
qiskit package:

from qiskit import QuantumCircuit, execute, Aer, IBMQ

transpile and assemble are compiler objects used to translate and compile
circuits, while assemble provides a list of circuit schedules, as shown in the
following code snippet:

from qiskit.compiler import transpile, assemble

• The following lines in the autogenerated block of code import all tools and objects
from the Jupyter Notebook and visualization libraries, respectively. Jupyter
Notebooks is what the Qiskit Notebook is built upon, so it will leverage existing
features already familiar to those of you who compose experiments on a Jupyter
Notebook.

These features include creating new files, running kernels, and triggering cells.
The visualization library includes many features used to visualize results from
experiments such as histograms and bar charts, and in various formats, including
Matplotlib, Latex, and so on. The code can be seen here:

from qiskit.tools.jupyter import *

%from qiskit.visualization import *

• And finally, the IBMQ.load_account() function loads your account
information, particularly the application programming interface (API) token that
was assigned to you when you initially registered. This is done if you desire to run
an experiment on an actual device; the loading of your API token and other account
information needed to run an experiment is already available without any extra
work on your part. The following code snippet shows this:

provider = IBMQ.load_account()

This way, the content of your experiment is not cluttered with information that is
not relevant to your experiment and conclusions.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://matplotlib.org/

Creating a quantum circuit using Quantum Lab Notebooks 45

Now that we are familiar with the autogenerated code, we'll take a quick look at the Qiskit
Notebook itself. You'll note that its layout is very similar to that of a Jupyter Notebook,
so those who are already familiar with Jupyter Notebooks will undoubtedly recognize
the layout.

Learning about the Qiskit Notebook
For those who are new to the Qiskit Notebook, there are a couple of things to note that
will help you understand how coding and running your code work. Those of you who
are already familiar with Jupyter Notebooks can skip this section.

The Quantum Lab Notebooks run code one cell at a time. As shown in the following
screenshot, a cell is a section of the Notebook that can contain text, metadata, and source
code, such that it encapsulates the autogenerated code we looked at earlier. It simplifies
coding by breaking up the code into these cells. The cells can be run individually by
selecting the cell with your mouse and clicking the Run button, as illustrated in the
following screenshot:

Figure 3.4 – Notebook cell and operations

From the preceding screenshot, in the top row of the Qiskit Notebook menu options you
will see some usual operations you would find in a typical document editor, as follows:

• File: Save, Checkpoint, Print Preview, Close, and Halt

• Edit: Modify Cells, Move Cells, Merge Cells, and so on

• View: Toggle Headers, Toolbars, and other views

• Insert: Insert cells above or below selected cell

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

46 Creating Quantum Circuits using Quantum Lab Notebooks

• Cell: Run cell, run all cells, and more

• Help: Provides support content

There is one specific operation in the Notebooks menu list to take note of, and that is the
Kernel. For those of you with an existing version(s) of Python, do take note that Qiskit,
at the time of this writing, is running on Python version 3.

To confirm this, you can select Kernel from the drop-down menu and note that there is a
Change Kernel option. You will see Python 3 as the only option. However, if you install
Qiskit on your local machine that contains other versions of Python, you might see them
listed here as well. I mention this so as to ensure you have the correct kernel selected
to run Qiskit experiments. Otherwise, you may encounter some errors due to version
incompatibility.

Another thing to note is related to the various different formats in which you can download
a Qiskit Notebook. By selecting the File | Download as option you will see the various
formats, as shown in the following screenshot:

Figure 3.5 – Download formatting options

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a quantum circuit using Quantum Lab Notebooks 47

Up to now, you should be familiar with the functionality and features available on the
Qiskit Notebook. These are features that make it easy to share experiments and make
quick changes to them. We can now start creating and running quantum experiments
on our notebooks using Qiskit.

Opening and importing existing Quantum Lab
Notebook
Oftentimes, we wish to share our experiments with others and run others' experiments
ourselves. Importing a Qiskit Notebook is easy in that the Quantum Lab home page has
a link to Import button, next to the New Notebook + button, as shown in the following
screenshot:

Figure 3.6 – Quantum Lab home page

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

48 Creating Quantum Circuits using Quantum Lab Notebooks

This will launch your machine's file dialog to select the Qiskit Notebook you wish to
import into your workspace on IBM Quantum Experience (IQX). To open an existing
Qiskit Notebook, or one you have just imported, simply go back to your Qiskit Notebook
page and select the Notebook you wish to open from the file list at the bottom of the view,
as illustrated in the following screenshot:

Figure 3.7 – List of previously opened notebooks

Now that you are familiar with the Notebooks and the autogenerated code, let's quickly
create the same circuit we generated in the previous chapter, only this time we will create
it using only the Notebook.

Developing a quantum circuit on Quantum Lab
Notebooks
Let's take a quick look at the quantum circuit we created in the previous chapter. For
convenience, the circuit is given as follows:

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a quantum circuit using Quantum Lab Notebooks 49

Figure 3.8 – Quantum circuit previously created using the Circuit Composer

The preceding circuit comprises of two gates—Hadamard and Controlled-Not—and two
measurement operations on 2 qubits, respectively. This circuit was very easily constructed
on the Circuit Composer; however, as we learn more about quantum circuits and begin
to work on more complicated algorithms and circuits, it will be difficult to leverage a user
interface such as the Circuit Composer. So, we will code the construction of quantum
circuits and algorithms as we move forward instead.

To create the previous quantum circuit on a Notebook, follow these steps:

1. From the Quantum Lab Notebook, create a new Notebook and enter the following
code in an empty cell:

qc = QuantumCircuit(2,2)

qc.h(0)

qc.cx(0, 1)

The preceding code creates QuantumCircuit. The two parameters pertain to the
number of quantum bits (qubits) and classic bits we want to create, respectively. In
this example, we will create two of each.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

50 Creating Quantum Circuits using Quantum Lab Notebooks

The second line adds a Hadamard gate onto the first qubit. Note that the index
values of the qubits are 0 based. The third line adds a Controlled-Not gate that
entangles the first qubit (q0) as the control to the second qubit (q1), the target. The
parameters in the function pertain to the control and target, respectively.

2. Now, select Run to run the cell. Once the cell has completed running, you
should see the output display InstructionSet of the results and a new cell
generated below the one you just ran, as shown in the preceding code snippet.
InstructionSet is a class of instruction collections and their contexts
(classic and quantum arguments), where each context is stored separately
per each instruction.

Here is the output we are given after running the preceding code:
<qiskit.circuit.instructionset.InstructionSet at
0x7fc632176eb8>

3. Next, we will add the measurement operators to our circuit so that we can observe
our results classically. Notice in the following code snippet that we are using the
range method so as to simplify the mapping of each qubit to its respective classic
bit:

qc.measure(range(2), range(2))

4. Run the preceding cell to include the measurement operators to our circuit. Now
that we have created the circuit and included the same gates and operations we did
in Chapter 2, Circuit Composer – Creating a Quantum Circuit, let's draw the circuit
and compare. Draw the circuit using the draw function, shown as follows:

qc.draw()

You should now see the following results, after the draw method is complete:

Figure 3.9 – Rendered image of the quantum circuit

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Reviewing the results of your quantum circuit on Quantum Lab Notebooks 51

Notice that the preceding circuit is identical to that which you created earlier. The only
difference is the initial number of qubits. The Circuit Composer defaults to 5 qubits,
whereas here we specified only 2. The circuit will run the same, both on the simulator
and on an actual quantum device, since we are only using 2 qubits.

In this section, we have learned to navigate the Quantum Lab Notebook. We also learned
how to open an existing Notebook, along with opening, creating, and importing the
Notebook. We also saw how to develop a quantum circuit.

Now, we will move on to review the results of the quantum circuit.

Reviewing the results of your quantum circuit
on Quantum Lab Notebooks
In this section, we'll conclude this chapter by running the circuit on a quantum simulator
and a real device. We'll then review the results by following these steps:

1. From the open Notebook, enter and run the following in the next empty cell:

backend = Aer.get_backend('qasm_simulator')

The preceding code generates a backend object that will connect to the specified
simulator or device. In this case, we are generating a backend object linked to the
QASM simulator.

2. In the next empty cell, let's run the execute function. This function takes in three
parameters—the circuit we wish to run, the backend we want to run it on, and how
many shots we wish to execute. The returned object will be a job object with the
contents of the executed circuit on the backend. The code for this can be seen here:

job_simulator = execute(qc, backend, shots=1024)

3. We now want to extract the results from the job object. In order to do that, we will
call the result function, illustrated as follows, and save it in a new variable:

result_simulator = job_simulator.result()

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

52 Creating Quantum Circuits using Quantum Lab Notebooks

4. Since we ran our experiment with 1024 shots, we want to get the results from the
counts. In order to do that, we can call the get_counts() method by passing in
our circuit as the argument. Once we receive the counts, let's print out the results
by running the following code:

counts = result_simulator.get_counts(qc)

print(counts)

Note that the count results, shown as follows, may be different from your count
results, which are based on the randomness of the qubits. But overall, the results
will be similar by approximately 50%:

Figure 3.10 – Count results from the quantum circuit

5. Finally, let's visualize the result counts by plotting them using a histogram. We'll
first import the plot_histogram method from the qiskit.visualization
library and pass our counts in as an argument, as follows:

from qiskit.visualization import plot_histogram

plot_histogram(counts)

As you can see in the following screenshot, the results are very similar to our results
from the Circuit Composer in that 50% of the time our results are 00, and the other
half of the time they are 11:

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Reviewing the results of your quantum circuit on Quantum Lab Notebooks 53

Figure 3.11 – Histogram view of the count results

Now that we have run our quantum circuit on a simulator, let's run this same quantum
circuit on a real quantum computer.

Executing a quantum circuit on a quantum computer
To run this quantum circuit on a quantum device, we will continue with the
following steps:

1. The only change you need to update in the steps from the preceding section is to
go from running on a simulator to a real device in Step 1 from the previous steps,
which is where you specify the name of the backend. In Step 1, we set the backend
to the qasm_simulator. In this step, we will update to an actual device. So, let's
first get a list of backends from our providers by running the following code in a
new cell:

provider.backends()

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

54 Creating Quantum Circuits using Quantum Lab Notebooks

The preceding method will return a list of all the simulators and real devices
currently available to you, shown as follows. Note that the devices listed may change
over time, so the results shown may be different when you run the method:

Figure 3.12 – List of available quantum computers (quantum devices)

2. The only change you need to update from the steps in the previous section is
to specify which quantum computer from the list of backend devices you wish
to run the experiment. In the previous steps, we set the backend to the qasm_
simulator, whereas in this step we will update our backend to use a real device
from the list. In this case, we'll choose ibmq_vigo. This list may appear different
to you, so pick one from your list if ibmq_vigo is not listed. To do this, run the
following code in a new cell:

backend = provider.get_backend('ibmq_vigo')

The preceding code assigns the ibmq_vigo quantum computer as our backend.

3. From the previous steps, repeat Step 2 to Step 5 to run the circuit on a real device.
Your results will seem a little different. Rather than just the 00 and 11 results, you
will see that there are some 01 and 10 results, shown in the screenshot that follows,
albeit only a small percentage of the time.

This is due to noise from the real device, which is why they are often referred to as
Noisy Intermediate-Scale Quantum (NISQ) systems or near-term devices. The
noise can come from an array of things, such as ambient noise and decoherence.
Details about the different types of noise and their effects will be discussed in detail
in Chapter 11, Mitigating Quantum Errors Using Ignis.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summary 55

The results can be seen in the following screenshot:

Figure 3.13 – Histogram plot of results

Congratulations! You have just completed running a quantum circuit on both a quantum
simulator and a real quantum device using the Quantum Lab Notebooks. As you can see,
by using the Notebook you can use many built-in Qiskit methods to create circuits and run
them on various machines with a simple line of code, whereas on the Circuit Composer
you would have to make various changes that would take a lot of time to complete.

Summary
In this chapter, you learned about the Quantum Lab Notebooks and ran a simple quantum
circuit. You completed three basic functional steps: creating a quantum circuit using the
Notebook and the Qiskit library, executing your circuit with a backend simulator and real
device, and reviewing and visualizing your results from within the Notebook.

One thing you might have noticed is that using the Notebook with Qiskit also simplifies
integrating your classical experiments with a quantum system. This has provided you with
the skills and understanding to enhance your current Python experiments and run certain
calculations on a quantum system, making them a hybrid classical/quantum experiment.

When the quantum calculations have completed, the results can be very easily used by
your classical experiments.

Now that we are familiar with the Quantum Lab Notebooks and are able to create
and execute a circuit, in the next chapter, we will start learning the basics of quantum
computing and the quantum mechanical principles of superposition, entanglement,
and interference.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

56 Creating Quantum Circuits using Quantum Lab Notebooks

Questions
1. Quantum Lab notebooks are built upon which application editor?

2. How would you create a 5-qubit circuit, as we did in Chapter 2, Circuit Composer -
Creating a Quantum Circuit?

3. To run the experiment on another real device, which quantum computer would you
select if your quantum circuit has more than 5 qubits?

4. When you run on a real device, can you explain why you get extra values when
compared to running on a simulator?

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

In this section, you will learn the basics needed to understand quantum computing,
with particular focus on the mathematics and principles of quantum computing that
most quantum algorithms leverage to potentially solve many intractable problems. You
will also learn about the basic components, such as quantum bits, quantum gates, and
quantum circuits, that we use to develop quantum algorithms.

This section comprises the following chapters:

• Chapter 4, Understanding Basic Quantum Computing Principles

• Chapter 5, Understanding the Quantum Bit (Qubit)

• Chapter 6, Understanding Quantum Logic Gates

Section 2:
Basics of Quantum

Computing

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

4
Understanding
Basic Quantum

Computing
Principles

Quantum computing, particularly its algorithms, leverage three quantum computing
principles, namely, superposition, entanglement, and interference. In this chapter, we'll
review each of these so that we can understand what each provides, the effect it has on each
qubit, and how to represent them using the quantum gate sets provided to us. As a bonus, we
will also create a quantum teleportation circuit that will leverage two of the three quantum
computing principles to teleport an unknown state from one person to another.

The following topics will be covered in this chapter:

• Introducing quantum computing
• Understanding superposition
• Understanding entanglement
• Learning about the effects of interference between qubits
• Creating a quantum teleportation circuit

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

60 Understanding Basic Quantum Computing Principles

This chapter will focus on the three main quantum computing principles that will help you
better understand how they are used in the various quantum algorithms. The quantum
computers hosted on the IBM Quantum Experience leverage all these principles by
use of the various quantum gates, some of which you used earlier in this book.

Technical requirements
In this chapter, some basic knowledge of programming is required. Some Python
development knowledge is preferred as the experiments leverage Python libraries.
Some general knowledge of physics is recommended; however, my goal is for the
explanations to help you understand the quantum principles without the need for you
to register for a physics course or read the Feynman lectures. Here is the full source code
used throughout this book: https://github.com/PacktPublishing/Learn-
Quantum-Computing-with-Python-and-IBM-Quantum-Experience.

Please visit the following link to check the CiA videos: https://bit.ly/35o5M80

Introducing quantum computing
Quantum computing isn't a subject that is as common as learning algebra or reading some
of the literary classics. However, for most scientists and engineers or any other field that
includes studying physics, quantum computing is part of the curriculum. For some of us
who don't quite recall our studies in physics, or have never studied it, need not worry, as
this section aims to provide you with information that will either refresh your recollection
on the topic or at least perhaps help you understand what each of the principles used in
quantum computing mean. Let's start with a general definition of quantum mechanics.

Quantum mechanics, as defined by most texts, is the study of nature at its smallest
scale – in this case, the subatomic scale. The study of quantum mechanics is not new. Its
growth began in the early 1900s by many physicists, whose names still chime in many
of the current theories and experiments. The names of such physicists include Erwin
Schrodinger, Max Plank, Werner Heisenberg, Max Born, Paul Dirac, and Albert Einstein,
among others. As years passed, many other scientists expanded on the foundations
of quantum mechanics and began performing experiments that would either prove,
disprove, or oftentimes illustrate that there is no proof.

One of the more popular experiments is the double slit experiment. Although this is
found in classical mechanics, it is referenced in quantum computing to describe the
behavior of a quantum bit (qubit). It is in this experiment researchers were able to
demonstrate that light (or photons) can be characterized as both waves and particles.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-Quantum-Experience
https://github.com/PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-Quantum-Experience
https://bit.ly/35o5M80

Introducing quantum computing 61

There were many distinct experiments that have been conducted over the years that
illustrate this phenomenon, one of which was to fire particles through a double slit one at
a time where at the other side of the double slit was a screen that captured, as a point, the
location where each particle would hit. When only one slit was open, all the particles would
appear as a stack of points directly in front of the slit, as shown in the following diagram:

Figure 4.1 - Single-slit experiment (image source: https://commons.wikimedia.org/wiki/
File:SingleSlitDiffraction.GIF)

From the previous diagram, you can see that all the particles are captured in an area
directly across the slit.

However, when the second slit was open, it was imagined that there would be an identical
stack of points on the screen. But this was not the case, as what was captured appeared to
be a formation altogether different than what would be expected from a particle. In fact,
it had the characteristics of a wave in that the points on the screen seemed to display a
diffraction pattern, as shown in the following diagram:

Figure 4.2 - Double-slit experiment (image source: https://commons.wikimedia.org/wiki/
File:Double-slit.PNG)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://commons.wikimedia.org/wiki/File:SingleSlitDiffraction.GIF
https://commons.wikimedia.org/wiki/File:SingleSlitDiffraction.GIF
https://commons.wikimedia.org/wiki/File:Double-slit.PNG
https://commons.wikimedia.org/wiki/File:Double-slit.PNG

62 Understanding Basic Quantum Computing Principles

From the previous diagram, you can see that all the particles are spread out from the
center with interference gaps.

This diffraction pattern is caused by the interference of the light waves passing through
the slits. Here, there are more points at the center of the screen than there are toward the
outer ends of the observing screen. This wave particle phenomenon gave birth to lots of
interesting research and development such as the Copenhagen interpretation, many-
worlds interpretation, and the De Broglie-Bohm theory.

What this illustrated was that the light appeared as bands of light in certain areas of
the board with some probability. By observing the preceding diagram, you can see that
there is a higher probability that the electron fired from the gun will land in the center
band of the screen as opposed to the outer bands. Also, note that due to interference, the
spaces in between the bands that capture the electrons have less probability (blank areas
between bands).

It is these effects of wave interference and probabilities that we will cover in this chapter,
but first, we will start with the electron itself to understand superposition.

Understanding superposition
Superposition is something we generally can't see with the naked eye. This is typically the
case when discussing the superposition of an electron. Since an electron is very small and
there are so many of them, it is hard to distinguish one with even a powerful microscope.
There are, however, some analogies in the classical world that we can use to illustrate
what superposition is. For example, a spinning coin is what most texts use to describe
superposition. While it is spinning, we can say that it is in the state of both heads and
tails. It isn't until the coin collapses that we see what the final state of the coin is.

In this chapter, we're going to use this spinning coin analogy just to help you understand
the general principle of superposition. However, once we start working on our quantum
circuits, you will see some of the differences between superposition and its probabilistic
behavior in the classical world versus its behavior in the quantum world. Let's start by
reviewing the random effects in the classical world.

Learning about classical randomness
Previously, we discussed the randomness of a spinning coin as an example. However, the
spinning coin and its results are not as random as we think. Just because we cannot guess
the correct answer when a coin is spun on a table or flipped in the air does not make it
random. What leads us to believe that it's random is the fact that we don't have all the
information necessary to know or predict or, in fact, determine that the coin will land
on either heads or tails.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding superposition 63

All the relevant information, such as the weight of the coin, its shape, the amount of force
required to spin the coin, the air resistance, the friction of the platform the coin is rolling
on, and so on, all of this information, and the information of the environment itself, is
not known to us in order for us to determine what the outcome would be after spinning
a coin. It's because of this lack of information that we assume the spinning of the coin is
random. If we had some function that could calculate all this information, then we would
always successfully determine the outcome of the spinning coin.

The same can be said about random number generators. As an example, when we trigger
a computer to generate a random number, the computer uses a variety of information to
calculate and generate a random number. These parameters can include information such
as the current daytime that the request was triggered, information about the user or the
system itself, and so on.

These types of random number generators are often referred to as pseudorandom
number generators (PSRN) or deterministic random bit generators (DRBT). They are
only as random as the calculation or seed values provided that is allowed. For example, if
we knew the parameters used and how they were used to generate this random number,
then we would be able to determine the generated random number each and every time.

Now, that being said, I don't want you to worry about anyone determining the calculations
or cryptic keys that you may have generated. We use these pseudorandom number
generators because of the precision and granularity that they encompass to generate
this number, which is such that any deviation can drastically alter the results.

So, why bother reviewing the probabilistic and random nature of a spinning coin? One,
it's to explain the difference between randomness, or what we believe is random, in the
classical world versus the randomness in the quantum world.

In the classic world, we learned that if we had all the information available, we can more
than likely determine an outcome. However, in the previous section, where we described
the double-slit experiment, we saw that we couldn't determine where in the screen the
electron was going to hit. We understood the probabilities of where it would land based
on our experiment. But even then, we could not deterministically identify where precisely
the electron was going to land on the screen. You'll see an example of this when we create
our superposition circuit in the next section.

For those who wish to learn a little more about this phenomenon, I would suggest reading
the book by the famous physicist Richard Feynman titled QED: The Strange Theory of
Light and Matter.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

64 Understanding Basic Quantum Computing Principles

Preparing a qubit in a superposition state
In this section, we are going to create a circuit with a single qubit and set an operator on
the qubit to set it in a superposition state. But before we do that, let's quickly define what
a superposition state is.

We define the qubit as having two basis energy states, one of which is the ground (0)
state and the second of which is the excited (1) state, as illustrated in Figure 4.3. The state
value name of each basis state could be anything we choose, but since the results from
our circuit will be fed back to a classic system, we will use binary values to define our
states – in this case, the binary values 0 and 1. To say that the superposition of two states
is being in both 0 and 1 at the same time is incorrect. The proper way to state a qubit is in a
superposition state is to say that it is in a complex linear combination of states where in this
case, the states are 0 and 1.

The following screenshot is referred to as a Bloch sphere, which represents a single qubit
and its two basis states, which are located on opposite poles. On the north pole, we have
the basis state 0, while the south pole, we have the basis state 1. The symbols surrounding
the basis state values are the commonly used notations in most quantum computing text.
This is called Dirac notation, which was named after the English theoretical physicist
Paul Dirac, who first conceived the notation, which he called the Bra-Ket notation. Both
Bra-Ket and Dirac notation are generally used interchangeably as they refer to the same
thing, as we'll see later.

Figure 4.3 - Two basis states of a qubit on a Bloch sphere

Ok, so let's stop talking and let's start coding. We're going to create a quantum circuit with
a single qubit. We will then execute the circuit so that we can obtain the same result we
can see in the preceding screenshot, which is the initial state of the qubit, state .

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding superposition 65

Open a new Qiskit Notebook and enter the following code into the next empty cell:

from qiskit.visualization import plot_bloch_multivector

qc = QuantumCircuit(1)

execute the quantum circuit

backend = Aer.get_backend('statevector_simulator')

result = execute(qc, backend).result()

stateVectorResult = result.get_statevector(qc)

#Display the Bloch sphere

plot_bloch_statevector(stateVectorResult)

The first line imports the Bloch sphere library so that we can plot our vector. The next
line creates the circuit so that it includes 1 qubit, and in the next three lines, we are
setting up our backend to execute the circuit to the simulator. And finally, we display
the results on our Bloch sphere, which should display the same as what you can see in
the preceding diagram.

So, you might be wondering what all this talk about vectors and statevector simulators is
about. Good! This is what we will discuss now. The reason I wanted to run the experiment
first as opposed to explaining what the vector states are and what the statevector simulator
does is so that you can see it first and then hopefully the description will be a bit clearer.
Let's start with the vector explanation.

Each qubit, as mentioned earlier, is made up of two basis states, which in this example
reside on opposite poles of the Bloch sphere. These two basis states are what we would
submit back to the classical system as our result – either one or the other. The vector
representing these two points originates from the origin of the Bloch sphere, as you can
see in the previous diagram, or the result from your experiment. If we were to notate this
as a vector, we would write the following:

Since the opposite would apply to the opposite pole, we would notate it as follows:

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

66 Understanding Basic Quantum Computing Principles

From observing the vector values, you can see that flipping the values of the vector
is similar to a classical bit flip. Now that we understand the vector representation of
a qubit, let's continue and set the qubit in a superposition state:

1. Insert a new cell at the bottom of the current notebook and enter the following code:

#Place the qubit in a superposition state by adding a
#Hadamard (H)gate

qc.h(0)

#Draw the circuit

qc.draw()

The previous code places a Hadamard (H) gate onto the first qubit, identified by the
qubit's index value (0). It then calls the draw function, which will draw the circuit
diagram.

After running the previous cell, you should see the following circuit image, which
represents adding the Hadamard gate to the qubit:

Figure 4.4 – Circuit with a Hadamard (H) gate added to a qubit
The Hadamard gate is an operational gate that places the qubit in a superposition
state, or, more specifically, a complex linear combination of the basis states, which
means that when we measure the qubit, it will have an equal probability result
of measuring a 0 or 1. Or in other words, it would collapse to the basis state value

 or .

Mathematically, the superposition state is represented in the following two
superposition equations, which, as you can see, depends on which of the two basis
states it was in prior to applying the Hadamard gate. The first superposition
equation is as follows and originates from the state:

The second superposition equation, originating from the state, is as follows:

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding superposition 67

This is equal to a π⁄2 rotation about the X and Z axes of the Bloch sphere. These
rotations are Cartesian rotations, which rotate counter-clockwise.

2. Now, let's execute our circuit, see what this looks like, and where the state vector
lands on the Bloch sphere. In the following code, you will execute the same
circuit again, the results of which will not differ in that the qubit will appear in a
superposition state, which you will see in the resulting Bloch sphere's output:

#Execute the circuit again and plot the result in the
#Bloch sphere

result = execute(qc, backend).result()

#Get the state vector results of the circuit

stateVectorResult = result.get_statevector(qc)

#Display the Bloch sphere

plot_bloch_multivector(stateVectorResult)

Once the circuit has completed executing, the results will be plotted on the Bloch
sphere in a superposition between and , as illustrated in the following
screenshot:

Figure 4.5 - Superposition of a qubit after 90° rotation around the X and Z axes
As you can see in the preceding screenshot, this has placed the vector on the positive
X axis, as described previously when adding a H gate from the basis state.

3. Now, let's clear the circuit. This time, we will initialize the qubit to the state first
and then apply a Hadamard gate to see what happens to the vector this time.
Initialize qubit to the state and place it in a superposition. Clear the circuit and
initialize qubit to 1 before applying Hadamard gate:

#Reset the circuit

qc = QuantumCircuit(1)

#Rotate the qubit from 0 to 1 using the X (NOT) gate

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

68 Understanding Basic Quantum Computing Principles

qc.x(0)

#Add a Hadamard gate

qc.h(0)

#Draw the circuit

qc.draw()

You should now see the following circuit:

Figure 4.6 - Applying an H gate superposition from an opposite base state

4. Now, let's execute the circuit and plot the result on the Bloch sphere:

Figure 4.7 - Superposition of a qubit after 90° rotation around the X and Z axes from the state

Do you see the difference between adding a Hadamard gate to a qubit in the state
(Figure 4.5) and adding it to a qubit in the state in the preceding screenshot?

Of course, the difference is where it lands on the X axis! Because the vector falls
onto the positive X axis when applying a Hadamard gate to the state, this is
commonly notated as . This logically means that the vector falls onto the negative
X axis when applying a Hadamard gate to the state. This is commonly notated
as .

Now, take a look at the superposition equations and note the initial basis state on
the left-hand side of the equation, which represents the state of the qubit before it
was placed in superposition, and notice the right-hand side of the equation. Pay
close attention to the signs in-between.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding superposition 69

Notice that the signs match the direction of where the vector lands after the
Hadamard gate is applied. From the state, it moves toward the positive (+)
direction of the X axis, and from the state, it moves toward the negative (-)
direction of the X axis.

This difference is referred to as a phase difference between the two results. This will
be very important later on in this and subsequent chapters as phase difference plays
an important role in many quantum algorithms and blends itself into the topic of
interference, as we will learn shortly.

One last thing that we will discuss before moving on is to now loop back to our
earlier discussion on probabilities. Now that we've learned what superposition looks
like in a circuit and on a Bloch sphere, let's execute and see what the probabilities
are when we measure the qubit after it is in superposition. As you may recall
from our first analogy of flipping or spinning a coin, we said that once the coin is
spinning, it is in a superposition of heads or tails, or in this example, 0 or 1.

Once we collapse and observe, the result of the coin will be one or the other.
However, classically, this is pseudorandom, as we learned. But in quantum
computing, electron detection is truly random as there is no way to determine its
outcome without disturbing it. This is the same as measuring a qubit; we are, in
essence, measuring it, and therefore forcing it to collapse into one of two basis states.

5. Then, measure the qubit after it is in superposition and reset the circuit. Let's start
from the state and apply a Hadamard gate, as we did earlier:

#Reset the circuit

qc = QuantumCircuit(1,1)

#Add a Hadamard gate

qc.h(0)

6. Now, let's include a measurement operator so that we can measure the qubit,
which should collapse it into one of two states, as follows:

#Create a measurement circuit with 1 qubit and 1 bit

measurement_circuit = QuantumCircuit(1,1)

#Measure function used to map the qubit and bit by their
#index value on the circuit, respectively

measurement_circuit.measure(0,0)

#Concatenate the circuits together

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

70 Understanding Basic Quantum Computing Principles

full_circuit = qc+measurement_circuit

#Draw the full circuit

full_circuit.draw()

In the previous code, we created a measurement circuit that includes a measurement
operation that basically collapses the qubit from its current state to that of either 0
or 1.

You will obtain the following circuit:

Figure 4.8 - Full circuit with rotation and measurement from qubit (q) to classic bit (c)
The previous diagram illustrates our circuit, which you can see now includes
two new components, the first of which is the classic register below the quantum
register. The second component is the measurement operator, which will extract the
result of the qubit and pass it onto the classic bit. The result will collapse the state of
the qubit to either 1 or 0.

7. Now, let's execute and run a few shots and see the results. shots refers to
running through the experiment a few times and aggregating its results:

#Execute the circuit again and print the results

backend = Aer.get_backend('qasm_simulator')

result = execute(full_circuit, backend, shots=1000).
 result()

counts = result.get_counts(full_circuit)

print(counts)

The previous code will now use qasm simulator rather than the state vector
simulator, which will allow us to obtain the measured results of the circuit. In this
case, we will extract counts, which stores the number of times the measurement
resulted in either a 0 or 1 out of 1000 shots.

The result of the previous code is as follows:
{'1': 491, '0': 509}

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding entanglement 71

Notice that the results are almost 50%, which illustrates that you can have an equal
probability of 0 and 1!

Important Note
Note that your actual value results might be different than what was shown
previously, but the probability should be pretty close to 50%. Retry running the
code a few times and play around with the number of shots to see if you get
any differences. The limitation for shots at the time of writing was around
8,000.

The reason why we run so many shots of a circuit is because the near-term quantum
devices used these days are not fault-tolerant yet. Fault-tolerant devices are those that
exhibit very low error rates and large quantum volumes, which we will cover in Chapter 9,
Understanding Qiskit Aer. Current near-term devices need to run multiple shots to provide
your quantum algorithm with good probability results. However, once these devices reach
fault-tolerant status, you can expect the probabilities to be closer to 1; that is, they are
highly accurate with fewer shots.

Now that we have covered superposition, we will move onto the second quantum
computing principle, which is entanglement.

Understanding entanglement
Entanglement is probably one of the most interesting of the three quantum computing
principles. This is mainly because it still baffles physicists and scientists to this day, with
many taking different philosophical sides on the discussion. I won't bore you with the
details, but I will definitely provide you with enough information for you to understand
what entanglement is, but not to have a way to prove it. Yes, it sounds confusing, but
believe me, the devil is in the detail and there just isn't enough space for us to formulate a
comprehensive answer to how entanglement works. But enough of that – let's get to work!

Quantum entanglement, or just entanglement, is simply defined as a quantum mechanical
phenomenon that occurs when two or more particles have correlated states. What this,
in essence, means is that if you have two particles or, for our purposes, qubits, that are
entangled, this means that when we measure one qubit, we can determine the result
of the other qubit based on the measurement of the first qubit.

As you may recall from our previous example, if we put a qubit in a superposition and we
measure that qubit, we have a 50/50 split as to whether that qubit would collapse to either
of two states, or .

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

72 Understanding Basic Quantum Computing Principles

Now, if that same qubit were entangled with another qubit and we were to measure one of
the qubits, that qubit will be either or . However, if we were to measure the second
qubit, either at the exact same time or sometime later, it too will have the same value as
the first qubit we measured!

You're probably thinking, how can this be? If we take two qubits and place them in
superposition and we measure them separately, we will correctly see that each qubit will
collapse to a value of 1 or 0, where each time we measure the qubits individually, it may
not collapse to the same value at the same time. This means that if we run the experiment
one shot at a time, we would see that, sometimes, the first qubit will measure 0, while the
second qubit could measure 0 or 1.

Both are separate and do not know the value of each other either before, during, or
after measurement. However, if we were to entangle the two qubits and repeat the same
experiment, we would see that the qubits will measure the exact same values each and
every time!

Impossible, you say? Well, it's a good thing for us that we now have a quantum computer
that we can run and try this out!

In the following code, we will see that when qubits are not entangled, their results are such
that we cannot infer what the result of one qubit would be based on the result of the other
qubit. Since we are measuring two qubits, our results will be listed as 2-bit values:

1. First, we'll create a new circuit with two qubits, place them in superposition, and
measure them:

#Create a circuit with 2 qubits and 2 classic bits

qc = QuantumCircuit(2,2)

#Add an H gate to each

qc.h(0)

qc.h(1)

#Measure the qubits to the classical bit

qc.measure([0,1],[0,1])

#Draw the circuit

qc.draw()

In the preceding code, we created a quantum circuit with two qubits, added an
H gate to each of the qubits so that we can place each qubit into a superposition
state, and finally added a measurement from each qubit to its respective bit.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding entanglement 73

The result from the previous code should display the following circuit, where we
can see that each qubit has an H gate that's measured to its respective classical bit
register; that is, qubit 0 to bit 0 and qubit 1 to bit 1:

Figure 4.9 - Two qubits in superposition and measured to their respective classic bits

2. Then, we execute the circuit and display the results:

#Execute the circuit again and print the results

backend = Aer.get_backend('qasm_simulator')

result = execute(qc, backend, shots=1000).result()

counts = result.get_counts(qc)

plot_histogram(counts)

In the previous code, we created the backend to run on the simulator with 1000
shots and plot the results in a histogram to review them.

Important Note
Note from the following results that the outcomes are very random from each
qubit, which is what we expected. One thing I would also like to mention
regarding notation is the ordering of the qubits. When written, the order of
the qubits are a little different than the bit order. In quantum notation, the first
qubit is also listed on the left-hand side, while subsequent qubits are added
toward the right-hand side. In binary notation, however, the first bit is on the
right-hand side, while subsequent bits are added toward the left-hand side.

For example, if we want to represent the 3-qubit value of the number 5, we would
do so using , which is the same as the bit representation of the same number.
However, the qubit order here is different as the first qubit is listed in the left
position (q[0]), the second qubit (q[1]) is listed in the middle position, and the
last qubit (q[2]) is listed in the right position.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

74 Understanding Basic Quantum Computing Principles

On the other hand, in bit notation, the first bit (b[0]) is in the right position and
moves up in order to the left. When measuring, we link the results from the qubit
to the bit (as shown in the preceding screenshot), which correctly maps the results
of each qubit to its respective binary position so that our results are in the expected
bit order.

The plotted histogram is shown in the following screenshot:

Figure 4.10 - Random results of all combinations from both qubits
In the previous screenshot, each qubit has collapsed to a state of either 0 or 1, so
since there are two qubits, we should expect to see all four random results, which
are 00, 01, 10, and 11. Your probability results might differ a bit, but overall, they
should all be close to 25% probability.

3. This is expected, so let's entangle the two qubits and see what happens then.
For this, we will entangle the two qubits and rerun the experiment.

Let's entangle the two qubits by adding a multi-qubit gate called a Control-NOT
(CNOT) gate. Let me explain what this gate is before we include it in our circuit.

The CNOT gate is a multi-qubit gate that operates on one qubit based on the value
of another. What this means is that the qubit gate has two connecting points – one
called Control and another called Target. The T is generally some operator, such as
a NOT (X) gate, which would flip the qubit from 0 to 1 or vice versa.

However, the Target operator can also be almost any operation, such as an H
gate, a Y gate (which flips 180° around the Y axis), and so on. It could even be
another Control, but we will get into those fancy gates in Chapter 6, Understanding
Quantum Gates.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding entanglement 75

The CNOT gate acts in such a manner that when the qubit tied to the Control is set
to 0, the value of the Target qubit does not change, meaning the Target operator will
not be enabled. However, if the value of the Control qubit is 1, this will trigger the
Target operator. This would, therefore, in the case of a CNOT gate, enable a NOT
operation on the target qubit, causing it to flip 180° around the X axis from its
current position.

The following logic table represents the Control and Target value updates based on
the value of the Control for a CNOT gate, as well as the states before and after the
CNOT gate:

Table 4.1 - Two qubit CNOT logic table

Now that we can see how the CNOT gate works on two qubits, we will update our
circuit so that we can entangle the qubits together. In the following code, we will
create a circuit with 2 qubits where we will apply a Hadamard gate to the first
qubit and then entangle the first qubit with the second qubit using a CNOT gate:

#Create a circuit with 2 qubits and 2 classic bits

qc = QuantumCircuit(2,2)

#Add an H gate to just the first qubit

qc.h(0)

#Add the CNOT gate to entangle the two qubits, where the
#first qubit is the Control, and the second qubit is the
#Target.

qc.cx(0,1)

#Measure the qubits to the classical bit

qc.measure([0,1],[0,1])

#Draw the circuit

qc.draw()

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

76 Understanding Basic Quantum Computing Principles

The resulting diagram of the circuit should look as follows:

Figure 4.11 - Entanglement of two qubits
The previous screenshot shows you that, this time, we are only placing a Hadamard
gate on the first qubit and leaving the second qubit to be operated on only by the
CNOT gate. Since it is set as the target, it will be dependent on the Control qubit.

4. Now, we will run the experiment and plot the results. This is similar to the previous
experiments we completed, where we will execute the circuit, extract the result
counts, and plot them on a histogram to visualize the results:

#Execute the circuit again and print the results

result = execute(qc, backend, shots=1000).result()

counts = result.get_counts(qc)

plot_histogram(counts)

The results shown in the following screenshot show two quantum computing
principles – the superposition of the qubits, 0 and 1, and the entanglement – where
both qubit's (Control and Target) results are strongly correlated as either 00 or 11:

Figure 4.12 - Results of two entangled qubits

Now that you are familiar with superposition and entanglement, let's move onto the last
quantum computing principle, which is interference.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding entanglement 77

Learning about the effects of interference between
qubits
One of the benefits of quantum computing is its ability to interleave these principles in
such a way that usually, while explaining one, you can very easily describe the other. We
did this earlier in this chapter with respect to interference. Let's review and see where we
have come across this phenomenon and its usage so far.

First, recall that, at the beginning of this chapter, we described the double-slit experiment.
There, we discussed how an electron can act as both a wave and a particle. When acting
like a wave, we saw that the experiment illustrated how the electrons traveled and landed
at certain spots of the observation screen. The pattern that it displayed was generally one
that we recognize from classic physics as wave interference.

The pattern had the probabilistic results along the backboard, as shown in the observing
screen in Figure 4.2, where the center of the screen has the highest number of electrons
and the blank areas along both sides had least to none. This is due to the constructive
and destructive interference of the waves.

There are two types of interference, namely, constructive and destructive. Constructive
interference occurs when the peaks of two waves are summed up where the resulting
amplitude is equal to the total positive sum of the two individual waves.

Destructive interference occurs similar to constructive interference except that the
amplitudes of the waves are opposite in that when summing them together, the two
waves cancel each other out.

The following diagram illustrates the constructive and destructive wave interference of
two waves when they are added together:

Figure 4.13 – Constructive (left) and destructive (right) wave interferences (image source: https://
commons.wikimedia.org/wiki/File:Interference_of_two_waves.svg)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://commons.wikimedia.org/wiki/File:Interference_of_two_waves.svg
https://commons.wikimedia.org/wiki/File:Interference_of_two_waves.svg

78 Understanding Basic Quantum Computing Principles

The preceding diagram illustrates how two waves interfere with each other constructively
and destructively. The two waves toward the bottom of the diagram represent the
individual amplitudes of each wave, while the top line represents the added amplitude
values, which represent the result of the interference between the two waves.

Now that you understand the difference between constructive and destructive
interference, how can we apply this to what we've learned so far? Well, if you recall,
earlier, when we placed a qubit in superposition, we had two distinct results.

One was from the basis state , while the other was from the basis state . Do you
remember when we started at either of these two qubit basis states, where on the X-axis of
the qubit the Hadamard landed? From , it would land on the positive side of the X axis,
but, if we placed the qubit into superposition starting from the state, it would land on
the negative X axis.

Having the ability to place the qubit state vector on either the positive or negative X-axis
provides us with a way to place the qubit in either a positive or negative state. Very similar
to the waves in the preceding diagram, which have positive (peaks) and negative (toughs)
amplitudes, qubits can also represent similar states. Let's simplify this by re-introducing
the two Dirac notation values, , and , where the state represents the state vector
on the positive X axis and the state represents the state vector on the negative X-axis.

These new vector definitions, which represent the vector state of a qubit in superposition,
will be used by some of the algorithms as a technique to identify certain values and
react to them using interference – techniques such as amplitude estimation or search
algorithms such as Grover's algorithm.

We can't finish this chapter without at least putting all these things together to see how
these all interact in a simple example, which we will see in the next section.

Creating a quantum teleportation circuit
In this section, we will create a quantum teleportation circuit to share the state, , of a
qubit by communicating, classically, two bits of information. Now, you may be wondering,
as I did when I first learned about this scenario, why would I need to share two bits of
information and not just the state of the qubit itself? Well, the answer comes down
to the no-cloning theorem.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a quantum teleportation circuit 79

Tip
To learn more about the no-cloning theorem, I would recommend reading the
ERP Paradox paper proposed by physicists Einstein, Podolsky, and Rosen.

Without going into the quantum mechanical proofs, the theorem states that creating a
copy of a qubit from an arbitrary unknown state is not possible as there is no unitary
operator that can clone all states of one qubit into another. That being said, we need to
look at other means to pass the state of one qubit to another. Quantum teleportation
helps us do that.

To properly understand this example, let's take a look at the overall process. Then, we can
dig down into the specifics and see how we can make this possible. As mentioned earlier,
the objective is to have a sender – let's call her Alice – who has a qubit in an arbitrary state
of provide two bits of information to the recipient – let's call him Bob.

Alice will then send Bob information, classically (such as communicating by phone call or
text), who will then perform operations on a qubit, which would enable Bob to generate
the state that Alice had. We say Alice had because in order to send the bit information
to Bob, she needs to perform a measurement on the arbitrary qubit state, which would
therefore collapse the qubit into binary values. Therefore, we would lose all quantum
information of the qubit.

The following flow diagram illustrates this from a high-level perspective. We will dig a
little deeper to understand how this is done:

Figure 4.14 - Quantum teleportation flowchart

To understand this flow better, let's create the circuit while describing each block in the
previous flowchart. This way, we can grasp each step by visualizing it as we build and
execute our circuit.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

80 Understanding Basic Quantum Computing Principles

Executing the quantum teleportation circuit
We need to create a new Qiskit Notebook and create a quantum circuit with three qubits
and three classic bits. We will need three qubits – one to represent the state and two that
we will entangle and share with Alice and Bob:

1. In a new Qiskit Notebook, enter the following code into the next empty cell to
create the circuit that we need. Then, create the qubit state, which neither Alice
nor Bob will know:

q = QuantumRegister(3)

c = ClassicalRegister(3)

qc = QuantumCircuit(q, c)

We now have three qubits. The first qubit q[0] will represent the unknown state, .
The second and third qubits, q[1], and q[2], will be the entangled qubits that are
shared between Alice and Bob, respectively.

2. Let's prepare the first qubit (q[0]) in an unknown state of which neither Alice
nor Bob will know. Of course, we will know as we are creating it. However, the idea
here is to see things from the context of both Alice and Bob. To keep this example
simple, we will apply two unitary operators, that is, a NOT gate and a Z gate:

qc.x(0)

qc.z(0)

qc.barrier()

Note that we added a barrier after setting up our state. This is just to simplify
visualizing the circuit when we draw it to know which component in our flowchart
each section pertains to. In this case, it's the first block specifying .

3. Now that we have prepared our state, which is known to us but unknown to both
Alice and Bob, we will go to the next step in our flowchart, which is for Alice to
entangle the other two qubits (q[1], q[2]) together.

Alice will keep one q[1] and send the other qubit q[2] to Bob. To entangle the two
qubits, we will apply a Hadamard gate to Alice's qubit, q[1], followed by a CNOT
between the two qubits, where the Control is connected to Alice's qubit and the Target
is connected to Bob's qubit. We will include a barrier here, as we did previously,
to segment this preparation:

qc.h(1)

qc.cx(1,2)

qc.barrier()

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a quantum teleportation circuit 81

4. Now, we'll move onto the next block, which is where Alice will entangle the qubit
in the state with her qubit that was entangled with Bob's, and then apply a
Hadamard gate prior to measuring both the qubit and her entangled qubit:

qc.cx(0,1)

qc.h(0)

qc.measure(0,0)

qc.measure(1,1)

qc.barrier()

qc.cx(1,2)

qc.barrier()

5. After measuring the two qubits, and q[1], Alice calls Bob and lets him know her
results. He then applies the necessary gates based on her results, as illustrated in the
next block in our flowchart, where Bob will apply the corresponding gates based on
the information he gathered from Alice. The unitary operation to apply is based on
one of the following notions: 00 = Use I (Identity gate), 01 = Use X (NOT gate), 10 =
Use Z (Z gate), 11 = Use Z, followed by X gate.

6. Since we will be running the circuit with 1,024 shots, we should expect to see all the
previous results. So, how can we determine whether the results are correct?

We can verify this by applying the gates that we used to prepare , except we need
to do so in reverse. Recall from step 1 that the unitary operators must be reversible.
We will apply a Z gate first, then a NOT gate to Bob's qubit. If all goes well, we
should expect the result of Bob's qubit to always be :

qc.z(2)

qc.x(2)

qc.measure(2,2)

After this measurement, the result in the classic bit (2) should be 0 for all the
results.

7. Now, let's draw the circuit to see what we have created so far. Recall that each
segment separated by a barrier pertains to the previous flowchart step, where the
last segment is simply to verify that we have successfully transported .

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

82 Understanding Basic Quantum Computing Principles

Note that we are not stating that we copied the state, , but we transported it
because of the no cloning theorem. It is incorrect to state that we successfully
copied the state, , from Alice to Bob:

qc.draw(output='mpl')

The result should look as follows:

Figure 4.15 - Quantum teleportation circuit segmented into four parts
The previous screenshot shows that barriers (dotted lines) separate the circuit
visually so that it is easy to segment and visualize. The first segment is where
Alice prepares her qubit, while the second segment entangles two qubits where q1
belongs to Alice and q2 belongs to Bob. The third segment is where Alice entangles
her prepared qubit q0 with her shared qubit q1. She, then takes a measurement of
the results of her two qubits.

The last segment that Bob reads receives the classical response from Alice, q1, and
encodes it into his qubit, which you can see is represented here in reverse order
of how Alice prepared her qubit in the first segment. This is because operations
on qubits must be reversible, hence why Bob applies a Z gate first, then an X gate.
Finally, when Bob measures his qubit, he should get the expected result, 0, which
is the initial state that Alice had. If this is different from 0, then Bob can determine
that the qubit was tampered with in-between transmission.

8. We can now confirm whether the state that Bob has is the same one Alice had
previously that she had collapsed and measured . We will run this on qasm
simulator and run it with 1024 shots:

backend = Aer.get_backend('qasm_simulator')

job = execute(qc, backend, shots=1024)

job_result = job.result()

results = job_result.get_counts(qc)

plot_histogram(results)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summary 83

Now, we'll print out the results in a histogram to confirm we get back all the states
00 through 11, as illustrated earlier in step 4, just to ensure that the leading classic
bit (left-most bit) is always 0. The results from the executed circuit, as illustrated in
the following screenshot show that the results of the left-most classic bit are always 0
and that the two classic bits correspond to the 00 to 11 states:

Figure 4.16 - Results of executing the quantum teleportation circuit on a simulator

In this example, we created a circuit that transports the state of a qubit from one person
to the next by using a set of entangled qubits to transmit information from Alice to Bob.

Summary
In this chapter, you learned about the three quantum computing principles used in quantum
computing and quantum transportation. We created a quantum circuit and placed a qubit in
superposition and an entangled state between two qubits in a quantum circuit.

We also understood the two types of interference, constructive and destructive, and
learned how they are notated and represented individually as qubits by placing them in
superposition to create and simulations. We also learned how to transfer state
information from one person to another using quantum transportation.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

84 Understanding Basic Quantum Computing Principles

You also had a sneak peek at some Qiskit development skills by leveraging some
quantum gates such as the Hadamard and Control-Not gates, as well as operations such
as measurements. This will prepare you for future chapters, when you will create circuits
where these gates and operations are commonly used in various algorithms. This makes
sense as these gates and operations represent the core quantum computing principles
that we have learned.

In the next chapter, we will learn about all the other gates, both single and multi,
to understand the operations they perform on each qubit.

Questions
1. How would you create a circuit that entangles two qubits where each qubit is

different (that is, 01, 10)?

2. Which simulator is used to display the Bloch sphere?

3. Execute the superposition experiment with the shots=1 parameter, then
shots=1000, and then shots=8000. What is the difference?

4. Run the quantum teleportation experiment on a real quantum device and describe
the results compared to the simulator's results. What's different, if anything, and
why? (Hint: noise affects near-term devices).

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

5
Understanding the

Quantum Bit (Qubit)
We are all very familiar with the classic bit, or just bit, with respect to current computer
hardware systems. It is the fundamental unit used to compute everything from simple
mathematical problems, such as addition and multiplication, to more complex algorithms
that involve a large collection of information.

Quantum computers have a similar fundamental unit called a quantum bit or qubit, as
it is commonly referred to. In this chapter, we will describe what a qubit is, both from a
mathematical (computational) and hardware perspective. We will cover the differences
between qubits and bits, particularly regarding how calculations are defined. This chapter
will then transition from single to multi-qubits and talk about the advantages of multi-bits.

We will also provide an overview of the various hardware implementations and how the
different quantum systems implement their qubits to compute information. Finally, we
will discuss how quantum systems read and control the flow of information to and from
a qubit from a classical system.

The following topics will be covered in this chapter:

• Learning about quantum bits (qubits)

• Visualizing the state vector of a qubit

• Differentiating between a bit and a qubit

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

86 Understanding the Quantum Bit (Qubit)

• Understanding single and multi-qubits

• Learning about quantum hardware systems

• Reading information and controlling single and multi-qubits

This chapter will focus on the fundamental unit of a quantum computer, the qubit, to
help you understand how they are used to calculate information, as well as how various
quantum systems manipulate and read information from the qubit. Since we will be
using the IBM Quantum Experience to run our experiments, you will be using the
superconducting qubit systems that are available to you. Since the descriptions and
calculations are hardware independent, much of the information we will cover will
apply to most of the other quantum hardware systems available.

Technical requirements
In this chapter, some basic knowledge of computer architecture and binary logic might
come in handy. Knowledge of how bits are used to calculate will be useful but not a
hard requirement as the focus will be primarily on the qubit. Here is the source code
used throughout this book: https://github.com/PacktPublishing/Learn-
Quantum-Computing-with-Python-and-IBM-Quantum-Experience.

Please visit the following link to check the CiA videos: https://bit.ly/35o5M80

Learning about quantum bits (qubits)
In this section, we will review the building blocks of a classic bit and a few of the
operations that are performed on them via classic gates. We will then learn about the
fundamental unit of a quantum computer, the quantum bit (qubit), and how it is similar
to the bit, yet due to its quantum computational principles has a larger computational
space than the bit.

Reviewing the classic bit
Before we delve into what a quantum bit is and how it is used, let's take a brief moment to
refresh our memories on the classic bit. Just as the quantum bit is the fundamental building
block of quantum algorithms, the bit has the same role in classic computational systems.

In computational systems, the bit is used to define a logical state, often referenced as either
on or off, true or false, or, the most commonly used option, 1 or 0. The transition between
states can be applied physically either after it's triggered by some operation such as the
result of an AND gate, or as a result of some input from an external entity; for example,
reading from an external data source.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-Quantum-Experience
https://github.com/PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-Quantum-Experience
https://bit.ly/35o5M80

Learning about quantum bits (qubits) 87

The following diagram illustrates that a simple process of a NOT operation is conducted
on a bit. The bit is first initialized or set to a state, either 0 or 1. Then, an operation is
performed on the bit where, based on the result of the operation, the bit's state will either
change or remain the same. The information is then available to be read and/or stored. In
this example, the NOT operation would change the state from 0 to 1 or vice versa:

Figure 5.1 – NOT operation of a bit

The implementation of a bit can be in various forms: flip flops, transistor-transistor
logic, and so on. The information can be stored by writing the value to a persistent data
repository to be read from at a later time. Calculations using bits are usually done using
a bitstring, which is a set of individual bits combined to represent a string of 1s and 0s,
usually noted as follows:

This indicates that x is a bitstring of 4 bits, where each bit can be either 1 or 0; that is,
0010, or 1101.

Binary calculations using bits are generally done using binary logic. For example, let's say
we wanted to add two numbers; say, 2 and 3. We would simply assign the values 2 and 3
to a variable, which is stored in binary. Then, we would add the two numbers using binary
addition and carry the values, which will result in 5, illustrated as follows:

#Adding two binary numbers

two = '010'

three = '011'

answer = bin(int(two,2) + int(three,2))

print(answer)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

88 Understanding the Quantum Bit (Qubit)

Running the preceding code snippet would result in 5, but as you can see the output is
written as the binary value of 5, that is, 0b101. The code reads the first two variables as
a string, '010' and '011'. The string values are then cast as int prior to adding them
together using modulo 2 arithmetic and return the result as a binary bitstring called
answer. Modulo 2 arithmetic is the result of XORing two bits, that is, (1+0) mod 2 = 1
XOR 0, which can also be written as two binary numbers, and ; that is, .

So, why did we go through such a simple example? The point was not to bore you with a
simple binary calculation; the idea was to provide a refresher about the mechanics of what
happens to the information on a classical system. This way, when describing the quantum
system, it will help you compare and contrast the differences regarding how information is
created, calculated, and stored. With that, we'll move on to the next section and describe
what a qubit is.

Understanding the qubit
Similar to the bit, which we described previously, the qubit is the fundamental unit in
quantum information science. The qubit is similar to the bit in that it can represent the same
two states, namely 0 and 1, although a qubit is a quantum state. The value of the qubit can be
read. By read, we mean we can measure the results, which we will cover soon.

They can also be manipulated to derive calculations based on operations performed on
each qubit. Recall that the state of a bit can be represented by either a 0 or a 1. A qubit
can also be represented by a 0 or a 1. In order to avoid confusion for ourselves and to
differentiate between a bit and a qubit, we will use Dirac notation to describe the states of
the qubit, that is, and , to represent the qubit state of 0 and 1, respectively. Let's start
by visualizing a few things to help us see the difference between the two states.

To begin, the state of a qubit is generally represented as an array or a vector, which in a
Hilbert space is often denoted as . This notation is referred to as Dirac or bra-ket
notation, named after Paul Adrien Maurice Dirac, and is commonly used in quantum
mechanics and quantum computing. A Hilbert space is, in essence, a vector space of all
possible real and complex numbers. The quantum state can be presented as two basis
vectors that are orthogonal to each other, as follows:

The second vector is given as follows:

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Visualizing the state vector of a qubit 89

As we can see, bits and qubits are pretty similar in that they can represent two basis states
equally of one or the other. Where the qubits differ from classical bits is that a qubit is
always in a linear combination of basis states, which is to say that they are always in a
superposition of and . More formally, this is represented in the following format:

From the previous equation, we can say that α and β are complex in that the sum of their
magnitudes is equal to 1 and each squared coefficient represents the probability amplitude
of the corresponding basis state:

Another thing to know about quantum mechanics is that we cannot obtain the value of α
and β, even when measuring the qubit. Measuring a qubit requires a qubit to collapse into
one of the basis states of 0 or 1.

α and β merely provide some probabilistic information as to whether the results would
be one or the other, but this is not a certainty. This is one of the mysteries of quantum
mechanics. For now, you can think of measuring a qubit similar to observing or collapsing
a spinning coin to reveal whether it is heads or tails. Once measured, or collapsed, you
are not able to have the coin continue spinning without restarting the experiment, so all
information is lost. You would have to repeat the full operation of spinning the coin again.
We will talk about what exactly a measurement is in Chapter 6, Understanding Quantum
Gates, on quantum gates.

Visualizing the qubit states can be done using a complex plane where the x-axis is used
to denote the real component and the y-axis is used to denote the imaginary component.
We should be familiar with this from our studies of linear algebra, so I will leave it up
to you as an exercise to plot these using Matplotlib, or your favorite plotter, to plot the

 and states.

In this section, we covered the differences between bits and qubits. In the next section,
we will learn how to visualize the qubits and their states using state vectors.

Visualizing the state vector of a qubit
Another visual representation of a qubit and its states is the Bloch sphere, named after
Felix Bloch. The Bloch sphere is a three-dimensional ordinary sphere that's generally used
as a geometrical representation of the qubit. By this, we mean the sphere can represent the
qubit states as a point anywhere on the surface of the Bloch sphere.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

90 Understanding the Quantum Bit (Qubit)

Conventionally, the north pole of the Bloch sphere represents the state, while the south
pole represents the state. Any point on the surface of the Bloch sphere can represent
the linear combination of states as a unit vector from the center (origin), as we described
previously, to the surface of the Bloch sphere.

Since we have the quantum mechanical constraint that the total probability of the vector
must equal to 1, we get the following formula:

The vector can then only rotate along the Bloch sphere by using the following representation:

Here, θ and φ have the values (limits) and . What this illustrates is that
any point on the sphere is unique as long as the values of θ and φ themselves are unique,
where θ represents the colatitude to the z-axis and φ represents the longitude from the
x-axis, as illustrated in the following diagram:

Figure 5.2 – Qubit Bloch sphere (image source: https://commons.wikimedia.org/wiki/
File:Sphere_bloch.jpg)

To continue describing a qubit, we will use our Qiskit Notebook to illustrate some key
concepts that can be visualized on the Bloch sphere. This will also help provide further
hands-on exercises for you.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://commons.wikimedia.org/wiki/File:Sphere_bloch.jpg
https://commons.wikimedia.org/wiki/File:Sphere_bloch.jpg

Visualizing the state vector of a qubit 91

Creating the Bloch sphere representation of a qubit
Follow these steps to create the Bloch sphere of a qubit in the initial state of so that we
can visualize the state vector and phase of a qubit:

1. Open a new Qiskit Notebook and enter the following into a cell. We will be using
a few visualization tools that are included with Qiskit to help visualize the qubit
states. In future chapters, we'll look at how operators such as qubit gates affect the
vector states:

from qiskit.visualization import plot_state_qsphere

from qiskit.visualization import plot_bloch_multivector

The preceding code imports two functions that allow you to see the state of a qubit.
These are ideal for when you want to find out some information about the state
while creating your circuit. There are many other visualization tools that you can
leverage that are included with Qiskit, but for the purposes of this chapter, we will
focus on these two as they provide enough detail to cover the information we need.

2. Next, we will create a simple circuit with just a single qubit and use the visualization
tools we imported to visualize the qubit state. We'll import the first one in its initial
state of .

The following snippet will create the quantum circuit with a single qubit, and
then we will get the state vector simulator from our backend. We will be using the
state vector simulator to obtain the state information about the circuit once it has
completed, whereas the qasm simulator only returns count information. Finally,
we will execute our circuit and get the state vector results:

#Create a simple circuit with just one qubit

qc = QuantumCircuit(1)

#Get the state vector simulator backend

statevector_simulator = Aer.get_backend('statevector_
 simulator')

#Run the circuit and get the state vector of the qubit

result = execute(qc, statevector_simulator).result()

statevector_results = result.get_statevector(qc)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

92 Understanding the Quantum Bit (Qubit)

After the preceding cell has finished executing, you should have the state vector
results, which means you can now visualize them. In the next step, we will display
the state vectors using both visualization functions. Note that we should expect to
see our state vector in the initial state of since we have not performed any
operations on the qubit.

3. We will start by displaying the state vector results on the Bloch sphere by passing
the statevector_results object into the argument of the plot_bloch_
multivector function:

plot_bloch_multivector(statevector_results)

The output that you will see from the preceding function is the Bloch sphere with
the qubit state pointed to the north pole or to the state, illustrated as follows:

Figure 5.3 – Qubit Bloch sphere state vector initialized to

4. Next, we will display the state vector results on the quantum sphere. In this
visualization, you will see the state vector in the same state as the Bloch sphere
shown in the preceding diagram:

plot_state_qsphere(statevector_results)

You will also see that it includes the phase of the state vector represented by the
color-shaded sphere at the bottom-left, as shown in the following output:

Figure 5.4 – Qubit state vector initialized to with phase = 0

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Visualizing the state vector of a qubit 93

From the preceding diagram, note that the color of the state vector at the surface of
the Bloch sphere is not only pointed toward the north pole, indicating it is in the
state , but that it is also shaded red. This is to indicate the phase of the state
vector. The color chart at the bottom-right of the preceding diagram is a reference
to the phase of the state vector, which is currently highlighted as 0.

5. Now that we are familiar with the state vector of a qubit, let's take it out for a spin.
We'll start by flipping the vector from the initial state of to the state of using
the NOT gate:

qc = QuantumCircuit(1)

qc.x(0)

#Execute the circuit

result = execute(qc, statevector_simulator).result()

statevector_results = result.get_statevector(qc)

plot_state_qsphere(statevector_results)

As you can see, we are now at the state with the phase still at 0, as illustrated in
the following diagram:

Figure 5.5 – Qubit state vector set to with phase = 0

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

94 Understanding the Quantum Bit (Qubit)

6. Next, we will place the qubit into superposition by adding a Hadamard gate and
executing the circuit again. We'll create a new circuit and include a Hadamard
gate, as shown in the following code snippet, followed by executing the circuit and
plotting the Bloch sphere of the state vector results, which indicates the position of
the state vector. In this case, it is on the equator:

qc = QuantumCircuit(1)

qc.h(0)

#Execute the circuit

result = execute(qc, statevector_simulator).result()

statevector_results = result.get_statevector(qc)

plot_bloch_multivector(statevector_results)

Note that the state vector is a precise linear combination of and :

Figure 5.6 – Bloch sphere superposition representation, a linear combination of and

Let's see what this looks like on the Qiskit sphere by plotting the state vector results.

7. Plot the state vector results on the Qiskit sphere:

plot_state_qsphere(statevector_results)

The results might seem a little confusing. You may be asking yourself why there
are two vectors when we only have one qubit and why they are based on the Bloch
sphere result. Shouldn't we only see one? You can see the output of the previous code
snippet in the following diagram:

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Visualizing the state vector of a qubit 95

Figure 5.7 – Qubit state vector set to a linear combination of and , superposition

Well, the difference is that the Qiskit sphere visualizes something that the Bloch sphere
does not; that is, the visual representation of the amplitude of each possible state. If you
look at the size of the ball on the surface of the previous outcome of the q-sphere when we
executed either the or state, the diameter of the ball was much larger than the two
on the surface of the preceding diagram. This is because the amplitude is equal for both

 and , so the size is split between the two, whereas in the previous examples, the
amplitude was purely in one of the two states.

In this section, we learned that the qubit can represent itself as a bit by using the two basis
states of 0 and 1. We also saw that it can be represented as a linear combination of the two
basis states; that is, 0 and 1 (longitudinal) and phase shifts (latitudinal).

It is by leveraging these features that quantum algorithms can provide potential in
optimizing computational solutions much more than using classical bits. We also saw how
to visualize the state of a qubit using two Qiskit visualization functions, the Bloch sphere
and the Qiskit sphere, which provided information such as amplitude and phase.

In the next section, we will look at how multi-qubits are presented and how to visualize
and plot both their real and imaginary components.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

96 Understanding the Quantum Bit (Qubit)

Understanding multi-qubits
So far, we've learned the various ways to represent a qubit, both as a vector and
visually as a Bloch sphere. We did something similar with the Qiskit sphere. In this
section, we will learn how to represent multiple qubits and how to represent them in their
general state. We will start by making a slight update to the notation. A single qubit is
presented as the following vector:

We can therefore represent two qubits similarly in the following form:

From the preceding equation, you can see that the state is used to represent multiple
qubits, versus in the single qubit. The probabilistic amplitudes, along with the
constraint by the normalization of 1, can therefore be represented as follows:

Let's look at an example that comprises two qubits, the first one in the state, shown
as follows:

The other qubit in the state is as follows:

Combining the two entails taking the tensor product of the two qubit states, as follows:

Multiplying across, we will get the following:

|𝜓𝜓⟩ = 𝛼𝛼0|0⟩ + 𝛼𝛼1|1⟩ = (𝛼𝛼0𝛼𝛼1
)

|𝛹𝛹⟩ = 𝛼𝛼00|00⟩ + 𝛼𝛼01|01⟩ + 𝛼𝛼10|10⟩ + 𝛼𝛼11|11⟩ =

(

 𝛼𝛼00𝛼𝛼01
𝛼𝛼10
𝛼𝛼11)

|𝛼𝛼00|2 + |𝛼𝛼01|2 + |𝛼𝛼10|2 + |𝛼𝛼11|2 = 1

|𝜓𝜓⟩ = 𝛼𝛼0|0⟩ + 𝛼𝛼1|1⟩

|𝜑𝜑⟩ = 𝛽𝛽0|0⟩ + 𝛽𝛽1|1⟩

|𝛹𝛹⟩ = |𝜓𝜓⟩⊗ |𝜑𝜑⟩ = (𝛼𝛼0|0⟩ + 𝛼𝛼1|1⟩)⊗ (𝛽𝛽0|0⟩ + 𝛽𝛽1|1⟩)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Visualizing the state vector of a qubit 97

This results in the amplitude vectors, as follows:

Finally, another way to state multi-qubits by their tensor product is by representing them
by their product state. Here, the product state of n qubits is . We'll use the same
two-vector example described previously. The first is the 00 state:

The 01 state is shown as follows:

The 10 state is shown as follows, along with its tensor product:

Lastly, the 11 state is given as follows:

=

(

 𝛼𝛼0𝛽𝛽0𝛼𝛼0𝛽𝛽1
𝛼𝛼1𝛽𝛽0
𝛼𝛼1𝛽𝛽1)

|00⟩ = (10)⊗ (10) =

(

 10
0
0)

|01⟩ = (10)⊗ (01) =

(

 01
0
0)

|10⟩ = (01)⊗ (10) =

(

 00
1
0)

|11⟩ = (01)⊗ (01) =

(

 00
0
1)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

98 Understanding the Quantum Bit (Qubit)

The main takeaway from the previous equations is that we can describe two qubits
individually as a 2 x 1 column vector. However, when we want to represent the joint
state of the full system, we represent them as a tensor product, which produces the 4 x
1 column vector illustrated previously. This is the mathematical representation of the
quantum circuit, also referred to as the computational basis state of a two-qubit system.

In the next section, we'll briefly discuss the implementation of qubits on the IBM
Quantum Experience systems and also discuss other technologies that are used for
implementing qubits.

Learning about superconducting qubits
At the beginning of this chapter, we learned that classical bits can be implemented by
various platforms that detect differences between voltages or the phase of a current,
or by the state of a flip flop. Just as a bit has different platforms that are used for their
implementation, so do qubits.

Some of the more common qubit platforms are neutral atoms, Quantum dots, Nitrogen-
vacancy (NV) centers in diamond, trapped ions, and superconducting qubits. Out of
these platforms, it is the superconducting qubits that are used on the quantum devices
hosted on the IBM Quantum Experience. So, in this section, we will cover this platform.
If you want to learn more about the other platforms, you can review Appendix A, which
you can find at the end of this book.

Superconductors that are made up of a combination of niobium and aluminum are at
the base of the qubit. There, they are used as the basic charge carriers that comprise a
pair of electrons, more commonly referred to as Cooper pairs. This is different from
other conductors that generally use single electrons. Talking about the specifics of the
quantum mechanics or superconducting behavior of the Cooper pairs is beyond the scope
of this book. However, you can find various references in Appendix A to these if you are
interested. For now, we can think of the superconductors as one of the components of the
superconducting circuit that makes up the qubit.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Visualizing the state vector of a qubit 99

Let's see what the other components are in the superconducting circuit. As the following
diagram illustrates, at the core of the qubit, we have a capacitor and Josephson Junction
(to those of you familiar with electronic circuits, this may look very similar to an
Inductance Capacitance (LC) circuit):

Figure 5.8 – Schematic of a qubit

From the preceding diagram, you can see that the difference is that rather than there being
a linear inductor, there's a Josephson Junction, which is an anharmonic oscillator. This
allows us to easily differentiate between the different energy levels, which we map as the
states of the qubit.

On the ends of the qubit, there are two external coupling points, the top of which is the
read out (or read-in) resonator. This resonator is used to perform operations on the
qubit from your quantum circuit and read out the measured result of the qubit when you
wish to obtain the collapsed result (0 or 1). At the other end of the qubit is the coupling
to a neighboring qubit, which is used to connect qubits together to create connectivity
between them.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

100 Understanding the Quantum Bit (Qubit)

The following diagram shows that, at the core of the superconducting qubit, there are
capacitors made up of superconducting material – in this case, niobium – which is
separated by an aluminum inductor – the Josephson Junction:

Figure 5.9 – Physical components of a qubit

The components shown in the preceding diagram are constructed and placed on top
of a silicon wafer, where each qubit is then connected to each other via microwave
resonators (Quantum bus coupling) and each qubit has its own readout resonator
(In-Out coupling).

The layout of the qubits can be set up in a configuration that can vary from one device to
another. For example, in the following diagram, you can see a qubit configuration from
one of the many five qubit devices, often referred to as a Bowtie configuration because it
resembles a bowtie:

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Visualizing the state vector of a qubit 101

Figure 5.10 – Bowtie configuration of a qubit

The following diagram shows another qubit configuration using the five different qubit
devices. This one has a T-shaped configuration:

Figure 5.11 – T-shaped configuration of a qubit

As you can see by comparing the layouts from Figure 5.10 and Figure 5.11, the qubits
in the preceding diagram are connected in various ways – some to just one qubit, and
others to as many as three.

Important Note
Note that each qubit has its own read out coupling so that we can perform
operations on individual qubits. They also have their own read out couplings
because they include bus couplings to complete the full connection space of
the qubits.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

102 Understanding the Quantum Bit (Qubit)

The connection space here refers to the ability to entangle qubits, even though they
may not be directly connected, by performing multi-gate operations such as Swap
gates, Controlled NOT (CNOT) gates, and so on. We will go into details of single and
multi-qubit gates and operations in the next chapter, but for now, we will cover how
operations are sent to the qubit from a hardware perspective.

Each qubit is tuned to a certain frequency, usually limited to under 1 THz due to the
constraint that the Cooper pairs would break them apart at that frequency. But given the
fact that the qubits are in a dilution chamber that cools the qubit down to almost 0, which
is approximately 15 millikelvin (which is many times colder than outer space!), this allows
the energy level separation to reach about 5 GHz.

If you download the calibration file from one of the real devices and look at the
Frequency (GHz) column values, you will see that they are all in that range, with a few
MHz separating them. To download the configuration, simply go to the IBM Quantum
Experience Dashboard and select a backend from the list of devices.

The following table shows the frequency values of a five-qubit device:

Table 5.1 – Frequency of each qubit

By having each qubit set to a different frequency, operations can then be addressed to the
specific qubit via its frequency. For example, if an operation, such as a rotation, is to be
performed on a qubit, then microwave pulses are sent via microwave transmission lines
onto the microwave resonators at a frequency resonating for the specific qubit.

Here, the axis of the pulse is set by the amplitude modulation of the microwave pulse and
the angle of rotation requested is set by the pulse's length. Don't worry if this seems a little
strange right now; we will cover this in more detail and actually run an experiment directly
on a qubit in this way in Chapter 8, Programming with Qiskit Terra, with OpenPulse.

Now that we know how operations are sent to the qubit, let's look at how we can couple
two qubits together. First and foremost, when we couple two qubits together, we want
to make sure that there is enough of a gap between their resonant frequencies or that
they're out of resonance from each other. This is to ensure we don't introduce the effect
of undesirable neighboring signals, known as crosstalk, to the system.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summary 103

Coupling the qubits together
This is where the quantum bus comes in handy as it adds a microwave cavity in-between
the qubits. Once the energy states between the coupled qubits are separated, we can then
send cross-resonant gate operations, such as a CNOT gate, which is a two-qubit operation
gate that flips the target qubit if the source qubit is set to 1; otherwise, it will not flip the
target qubit.

Cross-resonant gate operations are fairly simple to understand if you think of them
using the following analogy of the game Simon says. In the game, someone screams out
commands and you are only allowed to perform the command if the command is prefaced
with the phrase "Simon says…". If the command starts with Simon says, then whatever that
command is, you listen and then perform it. If the command does not start with Simon
says, you ignore it.

Now, let's relate the preceding example to how cross-resonant gates work. First, a pulse
command is sent to the source qubit, which relates to the command in the Simon says
example. The source qubit will then determine whether it is set, which relates to checking
if "Simon says" is prefixed to the command.

If so, it will then allow the pulse to continue to the target qubit. The target qubit then
performs the operation, which in the case of the CNOT gate is to flip the qubit around
the x-axis. This relates to performing the given action because the command included
Simon says.

Now that we have covered how to visualize the state of a qubit using the state vector
simulator and display it on both a Bloch Sphere and a Q-sphere, as well as what a qubit is
made of and how single and multi-qubit operations are sent to the qubits, we can move on
to the next chapter, which describes all the qubit gate operators and what effects they have
on each other.

Summary
In this chapter, you learned the difference between bits and qubits and how they are
represented, both mathematically and visually. You also saw the difference between
how single and multi-qubit systems are represented, including their mathematical
representations, as well as how they are constructed and operated on. We also covered
how to visualize the qubit as a Bloch sphere and a Qiskit sphere.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

104 Understanding the Quantum Bit (Qubit)

We now have the skills to represent the vector states of single and multi-qubits. We also
understand the difference between representing multiple qubits as separate entities and
as part of a complete system by using the tensor products of the qubits. This will help
you to implement and operate the qubits on IBM Quantum devices.

In the next chapter, we will learn how to perform operations on single and multi-qubits
and how those operations are triggered on the qubits of the real devices.

Questions
1. What is the transpose of the single qubit state, stated as a column vector?

2. Which would provide visual information about the phase of a qubit – the Bloch
sphere or the Qiskit sphere?

3. Can you visualize multi-qubits on the Bloch sphere? If yes, then why? If no,
then why?

4. Write out the tensor product of three qubit states in all their forms.

5. What is the probability amplitude of a three-qubit system?

6. What material is used to create the capacitors of a qubit?

7. What are Josephson Junctions made of?

8. What approximate temperature do the qubits have to be at in order to
operate properly?

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

6
Understanding
Quantum Logic

Gates
Quantum logic gates are very similar to their classical counterparts in that they are used
to perform operations by manipulating the qubits in such a way that the results serve
to provide a solution. Of course, that's about as far as the comparison can go. Classical
gates transition the state of a bit from one to the other by a single operation, in this case,
flipping the bit value from 0 to 1, or vice versa. Quantum gates, sometimes referred to as
qubit gates, are different in part because they perform linear transformations on the qubit
in a complex vector space to transition the qubit(s) from one state to another.

The following topics will be covered in this chapter:

• Reviewing classical logic gates

• Understanding unitary operators

• Understanding single-qubit gates

• Understanding multi-qubit gates

• Understanding non-reversible operators

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

106 Understanding Quantum Logic Gates

After reading this chapter, you will have gained knowledge about the fundamental
operations that can be performed on both single and multiple qubits. But before we dive
right in, let's discuss the format with which I'll try to explain each qubit gate. First, from a
learning perspective, some of you tend to learn quicker when content is presented purely
with mathematics; others are more visual and prefer visual aids such as graphs; others still
prefer a more intuitive approach with analogies and examples.

With that in mind, I shall do my best to ensure that each gate is presented by combining
as many of these learning styles as possible. This will be done by providing not only the
mathematical representation of each qubit gate, but also a visual representation, and of
course the source code to run the qubit gate operation and its result.

Technical requirements
In this chapter, we will discuss linear transformations of matrices in the Hilbert
space, so it is highly recommended that you should know the basics of linear algebra.
Some basic knowledge of Python or another programming language is required due to
the experiments leveraging Python libraries and the Qiskit Notebook on the IBM
Quantum Experience.

Knowledge of the qubit and how its states are represented on a Bloch sphere, QSphere, or
mathematically, is recommended as this chapter will perform complex linear transitions
of those qubit states. Knowledge of basic classical single-bit and multi-bit gates is also
recommended, but not required, as there is a refresher if needed.

Here is the full source code used throughout this book: https://github.com/
PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-
Quantum-Experience

Please visit the following link to check the CiA videos: https://bit.ly/35o5M80

Reviewing classical logic gates
This section will serve as a refresher for classical logic gates such as AND, OR, NOR,
and so on. If you are familiar with this subject, you can either skim through this chapter
to refresh your memory or skip it entirely and jump to the next section. Otherwise, let's
get logical!

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-Quantum-Experience
https://github.com/PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-Quantum-Experience
https://github.com/PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-Quantum-Experience
https://bit.ly/35o5M80

Reviewing classical logic gates 107

Logic gates are defined as a device, electronic or otherwise, that implements a logical
(usually Boolean) operation. Single-bit and two-bit gates generally have one or two inputs,
respectively. Each input bit value is a state value of either 0 or 1. The operation carried out
on the input varies by the type of gate. Each gate operation is usually described using logic
truth tables, as illustrated in the following table:

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

108 Understanding Quantum Logic Gates

Table 6.1 – Classical logic gates

The preceding table lists some of the common classical gates, descriptions of the operation
that each gate performs on the input state, the result (output) of the gate operation, and
their graphical representations.

Let's consider some things of note regarding classical bits that will help you later
understand the differences they have compared to quantum bits (qubits). First is that
there are only two single-bit gates, the buffer and the NOT gate. Among these two, only
the NOT gate performs a Boolean operation on the classical bit by flipping the bit value
of the input, so if the input to the NOT gate was a 0, then the output would be a 1. On the
other hand, the buffer gate simply outputs the same value as the input. All the other gates
operate on two input bit values that output a single value, which is determined by the
gate's Boolean operation. For example, if both input values to an AND gate are 1, it will
output a 1. Otherwise, the output will be 0.

One problem, however, particularly with regard to the two-bit gates, is that if you only
have access to the output then the information about the input is lost. For example, if you
obtain the result from an AND bit and the value is 0, could you tell what the input values
were for A and B(inputs)? Unfortunately, the answer to this question is no.

The input information is lost because the output does not include any information about
the input value, which renders the gates irreversible. Likewise, with other two-bit gates,
if I gave you just the output value of the gate, you could not tell me with 100% certainty
about all the possible output values which the input values would be able to produce.
Reversibility is a unique property that qubit gates have, in that you can reverse the
operation of the qubit gate to obtain the previous state.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Reviewing classical logic gates 109

Another point to keep in mind about classical-bit gates is that their output is
deterministic. By this, I mean that if you know the input values and the gate type that you
are going to use, then you can determine the output of the gate without running them
through the gate.

And finally, to close our discussion on classical gates, we'll discuss universal logic gates.
These gates are the type of gates used to create other logic gates. NOR and NAND gates
are good examples of universal gates in that they can be used to create NOT and AND
gates. Let's take a look at the following diagram that illustrates creating a NOT gate
(inverter) by using a NAND gate:

Figure 6.1 – Using a NAND gate to create a NOT gate

As you can see, by wiring both inputs of the NAND gate together, forming a single input
(A), this logically creates a NOT gate that flips the value of the input. Computational
systems having universal gates is an important feature as it provides the ability to create
logical circuits to solve problems. This of course led to the creation of integrated circuits,
which are specialized circuits used to compute problems or to perform specific operations
such as an adder or a counter, respectively.

Now that we have reviewed the functionality of classical gates, we can continue to the next
section where we will cover the basics of quantum logic gates. There we will also see some
similarities and some unique properties that they display with regard to the classical bit.

Understanding unitary operators
Unitary operators are defined as a unitary transformation of a rigid body rotation of the
Hilbert space, which results in a transformation of the state vector that doesn't change
its length. Let's see what this means for a qubit. The basis states of a qubit are mapped
on the Hilbert space ℂ as orthonormal states; |v0⟩ = |0⟩ + |1⟩ , and |v1⟩ = |0⟩ + |1⟩ ,
where ,, , and ∈ ℂ are linear transformations that preserve orthogonality are unitary
transformations. We'll wrap our heads around this definition a bit by looking at this
mathematically first.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

110 Understanding Quantum Logic Gates

A linear transformation on a complex vector space can be described by a matrix, U:

Furthermore, if we obtain the complex transpose of the matrix U as U† , by transposing the
matrix U and applying the complex conjugate, as illustrated:

Then we can say that the matrix U is unitary if UU† = I , where I represents the Identity
matrix (1 0

0 1) as shown here:

An intuitive way to think of this is to just imagine unitary transformation simply as
rotations of the complex vector space that preserve the module of the original vector. The
rotation of the complex vector space further ensures that quantum transformations are
not just unitary operations but are also reversible operations.

Reversibility of quantum gates is realized by unitary transformations. As seen in the
previous unitary equation, if you have a unitary operator U applied to a qubit via a gate,
then by applying the complex conjugate U† of the unitary operator, the result would be
equivalent to applying an Identity matrix to the original vector.

An example of this would be if you were to trigger an operation that would rotate the
vector space around the x axis by an angle π, and you then apply the complex conjugate
of that operation, then you'll return to the original position from which you started. This
reversible functionality is something that is not possible with some classical-bit gates we
mentioned earlier, such as an AND gate.

With unitary transformations, there is no loss of information. Should you need to return
to the previous state, you would merely have to repeat all unitary operations, in reverse
order, and you'd get back to where you originally started. We will see some interesting
examples of reversibility in all gates. There is a special case operator that is not reversible,
the measurement operator, which we will learn about in the Understanding non-reversible
operators section.

U = (

)

U† = (
† †

† †
)

UU† = U†U

= (

) (

† †

† †
)

= (1 0
0 1) = I

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Reviewing classical logic gates 111

Now that we understand unitary and reversible operators, we can get down to learning
about quantum gates.

Understanding single-qubit gates
Before we get into the specifics of quantum gates, let's take a quick moment to review the
quantum state representation of a qubit. The state of a qubit is generally represented in the
following format:

In the preceding equation, a and b are complex numbers representing the amplitudes of
the |0 and |1 basis states, respectively.

Furthermore, the orthogonal basis states can be represented as column vectors, where the
basis vector for |0 is as follows:

And the basis vector for |1 is the following:

This will help you understand how qubit gates operate uniquely depending on which state
the qubit is in prior to applying the unitary operator.

The first group of single-qubit gates we will discuss are commonly referred to as
Pauli matrix gates, named after the physicist Wolfgang Pauli. The complex matrix
representation of the four gates, I, X, Y, and Z, are defined as a 2 x 2 complex matrix,
which are both Hermitian and unitary and are represented by the Greek letter sigma
(0,x,y,z) , respectively. Note that the Identity matrix is subscripted with a 0, and
the x, y, and z subscripts can also be represented as 1,2,3 .

|⟩ = |0⟩ + |1⟩ = (α

)

|0⟩ = [10]

|1⟩ = [01]

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

112 Understanding Quantum Logic Gates

Before we start digging into the description of quantum gates, let's simplify the format
so it's easy to both understand and reference. Intuitively, the easiest way to imagine the
operation of each gate is by rotating the Bloch sphere, or QSphere, around a specified axis.
Recall as well that the Bloch sphere always starts with the unit vector set to the initial state.
The initial state is set when the quantum circuit is first created, in this case, it is initialized
to the basis state |0 (the north pole of the QSphere) as illustrated in the following diagram:

Figure 6.2 – QSphere representation of the basis state |0
One thing that will help us understand some of the labels we will see in the gate's truth
table is to define the values of each axis, where each axis is referred to as basis elements.
For example, we can see from the previous figure that the z axis has the north pole labeled
as |0 and the south pole as |1 . These two points form the computational basis elements
for the basis state vectors |0 and |1 . However, we do not yet have labels for the x or y
axes. Let's define those now.

Each basis element (axis) has a positive and negative side that originate at the center of the
Bloch sphere. Each basis has a name associated with each axis: Computational for the z
axis, Hadamard for the x axis, and Circular for the y axis.

The x basis has a label defined as follows:

The -x basis has a label defined as follows:

x = |+⟩
= 1/2 (|0⟩ + |1⟩)

−x = |−⟩
= 1/2 (|0⟩ − |1⟩)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Reviewing classical logic gates 113

The y basis has a label defined as follows:

The -y basis has a label defined as follows:

The labels are also illustrated at the ends of each axis in the following diagram, where the
dotted line indicates the negative direction of the axis:

Figure 6.3 – Basis state labels of each axis of a Bloch sphere

Each gate we apply in the code snippets will operate on the qubit starting from this initial
state. There are some gates you will see that we will have to prepare int a superposition
state in order to see the effects. For example, if I wanted to see what a rotation about the
z axis is on the Bloch sphere, it would be difficult to see the effect if the vector was in the
initial state |0 as it would just spin without any effect to the position of the basis vector.

In this case, by transitioning the vector down onto the x axis, and then applying a Z gate
rotation, you can then more clearly see the rotation take effect. Details on how this is done
will be in the description of—yes, you guessed it—the Z gate. But for now, let's create a
helper function that will help us visualize the gates without having to write so much code.

Helper function, used to reduce repeating code, let's us create a function that will handle
some of the repetitive functions such as executing and visualizing the circuits. This way
we will just create the quantum circuits, add the gates, and execute the circuits using a
function that will return the results and the images to visualize the results and the circuit
diagrams. To start, let's define the following function that will handle this:

Will execute the circuit on the state vector (sv) simulator

Returns state vector results, circuit diagram, and QSphere

y = |i⟩
= 1/2 (|0⟩ + i|1⟩)

−y = |−i⟩
= 1/2 (|0⟩ − i|1⟩)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

114 Understanding Quantum Logic Gates

def execute_circuit_sv(quantum_circuit):

 #Create a state vector simulator

 statevector_simulator = Aer.get_backend('statevector_
 simulator')

 #Execute the circuit on the simulator

 result = execute(quantum_circuit, statevector_simulator).
 result()

 #Assign state vector results

 statevector_results = result.get_statevector(quantum_
 circuit)

 #Draw the circuit diagram

 circuit_diagram = quantum_circuit.draw()

 #Draw the QSphere

 q_sphere = plot_state_qsphere(statevector_results)

 #Return the results, circuit diagram, and QSphere

 return statevector_results, circuit_diagram, q_sphere

The preceding code will return the three components we will use to illustrate each gate
and the visual representation.

Now we can focus on the quantum gates and their effect on the qubits, and not so much
on executing the circuits or displaying the results. We'll start with the easiest of the gates,
the Identity gate.

Working with Identity (I) Pauli gate
The I gate, also known as the Identity gate is a gate that does not perform any operation
on the qubit. It does not change the state of the qubit. Mathematically, this is represented
as an Identity matrix, hence the name of the gate. This equation is given as follows:

The truth table for this gate results in the same state of the input:

Table 6.2 – Truth table of Identity gate

I = 0 = (1 0
0 1)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Reviewing classical logic gates 115

Not too surprisingly, there is no Identity gate in Qiskit. The idea of an Identity gate is
generally used mathematically to illustrate certain properties of operations, as we did
earlier in this chapter to prove that unitary operators are reversible. In that example,
the Identity matrix was used to illustrate that by multiplying a unitary operator with
its complex conjugate would produce the same output as applying no operation, or an
Identity matrix, to the qubit.

Let's move on to the next gate section.

Applying the NOT (X) Pauli gate
The X gate is also called the NOT gate because of the similar effect it has on the basis
states as its classical-bit gate counterpart. One notable difference is that the X gate moves
the state vector from one basis state to the other, as illustrated in Table 6.3. Visualizing
this operation can be seen via the Bloch sphere result as a rotation of the vector from the
initial state, |0 . Because of its spherical presentation, we refer to operations as rotations
around some axis, in this case, the X gate is a p (1800) rotation about the x axis, which is
represented by the Pauli X-gate operator as follows:

The following truth table illustrates here that the operation rotates the input around the x
axis by p (1800), hence if the input is the |0 , then the output is |1 and vice versa:

Table 6.3 – Truth table of X (NOT) gate

Let's now create a circuit by following the next steps:

1. First, add an X gate to it, and execute it using our helper function to do the heavy
lifting for us:

#X-gate

#Create the single qubit circuit

qc = QuantumCircuit(1)

#Add an X gate to the qubit

qc.x(0)

#Execute the circuit and capture all the results

result, img, qsphere = execute_circuit_sv(qc)

X = 1 = (0 1
1 0)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

116 Understanding Quantum Logic Gates

2. Let's first examine the state vector results by running the following cell:

result

This prints out the state vector values of the qubit:
array([0.+0.j, 1.+0.j])

3. Then, to draw the circuit diagram for the X gate, run the following in a cell:

img

This displays the circuit diagram with the X gate added to the qubit, as shown in the
following diagram:

Figure 6.4 – X gate

4. Now to view the QSphere representation, run the following in a cell:

qsphere

The QSphere, as you can see, has rotated the state of the qubit from |0 to |1 :

Figure 6.5 – X gate QSphere

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Reviewing classical logic gates 117

As we have seen the X gate serves as a good example that quantum gates can also be used
to perform the same operations as classical gates. One another thing you will notice from
the QSphere result is color wheel that represents the phase of the state vector, which is in
this case is red to indicate it's in phase (00).

Working with the Y Pauli gate
The Y gate is a rotation around the y axis by p (1800), shown as follows:

Here, the following truth table illustrates that the operation rotates the input around the y
axis by p (1800), hence if the input is the |0 , then the output is |1 and vice versa:

Table 6.4 – Truth table representing phase rotation of y axis

Let's now create a circuit by using the following steps:

1. First add a Y gate to it, and execute it using our helper function that provides the
quantum circuit and the visual representations of each circuit we execute:

#Y-gate operation on a qubit

#Create the single qubit circuit

qc = QuantumCircuit(1)

#Add a Y gate to the qubit

qc.y(0)

#Execute the circuit and capture all the results returned

result, img, qsphere = execute_circuit_sv(qc)

2. Let's first examine the state vector results by running the following cell:

result

This prints out the state vector values of the qubit:
array([0.-0.j, 0.+1.j])

Y = 2 = (0 i
i 0)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

118 Understanding Quantum Logic Gates

3. To draw the circuit diagram for the X gate, run the following in a cell:

img

The preceding code displays the circuit diagram with the Y gate added to the qubit,
as shown in the following diagram:

Figure 6.6 – Y gate

4. To view the QSphere representation, run the following in a cell:

qsphere

The QSphere, as you can see, has rotated the state of the qubit from |0 to |1 :

Figure 6.7 – Y gate QSphere

The Y gate, as we can see from the results, operates very similar to the X gate, at least when
the origin of the state vector is the same.

Before proceeding the third and final Pauli gate, let's look at the Hadamard (H) gate. The
reason I want to review the H gate before the last Pauli gate, the Z gate, is because we will
need to include the H gate in order to see the effects of the Z gate when applied. This is
not to say that you need to include an H gate prior to using a Z gate; it's merely because
it helps to visualize the circuit.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Reviewing classical logic gates 119

Using the Hadamard (H) gate
The H gate, is one of the most commonly used quantum gates. It's not surprising as this
is the gate that places the quantum state of the qubit into a complex linear superposition
of the two basis states. This is what establishes the superposition of all qubits that are
leveraged by most quantum algorithms. It is denoted as follows:

The following truth table illustrates that the operation rotates the state vector of the qubit
along the x axis and z axis by p/2 (1800), causing the state vector to be in a complex linear
position of |0 and |1 :

Table 6.5 – Truth table of a Hadamard operation

Let's continue and create a circuit using these steps:

1. First, we add an H gate to the qubit, and execute it on the backend, the same as we
did in the previous example:

#H-gate

#Create the single qubit circuit

qc = QuantumCircuit(1)

#Add an H gate to the qubit

qc.h(0)

#Execute the circuit and capture all the results

result, img, qsphere = execute_circuit_sv(qc)

2. Let's first examine the state vector results by running the following cell:

result

This prints out the following state vector values of the qubit:
array([0.70710678+0.j, 0.70710678+0.j])

H = 1
√2

 (1 1
1 −1)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

120 Understanding Quantum Logic Gates

3. To draw the circuit diagram for the H gate, run the following in a cell:

img

This displays the circuit diagram with the H gate added to the qubit, as shown in the
following diagram:

Figure 6.8 – Circuit diagram with an H gate

4. To view the QSphere representation, run the following in a cell:

qsphere

The QSphere, as you can see, has an equal probability of being either |0 or |1 . The
ends of the vectors, as you'll notice, have the same diameter, indicating visually that
both have equal probability:

Figure 6.9 – H gate QSphere representation

The Hadamard (H) gate is a unique gate. We will see this gate many more times in this
chapter and future chapters. Let's go back to our last Pauli gate, the Z gate, and continue.

Working with the phase (Z) Pauli gate
The Z gate is commonly referred to as a phase gate, mostly because rather than rotating
along the vertical axis as the X and Y gates do, the Z gate rotates along the longitude of
the Hilbert space, hence the phase of the Hilbert space. This is denoted as follows:

Z = 3 = (1 0
0 −1)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Reviewing classical logic gates 121

The following truth table illustrates that the operation rotates the input around the z
axis by p (1800). If the rotation initializes from the |0 basis state, then phase does not
change, however, if the input initializes from the |1 state, then the output is a phase
shift of p to -|1 . This negation is a very important feature that you will see in many
quantum algorithms:

Table 6.6 – Truth table of a phase shift around the x axis

Let's now create a circuit for the Z gate:

1. First, we place the qubit into a superposition state using the H gate, and then add
a Z gate operator to it:

#Z-gate

#Create the single qubit circuit

qc = QuantumCircuit(1)

#Add an H gate to the qubit to set the qubit in
#superposition

qc.h(0)

#Add a Z gate to the qubit to rotate out of phase by π/2

qc.z(0)

#Execute the circuit and capture all the results

result, img, qsphere = execute_circuit_sv(qc)

2. Let's first examine the state vector results by running the following cell:

result

This prints out the state vector values of the qubit:
array([0.70710678+0.j, -0.70710678+0.j])

3. To draw the circuit diagram for the Z gate, run the following in a cell:

img

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

122 Understanding Quantum Logic Gates

This displays the circuit diagram with the H gate removed, so don't think you have
to include the H gate in order to use the Z gate – as mentioned earlier, the H gate
was just added to illustrate the operational effect of the gate:

Figure 6.10 – Circuit diagram with a Z gate

4. To view the QSphere representation, run the following in a cell:

qsphere

The QSphere, as you can see, has an equal probability of being |0 and |1 , however,
the |1 state you see is out of phase by p, as illustrated in the following output:

Figure 6.11 – Z gate QSphere representation after first applying an H gate

As you can see in the preceding diagram, the Z gate provides a way to perform a phase
shift on a qubit, causing the state of the qubit to change its sign from positive to negative.
If you want to see this for yourself, then try the following.

Recall the code you ran earlier to execute an X gate in the Applying the Not (X) Pauli gate
section. In that example, we started with the qubit initially at the basis state |0 , and we
then applied an X gate that resulted in the state |1 . Now, add another line after adding
the X gate and include the Z gate. You'll notice that the result is the same |1 , only now
you'll notice that the state result is negative. I'll leave it to you to try it out for yourself
and observe the difference.

Having the ability to negate a state vector is also very useful in many quantum algorithms.
This is often referred to as a phase kick, which we will cover in Chapter 13, Understanding
Quantum Algorithms.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Reviewing classical logic gates 123

Let's move on to the next section where we will discuss phase gates. Phase gates are what
we use to map |1 to eiϕ |1 . This does not have an effect on the probability of measuring
a |0 or a |1 , however it does affect the phase of the quantum state. This may not make
sense just yet, but once you start learning about phase kickback and other algorithms that
leverage phase shifts, it will be very clear. For now, let's learn about the gates that operate
the various phase shifts on a qubit.

Applying the S gate
The S gate is like that of a Z gate, where the only difference is the amount by which the
state vector is rotating. For the S gate, that rotation is p/2. The matrix representation of
the S gate is described here:

The following truth table illustrates that the operation rotates the input around the z-axis
by p/2 (1800), hence if the input is |0 , then the output is a phase shift of ei π

√2 |1⟩ :

Table 6.7 – Truth table representing phase rotation S

We will follow these steps to create a circuit with an S gate:

1. The truth table is best illustrated by placing the vector onto the x axis first, we will
add an H gate first before appending the S gate. Also, as before, the circuit diagram
will only contain the S gate and not the added H gate:

#S-gate

#Create the single qubit circuit

qc = QuantumCircuit(1)

#Add an H gate to the qubit to drop the vector onto the
#X-axis

qc.h(0)

#Add an S gate to the qubit

qc.s(0)

#Execute the circuit and capture all the results

result, img, qsphere = execute_circuit_sv(qc)

S = (
1 0
0 ei π

√2
)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

124 Understanding Quantum Logic Gates

2. Let's first examine the state vector results by running the following cell:

result

This prints out the state vector values of the qubit:
array([0.70710678+0.j , -0. +0.70710678j])

3. To draw the circuit diagram for the S gate, run the following in a cell:

img

This displays the circuit diagram with the S gate added to the qubit, as shown in the
following diagram:

Figure 6.12 – Circuit with a S gate

4. To view the QSphere representation, run the following in a cell:

qsphere

The QSphere, as you can see, has an equal probability of being |0 and |1 with a
phase shift of p/2:

Figure 6.13 – S gate, p/2 phase rotation on the QSphere

As the S gate is a set rotation around the positive Z axis by p/2, we will now see how
to rotate in the opposite direction by p/2.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Reviewing classical logic gates 125

Applying the S† (dagger) gate
The S† gate is the exact same as the S gate, only it rotates in the opposite, or negative,
direction. Hence the results are the same, only negated. The matrix representation
illustrates this by including the negative in the phase shift:

The following truth table illustrates that the operation rotates the input around the z axis
by -p/2 (-1800). As with the S gate, if the input is the |0 state, then the output is |0 , but if
the input is the |1 state, the output is a phase rotation in the negative direction:

Table 6.8 – Truth table representation of phase gate S†

This is best illustrated by placing the qubit into a superposition first with an H gate. We
then create a circuit diagram for S† gate by using these steps:

1. We will add an H gate first before appending the S† (sdg) gate. Also, as before, the
circuit diagram will only contain the S† gate and not the added H gate:

#Sdg-gate

#Create the single qubit circuit

qc = QuantumCircuit(1)

#Add an H gate to the qubit to drop the vector onto the
#X-axis

qc.h(0)

#Add an S† gate to the qubit

qc.sdg(0)

#Execute the circuit and capture all the results

result, img, qsphere = execute_circuit_sv(qc)

2. Let's first examine the state vector results by running the following cell:

result

S† = (
1 0
0 e−i

π
√2
)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

126 Understanding Quantum Logic Gates

This prints out the state vector values of the qubit:
array([0.70710678+0.j , 0. -0.70710678j])

3. To draw the circuit diagram for the S† gate, run the following in a cell:

img

This displays the circuit diagram with the S† gate added to the qubit, as shown in the
following diagram:

Figure 6.14 – Circuit with a S† gate

4. To view the QSphere representation, run the following in a cell:

qsphere

The QSphere, as you can see, has an equal probability of being |0 and |1 with a
phase shift of 3p/2 or -p/2:

Figure 6.15 – S† gate, -p/2 phase rotation on the QSphere

Now that we have created the circuit with an S† gate, we will move on to the next section
that will help us understand how to create a circuit with a T gate.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Reviewing classical logic gates 127

Using the T gate in a circuit
The T gate is the same as the S gate, only the rotation is p/4. The matrix representation of
the gate is as follows:

The following truth table illustrates that the operation rotates the input around the z axis
by p/4 (450), hence if the input is the |0 state, then the output will be the same. If the input
is |1 , however, then the output would be a phase rotation of p/4:

Table 6.9 – Truth table representation of phase gate T

As with all phase gates, it's best to begin in a superposition state so we will start by
including a Hadamard gate, then we will create a circuit using the T gate, as illustrated
in the following steps:

1. First, we add an H gate first before appending the T gate. Also, as before, the circuit
diagram will only contain the T gate and not the added H gate:

#T-gate

#Create the single qubit circuit

qc = QuantumCircuit(1)

#Add an H gate to the qubit to drop the vector onto the
#X-axis

qc.h(0)

#Add a T gate to the qubit

qc.t(0)

#Execute the circuit and capture all the results

result, img, qsphere = execute_circuit_sv(qc)

2. We then examine the state vector results by running the following cell:

result

This prints out the state vector values of the qubit:
array([0.70710678+0.j , 0.5 +0.5j])

T = (
1 0
0 ei π

√4
)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

128 Understanding Quantum Logic Gates

3. To draw the circuit diagram for the X gate, run the following in a cell:

img

This displays the circuit diagram with the T gate added to the qubit, as shown in the
following diagram:

Figure 6.16 – Circuit representation of the T gate

4. To view the QSphere representation, run the following in a cell:

qsphere

The QSphere, as you can see, has rotated by phase p/4:

Figure 6.17 – T gate, p/4 phase rotation on the QSphere

Similar to the S gate, we will want to rotate in all directions, so let's take a look at rotating
this gate in the opposite direction.

Working with T† (dagger) gate
The T† gate has the same phase rotation as the T gate, that is, p/4, only in the opposite
direction. Its matrix representation is given as follows:

T† = (
1 0
0 e−i

π
√4
)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Reviewing classical logic gates 129

The following truth table illustrates that the operation rotates the input around the z axis
by -p/4 (-450), so if the input is |0 , then the output is |0 . If the input is |1 , then the output
is a negative rotation of -p/4:

Table 6.10 – Truth table representation of phase gate T†

This too is best illustrated by placing the vector onto the x axis first, so we will create a
circuit using the T† gate by following these steps:

1. First, we add an H gate before then appending the T† (tdg) gate. Also, as before,
the circuit diagram will only contain the T† gate and not the added H gate:

#Tdg-gate

#Create the single qubit circuit

qc = QuantumCircuit(1)

#Add an H gate to the qubit to drop the vector onto the
#X-axis

qc.h(0)

#Add a Tdg gate to the qubit

qc.tdg(0)

#Execute the circuit and capture all the results

result, img, qsphere = execute_circuit_sv(qc)

2. Next, we examine the state vector results by running the following cell:

result

This prints out the state vector values of the qubit, where you will notice that the
imaginary number is now negative:

array([0.70710678+0.j , 0.5 -0.5j])

3. To draw the circuit diagram for the T† gate, run the following in a cell:

img

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

130 Understanding Quantum Logic Gates

This displays the circuit diagram with the T† gate added to the qubit, as shown in
the following diagram:

Figure 6.18 – Circuit representation using T† gate

4. To view the QSphere representation, run the following in a cell:

qsphere

The QSphere, as you can see, has rotated the state of the qubit -p/4:

Figure 6.19 – T† gate, -p/4 phase rotation on the QSphere

The preceding gates, as you might have noticed, have predetermined rotation angles from
the horizontal (q) or vertical (f) axis. If you wish to specify the angle of rotation yourself
by leveraging the rotation gates. The following rotation gates allow you to specify the angle
by which to rotate around a given axis. Like the other gates, these rotation gates are also
reversible and unitary.

Using the Rf gate in a circuit
You can think of Rf gates as your custom rotation gates. The Rf gate is named after its
classical-bit gate counterpart because it performs a similar operation in that if the current
state is 0 or 1, then the gate will rotate from 0 to 1, and vice versa. Note that I used the
term rotate and not flip. This is because visualizing the operation of the quantum gates is
usually done via the QSphere.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Reviewing classical logic gates 131

Because of its spherical presentation, we refer to operations as rotations around the axis by
-p < q < p (we will see this clearly in the following code examples):

By applying a Y rotation, we get the following formula:

Finally, a Z rotation will yield the following formula:

We'll create a circuit using one of the rotation gates – let's go with the RZ gate:

1. First, we will rotate along the z axis by p/6. We'll be using the math library to
import pi, and our friendly H gate will be applied to help illustrate the phase shift:

#Rz-gate

#Create the single qubit circuit

qc = QuantumCircuit(1)

#Import pi from the math library

from math import pi

#Add an H gate to help visualize phase rotation

qc.h(0)

#Add an RZ gate with an arbitrary angle theta of pi/6

qc.rz(pi/6, 0)

#Execute the circuit and capture all the results

result, img, qsphere = execute_circuit_sv(qc)

2. Next, we examine the state vector results by running the following cell:

result

This prints out the state vector values of the qubit:
array([0.70710678+0.j , 0.61237244+0.35355339j])

RX() = (cos () −i sin()
−i sin() cos ())

RY()
= (cos () −sin()

sin() cos ())

RZ() = (e−i 0
0 ei)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

132 Understanding Quantum Logic Gates

3. To draw the circuit diagram for the Rz gate, run the following in a cell:

img

This displays the circuit diagram with the RZ gate added to the qubit, as shown in
the following diagram:

Figure 6.20 – Circuit representation using RZ gate

4. To view the QSphere representation, run the following in a cell:

qsphere

The QSphere, as you can see, has rotated the state p/6:

Figure 6.21 – RZ gate QSphere rotated p/6

These rotation gates help us provide specific gate rotations around each axis. There are
more universal gates that allow us to create these other gates using only one of these
universal gates, so let's review those next.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Reviewing classical logic gates 133

Applying the universal UX gates
Ux gates, as mentioned earlier, are used in order to define a universal quantum system
where you would need to ensure that the quantum system adheres to a certain criterion,
he most popular of which is the DiVincenzo criteria, which as part of its list states that
it should have a universal set of quantum gates.

We discussed how, in a classical system, both NOR and NAND gates are considered
classical universal gates. In a quantum system, the U1, U2, and U3 gates are defined as
universal gates, due to their ability to provide up to 2 degrees of freedom to rotate about
the Hilbert space of a qubit. Each gate has parameter fields that determine by how much
the state vector should move along the given axis. Let's look at them individually first and
then we'll apply each gate to a qubit to examine the results. Let's start with the U3 gate.

The U3 gate has three parameters that are applied as rotations on all axes, that is, the x
axis, y axis, and z axis, respectively. The matrix representation of the U3 gate is defined
as follows:

In the preceding equation, q, f, and l are the angles of rotation in radians around the x
axis, y axis, and z axis, respectively. Note that for the U gate to remain a unitary operation,
that is, U†U = I , the angles must be confined to the range 0 q p, and 0 f 2p. We can
also see these ranges in the U3 matrix, where these values lay in the arguments of the
matrix, which leaves the phase l to also have a range of 0 l 2p.

Let's create a circuit that implements the U3 gate:

1. First, we will create a single-qubit circuit and apply the U3 gate to it with each angle
set to p/2. We'll reuse our state vector helper function, execute_circuit_sv, so
we can extract the state vector results, and the QSphere to visualize the state vector:

#U3-gate

from math import pi

#Create a single qubit circuit

qc = QuantumCircuit(1)

#Add a U3 gate and rotate all parameters by pi/2, and
#apply it to the qubit

qc.u3(pi/2, pi/2, pi/2, 0)

#Execute the circuit and capture all the results

result, img, qsphere = execute_circuit_sv(qc)

U3 (,,) = (cos (/2) −eisin (/2)
eisin (/2) ei(+)cos (/2))

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

134 Understanding Quantum Logic Gates

The result value we shall see is set to the following:
array([7.07106781e-01+0.j , 4.32978028e-17+0.70710678j])

Note that for convenience, I replaced the value 4.32978028e-17 from the results
with a 0, because the number is too small and insignificant.

2. The expected circuit diagram for U3 is as follows, with the parameters listed at
the bottom:

Figure 6.22 – The U3 gate set with the rotation parameters set at p/2
The QSphere representation is shown as follows:

Figure 6.23 – The QSphere representation of the U3 gate set with all parameters to p/2

The U3 gate is a superset gate to both the U2 and U1 gates, in that the parameters passed
into the U2 and U1 gates would populate the respective parameters in the U3 gate. The U3
gate is then used by the transpiler to execute the circuit. As we describe the gates, we will
decompose the circuit to see how this is done.

The next gate is the U2 gate, which has two parameters that are applied as a rotation to
the f and l values of the U3 gate, respectively. The matrix representation of the U2 gate is
defined as follows:

U2(,)

= 1/2 (1 e−i
ei ei(+))

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Reviewing classical logic gates 135

In the preceding equation, f and l are the angles of rotation in radians, respectively.

One very important thing to note here is that the U2 gate defaults the U3 parameter q to
p/2 as described in the U3 gate description.

Let's update the code we used to implement the U3 gate earlier with a U2 gate:

1. We'll begin by importing NumPy to provide some math variables and create a
quantum circuit that implements the U2 gate with rotation parameters of pi/2:

#U2-gate

from math import pi

#Create a single qubit circuit

qc = QuantumCircuit(1)

#Add a U2 gate and rotate all parameters by pi/2, and
#apply it to the qubit

qc.u2(pi/2, pi/2, 0)

#Execute the circuit and capture all the results

result, img, qsphere = execute_circuit_sv(qc)

The resulting value we shall see is the same as the U3 gate, as expected, since we
applied the same angles for f and l. Try running the circuit with different angles
for each:

array([7.07106781e-01+0.j, 0+0.70710678j])

2. The expected circuit diagram for the circuit we executed for U2 should include
the parameters, just like the U3 gate. If you changed the parameters, those changes
would reflect in the resulting img variable:

Figure 6.24 – The U2 gate set with the rotation parameters at p/2

3. As mentioned earlier, we can decompose the circuit to the core gates that it uses to
create the circuit. Let's do that now to see how the U2 gate is decomposed. In a new
cell, enter the following, which will decompose the quantum circuit we created, and
then draw the circuit representation for us:

qc_decomposed = qc.decompose()

qc_decomposed.draw()

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

136 Understanding Quantum Logic Gates

This results in the following circuit:

Figure 6.25 – The circuit decomposition of the U2 gate down to the base gate, U3

As you can see from the result of decomposing the circuit, the U2 gate is actually a
U3 gate with the q value default to p/2, and the f and l values are set to what you
had defined in the code.

As we have used the U2 gate in the circuit, we will now learn about the U1 gate.

The U1 gate has one parameter applied as a rotation to the z axis, or l. Because of this,
it is similar to the RZ gate and the matrix representation is also the same as the Z gate:

In the preceding equation, l is the angle of rotation in radians around the z axis, also
referred to as a phase rotation.

Let's create a circuit for the U1 gate. The code that we will use to implement the U1 gate
will be a little different this time:

1. As this is a phase rotation as the Z gate, we will, as before, include a Hadamard gate
to help visualize the effect of the U1 gate, and apply a rotation parameter of p/2:

#U1-gate

from math import pi

#Create a two qubit circuit

qc = QuantumCircuit(1)

qc.h(0)

#Add an U1 gate and rotate by pi/2

qc.u1(pi/2, 0)

#Execute the circuit and capture all the results

result, img, qsphere = execute_circuit_sv(qc)

U1 () = (1 0
0 e)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Reviewing classical logic gates 137

If we examine the result, we should see the same array output as we did in the Z
gate, if we look at the circuit diagram (img), we will see the Hadamard and U1 gates.
Notice that the U1 gate also provides the angle that was passed in as p/2:

Figure 6.26 – The U1 gate set with the rotation parameter p/2

2. If you examine the QSphere result, you should also see that it is the same as a Z gate
rotation of p/2 after the Hadamard gate had been applied:

Figure 6.27 – QSphere representation of a U1 rotation of p/2

3. Since the U1 gate is a single rotation around the z axis, this gate can also be used to
create the Z, S, S† , T, and T† gates by simply setting the parameter to their respective
angles of p, p/2, -p/2, p/4, and -p/4.

Now, let's repeat the decompose code we ran earlier for the U2 gate to this circuit to
see how the U3 gate implements the U1 gate:

Figure 6.28 – The circuit decomposition of the U1 gate down to the base gate, U3

Notice here that the q value of the U3 gate is set to 0, rather than p/2, as was the
default on the U2 gate.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

138 Understanding Quantum Logic Gates

In this section, we learned about single-qubit gates, along with the Pauli matrix and its
four gates (I, X, Y, and Z). We also reviewed the Hadamard gate. We also learned about
phase gates such as the S, T, and Rf gates and their dagger forms.

Now you know that single-qubit gates provide many ways to create a complex linear
combination of their basis states, but manipulation of a single qubit alone is not enough
to carry out the functionality that most quantum algorithms require. One such example is
quantum entanglement. This is where multi-qubit gates come into play. Let's learn about
those in the next section.

Understanding multi-qubit gates
Two or more qubits can combine their states by their tensor product, or sometimes
referred to as the Kronecker product. For convenience, I have provided the vector
representation here:

For two qubits, namely, |0⟩ = (10) , and |1⟩ = (01) , and their complex amplitudes v0 and v1
respectively, their tensor product would equate as follows:

The vector that results by applying the tensor product is the basis state of the two
qubits, |⟩ .
In this section, we will discuss the multi-qubit gates and how they operate on the qubits
similarly to how single-qubit gates do, which includes them being unitary and reversible.
In the following equation, a multi-qubit gate, represented by a matrix U, is multiplied by
a quantum state vector |1⟩ to produce the resulting quantum state vector |2⟩ :

|a⟩ ⊗ |b⟩ = |ab⟩

v00|00⟩ + v01|01⟩
+ v10|10⟩ + v11|11⟩

= (
v00
v01
v10
v11

) = |⟩

U|0⟩ = |2⟩

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Reviewing classical logic gates 139

To keep the descriptions and examples uniform, the following descriptions of the multi-
qubit gates will be presented the same way as the single-qubit gates. We will create a new
helper function that is similar to what we used earlier for single-qubit circuits. The helper
function will have a few differences, the first of which will be the simulator that we will
be using to execute the circuits:

Will execute the circuit on the qasm simulator

Returns results, circuit diagram, and histogram

def execute_circuit(quantum_circuit):

 #Create a qasm simulator

 simulator = Aer.get_backend('qasm_simulator')

 #Execute the circuit on the simulator

 result = execute(quantum_circuit, simulator,
 shots=1024).result()

 #Get the result counts

 results = result.get_counts(quantum_circuit)

 #Draw the circuit diagram

 circuit_diagram = quantum_circuit.draw()

 #Create a histogram of the results

 histogram = plot_histogram(results)

 #Return the results, circuit diagram, and histogram

 return results, circuit_diagram, histogram

We will switch from using the state vector simulator to using the qasm simulator. Qasm,
short for Quantum Assembly language and pronounced kazm, is a programming
language used to describe the functions that make up quantum circuits and operations.
It is the programming language that Qiskit is built upon as a Python library.

The purpose as to why we are switching over to the Qasm simulator is not that we can't
use the state vector simulator, it's primarily so we can observe some of the interesting
characteristics of our circuit and the gates. For those who wish to use the state vector
simulator, not to worry. There will be some challenges in the Questions section, at the
end of this chapter, that will allow you to use it.

Another difference you will see is that we are no longer using the QSphere to visualize the
quantum states. Rather, we will replace the QSphere output with a histogram plot of the
result counts. For each circuit we will be creating, we will include more than one qubit, as
these multi-qubit gates all operate on two or more qubits.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

140 Understanding Quantum Logic Gates

Now that we have our helper function, go ahead and run it, and let's move on to the next
set of gates, the multi-qubit gates. These include the following:

• The CNOT gate

• The Toffoli gate

• The Swap gate

We will learn about these gates in the following sections.

Learning about the CNOT multi-qubit gate
The CNOT gate, often referred to as a Control-NOT gate, is similar to the XOR
classical-bit gate. The CNOT gate is composed of two parts.

The first part is the Control , which is connected to one of the qubits, and is what triggers
the CNOT gate to perform an operation on the other qubit connected to the other end of
the CNOT gate, the Target.

The Target is an operation that will be performed on the other qubit; in this case, it's a
NOT operation. Recall from the previous section on single-qubit gates that the NOT gate
rotates the qubit about the x axis by p/2. The CNOT gate is one of the more commonly
used multi-qubit gates as it is how qubits get entangled.

The CNOT gate is also described as a Control-X (CX) gate since the target is often coded as
an X operation. You will see this CX gate convention when running the following example.

The matrix representation of a CNOT gate is a 4 x 4 matrix due to the tensor product of
two qubits as illustrated here:

Notice that the top left 2 x 2 quadrant of the CNOT matrix represents an Identity matrix,
I, and the bottom right 2 x 2 quadrant represents the X matrix.

CNOT = [
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Reviewing classical logic gates 141

The following truth table illustrates that when the Control qubit (the left side of the input
vector) is 0, there is no change to the target qubit (the right side of the input vector).
When the Control qubit is set to 1, then the Target qubit operation is enabled and
therefore rotates the target qubit around the x axis by p (that is, 1800):

Table 6.11 – Truth table representation of CNOT gate

Let's now create a circuit, add a CNOT gate, and execute it:

1. We'll begin by creating a two-qubit quantum circuit and applying a Hadamard gate
on the first qubit, and a CNOT gate on the two qubits, where the Control is set to
the first qubit and the Target is set to the second qubit:

#CNOT-gate

#Create a two qubit circuit

qc = QuantumCircuit(2)

#Add an H gate to the qubit

qc.h(0)

#Add an CNOT gate where, control = first, target = second
#qubit

qc.cx(0,1)

#Measure all qubits and send results to classical bits

qc.measure_all()

#Execute the circuit and capture all the results

result, img, histogram = execute_circuit_sv(qc)

2. Then we examine the state vector results by running the following cell:

result

This prints out the state vector values of the qubit:
array([1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j])

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

142 Understanding Quantum Logic Gates

3. To draw the circuit diagram for the CNOT gate, run the following in a cell:

img

This following circuit diagram illustrates the CNOT gate. Note we added an H gate
and measurements for the sake of the results, but the CNOT gate in the following
illustration is for convenience:

Figure 6.29 – Circuit representation using a CNOT gate

4. To view the histogram results with the counts after executing the previous circuit,
enter the following into a cell:

histogram

The following illustrates the results including an H gate. The following graph shows
the probabilities of the results being either 00 or 11:

Figure 6.30 – Histogram representation of CNOT results from circuit

The results from the previous gates are just a handful, as you can see from some of the
custom qubits, such as the Rx gate, or CNOT, which allow you to rotate into any state on
the QSphere for each qubit.

Let's now look at operators that are not reversible, yet still quantum. Not to worry, I am
not contradicting myself from an earlier statement that requires quantum operators to be
unitary and therefore reversible.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Reviewing classical logic gates 143

In the following section, I will clarify what this means. There are other Control gates
which implement other operations, such as, Control-Y (CY), Control-Z (CZ), Control-H
(CH), and more. These gates all share the same characteristics of the CNOT (CX,
Control-X) gate, in that, they have a Source and Target. The main difference, as you can
imagine, is the operation that the Target would follow. For the CNOT gate, the Target
would operate with a X gate, and naturally a Control-Y gate would operate a Y gate on
the Target qubit. Try out a few for yourself and see how the results differ. Notice that the
operations will be the same as if you ran the single gate to the Target gate.

The last multi-qubit gate we will focus on, which is also used in a variety of quantum
algorithms, is the Toffoli gate.

Applying the Toffoli multi-qubit gate
The Toffoli gate is named after Tommaso Toffoli, an Italian American professor in
computer and electrical engineering at Boston University. This gate is very similar to that
of the multi-qubit Control gates mentioned earlier, only this gate has multiple Controls
and a single Target. To simplify the description of multi control gates, they are written out
in the following format, CCX. This is to indicate it is a dual controlled Control-Not gate,
and a CCCX is a triple controlled Control-Not gate.

The general matrix representation of a Toffoli gate is an 8 x 8 matrix because of the tensor
product of three qubits, as illustrated in the following matrix. Notice that the first three
diagonal 2 x 2 matrix blocks are the Identity matrix and the last 2 x 2 matrix (bottom
right) is a NOT gate representation that flips the qubit. Note that the matrix for the
Toffoli gate in Qiskit is slightly different but still produces the same results:

Let's run this gate to see the results of it on our quantum circuit:

1. We'll begin by creating a three-qubit quantum circuit and applying a CCX (Toffoli)
gate where the first two qubits are the control qubits, and the third qubit is the
target qubit:

#Toffoli (CCX)-gate

from math import pi

Toffoli =

[

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 0 0 0 0
 0 0 0 0
 0 0 0 0
 0 0 0 0
 1 0 0 0
 0 1 0 0
 0 0 0 1
 0 0 1 0]

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

144 Understanding Quantum Logic Gates

#Create a three qubit circuit

qc = QuantumCircuit(3)

#Add the Toffoli gate (CCX)

qc.ccx(0,1,2)

#Execute the circuit and capture all the results

result, img, qsphere = execute_circuit_sv(qc)

The result of executing this circuit will be no surprise, and consists of 8 possible
states since we are running everything on three-qubit circuit, which means 23
basis states:

array([1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j,
0.+0.j, 0.+0.j])

2. As the QSphere only represents single-qubit information, it does not present
multi-qubits, particularly when they are entangled. So, in this case, the results from
the QSphere visualizations will not be proper presentations, so we will ignore them.

The circuit diagram for the Toffoli gate is as follows:

Figure 6.31 – Circuit representation of a Toffoli (CCX) gate

3. Let's see how the base gates are used to create this three-qubit gate. In a new cell,
run the decompose function of the quantum circuit:

qc_decomposed = qc.decompose()

qc_decomposed.draw()

This will result in the following illustration of all the gates needed to create a single
Toffoli gate:

Figure 6.32 – Gates necessary to create a Toffoli (CCX) gate

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Reviewing classical logic gates 145

Needless to say, this looks very complicated. You can see that the use of the various single-
qubit and multi-qubit gates used to represent this one gate are quite complex. If this is run
on a near-term device on qubits with low coherence times, you are most certainly going to
have some effects related to noise. In this example, you can see the use of H, CNOT, and
T† gates. There are other multi-qubit gates that leverage gates in order to operate.

Let's look at a gate we would use to swap information between one qubit and another.

Using the Swap gate in a circuit
The swap gate is used to swap two qubit values. The matrix representation of the swap
gate is defined as follows:

Let's create a circuit and implement this by swapping two qubits:

1. We will set the first qubit to the |0 state, and the second qubit to the |1 state, then
we will invoke a swap between the two using the swap gate and verify the results
of each qubit:

#Swap-gate

from math import pi

#Create a two qubit circuit

qc = QuantumCircuit(2)

#Qubit 0 is initialized to |0> state

#Prepare qubit 1 to the |1> state

qc.x(1)

#Now swap gates

qc.swap(0,1)

#Execute the circuit and capture all the results

result, img, qsphere = execute_circuit_sv(qc)

SWAP = [
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

]

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

146 Understanding Quantum Logic Gates

By viewing the resulting diagram of the circuit (img) you will see a circuit diagram
of the swap gate as shown here, just after the X gate we included for comparison:

Figure 6.33 – Circuit diagram of an X gate followed by a Swap gate

2. Before viewing the QSphere result for each qubit, let's take a moment to review
what we expect to see. Our two qubits are first initialized to the |0 state, and we
then applied an X gate to the second qubit (q1) to change its state to |1 . Finally, we
added a Swap gate to swap the value of q0 and q1, which would result in q0 = |1⟩ and
q1 = |0⟩ . Let's see the results:

Figure 6.34 – State vector results after applying the Swap gate

Excellent! The results, as we can see in the previous diagram, show that the state
vectors for both qubits are set as expected with q0 = |1⟩ and q1 = |0⟩ .

In this section, we have learned about multi-qubit gates, namely, CNOT and Toffoli gates.
We also learned about an extra gate, that is, the Swap gate.

Now that we are familiar with single-qubit and multi-qubit gates, let's review the
non-reversible operators.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Reviewing classical logic gates 147

Understanding non-reversible operators
What is meant by a non-reversible operator is that if we apply these operators on a
qubit(s), and apply the operator again on the same qubits, then the results will not return
the qubits to the same state that they had prior to applying the operator.

This section will cover the non-reversible operators and the reasons why they are just as
important as the other operators discussed previously.

Measurement is an operator that instructs the quantum system to measure the quantum
state of the system. Before we dive into how we include the measurement instruction to
our quantum circuits, let's first define what is meant by measuring the quantum state of
the system.

We know from quantum mechanics that the information about a quantum system is
impossible to access, specifically the measurement of the qubit's complex amplitudes. For
example, let's say that we have a qubit in a superposition state |⟩ , where the complex
amplitudes sum up to 1:

A measurement of the preceding cannot provide the complex amplitude information in a,
due to the aforementioned constraint upon the system from the principles of quantum
mechanics. Instead, what the measurement of a qubit returns is the basis |j with a
probability |j|2 of the state |⟩ in the standard basis.

We viewed an example of this earlier when describing the Hadamard gate. When we set
the qubit in a complex linear combination of a|0 and b|1 , where a and b are the complex
amplitudes of the basis states, the measurement result was based on the probability ||2
of measuring |0 and ||2 of measuring a |1 , which for a Hadamard gate results in 50%, or
|1/2|2 .

An important thing to note about measuring the state of a system is that once you
measure it, the information of the system is then lost. What this means is that by
measuring the qubit(s) the state will collapse into one of the two basis states, |0 or |1
, based on the amplitude of the qubit. After the measurement, you no longer have the
information contained in a and b to do anything else.

∑j |j⟩ = 1
k−1

j=0

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

148 Understanding Quantum Logic Gates

If you were to try to measure again, the result will be the same as the first measurement.
Therefore, measurement is a non-reversible operator in that if you apply it again, it will
not produce the quantum state that the qubit was in prior to the measurement.

Once the measurement is completed, the result is then sent over to the classical bit that
will return the information back to the classical system. Now that we understand how the
measurement works and what the results of the measurements are, let's run some code to
see it at work!

In this example, we will create a simple two-qubit circuit that include a both a Hadamard
and a CNOT gate:

1. First, we will add the measurement function measure_all() at the end of the
circuit, which will automatically map the results of measuring the qubits to their
respective classical bits. We will also add Hadamard and CNOT gates:

#CNOT-gate

#Create a two qubit circuit

qc = QuantumCircuit(2)

#Add an H gate to the qubit

qc.h(0)

#Add an CNOT gate where, control = first, target = second
#qubit

qc.cx(0,1)

#Measure qubits and map to classical bits

qc.measure_all()

#Execute the circuit and capture all the results

result, img, histogram = execute_circuit(qc)

2. Let's now view our results by entering the following in a new cell:

result

This will output the result counts for each measurement, recall that we set the
number of shots to be executed in our helper function, so the total counts should
equal the number of shots we declared. The following results, of course, will vary
as they are random each time you execute the circuit. Therefore, your results may
differ from those listed here:

{'11': 484, '00': 540}

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Reviewing classical logic gates 149

3. Our helper function also included the histogram plot, which helps visualize the
preceding results. To view the histogram plot, enter the following into the next cell:

histogram

The output is the following histogram plot:

Figure 6.35 – Histogram chart of measured results

4. Now let's see what the circuit looks like with the measurement operators added.
Run the following in another cell:

img

At the end of the circuit illustrated in the following diagram, you will see that the
measurement operators were added to all qubits. You'll see that the labels for the
classical bits are titled measure, and the qubits are mapped to their respective
bits labeled by the index numbers where the measurement terminates onto the
classical bit:

Figure 6.36 – Measurement operators added to a quantum circuit
The barrier is added there just for convenience to visualize where the circuit
operations end and where the measurement will commence.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

150 Understanding Quantum Logic Gates

5. The measure_all() function is a nice and convenient way to apply measurement
operators to your quantum circuit. You can also apply a measurement operator to
each qubit separately and at separate times, or you can arrange the mapping using
a list if you wish to interchange the assignment of a qubit to a classical bit. Let's
rewrite our function again, only this time we'll add the measurement operators
individually for the first circuit (qc1) and then do the same with the second circuit
(qc2) using a list:

#Measurement operator

#Create two separate two-qubit, and two-classical bit
#circuits

qc1 = QuantumCircuit(2,2)

qc2 = QuantumCircuit(2,2)

#In the first circuit (qc1), measure qubits individually

qc1.measure(0,0)

qc1.measure(1,1)

#In the second circuit (qc2) measure using a list

qc2.measure([0,1],[0,1])

#Execute the circuit and capture all the results

result, img, histogram = execute_circuit(qc1)

result2, img2, histogram2 = execute_circuit(qc2)

After executing the code, display the two images (img and img2) in separate cells
and notice that both results are equal.

In this section, you learned about non-reversible operators. We also created a simple
two-qubit circuit using a measurement operator.

Summary
In this chapter, you learned all the various ways you can operate on both single and
multiple qubits. The operations provide various vector states that each qubit can rotate
into. You also learned how to visualize the gates on a circuit and learned to decompose
them down to universal gates so you can realize the information that is passed onto the
quantum system.

You have now understood how these gates operate on qubits. You now have skills that will
greatly help you understand how gates are used in many quantum algorithms to position
the vectors in the Hilbert space of each qubit to help resolve various problems.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Questions 151

In the next chapter, we will learn about the Quantum Information Science Kit (Qiskit,
pronounced kiss-kit (depending on who you ask, it may also be pronounced kwis-kit).
Qiskit provides, besides many of the objects and functions we have been using so far to
manipulate qubits, other functionality that helps to create quantum algorithms, to mitigate
against noise found in near-term devices, and to produce quantum algorithms for users to
leverage without having to learn about them at the gate level.

Questions
1. For the multi-qubit gates, try flipping the Source and Target. Do you see a difference

when you decompose the circuit?

2. Decompose all the gates for both single and multi-qubit circuits. What do you
notice about how the universal gates are constructed?

3. Implement the Toffoli gate where the target is the center qubit of a three-qubit
circuit.

4. Decompose the Toffoli gate. How many gates in total are used to construct it?

5. Apply the Toffoli gate along with a Hadamard gate to a state vector simulator and
compare the results to that from the Qasm simulator. What differences do you see
and why?

6. If you wanted to sort three qubits in the opposite direction, which gates would you
use and in which order?

7. Given a three-qubit circuit, how would you go about swapping the first and
third qubits?

8. Given a three-qubit circuit, how would you set the second qubit as the Target of a
Toffoli gate?

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

In this final section, we will describe the various quantum algorithms and their types,
including things that appear strange to us in classical systems but are typical of quantum
systems. This includes things such as noise, decoherence, affinity, and quantum volume,
all of which can drastically affect the outcomes of your experiment.

You will also learn about Qiskit here, which has a library of tools that can be used to
address, and at times avoid, many of these problems.

This section comprises the following chapters:

• Chapter 7, Introducing Qiskit and its Elements

• Chapter 8, Programming with Qiskit Terra

• Chapter 9, Monitoring and Optimizing Quantum Circuits

• Chapter 10, Executing Circuits Using Qiskit Aer

Section 3:
Algorithms,

Noise, and Other
Strange Things in

Quantum World

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

• Chapter 11, Mitigating Quantum Errors Using Ignis

• Chapter 12, Learning about Qiskit Aqua

• Chapter 13, Understanding Quantum Algorithms

• Chapter 14, Applying Quantum Algorithms

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

7
Introducing Qiskit

and its Elements
In this chapter, you will learn about the Quantum Information Science Kit (Qiskit) and
all its elements in order to develop and implement various quantum computing programs.
Qiskit (pronounced kiss-kit) is comprised of four elements, each of which has a specific
functionality and role that can be leveraged based on the areas that you wish to experiment
with. These elements are Terra (Earth), Aer (Air), Ignis (Fire), and Aqua (Water).
This chapter will also discuss how to contribute to the open source community and the
development of each of the elements, as well as how to connect to other like-minded
developers via the Qiskit community.

The following topics will be covered in this chapter:

• Understanding quantum and classical system interconnections

• Understanding Qiskit basics and its elements

• Installing and configuring Qiskit on your local machine

• Getting support from the Qiskit community

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

156 Introducing Qiskit and its Elements

First, we'll introduce the Qiskit package, which is used for developing quantum
algorithms, creating noise models, running experiments on real devices, and visualizing
results. Each of these elements has a certain purpose or domain for the various needs of
developing quantum algorithms. We'll also discuss ways in which you can contribute to
the Qiskit community and its open source development. You will also learn how to benefit
from Qiskit's community support and educational community.

Finally, you'll learn how each element provides you with the resources you need to create
optimal algorithms. Details of each element will be discussed in future chapters, but for
now, let's understand how each are linked together and their area of focus.

Technical requirements
Since Qiskit is a Python package, you need to be familiar with Python programming.
Knowledge of GitHub is also recommended as we will review how to contribute to the
Qiskit open source project, which is hosted on GitHub. Having Agile and open source
development practice is also recommended, but not required. Here is the source code
used throughout this book: https://github.com/PacktPublishing/Learn-
Quantum-Computing-with-Python-and-IBM-Quantum-Experience.

Please visit the following link to check the CiA videos: https://bit.ly/35o5M80

Understanding quantum and classical system
interconnections
In this section, we'll review how the most quantum computational systems are
integrated with classical systems. Since quantum computers do not have ways to store
qubit information or any sort of quantum storage, there is a dependency on classical
systems to provide persistent storage for information that is sent to or received from
a quantum computer.

Since most data sources, whether they are from data repositories or remote sensors,
originate from classical sources, there is a need to prepare the data to be used in a
quantum system. Likewise, the results from the quantum systems need to be returned,
not in a quantum state but in binary form, so that they can be read back to a classical
system for any post-processing that's required.

This hybrid or interconnectivity between classic systems and quantum systems is what we
will be reviewing in this section so that you understand how both systems work together
to provide you with the most optimal results.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-Quantum-Experience
https://github.com/PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-Quantum-Experience
https://bit.ly/35o5M80

Understanding quantum and classical system interconnections 157

Reviewing the quantum programming process
If you have worked on some of the previous chapters, then you would have noticed that
we used Qiskit to create some sample circuits that we used to describe some quantum
concepts. As Python developers, you would have also noticed that Qiskit is functionally
no different than using any other Python package, such as NumPy, scikit-learn, and so
on. How we use it within our Python notebooks is also the same as we would use any
other package, where we can import the complete package or just a subset of classes
and functions. By having the Qiskit modules available through Python, this allows us
to integrate our classical algorithms and applications into a quantum system. Leveraging
the libraries available in Qiskit to create quantum circuits that execute on quantum
devices from a classical development environment such as Python makes integration
very seamless and straightforward.

Qiskit, much like most other open source projects, is easy to set up, both as a package
with Python or as a branch or a fork if you're just acting as a contributor. It's very
compact and does not require much with respect to resources on local machines in
order to run. Since most of the devices and heavy lifting is offloaded onto the IBM
Cloud infrastructure, which is connected to all the quantum devices, resources such as
the electronic components necessary to send microwave pulses to the qubits, the large
dilution refrigerators that are used to cool the qubits to 15 millikelvin, and many other
components and tasks are taken care of by quantum systems such as IBM Q System One.

This is a good thing because those dilution refrigerators, which look like chandeliers, are
quite large. The infrastructure takes care of many things, including the queuing process,
to ensure the projects that you, and hundreds of thousands of other users from around
the world, can execute on the devices in a timely and non-chaotic manner. In fact, during
the fourth anniversary of the IBM Quantum systems going live, they had successfully run
over 1 billion circuits in a day!

Another advantage of creating it as a package for an existing platform such as Python is
that there is no need to install a separate integrated development environment, nor set up
complex build systems with confusing dependencies. For those of you who already have
Python installed with the current supported version, you can install Qiskit with a simple
pip command:

>pip install qiskit

But let's not get too ahead of ourselves. First, we will review how Qiskit is organized and
then we'll cover how it interacts with your classic systems such as your laptop, server, or
cloud application.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

158 Introducing Qiskit and its Elements

Important Note
Again, installing Qiskit is not a requirement for this book, so as we mentioned
earlier, please skip the installation section, should you not want to install Qiskit
locally.

Now that we understand the organization of Qiskit and its functionality, we will work
our way to installing Qiskit locally.

Understanding how to organize and interact with Qiskit
If you use Python for most of your development, which I assume you do, based on the
title of this book, then you understand that most packages are created in some form
of hierarchy. At the top level, there's the modules, while the lower levels refer to the
components within each module.

Qiskit has components such as classes or objects, and under each of those components,
you have functions and members. Qiskit is no different regarding how everything is
organized compared to most other packages, which makes it very easy to find certain
features. Qiskit is composed of four main modules called Terra, Aer, Ignis, and Aqua,
as illustrated in the following diagram:

Figure 7.1 – Qiskit module hierarchy

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding quantum and classical system interconnections 159

As shown in the preceding diagram, each of the components provides a different set
of functions and features so that it's easy to manage and locate certain functionalities.
One thing to note is that there are some objects in Terra that are bundled under Qiskit,
which simplifies managing components and creating circuits.

As illustrated in the preceding diagram, you will notice that both Terra and Aer are
separate modules under Qiskit. However, if you look at the following code, you will
see that only Aer is imported. This is because Terra components such as execute,
QuantumCircuit, and more are all just listed under the root Qiskit module:

from qiskit import QuantumCircuit, QuantumRegister

from qiskit import Aer, execute

from qiskit.providers.aer import QasmSimulator,
StatevectorSimulator

Looking at the first and second line, it seems like the QuantumCircuit,
QuantumRegister, Aer, and execute functions are all under Qiskit, even though the
graph shows them under Terra. This is primarily due to the evolution of Qiskit over time,
where there were some classes that were originally under one module but were then moved
to the other modules. To keep yourself sane, rather than importing as qiskit.terra,
simply import the terra modules directly from qiskit, as shown in line 1 and 2 in the
preceding code. You will notice the same with lines 2 and 3 regarding the Aer providers.

Of course, the preceding information is based on the current version of Qiskit. In the
future, like many projects, this may change. I highly recommend keeping up to date with
the current Application Programming Interface (API) documentation to ensure that
you are using the proper calls when writing your code. The API for this can be found on
the Qiskit documentation page at https://www.qiskit.org/documentation/.

The documentation page provides the latest information on the four available modules,
often referred to as elements due to their names, as explained at the beginning of
this chapter.

So far, we have covered how Qiskit integrates into a classical application via Python,
as well as how the four modules are configured under the main Qiskit library.

The following section will describe what each element provides so that you have an
understanding of how to leverage them in your code. Development specifics will be
covered in future chapters, where we will talk about the functionality and operations
that each can provide.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.qiskit.org/documentation/

160 Introducing Qiskit and its Elements

Understanding Qiskit basics and its elements
Qiskit was built for anyone who wants to work with quantum computers at every level and
domain. By this, we mean that if a quantum researcher wanted to work on how the pulses
are scheduled on a quantum device, they can do so very easily. The same can be said about
users who simply want to extend their applications to leverage a quantum computer to
compute information.

In this section, we will learn about the four elements of Qiskit, along with its basics.

Let's take, for example, chemistry researchers, who wish to compute the energy state of
two molecules but don't want to go through the hassle of learning about quantum gates
and pulses. They just want to load their dataset, classically, to a quantum algorithm and
obtain the results transparently. Qiskit was built as a full stack open source software
package to facilitate those and many more user type scenarios.

Quantum physicists can experiment at the hardware level by researching ways to
schedule pulses to single and multi-qubits. Quantum researchers can work on developing
quantum circuits that could minimize noise, which would optimize the results of your
quantum circuits.

Algorithm researchers and developers usually work on creating quantum algorithms that
could be used by various domains and industries to solve problems either faster or to
provide more accurate results with less data. Finally, domain researchers such as chemists,
data scientists, economists, and many others can integrate their classic applications into a
quantum system in order to compute complex problems more optimally or accurately.

As we already know, the elements in Qiskit are as follows:

• Terra

• Aer

• Ignis

• Aqua

Each element in Qiskit provides the tools needed for each of the aforementioned user
types. We will learn about each element in the upcoming sections. We'll start with the
foundational element – Terra – in the next section.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding Qiskit basics and its elements 161

Terra
Terra, as defined in the Qiskit documentation, is used for composing quantum programs
at the level of circuits and pulses within the code foundation.

What this means is that Terra is at the foundation of all the other elements, hence its
translated name, Earth. It contains all the necessary components needed to not only
create quantum circuits, but to generate and schedule the pulses that are sent to operate
on the qubits.

Other features contained in Terra include the ability to execute quantum circuits, specify
which device or simulator will execute the circuit, and allow others to configure the
parameters as to how those circuits will be executed on the devices. It also facilitates the
ability to communicate with the quantum systems and ensure that every user can run
their experiments easily and without having to wait for too long.

This makes Terra the perfect module for our hardware engineers, quantum algorithm
researchers, and developers.

Aer
Aer is, just as it is pronounced, the air element of Qiskit. It provides a framework that
can be used to develop optimal simulators, debugging tools, and emulators. These tools
help replicate a lot of the characteristics of a quantum system by simulating the noise that
affects not just the qubit, but also the environment and computations. There are generally
four highly efficient C++ compiled simulators available in Aer, as follows:

• Qasm simulator

• Statevector simulator

• Unitary simulator

• Pulse simulator

We will look at each of the simulators in the upcoming sections.

Qasm simulator
The Qasm simulator allows us to run our circuits in both clean and noisy simulated
environments. The difference between the two is the amount of noise that you wish to
apply to the simulator.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

162 Introducing Qiskit and its Elements

On one hand, it could run as an error-free ideal system that you can use to confirm the
computational results of your circuit. On the other hand, you could run your circuit
through a simulator that includes noise models so that you can replicate the noise and
understand how it affects your computations. The results of this can be used to obtain
the total count each time the circuit was executed and measured for analysis. I suggest
referring to the official documentation for a complete breakdown of this. For instance,
shot noise default behavior for different algorithms and backends is likely to change
according to the new Qiskit release.

The Qasm simulator also has multi-functional capabilities and methods to simulate
circuits, such as Statevector, density matrix, stabilizer, matrix product state, and many
more. By allowing you the flexibility to configure the Qasm simulator using any of these
methods, you can expect an ideal outcome from the measured circuits, along with any
models that you wish to incorporate.

The Qasm simulator also provides a list of backend options you can use to execute your
quantum circuit. These options include setting threshold values to truncate results or
setting floating-point precision values and maximum value constraints for executing
circuits. These features make Aer the ideal component for those who wish to develop
an ideal or replicated noisy system. Typically, Aer is used by researchers who wish to
develop noise mitigation or error correction techniques.

Statevector simulator
The Statevector simulator is, as its name suggests, a state vector simulator that provides
the final state vector of the circuit after just one shot. Similar to the Qasm simulator,
the Statevector simulator also provides you with backend options so that you can set
thresholds and set maximum values each time you execute a circuit.

Results from the Statevector simulator can be visualized by leveraging the various
visualization tools of quantum states, such as histograms and cityscape. The cityscape
option provides a nice 3D view of both the real and imaginary components of the Density
matrix (). Other visualization plots include Hinton, Pauli vector plots, and Bloch
sphere, to name a few. We will cover these and other visualization tools in future chapters
as they will help you visualize some of the effects that gates have on qubits.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding Qiskit basics and its elements 163

Unitary simulator
The Unitary simulator is quite simply just that – it provides the unitary matrix of your
circuit. It does this by applying your circuit to an identity matrix based on the size of your
circuit. This is very helpful if you want to confirm that the operations you applied to the
qubits match your expected calculations. Let's look at an example to see how this works.
We will create as simple one-qubit circuit that we will apply a Hadamard (H) gate to in
order place the qubit in a superposition state.

Let's open up a new Qiskit notebook and create a circuit with a single qubit. After that,
we'll add a Hadamard gate to the qubit, set up the backend so that it uses unitary
simulator, and then execute our circuit, as follows:

Create a quantum circuit with 1 qubit, add an H gate

qc = QuantumCircuit(1)

qc.h(0)

Set backend to unitary simulator

simulator = Aer.get_backend('unitary_simulator')

Execute on unitary simulator

result = execute(qc, simulator).result()

Obtain results and print it out on console

unitaryState = result.get_unitary(qc)

print(unitaryState)

This results in the following output:

[[0.70710678+0.00000000e+00j 0.70710678-8.65956056e-17j]

[0.70710678+0.00000000e+00j -0.70710678-8.65956056e-17j]]

This is expected since we know that the unitary operator for the Hadamard gate is
as follows:

The preceding simple example illustrates how we can determine the overall unitary matrix
of the circuit. You can imagine how helpful this will be when you start to work on multiple
qubits with many operators. The unitary simulator helps provide state information so that
you can ensure that the results are what you expected.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

164 Introducing Qiskit and its Elements

Pulse simulator
The Pulse simulator is used to schedule pulse-level control and execute them on a
pulse simulator and quantum computer. What the Pulse simulator offers is the ability
to simulate the Hamiltonian dynamics of a quantum system. This is done by the Pulse
simulators' ability to generate pulse schedules, which are similar to executions of circuits,
in that they provide a schedule of when to trigger certain operations on the qubits via
microwave pulses.

The simulator also allows us to reproduce the physical system by using its built-in pulse
system model objects. These objects provide information for the simulator, such as the
Hamiltonian representation of the system and local oscillator frequencies of each qubit.
The results that are returned after executing on the simulator should very closely resemble
those returned by an actual device with similar settings. We will learn how to run
schedules in Chapter 10, Executing Circuits Using Qiskit Aer.

Ignis
Ignis is the element that represents fire, which might seem appropriate as it is used
primarily to focus on errors, typically noise models that affect qubits. The effect that
noise has on qubits can greatly reduce the ability to effectively compute operations on
a qubit before the noise introduces issues such as decoherence, crosstalk, or a series of
other problems.

Ignis has many tools that can help mitigate the effects of noise and errors, such as
providing error correction. It also allows us to measure the capabilities of devices by
offering randomized benchmarking and forms to measure Quantum Volume.

Quantum Volume is a way to measure the performance of a quantum computer, which, in
turn, may help determine the quantum volume necessary for your quantum algorithm or
application if you can correlate the two. Ignis is the ideal tool for researchers interested in
mitigating errors and characterizing a quantum system.

Aqua
Aqua is the last of the elements and probably the most ideal for researchers who simply
want to leverage a quantum system without having to dig deep into the details of the
qubits, pulses, error mitigation, and everything else that goes into creating an optimal
quantum algorithm.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding Qiskit basics and its elements 165

Aqua is built for those who wish to simply use the quantum algorithms by integrating
Aqua into their classical applications as simply as possible. Aqua, an acronym for
Algorithms for Quantum Applications, was built for just that purpose. It provides
various utilities, components, and algorithms that can be leveraged to create a quantum
application by combining a set of components. This, along with the associated simulators,
error mitigation, and any other Qiskit features are included to simplify the construction
and modification at the user level. In this case, the user level is a researcher who is
interested in leveraging what is available rather than having to construct everything
from the circuit level up.

From the perspective of the researcher, they merely have to import the Aqua modules
needed into their Python application, prepare their input data, specify the parameters
(as described by the algorithm), and run the application. The results are then returned
so that the application can leverage the results in whatever way it needs to complete the
experiment. Each algorithm is flexible and includes general information so that any
researcher knows how to connect their application. Aqua continues to churn out various
components so that users from multiple domains such as chemistry, finance, data
science, and others can leverage common components and algorithms that are specific
to their domains.

Important Note
I highly suggest going to the Qiskit GitHub page, https://www.github.
com/Qiskit/qiskit, to verify the latest instructions as they may they
have changed since this book's publication.

Now that we have a basic understanding of what each of the four Qiskit elements provide
and the purpose of each with respect to various research areas, you can move on and
install these elements on your local machine. The next section will cover the installation
steps for Qiskit at the time of writing. Please check the latest release information from
Qiskit for any changes or updates: https://qiskit.org.

If you don't wish to install Qiskit on your local system, feel free to skip the next section.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.github.com/Qiskit/qiskit
https://www.github.com/Qiskit/qiskit
https://qiskit.org

166 Introducing Qiskit and its Elements

Installing and configuring Qiskit on your
local machine
In this section, we will walk you through the installation process of Qiskit. The installation
will include installing Anaconda, which is a distribution of Python, and many other data
science packages. It also serves as a simple way to manage packages and how they are
installed on your local machine. In our case, it will help by installing the prepackaged
dependencies we will need, such as Python, Jupyter Notebooks, PIP, and many others.
Once installed, you can create an environment specific to quantum development with
all the dependencies and features already installed.

Preparing the installation
Qiskit is an open source project that is available for free to everyone. It is licensed under
the Apache 2.0 license (https://apache.org/licenses/LICENSE-2.0). A copy
has also been included in each Qiskit module (for example, https://www.github.
com/Qiskit/qiskit/blob/master/LICENSE.txt). This allows you to use the
source code, along with all its rights and privileges, as defined in the license.

Having Qiskit as open source helps in contributing to the open source community, which
is a fantastic way to help evolve the technology compared to the times when classical
computers were being developed decades ago. Could you imagine how much slower the
evolution of the technology would be if we did not have full stack access to the devices?
We'd have to submit requests to schedule time to use the devices, and even before that,
find some way to understand it enough before even approaching the devices. Having
the ability to run experiments on the devices directly from your machine, through the
cloud, is definitely a game-changer. Alas! I digressed from the main topic. Let's get back
to installing Qiskit.

The installation of Qiskit is quite simple, particularly if you are already familiar with the
package management application known as pip. To review the Qiskit metadata package
information, such as its current stable version, build status, and other details, go to
https://pypi.org/project/qiskit.

Now that we are up to speed on the licensing and package management system that we
will be using to install Qiskit, we'll get started by installing the full version of Anaconda.
We have highlighted that you should install the full version as there have been issues with
the mini version. You can, of course, try either, but if you get issues with the mini version,
it is recommended that you install the full version.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://apache.org/licenses/LICENSE-2.0
https://www.github.com/Qiskit/qiskit/blob/master/LICENSE.txt
https://www.github.com/Qiskit/qiskit/blob/master/LICENSE.txt
https://pypi.org/project/qiskit

Installing and configuring Qiskit on your local machine 167

Installing Anaconda
Before you begin the installation process, it is recommended that you install Qiskit via
Anaconda (https://www.anaconda.com/distribution). Anaconda is an
open source cross-platform distribution of Python. It allows the user to create separate
environments so that they can install multiple versions of Python. This is very useful,
particularly for those of you who are Python developers, who already have a version
of Python installed on your machine.

By creating a separate environment using Anaconda, you can eliminate issues that may
come up from installing a different version of Python that may affect your existing
Python projects or applications. It is recommended to follow the installation instructions
on the Anaconda site. Having separate environments also provides you with the ability
to have multiple versions of Qiskit. You need to have a working version of Qiskit up and
running, while you install an update on a separate environment, so that you can test if
your quantum applications currently support the latest releases without worrying about
dependency issues.

The installation steps of Anaconda also include versions of Jupyter Notebook, which
comes in handy as the Qiskit notebooks will not be available locally. However, since the
Qiskit notebooks are built on Jupyter Notebooks, you shouldn't expect to see much of
a difference between the two.

After installing Anaconda with the supported version of Python, be sure to create an
environment in your installation and switch to that environment before proceeding and
installing Qiskit. Otherwise, it will install it on your base environment. After successfully
completing the installation and created your Anaconda environment, you are now ready
to install Qiskit!

Installing Qiskit
The following steps will lead you through the installation process:

1. We'll begin by ensuring that you are in the environment you created. The best
way to determine this is to launch your Terminal and enter the following on the
command line:

>conda info --envs

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.anaconda.com/distribution

168 Introducing Qiskit and its Elements

The preceding code will list all the environments on your system. You will see one
titled base and another with the name of the environment that you created. The
current environment is identified by an asterisk, as illustrated in the following
screenshot:

Figure 7.2 – Output of the current environment command
As shown in the preceding screenshot, another way to identify the environment
is to look at the far left of the command line before the machine name. There, in
parenthesis, is the current environment. In the preceding screenshot, I created
an environment called QiskitEnv.

2. Once you are in the Qiskit environment, you can run the pip command to
install Qiskit:

>pip install qiskit

Based on your machine and network speed, this may take a few moments.
Once completed, you can verify the installation by entering the following
on the command line:

>pip list | grep qiskit

This will list the installed Qiskit packages and their respective versions, which you
should see includes all four elements. There are other optional dependencies, such
as the IBMQ Provider, which allows you to run your quantum circuits on the real
devices from your local machine. To see the most current list of optional packages,
just visit the Qiskit metadata package information page at https://pypi.org/
project/qiskit.

With that, you have installed and verified that Qiskit is installed on your local device.
Now, you can launch a Jupyter Notebook and start using Qiskit!

Wait! Not so fast. There are just a couple of steps we should cover before we start coding
and running circuits. We want to make sure your local machine is configured. The first
thing you need to ensure is that you have your token ID saved on your local device. This
way, when you are ready to run an experiment on a real device or on the simulator on the
cloud, you can do so very easily.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://pypi.org/project/qiskit
https://pypi.org/project/qiskit

Installing and configuring Qiskit on your local machine 169

Configuring your local Qiskit environment
One of the benefits of learning and programming using the IBM Quantum Experience
(IQX) is that it has taken care of the setup and configuration steps for you. This means you
don't need to install Qiskit or any of the underlying dependencies, such as Python and its
various package libraries needed by Qiskit, in order to execute circuits.

However, this is not the case when installing it locally. Lucky for us, with very special
thanks to the Qiskit open source contributors and community, these steps are very easy.

You'll install the optional visualization package so that you can visualize the results from
your circuit. Then, you will save your account information onto your machine, which will
be used to connect to the IBM Quantum Experience.

The steps needed to get yourselves up and running are as follows:

1. Open your Terminal and enter the following:

>pip install qiskit-terra[visualization]

Once the installation completes, you can move on to the next step, which is to
set up your account information on your local machine by copying your account
API token.

2. To obtain your API token, go to the IBM Quantum Experience page at
https://quantum-computing.ibm.com.

3. Next, to get to your account page, just click on your avatar at the top-right of
the page and select My Account from the drop-down list, as illustrated in the
following screenshot:

Figure 7.3 – Account page

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://quantum-computing.ibm.com

170 Introducing Qiskit and its Elements

4. After the account page opens, click Copy token, as highlighted in the following
screenshot:

Figure 7.4 – Copy your account API token
Now that you have copied your API Token, save it on your local machine.

5. Launch Jupyter Notebook from within any folder in your directory by entering
the following on the command line:

>jupyter notebook

6. Once it has launched, enter the following into the first cell:

from qiskit import IBMQ

IBMQ.save_account('PASTE-API-TOKEN-HERE')

Now that we have saved our API token locally, we won't have to save it to our local
system again, unless we delete or change the API token value. Remember to copy
your token, as indicated in the preceding command.

Important Note
Be sure to include the single quotes (' ') around your API token in the
argument; otherwise, you will get an error.

Congratulations! You have successfully configured your local version of Qiskit!
Let's take it out for a test run to verify that everything has been done correctly.

Important Note
Note that you only have to run this command once. If, by chance, you forget and
rerun the IBMQ.save_account() function again, you will get a warning.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Installing and configuring Qiskit on your local machine 171

7. Next, enter the following code into a new cell in the notebook that you have opened:

from qiskit import QuantumCircuit, QuantumRegister,
ClassicalRegister, execute

from qiskit.tools.monitor import job_monitor

#You only need to load your account ONCE for each
#notebook.

IBMQ.load_account()

q = QuantumRegister(1)

c = ClassicalRegister(1)

qc = QuantumCircuit(q,c)

qc.h(0)

qc.measure([0],[0])

Specify a backend from the list available to you,

In this example we will use ibmq_'valencia'

backend = provider.get_backend('ibmq_valencia')

job_object = execute(qc, backend)

job_monitor(job_object)

The preceding code will execute the circuit on the ibmq_valencia backend, and
job_monitor will display status information regarding the circuit that you have
submitted. If you see that the job status is currently placing your job on the queue,
then it is safe to assume that you have successfully configured your local machine.

For completeness, let's finish this execution. Depending on the queue, the job
should complete fairly quickly. Once complete, continue to the next step to
output your results.

8. In the next cell, run the following code to output your results (keep in mind that
the specific result values might be different, but the probabilities should be fairly
close to 50%):

from qiskit.visualization import plot_histogram

result = job_object.result()

counts = result.get_counts(qc)

plot_histogram(counts)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

172 Introducing Qiskit and its Elements

The preceding code will extract the results after executing. From the results, we
will extract the counts, which represent the number of times (each time) we ran
the circuit when the result was either 0 or 1. We'll then plot the count results using
a histogram, as follows:

Figure 7.5 – Output histogram of total counts

You are now ready to run circuits both locally and on the IBM Quantum Experience.
Creating and executing circuits can now be done locally on a simulator for those times
when you are unable to obtain network access. Of course, once you are back online, you
can use your local version to execute circuits on real devices. This also allows you the
freedom to integrate with your own applications or systems with ease.

In this section, you learned how to install Anaconda, which includes a lot of the
dependencies necessary to install Qiskit; how to create a quantum circuit; how to execute
the circuit on a simulator; and how to execute the circuit a quantum computer. Now, we'll
learn how to contribute, collaborate, and get support from the Qiskit global community.

Getting support from the Qiskit community
The Qiskit community is a global group of developers, researchers, and pretty much
anyone who is curious about quantum computing who come together, collaborate, and
support each other to help build knowledge across all community members. It is also
used keep everyone up to speed on the latest in quantum research, education, events,
and updates.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting support from the Qiskit community 173

In this section, you will learn about the community, its many programs, and how you
can contribute and become a Qiskit Advocate. Qiskit Advocates are members of the
Qiskit community who have passed a rigorous exam, have made many contributions to
the Qiskit community, and who have helped many others along the way. Let's start by
introducing you to the community itself.

Introducing the Qiskit community
Ever since Qiskit was first deployed as an open source project, the open source
community has contributed so many features and enhancements that it has only improved
over time. The development ecosystem itself has flourished so much that it is being used
in universities, industry, and governments around the world, even in Antarctica!

Members of the Qiskit community, often referred to as Qiskitters, often work together
as a solid diverse group to ensure everyone is supported. Whether they are newbies
to quantum computing or veteran quantum researchers, they all share a passion for
collaborating and connecting on various projects. The link to the Qiskit community
is https://www.qiskit.org/education.

One of the early projects was to create resources for those new to quantum computing.
These resources vary from generating enablement materials to YouTube video series.
The topics included both hardware and software, which describes what happens on the
backend, to software that describes new research that others are working on. Along with
the resources, there are also events that are planned all over the world at any given time.
This includes events such as workshops, where communities join either in person or
virtually in order to learn the latest in quantum computing.

Other events also include hackathons and code camps, of which the largest is the Qiskit
Camp, which the IBM Quantum team hosts quarterly in different continents around the
world. The 3-to-4-day camp usually includes accommodations in very exotic locations,
meals, transportation to and from airports, and so on. Researchers from IBM Research
also participate as lecturers, coaches, and judges. Teams are created and brainstorm ideas
for projects that they work together on during the weekend, where they then have the
opportunity to compete and win prizes. This is very similar to hackathons.

Recently, the Qiskit community initiated the Qiskit Advocate program. This program
was created to provide support to individuals who have actively been involved with the
Qiskit community and have contributed over time. To become a Qiskit Advocate, you
would need to apply online (https://qiskit.org/advocates), where you will
be given an exam to test your knowledge of Qiskit and specify at least three community
contributions. These qualifications, of course, can change over time, so it is recommended
that you check the site for any updates and application deadlines.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.qiskit.org/education
https://qiskit.org/advocates

174 Introducing Qiskit and its Elements

The test covers all four elements and some quantum computing knowledge. Besides
knowledge and a passing score, the Qiskit Advocate candidate must also have contributed
to the Qiskit community. This can be done in a variety of ways, such as contributing to the
Qiskit open source code and supporting other community members by either providing
assistance or creating educational material that helps others learn about quantum
computing and Qiskit.

Once accepted into the Qiskit Advocate program, you will have the opportunity to
network with other experts and access core members of the Qiskit development team. You
will also gain support and recognition from IBM through the Qiskit community, as well
as receive invitations to special events such as Qiskit Camp, hackathons, and other major
events where you can not only collaborate with others but lead or coach as well.

Contributing to the Qiskit community
Support across members is key, not just for Qiskit Advocates but for all members. The
Qiskit community has set up various channels to offer support to all the members of the
community. They have a Slack workspace (http://ibm.co/joinqiskitslack)
that is very active and has various channels so that members can ask questions, post event
updates, or just chat about the latest quantum research that had been recently published.
There are also other collaborative sources that Qiskit connects through. The current list of
collaboration tools can be found at the bottom of the main Qiskit page: https://www.
qiskit.org/.

Specializing your skill set in the Qiskit community
One of the most common questions asked about contributing to the Qiskit community,
particularly those who are interested in becoming Qiskit Advocates, is, what are the
various ways you can contribute? There are many ways in which you can contribute to
the Qiskit community. Ideally, you want to become familiar with the different forms of
contributions, such as the following:

• Code contributions: Adding a new feature, optimizing the performance of a
function, and bug fixes are some of the good ways to start if you are a developer. If
you are new to coding, there is a label that the Qiskit development team has created
for this called good first issue. This is an umbrella term for the issues that are ideal
for those who are new to the code base.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://ibm.co/joinqiskitslack
https://www.qiskit.org/
https://www.qiskit.org/

Summary 175

• Host a Qiskit event in your area or virtually: You can host an event and invite
a Qiskit Advocate to run a workshop or talk to a group about the latest updates
in Qiskit.

• Help others: You can help others by answering questions asked by other community
members, reporting bugs, identifying features that may enhance the development of
circuits, and so on.

Specializing in an area such as noise mitigation, error correction, or algorithm design is
an advantage to the community. The Qiskit Slack community has a number of channels
that focus on specific areas of quantum computing, including each of the four elements,
quantum systems, quantum experience, Qiskit Pulse, Qiskit on Raspberry Pi, and many
more. If you specialize in any of these areas, you can join the Slack group and collaborate
on the many technologies and topics.

In this section, you learned about the open source contribution process and how to find
tasks for starters and experts so that everyone can contribute.

Summary
In this chapter, you learned about the general features and capabilities provided by each of
the four Qiskit elements so that you can create highly efficient quantum algorithms. You
then learned how to install Qiskit locally, as well as how to contribute and find support
from the Qiskit community.

Out of the four Qiskit elements available, we learned about Terra first. This provided you
with the skills and functionality to create circuits, and you then applied these operations
to the qubits via gates and operators.

Then, we learned about Aer, which allows us to create better simulators, and Ignis, which
helps us mitigate errors and calculate the quantum volume of a system.

After that, we learned about Aqua. We understood that it is generally a high-level view of
quantum computing that eliminates a lot of the underlying details of building a circuit and
mitigating noise and errors. This helps simplify integrating your classical applications into a
quantum system by leveraging the many quantum and classical algorithms available. Then,
we learned about Qiskit community support and its advantages to all, particularly those
who are new to quantum computing and need a little support to understand some of the
challenging content.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

176 Introducing Qiskit and its Elements

With that, you now have the skills to install and configure Qiskit on your local machine in
order to create and execute quantum circuits in offline mode.

In the next chapter, we will start delving into the first of the four Qiskit elements –
Terra – to explore many of the functions and features available to create and execute
quantum circuits.

Questions
1. Which of the four elements would financial analysts use to integrate their risk

analysis applications into a quantum computer?

2. In your own words, describe what each element would provide to a quantum
algorithm researcher.

3. If you wanted to run schedules on a quantum computer, which simulator would
you need to use?

4. If you wanted to obtain the unitary of a circuit, which element would provide the
necessary simulator?

5. If you wanted to analyze the computational power of a quantum system, which
element would your application need?

6. Can you name and describe each of the simulators that are provided by Aer?

7. Which module would I need to import to plot a histogram?

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

8
Programming with

Qiskit Terra
Terra is one of the four natural classical elements. It represents earth. Qiskit is packaged
to contain all four elements: Terra, Aer, Ignis, and Aqua (earth, air, fire, and water,
respectively), which together make up the universe of quantum programming.

Terra represents the link between the core hardware of a quantum system and the other
elements, which transcend upward through the application stack. It is, therefore, the
foundation used for creating quantum circuits, as well as generating and scheduling
pulses from the circuits onto the hardware devices. Other features, such as optimizers and
transpilers, are used to ensure the circuits are optimal to reduce coherence and improve
performance. In this chapter, we will explore all the key features available in Terra to help
you create your own circuits, optimizers, and pulse schedules.

The following topics will be covered in this chapter:

• Understanding quantum circuits

• Generating pulse schedules on hardware

• Leveraging provider information

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

178 Programming with Qiskit Terra

Qiskit Terra has so many features and enhancements that it would take an entire book
to write about them all. To cover as much of them as possible, we will create a quantum
circuit and walk you through the various features. After reading this chapter, you will be
able to modify the circuit as needed, but generally, the idea is to help you understand
how each feature can improve the circuit functionally, both logically and visually.

We'll even delve into the hardware to schedule a pulse operation on a qubit to better
understand how the circuit is translated from digital to analog signals to perform
an operation on a qubit(s), followed by reading the information from the qubit and
converting the signal back from analog to digital.

Sound exciting? Great! Let's get to it!

Technical requirements
In this chapter, it is expected that you are familiar with the basics of quantum circuits
described in previous chapters, such as creating and executing quantum circuits,
visualizing circuit diagrams, and knowledge of qubit logic gates. Here is the source code
used throughout this book: https://github.com/PacktPublishing/Learn-
Quantum-Computing-with-Python-and-IBM-Quantum-Experience

Please visit the following link to check the CiA videos: https://bit.ly/35o5M80

Understanding quantum circuits
In previous chapters, you had some exposure to quantum circuit operations in order to
understand some of the basic quantum components. These basic operations included
creating a quantum circuit, applying quantum gates to the circuit, and executing the
circuit on a simulator.

We will now take a deeper look into quantum circuits to better understand what
properties and functionalities are available to us to not just execute these circuits on a real
device but to do so as optimally as possible. In this section, we will learn how to extract
circuit properties, such as circuit depth, width, size, and obtaining the number of actual
operators. Let's first start by reviewing the various forms of creating a quantum circuit.

Creating a quantum circuit
There are various ways to create a quantum circuit, each depending on how much
information you need throughout your circuit. For example, would you access either the
quantum or classical registers? Up to this point, we have been creating circuits using a
single constructor that automatically creates the circuit registers needed. In this section,
we will describe other ways to create a circuit and discuss the advantage of using one
form or the other.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-Quantum-Experience
https://github.com/PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-Quantum-Experience
https://bit.ly/35o5M80

Understanding quantum circuits 179

Terra provides various forms to create a quantum circuit. The form we have used
throughout this book is the single-line constructor. In this form, the arguments indicate
the number of qubits and bits of both the quantum and classical registers, respectively:

qc = QuantumCircuit(2,2)

Another way to construct a QuantumCircuit class is to create the quantum and
classical registers independently of the quantum circuit constructor. Here, we will first
create the quantum and classical registers, each with two qubits and two bits, respectively,
and then draw the circuit. The constructor allows us to customize the label of our
registers, which we were not able to do in the previous form:

qr = QuantumRegister(2, 'my_Q')

cr = ClassicalRegister(2, 'my_C')

qc = QuantumCircuit(qr,cr)

qc.draw()

From the preceding code, note that the underscore used in the second argument – that is,
the name attribute – of the register constructors allows us to subscript our labels as in the
following screenshot:

Figure 8.1 – Customized quantum and classical register labels

Customizing the labels of our registers simplifies reading our circuits, particularly as
the circuits become more complex when having multiple registers performing different
processes. You may want to have one register created with a fixed number of qubits and
another dynamic register where defining the number of qubits would vary based on
some preprocessed step. You'll see the value of this when we create composites later in
this chapter.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

180 Programming with Qiskit Terra

Of course, you can also combine creating the registers and the circuit constructor all in
one line if needed:

Figure 8.2 – Combining creating registers and circuit constructors in one line

Let's assume now that you have two quantum circuits and you want to concatenate them
together. The following example will illustrate how to concatenate two circuits into one
without having to explicitly recreate one based on the two existing quantum circuits:

1. In the following code, we will create the first circuit and include labels on both
the quantum and classical registers so that we can monitor that they are, in fact,
combined:

#Import the register classes

from qiskit import QuantumRegister, ClassicalRegister

#Create the quantum and classical registers, each with
#labels

qr1 = QuantumRegister(2, name='qr1')

cr1 = ClassicalRegister(2, name='cr1')

#Create the quantum circuit using the registers

qc1 = QuantumCircuit(qr1, cr1)

#Draw the circuit

qc1.draw()

The following screenshot shows what should be displayed after running the
previous code:

Figure 8.3 – The first of the two quantum circuits we will join

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding quantum circuits 181

2. Next, we will create a second circuit, which is very similar to the first one, only we
will update the labels to identify it as the second:

#Create two Quantum and Classical registers

qr2 = QuantumRegister(2, name='qr2')

cr2 = ClassicalRegister(2, name='cr2')

#Create a second circuit using the registers created
#above

qc2 = QuantumCircuit(qr2, cr2)

#Draw the second quantum circuit

qc2.draw()

The results of the code should be no surprise – that it is the same as the first one
only with the labels updated as expected:

Figure 8.4 – The second of the two quantum circuits we will join

3. Now, let's finish up by creating a circuit that concatenates the two previously created
circuits together in one line:

#Concatenate the two previous circuits to create a new
#circuit

qc_combined = qc1 + qc2

#Draw the concatenated circuit

qc_combined.draw()

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

182 Programming with Qiskit Terra

As you can see in the following screenshot, the results are now a concatenation of
the two previous quantum circuits:

Figure 8.5 – Concatenation of two quantum circuits
We originally created two individual quantum circuits, each with two quantum
registers and two classical registers. We then concatenated them to create a quantum
circuit with four quantum and classical circuits. The order of the quantum circuits
is based on the order in which they were concatenated. As an extra exercise, repeat
the previous concatenation code and switch the order to confirm or create more
quantum circuits and add more circuits together.

One last circuit creation object I would like to share is the random circuit generator,
which, as the name suggests, will generate a random circuit for you. As the following code
block indicates, the random circuit object requires two parameters. They are the number
of qubits you want the random circuit to contain and the depth of the circuit, respectively
– where depth indicates the number of standard gates, selected from the Qiskit circuit
extensions listed in the API documentation, to add randomly per qubit. You can also
indicate whether you want the circuit to include measurement operators:

#Import the random_circuit class

from qiskit.circuit.random import random_circuit

#Construct the random circuit with the number of qubits = 3

#with a depth = 2, and include the measurement operator for
#each qubit

qc = random_circuit(3, 2, measure=True)

#Draw the circuit

qc.draw()

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding quantum circuits 183

The results from the random circuit will vary, of course, each time you execute it, as it
should. What will not vary are the parameter options, particularly the number of qubits
and the depth count. Your results should have a circuit that contains three qubits and
a depth of two operators. The following random circuit is the result of running the
preceding code. Note that the measurement operator is not included in the depth count:

Figure 8.6 – Random circuit generated with number of qubits = 3 and depth = 2

Now that you are familiar with the various ways to generate quantum circuits, we
will continue and see what properties we can extract from the circuits created. These
properties could be used to analyze the generated circuit and ensure it is optimized by
leveraging some optimization features available to us in Terra.

Obtaining circuit properties and analysis
Constructing circuits could get very complex once you start building them out,
particularly if you create composites of gates and combine them to form larger gates.
You're going to want to get some information about your circuit along the way should
you need to analyze your results.

The good thing for us is that Terra has taken care of some of this by making a lot of these
properties available to us. Let's start with some basic properties. Let's say we want to know
how many qubits we have in our circuit. As we learned in the previous section, we know
that we can concatenate two or more circuits together. As we add more circuits together,
it becomes difficult, or tedious, to determine the number of qubits and gates that our
concatenated circuit will have. It's here that the width, depth, and operator count functions
come in handy.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

184 Programming with Qiskit Terra

In the following code, we will create two two-qubit random circuits, each with different
gate counts. We will then concatenate them and use our circuit property functions to help
us get the total width, depth, and operator count:

#Import the random circuit class

from qiskit.circuit.random import random_circuit

#Create two random circuits, each with 2 qubit registers and
#random #gate operator counts.

qc1 = random_circuit(2,2)

qc2 = random_circuit(2,4)

#Concatenate the two random circuits

qc = qc1 + qc2

#Draw the circuit

qc.draw()

The result should be a two-qubit circuit with a random set of gate operators with a total
depth of 6. We know this because we created them and can see the values from the
random_circuit constructor:

Figure 8.7 – Randomly generated two-qubit circuits with a depth of 6

Now, let's use our circuit property functions to get the width, depth, size, and operator
count of our circuit. To simplify this, we will create a helper function that will print out
the circuit properties of the quantum circuit we will pass in as an argument:

#Define function to print circuit properties:

def print_circuit_props(qc):

 width = qc.width()

 depth = qc.depth()

 num_operators = qc.count_ops()

 circuit_size = qc.size()

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding quantum circuits 185

 print('Width = ',width)

 print('Depth = ', depth)

 print('Circuit size = ',circuit_size)

 print('Number of operators = ', num_operators)

Now, we can run our circuit through our helper function, which will print out all the
properties we need:

#Pass our quantum circuit to print out the circuit properties

print_circuit_props(qc)

Our results should have the same value for width and depth. However, since we are
using random circuits, our circuit size and the number of operators will be different as it is
based on the random choice of gates selected. However, observing the circuit, you will see
that the result values of size() and count_ops() are the same. The difference between
the two is that the circuit size returns the total number of gates in the circuit, while the
operator count lists the total number of each gate type in the circuit:

Width = 2

Depth = 6

Circuit size = 10

Number of operators = OrderedDict([('rx', 2), ('u3', 2), ('h',
1), ('tdg', 1), ('rz', 1), ('cu3', 1), ('u2', 1), ('rzz', 1)])

Now, let's try adding some classic registers, measurements, and barriers to see what we get
back. We can use a shortcut to include all of these by using measure_all(), which will
append a barrier, a measurement for each qubit, and the classical registers to match the
number of qubits in the quantum register of our circuit:

#Use measure_all() to automatically add the barrier,
#measurement, and #classical register to our existing circuit.

qc.measure_all()

#Draw the circuit

qc.draw()

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

186 Programming with Qiskit Terra

The result now includes the classical components needed to measure and read out
our qubits. These include the two-bit classical registers labeled as measure, a barrier
separating the quantum gates from the measurement operators, and the measurement
operators, as illustrated in the following screenshot:

Figure 8.8 – Random circuit with classical components added

Let's now print our circuit property functions to see an updated count:

#Print out the circuit properties

print_circuit_props(qc)

The results show what we generally would expect. The width count increased by 2, due
to the addition of the two-bit classical register. The depth increased by 1 to add the
barrier. Note that the measurement operator is not included in the size or operator count,
as follows:

Width = 4

Depth = 7

Circuit size = 12

Number of operators = OrderedDict([('rx', 2), ('u3', 2),
('measure', 2), ('h', 1), ('tdg', 1), ('rz', 1), ('cu3', 1),
('u2', 1), ('rzz', 1), ('barrier', 1)])

Before moving on to the next section, let's look at an interesting caveat to our circuit
property functions. Most gates are created from basis gates that are specific to the
quantum computers used. For most of the quantum systems, there are a set of basis
gates used to create other gates.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding quantum circuits 187

For example, a Hadamard gate is really just a U2 gate with parameters 0 and π. However,
some gates, such as the Toffoli and Swap gates, not only require more than a single qubit
but are also composed of several basis gates. Let's look at the Toffoli gate as an example:

1. We will create a quantum circuit with 3 qubits and add only a Toffoli gate to it,
as shown here:

qc = QuantumCircuit(3)

qc.ccx(0,1,2)

qc.draw()

Here, we see the Toffoli gate as expected with the 0 and 1 Source qubits entangled,
with qubit 2 as the Target:

Figure 8.9 – The Toffoli gate on a quantum circuit

2. We print out our circuit properties of the quantum circuit with the Toffoli gate:

#Print out the circuit properties

print_circuit_props(qc)

As we can see, the results are not surprising in that the values are not surprising
either – a three-qubit gate with a width of 3 and a depth of 1:

Width = 3

Depth = 1

Circuit size = 1

Number of operators = OrderedDict([('ccx', 1)])

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

188 Programming with Qiskit Terra

3. Now, let's print our circuit property, only this time, let's decompose our quantum
circuit to see the results. As you will recall, when we invoke the decompose()
function on our quantum circuit, we are requesting the circuit to be decomposed
down to its basis gates used to create the gates in our circuit. In this case, the basis
gates that are used to create a Toffoli gate:

#Print out the circuit properties

print_circuit_props(qc.decompose())

Notice the difference? Quite surprising indeed! By observing the results, we see that
the Toffoli gate requires 15 operators, which are made up of various basis gates, such
as T, T , H, and CNOT:

Width = 3

Depth = 11

Circuit size = 15

Number of operators = OrderedDict([('cx', 6), ('t', 4),
('tdg', 3), ('h', 2)])

The reason why I wanted to mention this was to make you aware that some of
the gates used are not basis gates but are rather composites of basis gates used to
generate the functionality of the desired gate. This is good to know when analyzing
your circuit with respect to qubit noise or decoherence.

Try the same exercise, only this time try creating a two-qubit circuit with a Swap gate, and
see what results you get back.

Now that you are familiar with the various forms of creating quantum circuits, let's now
look at how we can reuse these circuits in a modular way that is easy to combine and
comprehend them.

Customizing and parameterizing circuit libraries
There are times when you are going to want to reuse a circuit on multiple occasions. To
simplify this, you can create a composite of operators and reuse them throughout your
circuit. This not only simplifies creating the circuit from modules, but it also makes it
very easy for others to understand what your circuit is doing in those composites.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding quantum circuits 189

In the following steps, we are going to create a composite gate that is made up of multiple
qubits and gates:

1. First, we create a two-qubit quantum circuit, give it a name, and convert it into a
generic quantum instruction:

#Create a custom two-qubit composite gate

#Create the quantum register

qr = QuantumRegister(2, name='qr_c')

#Generate quantum circuit which will make up the
#composite gate

comp_qc = QuantumCircuit(qr, name='My-composite')

#Add any gates you wish to your composite gate

comp_qc.h(0)

comp_qc.cx(0, 1)

#Create the composite instructions by converting

#the QuantumCircuit to a list of Instructions

composite_inst = comp_qc.to_instruction()

#Draw the circuit which will represent the composite gate

comp_qc.draw()

The preceding code will create the following two-qubit circuit, which we will use as
our composite gate:

Figure 8.10 – The quantum circuit that will represent the composite gate

2. Now, let's create a quantum circuit that will append the composite gate we created:

#Create your 2-qubit circuit to generate your composite
#gate

qr2 = QuantumRegister(3, 'qr')

#Create a quantum circuit using the quantum register

qc = QuantumCircuit(qr2)

#Add any arbitrary gates that would represent the
#function

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

190 Programming with Qiskit Terra

#of the composite gate

qc.h(0)

qc.cx(0,1)

qc.cx(0,2)

#Draw the composite circuit

qc.draw()

The preceding code will create the circuit, which we prepopulated with some gates
before including our composite gate:

Figure 8.11 – The quantum circuit that we will append to the composite gate

3. Since our composite gate is made up of two qubits, we will need to append the
composite gate and indicate which of the three qubits to use to append our
two-qubit composite gate. For this example, we will append it to the first two qubits:

#Append your composite gate to the specified qubits.

qc.append(composite_inst, [qr2[0], qr2[1]])

#Draw the complete circuit

qc.draw()

As we can see from the results, our composite gate was successfully appended to
the first and second qubits. It also includes the name of the composite gate, which
makes it simple for anyone, including yourself, to read the circuit and understand
what the composite gate is doing within the circuit:

Figure 8.12 – The quantum circuit with a composite gate representation of a predefined circuit

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding quantum circuits 191

This makes reading your circuit much easier compared to how it would be if you
were to just concatenate the two quantum circuits together.

Of course, this is ideal if you have a circuit that would run as is. However, there may
be times where you wish to perhaps control the amount of rotation of some of the
gates in the composite gate you generated. This is where the parameterization of
composite gates comes in handy. We will now create another composite gate, only
this one will include the ability to add parameters to your composite gate so that it is
more dynamic.

4. To parameterize a gate, we will need to create a Parameter class and set it to a
rotation gate; in this example, we will apply the parameter to an RZ gate:

#Import the Parameter object

from qiskit.circuit import Parameter

#Construct the Parameter set to Theta

param_theta = Parameter('θ ')
#Create a two-qubit quantum circuit and add some gates

qc = QuantumCircuit(2)

qc.h(0)

qc.cx(0, 1)

#Include a rotation gate which we wish to apply

#the Parameter value

qc.rz(param_theta,0)

qc.rz(param_theta,1)

#Draw the circuit

qc.draw()

Note that the parameter value is defined as θ , but is not set as an explicit value. It
just reserves the Parameter value to later include a rotation value of θ :

Figure 8.13 – Set the parameter of the Rz gate to θ

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

192 Programming with Qiskit Terra

5. Let's bind the Parameter value of our gates to 2π and draw the circuit:

import numpy as np

#Bind the parameters with a value, in this case 2π

qc = qc.bind_parameters({param_theta: 2*np.pi})

#Draw the circuit with the set parameter values

qc.draw()

Note that our rotation gate has its theta value set to 2 as expected:

Figure 8.14 – Rotation gates Rz now have the Parameter value θ set to 2π
Our circuit is now ready to run with the bound parameter values. By having this
feature, we can iterate it over a loop and bind multiple values if need be so that we
can iterate over all of them without having to manually update the bound values.
This greatly optimizes our ability to run and analyze the results of our circuit for
each iteration.

In this section, we learned about various forms and ways to create quantum circuits. We
also learned how to reuse the created circuits.

In the next section, we will dig even deeper into manipulating qubits, only this time not
from basis gates, but to directly manipulate the qubits using the hardware itself!

Generating pulse schedules on hardware
So far, you have learned how to create quantum circuits, add gates that manipulate the
qubits of the circuit, and execute the circuits. In this section, we'll go a little deeper to
see how a quantum circuit is converted from digital instructions into pulse instructions
that physically manipulate the qubits as instructed by the quantum circuit. We'll begin by
illustrating how the hardware components are connected to the various pulse channels.

IBM Quantum Experience provides you with access to the machines in a way that is
unique from most other quantum systems available on the cloud. Terra includes a Pulse
library that allows you to control the pulses sent to the hardware that controls the device.
Based on the OpenPulse documentation (https://arxiv.org/abs/1809.03452),
it is tailored to provide the functionality to generate pulse signals used to control
the qubits.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://arxiv.org/abs/1809.03452

Generating pulse schedules on hardware 193

In order to understand how the pulse functionality works, we'll start by describing the
four main components you will be using:

• Instructions

• Channels

• Schedules

• Pulse libraries

In the following sections, we will learn about the preceding components.

Before we proceed to the next section, we will use the following code that will import
everything we need to create, schedule, and trigger a pulse on a quantum device directly:

#Import pulse classes

from qiskit.pulse import SamplePulse, DriveChannel, Play,
Schedule

#Import some helpful utils

from qiskit.scheduler.utils import measure_all

Now that we have imported the files needed, we will move on to the next section
about instructions.

Learning about instructions
Pulse programs, or, as described in the Qiskit API documentation, Schedules, are a set
of instructions used to describe the control of the electronic components of the quantum
system. There are various instruction objects included within Qiskit Pulse that have
capabilities such as modulation of the frequency and phase of the pulse signal.

You can also delay an instruction from triggering, similar to a sleep() function in most
programming languages. Finally, it gives you the ability to trigger and acquire the pulse by
playing and acquiring, respectively.

Now, let's describe each instruction and its parameters:

• SetFrequency(frequency, channel, name), where frequency is in Hz,
channel indicates which channel the frequency will be applied to, and name is the
name you can set for the instruction. The default duration of the SetFrequency
instruction is 0. This very simply sets the frequency of the channel so that the pulses
applied to the channel are tuned accordingly. If you do not specify a frequency
when creating a pulse for a specific qubit, the default frequency for the qubit on
the drive channel will be used.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

194 Programming with Qiskit Terra

• ShiftPhase(phase, channel, name), where phase is the rotation angle in
radians, channel indicates the channel that the frequency will be applied to, and
the name parameter is the name you can set for the instruction. This instruction
shifts the phase of the pulse by increasing its rotation angle by the provided amount
in radians.

• Delay(duration, channel, name), where duration is the length of
time in the delay (in the documentation, this is also referred to as time step, or dt),
channel indicates which channel the delay will be applied to, and name indicates
the name that you can set for the instruction. The Delay instruction is generally
used to align pulses with respect to other pulse instructions. For example, if you wish
to send two pulses and include a time gap in between the pulses, you can specify the
time gap by adding a Delay instruction with the desired time gap amount.

• Play(pulse, channel, name), where pulse is the pulse waveform you
wish to apply, channel indicates which channel the pulse will be applied to, and
name is the name you can set for the instruction. The Play instruction will apply
the pulse output onto the channel specified, where the pulse output was previously
modulated using both the SetFrequency and SetPhase instructions.

• Acquire(duration, channel, mem_slot, reg_slot, kernel,
discriminator, name), where duration is the number of time steps (dt) to
acquire the data information, channel indicates which channel to acquire the data
from mem_slot, which is the classical memory slot in which to store each of the
returned results, and reg_slot is the register slot used to store the classified and
readout results. The kernel parameter is used to integrate the raw data for each
slot, discriminator is used to classify kernelled IQ data into 0 or 1 results, and
name indicates the name you can set for the instruction.

Each instruction includes an operator that will be applied to the specified channels stated.
The operators include pulse modulators, delays, and readouts from channels. Before we
get into discussing channels, let's create some pulses using the Qiskit Pulse library.

Understanding pulses and Pulse libraries
Pulses are what actually manipulate the qubits on the quantum devices. A signal is
generated and tuned to a specific qubit so that the signal only affects the qubit that the
pulse is tuned to. The pulse is created by an arbitrary waveform generator (AWG), which
specifies the frequency and phase of the pulse signal output. The frequency and phase
are set by the SetFrequency and ShiftPhase instructions we learned about
earlier, respectively.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Generating pulse schedules on hardware 195

Important Note
Qiskit Pulse provides a nice library of waveforms, which can simplify creating
the pulses we need to operate on a qubit. The following are the types of
available waveforms, at the time of writing this chapter: Constant, Drag,
discrete, Gaussian, GaussianSquare, and Waveform.

SamplePulse allows you to define your own pulse by providing an array of complex
value samples as an argument. These samples each have a predefined time step, dt,
which is the time period played for each and varies based on the specified backend. The
following code is an example of a sample pulse for a simple sine waveform of 128 samples:

#Import numpy and generate the sin sample values

import numpy as np

x = np.linspace(0,2*np.pi,64)

data = np.sin(x)

#Generate our SamplePulse

sample_pulse = SamplePulse(data, name="sin_64_pulse")

#Draw the generated sample pulse

sample_pulse.draw()

This following screenshot is the result of creating our sample pulse of a sine waveform:

Figure 8.15 – Sample pulse of a sine waveform

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

196 Programming with Qiskit Terra

Let's now try generating one of the waveforms from the Pulse library.

The Pulse library has an array of various different waveforms, such as Gaussian,
GaussianSquare, Constant, and Drag (just to name a few). Each has its own distinct
shape that we can leverage in order to fine-tune any pulse we wish.

Let's create a GaussianSquare pulse, which is simply a square pulse with Gaussian
edges on both ends, rather than squared-off edges:

#Import the Gaussian Square pulse from Pulse Library

from qiskit.pulse.pulse_lib import GaussianSquare

#Create a Gaussian Square pulse:

#Args: duration, amp, sigma, width, name

gaussian_square_pulse = GaussianSquare(128,1,2,112,
"gaussian square")

gaussian_square_pulse.draw()

The preceding code will result in the following pulse, where the duration (dt) is 128, the
amplification max is at 1, sigma is set to 2, and the width of the pulse peak is 112 (dt):

Figure 8.16 – Gaussian square pulse

Now that we can create pulses, let's learn about the channels that we will transmit these
pulses through.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Generating pulse schedules on hardware 197

Leveraging channels to transmit and receive instructions
There are two types of channels in Qiskit Pulse:

• The first type is the Pulse channel, which transmits the generated pulses. These
include the Drive channel, Control channel, and the Measure channel.

• The other type of channel is the Acquisition channel. Currently this type only
includes the Acquire channel, which is the channel that receives pulses from the
quantum device.

All channels only have one parameter, the index, which is used to assign the channel. The
following list describes all the channels:

• The Drive channel is the channel used to transmit the pulse signal down to the
qubit to execute the gate operation.

• The Control channel is commonly used on multi-qubit gate operations such as
Control-Not, Control-Phase, and more. They generally provide auxiliary control
over the qubit over the drive channel.

• The Measure channel transmits a measurement stimulus pulse to the qubit for a
readout from the qubit.

• The Acquire channel is the only channel that is used to receive information from
the device. It is used to collect data from the quantum device.

So far, we have learned that pulse programs are instructions that are made up of waveform
pulses that are constructed to perform gate operations on the quantum devices. We also
covered the different channels available to transmit and receive information to and from
the quantum devices. With this information, we can now look at how to schedule these
instructions to be executed on a real device.

Generating and executing schedules
Pulse schedules are a set of instructions sent through specified channels to be executed
on a quantum device. The Schedule class can be made up of instructions or other
schedules. That means you can create a schedule with one of the instructions we learned
about earlier, or you can create or append schedules to existing schedules. We will do all
this in this section.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

198 Programming with Qiskit Terra

We will use what we have learned so far in this chapter to build a schedule. First, we will
construct a schedule and insert a pulse from the Pulse library to it that will be triggered
at time = 0. Then, we will create another schedule and insert a different pulse from the
Pulse library into it. Only the second one will be appended to the first schedule and then
shift it, so it is triggered at some time after the first pulse has completed. We'll then execute
the schedule on a quantum device and get back its result:

1. Let's continue using the notebook we have been using so far to create our first
schedule, and name it schedule_1. We'll also use the Play instruction to insert the
Gaussian square pulse we generated earlier and assign the schedule to drive channel 0:

#Create the first schedule with our Gaussian Square pulse

schedule_1 = Schedule(name='Schedule 1')

schedule_1 = schedule_1.insert(0, Play(gaussian_square_
pulse, DriveChannel(0)))

#Draw the schedule

schedule_1.draw()

The result we see is that our Gaussian square pulse was added to the schedule
starting at time = 0, as follows:

Figure 8.17 – Schedule 1: Gaussian square pulse

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Generating pulse schedules on hardware 199

2. Now, let's continue and create the second schedule, schedule_2, with the sample
pulse we generated earlier:

#Create a second schedule with our sample pulse

schedule_2 = Schedule(name='Schedule 2')

schedule_2 = schedule_2.insert(0, Play(sample_pulse,
DriveChannel(0)))

#Draw the schedule

schedule_2.draw()

This results in the following schedule; note the duration of our sample pulse is 64,
whereas the Gaussian square pulse has a duration of 128:

Figure 8.18 – Schedule 2: sample (sine waveform) pulse

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

200 Programming with Qiskit Terra

3. Next, we will create a third schedule, schedule_3, and we will construct it by
inserting both schedule_1 and schedule_2 together with a gap of 5 time
steps (dt) in between the two:

#Let's create a third schedule

#Where we add the first schedule and second schedules

#And shift the second to the right by a time of 5 after
#the first

schedule_3 = schedule_1.insert(schedule_1.duration+5,
schedule_2)

schedule_3.draw()

The result is a combination of schedule_1 starting at time = 0 and then we
insert schedule_2 starting at 5 time units after the first schedule. Note the use
of the duration variable to ensure that the pulse does not overlap with the first.
Schedule 3, therefore, has a total time of the two pulses plus the 5 time units,
totaling 197, as the following figure illustrates:

Figure 8.19 – Schedule 3, combining schedule 1 and 2 with a 5 time-unit difference in between

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Generating pulse schedules on hardware 201

4. Of course, there are other ways to combine pulses. If you want to combine the two
schedules without a gap in between, then you can simply use the append function
to combine them:

#We could have also combined the two using the append
#operator

#The two schedules are appended immediately after one
#another

schedule_3_append = schedule_1.append(schedule_2)

schedule_3_append.draw()

The preceding code results in the following output. Note how the total time units
are equal to the total time units of both pulses, with no additional time in between:

Figure 8.20 – Schedule 3, appending two schedules without a time gap in between

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

202 Programming with Qiskit Terra

Up to this point, we were able to generate a pulse, apply it to an instruction, and schedule
it to run on a specified channel to manipulate the qubit. Now, let's see how the quantum
circuits generate the schedules by creating our own quantum circuit and running it on a
quantum device.

Scheduling existing quantum circuits
We will use the following steps to create a schedule from an existing quantum circuit:

1. Since the backend that we are currently using only has a single qubit, let's create
a single qubit circuit with a Hadamard gate to run it on:

qc = QuantumCircuit(1, 1)

qc.h(0)

qc.measure(0,0)

#Draw the circuit

qc.draw()

This circuit places the qubit in superposition using the Hadamard gate, as
illustrated here:

Figure 8.21 – Single qubit circuit in superposition

2. Now, let's prepare the rest of the code to send this circuit to the quantum device.
We'll first import the transpiler and the schedule class. The transpiler is what
will translate and compile the circuit into the basis gates available to the specified
backend. In this case, we will be using the ibmq_armonk backend as it is both
enabled to run Qiskit Pulse and is available in the open group of devices. Don't be
too concerned about what the transpiler is for now; we will go into the details later
on in this chapter:

#Import transpile and schedule

from qiskit import transpile, schedule

#Set the backend to ibmq_armonk

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Generating pulse schedules on hardware 203

backend = provider.get_backend('ibmq_armonk')

#Transpile the circuit using basis gates from the

#specified backend

transpiled_qc = transpile(qc, backend)

#Draw the transpiled circuit

transpiled_qc.draw()

The results of the quantum circuit we created have been transpiled into a circuit
that is represented by the basis gates supported by the given backend – in this case,
ibmq_armonk. Note that the only change was that the Hadamard gate is now using
the U2 gate. Details about the Hadamard and the U1 gates can be found in Chapter 6,
Understanding Quantum Logic Gates:

Figure 8.22 – Transpiled quantum circuit with a U2 gate representing the Hadamard gate

3. Then, create the circuit schedule using the transpiled circuit and draw the schedule:

#Create the circuit schedule using the transpiled circuit

circuit_schedule = schedule(transpiled_qc, backend)

#Draw the circuit

circuit_schedule.draw()

Figure 8.23 represents the entire schedule created by the transpiled circuit.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

204 Programming with Qiskit Terra

4. Let's review the graph to get a better understanding of what we are seeing here.
First, along the bottom, we see the time steps of the schedule, starting at time =
0 up to time = 16640. These are the time units taken up by the circuit. Along
the left, we see the channels used in this circuit, where a0 represents the acquisition
channel, d0 represents the drive channel, and m0 represents the measurement
channel. Across the top, we see the information on the drive channel where the
pulse begins at time = 0:

Figure 8.23 – The schedule of the quantum circuit, with a0, d0, and m0

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Generating pulse schedules on hardware 205

As you can see from the previous figure, both the acquisition and measurement
channels take a large number of time steps. To simplify reading the pulse and
not the acquisition or measurement channels, you can specify how much of the
schedule to display when drawing.

5. Let's adjust that now to a point just after the acquisition and measurement channels
started, which would be approximately 1,500 time steps (dt), and redraw:

#Draw the circuit with a shorter time range to ease
#visibility

circuit_schedule.draw(plot_range=[0, 1500])

Much better! We can now get a better view of the generated pulse and other details:

Figure 8.24 – The schedule redrawn at a more readable scale of 1,500 time steps (dt)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

206 Programming with Qiskit Terra

Scheduling a single qubit circuit is interesting, but let's now look at multi-qubit schedules.
For this one, we will create a two-qubit quantum circuit where we will have a Hadamard
gate on the first qubit, similar to the previous circuit we just ran. Only this time, we will
also include a CNOT gate that entangles the first and second qubit as the Source and
Target, respectively:

1. First, let's create the circuit as we have done previously, where we apply a Hadamard
gate to the first qubit, apply a CNOT gate, and add measurement gates:

#Create a 2-qubit circuit

qc2 = QuantumCircuit(2, 2)

#Apply a Hadamard to the first qubit

qc2.h(0)

#Apply a CNOT gate where the Source is qubit 0, and
#Target qubit 1

qc2.cx(0, 1)

#Add measurement gates to all qubits

qc2.measure([0, 1], [0, 1])

#Draw the circuit

qc2.draw()

The result should be as follows:

Figure 8.25 – The two-qubit quantum circuit with a Hadamard gate, CNOT gate, and
measurement operators

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Generating pulse schedules on hardware 207

2. Now, just as in the previous example, we will transpile this to a backend so that
we have this circuit generated using the basis gates from the specified backend.
However, as you will recall from our previous example, when we were using ibmq_
armonk, this was a single qubit quantum device. Therefore, we cannot run this
example on this device because we would be short one qubit. So instead, let's use
one of test backend systems – in this case, there is one titled FakeAlmaden. This is
a multi-qubit test backend that has preconfigured data such as calibrations and basis
states that mimic many of the real devices:

#Import the test backend

from qiskit.test.mock import FakeAlmaden

#Construct the backend

backend = FakeAlmaden()

#Transpile the circuit to the test backend and its basis
#states

transpiled_qc2 = transpile(qc2, backend)

#Draw the transpiled circuit

transpiled_qc2.draw()

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

208 Programming with Qiskit Terra

Note that the result has the expected gates of the U2 (replacing the H gate; see the
previous example for details), as well as the CNOT gate and measurement operators:

Figure 8.26 – The transpiled quantum circuit with a U2 gate representing the Hadamard gate
and a CNOT gate

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Generating pulse schedules on hardware 209

3. Now, let's create the circuit from the transpiled circuit and draw the results, as well
as limit the time steps displayed to 2000:

#Create the circuit from the transpiled circuit results

circuit_schedule2 = schedule(transpiled_qc2, backend)

#Draw the 2-qubit circuit schedule with range of 2000
#time steps

circuit_schedule2.draw(plot_range=[0, 2000])

The results are as we expected. We now have two drive channels, d0 and d1, two
acquisition channels, a0, and a1, and two measurement channels, m0 and m1,
which correspond to qubits 0 and 1, respectively:

Figure 8.27 – The schedule of the two-qubit quantum circuit using two drive,
acquisition, and measurement channels

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

210 Programming with Qiskit Terra

Congratulations! You have completed quite a bit in this section. In all, you're capable of
generating any waveform you wish, within the constraints of the device, of course, either
as defined by your own specifications, such as frequency or phase shift, or by leveraging
those waveforms provided to you in the Pulse library. You created instructions on which
channels those pulses would be applied to. Finally, you created schedules that specify how
and when those instructions would be applied and executed onto the device.

Let's move away from the hardware for a moment and look at the backends themselves,
particularly how we can leverage some of the information they provide to optimize
executing our quantum circuits.

Leveraging provider information
So far in this book, we have been specifying which backends to use; however, as you
may recall, we have quite a few options to choose from. How can we determine which
backend would be optimal to run our circuits? Take, for example, the queue time, how can
we determine which backend has the least amount of jobs in the queue? How can we get
the status of a job we have running in the background and get regular updates to a specific
job? All these questions will be answered in this section, and thankfully for us, there are
built-in features that we can use to obtain information about the backend system and the
jobs running on them.

Learning about the IBM Quantum Experience
components
Each time you open a new Qiskit Notebook on IBM Quantum Experience, you may have
noticed that a cell is auto-generated with some standard Qiskit libraries and configuration
for your account. The reason it does this is so that you can start coding right away
without having to always import and set them each time. This is thanks to one of the IBM
Quantum Experience interfaces that handle the accounts related to the system executing
the circuits.

In this section, we will discuss the IBM Quantum Experience interface, which is the
primary interface to the Account, Providers, Backends, and Jobs being executed. It is
because of this that the IBM Quantum Experience interface has four components –
namely, Account, Providers, Backends, and Jobs. Each of these provides various features
that can be used to simplify the use of the systems and their processes. Let's start
with Account.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging provider information 211

Learning about the Account component
The Account object is generally used to handle account information on the local machine
where Qiskit is installed, whether that machine is a laptop, mainframe, server, or even a
mobile device. The Account object manages the credentials of the system by using any of
the following functions:

• enable_account(TOKEN) enables the account associated with the TOKEN to the
current running notebook or session.

• save_account(TOKEN) saves the provided TOKEN to the local filesystem.

• load_account() loads the account associated with the saved TOKEN on
the system.

• disable_account() disables the account associated with the currently running
notebook or session.

• stored_account() lists all the accounts stored on the currently running session.

• active_account() lists the account currently running on the session.

• delete_account() deletes the account saved on the local filesystem.

The following code snippet illustrates how to save your TOKEN onto the local filesystem.
If you are running a Qiskit notebook on IBM Quantum Experience, you don't need to do
this as it is done while the notebook is being loaded. Afterward, the load_account()
function is called.

This too is taken care of when the Qiskit notebook is first loaded in the first cell and is
run. If you run either of these on IBM Quantum Experience (IQX), you will see a
warning along with information should you want to override the currently saved
account information:

#Import the IBMQ interface

from qiskit import IBMQ

#Save account ONLY needed if running on a local system for
#first time

#Uncomment below if running for the first time on a local
#machine.

#IBMQ.save_account('API_TOKEN')

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

212 Programming with Qiskit Terra

#Load the account which was saved on local system using
#save_account.

#Note: this is handled each time a Qiskit Notebook is loaded on
#IQX.

IBMQ.load_account()

The preceding code will successfully load your account onto your local machine. But since
we are running things on IQX, we will likely see warning messages and instructions. We
can ignore these and move on.

Understanding the Provider object
The Provider object is accessed via the Account object we described previously. Its
role is to provide the list of backends available to us based on our account settings. For
example, if you are a member of a particular IBM Q Network hub, then you could specify
that information as an argument to the provider so that the proper access to premium
machines is available to you. By default, if no hub information is provided, the provider
will fall back to the freely open available devices. The following code example illustrates a
few sample settings:

#Indicate a hub to link account to:

IBMQ.get_provider(hub='ibm-q')

#Indicate a project which your account is associated with

IBMQ.get_provider(project='my_project')

If you run the preceding code. you will certainly get an error for the last line unless you
actually have a project associated with your account titled my_project. If so, then it
should work just fine.

As you can see in preceding example, the provider is accessed via the IBM Quantum
Experience interface and linked through the account. Once the link is successful, you can
then query the provider to provide you with a list of the backends available to you. In
the following code, we will list out the backends associated with the open group, as
shown here:

#Create the Provider object using the IBMQ interface

provider = IBMQ.get_provider(group='open')

#Query the list of backends available to your account

provider.backends()

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging provider information 213

The preceding code will output an array of the backends available, as follows:

[<IBMQSimulator('ibmq_qasm_simulator') from IBMQ(hub='ibm-q',
group='open', project='main')>,

 <IBMQBackend('ibmqx2') from IBMQ(hub='ibm-q', group='open',
 project='main')>,

 <IBMQBackend('ibmq_16_melbourne') from IBMQ(hub='ibm-q',
 group='open', project='main')>,

 <IBMQBackend('ibmq_vigo') from IBMQ(hub='ibm-q', group='open',
 project='main')>,

 <IBMQBackend('ibmq_ourense') from IBMQ(hub='ibm-q',
 group='open', project='main')>,

 <IBMQBackend('ibmq_valencia') from IBMQ(hub='ibm-q',
 group='open', project='main')>,

 <IBMQBackend('ibmq_london') from IBMQ(hub='ibm-q',
 group='open', project='main')>,

 <IBMQBackend('ibmq_burlington') from IBMQ(hub='ibm-q',
 group='open', project='main')>,

 <IBMQBackend('ibmq_essex') from IBMQ(hub='ibm-q',
 group='open', project='main')>,

 <IBMQBackend('ibmq_armonk') from IBMQ(hub='ibm-q',
 group='open', project='main')>,

 <IBMQBackend('ibmq_santiago') from IBMQ(hub='ibm-q',
 group='open', project='main')>]

Some of these systems may seem familiar to you as we have used some of them in our
code so far. Along with their name, you can also see the hub, group, and main parameters
that they pertain to. Should you need to get a subset of the list of all the backends, you can
do so by filtering only those you wish to see by including the value in the argument of the
get_provider function.

We can, of course, filter this list down even more by providing specifics about the type of
backend we want to obtain. The following code shows an example of how you can filter
and view the specifics:

#Filter the list of backends to include only non-simulator,

#and operational (meaning, not offline or under maintenance)

provider.backends(simulator=False, operational=True)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

214 Programming with Qiskit Terra

The results, as follows, don't include ibmq_qasm_simulator and any devices currently
in maintenance when you run the cell:

[<IBMQBackend('ibmqx2') from IBMQ(hub='ibm-q', group='open',
project='main')>,

 <IBMQBackend('ibmq_16_melbourne') from IBMQ(hub='ibm-q',
 group='open', project='main')>,

 <IBMQBackend('ibmq_vigo') from IBMQ(hub='ibm-q', group='open',
 project='main')>,

 <IBMQBackend('ibmq_ourense') from IBMQ(hub='ibm-q',
 group='open', project='main')>,

 <IBMQBackend('ibmq_valencia') from IBMQ(hub='ibm-q',
 group='open', project='main')>,

 <IBMQBackend('ibmq_london') from IBMQ(hub='ibm-q',
 group='open', project='main')>,

 <IBMQBackend('ibmq_burlington') from IBMQ(hub='ibm-q',
 group='open', project='main')>,

 <IBMQBackend('ibmq_essex') from IBMQ(hub='ibm-q',
 group='open', project='main')>,

 <IBMQBackend('ibmq_armonk') from IBMQ(hub='ibm-q',
 group='open', project='main')>,

 <IBMQBackend('ibmq_santiago') from IBMQ(hub='ibm-q',
 group='open', project='main')>]

You can also specify to the provider a specific device to return, as shown here:

#Select a specific device from the provider

backend = provider.get_backend('ibmq_santiago')

Another provider feature is the ability to query the least busy backend. Rather than
going back and forth to your list of backends on the IQX dashboard each time you want
to execute a circuit, you can ask the provider to search for the least busy backend.

You can also provide further details about the type of device you need to successfully run
your circuit. These details include the minimum number of qubits, whether or not you
want to include simulators, and so on. The following is an example that queries both the
least busy backend devices that have less than 6 qubits and are not a simulator, and those
with more than 6 qubits and are not a simulator:

#Import the least_busy function

from qiskit.providers.ibmq import least_busy

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging provider information 215

#Identify the least busy devices

#smaller than 6 qubits and not a simulator

small_devices = provider.backends(filters=lambda x:
x.configuration().n_qubits < 6 and not x.configuration().
simulator)

#Identify the least busy devices

#larger than 6 qubits and not a simulator

large_devices = provider.backends(filters=lambda x:
x.configuration().n_qubits > 6 and not x.configuration().
simulator)

#Print the least busy devices

print('The least busy small devices: {}'.format(least_
busy(small_devices)))

print('The least busy large devices: {}'.format(least_
busy(large_devices)))

The preceding code will print out the least busy devices that are not a simulator and with
less than 6 qubits and more than 6 qubits, respectively. The results, of course, will vary
based on which devices are least busy when you execute the code.

Now that we know how to query a backend device, let's dig into what information we can
pull from each backend.

Learning about the Backend component
The Backend, as we have seen so far, is a representation of either real devices or simulators
hosted on the IQX cloud platform. It has a variety of functions, which we have used to
execute circuits or pulse schedules on various devices. In this section, we will look at some
of the other functionality provided by the backend to us.

We'll begin by looking at some of the functionalities that we will commonly use:

• status() provides the current state of the backend.

• configuration() provides the configuration of the backend.

• properties() provides the properties of the backend.

• jobs() provides a list of jobs executed on the backend at a specific instance.

• name() provides the name of the backend.

• retrieve_job(JOB_ID) provides the Job object by using the specified job ID.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

216 Programming with Qiskit Terra

We'll run the following code to sample the output of a typical backend; we'll choose one at
random for now. At the time of writing, we have chosen ibmq_valencia as an option
from the list of available backends. If it is not listed as a backend for you, then just pick
any other backend:

#Set ibmq_valencia as the backend, or whichever backend you
#wish

backend = provider.get_backend('ibmq_valencia')

#Confirm this is the backend selected by querying for its name,

backend.name()

The following code should output the name of the backend you queried – in this case,
ibmq_valencia.

The following code will get the status information of the backend and provide information
such as whether it is operational. It will also list the number of pending jobs:

#View the status of the backend

status = backend.status() is_operational = status.operational

jobs_in_queue = status.pending_jobs

print('Number of pending jobs in the queue: ', jobs_in_queue)

The following code will display the status of the backend, which includes the version,
whether it's operational, the name, and other information, in a nice UI:

#View the configuration of the backend

backend.configuration()

backend

The preceding code will output a rather verbose amount of information, in an easy-to-
read UI, from the backend configuration, such as coupling maps, basis gates, the number
of qubits, gate parameters, and more.

In the following code, we can extract specific property values, such as the number
of qubits:

Display the number of qubits from the backend properties

backend.properties().qubits

Depending on the backend you selected, you should see the number of qubits of the
backend displayed.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging provider information 217

The following code will output the properties of the backend system. Similar to the
configuration output, this too is a bit verbose but does contain a good amount of
information about the system's properties. These properties include gate errors, gate length,
qubit T1 and T2 coherence times, qubit frequencies, and more. To access them specifically,
you can simply append the function to pull the specific property information. For example,
to obtain the frequency and readout error of the first qubit, simply run the following:

#Print out the frequency of qubit (0)

print('Frequency of first qubit is: '+ str(backend.
properties().frequency(0)))

#Print out the readout error of qubit (0)

print('Readout error of first qubit is: '+ str(backend.
properties().readout_error(0)))

The frequency and readout errors are just a few of the various fields available in the
backend properties. Refer to the API documentation for others.

Finally, to check the last jobs executed on the backend, we may need to execute a few
circuits so that we can have a healthy stock of jobs in the job history for the backend.
Otherwise, when you query the backend for the last jobs executed, it will return an empty
list, and that's not very amusing. We'll execute a few simple circuits on the backend to help
us out:

#Run a few jobs on this backend to generate jobs on the backend

qc = QuantumCircuit(1,1)

qc.h(0)

qc.measure_all()

for i in range(0,3):

 result = execute(qc, backend, shots=1024).result()

Now that we have four quantum circuit jobs executed and loaded, we can run the
following to get some information about each of the jobs we executed on the backend:

#List out the last 3 jobs we ran on the device

for executed_job in backend.jobs(limit=3):

 print('Job id: '

 + str(executed_job.job_id()) + ', '

 + str(executed_job.end_date) + ', '

 + str(executed_job.status()))

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

218 Programming with Qiskit Terra

This will loop through all the backend jobs – in this case, we limited this to the last three.
However, you can remove the limit from the argument and list out all jobs if you wish.
What you will see displayed are the details of the last three jobs, such as the job ID, the
date and time the execution was completed, and the status of the job.

Understanding the Job component
The last component we will cover is the Job component. The Job component is basically
an instance of the circuit that has been executed on the backend. What that means is that
once you send the circuit to the backend to get executed, the backend will generate the Job
instance and append information about the job – information such as status, result, job
identifier, and so on. The following is a list of the available Job functions:

• backend() provides the backend that the job is running on.

• status() provides the status of the job.

• result() provides the job result after execution is completed on the backend.

• cancel() provides the ability to cancel the job.

• job_id() provides the alphanumeric job identifier.

We'll reuse one of the jobs we ran in the previous section, Learning about the backend
component, to get some details:

#From the previous output of executed jobs, enter its job id.

job = backend.retrieve_job(executed_job.job_id())

The preceding code will retrieve the job object by the job ID. Now that we have one of the
last job instances, we can extract some information:

#Print the job instance status

job.status()

We will obtain the status, which in this case should result in the following:

<JobStatus.DONE: 'job has successfully run'>

If the job has completed successfully, we can review the results returned after executing
the job instance on the backend:

job.result()

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging provider information 219

The returned result will include quite a bit of information about how the job was executed,
such as the measurement level, memory slots, backend details, status, and so on.

Finally, we can get a nice display of the backend itself:

job.backend()

This will result in a visual representation of the backend, obviously much easier to read
and visualize than the raw data output that the backend.properties and backend.
configuration output provides. It has a few tabs across the top to separate the various
sets of information besides the properties and configuration. It also includes details about
the Multi-Qubit Gates, Error Map that indicates qubit gate and readout error values, and
Job History, as shown in the following screenshot:

Figure 8.28 – Visual backend device information

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

220 Programming with Qiskit Terra

In this section, we learned about provider components and what each one does. We also
learned about what information they contain. In the next chapter, we will continue on and
learn how to monitor multiple jobs without having to query each one individually.

Summary
In this chapter, we covered just some of the many features included in the Terra library.
We reviewed creating quantum circuits, as well as executing them on the simulator and
real quantum devices. We also reviewed how to concatenate circuits so as to enable you
to combine and create composite circuits, which included binding parameters to enable
adjustments to various gates. Learning how to extract provider information allows you
to obtain information about the various backend devices available to you.

We covered how the circuits are converted into pulses using Terra's open Pulse library and
created schedules, which are programs that send pulse information via various channels
down to the hardware.

In the next chapter, we will cover techniques to optimize your quantum circuits by
reviewing the features available via Pass Managers and Optimizers. We'll also learn various
ways to visualize your quantum circuits and monitor your jobs as they are executed on the
quantum backend systems.

Questions
1. What are the four elements of Qiskit?

2. Construct a random quantum circuit with a width of 4 and a depth of 9.

3. Create a quantum circuit with the same width as the circuit you created in question
2 and concatenate it so that it is added before the random quantum circuit
you created.

4. Print the circuit properties of the concatenated quantum circuit from question 3 and
specify the total number of operators, not including any measurement operators.

5. Create a circuit with a parameterized RY gate that would rotate by an angle of π/2.

6. Create and draw a schedule with any of the available waveforms from the
Pulse library.

7. Using the Provider object, how many quantum systems do you have access
to that have 5 or more qubits?

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

9
Monitoring

and Optimizing
Quantum Circuits

In the previous chapter, you learned how to program Qiskit Terra, using both circuits and
pulse schedules.

We'll continue with the topic of circuits in this chapter, specifically monitoring and
optimizing circuits. When running a quantum circuit on a quantum device, it helps to be
able to monitor and track the status of your circuit, particularly when running multiple
circuits on multiple devices at once.

Luckily, IBM Quantum Experience (IQX) provides plenty of features to allow us to
do this with ease. Additionally, IQX provides a set of classes and features, available to
optimize and enhance the visualizations of your circuits. Learning about these features
will not only help optimize your circuit results but will also allow you to render the
circuits in various styles and representations, such as a directed cyclical graph.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

222 Monitoring and Optimizing Quantum Circuits

We will cover the following topics in this chapter:

• Monitoring and tracking jobs

• Capturing quantum information and metrics

• Optimizing circuits using the transpiler

• Visualizing and enhancing circuit graphs

After reading this chapter, you will be able to monitor and track your circuits by using
a visual and programmatic representation of the backend systems and custom widgets.
You'll also get some insights into the various transpiler features available that help
optimize the transpilation of your circuit for a given quantum backend system. You'll learn
about pass managers and how they can be leveraged to ensure you customize the passes to
transform your circuits before executing them on a quantum device.

Technical requirements
In this chapter, it is expected that you are familiar with creating and executing quantum
circuits on both a simulator and a quantum computer. Knowledge of quantum hardware,
such as qubits and connectivity between qubits, is also recommended.

Here is the full source code used throughout this book: https://github.com/
PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-
Quantum-Experience.

Please visit the following link to check the CiA videos: https://bit.ly/35o5M80

Monitoring and tracking jobs
The Qiskit Notebooks hosted on IQX are built on Jupyter Notebooks. This allows us to
use some of the features that are available to us to enhance our experience and optimize
our time when programming quantum circuits. One of these features is the ability to track
jobs in real time while they are executing. We'll try this out here with a test circuit using
the following steps:

1. First, we'll create a new Qiskit notebook and enter the following in a new cell:

Import the Qiskit Jupyter tools

from qiskit.tools import jupyter

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-Quantum-Experience
https://github.com/PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-Quantum-Experience
https://github.com/PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-Quantum-Experience
https://bit.ly/35o5M80

Monitoring and tracking jobs 223

2. Now that we have imported the Qiskit Jupyter tools and have created our provider,
we can launch the job tracking widget:

Initialize the job tracker to automatically track all
jobs

%qiskit_job_watcher

The preceding code will launch the Job Watcher widget to the top left of your Qiskit
notebook to track your jobs.

3. We'll then create and execute a circuit to test the job watcher:

Let's run a simple circuit on the least busy quantum
device and check the job watcher widget.

from qiskit.providers.ibmq import least_busy

backend = least_busy(provider.backends(filters=lambda

 x: x.configuration().n_qubits >= (2) and

 not x.configuration().simulator and

 x.status().operational==True))

#Create a simple circuit

qc = QuantumCircuit(1)

qc.h(0)

qc.measure_all()

#Execute the circuit on the backend

job = execute(qc, backend)

Once you execute this circuit, expand the IBMQ job watcher, located at the top left
of your Qiskit notebook, to see the active status of the circuit. There you will see
a queue that indicates how many other users are waiting to execute their circuits
on the backend. Once your circuit starts running, you will see the status update
accordingly, finally completing in a successful execution.

4. To disable the job watcher, just enter the following:

#Disable the job watcher

%qiskit_disable_job_watcher

Once disabled, you won't see the IBMQ Jobs widget at the top left of your Qiskit
notebook.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

224 Monitoring and Optimizing Quantum Circuits

5. One last thing to review is the overview of the backend available to you. As you will
recall from Chapter 8, Programming with Qiskit Terra, we were able to visualize the
backend details by running the job.backend() function. You can get the same
results if you just enter the backend in a cell. The Qiskit Jupyter tool offers another
helpful visualization tool to get an overview of all the available backends by entering
the following:

#Display the list of all available backends and provide

#a brief overview of each

%qiskit_backend_overview

The preceding code will result in the following screen, which provides information
such as the number of qubits for each backend, whether it supports OpenPulse, the
qubit configuration and whether it's least busy, and pending jobs in the queue:

Figure 9.1 – Visual overview of all the available backends

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Optimizing circuits using the Transpiler 225

Now, we are familiar with creating quantum circuits, obtaining information from the
various backends available to us, and decomposing the circuits down to the basis gates
available on the backend systems. In the next section, we can look at how to optimize
the circuit so that we can ensure that we are taking advantage of the configuration and
properties of the backend.

Optimizing circuits using the Transpiler
In order to accomplish this, we will learn about the Transpiler, it's usage, and the various
features it makes available for us to create and execute optimal circuits. By optimizing the
execution of the circuit to match the circuit topology of the quantum device, we reduce
the noise and its effect on our results.

In this section, we will learn about transforming a quantum circuit so that it is best
matched to the quantum device. We will also learn how to optimize the circuit by
using the layout optimizer. We will then learn about the backend configuration and its
optimization, along with the pass manager and passes.

Transformation of a quantum circuit
When you create a circuit and run it on a quantum device, there are many things
occurring between the time you send the circuit to be executed on the quantum device
and the time the results are returned. We looked at a few of those steps when we discussed
OpenPulse in Chapter 8, Programming with Qiskit Terra, and when we decomposed a
circuit to its basis states.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

226 Monitoring and Optimizing Quantum Circuits

The following flowchart illustrates the general process in which the circuit is rewritten so
that it can run on the specified backend and be optimized as per the provided settings:

Figure 9.2 – The transpiler process of a circuit from the initial circuit, with passes

One feature we want to cover is the transformation of the quantum circuit and how we
can specify its optimization.

Important Note
Passes are a set of optimization components used in the Transpiler process of
a circuit.

We'll begin by introducing the general steps taken, as shown in the preceding flowchart,
during the execution process:

1. First, when executing a circuit on a backend, the transpiler identifies any constraints
that the backend may have with respect to your circuit and optimizes the circuit
accordingly. An example could be the number of qubits available, or how those
qubits are connected on the backend.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Optimizing circuits using the Transpiler 227

2. Next, once the constraints are identified and an optimization level is set, the
transpiler will package up the circuit in such a way that the transpiler ensures that
the circuit to be executed on the quantum device adheres to the constraints of the
backend and is optimized accordingly, as described in step 1.

3. Finally, the circuit will be sent off to the specified backend for execution.

Important Note
Step 1 is what we will concentrate on in this section as it deals with the
transpiling process.

The Transpiler is made up of two primary components – that is, the pass and the
pass manager:

• The transpiler pass is the component that transforms the circuit from its current
state into a new state that adheres to the task that the pass is configured to perform.
For example, some are focused on layout selection, routing, optimizations, circuit
analysis, and many others. To see the exhaustive list of available passes, you can run
the following:

Import the transpiler passes object

from qiskit.transpiler import passes

List out all the passes available

print(dir(passes))

The preceding code will list all the passes available. For a detailed description of
each pass, I would recommend reviewing the API documentation under qiskit.
transpiler.passes. To ensure you have the latest code information, check
the main API documentation page found here: https://qiskit.org/
documentation

• The pass manager is the component that is available to you to specify which
passes you wish to use. The pass manager also allows the passes themselves to
communicate with other passes. This is ideal for scenarios where one pass would
provide or obtain information from other passes in order to ensure the final circuit
adheres to any configuration or optimization settings.

The pass manager also has some preset passes that it makes available to simplify the
optimization of a circuit.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://qiskit.org/documentation
https://qiskit.org/documentation

228 Monitoring and Optimizing Quantum Circuits

In the following section, we will create a simple circuit and pass it through a series of
passes where we will leverage existing preset pass managers that optimize the circuit.
We'll also run the same circuit on two different backend devices to see how the optimizer
differentiates between the two. Finally, we will create a custom topology to transpile the
circuit and compare the results of that to a circuit created via the preset optimizer. This
will illustrate the consequences of selecting a layout that has not been optimized.

Optimizing the circuit by leveraging the layout
optimizer
When creating a circuit, you often don't think about the configurations of the backend
– configurations such as whether the qubits you wish to entangle are directly connected
with each other or have multiple qubits in between. You might also not think about
whether the qubits are aligned in an optimal way to minimize the number of gate
operations, usually gate swaps or other multi-qubit gates, such as the Control Not
(CNOT) or Toffoli gates.

We'll start with a fairly simple circuit that contains a few single and multi-qubit gates. As you
will recall from the previous chapter, Chapter 8, Programming with Qiskit Terra, when we
decomposed the Toffoli gate down a level, it expanded from a circuit depth of 1 to a depth
of 11, all of which was a collection of various gates in order to create the Toffoli gate.

An analogy of this is to think of the Toffoli gate as a car. When you decompose a car down
a level, you are now looking at the components that make up the car, such as the engine,
hood, wheels, seats, doors, rearview mirror, and so on. The following steps will provide a
refresher of what this looks like:

1. We will create a quantum circuit with a Toffoli gate. Recall that a Toffoli gate has two
control qubits and a single target qubit (ccx):

#Basic Toffoli gate,

qc = QuantumCircuit(3)

qc.ccx(0,1,2)

qc.draw()

The preceding code draws the quantum circuit with the Toffoli gate added.
Following our analogy, this represents a car:

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Optimizing circuits using the Transpiler 229

Figure 9.3 – Toffoli gate representation

2. We'll decompose the Toffoli gate down a level to its representative gates:

qc_decomposed = qc.decompose()

qc_decomposed.draw()

The preceding code draws the component gates of the Toffoli gate. Following the car
analogy, this represents the components of our car:

Figure 9.4 – Toffoli gate, down to lower-level representative gates

3. Now, in order to run a proper comparison between backends and layout passes,
we will create the following four-qubit quantum circuit:

#Basic circuit with a single and multi-qubit gates

qc = QuantumCircuit(4)

qc.h(0)

qc.cx(0,1)

qc.cx(0,2)

qc.cx(0,3)

qc.draw()

The resulting circuit is represented by a collection of Hadamard and CNOT gates,
as follows:

Figure 9.5 – A simple four-qubit quantum circuit comprising H and CNOT gates

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

230 Monitoring and Optimizing Quantum Circuits

4. Next, we will decompose the circuit down a level, which, in this case, will
decompose it to its basis gate, U2, and CNOT gates:

Figure 9.6 – Decomposed four-qubit quantum circuit to its basis gate representation

5. Next, we will view the circuit depth and the operator count of both the initial circuit
and the decomposed circuit:

#Print the depth of both inital and decomposed circuit

print('Initial circuit depth: ', qc.depth())

print('Decomposed circuit depth: ',
qc_decomposed.depth()

#Get the number of operators in initial circuit

print('Initial circuit operation count: ',
qc.count_ops()

#Get the number of operators in decomposed circuit

print('Decomposed circuit operation count: ',
qc_decomposed.count_ops()

The preceding code should print out roughly the same numbers for both circuits.
The only difference between the two is the replacement of the H gate with the U2
basis gate, as shown in the following operation count output:

Initial circuit depth: 4

Decomposed circuit depth: 4

Initial circuit operation count: OrderedDict([('cx', 3),
('h', 1)])

Decomposed circuit operation count: OrderedDict([('cx',
3), ('u2', 1)])

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Optimizing circuits using the Transpiler 231

So far, nothing looks too surprising regarding our quantum circuits. The operations are
fairly straightforward and simple enough.

In the next section, we will run the circuit on two different backends to illustrate the
difference and importance of the backend layouts and optimizers, particularly how the
optimizers select the proper qubit mapping from the circuit to the backend device. The
backends we will use for this example will be using ibmq_santiago and ibmq_16_
melbourne. You can, of course, choose whichever backend you wish; just note that there
may be some differences based on the configuration of the backend selected.

Leaning about backend configuration and
optimization
To visualize information on the backend, we learned earlier that we can call the
configuration and properties functions to output all the information. That can be handy
if we want to extract specific data from the results; however, it is quite difficult to read.
This is where the visualization tool comes in very handy. Let's first pull the backend
information from one of our devices by running the following cell. In this example,
I'll choose ibmq_santiago, but you can select whichever quantum device you have
available:

Get the backend device: ibmq_santiago

backend_santiago = provider.get_backend('ibmq_santiago')

Launch backend viewer of ibmq_santiago

backend_santiago

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

232 Monitoring and Optimizing Quantum Circuits

The preceding code should launch the following viewer that lists the backend properties
and configuration information, along with a lot of other content related to ibmq_
santiago. In this view, you will see several tabs across the top that group information
pertaining to the backend device:

Figure 9.7 – Backend properties and configuration viewer for ibmq_santiago

As you can see in the preceding screenshot, the tabs are listed as follows:

• Configuration lists out the configuration information of the quantum device, such
as the number of qubits, the operational status, how many pending jobs are in the
queue, its basis gates and coupling map, and much more.

• Qubit Properties lists out the details about each qubit, such as its frequency,
decoherence (T1 and T2), the gate error for each basis gate, and its readout errors.

• The Multi-Qubit Gates properties contain the multi-qubit gate type (for example,
cx) and its respective multi-gate error for each direction. For example, cx0_1
means a CNOT (CX) gate with the 0th index qubit as the source and the 1st indexed
qubit as the target.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Optimizing circuits using the Transpiler 233

• Error Map is a visual representation of the error rates for each qubit. The error rates
are indicated by the gates tested – in this case, H and CNOT. The color coding is
used to visually represent the difference between the qubits with lower error rates
and those with higher error rates. Readout errors are listed as well and compared
against other qubits.

• Job History breaks down the number of jobs you executed on this device by date,
where each color represents the different dates.

Now, we will view the ibmq_16_melbourne device similarly to how we did for the
previous device, as follows:

Get the backend device: ibmq_16_melbourne

backend_melbourne = provider.get_backend('ibmq_16_melbourne')

Launch backend viewer of ibmq_16_melbourne

backend_melbourne

This will launch the same viewer with the same views pertaining to ibmq_16_melbourne
(we'll refer to this device simply as Melbourne for simplicity):

Figure 9.8 – Backend properties and configuration viewer for ibmq_16_melbourne

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

234 Monitoring and Optimizing Quantum Circuits

Now that we have both backend views open in our notebook, let's take a look at the visual
representation of the gates and how they are physically connected.

In Figure 9.7, ibmq_santiago (we'll refer to this backend device as Santiago moving
forward for simplicity), we can see that not only is it a five-qubit device, but also that the
qubits are connected linearly. This means that qubit 0 is only connected to qubit 1, qubit
1 is connected to qubit 2, and so forth. However, this does not necessarily mean that the
qubit information flows in only one direction. If you scroll down on the Configuration
view, you will see the coupling_map field.

In the coupling_map field, you will see how the direction of the qubits is configured. The
first two entries are related to the first two qubits. Note that the coupling map between
qubit 0 and qubit 1 is defined and illustrated bidirectionally – that is, qubits can be
entangled in either direction, [0,1] and [1,0]. What that means is that you can place a
CX gate where the source is either the first or second qubit and the target is the opposite
qubit, second or first, respectively. To visualize the coupling directional map, just run the
following cell:

Visualize the coupling directional map between the qubits

plot_gate_map(backend_santiago, plot_directed=True)

Now, we can see the gate map with the coupling directional mapping between each qubit,
as illustrated here:

Figure 9.9 – Qubit plot view with the coupling directional map enabled (ibmq_santiago)

Let's see the same for Melbourne, as illustrated in Figure 9.8, by entering the following
into a cell:

Visualize the coupling directional map between the qubits

plot_gate_map(backend_melbourne, plot_directed=True)

The preceding code displays a similar mapping to what we saw earlier with a clear
difference in the configuration:

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Optimizing circuits using the Transpiler 235

Figure 9.10 – Qubit plot view with the coupling directional map enabled (ibmq_16_melbourne)

You may notice that the coupling maps have some similarities between the two systems.
Take note of the first five qubits of Santiago compared to that of Melbourne; you will see
that the connections are linear. However, this is where the similarities stop because unlike
Santiago, Melbourne has the first five qubits connected to other qubits. Santiago, as you
will recall, has all the qubits, except the first and last, connected to two adjoining qubits.
Melbourne has three qubits connected to any qubit, except, of course, qubit 7, which is
connected to only one qubit; all the others have between two and three qubits connected.

Because of the different configuration of the qubits, the layout of the qubits from our
quantum circuit might not be defined in the most optimal way when mapping them to
the hardware configuration. Lucky for us, we have the execute and transpile functions,
which include a parameter setting that allows us to set the level of optimization of the
circuit layout. This optimization level comprises four different levels, where each is
associated with one of various mapping layout strategies, called Transpiler Passes. The
next section will cover the various passes available and also the pass manager used to
manage their usage.

Understanding passes and pass managers
Passes are generally used to transform circuits so that they are set up to perform as
optimally as desired. There are five general types of passes that transform circuits:

• Layout Selection determines how the qubit layout mapping will align with the
selected backend configuration.

• Routing maps the placement of swap gates onto the circuit based on the selected
swap mapping type, which can be set by providing a coupling map or backend
topology, or by using stochastic methods.

• Basis Change offers various ways to decompose or unroll the gates down to the
basis gates of the backend or using the circuit's decomposition rules.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

236 Monitoring and Optimizing Quantum Circuits

• Optimizations optimizes the gates themselves by either removing redundant gates,
such as having two of the same gates back to back, which reverts the gate to the
original state. It can also combine basis gates, such as the U1, U2, or U3 gates, into
a single gate.

• Circuit Analysis provides circuit information, such as the depth, width, number of
operations, and other details about the circuit.

• Additional passes are those that offer some other form of optimization, such as the
various check maps, which check whether the layout of the CNOT gates are in the
direction stated in the coupling maps and rearrange the directions if needed.

We covered most of the Circuit Analysis information in Chapter 8, Programming with
Qiskit Terra, to detect the size, width, and number of operations in a circuit. Let's look at
Layout Selection to see how we can leverage the provided layouts and learn the difference
between the various optimization levels.

Learning about the Layout Selection type
There are various layout passes to choose from. Let's look at a few of the basics:

• TrivialLayout: This layout assigns n qubits to the device qubits in the same order
as stated in the original quantum circuit.

• DenseLayout: This layout selects a layout that has the most connected subset of
qubits. If there is a need for a large number of entangled qubits, this layout will
find a subset of which qubits are closely connected to each other so as to avoid
long distances and swaps.

• NoiseAdaptiveLayout: This layout leverages a qubit mapping technique that
leverages the calibration information from the backend device and evaluates several
optimal and heuristic mappings, as described in this paper: https://arxiv.
org/abs/1901.11054.

For each of the aforementioned passes, there is a different default setting for the
optimization level. TrivialLayout is the default layout when optimization level =
0, DenseLayout is the default when optimization = 1, and NoiseAdaptiveLayout is
the default when the optimization level is set to either 2 or 3, depending on the device.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://arxiv.org/abs/1901.11054
https://arxiv.org/abs/1901.11054

Optimizing circuits using the Transpiler 237

We'll set the various optimization levels in the transpiler function parameter and apply it
to the two backend devices, Santiago and Melbourne, in the following steps:

1. We'll reuse the same four-qubit quantum circuit we created earlier. I'll include it
again here for your convenience:

Quantum circuit with a single and multi-qubit gates

qc = QuantumCircuit(4)

qc.h(0)

qc.cx(0,1)

qc.cx(0,2)

qc.cx(0,3)

qc.draw()

We'll start with Santiago and set the optimization level to 0, which is to say we
will use TrivialLayout and map the circuit qubit index to the respective qubit
index of the backend. What this will result in is the qubit on our quantum circuit
[0,1,2,3,4], which will map to the same qubit index values on the backend
device, Santiago [0,1,2,3,4].

2. In the following code, we will leverage the same quantum circuit we had set up
earlier (qc) and use it as our quantum circuit to test the various optimization levels.
We'll then print out the transpiled circuit depth and visualize the layout with the
mapped qubits drawn as an overlay over the backend device:

Transpile the circuit with an optimization level = 0

qc_santiago_0 = transpile(qc, backend_santiago,

seed_transpiler=10258, optimization_level=0)

Print out the depth of the circuit

print('Depth:', qc_santiago_0.depth())

Plot the resulting layout of the quantum circuit after
Layout

plot_circuit_layout(qc_santiago_0, backend_santiago)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

238 Monitoring and Optimizing Quantum Circuits

The result, as follows, is as expected, where the qubits are mapped with no layout
optimization at all, and there is the direct mapping of qubits from the quantum
circuit to the hardware device:

Figure 9.11 – Transpiled quantum circuit on Santiago with optimization = 0,
direct qubit mapping with no changes

3. Now, let's draw the transpiled circuit on Santiago:

Draw the transpiled circuit pertaining to Santiago

qc_santiago_0.draw()

This will render the transpiled circuit using the basis gates available on Santiago:

Figure 9.12 – Transpiled circuit of basis gates on Santiago
Please note that the unused qubits are prefixed as ancilla_n to indicate
unmapped qubits.

4. Now, let's run the same thing on Melbourne with the same level of optimization set
to 0. We should see the same results, in that the transpiled circuit is mapped to the
same qubits as our quantum circuit:

View the transpiled circuit with an optimization
Level = 0

qc_melbourne_0 = transpile(qc, backend_melbourne,
seed_transpiler=10258, optimization_level=0)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Optimizing circuits using the Transpiler 239

print('Depth:', qc_melbourne_0.depth())

plot_circuit_layout(qc_melbourne_0, backend_melbourne)

The preceding code will result in the following depth information:
Depth: 10

The resulting layout mapping, as follows, is also displayed:

Figure 9.13 – Transpiled circuit on Melbourne
Let's now look at the transpiled circuit for the Melbourne quantum device.

5. We'll now draw the transpiled circuit using the following code:

Draw the transpiled circuit pertaining to Melbourne

qc_melbourne_0.draw()

The preceding code will display the following circuit:

Figure 9.14 – Transpiled circuit on Melbourne

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

240 Monitoring and Optimizing Quantum Circuits

Please note, as you can see in Figure 9.12, that the unused qubits are prefixed as
ancilla_n to indicate unmapped qubits.

As we can see in the preceding circuit diagram, there is no difference between the
layout when the transpiler does not try to optimize the circuit.

6. Let's now maximize the optimization level to 3 and see whether there is a difference:

Transpile the circuit with the optimization level = 3

qc_transpiled_santiago = transpile(qc, backend_santiago,
optimization_level=3)

Print the depth of the transpiled circuit

print('Depth:', qc_transpiled_santiago.depth())

Print the number of operations of the transpiled
circuit

print('Ops count: ', qc_transpiled_santiago.count_ops())

Plot the layout mapping of the transpiled circuit

plot_circuit_layout(qc_transpiled_santiago,
backend_santiago)

The preceding code will print out the total circuit depth and the total number of
operators (Ops count) in the transpiled circuit, along with the rendering of the
transpiled mapping of the qubits onto Santiago:

Depth: 10

Ops count: OrderedDict([('u2', 10), ('cx', 5), ('u3',
1)])

The following diagram shows the rendering of the transpiled mapping of the qubits,
as mentioned earlier:

Figure 9.15 – Transpiled circuit with the optimization level set to 3
As you can see in the preceding diagram, in an effort to reduce noise, the qubit
order is reversed from the previous example on Santiago.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Optimizing circuits using the Transpiler 241

7. Then, draw out the circuit to review the transpiled circuit using the matplotlib
palette:

Redraw the transpiled circuit at new level

qc_transpiled_santiago.draw()

The result, as follows, is the same circuit that is now mapped to different qubits
compared to the circuit in Figure 9.12. The difference between this circuit and the
previous one is simply that the transpiler has the maximum optimization level set,
so it will map the qubit operators to the most optimal qubits, as follows:

Figure 9.16 – Transpiled circuit with the optimization level set to 3

8. We'll set the same optimization level on Melbourne to 3 and transpile the
circuit then:

Transpile the quantum circuit with the optimization
level = 3

qc_transpiled_melbourne = transpile(qc,
backend_melbourne, optimization_level=3)

Get the depth and operation count of the transpiled
circuit.

print('Depth:', qc_transpiled_melbourne.depth())

print('Ops count: ', qc_transpiled_melbourne.count_ops())

Print the circuit layout

plot_circuit_layout(qc_transpiled_melbourne,
backend_melbourne)

Here, the total depth is the same, as is the number and type of operators:
Depth: 10

Ops count: OrderedDict([('u2', 10), ('cx', 5), ('u3',
1)])

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

242 Monitoring and Optimizing Quantum Circuits

However, note that the layout is not necessarily linear; it seems T-shaped, where
qubit 0 is connected with 3 qubits rather than 2, as it was in Santiago:

Figure 9.17 – Transpiled circuit with the optimization level set to 3
As you can see, in an effort to reduce noise, the qubit order is reversed from the
previous example run on Melbourne.

9. Let's draw the circuit and see how this mapping looks compared to the previous
circuit mapping:

Figure 9.18 – Transpiled circuit with the optimization level set to 3
Note the use of qubit 13, which is closer to grouped qubits 0–2. This is a good
example where the optimizer mapped qubit 3 to qubit 13 on the device so as to
avoid extra swap gates.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Optimizing circuits using the Transpiler 243

10. Finally, let's now create our own custom mapping, or topology, as it is often referred
to. Let's begin by reviewing the coupling map of an existing device; in this case, let's
try another device, ibmqx2, one of the original five-qubit devices that has a bowtie
configuration of qubits. We'll review the configuration of the backend first:

View the ibmqx2 backend device configuration and
properties

backend = provider.get_backend('ibmqx2')

backend

The preceding code launches a visualization widget that contains all the
configuration and property values of the quantum device, ibmqx2, nicknamed
the bowtie. The reason for the nickname – the bowtie – is that it is based on the
qubit topology, which seems to represent a tilted bowtie, shown in the following
screenshot:

Figure 9.19 – Visualization of ibmqx2 configuration and properties

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

244 Monitoring and Optimizing Quantum Circuits

11. Let's examine the coupling map for ibmqx2 by calling the configuration's
coupling_map field:

View the backend coupling map, displayed as CNOTs
(Control-Target)

backend = provider.get_backend('ibmqx2')

Extract the coupling map from the backend

ibmqx2_coupling_map = backend.configuration().coupling_
 map

List out the extracted coupling map

ibmqx2_coupling_map

The preceding code will result in the following coupling layout of ibmqx2. You can
verify this by comparing it to the backend view:

[[0, 1],

 [0, 2],

 [1, 0],

 [1, 2],

 [2, 0],

 [2, 1],

 [2, 3],

 [2, 4],

 [3, 2],

 [3, 4],

 [4, 2],

 [4, 3]]

12. Next, we will draw the coupling map to see how efficient our circuit is with the
default map:

Transpile a custom circuit using only the coupling map.

Set the backend to 'None' so it will force using the
coupling map provided.

qc_custom = transpile(qc, backend=None,

coupling_map=ibmqx2_coupling_map)

Draw the resulting custom topology circuit.

qc_custom.draw()

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Optimizing circuits using the Transpiler 245

Our circuit, using this topology, is now different from what we saw in Santiago
in Figure 9.16. Here, we see that the same circuit is now transpiled based on the
ibmqx2 topology, as follows:

Figure 9.20 – The circuit using the topology provided by the ibmqx coupling map

13. Now, let's create our own custom topology. For simplicity, we will create a simple
linear topology, where the qubits are joined together in a line, as follows:

Create our own coupling map (custom topology)

custom_linear_topology = [[0,1],[1,2],[2,3],[3,4]]

Set the coupling map to our custom linear topology

qc_custom = transpile(qc, backend=None,
coupling_map=custom_linear_topology)

Draw the resulting circuit.

qc_custom.draw()

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

246 Monitoring and Optimizing Quantum Circuits

The result from the preceding circuit code is clearly not ideal. The circuit required
many gates and is quite deep, which increases the risk of having noisy results. This
is a good illustration of the importance of optimizers, which handle many of these
potential issues. It's no surprise why there is a lot of research in identifying better
ways to optimize circuits to avoid inefficient and noisy circuits:

Figure 9.21 – Custom linear topology of our circuit

Now that we have a better understanding of passes and how some of them help the
transpiler generate optimal circuits, we just need to conclude with the pass manager.
The pass manager is what allows the passes to communicate with each other, and also
schedules which passes should execute first.

This is not as simple as it sounds as there may be a significant difference if one pass is
used before another, or perhaps is unable to communicate with another pass. We'll
conclude this section with a simple example of the pass manager, using the following
steps to create it:

1. We'll first append TrivialLayout to PassManager and execute the circuit:

Import the PassManager and a few Passes

from qiskit.transpiler import PassManager, CouplingMap

from qiskit.transpiler.passes import TrivialLayout,
BasicSwap

Create a TrivialLayout based on the ibmqx2 coupling map

trivial = TrivialLayout(CouplingMap(ibmqx2_coupling_map))

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Optimizing circuits using the Transpiler 247

Append the TrivialLayout to the PassManager

pm.append(trivial)

Run the PassManager and draw the resulting circuit

tv_qc = pm.run(qc)

tv_qc.draw()

The resulting circuit is as follows. Note the specifics of this circuit as we will be
comparing the differences between the layouts of this circuit and the upcoming
circuit (in Figure 9.23):

Figure 9.22 – PassManager with the appended TrivialLayout Pass circuit

2. In the following code, we will create a BasicSwap pass, rerun PassManager on
the circuit, and compare the results to the previous circuit:

Create a BasicSwap based on the ibmqx2 coupling map we
used earlier

basic_swap = BasicSwap(CouplingMap(ibmqx2_coupling_map))

#Add the BasicSwap to the PassManager

pm = PassManager(basic_swap)

Run the PassManager and draw the results

new_qc = pm.run(qc)

new_qc.draw()

The previous code will create a BasicSwap router and add it to PassManager
upon construction. The executed circuit result is as follows:

Figure 9.23 – PassManager with a BasicSwap router pass circuit

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

248 Monitoring and Optimizing Quantum Circuits

As you can see, the circuit will adapt to each of the passes called from
PassManager – in this case, BasicSwap was called and rendered in one format,
and the TrivialLayout pass rendered in a different format.

Now that you are familiar with pass managers, you can see that they can be very helpful if
you want to use a combination of passes in a way that when leveraged one after the other,
the optimization of the circuit improves as the circuit is modified along the way.

In this section, we also learned about the Transpiler and how to optimize circuits using it.
We also learned about transforming and optimizing the circuit using the layout optimizer.
We also learned about backend optimization and configuration.

The next section of this chapter is a bit more visual, using Directed Acyclic Graphs
(DAGs) to view the circuits and their functionality.

Visualizing and enhancing circuit graphs
This section will focus on the various visualizations available in Terra. The graphs we
have been using were from the default drawer library in Qiskit. However, we can specify
other drawing tools that may be better suited for your documentation purposes. Say, for
example, that you are authoring a research paper with Latex and you want to use the latex
content.

By simply adding style parameters from the Qiskit drawer library, you can then leverage
the many features included with the visualization library. We'll cover a few of those now
to get you started.

Learning about customized visual circuits
When rendering a circuit, it is often necessary or convenient to have the results in a
format that suits the format of your document. It's here where the Qiskit drawer comes
in handy with various features. Let's begin with a simple quantum circuit to illustrate the
various visual rendering examples:

1. First, let's create a quantum circuit with various operators to get a good
representation of all the visual components in the various formats:

Sample quantum circuit

qc = QuantumCircuit(4)

qc.h(0)

qc.cx(0,1)

qc.barrier()

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Visualizing and enhancing circuit graphs 249

qc.cx(0,2)

qc.cx(0,3)

qc.barrier()

qc.cz(3,0)

qc.h(0)

qc.measure_all()

Draw the circuit using the default renderer

qc.draw()

This will render the following circuit drawing, which is just a random representation
of gates. This circuit does not do anything special, it's just used to represent various
components. As an option, you can use the random_circuit method to create
a random circuit:

Figure 9.24 – Circuit rendering using the default library

2. Now, let's redraw the circuit using the matplotlib library using the same
draw() method we have been using throughout this book:

Figure 9.25 – Circuit rendering using the matplotlib library

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

250 Monitoring and Optimizing Quantum Circuits

3. Next, we will render the preceding circuit using latex:

draw('latex')

This will render the latex version. If you're running this on your local machine
and not on IQX, you may have some warnings or errors indicating you need to
install some file dependencies, such as installing pylatexenc. In that case, simply
install any missing dependencies and you will be able to render the circuit using the
latex drawers, as illustrated in the following circuit diagram:

Figure 9.26 – Circuit rendering using the Latex library

4. If you are planning to post your circuit onto a website, blog, or social media and
would like to include some styles on the image, you have the ability to do that as
well by passing in the style contents as a parameter, such as backgroundcolor,
gatetextcolor, and fontsize, just to name a few:

Define the style to render the circuit and components

style = {'backgroundcolor': 'lightblue','gatefacecolor':
 'white', 'gatetextcolor': 'black', 'fontsize': 9}

Draw the mpl with the specified style

qc.draw(style=style)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Visualizing and enhancing circuit graphs 251

The preceding code results in adjusting the background, gate color schemes, and the
font size, as illustrated here:

Figure 9.27 – Rendered circuit with the custom style dictionary on matplotlib
To use the style setting, you must use the output matplotlib as this is the only
support for the styles. Details on the available list of styles can be found in the Style
Dict Details section of the Qiskit API documentation (https://qiskit.org/
documentation).

Finally, we will cover a full view of the circuit as a Directed Acyclic Graph (DAG), which
will be helpful to see the circuit as a graph in order to understand the flow of the circuit.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://qiskit.org/documentation
https://qiskit.org/documentation

252 Monitoring and Optimizing Quantum Circuits

Drawing the DAG of a circuit
As circuits get larger, they will naturally get more complex, and even visualizing a circuit
can get complicated. Imagine a circuit with a million qubits and with a depth of over
1,000. This would be difficult to render and almost impossible to read. This is where
DAGs may help. If you break down a circuit into composites, you can then render each
composite as a DAG. Let's create one based on the circuit that we previously created to
illustrate rendering and see how the DAG of that circuit looks.

In the following code, you will need two components; the first is the circuit-to-DAG
converter. This will convert the circuit into a DAG. The second component is the DAG
drawer, which will draw out the DAG where the nodes are represented as quantum
registers, classical registers, quantum gates, barriers, and measurement operators. The
edges are directional, which illustrates the flow of the circuit:

Import the Circuit to DAG converter

from qiskit.converters import circuit_to_dag

Import the DAG drawer

from qiskit.tools.visualization import dag_drawer

Convert the circuit into a DAG

dag = circuit_to_dag(qc)

Draw the DAG of the circuit

dag_drawer(dag)

This results in the following rendering of the DAG:

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Visualizing and enhancing circuit graphs 253

Figure 9.28 – The DAG rendering of a quantum circuit

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

254 Monitoring and Optimizing Quantum Circuits

The DAG can help illustrate the flow and expected paths of the circuit. For example, the
preceding graph starts at the top with the qubits in green, then following the graph, we see
that each qubit is operated upon by the specified operation represented by the nodes and
the applied qubits by the edge label between nodes. The graph terminates at the end in
red, where the measurement applied on the qubit is mapped to the specified classical bit,
represented by the parameter values.

In this section, we learned about visualizing the circuit graphs with the help of customized
visual circuits. We also learned how to use DAGs to enhance our circuit graphs.

Summary
In this chapter, we learned various ways to monitor your circuits when they are running
on one of the many quantum computers. You also learned about the different passes
available to optimize the execution of your circuit on a specified quantum device. This
includes the pass manager, which allows you to customize which passes to leverage and
also allows you to choose their order.

We then covered topology and coupling maps, which helped you understand the
importance of knowing the device configurations, should you want to create your own
passes. By visualizing the circuits in various formats, you now have the skills to customize
the rendering of images, particularly if you are documenting your work and would like to
keep a certain look and feel.

In the next chapter, we will learn about noise models and the advantages between the
simulators and how they can help us understand the noise models so that we can mitigate
and run more efficient algorithms.

Questions
1. Create a filter that will return the least busy backend to run a quantum circuit

that includes any constraint other than those covered in this book (Hint: use the
backend.configuration() function to view other backend configuration
variables).

2. Can you name two components of the Transpiler?

3. Which component allows you to specify the passes to use?

4. What is the depth of a Toffoli gate when decomposed?

5. Is there a difference between when decomposing a Toffoli gate using
decompose() versus the Transpiler?

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Questions 255

6. What are the basis gates on the ibmq_santiago device?

7. What are the five pass types?

8. What is the default optimization_level value when running the execute()
function?

9. What are the default optimization_level values set for TrivialLayout and
DenseLayout?

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

10
Executing Circuits

Using Qiskit Aer
Aer is a provider of high-performance backends that can be used to execute quantum
circuits. The various backend simulators available can be used in unique ways where each
can provide various information pertaining to your circuit. Aer also provides a variety
of tools that can be leveraged to construct noise models to simulate various errors that
occur on real quantum devices. These tools are very helpful should you need to compare
the difference between your results from an ideal simulator and that which replicates the
effects of noise from a quantum device.

Both the simulators, and tools such as the noise model, will help you understand the
reasons for some of the effects on your results as well as provide insights should you
later want to mitigate those errors yourself.

The following topics will be covered in this chapter:

• Understanding the differences between the Aer simulators

• Generating noise models

• Building your own noise model

• Executing quantum circuits with custom noise models

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

258 Executing Circuits Using Qiskit Aer

In this chapter, we will review all four Aer simulators, and understand the differences
between each of them and what unique functionality each one provides. We will also delve
into the Aer noise models that we can generate based on the specified backend devices to
allow us to simulate noise on our ideal Aer simulators.

After reading this chapter, you will be able to reproduce similar noise effects on the
simulator. This will allow you to observe how the noise affects our results, which would
allow us to simulate a real quantum device. Finally, we will cover how you can create
your own noise models and apply them to your circuits.

Technical requirements
In this chapter, it is expected that you are familiar with the basics of quantum circuits
described in previous chapters, such as creating and executing quantum circuits, obtaining
backend properties and configurations, and customizing and visualizing circuit diagrams,
and you should have knowledge of qubit logic gate operators and states. Also, some
familiarity of noise effects such as decoherence time would be ideal, however we will
cover some of the basics in this chapter as a refresher.

Here is the source code used throughout this book: https://github.com/
PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-
Quantum-Experience

Please visit the following link to check the CiA videos: https://bit.ly/35o5M80

Understanding the differences between the
Aer simulators
The IBM Quantum Experience (IQX) has an array of not only real backend quantum
devices, but also a multitude of simulators as well, many of which we have used so far
in this book. IQX always has the latest Qiskit packages installed. This makes it easy for
anyone new to quantum computing to simply log on and start learning and coding
right away.

In this section, you will learn about the various Aer simulators, including the differences
between them and their distinct features. These features include generating noise models
and configuring the simulator backends that allow you to take advantage of modifying
their behavior and characteristics to suit your needs.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-Quantum-Experience
https://github.com/PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-Quantum-Experience
https://github.com/PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-Quantum-Experience
https://bit.ly/35o5M80

Understanding the differences between the Aer simulators 259

Of course, you can always install Qiskit locally on your own machine, servers, or any
supported device. However, one advantage to using the simulators on IQX is the fact that
the server it is installed onto is a pretty large, high-performance system with plenty of
resources. As shown in the following screenshot, ibmq_qasm_simulator can run wider
circuits than most local machines and has a larger variety of basis gates:

Figure 10.1 – ibmq_qasm_simulator on the IQX

As you can see from the preceding screenshot, at the time of writing, the ibmq_qasm_
simulator has the maximum number of experiments allowed set to 300, the Maximum
shots per circuit set to 8192, and has a timeout of 10,000 seconds, which approximates
to just under 3 hours.

In the following sections, we will learn about the following simulators and their
key features:

• The Qasm simulator, which executes a quantum circuit with multiple shots to
simulate a noisy backend quantum system

• The statevector simulator, which provides the state vector of the quantum circuit

• The unitary simulator, which provides the unitary matrix of the quantum circuit
being executed

• The pulse simulator, which simulates pulse schedules to execute directly to the
various channels on the hardware

Let's move on to the next section, looking at the backends.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

260 Executing Circuits Using Qiskit Aer

Viewing all available backends
If you have read the previous chapters of this book, then you are aware of some of the
simulators we have used. But they are just a small subset of what is available on IQX.
Let's start off by displaying every simulator available from the various sources.

We will create a new Qiskit Notebook on IQX and run the autogenerated cell to ensure
you have loaded some base classes and methods, and loaded your account information
so we can access IQX:

1. We'll begin by displaying all of the available simulators in the Aer library by using
the following code:

View all available Aer backends

Aer.backends()

This will display a list of all the available simulators, which are part of the
AerProvider class:

 [<QasmSimulator('qasm_simulator') from AerProvider()>,

 <StatevectorSimulator('statevector_simulator') from

 AerProvider()>,

 <UnitarySimulator('unitary_simulator') from
 AerProvider()>,

 <PulseSimulator('pulse_simulator') from AerProvider()>]

2. The following code will list out the simulators that are part of the BasicAer class.
These are also available as Python built simulators, should you not want to install
Aer and just use Terra:

from qiskit import BasicAer

BasicAer.backends()

This will list the same simulators as Aer with the exception of the pulse simulator:
 [<QasmSimulatorPy('qasm_simulator') from BasicAer()>,

 <StatevectorSimulatorPy('statevector_simulator') from

 BasicAer()>,

 <UnitarySimulatorPy('unitary_simulator') from
 BasicAer()>]

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the differences between the Aer simulators 261

3. And finally, we can list out all the simulators and devices available from the IBM
Quantum Provider:

View all available IBMQ backends

provider.backends()

This will not only list the simulator, but also list the real quantum devices available
to you based on your account:

 [<IBMQSimulator('ibmq_qasm_simulator') from
 IBMQ(hub='ibm-q', group='open', project='main')>,

 <IBMQBackend('ibmqx2') from IBMQ(hub='ibm-q',
 group='open', project='main')>,

 <IBMQBackend('ibmq_16_melbourne') from IBMQ(hub='ibm-q',

 group='open', project='main')>,

 <IBMQBackend('ibmq_vigo') from IBMQ(hub='ibm-q',
 group='open', project='main')>,

 <IBMQBackend('ibmq_ourense') from IBMQ(hub='ibm-q',

 group='open', project='main')>,

 <IBMQBackend('ibmq_london') from IBMQ(hub='ibm-q',
 group='open', project='main')>,

 <IBMQBackend('ibmq_burlington') from IBMQ(hub='ibm-q',

 group='open', project='main')>,

 <IBMQBackend('ibmq_essex') from IBMQ(hub='ibm-q',
 group='open', project='main')>,

 <IBMQBackend('ibmq_armonk') from IBMQ(hub='ibm-q',
 group='open', project='main')>,

 <IBMQBackend('ibmq_athens') from IBMQ(hub='ibm-q',
 group='open', project='main')>,

 <IBMQBackend('ibmq_valencia') from IBMQ(hub='ibm-q',

 group='open', project='main')>]

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

262 Executing Circuits Using Qiskit Aer

Equally, if you wanted to list out only the available simulators or only the real
devices, you can set the simulator parameter to True or False, respectively.
Setting the parameter as simulator=False will list only the real quantum
devices, and setting simulator=True will list only the simulators in the results,
illustrated as follows:

View all IBMQ provider simulators only

provider.backends(simulator=True)

This correctly lists out the simulator we see in the IQX backend dashboard:
[<IBMQSimulator('ibmq_qasm_simulator') from
IBMQ(hub='ibm-q', group='open', project='main')>]

As this chapter is focused on Aer, we will learn about the Aer simulators going forward.
We'll start with the Qasm simulator, which is one of the most commonly used simulators
for executing circuits.

Running circuits on the Qasm simulator
The Qasm simulator is used mostly to not only execute quantum circuits but is also very
versatile because of its ability to apply various simulation methods and configuration
options. Qasm, incidentally, is short for Quantum Assembly.

A few of the available simulation methods are described as follows:

• statevector: This is a statevector simulation that allows ideal circuit
measurements at the end of the quantum circuit. In addition, each shot that
executes the circuit can sample random noise from noise models to provide noisy
simulations. There are also statevector_gpu simulators that run on systems
equipped with a Graphical Processing Unit (GPU).

• density_matrix: This method provides a density matrix simulation which,
similar to the statevector, samples the quantum circuits with measurements
given at the end of each circuit.

• matrix_product_state: This is a tensor-network statevector simulator that
leverages a Matrix Product State as the representation of the state.

• automatic: If no method is set, then this method will select one automatically
based on the number of qubits, the quantum circuit, and the noise model.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the differences between the Aer simulators 263

The available backend options that are used with the backend_options kwargs are
as follows:

• method: This sets the simulation method to run on the simulator. If no method is
specified, it will be set to automatic by default.

• precision: This sets the floating point to either single or double precision, where
the default is double.

• zero_threshold: This truncates values to zero.

• validation_threshold: This threshold is used to verify if the initial states of
the quantum circuit are valid, with the default value set to 1x10-8.

• max_parallel_threads: This is used to set the maximum number of parallel
CPU cores, where the default value is set to 0, which means the maximum number
of CPU cores.

The minimum number of cores in any processor is 1. Since we do not know the
maximum number of cores a system could have, we set the value to 0 (to indicate an
infinite number of cores).

• max_parallel_experiments: The maximum number of Qobj circuits in
parallel, not to exceed the max_parallel_threads value, where the default
value is set to 1 (disabled). If 0, it will be maximally set.

• max_parallel_shots: This sets the maximum number of shots of the circuit in
parallel up to the value of max_parallel_threads. The default value is set to
0, which means it will set to max_parallel_threads. If set to 1, it will
be disabled.

• max_memory_mb: This sets the maximum size of memory to be used to store the
state of the vector, where the default value is set to 0. The maximum value is locked
at half the size of the system memory.

Now that you have knowledge of the simulation methods and backend options, we'll
create a simple circuit and execute it using Aer's QasmSimulator class. For this
example, we will create the same circuit example we have been using so far, consisting of
Hadamard and CX gates, that places the quantum circuit in a superposition and entangles
both qubits together:

Create a quantum circuit

qc = QuantumCircuit(2, 2)

qc.h(0)

qc.cx(0, 1)

qc.measure([0, 1], [0, 1])

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

264 Executing Circuits Using Qiskit Aer

Now, let's create the Qasm simulator using the QasmSimulator class:

Import the QasmSimulator from Aer provider

from qiskit.providers.aer import QasmSimulator

backend_simulator = QasmSimulator()

Set the backend options, method set to statevector

options = {'method': 'statevector'}

Execute circuit using the backend options created

job = execute(qc, backend_simulator, backend_options=options)

Print out the result counts

result = job.result()

counts = result.get_counts(qc)

print(counts)

This will print out the results from executing the quantum circuit on the Qasm simulator,
with the method set to a state vector, obtaining the result counts.

As you can see, this runs the same results as if you ran qasm_simulator as follows:

Get the Qasm simulator and set the backend options

aer_qasm_simulator = Aer.get_backend('qasm_simulator')

options = {'method': 'statevector'}

Execute the circuit with the Aer Qasm simulator

job = execute(qc, aer_qasm_simulator, backend_options=options)

Both forms execute the circuit in the same manner, with varying values in the results,
of course.

We'll continue by extending the backend options to include other parameters that we
might find useful, such as shots and memory in the next section.

Adding parameters to the backend options
We may already be familiar with the shots parameter, which specifies how many times
to execute the circuit on the backend. However, as illustrated in the previous example,
the counts returned are the total values of all the shots, but not in the order in which each
result was returned. There may be situations when you would like to examine the results
of each shot in chronological order.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the differences between the Aer simulators 265

In order to examine the measured results that are stored in the individual memory
slots, you will need to set the memory parameter in the backend options. Let's rerun the
previous circuit again, however, this time we will set the memory flag to True and display
the results. We'll run just 10 shots this time to avoid a very large output string:

Set the backend options, method set to statevector

options = {'method': 'statevector', 'memory':True, 'shots':10}

Execute circuit using the backend options created

job = execute(qc, backend_simulator, backend_options=options)

result = job.result()

Pull the memory slots for the circuit

memory = result.get_memory(qc)

Print the results from the memory slots

print('Memory results: ', memory)

This will output the 10 memory slot entry results from the execution of the circuit. Notice
that the results are varying combinations of 00 and 11, as expected for the circuit:

Memory results: ['00', '11', '11', '00', '11', '11', '00',

 '11', '11', '00']

Just as before, the same parameters can be set using the Aer backend call directly,
as follows. Note however that we will be setting the memory value as a kwarg in the
execute method rather than in the options object as before:

View each measurement individually by enabling the memory
parameter

aer_backend = Aer.get_backend('qasm_simulator')

Set backend, shots, and memory parameters and retrieve
results

result = execute(qc, backend=aer_backend, shots=5,

 memory=True).result()

Pull the memory slots results

memory = result.get_memory(qc)

Print the memory slots

print('Memory results: ', memory)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

266 Executing Circuits Using Qiskit Aer

The expected results can be seen as follows:

Memory results: ['00', '00', '00', '11', '00']

Having the memory feature built into the Qasm simulator gives you the ability to initialize
the qubits of your circuit. The next section will illustrate how to initialize and set up all, or
just a subset, of the qubits.

Initializing the qubits on a circuit
As we learned early on, each qubit is initialized to the ground state, or the |0 state.
However, there may be times when we would like to set a different initial state. Luckily for
us, the Qasm simulator allows us to initialize the state of the circuit to some other state |𝜓𝜓⟩
in lieu of all |0 states.

We will follow the next steps to initialize the qubits:

1. In the previous example, we created a circuit that contained a Hadamard and
Control-Not gate in order to obtain the entangled state results of |00 or |11 . In this
example, we will initialize our circuit so that the results are the same without the
need to add any gates:

Construct a 2 qubit quantum circuit

qc_init = QuantumCircuit(2, 2)

Import numpy to simplify some math for us

import numpy as np

Select the qubits by their index which you wish to
initialize

init_qubits = [0, 1]

Inititialize qubit states

qc_init.initialize([1, 0, 0, 1] / np.sqrt(2),
init_qubits)

Add measurements and draw the initialized circuit

qc_init.measure(range(2), range(2))

qc_init.decompose()

qc_init.draw()

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the differences between the Aer simulators 267

This results in the following circuit diagram. Notice that the first two qubits have
been initialized in the state of [1/√2, 0, 0, 1/√2]T . This circuit now has an initialized
state that can be applied to any circuit should you wish a circuit to begin in a state
other than the ground/zero state:

Figure 10.2 – Initialized qubits to an initial state other than the zero state

2. Now let's execute this circuit and observe each result:

Set the memory to True so we can observe each result

result = execute(qc_init, aer_backend, shots=10,

 memory=True).result()

Retrieve the individual results from the memory slots

memory = result.get_memory(qc_init)

Print the memory slots

print(memory)

As you can observe from the results, we get only the two initialized state results of
|00 or |11 , as expected.

3. Now, you don't have to initialize all qubits in a circuit, you can also specify a specific
group of qubits to initialize, as illustrated in the following code:

Create a 4 qubit circuit

qc_init2 = QuantumCircuit(4, 4)

Import numpy to help with some arithmetic

import numpy as np

Initialize only the last 3 qubits

initialized_qubits = [1, 2, 3]

Set the initial state, remember that the sum of
amplitudes-squared

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

268 Executing Circuits Using Qiskit Aer

must equal 1

qc_init2.initialize([0, 1, 0, 1, 0, 1, 0, 1] /
np.sqrt(4), initialized_qubits)

Add a barrier so it is easier to read

qc_init2.barrier(range(4))

Measure qubits, decompose and draw circuit

qc_init2.measure(range(4), range(4))

qc_init2.decompose()

qc_init2.draw()

This results in the following circuit, which initializes the state of the q_1 to q_3
qubits, while all the other qubits that are initialized remain in the ground/zero state:

Figure 10.3 – Initialization of the last three qubits
Here our 3-qubit initialized state is set to |001 , |011 , |101 , |111 . However, since
we are executing a 4-qubit circuit, and we have initialized the last 3 qubits, our
results should include the fourth qubit (q0), which would append a 0 to the least
significant bit.

4. Let's run the experiment and see whether the initial state of the partial qubits
is successful:

Execute the circuit and print results and histogram

result = execute(qc_init2, backend_simulator).result()

counts = result.get_counts(qc_init2)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the differences between the Aer simulators 269

print(counts)

plot_histogram(counts)

As expected, our results are as follows:
{'0010': 252, '1010': 270, '0110': 249, '1110': 253}

We also get the following output graph:

Figure 10.4 – Results of initialized quantum circuit
As we can see, the results are exactly as we expected them to be. Notice that the
least significant bit (the bit on the far right) is always set to 0 as it was not one of the
initialized qubits. The other thing to take note of is that the other bits are exactly as
we expected, |0010 , |0110 , |1010 , |1110 , where the bold indicates the initialized
bits and if you combine them all together, they will provide the
results displayed.

5. Now that we have initialized a circuit, we can apply any gates as needed. The only
difference is that the gates applied to the circuit after initialization will then be
applied to the initialized state of each qubit, rather than the initialized state |0 . Let's
test this out by adding a NOT (X) gate to all the qubits. This should result in all the
values being flipped:

Create a 4-qubit circuit

qc_init_x = QuantumCircuit(4, 4)

Import numpy

import numpy as np

Initialize the last 3 qubits, same as before

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

270 Executing Circuits Using Qiskit Aer

initialized_qubits = [1, 2, 3]

qc_init_x.initialize([0, 1, 0, 1, 0, 1, 0, 1] /

np.sqrt(4), initialized_qubits)

Add a barrier so it is easier to read

qc_init_x.barrier(range(4))

Include an X gate on all qubits

for idx in range(4):

 qc_init_x.x(idx)

Measure and draw the circuit

qc_init_x.measure(range(4), range(4))

Decompose the circuit down a level

qc_init_x.decompose()

Draw the completed circuit

qc_init_x.draw()

This results in the following circuit. Notice the initialized qubits are as before, only
after the X gates on all qubits that we have added just before measuring. This should
result in all bits flipping from 0 to 1, and vice versa:

Figure 10.5 – Initialized quantum circuit with X gates applied to all qubits before measuring

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the differences between the Aer simulators 271

6. Let's execute the circuit and display the results using the following code:

Execute and get counts

result = execute(qc_init_x, backend_simulator).result()

counts = result.get_counts(qc_init_x)

print(counts)

plot_histogram(counts)

This results exactly as expected: the results are based on the initialized state,
followed by the NOT gates being applied on all qubits:

{'1001': 246, '1101': 254, '0001': 262, '0101': 262}

We also get to see the following graph:

Figure 10.6 – Results of initialized circuit with X gate applied to all qubits

The Qasm simulator's ability to be very flexible and configurable means that creating
custom circuits with the ability to initialize qubit states is quite an advantage. We will see
this in more detail later in Chapter 13, Understanding Quantum Algorithms.

Now that we are familiar with the Qasm simulator, let's move on to the statevector
simulator and see what unique features we have available.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

272 Executing Circuits Using Qiskit Aer

Running circuits on the statevector simulator
The statevector simulator, similar to the Qasm simulator, allows you to initialize and
execute a quantum circuit. There are of course some distinct differences, one of which
is that it returns the state vector of the quantum circuit by executing a single shot. This
allows you to capture a snapshot of the state vector so you can, in some sense, calculate
or observe the expected results on the qubits. We will also leverage some of the Qiskit
visualization tools to help display the state information of the qubits and the quantum
circuit. We will follow the next steps to do so:

1. To begin, let's create a simple one-qubit circuit and add a Hadamard gate to it so we
have a qubit in a superposition:

Construct quantum circuit

qc = QuantumCircuit(1)

Place qubit in superposition

qc.h(0)

qc.draw()

The result of this is as follows, where we have a single qubit in a superposition, that
is, a complex linear combination of |0 and |1 :

Figure 10.7 – Single qubit circuit with a Hadamard gate

2. Next, we want to see the state vector representation of the circuit. Before coding it,
let's review the mathematics around it. We know that each basis state is represented
by state vectors, such as the following for the |0 state:

|0⟩ = [10]

Similarly, the |1 state can be represented by a state vector as follows:

|1⟩ = [01]

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the differences between the Aer simulators 273

3. The initial state of a qubit is |0 . The Hadamard gate generally applies the Hadamard
matrix to the current state of the qubit. Therefore, if a Hadamard gate is applied to
a qubit in the state |0 , the operation would be as follows:

H|0⟩

= 1
√2

[1 1
1 −1] [10]

=

[

 1
√2

1
√2

1
√2

− 1
√2]

[10]

Multiplying the matrix by the vector results in the following:

H|0⟩ =

[

 1
√2
1
√2]

= [0.707
0.707]

4. Now, let's execute our circuit using the state vector simulator and output the state
vector values:

Select the Statevector simulator from the Aer provider

simulator = Aer.get_backend('statevector_simulator')

Execute the circuit

result = execute(qc, simulator).result()

Get the state vector and display the results

statevector = result.get_statevector(qc)

statevector

From the results we can obtain the state vector of the quantum circuit by simply
extracting it from the Job object, in this case, result.get_statevector().

This should result in the following output which correctly matches our expected
results where the amplitudes are exactly 1

√2
 . Furthermore, if we square the

amplitudes, the results will provide us with the probability of obtaining a 0 or
a 1, as indexed in the values of the array, respectively:

array([0.70710678+0.j, 0.70710678+0.j])

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

274 Executing Circuits Using Qiskit Aer

5. Let's extend this by adding another qubit in superposition:

Construct quantum circuit

qc = QuantumCircuit(2)

Place both in superposition

qc.h(0)

qc.h(1)

qc.draw()

The result of this circuit is similar to the previous, just an addition of an
added qubit:

Figure 10.8 – Two qubits in superposition

6. Let's execute this circuit using the state vector simulator and print out the results of
our state vector:

Execute the circuit using the state vector simulator

result = execute(qc, simulator).result()

Extract the state vector of the circuit from the
results

statevector = result.get_statevector(qc)

Output the state vector values

statevector

This results in the following output, which represents equal amplitudes for all 4
possible outcomes, |00 , |01 , |10 , and |11 :

array([0.5+0.j, 0.5+0.j, 0.5+0.j, 0.5+0.j])

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the differences between the Aer simulators 275

Here, if we square each of the values to obtain the probability measurements, we
will see that each has a 25% probability of being correct. Recall that all probabilities
must equal 1.

7. Finally, let's entangle the qubits and see what the state vector results would be when
applying a Hadamard gate to the first qubit:

Construct quantum circuit

qc = QuantumCircuit(2)

Place the first qubit in superposition

qc.h(0)

Entangle the two qubits together using a CNOT gate,

where the first is the control and the second qubit is
the target

qc.cx(0, 1)

Execute the circuit on the state vector simulator

result = execute(qc, simulator).result()

Obtain the state vector of the circuit

statevector = result.get_statevector(qc)

Output the state vector values

statevector

The state vector results are as expected, with equal amplitude values for 00 and 11,
and no values for the states 01 and 10:

array([0.70710678+0.j, 0.+0.j, 0.+0.j, 0.70710678+0.j])

8. We can also seek the aid of the visualization tools to help illustrate the state
vector results as follows for the circuit we just executed. We will add the plot state
vector library:

Display state vector

plot_state_city(statevector)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

276 Executing Circuits Using Qiskit Aer

The results are the same values we have seen earlier, only here we can see the
amplitudes of both the real (left) and imaginary (right) components. When we
square the amplitudes of our result, we will get a 50% probability for the 00 and 11
states, which is what we see in the following state vector plot:

Figure 10.9 – State vector plot with real (left) and imaginary (right) components
The state vector plot isn't the only visualization tool we have available. Another
great tool available is the Qiskit QSphere. This plots the state vector onto a
two-dimensional graph and includes unique visualization features that allow you to
identify the state vector information of your circuit.

9. Let's plot the same state vector results and compare it with the earlier state
vector plot:

Import the qsphere class

from qiskit.visualization import plot_state_qsphere

%matplotlib inline

Create quantum circuit

qc = QuantumCircuit(1)

Place the qubit in a superposition state

qc.h(0)

Execute the circuit on the statevector simulator

backend = Aer.get_backend('statevector_simulator')

job = execute(qc, simulator).result()

Display the QSphere with results from the previous cell

plot_state_qsphere(statevector)

Let's review the state vector results and how they are displayed in the QSphere:

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the differences between the Aer simulators 277

First, notice the vectors point to |0 and |1 with the spheres at the end of each
vector having equal diameters. This is to illustrate that there is an equal probability
that the result will either be a 0 or 1, hence they are in superposition as expected.

Next, the color of each sphere matches the color of the phase wheel located
at the bottom right of the QSphere. This indicates that each vector is in phase
(0°). The results here match the expected equation we derived earlier, where

H|0⟩ = 1
√2

(|0⟩ + |1⟩) :

Figure 10.10 – QSphere representation of the state vector in phase

10. Let's do something interesting by introducing a phase shift. As we have seen in the
preceding screenshot, the vector moves from |0 to |+ in phase (0°) when we apply
the Hadamard gate. We'll now include a Z gate, also known as a phase gate, which
rotates the vector by an angle of around the z axis. As before, we'll review the
mathematics first to confirm what we should expect to see. Recall earlier how we
described the effects of applying the Hadamard gate when the state vector originates
from |0 . The following applies the Hadamard gate to the |1 state:

H|1⟩

= 1
√2

[1 1
1 −1] [01]

=

[

 1
√2

1
√2

1
√2

− 1
√2]

[01]

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

278 Executing Circuits Using Qiskit Aer

Multiplying the matrix with the vector results produces the following:

H|1⟩ =

[

 1

√2
− 1

√2]

= [0.707
−0.707]

11. We will create a circuit originating from the |1 state and apply the H gate on it to
confirm the preceding vector results:

Create a quantum circuit

qc = QuantumCircuit(1)

Rotate the state from |0 to |1 by applying an X gate
qc.x(0)

Place qubit in a superposition from the |1 state
qc.h(0)

Execute the circuit on the state vector simulator

job = execute(qc, simulator).result()

Extract the state vector results and plot them onto the
QSphere

plot_state_qsphere(job.get_statevector(qc))

The resulting QSphere now has the same probability, however, since the rotation
originated from the |1 state, it is now at the |−⟩ side, therefore out of phase by ,
which we can confirm by observing the following phase color chart:

Figure 10.11 – A superposition state that is also out of phase by an angle of

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the differences between the Aer simulators 279

12. Now, let's try the same thing, this time originating from the |0 state:

Create a quantum circuit

qc = QuantumCircuit(1)

Place qubit in a superposition from the |0 state
qc.h(0)

Apply a Z (phase) gate, to rotate it by an angle
around the Z axis

qc.z(0)

Execute the circuit on the state vector simulator

job = execute(qc, simulator).result()

Plot the results onto the QSphere

plot_state_qsphere(job.get_statevector(qc))

The results, as we can see, are the same – our vector is out of phase by an angle of :

Figure 10.12 – A state vector in superposition and out of phase by
We can see that the state vector representation illustrates what we see
mathematically, which is the following in this case:

H|1⟩ = 1
√2

(|0⟩ − |1⟩)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

280 Executing Circuits Using Qiskit Aer

From the preceding equation, the negative value represents the out-of-phase
component. We will see later on how various quantum algorithms leverage this in
order to take advantage of the effects of interference in Chapter 13, Understanding
Quantum Algorithms.

Now that we know how to obtain and visualize the final state vector of our circuit, next
we will look at how we can obtain the unitary matrix of our circuit by leveraging the
unitary simulator.

Running circuits on the unitary simulator
The unitary simulator provides the construction of the unitary matrix, U, of the
circuit. The unitary simulator builds out the unitary matrix by stepping through the
circuit and applying each gate to the initial state of the circuit. As described in the API
documentation, the semantic validations will verify the constraints of the Qobj and
backend options, which are as described as follows:

• The number of shots is set to 1, so only a single shot will be run to calculate the
unitary matrix.

• The circuit cannot contain any resets or measurements.

• The number of qubits must fit into the local memory allocated for this purpose.

• No noise models can be applied.

• If the circuit contains any the preceding constraints, it will raise an AerError.

We will leverage the same circuit we created earlier for the state vector example to run
through our unitary simulator so we can compare and contrast the results:

1. First, let's validate what we should expect to see mathematically. As we will be
applying a single Hadamard gate, it should be fairly simple to determine the unitary
matrix. Starting from the initial state, we will apply an H gate to the circuit:

H = 1
√2

[1 1
1 −1]

=

[

 1
√2

1
√2

1
√2

− 1
√2]

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the differences between the Aer simulators 281

2. Now, we will run our circuit on the unitary matrix, where we will create a quantum
circuit and add a Hadamard gate, then set the simulator to the unitary simulator
provided by Aer. We should expect to see the same result:

Create a quantum circuit and add a Hadamard gate

qc = QuantumCircuit(1)

qc.h(0)

Set the simulator to the UnitarySimulator from the Aer
provider

simulator = Aer.get_backend('unitary_simulator')

Execute the circuit on the unitary simulator

result = execute(qc, simulator).result()

Extract the unitary matrix from the results

unitary = result.get_unitary(qc)

Print out the unitary matrix representation of the
circuit

print("Unitary of the circuit:\n", unitary)

Your unitary results should match the results we calculated earlier; you can ignore
the significantly small numbers in the imaginary component:

Unitary of the circuit:

 [[0.70710678+0.00000000e+00j 0.70710678-8.65956056e-
17j]

 [0.70710678+0.00000000e+00j -0.70710678+8.65956056e-
17j]]

3. Now, let's add a Z gate after the H gate:

Create a new circuit, adding an H gate followed by a Z
gate

qc = QuantumCircuit(1)

qc.h(0)

qc.z(0)

Execute the circuit on the unitary simulator

result = execute(qc, simulator).result()

Retrieve the unitary matrix from the results

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

282 Executing Circuits Using Qiskit Aer

unitary = result.get_unitary(qc)

Print the unitary matrix representation of the circuit

print("Unitary of the circuit:\n", unitary)

qc.draw()

This will produce the following unitary matrix representation of the quantum
circuit we created:

Unitary of the circuit:

 [[0.70710678+0.00000000e+00j 0.70710678-8.65956056e-
 17j]

 [-0.70710678+0.00000000e+00j 0.70710678-8.65956056e-
 17j]]

This will also give us the following circuit diagram:

Figure 10.13 – 2-gate circuit applying an H gate followed by a Z gate
We can confirm this using a bit of linear algebra. One thing to note is that when
we apply gates on a circuit and visualize them, we generally apply them from left to
right, as illustrated in the preceding circuit diagram where we see the H gate first,
followed by the Z gate.

4. However, when calculating the unitary matrix, we place the unitary matrices of
each gate we add from right to left. For example, for this circuit, we will calculate
the unitary matrix in the ZH = U manner, where U is the unitary matrix solution.
Let's calculate this vector now:

ZH

= 1
√2

[1 0
0 −1] [1 1

1 −1]

= 1
√2

 [1 1
−1 1]

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the differences between the Aer simulators 283

As you can see from the preceding equation, we have now confirmed that it is the
same result we received from the unitary simulator for this circuit.

As with the previous simulators, we can also initialize the unitary simulator with a
given unitary matrix. Let's use the results from the previous example as our initial
unitary matrix:

Create a quantum circuit

qc_init = QuantumCircuit(1)

Set the initial unitary using the result from the
previous

example.

opts = {"initial_unitary": np.array([[1, 1],

 [-1, 1]]/
np.sqrt(2))}

Execute and obtain Unitary matrix of the circuit

result = execute(qc_init, simulator, backend_
options=opts).result()

Retrieve the unitary matrix from the result

unitary = result.get_unitary(qc_init)

Print the unitary matrix results representing the
circuit

print("Unitary of the circuit:\n", unitary)

The results from the initialized circuit are now the same as the previous circuit,
without the need to add any of the gates used to generate this unitary matrix:

Unitary of the circuit:

 [[0.70710678+0.j 0.70710678+0.j]

 [-0.70710678+0.j 0.70710678+0.j]]

We've seen how the unitary simulator is an exceptional component to use should you wish
to experiment using a predefined unitary matrix.

We will now move on to the next section about running circuits on the last simulator.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

284 Executing Circuits Using Qiskit Aer

Running circuits on the pulse simulator
The pulse simulator can be used to simulate many parts of a quantum system such as the
dynamics of the controls, or the circuit used to generate the controls, specified by pulse
Schedule objects. Furthermore, by using PulseSystemModel the physical system itself
can be simulated when executing pulse schedules.

In this section, we will create a pulse schedule, which is a set of instructions to run on a
quantum computer. We will create a simple sin wave made up of 64 time slots and use this
to generate a sample pulse that we will insert into our schedule to run on drive channel
0, which applies it to qubit 0. Once the pulse schedule is created, we will assemble the
schedule using the pulse simulator as the backend.

Finally, we will generate PulseSystemModel from the actual quantum system backend,
ibmq_armonk, to run the pulse model object on the pulse simulator. This will simulate
running the schedule on the ibmq_armonk system and returning the results to print out:

Import the PulseSystemModel

from qiskit.providers.aer.pulse import PulseSystemModel

Import Pulse classes needed to generate a schedule

from qiskit.pulse import Play, DriveChannel

from qiskit.pulse import Schedule, Waveform

Import numpy and generate the sin sample values

import numpy as np

x = np.linspace(0,2*np.pi,64)

data = np.sin(x)

Generate a SamplePulse

sample_pulse = Waveform(data, name="sin_64_pulse")

Create a schedule

schedules = Schedule(name='pulse_sample_schedule')

Operate on the first qubit

qubit_idx = 0

Insert the sample pulse

schedules = schedules.insert(0, Play(sample_pulse,
DriveChannel(qubit_idx)))

Instantiate the PulseSimulator

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the differences between the Aer simulators 285

from qiskit.providers.aer import PulseSimulator

backend_sim = PulseSimulator()

Assemble schedules using PulseSimulator as the backend

pulse_qobj = assemble(schedules, backend=backend_sim)

Set the system model by replicating the ibmq_armonk backend

armonk_backend = provider.get_backend('ibmq_armonk')

system_model = PulseSystemModel.from_backend(armonk_backend)

Run simulation on a PulseSystemModel object and print results

results = backend_sim.run(pulse_qobj, system_model)

print(results.qobj())

The results are the same as if you were to run the scheduled pulses on the modeled
backend. In the following example, we modeled the ibmq_armonk system:

Pulse Qobj: 306d72c5-ebd5-4923-96a8-f1359f03b12f:

Config: {'init_qubits': True,

 'meas_level': 2,

 'meas_lo_freq': [inf],

 'meas_return': 'avg',

 'memory': False,

 'memory_slot_size': 100,

 'memory_slots': 1,

 'parametric_pulses': [],

 'pulse_library': [{'name':
'2f613389417215751c42c82118155cdf2abc

 51325c3c997a5c836d970b0ddd64',

 'samples': array([0.00000000e+00+0.j,
 9.95678466e-02+0.j, 1.98146143e-01+0.j,

 2.94755174e-01+0.j, 3.88434796e-01+0.j,
 4.78253979e-01+0.j,

 5.63320058e-01+0.j, 6.42787610e-01+0.j,
 7.15866849e-01+0.j,

 7.81831482e-01+0.j, 8.40025923e-01+0.j,
 8.89871809e-01+0.j,

 9.30873749e-01+0.j, 9.62624247e-01+0.j,

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

286 Executing Circuits Using Qiskit Aer

 9.84807753e-01+0.j,

 9.97203797e-01+0.j, 9.99689182e-01+0.j,
 9.92239207e-01+0.j,

 9.74927912e-01+0.j, 9.47927346e-01+0.j,
 9.11505852e-01+0.j,

 8.66025404e-01+0.j, 8.11938006e-01+0.j,
 7.49781203e-01+0.j,

 6.80172738e-01+0.j, 6.03804410e-01+0.j,
 5.21435203e-01+0.j,

 4.33883739e-01+0.j, 3.42020143e-01+0.j,
 2.46757398e-01+0.j,

 1.49042266e-01+0.j, 4.98458857e-02+0.j,
 -4.98458857e-02+0.j,

 -1.49042266e-01+0.j, -2.46757398e-01+0.j,
 -3.42020143e-01+0.j,

 -4.33883739e-01+0.j, -5.21435203e-01+0.j,
 -6.03804410e-01+0.j,

 -6.80172738e-01+0.j, -7.49781203e-01+0.j,
 -8.11938006e-01+0.j,

 -8.66025404e-01+0.j, -9.11505852e-01+0.j,
 -9.47927346e-01+0.j,

 -9.74927912e-01+0.j, -9.92239207e-01+0.j,
 -9.99689182e-01+0.j,

 -9.97203797e-01+0.j, -9.84807753e-01+0.j,
 -9.62624247e-01+0.j,

 -9.30873749e-01+0.j, -8.89871809e-01+0.j,
 -8.40025923e-01+0.j,

 -7.81831482e-01+0.j, -7.15866849e-01+0.j,
 -6.42787610e-01+0.j,

 -5.63320058e-01+0.j, -4.78253979e-01+0.j,
 -3.88434796e-01+0.j,

 -2.94755174e-01+0.j, -1.98146143e-01+0.j,
 -9.95678466e-02+0.j,

 -2.44929360e-16+0.j])}],

 'qubit_lo_freq': [inf],

 'shots': 1024}

Header: {'backend_name': 'pulse_simulator', 'backend_version':
'0.6.1'}

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Generating noise models 287

Experiments:

Pulse Experiment:

Header:

{'memory_slots': 1, 'name': 'pulse_sample_schedule'}

Config:

{}

 Instruction: 2f613389417215751c42c82118155cdf2abc51325c3
 c997a5c836d970b0ddd64

 t0: 0

 ch: d0

Try running a few samples from the pulse library, which can be found in qiskit.
pulse.pulse_lib and in Chapter 8, Programming with Qiskit Terra.

Now that we have a better understanding of the various simulators and the differences
between them, we'll use them to simulate some of the noise we get when running a circuit
on a real quantum device. You've also learned the various options and parameters each
simulator has available to you so you can leverage each one in multiple ways to obtain
various results, such as count and state vector information, from the provided quantum
circuit. This will help simulate the results from circuits where noise models affect the
outcome, as opposed to the results from running on an ideal, noiseless simulator.
So, let's generate the noise models in the next section.

Generating noise models
Noise models are used to represent various noise effects that cause errors in quantum
circuits. The origin of the noise stems from many sources within the quantum system.
As the current devices are for near term future, the amount of errors on a device could be
significant based on the quantum circuit executed on them.

In this section, we will review the various types of errors that can affect a qubit, gates,
and readouts. We will also learn how to generate noise models either based on the
configuration information from the real devices, or noise models created by ourselves,
with which we can simulate the real devices using the simulator. We'll begin by
understanding the various types of noise that can be found on a quantum system:

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

288 Executing Circuits Using Qiskit Aer

1. We'll create a simple circuit, add some arbitrary gates and measurement operators,
and execute it on an ideal simulator, with no errors:

from qiskit.tools.visualization import plot_histogram

Create a 2-qubit circuit

qc = QuantumCircuit(2, 2)

Add some arbitrary gates and measurement operators

qc.h(0)

qc.cx(0, 1)

qc.measure([0, 1], [0, 1])

Execute the circuit on the qasm simulator

result = execute(qc, Aer.get_backend('qasm_simulator')).
result()

Obtain and print results

counts = result.get_counts()

Plot the count results on a histogram

plot_histogram(counts)

The results from this circuit on an ideal simulator are as follows. Notice we only
obtain two values; 00 and 11:

Figure 10.14 – Results from an ideal simulator with no effects of noise

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Generating noise models 289

2. Now we will execute the same circuit on an actual device instead of a simulator:

Execute the same circuit on a real quantum computer

result = execute(qc, provider.get_backend('ibmq_
valencia')).result()

Obtain and print results

counts = result.get_counts()

plot_histogram(counts)

The results are very similar to that of the earlier execution on the simulator, only
this time, notice there are some errors in the results. Rather than only obtaining
results of 00 and 11, we see a few instances of 01 and 10. These are the effects of
backend noise on the results of the circuit:

Figure 10.15 – Results from a quantum computer with slight noise effects

3. Now let's do something interesting. Let's create a noise model based on the
properties of a specific backend device. Aer's NoiseModel provides the ability to
do this with a simple method call.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

290 Executing Circuits Using Qiskit Aer

In this following code snippet, we will generate a noise model based on ibmq_
valencia and its properties, coupling_map, and the available basis gates. When
executing the quantum circuit, we will provide the noise model, coupling_map,
and basis gates. This way, when executing the quantum circuit on the simulator, it
will simulate the results as experiencing the same effects that would occur when
running on the circuit on a real device, noise and all:

Import the NoiseModel

from qiskit.providers.aer.noise import NoiseModel

Obtain the backend to simulate

backend = provider.get_backend('ibmq_valencia')

Create the noise model based on the backend properties

noise_model = NoiseModel.from_backend(backend)

Get coupling map from backend

coupling_map = backend.configuration().coupling_map

Get basis gates from noise model

basis_gates = noise_model.basis_gates

Execute the circuit on the simulator with the backend
properties,

and generated noise model

result = execute(qc, Aer.get_backend('qasm_simulator'),

 coupling_map=coupling_map,

 basis_gates=basis_gates,

 noise_model=noise_model).result()

Obtain and print results

counts = result.get_counts()

plot_histogram(counts)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Generating noise models 291

The following plot of the results of the preceding code, as you can see, are not as
ideal as before. We can observe a few errors here:

Figure 10.16 – Results from a simulator with noise effects based on a specified backend

Now that we are able to simulate the effects of noise from a backend system onto a
simulator, let's develop an understanding of what the cause is of some of these
noise effects.

Understanding decoherence (T1 and T2)
When executing quantum circuits on a real device, there are various effects that can
cause errors in our computations. In this section, we will review some of those effects,
so that when you're generating or building your noise models, you will have a better
understanding as to how they affect each qubit.

Decoherence is defined as the loss of quantum coherence due to a quantum system's
physical interaction with its environment. Decoherence effects each qubit in many varying
ways, one of which is when each qubit starts in a |0 ground state, and we operate on
the qubit to move it from the |0 state to the |1 state. For example, we say the qubit has
transitioned from the ground state, |0 , to the excited state, |1 . An analogy of this is to
think of yourself sitting peacefully and perfectly at rest. This peaceful relaxed moment is
you in the ground state.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

292 Executing Circuits Using Qiskit Aer

Then, imagine someone jumping out of nowhere and screaming at you. You're
immediately startled as your heart rate jumps up and your adrenaline kicks in. This is you
now in the excited state. Now, after telling the person who startled you to never do that
again, you manage to catch your breath and get your heart rate down. You begin to relax
and get your body back down to the grounded state it was in before. The time required
to change from the excited state to the grounded state is, coincidentally, called the energy
relaxation time.

The relaxation time, denoted as T1, is the time constant of the longitudinal loss (oriented
along the z axis) of the signal intensity. Another decoherence effect is that of dephasing,
denoted as T2, where the phase information spreads out across widely so that the phase
information is lost. An example of this is if we set the qubit to the |+ state, the dephasing
time is a decay constant time where the initial state decays down to a mixed state of |+
and |−⟩ , where it is difficult to predict the state of the system.

There are two ways to measure T1 and T2 decoherence times. To measure T1, you would
apply a series of pulses separated by a fixed time delay and capture the statistical results
of the state as it moves from |0 to |1 . Rabi oscillations are generally used to provide the
pulses that are then measured over time.

To measure T2, you would set the state of the qubit to |+ or |−⟩ , and then apply pulses
at particular sequences to apply a phase rotation. After applying a particular sequence
of pulses over time, the state should return to its original position, that is, |+ or |−⟩ . If
dephasing occurs, then the result will have a lower probability of returning to its original
starting position. This technique of measuring T2 is called a spin echo.

Now that we are a bit more familiar with the sources of noise, let's shift our discussion
to the contributors to decoherence and how they vary based on their sources. There
are generally two source types; intrinsic and extrinsic. Intrinsic noise, often regarded
as generic in nature, originates from sources within the system such as temperature,
or defects within the system, so essentially, materials or defects. Extrinsic noise
originates from environmentally coupled systems such as wave interference, vibrations,
electromagnetic fields, and others.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Generating noise models 293

Let's run a quick example of thermal relaxation on a pair of qubits. In the following
example, we will define our T1 and T2 values and apply them to a set of basis gates for
all qubits. We'll then run a sample circuit with these thermal relaxation errors to see the
difference. The circuit that we will create and execute will be the same one we created
earlier and ran on a simulator, so we can compare and contrast the results:

Initialize your T1 and T2 values

t1 = 0.0125

t2 = 0.0025

Apply the T1 and T2 to create the thermal relaxation error

from qiskit.providers.aer.noise import thermal_relaxation_error

t_error = thermal_relaxation_error(t1, t2, 0.01)

Add the errors to a noise model

and apply to all basis gates on all qubits

noise_model = NoiseModel()

noise_model.add_all_qubit_quantum_error(t_error, ['id', 'u1',
'u2', 'u3'])

Print out the noise model

print(noise_model)

#Create the same 2-qubit quantum circuit as before

qc_error = QuantumCircuit(2,2)

qc_error.h(0)

qc_error.cx(0,1)

qc_error.measure(range(2), range(2))

Set the simulator

simulator = Aer.get_backend('qasm_simulator')

Apply the noise model we created to the execution method

result = execute(qc_error, simulator, shots=1024, basis_
gates=noise_model.basis_gates, noise_model=noise_model).
result()

Obtain results and print

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

294 Executing Circuits Using Qiskit Aer

counts = result.get_counts(qc_error)

Plot the result counts on a histogram

plot_histogram(counts)

The NoiseModel output provides a description of the noise model by indicating which
basis gates are available, which gate instructions would be affected by the noise, and which
basis gates errors are applied to the qubits:

NoiseModel:

 Basis gates: ['cx', 'id', 'u1', 'u2', 'u3']

 Instructions with noise: ['id', 'u1', 'u3', 'u2']

 All-qubits errors: ['id', 'u1', 'u2', 'u3']

As you can see, the results after executing this circuit on the simulator with the generated
noise are not quite the same as before. In the earlier case, without errors, we had a very
close 50/50 split between 00 and 11. However, as you can see in the following screenshot,
the result is more of a 75/25 split between 00 and 11 respectively. This of course is due to
the thermal relaxation error we added to the simulator, thus causing much of the results
to encounter a relaxation from the excited state to the ground state, as illustrated in the
following plot:

Figure 10.17 – Results on a simulator with thermal relaxation errors

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building your own noise model 295

Both T1 and T2 are environmental effects that act upon the qubits and their ability to
maintain their states. Other effects that contribute to the overall noise of a system are
those contributed by the gates that manipulate the qubits. Let's take a look at a few of
those now.

Understanding single-gate, multi-gate, and readout
errors
Single-gate errors and multi-gate errors are generally those introduced when a qubit is
operated upon by the various gates on the system. These errors are based on probabilities
that the gate applied to the qubit may not operate exactly as expected. For example, if
we apply a 5% gate error probability to a single-qubit gate such as a NOT gate, then the
result of the operation has a 5% probability of not resulting in the expected value. The
Aer library has a list of noise model methods to choose from, including Pauli error,
depolarizing error, amplitude damping error, and many more for us to use.

Single-gate and multi-gate errors can be applied to all qubits at once using the add_all_
qubit_quantum_error() method contained in the NoiseModel class. This method
applies a quantum error object to the noise model for the specified basis gates, which is
then applied to all qubits. The first argument is the quantum error, and the second is the
list of basis gates to apply the error to.

Readout errors are those that occur when a measurement and acquisition is triggered
to read out the value of the qubit. During the operations of measuring and acquiring
the signal from the qubit, errors can exist that may interfere with the results of the qubit
measurement. The NoiseModel class also has methods available to add readout errors to
the noise model.

Let's build our own noise model with single-qubit, multi-qubit, and readout errors on a
circuit to observe the effects of these errors on our quantum circuit.

Building your own noise model
There may be times where you wish to build your own custom noise models. Whether it's
to generate specific errors to test your error-mitigation methods or to create something
resembling a specific device, having the ability to customize your own noise model is a
handy feature to have available.

In the following steps, we will create single- and multi-qubit errors, along with readout
errors. The single-qubit error will have an amplitude dampening error, the multi-qubit
error will have a depolarizing error, and the readout error will be applied to one of the two
qubits in the circuit:

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

296 Executing Circuits Using Qiskit Aer

1. We'll begin by defining the single- and multi-qubit probability error values, followed
by initializing and setting the depolarizing errors. First to the single qubit, and then
to the multi-qubit error:

Import the error classes and methods

from qiskit.providers.aer.noise import depolarizing_error

from qiskit.providers.aer.noise import ReadoutError

Single and multi-qubit probability error

single_qubit_gate_p = 0.25

multi_qubit_gate_p = 0.1

Apply the depolarizing quantum errors

single_error = depolarizing_error(single_qubit_gate_p, 1)

multi_error = depolarizing_error(multi_qubit_gate_p, 2)

2. Next, we will create our NoiseModel object and add both the single- and multi-
qubit errors. The single qubit error will be assigned to the basis gate u2, and the
multi-qubit error will be assigned to the CNOT (cx) gate:

Add the single and multi-qubit errors to the noise
model

noise_model = NoiseModel()

noise_model.add_all_qubit_quantum_error(single_error,
['u2'])

noise_model.add_all_qubit_quantum_error(multi_error,
['cx'])

Print out the noise model

print(noise_model)

3. We'll now print out the NoiseModel to confirm. As we can see from the output of
the noise model, we have a list of all basis gates available, a list of instructions that
have been assigned noise, and a list of all the basis states that will affect all of the
qubits in our circuit:

NoiseModel:

 Basis gates: ['cx', 'id', 'u2', 'u3']

 Instructions with noise: ['u2', 'cx']

 All-qubits errors: ['u2', 'cx']

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building your own noise model 297

4. Next, let's include some readout errors. Readout errors are defined in the Qiskit API
documentation as follows:

Classical readout errors are specified by a list of assignment probabilities vectors
P(A|B), where A is the recorded classical bit value, and B is the true bit value returned
from the measurement.

This means that the probabilities of the expected values will be recorded and used to
apply readout errors based on the probability values we pass in as arguments to the
noise model.

The equation for a single-qubit readout probability vector is defined as follows:
P(A|B)
= [P(A|0), P(A|1)]

When constructing the ReadoutError class, P(A|B) is provided as the argument.
For our example, we will provide the probability of 0 given 1 as 0.7, and the
probability of 1 given 0 as 0.2. We will also add our readout error to the noise
model and print out the results, as illustrated in the following code:

Set the readout error probabilities for 0 given 1, & 1
given 0,

p0_1 = 0.7

p1_0 = 0.2

p0 = 1 - p0_1

p1 = 1 - p1_0

Construct the ReadoutError with the probabilities

readout_error = ReadoutError([[p0, p0_1], [p1_0, p1]])

Apply the readout error to qubit 0.

noise_model.add_readout_error(readout_error, [0])

Print the noise model

print(noise_model)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

298 Executing Circuits Using Qiskit Aer

We will see the addition of some instructions and listings of qubits in the result.
The first line specifies Basis gates, and the following line is the list of
Instructions with noise added to them. Notice that it now includes the
measure instruction. Next, we see the Qubits that have been specified for a
particular noise – in this case, we added the readout error to qubit 0. Next, we see
which basis gates have all errors applied. This is the same since we still have the
depolarized errors applied in this noise model. Finally, we have Specific qubit
errors, which now also includes the measure readout error applied to qubit 0:

NoiseModel:

 Basis gates: ['cx', 'id', 'u2', 'u3']

 Instructions with noise: ['u2', 'cx', 'measure']

 Qubits with noise: [0]

 All-qubits errors: ['u2', 'cx']

 Specific qubit errors: [('measure', [0])]

Now that we have our noise model complete and are able to customize the types and
amounts of impact the specified errors will contribute, we'll continue by creating a
quantum circuit. We'll add our custom noise model and execute it on the Qasm simulator
to see the results.

Executing quantum circuits with custom
noise models
We'll create our standard circuit out of a Hadamard and CNOT circuit, which, as we know
from earlier, will result in equal probabilities of 00 and 11. Let's now run it with our noise
model and see what results we get and compare them:

Create a simple 2 qubit circuit

qc_error = QuantumCircuit(2,2)

Place in superposition and entangle

qc_error.h(0)

qc_error.cx(0,1)

Measure the qubits to the classical bits.

qc_error.measure(range(2), range(2))

Now that we have our circuit created, we'll add our custom noise model.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Executing quantum circuits with custom noise models 299

Adding custom noise models to our circuits
We'll begin by obtaining the Qasm simulator, calling the execute method and including
the usual arguments, namely, circuit, backend, and the number of shots. We'll also include
the noise model information. Similar to how we included a thermal relaxation noise
model earlier, we will provide the noise model basis_gates, and noise_model. This
will bind the errors that we customized to the basis gates and qubits, causing the results to
include noise, as shown in the following code:

Get the Qasm Simulator

simulator = Aer.get_backend('qasm_simulator')

Set the backend parameters, including our noise model, and
execute

result = execute(qc_error, simulator, shots=1024, basis_
gates=noise_model.basis_gates, noise_model=noise_model).
result()

Obtain the result counts and print

counts = result.get_counts(qc_error)

plot_histogram(counts)

The results as you can see in the following plot are now not as ideal as before. We can
observe various errors here, caused by noise. First and foremost, our expected results of 00
and 11 are no longer visible. In this sense, we see that qubit 0 has a higher probability of 1,
which therefore causes the probability results to be higher for the values 01 and 11. This is
caused by both the depolarization and readout errors that are both applied to qubit 0. We
also see that the results affected qubit 1 because of the depolarization error, as we have an
output of 10:

Figure 10.18 – Result with effects from our custom noise model on a quantum circuit

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

300 Executing Circuits Using Qiskit Aer

The advantage to all this noise is that you have an insight as to the cause of this noise
based on the type of noise we included, and the amount of noise applied to a specified
qubit(s). This allows you to simulate certain noise effects should you wish to work on
some noise-mitigating techniques.

By applying noise and understanding its effects, you can create noise-mitigating
techniques and verify the results on a simulator. By doing this you can test various
combinations of noise effects, which can help minimize the error rate on some algorithms,
and therefore increase the performance of the quantum computer. We will look at noise-
mitigating techniques in the next chapter.

Summary
In this chapter, we covered various simulators. You now have the skills to leverage various
simulators to simulate running circuits on a quantum computer and obtain specific
content from the circuits, such as state vectors, a unitary matrix, and any scheduled pulses.

We also covered various visualization techniques. The skills that you have gained will help
you visualize the various pieces of information from the simulator, such as visualizing the
state and phase information of a qubit using the QSphere and plotting state vector graphs.
And finally, we looked into the noise models that Aer provides by either extracting the
noise from an existing quantum computer, or creating our own noise models and applying
them to the simulators.

In the next chapter, we will learn how to characterize and mitigate noise using Ignis.
This will allow us to optimize the performance of the quantum computer and increase
its computational power. We will also learn how to measure a quantum computer's
computational power and performance by understanding what Quantum Volume is and
how to measure it.

Questions
1. Can you list all the simulators found in the Aer library?

2. How many total simulators are there altogether in Qiskit? (Hint: This includes Basic
Aer, Aer, and IBM Quantum Provider.)

3. Create a QSphere representation of a qubit on the negative y axis, creating the state
|0 − 𝑖𝑖 |1

√2
 , using only a single Hadamard gate along with the phase gates.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Questions 301

4. What must the initialized probability value of a circuit be in order to be valid?

5. Can you use the QSphere to visualize both the phase and probability information of
a qubit?

6. How would you apply a noise function to qubits 2, 3, and 4 of a 5-qubit system?

7. What would happen if you set the depolarization error values close to 1?

8. If you applied a readout error equally to all qubits, what results would you expect,
and why?

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

11
Mitigating Quantum

Errors Using Ignis
Ignis, as described in the Qiskit library, is a framework that contains various
functionalities, such as characterization, verification, and mitigation. What this means
is that it provides the ability to characterize the effects of noise on the system, verify the
performance capabilities of the various gates and circuits, and calibrate circuits to generate
routines that lessen the errors in your results.

This chapter will cover these topics by taking you through the process of characterizing
and estimating the decoherence of the qubits from noise models. This will help you
visualize and mitigate errors after measuring your results. We'll also work on mitigating
quantum errors from the results we get back from the quantum devices using some of
the features from the Ignis library.

In quantum systems, this noise originates from various sources: thermal heat from
electronics, decoherence, dephasing, connectivity, or signal loss. Here, we will see how
to measure the effects of noise on a qubit, and how to mitigate readout error noise to
optimize our results. In the end, we will compare and contrast the differences to better
understand the effects and ways to mitigate them.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

304 Mitigating Quantum Errors Using Ignis

The following topics will be covered in this chapter:

• Generating the noise effects of relaxation

• Estimating T1 decoherence time

• Generating the noise effects of dephasing

• Estimating T2 decoherence time

• Estimating T2* (T2 star) decoherence time

• Visualizing the T1, T2, and T2* characterization

• Mitigating readout errors using measurement calibrations

In this chapter, we will cover one of the challenges faced by most systems: noise. By
the end of the chapter, you will know how to generate test circuits used to estimate
the characteristics of each qubit, measure varying noise effects, such as relaxation and
dephasing, and visualize the characteristics of each qubit. Finally, you'll learn how to
apply error mitigation techniques to help minimize the effects of noise, based on the
measurement characteristics analyzed by the test circuit results.

Technical requirements
In this chapter, it is expected that you have some understanding of the effects of noise on
electronic systems and how to simulate them on a quantum computer. This chapter will
cover some refreshers on simulating noise; however, the recommendation for you is to
review Chapter 10, Executing Circuits Using Qiskit Aer, to get an understanding of how to
simulate noise on a simulator from the configuration information of a quantum computer.
This will help you understand an end-to-end scenario to simulate and mitigate errors
on a simulator based on a quantum computer. The results of the simulation will provide
information that will be leveraged to mitigate your circuit results after executing your
circuit on a quantum computer.

Here is the source code we'll be using throughout this book: https://github.
com/PacktPublishing/Learn-Quantum-Computing-with-Python-and-
IBM-Quantum-Experience. Here is the link for the CiA videos: https://bit.
ly/35o5M80

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-Quantum-Experience
https://github.com/PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-Quantum-Experience
https://github.com/PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-Quantum-Experience
https://bit.ly/35o5M80
https://bit.ly/35o5M80

Generating noise effects of relaxation 305

Generating noise effects of relaxation
We learned in Chapter 10, Executing Circuits Using Qiskit Aer, that we can generate various
noise models that are based on the configuration of a specified quantum computer. After
the configuration information is extracted, we can then apply any one of an array of error
functions to a simulator, which will reproduce similar error effects to what we would get
from a quantum computer.

In this section, we will expand on that to learn how to execute test circuits and visualize the
results from those tests. This will help us to understand how various noise models affect the
results over time. The two effects we will review here are the two most common issues found
in near-term quantum systems: relaxation and dephasing. These are critical errors as they
can affect the quantum state information, which would result in erroneous responses.

Later on in this chapter, we will also look at readout errors, which is another common
source that originates when the system is applying a measurement pulse, while in parallel,
listening in on the acquisition channel. The results and conversion from analog to digital
can introduce many errors as well.

Generating noise models and test circuits
We will start by testing one of the most common and important effects of noise in
quantum systems: decoherence. The three main types of decoherence are T1, T2, and T2*.
Each of these represents a type of decoherence effect on the qubit. In order to analyze
the effects of relaxation (T1) and dephasing (T2/T2*), we will first need to create the test
circuits for each of the three. These test circuits will help us run experiments to analyze the
characterization of the device. We will begin by looking at each one of these individually
so as to understand the differences between them and how to mitigate them when they
are run on a real quantum device.

In order to properly analyze the decoherence effects, we will need to run various circuits
with a specific number and types of gates. Lucky for us, Qiskit Ignis includes a method to
generate these test circuits for us. For decoherence testing, we will use t1_circuits,
t2_circuits, and t2star_circuits, which will generate the T1, T2, and T2*
circuits, respectively. Let's take a quick moment to review what the decoherence of
each one means as we create the test circuits.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

306 Mitigating Quantum Errors Using Ignis

Generating and executing T1 test circuits
T1, as we covered in Chapter 10, Executing Circuits Using Qiskit Aer, is often referred to
as the relaxation time. Relaxation time refers to the time it takes the energy of a qubit to
decay from the excited state (|1) back down to its ground state (|0) as illustrated in the
following graph, where P(1) indicates the probability of 1, and P(0) is the probability of 0.
The T1 time is defined as the value when P(t) = 1/e (refer to the following diagram):

Figure 11.1 – T1 defined as the decay time where the probability of the energy state reaches 1/e

In order to determine the amount of time to reach T1 for any qubit, we will need to create
a test circuit that places the qubit in an excited state, |1 . This we know how to do by
simply applying an X gate to the qubit.

Next, we will need to wait a certain amount of time before measuring the qubit. One way
to do this is to insert an identity gate with a fixed gate time. This is a simple circuit to create
manually; however, the challenge is to determine how many identity gates you need to
include and how scalable that process is. Lucky for us, we have the t1_circuits method!

This method allows us to define how many gates to include in each circuit and the gate
time for each identity gate, as well as list which qubits to apply to these gates. In the
following code sample, we will generate an array of quantum circuits, each with an X gate
and the number of identity gates we specified. We will also provide the gate times for the
identity gates. Let's create a new IQX Qiskit notebook and insert the following code,
which will load in additional helper math, plot, Aer, and Ignis libraries:

Import plot and math libraries

import numpy as np

import matplotlib.pyplot as plt

Import the noise models and some standard error methods

from qiskit.providers.aer.noise import NoiseModel

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Generating noise effects of relaxation 307

from qiskit.providers.aer.noise.errors.standard_errors import
amplitude_damping_error, phase_damping_error

Import all three coherence circuits generators and fitters

from qiskit.ignis.characterization.coherence import t1_
circuits, t2_circuits, t2star_circuits

from qiskit.ignis.characterization.coherence import T1Fitter,
T2Fitter, T2StarFitter

Now that we have our Ignis libraries loaded, we can use them to generate the test circuits,
as illustrated in the following cell. We will generate a list of the number of identity gates to
include in each test circuit and include the gate time for each identity gate. The qubit we
will measure for T1 will be the first qubit.

We will use the same name of the parameters listed in the t1_circuits API
documentation – num_of_gates, gate_time, and qubits – where the array length
of the number of gates relates to the number of test circuits we will create, which in this
case is 18, where out of which 12 are linearly spaced and 6 are manually defined entries.
In the following code, we will define the variables to generate an array of test circuits:

Generate the T
1
 test circuits

Generate a list of number of gates to add to each circuit

using np.linspace so that the number of gates increases
linearly

and append with a large span at the end of the list (200-
4000)

num_of_gates = np.append((np.linspace(1, 100, 12)).astype(int),
np.array([200, 400, 800, 1000, 2000, 4000]))

#Define the gate time for each Identity gate

gate_time = 0.1

Select the first qubit as the one we wish to measure T
1

qubits = [0]

Generate the test circuits given the above parameters

test_circuits, delay_times = t1_circuits(num_of_gates,
gate_time, qubits)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

308 Mitigating Quantum Errors Using Ignis

The number of I gates appended for each circuit

print('Number of gates per test circuit: \n', num_of_gates,
'\n')

The gate time of each circuit (number of I gates * gate_time)

print('Delay times for each test circuit created,
respectively:\n', delay_times)

After generating an array of test circuits and their respective delay times, this will print out
the number of gates that will be appended to each test circuit and the delay times for each
circuit, respectively, as follows:

Number of gates per test circuit:

 [1 10 19 28 37 46 55 64 73 82 91 100
 200 400 800 1000 2000 4000]

Delay times for each test circuit created, respectively:

 [1.0e-01 1.0e+00 1.9e+00 2.8e+00 3.7e+00 4.6e+00 5.5e+00
 6.4e+00 7.3e+00 8.2e+00 9.1e+00 1.0e+01 2.0e+01 4.0e+01
 8.0e+01 1.0e+02 2.0e+02 4.0e+02]

Let's confirm a few things about the test circuits we created. We know that in total, the
number of test circuits created should be 18. Then, we will draw the first circuit, which
should include the X gate to set the qubit in the excited state, followed by one identity
gate before the measurement:

print('Total test circuits created: ', len(test_circuits))

print('Test circuit 1 with 1 Identity gate:')

test_circuits[0].draw()

The results confirm our expectation of 18 test circuits and a single identity gate:

Total test circuits created: 18

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Generating noise effects of relaxation 309

The following circuit diagram shows test circuit 1 with one identity gate:

Figure 11.2 – Test circuit 1, with an X gate and a single identity gate

With the gate time of the identity gate set to 0.1, we know that this is a fairly quick result.
Let's look at the next test circuit to see how it increases:

print('Test circuit 2 with 10 Identity gates:')

test_circuits[1].draw()

In the second test circuit, we see that we now have 10 identity gates, which increases our
delay time from 0.1 in the first circuit to 1.0 in the second circuit. The following circuit
diagram shows you test circuit 2 with 10 identity gates:

Figure 11.3 – Test circuit 2, with an X gate and 10 identity gates

Next, we will generate a simulator with an amplitude damping error applied to the identity
gate on qubit 0:

Set the simulator with amplitude damping noise

Set the amplitude damping noise channel parameters T
1
 and

Lambda

t1 = 20

lam = np.exp(-gate_time/t1)

Generate the amplitude dampling error channel

error = amplitude_damping_error(1 - lam)

noise_model = NoiseModel()

Set the dampling error to the ID gate on qubit 0.

noise_model.add_quantum_error(error, 'id', [0])

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

310 Mitigating Quantum Errors Using Ignis

Next, we will execute all our test circuits on the simulator with the generated noise model:

Run the simulator with the generated noise model

backend = Aer.get_backend('qasm_simulator')

shots = 200

backend_result = execute(test_circuits, backend, shots=shots,
noise_model=noise_model).result()

Let's review our results. The first test circuit, which comprised only one identity gate,
should, along with the noise model effects, display a very small error in our results:

Plot the noisy results of the largest (last in the list)
circuit

plot_histogram(backend_result.get_counts(test_circuits[0]))

As expected, we observe a very small, almost insignificant result of the amplitude decay
down to the ground state:

Figure 11.4 – The results from the first test circuit, with an insignificant error rate

Now, let's take a look at the other side and view the results from the last test circuit. Here,
we have a total of 4,000 gates; the results, as we will see, are quite significant:

Plot the noisy results of the largest (last in the list)
circuit

plot_histogram(backend_result.get_counts(test_
 circuits[len(test_circuits)-1]))

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Estimating T1 decoherence times 311

As you can see in the histogram, the results are entirely back to the ground state,
indicating that we have surpassed the T1 time and that the execution of our last test
circuit has resulted in every count being reverted back down to the ground state:

Figure 11.5 – Results from test circuit 18 with 4,000 identity gates, with significant errors

Now that we have created and executed our test circuits for T1, we can analyze and use
fitters to estimate the T1 time based on the results of our test circuits.

Estimating T1 decoherence times
Fitters are used to estimate the T1 time based on experiment results from t1_circuits
executed on noisy devices. The estimate is based on the probability formula of measuring
1 from the following equation, where A, T1, and B are unknown parameters:

f(t) = A e−t/T1 + B

Since we set the T1 value earlier when we defined the noise model of the qubit as 20, let's
assume for now that we do not know that and initialize the value to some percentage value
away from the actual value. The T1Fitter class has a few parameters that it needs in
order to characterize the qubit. We will start by initializing the values for a, t1, and b:

Initialize the parameters for the T1Fitter, A, T
1
, and B

param_t1 = t1*1.2

param_a = 1.0

param_b = 0.0

This will initialize our t1, a, and b parameters, which we will use to generate T1Fitter.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

312 Mitigating Quantum Errors Using Ignis

Next, we will generate T1Fitter by providing the following parameters:
• backend_result: The results from our test circuits on the backend

• Xdata: The delay times for the test circuits

• qubits: The qubits that we wish to use to measure T1

• fit_p0: The initial values to set A, T1, and B, respectively (these must be entered
in order)

• fit_bounds: The tuple representing the lower and upper bounds for the
parameters to fit

• time_unit: The unit of the delay time in xdata

Referencing the parameters from the test circuits, we can generate and plot the results of
T1Fitter, as follows:

Generate the T1Fitter for our test circuit results

fit = T1Fitter(backend_result, delay_times, qubits,

 fit_p0=[param_a, param_t1, param_b],

 fit_bounds=([0, 0, -1], [2, param_t1*2, 1]))

Plot the fitter results for T
1
 over each test circuit's delay

time

fit.plot(0)

The result will plot the relaxation decay of the qubit over the delay times of each test
circuit. You can see the decay results as follows:

Figure 11.6 – T1Fitter estimated results, where T1 is estimated to be at 20.6 microseconds for qubit 0

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Generating the noise effects of dephasing 313

In this section, you have generated T1 test circuits, executed them with amplitude
dampening noise models on a backend device, and characterized the results to estimate
T1. Characterizing other qubits can be done as well by simply listing the other qubit
indices; in this example, we chose to characterize qubit [0]. Let's now characterize T2
and T2* on a qubit. The steps you will see are very similar.

Generating the noise effects of dephasing
T2 and T2* are similar in that they are both representing the dephasing of a qubit.
The difference is in the experimental process they conduct to measure each circuit.
Determining the decay time of T2* is conducted by placing the qubit in a superposition
state using a Hadamard gate, then after some delay time, you apply another Hadamard
gate and measure. This should result in the qubit returning to the originating state – in
this case, the grounded state. This experiment is referred to as the Ramsey experiment.

To determine the decay time of T2, we will perform a similar experiment as we did for
T2*, by first placing the qubit in a superposition state. The difference is that rather than
waiting for some delay time before applying another Hadamard gate before measuring,
you instead wait until half the delay time and then apply either an X or Y rotation, then
wait until the second half delay time is complete before taking the measurement. This
experiment is referred to as the Hahn echo experiment.

In all, both experiments will measure the decay time of the dephasing where the
expectation of the result is random. In the next section, we will generate the T2 circuits
based on the Ramsey experiment.

Generating and executing T2 circuits
T2 is often referred to as the dephasing time. Rather than looking at the relaxation of a
qubit from the excited state to the ground state, the dephasing of a qubit has more to
do when the state is in a linear combination of the two states. Let's step through what is
meant here by dephasing:

1. When a qubit transitions from the ground state, |0 , to the superposition state,
|+ , after we run a Hadamard gate on the qubit, we expect that by adding another
Hadamard gate, the qubit will then return to the ground state, |0 .

2. However, while the qubit is in the |+ state, this is where dephasing could be a
problem. The problem lies in that over time, the qubit may or may not be in the |+
or |−⟩ state, but rather in some angle around the Z axis away from the |+ state.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

314 Mitigating Quantum Errors Using Ignis

3. This would then render the qubit unpredictable when applying another Hadamard
gate if our expectation is for the qubit to return to the ground state but instead is
found in the excited state, |1 .

In order to test this, we will need a test circuit that will first place the qubit from the initial
state, |0 , into the superposition state, |+ . This, as we know, can be done with a Hadamard
gate. Then, we can place an identity gate to increase the delay time between each step. Just
as before, we will import a few libraries and define the parameters for the t2_circuits
generator method by entering the following:

Import the thermal relaxation error we will use to create our
error

from qiskit.providers.aer.noise.errors.standard_errors import
thermal_relaxation_error

Import the T2Fitter Class and t2_circuits method

from qiskit.ignis.characterization.coherence import T2Fitter

from qiskit.ignis.characterization.coherence import t2_circuits

Now that we have the necessary classes and method, we'll define our t2_circuits
parameters in the next cell:

num_of_gates = (np.linspace(1, 300, 50)).astype(int)

gate_time = 0.1

Note that it is possible to measure several qubits in
parallel

qubits = [0]

t2echo_test_circuits, t2echo_delay_times = t2_circuits(
num_of_gates, gate_time, qubits)

The number of I gates appended for each circuit

print('Number of gates per test circuit: \n', num_of_gates,
'\n')

The gate time of each circuit (number of I gates * gate_time)

print('Delay times for T2 echo test circuits:\n',
t2echo_delay_times)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Generating the noise effects of dephasing 315

Running the preceding cell results in the following number of gates and delay times to
generate our T2 test circuits:

Number of gates per test circuit:

 [1 7 13 19 25 31 37 43 49 55 62 68 74 80 86
 92 98 104 110 116 123 129 135 141 147 153 159 165 171 177 184

 190 196 202 208 214 220 226 232 238 245 251 257 263 269 275
 281 287 293 300]

Delay times for T2 echo test circuits:

 [0.2 1.4 2.6 3.8 5. 6.2 7.4 8.6 9.8 11. 12.4 13.6
 14.8 16.

 17.2 18.4 19.6 20.8 22. 23.2 24.6 25.8 27. 28.2 29.4 30.6
 31.8 33.

 34.2 35.4 36.8 38. 39.2 40.4 41.6 42.8 44. 45.2 46.4 47.6
 49. 50.2

 51.4 52.6 53.8 55. 56.2 57.4 58.6 60.]

As in the previous test circuit example, let's examine the first test circuit to confirm that
the gates are where we expect to see them:

Draw the first T
2
 test circuit

t2echo_test_circuits[0].draw()

This naturally results in the following test circuit. Note that the Y rotation gate is located
in the middle:

Figure 11.7 – T2 test circuit with Hadamard rotations on each end
and a Y rotation in the middle of the identity gates

This is the Ramsey experiment test circuit we will be running. The other 49 test circuits we
generated are increasing in size and will eventually surpass the T2 time, which produces
random results.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

316 Mitigating Quantum Errors Using Ignis

Let's now generate our T2 noise model to include in the simulator. This will allow us
to include only a thermal_relaxation_error model in the circuit, so when we
execute our circuit, this is the only noise effect. We will then store our noise results in
the t2_echo_backend_result variable:

We'll create a noise model on the backend simulator

backend = Aer.get_backend('qasm_simulator')

shots = 400

set the t2 decay time

t2 = 25.0

Define the T
2
 noise model based on the thermal relaxation

error model

t2_noise_model = NoiseModel()

t2_noise_model.add_quantum_error(thermal_relaxation_error(np.
inf, t2, gate_time, 0.5), 'id', [0])

Execute the circuit on the noisy backend

t2echo_backend_result = execute(t2echo_test_circuits, backend,
 shots=shots,

 noise_model=t2_noise_model,
 optimization_level=0).result()

Next, let's plot our results, starting with the first test circuit with the shortest delay time,
and then the last test circuit with most delay time:

plot_histogram(t2echo_backend_result.get_counts(t2echo_test_
 circuits[0]))

This results in an expected ground state, which is denoted as follows, where we have a 99%
probability of measuring 0 (very minimal effects of dephasing time):

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Generating the noise effects of dephasing 317

Figure 11.8 – The first T2 test circuit executed on the noisy backend

Now, let's see the last test circuit's results:

plot_histogram(t2echo_backend_result.get_counts(t2echo_test_
 circuits[len(t2echo_test_circuits)-1]))

This, as we can see, has a fairly equal probability of either of the two basis states, which
indicates that we have far exceeded the dephasing time, T2 (exceeds the T2 dephasing time):

Figure 11.9 – The last T2 test circuit executed on the noisy backend

What we saw here is how, over time, we can see that the dephasing time greatly affects our
results. This dephasing time gets very problematic if not mitigated. Mitigating errors will
be described later in this section, Mitigating readout errors.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

318 Mitigating Quantum Errors Using Ignis

Estimating T2 decoherence times
We estimate the T2 time based on experiment results from t2_circuits executed on
noisy devices. The estimate is based on the probability formula of measuring 0 from the
following equation, where A, T2, and B are unknown parameters:

f(t) = A e−t/T2 + B

Finally, to estimate T2* and characterize the qubit with respect to the results, we will
leverage T2Fitter. To generate the T2Fitter class, we will use similar parameter
definitions as T1Fitter in the previous section, only this time, we will use the results
from the T2 test circuits:

Generate the T2Fitter class using similar parameters as the
T1Fitter

t2echo_fit = T2Fitter(t2echo_backend_result,
t2echo_delay_times, qubits, fit_p0=[0.5, t2, 0.5],
fit_bounds=([-0.5, 0, -0.5], [1.5, 40, 1.5]))

Print and plot the results

print(t2echo_fit.params)

t2echo_fit.plot(0)

plt.show()

The preceding code prints out the estimate values for A, T2, and B for qubit 0:

{'0': [array([0.52397653, 27.06685838, 0.47677457])]}

The previous code also plots the characterization of qubit 0, with an estimated value for T2
at 27.1 ms:

Figure 11.10 – Plot T2Fitter characterization of qubit 0, where T2 is estimated to be at 27.1 ms

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Estimating T2 decoherence times 319

Now, that we have completed characterizing T2 on qubit 0, let's look at the last
characterization example of T2*.

Generating and executing T2* test circuits
T2* is also referred to as the dephasing time of a qubit. As mentioned earlier, the difference
is in the experiment, where in the previous experiment for T2, we added an array of
identity gates before rotating the state of the qubit with a Y gate.

For T2*, we will generate test circuits that place the qubit in a superposition state and
then after some delay time, it will apply a linear phase gate, immediately followed by a
reversing the superposition back to the initial state. The test circuit will also include the
induced oscillation frequency on the phase gate. We'll create the test circuits using the
t2star_circuits method by creating it as described in the following cell:

50 total linearly spaced number of gates

30 from 10->150, 20 from 160->450

num_of_gates = np.append((np.linspace(1, 150, 30)).astype(int),
(np.linspace(160,450,20)).astype(int))

Set the Identity gate delay time

gate_time = 0.1

Select the qubit to measure T
2
*

qubits = [0]

Generate the 50 test circuits with number of oscillations set
to 4

test_circuits, delay_times, osc_freq = t2star_circuits(
num_of_gates, gate_time, qubits, nosc=4)

print('Circuits generated: ', len(test_circuits))

print('Delay times: ', delay_times)

print('Oscillating frequency: ', osc_freq)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

320 Mitigating Quantum Errors Using Ignis

This will produce the 50 test circuits, with the specified delay time for each identity gate
and the oscillating frequency for the phase gate:

Circuits generated: 50

Delay times: [0.1 0.6 1.1 1.6 2.1 2.6 3.1 3.6 4.2
4.7 5.2 5.7 6.2 6.7

 7.2 7.8 8.3 8.8 9.3 9.8 10.3 10.8 11.4 11.9 12.4 12.9
 13.4 13.9

 14.4 15. 16. 17.5 19. 20.5 22.1 23.6 25.1 26.6 28.2 29.7
 31.2 32.7

 34.3 35.8 37.3 38.8 40.4 41.9 43.4 45.]

Oscillating frequency: 0.08888888888888889

Let's confirm the first test circuit and see how many identity gates are generated:

print(test_circuits[0].count_ops())

test_circuits[0].draw()

As we can see, this generates one identity gate, followed by a phase gate, surrounded by
Hadamard gates:

Figure 11.11 – The first test circuit, comprising an H, I, Phase, and then another H gate

If we look at the second test circuit, we should expect to see six identity gates followed by a
phase gate, also surrounded by Hadamard gates:

print(test_circuits[1].count_ops())

test_circuits[1].draw()

We can now confirm that the T2* test circuits have been generated according to our
parameters:

OrderedDict([('barrier', 8), ('id', 6), ('h', 2), ('u1', 1),
('measure', 1)])

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Estimating T2 decoherence times 321

We can also confirm that we have the six expected identity gates, followed by a phase gate,
all of which are surrounded by Hadamard gates:

Figure 11.12 – The second test circuit, comprising an H, 6 Is, a Phase, and an H gate

These test circuits implement the Hahn echo experiment. Let's now execute these test
circuits on a noisy backend; this time we will use a phase damping error to generate our
noise model:

Get the backend to execute the test circuits

backend = Aer.get_backend('qasm_simulator')

Set the T
2
* value to 10

t2Star = 10

Set the phase damping error and add it to the noise model to
the Identity gates

error = phase_damping_error(1 - np.exp(-2*gate_time/t2Star))

noise_model = NoiseModel()

noise_model.add_quantum_error(error, 'id', [0])

Run the simulator

shots = 1024

backend_result = execute(test_circuits, backend, shots=shots,
noise_model=noise_model).result()

Let's view the first test circuit, which should have minimal effects of T2*:

Plot the noisy results of the shortest (first in the list)
circuit

plot_histogram(backend_result.get_counts(test_circuits[0]))

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

322 Mitigating Quantum Errors Using Ignis

As expected, this illustrates very minimal effects of T2*. As you can see, we have a 99%
probability of measuring 0, which is the expected result from this test circuit:

Figure 11.13 – Results of the first test circuit, with minimal T2* effects

We will review the results from the last test circuit. Due to the fact that this has the longest
delay time, we should see the maximum effect of T2*:

Plot the noisy results of the largest (last in the list)
circuit

plot_histogram(backend_result.get_counts(
test_circuits[len(test_circuits)-1]))

As expected, the results are now completely random:

Figure 11.14 – Results of the last test circuit, with maximum T2* effects

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Estimating the T2* dephasing time 323

We've successfully completed generating the T2* test circuits and obtained their results
from executing them on a noisy backend. Next, we will estimate the T2* dephasing time
and characterize the effects on qubit 0.

Estimating the T2* dephasing time
We will estimate the T2* dephasing time based on the experiment results from t2star_
circuits executed on a noisy device. We will use the probability formula of measuring 0
from the following equation, where A, T2*, f, , and B are unknown parameters:

The T2StarFitter parameters are the same, with the exception of the following:

• fit_p0: The initial values to the fit parameters – in order, A, T2*, f, , B.

• fit_bounds: The lower and upper bounds, respectively. Parameters in order: A,
T2*, f, , B

The following code will set the initial parameter values so that we can generate our
T2StarFitter and bounds:

Set the initial values of the T2StarFitter parameters

param_T2Star = t2Star*1.1

param_A = 0.5

param_B = 0.5

Generate the T2StarFitter with the given parameters and
bounds

fit = T2StarFitter(backend_result, delay_times, qubits,

 fit_p0=[0.5, t2Star, osc_freq, 0, 0.5],

 fit_bounds=([-0.5, 0, 0, -np.pi, -0.5],

 [1.5, 40, 2*osc_freq,
 np.pi, 1.5]))

Plot the qubit characterization from the T2StarFitter

fit.plot(0)

f(t) = Ae− t
T2∗ cos(2ft

+)
+ B

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

324 Mitigating Quantum Errors Using Ignis

The result from T2StarFitter is as we expected, where the oscillations seem to
de-phase down into an equal probability of 0 and 1 after 10.3 ms:

Figure 11.15 – T2* characterization of qubit 0, where T2* is estimated at 10.3 ms

Congratulations! You have just successfully characterized all three decoherence effects
on a qubit. Of course, we're not done yet! Characterizing the decoherence of a qubit
is important, but equally important is mitigating the errors. In the final section of this
chapter, we will review readout errors, which are errors based on the effects of measuring
and acquiring the results from the qubits. These readout errors are fairly common on
near-term quantum systems, so it is a good tool to have in your development toolbox.

Mitigating readout errors
Ignis has measurement filters that can be used to mitigate various types of errors, such as
measurements and tensors.

The measurement calibration is what we will use to mitigate measurement errors in
this section. The process begins by first generating a list of circuits, where each circuit
represents each of all the possible states of the qubits specified, then executing the circuits
on an ideal simulator, the results of which we will then pass into a measurement filter.
The measurement filter will then be used to mitigate the measurement errors. In the
following example, we will first run the circuits on a simulator without any noise models.
Then, we will create a noise model that will be applied to all the qubits of the simulator.
Then we will execute the circuits on the noisy backend device, where we will then apply
the measurement filter to mitigate the errors as best we can. Finally, we will view the
results of the measurement filter and compare them to the original noisy results.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Mitigating readout errors 325

We'll begin by importing the necessary methods and classes from the Ignis mitigation
library, specifically the complete_meas_cal method and the CompleteMeasFitter
class. The first method, measurement calibration circuits, returns a list of circuits that
cover the full Hilbert space of the system. What this means is that if you have n qubits,
then all 2n basis states will generate a list of quantum circuits. The second is the complete
measurement fitter class, which initializes a measurement calibration matrix based on the
list of quantum circuits returned from executing the measurement calibration circuits to
generate a measurement correction fitter:

Import Qiskit classes

from qiskit.providers.aer import noise

from qiskit.tools.visualization import plot_histogram

Import measurement calibration functions

from qiskit.ignis.mitigation.measurement import
complete_meas_cal, CompleteMeasFitter

The parameters for each are as follows:

• complete_meas_cal:

qubit_list: The list of qubits to execute the measurement correction onto. If no
list is provided, then it will execute the measurement correction over all the qubits.

qr: Quantum registers or the size of the quantum register. If none is specified, then
it will create one.

cr: Classical registers or the size of the classical register. If none is specified, then it
will create one.

circlabel: A label to prefix the circuit name so as to uniquely identify it.

Returns: This returns two lists. The first is a list of calibration QuantumCircuits.,
while the second is a list of state labels for each calibration circuit.

• CompleteMeasFitter:

Results: The list of quantum circuits returned from running the complete_
meas_cal method. The class allows you to set the calibration matrix later, so it is
not required to construct.

state_labels: The list of state labels returned from the complete_meas_cal
method. The ordering of the state labels will be followed when generating the
measurement fitter.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

326 Mitigating Quantum Errors Using Ignis

qubit_list: The list of qubits to apply. If none are specified, then the qubit list
will be generated based on the first state label entry, state_labels[0].

Circlabel: If the qubits had a prefix label in the complete_meas_cal method.
The complete measurement fitter also includes some methods we can use that will allow
us to be a bit more flexible when generating our fitter, such as the following:

• add_data(new_results[,…]): This is to add the quantum circuit list results
from the complete measurement calibration.

• subset_fitter([qubit_sublist]): Generates a fitter object of a subset
from the original qubit list.

• readout_fidelity([label_list]): Generates the readout fidelity of
the calibration matrix based on the results from the complete measurement
calibration method.

Next, we will generate the complete measurement calibration circuits. We will generate
a five-qubit set so that we can use it on any of the five-qubit quantum computers. Then,
we will generate the calibration circuits using the complete_meas_cal method
with a prefix circuit label, mcal, followed by printing out the number of circuits, which
should equal 2n circuits, where n is equal to 5, in this case. Finally, we will draw any of the
calibration circuits returned. In this example, we will draw the last one, which represents
the value 11111:

Generate the calibration circuits

Set the number of qubits

num_qubits = 5

Set the qubit list to generate the measurement calibration
circuits

qubit_list = [0,1,2,3,4]

Generate the measurement calibrations circuits and state
labels

meas_calibs, state_labels = complete_meas_cal(qubit_list=qubit_
 list, qr=num_qubits, circlabel='mcal')

Print the number of measurement calibration circuits
generated

print(len(meas_calibs))

Draw any of the generated calibration circuits, 0-31.

In this example we will draw the last one.

meas_calibs[31].draw()

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Mitigating readout errors 327

The printed result is the total number of calibration circuits, 32, which the
complete_meas_cal method produces. This will create 32 circuits where each is
initialized according to the state levels, which would run from 00000 through 11111.
The following circuit diagram pertains to the last circuit, 11111, as follows:

Figure 11.16 – The last calibration circuit, representing value 11111

If you wish to see all the state labels, simply print them out, as follows:

state_labels

This results in listing out all the state labels from 00000 through 11111, which matches
the calibration circuit results.

Now that we have our calibration circuits, let's start by first executing it on a simulator so
that we can see what an ideal result is, meaning no noise effects or errors. Once we get our
results, we will generate the measurement fitter and print out the calibration matrix:

Execute the calibration circuits without noise on the qasm
simulator

backend = Aer.get_backend('qasm_simulator')

job = execute(meas_calibs, backend=backend, shots=1000)

Obtain the measurement calibration results

cal_results = job.result()

The calibration matrix without noise is the identity matrix

meas_fitter = CompleteMeasFitter(cal_results, state_labels,
circlabel='mcal')

print(meas_fitter.cal_matrix)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

328 Mitigating Quantum Errors Using Ignis

The result is the following calibration matrix, where the rows and columns represent the
measured states and the prepared states, respectively:

[[1. 0. 0. ... 0. 0. 0.]

 [0. 1. 0. ... 0. 0. 0.]

 [0. 0. 1. ... 0. 0. 0.]

 ...

 [0. 0. 0. ... 1. 0. 0.]

 [0. 0. 0. ... 0. 1. 0.]

 [0. 0. 0. ... 0. 0. 1.]]

Here, the diagonal values are all 1, and all the other fields are 0. This indicates that the
measured states correctly match the prepared states.

The measure fitter also includes a nice plot method to visualize the accuracy of the results.
To plot the calibration matrix, simply run the following:

meas_fitter.plot_calibration()

The results have a grayscale-based shading, where the darker cells indicate that the
accuracy is closer to 1, and the lighter cells indicate accuracy closer to 0, where 1
indicates a 100% match between the measured and prepared states . Due to the default
width of the following figure, the states listed across the top of the rendered calibration
matrix are difficult to read. However, what it indicates are the prepared states starting with
00000 on the left-most column, increasing along each column towards the final prepared
state, 11111:

Figure 11.17 – Plot representation of the measured and prepared state results

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Mitigating readout errors 329

Now let's run the same steps, but rather than using a simulator, let's run through an actual
quantum device. We will start by creating a circuit with five qubits and we'll place one
qubit in superposition and entangle it with all the other qubits:

Create a 5 qubit circuit

qc = QuantumCircuit(5,5)

Place the first qubit in superposition

qc.h(0)

Entangle all other qubits together

qc.cx(0, 1)

qc.cx(1, 2)

qc.cx(2, 3)

qc.cx(3, 4)

Include a barrier just to ease visualization of the circuit

qc.barrier()

Measure and draw the final circuit

qc.measure([0,1,2,3,4], [0,1,2,3,4])

qc.draw()

This results in the following circuit:

Figure 11.18 – A five-qubit test quantum circuit where all the
qubits are entangled with a qubit in superposition

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

330 Mitigating Quantum Errors Using Ignis

Next, we will get the least busy backend to execute our circuit. We will filter the results
to include only backend systems that have greater than or equal to five qubits, not a
simulator, and are in operational mode:

Obtain the least busy backend device, not a simulator

from qiskit.providers.ibmq import least_busy

Find the least busy operational quantum device with 5 or more
qubits

backend = least_busy(provider.backends(filters=lambda x:
x.configuration().n_qubits >= 4 and not x.configuration().
simulator and x.status().operational==True))

Print the least busy backend

print("least busy backend: ", backend)

This results in the least busy device available at the time it was executed. The results will
vary based on the devices available to you and their operational state. At the time of
writing, the backend result was ibmqx2.

Now that we have our backend, we can execute our circuit as follows:

Execute the quantum circuit on the backend

job = execute(qc, backend=backend, shots=1024)

results = job.result()

Next, we will extract the result counts from the noisy backend results, which have not yet
been mitigated. We will accomplish this by generating the measurement fitter filter, and
then we will apply the filter to our backend results. Finally, we will capture the filtered
result counts and compare the results between the filtered and non-filtered result counts:

Results from backend without mitigating the noise

noisy_counts = results.get_counts()

Obtain the measurement fitter object

measurement_filter = meas_fitter.filter

Mitigate the results by applying the measurement fitter

filtered_results = measurement_filter.apply(results)

Get the mitigated result counts

filtered_counts = filtered_results.get_counts(0)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Mitigating readout errors 331

Now, let's plot the noisy results from the backend:

plot_histogram(noisy_counts)

The result of this is the following; you can observe that we have the expected high
probability for 00000 and 11111. However, note that there are some very small results
that are not part of what is expected. These little results are due to the readout errors from
the quantum system:

Figure 11.19 – Results without readout error mitigation

Finally, let's plot the mitigated results from the backend:

plot_histogram(filtered_counts)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

332 Mitigating Quantum Errors Using Ignis

The results illustrate how the filters have significantly decreased the errors from the
previous noisy results such that only the expected values of 00000 and 11111 are
probable, and all the other values have diminished:

Figure 11.20 – Mitigated results from the backend

Congratulations! You have successfully mitigated noise from a quantum device.
Furthermore, you were able to also generate a list of calibration circuits that can be fitted
to any number of backend devices.

Summary
In this chapter, we covered some of the many effects that noise has on a quantum
computing system. We discovered how we can measure decoherence effects using fitters to
help visualize and test the quantum systems and calibrate the readout errors so as to apply
error mitigation to the noisy results of a system. Finally, we leveraged the filter to mitigate
the noisy results from a quantum device, which significantly reduced the errors.

In the next chapter, we will learn how to create quantum applications using the many
features available in Aqua, where we can then look at creating quantum algorithms, and
ultimately provide you with all the tools to create your own quantum algorithms and
quantum applications.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Questions 333

Questions
1. List the various characterizations of a qubit.

2. Which decoherence is analyzed using the Ramsey experiment?

3. What is the difference between relaxation and dephasing decoherence?

4. Which of the following is not a value for dephasing – T1, T2, or T2*?

5. What is the maximum number of qubits you can apply to a measurement filter?

6. What is the difference between T2 and T2*?

7. What do the rows and columns of a calibration matrix relate to?

8. What is the name of the effect when a qubit decays from the excited state to the
ground state?

Further reading
• Sutor, B., Dancing with Qubits, Packt Publishing: https://www.packtpub.

com/data/dancing-with-qubits

• Nielsen, M. & Chuang, I., Quantum Computation and Quantum Information,
Cambridge University Press: https://www.cambridge.org/us/academic/
subjects/physics/quantum-physics-quantum-information-
and-quantum-computation/quantum-computation-and-quantum-
information-10th-anniversary-edition

• Qiskit Textbook: https://qiskit.org/textbook

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/data/dancing-with-qubits
https://www.packtpub.com/data/dancing-with-qubits
https://www.cambridge.org/us/academic/subjects/physics/quantum-physics-quantum-information-and-quantum-computation/quantum-computation-and-quantum-information-10th-anniversary-edition
https://www.cambridge.org/us/academic/subjects/physics/quantum-physics-quantum-information-and-quantum-computation/quantum-computation-and-quantum-information-10th-anniversary-edition
https://www.cambridge.org/us/academic/subjects/physics/quantum-physics-quantum-information-and-quantum-computation/quantum-computation-and-quantum-information-10th-anniversary-edition
https://www.cambridge.org/us/academic/subjects/physics/quantum-physics-quantum-information-and-quantum-computation/quantum-computation-and-quantum-information-10th-anniversary-edition
https://qiskit.org/textbook

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

12
Learning about

Qiskit Aqua
All the Qiskit elements that we have covered so far have dealt with foundational circuits
that implement various quantum algorithms. Others covered simulators, generating
noise models, and mitigating errors. For researchers, it's a lot to ask them to learn all the
inner workings just to generate a quantum algorithm to use in their application. In fact,
it is rare to find those who want to wander down into the nuts and bolts of the quantum
algorithm they want to use. Generally, they would like to just get their data loaded into
an algorithm, execute it on a quantum system, obtain the results, and just continue with
their experiments. This is where Aqua, short for Algorithms for Quantum Applications,
comes into the big picture.

The following topics will be covered in this chapter:

• Understanding the components and their usability

• Using Aqua Utilities to simplify your work

• Familiarizing yourself with the quantum algorithms in Aqua

• Creating your first classical/quantum application

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

336 Learning about Qiskit Aqua

In this chapter, you will learn about the various modules available within Qiskit Aqua,
such as the quantum algorithms and components available to use with your projects. You'll
also learn about the various utilities that are available within Aqua to simplify creating and
integrating your quantum algorithms into your classical applications. Finally, you will put
all these resources together to build a classical/quantum application using Aqua.

Let's start off this chapter by understanding what the various Aqua sub-modules are and
their functionality with respect to creating quantum applications. At the time of writing,
there are five sub-modules within Aqua: Algorithms, Components, Circuits, Operators,
and Utilities (Utils).

Each of these submodules has a distinct purpose, but they are not all always dependent
of each other. What this means is you do not have to use the Circuits submodule in
order to use the Algorithms or Components submodules. These submodules can be used
independently or alongside each other – it all depends on the needs of your application
and how you wish to combine them to adhere to your application requirements. We'll
begin by covering the components and their functionality, as well as how they can be
leveraged to construct quantum algorithms.

Technical requirements
For this chapter, it is expected that you have an understanding of creating quantum
circuits and general application development using Python.

The following is the source code we'll be using throughout this book:
https://github.com/PacktPublishing/Learn-Quantum-Computing-
with-Python-and-IBM-Quantum-Experience.

Please visit the following link to check the CiA videos: https://bit.ly/35o5M80

Understanding the components and their
usability
Components in Aqua are generally parts of an algorithm that can be used interchangeably
in order to vary construction based on your needs and requirements. A simple analogy,
being a foodie myself, is cooking a bowl of pasta and meatballs.

To prepare this dish, you will need three components: pasta, meatballs, and sauce. Of
course, if you were to invite the top three chefs in the world to prepare a bowl of their
signature version of this dish, you would most likely get three distinct servings. For
example, there are a variety of pastas to choose from, such as angel hair, linguine, fettucine,
spaghetti, and more.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-Quantum-Experience
https://github.com/PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-Quantum-Experience
https://bit.ly/35o5M80

Understanding the components and their usability 337

Then, you have the meatballs, which can be of varying cuts of meat or sausages. And
finally, the sauce itself can contain an incredible number of varying spices and herbs.
And this doesn't even include other varieties, such as vegetarian or gluten-free selections.
Each of these varying pastas, meats, and spices are the components of your meal, and the
amount of the ingredients that are added to the dish and how it's prepared, cooked, and
garnished are unique.

How these varieties are prepared affect the taste, texture, and time to prepare of the dish.
The same can be said about the components of a quantum algorithm. Many components
are used to prepare or initialize states, and generating an algorithm could vary based on
the problem or performance required.

In this section, we will cover a few of the many components available in Aqua so that
you can become familiar with their varying usage and then leverage them as the building
blocks for your quantum algorithms. We'll begin with the initialize states component.

Initializing a fixed quantum state
Initializing states are generally used when a part of your algorithm expects a specific state
as a starting point, or in some cases a continuation from a pre-defined state, such as a
quantum circuit. So far, all the quantum states that have been used in this book had the
same zero/ground state as the initialized state.

This is where all the qubits are initialized to the |0 state. This is automatically done for us
when we first create a quantum circuit. However, if your algorithm is of the variational
form or iterates where the initialized state needs to be in a state other than the zero/
ground state, this is where the initialized state component comes in handy.

There are three initial state classes:

• Zero: This is the zero/ground state, where all states are initialized to the |0 state.

• VarFormBased: This is the variational form-based initial state.

• Custom: This is a customized initial state.

The Custom initial state class has the following parameters:

• num_qubits: This is an int value representing the number of qubits of the initial
state. The default is 1.

• state_vector: This is a complex or float valued vector that represents the
state that you wish to set. The vector size must be 2n, where n is the number of qubits.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

338 Learning about Qiskit Aqua

• state: This is a predefined state where the options are 'zero', 'random', and
'uniform', where 'zero' indicates you wish to prepare a zero/ground state,
'random' indicates a random state, and 'uniform' creates an equal uniform
probability distribution.

• circuit: This is a QuantumCircuit that represents the initial state. When this
is set, it will take precedence over both state and state_vector.

Let's create a custom initial state as this one has the most options and provides more
freedom, should you need more variety in your algorithm. Start by creating a new
notebook from the Quantum Lab. Now, follow these steps:

1. We'll begin by creating Custom states by using the predefined states of zero,
random, and uniform by setting the state parameter for each:

from qiskit.aqua.components.initial_states import Custom

init_state_0 = Custom(num_qubits=3, state='zero')

init_state_uniform = Custom(num_qubits=3,
state='uniform')

init_state_random = Custom(num_qubits=3, state='random')

2. This creates each initial state with three qubits each. Let's confirm this by calling the
construct_circuit method and drawing the results of each. We'll proceed in
order and start with the zero initial state:

qc0 = init_state_0.construct_circuit(mode='circuit')

qc0.draw()

This will render a three-qubit circuit initialized to zero as there are no operations in
the circuit at all, as shown in the following diagram:

Figure 12.1 – Custom initial state, zero

3. Now, let's repeat this process for the uniform initial state and construct and draw
the circuit:

qc1 = init_state_uniform.construct_circuit(mode='circuit')

qc1.draw()

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the components and their usability 339

As shown in the following diagram, each qubit has a Hadamard gate, represented
by the U2 basis gate, which initializes the state to a uniform superposition state of
uniform probability:

Figure 12.2 – Custom initial state, uniform

4. Finally, let's construct the circuit with the random initial state. This, of course, will
vary each time you run it, so the results shown here may be different, though the
number of qubits should be the same:

qc2 = init_state_random.construct_circuit(mode='circuit')

qc2.draw()

As shown in the following diagram, this results in a three-qubit circuit with the
basis gates necessary to represent a random state:

Figure 12.3 – Custom initial state, random

5. Finally, we can create a custom initial state from a quantum circuit. In this example,
we'll create our usual quantum circuit. Here, we can see that our Custom initial
state is created using circuit and not the state parameter, which could then
be reused as an initial state. This is very helpful if you need to initialize your
algorithms frequently:

Create the quantum circuit

num_qubits = 2

qc = QuantumCircuit(num_qubits)

qc.h(0)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

340 Learning about Qiskit Aqua

qc.cx(0,1)

Construct the Custom class based on the built quantum
circuit

q_component = Custom(num_qubits=num_qubits, circuit=qc)

q_component.construct_circuit().draw()

At the end, the Custom initialized state is based on the quantum circuit we created.
We confirmed this via the resulting circuit. As you can see, it is composed of the
basis gate, representing a Hadamard, followed by the Controlled-Not gate between
the first (control) and second (Target) qubit:

Figure 12.4 – Custom initial state, circuit

Initializing a state is good, should you need to use a quantum circuit as an initial state, as
you can very easily construct one without having to recreate a circuit each time. The same
can be derived using state vectors and variational forms. I have included some questions
in the Questions section for you to try out.

Aqua has many facets that allow you to easily work in other areas of research, such as
chemistry, finance, and optimization, to name a few. In the next section, we will look
into neural networks – neural network discriminators in particular.

Creating a neural network discriminator
Machine learning is a growing area in quantum computing. Researchers have been
looking at ways to leverage quantum computational techniques in various areas of
machine learning, such as generative adversarial networks and supervised learning
for regression and classification.

In this section, we will focus on the discriminator model as opposed to the generative
model. As a reminder, the discriminator model learns by using conditional probability
distribution, whereas the generative model learns via joint probability distribution.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a neural network discriminator 341

In this section, we will create a PyTorchDiscriminator class based on PyTorch.
This class contains various methods that will allow you to load your model and perform
a training step, based on the parameters of your discriminator. Let's get started:

1. First, we'll create a PyTorchDiscriminator class by specifying the number
of features (the dimension of the input data vector) and the dimension of the
discriminator's output vector. This prepares the discriminator class so that it can
load and provide other methods to simplify the connection between PyTorch
components and your quantum algorithm:

Import and create the PyTorchDiscriminator class

from qiskit.aqua.components.neural_networks import

PyTorchDiscriminator

Set the number data input and output dimension to 2.

py_torch_disc = PyTorchDiscriminator(n_features = 2,
n_out=2)

Now that you have created your PyTorchDisciminator class, you can load your
discriminator model.

2. To load your PyTorch discriminator model, simply point to the directory where
you have stored the model; PyTorchDiscriminator will do the rest:

Load the discriminator model, implements the
torch.load(dir)

discriminator_model = '/discriminator_model_directory'

py_torch_disc.load_model(discriminator_model)

The PyTorchDiscriminator class works as a wrapper that implements the
torch.model(directory) method.

3. Finally, if you wish to run a training step based on the discriminator parameters,
you can do so by simply mapping the parameters to the content of your training
data. Note that QuantumInstance is deprecated at the time of writing. Ensure
you read the latest information provided in the Qiskit API documentation
(https://qiskit.org/documentation/) to avoid warnings or errors:

Parameters are defined in the Qiskit API as follows:

###

data (tuple) – real_batch: torch.Tensor, Training data
batch.

generated_batch: numpy array, Generated data batch.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://qiskit.org/documentation/

342 Learning about Qiskit Aqua

weights (tuple) – real problem, generated problem

penalty (bool) – Indicate whether or not penalty
function is applied to the loss function.

quantum_instance (QuantumInstance) – Quantum Instance

#(depreciated)

shots (int) – Number of shots for hardware or qasm
execution.

Not used for classical network (only quantum ones)

###

result_dict = PyTorchDiscriminator.train(data, weights,
penalty, quantum_instance=quantum_instance, shots=None)

The preceding code will return the discriminator loss as a dict type, as well as
updated parameters.

PyTorchDiscriminator is not the only discriminator available – you also have a
NumPy-based discriminator, NumPyDiscriminator, that uses the same methods as
PyTorchDiscriminator, such as loading and training data. For those interested in
generators, don't feel like you're being left out. There is a QuantumGenerator class
that is a parameterized quantum circuit that's trained using the quantum generative
adversarial network (QGAN).

Now that we've looked at the various neural network components, we'll move on and look
at operators.

Implementing state function operators
State function operators, as defined in the Qiskit API, "are complex functions over a single
binary string (as compared to an operator, which is defined as a function over two binary
strings, or a function taking a binary function to another binary function)." There are
currently five state functions where each is defined by varying components:

• StateFn: This is the class used to represent state functions and measurements.

• CircuitStateFn: This is the class used to represent state functions and
measurements based on a QuantumCircuit initialized from the ground state |0 ,
which is stored in the QuantumCircuit class.

• DictStateFn: This is the class that's used to represent state functions and
measurements based on a lookup table stored in a Dict object.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a neural network discriminator 343

• VectorStateFn: This is the class that's used to represent state functions and
measurements based on a vector representation stored in a StateVector class.

• OperatorStateFn: This is the class that's used to represent state functions and
measurements based on a density operator stored in an OperatorBase class.

In this section, first, we'll implement CircuitStateFn, which we will define from a
quantum circuit. We'll then implement a few of the operator methods to illustrate the
various available functionalities:

1. Let's begin by defining a quantum circuit and importing the CircuitStateFn
class:

Import the CircuitStateFn class

from qiskit.aqua.operators.state_fns import
CircuitStateFn

Create the quantum circuit

qc = QuantumCircuit(2)

qc.h(0)

qc.cx(0,1)

2. Now, let's construct and print CircuitStateFn by using the quantum circuit
we created and setting the coefficient to 1. Since the state function is not a
measurement operator, we will set it to False:

Create the CircuitStateFn class with the quantum
circuit

csf = CircuitStateFn(primitive=qc, coeff=1,
is_measurement=False)

print(csf)

This prints out the circuit state function, as follows:

Figure 12.5 – Circuit state function generated by a quantum circuit

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

344 Learning about Qiskit Aqua

3. Now that we have a circuit state function, we can run a few operators on it. Let's
try out the equal operator to determine whether the two state function circuits are
equal. We'll create a second state function with a quantum circuit that is equal to
the first and compare the two:

Create a second quantum circuit with same width and
operators

qc2 = QuantumCircuit(2)

qc2.h(0)

qc2.cx(0,1)

Create the second circuit state function

csf2 = CircuitStateFn(primitive=qc2, coeff=1,

is_measurement=False)

Compare both circuit state functions using the equals
operator

print(csf.equals(csf2))

The preceding code will print out True, indicating the equality between operators.

4. Next, let's add this circuit state function to the first using the add operator:

Add the two circuit state functions together

added_csf = csf.add(csf2)

print(added_csf)

Since both circuit functions, cf1 and cf2, are the same, this will print out the
following circuit state functions using the multiplier:

Figure 12.6 – Adding two circuit state functions

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a neural network discriminator 345

5. We'll now create a third distinct quantum circuit and append it to the given circuit
state function:

Create a quantum circuit

qc3 = QuantumCircuit(2)

qc3.h(0)

qc3.cx(1,0)

Create a circuit state function from the quantum
circuit

csf3 = CircuitStateFn(primitive=qc3, coeff=1,

is_measurement=False)

print(added_csf.add(csf3))

This will print the following circuit, adding the three added functions:

Figure 12.7 – Adding three circuit state functions
The state function representation of the three circuit state functions shown in
the preceding diagram can be used to perform various operations such as tensor
products, scalar multiplication, and assign/bind circuit parameters.

In this section, we reviewed just a handful of the many components available to you via
Aqua to help you piece your quantum algorithm together. But of course, components, like
pasta ingredients, aren't all you need – you also need some cooking utensils to cook up
your dish. It's these utilities that we will cover in the next section.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

346 Learning about Qiskit Aqua

Using Aqua utilities to simplify your work
Aqua comes with a sizeable set of utilities that offer some great functionality that
simplifies generating your applications. In this section, we will implement a few utilities
that may be useful, particularly when integrating your quantum applications with classical
applications. We'll start with a simple converter from decimal into binary:

1. First, we'll import the utils module and convert the decimal number 6 into binary:

Import the utils module

from qiskit.aqua import utils

convert the number 6 from decimal to binary

binary_value = utils.decimal_to_binary(6,
max_num_digits=0)

print('Binary result: ', binary_value)

The preceding code will print out the binary result of the value 6:
Binary result: 110

2. Next, we need to create some random unitary values. This will take the specified
dimension value, N, as its argument to create a random N x N unitary matrix. This
can be especially useful if you want to apply filters to random data or generate some
ad hoc matrix to apply operators:

#Random Unitary matrix

random_unitary = utils.random_unitary(N=3)

print('Random Unitary result: \n', random_unitary)

The preceding code returns a random unitary matrix of dimension 3 x 3. The values
returned will vary from those illustrated in the following output, of course, as the
values are randomly generated:

Random Unitary result:

 [[0.64678233+0.02j 0.13467893+0.71j 0.03385166+0.22j]

 [0.26698073+0.35j 0.21738899-0.02j 0.15455118-0.85j]

 [0.24741634+0.56j 0.45574316-0.46j -0.05112698+0.43j]]

When creating large circuits, often, you will want to get a summary of the quantum
circuit that provides information about the circuit, particularly if you have more
than one quantum circuit to evaluate.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Aqua utilities to simplify your work 347

3. To simplify this, we can summarize circuits with a simple utility method. Let's
create an array of random quantum circuits and obtain the summary of each with
a single line of code:

Create an array of random quantum circuits

from qiskit.circuit.random import random_circuit

quantum_circuits = []

Append a group of random circuits

for x in range(2):

 quantum_circuits.append(random_circuit(3, 5,
 measure=True))

4. Now that we have an array of random quantum circuits, let's obtain a summary of
each circuit:

Obtain and print a summary of all the quantum circuits

circuits_summary = utils.summarize_circuits(quantum_
 circuits)

print(circuits_summary)

The preceding code results in the following summary. As stated earlier, keep in
mind that as these are random circuits, the summary will vary based on the circuits
that are generated:

Submitting 2 circuits.

===
===================

0-th circuit: 3 qubits, 3 classical bits and 11
operations with depth 6

op_counts: OrderedDict([('measure', 3), ('ccx', 2),
('cu1', 1), ('t', 1), ('cu3', 1), ('ry', 1), ('h', 1),
('cy', 1)])

1-th circuit: 3 qubits, 3 classical bits and 14
operations with depth 6

op_counts: OrderedDict([('measure', 3), ('rzz', 2), ('x',
2), ('u3', 2), ('s', 1), ('swap', 1), ('crz', 1), ('y',
1), ('t', 1)])

Average: 3.00 qubits, 3.00 classical bits and 12.50
operations with depth 6.00

===
===================

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

348 Learning about Qiskit Aqua

Information about circuits and converting data types is not all that you get with the
utils module.

5. There are also methods that can help you configure backend simulations. For
example, you can generate both a full and linear coupling map of qubits. Let's
start with a fully entangled set of five qubits:

Fully entangled coupling map

full_coupling_map = utils.get_entangler_map(map_
 type="full", num_qubits=5)

print('Full coupling map: ', full_coupling_map)

The result here is a fully entangled coupling map of five qubits, which creates a
topology where every qubit is connected directly to all the other qubits:

Full coupling map: [[0, 1], [0, 2], [0, 3], [0, 4], [1,
2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]]

6. We can also create a linear coupling map of all the qubits by simply updating the
map_type parameter:

Linearly entangled coupling map

lin_coupling_map = utils.get_entangler_map(map_
 type="linear", num_qubits=5)

print('Linear coupling map: ', lin_coupling_map)

As shown in the previous example, this creates a coupling map where each qubit is
only connected to its adjacent qubit:

Linear coupling map: [[0, 1], [1, 2], [2, 3], [3, 4]]

7. Finally, you can also validate your coupling map by setting the parameters based
on the constraints you specify. In this example, we will constrain the coupling map
to five qubits and allow double entanglement, which means that each qubit can be
entangled by more than one qubit:

Validate entangled coupling maps

result = utils.validate_entangler_map(

 entangler_map=full_coupling_map, num_qubits=5,

 allow_double_entanglement=True)

print(result)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Aqua utilities to simplify your work 349

If the validation process is a success, it will return a list of integers, indicating the
validated coupling map, as follows:

[[0, 1], [0, 2], [0, 3], [0, 4], [1, 2], [1, 3], [1, 4],
[2, 3], [2, 4], [3, 4]]

If any of the constraints are not valid, such as an incorrect number of qubits, if the
entangler map is not a list type or list of lists, or if the qubits are flagged as not to be
double entangled, then an error will be raised.

8. Finally, a utility that can be very useful, particularly for any projects you're working
on that require more feature dimensions than available qubits, is the Principle
Component Analysis (PCA) utility. What the PCA utility provides is a way to
reduce the number of dimensions via principle component analysis. This method
will reduce the dimension by simply providing the original N x D (ndarray) and the
target dimension value, which will be reduced as follows:

Import NumPy to create the array

import numpy as np

Generate a 2x3 (NxD) array

dim_map = np.array([[0,1,0], [1,0,1]])

Reduce the D from 3 to 2, resulting in a 2x2
dimensional array

reduced_dim = utils.reduce_dim_to_via_pca(x=dim_map,
dim=2)

print(reduced_dim)

This reduces the original 2 x 3 (N x D) array down to a 2 x 2 array, as follows:
[[8.66025404e-01 7.83243505e-18]

 [-8.66025404e-01 7.83243505e-18]]

The reduction in dimension from 3 to 2 is the result of principle component analysis
and is often used to minimize a feature set so that you can, for example, run them
on near-term devices such as a 5-, 15-, or 20-qubit quantum computers.

This, of course, is just a subset of the available utilities in Aqua. As more features are
added and released, the available utilities will grow as well. Be sure to keep yourself up to
date on the latest releases as they could save you a lot of time – time that you can use to
focus on the more technical work, such as creating quantum algorithms. With that, we'll
move on to the next section of this chapter, which is all about quantum algorithms.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

350 Learning about Qiskit Aqua

Familiarizing yourself with the quantum
algorithms in Aqua
So far in this chapter, you have learned about the various components and utilities that
will help you create quantum applications. In this section, we will become familiar with
the many algorithms currently available in Aqua. Recently, Aqua has gone through a
major update, particularly regarding how it allows you, the developer, to create and
leverage quantum algorithms.

In the past, it had a black box style of implementation where each algorithm only provided
you with parameters and nothing else. This limited the developer's ability to modify or
update components without having to rewrite a lot of code. Instead, this new version is
very modular and allows you to specify which components to piece together to create
your quantum application. This includes the various algorithms that are available.

The following examples will piece together a few of these available algorithms in one of
many ways. For starters, we will review the various Oracles that you can use to formulate
the different Oracle-based algorithms. We'll use truth tables and quantum circuits to
generate our Oracles. We will then use those that are part of the latest circuit library, such
as the Quantum Fourier Transform. We'll start with the Oracles first and create them
using a couple of different methods, starting with the Logical Expression Oracle.

Implementing the Logical Expression Oracle
Logical expressions are commonly used to describe problems, particularly those that have
some constraints. These logical expressions can be used to construct a circuit and execute
it on various algorithms. Let's begin with a simple problem.

Imagine that you're a music producer and have been tasked to put together the next
big rock band, based on the musicians you currently have on contract for your record
company. The following musicians are available:

• Sofia is a singer who has a great voice and is available to tour as soon as possible.

• Angelina is also a singer with a great voice and is also available to tour right away.

• Lex is a guitar player that can play any genre and has his own tour bus.

• Leo is a drummer that gets along with everyone and is very liked in the industry.

Now, here is the problem you have been asked to solve: Sofia and Angelina tend to not get
along on tour and have been known to have creative differences when writing music. Lex
and Leo, however, get along fine together. However, Sofia and Lex broke up after the last
time they toured together.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Familiarizing yourself with the quantum algorithms in Aqua 351

What you need to do is determine which combination of these four musicians is best for
you to put together as a band, and then have them tour with minimal issues based on their
history together.

To solve this, let's write this out as a logical expression:

1. We'll map each musician as A = Sofia, B = Angelina, C = Lex, and D = Leo.

2. Next, we'll create a logical expression using logical operators to illustrate the
constraints. To start, we know that Sofia and Angelina do not get along, so this we
can represent as follows, where ^ indicates XOR:

(A ^ B)

3. Next, we know that Lex and Leo get along fine together, so we can represent them
as follows:

(C & D)

4. Finally, we know that Sofia and Leo have just ended their relationship, so they might
not be open to work together and tour, so we will represent them as follows:

~(A & C)

5. By putting these all together, our complete logical expression for this example is
as follows:

(A ^ B) & (C & D) & ~(A & C)

Now that we have defined our logical expression, let's create an Oracle on the logical
expression so that we can use Grover's algorithm (described in Chapter 14, Applying
Quantum Algorithms) to search for the optimal result:

1. We'll begin by importing all the necessary modules and classes needed for the rest
of these steps and defining our logical expression:

Import the necessary modules and classes

from qiskit import BasicAer

from qiskit.aqua import QuantumInstance

from qiskit.aqua.algorithms import Grover, DeutschJozsa,
BernsteinVazirani, Simon

from qiskit.aqua.components.oracles import

 LogicalExpressionOracle, TruthTableOracle,

 CustomCircuitOracle

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

352 Learning about Qiskit Aqua

State the SAT problem into a logical expression

A = Sophia, B = Angelina, C = Leo, D = Lex

expression = '((A ^ B) & (C & D) & ~(A & C))'

2. Now that we have defined our problem as a logical expression, let's use this logical
expression to create our oracle:

Create an Oracle based on the Logical Expression

oracle = LogicalExpressionOracle(expression)

3. Now that we have created an oracle from the logical expression, we can create the
quantum circuit by simply calling the construct_circuit() method:

Construct the circuit from the oracle

quantum_circuit = oracle.construct_circuit()

quantum_circuit.draw('mpl')

The preceding code generates the quantum circuit representation of the oracle. This
can be illustrated as follows:

Figure 12.8 – Quantum circuit representing the Logical Expression Oracle
Note that this creates the variable quantum register vx and the ancilla quantum
register ax, where x indicates the qubit index.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Familiarizing yourself with the quantum algorithms in Aqua 353

4. We can now use this Oracle on any Oracle-based algorithm. Since we are searching
for the solution to this rock band problem, let's use Grover's algorithm. First, we
will create the quantum instance, which will specify which backend will run the
algorithm. In this example, we will use the BasicAer qasm simulator and set the
number of shots to 1024:

Generate a quantum instance from a simulator

quantum_instance = QuantumInstance(BasicAer.get_backend(

 'qasm_simulator'), shots=1024)

5. Next, we will instantiate the Grover algorithm class by passing in the oracle we
created as its argument:

Create the Grover algorithm with the Logical Expression
Oracle

grover = Grover(oracle)

6. Now that we have successfully constructed the Grover class, let's use the run
method to execute the algorithm on the quantum instance we defined earlier,
then print and plot the results:

Run the Grover algorithm

result = grover.run(quantum_instance)

Print the top measured result

print('Top result:', result['top_measurement'])

Plot all measured results

plot_histogram(result['measurement'])

The preceding code results in the following output. Keep in mind that the qubit at
position 0 is represented by the least significant bit (far right). This means that the
result, 1110, is equal to D=1, C=1, B=1, A=0:

Top result: 1110

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

354 Learning about Qiskit Aqua

We also obtain the following histogram:

Figure 12.9 – Grover solution results based on the Logical Expression Oracle
As shown by the preceding results, the algorithm indicates our solution is 1110.
This states that Angelina, Leo, and Lex are the three ideal musicians to recruit into
the next band project. Sofia can be recruited as a solo career singer.

This, of course, is a simple example. As you can imagine, if your logical expression is more
complex, then the Grover search would help determine that in just a few lines of code. In
the next section, we'll look at using truth tables to generate an Oracle.

Implementing a truth table Oracle
Truth tables are something you learn very early on when studying computer science or
engineering. Truth tables can identify patterns or define conditions based on input and
output values. We can use them here as well to define an Oracle.

In this example, we will use a truth table that will be used to determine whether the
function is constant or balanced. What this means is that we are given a set of inputs
where the results (output) are guaranteed to be either constant, in that all the results
are the same; that is, all zeros (0) or all ones (1).

Alternatively, they can be balanced, where exactly half the results are zeros (0) and the
other half are ones (1). To do this, we will use the Deutsch-Jozsa algorithm. You will
learn about the specifics and the quantum advantage of this algorithm in Chapter 13,
Understanding Quantum Algorithms.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Familiarizing yourself with the quantum algorithms in Aqua 355

In the following example, we will create a constant function, defined by the truth table,
and run it through the Deutsch-Jozsa algorithm to determine this answer for us. First,
let's create our truth table:

1. The truth table can be created in a variety of ways. It constructs the Oracle using
the exclusive sum of products. You can also specify the truth table by providing the
output values as a single bit-string; for example, a 2-qubit truth table can represent
the results, such as 1001, to indicate that the output to the input values of 00 and 11
are set to 1, while the other input values, 01 and 10, are set to 0.

In this case, since we are specifying that the function is constant, we will set the
truth table expression to '1111', which indicates that all combinations 00, 01, 10,
and 11 will result in a 1 as the output:

Create the truth table expression for constant

truth_table = '1111'

Create the truth table Oracle from the expression

constant_oracle = TruthTableOracle(truth_table)

2. Now that we have the constant oracle, we can create the DeutschJozsa object
and construct the circuit representing it:

Create Deutsch-Jozsa algorithm

dj = DeutschJozsa(oracle=constant_oracle,
quantum_instance=quantum_instance)

Construct the circuit and draw the result

dj_circuit = dj.construct_circuit(measurement=True)

dj_circuit.draw('mpl')

This will result in the following quantum circuit representing the Deutsch-Jozsa
algorithm:

Figure 12.10 – Deutsch-Jozsa quantum circuit with a constant oracle

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

356 Learning about Qiskit Aqua

3. Next, we can run the algorithm and output the results:

Run the algorithm on the quantum instance

results = dj.run(quantum_instance)

Print the results that determines constant or balanced

print(results)

Here, we can see that the results are as we expected – constant:
{'measurement': {'00': 1024}, 'result': 'constant'}

These were both good examples of defining Oracles and running them on quantum
algorithms to solve problems.

In this section, one thing you will have noticed is that all the work of creating a circuit and
executing is done without having to manually construct a circuit, or having to dig down
into the specifics of the gates, optimizing the circuit, and so on. You simply defined your
problem as an expression or truth table to create an Oracle and then ran it on a quantum
instance. This is the essence of what Aqua can provide you with, as a researcher.

Rather than having to learn the deep details of the quantum circuit, you can define your
problem in such a way that it can be represented and leveraged by the components in an
existing algorithm.

To prove this, in the next section, we will create a simple classical/quantum application
to solve a problem known as Simon's problem. This problem and its solution will put
everything you've learned about in this chapter together.

Creating your first classical/quantum
application (Simon's)
In this section, we will incorporate a lot of what we have learned so far to create a
classical/quantum application to solve a problem using Simon's algorithm. The problem
is provided in the next section.

Stating Simon's problem
Consider a two-to-one function that connects the results of two input values by XORing
each input with a secret string, s. This can be represented as .

We can define this problem using a truth table expression and constructing an Oracle
and then leverage Simon's algorithm to solve the problem as 0110. Now, let's implement
Simon's algorithm to solve the value, s.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating your first classical/quantum application (Simon's) 357

Implementing Simon's algorithm
Simon's algorithm allows us to search for the secret string that connects the results via a
two-to-many function. In this example, the values are XORed with s, where s will be set
to 11. Let's work on solving this using Qiskit Aqua's built-in components and algorithms:

1. First, we'll define the problem using the truth table expression. Here, we are still
working in the classical portion of this application:

Create the expression for secret value s:

(This ties x1=01, x2=10 XOR with s=11)

s = '0110'

Create the truth table Oracle from the expression

oracle_simon = TruthTableOracle(s)

2. Now that we have created the Oracle based on the truth table expression, which
is based on the value s, we can construct Simon's algorithm and generate the
quantum circuit:

Create Simon algorithm

simon = Simon(oracle=oracle_simon,
quantum_instance=quantum_instance)

simon_circuit = simon.construct_circuit(measurement=True)

simon_circuit.draw()

This will render the following circuit based on the Oracle's description. Note that the
construction of the quantum circuit includes padding the circuit with the Hadamard
gates, adding the measurement operators, and including the ancilla qubits:

Figure 12.11 – Quantum circuit representation of Simon's algorithm

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

358 Learning about Qiskit Aqua

3. Finally, we run Simon's algorithm and obtain the results. Note that when we call
the run() method, we are then executing it in a quantum system, which is the
classical/quantum connection in that the circuit will run on a quantum computer:

Run the Simon algorithm to determine s,

where x1 XOR s = x2

results = simon.run(quantum_instance)

print('Secret string s = ', results['result'])

The results show that the secret string is 11, which is exactly what we expected it
to be:

Secret string s = 11

Confirm this for yourself by running the dot product across all the input values
with s=11.

As you can see from this and the previous examples, you can take a problem that's defined
by a logical expression on a classical system and then, by leveraging Aqua, prepare the
problem in a variety of ways, all of which can be executed on a quantum system. All of
this can be done without having to delve into the specifics.

As Aqua continues to add many more components, algorithms, utilities, and other
artifacts, this will help you create flexible yet modular quantum algorithms that suit all
your needs.

Summary
In this chapter, we covered the various artifacts available to you via Qiskit Aqua. You
learned about just a few of the many components available to you, including Oracles and
circuit state functions. You also learned about some of the utilities and how they can take
away some of the tedious work so that you can focus on the more interesting parts of your
quantum application.

You now have the skills to easily create your own quantum applications in a way that
simplifies the creation process. You can do this by piecing the applications together
based on available algorithms, components, and utilities.

Finally, we looked at various problems that we needed to solve using a variety of quantum
algorithms, without having to really understand how they are constructed. The focus was
on how to represent the problem and apply it via a combination of available components
and algorithms.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Questions 359

In the next chapter, we will cover the various quantum algorithms we've looked at in
this chapter in detail and build them manually, rather than focusing much on their
high-level usage.

Questions
1. Using the Quantum Circuit from the example shown in Figure 12.4, create a custom

initialized state using the state_vector parameter.

2. Construct a Circuit State function from a state vector.

3. Construct a balanced Oracle and verify it using the Deutsch-Jozsa algorithm.

4. Implement the Bernstein-Vazirani algorithm to find the secret value, 170.
(Hint: use the decimal to binary utility).

5. How many Oracle functions are there?

6. Does Aqua also include classical algorithms?

7. Leveraging the qiskit.aqua.circuits.StateVectorCircuit class,
construct a circuit that represents an X gate.

8. Change the backend on QuantumInstance to a quantum computer backend that
is available and rerun any of the quantum algorithms. Describe what differences, if
any, you were able to observe.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

13
Understanding

Quantum
Algorithms

If you've been reading the news around quantum computing, you would have noticed
many articles from various companies, both large and small, all working on different
projects related to quantum computing. The reason is largely based on the potential
computing power that quantum systems offer when compared to classical systems. The
potential to provide speedup or scalability are the two main areas of interest that most
companies and research institutes are looking heavily into at the moment.

A good thing to keep in mind is that, at the time of writing this chapter, there are no
quantum systems that are capable of solving any real-world problems. Currently, most
of the work being done centers on understanding and creating quantum computation
algorithms, which are usually focused on smaller toy problems, as they are commonly
referred to.

By grasping the intricacies of the various quantum algorithms and learning to apply
them to a specific problem set or industry, researchers and developers can then look at
extending what they learned on the smaller problems and apply them to larger real-world
enterprise solutions. This era of solving real-world problems using quantum computers
that are intractable to classic computers is referred to as quantum advantage.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

362 Understanding Quantum Algorithms

It's this quantum advantage phase that everyone is racing to achieve. Of course, this will
vary as some problems might require more quantum computational power than others,
but, over time, different industries will eventually achieve it soon enough. In order to get
yourselves suited up and in the race, you'll need to understand some of the foundational
quantum algorithms and how they are applied to solve general problems.

The following topics will be covered in this chapter:

• Understanding the meaning of outperforming classical systems

• Understanding the Bell states algorithm

• Learning about Deutsch's algorithm

• Understanding the Deutsch-Jozsa algorithm

• Learning about the foundational oracle-based quantum algorithm

In this chapter, we will review the various quantum algorithms in use today. One of the
most difficult hurdles to overcome while learning quantum algorithms is that it is not a
lift and shift from classical to quantum. By simply implementing a classical algorithm's
steps from a classic system onto a quantum system, such as a simple adder, this will not
automatically make it a quantum speedup algorithm. There's a bit more to it than that.

In Chapter 5, Understanding the Quantum Bits (Qubit), we discussed how quantum
states are stored and manipulated, and in Chapter 8, Programming with Qiskit Terra, we
covered how to program on a quantum system. We will now put all those pieces together
to learn and create quantum algorithms, and illustrate how they can outperform classical
algorithms in this chapter. We will begin by providing an example of a quantum algorithm
that is foundational and illustrate how quantum systems perform operations much faster
by reviewing both the Deutsch and Deutsch-Jozsa algorithms. We'll follow that up with
more generalized algorithms that focus on solving simple problems with the Bernstein-
Vazirani algorithm.

This is by no means an exhaustive list of quantum algorithms, but this chapter will
provide you with the foundational algorithms that will help you understand the advanced
algorithms, and how they compare to classical algorithms. Should you want to see a more
complete algorithm list, refer to Appendix A, Resources, for some links to sites that keep
track of quantum algorithms and research.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Technical requirements 363

Technical requirements
In this chapter, it is expected that you have a basic understanding of linear algebra in order
to understand the equations of each algorithm. You should also have some experience
programming basic circuits and executing them on both a simulator and a quantum
device available on the IBM Quantum Experience. Finally, you should be familiar with
both classical bit notation and logic, quantum Dirac notation, and have an understanding
of the basic quantum computing principles such as superposition, entanglement, and
interference, that were covered in the previous chapters.

Here is the full source code used throughout this book: https://github.com/
PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-
Quantum-Experience.

Please visit the following link to check the CiA videos: https://bit.ly/35o5M80

Understanding the meaning of outperforming
classical systems
If you've been reading the news about quantum computing recently, then it's possible you
have read many articles discussing the potential advantages that quantum computing can
offer over classical computing.

In this section, we will learn about the advantages that a quantum system has over
classical systems by studying some of the early examples that illustrate quantum speed
up versus classical systems, albeit some of the examples are simple illustrations of the
advantages that, in themselves, do not have any practical usage.

Claims such as quantum systems potentially solving equations at rapid speeds over
classical systems or having the capability of a larger computation space all sound
fascinating. However, recall that, at the time of writing this chapter, there are still no
quantum systems available that can outperform current classical systems in solving
real-world commercial problems. So why all the chatter you ask?

The answer is fairly simple – potential. Theoretically speaking, there are quantum
algorithms that describe solutions to problems that illustrate quantum speedup,
algorithms such as Shor's algorithm. However, to implement these algorithms, we will
require systems with a large quantum volume in order to ensure error correction and
accurate results. A good analogy to this is video streaming.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-Quantum-Experience
https://github.com/PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-Quantum-Experience
https://github.com/PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-Quantum-Experience
https://bit.ly/35o5M80

364 Understanding Quantum Algorithms

Multimedia compression has been around for decades, with video streaming discovered in
the early 1990's. When video compression was first made commercially available, internet
bandwidth had increased and was more widely available, albeit the quality of the video
and the audio was not as rich as it is today, resolution was around 150 x 76 pixels, with a
refresh rate of around 8-12 frames per second with poor audio quality. The limitation back
then was both the compression technique to decrease the quality of the multimedia and
the bandwidth to stream the multimedia content to multiple viewers simultaneously.

The infrastructure to ensure proper decompression and minimize information loss was
dependent on error correction, and a proper protocol to avoid low quality often jittery
resolution. Now, of course, just a little over two decades later, we can see the progress
where we can stream live multimedia events with low errors and high resolution. Streaming
to your home theater system with a large 4K high definition screen is something of a norm
nowadays where you don't have to worry too much about the quality of the video.

Quantum systems share this same roadmap, where we have the hardware (quantum
systems), and the algorithms to do things at a low resolution at the moment. The difference
here is that we have something we did not have back then, a global infrastructure to which
anyone, anywhere, has access to a quantum system via the cloud. Since the IBM Quantum
Experience (IQX) is hosted on the IBM Cloud, anyone can access it by simply registering
a free account.

In the early days of video streaming, very few had access to bandwidth. Those who did
were limited by the infrastructure to collaborate. By having cloud accessible systems,
many industries and academic institutions are doing more research on quantum hardware
and algorithms. Of course, back in the early days of multimedia streaming, the solutions
being solved were classified as toy problems. However, don't let the name fool you. These
toy problems are far from just something to play with and show off to your colleagues.
They are the stepping-stones to real-world solutions.

For example, if you find a solution that illustrates quantum speedup vis-à-vis classical,
with just a handful of qubits and very little quantum volume, then that might not be
useful in solving many of today's commercial or real-world problems.

Important Note
It's important to note that when mentioning the term advantage, this should
not be confused with the term quantum advantage, which refers to the
quantum era where a quantum computer can solve a real-world problem that is
intractable for any classical system.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the meaning of outperforming classical systems 365

What it does provide is the foundational information needed to scale your solution to a
system with the necessary quantum volume to solve a real-world problem. In order to
understand what that roadmap to quantum advantage is, where a quantum solution exists
that can outperform a classical system in solving a real-world problem, it's important to
first understand the foundational quantum algorithms and how they not only differ from
classical algorithms, but how they provide an advantage over them. This will simplify
your understanding of other, more complex, algorithms and how they are used to solve
solutions in various industries.

In this section, we will discuss the various different types of foundational quantum
algorithms, starting with the original algorithms that demonstrate an advantage over
classical systems. Before we begin, we will review an algorithm, which we have been using
throughout this book as an example, to understand the very foundation of all quantum
algorithms, the Bell states algorithm.

Understanding the Bell states algorithm
For most of the examples in this book, you may have noticed that we reused a simple
2-qubit quantum circuit to run many of our experiments. This circuit contained 2 gates,
a single qubit gate, and a multi-qubit gate, a Hadamard (H) and Control-Not
(CNOT), respectively.

The reason for choosing this was not random. In fact, this particular type of circuit has
a name, the Bell state. The Bell state, made by John Bell in 1964, describes how there are
four maximally entangled quantum states between two qubits that are in a superposition
state with a maximal value of 2√ 2.

Each of these four states are most commonly referred to as the Bell states. At this point,
you may be wondering why this is so important? Before we get into its importance, let's
first prepare the four Bell states and perhaps, along the way, you might see its importance
and understand the significance to some use cases such as quantum teleportation or super
dense coding.

Preparing the Bell states
We'll begin by first preparing the Bell state that we have been using throughout this book.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

366 Understanding Quantum Algorithms

We'll label each of these states as we create them, this first one being labeled as |+ .
Preparing the Bell state entails three simple steps:

1. Prepare your 2-qubit input values. For this first state |+ , we will use the initialized
state of |00 :

2. Next, add a Hadamard to the first qubit. This will place the first qubit in a
superposition state:

3. Finally, we add a CNOT gate, where the control is set to the qubit in superposition.
In this case, the first qubit and the target are set to the second qubit. By doing so,
this will ensure that when the first qubit is 1, this will trigger the target qubit to
rotate about the x-axis from the |0 state to the |1 state, or else it will remain in the
|0 state. This gives us our final state:

This final state is the first Bell state, |+ , which will result in equal probability of
either |00 or |11 .

The only difference between preparing the first Bell state and the others is just in step 1,
where you need to prepare your inputs. Step 2 and step 3 are the same for all. What this
means is that for a two-qubit circuit, the remaining input states in step 1 to prepare are
|01 , |10 , and |11 . Luckily for us, the following formula can be used to help us identify
the remaining Bell states:

By using this formula, we can calculate that all four Bell states are as follows:

• For the input state |00 , we get the following equation:

|+ = |00

|ϕ+ = (|0 + |1) |0

√2

|ϕ+ = (|00 + |11)
√2

|q0, q1 = (|0, 𝑞𝑞1 + (−1)𝑞𝑞0|0, 𝑞𝑞1̅̅̅
√2

)

|ϕ + = (|00 + |11)
√2

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the meaning of outperforming classical systems 367

• For the input state |01 , we get the following equation:

• For the input state |10 , we get the following equation:

• For the input state |11 , we get the following equation:

Now, let's create these circuits by executing all the Bell states on both a simulator and
quantum computer.

Implementing the Bell states
In this section, we will create the first two Bell states, |00 and |10 , and leave you to create
the remaining ones:

1. We'll begin by first creating a nice helper function to simplify the execution of all
these circuits on either a simulator or quantum computer. After creating a new
Qiskit Notebook, enter the following code that will take QuantumCircuit (qc),
and a Boolean (simulator) as arguments. This will indicate whether to execute
the circuit on a simulator if set to True, or a quantum computer if set to false. If
selecting a quantum computer, the function will find the least busy quantum system
with at least 2 qubits:

Helper function to execute circuits

from qiskit.providers.ibmq import least_busy

qc = QuantumCircuit to execute,

simulator = boolean, if True then run on qasm
simulator, else run on the least busy quantum system

def execute_circuit(qc, simulator):

 if(simulator):

 backend = Aer.get_backend('qasm_simulator')

 else:

|ϕ − = (|00 − |11)
√2

| + = (|01 + |10)
√2

| − = (|01 − |10)
√2

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

368 Understanding Quantum Algorithms

 backend = provider.backends(filters=lambda x:
 x.configuration().n_qubits > 2

 and not x.configuration().
 simulator)

 result = execute(qc, backend, shots=1024).result()

 return result

2. Now we are ready to create the first Bell state, |00 . Let's create a 2-qubit
QuantumCircuit circuit, and prepare the input state, |00 . Since all quantum
circuits are initialized to the state |00 , we do not need to do anything to the circuit.
We'll add a barrier to indicate the separation between steps:

State 1: | +>
state1 = QuantumCircuit(2)

Initialize input to |0,0>

state1.barrier()

3. Then, add a Hadamard to the first qubit:

Prepare the Bell state

state1.h(0)

4. Add a CNOT gate where the control is the first qubit, and the target is the second
qubit:

state1.cx(0,1)

5. Finally, add measurements to all qubits and draw the circuit:

state1.measure_all()

state1.draw()

This will render the final circuit for our first Bell state, |00 , as follows:

Figure 13.1 – Prepared Bell state, |+ = |00

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the meaning of outperforming classical systems 369

6. Now let's execute this circuit with our helper function. Set the simulator
argument to specify whether you want to execute it on a simulator or quantum
system. To avoid any noise in our results, in this example, we will run the circuit on
a quantum simulator to verify that our results are as expected:

Execute the Bell state | +>
result = execute_circuit(state1, True)

plot_histogram(result.get_counts(state1))

The results of this experiment render the following familiar output, which confirms
the first Bell state, 00:

Figure 13.2 – Results of the Bell state, |+ = |00

7. We'll now continue on to the next Bell state, |+ = |10 , and confirm the results as
we did previously.

As mentioned earlier, the only difference between the four Bell states is in the first
step, which is to prepare the input states. In this case, our input state is |10 . We can
follow the same steps as before after adding an X gate to the second qubit:

State 2: | +>
state2 = QuantumCircuit(2)

Initialize input state to |1,0>

state2.x(1)

state2.barrier()

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

370 Understanding Quantum Algorithms

Prepare the Bell state

state2.h(0)

state2.cx(0,1)

state2.measure_all()

state2.draw()

This will result in the following circuit, which is very similar to the first except for
the added X gate in the preparation step:

Figure 13.3 – Prepared Bell state, |+ = |10

8. As with the first Bell state, let's execute this circuit and observe the results:

Execute the Bell state | +>
result = execute_circuit(state2, True)

plot_histogram(result.get_counts(state2))

The results from executing the preceding circuit are as follows:

Figure 13.4 – Results of the Bell state, |+ = |10

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the meaning of outperforming classical systems 371

After reviewing both results, we should note a couple of things. The first is that we can
see from the first Bell state that both qubits are equally entangled, in that if you were to
measure one qubit, let's say the first one, then you would know that the second qubit
should be in the same state. Hence, if you measure the first qubit and the result is 0, then
without measuring, you know the state of the second qubit.

Whether you measure the second qubit at the same time, or at a later juncture, the same
can be said about the second Bell state, the only difference in that case being if you
measure one qubit, then you know that the other will result in the opposite basis state
value. Hence, if the first qubit results in 0, then the second qubit will result in 1, or
vice versa.

This correlation between two qubits is the basis for two famous quantum applications—
quantum teleportation and super dense coding, where, in each, there are two qubits that
are prepared in an entangled state. This preparation of the two qubits is represented by
the Bell states, where the preparation can be in either of the four Bell states we have
just described.

When reading about use cases that describe quantum teleportation, you will hear a similar
example to this: Eve prepares a pair of entangled qubits and sends one to Alice and the other
to Bob; you'll now know how Eve prepares the pair of entangled qubits.

Now that we have an understanding of the Bell states and how they can be applied in
applications such as quantum teleportation and super dense coding, we'll continue on
our journey to understand quantum algorithms with the simplest algorithm of all, which
illustrates how quantum algorithms offer computational advantages over classical systems.
We'll then follow up those algorithms by looking at more complex offerings. We'll begin
with Deutsch's algorithm.

Learning about Deutsch's algorithm
David Deutsch, a physicist at the University of Oxford, first discovered a solution that
could be solved by a quantum computer faster than a classical computer. The problem
itself has no importance or use in any computer problems, but it did serve as a way to
illustrate the advantage that quantum computation has over classical computation. Let's
understand that problem in the next section.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

372 Understanding Quantum Algorithms

Understanding the problem
The problem is very simple. We'll use a simple analogy to explain it. Imagine someone is
hiding a coin in each hand. The coin, when revealed, will either be heads or tails. Since
there are two coins, one in each hand, there are four possible results, as shown in the
following table:

Table 13.1 – All four possible outcomes

From the preceding list of events, we can see there are two categories. The first and
fourth events are an example of a constant outcome, where both the left and right produce
the same result of either heads or tails. The second and third events are examples of
balanced outcomes.

Here, the event results are the opposite of one another, indicating that if one is heads, then
the other will be tails, or vice versa. Using this same analogy, if I were to reveal one hand
at a time, let's say the left hand, then by just viewing the results of the left hand, you would
not have enough information to determine whether the result will be constant or balanced
because you still need to know what is in the other hand.

Now imagine if there were 100 hands in front of you and you had to examine each hand
one at a time. At best case you would get it on the first two tries, meaning if the first hand
had heads and the second had tails, you can conclude that the results of the other hands
will be balanced. On the other hand (pun intended), if the first two hands revealed the
same, either heads or tails, then you cannot conclude that it is balanced or constant.

You would have to, in a worst-case scenario, continue until the 51st hand is revealed, 51
because if the first 50 hands are heads, then the 51st would indicate whether it is constant
(heads) or balanced (tails). This equates to 2𝑛𝑛−1 + 1 tries in the worst case. However, we
are jumping ahead a little bit, so let's stick to the current scope of the problem of just
two events.

Using a quantum algorithm, which is what Deutsch proposed here, to solve this problem
is the same as opening all the hands at once and determining whether it is constant or
balanced. Interesting isn't it? Let's see how this works!

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the meaning of outperforming classical systems 373

We'll begin by migrating the analogy of the problem to a mathematical equation. This will
simplify the description of the solution later on:

1. First, substitute heads and tails with binary notations of 0 and 1, respectively.

2. Next, we'll refer to the result of each hand as a function , where the argument can
refer to left or right, (0), (1), respectively.

Therefore, the results are as follows:

Table 13.2 – Mathematical representation of outcomes

As you can see from the preceding table, now we can restate our problem as a function ,
that maps a single bit {0,1} to a result of either {0,1}, the results of which would be
constant if the results for both (0) and (1) are the same, such as Event 1 and Event 3
(from the preceding table), or the results would be balanced otherwise. Now that we
understand the problem, let's figure out the solution.

Defining the problem
We now know that if (0) = (1), then we say is constant, otherwise is balanced.

The problem becomes interesting if we were to introduce a black box, sometimes referred
to as an oracle, that is hidden from us. We don't know whether the function, hidden in the
black box, is either constant or balanced, which is the problem we are asked to solve. The
following diagram is a graphical example of our input value x, going into the black box
function , and outputting the result value (x), denoted here as y:

Figure 13.5 – Black box representation of our problem

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

374 Understanding Quantum Algorithms

As you can see in the preceding diagram, this problem can be solved classically. However,
it will need to have two queries in order to determine whether is constant or balanced,
where each query would view the results of both (0) and (1) in order to conclude
whether it is constant or balanced. When using Deutsch's quantum algorithm, we will see
whether we can determine using just one query. Let's see how in the next section.

Describing the problem as a quantum problem
Since we are working with quantum computations, we'll have to first switch to
representing our functions and values using vectors. Therefore, our constant function can
be represented in matrix form as follows:

The other function can be represented as:

The function can therefore be represented by the following matrix:

Quantum functions have to be unitary, so we will need to convert our function to be a
unitary matrix, U . We need to ensure it is unitary in order to execute it on a quantum
system. U will be our black box, or oracle function. In order to do this, we will need to
extend our previous diagram to include the extra components necessary to create our
oracle:

1. First, we will convert our input and output registers into ket notation, |x .

2. Next, we will create two input registers, |x and |y , where the input registers will
feed into our black box, or oracle function, U .

3. Finally, we'll define out two output registers, one that is just the same as the input |x
, and the other that is the XOR of the input register x, and the input register x

XORed with the function (x), as |x, y ⊕ 𝑓𝑓(x)⟩ .

Therefore, we can now define the oracle function as follows:

𝑓𝑓(0) = 0 = [1
0]

(1) = 0 = [1
0]

𝑓𝑓 = [1
0

 1
 0]

Uf ∶ |x⟩, |y⟩ → |x⟩, | y ⊕ 𝑓𝑓(x)⟩

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the meaning of outperforming classical systems 375

This is illustrated as follows:

Figure 13.6 – Graphical representation of the Deutsch algorithm
Another requirement is that the function should be reversible, which we can see if
we work it out in reverse:

Now that we have our function defined as a quantum function for our problem, we'll see
how Deutsch's algorithm works.

Implementing Deutsch's algorithm
We'll examine the Deutsch algorithm and step through each task as we build the
algorithm on IQX as follows:

1. Open a new Qiskit Notebook and run the first cell that loads our usual boilerplate
libraries and modules.

2. Next, we will create a 2-qubit circuit and prepare each input, the first to |0 and the
second to |1 . We will use the Identity gate to represent the |0 , which is the initial
state, and an X-gate to represent the initial state of |1 :

Implement Deutsch's algorithm for a balanced function

qc = QuantumCircuit(2,1)

Prepare the input qubits, where q0=0, q1=1

print('Step 1: Prepare the input qubits, where q0=0,
q1=1')

qc.i(0)

qc.x(1)

qc.barrier()

qc.draw()

Uf
−1 ∶ |x, y ⊕ 𝑓𝑓(x)⟩ → |x, y⟩

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

376 Understanding Quantum Algorithms

This results in the following circuit diagram:

Figure 13.7 – Initializing the qubits to 0 and 1
As you can see from the preceding diagram, q0 is set to |0 and q1 is set to |1 , which
create the first state at the barrier (φ) as |01 .

3. Now that our inputs are set, we will place them in a superposition state using
Hadamard gates. This will allow us to iterate through once while leveraging all four
states, rather than iterating through each of them one at a time:

Place each qubit in superposition by applying a
Hadamard

print('Step 2: Place each qubit in superposition by
 applying a Hadamard')

qc.h(0)

qc.h(1)

qc.barrier()

qc.draw()

The result of the preceding code is illustrated in the following diagram. The barriers
are used to separate each step so as to simplify reading the circuit:

Figure 13.8 – Applying Hadamard to both qubits

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the meaning of outperforming classical systems 377

As you can see from the preceding diagram, the Hadamard gate transforms the
basis vectors for each qubit as follows:

This generates the following state at the second barrier as φ :

4. After the qubits have applied the preceding Hadamard gates, the resulting value for
the quantum registers will be as follows:

One thing to note here is that we now have the second qubit in a negative
superposition, H|1 . This allows us to define the first and second qubit out of U ,
respectively, as follows:

From the preceding equation, you can see that the second qubit, grouped in the
second set of parentheses, has the same value, which is the negative superposition,
H|1 .

However, the first qubit we see has an interesting result. Let's dig a little deeper to
understand what this means.

Here, we see that if is constant, we'll have the following:

If is balanced, then we'll have the following:

Note that the second qubit is always the same, but the first has a phase change from
positive if constant, and negative if balanced.

H|0⟩ = 1
√2

|0⟩ + 1
√2

|1⟩ = 1
√2

(|0⟩ + |1⟩)

H|1⟩ = 1
√2

|0⟩ − 1
√2

|1⟩ = 1
√2

(|0⟩ − |1⟩)

1
√2

(|00⟩ − |01⟩ + |01⟩ − |11⟩)

((−1)
𝑓𝑓(0)|0⟩ + (−1)𝑓𝑓(1)|1⟩

√2
)(

|0⟩ − |1⟩
√2

)

(±1)(
|0⟩ + |1⟩

√2
)(

|0⟩ − |1⟩
√2

)

(±1)(
|0⟩ − |1⟩

√2
)(

|0⟩ − |1⟩
√2

)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

378 Understanding Quantum Algorithms

5. Next, by applying a Hadamard gate to the first qubit, we can see something
interesting as a result. Let's look at this one at a time.

For a constant function, the first qubit is set to the following:

We recall that applying a Hadamard gate to this superposition state will return us to
the |0 state.

For the balanced function, the first qubit is set to the following superposition state:

We can also recall that applying a Hadamard gate to the previous superposition state
will return us to the |1 state.

This means that by measuring only the first qubit after applying a Hadamard gate
to it, this will provide us with a result state of either |0 or |1 , constant or balanced,
respectively.

6. Let's implement this using our Qiskit Notebook.

This is where we wish to set a quantum gate that would operate on q1, which
represents the y value, based on the value of q0, which represents the x value.
Therefore, this operator, which we'll call U , will have inputs (x, y). The gate we will
use to represent this will be a Control-Not (CNOT) gate.

In this case, we are working to create a balanced function, one-to-one, which
equates to the following:

To accomplish this, we will need to define our state operator, U , as follows:

Now, we will place a CNOT gate with the Control on the first qubit, q0 and the
Target on the second qubit, q1:

Add a CNOT gate with the Control on q0 and Target on q1

qc.cx(0,1)

Draw the circuit

qc.draw()

(
|0⟩ + |1⟩

√2
)

(
|0⟩ − |1⟩

√2
)

𝑓𝑓(0) = 𝑓𝑓(1)

U𝑓𝑓 = [0 1
1 0]

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the meaning of outperforming classical systems 379

This should now include the CNOT gate that generates the function type (balanced)
and renders the following diagram:

Figure 13.9 – Defining the function type (balanced)

7. Next, we'll add Hadamard gates to all qubits and a measurement operator to the
first qubit:

Add the Hadamard gates to all qubits

qc.h(0)

qc.h(1)

qc.barrier()

As we saw in our equation earlier, we only need to apply a Hadamard gate to the
first qubit, as we will only be measuring the one qubit. However, we're just adding it
here so you can see that it also does not disrupt the first qubit:

Figure 13.10 – Applying the Hadamard gate to the qubits before measuring
This results in the following state, |y :

| = 1
2 (1

√2
 |0 + 1

√2
 |1) (1

√2
 |0 + 1

√2
 |1) − (1

√2
 |0 + 1

√2
 |1) (1

√2
 |0 + 1

√2
 |1)

+ (1
√2

 |0 + 1
√2

 |1) (1
√2

 |0 + 1
√2

 |1) − (1
√2

 |0 + 1
√2

 |1) (1
√2

 |0 + 1
√2

 |1)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

380 Understanding Quantum Algorithms

Let's now apply some algebra to simplify our results:

Next, we will multiply out our coefficients, so we only have our two qubit states:

Finally, after adding up all the states, we are left with our results, where, as expected
when we add across, we have 100% probability of the state |11 :

Since, we will only be measuring the first qubit, we can throw the second qubit away
or just not measure it.

8. Let's take a measurement of the first qubit, shown as follows, the result of which
would determine the category of the function as either balanced (1) or constant (0):

Add measurement operator to the first qubit

qc.measure(0,0)

We already know that from the previous equation, this should equate to a
balanced function:

Figure 13.11 – Applying the measurement operator to just the first qubit

| = 1
2 (1

2 (|00 + |01 + |10 + |11) − 1
2 (|00 + |10 − |10 − |11)

+ 1
2 (|00 − |01 − |10 + |11) − 1

2 (|00 + |01 − |10 − |11))

| = 1
4 (|00 + |01 + |10 + |11 − |00 − |10 + |10 + |11 + |00 − |01 − |10 + |11

− |00 − |10 + |10 + |11)

| = 1
4 (|11+ |11+ |11+ |11) = 11

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the meaning of outperforming classical systems 381

9. Now we can execute the preceding circuit and verify our results by using the
following code:

Execute the quantum circuit on the simulator first to
confirm our results.

print('Step 6: Execute the quantum circuit to view
 results.')

backend = Aer.get_backend('qasm_simulator')

result = execute(qc, backend=backend,
shots=1024).result()

counts = result.get_counts(qc)

Print and plot our results

print(counts)

plot_histogram(counts, title='Balanced function')

As calculated previously, the results of this experiment indicate a balanced function,
as indicated by the result '1', rather than '0'.

This results in the following output:

Figure 13.12 – Result of value 1, indicating a balanced function
As expected, we see that our result is a 1, indicating a balanced function.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

382 Understanding Quantum Algorithms

10. Let's now select a quantum device to execute the following code:

#Import the least_busy module and enable Qiskit job
#watcher

from qiskit.providers.ibmq import least_busy

%qiskit_job_watcher

#Identify the least busy devices

backend_devices = provider.backends(filters=lambda x:
 x.configuration().n_qubits > 2

 and not x.configuration().
 simulator)

Assign least busy device to backend

backend = least_busy(backend_devices)

#Print the least busy device

print('The least busy device: {}'.format(least_
busy(backend_devices)))

The preceding code will select the least busy backend to run our quantum circuit,
where the minimum number of qubits is greater than 2, and it's not a simulator.

11. Now let's execute the circuit on the least busy quantum device and view our results:

Execute the previous constant circuit on a quantum
device

result = execute(qc, backend=backend,
shots=1024).result()

counts = result.get_counts(qc)

Print and plot results

print(counts)

plot_histogram(counts, title='Balanced function')

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the meaning of outperforming classical systems 383

The results plotted here show the same result, with some very insignificant error
values, as shown in the following screenshot:

Figure 13.13 – Results from the quantum computer, with the same results and some minor
errors due to noise

From the preceding screenshot, the result shows the same as what we expected for
the given function we provided, which in this case is the balanced function. There
is an exercise in the Questions section where you are required to create a
constant function.

What we have shown here is an example of how a quantum computer can perform
operations faster than a classical system. Naturally, this particular exercise does not
offer any real-world solution, but it does help in understanding how these systems
have speedup properties. In the next section, we will look at generalizing this
example by applying it to more than one qubit.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

384 Understanding Quantum Algorithms

Understanding the Deutsch-Jozsa algorithm
In the previous section, the Deutsch algorithm provided us with an example of quantum
speedup with one qubit. Here, the Deutsch-Jozsa algorithm provides a more generalized
form of the algorithm. It can be applied to more than one qubit. Originally proposed by
David Deutsch and Richard Jozsa in 1992, with improvements by Richard Cleve, Artur
Ekert, Chiara Macchiavello, and Michele Mosca in 1998, the problem is still the same, but
as we mentioned at the end of the previous section, the problem is now extended to more
than just a single qubit. The Deutsch-Jozsa algorithm will operate on multiple qubits at
once, and, of course, will still provide a quantum speedup compared with classical, as we
will see in the next section.

Understanding the Deutsch-Jozsa problem
In this example, we will extend the previous definition of the problem. Previously, we
defined our problem on a single bit value function to determine whether a function was
constant or balanced as follows:

In this case, we will expand the problem to include more than one bit as an input,
such that:

You can see from the preceding equation that is constant, if (x) is the same for all, that
is, x ∈ {0,1}𝑛𝑛 . Otherwise, is balanced, if (x) = 0 for half of x, and (x) = 1 for the other
half of x. For example, if we set n equal to 2 in our input values, {0,1}n, then this will result
in four different input values, that is, 00, 01, 10, and 11:

Based on these four possible input values of x, in order to create a balanced function, we
can set the first half of the results to 0, such that:

And we can set the second half of the results to 1:

: {0,1} → {0,1}

: {0,1}𝑛𝑛 → {0,1}

{0 0
0 1} → 0

{1 0
1 1} → 1

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the meaning of outperforming classical systems 385

If we were to solve this classically, we would need 2𝑛𝑛−1 + 1 queries to determine whether
the results are constant or balanced.

Generating a quantum solution using the Deutsch-Jozsa algorithm
Just as in the Deutsch algorithm, the Deutsch-Jozsa algorithm will only require one query
in order to determine whether the function is constant or balanced. In order to generate
our quantum circuit to implement the Deutsch-Jozsa algorithm, we will use some of the
same components as before:

1. Let's start with our inputs to our black box (oracle). The first input register is an
n-bit string representing the input X. We denote this with a capital X, as most texts
refer to single qubit or bit values with a lowercase variable such as |x , whereas
multi-qubits are represented by uppercase variables such as |X .

The second input register is a single bit string representing the input y, which, as
before, is initialized to 1. This is commonly referred to as an ancilla qubit.

2. Next, we define the function of the oracle similar to how we did in the previous
form. However, the difference here is that |x is now a multi-qubit input, |X . U is
then defined as follows:

So, our output would similarly map to two outputs. The first is the same as the first
input |X , and the second output is our function |y⊕ 𝑓𝑓(X)⟩ . This results in the
following graphical representation:

Figure 13.14 – Graphical representation of the Deutsch-Jozsa algorithm
Just as before, we will set the second qubit register, which is our 1-qubit |y , to |1 ,
which will have the same effect as it did on the Deutsch algorithm implementation
by helping us create the eigen value for |y as (−1) () .

Now, that we have defined our components to the circuit, let's implement this on the IQX
in the next section.

U𝑓𝑓: |X⟩|y⟩ → |X⟩|y ⊕ 𝑓𝑓(X)⟩

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

386 Understanding Quantum Algorithms

Implementing the Deutsch-Jozsa algorithm
In order to implement the Deutsch-Jozsa algorithm, let's create a new Qiskit Notebook
and run the boilerplate cell to load up all our Qiskit modules. Once the setup is complete,
let's create our circuit step by step and see how it resolves our problem as we go:

1. First, let's set our input values. We will start by creating a quantum circuit with two
inputs, the first set to X, which we will create as a 4-qubit input, followed by a single
qubit representing y, which we will initialize to 1. Then we will apply a Hadamard
to all the input qubits:

Create the quantum circuit with both input registers X,
and y

input_qubits = 4 # Refers to our X input register,
#4-qubits

ancilla_qubit = 1 # Refers to our y input register,
#1--qubit

Total qubits in our quantum circuit

total_qubits = input_qubits + ancilla_qubit

Generate the circuit

qc = QuantumCircuit(total_qubits, input_qubits)

Set the X qubits in superposition

for idx in range(input_qubits):

 qc.h(idx)

Set the y qubit to 1, then apply a Hadamard

qc.x(input_qubits)

qc.h(input_qubits)

qc.barrier()

qc.draw()

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the meaning of outperforming classical systems 387

This will result in the following diagram:

Figure 13.15 – Preparing the input values of our quantum circuit
The input state results in the following:

When we apply a Hadamard gate to the preceding equation, it breaks out to
the following:

When we apply a Hadamard gate to the single qubit |y , this gives us the
following equation:

Simplifying both H|0⊗𝑛𝑛 and H|1 gives us the following equation:

2. Next, we will create the oracle U function for our circuit similar to how we created
it in the previous section on the Deutsch algorithm. We will use the same here, only
this time we have the ket X, which is more than a single bit of information:

The value of x is the bit representation of the bit string X of 0 or 1.

|𝜓𝜓 = |0⟩⊗𝑛𝑛|1⟩

H|0⊗𝑛𝑛 = 1
√2

((|0 + |1)0 ⊗ (|0 + |1)1 ⨂ . . . ⨂ (|0 + |1)𝑛𝑛−1)

H|1 = 1
√2

(|0⟩ − |1⟩)

|𝜓𝜓 = H⊗n |0⟩⊗nH|1⟩ = 1
√2

∑ |X⟩ (
|0⟩ − |1⟩

√2
)

X∈{0,1}𝑛𝑛

|𝜓𝜓 = 1
√2𝑛𝑛 ∑ (−1)𝑓𝑓(𝑥𝑥)|x⟩ (

|0⟩ − |1⟩
√2

)
x∈{0,1}𝑛𝑛

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

388 Understanding Quantum Algorithms

3. Let's now set our bit string, '1010', by placing an X gate with the set bits and
Identity gates with the others. You can also just not add an I gate, but for now, we
will add those just to visually indicate the '0' values of the bit string:

Set the bit string which we wish to evaluate, in this
case lets set '1010', where I indicates value 0, and x
indicates value 1.

qc.i(0)

qc.x(1)

qc.i(2)

qc.x(3)

qc.barrier()

qc.draw()

This will render the following addition to our circuit, where the added section
represents setting the input state |1010 based on the bit string 1010:

Figure 13.16 – State representation |1010 of bit string 1010

4. Next, we will apply our oracle. In this case, we will set it to a balanced output where
all outputs should be 1s, with zero probability of 0s. We'll do so by adding CNOT
gates, where the Control is applied to each qubit and the Target is set to the
last qubit:

Set oracle to either constant (output = 0s)

or balanced (output = 1s)

In this example we will choose a balanced function

for idx in range(input_qubits):

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the meaning of outperforming classical systems 389

 qc.cx(idx, input_qubits)

qc.barrier()

qc.draw()

The result of this should be as follows, where we set each Control of the CNOT gate
to all qubits and the Target to our ancilla qubit, q4:

Figure 13.17 – Representation of the added balanced oracle

5. Next, we will set the closing bit string, which we use to wrap our oracle, in this case,
'1010':

Set the closing bit string we selected earlier to
evaluate

qc.i(0)

qc.x(1)

qc.i(2)

qc.x(3)

qc.barrier()

qc.draw()

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

390 Understanding Quantum Algorithms

The preceding code will give us the following diagram, just as we expected, where
the oracle is bound by the bit string:

Figure 13.18 – Oracle bounded by bit string representation

6. Next, we will apply the Hadamard gates to all the qubits:

Add the Hadamard gates to complete wrapping the oracle

for idx in range(4):

 qc.h(idx)

qc.barrier()

qc.draw()

The result of this is rendered as follows:

Figure 13.19 – Completed quantum circuit of the Deutsch-Jozsa algorithm for a balanced function

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the meaning of outperforming classical systems 391

7. Finally, we will add our measurements so that we can read out the results. We will
apply the measurements only to the first four qubits:

Add measurements only to our inputs

qc.measure(range(4),range(4))

Draw the circuit

qc.draw()

Therefore, our final quantum circuit should be as follows. Each step in creating
the Deutsch Jozsa algorithm is separated by the barriers, where the first is the
preparation, the second is to set the bit string 1010, the third is to set our oracle U ,
and then we reverse the first two steps, followed by our measurements:

Figure 13.20 – Final circuit for the Deutsch-Jozsa algorithm

8. Now that we have created our quantum circuit for the Deutsch-Jozsa algorithm, let's
execute the circuit on a simulator first to visualize what results we get back:

Execute the circuit

backend = Aer.get_backend('qasm_simulator')

result = execute(qc, backend=backend,
shots=1024).result()

counts = result.get_counts(qc)

Print and plot results

print(counts)

plot_histogram(counts)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

392 Understanding Quantum Algorithms

As expected, our results returned a probability of 100% of 1s for a balanced circuit:

Figure 13.21 – Results from the simulator of a balanced function

9. Now, let's run this on a quantum computer and compare the results. We'll need to
make sure we use a quantum computer that has the parameters we need to run our
circuit, which is to say, it should have a sufficient number of qubits, not a simulator,
and ensure that it is operational and not undergoing maintenance:

#Enable the job watcher widget

%qiskit_job_watcher

Print all backends with at least 5 or more qubits

provider.backends(filters=lambda x: x.configuration().n_
 qubits >= total_qubits and not x.configuration().
 simulator and x.status().operational==True)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the meaning of outperforming classical systems 393

The preceding code will first launch the Jupyter job watcher widget, where you can
monitor the status of your job on the screen. This will also output a list of available
backends that qualify under the constraints of the filter we provided. Here is a list
that was returned. Keep in mind that the results will vary depending on when you
run this and the quantum devices available at that time:

[<IBMQBackend('ibmqx2') from IBMQ(hub='ibm-q',
group='open', project='main')>,

 <IBMQBackend('ibmq_16_melbourne') from IBMQ(hub='ibm-q',
 group='open', project='main')>,

 <IBMQBackend('ibmq_vigo') from IBMQ(hub='ibm-q',
 group='open', project='main')>,

 <IBMQBackend('ibmq_ourense') from IBMQ(hub='ibm-q',
 group='open', project='main')>,

 <IBMQBackend('ibmq_london') from IBMQ(hub='ibm-q',
 group='open', project='main')>,

 <IBMQBackend('ibmq_burlington') from IBMQ(hub='ibm-q',
 group='open', project='main')>,

 <IBMQBackend('ibmq_essex') from IBMQ(hub='ibm-q',
 group='open', project='main')>]

10. Next, let's select either one from the list of backends and run our circuit on any
system of your choice. In this example, we will run it on ibmq_ourense:

Select any of the available backends previously you have
listed,

In this case we will pick 'ibmq_ourense'

backend = provider.get_backend('ibmq_ourense')

Execute the previous circuit on a quantum device

result = execute(qc, backend=backend,
shots=1024).result()

counts = result.get_counts(qc)

Print and plot results

print(counts)

plot_histogram(counts)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

394 Understanding Quantum Algorithms

Once the preceding code completes execution, we should see the following results.
Of course, they will vary based on the device and any noise that would affect the
final measurement:

{'1001': 43, '1010': 34, '0011': 69, '1110': 65, '1100':
44, '1011': 56, '0111': 85, '1101': 78, '1000': 31,
'0100': 25, '0101': 64, '0001': 43, '0010': 42, '1111':
253, '0000': 51, '0110': 41}

We will also get the following output:

Figure 13.22 – Results after executing the circuit on the 'ibmq_ourense' quantum system
As expected, we see that we have a high probability of all 1s. We also see the
effects of noise on our results, albeit fairly insignificant, when compared to our
expected result.

Now that we have completed both the Deutsch and Deutsch-Jozsa algorithms, we can see
that there is some speedup when compared to classical systems. However, we can also
see that there are really no practical or real-world examples where we can apply these
algorithms. That said, we have understood how the use of superposition and entanglement
can speed up certain functions compared to classical techniques. We'll expand our
understanding of algorithms into something that is a bit more of a generalized quantum
algorithm, namely, Bernstein-Vazirani, in the next section.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning about the foundational oracle-based quantum algorithm 395

Learning about the foundational oracle-based
quantum algorithm
We learned in the previous section that the very early quantum algorithms illustrated
quantum speedup vis-à-vis classical systems in relation to a simple problem. In this
section, we will expand on this to look at a more complex problem, which we can speed
up or increase the advantages over classical systems. To do this, we will learn about
another oracle-based algorithm, Bernstein-Vazirani. The difference between this one and
the previous foundational algorithms is that the Bernstein-Vazirani algorithm will identify
a hidden bit string using an oracle function in a single query.

Learning about the Bernstein-Vazirani algorithm
Originally invented in 1992 by Ethan Bernstein and Umesh Vazirani, the Bernstein-
Vazirani algorithm extends the Deutsch-Jozsa algorithm to a generalization to find an
unknown or secret bit string. Where the Deutsch-Jozsa algorithm worked to solve the
problem of determining whether a given function is constant or balanced, the Bernstein-
Vazirani algorithm works to determine a secret number by applying a function that maps
an input to its output.

Understanding the Bernstein-Vazirani problem
The problem that the Bernstein-Vazirani algorithm addresses is fairly straightforward
and similar to the previous problem. Given an unknown function, or black box (oracle),
similar to the Deutsch-Jozsa oracle, an input string of bits results in an output of either 0
or 1:

For this function , we are guaranteed that the following applies:

From the preceding equation, s is an unknown or secret string such that:

The problem therefore is to find the secret value s.

: {0,1}𝑛𝑛 → {0,1}

(𝑥𝑥) = 𝑠𝑠𝑥𝑥 (mod 2)

𝑠𝑠 ∈ {0,1}𝑛𝑛

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

396 Understanding Quantum Algorithms

Solving this classically is the same as the previous examples, where we would have to
check each value one bit at a time to determine the secret value s. However, as we have
seen in the previous examples, we can solve this with a quantum algorithm executing
a single query. Let's walk through the example to see how we can solve this using the
Bernstein-Vazirani algorithm.

Generating a quantum solution using the Bernstein-Vazirani
algorithm
The Bernstein-Vazirani algorithm is very similar to that of Deutsch-Jozsa in that it
performs the same steps to create the quantum circuit for the algorithm:

1. Initialize all n input qubits to the ground state |0 .

2. Initialize the ancilla qubit to the excited state |1 .

3. Apply a Hadamard gate to all input qubits and the ancilla qubit, H𝑛𝑛+1|0⟩⊗𝑛𝑛|1⟩ .

4. Query the oracle to apply a phase shift based on the secret string value using
CNOT gates.

5. Apply another set of Hadamard gates to the input qubits.

6. Measure the input qubits to obtain the secret string.

As you can see from the preceding steps, the algorithm is very similar. However, the main
differentiator here is steps 4 and 5. When a qubit hits the secret key, we then apply a phase
shift, that is, when s = 1 . Then, in step 5, when we apply the second set of Hadamard
gates, the phase will return from |−⟩ to |1 , if s = 1 , or from |+⟩ to |0 if s = 0 .

Let's implement these steps one at a time and review the changes to the state. As before,
we will use barriers to separate each step so we can visualize each step along the way. We'll
be doing this with all quantum algorithms in this chapter.

Implementing the Bernstein-Vazirani algorithm
The following steps will describe a step-by-step guide to create the Bernstein-Vazirani
(BV) algorithm and describe the outcome of each step to help you understand how each
step affects the state, which will eventually produce the secret string:

1. Let's start by creating a new Qiskit Notebook with the usual boilerplate cell that
will load much of the base Qiskit modules and our account so we can execute the
quantum circuit on an actual quantum computer.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning about the foundational oracle-based quantum algorithm 397

First, we will create our quantum circuit, which will be made up of four qubits, and
one ancilla qubit, and we will define our secret bit string (shh):

Create your secret number

shh = '1010'

Set the number of qubits to represent secret number and
an ancilla qubit

input_qubits = len(shh)

ancilla_qubit = 1

total_qubits = input_qubits + ancilla_qubit

Create the quantum circuit

qc = QuantumCircuit(total_qubits, input_qubits)

The preceding code creates our base quantum circuit, qc, which we will use to
construct the Bernstein-Vazirani algorithm. The input qubits must be at least the
length of our secret string, which in this case is the value 1010. Our input register
will need to be at least these many qubits in length. We then added an ancilla
qubit, which, in the previous examples, we referred to as the output qubit. Moving
forward, we will start referring to this qubit as an ancilla qubit, in that it is more
of a utility qubit that will not be measured or output to our results.

2. Next, we will add Hadamard gates to the input qubits, so as to ensure that all input
qubits are set to a superposition state:

Add Hadamard gates to the input qubits

for idx in range(input_qubits):

 qc.h(idx)

Draw the input circuit

qc.draw()

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

398 Understanding Quantum Algorithms

This will render our quantum circuit as follows:

Figure 13.23 – Initializing the input qubits state from |0 to a superposition state, |+

3. Next, we will need to prepare our ancilla qubit, q4, just as we did before, by first
initializing it to the state |1 , followed by a Hadamard gate, which will prepare the
state of the ancilla qubit to |−⟩ :

Prepare the ancilla qubit of the circuit

qc.x(total_qubits-1)

qc.h(total_qubits-1)

qc.barrier()

Draw the prepared circuit

qc.draw()

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning about the foundational oracle-based quantum algorithm 399

The preceding code will render the following circuit, which we see is the same
initialization of our circuit as before. This is how most quantum algorithms are
initialized, which allows working with all possible combinations of qubit states. The
barrier is added simply to view the various state changes:

Figure 13.24 – Initialization of all qubits
The state at the first barrier is now set to the following, where the input qubits are
as follows:

The ancilla qubit is set to:

4. Next, we need to make a quick bit order adjustment before we apply our oracle
function. Since the qubits are ordered from left to right, we will need to reverse the
order of our secret number:

Before creating the oracle, we need to adjust the
qubits

Since they are ordered from left to right, we will
reverse the secret number

Current secret value

|0𝑛𝑛 → 1
√2𝑛𝑛

∑ |x
x∈{0,1}𝑛𝑛

|1 → |0 − |1

√2

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

400 Understanding Quantum Algorithms

print('Secret before reverse: ', shh)

Reverse order

shh = shh[::-1]

print('Secret after reverse: ', shh)

As you can see from the following output, the order is now 0101, so we can now
apply our oracle function:

Secret before reverse: 1010

Secret after reverse: 0101

5. To apply the oracle function, we want to trigger a phase shift each time we hit a '1'
in the secret string. To do that, we will apply a CNOT gate to each qubit, where the
Control is set to each qubit and the Target is linked to the ancilla. In our case, the
secret string has '1' set on qubit 1 (q1) and qubit 3 (q3):

Now that we have the right order, let's create the
oracle

by applying a CNOT, where the qubits set to '1' are the
source

and the target would be the ancilla qubit

for idx in range(input_qubits):

 if shh[idx] == '1':

 qc.cx(idx, input_qubits)

qc.barrier()

qc.draw()

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning about the foundational oracle-based quantum algorithm 401

The preceding code renders the quantum circuit up to the oracle:

Figure 13.25 – Oracle applying CNOT where the secret string is set to '1'
Since all our qubits are in a superposition state, by applying the phase shift based on
the secret string |S , we get the following equation:

Therefore, from the preceding equation, our secret string |S will apply a phase shift
to each qubit where the string is set. This will shift the |+⟩ to |−⟩ , whenever the
input bit x and the secret string s is equal to 1. We can then represent the previous
equation as follows:

6. And finally, in our last step before applying measurements to the input qubits, we
apply another set of Hadamard gates. What this set of Hadamard gates achieves is
that it will return the state of each qubit back to either the |0 or |1 state.

This is entirely dependent on whether the qubit experienced a phase shift while
passing through the oracle. If it did not, then the state would change from |+⟩ to |0
, or from |−⟩ to |1 :

Now let's close up our circuit with Hadamard gates
applied to the input qubits

for idx in range(input_qubits):

|S = (|0 + (−1)𝑠𝑠0 |1

√2
) ⊗ (|0 + (−1)𝑠𝑠1 |1

√2
) ⊗ … ⊗ (|0 + (−1)𝑠𝑠𝑠𝑠 |1

√2
)

1
√2𝑛𝑛 ∑ (−1)s∗x |x

x∈{0,1}
= (|0 + (−1)𝑠𝑠∗0 |1

√2
) ⊗ (|0 + (−1)𝑠𝑠∗1 |1

√2
) ⊗ … ⊗ (|0 + (−1)𝑠𝑠∗𝑛𝑛 |1

√2
)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

402 Understanding Quantum Algorithms

 qc.h(idx)

qc.barrier()

Finally, let's add measurements to our input qubits

qc.measure(range(input_qubits), range(input_qubits))

qc.draw()

This will render the following circuit diagram, which completes the steps to
implement the Bernstein-Vazirani algorithm along with the measurement
operators:

Figure 13.26 – Final circuit that implements the Bernstein-Vazirani algorithm

7. Now that the circuit is complete and ready to go, we can execute the circuit on a
simulator and then on a real quantum device:

Execute the circuit and plot the results

backend = Aer.get_backend('qasm_simulator')

result = execute(qc, backend, shots=1024).result()

counts = result.get_counts(qc)

plot_histogram(counts)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning about the foundational oracle-based quantum algorithm 403

The results should have 100% probability for the value of our secret string, as
illustrated in the following histogram:

Figure 13.27 – Result identifies with 100% probability the value of our secret string

8. Now, let's run it on a quantum computer. As we have done in the previous example,
let's launch the job watcher widget and get a list of backends that have the number
of qubits we need, and ensure that it is operational:

#Enable the job watcher widget

%qiskit_job_watcher

Print all backends with at least 5 or more qubits

provider.backends(filters=lambda x: x.configuration().n_
 qubits >= 5 and not x.configuration().simulator
 and x.status().operational==True)

9. From the output list that is returned, select any of the following. I will select
ibmq_ourense from the list to execute the circuit:

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

404 Understanding Quantum Algorithms

Choose whichever backend you wish from the list,

For this example, we will use 'ibmq_ourense'

backend = provider.get_backend('ibmq_ourense')

Execute the previous circuit on a quantum device

result = execute(qc, backend=backend,
shots=1024).result()

counts = result.get_counts(qc)

Print and plot results

print(counts)

plot_histogram(counts)

This results in the following counts and histogram, which we can see also identifies
our secret string, including, of course, a little noise:

{'0010': 39, '1000': 60, '0110': 3, '1001': 140, '1010':
602, '0001': 14, '1101': 11, '1111': 3, '1011': 93,
'0000': 18, '0100': 4, '1110': 18, '0011': 19}

We also get the following output:

Figure 13.28 – Results from running the circuit on the ibmq_ourense quantum system

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summary 405

As you can see from the preceding diagram, similar to the earlier quantum
algorithms, we can solve certain problems in a single query, where it would take
classical systems a few queries to solve. These problems leveraged a feature called
phase kickback, where we used the phase to solve the question of whether the
function was balanced or constant.

Looking back at the step where we applied the last layer of Hadamard gates, it
appears as if the control qubit got flipped instead of the other qubit.

In this section, we learned about the foundational oracle-based algorithms and how they
illustrate quantum advantage over classical systems to solve problems. We also learned
about how oracles and ancilla qubits are leveraged to obtain some of the solutions, which
will, in turn, help you understand the more complex algorithms as you expand your
knowledge and research. Although these were simple problems that have no commercial
value by themselves, they did, however, manage to trigger an interest in the quantum
information science field that is still growing to this day.

Summary
In this chapter, we covered some of the many quantum algorithms that employ common
techniques that are used in a variety of other quantum algorithms.

The goal of this chapter was to explore each of them systematically so you can have a good
combination of understanding of the problem each algorithm is solving. Also, now you
have an understanding of how to implement them on both a simulator and a quantum
computer. The topics here are, of course, foundational and oracle-based, although the
techniques are commonly found in many other quantum algorithms.

In the next chapter, we will step away from the oracle-based foundational algorithms and
look at another form of algorithm that solves similar problems. However, rather than
using phases to identify the solution, it will instead leverage periodicity, which is
primarily why they are called periodic algorithms.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

406 Understanding Quantum Algorithms

Questions
1. Create a circuit that implements Deutsch's algorithm for a constant function and

verify your results.

2. Which algorithm would you use to determine whether an n-bit string is balanced?

3. Would phase kickback work if the ancilla qubit was not set to the state |1 ? Explain
your answer.

4. Implement the Bernstein-Vazirani algorithm to find the state |11010 .

5. What would happen if you set the ancilla qubit in either of the algorithms by first
placing a Hadamard gate, followed by an X gate? Explain the reason for the results.

6. Program and create an automated oracle generator for the Bernstein-Vazirani
algorithm that randomly generates the secret state. Can you determine the
value by just running the circuit and reviewing the results?

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

14
Applying Quantum

Algorithms
In this chapter, we will focus on algorithms that have the potential to solve more
applicable problems, such as periodicity and searching. These algorithms differ from
the earlier algorithms as these are used in various domains and are included in many
modern quantum algorithms. A few examples of these modern quantum algorithms are
the quantum amplitude estimation, variational quantum Eigensolvers, and quantum
support vector machines algorithms. Having a good understanding of these will help
you when learning about or creating your own algorithms as the techniques used can be
applied in many industries.

Period algorithms can be used to solve factorization or phase estimation problems.
Search algorithms can also provide some speed-up over classical algorithms on how they
leverage amplitude amplification to find a specified entry.

The following topics will be covered in this chapter:

• Understanding periodic quantum algorithms

• Learning about Simon's algorithm

• Learning about the Quantum Fourier Transform algorithm

• Learning about Shor's algorithm

• Learning about Grover's search algorithm

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

408 Applying Quantum Algorithms

After completing this chapter, you will be able to grasp the concepts of these algorithms
and leverage the algorithms already provided in Qiskit Aqua, so you can use them
without having to reinvent the wheel.

Technical requirements
This chapter assumes that you are familiar with some of the basic quantum algorithm
components, such as superposition, oracles, phase kickback, and programming, on the
Qiskit notebook. You are also expected to have an understanding of basic linear algebra,
such as multiplying matrices, the complex conjugation of a matrix, and inner products.
Some advanced mathematics, such as an understanding of the Fourier transform, is
also assumed.

Here is the source code used throughout this book: https://github.com/
PacktPublishing/Learn-Quantum-Computing-with-Python-and-
IBM-Quantum-Experience. Here is the link for the CiA videos: https://bit.
ly/35o5M80

Understanding periodic quantum algorithms
In Chapter 13, Understanding Quantum Algorithms, we covered algorithms that use phase
kickback to solve various problems.

In this section, we will move away from phase kickback and into periodic quantum
algorithms. Periodic functions are those where values are repeated over time. Your watch,
for example, is periodic in that each minute has 60 seconds, each hour has 60 minutes,
and each day has 24 hours.

If you have your watch set up with the hours from 1 to 12, then your watch has a period of
2 per day, in that your watch will repeat the numbers 1 to 12 twice in one day. Of course,
this is separate from the AM and PM indicators, whether it is day or evening hours.
Periodic functions occur all around us in many ways, so understanding how to relate these
to a quantum circuit is key to understanding many of the quantum algorithms, including
the most famous one of all, Shor's algorithm.

But for now, we will learn about Simon's algorithm in the next section.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-Quantum-Experience
https://github.com/PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-Quantum-Experience
https://github.com/PacktPublishing/Learn-Quantum-Computing-with-Python-and-IBM-Quantum-Experience
https://bit.ly/35o5M80
https://bit.ly/35o5M80

Understanding periodic quantum algorithms 409

Learning Simon's algorithm
In the previous chapter—Chapter 13, Understanding Quantum Algorithms—we used
algorithms that involved an additional qubit, an ancilla qubit, to determine whether
functions were balanced or constant. As interesting as they are, by proving that there is
some advantage to quantum over classical computation, the truth is that there isn't much
that you can do with those algorithms.

At least that is what Daniel Simon believed as he worked on a problem that would
prove that there is some black box (as it is often referred to when describing an oracle)
problem that can provide exponential quantum speed-up over classical algorithms. The
algorithm that he discovered was one that is commonly referred to as a periodic quantum
algorithm. Let's start by understanding the problem.

Understanding the problem
The problem that Simon proposed involves determining whether a function is a one-to-
one or two-to-one function. What do we mean by that? Let's look at each of them side-by-
side and see what this means.

A one-to-one (or injective) function, as it is known, is quite simply a function that maps
one input value to a single output value, such that no other input value in the domain
would resolve to an output value that has already been assigned. The following table shows
a simple example of a one-to-one function where the input, x, maps to an output, ƒ(x),
that is not the same for any other input x:

Table 14.1 – One-to-one function example

A two-to-one function is, as it is titled, a function, ƒ, that maps two inputs, x, to the same
output, ƒ(x). The following table shows an example of a two-to-one function, where the
two inputs are mapped to either 00 or 11:

Table 14.2 – Two-to-one function example

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

410 Applying Quantum Algorithms

Simon's problem asks whether we are given a function, ƒ, such that the function satisfies
the following condition:

In the preceding condition, x1, and x2 are two separate input values, and x1 XORed with x2
is a bit string, s, as shown in the following equation:

Can we then find the solution for whether ƒ is a one-to-one or two-to-one function, and also,
can we find the value of s?

Classically, this can be solved by checking at least 2𝑛𝑛−1 + 1 values of x, where n is the
number of inputs. This means we would have to iterate through at least half plus 1 of the
inputs to determine whether the function, ƒ, is one-to-one or two-to-one. This, of course,
will increase in complexity as n grows larger and larger. What we need is a solution that
can resolve this in less time and with perfect accuracy, which is what Simon's algorithm
does for us. Let's get started.

Generating a quantum solution using Simon's algorithm
The solution to this using Simon's algorithm is very similar in the construction flow to the
algorithms we learned about in previous chapters, in that we will be applying Hadamard
gates to the input qubits both at the beginning of the algorithm and at the end just before
we apply the measurement operator. There is also going to be an oracle in between the
Hadamard gates; more specifically, our steps will be as follows:

1. Create a quantum circuit that has two qubit registers. The first register will be the
size of our inputs, and the second quantum register will be of the same size as the
first. Our quantum circuit will start with 2n qubits, where n is the number of qubits
of our input value.

2. Apply Hadamard gates to all the qubits of the first qubit register.

3. Apply our oracle function to all the qubits, which will serve as our black box
housing the value s.

4. Apply another set of Hadamard gates to the qubits in the first quantum register.

5. Measure all the qubits in the quantum circuit.

ƒ (𝑥𝑥1) = ƒ (𝑥𝑥2)

𝑥𝑥1 ⊕ 𝑥𝑥2 = 𝑠𝑠

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding periodic quantum algorithms 411

As you can see from the preceding steps, this is fairly similar to the previous algorithms
we covered in Chapter 13, Understanding Quantum Algorithms, except here, we have more
than a single qubit in our second quantum register, and we are not initializing the second
register to the state |1 . By not setting the second register to the state |1 , this algorithm
will therefore not leverage phase kickback as in the previous algorithms from Chapter 13,
Understanding Quantum Algorithms. Let's start by preparing our circuit while we discuss
each step as we build out the algorithm in the next section.

Implementing Simon's algorithm
In this section, we will describe a step-by-step guide to creating a circuit that implements
Simon's algorithm:

1. We will start by creating our quantum circuit based on the size of our input values;
in this example, we will base the input size on the length of our secret string, s,
which we will initialize to '011'. We'll begin by creating a new Qiskit notebook.

We will initialize the circuit to a length of s = 011 and create a circuit that is twice
the length of our secret string. This will ensure we have a sufficient sized quantum
circuit for our two input registers. We'll use a light-hearted variable name to label
our secret string:

Set our secret string to '011'

shh = '011'

Creating registers

Set the input qubit register size equal to the length
of s

input_qubits = len(str(shh))

Set the total qubits equal to twice the size of input
qubits

total_qubits = 2*input_qubits

Create the quantum circuit

qc = QuantumCircuit(total_qubits)

The preceding code creates our quantum circuit where the secret string, s, is set to
'011', and our input size is set to 3, which is the length of the secret string, s. Our
quantum circuit size is twice that, with a total of 6 qubits.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

412 Applying Quantum Algorithms

2. Next, we'll add Hadamard gates only to the qubits in the first quantum
register—that is, the input. Since we set the length of our secret string to the
value input_qubits, we can use this to assign the Hadamard gates only
to the qubits in the first quantum register:

Apply Hadamard gates before querying the oracle

qc.h(range(input_qubits))

qc.barrier()

qc.draw()

The preceding code will render our quantum circuit as follows, and we'll continue
using barriers to illustrate the different stages of Simon's algorithm:

Figure 14.1 – Initializing the quantum circuit with Hadamard gates on the first register only

3. Next, we will implement our query function, which implements our secret string,
shh='011':

Create the oracle function of our secret string

Since we are only setting the last two qubits,

we will only apply cx gates to the last two.

for idx in range(input_qubits):

 if(shh[idx] == '1'):

 for count in range(input_qubits):

 qc.cx(idx, input_qubits + count)

qc.barrier()

qc.draw()

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding periodic quantum algorithms 413

The preceding code will add a Control-NOT gate between the qubit that is aligned
with the input value set to '1', and the Target to the second register qubits,
respectively. This will render our quantum circuit up to our oracle, as follows:

Figure 14.2 – Oracle implementing the 011 secret string

4. Finally, we will add our final set of Hadamard gates to the input registers and
measure all the qubits:

Apply Hadamard gates to the input register

qc.h(range(len(str(shh))))

Measure ancilla qubits

qc.measure_all()

At this point, we should have the following circuit created, which includes an
oracle that is wrapped on both sides by a set of Hadamard gates, before applying a
measurement across all qubits:

Figure 14.3 – Quantum circuit implementation of Simon's algorithm

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

414 Applying Quantum Algorithms

5. Now that we have the circuit complete, let's execute this on a simulator first:

Execute the quantum circuit on the simulator

backend = Aer.get_backend('qasm_simulator')

shots = 1024

results = execute(qc, backend=backend, shots=shots).
result()

counts = results.get_counts(qc)

Print results

print('Counts: ', counts)

The preceding code will result in the following output:
Counts: {'111000': 280, '111110': 223, '000110': 281,
'000000': 240}

Keep in mind that the bit order is from right to left, where the measurement from
the first qubit, q0, is the position on the far left and continues toward the right. By
this convention, we can see that the first output, '111000', combines both the
first and second registers, where the first register is '000' and the second register
is '111' and its count is 280. Let's clean up our results and get the substring of the
input register and their specific values. This will allow us to focus on just the register
and the results we need.

6. We start off by looping through each count and reversing the count keys. This
will allow us to visualize our registers listed from left to right, the first and second
register, respectively. We follow this up by cropping out the input register and its
count so that we can add up the totals:

Create a new object to store the input register counts

sub_results = {}

Loop through each of the count keys and extract the
the input register and their respective counts.

for count in counts.keys():

 rev_count_key = count[::-1]

 input_count = count[input_qubits:]

 count_value = counts[count]

 if input_count in sub_results:

 sub_results[input_count] += count_value

 else:

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding periodic quantum algorithms 415

 sub_results[input_count] = count_value

Print and plot the results

print('sub results', sub_results)

plot_histogram(sub_results)

The preceding code will print and plot the results of only our input registers:
sub results {'000': 487, '110': 537}

Note that we now have two results: one has the value '000' and the other '110',
as follows:

Figure 14.4 – Results of input register counts
As we can see in the preceding graph, we have two input register results—000 and
110—for our secret string. Recall from earlier that the string values are reversed,
so 110 is actually '011', our secret string. Of course, if we only had '000' as the
result, this would mean that ƒ would be a one-to-one function. 𝑥𝑥 ⊕ 𝑠𝑠 is one-to-
one when s='000', which therefore means since we also have s='011', we now
know that this is a two-to-one function.

In this section, we learned about oracle-based and periodic quantum algorithms. We also
learned about Simon's algorithm, its problem, and how to implement it for generating a
quantum solution.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

416 Applying Quantum Algorithms

What we have seen is the first form of an oracle algorithm that can be used to solve
a general problem. This algorithm has been said to serve as an inspiration for other
algorithms, including Shor's algorithm. We'll press on and continue to the next
algorithm, which moves us out of the oracle-based quantum algorithms to periodic-based
quantum algorithms, namely, Quantum Fourier Transform (QFT).

Learning about the Quantum Fourier Transform
algorithm
QFT is related to Discrete Fourier Transform (DFT) in that it too can transform from
one domain to another. DFT is used to transfer signals from the time domain to the
frequency domain, or in a more generalized description; mapping one domain, x, to
another domain, F(ω) , with the following formula:

Similarly, we can define a quantum transformation as a transformation from one basis to
another. For example, all the computations we have done in this book so far have been
measured according to the Z basis. This means our basis states have been set on the Z axis
of the qubit with the states |0 and |1 , referring to the positive and negative ends of the Z
axis on the Bloch sphere, respectively.

There are, of course, other basis states that we can transition to if needed. One example
would be the X axis of the qubit, where the basis states there are |+ and |−⟩ , which refers
to the positive and negative ends of the X axis on the Bloch sphere, respectively. QFT
would transform between these two basis states.

In this section, we will work through a simple example of a QFT algorithm to extend our
understanding of it when we see it used in many other quantum algorithms.

We'll begin by applying QFT to a simple three-qubit quantum state.

Understanding the QFT algorithm
To transform our quantum function from one basis state to another, we need to apply
QFT, as follows:

Ϝ(𝜔𝜔) = ∑ 𝑒𝑒
2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋

𝑁𝑁 𝑥𝑥𝜋𝜋

𝑁𝑁−1

𝜋𝜋=0

|Z − basis⟩
QFT
→ |X − basis⟩

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding periodic quantum algorithms 417

In the preceding equation, Z – basis refers to the basis states on the Z axis, |0 and |1 ,
and X – basis refers to the basis states on the X axis, |+ and |−⟩ . The Qiskit documentation
(https://qiskit.org/documentation/) refers to the Fourier basis with the
tilde (~), where QFT is the Quantum Fourier Transform applied to the state |1 , given
as follows:

This can be equated, where the transformation is represented by the QFT between the
amplitudes of xj and yk, as follows:

Now, let's see how we can implement QFT in a quantum circuit.

Implementing the QFT algorithm
Let's begin by deriving our implementation based on an input state, |Ψ⟩ .

An alternative is to apply it sequentially to the following formula as we move from qubit to
qubit. For this example, we will operate as follows; given a state |Ψ⟩ = |jn−1, jn−2,… , j1, j0⟩ ,
we will apply a Hadamard gate where we add the phase based on the state |Ψ⟩ , where each
value, ji, is appended to the phase, as follows:

In the following exercise, we will implement the QFT of |Ψ = |110 , where
j2 = 1, j1 = 1, j0 = 0 :

1. We'll begin by opening a new Qiskit notebook and create our quantum circuit with
the width equal to the length of our state value, '110':

Initialize the 3-qubit quantum circuit

Set the state '110'

s = '110'

num_qubits = len(s)

qc = QuantumCircuit(num_qubits)

QFT |𝑥𝑥⟩ = |�̃�𝑥⟩

∑𝑥𝑥𝑗𝑗 |j⟩
𝑄𝑄𝑄𝑄𝑄𝑄
→ ∑ 𝑦𝑦𝑘𝑘 |k⟩

𝑁𝑁−1

𝑘𝑘=0

𝑁𝑁−1

𝑗𝑗=0

|Ψ = (|0 + e2πi(0.j0)|1) . . . (|0 + e2πi(0.jn−2 … j0)|1)(|0 + e2πi(0.jn−1 ... j0)|1)
√2n

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://qiskit.org/documentation/

418 Applying Quantum Algorithms

2. Now that we have our quantum circuit created, let's initialize the state, s, to |110 .
Since we write from the least significant position, we will reverse s accordingly as well:

Set reverse ordering

s = s[::-1]

Construct the state 110

for idx in range(num_qubits):

 if s[idx] == '1':

 qc.x(idx)

qc.barrier()

qc.draw()

The preceding code will initialize and render our circuit as follows:

Figure 14.5 – Initializing the state, s, to |110
3. Now that we have our state prepared, we can begin transforming it using QFT.

Let's review our transformation equation with our state |110 :

This states that for each qubit where we apply a Hadamard gate, we will need to
include rotations while traversing from the qubit down to the least significant
qubit—hence, jn, … , j0 . As we traverse down, the qubit states decrease by each
degree. This means each of the controlled phase rotations, Control Rotation
(CROT), is based on the following matrix representation:

|Ψ = (|0 + e2πi(0.0)|1). . . (|0 + e2πi(0.10)|1)(|0 + e2πi(0.110)|1)
√8

CROT(θ)𝑘𝑘 = [
1 0 0 0
0 1 0 0
0 0 1 0

 0 0 0 𝑒𝑒𝑖𝑖𝑖𝑖

]

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding periodic quantum algorithms 419

In the preceding equation, CROT(q)k is the CU1 gate, and the parameter q is set
as follows:

Therefore, we'll start with the most significant qubit, q2, from our state |Ψ⟩ ,
as follows.

4. Starting at the most significant qubit, we'll add a Hadamard gate to the circuit:

Import the value pi for our rotations

from numpy import pi

Always start from the most significant qubit,

in this case it's q2.

Step 1, add a Hadamard gate

qc.h(2)

5. Now that we have our first step, the next step is to add CROT(q) gates starting at
k=2, which is the index of the most significant qubit position, q2, and our parameter
q starts at the following:

We add the CROT gates from most significant to least significant, starting at pi/2,
and doubling the denominator of the parameter as we move down each qubit:

Step 2, add CROT gates from most significant qubit

qc.cu1(pi/2, 1, 2)

6. We then repeat this as we traverse from the current qubit down to the next
qubit—in this case, q0:

Step 3, add another CROT from 2 to the next qubit down,

while doubling the phase denominator

qc.cu1(pi/4, 0, 2)

Draw the circuit

qc.draw()

θ = π
2k−1

𝜃𝜃 = 𝜋𝜋
2𝑘𝑘−1 = 𝜋𝜋

22−1 = 𝜋𝜋
2

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

420 Applying Quantum Algorithms

As we are traversing down, the denominator on the parameter is doubling in size as
well, such that the next parameter q is as follows:

This renders the following circuit, which now includes the Hadamard gate and the
two CROT gates:

Figure 14.6 – The first set of transformations starting from the most significant qubit

7. That completes the first level, which dealt with the most significant qubit. We will
now move down to the next qubit (the second most significant qubit) and repeat the
process of adding a Hadamard gate, followed by CROT(q) gates, where the phase
rotations get smaller as we traverse down each qubit. Let's continue to the next qubit:

Now that we finished from 2 down to 0

We'll drop to the next least significant qubit and
start again,

Step 1, add a Hadamard gate

qc.h(1)

8. This is the same as step 4 of adding a Hadamard gate; now we apply the control
rotation gate in the same manner as we did earlier and then draw the circuit:

Step 2, add Control Rotation (CROT) gates from most
significant towards

least significant starting a pi/2, and doubling the
denominator

as you go down each qubit.

qc.cu1(pi/2, 0, 1)

Draw the circuit

𝜃𝜃 = 𝜋𝜋
22 = 𝜋𝜋

4

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding periodic quantum algorithms 421

qc.draw()

Now that we finished from 1 down to 0

We'll drop to the next least significant qubit and
start again.

This will complete the second transformation, which will render the following
circuit, which starts with a Hadamard gate and then appends the CROT gates
afterward:

Figure 14.7 – The next transformation set starting at the next qubit down

9. Next, we will run our transformation on the last qubit, and then draw the circuit:

Step 1, add a Hadamard gate

qc.h(0)

Since we are at the least significant qubit, we are
done!

Draw the circuit

qc.draw()

Since this is the last qubit and the least significant qubit, it has no lower levels, so we
complete the CROT phase of the QFT. This renders the following circuit so far:

Figure 14.8 – The final transformation of our QFT circuit

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

422 Applying Quantum Algorithms

10. Finally, once we have all rotations set, we need to apply swap gates in order to
reverse our results. We need to do this to complete the QFT and set the values in
the proper order. The swap is performed from the outermost qubits moving inward
until you reach the last two qubits in the middle (if the total number of qubits is
even), or until you reach the last two pairs with a single qubit in the middle (if the
total number of qubits is odd).

To simplify this, we can create a function that will swap the outer qubits and work
its way toward the middle. In this case, since we only have three qubits, we will only
swap the outer two qubits, as follows:

Define a function which will add the swap gates to the
outer

pair of qubits

def add_swap_gates(qc_swaps, qubits):

 for qubit in range(qubits//2):

 qc_swaps.swap(qubit, qubits-qubit-1)

 return qc_swaps

11. Now, we can run our quantum circuit through the add_swap_gates function
and complete the circuit:

qft_circuit = add_swap_gates(qc, num_qubits)

qft_circuit.draw()

This will render our QFT circuit, which encodes our '110' value, as follows:

Figure 14.9 – The QFT circuit that encodes '110'

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding periodic quantum algorithms 423

12. To visualize our QFT results, we can execute the preceding circuit using the state
vector to see our final QFT encoding for each qubit:

Get the state vector simulator to view our final QFT
state

backend = Aer.get_backend("statevector_simulator")

Execute the QFT circuit and visualize the results

statevector = execute(qft_circuit,

 backend=backend).result().get_statevector()

plot_bloch_multivector(statevector)

The preceding code results in the following encoding for each qubit:

Figure 14.10 – A Bloch sphere representation of the '110' QFT encoded value
Note here that each qubit is in a superposition state and varies by phase based on
the '110' encoded value. We can also represent this using the qsphere object,
which will have the same information, only represented in a single sphere object:

plot_state_qsphere(statevector)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

424 Applying Quantum Algorithms

In the following diagram, we can see that the information is encoded into the
QSphere and has its encoded representation in the phase and state vector indicated
by the color wheel and QSphere, respectively:

Figure 14.11 – A QSphere representation of the QFT representation of the '110' state

Congratulations! You have just completed encoding your first QFT! This is an algorithm
that you will see in many other algorithms that depend on periodic functionality.

In this section, we learned about the QFT algorithm and implemented it as well. With an
understanding of the basis of state transformation, you are now able to leverage this in
many period functions and algorithms, such as estimating Eigenvalues or unitary matrices
and factoring discrete logarithms.

Next, we will look at one of the more famous algorithms that leverages the QFT algorithm:
Shor's algorithm.

Understanding Shor's algorithm
Probably one of the most discussed quantum algorithms, even for those who know very
little of the numerical theory behind it, Shor's algorithm has gained popularity because
of its ability to factor two numbers with some speed-up over classical systems. This might
not seem too impressive for those who are not familiar with how factorization is used in
various algorithms.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding periodic quantum algorithms 425

The most popular of these is the RSA algorithm, which is the algorithm used to encrypt
much of today's data. Information such as bank records, passwords, health records, and
pretty much any data that currently implements the RSA algorithm as part of its secure
infrastructure is most likely leveraging factorization of prime numbers. The reason why
this is so widely used is that it would take a very long time to determine two factored
prime numbers of a product, particularly when the product is very large.

Shor's algorithm gained its popularity because of its ability to swiftly factor out integers,
specifically its ability to solve period-finding problems in polynomial time. It's this period-
finding algorithm that we will focus on in this section. We'll also leverage the built-in
algorithms that are provided to us by Qiskit Aqua to implement Shor's algorithm. Before
we do that, let's review the problem we are trying to solve.

Understanding a Shor's problem
The problem we are trying to find is actually very simple to describe. Imagine I provide
you with a number, N, and I guarantee that the number N is a product of two prime
integers. The problem is for you to find the two prime numbers that when multiplied,
result in N. This can be represented as a x b = N, where a and b are prime numbers,
and N is the product.

This is a simple problem if the number is small, but gets exponentially complex as the
prime numbers a and b get larger.

For example, if I were to give you the value N = 15, it would not take you too long to work
out the problem. You'd just list out all prime numbers from 1 through 15, and multiply
each out until you find the total, which in this case, would be 3 and 5.

Now imagine if I were to provide you with the following number for N:

You can imagine how difficult this would be for you to do by hand. Just to give you an idea
of the magnitude of the complexity, the current largest prime number, according to the
Great Internet Mersenne Prime Search, has 24,862,048 digits!

RSA depends on this prime factorization complexity as part of its encryption process,
which provides protection to our data as it's incredibly difficult to determine the factored
prime numbers. That is until 1994, when Peter Shor published his paper Algorithms for
quantum computation: discrete logarithms and factoring. In this ground-breaking paper,
he discussed how to factor an integer in polynomial time, which works out to log N.

In the next section, we'll review the process specifically, followed by implementing it using
the Aqua built-in Shor algorithm to factor a number N.

N = 170,141,183,460,469,231,731,687,303,715,884,105,727

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

426 Applying Quantum Algorithms

Implementing Shor's algorithm
What Shor's algorithm describes is merely how to factor out a number N. We saw in the
previous section how difficult a task this could be. We'll now review the process that Peter
Shor developed into his now-famous algorithm. We'll start with a simple example: let's
work on factoring out N = 21. The following is an outline of Shor's factoring algorithm:

1. The first step is to select our random base value a, such that 1 < a < N.

2. Next, we want to confirm that the greatest common denominator (gcd) of a and N
is not 1:

If we chose a value a that is the gcd of N, then it will be equal to 1, then we can
safely say we have found a factor of N. For example, if we choose a to be 5 and N to
be 15, then we have chosen a as the gcd since there is no larger value to factor 15.
Otherwise, we can conclude that a and N are co-prime values and can continue on
to the next step.

3. Next, we will search for a value order r of a mod N, where ar = 1 mod N. If we
happen to find that r is an odd number, then we will need to go back and start
again with another value of a. Otherwise, we move on when r is an even number.
The reason for wanting r as an even number is so that we can apply it to the
following formula:

4. If either of the two factors in the previous equation does not resolve to 1, then we
can conclude that we have found one of the factors of N and we are done!

5. However, if both resolve to 1, then we must go back and restart with a new value
for a.

Let's give this a try using the Qiskit Aqua implementation of Shor's algorithm and see
whether we can find the factors of a number N:

1. Open a new Qiskit Notebook and let the autogenerated cell run. Once completed,
we'll import the Aqua library modules we will be using to implement Shor's
algorithm:

Import Shor's algorithm library

from qiskit.aqua.algorithms import Shor

gcd(a,N) = 1

(a
r
2 + 1) (a

r
2 − 1) = 0 mod N

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding periodic quantum algorithms 427

Import the QuantumInstance module that will allow us to
run the algorithm on a simulator and a quantum computer

from qiskit.aqua import QuantumInstance

Once you've successfully imported the modules, we'll define our values. We'll start
with something simple by setting N to 21 and a to 3:

Declare the product 'N', and our base 'a'

N = 21

a = 3

Now, we know by observation that when a = 3, gcd(3,21) is equal to 1 and we
are done. We will nonetheless run this to confirm that the Aqua implementation
of Shor's algorithm checks for the restriction of step 2 from our outline
(listed previously).

2. Next, we will configure QuantumInstance by setting the backend to the
simulator, and the number of shots to 1024:

Configure backend simulator parameters

backend = Aer.get_backend('qasm_simulator')

shots = 1024

Initialize the QuantumInstance object which will
execute Shor's algorithm
qi = QuantumInstance(backend=backend, shots=shots)

3. Now that we have set QuantumInstance, let's pass it in our parameters to Shor's
algorithm and construct the Shor's algorithm object with the parameter values
we provided:

shors_algorithm = Shor(N=N, a=a, quantum_instance = qi)

When constructing the Shor's algorithm object, you should expect to see the
following ValueError exception:

ValueError: The integer a needs to satisfy a < N and
gcd(a, N) = 1.

This verifies that the Shor's algorithm object does in fact verify that step 2 is satisfied
before moving on.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

428 Applying Quantum Algorithms

4. So now, let's change our value of a to 2 and try again. Go back to the previous
cell where we initialized our value for a and set it to 2, which would look like
the following:

Declare the product 'N', and our base 'a'

N = 21

a = 2

Once the previous cell has completed running with the new value of a, proceed
back down to the cell that raised the ValueError exception and rerun that cell
again. This time, you should not expect to see any exception raised.

5. After the construction of Shor's algorithm has completed, we can now run the
algorithm on QuantumInstance we created:

results = shors_algorithm.run()

This will run Shor's algorithm based on the values we have provided. This may take
a few moments based on the performance of the system at the time you executed it.

6. After the results are returned, we can simply print out the factors from our result
object, as follows:

print(results['factors'])

This will print out the results, which we can see is the value we expected:
[[3, 7]]

Try experimenting with a few different values. However, keep in mind that Shor's
algorithm itself is very complex and requires a very large quantum volume to factor
larger numbers, so do not be too surprised if you see some errors raised.

This brings us to a very important factor to note here. There really shouldn't be any
concern regarding your data security just yet from current near-term quantum computers,
as they do not yet have sufficient quantum volume to break the current encryption
systems due to the limited capacity. Once these machines expand, of course, this may be a
different story. But, of course, there is so much research currently in progress using both
classical and quantum solutions to help prevent these forms of potential risk. Research
such as post-quantum cryptography will provide new techniques that can continue to
keep our data safe.

In this section, we learned about periodic quantum algorithms and how they can be
implemented into a quantum circuit. These algorithms were, namely, Simon's problem,
the QFT algorithm, and Shor's algorithm.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning about Grover's search algorithm 429

This now brings us to another search algorithm. Where Shor's helped us search for factors
of a number, Grover's algorithm will help us search for information using superposition,
entanglement, and interference to find a hidden value by different means.

Learning about Grover's search algorithm
Search algorithms are unique in that they can be leveraged by various algorithms to find
information, whether in a data repository or a list of values such as features in an image.
The advantage to quantum, of course, is in the potential for the speed-up of the search.
Grover's algorithm is one such example. It uses a well-known technique that allows the
use of interference to amplify certain states in our quantum circuit in a way that will
increase the amplitude of the value we are searching for and decrease those that we are
not. Let's start, as always, by describing the problem, where each state is analogous to an
entry in an unordered list.

Learning about the problem
The problem here is also very simple: we are given a set of states where all except one has a
value set to 1 and all others are set to 0. We wish to identify which one of those states is set
to 1.

Classically, this can be done in, in the best case, 1 step, if the first value is set. In the worst
case, it would take N steps, where N is the total number of states and the last state is set.
This means that on average, it will take N/2 steps to find the value as we would need to
check each value individually.

Clearly, this is not ideal if our set is a very large list. We need to find a better way to find
our value. This is where, in 1996, Lov Grover came in and discovered a way to solve this
problem with his now-famous quantum algorithm. We'll step through the implementation
of Grover's algorithm as we try to search for a value in a three-qubit circuit.

To describe this problem using functions, we can state the following, given a function:

From the preceding equation, ƒ(x) = 0 for all cases of x except for a specific case, x*, such
that ƒ(𝑥𝑥∗) = 1 . Find the value of x*. Since we will be working with qubits, let's select a
value N, such that N = 2n.

Now that we have defined our problem, let's step through Grover's search algorithm.

ƒ{0,1}n → {0,1}

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

430 Applying Quantum Algorithms

Understanding Grover's search algorithm
Grover's algorithm is similar to the Deutsch-Jozsa and Bernstein-Vazirani algorithms, in
that it too leverages an oracle. The difference is that it also leverages interference in a way
that it will increase the amplitude of the state we are searching for while decreasing all
other states, which in turn increases the speed by √N, where N is the number of states
to search.

We'll begin by first explaining the Grover's search process in order to obtain an intuitive
understanding of how it works. For a deeper description of the mathematics behind this, I
would recommend the book Dancing with Qubits by Robert S. Sutor, which covers this in
greater detail.

Grover's search algorithm can be broken down into two main components—perhaps
three, if you count initializing all qubits into superposition and adding measurements at
the end—but that is something that most quantum algorithms do, so we'll just stick to the
two main points. The first is referred to as Grover's oracle, and the second is the Grover
diffusion operator.

In this example, we will describe a two-qubit system that when placed in superposition
by placing a Hadamard gate to each qubit, provides four possible states—00, 01, 10, and
11—as follows:

Figure 14.12 – Two qubits in a superposition state

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning about Grover's search algorithm 431

When in this state, the average equals the probability amplitude, which in this case is 0.25,
as indicated by the dotted line across the top of each state.

For this example, we'll say the state that we wish to search for is the state '10'.

The first component is the oracle, Uf. This is where we generally tag the value we are
searching for. By tagging, I mean we will signal that the state that we are searching for
will be identified by simply changing the sign of the state from positive to negative. The
transition would be as follows:

Figure 14.13 – Changing the sign of the state to negative

Now that we have changed the sign, we can't unfortunately just measure and go at this
point—mainly because as we know, the probability amplitudes are squared, so our results
would all still be equal, which does not provide us with any new information about what
we are searching for. However, since we are working with amplitudes, we can leverage
interference here by increasing the amplitude of the state we tagged and decreasing the
amplitude of the other states. How do we do this? By incorporating the second component
of Grover's search, the diffusion operator.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

432 Applying Quantum Algorithms

The second component of Grover's algorithm is the Grover diffusion operator. Here,
we will be performing a mathematical step known as inversion about the mean. What
this does is inverts the distance between the average and the peak of each state. This
is analogous to having each state flip reflectively about the average mean. Visually, the
transition will be as follows:

Figure 14.14 – Inversion about the mean amplifies the states constructively and destructively

As we can see from the results of performing the inversion about the mean, the
amplification of the tagged state is now significantly higher than the other states. If we
were to now take a measurement, we would see that the result with the higher probability
is the state we are searching for. Keep in mind, of course, that this is all done with a single
query to our quantum circuit!

One thing to note is that when the number of states, N, is large, this means we will need
to repeat both steps more times. The number of times to optimize the results is √2n,
where n is the number of qubits.

Let's implement Grover's search algorithm next.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning about Grover's search algorithm 433

Implementing Grover's search algorithm
As usual, we'll explain each step described in the previous section while we work through
the algorithm step by step. To start, create a new Qiskit Notebook for this example and
work through the following:

1. We'll begin by declaring the value we want to set. Let's set the value to 110, or 6.
This way, we can use a three-qubit circuit to implement Grover's algorithm and
place all the qubits in superposition by adding a Hadamard gate to each qubit:

Set the state we wish to search

N = '110'

num_qubits = len(N)

Create the quantum circuit

qc = QuantumCircuit(num_qubits)

Set all qubits in superposition

qc.h(range(num_qubits))

qc.barrier()

#Draw the circuit

qc.draw()

This will render our initialized circuit:

Figure 14.15 – Initialized quantum circuit in superposition

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

434 Applying Quantum Algorithms

2. Next, we want to encode the state that we want to search—in this case, it is the state
|110 . Here, we will reverse the state and encode N in the circuit:

Reverse the state so it's in proper qubit ordering

N = N[::-1]

Encode N into our circuit

for idx in range(num_qubits):

 if N[idx] == '0':

 qc.x(idx)

qc.barrier()

Draw the circuit

qc.draw()

For each step, we will add a barrier so that we can see the process rendered:

Figure 14.16 – Encoding our state '110', we mark the '0' qubits in the state with an X gate

3. Next, we will create Grover's oracle. What we will do here is first set the most
significant qubit in a superposition state, followed by a CNOT gate where the target
is the most significant qubit, and the source is all the other qubits. Then, place
another Hadamard gate on the most significant qubit to complete the oracle. This
will negate the state that we set in the previous source cell, |110 :

Create the Grover oracle for our 3-qubit quantum
circuit

qc.h(2)

qc.ccx(0, 1, 2)

qc.h(2)

qc.barrier()

Draw the circuit

qc.draw()

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning about Grover's search algorithm 435

The preceding code renders the following circuit, which we see sets the two CNOT
gates in our oracle surrounded by H gates on the most significant qubit:

Figure 14.17 – Applying Grover's oracle to the circuit

4. Now, we want to reset the state that we are searching in the circuit so that it returns
to the superposition value:

Reset the value after the oracle

for idx in range(num_qubits):

 if N[idx] == '0':

 qc.x(idx)

qc.barrier()

Draw the circuit

qc.draw()

The preceding code completes Grover's oracle, which we described earlier as the
first component of Grover's search algorithm:

Figure 14.18 – The first component of Grover's search algorithm

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

436 Applying Quantum Algorithms

5. Next, we will implement the second component, the Grover diffusion operator.
We start by applying all the qubits in a superposition state:

Set all qubits in superposition

qc.h(range(num_qubits))

qc.x(range(num_qubits))

qc.barrier()

Draw the circuit

qc.draw()

This renders the following superposition state, followed by Grover's oracle:

Figure 14.19 – The first step in the Grover diffusion operator: apply H gates to all qubits

6. Next, we will apply another oracle as we did previously across all qubits, where the
most significant qubit is set as the target of the two CNOT gates:

Apply another oracle, same as the previous,

qc.h(2)

qc.ccx(0, 1, 2)

qc.h(2)

qc.barrier()

Draw the circuit

qc.draw()

This renders the next step in the diffusion operator—that is, invert about the mean:

Figure 14.20 – The second step of the diffusion operator to invert about the mean

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning about Grover's search algorithm 437

7. Finally, we wrap up the Grover diffusion operator by applying the first step in
reverse. Since we applied a set of H gates across all qubits, followed by a set of X
gates, also across all qubits, we will reverse this in the following manner. Apply X
gates across all qubits, then apply H gates across all qubits:

Reapply the X rotations on all qubits

qc.x(range(num_qubits))

qc.barrier()

Reapply Hadamard gates to all qubits

qc.h(range(num_qubits))

Draw the circuit

qc.draw()

The preceding code completes the Grover diffusion operator component of the
quantum circuit:

Figure 14.21 – The complete Grover's algorithm circuit

8. Now, we'll just add measurement operators and prepare to run the circuit on the
backend, but first on a simulator:

Add measurement operators

qc.measure_all()

Draw the circuit

qc.draw()

Run on the qasm simulator

backend = Aer.get_backend('qasm_simulator')

Execute the circuit on the backend

job = execute(qc, backend, shots=1024)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

438 Applying Quantum Algorithms

Extract the results

results = job.result()

counts = results.get_counts(qc)

The preceding code will prepare the following quantum circuit to run on either
a simulator or quantum computer:

Figure 14.22 – The complete quantum circuit ready to run on a simulator or quantum system

9. We'll start by setting our backend to the Qasm simulator and execute our circuit:

Run on the qasm simulator

backend = Aer.get_backend('qasm_simulator')

Execute the circuit on the backend

job = execute(qc, backend, shots=1024)

Extract the results

results = job.result()

counts = results.get_counts(qc)

Print and plot results

print(counts)

plot_histogram(counts)

After executing the circuit, this will print and plot our results as follows:
{'001': 35, '011': 42, '010': 25, '101': 32, '110': 782,
'111': 37, '100': 38, '000': 33}

In the following histogram, we can see that the state we are searching has the
higher probability, a probability of almost 80%, whereas all the other states have
a significantly lower probability of around 3%:

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning about Grover's search algorithm 439

Figure 14.23 – Results of executing Grover's search of state 110 on a quantum simulator
Success! As expected, our Grover's algorithm implementation has found the state
within a single query.

10. Now, let's try it on a quantum device. We'll select the quantum computer that is
the least busy and operational and has the number of qubits necessary to run our
quantum circuit. We'll include our job watcher widget just so that we can monitor
our progress:

Execute the circuit on the least busy quantum computer

from qiskit.providers.ibmq import least_busy

backend = least_busy(provider.backends(filters=lambda x:
 x.configuration().n_qubits >= (num_qubits) and

 not x.configuration().simulator and x.status().
 operational==True))

print("Set backend: ", backend)

Launch the job watcher widget

%qiskit_job_watcher

The preceding code will print out the least-busy quantum computer and assign it
to the backend variable.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

440 Applying Quantum Algorithms

11. We can now execute this as we did previously with the simulator, then print and
plot the results:

Execute the circuit on the backend

job = execute(qc, backend, shots=1024)

Extract the results

results = job.result()

counts = results.get_counts(qc)

Print and plot results

print(counts)

plot_histogram(counts)

Once completed, you should see something similar to the following output:
{'001': 132, '011': 127, '010': 147, '101': 97, '110':
238, '111': 88, '100': 101, '000': 94}

This, of course, depends on the device itself as each system is different from
one another. However, the results should be clear that the state with the highest
probability is the state that we are searching for—in this case, |110 .

We also obtain the following histogram:

Figure 14.24 – Results of executing Grover's search of state 110 on a quantum computer

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summary 441

As we can see here, the result with the highest probability is the state we are
searching for, and the other states have a lower probability. However, note that both
the probabilities of the state we are searching for and those that we are not are not
as spread out as compared to when we ran this on the quantum simulator. This is, of
course, because of noise and low quantum volume. Luckily, you can remedy this by
applying noise mitigation filters in Qiskit Ignis. But for now, we can see enough of a
difference to observe that the Grover's search algorithm that we implemented does
indeed identify the state we are searching for.

Congratulations! You have successfully implemented a variety of quantum algorithms,
which are foundational to understanding how quantum computers are different in solving
problems than classical systems and how they have the potential to solve real-world
problems.

Summary
There are many algorithms that implement many of the techniques we covered in this
chapter, such as amplitude amplification, oracles, phase kickbacks, and much more, which
you will see used in many other algorithms, such as the quantum amplitude estimation
and variational quantum Eigensolver algorithms.

I do strongly suggest trying variations of these algorithms yourself to get a better feel and
understanding as to how they work.

We also used the algorithms that are built into Qiskit Aqua, which allows you as a
researcher to leverage the algorithms. You have now gained the skills to integrate these
algorithms into your existing research or applications without having to worry about
developing circuits, mitigating against noise, or any of the other components that make
up an algorithm in Aqua. This book has already done the heavy lifting for you, so you
just have to implement the algorithm and process the results as you see fit.

Questions
1. What other problems can you solve using periodic functions?

2. Implement QFT on a five-qubit state—for example, '10110'.

3. Since quantum gates are reversible, how would you create an inverse QFT on the
encoded value we created, '110', or |6̃ ?

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

442 Applying Quantum Algorithms

4. Using Grover's algorithm, find the following states: '101', '001', and '010'.

5. How many iterations of Grover's algorithm would you need to run to find the
state |10101 ?

6. Rerun the Grover's search example. Only repeat Grover's oracle and the diffusion
operator twice and note the difference in the result. What do you see that is
different? What would you expect to change if you ran it three times?

7. Does Qiskit Aqua also include classical algorithms along with the quantum
algorithms?

8. What other algorithms are included with Qiskit Aqua?

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Appendix A
Resources

In addition to this book, there are many other resources available that you can leverage to
get a deeper understanding of quantum computing and where to find the latest research.
This appendix will include a non-exhaustive list of resources that will provide you with
more details on the latest technological advances so you can put what you learned in this
book into practice on the IBM Quantum Experience:

• The Qiskit Community: The website for this community is https://qiskit.
org/advocates. This is where you can find out about joining the Qiskit
community as a Qiskit Advocate, or find out about upcoming events that you can
join or even host yourself. There are meetups, hackathons, Qiskit camps, and many
other events are listed where you can meet with other quantum developers and
researchers, and expand your learning by collaborating with others.

• The Qiskit documentation: The link for the full documentation is https://
qiskit.org/documentation/. This is the main documentation page for all
the Qiskit elements discussed in this book. It has references to all the code and
links to the source code. Tutorials are also included in the documentation to assist
your understanding of new features and how they are applied. You can also explore
various tutorials for finance (https://qiskit.org/documentation/
tutorials/finance/index.html), chemistry (https://qiskit.org/
documentation/tutorials/chemistry/index.html), and optimization
(https://qiskit.org/documentation/tutorials/optimization/
index.html) here.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://qiskit.org/advocates
https://qiskit.org/advocates
https://qiskit.org/documentation/
https://qiskit.org/documentation/
https://qiskit.org/documentation/tutorials/finance/index.html
https://qiskit.org/documentation/tutorials/finance/index.html
https://qiskit.org/documentation/tutorials/chemistry/index.html
https://qiskit.org/documentation/tutorials/chemistry/index.html
https://qiskit.org/documentation/tutorials/optimization/index.html
https://qiskit.org/documentation/tutorials/optimization/index.html

444 Resources

• The Qiskit Interactive Textbook: The link for this textbook is https://qiskit.
org/textbook/preface.html. This is a living document containing many
interactive exercises that build upon basic knowledge, such as linear algebra, and
guide you through to the advanced topics of quantum computing. The interactive
pages enable the user to work on the content in parallel with your project.

• The Qiskit GitHub repo: The GitHub repository link for Qiskit is https://
github.com/Qiskit. This is the official Qiskit GitHub repository where you
will find the code for all the Qiskit elements. Like most other open GitHub source
projects, you can fork and contribute to the open source project by either mitigating
any issues or implementing a design request. You can also submit requests for
enhancements or issues you may find. If it is your first time, it is recommended
to work on issues labeled good first issue.

• Quantum Algorithm Zoo: As the welcome page indicates, this site is a comprehensive
catalog of quantum algorithms. It provides details about the algorithm type, speedup,
and a description of the algorithm. They are grouped by type such as algebraic and
number theoretic, oracular, approximation and simulation, and several others. This is
very useful should you want to get a quick overview of an algorithm and how it works.
The link for this page is http://quantumalgorithmzoo.org/.

• Arxiv: Quantum Physics: This is an open access documentation repository for
scholarly papers and articles, at https://arxiv.org/archive/quant-ph.
This resource is for articles that specifically cover the topic of quantum physics,
a topic that also includes many quantum computation papers.

• IBM Q Network quantum papers: This resource provides a list of all research
papers that were published by the IBM quantum research team in partnerships with
IBM Q Network partners, and members. This resource's URL is https://ibm.
biz/q-network-arxiv.

The link is an AirTable, an online hybrid spreadsheet-database, which lists the
industry domains to which a given project is relevant, such as finance, optimization,
chemistry, machine learning, and so on. It also lists the name of the company and
which quantum computers or simulators they used in their research. Arxiv links to
all the papers listed are also included. This is a great resource to have to ensure you
keep up to speed on the latest research and the wider quantum research landscape.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://qiskit.org/textbook/preface.html
https://qiskit.org/textbook/preface.html
https://github.com/Qiskit
https://github.com/Qiskit
http://quantumalgorithmzoo.org/
https://arxiv.org/archive/quant-ph
https://ibm.biz/q-network-arxiv
https://ibm.biz/q-network-arxiv

 445

• The Qiskit YouTube channel: The URL for this channel is https://www.
youtube.com/channel/UClBNq7mCMf5xm8baE_VMl3A. This is the
official Qiskit YouTube channel on which there are several series on research and
development with frequently scheduled uploads to keep viewers up to date on the
latest content and research from the IBM quantum research team, IBM Q Network
partners, and of course the Qiskit community team.

• SciRate: This site (https://scirate.com/) gathers the top-rated Arxiv papers
in each category, including quantum physics. It's a good resource should you have
time to read what most people are reading about from Arxiv.

• Qiskit Events: Finally, Qiskit Events is the resource that will keep you up to date
on any upcoming events hosted by the Qiskit community (https://qiskit.
org/events). You can also filter this list by region and view previous events
and playbacks, if available.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.youtube.com/channel/UClBNq7mCMf5xm8baE_VMl3A
https://www.youtube.com/channel/UClBNq7mCMf5xm8baE_VMl3A
https://scirate.com/
https://qiskit.org/events
https://qiskit.org/events

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Assessments

Chapter 1 – Exploring the IBM Quantum
Experience

Question 1
Which view contains your API token?

Answer
The My Account view has your API token available, and it is where you can also
regenerate a different token if needed.

Question 2
Which device in your list has the fewest qubits?

Answer
The availability of the device with the fewest qubits will vary based on the quantum devices
available. But at the time of writing, there is a device with just 1 qubit, ibmq_armonk, which
is Pulse-enabled. The other devices with the fewest qubits are the various 5-qubit machines.

Question 3
How many connections are there in the device with the fewest qubits?

Answer
This may vary based on the available quantum devices, but you can determine this by
selecting the quantum device from the list of backends and counting the number of
edges between qubits. Currently, there are 4 to 5 connections based on the different
qubit topologies.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

448 Assessments

Question 4
What are the two tools called that are used to generate quantum circuits?

Answer
Circuit Composer, which is a UI, and Quantum Labs/Notebooks, which are based on
Jupyter Notebooks with Qiskit pre-installed.

Question 5
Which view would provide you with a list of basis gates for a selected device?

Answer
The backend list view, from the IBM Quantum Experience main landing page
(dashboard), will provide you with a list of basis gates for a selected device.

Chapter 2 – Circuit Composer – Creating a
Quantum Circuit

Question 1
Using the entangled coin-flip experiment, re-run the experiment. What is the state vector
of the results?

Answer
This will vary each time you run the circuit, but the results will have roughly the same
average of about 50% for 0 and 1.

Question 2
What are the result states if you were to add a NOT gate before the Hadamard gate in the
entangled coin-flip experiment's circuit?

Answer
As you are now starting the second qubit in a state other than the initial state by adding a
NOT gate, the results will be opposite from each other – that is, either 01 or 10.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Question 3 449

Question 3
Using the entangled coin-flip experiment from the circuit editor, switch the measurements
so that the output of q0 reads out to classic bit 1, and q1 reads out to classic bit 0. What are
the two states in the result and what are their probabilities?

Answer
Changing the readout location for the measurement operator can be done by the UI,
as follows:

1. First, select one of the measurement operators, then select the Edit button, located
at the top left of the measurement operator (the pencil icon).

2. Change the assigned bit from 0 to 1, or 1 to 0 if you selected the second
measurement operator.

3. Repeat the preceding steps to change subsequent measurement operators.

Question 4
What would the result states be if you were to add a Hadamard gate to the second qubit
before the CNOT gate in the entangled coin-flip experiment's circuit?

Answer
The results would be, for q0 and q1, an equal probability of 50% – that is, 00 and 11.

Chapter 3 – Creating Quantum Circuits Using
Quantum Lab Notebooks

Question 1
Quantum Lab notebooks are built upon which application editor?

Answer
Quantum Lab notebooks are built on Jupyter Notebook with the latest version of
Qiskit installed.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

450 Assessments

Question 2
How would you create a five-qubit circuit, as we did in Chapter 2, Circuit Composer –
Creating a Quantum Circuit?

Answer
The circuit contained a Hadamard gate (H), and a Control-NOT gate (cx) with q0 as
the control and q1 as the target, followed by measurement operators on both qubits,
represented as follows:

qc = QuantumCircuit(2,2)

qc.h(0)

qc.cx(0,1)

qc.measure([0,1],[0,1])

qc.draw()

Question 3
To run the experiment on another real device, which quantum computer would you select
if your quantum circuit has more than 5 qubits?

Answer
Any of the quantum computers listed in the available backend quantum devices
would be ideal to run a quantum circuit, as long as the number of qubits is 5 or more.
Therefore, ibmq_armonk would not be a valid choice as it only has 1 qubit, and
ibmq_qasm_simulator is a simulator and not an actual quantum computer.

Question 4
When you run on a real device, can you explain why you get extra values when compared
to running on a simulator?

Answer
The other values displayed are due to the effect of noise on the quantum system.
Simulators are ideal quantum systems that do not have the effects of noise.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 4 – Understanding Basic Quantum Computing Principles 451

Chapter 4 – Understanding Basic Quantum
Computing Principles

Question 1
How would you create a circuit that entangles two qubits where each qubit is different
(that is, 01, 10)?

Answer
We can use the following code to create a circuit that entangles two qubits:

qc = QuantumCircuit(2,2)

qc.h(0)

qc.x(1)

qc.cx(0,1)

qc.measure([0,1], [0,1])

qc.draw()

Question 2
Which simulator is used to display the Bloch sphere?

Answer
As the Bloch sphere displays the state vector of the quantum circuit, the statevector
simulator would be ideal.

Question 3
Execute the superposition experiment with the shots=1 parameter, then shots=1000,
and then shots=8000. What is the difference?

Answer
In your code, just change the argument for shots to the various options selected,
as follows:

backend = execute(qc, backend, shots=1)

backend = execute(qc, backend, shots=1000)

backend = execute(qc, backend, shots=800)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

452 Assessments

Question 4
Run the quantum teleportation experiment on a real quantum device and describe the
results compared to the simulator's results. What's different, if anything, and why? (Hint:
noise affects near-term devices).

Answer
The results will be similar to that of the simulator. However, you will notice that some
other results have small probabilities, which are due to the effects of noise.

Chapter 5 – Understanding the Quantum Bits
(Qubit)

Question 1
What is the transpose of the single-qubit |0 state stated as a column vector?

Answer
The single-qubit |0 state is represented as a column vector, [10] . Therefore the transpose of
the single-qubit |0 state would be represented as a row vector, [1,0].

Question 2
Which would provide visual information about the phase of a qubit—the Bloch sphere or
the Qiskit sphere?

Answer
The Qiskit sphere (QSphere) includes a checkbox to visualize the phase information.

Question 3
Can you visualize multi-qubits on the Bloch sphere? If yes, then why? If no, then why not?

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Answer 453

Answer
No, we can't visualize multi-qubits on the Bloch sphere, not as easily as the QSphere. The
Bloch sphere is generally leveraged to illustrate a single qubit vector position for a given
state, whereas the QSphere includes the phase.

Question 4
Write out the tensor product of three-qubit states in all forms.

Answer
The resulting basis states for a three-qubit system are |000 , |001 , |010 , |011 , |100 , |101 ,
|110 , |111 .

Question 5
What is the probability amplitude of a three-qubit system?

Answer
The amplitude of a three-qubit system is

1
√2𝑛𝑛

 , where n is the number of qubits, which

results in
1
√23

= 1
√8

 .

Question 6
What material is used to create the capacitors of a qubit?

Answer
Superconducting capacitors of a qubit are made of niobium.

Question 7
What are Josephson junctions made of?

Answer
Josephson junctions are made of aluminum.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

454 Assessments

Question 8
At what approximate temperature do the qubits have to be in order to operate properly?

Answer
The qubits have to be at approximately 15 millikelvins to operate properly.

Chapter 6 – Understanding Quantum Logic
Gates

Question 1
For the multi-qubit gates, try flipping the source and target. Do you see a difference when
you decompose the circuit?

Answer
No, there is no difference that can be seen, only that the source is now assigned to the
opposite qubits.

Question 2
Decompose all the gates for both single- and multi-qubit circuits. What do you notice
about how the universal gates are constructed?

Answer
The single gates are now displayed by their respective basis gate, including rotation values,
if any. Multi-qubit gates, such as the Toffoli gate, are also broken down to specific gates
used to construct the operation of the Toffoli gate between the assigned qubits.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Question 3 455

Question 3
Implement the Toffoli gate where the target is the center qubit of a three-qubit circuit.

Answer
We use the following code to implement the Toffoli gate where the target is the center
qubit of a three-qubit circuit:

qc = QuantumCircuit(3)

qc.ccx(0,2,1)

qc.draw()

Question 4
Decompose the Toffoli gate. How many gates in total are used to construct it?

Answer
When decomposing the Toffoli gate down to Hadamard, T, T dagger, and CX gates, there
are a total of 15 gates, and it runs 12 operations deep.

Question 5
Apply the Toffoli gate along with a Hadamard gate to a state vector simulator and compare
the results to that from the Qasm simulator. What differences do you see and why?

Answer
The Qasm simulator, since it runs 1024 shots by default, will produce a result of
approximately 50% 000 and 50% 001, assuming placement of the Hadamard gate is in
the first qubit. Whereas the state vector simulator, which only runs a single shot, will
either result in the state 000 or 001; the results of which will vary depending on the
qubit in which you placed the Hadamard gate.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

456 Assessments

Question 6
If you wanted to sort three qubits in the opposite direction, which gates would you use
and in which order?

Answer
You can use the swap gate to switch the value of each qubit from one qubit to another
(for an example of two qubits):

qc = QuantumCircuit(2)

qc.x(0)

current state is '01'

qc.swap(0,1)

current state is reversed, '10'

Question 7
Given a three-qubit circuit, how would you go about swapping the first and third qubits?

Answer
qc = QuantumCircuit(3)

qc.swap(0,2)

Question 8
Given a three-qubit circuit, how would you set the second qubit as the target of a
Toffoli gate?

Answer
qc = QuantumCircuit(3)

qc.ccx(0,2,1)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7 – Introducing Qiskit and Its Elements 457

Chapter 7 – Introducing Qiskit and Its
Elements

Question 1
Which of the four elements would financial analysts use to integrate their risk analysis
applications into a quantum computer?

Answer
Ideally, they would use Qiskit Aqua, as that provides APIs to algorithms that have already
been created for general-purpose use or to construct without having to worry about the
underlying fundamentals, such as circuit design, optimal performance, error correction,
or other facets.

Question 2
In your own words, describe what each element would provide to a quantum algorithm
researcher.

Answer
These should, in general, capture the functionality of each element. For example, Terra
provides the underlying connection to the hardware via circuit/pulse schedules to
manipulate the qubits on quantum computers.

Aer provides high-performance simulators, such as state vector, Qasm, pulse, and unitary
simulators, and availability to generate noise models based on actual quantum computer
configuration and properties.

Ignis facilitates both noise and error correction. Aqua provides a high-level class of
content to integrate with a classical application.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

458 Assessments

Question 3
If you wanted to run schedules on a quantum computer, which simulator would you need
to use?

Answer
The Pulse simulator.

Question 4
If you wanted to obtain the unitary of a circuit, which element would provide the
necessary simulator?

Answer
Aer is the element that contains all the various simulators, including the unitary simulator.

Question 5
If you wanted to analyze the computational power of a quantum system, which element
would your application need?

Answer
As Quantum Volume is a method used to determine the computational power of a
quantum computer, we would need to use Ignis.

Question 6
Can you name and describe each of the simulators that are provided by Aer?

Answer
There are four simulators: QasmSimulator, StatevectorSimulator, UnitarySimulator, and
PulseSimulator.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Question 7 459

Question 7
Which module would you need to import in order to plot a histogram?

Answer
To import the histogram plotter (plot_histogram), you would need the module from
the Terra element named qiskit.visualization.

Chapter 8 – Programming with Qiskit Terra

Question 1
What are the four elements of Qiskit?

Answer
Terra, Aer, Ignis, and Aqua.

Question 2
Construct a random quantum circuit with a width of 4 and a depth of 9.

Answer
from qiskit.circuit.random import random_circuit

#Circuit with a width = 4, a depth = 9

qc = random_circuit(4, 9, measure=True)

Question 3
Create a quantum circuit with the same width as the circuit you created in Question 2 and
concatenate it so that it is added before the random quantum circuit you created.

Answer
qc1 = random_circuit(4,2)

qc_combined = qc1 + qc

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

460 Assessments

Question 4
Print the circuit properties of the concatenated quantum circuit from Question 3 and
specify the total number of operators, not including any measurement operators.

Answer
qc_combined.draw()

qc_combined.count_ops()

Question 5
Create a circuit with a parameterized RY gate that would rotate by an angle of /2.

Answer
import numpy as np

from qiskit.circuit import Parameter

param_theta = Parameter(' ')
qc = QuantumCircuit(2)

qc.rz(param_theta,0)

qc = qc.bind_parameters({param_theta: np.pi/2})

qc.draw()

Question 6
Create and draw a schedule with any of the available waveforms from the Pulse library.

Answer
from qiskit.pulse.library import Gaussian, Constant,
GaussianSquare, Drag

amp = 1

sigma = 10

samples = 128

duration = 128

Gaussian sample

gaussian_sample = Gaussian(samples, amp, sigma)

gaussian_sample.draw()

Constant sample

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Question 7 461

constant_sample = Constant(duration, amp)

constant_sample.draw()

Gaussian square sample

gaussian_square = GaussianSquare(duration, amp, sigma,
width=100)

gaussian_square.draw()

Drag sample

drag = Drag(duration, amp, sigma, beta=5.5)

drag.draw()

Question 7
Using the Provider object, how many quantum systems do you have access to that have 5
or more qubits?

Answer
num_of_qubits = 5

backend = provider.backends(filters=lambda x:

 x.configuration().n_qubits >= num_of_qubits)

backend

Chapter 9 – Monitoring and Optimizing
Quantum Circuits

Question 1
Create a filter that will return the least busy backend to run a quantum circuit that
includes any constraint other than those covered in this book (Hint: use the backend.
configuration() function to view other backend configuration variables).

Answer
The following code will filter all available backends for a quantum computer with more
than 2 qubits, and a Quantum Volume greater than 8:

backends = provider.backends(filters=lambda x:

 x.configuration().n_qubits >= (2) and not

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

462 Assessments

 x.configuration().simulator and

 x.configuration().quantum_volume > 8)

backends

Question 2
Can you name two components of the transpiler?

Answer
Pass and PassManager.

Question 3
Which component allows you to specify the passes to use?

Answer
PassManager is used to specify which passes are used and which passes can communicate
with other passes.

Question 4
What is the depth of a Toffoli gate when decomposed?

Answer
The following code will add a Toffoli gate to a quantum circuit and then decompose it
down to its composed gates, and then you can use the depth() function to print out
the depth of the decomposed circuit:

qc = QuantumCircuit(3)

qc.ccx(0,1,2)

print(qc.decompose().depth())

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Question 5 463

Question 5
Is there a difference between when decomposing a Toffoli gate using decompose()
versus the transpiler?

Answer
The decompose() function expands the gate based on its decomposition rules, whereas
the transpiler decomposes circuits to its basis gate set as defined by the backend that it will
execute on.

Question 6
What are the basis gates on the ibmq_santiago device?

Answer
backend = provider.get_backend('ibmq_santiago')

basis_gates = backend.configuration().basis_gates

print('Basis gates for ibmq_santiago: ', basis_gates)

Question 7
What are the five pass types?

Answer
Layout Selection, Routing, Optimizations, Basis Change, and Synthesis.

Question 8
What is the default optimization_level value when running the execute()
function?

Answer
Optimization level 1.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

464 Assessments

Question 9
What are the default optimization_level values set for TrivialLayout and
DenseLayout?

Answer
The default optimization levels are set to 1 by default regardless of pass selection. The
optimization_level parameter is set in the transpile() function.

Chapter 10 – Executing Circuits Using Qiskit
Aer

Question 1
Can you list all the simulators found in the Aer library?

Answer
The list of simulators can be generated using the Aer.backends() function.

Question 2
How many simulators are there altogether in Qiskit? (Hint: this includes Basic Aer, Aer,
and IBM Quantum Provider.)

Answer
You can extract them from each module and see for yourself, as follows:

Aer.backends()

BasicAer.backends()

Question 3
Create a QSphere representation of a qubit on the negative Y axis, creating the state
|0 − 𝑖𝑖 |1

√2
 , using only a single Hadamard gate along with the phase gates.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Answer 465

Answer
In order to accomplish this, you will need to set the qubit in a superposition state. This can
be done using the Hadamard gate (H), which will place the qubit in the state |0 + |1

√2
 .

After that, we will have to run a phase shift from the |+ state to the
|0 − 𝑖𝑖 |1

√2
 state, which

would mean we need a phase gate to shift the state by a phase of − /2, as follows:

qc = QuantumCircuit(1)

qc.h(0)

qc.sdg(0)

simulator = Aer.get_backend('statevector_simulator')

result = execute(qc, simulator).result()

statevector = result.get_statevector(qc)

statevector

Question 4
What must the initialized probability value of a circuit be in order to be valid?

Answer
The sum of the squares of the total param values in the initialize function argument must
add up to 1, as in the following example, where

1
2

 is set twice. So, if you take the sum of
the squares, it will be equal to 1:

import numpy as np

qc = QuantumCircuit(2, 2)

init_qubits = [0, 1]

qc.initialize([1, 0, 0, 1] / np.sqrt(2), init_qubits)

Question 5
Can you use the QSphere to visualize both the phase and probability information of a qubit?

Answer
Yes, where the phase is given by the color of the state vectors and the probability is
visualized by the size of the tips of the state vectors. The larger the diameter, the higher
the probability.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

466 Assessments

Question 6
How would you apply a noise function to qubits 2, 3, and 4 of a five-qubit system?

Answer
For a NoiseModel readout error, you would apply the instructions to the qubit in the
argument as follows:

from qiskit.providers.aer.noise import ReadoutError

from qiskit.providers.aer.noise import NoiseModel

readout_error = ReadoutError([[p0, p0_1], [p1_0, p1]])

Apply the readout error to qubit 2-4, remember it is zero-
based.

noise_model.add_readout_error(readout_error, [1,2,3])

Question 7
What would happen if you set the depolarization error values close to 1?

Answer
This will set the value to 1, therefore completely depolarizing the channel.

Question 8
If you applied a readout error equally to all qubits, what results would you expect
and why?

Answer
When running on a simulator, rather than resulting in an ideal condition (no errors),
you will instead see errors, where the significance of the errors is based on the set
ReadoutError() parameters.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 11 – Mitigating Quantum Errors Using Ignis 467

Chapter 11 – Mitigating Quantum Errors Using
Ignis

Question 1
List the various characterizations of a qubit.

Answer
Calibrations, coherence, gates, and Hamiltonians.

Question 2
Which decoherence is analyzed using the Ramsey experiment?

Answer
With respect to decoherence, the Ramsey experiment is generally used to measure T2* (T2
Star). The Hahn echo is used to measure T2.

Question 3
What is the difference between relaxation and dephasing decoherence?

Answer
Relaxation is the state of the qubit dropping over time from the excited state, |1 , down to
the ground state, |0 .

Dephasing is the phase noise that affects the phase state of the qubit. For example, if the
qubit is in a superposition state, then it would mean the difference between the qubit state
moving from the |+ state to the | − state, or vice versa, over time.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

468 Assessments

Question 4
Which of the following is not a value for dephasing – T1, T2, or T2*?

Answer
T1, T2, and T2* are values that represent dephasing, where T1 represents relaxation.

Question 5
What is the maximum number of qubits you can apply to a measurement filter?

Answer
There is no maximum; you can apply the measurement filter to as many qubits as
you need.

Question 6
What is the difference between T2 and T2*?

Answer
T2 and T2* are both dephasing; the difference is in the actions of each experiment to
the qubit and what the expected results would be. For T2* and T2, you start by applying
a Hadamard gate, which puts the qubit in a superposition state. Then, to calculate T2*,
you wait a fixed amount of time and then apply a Hadamard gate again and take a
measurement. Your results should have you back in the original state. However, if there is
some dephasing, the results will then be in the opposite state. This is commonly referred
to as a Ramsey experiment.

For T2, you wait half the fixed amount of time, and then apply a NOT (X) gate, and then
wait the remaining (last half) of the fixed amount of time, and then apply a measurement.
This is commonly referred to as the Hahn echo experiment.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Question 7 469

Question 7
What do the rows and columns of a calibration matrix relate to?

Answer
The column headers represent the prepared states, and the rows represent the measured
values. In a noiseless (ideal) system, the two would be the same each time, which would
represent the diagonal. However, if there is noise and the measured state is different than
the prepared state, the results will highlight sections outside the diagonal. This calibration
matrix represents the measured noise of the system.

Question 8
What is the name of the effect when a qubit decays from the excited state to the
ground state?

Answer
Relaxation decoherence, often referred to as T1.

Chapter 12 – Learning about Qiskit Aqua

Question 1
Using the quantum circuit from the example shown in Figure 12.4, create a custom
initialized state using the state_vector parameter.

Answer
from qiskit.aqua.operators.state_fns import CircuitStateFn

num_qubits = 2

qc = QuantumCircuit(num_qubits)

qc.h(0)

qc.cx(0,1)

Construct the Custom class based on the built quantum circuit

q_st_func = Custom(state_vector=csf, num_qubits=num_qubits)

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

470 Assessments

Question 2
Construct a circuit state function from a state vector.

Answer
from qiskit.aqua.operators.state_fns import CircuitStateFn

qc = QuantumCircuit(2)

qc.h(0)

qc.cx(0,1)

csf = CircuitStateFn(primitive=qc, coeff=1,
is_measurement=False)

Question 3
Construct a balanced Oracle and verify it using the Deutsch-Jozsa algorithm.

Answer
To construct a balanced oracle, you need to first place a NOT (X) gate to each qubit where
the binary string has a 1. Then you need to apply a Control-NOT (CX) gate to each qubit
where each qubit is the source, and the target qubit is the ancilla qubit.

Question 4
Implement the Bernstein-Vazirani algorithm to find the secret value, 170. (Hint: use the
decimal-to-binary utility.)

Answer
In order to create the circuit, you need to convert the value from decimal, 170, to the
binary representation of 170. Then, after applying a Hadamard gate to all the qubits,
except the ancilla qubit, to which you will first apply a NOT gate followed by a Hadamard,
apply a CX gate to each qubit that is represented by the binary value 170, which is
represented by the value 10101010. So, you would apply a CX gate to each of the odd
qubits, where the control of each CX gate is set to qubit 1, 3, 5, and 7 and the target of each
CX gate is the ancilla qubit. Then, apply a Hadamard gate followed by a measurement
operator to all qubits, except the ancilla qubit.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Question 5 471

Question 5
How many Oracle functions are there?

Answer
In general, most algorithms have one oracle function; however, there are some algorithms
that require more than one, or multiple oracle functions, such as the Grover algorithm,
which repeats the oracle function based on the number of qubits.

Question 6
Does Aqua also include classical algorithms?

Answer
Yes, there is currently a base class for ClassicalAlgorithms in Aqua.

Question 7
Leveraging the qiskit.aqua.circuits.StateVectorCircuit class, construct
a circuit that represents an X gate.

Answer
state_vector = [0, 1]

state_vector_qc = StateVectorCircuit(state_vector)

qc_sv = state_vector_qc.construct_circuit()

qc_sv.draw()

Question 8
Change the backend on QuantumInstance to a quantum computer backend that is
available and rerun any of the quantum algorithms. Describe what differences, if any, you
were able to observe.

Answer
Based on the quantum computer and its Quantum Volume, you would see similar results
with some noise. You can run some error mitigation, such as the measurement calibration
fitters, to correct those as well so as to get more precise results.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

472 Assessments

Chapter 13 – Understanding Quantum
Algorithms

Question 1
Create a circuit that implements Deutsch's algorithm for a constant function and verify
your results.

Answer
Deutsch's algorithm is used to determine whether a function f(x) is balanced or constant
for a single bit input. In order to solve this using a quantum computer, your 2-qubit circuit
should include an oracle function with a Control-Not (CX) gate between the 2-qubits,
where the input is the Control and the other qubit is the Target. Prior to the oracle
function and similar to the Deutsch-Jozsa algorithm, your ancilla qubit (the second qubit)
should have a NOT (x) gate prior to placing it in superposition.

Question 2
Which algorithm would you use to determine whether an n-bit string is balanced?

Answer
The Deutsch-Jozsa algorithm.

Question 3
Would phase kickback work if the ancilla qubit was not set to the state |1 ? Explain
your answer.

Answer
No, it would offset the results. Remove the X gate in your circuit and run the experiment
to see the difference in both the measured results and in the state vector.

Question 4
Implement the Bernstein-Vazirani algorithm to find the state |11010 .

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Answer 473

Answer
Simply follow the same setup of adding Hadamard gates to all input qubits, and an X
followed by a Hadamard gate to the ancilla qubit, then include the CX gate to qubits 1, 3,
and 4, followed by Hadamard and measurements to all the qubits except the ancilla qubit.

Question 5
What would happen if you set the ancilla qubit in either of the algorithms by first placing
a Hadamard gate, followed by an X gate? Explain the reason for the results.

Answer
The results would be incorrect. The X gate prior to the Hadamard prepares the state with
a negative phase, whereas if the X is on the other side of the H gate, it has a different effect
that prepares a different state prior to applying the CX gates.

Question 6
Program and create an automated oracle generator for the Bernstein-Vazirani algorithm
that randomly generates the secret state. Can you determine the value by just running the
circuit and reviewing the results?

Answer
This can be done by reading the binary representation of the secret state and creating the
oracle using CX gates to apply to each qubit where the binary value 1 is present.

Chapter 14 – Applying Quantum Algorithms

Question 1
What other problems can you solve using periodic functions?

Answer
Quantum phase estimation and Shor's algorithm are two of the more well-known ones.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

474 Assessments

Question 2
Implement QFT on a five-qubit state—for example, 10110.

Answer
To create a QFT, simply set a variable to the value 10110. Then, apply an X gate to each
qubit that has a 1 assigned. Then, follow the pattern to generate the QFT by applying an H
gate to the most significant qubit, then followed by Control-Rot gates starting at /2 and
dividing in half as you traverse across each C-Rot, /4, /8, /16, and more. Then, repeat
as you progress down each qubit. Finally, apply swap gates from the extreme qubits – in
this case, qubit 0, qubit 4, qubit 1, and qubit 3.

Question 3
Since quantum gates are reversible, how would you create an inverse QFT on the encoded
value we created, '110', or |6̃ ?

Answer
You would simply reverse the operations you performed in creating the QFT of the
value 6.

Question 4
Using Grover's algorithm, find the following states: '101', '001', and '010'.

Answer
Generate an oracle for each state by applying an X gate for each qubit that is represented
by a 0 followed by a Control-Control-NOT gate, and then followed by repeating the X
gate on the same qubit. Since it is only 3 qubits in length, you would only need to create
the oracle and the Grover diffusion operator once.

Question 5
How many iterations of Grover's algorithm would you need to run to find the state
|10101 ?

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Answer 475

Answer
Twice (two times), as the repetition is based on √N, where N is the number of qubits.
Since we will need 5 qubits, √5 is greater than √4, which is 2.

Question 6
Rerun the Grover's search example. Only repeat Grover's oracle and the diffusion operator
twice and note the difference in the result. What do you see that is different? What would
you expect to change if you ran it three times?

Answer
The amplification of the expected answer will begin to decrease as the difference between
the two is calculated across for each iteration.

Question 7
Does Qiskit Aqua also include classical algorithms along with quantum algorithms?

Answer
Yes.

Question 8
What other algorithms are included with Qiskit Aqua?

Answer
There are many, and there will be many more by the time you are reading this. The full
list can be found in the Qiskit documentation under qiskit.aqua.algorithms. At the time
of writing, there are over 20 quantum algorithms in Aqua, including Berstein-Vazirani,
HHL, Deutsch-Jozsa, Simon, VQE, QAOA, NumPyEigensolver, and Shor's.

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Dancing with Qubits

Robert S. Sutor

ISBN: 978-1-83882-736-6

• See how quantum computing works, delve into the math behind it, what makes it
different, and why it is so powerful with this quantum computing textbook

• Discover the complex, mind-bending mechanics that underpin quantum systems
• Understand the necessary concepts behind classical and quantum computing
• Refresh and extend your grasp of essential mathematics, computing, and

quantum theory
• Explore the main applications of quantum computing to the fields of scientific

computing, AI, and elsewhere
• Examine a detailed overview of qubits, quantum circuits, and quantum algorithm

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/product/dancing-with-qubits/9781838827366

478 Other Books You May Enjoy

Quantum Computing and Blockchain in Business

Arunkumar Krishnakumar

ISBN: 978-1-83864-776-6

• Understand the fundamentals of quantum computing and Blockchain

• Gain insights from the experts who are using quantum computing and Blockchain

• Discover the implications of these technologies for governance and healthcare

• Learn how Blockchain and quantum computing may influence logistics and finance

• Understand how these technologies are impacting research in areas such
as chemistry

• Find out how these technologies may help the environment and influence
smart city development

• Understand the implications for cybersecurity as these technologies evolve

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/product/quantum-computing-and-blockchain-in-business/9781838647766

Leave a review - let other readers know what you think 479

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index

A
Aer 161, 177, 257
Aer simulators

about 258, 259
backends, viewing 259-262
features 259

amplitude damping error 295
Anaconda

installing 167
reference link 167

ancilla qubit 385, 409
anharmonic oscillator 99
Apache 2.0 license

reference link 166
application programming

interface (API) 14, 44
Aqua

about 164, 177
quantum algorithms 350

Aqua Utilities
using 346-349

arbitrary waveform generator (AWG) 194
Arxiv, Quantum Physics

reference link 444

B
backend configuration 231-235
backend optimization 231-235
backend options

parameters, adding to 264, 265
basis elements 112
Bell states

implementing 367-371
preparing 365, 366

Bell states algorithm 365
Bernstein-Vazirani algorithm

about 395
implementing 396-405
quantum solution, generating 396

Bernstein-Vazirani problem 395, 396
bitstring 87
black box 373
Bloch sphere 64, 89, 162
Bloch sphere representation, qubit

creating 91-95
Bra-Ket notation 64, 88

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

482 Index

C
Circuit Composer

about 7, 17-21
components, familiarizing 19
editor, launching 18
used, for creating quantum circuit 18
views, customizing 21

Circuit Composer, views
Code Editor view 25, 26
Graphical Editor view 22
Measurement Probabilities view 23
Q Sphere view 24, 25
Statevector view 22, 23

circuit graphs
enhancing 248
visualizing 248

circuit libraries
customizing 188-192
parameterizing 188-192

circuits
custom noise models, adding to 299, 300
Directed Acyclic Graph (DAG),

drawing of 252, 254
optimizing, by leveraging layout

optimizer 228-231
optimizing, with transpiler 225
qubits, initializing on 266-271
running, on Pulse simulator 284-287
running, on Qasm simulator 262-264
running, on Statevector

simulator 272-280
running, on Unitary simulator 280-283

cityscape 162
classical randomness 62, 63
classic systems 156
CNOT (CX) 232

CNOT multi-qubit gate 140-143
Code Editor view 25, 26
coin-flipping experiment

building 32-35
coins, entangling 35-37

collaboration tools, Qiskit
reference link 174

components
about 336, 337
usability 336, 337

constructive interference 77
Control-NOT (CNOT) gate 35,

74, 75, 77, 140, 228, 378
Control Rotation (CROT) 418
cooper pairs 98
Copenhagen interpretation 62
customized visual circuits 248-251
custom noise models

adding, to circuits 299, 300
quantum circuits, executing with 298

D
De Broglie-Bohm theory 62
decoherence (T1 and T2) 291-295
DenseLayout 236
density matrix 162
dephasing 305
depolarizing error 295
destructive interference 77
deterministic random bit

generators (DRBT) 63
Deutsch-Jozsa algorithm

about 384
implementing 386-394
quantum solution, generating 385

Deutsch-Jozsa problem 384, 385

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index 483

Deutsch's algorithm
about 371
implementing 375-383
problem, defining 373, 374
problem, defining as quantum

problem 374, 375
problem, understanding 372, 373

Dirac notation 64, 88
Directed Acyclic Graph (DAG)

about 248, 251
drawing, of circuit 252, 254

Discrete Fourier Transform (DFT) 416
DiVincenzo criteria 133
double slit experiment 60, 61

E
entanglement 71-76
existing Quantum Lab Notebook

importing 47, 48
opening 47, 48

F
first classical/quantum application

creating 356
fixed quantum state

initializing 337-340
flip flops 87
foundational oracle-based

quantum algorithm 395

G
good first issue 174
Graphical Editor view 22
Graphical Processing Unit (GPU) 262
greatest common denominator (gcd) 426

Grover diffusion operator 430
Grover's oracle 430
Grover's search algorithm

about 429-432
implementing 433-441
problem 429

H
hackathons 173
Hadamard (H) gate

about 66
using 119, 120

Hahn echo experiment 313
Hamiltonian dynamics 164
hardware

pulse schedules, generating on 192, 193
Helper function 113
Hilbert space 88
Hinton 162
histograms 162

I
IBM Q Network 7
IBM Q Network quantum papers

reference link 444
IBMQ Provider 168
IBM Q System One 157
IBM Quantum Experience components

about 210
Account component 211, 212
Backend component 215-217
Job component 218-220
Provider object 212-215

IBM Quantum Experience (IQX)
about 48, 169, 211, 221, 258, 364
account details view, exploring 12-14

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

484 Index

backends 8-10
navigating 4
pending and latest results 10, 11
Personal profile tab 7
registering 5, 6
starting with 7
URL 5

Identity gate 114
Identity (I) Pauli gate

working with 114
Ignis 164, 177
Inductance Capacitance (LC) 99
interference between qubits

effects 77, 78

J
jittery resolution 364
jobs

monitoring 222-225
tracking 222-225

Josephson Junction 99

K
Kronecker product 138

L
layout optimizer

leveraging, to optimize circuit 228-231
Layout Selection type

about 236
DenseLayout 236
NoiseAdaptiveLayout 236-248
TrivialLayout 236

local Qiskit environment
configuring 169-172

Logical Expression Oracle
implementing 350-354

logic gates
about 106-109
unitary operators 109, 110

M
many-worlds interpretation 62
Matplotlib 89
matrix product state 162
measurement 147
measurement calibration 324
measurement filter 324
Measurement Probabilities view 23
multi-gate errors 295
multi-qubit gates

about 138, 139
CNOT multi-qubit gate 140-143
swap gate, using in circuit 145, 146
Toffoli multi-qubit gate 143-145

multi-qubit gates, control gates
Control-H (CH) 143
Control-X (CX) 143
Control-Y (CY) 143
Control-Z (CZ) 143

multi-qubits 96-98

N
neural network discriminator

creating 340-342
state function operators,

implementing 342-345
Nitrogen-vacancy (NV) 98
no-cloning theorem 78
NoiseAdaptiveLayout 236-248

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index 485

noise effects of dephasing
generating 313
T2 circuits, executing 313-317
T2 circuits, generating 313-317

noise effects of relaxation
generating 305
test circuits, generating 305-311

noise models
about 257
building 257, 295-298
generating 287-291

Noisy Intermediate-Scale
Quantum (NISQ) 54

non-reversible operators 147-150
NOT gate 115
NOT (X) Pauli gate

applying 115-118
NumPy 157

O
OpenPulse documentation 192
outperforming classical systems 363, 364

P
parameters

adding, to backend options 264, 265
passes

about 235
additional passes 236
Basis Change 235
Circuit Analysis 236
Layout Selection 235
optimizations 236
routing 235
types 235

pass managers 227, 235

Pauli error 295
Pauli matrix gates 111
Pauli vector 162
periodic quantum algorithms

about 408
Simon's algorithm 409

phase gate 120
phase kickback 405
phase rotation 136
phase (Z) Pauli gate

working with 120-123
pip

reference link 166
Principle Component Analysis (PCA) 349
provider information

leveraging 210
pseudorandom number

generators (PSRN) 63
Pulse library 192 196
pulses

about 194
of sine waveform 195

pulse functionality, working
instructions and parameters 193, 194

pulse schedules
about 193
executing 197-202
generating 197-201
generating, on hardware 192, 193

Pulse simulator
about 164
circuits, running on 284-287

Q
Qasm simulator

about 161, 162
circuits, running on 262-264

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

486 Index

Qiskit
about 10, 177, 259
basics 160
components 158, 159
configuring 166
installation, preparing 166
installing 166-168
URL 165

Qiskit Advocate
about 173
URL 443

Qiskit Advocate program 173
Qiskit Camp 173
Qiskit community

about 173
contributing to 174
skill set, specializing 174
support, obtaining 172

Qiskit documentation
reference link 159, 443

Qiskit, elements
about 160
Aer 161
Aqua 164
Ignis 164
Qasm simulator 162
Terra 161

Qiskit Events
reference link 445

Qiskit GitHub page
reference link 165

Qiskit GitHub repo
reference link 444

Qiskit Interactive Textbook
reference link 443

Qiskit Notebooks 7, 45-47, 260
Qiskit Pulse, channels

types 197

Qiskit Slack community 175
Qiskitters 173
Qiskit YouTube channel

reference link 444
Q Sphere view 24, 25
quantum advantage 364
quantum algorithms, in Aqua

about 350
Logical Expression Oracle,

implementing 350-354
truth table Oracle,

implementing 354-356
Quantum Algorithm Zoo

URL 444
Quantum Assembly language

(Qasm) 139, 262
quantum bits (qubits)

about 8, 86, 88, 89
Bloch sphere representation,

creating 91-95
classic bit, reviewing 86-88
coupling 103
multi-qubits 96-98
state vector, visualizing 89
superconducting qubits 98-102
transformation 225-228

quantum circuits
about 178
analysis 183-188
building, with classical bit

behaviors 26-32
creating 26, 178-182
creating, with Circuit Composer 18
creating, with Quantum

Lab Notebooks 40
executing, on quantum computer 53, 54

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index 487

executing, with custom
noise models 298

properties 183-188
results, reviewing 32
scheduling 202-210

quantum computing
about 60-62
double-slit experiment 61

quantum entanglement 138
Quantum Fourier Transform

(QFT) algorithm
about 416, 417
implementing 417-424

quantum generative adversarial
network (QGAN) 342

Quantum Lab
Quantum Lab Notebooks,

launching from 41
Quantum Lab components

about 41, 42
Notebook, creating 42, 44

Quantum Lab Notebooks
launching, from Quantum Lab 41
quantum circuit, creating with 40
quantum circuit, developing 48-51
quantum circuit results, reviewing 51-53

quantum mechanics 60
quantum programming process

reviewing 157
quantum solution

generating, with Bernstein-
Vazirani algorithm 396

generating, with Deutsch-
Jozsa algorithm 385

generating, with Simon's
algorithm 410, 411

quantum systems 156

quantum teleportation
about 79, 371
flowchart 79

quantum teleportation circuit
creating 78, 79
executing 80-83

Quantum Volume 164
qubit gate

control point 74
target point 74

qubit platforms
coupling 98

qubits
initializing, on circuit 266-271
preparing, in superposition state 64-71

R
Ramsey experiment 313
random circuit generator 182
readout errors

about 295, 305
mitigating 324-332

relaxation 305
relaxation time 292
Rϕ gate in circuit

using 130-132

S
Scikit-learn 157
SciRate

URL 445
S† (dagger) gate

applying 125, 126
secret bit string 397

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

488 Index

S gate
applying 123, 124

Shor's algorithm
about 424
implementing 426-428
problem 425

Simon's algorithm
about 409
implementing 357-416
problem 409, 410
quantum solution, generating

with 410, 411
Simon's problem

about 356
stating 356

simulators, Aer
Pulse simulator 164
Qasm simulator 161, 162
Statevector simulator 162
Unitary simulator 163

single-gate errors 295
single-qubit gates

about 111-114
Hadamard (H) gate 119, 120
Identity (I) Pauli gate 114
NOT (X) Pauli gate 115-118
phase (Z) Pauli gate 120-123
Rϕ gate in circuit 130-132
S† (dagger) gate 125, 126
S gate 123, 124
T† (dagger) gate 128-130
T gate, using in circuit 127, 128
universal UX gates 133-138

Slack workspace
reference link 174

spin echo 292
stabilizer 162

state function operators
implementing 342-345

state vector, qubits
visualizing 89, 90

Statevector simulator
about 162
circuits, running on 272-280

Statevector view 22, 23
superconducting qubits 98, 99
superconductors 98
super dense coding 371
superposition

about 62
classical randomness 62, 63

superposition state
qubits, preparing 64-71

swap gate
about 187
using in circuit 145, 146

T
T1 decoherence times

estimating 311-313
T2 circuits

executing 313-317
generating 313-317

T2* circuits
executing 319-323
generating 319-323

T2 decoherence times
estimating 318

T2* dephasing time
estimating 323, 324

T† (dagger) gate
working with 128-130

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index 489

tensor product 138
Terra 161, 177
test circuits

generating 306-311
T gate

using in circuit 127, 128
Toffoli gates 187, 228
Toffoli multi-qubit gate

applying 143-145
transistor-transistor logic 87
transpiler

used, for optimizing circuits 225
Transpiler Passes 235
TrivialLayout 236
truth table Oracle

implementing 354-356

U
unitary operators 109, 110
unitary simulator

about 163
circuits, running on 280-283

universal UX gates
applying 133-138

V
video streaming 363

 EBSCOhost - printed on 2/9/2023 8:33 AM via . All use subject to https://www.ebsco.com/terms-of-use

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1:
Tour of the IBM Quantum Experience (QX)
	Chapter 1: Exploring the IBM Quantum Experience
	Technical requirements
	Navigating the IBM Quantum Experience
	Registering to the IBM Quantum Experience
	Understanding the Personal profile tab

	Getting started with IBM Quantum Experience
	Learning about your backends
	Learning about pending and latest results

	Exploring My Account
	Summary
	Questions

	Chapter 2: Circuit Composer – Creating a Quantum Circuit
	Technical requirements
	Creating a quantum circuit using the Composer
	Launching the Composer editor
	Familiarizing yourself with the Circuit Composer components

	Creating our first quantum circuit
	Building a quantum circuit with classical bit behaviors

	Building a coin-flipping experiment
	Entangling two coins together

	Summary
	Questions

	Chapter 3: Creating Quantum Circuits using Quantum Lab Notebooks
	Technical requirements
	Creating a quantum circuit using Quantum Lab Notebooks
	Launching a Notebook from the Quantum Lab
	Familiarizing yourself with the Quantum Lab components
	Opening and importing existing Quantum Lab Notebook
	Developing a quantum circuit on Quantum Lab Notebooks

	Reviewing the results of your quantum circuit on Quantum Lab Notebooks
	Executing a quantum circuit on a quantum computer

	Summary
	Questions

	Section 2:
Basics of Quantum Computing
	Chapter 4: Understanding Basic Quantum Computing Principles
	Technical requirements
	Introducing quantum computing
	Understanding superposition
	Learning about classical randomness
	Preparing a qubit in a superposition state

	Understanding entanglement
	Learning about the effects of interference between qubits

	Creating a quantum teleportation circuit
	Executing the quantum teleportation circuit

	Summary
	Questions

	Chapter 5: Understanding the Quantum Bit (Qubit)
	Technical requirements
	Learning about quantum bits (qubits)
	Reviewing the classic bit
	Understanding the qubit

	Visualizing the state vector of a qubit
	Creating the Bloch sphere representation of a qubit
	Understanding multi-qubits
	Learning about superconducting qubits
	Coupling the qubits together

	Summary
	Questions

	Chapter 6: Understanding Quantum Logic Gates
	Technical requirements
	Reviewing classical logic gates
	Understanding unitary operators

	Summary
	Questions

	Section 3:
Algorithms,
Noise, and Other Strange Things in Quantum World
	Chapter 7: Introducing Qiskit and its Elements
	Technical requirements
	Understanding quantum and classical system interconnections
	Reviewing the quantum programming process
	Understanding how to organize and interact with Qiskit

	Understanding Qiskit basics and its elements
	Terra
	Aer
	Ignis
	Aqua

	Installing and configuring Qiskit on your
local machine
	Preparing the installation
	Installing Anaconda
	Installing Qiskit
	Configuring your local Qiskit environment

	Getting support from the Qiskit community
	Introducing the Qiskit community
	Contributing to the Qiskit community

	Summary
	Questions

	Chapter 8: Programming with Qiskit Terra
	Technical requirements
	Understanding quantum circuits
	Creating a quantum circuit
	Obtaining circuit properties and analysis
	Customizing and parameterizing circuit libraries

	Generating pulse schedules on hardware
	Learning about instructions
	Understanding pulses and Pulse libraries
	Generating and executing schedules
	Scheduling existing quantum circuits

	Leveraging provider information
	Learning about the IBM Quantum Experience components

	Summary
	Questions

	Chapter 9: Monitoring and Optimizing Quantum Circuits
	Technical requirements
	Monitoring and tracking jobs
	Optimizing circuits using the Transpiler
	Transformation of a quantum circuit
	Optimizing the circuit by leveraging the layout optimizer
	Leaning about backend configuration and optimization
	Understanding passes and pass managers

	Visualizing and enhancing circuit graphs
	Learning about customized visual circuits
	Drawing the DAG of a circuit

	Summary
	Questions

	Chapter 10: Executing Circuits Using Qiskit Aer
	Technical requirements
	Understanding the differences between the Aer simulators
	Viewing all available backends
	Running circuits on the Qasm simulator
	Adding parameters to the backend options
	Initializing the qubits on a circuit
	Running circuits on the statevector simulator
	Running circuits on the unitary simulator
	Running circuits on the pulse simulator

	Generating noise models
	Understanding decoherence (T1 and T2)
	Understanding single-gate, multi-gate, and readout errors

	Building your own noise model
	Executing quantum circuits with custom
noise models
	Adding custom noise models to our circuits

	Summary
	Questions

	Chapter 11: Mitigating Quantum Errors Using Ignis
	Technical requirements
	Generating noise effects of relaxation
	Generating noise models and test circuits

	Estimating T1 decoherence times
	Generating the noise effects of dephasing
	Generating and executing T2 circuits

	Estimating T2 decoherence times
	Generating and executing T2* test circuits

	Estimating the T2* dephasing time
	Mitigating readout errors
	Summary
	Questions
	Further reading

	Chapter 12: Learning about Qiskit Aqua
	Technical requirements
	Understanding the components and their usability
	Initializing a fixed quantum state

	Creating a neural network discriminator
	Implementing state function operators

	Using Aqua utilities to simplify your work
	Familiarizing yourself with the quantum algorithms in Aqua
	Implementing the Logical Expression Oracle
	Implementing a truth table Oracle

	Creating your first classical/quantum application (Simon's)
	Stating Simon's problem
	Implementing Simon's algorithm

	Summary
	Questions

	Chapter 13: Understanding Quantum Algorithms
	Technical requirements
	Understanding the meaning of outperforming classical systems
	Understanding the Bell states algorithm
	Learning about Deutsch's algorithm
	Understanding the Deutsch-Jozsa algorithm

	Learning about the foundational oracle-based quantum algorithm
	Learning about the Bernstein-Vazirani algorithm

	Summary
	Questions

	Chapter 14: Applying Quantum Algorithms
	Technical requirements
	Understanding periodic quantum algorithms
	Learning Simon's algorithm
	Learning about the Quantum Fourier Transform algorithm
	Understanding Shor's algorithm

	Learning about Grover's search algorithm
	Learning about the problem
	Understanding Grover's search algorithm
	Implementing Grover's search algorithm

	Summary
	Questions

	Appendix A: Resources
	Assessments
	Other Books You May Enjoy
	Index

