
C
o
p
y
r
i
g
h
t
 
 
2
0
2
1
.
 
D
e
 
G
r
u
y
t
e
r
.
 
A
l
l
 
r
i
g
h
t
s
 
r
e
s
e
r
v
e
d
.
 
M
a
y
 
n
o
t
 
b
e
 
r
e
p
r
o
d
u
c
e
d
 
i
n
 
a
n
y
 
f
o
r
m
 
w
i
t
h
o
u
t
 
p
e
r
m
i
s
s
i
o
n
 
f
r
o
m
 
t
h
e
 
p
u
b
l
i
s
h
e
r
,
 

e
x
c
e
p
t
 
f
a
i
r
 
u
s
e
s
 
p
e
r
m
i
t
t
e
d
 
u
n
d
e
r
 
U
.
S
.
 
o
r
 
a
p
p
l
i
c
a
b
l
e
 
c
o
p
y
r
i
g
h
t
 
l
a
w
.
 

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 2/10/2023 3:21 PM via 
AN: 2658376 ; Igor M. Rouzine.; One-Locus and Multi-Locus Theory and Recombination
Account: ns335141



Igor M. Rouzine
Mathematical Modeling of Evolution

 EBSCOhost - printed on 2/10/2023 3:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



De Gruyter Series in
Mathematics and Life Sciences

Edited by
Anna Marciniak-Czochra, Heidelberg University, Germany
Benoît Perthame, Sorbonne-Université, France
Jean-Philippe Vert, Mines ParisTech, France

Volume 8/1

 EBSCOhost - printed on 2/10/2023 3:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



Igor M. Rouzine

Mathematical
Modeling of
Evolution
Volume 1: One-Locus and Multi-Locus Theory
and Recombination

 EBSCOhost - printed on 2/10/2023 3:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



Mathematics Subject Classification 2010
Primary: 55XX; Secondary: 60XX

Author
Dr. Igor M. Rouzine, Laboratory of Computational and Quantitative Biology
Institut de Biologie Paris Seine
Sorbonne Université
15404 Case courrier
75005 Paris
France
igor.rouzine@sorbonne-university.fr

ISBN 978-3-11-060789-5
e-ISBN (PDF) 978-3-11-061545-6
e-ISBN (EPUB) 978-3-11-060819-9
ISSN 2195-5530

Library of Congress Control Number: 2020943697

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available on the Internet at http://dnb.dnb.de.

© 2021 Walter de Gruyter GmbH, Berlin/Boston
Typesetting: Integra Software Services Pvt. Ltd.
Printing and binding: CPI books GmbH, Leck

www.degruyter.com

 EBSCOhost - printed on 2/10/2023 3:21 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://dnb.dnb.de
http://www.degruyter.com


Preface

The book will benefit readers with a background in population genetics, physical sci-
ences, and applied mathematics, and the interest in mathematical models of genetic
evolution. In the first chapter, we analyze several thought experiments based on a
basic model of stochastic evolution of a single genomic site in the presence of factors
of random mutation, directional natural selection, and random genetic drift. In
the second chapter, we present a more advanced theory for a large number of linked
loci. In the third chapter, we include the effect of genetic recombination into account
and find out the advantage of sexual reproduction for adaptation.
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Chapter 1
Basic theory of one-locus evolution

1.1 Introduction

Evolution of organisms occurs due to mutation, selection, recombination, and chance.
The changes from one species to another are not sudden, but rather lead to a gradual
observable change in the genetic composition of a population of organisms. Since
Charles Darwin, experimental and theoretical studies researched the factors of the
evolution of various organisms and produced an enormous body of the literature.

In early 1990s, biologists became interested in special problems of virus evolu-
tion. The reasons for this interest were as follows. First, the researchers wanted to
learn how modern viruses emerged from earlier viruses, both recently and during
the long-term coevolution with their hosts. Second, evolution of a virus within a
single host or at the level of a host population is capable of creating new popula-
tions of viruses with changed properties allowing them to deceive the immune re-
sponse, acquire the resistance to antivirals, or become more or less virulent. Third,
because their replication rates are high, population sizes vary in a broad range, and
mutation rates are high, a virus makes an excellent experimental model for testing
mathematical models of evolution.

Biological factors dominating the evolution of human immunodeficiency virus
(HIV) during a persistent human host infection received a lot of attention at that
time. HIV, along with hepatitis C virus (Simmonds, 2004), displays huge genetic
variation as well as a very high speed of evolution. In the most variable regions,
individual genomes isolated from an infected person can vary by as much as by
3–5% (Balfe et al., 1990; Lamers et al., 1993; Wolfs et al., 1990). The rate of substitu-
tions in the envelope gene is approximately 1% per year (Shankarappa et al., 1999).
Due to this variation, the virus can change to infect various organs and tissues
(Chavda et al., 1994; Groenink et al., 1992; Keys et al., 1993) and to quickly become
resistant to antiviral drugs (Cleland et al., 1996; Lopez-Galindez et al., 1991).
Evolution of a virus plays a major role in evading the immune system (Burns and
Desrosiers, 1994; Nietfield et al., 1995; Rouzine and Rozhnova, 2018; Takahashi
et al., 1989; Wolfs et al., 1991). Furthermore, RNA viruses have relatively high muta-
tion rates, 10− 6 − 10− 4 per site per generation. Average mutation rate of HIV is ap-
proximately 3 · 10− 5 per nucleotide site per replication cycle (Mansky and Temin,
1995), which is much higher than mutation rate ~10− 9 observed for organisms.
Population sizes of viruses vary from one infected cell to 1013. HIV population size
in an average untreated patient was estimated to be in the range between 107 and 108

infected (HIV RNA positive) cells (Haase, 1999). Evolutionary estimates confirm this
estimate showing the effective population size of 105 − 106 infected cells or more
(Pennings et al., 2014; Rouzine and Coffin, 1999a; Rouzine et al., 2014). Another
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important feature of persisting viruses as HIV and HCV is a continuous steady state
within a host. It has been shown that the large majority of productively infected cells
dies and is reinfected every day (Ho et al., 1995; Wei et al., 1995). In comparison, com-
mon cold and influenza viruses are cleared from patients rapidly and persist only at
the level of a population, also due to continuous evolution (Bedford et al., 2015;
Luksza and Lassig, 2014; Rouzine and Rozhnova, 2018; Smith et al., 2004). These
problems demand mathematical modeling of evolution.

A large toolbox of modeling has been applied to understand evolution of viruses
and organisms. These methods fall into two classes: population genetics, which stud-
ies the fist-principle mechanisms, and the descriptive methods of statistical genetics.
The methods of population genetics developed first were based on one of the two dif-
ferent theoretical frameworks, as follows. First approaches were deterministic, made
for infinite population size. Quasi-species theory (Eigen and Biebricher, 1988; Holland
et al., 1992) assumed that the frequency of a given allele (genetic variant) at any time
is predictable given the initial frequency, the mutation rate, and the selection coeffi-
cient. Selection coefficient is defined as the relative fitness difference between the
different alleles. One might think that such approaches are justified, at least, for
viruses, due to the large number of infected cells at each generation (Haase, 1999).
Nevertheless, a number of factors, such as initial establishment of alleles in a popula-
tion subject to random genetic drift (Chapter 1) aggravated by interference between
different alleles (Chapter 2), make stochastic effects surprisingly strong even for ex-
tremely large populations. Neutral stochastic models that neglect selection proceed
from the opposite assumption: that either the population size is very small, or selec-
tion is weak, so that the random drift completely dominates over selection.

Indeed, such “neutral” mutations are very important in the evolution of higher
organisms where populations are small, genomes have many untranslated regions
(introns) (Kimura, 1989). However, their applicability to virus populations – and to
many coding regions in organisms – is fairly limited. Many of the assumptions of
neutral theory are not appropriate when there is an uneven ratio of synonymous to
nonsynonymous changes in a region of the genome (Burns and Desrosiers, 1994;
Lech et al., 1996; Lukashov et al., 1995). Such regions clearly argue against the uni-
versal application of neutral theory. Twenty years ago, the inclusion of selection ef-
fects acting at many linked loci and recombination into the evolutionary analysis
presented a serious mathematical challenge. In this book, we relate some of the
progress achieved during these two decades.

To illustrate how deterministic and stochastic approaches differ from each
other, consider the fate of an allele slightly deleterious to the ability to reproduce.
In other words, this mutated allele decreases the progeny number, which is the
definition of Darwinian fitness. In a deterministic system, one can demonstrate
that the allelic frequency in the population will eventually stabilize at a small
level equal to the mutation rate per generation divided by the selection coefficient
(Haldane, 1927). The outcome is different in a stochastic system: the population
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will be sometimes completely uniform in deleterious allele, and sometimes uni-
form in wild-type allele (Watterson, 1975), switching occasionally from one to an-
other. This distinction is important practically, because it concerns a mutation that
can, for example, make a virus resistant to an antiviral drug even before treatment,
and then amplified in number by that drug (Coffin, 1995). It can occur as a single or
several mutations (Hermisson and Pennings, 2005). This scenario is equally relevant
for the dynamics of trait diversity in animal populations.

To solve such a problem and many other problems, a general theory was
needed that would take into account both selection and random genetic drift, as
well as interference between many evolving sites. The aim was to develop, from
the first principles, a more general theory that would include all these effects.
Below, we describe a model that is appropriate to haploid virus populations and
to diploid animal populations for the case when evolution is not neutral, no allelic
dominance, and a directed selection takes place. We focus on the struggle be-
tween deterministic and stochastic behavior as it occurs in various thought
experiments.

In this chapter, based on review (Rouzine et al., 2001), we start from the sim-
plest possible model of that kind: a single genomic site (locus) with only two possi-
ble alleles, which evolves under the influence of constant selective pressure in a
well-stirred population. In Chapter 2, we show that the simultaneous evolution of
multiple loci in asexual populations leads to additional complications due to inter-
ference between loci. We do not consider recombination explicitly until Chapter 3,
where we analyze how it offsets the effect of interlocus interference. The impact of
epistasis (the biological interaction between loci) will be analyzed in the next vol-
ume of this book. Although our focus is on haploid populations, the results are
directly relevant for diploid populations of animals in the cases where allelic domi-
nance and epistasis are negligible.

Although recombination is not considered explicitly, very strong recombination is
implied in this model, for the approximation of an isolated locus to be correct. Also,
evolving loci must be spaced sufficiently far apart in the genome, depending on the
recombination rate. However, even in the absence of recombination, the one-locus ap-
proximation is a useful start for understanding the interaction between selection and
stochastic factors qualitatively. Below we introduce a model that is applicable, in prin-
ciple, at any population size, mutation rate, and selection strength. Despite its sim-
plicity, the model makes a variety of useful predictions. In the extreme limits of small
and large population size, predictions cross over to the standard results of determin-
istic or neutral theory. We demonstrate the existence of a very broad parameter region
where evolution exhibits mixed behavior: under certain conditions, stochastic factors
win, while in other cases, dynamics is nearly deterministic.

1.1 Introduction 3
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1.2 One-locus model and the Fokker–Planck equation

Before starting оur mathematical adventure, a model based on biological knowl-
edge must be developed. Below we describe a model and obtain an equation for the
evolutionary dynamics including selection and stochastic factors. We explain the
main factors of evolution, as well as the mathematical representation of the model
in the form of a diffusion equation. Then, we will state the boundary conditions for
this equation, which represent populations that are nearly uniform genetically.

1.2.1 Population model

Let us consider the evolution of a single nucleotide position (site, locus) assuming
that each nucleotide has a choice between two variants termed in genetics “alleles.”
Such a model can be used for a real genome with multiple loci only if the evolving
loci are sufficiently distant in DNA, and recombination with other genomes due to
sexual reproduction (yes, some viruses have it too) is sufficiently frequent to make
their evolution independent. In the absence of efficient recombination, dynamics of
close loci interfere with each other, as described in Chapter 2. Following a conven-
tion, we will call the more fit allele “wild type” and the less fit allele “mutant.” The
locus has two constant, small parameters (both much less than 1Þ: the mutation
rate per site per generation, μ, and selection coefficient s equal to the relative differ-
ence in offspring number (fitness) between the two alleles. The site and mutations
at other genomic sites have multiplicative contribution to fitness. That is to say, we
neglect epistasis with other sites in genome which exists due to biological interac-
tion between nucleotides of RNA or DNA. In this chapter, we also neglect linkage
disequilibrium between loci and assume that different nucleotides evolve indepen-
dently, which imply sufficiently strong recombination with other genomes. Linkage
effects will be considered in Chapter 2, and epistasis in Volume 2. The mutation rate
is assumed to be the symmetric in both directions. We will assume it to be the same
for all substitutions: A, C, T, G to A, C, T, G. We do not include insertions and dele-
tions (which can be described as asymmetric mutations). The selection coefficient,
in real organisms, can vary over a wide margin across sites and depends on the ex-
ternal conditions, but here, for the sake of simplicity, it is assumed to be constant.

The model (Figure 1.1) includes the dynamics of a cell population comprised of
two alleles: a fraction, f , of individuals carrying a mutant allele, and the remaining
individuals, 1− f , carrying the wild type allele (Figure 1.1A). The number of each
type of individuals (for a virus, infected cells) changes with time, that is, with each
new generation. The total number of individuals can vary in real life, but we will
assume it to be constant. In each generation, a fixed (large) number of offspring is
produced by each individual. Then, every old generation dies out and is replaced by
a new generation. The number of offspring capable of establishing a new generation
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differs by a factor of 1− s between the two alleles, creating selection for the allele
with higher fertility. Because the total population number is fixed, and the offspring
number per individual is assumed large, only a small fraction of offspring can estab-
lish the next generation. When producing an offspring, it can mutate into the oppo-
site allele with a small probability μ.

Fine model details, such as a fixed number of offspring per individual of each
type and the point of the reproduction cycle at which mutation occurs, are not im-
portant on the long timescales. We also neglected the time overlap between genera-
tions, but it may cause only a change in the rate of random drift factor of 2, which
can be absorbed by rescaling the population size (Moran, 1958). By contrast, such
assumptions as two alleles per site, the lack of interaction with the other sites in
genome and constant directional selection are essential for the results.

The model includes three essential factors of evolution: natural selection, stochas-
tic drift, which exists due to random sampling of progeny, and random mutation. We

Figure 1.1: Factors of evolution. (a) Genetic drift due
to random progeny sampling. Circles and small
diamonds: individuals and their progeny. Red and
blue denote two alleles. (b) A population model
including random drift, selection, and mutation.
Two generations are shown. Arrows: progeny which
creates a new generation. Mutants (blue) yield
fewer progeny per individual than wild-type
individuals (red). A small fraction of progeny,
μ1 and μ2, mutate to the other allele (based on
Rouzine et al. (2001)).
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now describe briefly the effect of each of these factors and how they affect the
composition of the population, as it changes in time:
(i) Random genetic drift. The offspring making the new generation is chosen ran-

domly from mutants and wild type. Because of this random sampling of prog-
eny, the allelic frequency exhibits random diffusion in time (Fisher, 1922;
Wright, 1931), termed “random drift” (Figure 1.1A). If mutation and selection
are absent, an initially diverse population made of an allelic mixture eventu-
ally becomes either uniformly wild type or uniformly mutant (see further).

(ii) Natural selection. The difference in the number of progeny from individuals
with different alleles creates natural selection. As we demonstrate further, se-
lection alone would cause extinction of the less fit allele and drive the system
into a uniformly better-fit population.

(iii) Random mutation, in contrast to drift and natural selection, diversifies the pop-
ulation. In the absence of two other factors, mutation would bring the system
into an equilibrium composition in which forward and reverse mutations bal-
ance each other. We assume here that the forward and reverse mutation rates
are equal, so that this equilibrium is reached when each allele makes a half
population.

In the presence of all three factors, the population will arrive at a steady state
where mutation compensates the homogenization effect of selection and random
drift. The statistical properties of the population no longer vary in time in the steady
state. Although the allelic frequency will fluctuate in time, the momenta of state
variables, including the average and the standard deviation, will remain constant.

The full model including the three factors (Figure 1.1B) considers an asexual
haploid population of N individual genomes (or diploid population without allelic
dominance of N=2 individuals) comprising two alleles: n individuals are mutant
(less fit), and N − n individuals are wild type (better fit). The total population size N
is assumed constant, but mutant number n tð Þ changes with time t. The frequency of
a mutant allele is defined as f = n=N. In each generation, a mutant individual produ-
ces b1 mutant offspring, and each wild-type individual produces b2 wild-type off-
spring (Figure 1.1B). After reproduction, the parents die of the old age. In the case
of virus population, infected cells can die from viral effects or the immune re-
sponse. The average number of offspring per parent, b1 and b2, is assumed to be
large, b1 � 1, b2 � 1 and differs a bit between the two alleles, b1 =b2 1− sð Þ, where
selection coefficient s, such that s � 1, reflects the small difference in replication
ability between wild type and mutant. We also assume that population is well
stirred and that the total population N stays constant. Each offspring can mutate
into the opposite allele with a small probability μ, μ � 1. The population model is
a particular case of the Wright–Fisher process. As we noted previously, this model
is equally suitable for haploid populations and diploid populations containing two
copies of each gene, as long as allelic dominance is weak.

6 Chapter 1 Basic theory of one-locus evolution
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1.2.2 Stochastic evolution

The word “evolution” can be assigned different meaning. For an evolutionary biolo-
gist and anthropologist, evolution is about the origin of species and development of
organs. Our focus here will be on much shorter timescales and dynamics of the ge-
netic composition of a population. In deterministic dynamics, which applies in very
large populations of infected cells, if one knows the initial mutant frequency and
has the appropriate equations, one can, in principle, predict the mutant frequency
at later times with arbitrary precision. In practice, these еquations are never known
exactly, since there are too many factors to include, but this is a separate issue [see
an example of model selection in Rouzine and Coffin (1999b)]. In contrast, in a lim-
ited population, due to the presence of drift and random mutation, one cannot pre-
dict the time dependence of the mutant fraction forward except for a very short
time. Even if the precise initial value is known, the error of that prediction increases
in time. If random factors are strong enough, and they often are the error in the
allelic frequency and its mean predicted value become eventually of the same order
of magnitude. Thus, the evolution of the genetic composition, although directed by
natural selection, is a stochastic process.

Randomness of evolutionary process does not mean, however, that it is completely
arbitrary. Very useful predictions are possible about statistical momenta, even if a spe-
cific trajectory for the frequency of mutants f cannot be predicted. Instead of the trajec-
tory f tð Þ, one can trace the probability density, ρ f , tð Þ. By the definition, ρ f , tð Þdf is
probability that a population has a mutant frequency within the interval at time t. This
quantity that can actually be measured using DNA sequences from parallel evolving
populations.

The probability density can be approximated by a histogram made of bins cor-
responding to the number of times the mutant frequency is observed to fall within a
certain range of values. In the limit where both the number of data points and the
number of histogram bins are large, the histogram approaches a smooth function,
which is the probability density ρ f , tð Þ up to a constant prefactor. The normalization
integral

Ð
dfρ f , tð Þ is equal to 1. The probability density function informs statistical

parameters, such as the mean value and standard deviation, which can be experi-
mentally tested (Section 1.3). For example, the characteristic half-width of the prob-
ability density indicates the error of the prediction of mutant frequency.

If we know its form at the present moment, the evolution equation (Figure 1.2A)
determines how the probability density changes in time. Knowing the initial probabil-
ity density ρ f , 0ð Þ, this equation can be used predict its form at any time in the future,
just us the mutant frequency itself would be predicted in a deterministic process. The
essential difference is that the state variable is no longer a scalar but a function of f .
In the next subsection, we will obtain the master equation from the population
model using Markov chain formalism. The rest of the chapter is dedicated to solving
this equation for different various conditions and thought experiments.

1.2 One-locus model and the Fokker–Planck equation 7
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Figure 1.2A presents the general form of master equation. We will comment on
its qualitative meaning. The right hand-side of the master equation is a sum of
three terms, which together determine how ρ f , tð Þ, varies in a short time interval, dt
(Figure 1.2A). The first term accounts for the effect random drift, the second term
includes natural selection, and the third corresponds to random mutation. To ex-
plain their respective roles, we consider each term separately, by neglecting the
other two terms (Figure 1.2B to D). For an example, we look at a narrow peak of
ρ f , tð Þ, around some value fmax. Here the second, selection term forces an increase
in the probability density to the left from the peak and a decrease to the right . The
combination of these changes shifts the probability density to lower mutant frequen-
cies (Figure 1.2C). Thus, the mutant is being selected against, as it should. Term 3 in
the equation, corresponding to mutation, also causes a shift, but this time toward
50% composition. This is what mutation with symmetric mutation rates is supposed

Drift

𝜕ρ

ρ μ=0, s=0 ρ ρN=∞, μ=0, s=0 N=∞, s=0

𝜕t
𝜕ρ
𝜕f

𝜕ρ
𝜕f

𝜕ρ
𝜕t

𝜕f 2
𝜕

2ρ=

0 f

𝜕ρ
𝜕t

0 f

𝜕ρ
𝜕t

0 f

0 ffmax fmax fmax1 1 0.50 f 0 f

+ +
fmax(1 – fmax)

sfmax(1 – fmax) μ (2fmax – 1)
2N

B

A

t+dt t+dt

t+dtt+dt tt t

C D

Selection Mutation

Figure 1.2: Illustration of the stochastic evolution equations (1.1) and (1.2). (A) The equation in the
particular case, where the probability density of allelic frequency, ρ f , tð Þ, is a narrow peak. (B to D)
Local changes in ρ f , tð Þ in short time dt corresponding to each part of the right-hand side of the
equation in (A). The top row shows the resulting effects: spread (B) and shift (C and D) of the peak.
Bottom row: the time derivatives. Blue solid and red dashed lines: two adjacent moments in time
(based on Rouzine et al. (2001)).
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to do (Figure 1.2D). Finally, the first term in the equation (drift, diffusion) does not
cause a shift. It has a different effect. Due to its presence, the probability density de-
creases near the maximum and increases in the tails (Figure 1.2B), causing the proba-
bility density spread outward. This widening implies that the accuracy within which
one can predict the value of mutant frequency decreases. A more general form of the
stochastic equation when the probability density, ρ(f), is not necessarily localized in
a narrow interval of f, is given in eqs. (1.1) and (1.2).

In the equation (Figure 1.2A), a physicist will recognize Fokker–Planck equation
and a mathematician will recognize the forward Kolmogorov equation (Kolmogorov,
1931). This formalism was pioneered in the field of population genetics by Wright
(1945) and then used by Kimura (1954, 1955a,b) and Kimura (1994) to study evolution
in different situations. As follows from these studies, this diffusion equation is much
more general than the model we will use for its derivation in Section 1.2.3. In fact, it
is quite versatile and can describe various populations without allelic dominance
(Kimura, 1964). Originally, the Fokker–Planck equation was employed in evolution
theory based on the analogy with gas kinetics, which we will make use below
(Fisher, 1922). Later, its broad applicability was confirmed for different population
types (Maynard Smith, 1971; Watterson, 1975). As we already mentioned, the equation
is extremely simple and does not include many acting factors of evolution. Depending
on the biological scenario, the following factors may or may not be important:
epistasis, interference between linked loci, variable-in-time selection coefficient,
time-dependent population size, and allelic dominance (Kimura, 1955b). We will
address the effects of multi-site linkage in Chapter 2. Epistasis, allelic dominance,
and time-dependent selection (e.g., due to the immune response) will be consid-
ered in the next volume of this book.

As we mentioned, a good mathematical analogy for the evolution equation is a
one-dimensional gas of variable density. Assume that the gas is mixed with air and
restricted between two walls (Figure 1.3A). Then, the mutant frequency is similar to
the coordinate between the walls, and the probability density is similar to the local
gas density. Then, the term with the second derivative of the master equation
(Figure 1.2A) accounts for the diffusion of the gas particles in the air, and the other
two terms combined introduce a force acting on the gas particles in the presence of
friction (for example, electric field). Importantly, the coefficient of diffusion depends
on the coordinate as f 1− fð Þ, as if the air has variable density. Another useful analogy
is gel electrophoresis of proteins in a gel matrix. The electrostatic force on the
charged polymer molecules and the force of friction from the gel matrix make them
move and segregate into bands whose location depends on the length of a molecule.
Molecular diffusion leads to finite bandwidths of molecules of the same lengths in-
creasing in time. Although the electrophoresis or the gas system are in no way related
to the biology of reproduction or to their evolution, as we shall see further, this for-
mal analogy between the two systems turns out to be very useful for understanding
mathematical results.
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In Section 1.2.3, we present the master equation for evolution and complement
it with boundary conditions. In Section 1.2.4, we consider a Markovian process for
the virus population model; in Section 1.2.5, we simplify it using some realistic ap-
proximations to obtain a continuous diffusion equation; and in Section 1.2.6, we de-
termine the boundary conditions. In Sections 1.3 to 1.7, we will analyze equations
and the boundary conditions in various parameter regions under different initial
conditions. Notation used in Chapter 1 is shown in Table 1.1.

Figure 1.3: Illustration of stochastic evolution equation using the formal analogy between the
probability density and gas with a variable local density. X-axis: Frequency of deleterious alleles
analogous to a position between walls. The walls at f = 0,1 correspond to the two uniform
population, wild type (better fit) and mutant (less fit). (A) Gas particles are subject to diffusion and
a directed force when they are far from the walls. (B, C) Boundary conditions. (B) At very large
population sizes, the flux at a wall vanishes, eq. (1.2). (C) At small population sizes, gas particles
can condense on a wall, and the total flux at a wall does not need to be 0, eqs. (1.5) and (1.6)
(based on Rouzine et al. (2001)).
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1.2.3 Evolution equation

The evolution of the virus population is described by a set of differential equations
and boundary conditions, which come in two versions, as follows. The choice of the
version depends on the population size interval. The first case shows very large and

Table 1.1: Mathematical notation in Chapter 1.

Symbol Definition

A,B,C, F Undetermined constants of functions

D Relative interpop. distance per site

δ xð Þ Dirac delta function of x

δij Kronecker symbol

f Mutant frequency

G Gene fixation probability

g Continuous part of probability density

K Time correlation function of f

μ Mutation probability per site per gen.

M Mean change in f per generation

N Population size

n Number of mutant individuals

Pn Probability of having n mutants

p0 Probability of a pure wild-type state

p1 Probability of a pure mutant state

q Probability density flux

ρ Probability density of f

s Selection coefficient

T Intrapopulation distance per site

t Time (generation number)

Vx Variance of x

x Any parameter

�x Expectation value (mean) of x

xss Value of x in steady state

1.2 One-locus model and the Fokker–Planck equation 11
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diverse populations, when many copies of both wild type and mutant are present
and μN � 1= log ðNÞ. The master equation and the boundary conditions have the
following form (Kimura, 1955a):

∂ρ=∂t = − ∂q=∂f (1:1)

q f , tð Þ= −
1
2N

∂

∂f
f 1− fð Þρ½ �− sf 1− fð Þρ−μ 2f − 1ð Þρ (1:2)

q f , tð Þf!0 = q f , tð Þf!1 =0 (1:3)

Equations (1.1) to (1.3) are valid under the conditions of weak selection, s � 1, rare
mutation; μ � 1, and large population size, μN � 1= logN. In this case, genetic
composition changes very slowly, and time and mutant frequency can be approxi-
mated with continuous variables. The effect of each term in the right-hand side of
eq. (1.2) is illustrated in Figure 1.2.

To continue our gas analogy (Figure 1.3), eq. (1.1) represents the equation of de-
tailed balance. It states that the number of gas molecules is conserved i.e., molecules
cannot be born or vanish but can only travel from one place to another. The value
q f , tð Þ defined in eq. (1.2) has the meaning of the probability flux, which is analogous
to the flux of gas molecules across a unit area. Thus, eq. (1.1) states that the probabil-
ity density of allelic frequency, like mass density, is conserved locally. The boundary
conditions in eq. (1.3) show that the flow cannot cross the boundaries of the interval
in f , just like gas particles cannot cross crossing the confining walls (Figure 1.3B).

As we demonstrate in Section 1.2.6, in small populations, μN � 1= log 1=μð Þ, the
population has a significant chance to be genetically uniform, when f =0 or 1. Such
a state is analogous to the gas condensate at a cold wall. In this regime, one has to
isolate two Dirac delta-function terms from the continuous probability density:

ρ f , tð Þ= p0 tð Þδ fð Þ+ p1 tð Þδ 1− fð Þ+ g f , tð Þ (1:4)

where p0 and p1 are the probabilities of a population being uniformly wild-type and mu-
tant states, respectively, and g f , tð Þ, such that f 1− fð Þ � 1=N, is the polymorphic part.

The boundary conditions for these equations have a form

dp0
dt

= − q 0, tð Þ, dp1
dt

= q 1, tð Þ, Nμ logN � 1 (1:5)

2Nμp0 = fg fð Þ½ �f!0, 2Nμp1 = 1− fð Þg fð Þ½ �f!1 (1:6)

Boundary conditions (eq. (1.5) describe the dynamics of monomorphic state prob-
ability linked to probability flux (analogous to gas condensation or evaporation
from the wall, Figure 1.3C). They represent a simple conservation law. The second
set of eq. (1.6) shows how mutation can transition between a monomorphic state,
f =0 or 1, and a single-copy diverse state, f = 1=N or N − 1ð Þ=N. Equation (1.6) will
be derived from the population model in Section 1.2.6.
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The continuous part of the probability density, g(f,t), for small population sizes
follows the equation

∂g=∂t = − ∂q=∂f

q f , tð Þ= −
1
2N

∂

∂f
f 1− fð Þg½ �− sf 1− fð Þg, Nμ logN � 1 (1:7)

The reader will notice that, unlike in the expressions at large N, eqs. (1.1) and (1.2),
the mutation term is absent. The mutation rate is present only in the boundary con-
ditions, eq. (1.6).

Equations (1.5) to (1.7) are valid in populations of moderate size. We can eas-
ily estimate the upper bound on N from the boundary conditions of eq. (1.6). The
total probability of having a diverse state, by the definition; is

Ð 1
0 g fð Þdf . As it fol-

lows from eq. (1.6), g fð Þ diverges near the boundaries, where it is given by
g fð Þ≈ 2μNp0=f and g fð Þ≈ 2μNp1= 1− fð Þ, respectively. The main contribution to the
integral of g fð Þ comes from a small area near borders f ≈ 1 or 0 and has truncated at
f 1− fð Þ ~ 1=N, which corresponds to a single copy of either mutant or wild-type allele.
Hence, the probabilities of monomorphic states become small, at μN logN � 1.

As we already mentioned, the validity of these equations does not depend on
fine details of reproduction. Many other one-locus, two-allele populations are ame-
nable to eqs. (1.1) and (1.2), as long as they are controlled by the same dominant
processes: mutation, directed selection, and random sampling of progeny. If addi-
tional factors come on stage, for example, allelic dominance or time fluctuations of
selection coefficient, this method can be generalized (Kimura, 1955b). For example,
the approach can be generalized for multiple loci using a system of equations with
the number equal to the number of haplotype frequencies minus one (Kimura,
1994). In reality, such a generalization method becomes very impractical starting
with three loci. We address multi-locus evolution in Chapter 2. Now we will derive
the cited equations from the virus replication model described in Section 1.2.

1.2.4 Derivation from a Markovian process

We denote the probability of having n mutant cells at time t, where t is the number
of a generation, and n can change from 0 through N, as p n, tð Þ. This system is for-
malized by a Markovian process:

p n, t + 1ð Þ=
XN
n′=0

P n n′
�� �pðn′, tÞ�

(1:8)

1.2 One-locus model and the Fokker–Planck equation 13

 EBSCOhost - printed on 2/10/2023 3:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



where P n n′
�� ��

is the probability of finding n mutants, given that their number at the
previous step is n′. Below, we derive the form P n, n′

� �
for the population model in-

troduced in Section 1.2.1.
First, we obtain the conditional probability P n n′

�� ��
in eq. (1.8), in the absence

of mutation and denote it P0 n n′
�� ��

. If the number of mutants in a generation is n′,
according to the model, the total offspring numbers produced by mutant and wild-
type individuals are

B1 =b1n′, B2 = b2ðN − n′ Þ (1:9)

respectively. The offspring numbers per individual, b1, b2, are related as

b1 =b2 1− sð Þ (1:10)

where s is the small selection coefficient. We will consider animals or viruses with a
large progeny number, b1,b2 � 1. If n is the number of new mutants, then the num-
bers of progeny that create a new generation must be n and N − n, respectively. The
rest of progeny dies before maturity or does not perpetuate. The probability of n new
mutants, P0 n n′

�� ��
, is proportional to the number of possible ways: one can choose n

successful mutants from B1 possible and N − n wild-type individuals from B2 possible

P0ðn n′
�� �=A

n′
� �n

N − n′
� �N − n

1− sð Þn
n! N − nð Þ! (1:11)

where we used eqs. (1.9) and (1.10). Factor A is determined by the normalization
condition,

P
n P0 n n′

�� �= 1
�

.
Now we include mutation between the two alleles. Suppose that m1 deleteri-

ous and m2 beneficial mutations occur in n mutants and N − n wild-type individu-
als, respectively (Figure 1.1B). The resulting number of mutant-infected cells, n′′,
will be n′′= n+m1 −m2. The probability of having m2 beneficial mutations among n
successful mutants is given by the Poisson formula with average μn

πðm2 nj Þ= μnð Þm2

m2!
e−μn, m2 =0, 1, . . . (1:12)

(This formula is true if n � 1. Otherwise, eq. (1.12) still can be used for m2 =0 and 1,
which are the only relevant values in this case, because mutation rate is very small
μ � 1.) Likewise, the probability of having m1 forward mutations is π m1 N − nj Þð .
Hence, for the conditional probability Pðn′′jn′Þ, we get

Pðn′′jn′Þ=
XN
n=0

XN − n

m1 =0

Xn
m2 =0

δn′′, n+m1 −m2
πðm1jN − nÞπðm2 nÞP0ðnj jn′Þ (1:13)

Here, kernel in the absence of mutation P0ðnjn′Þ is given by eq. (1.11), and Kronecker–
Ricci tensor is defined as δi, j = 1 if i= j and 0 otherwise.
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1.2.5 Diffusion limit

The discrete evolution equation given by eqs. (1.8), (1.11), and (1.13) is convenient
for numeric simulation, but quite difficult for analytic treatment. Also, it has imbed-
ded model-dependent details, which do not show in large populations, N � 1, on
long timescales t � 1 and should be discarded. Focusing on the case when both
mutant and wild type have many copies (n � 1 and N − n � 1), eq. (1.8) can be
transformed to a more convenient and less model-dependent differential form.
Since s and μ are small, the conditional probability, Pðnjn′Þ, changes slowly in
n, n′, as given by

P n+ 1jn′� �
−P njn′� ��� ��� P njn′� �

, P njn′+ 1
� �

−P njn′� ��� ��� P njn′� �
Then, matrix Pðnjn′Þ can be approximated by a gradual function of its arguments
n, n′. Substituting the Stirling formula n!≈ 2πnð Þ1=2 n=eð Þn, n � 1, into eq. (1.12), we
find that P0ðnjn′Þ has a maximum at n′≈ n, and that the maximum is narrow. Next,
rewriting P0ðnjn′Þ= exp log ðP0ðnjn′ÞÞ

� �
and approximating the argument of the expo-

nential with the second-order Taylor expansion in n′− n, we get

P0 njn′� �
=A exp −

�
n− n′+ sn′ 1− n′

�
NÞ� �2

2n′ 1− ðn′�N� �
( )

(1:14)

The characteristic half-width of this function in n− n′
�� �� is much more narrow than

the n′ but larger than unit, as given by 1 � n− n′
�� ��� min n′,N − n′

� �
, which con-

firms our above assumption that P0ðnjn′Þ can be considered a smooth function.
The last paragraph was based on a derivation with a large parameter. The deri-

vation depends on the assumption valid in many real life cases that the values of
n,N, 1=s, 1=μ are all much larger than 1. In this approach, we made a hypothesis
that the function P0ðnjn′Þ is slow in both arguments and will confirm its validity, as
well as determine the borders of this approximation, a posteriori, after the result
will have been obtained. Another, more formal method would be to calculate prob-
ability P0ðnjn′Þ in the limit N ! ∞, s ! 0, μ ! 0, while keeping products μN and
sN constant. In our experience, the large-parameter method almost always leads to
a correct result and is easier to use, especially when there exists an independent
verification of the result (for example, by computer simulation).

We can obtain a “smooth” expression for the full probability Pðnjn′Þ in eq. (1.13)
noticing that mutations are very rare ðμ � 1), therefore, the likely values of m1 and m2

are much smaller than those of N − n and n. In the right-hand side of eq. (1.13), we
substitute n′′−m1 +m2 for n in the arguments of both π functions and the argument of
P0 and expand them all in m1 −m2 up to linear terms. Then, the sums in m1 and m2

can be calculated using eq. (1.12), which yields
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P njn′� �
= 1+ 2μð ÞP0 njn′� �

+μ 2n−Nð Þ ∂P njn′� �
∂n

≈P0 n+μ 2n′−N
� �jn′� �

(1:15)

Since the probability p n, tð Þ in eq. (1.8) (with one exception discussed further), is
treated as a function of n, it will is more convenient, from now on, to consider the
probability density ρ f , tð Þ=Np Nf , tð Þ of the mutant frequency f ≡ n=N, normalized
by the condition

Ð 1
0 df ρ f , tð Þ= 1. In the new notation, the evolution equation, given

by eqs. (1.8), (1.14), and (1.15), can be rewritten as

ρ f , t +ϵð Þ=
ð
df ′ Πϵ f jf ′� �

ρ f ′, t
� �

(1:16)

Πϵ f jf ′� �
= 2πϵV f ′

� �� �− 1
2 exp −

f − f ′− ϵM f ′
� �� �2

2ϵ2V f ′
� �

( )
(1:17)

M fð Þ≡ − sf 1− fð Þ−μ 2f − 1ð Þ (1:18)

V fð Þ≡ −
1
N
f 1− fð Þ (1:19)

where ϵ= 1 is the generation time interval. Due to the continuous-in-t approxima-
tion, ϵ in the above expressions can be substituted by any small time interval. In
other words, ϵ is the time differential. Notations M(f) and V(f), in eqs. (1.18) and
(1.19), have the respective meaning of the average value and of the variance of the
change in f per generation. In a more general form

M f ′
� �

= ϵ − 1
ð
df f − f ′
� �

Πϵ f , f ′
� �

(1:20)

V f ′
� �

= ϵ− 1
ð
df f − f ′− ϵM f ′

� �� �2 Πϵ f , f ′
� �

(1:21)

These formulae can be confirmed by directly inserting eq. (1.17) into eq. (1.20) and
(1.21).

As we are about to show now, the integral equations (1.16) and (1.17) can be
transformed to the differential form known as forward Kolmogorov in mathematics
of Fokker–Planck equation in statistical physics:

∂ρ
∂t

= 1
2
∂2

∂f 2
Vρð Þ− ∂

∂f
Mρð Þ (1:22)

which, together with eqs. (1.18) and (1.19), yields the promised master equations
(1.1) and (1.2).

We will derive eq. (1.22) from eqs. (1.16) and (1.17) in a most general form, with-
out defining functions M(f) and V(f). The key assumption is that the variance of the
change of allelic frequency per generation is small, V fð Þ � 1, and that the averages
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of f − f ′
� �3

, f − f ′
� �4

, . . . of the conditional Πϵðf jf ′Þ in eq. (1.17) are powers of ϵ higher
than 1. As one can check using eqs. (1.17) to (1.19), these assumptions are valid if
selection is weak, s � 1 (Section 1.2.1).

Consider any observable quantity, A(f), localized far the end of the interval
0< f < 1, so that A(f) and its first derivative can be neglected at the ends of the interval,
f =0, 1. Then, its population average is given by

�A tð Þ=
ð
df A fð Þρ f , tð Þ (1:23)

Multiplying right-hand side and left-hand side of eq. (1.16) by the factor of A fð Þ and
integrating in f , we get

�A t + ϵð Þ=
ð
df ′ρ f ′, t

� � ð
df A fð Þρ f , tð Þ (1:24)

Since the characteristic width of Πϵðf jf ′Þ in terms of f − f ′ is small, we are allowed to
approximate A(f) in the integrand in eq. (1.24) by a linear expansion in f − f ′.
Evaluating the resulting integral in f and discarding terms of higher than the first
order in ϵ, we get

�A t + ϵð Þ= �A tð Þ+ ϵ
ð
df ′ρ f ′, t

� � V f ′
� �
2

∂2A f ′
� �

∂f ′
2 −M f ′

� � ∂A f ′
� �
∂f ′

" #
(1:25)

where we used eqs. (1.20) and (1.21). Next, we integrate the integral in f ′ in eq. (1.25)
by parts and replace the difference �A t + ϵð Þ− �A tð Þ with time derivative

d�A
dt

=
ð
df ′A f ′

� � 1
2
∂
2

∂f ′
2 V f ′

� �
ρ f ′, t
� �� �

−
∂

∂f ′
M f ′
� �

ρ f ′, t
� �� �" #

(1:26)

Finally, we arrive at the promised evolution equation (1.22), by choosing A f ′
� �

= δ f − f ′
� �

and using eqs. (1.23) and (1.26). The width of the “delta –function” is supposed to be
much larger than

ffiffiffiffiffiffiffiffiffiffi
V fð Þ

p
� 1, but smaller than the scale of f for any significant

change in ρ f , tð Þ. We assume that ρ f , tð Þ is sufficiently smooth and changes little
when f changes by amount V(f). In the examples studied in the following sections,
this condition is usually satisfied.

1.2.6 Derivation of the boundary conditions

The value of f cannot take values less than 0 or greater than 1. Thus, eqs. (1.1) and
(1.2) are incomplete without describing the system behavior near ends of the interval
f =0 and 1. Figure 1.2A shows schematically the case where of a large number of both
allele copies (f is not near 0 or 1). In this case, the mutant frequency f can be consid-
ered a continuous variable. There are important cases, however, when the dynamics
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of a few copies of the minority variant has to be considered. For this end, we need to
derive the boundary conditions for f near 0 and 1 from the virus population model
described in Sec 1.2.1. We derive it below and demonstrate that the boundary condi-
tions depend on a parameter region.

An important parameter featuring in the boundary conditions is the probability
flux q, which is similar to the gas flow (Figure 1.3). When a population is suffi-
ciently large, (Figure 1.3b), the correct boundary conditions must stipulate that the
probability flux vanishes in the two uniform states, that is, completely mutant or
completely wild type, eq. (1.3). If a population is small (Figure 1.3C), the border flux
is not zero, eqs. (1.5) and (1.6), because the population can be found in a completely
uniform state with a significant probability, and that probability can either increase
or decrease in time, creating flux from or to the border. This is similar to the gas
which evaporates or condenses to liquid form on a wall.

We can interpret two different types of boundary conditions biologically. In a
large population that can be viewed as almost deterministic, a genetically uniform
state is unlikely, because it is quickly destroyed by mutations. In a small popula-
tion, mutations are rare, so that a genetically uniform state can take place with a
finite (� 1=N) probability. This also demonstrates that the effect of mutation on
evolution depends on the population number. In a large population, mutations
may be important even in a very polymorphic state (for example, if selection is
weak). In small populations, the role of mutations is only to create a copy or a few
copies of a new allele in a uniform population; once the copy is there, mutation
events can be forgotten until the population becomes uniform again due to random
drift or natural selection. As discussed in Section 1.4, random drift makes a new al-
lele extinct soon after its emergence, but new mutations restore genetic diversity.

In a population larger than the inverse mutation rate, N � 1=μ, the boundary
conditions, eq. (1.3), state that the flux of the probability density, q f , tð Þ, must be
zero at boundaries f =0, 1. The reason is the continuity condition and the obvious
fact that a uniform state, f = 0 or 1, is quite unlikely when the population is much
larger than the inverse mutation rate (Nμ � 1) due to many mutation events occur-
ring each generation. As we show now, the flux does not vanish at f =0, f = 1 in
smaller systems; hence, boundary conditions (1.3) should be modified accordingly.

We use a proof ad absurdum. Suppose that boundary conditions (1.3) are, in fact,
valid at small population sizes. Then, as it follows from eqs. (1.2) and (1.3), probabil-
ity density ρ f , tð Þ diverges at the boundaries, provided condition Nμ< 1=2 is met.
Solving the equation q f , tð Þ=0 near f =0 and near f = 1 separately, one gets

ρ f , tð Þ= C0f 2μN − 1 f � 1

C1 1− fð Þ2μN − 1 1− f � 1

(
(1:27)

where C0 and C1 are any constants. Integrating eq. (1.27), the first from f =0 to f = 1=2
and the second from f = 1=2 to f = 1, one finds that the regions that contributes most
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to the two integrals are the narrow regions near the interval borders such that
log 1=fð Þ ~ 1=μN, log 1= 1− fð Þ½ � ~ 1=μN. If the population is larger than 1= μ log 1=μð Þ½ �,
these ranges of f correspond to many copies of an allele: f � 1=N and 1− f � 1=N.
Therefore, the probability of monomorphic states is small, and eq. (1.3) gives the
boundary conditions.

If, however, the population is smaller than 1= μ log 1=μð Þ½ �, the values of f most
contributing to normalization are f � 1=N and 1− f � 1=N, that is, much less than
a single copy per population. We conclude that a population of the statistical en-
semble a significant probability to be in a uniform state, f= 0 or 1. To include these
states into consideration, we have to isolate the corresponding corresponding terms
in ρ fð Þ, as given by eq. (1.4), and derive new boundary conditions which reflect this
change. Because two more time-dependent variables, p0 and p1 exist than in a large
population, four (rather than two) conditions at the boundaries are required. The
first pair of equations in eq. (1.5) describes the continuity condition that the flux of
probability to a uniform state is equal to its rate of change in time in a uniform
state. We now obtain the second pair.

We need to return to the discrete model, with p nð Þ and eq. (1.8). We can con-
sider only one boundary regions in n, for example, n � N; the conditions for the
opposing region, N − n � N, are similar. Probability p nð Þ has two distinct compo-
nents: probability of uniform wild type, p 0, tð Þ≡ p0 tð Þ and a small component
p n, tð Þ, n ≠ 0, which varies slowly with n at n � 1. [Strictly speaking, p n, tð Þ is di-
verging as n− 1 at n ! 0, eq. (1.27), but divergence of the integral

Ð
p n, tð Þdn is loga-

rithmic, which is slow enough for our aim.]
Equations (1.11) and (1.13) can be simplified using the condition n � N.

Equation (1.11) becomes

P0ðn n′
�� �= n′

� �n
1− sð Þn
n!

e− n′ 1− sð Þ (1:28)

Inequality n � N allows one also to neglect deleterious mutations in eq. (1.13) and
keep only terms with m2 =0. Next, the condition Nμ logN � 1 implies that even a sin-
gle mutation is rare in a population. All terms with m1 ≥ 1 in eq. (1.13) can be neglected
except for the term with m1 = 1 for specific values n′′= 1, n′=0. The transition between
these two states can occur only by mutation. As a result, eq. (1.13) simplifies to

P n, n′
� �

= 1−μNð ÞP0ðnjn′Þ+ μNδn, 1δn′, 0 (1:29)

For solving the discrete-n equation for p n, tð Þ, eq. (1.8), it is convenient to use the
characteristic polynomial of the probability function φ x, tð Þ:

φ x, tð Þ=
XN
n=0

p n, tð Þ 1− xð Þn ≡ p0 tð Þ+ϕ x, tð Þ (1:30)
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where 0< x< 1, and ϕ(x,t) is a sum over the polymorphic part of p n, tð Þ, n≠0. The
evolution equation for φ x, tð Þ follows from eqs. (1.8) and (1.28) to (1.30):

φ x, t + 1ð Þ= 1− μNð Þφ 1− e− x 1− sð Þ, t
	 


+μN 1− xð Þp0 tð Þ (1:31)

Since integral of p n, tð Þ diverges logarithmically, as we just noted, the characteristic
number of alleles n for n ≠ 0 is large, n � 1. Therefore, the reciprocal scale of x for
function ϕ x, tð Þ is small (x � 1). Using this fact, we expand the right-hand side of
eq. (1.31) to the quadratic terms in x and obtain

dp0
dt

+ ∂ϕ
∂t

= − sx+ x2

2

� �
∂ϕ
∂x

− xμNp0 (1:32)

Here we substituted φ= p0 +ϕ and employed the strong inequalities s � 1, μN � 1,
and ϕ � p0. We note that at x � 1, the function ϕ x, tð Þ can be replaced with integral
in n and thus represents the Laplace transform of p n, tð Þ at n>0:

ϕ x, tð Þ=
ð∞
0+

dn e− xnp n, tð Þ≡L x p n, tð Þf g (1:33)

Using Laplace transform, one can rewrite eq. (1.32) in the form

L x
∂p n, tð Þ

∂t
+ ∂q n, tð Þ

∂n

 �
= − q n, tð Þn!0 −

dp0
dt

� �
+ x
2

limn!0 n p n, tð Þ½ �ð Þ− 2μNp0f g

(1:34)

where q n, tð Þ is the probability flux

q n, tð Þ= −
1
2
∂ npð Þ
∂n

− snp (1:35)

which coincides with its definition in eq. (1.7) in the limit f = n=N � 1.
Note that neither the probability function, p n, tð Þ, n≠0, nor its derivatives con-

tain a delta function or its derivatives. Delta function has already been separated in
the uniform-state term p0. As it is well known, a Laplace transform of an analytic
function can neither be constant nor increase in the limit of large x. Therefore, both
bracketed terms in eq. (1.34) must be zero, and we arrive at the desired boundary
condition at f ! 0 given by eqs. (1.5) and (1.6). Since the left-hand side of eq. (1.34)
is identically zero, the braced term in eq. (1.34) must be zero as well. As a result, we
obtain the promised differential evolution equation (1.7) at f � 1. The boundary
conditions at another boundary, f ! 1, are obtained in a similar manner. Thus,
Laplace transformation allows us to obtain both the evolution equation and its
boundary conditions in one step.
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1.3 Thought experiments and observable parameters

Now that we have both the evolution equation and its boundary conditions, we need
to know the state of the population at the initial moment. The initial state, obviously,
depends on a specific problem or an experiment. Now we introduce several “thought
experiments,” which are important for a broad range of populations and practical ap-
plications. We will also define quantitative parameters suitable for experimental com-
parison. The following experiments are relevant in various situations:
(i) Accumulation of deleterious alleles. The initial state is a purely wild-type popu-

lation, f =0. The evolutionary process consists of accumulation of deleterious
alleles due to random mutation. Their level, as we will demonstrate, is eventu-
ally limited by negative selection.

(ii) Adaptation. If a population has experienced a strong change in environmental
conditions or migrated into a new environment, it will initially be poorly
adapted, f = 1. Over time, accumulation of beneficial mutations will occur,
until a new mutation–selection balance is established. The process of accumu-
lating beneficial mutations is called “adaptation,” and is the speed of adapta-
tion is the rate of fitness increase.

(iii) Growth competition. Consider a population comprising equally –mixed wild type
and mutant, f =0.5 or another strongly diverse population). Competition be-
tween two alleles ensues and leads to the decrease of the less-fit allele until a
new mutation–selection balance is established.

(iv) Gene fixation. This important problem inspired considerable work in classical
population genetics (Fisher, 1930; Haldane, 1927; Kimura, 1962; Kimura and
Ohta, 1969; Wright, 1931) and is still very useful for understanding other sto-
chastic experiments (Chapters 2 and 3). Suppose, a single advantageous al-
lele is added to a uniform population, f = 1=N. The allele can have one of two
fates: either it will survive random drift and expand to the entire population
(be fixed), or it will go extinct (Figure 1.1a). We need to estimate (i) the fixation
probability, (ii) if the average time to reach the level where allele survival is
ensured, and (iii) the chance that the new lineage will reach a given size before
it goes extinct.

(v) Steady state. After a sufficient time, the system passes to a steady state, in
which any statistics are constant.

(vi) Genetic divergence. Let us split a steady-state population into two isolated
parts. Initially, both populations have identical genetic composition, and then
they evolve independently and diverge genetically. As time goes on, their re-
spective genetic compositions correlate less and less. At which characteristic
time does the loss of correlation occur?

(vii) Time correlation of f. This experiment studies stochastic fluctuations of f in
time in the steady state. The parameter of interest is the average timescale as-
sociated with these fluctuations.
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1.3.1 Observable parameters

The probability density ρ fð Þ of the mutant frequency f predicted by the stochastic
equation is an observable parameter. However, to measure it directly, one would
need to make a histogram of mutant frequencies from a large ensemble of popula-
tions. More convenient for experimental testing is the average (mean, expectation)
value, which requires a smaller number of populations to measure. Let parameter
A fð Þ be any deterministic function of mutant frequency f . Its mean value �A and the
variance VA are defined by

�A tð Þ=
ð1
0

df A fð Þρ f , tð Þ (1:36)

VA tð Þ= A− �A
� �2 =A2 − �A2 (1:37)

Useful observable parameters whose statistical properties can be measured in real
experiments and compared with the theoretical predictions will be introduced later.

The first observable parameter is the mutant frequency itself, f . It can be com-
pared with the experimental value if one knows which allele is better fit.

The second observable is the pairwise genetic distance within population, T,
defined as the probability that a randomly sampled sequence pair differs at the
locus. Although there are other metrics of intrapopulation variability (e.g., entropy),
we will use this simple metrics (Nei, 1972) usually called Hamming distance. This is
coincident with the standard definition of the average number of nucleotide differ-
ences for two randomly sampled genomes, except applied to a single base. Genetic
distance T can be expressed as

T = 2f 1− fð Þ (1:38)

which varies between 0 ðf =0 or 1Þ and 0.5 ðf =0.5Þ. Unlike the mutant frequency f ,
the genetic distance estimate does not depend on wild-type knowledge.

The mean values of parameters f and T are given by eqs. (1.36) and (1.4) to (1.7),
with A fð Þ= f and A fð Þ= 2f 1− fð Þ, respectively. The variance Vf and the two averages
�f , �T are related as

Vf =�f 1−�f
� �

−
�T
2

(1:39)

In addition to intrapopulation genetic distance, which characterizes population di-
versity, we also introduce the distance T12 between two populations defined in the
same way as T, except that the two compared sequences are taken randomly from
two separate populations

T12 = f1 1− f2ð Þ+ f2 1− f1ð Þ (1:40)
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where f1, f2 are the respective mutant allelic frequencies. The interpopulation dis-
tance may change from 0, when the two populations consist completely from same
allele, to 1, when the two populations are uniform in opposite alleles.

The interpopulation distance must be equal or larger than the mean of the cor-
responding intrapopulation distances. Therefore, it is handy to introduce also the
relative distance, D, equal to

D=T12 − T1 + T2ð Þ=2= f1 − f2ð Þ2 (1:41)

The value of D varies between 0 (two populations have the same genetic composition f )
and 1 when one is purely mutant and another is completely wild type). If the two
populations have diverged for a long time and are almost statistically independent,
one can easily check that �D= f1 − f2

� �2 +Vf1 +Vf2 . Alternative definitions of the genetic
distance could be used (Nei, 1972). We prefer our nucleotide difference definition
(Hamming distance), because its statistical momenta are easy to evaluate.

We turn now to the genetic divergence experiment. Suppose that a parental pop-
ulation has been split into two populations at t =0. The daughter populations are as-
sumed to grow rapidly to the original size, while their initial composition is inherited
from the parental population (f = f0). The value f0 is of course random and obeys dis-
tribution ρ f0ð Þ. To monitor how the two population diverge, we calculate how dis-
tance �D increases after the separation. The average value, �D, is given by

�D=
ð1
0

df1

ð1
0

df2

ð1
0

df0 f1 − f2ð Þ2ρðf1, tjf0Þρðf2, tjf0Þρðf0Þ (1:42)

where ρ f0ð Þ denotes the probability density of the initial allele frequency, eqs. (1.4)
to (1.7), and ρ f , tj f0ð Þ obeys our evolution equation and meets the initial condition

ρ f , 0jf0ð Þ= δ f − f0ð Þ (1:43)

By evaluating integrals in eq. (1.42), �D tð Þ can also be expressed in terms of the
evolving variance of f , Vf ðtjf0Þ

�D= 2
ð1
0

df0Vf ðtjf0Þρ f0ð Þ (1:44)

The variance Vf ðtjf0Þ increases from 0 at t =0 to its equilibrium value at infinite
time. Thus, eq. (1.44) expresses the relative distance between two diverging popula-
tions in terms of the variance in a single population.

All the above observables can be measured at a single time point, including dy-
namic experiments (the first three) and experiments in the steady state.

Our next parameter compares the state of population at two moments in time;
we will define it for a steady-state population. The time correlator K tð Þ determines
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how fast the population erases memory from a preceding random fluctuation of the
mutant frequency f

K tð Þ= 1
Vss
f

f 0ð Þf tð Þ− fss
2

h i
(1:45)

The choice of the initial moment t =0 in eq. (1.45) in the steady state is arbitrary.
The function K tð Þ varies from maximum correlation 1 at t =0 to 0 at t =∞. The same
correlator can also be written in terms of the mean frequency �f ðtjf0):

K tð Þ= 1
Vss
f

ð1
0

df0 f0 �f ðtjf0Þρss f0ð Þ−�fss2 (1:46)

Here conditioned mean �f ðtjf0) is defined by eq. (1.43) with A fð Þ= f and under the ini-
tial condition given by eq. (1.36). The time correlation function K tð Þ is maximum and
equal to 1 at t =0 and vanishes at t ! ∞. The time at which K tð Þ decays by 50% rep-
resents the characteristic half-period of random oscillations of f .

Now we are all set. We have master equations to solve, boundary conditions to use,
experiments to investigate, and observables to predict. In the next Sections 1.4–1.7, we
will derive all observables for the listed thought experiments in various parameter regions.
We will verify and illustrate our analytic results with stochastic Monte-Carlo simulation.

1.4 Steady state

After a sufficiently long journey, any population under constant conditions arrives
at a steady state, where its statistics no longer change, although state variables
keep fluctuating around their plateaux. We will discuss further the statistical prop-
erties of steady state in various intervals of the population number.

1.4.1 General case

We start from eq. (1.1) to (1.3), which apply when populations are large,
Nμ � 1= logN. From the steady-state condition, ∂ρ=∂t ≡0, one gets

q fð Þ≡0 (1:47)

where q fð Þ is given by eq. (1.2). We can separate variables f and p in the resulting
differential equation. By integrating it, we obtain (Wright, 1931)

ρss fð Þ=C f 1− fð Þ½ �− 1+ 2μNe− 2Nsf , Nμ logN � 1 (1:48)

where C is a normalization constant to ensure that the full integral of ρss fð Þ is 1.
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As discussed in Section 1.2, in small populations such that Nμ logN � 1, the prob-
ability density has delta-function components, eq. (1.4), and obeys eqs. (1.5)–(1.7). Now
the steady-state conditions have the form

∂g=∂t =0, dp0=dt = dp1=dt =0

From these conditions and with q fð Þ given by eq. (1.2) with μ=0, since mutations
enter only boundary condition, we get

ρss fð Þ= gss fð Þ+ 1− ppol
1+ e− 2Ns δ fð Þ+ e− 2Nsδ 1− fð Þ� �

(1:49)

gss fð Þ= 2μN
1+ e− 2Ns

e− 2Nsf

f 1− fð Þ , f 1− fð Þ � 1=N, μN logN � 1 (1:50)

ppol ≈ 2μN log min N,
1
s

� �� �
(1:51)

where ppol ≈ 1 is the total probability of having a polymorphic population.
At small population sizes, both forms of probability density, eqs. (1.48) and

(1.49), are singular at f =0 and f = 1, though in a different way. The two versions
can be shown, for certain purposes, to be interchangeable for small population
sizes. Specifically, eqs. (1.48) and (1.49) can be shown to predict, with error O( μNÞ, the
same lower momenta of f , that is, the expectation value and variance.

The version in eq. (1.49), although longer, is generally more practical in this re-
gime. The form of eq. (1.48), on the other hand, applies at large populations as well
and is more suitable for the studies of the transition to the deterministic limit.

1.4.2 Steady state in the selectively neutral case: s≪ μ

If the selection coefficient is much smaller than the mutation rate, selection is negligi-
ble. (This is not the only scenario when selection can be neglected, see Section 1.6.) In
this limit, s ≪ μ, the transition between stochastic and deterministic behavior occurs
due to competition between mutation, which acts as a deterministic factor in large pop-
ulations, and genetic drift. For this reason, we have to recount the basics of the selec-
tively neutral theory. The fundamental prediction of any stochastic model is that the
fluctuations of mutant frequency decrease with the population size. In other words, the
probability density is distributed broadly in small populations and makes narrow max-
ima in large populations. The transition between the two limits is controlled by product
μN, which we have already seen in our boundary conditions. That product represents
the mutation rate per population of genomes. For example, for most RNA viruses,
μN = 1 when the infected cell number, N, is in the range 104 − 106. For DNA organ-
isms, μ is much smaller due to the DNA editing enzymes, and the population has
to count in billions to be in that range.
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With increasing mutation rate per population μN, the probability density be-
comes more narrow, as illustrated in Figure 1.4 (Wright, 1931). The change in width is
a result of the competition between mutations, which diversify the system, and ran-
dom drift, which forces the system toward a uniform state. When μN is much smaller
than 1 (the case termed “drift regime,” Table 1.2), random drift is much stronger, and
a typical population is either uniform or weakly diverse. Therefore, the probability
density ρ fð Þ is U-shaped, with a minimum at the half-and-half composition. At the
smallest values of μN [the condition is given in eq. (1.5)], the system is most likely to
be either uniformly mutant or uniformly wild type, without a single opposite allele
present. The net probability of any polymorphic state will be on the order of μN,
which is much smaller much smaller than 1. That estimate can be interpreted as the
frequency of diverse (in genetics, “segregating”) sites in a population.

Now we turn to larger populations. With increasing μN, the U-shape of probability
density gradually flattens out (Figure 1.4). The valley at f = 50% turns into a maxi-
mum, when μN crosses the value of 1=2. The peak becomes more and more narrow
as μN becomes much larger than 1. The last fact implies that the mutant frequency
approaches its deterministic limit of 1=2, due to the balance between reverse and
forward mutations. We will call this limit of large population sizes “mutation re-
gime” (Table 1.1).
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Figure 1.4: Probability density in the steady state in the selectively neutral regime, s � μ. Curves
show ρss fð Þ at different values of μN shown at curves (based on Rouzine et al. (2001)).
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To describe the selectively neutral case formally for both small and large popu-
lations, we will use the form of eq. (1.48) for the distribution density. Putting s=0
in eq. (1.48) and normalizing the resulting expression to 1, we get (Wright, 1945)

ρss =
Γ 4μNð Þ
Γ2 2μNð Þ f 1− fð Þ½ �− 1+ 2μN, s � μ (1:52)

where Γ xð Þ is the Euler gamma function, Γ xð Þ= Ð∞0 dy yx− 1e− y, and we plugged in
the identity for beta function (Abramowitz and Stegun, 1964)

ð1
0

df f x− 1 1− fð Þy− 1 = Γ xð ÞΓ yð Þ
Γ x+ yð Þ (1:53)

Equation (1.52) is plotted at different values of μN in Figure 1.4.
The mean values and the variance of f and intrapatient distance T can be ob-

tained from eq. (1.52) and eqs. (1.36) to (1.38):

�f = 1
2
, Vf =

1
4 1+ 4μNð Þ ,

�T = 2μN
1+ 4μN

VT =
2μN

4 1+ 4μNð Þ2 3+ 4μNð Þ , s � μ (1:54)

Here, to evaluate the integrals over f in eqs. (1.36) and (1.37), we used eq. (1.53) and
Γ x+ 1ð Þ= xΓ xð Þ (Abramowitz and Stegun, 1964). For small populations (μN � 1),
eq. (1.54) yield well-known results of the selectively neutral theory:

�f = 1=2, Vf = 1=4, μN � 1, sN � 1 (1:55)

�T = 2μN, VT =
2μN
3

, μN � 1, sN � 1 (1:56)

In intuitive agreement with Figure 1.4, the scaled standard deviation, V1=2=�f , is on
the order of 1 at μN ≤ 1 and much smaller at large μN, eq. (1.54) (Figure 1.6b).

1.4.3 Steady state with selection: μ � s � 1

If selection coefficient is superior to mutation rate (but still much less than 1),
Darwinian selection comes into play. Then, selection factor can be neglected only
in a very small population Ns � 1, which scenario has the same behavior as the
drift regime we just discussed. At larger population sizes, selection is critically im-
portant, because it causes the probability density, eqs. (1.48) or (1.49) to (1.51), to be
asymmetric in favor of a predominantly wild-type population (Figure 1.5).
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As in the neutral case, ρ fð Þ contracts as N increases, but selection due to the
factor exp − 2Nsfð Þ in eqs. (1.48) and (1.50) causes asymmetry of ρ fð Þ. The existence
of the exponential tail indicates that natural selection and drift are the main compet-
ing factors, and that both have the same order of magnitude at the characteristic
frequency

fstoch ~
1
Ns

This famous equation, which we do not even number because it is so short, is called
“stochastic threshold.” It is important not only for the steady state, but also in
many other situations, including gene fixation and adaptation discussed in this
and the following sections. Another important difference from neutral evolution is
the existence of an additional broad interval in N. In the limit of very large popula-
tions, when μN is much larger than 1 (“selection regime” in Table 1.2), the proba-
bility density is a narrow peak localized near its deterministic value. This value is
given by the mutation-selection balance ratio, μ=s.

Between these two limits, there exist a wide interval in population size between
the inverse mutation rate and the selection coefficient, termed “selection drift” in
Table 1.2, in which all three evolutionary forces are important. Specifically, mutations
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Figure 1.5: Schematic plot of the steady-state probability density ρss fð Þ in the selection-drift
regime, 1=s � N � 1=μ. Blue curve is the full distribution and the red curve is magnification of its
tail. Note delta functions at ρ= 0 and 1, together with the exponential tail extending from pure wild
type, f = 0 (based on Rouzine et al. (2001)).
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create diversity, selection keeps mutants at a low level, and drift causes fluctuations
of f . The function ρ fð Þ comprises three components, as follows (Figure 1.5). (i) A
large delta function located at f =0 implies that a population is, most likely, uni-
formly wild type. (ii) An exponential in the interval of f 0 1½ � with a small magnitude
and scale in f ~ 1= Nsð Þ � 1 (Wright, 1931) shows that the chance of a population
being genetically diverse is low, and that if a population happens to be diverse, the
proportion of mutants is small. The chance of a diverse population given by the area
under the curve is small in parameter μN, eq. (1.51). (iii) A tiny peak at f = 1 is signifi-
cant only when population size is near the lower boundary, N ~ 1=s.

The selection-drift regime has mixed properties which combine stochasticity
and determinism. On the one hand, the form of the probability density suggests a
very stochastic behavior. On the other hand, the average mutant frequency and the
average genetic distance are given, over most of the regime, by their deterministic
values calculated for much larger populations.

The mean values and scaled standard deviations for f and T are shown in
Figure 1.6 as a function of the population size. As it is expected from results in
Figure 1.5, in the selection-drift regime, the relative standard deviations are much
larger than 1 indicating that their fluctuations are stronger than their mean values
(Figure 1.6B). At the same time, remarkably, the mean values stay the same as in
the selection regime N � 1=μ, where fluctuations are much smaller (Figure 1.6A).
We need to emphasize that the magnitude of fluctuations strongly exceeds the
Poisson statistics prediction. In Sections 1.6 and 1.7, we will illustrate a typical
steady-state process by stochastic simulation. Examples of such simulations, for
each interval of N, are plotted in Figure 1.6C (Rouzine and Coffin, 1999a).

To obtain analytic expressions for very small populations, N � 1=s (drift regime),
we omit s in eq. (1.48) and arrive at the results obtained in Section 1.4.2 for the drift
regime. In the opposite limit of large populations N � 1=μ (“selection regime,”
Table 1.2), ρss fð Þ in eq. (1.48) has a sharp maximum due to mutation-selection balance,
f =μ=s. Expanding log ρss in f near the maximum, we obtain a Gaussian form (Karlin
and McGregor, 1964):

ρss fð Þ≈Ce−Ns2
μ f − μ

sð Þ2 , μN � 1, s � μ (1:57)

Here the maximum position, f = μ=s, is the mean steady-state value in the deterministic
limit. For the average values and variances of f and T, eqs. (1.36) to (1.38), we have

�f = μ
s
, Vf =

μ
2Ns2

, �T = 2μ
s
, VT =

2μ
Ns2

, μN � 1, s � μ (1:58)

We observe that in the intermediate interval, 1=s � N � 1=μ, eq. (1.58) yields Vf � �f 2.
Therefore, fluctuations are strong in this case, but we cannot neglect selection as in the
drift regime. Both drift and selection are important in this case. We will analyze ρss fð Þ
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and its lower momenta using the form given by eqs. (1.49) and (1.50). As we already
mentioned, function ρss fð Þ has three components (Figure 1.5): two peaks at f =0 and 1
that correspond to the uniform states, and an exponential with scale f ~ 1=Ns, which
describes the distribution of diverse states under selection and drift. The probability
that a population is diverse, eq. (1.51), is small, ppol ≈ 2μN log 1=sð Þ. To obtain the first
two momenta for mutant frequency and the distance, eq. (1.49) is substituted into
eqs. (1.36) and (1.37). Using the fact that values f ~ 1=Ns mostly determine the inte-
grals of gss fð Þ we obtain
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Figure 1.6: Dependence of the observable parameters in the steady state on the population size in
the three main intervals of population size, N. (A) Average mutation frequency �f and genetic
distance, T . (B) Relative standard deviations of the two parameters. (C) Representative Monte-Carlo
simulation runs in the respective intervals of N (details in the legends to Figures 1.10 to 1.12)
(based on Rouzine et al. (2001)).
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�f = μ
s
+ e− 2Ns, Vf =

μ
2Ns2

+ e− 2Ns

�T = 2μ
s
, VT =

2μ
Ns2

,
1
s
� N � 1

μ
(1:59)

At the transition point in population size, N ~ 1=s, these four values match, by an order
of magnitude, their neutral–limit values in eqs. (1.55) and (1.56). At a higher population
size, N ~ 1=sð Þ log s=μð Þ, they match the quasi–deterministic results in eq. (1.58) derived
for N � 1=μ. Curiously, in most of the regime, 1=sð Þ log s=μð Þ � N � 1=μ, all the aver-
ages and variances happen to coincide with their respective values in the deterministic
limit, even though the relative standard deviations, Vf=�f 2 and VT=�T2, are much larger
than 1, indicating that fluctuations of mutant frequency and genetic distance exceed
their respective averages (Figure 1.6B).

1.5 Boundaries of deterministic approximation

As we have just shown, the deterministic behavior of equilibrium state is reached
when μN is much larger than 1. In this section, we will study the transition between
stochastic behavior and deterministic approximation in the more general case, where
the statistical properties of a population are time–dependent.

1.5.1 Deterministic limit

As we already mentioned, stochastic and deterministic models work with different
types of state variables. The deterministic models consider a scalar, the time-
dependent frequency of mutants, and the second use a whole function, a proba-
bility density that changes in time. We need to check that these two different
approaches match in very large populations. In this limit, both must predict deter-
ministic evolution. Here we will solve Kolmogorov equation (1.1), in N ! ∞ limit.
We will demonstrate that the resulting probability density is, indeed, a very nar-
row peak around a time-dependent mutant frequency (Figure 1.7b), which satis-
fies a deterministic evolution equation we derive later.

A deterministic equation can make a prognosis for mutant frequency as a func-
tion of time if the initial value is known. Examples of plots for three types of initial
conditions, corresponding to adaptation, accumulation of deleterious mutants, and
competition of two variants (Section 1.3) are given in Figure 1.8. In each case, the
population approaches the same steady state with f =μ=s, after a time interval pro-
portional to the inverse selection coefficient 1=s (Section 1.4). The time of adaptation
is somewhat longer compared to the two other experiments. The reason for the delay
is that, before crossing the entire interval f = 0 1½ �, beneficial alleles have to be
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generated for selection to operate on. For this reason, the initial slope of the time
course of the mutant frequency is small in accumulation and adaptation experiments
(Figure 1.8). Selection starts to dominate over mutation causing the time dependence
f tð Þ to curve only after a growing lineage frequency exceeds μ=s.

1.5.2 Deterministic equations

In this section, the equation of evolution in the deterministic limit is derived by two
methods, first, from deterministic first principles and, second, as a limiting case of the
stochastic equation at N ! ∞. Then we will verify that both methods give the same
result, for arbitrary initial conditions. Then the boundaries of the parameter region of
deterministic approach are found.

1.5.2.1 Main results
In the limit of large populations N � 1=μ, the time-dependent probability density
has the form

ρ f , tð Þ= δ f − fd tð Þð Þ (1:60)

t t+dt
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Figure 1.7: In the deterministic limit, the probability density ρ f , tð Þ of the mutant frequency f is a
moving delta function. Blue solid and red dashed curves show two consecutive moments of time.
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dfd
dt

=M fdð Þ= − sfd 1− fdð Þ− μ 2fd − 1ð Þ (1:61)

Equation (1.61) represents the deterministic evolution equation for the moving peak
in f (Figure 1.7). These expressions agree with the meaning of M fð Þ, defined by eq.
(1.18), as the mean change in f in each generation, eq. (1.20). The actual change in f
coincides with the average change, due to the absence of random drift and random
factor in mutation in this limit. The first term in the right-hand side of eq. (1.61) de-
scribes natural selection against the existing mutant allele and hence vanishes in a
uniform population, where selection stops working since there is nothing to select
from fd =0 or 1. The mutation term in eq. (1.61) is not zero at fd =0 or 1, since muta-
tion, unlike selection or drift, takes place even in a completely uniform population.
The term vanishes at fd = 1=2, where reverse and forward mutations cancel each
other. (Here we assume that direct and reverse mutations have the same mutation
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Figure 1.8: Schematic dependence of the mutant frequency, f, on time t in the deterministic limit.
The three curves correspond to three experiments with different initial values of f 0ð Þ. Red:
accumulation of deleterious alleles, f 0ð Þ=0; green: growth competition, f 0ð Þ= 1=2; blue:
adaptation process, f 0ð Þ= 1. The value of the ratio μ=s used in the figure may be unrealistically
high and is used for clarity of plot only. Dashed lines show initial slopes (based on Rouzine et al.
(2001)).
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rate. It is a simplification, because, in real biological populations, mutation is rarely
symmetric. Forward and back rates can easily differ by an order of magnitude. In
this case, the mutation-selection equilibrium will not be reached at a half but at
10% or 90%. This detail can easily be taken into account while preserving the spirit
of the results.)

Equation (1.61) can easily be solved in the general cases by separating varia-
bles. In two limits, the case with selection and the neutral case, the solution has an
especially simple form:

f tð Þ=
1
2
+ f0 −

1
2

� �
e− 2μt, μ � s

fss +
f0 − fssð Þe− st

1+ fss − f0 + f0 − fssð Þe− st , μ � s

2
6664 (1:62)

where fss ≡ μ=s is the famous mutation-selection steady-state value (Haldane,
1924, 1927). The second part of eq. (1.62) represents a sigmoidal dependence
(Figure 1.8).

First, we derive eq. (1.61) from first-principles neglecting random factors. The
starting equations suitable for the model have the form

dn1
dt

= 1−μð Þ 1− sð Þκn1 +μκn2 −ωn1 (1:63)

dn2
dt

=μ 1− sð Þκn1 + 1−μð Þκn2 −ωn2 (1:64)

where numbers n1 and n2 correspond to mutant and wild-type infected cells, re-
spectively, κ is the reproduction coefficient for the wild type, and 1=ω is the aver-
age life span of an individual (infected cell). To match our population model
with discrete generations in time intervals of Δt = 1, we choose ω= 1. Using our
notation f = n1=ðn1 + n2Þ, calculating derivative df=dt, and using eqs. (1.63) and
(1.64), we arrive at a single equation (1.61). The equation is nonlinear in f , because f
depends in nonlinear way on n1, n2. Note that it applies regardless on whether the
population size is constant, as we assumed in the rest of this chapter. It might be as
well expanding or compressing.

In large but finite populations random drift creates a finite width of probability
density has, w tð Þ (Section 1.5.3). As long as the relative width w tð Þ= fd tð Þ 1− fd tð Þ½ �f g
remains much less than 1, deterministic approximation is a good starting point. In
the neutral limit, μ � s, we show below that the boundary in N of the selection re-
gime is the same as in the steady state: N ~ 1=μ. In the presence of selection, μ � s,
that boundary depends on the initial conditions set in the experiment. Results for
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the first three thought experiments (Section 1.3) (Figure 1.8) are listed below, as-
suming that the initial value f0 is known:

w= f 1− fð Þ×

1ffiffiffiffiffiffiffi
Nμ

p acc. del. f0 =0, f � fss

1ffiffiffiffiffiffiffi
Nμ

p adapt. f0 = 1, fss � f

1ffiffiffiffiffiffi
Ns

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 2f
f 1− fð Þ + 2 log

1− f
f

s
gr.comp. f0 = 1

2 , fss � f < 1
2

8>>>>>>>>><
>>>>>>>>>:

(1:65)

where f ≡ fd tð Þ. Note that, if we start from a uniform initial population, the criterion
of determinism is the same as we obtained in the steady state in Section 1.4,
N � 1=μ. For the growth competition experiment which starts from a diverse popu-
lation, it is much softer, N � 1=s, provided the mutant frequency is high above the
steady-state value, fss.

1.5.3 Derivation from the stochastic equation

At large population numbers, N ! ∞, the diffusion term with the second deriva-
tives in the right-hand side of eq. (1.2) is negligibly small. Consequently, the proba-
bility density ρ f , tð Þ must be narrow in f , and we will use of this fact below. Let us
can present the master equations, eqs. (1.1) and (1.2), in an equivalent form

∂ρ
∂t

+M fð Þ ∂ρ
∂f

= 1
2N

∂2

∂f 2
f 1− fð Þρ½ �− dM

df
ρ (1:66)

where M fð Þ is given by eq. (1.18). Each term on the right-hand side of eq. (1.66) is
much smaller than any term on the left-hand side and can be considered small per-
turbation. The first term is small in 1=N, where N is very large, and dM=dfð Þρ is much
smaller thanM fð Þ ∂ρ=∂fð Þ, because ρ fð Þ is very narrow and hence changes faster in f
than M fð Þ. Hence, in the lowest approximation in 1=N, we can set the left-hand side
of eq. (1.66) to 0. A partial solution is a delta–function with a center moving in time,
eqs. (1.60) and (1.61) (Figure 1.7). One can check this fact by a simple substitution.

The general solution for ρ f , tð Þ is a linear combination of solutions of the form of
eq. (1.60), each solution with its own initial condition ρ f , 0ð Þ= ρ0 fð Þ. If the initial
value of f is known with a high accuracy, ρ f , tð Þ is a single delta–function. Then, we
solve eq. (1.66) in the next approximation in 1=N to find the finite width of ρ f , tð Þ.

Deterministic dynamics f tð Þ can be obtained in the general form from eq. (1.61).
Rewrite eq. (1.61) as

1
s
df
dt

= f − fssð Þ f − f*ð Þ (1:67)
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fss, * =
1
2
+ μ
s
∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
+ μ

s

	 
2r
(1:68)

Here the plus and minus signs corresponds to f* and fss, respectively. Below we
drop the subscript “d” in fd. The values of parameters fss and f* are in the intervals
0< fss < 1=2 and f* > 1, respectively. The value of fss is the mutant frequency in muta-
tion-selection balance. The value of f* is just a formal value. The value of fss ap-
proaches the values of 1=2 and μ=s in the limits μ � s and μ � s, respectively
(Section 1.4). Equation (1.67) is an ordinary differential equation with separating
variables and can be integrated to obtain dynamics of mutant explicitly:

f tð Þ= fss +
f0 − fssð Þ f* − fssð Þe− f* − fssð Þst

f* − f0 + f0 − fssð Þe− f* − fssð Þst (1:69)

where f0 = f 0ð Þ is the initial condition. From eq. (1.69), f ∞ð Þ= fss. Note that the func-
tion f tð Þ either only increases or only decreases, depending on the initial values,
and never crosses its asymptotic value fss. Asymptotics of eq. (1.69) with and with-
out selection are given in eq. (1.62). The characteristic time required to come half-
way to the steady state is given by 1=s and 1=μ in the two limits, respectively.
Schematic plots of f tð Þ for μ � s of initial conditions, f0 = 1, 1=2, and 0 (adaptation,
growth competition, deleterious accumulation) are shown in Figure 1.8. In particu-
lar, the formula for f tð Þ in the accumulation experiment simplifies to

f tð Þ= μ
s

1− e− st� �
, f0 =0,

μ
s
� 1 (1:70)

1.5.4 Boundaries of the deterministic approximation

The frequency of mutants fluctuates around its deterministic value due to random
genetic drift, which is present even in very large populations. At sufficiently small
populations, fluctuation magnitude becomes comparable to the average frequency
of the minority allele (either mutant or wild type), and the deterministic description
becomes a poor approximation. The corresponding boundary in N depends on the
initial conditions. As we show further, when the initial state is composed entirely of
the better-fit or less-fit variant, the deterministic criterion is met when μN � 1. A
much smaller population (Section 1.3) can follow the deterministic path as long as
it is initially diverse. The criterion on diversity is that mutant frequency f must be
larger than “stochastic threshold” 1=Ns, which determines the scale of the tail of
ρ fð Þ at the steady state (Figure 1.5). This is because a weakly diverse population is
sensitive to random mutation events, while natural selection controls a strongly di-
verse population, mutation being a small correction. Therefore, as long as selection
is stronger than the drift, determinism wins.
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To obtain the validity range of deterministic description, we need to consider
finite N and estimate the width of the probability density. For this end, we employ
the method of perturbation in 1=N to solve eq. (1.66) in the next approximation. We
use an ansatz of the automodel form

ρ f , tð Þ= 1
w tð Þ F

f − fd tð Þ
w tð Þ

� �
(1:71)

where F uð Þ is a normalized function,
Ð
duF uð Þ= 1. The width of the probability

density w tð Þ is assumed to be much less than fd, which is the validity condition for
deterministic approximation. We will find the interval of N where this assumption
actually holds further. Since ρ f , tð Þ changes in f much faster than M fð Þ, we can
expand M fð Þ in the left-hand side of eq. (1.66) linearly in f − fd. In the right-hand
side, O(1=N), we retain only the largest terms in 1=N by approximating f 1− fð Þ≈
fd 1− fdð Þ and M fð Þ≈M fdð Þ. Substituting eqs. (1.71) into (1.66), we obtain

− fd′ tð Þ+M fd tð Þ½ �= sfd tð Þ 1− fd tð Þ½ � 1− fdð Þ
2w tð Þ

 �
F′′ uð Þ
F′ uð Þ

+ 1ffiffiffiffiffiffi
Ns

p w′ tð Þ−M′ fd tð Þ½ �w tð Þ� � F uð Þ+ uF′ uð Þ
F′ uð Þ (1:72)

where primes denote the first derivatives of the corresponding functions. To solve
eq. (1.72), we make an observation that the braced terms on the right-hand side and
the left-hand side depend only on time, while the factors multiplying the braced terms
are functions only of u. Since u and t are two independent variables, it stands to reason
that eq. (1.72) can be correct only if the left-hand side is always zero, and the ratio in
braces is a constant. We denote it λ. Therefore, eq. (1.72) splits into three separate dif-
ferential equations: eq. (1.61) for fd tð Þ and the equations for Fðu) and w tð Þ:

λF′′+ uF′+ F =0 (1:73)

dw
dt

−M′ fdð Þw−
ffiffiffiffiffiffiffiffi
Ns3

p

2λ
fd 1− fdð Þ

w
=0 (1:74)

Without the loss of generality, constant λ in the above equations can be simply
set to 1 by rescaling u ! λ1=2u, w ! λ− 1=2w, which leaves the probability density,
eq. (1.71), unchanged. The solution of eq. (1.73) is a Gaussian

F uð Þ= 1ffiffiffi
π

p exp −
u−Cð Þ2
2

" #
(1:75)
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where the normalization prefactor ensures that
Ð
du F uð Þ= 1. We can set C=0, since

any other choice is equivalent to a shift in the definition of fd in eq. (1.71), which
keeps the probability density invariant.

To solve eq. (1.74) for width wðt) this equation can be reduced to two simpler
equations by substituting w tð Þ= y tð Þϕ tð Þ and demanding that y tð Þ satisfies equation

dy
dt

−M′ fdð Þy=0 (1:76)

After solving the resulting equation for ϕ tð Þ and solving eq. (1.76), we obtain the
general solution of the form

w tð Þ= exp
ð
dtM′ fð Þ

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C′+ 1

N

ð
dt f 1− fð Þexp − 2

ð
dtM′ fð Þ

� �s
(1:77)

where f ≡ fd tð Þ, we remind, is a time-dependent function. We can change the vari-
able of integration from t to f by using eq. (1.61). With an initial condition w 0ð Þ, the
width w becomes a function only of f

w=w 0ð Þ+ M fð Þj jffiffiffiffi
N

p
ðf
f0

dϕ
ϕ 1−ϕð Þ
M3 ϕð Þ

������
������
1
2

(1:78)

f − fssð Þ f0 − fssð Þ>0 (1:79)

The condition in eq. (1.79) ensures convergence of the integral in f in eq. (1.78). It
also follows from the fact that f tð Þ never crosses its steady-state level (Figure 1.8).

To test the quasi-deterministic criterion, we now calculate the relative fluctua-
tion of f given by ratio w= f 1− fð Þ½ � and require it to be much less than 1. We start
from the case of the steady state. The problem here is that the integral in eq. (1.78)
diverges when the upper limit of the integral f is set to fss. Hence, we need to calcu-
late it as a limit f ! fss. We consider f to be close to fss, then expand M fð Þ≈
M′ fssð Þ f − fssð Þ, and then evaluate the limit f ! fss. Then, two large terms cancel,
and we obtain

wss = fss 1− fssð Þ×

1ffiffiffiffiffiffiffiffiffi
2Nμ

p , μ � s

1ffiffiffiffiffiffiffi
Nμ

p , μ � s

8>>><
>>>:

(1:80)

Please note that the steady-state allele frequency, fss, is different in the two limits in
eq. (1.80). We find that the deterministic criterion, wss � fss 1− fssð Þ, is satisfied
when N � 1=μ, which corresponds to selection regime or selection-mutation regime
in Table 1.2 In selectively-neutral regime, μ � s, as one can demonstrate from
eq. (1.78), the deterministic criterion is the same, even when the population is far
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from steady state. The condition on N is more complex if we are far from steady
state and selection is important, μ � s. In this case, evaluation of eq. (1.78) at
f � fss produces promised eq. (1.65).

1.6 Stochastic dynamics in the selectively neutral limit

As we found out when considering the steady state, selection can be neglected alto-
gether at the smallest population sizes, N � 1=s. In this section, we consider the
nonequilibrium dynamics in this neutral regime. We will consider all the thought
experiments from Section 1.3: growth competition in a diverse population, fixation
of a beneficial allele, transition from a uniform population to the steady state, diver-
gence of populations, and time correlations.

1.6.1 Dynamics of diverse populations and gene fixation

In a diverse population, mutations are negligible due to their small rate, less than
once a generation: μN � μ=s � 1. Therefore, genetic drift is the only factor causing
the change in mutant frequency with time (Figure 1.1A). The mutant frequency fol-
lows a diffusion trajectory until the population becomes completely uniform in one
or anther allele, which happens with an equal probability (almost equal if you take
into account corrections from selection, which we neglect in Sec. 1.6). Computer
simulation in Figure 1.9B illustrates a representative random process. The average
generation number that takes for a population to lose diversity (for one allele to be-
come fixed) is equal, as we show below, to the population size, N (Kimura, 1955a;
Wright, 1931). This fixation time fluctuates between individual population, and the
distribution function has a simple exponential form. The random process can be
understood also from the probability density evolution. The latter, initially located
near f =0.5, gradually expands until it occupies the interval 0 1½ � and then decays,
leaving only two peaks at the uniform states, f =0 and 1 (Figure 1.9A).

Thus, in a random time on the order of N, the population arrives at a uniform
state. This fact has a serious impact on ancestral relationship of genomes. Let us
classify all individuals in a population into two equal classes and paint each class
by a distinct color. Next, we divide each class into two equal subclasses and label
them by two distinct shades. After that, we split each subclass into two sub-
subclasses and paint them by two hues, and so on and so forth. If we repeat this for
a sufficient number of times ~ logN, all the individuals in the population will even-
tually have different color tags.

Consider now evolution of each class and all subclasses. According to the above
result, in a time not exceeding a few multiples of the class size, one of the two sub-
classes within each group will vanish. Likewise, the surviving subclass contains two
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smaller sub subclasses, one of which also becomes extinct in even shorter time.
Hence, in a time interval comparable with population size N, all the individuals
will have the same color. In other words, all the individuals will comprise de-
scendants of a single individual. We conclude that any two individuals in a popu-
lation descend from a single common ancestor, and that this ancestor lived ~N
generations ago, times a random factor on the order 1. Rigorous analysis by the
technique of the branching process supports this estimate (Kingman, 1982a,b;
Rodrigo and Felsenstein, 1999; Rodrigo et al., 1999).
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Figure 1.9: Decay of genetic diversity in the drift (selectively neutral) regime. A growth competition
experiment for the initial condition f0 =0.5 and Ns � 1 is shown. (A) Change in the probability
density ρ f , tð Þ in time according to analytic theory, eqs. (1.81) and (1.82). Moments of time are
shown. (B) Two representative dependences f tð Þ obtained by stochastic simulation of the discrete
Wright–Fisher process described in Section 1.2.1 (Rouzine et al., 2001). Parameters are shown.
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Another very important in practice experiment is fixation of an allele. Suppose a
mutation event adds an new allele into an otherwise uniform population at t =0. The
allele faces two possible outcomes. After a while, it will either become extinct due to
random drift, and this is the most probable outcome, or if it is really lucky, it can
spread to the entire population. We need to answer the following questions: (i) What
is fixation probability? (ii) Assuming that the allele becomes fixed, what is the aver-
age fixation time? As we show later, the fixation probability is on the order of 1=N
(Kimura, 1962), and the time to fixation is on the order of the population size.

We can also ask more general questions. What is the probability that the prog-
eny (lineage) of an allele will ever exceed a given size of n copies? What is the aver-
age growth time to that copy number? As it turns out, the results are analogous to
the results for full fixation, except that the subpopulation size n substitutes for the
total population size N. These estimates allow us to understand, in a qualitative
way, many important results on stochastic dynamics.

1.6.1.1 Main results
In small populations such that

N � min
1
s
,
1
μ

� �

natural selection is a small correction and can be neglected (Section 1.4). In most of
the interval, mutation enters the equations only through the boundary condition
and are negligible in the state, which is already genetically diverse. The listed ex-
periments display two, widely different timescales: a shorter scale associated with
random drift, t ~N, and a much longer time, related to mutation rate, t ~ 1=μ.

Let us consider an evolving, very diverse population and focus on the shorter
timescale, t ~N. As discussed earlier, f tð Þ follows diffusion trajectory until it hits
the rock bottom, a monomorphic state (Figure 1.9B). We can understand this pro-
cess in terms of probability dynamics, as follows. The probability density, g f , tð Þ,
given by eq. (1.4) spreads out from the point f = f0 until it will have occupied the
whole interval of f (Figure 1.9A) (Kimura, 1955a; Wolfs et al., 1990):

g f , tð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N
2πf0 1− f0ð Þt

s
exp −

N f − f0ð Þ2
2f0 1− f0ð Þt

" #
, 1 � t � N (1:81)

Then it slowly decays in the entire interval, redistributing probability integral to-
wards the two uniform states, f =0, 1:

g f , tð Þ= 6f0 1− f0ð Þe− t
N, t � N (1:82)

The relation between the displacement in f and time t following from eq. (1.81),
f − f0 ~

ffiffiffiffiffi
tN

p
, is similar to that in a standard diffusion process. At t � N, the net
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probability of having a diverse population
Ð
df g f , tð Þ gradually decreases with time

in an exponential fashion, eq. (1.82). Using the gas analogy, the probability of poly-
morphism is being absorbed by the two monomorphic states f =0 and 1, just as gas
can form liquid on cold walls.

If initial population is weakly diverse, f0 � 1, dynamics of the spread of density
g fð Þ deviates from classical diffusion due to the boundary proximity effect:

g f , tð Þ=Af0
2N
t2

e− 2Nf
t ,

ffiffiffiffiffiffiffi
Nf0

p
� t � N (1:83)

where A~ 1 is a constant.
For the allele fixation problem, the probability G fð Þ that the lineage of a single

new allele will reach level f and the average growth time tG fð Þ are given by

G fð Þ ~ 1
Nf

, tG fð Þ ~Nf (1:84)

respectively. In particular, we get G 1=Nð Þ ~ 1, since it is given that a single allele
was present in the beginning. The gene fixation probability from eq. (1.84) is
G 1ð Þ ~ 1=N, with the corresponding time tG fð Þ ~N (Kimura, 1962).

1.6.1.2 Derivation
At small population sizes N � 1=s considered here, we have use the master equa-
tion in the form of eqs. (1.4)–(1.7). Without selection term, eq. (1.7) becomes

∂g
∂t

= 1
2N

∂2

∂f 2
f 1− fð Þg½ � (1:85)

Equation (1.85) should be solved with boundary conditions from eqs. (1.5) and (1.6)
and specific initial values for p0 0ð Þ, p1 0ð Þ, and g f , 0ð Þ.

We start from a polymorphic population with a known mutant frequency
f0 ≠ 0 or 1, which implies

p0 0ð Þ= p1 0ð Þ=0, g f , 0ð Þ= δ f − f0ð Þ (1:86)

Mutations that enter the problem via boundary conditions, eq. (1.6), become impor-
tant at much longer timescales than those involved in random drift considered
here. Hence, we can set μ=0 in eq. (1.6), which means that g f , tð Þ either does not
diverge at the boundaries of f at all or diverges more slowly than 1=f and 1= 1− fð Þ.
Equation (1.85) can be solved for g f , tð Þ in the general form of a sum over eigenfunc-
tions hi fð Þ (Kimura, 1955a):

g f , tð Þ=
X∞
i=0

aihi fð Þe− λit
N (1:87)
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− 2λihi fð Þ= ∂2

∂f 2
f 1− fð Þhi fð Þ½ � (1:88)

ai =
ð1
0

df f 1− fð Þhi fð Þg f , 0ð Þ (1:89)

The eigenvalues λi corresponding to nondiverging solutions of eq. (1.88) and the ei-
genfunctions hi fð Þ are given by

λi = 1+ i i+ 3ð Þ
2

, i=0, 1, 2, . . .

hi fð Þ= 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2i+ 3

i+ 1ð Þ i+ 2ð Þ

s
C

3
2ð Þ

i 1− 2fð Þ (1:90)

where C 3=2ð Þ
i xð Þ are Gegenbauer polynomials (Abramowitz and Stegun, 1964). The

set of functions hi½ � is orthonormal, as given by
Ð 1
0 df f 1− fð Þhi fð Þhj fð Þ= δij. Function

g f , 0ð Þ will be derived below in asymptotic limits in time, for two cases: strong and
weak initial polymorphism.

1.6.1.3 Decay of strong polymorphism
Consider a strongly diverse population, that is, f0 ~ 1− f0 ~ 1 in eq. (1.86). In the be-
ginning of the evolution process, g f , tð Þ has a narrow peak at f = f0, so that the fac-
tor f 1− fð Þ in eq. (1.85) can be then approximated by constant f0 1− f0ð Þ. Instead of
using the general solution in eq. (1.87) which looks very formidable, we treat the
simplified equation. Since the initial density distribution, g f , tð Þ, is assumed far
from either boundary and very narrow initially, there no characteristic scale in f to
compare with. Therefore, it is expected to assume an auto-model form as it evolves
in time. Substituting ansatz g f , tð Þ=B tð Þ− 1F B tð Þ f − f0ð Þ½ � into eq. (1.85), we solve it
for F uð Þ and B tð Þ by the same method that we employed for an automodel solution
in Section 1.5.4 and arrive at eq. (1.81).

This automodel solution works only in a limited time interval, t � N, while the
probability density peak still remains narrow, as given by B tð Þ � 1. In the opposite
limit, t � N, we make use of the eigenvector series in eq. (1.87), where all terms but
the first, i=0, can be dropped. Finding λ0 and h0 fð Þ from eq. (1.90) and a0 from
eqs. (1.86) and (1.89), we arrive at eq. (1.82).

1.6.1.4 Gene fixation and weak polymorphism
Consider now a slightly diverse population, f ð0Þ= f0 � 1. The value of f0 = 1=N corre-
sponds to a single individual genome in a uniform population. We aim to evaluate the
small probability, G fð Þ, of having the lineage of this individual to reach the number of
Nf copies before it becomes extinct, and, should this rare event occur, the average time
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of growth, tG fð Þ. A lot of effort has been dedicated to this important problem in various
models and scenarios (Barton and Rouhani, 1991; Fisher, 1930; Good et al., 2012;
Haldane, 1924; Kimura, 1962; Kimura and Ohta, 1969; Neher et al., 2010). The use of
the backward-in-time Kolmogorov equation solves this problem by considering the tar-
get frequency, f , fixed and the initial frequency, f 0ð Þ, as a state variable dependent
on time in the past (Kimura, 1962). To be consistent with the rest of this chapter, we
will use a semiquantitative derivation based on the forward Kolmogorov equation,
which yields the same result within a numerical factor on the order one. Even in the
“backward” method, since we deal with range f ~ 1=N corresponding to a few allele
copies in a population, the numerical factor in G depends on finer details of a popula-
tion model, which vary between organisms.

The decay of weak polymorphism can easily be obtained from eq. (1.85). At t
such that 1 � t � N, the density g f , tð Þ is not small at f � 1. Unlike for strongly
diverse population, only 1− f in eq. (1.85) can be approximated by a constant, 1,
while the factor f has to be kept as is. As a result, seeking solution of eq. (1.85) in
an automodel form, we arrive at g f , tð Þ in eq. (1.83).

The total probability of polymorphism in generation t can be obtained right away
from eq. (1.83)

ppol tð Þ=
ð∞
0

df g f , tð Þ= A
t
, t > 1 (1:91)

As eq. (1.91) confirms, the new lineage will likely disappear after a few generations
due to random genetic drift. The factor A is obtained from the equality ppol 1ð Þ ~ 1,
which yields A~ 1. This value is an estimate within a numeric factor ~1, since the
continuous-in-f approach we use breaks down at t ~ 1 and f ~ 1=N. In the same way,
probability G f , tð Þ that the new lineage will exceed frequency f at time t is given by

G f , tð Þ=
ð∞
f

df ′g f ′, t
� �

~
1
t
e− 2Nf

t (1:92)

The probability G f , tð Þ reaches maximum at t = 2Nf generations. The height and po-
sition of this maximum represent the promised estimates for the probability of hav-
ing the new lineage grow to frequency f , Gðf ), and for the average time of that
growth, tG fð Þ, respectively, eq. (1.84).

1.6.2 Transition from a uniform population to the steady state

Our next thought experiment is the accumulation of alleles starting from a genetically
uniform state. Which allele we chose does not really matter, since selection is ne-
glected anyway, so we choose the starting population comprised of pure wild type
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(f0 =0Þ. As the system evolves, mutants are generated, most of them go extinct, but
eventually one of them will become fixed, as described in the previous subsection,
and population will lose wild type and become uniformly mutant. Then, new wild-
type alleles will be injected again, then go extinct, them again until the population
will eventually go back to the purely mutant state. In the long run, the population
will be going back and forth between the two uniform states (Figure 1.10B). In the
long run, after a few switches, statistical properties will no longer depend on the
starting allele, so that the probabilities of the two uniform states will equalize at 1=2.
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Figure 1.10: Time dependence of the mutant frequency f tð Þ in the drift regime, Ns � 1, on a long
timescale starting from a uniform state, f 0ð Þ=0. (A) Change in the probability density in time, eqs.
(1.85) to (1.87). Peaks at f =0 and 1 correspond to the uniform states; their probabilities are
shown by the relative peak heights (arbitrary units). Different moments of time are shown by
curves of different color. (B) A representative Monte-Carlo process. The double-pointed arrows
show the average time between peaks and peak width. Parameters are shown (based on Rouzine
et al. (2001)).
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The corresponding dynamics of the probability density, ρ f , tð Þ, is depicted schemat-
ically in Figure 1.10A. The initial state is a narrow peak at f =0. As time goes on, the
probability density spreads into the interval between 0 and 100%, and a new small
peak at a fully mutant population appears, f = 1, which represents rare events of an
early fixation. Then, the one peak decays and the other grows concurrently until
becoming nearly equal; thus the steady state is established asymptotically in the
long run (Figure 1.4).

This is, again, similar to a gas system with the liquid condensed on the left wall,
which gradually evaporates, diffuses as a gas to the other wall, and condenses again
on the other wall. The system is close to equilibrium when both walls have about the
same amount of condensate with residual gas remaining between the walls.

In addition to the formal analysis, it is useful for intuition to look at the transi-
tion to the steady state from the angle of a typical random process. Such process
can be generated by a Monte-Carlo algorithm based on the discrete-time, discrete-n
model in Section 1.2. If ρ f , tð Þ is compared to the local gas density, a dependence of
the mutant frequency on time can be compared to a gas particle trajectory. A simu-
lation of such a stochastic process, together with the relevant timescales, is shown
in Figure 1.10B (Rouzine and Coffin, 1999a). The process resembles a corrupted tele-
graph signal flipping back and force between 0 and 1. The numerous random spikes
on the bottom and on the top are due to new lineages created by mutations that
became extinct.

Monte-Carlo simulation and probability density dynamics demonstrate the ex-
istence of two different timescales . The average waiting time for a switch from
pure wild type to pure mutant or back is on the order inverse mutation rate 1=μ. In
agreement with this fact, on this timescale, the probability density equilibrates
between mutant and wild type (Figure 1.4A). The time spent on a successful
sweep from 0 to 1 is much shorter, on the order of population size N. This corre-
sponds to the time of the formation of the tail of probability density. Analytically,
the two timescales can be obtained formally from the evolution equations (1.4) to
(1.6), or estimated in the language of allele fixation. The two results are in agree-
ment with each other and аre confirmed by simulation (Figure 1.10B). The total
probability to find a diverse state is, at any time, small and on the order of μN, as
is also the case in the steady state (Section 1.4). Importantly, this probability is
established after approximately N generations, which timescale is associated with
genetic drift. This happens much faster than the full equilibration, where muta-
tion sets the timescale.

1.6.2.1 Main results
Transition from a genetically uniform state with f =0 to a steady state has two phases
(Figure 1.10A). In the first, fast phase, which takes place on timescale t ~ N, the density
g f , tð Þ grows a thin tail in the interval 0< f < 1. The probability of uniform state, p0,
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remains close to 1 at all times. This means that mutant alleles are found only in rare
populations:

g f , tð Þ= 2μN
f

e− 2Nf
t , t � N (1:93)

In the second slow phase, t ~ 1=μ, p0 tð Þ and p1 tð Þ decay and increase, respectively,
both converging to 1=2:

g f , tð Þ= μN
f 1− fð Þ 1+ 1− 2fð Þe− 2μt� �

, t � N (1:94)

p0, 1 =
1± e− 2μt

2
+O μNð Þ (1:95)

The expectation value and variance of f change in time as given by

�f tð Þ≈ p1 =
1
2

1− e− 2μt� �
(1:96)

Vf tð Þ= 1
4

1− e− 4μt� �
(1:97)

They both saturate, as expected, at their respective steady-state values we evalu-
ated in Section 1.4, eq. (1.55). Interestingly, the time dependence of �f tð Þ in eq. (1.96)
is exactly the same as in the deterministic limit under selective neutrality, eq.
(1.62), despite of enormous fluctuations between realizations. Interestingly, the
mean intrapatient distance with its variance, T, VT obtained from eq. (1.94), do not
depend on time on this timescale and are given by their steady-state values, eq.
(1.56). This is because genetic distance is drift–driven and reaches its steady level
much earlier than the occurrence of full equilibration at t ~N.

These two timescales can be understood intuitively based on the gene fixation
results, eq. (1.84), as follows. Mutant genomes are generated with a small probability,
μN, per generation. The lucky ones are fixed with a small probability, G 1ð Þ ~ 1=N.
Therefore, a typical time interval between the switches from full wild type to uniform
mutant and back to wild type on the order of ~ N= μNð Þ= 1=μ. The short transition
time over which the population sweeps from one end to another can be estimated
from the fixation time, tG 1ð Þ ~N, eq. (1.84) (Figure 1.10A).

1.6.2.2 Derivation of the transition from a uniform population to the steady state
Let the population consist initially of one allele only, for example, f =0. We will solve
eq. (1.85) with the initial conditions

p0 0ð Þ= 1, p1 0ð Þ=0, g f , tð Þ≡0 (1:98)
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In a short time span, g f , tð Þ remains mostly at f � 1, and we assume p0 ≈ 1, p1 ≈0
which will be confirmed below. Hence, diffusion equation (1.85), with boundary
conditions (1.6), takes a simplified form

∂g
∂t

= 1
2N

∂2

∂f 2
fgð Þ, fg½ �f!0 = 2μN (1:99)

At the initial conditions given by eqs. (1.98), eq. (1.99) has the automodel solution
in eq. (1.93). One can obtain this solution by using ansatz g f , tð Þ=A fð ÞF B tð Þf½ � and
separating it into two equations, as described in Section 1.5.4.

At t ~N, the probability density spreads onto the entire interval of f . To confirm
our assumption about a small change in p0, the decrease in probability p0 can be
estimated by integrating the first part of eq. (1.5) from t ~ 1 to t ~N, which yields
1− p0 ~ μN logN � 1. This confirms our initial assumption that p0 remains close to 1
in this interval of time. From eq. (1.93), average frequency f and genetic distance T
defined in eqs. (1.36) and (1.38) are

�f tð Þ≈μt, T tð Þ≈ 2μt

At much longer times, t � N, the probabilities p0 and p1 are slowly decaying and in-
creasing, respectively, with the speed depending on the small mutation rate. Since the
characteristic diffusion time is short, t ~N, the density g f , tð Þ is in quasi-equilibrium at
all times quickly adjusting to the relatively slow variation in p0 tð Þ and p1ðt). Putting
∂g=∂t =0 in eq. (1.99), we obtain the general solution

f 1− fð Þg f , tð Þ=C1 tð Þ+C2 tð Þf
Finding functions C1 tð Þ and C2 tð Þ from boundary conditions, eqs. (1.5) and (1.6), and
using q f , tð Þ= C2 tð Þ obtained from eq. (1.2) with s= μ=0, ρ= g, we arrive at the de-
sired solution for g f , tð Þ and p0, 1 tð Þ, eqs. (1.94) and (1.95).

1.6.3 Population divergence and the time correlator

We now consider the divergence of two populations separated from a parental
population in steady state at time t =0 and the time correlation function of mutant
frequency the memory in random fluctuation in the steady state (Section 1.3
above). As it turns out, they both are characterized by the long timescale of neu-
tral dynamics, 1=μ, that we have obtained in Section 1.6.2. In the genetic diver-
gence experiment, the genetic distance, D tð Þ, increases in time from 0 to the
maximum corresponding to the limit when the two populations become statisti-
cally independent.
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1.6.3.1 Main results
After separation at t =0 from the same population, the relative genetic distance be-
tween populations, eq. (1.44), increases as

�D tð Þ= 1
2

1− e− 4μt� �
(1:100)

The time correlation function for a steady state of a single population, eq. 1.45, de-
cays with time exponentially, as given by

K tð Þ= e− 2μt (1:101)

The three characteristic timescales, the half-time of divergence in �D tð Þ, the half-
time of the correlation function decay in K tð Þ, and the time of equilibration c (previ-
ous section) are all on the same order, the inverse mutation rate, 1=μ. The reason
for this similarity is that all three timescales are equal to the time it takes for an
allele to emerge and cross stochastic threshold to escape extinction.

1.6.3.2 Derivation
We start from a stochastic, steady-state population of size N that happens to have, at
some moment, which we denote t =0, allele frequency f = f0 . Then, the population is
split in two populations, which are assumed to grow quickly to the parental size, N. In
Section 1.3, we expressed the average relative distance between the two populations,
�D, in terms of the conditional variance Vf ðtjf0) for the given initial value of f0, as given
by eq. (1.44). We can simply the procedure of finding �D using the fact that, in the drift
regime, the system is usually genetically uniform, either fully mutant or fully wild
type, except for relatively short sweeps between the two sides (Figure 1.10B).
Therefore, we can neglect with the polymorphic part of the distribution g fð Þ and ap-
proximate the distribution density ρss f0ð Þ with a sum of two delta–functions

ρss f0ð Þ≈ 1
2
δ f0ð Þ+ δ 1− f0ð Þ½ � (1:102)

Hence, we need to know the value of variance, Vf ðtjf0Þ, at only, f0 =0 and 1. The
expression for Vf ðtj0Þ has already been derived in eq. (1.97). From the symmetry be-
tween the two alleles in the drift regime, we have Vf ðtj0Þ=Vf ðtj1Þ. We arrive at the
desired result, eq. (1.100), by combining eqs. (1.44) with (1.102).

Note that this approximation cannot be used to calculate the average polymor-
phism �T, since it would yield 0. Polymorphism is on the order of μN, eq. (1.56). For
calculating �f and Vf , however, this approximation works.

Function K tð Þ that quantitates the timescale of fluctuation of f in a single steady-
state population can be expressed in terms of the conditional expectation value
�f ðtjf0Þ, eq. (1.46). As in the case of the interpopulation distance, the value of f0 which
mostly defines the integral in eq. (1.46) is f0 = 1. We have �f ðtj1Þ= 1−�f ðtj0Þ from allelic
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symmetry in drift regime, and �f ðtj0Þ was already found in eq. (1.96). Substituting
Vss
f = 1=4 from eq. (1.55), we obtain the desired equation (1.101).

1.7 Dynamics in the selection-drift regime

In this section, we study nonequilibrium behavior in the most theoretically interest-
ing and biologically important interval of population sizes equally relevant for vi-
ruses, bacteria, plants, and animals, 1=s � N � 1=μ termed “selection-drift regime”
in Table 1.2. As we will discover later, the relative roles played by natural selection
and stochastic diffusion in the dynamics of population depend strongly on the initial
genetic composition of the population, f0. Specifically, the dynamics of growth com-
petition, f0 ≈0.5, is almost deterministic, so that this experiment need not be dis-
cussed again, as it has already been studied in Section 1.5. In the accumulation
experiment, f0 =0, however, the overall dynamics is very stochastic, except for the
average values of the mutant frequency and the intrapopulation distance, which are,
remarkably, the same as in the corresponding deterministic conditions. In the ad-
aptation experiment, f0 = 1, the half-time of adaptation is much longer than in the
selection regime and strongly fluctuates between realizations. In this last two ex-
periments, stochastic effects are as important as natural selection.

1.7.1 Accumulation of deleterious mutations

Just we discussed for the drift regime in Section 1.6, accumulation of mutants corre-
sponds to the extension of the probability density ρ f , tð Þ initially localized as a delta-
function peak at f =0, which corresponds to a uniformly wild-type population, onto
the interval between 0 and 1. In contrast to the drift regime, the end steady–state in
selection-drift regime is very asymmetric with respect to f = 1=2 (Figure 1.5). Mutation
and drift opposed by negative selection form a thin exponential tail in ρ f , tð Þ at small
f indicating that diverse populations are rare and only weakly diverse (Figure 1.5). As
a result, the probability of wild-type state p0 remains close to 1 and the time to the
steady state is the selection scale, 1=s, as in the selection regime (Section 1.5) which
is much faster than in the drift regime where it is very long, 1=μ.

Figure 1.11 shows a representative Monte-Carlo simulation based on the Wright
Fisher model (Section 1.2). A single deleterious allele is generated and starts a new
lineage. The growth of lineage initially occurs under the condition that random
drift overwhelms selection. The maximum frequency that can be reached by this
clone at equilibrium is limited by negative selection and is on the order of 1= Nsð Þ,
stochastic threshold, which corresponds to the clone size of 1=s copies (Figure 1.11
and 1.5). This frequency is much higher than f =μ=s in deterministic limit
(Section 1.4), and is determined by the balance between selection and drift.
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Above this stochastic threshold, selection is the dominant factor. The further growth
of a deleterious allele lineage cannot occur due to negative selection, and it soon
starts to shrink and becomes extinct. Soon, a new allele emerges due to mutation and
repeats the exercise. As a result, in the long term, we observe an irregular series of
random sparse peaks, most are very small, with rare peaks reaching to the tail of
the probability density, 1= Nsð Þ (Figure 1.11). The half-life of a mutant subpopula-
tion, which determines the large peak width, is 1=s generations as well.

The average time interval between the tall peaks, ~1= μNsð Þ, is much longer
than their width, ~1=s, which is why they are so far apart (Figure 1.11). The longer
time is the time that it takes for a new allele to emerge and succeed in reaching the
stochastic threshold 1=s. The shorter time is the time of growth and extinction of
the lucky clone before that it disappears into oblivion. We can obtain all useful esti-
mates two ways, either from the evolution equation (1.99), or from the more intui-
tive gene fixation approach, eq. (1.84). The probability of population being diverse
can be estimated either as the area under the exponential in Figure 1.5 or as the
ratio of the two times, and both methods yield ~μN. For comparison, an accumula-
tion experiment in the selection regime (μN = 20) is simulated in Figure 1.12.
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Figure 1.11: Simulated accumulation of deleterious alleles in the selection-drift regime. A random
Monte-Carlo run is shown for 1=s � N � 1=μ and the initial condition: f0 =0. The double-pointed
arrows show the average time between peaks and peak width. Thin horizontal line shows the
stochastic threshold. The solid smooth line shows the deterministic dependence for comparison.
Parameters are shown (based on Rouzine et al. (2001)).
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1.7.1.1 Main results
As mentioned already, in the accumulation experiment probability density ρ fð Þ
sprouts a weak exponential into the interval 0< f < 1 (Figure 1.5). The relevant scales
can be estimated from the allele fixation argument, eq. (1.84). We consider a stochastic
process f tð Þ which starts from a purely wild-type population and ends up in a steady
state (Figure 1.11). A single mutant individual appears and usually gets extinct; some-
times, it grows by random diffusion in f , to a stochastic threshold (see Section 1.4.3):

f ~ 1= Nsð Þ
Further growth is efficiently stopped by negative selection. The timescale that it
takes to grow to that level can be estimated from eq. (1.84):

tG 1= Nsð Þð Þ~ 1=s
Mutation injects new alleles into the population at rate μN per generation. The proba-
bility for a new lineage to grow to the stochastic threshold is G fð Þ~ s � 1, eq. (1.84).
Hence, the average time interval between such events (high peaks in Figure 1.11) is
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representative run of Monte-Carlo simulation of the model described in Section 1.2. Horizontal
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eq. (1.58). Parameters are shown (based on Rouzine et al. (2001)).
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1= μNð Þ½ � 1=sð Þ= 1= μNsð Þ. Because 1=s is a lifespan of such lineage, A steady-state popu-
lation can be found in a polymorphic state with probability ~ μN (cf. Section 1.4).

The expressions for the time dependence of mean frequency f and variance Vf

derived below from the evolution equation have a form

�f tj0ð Þ= μ
s

1− e− st� �
(1:103)

Vf ðtj0Þ= μ
2Ns2

1− e− st� �2
(1:104)

In the long term, the two parameters transition to their steady-state values, eq. (1.59).
The average intrapatient distance and its variance are given by

�T ≈ 2�f and VT ≈ 4Vf

Remarkably, the expectation value of the frequency �f tj0ð Þ in eq. (1.103) exactly co-
incides with its respective deterministic value, eq. (1.70), although its fluctuations
are very large and strongly exceed the average

Vf ðtj0Þ=�f tj0ð Þ2 = 1= 2Nμð Þ � 1

This interesting result is a formal consequence of the linear function M fð Þ in
Fokker–Planck equation (1.22), in the limits f � 1 or 1− f � 1. In our population
model (Section 1.2), the linearity condition is met asymptotically in a weakly diverse
state, including the case of deleterious allele accumulation. In a diploid population
with a strong allelic dominance (not considered in our book), mean change per gen-
eration M fð Þ does not need to be linear even at very small f but rather quadratic
(Kimura, 1962; Kimura and Ohta, 1969). Then, the average f at small N is not equal
to its deterministic value.

1.7.1.2 Derivation
To simplify derivations, we will focus on an interval in N, a bit more narrow than the
selection-drift interval (Table 1.2). Specifically, we assume 1=sð Þ log s=μð Þ � N �
1= μ log 1=sð Þ½ �. The aim of this additional restriction from below and above is that
we can, at the same time, use the more convenient formalism, eqs. (1.5) to (1.7),
and also neglect the second probability density peak at f = 1 (Figure 1.5). The cross-
over from the drift regime to the selection-drift regime occurs in the interval,
1=s � N � 1=sð Þ log s=μð Þ, which is relatively narrow, in the logarithmic sense,
and is not considered further (Section 1.4).

As usual, we split the probability density into two parts, corresponding to pure
wild-type and diverse populations

ptot f , tð Þ= p0 tð Þδ fð Þ+ g f , tð Þ (1:105)
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where g f , 0ð Þ≡0 and p0 tð Þ= 1 define the initial conditions. In the long term, density
g f , tð Þ is supposed to cross over with time to the steady-state form in eq. (1.50):

g f ,∞ð Þ= 2μN=fð Þexp − 2Nsfð Þ
The dynamic equation and the boundary condition describing this process are

∂g
∂t

= 1
2N

∂2

∂f 2
fgð Þ+ s

∂

∂f
fgð Þ (1:106)

fgð Þf!0 = 2μN (1:107)

These expressions follow from eqs. (1.6) and (1.7) assuming f � 1 and p0 ≈ 1.
In the beginning, t � 1=s, allelic frequency is far below the stochastic threshold,

f � 1= Nsð Þ, so that the second (selection) term in the right-hand side of eq. (1.106) is
negligible. The dominant terms are mutation introduced via the boundary condition
and random genetic drift described by the diffusion term. Hence, in the beginning,
g f , tð Þ for the drift regime applies, found from eq. (1.85). On longer times when stochas-
tic threshold is becoming near, we have to take into account negative selection against
the new lineage. In principle, one could solve eq. (1.106) in the entire time interval using
an eigenfunction series based on Laguerre polynomials (Abramowitz and Stegun, 1964).
Lower momenta of ρ fð Þ, however, can be obtained without a handbook of special func-
tions. After multiplying both sides of eq. (1.106), first by f and second by f 2 and integrat-
ing over f , we get a system of two linear ordinary differential equations for �f and f 2:

d�f
dt

= μ− s�f (1:108)

df 2

dt
=

�f
N

− sf 2 (1:109)

To obtain eqs. (1.108) and (1.109), we integrated the right-hand side of eq. (1.106) by
parts and used the boundary condition in eq. (1.107). Solving first eq. (1.108) and
then eq. (1.109) and using the initial conditions f 0ð Þ=Vf 0ð Þ=0, we obtain the de-
sired expectation value �f tð Þ and variance Vf 0ð Þ≈ f 2 given by eqs. (1.103) and (1.104).

1.7.2 Populations divergence and correlations in time

We consider here the divergence of two populations isolated at t =0 and the correlation
function of fluctuations of the mutant frequency in time. Both timescales, as we show
below, are 1=s, the inverse selection coefficient. These problems are related, because
they both show for how long, on average, the system remembers its previous random
fluctuation of genetic composition. The answer obtained below is that this memory is
very short; it lasts only an average lifespan of a mutant lineage before it disappears.
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1.7.2.1 Main results
If a population is split into two populations at t =0, their interpopulation distance
averaged over the initial mutant frequency f0 is given by

�D tð Þ≈Vf tj0ð Þ= μ
Ns2

1− e− st� �2
(1:110)

Correlation function of f tð Þ in a single steady-state population has a form

K tð Þ= e− st (1:111)

Note that the timescale, 1=s, is much smaller than the value in the drift regime, 1=μ
(Section 1.6). The transition between these two values occurs in a relatively narrow
(from the logarithmic point of view) interval, 1=s � N � 1=sð Þlog s=μð Þ, which we
have already met in Section 1.4.3 when discussing the steady state (Figure 1.6). The
rapid crossover is controlled by the dynamics of the probability of a purely mutant
population, p1 (the small peak in Figure 1.5), that rapidly becomes exponentially
small when N exceeds 1=sð Þ log s=μð Þ.

1.7.2.2 Derivation
The average relative distance �D tð Þ between two split populations increases with di-
vergence time as given by eq. (1.44), in which Vf ðtj0Þ) is defined by eqs. (1.36) and
(1.37) with A fð Þ= f and the initial condition ρ f , 0ð Þ= δ f − f0ð Þ. As follows from the
density function in eq. (1.105) and the following equation for g(s),, the uniformly
wild-type state, f0 =0, contributes most to the integral in f0, eq. (1.44). Using this fact
and eq. (1.104), we arrive at eq. (1.110).

In contrast, for time correlation function K tð Þ, as follows from eq. (1.46), only the
polymorphic initial states, f0 ≠0 and f0 ≠ 1 are important. Promised eq. (1.111) is ob-
tained by substituting gss from eqs. (1.50) at Ns � 1; f ðt; f0Þ= f0 expð− stÞfollowing
from eq. (1.62) at 1 � f0 � fss, and variance Vss

f from eqs. (1.59) into (1.46).

1.7.3 Adaptation process

Now we consider the most exciting “thought experiment,” which created all the di-
versity of life on the Earth under changing conditions: the adaptation process. We
will stick to our basic model with constant conditions and a single locus. Now the
initial population is uniformly mutant and acquires beneficial alleles. We will en-
counter the same timescales and the scale of f as in the case of accumulation of
deleterious alleles considered in Section 1.7.2. As in the latter case, natural selection
and random drift dominate larger and smaller minority clones, respectively. The
crucial difference is that, in this case, natural selection is positive and hence it
speeds up rather than slows down the growth of a new lineage.
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Again, in order to be fixed, a new allele has to survive initial genetic random
drift and reach the frequency of stochastic threshold

f ~ 1=Ns

at which point natural selection and random drift have the same order of magni-
tude effect (Sections 1.4 and 1.7.1). The small probability of that event, G( f ), is on
the order of selection coefficient, s (eq. (1.84)). More precisely, for the virus model
with Poisson distribution of progeny number per individual, the probability of fixa-
tion is (Haldane, 1927)

G= 2s

However, if an allele can make it above the threshold, f > 1= Nsð Þ, natural selection
will take care of the rest and fix an allele with a probability close to 1, over the
deterministic timescales, t ~ 1=s (Section 1.5). Therefore, the weak link in the adap-
tation process is f tð Þ growing above the stochastic threshold while drifting ran-
domly. After that, the new lineage will reach the number close to 100% and
establish a new steady state, as we have described in Section 1.7.1. Stochastic dynam-
ics below the critical size is the same as for accumulation experiment. Therefore, the
average waiting time for adaptation to start is calculated as the product of the fixa-
tion probability, ~s, and of the rate at which mutation makes new alleles each gener-
ation, μN. The result is the waiting time ~1= μNsð Þ. This result gives the same
timescale as a typical time between two high peaks in the mutant accumulation re-
gime (Figure 1.11). Examples of simulated adaptation are shown in Figure 1.13.
Figure 1.14 shows dynamics of the probability density, including the diverse popula-
tions (Figure 1.14a) and the uniform states (Figure 1.14b).

1.7.3.1 Main results
We start from the uniform mutant state, f 0ð Þ= f0 = 1, and monitor how population
transitions are close to a pure wild type, f ~ 1= Nsð Þ � 1. Probability density ρ f , tð Þ
changes in two phases that occur over two timescales, t ~ 1=s and t ~ 1=μNs (cf. the
case of mutant accumulation, Section 1.7.2). During the first phase, t ~ 1=s, rare pop-
ulations become diverse with Nf ~ 1=s copies of minority alleles. Accordingly, the
probability density sprouts a thin tail of ρ f , tð Þ at f < 1 (Figure 1.14a). The second,
longer phase, t ~ 1=μNs, is associated with waiting for a sweep to the wild-type side
(Figure 1.13). This timescale manifests in the decay of the probability of the purely
mutant state, p1 tð Þ(Figure 1.14b). In the sweep phase, the probability density compo-
nents change in time

p1 tð Þ= e− 2μNst, p0 tð Þ≈ 1− p1 tð Þ, t � 1
s

(1:112)

1.7 Dynamics in the selection-drift regime 57

 EBSCOhost - printed on 2/10/2023 3:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



g f , tð Þ= 2μN
f 1− fð Þ p1 tð Þ+ 1− 2p1 tð Þ½ �e− 2Nsf� �

(1:113)

where we made a small relative error, O μNð Þ. These results are plotted in Figure 1.14.
The expectation value and variance of parameters f ,T are

�f tð Þ= p1 tð Þ
Vf tð Þ= p1 tð Þ 1− p1 tð Þ½ �
�T tð Þ= 4μNp1 tð Þ, t � 1

s

(1:114)
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Figure 1.13: Monte-Carlo simulation of adaptation process (fixation of the better-fit allele) in the
selection-drift regime, 1=s � N � 1=μ. Adaptation in the deterministic limit, N=∞, is shown by the
dashed orange curves for comparison. Parameters are shown. (A) Beginning of adaptation. Two
randomMonte-Carlo runs are shown for each of two population sizes (shown). (B) Full adaptation at a
smaller population size, N= 1000. Three random runs are shown. Solid lines show the analytic results
for the average and the standard deviation of the mutant frequency, eq. (1.114). Double arrows show
two timescales: average waiting time for a switch and its length (based on Rouzine et al. (2001)).
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with p1 tð Þ taken from eq. (1.112).
Equation (1.114) has a finite accuracy as well. Strictly speaking, the three ob-

servables do not become zero in the long term, as it follows from eq. (1.114), but
cross over to small steady-state values, eq. (1.59) (Figure 1.5). Also, eq. (1.114) has
an apparent discrepancy: although the initial population is uniformly mutant with
�T 0ð Þ=0, eq. (1.114) predicts a finite distance at small times t ~ 1=s. The reason for the
difference is that the average distance �T tð Þ increases from zero and reaches a plateau
relatively early at t ~ 1=s. Equation (1.104) is derived for longer timescales, as shown.

We emphasize that the average waiting-for-adaptation time, 1=μNs, is much
longer than in the deterministic regime, 1=sð Þ log s=μð Þ (Figure 1.13). Therefore, sto-
chastically small populations have slower adaptation.
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Figure 1.14: Adaptation (fixation of an advantageous variant) in the selection-drift regime,
1=s � N � 1=μ . (A) Dynamics of the scaled probability density of mutant frequency g f , tð Þ for
diverse populations, 0< f < 1, at three times t(shown). (B) Probabilities of uniform states, wild-type
p0 and mutant p1, as a function of time, eqs. (1.112) and (1.113) (based on Rouzine et al. (2001)).
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1.7.3.2 Derivation
We will start with master equations (1.4)–(1.7) and the initial conditions that de-
scribe this case:

g f , 0ð Þ≡0, p0 0ð Þ=0, 0ð Þ= 1

We will focus on the second longer phase of evolution with the timescale, ~1= μNsð Þ,
where the probability of purely mutant state p1 tð Þ decreases from 1 to nearly 0 and,
respectively, the probability of purely wild type p0 tð Þ increases from 0 to almost 1.
We will use the fact that the equilibration of a polymorphic state, f ≠0, f ≠ 1, does
not depend on the slow mutation process and take into account natural selection and
genetic drift only. Therefore, probability density of a polymorphic state, g f , tð Þ, rap-
idly adjusts to the slow changes in p0 tð Þ, p1 tð Þ. Setting the condition of quasi-
equilibrium ∂g=∂t ≈0 in eq. (1.7) and solving the resulting equation, we get the gen-
eral solution in the form

q f , tð Þ≡ q tð Þ

g f , tð Þ= 1
f 1− fð Þ −

q tð Þ
s

+A tð Þe− 2Nsf
� �

(1:115)

where coefficients q tð Þ and A tð Þ change in time very slowly compared to selection time-
scale 1=s. Finally, substituting eq. (1.115) into the boundary conditions in eqs. (1.5) and
(1.6) and finding from resulting equations functions q tð Þ, A tð Þ, p0 tð Þ, and p0 tð Þ, we
obtain desired equations (1.112) and (1.113).
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Chapter 2
Multi-locus theory of asexual populations

2.1 Clonal interference and genetic background effects strongly
modify evolutionary dynamics

In Chapter 1, we have analyzed a simplest model of evolution assuming an isolated
genomic site. Real-life populations have a large number of genetically diverse sites
inherited together. Even RNA viruses with their short genomes, such as HIV and in-
fluenza, have hundreds of variable loci. The genetic difference between two ran-
domly sampled humans is ⁓0.1%, which corresponds to several millions of variable
sites. The multi-site context requires another, more general theory. Earlier work in
population genetics offered overwhelming theoretical arguments (Felsenstein, 1974;
Fisher, 1930; Hill and Robertson, 1966; Maynard Smith, 1971; Muller, 1932) and ample
experimental evidence (Rice, 2002) that, in the absence of recombination intrinsic for
sexual reproduction, genetic compositions at different loci interfere with each other
strongly, so that the one-locus model discussed in Chapter 1 is not directly applicable.
Quantitative results obtained in the one-site framework, although useful in some spe-
cial cases, cannot be directly applied to multi-site evolution due to various interference
effects. These effects result from the pervading factor of co-inheritance (linkage), the
fact that genetic information is passed from a parent to the offspring altogether, rather
than spreading it across the population. (Such a spread is possible, to an extent, in
bacteria.)

“Clonal interference,” also known as Fisher–Muller effect (Fisher, 1930; Muller,
1932), is one of the most important consequences of linkage. Clonal interference
(CI) requires three evolutionary factors to be present: (i) natural selection, (ii) the
absence of frequent recombination, and (iii) limited population size. Essentially, it
can be viewed as competitive exclusion. Individuals with different beneficial alleles
grow in number and compete with each other for space in a population (Figure 2.1).
The winner is the lineage with the largest fitness gain added over beneficial alleles
offset by the presence of deleterious alleles. The winning lineage eliminates the
other lineages from the population.

However, natural selection is not enough for clonal interference to take place.
If populations are extremely large, exponentially large in the number of loci, it
disappears (Rouzine et al., 2003). In this limit, selection exists without clonal in-
terference: the frequent formation of countless nested clones with new mutations
within already expanding clones effectively unlinks the site. Indeed, in infinite
population, mutation at multiple sites can rapidly generate any possible se-
quence. Thus, instead of competing alleles, they are produced almost instan-
taneously at all sites as a system of deeply nested clones, and each clone is large.

https://doi.org/10.1515/9783110615456-002

 EBSCOhost - printed on 2/10/2023 3:21 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://doi.org/10.1515/9783110615456-002


Therefore, the interference is a cocktail of three essential ingredients: natural se-
lection, weak or no recombination, and a limited population size.

A task of great practical importance is predicting the average rate of evolution of
a population as a function of system parameters. This can be measured by the aver-
age substitution rate and the adaptation rate, which both can be either positive or
negative. Accumulation of beneficial alleles leads to the increase in fitness, that is,
adaptation. The adaptation rate determines the speed of average fitness increase.
Due to the effect of CI, the adaptation rate in a multi-locus system is slowed down
compared to a system of independent loci described by a one-site model in Chapter 1
(Maynard Smith, 1971; Rouzine et al., 2003). In contrast to the independent-site case,
the adaptation rate does not increase proportionally with the number of loci, L, popu-
lation size, N, or the mutation rate per site, μ. In the extreme scenario without nested
clones considered in Section 2.2, beneficial alleles at different sites have to spread
through the population one by one. The speed of progression of the “traffic jam”
does not depend on the queue length. Nested clone formation partly offsets the ad-
verse effect of linkage and slightly accelerates the traffic jam, similar to cars that
could sometimes drive over each other.

The technical difficulty with incorporating nested clones into the model is that
the number of possible sequences increases exponentially with the locus number,

Figure 2.1: Clonal interference is opposed by recombination. Bottom: Beneficial mutations at two
different genomic sites in the original variant ab generate better-fit haplotypes, Ab and aB. These
new lineages interfere with each other’s growth. The fitter clone is taking over the population.
Eventually, a second mutation generates fittest haplotype AB. Top: In the presence of frequent
recombination of genomes (sexual reproduction), the two clones are quickly combined to form the
fittest haplotype AB (based on Imhof and Schlotterer (2001)).
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2L for binary sequences and 4L if all bases are possible at each locus. Historically,
three approximations described in Sections 2.2, 2.3–2.7, and 2.9, respectively, ap-
proached this difficulty in a different way incorporating an increasing degree of bio-
logical realism.

2.2 Two-clone approximation of clonal interference

Gerrish and Lenski (1998), who proposed the term “clonal interference,” considered
a model with a positive selection coefficient, which varies among sites according to
an exponential distribution. The model considered two competing clones created
by beneficial mutation from the same original strain at two randomly chosen sites
and neglected mutation at other sites. The mutation with the larger s spreads to the
population, and the one with the smaller s becomes extinct. This pioneering ap-
proach successfully explained the observed dependence of the adaptation rate of
bacteria E. coli on the population size, N, and the mutation rate per genome, Ub

(Arjan et al., 1999; Gerrish and Lenski, 1998). However, because the two-clone ap-
proximation neglects multiple competing clones and nested mutations, it does
not apply at very large N. Adding a third site somewhat extends the interval of the
applicability of this approach (Schiffels et al., 2011). In Sections 2.3–2.7, we will
consider interference events at a large number of sites with a fixed value of s. A unify-
ing approach with variable s and multiple loci will be described in Section 2.8.

The argument of Gerrish and Lenski (1998) unravels as follows. A population is
assumed to be genetically uniform until a beneficial mutation appears at time
t =0, f 0ð Þ= 1− 1=N. The beneficial mutant, being better fit, slowly displaces the an-
cestral variant until taking over the entire population, assuming the absence of any
interfering mutation. The mean number of interfering alleles is the expected num-
ber of new alleles emerging during this process that can cross stochastic threshold
(Chapter 1) and has a larger fitness than the first beneficial allele. The total number
of new alleles is

NUb

ð∞
0

f tð Þdt = Ub

s
N log N (2:1)

where

f tð Þ= f 0ð Þ
f 0ð Þ+ 1− f 0ð Þ½ �est

is the frequency of the original variant. The last equation represents a standard
one-locus result, eq. (1.62), with fss =0.

We assume that the effects of beneficial mutations at different sites are sampled
for an exponential distribution, as is frequently observed in experiment (Acevedo
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et al., 2014; Imhof and Schlotterer, 2001; Kassen and Bataillon, 2006; Stern et al.,
2014). The probability density for s is assumed to be 1=s0ð Þe− s=s0 , where s0 is the
average mutational effects that may be determined from the empirical data .

The probability that a beneficial allele has a selection coefficient, s′, larger than
s and, at the same time, can cross stochastic threshold (Section 1.7.3):

ð∞
s

2s′
� �

1=s0ð Þe− s′=s0ds′= 2 s+ s0ð Þe− s=s0

where 2s is the probability of an allele to survive random genetic drift for the virus
model (Haldane, 1927) (Chapter I).

Because the loss of the emerging lineage during genetic drift occurs during the
first generations, while its loss due to the selective competition is more likely to
occur later, when the new clone occupies already a large part of population
(Section 1.7), we can make the assumption that these two processes are indepen-
dent. Therefore, in eq. (2.1), the expected number of mutations that are better than
a beneficial allele with selective coefficient s and survive genetic drift is

λ sð Þ= 2NUb logN
s+ s0
s

e− s
s0 ≈ 2NUb logNð Þe− s

s0 , s � s0 (2:2)

This is the mean number of mutations interfering with the new emerging clone.
Later, we consider the case of large s � s0, whose interval, as we show below, is
relevant for large population sizes.

A beneficial allele will be fixed if it survives genetic drift and is not prevented to
grow by a better allele in the time interval required for fixation of the first allele. The
probability that a beneficial allele with fitness s will be established is the product

Pfix sð Þ= 2se− λ sð Þ (2:3)

where the exponential implies independent random events that obey Poisson’s sta-
tistics. At NUb � 1, eq. (2.3) experiences a sharp double-exponential decrease at
small s (see eq. (2.2). The last inequality sets the low boundary of the regime of
clonal interference. Taking into account the probability density for selective advan-
tage s is 1=s0ð Þe− s=s0 , the probability that a random beneficial allele will become
fixed is

hPfixi= 1
s0

� � ð∞
0

2s e− λ sð Þ− s
s0ds (2:4)

With the fixation probability given by eq. (2.4), the average substitution rate of ben-
eficial alleles is

V =NUb Pfixh i (2:5)
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We note that, in the regime of clonal interference, NUb � 1, the integrand in eq. (2.4)
has a sharp maximum at s equal to

smax = s0 log 2NUb logNð Þ (2:6)

Therefore, the integral in eq. (2.4) can be calculated analytically by expanding the
log of the integrand near the maximum in the Taylor series and making it into a
Gaussian. For the average accumulation rate of beneficial mutations V, we obtain

V = s0

ffiffiffiffiffi
2π

p

e
log 2NUb logNð Þ

logN
(2:7)

This answer has to be compared with the result of the independent-site model,
V1site = 2s0NUb, where 2s is the probability of fixation (Chapter 1). In contrast, the
speed given by eq. (2.7) is not increasing linearly either with population size or mu-
tation rate. In fact, the evolution rate increases very slowly (logarithmically) with
N and Ub. At very large population sizes, evolution rate saturates at the maximum
value s0

ffiffiffiffi
2π

p
e , far below the independent-locus value, V{1site}. The reason for this be-

havior is that there are more and more interfering mutations in a larger population,
so that hPfixi is decreasing as V= NUbð Þ, nearly compensating the increase in the
number of mutational events. In the next sections, Sections 2.3–2.8, we will show
that the existence of a system of nested clones with multiple mutations relaxes the
saturation of the substitution rate and allows it to keep climbing until finally reach-
ing the one-site limit.

2.3 Traveling-wave method for multiple loci and clones

An early precursor of this approach classified all genomes according to their fitness
(Kessler et al., 1997; Tsimring et al., 1996) and applied deterministic dynamics to
the fitness classes. They showed the existence of a distribution traveling in an imag-
inary genetic space, with speed determined by 1=N cutoff of the distribution.

A more realistic version of this approach is described in the following sections.
It allows to take into account fitness effects of mutations, to make a correct descrip-
tion of stochastic effects, and to accurately derive the speed of the evolution
(Rouzine et al., 2008; Rouzine et al., 2003). This method is able to consider an arbi-
trary number of clones at any level of nesting, as well as account for the effect of
genetic background and the other linkage effects.

The number of sequence variants in a population is exponentially large if the
number of sites L is large. To account for the immense number of possible sequences,
we need to classify them, first, into large groups with the same fitness. We put binary
sequences into discrete bins, each bin with a fixed number of less-fit alleles, de-
noted k, somehow distributed among L sites (Figure 2.2a). The value of k determines
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sequence fitness, − sk, with respect to the fittest sequence with k=0. Each mutation
event at a site is assumed to have a fixed fitness effect s or − s, depending on the
allele existing at the site: a better-fit allele can have a deleterious mutation to the
less-fit allele, fitness effect − s, with probability μ � 1 per generation, and a less-fit
allele can be converted to a better-fit allele, with same probability.

The main approximation confirmed later on, is that, at sufficiently large popu-
lation sizes (how large, we will find out in the end), almost any nonempty fitness
class is large enough in size to be treated deterministically, that is, without taking
into account random genetic drift and replacing mutation with its average cumula-
tive effect (Figure 2.2b). The only exception to this approximation will be the fittest
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Figure 2.2: Asexual adaptation of multiple linked loci represents a traveling wave in fitness whose
speed is determined by stochastic dynamics of the high-fitness tip. (A) Sequences (green lines) are
classified into discrete fitness classes according to number of deleterious alleles k (red circles).
The evolutionary factors acting on each class size are beneficial and deleterious mutation with
respective rates Ub and Ud per genome, random genetic drift and natural selection. (B) The semi-
deterministic approach (Rouzine et al., 2008; Rouzine et al., 2003). The dependence of the
logarithm of genome frequency fk on k is determined from a deterministic equation (2.8). The
solution is a solitary wave with a cutoff at low mutation numbers, k = k0, and a moving maximum,
kav tð Þ. (C) To determine the speed V = −dkav=dt, stochastic dynamics of the fittest class fk0 tð Þ is
considered (here V >0). A new class is likely to become extinct when its frequency is below
stochastic threshold ⁓1=NS (based on Rouzine and Weinberger (2013).
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class with the smallest k = k0, which is small and must be treated stochastically, as
described in the next sections. The next-to-fittest class, k= k0 + 1, is assumed to be
sufficiently big to be approximately deterministic (Rouzine et al., 2008; Rouzine
et al., 2003). This approach breaks down the very difficult problem into several rela-
tively simple steps, which we will follow through in Sections 2.3.1 to 2.3.5:
(i) Write a deterministic balance equation that controls dynamics of all fitness

classes with the exception of the best-fit class.
(ii) Solve the equation to obtain a traveling-wave solution with an undetermined

speed, which has the meaning of the mean substitution rate.
(iii) Demonstrate that the high-fitness end of the distribution ends abruptly at a

location depending on the wave speed.
(iv) Express the edge-to-center difference in fitness density in terms of the wave

speed.
(v) Find the center value from the normalization condition.
(vi) Identify the deterministic cutoff point of the wave at the high fitness end with

the stochastic edge.
(vii) Estimate the average frequency of the edge class from a one-locus-style sto-

chastic consideration.
(viii) Match this result to the deterministic result and thus find the wave speed.

2.3.1 Deterministic equation for fitness classes

We start from the equation of deterministic dynamics (1.61), which was derived in
Chapter 1 for two alleles. Now, instead of two alleles, we have many fitness classes
comprised of diverse sequences, and we are going to apply this equation to each
fitness class., The frequency of class with k less-fit alleles in a population, fk tð Þ, is
described by a finite-difference equation of a form

fk t + 1ð Þ− fk tð Þ =Ud fk − 1 tð Þ+Ub fk + 1 tð Þ− Ud +Ub + s k − kavð Þf gfk tð Þ (2:8)

where k changes from 0 to L and f− 1 tð Þ≡ fL+ 1 tð Þ≡0. By definition,
P

k fk tð Þ= 1 any
time t. Here

Ud =μ L− kavð Þ, Ub =μkav

are the deleterious and beneficial mutation rates per genome per generation, re-
spectively, and

kav tð Þ=
XL
k¼0

kfk tð Þ

is the average allele number, a term which makes eq. (2.8) nonlinear. Here we neglect
multiple mutations per genome and assume s � 1. Taking into account multiple mu-
tations leads to the same equation (Rouzine et al., 2008; Rouzine et al., 2003).
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Since treating a discrete equation is difficult, we will approximate eq. (2.8) with
a differential equation in partial derivatives. Because the mutation rates and selec-
tion coefficient are all small, by analogy with the one-locus model in Chapter 1, we
assume that fk tð Þ evolves slowly, so that we can approximate fk t + 1ð Þ− fk tð Þ≈ ∂fk

∂t .
A continuous approximation for fk tð Þ as a function of k is less trivial. In fact, the
dependence of fk tð Þ on k can be quite sharp far from the center of the distribution.
However, its logarithm changes slowly with k, as given by

fk + 1=fk ≈ exp ∂ log f k, tð Þ=∂k½ �
After introducing rescaled time dτ= Ub +Udð Þdt and rescaled selection coefficient

σ = s= Ub +Udð Þ
Equation (2.8) can be reduced to a form continuous in both k and τ:

∂ log fk tð Þ
∂τ

= 1− αð Þe−
∂logfk tð Þ

∂k + αe
∂logfk tð Þ

∂k −σ k − kavð Þ− 1 (2:9)

where

α≡Ub= Ub +Udð Þ= k=L

is the fraction of deleterious alleles in a genome. The nonlinear differential equation
in partial derivatives, eq. (2.9), is the deterministic master equation for the fitness
distribution dynamics.

Note that, strictly speaking, both mutation rates, Ud and Ub (and hence, α and σÞ
depend on k. The dependence is, however, relatively weak in the limit of a large ge-
nome with many loci, L � 1. We consider the regime when the traveling wave is far
away from the best-fit sequence, k =0, k − kavj j � kav. Therefore, both mutation rates
change little within the wave interval of k, and we are allowed to replace them with
their values at average k= kav.

Equation (2.9) has traveling wave solutions of the form

log f k, tð Þ≡ ϕ xð Þ, x= k− kav τð Þ (2:10)

After substituting eq. (2.10) into eq. (2.9), one obtains (Rouzine et al., 2003)

σx= 1− αð Þe−ϕ′ xð Þ + αeϕ′ xð Þ + vϕ′ xð Þ− 1 (2:11)

Here ϕ′ xð Þ≡dϕ xð Þ=dx, and new notation v is the scaled speed of the wave movement

v= Ub +Udð Þ− 1dkav tð Þ=dt

This value can be either negative (adaptation) or positive (accumulation of deleteri-
ous mutations) and is measured with respect to the genomic mutation rate.

68 Chapter 2 Multi-locus theory of asexual populations

 EBSCOhost - printed on 2/10/2023 3:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



For the given value of v, eq. (2.11) and boundary condition ϕ 0ð Þ fully define
the form of the fitness distribution, exp ϕ xð Þ½ �. Although it is not possible to solve
eq. (2.11) analytically, we can use it to find the wave velocity, v, in the general
form. We will show that the form of the wave is approximately Gaussian near the
center, but deviates from that dependence far from the center, and has a cutoff at
high fitness (x0 <0). The high-fitness tail length (“lead”) will be related, in the
general form, to the evolution rate, v, and the model parameters.

2.3.2 Width and speed of the traveling wave

Our next step is to derive the maximum value, ϕ 0ð Þ. The main approximation is
that the logarithm of ϕ xð Þ is a slow function of x. This is true if the characteristic
width of ϕ xð Þ in x is much larger than unit. The condition, as we shall see, is always
met when population has many evolving sites, which is the case of present analy-
sis. Because the fitness distribution itself, exp ϕ xð Þ,½ �, is not approximated with a
slow function of x, it does not need to be broad. In the process of adaptation, the
wave can be either broad or narrow, depending on a population size. However, the
width affects normalization properties.

For a narrow wave, Var k½ �=Var x½ � � 1, the distribution is mostly localized near
its center, k ≈ kav. From the normalization condition

PL
k =0 fk tð Þ= 1, we get

ϕ 0ð Þ≈0 (2:12)

The only exception is the rare case where kav is almost half-integer, so that the neigh-
bor classes, kav ± 1=2 have similar sizes.

When the wave is broad, Var k½ � � 1, we can approximate the normalization
sum,

PL
k =0 fk tð Þ, with an integral,

Ð
eϕ xð Þdx. The range of xj j that contributes most to

the integral is close to the maximum of distribution, where the derivative of ϕ xð Þ is
still small, ϕ′ xð Þ�� ��� 1. Therefore, we can expand the exponentials in the right-
hand side of eq. (2.11) linearly in ϕ′ xð Þ. After integration in x, we find that

ϕ′ xð Þ= −
σx

1− 2α− v
, xj j � 1− 2α− vð Þ=σ (2:13)

Integrating this expression in x and taking into account normalization conditionÐ
dx exp ϕ xð Þ½ �= 1, for ϕ xð Þ near its maximum at x=0 we obtain

ϕ xð Þ= log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ
2π 1− 2α− vð Þ

r
−

σx2

2 1− 2α− vð Þ (2:14)
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In particular, the expression of interest for ϕ 0ð Þ is

ϕ 0ð Þ= log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ
2π 1− 2α− vð Þ

r
if ϕ 0ð Þ<0

0

8<
: (2:15)

Equation (2.14) implies that genome distribution near k = kav can be approximated
with a Gaussian, with the variance

Var k½ �= 1− 2α− v
σ

(2:16)

Due to the condition that the variance in eq. (2.16) is positive, the scaled wave
speed, v, has to be less than 1− 2α. In other words, if we are in a regime where dele-
terious mutations accumulate, which corresponds to v>0, the rate of their accumu-
lation cannot exceed this value. In addition, the Gaussian form is valid in the wave
center only if its width is large, Var k½ � � 1. The actual width of the wave, given the
population size and other parameters, will be obtained in the following sections.

Equation (2.16), known as the Fisher fundamental theorem (FFT), connects the
width of the genome distribution in fitness to the substitution rate. We note that
this FFT is quite general and can be obtained directly from discrete equation (2.8)
even if Var k½ � � 1 (Rouzine et al., 2008). Qualitatively, the theorem states that a
broader wave has larger fitness differences and hence, a stronger effect of positive
selection on the substitution rate.

2.3.3 High-fitness edge

In Sections 2.3.1 and 2.3.2, we have derived a deterministic wave equation that de-
scribes how the fitness distribution moves in fitness space. However, the set of solu-
tion is continuous, with a continuous interval of the wave speed, and the wave
speed remains undefined. As it turns out, the evolution speed of the entire popula-
tion is determined by a very small class of best-fit individuals. Behavior of these in-
dividuals, due to their small number is stochastic and subject to random mutation
and random drift.

Importantly, the deterministic wave profile ends at a point in the high-fitness
tail, as shown in Figure 2.3. The biological justification for the existence of the cut-
off is the stochastic factor, which is strong on the wave edge. Highly fit genomes at
the edge are either gradually gained in the regime of adaptation or gradually lost in
the Muller’s ratchet regime when deleterious mutations build up. Thus, the cutoff
must coincide with the stochastic edge of the wave, when it gradually retreats or
advances (Figure 2.3). The rate of the gain or loss of the fittest class, which depends
on the mutation rate and the population size, is the limiting factor of the progress
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(or regress) of the wave. This logic is extremely different from the logic of indepen-
dent site models, often used in population genetics. In the next section, the deter-
ministic description of the edge will be matched to stochastic dynamics of the
fittest.

We now determine the edge location with respect to the wave center by consider-
ing the deterministic bulk of the population. Although we cannot solve eq. (2.11) for
ϕ xð Þ, explicitly we can extract the important information about the location of the
stochastic edge, as follows. We will re-interpret eq. (2.11), instead of equation for
ϕ′ xð Þ, as an equation for function x ϕ′

� �
. If function x ϕ′

� �
has an absolute minimum,

it implies that ϕ xð Þ must have an end point at the stochastic edge (Figure 2.4).
Note that the value of function x ϕ′

� �
, eq. (2.11), is positive infinite for both nega-

tive and positive infinite ϕ′. To locate minima, we calculate the derivative and obtain

0=σ
dx ϕ′
� �
dϕ′

= − 1− αð Þe−ϕ′ xð Þ + αeϕ′ xð Þ + v (2:17)

Solving this equation for eϕ
′ xð Þ, we obtain the only positive solution

eϕ
′ x0ð Þ ≡ u= 1

2α
− v+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 + 4α 1− αð Þ

ph i
(2:18)

Allele number, kk0

Lo
g 

ge
no

m
e 

fre
qu

en
cy

 lo
g 

f k

kav

Stochastic
edge

Figure 2.3: Schematic illustration of the solitary wave profile in the log scale, logfk tð Þ, Figure 2.2B.
There are no genomes with fewer than k0 deleterious alleles present in the population at this
moment. The speed of the wave V = −dkav=dt is determined by how fast alleles are gained or lost
at the stochastic edge, k = k0 (based on Rouzine et al. (2008)).
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The corresponding value of x ϕ′
� �

≡ x0 follows from eq. (2.11)

x0 = −
1
σ

1− 2αu− v log u− vð Þ (2:19)

where new notation u is defined in eq. (2.18), and we have made use of the identity
1− αð Þ=u= αu+ v that follows from eq. (2.17). Any mutation class corresponding to
x< x0 is empty; there are no genomes beyond the edge.

Now we can verify the validity of our main approximation that the lead |x_0| is
long and hence the log probability density of fitness is smooth in x. At a modest
speed, vj j ⁓ 1, the condition x0j j � 1, implies that σ � 1, or s � Ub +Ud. For most
organisms, genomic mutation rate Ub +Ud is in the range 0.01−0.1. Thus, we con-
sider small selection strength, as everywhere in the book.

log fk

k0

x0

kav

x = k–kav

k

x(Φ')

Φ'(x0) = log u Φ'

Φ'(0) =0

Figure 2.4: The minimum of the function x ϕ′ð Þdetermines the location of the stochastic edge,
k0 (based on Rouzine et al. (2008)).
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2.3.4 Difference between the wave edge and its center

Our aim is to find a general formula that links the wave speed, v, to total mutation
rate Ub +Ud, population size N, selective coefficient s, and fraction of less-fit sites α.
To achieve this goal, we will consider the difference ϕ 0ð Þ−ϕ x0ð Þ. Specifically, we
will evaluate the difference in two alternative ways, from deterministic bulk and sto-
chastic edge, and from equating them, obtain the speed.

We can trivially write

ϕ 0ð Þ−ϕ x0ð Þ=
ð0
x0

ϕ′ xð Þdx (2:20)

Then, we calculate the integral by making substitution x= x ϕ′
� �

, integrating by
parts, and using the fact that ϕ′ x0ð Þ= log u and ϕ′ 0ð Þ=0. The former condition is
the definition of u, while the second follows from eq. (2.11) (Figure 2.4). Equation
(2.20) then takes the form

ϕ 0ð Þ−ϕ x0ð Þ= − x0 log u−
ð0

logu

x ϕ′
� �

dϕ′ (2:21)

The integral in eq. (2.21) can be calculated by integrating both sides of eq. (2.11) in
dϕ′. After substituting x0 from eq. (2.19), we get

ϕ 0ð Þ−ϕ x0ð Þ= 1
σ

1− 2α−
v
2

log2 euð Þ+ 1
� �

− 2αu log u
n o

(2:22)

where e is Euler’s constant, log e= 1.
We have now calculated difference ϕ 0ð Þ−ϕ x0ð Þ from the deterministic equa-

tion. In addition, we have found ϕ xð Þ directly at 0, as given by eq. (2.15). The quan-
tity ϕ x0ð Þ represents the mean logarithm of best-fit class frequency at the stochastic
edge. Since its dynamics is dominated by random mutation and stochastic drift, we
cannot evaluate ϕ x0ð Þ from the deterministic consideration alone. Below we use the
one-locus stochastic theory from Chapter 1 to estimate the expected log frequency
of the edge class.

2.3.5 Stochastic treatment of the fittest class

In Section 2.3.3, we introduced a deterministic equation, which has a continuous
set of solutions in the form of solitary waves with various speeds, that is, average
substitution rates. Now, to choose the correct solution, we have to analyze stochas-
tic dynamics of the fittest class, k = k0. The idea is to treat it within the framework of
the one-locus two-variant model analyzed in Chapter 1 as a beneficial minority allele
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evolving in the presence of natural selection, asymmetric mutation and random ge-
netic drift, while the rest of population is considered a less-fit majority allele with the
fitness equal to the average population fitness (Rouzine et al., 2003). In Figure 2.5,
we compare dynamics of fitness classes predicted by such semi-deterministic ap-
proach realized numerically to the full stochastic simulation. In agreement with our
analytic prediction, either type of simulation produces a traveling wave which moves
to higher or to lower fitness (lower or high deleterious allele number k) depending on
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Figure 2.5: Two numerically obtained examples of the evolution of a population in a long (A and B)
and a relatively short (C and D) genome. Parameter values are shown in (B) and (D), respectively.
(A and C) The frequency of sequences with k mutant loci at different times (shown on the curves).
Fat arrows show the direction of evolution. Ragged curves obtained by pseudorandom simulation
correspond to either Muller’s ratchet (red arrow), initial value k 0ð Þ= 1 or to adaptation (green
arrow), initial k 0ð Þ= 70. The smooth curves below (blue for ratchet, brown for adaptation) are
obtained by another type of simulation using a deterministic approximation for the bulk and
stochastic treatment for the fittest class. (B and D) The corresponding time dependence for the
average and the standard deviation of k (wave width) for the two methods of simulation. Dashed
lines show the steady-state value of kav (based on Rouzine et al. (2003)).
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model parameters: population size N, selection coefficient s, total locus number L,
and genomic mutation rate μL=Ud +Ub. The difference between two simulation
methods is that, in the full simulation, the wave is ragged, but the speed of the wave
is quite similar. Our task is to calculate the evolution rate analytically.

Analysis of the fittest class, fk0 tð Þ, is based on the simple generalization of diffu-
sion equation (1.1), accounting for asymmetry of mutation rates. A simplified treat-
ment ensure good accuracy, as follows.

We remind the reader the important property of the Fokker–Planck equation
we obtained in Chapter 1: selection dominates over random drift when the minority
allele count, in our case Nfk0 tð Þ, is higher than the stochastic threshold, 1= Sj j; in
this case, beneficial allele is established in the population. Below that threshold,
random drift rules, and the minority will probably be lost. In our case, S is the effec-
tive selection coefficient of the fittest class in this case. If fk0 tð Þ is much larger than
1= N Sj jð Þ, but much smaller than 1, we can use deterministic equation (1.61), which,
in our notation, has the form

∂ fk0
∂t

=M tð Þ+ Sfk0 tð Þ,

M tð Þ=Uαfk0 + 1 tð Þ
S= s kav − k0ð Þ− Ub +Udð Þ (2:23)

In the selection coefficient S of the best-fit class, the first positive term is due to a
better-than-average fitness, and the second negative term is due to mutations caus-
ing decay of the class. M tð Þ has the meaning of the effective mutation rate in the
two-allele model.

As we will find out later, the sign of S is determined by the sign of the speed v,
which is positive in the adaptation case, v<0, and negative in the case of accumula-
tion of deleterious alleles, v>0 (Muller ratchet). Indeed, it stands to reason that, in
the case of adaptation, the fittest class k0 is born from a beneficial mutation with aver-
age rate M. Then this new class is subject to diffusion and, if it is lucky, becomes es-
tablished, that is, survives random drift and grows further with probability on the
order of 1. Once again, for that to happen, its frequency in a population must reach
the stochastic threshold, 1=N Sj j. In contrast, in the ratchet regime, the best-fit class
decreases exponentially in time until it passes below that threshold and is almost cer-
tainly lost. Due to this treatment of a characteristic frequency as a sharp threshold, we
will acquire the error of a numeric prefactor ⁓1 at population size, N. The error is ac-
ceptable, because the speed of evolution, as we shall see, depends on N only logarith-
mically, and N is assumed everywhere here large.

To match the deterministic bulk to the edge class, we start by noting that the fit-
test class size depends on time in a saw-like fashion, because the mutational load k0
changes abruptly in time by unit when a new class is established/lost. In the Muller’s
ratchet regime, the class decays until lost, and the next class becomes the fittest class,
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and in the regime of adaptation, the fittest class expands until a beneficial mutation
within it give birth to a new fittest class (Figure 2.2c). To match the stochastic edge to
the bulk, we require that log fk0 tð Þ averaged over one period of the saw is equal to that
the logarithm of the deterministic solution at the edge, ϕðx0Þ (Rouzine et al., 2008)

ϕ x0ð Þ= 1
2

log
1

N Sj j + log fmax

� �
(2:24)

where fmax is the maximum frequency of best-fit class (Figure 2.2c), when the class
is about to switch to the next one. In Sections 2.4 and 2.5, we obtain the expression
for fmax and determine ϕ x0ð Þ from eq. (2.24) for adaptation, Muller ratchet, and
steady state.

2.4 Adaptation due to accumulation of beneficial mutations

Adaptation starts when there is a sudden change in environmental conditions or a
population is introduced into a new environment due to migration. Initially, the
population will be adapted in a less-than-optimal way. Gradually, beneficial muta-
tions will accumulate until the mutation–selection balance is reached (or condi-
tions change again). In our notation, adaptation corresponds to negative wave
speeds, v<0, because it moves towards smaller numbers of deleterious alleles, k.
Furthermore, we will consider here the case far from the mutation–selection bal-
ance, such that vj j � 1. In this regime, deleterious mutation is a negligible correc-
tion to selection coefficient S. Only beneficial mutation matters by creating new
alleles. In this particular case, it is more convenient to return, from the scaled veloc-
ity, v, back to the accumulation rate of beneficial alleles V >0:

V = − Ub +Udð Þv � Ub +Ud (2:25)

and to beneficial mutation rate Ub = αðUb+UdÞ instead of α. We will assume also
that s is larger than Ub, which is typically quite small, 10− 5 − 10− 1, and that
V � s=log s=Ubð Þ, which is met for sufficiently large populations. Under this con-
dition, as we will show, the lead is long and the entire multiple clone regime ap-
plies. In this regime, we will consider two subintervals of population size, which
correspond to (i) moderate adaptation rates, when s=log s=Ubð Þ � V � s and the fit-
ness distribution is narrow, and (ii) large adaptation rates, V � s, where it is broad.

In the case of a large negative v, the expressions for the log derivative of proba-
bility density at the edge, the lead, and the drop in log distribution, eqs. (2.18),
(2.19), (2.22), simplify

ϕ′ x0ð Þ= logu= log
V
Ub

(2:26)
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x0 = −
V
s

log
V
Ub

− 1
� �

(2:27)

ϕ 0ð Þ−ϕ x0ð Þ= V
2s

log2
V
eUb

+ 1
� �

(2:28)

Again, we remind that the approach assumes a continuous log distribution,
ϕ′ x0ð Þ=ϕ′′ x0ð Þ � 1, which is equivalent to a long lead, x0j j � 1. Even though the
tail is long, the half-width of the wave may be smaller or larger than 1. For large
and intermediate population sizes, from eq. (2.15), we obtain

ϕ 0ð Þ=
−
1
2
log

2πV
s

, V � s

0, s= log
V
Ub

� �
� V � s

8>><
>>: (2:29)

When populations are so small that V is smaller than s=log V=Ubð Þ, the lead becomes
short, x0j j � 1, the continuous-in-k approximation breaks down, and we pass from
the multiple-clone regime to the regime of pairwise clonal interference (Section 2.2).
In that case, the constant s approximation also will not work, and we need to intro-
duce the distributed values of s.

According to our method, we match the bulk cutoff to the average log of the fit-
test class. Above the stochastic threshold, the best-fit class frequency has dynamics
given in eq. (2.23) with

S=V log
V
Ub

, M =Ub fk0 + 1 tð Þ (2:30)

Because V >Ub, selection coefficient S is positive, which implies the exponential ex-
pansion of the fittest class. The role of beneficial mutation is to create this class, and
then add more and more clones to the class. Additional clones result in a time-
dependent pre-factor. However, the growth is mostly exponential, and the log deriva-
tive in time is mostly S. To check this approximation, from eqs. (2.26) and (2.23), we
find that the edge value fk0 tð Þ � M if V � Ub. Therefore, the mutation termM in the
log derivative of fk0 tð Þ in eq. (2.23) can be neglected, and we approximate it with S.

Above the stochastic threshold 1=NS where eq. (2.23) applies, the dynamics of
the current fittest class fk0 tð Þ represents a nearly periodic saw-shaped dependence
in log scale (Figure 2.2C). A new fittest class emerges due to a mutation event in one
of genomes of the current fittest class. If it reaches a size on the order of the sto-
chastic threshold, which happens rarely, the new class will be established. Thus,
the wave moves one notch in k. By the definition of adaptation rate V, two consecu-
tive classes emerge in time interval 1=V.
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Let us estimate the maximal frequency fmax = fk0 t = 1=Vð Þ at the moment of time
when a new established allele appears. The total number of mutational opportunities
between clicks (the number of genomes that may potentially generate a beneficial
mutation) is N multiplied by the time integral of fk0 tð Þ∝ exp Stð Þ over one saw pe-
riod, 0< t < 1=V, which can be estimated as Nfmax=S. Indeed, because of the expo-
nential increase of fk0 tð Þ in time, the integralZ 1=V

0

fk0ðtÞdt

is mostly contributed by times within interval 1=S when fk0 tð Þ is near the maximal
value fmax (Figure 2.2C, orange strip). This time interval, 1=S= 1=Vð Þ=logðV=UbÞ, is
much shorter than the saw period 1=V due to assumption V � Ub.

Next, the mean number of fittest genomes generated during a saw period is the
product of the beneficial mutation rate Ub and of the above number of mutational
opportunities. A lineage can survive genetic drift with a small probability 2S
(Haldane, 1927; Kimura, 1962) (Chapter 1), so that the mean number of alleles estab-
lished during one period is

2SUbNfmax=S= 2UbNfmax

The desired value of fmax is found from the condition that this number is equal to
unit. Indeed, by the definition, exactly one new fitness class is established per pe-
riod, so that

fmax ≈
1

2UbN
(2:31)

According to eq. (2.24), we match ϕ x0ð Þ to the average between the minimum and
the maximum value fmax under deterministic growth (Figure 2.2C). With eq. (2.31),
this yields

ϕ x0ð Þ= − log N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VUb log

V
Ub

� �s" #
(2:32)

This result, as we mentioned, is based on approximating the log of the fitness distri-
bution with a continuous function in k. The next correction to this approximation due
to the discreteness of fitness classes was obtained by Rouzine et al. (2008). They
showed that term log x0j j has to be added to the difference ϕ 0ð Þ−ϕ x0ð Þ to account for
the corrections to ϕ xð Þ near the edge caused by discreteness of k. Adding the correc-
tion term log x0j j, substituting eqs. (2.32) and eq. (2.15) into eq. (2.28), and neglecting
numerical constants multiplying N inside a large logarithm, we obtain the desired re-
lation between the evolution rate and system parameters (Rouzine et al., 2008):
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logN ≈
V
2s

log2
V
eUb

+ 1
� �

− log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s3Ub

V2 log V
Ub

	 

vuut , V � s (2:33)

Because log N � 1, the second term is relatively small. The expression in interval
V � s is quite similar

log N ≈
V
2s

log2
V
eUb

+ 1
� �

− log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s3Ub

V2 log V
Ub

	 

vuut , s

log V
Ub

	 
� V � s (2:34)

The two results differ by a factor of
ffiffiffiffiffiffiffiffi
V=s

p
in the logarithm. At large population size

N, the numeric effect of this factor is small. The correction for discreteness of k ac-
counts for a 10–15% correction in V.

To make use of eq. (2.33) or (2.34) one can calculate V iteratively at every N and
the iterations converge fast due to the logarithmic dependence on V in the right-
hand side. (Alternatively, N can be plotted as a function of V.) At very large popula-
tion sizes, iterating eq. (2.33) we obtain

V ≈
2s log N

ffiffiffiffiffiffiffiffi
sUb

p� �
log2 s=Ubð Þ log N

ffiffiffiffiffiffiffiffi
sUb

p� �� � (2:35)

This finding confirms the prediction of previous approximations (Gerrish and Lenski,
1998; Kessler et al., 1997; Tsimring et al., 1996) that adaptation rate is greatly sup-
pressed by linkage of many sites. As in the clonal interference regime (Section 2.2),
the adaptation rate, V, is not linearly proportional to the genomic mutation rate or
the population size, as it would be for independent sites. Instead, it increases with all
these parameters slowly, logarithmically (Figure 2.6). Unlike in the pairwise clonal
interference model (Section 2.2), the adaptation rate does not saturate at large N, but
keeps increasing logarithmically. This is the consequences of including nested clones
at multiple sites, which partly offset interference.

The first prediction of the evolution rate in this model was proposed by
(Rouzine et al., 2003). Although it was asymptotically accurate at large N, it had a
modest error in the prefactor at N inside a large logarithm in eq. (2.35). Subsequent
studies confirmed (and improved upon) the accuracy of that approach, including
an upgrade in (Rouzine et al., 2008) which we discussed here, as well implementa-
tion of a branching process (Brunet et al., 2008; Desai and Fisher, 2007). The results
of various approaches (Brunet et al., 2008; Desai and Fisher, 2007; Rouzine et al.,
2008; Rouzine et al., 2003) are compared with each other and with computer simu-
lation in Figure 2.6. Thus, the accuracy of the initial findings on the speed of asex-
ual adaptation (Rouzine et al., 2003) has been confirmed and improved upon in
subsequent work.
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2.5 Accumulation of deleterious mutations (Muller’s ratchet)

In Section 2.5, we have considered a case without deleterious mutations, because
we assumed that population is large, the average fitness is small, and we are far
from a steady state. In real genomes, most potential mutations are deleterious or
neutral (the latter are not considered here). Most of these deleterious mutations kill
the fitness of the strain, hence, they are quickly lost from the population and do not
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Figure 2.6: Four analytic approximations to calculate the speed of asexual adaptation are compared
to two types of stochastic simulation. The asexual adaptation rate increases logarithmically with the
population size N. (A, B) Curves: analytic adaptation rate predicted by two different versions of
traveling wave theory and their upgrades: (Rouzine et al., 2003) (blue) and upgrade (Rouzine et al.,
2008) (purple); (Desai and Fisher, 2007) (green) and upgrade (Brunet et al., 2008) (red). Symbols:
full stochastic simulation (purple circles), and semideterministic simulation in which only the fittest
class is treated stochastically (orange diamonds). Parameters: selection coefficient s=0.01,
beneficial mutation rate per genome Ub is (A) 10

− 5 and (B) 2× 10− 3, deleterious mutation is absent
(based on Brunet et al. (2008)).
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need not be considered. However, a large portion of deleterious mutations have a
sufficiently small effect sj j � Ud to accumulate in the genome to high levels offset-
ting the adaptation process.

In the extreme case when a population starts from the maximal fitness, k =0,
any mutation can only decrease fitness, so that average fitness will decrease until se-
lection and beneficial mutation will stop this process. Below we consider such a sce-
nario, where all mutations have a small negative fitness effect, s<0, sj j � Ud. We
will show that the linkage of deleterious mutations to each other results in the accu-
mulation of deleterious mutations at higher rates than it would be for independent
sites. This effect was first predicted by Muller to explain the advantage of sexual re-
production, and later termed “Muller’s ratchet” (Felsenstein, 1974; Muller, 1932).

The mechanics of the ratchet is, as follows. Again, we assume that beneficial
mutation is absent. In this case, the system described by eq. (2.8) is initially in equi-
librium termed “mutation-selection balance” given by

Udfk − 1 = Ud + s k− kavð Þf gfk
This expression describes a curve with the maximum at k = kav. Essentially, mutation
pushes the system towards large k and selection works in the opposite direction.
Now, we turn on the random drift due to finite population size. Then, the best-fit
class with smallest k will, sooner or later, be lost due to random genetic drift, and
this loss is irreversible (hence, the term “ratchet”). After that, the entire fitness distri-
bution will shift towards larger k by unit (a ratchet click). When the population is
very large, log N >Ud=s, clicks occur very rarely. Between clicks, the fitness distribu-
tion assumes the transient mutation-selection equilibrium. Therefore, the average
ratchet rate is exponentially small (Gordo and Charlesworth, 2000; Haigh, 1978;
Stephan et al., 1993). In contrast, for moderate population sizes, logN <Ud=s, ratchet
clicks are so frequent that the distribution does not have enough time to reach equi-
librium and shifts in a quasi-continuous way, except for the leading edge. At the sto-
chastic edge, the time dependence is saw-like, similar to the adaptation case in
Figure 2.2C but running in the opposite direction: decay of the fittest class, its loss,
switch to the next, and so on and so forth. Below in Section 2.6 we will show that
even a small rate of beneficial mutations can stop Muller’s ratchet (Goyal et al.,
2012; Rouzine et al., 2003). However, when the population is far from equilibrium
and very highly fit, close to the best-fit sequence, beneficial mutations are simply
too few to be important. Below, we calculate the speed of the ratchet neglecting
beneficial mutations.

In our notation, the ratchet regime corresponds to the limit α ! 0. In this case,
Ub =0 and the scaled speed v of the wave is positive, that is, the wave moves toward
more deleterious alleles, 0< v< 1. The following derivation requires that s � Ud,
which inequality ensures that the lead is long, that is, corresponds to multiple al-
leles. As we will see, the same condition implies a broad wave, Var k½ � � 1 and
hence the smooth behavior in k.
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Let us simplify the deterministic part for this case. Setting α=0 in the expres-
sion for u, eq. (2.18), we find

u= 1=v (2:36)

Using this expression, for the lead, eq. (2.19), we obtain

x0 = −
1
σ
1− v log e=vð Þ½ � (2:37)

The difference in log genome frequency, eq. (2.22), now simplifies

ϕ 0ð Þ−ϕ x0ð Þ= 1
σ

1−
v
2

log2
e
v

	 

+ 1

h in o
(2:38)

We remind that the continuous-in-k approach is based on the assumption that the
lead is long, x0j j � 1, which reduces to the conditions that σ � 1 and v is not too
close to unit (large population sizes). Thus, for the rapid Muller’s ratchet to exist,
the selection coefficient has to be much smaller than the total mutation rate.

In this case, the wave is also broad, and hence ϕ 0ð Þ is small, as given by

ϕ 0ð Þ= log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ
2π 1− vð Þ

r
(2:39)

which is eq. (2.15) at α=0.
Following the drill, we now obtain ϕ x0ð Þ based on the stochastic consideration

of the edge. Because we neglect beneficial mutation in this limit, we set M tð Þ≡0 in
the dynamic equation for the edge class, eq. (2.23). For the effective selection coeffi-
cient of the edge class, S= −Ud 1+σx0ð Þ, we obtain

S= −Udv log
e
v

	 

(2:40)

where we have made use of eq. (2.37). We have S<0 at v< 1, which implies that the
best-fit class is selected against, in this regime. After integrating eq. (2.23), the fit-
test class decays in time as

fk0 tð Þ= fk0 0ð Þe− Sj jt (2:41)

where t =0 denotes the time of the loss of the previously best-fit class with k0 − 1
alleles. Equation (2.41) applies until the copy number Nfk0 tð Þ remains higher than
the stochastic threshold 1= Sj j (Chapter 1). Below the threshold, drift becomes domi-
nant, and the k0 class is as good as lost. (We remind that the stochastic “threshold”
is smeared out, which fact creates an error on the order of 1 multiplying population
size N. The error is acceptable, because N is assumed large and it enters in the argu-
ment of a logarithm, see Sec 2.4 on the adaptation regime.)
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To couple the fittest class to the deterministic bulk, per Section 2.3.5, we need
to equate the bulk value ϕ x0ð Þ to log fk0 tð Þ averaged over the period when it is
above the threshold. Using eq. (2.24) and the equality fmax = fk0 0ð Þ based on eq.
(2.41), we obtain

ϕ x0ð Þ= 1
2

log
1

N Sj j + log fk0 0ð Þ
� �

(2:42)

By the definition of velocity v, time period tclick = 1= Udvð Þ corresponds to one click
in k. The time when the fittest class passes the threshold, tloss, can be obtained from
eq. (2.41):

1
Sj jN = fk0 0ð Þe− Sj jtloss (2:43)

After equating the time to the loss of class and the ratchet click, tclick = tloss, we find:

log fk0 0ð Þ= log
1

N Sj j +
Sj j

vUd
(2:44)

Using eqs. (2.42) and (2.40), we obtain

ϕ x0ð Þ= − log Nv
3
2Ud log

e
v

	 
h i
(2:45)

Because the accuracy of stochastic threshold 1= N Sj jð Þ is limited by a numerical coef-
ficient, we omit the numerical coefficient in the argument of the logarithm.

We have neglected stochasticity of the next-fit class, k = k0 − 1, because it is al-
ways bigger than best-fit class. The average size ratio can be estimated, as given by
fk0 − 1=fk0 = exp ϕ′ x0ð Þ� �

= u= 1=v, eq. (2.36). Therefore, in the general case when v is
not too close to 1, the next-fit class is several-fold larger than the best-fit class. The error
of this approximation is, again, a number at N, which we omit anyway in eq. (2.45).

We remind the reader that, to obtain ϕ 0ð Þ−ϕ x0ð Þ in eq. (2.38), we have used
the continuous-in-k approximation based on the assumption that the lead x0j j is
long, which is the case in large populations. There exist, however, a correction due
to discreteness, log x0j j, which has to be added to ϕ 0ð Þ−ϕ x0ð Þ (Rouzine et al., 2008).
Combining eqs. (2.38), (2.39), and (2.45) and adding the correction term, we arrive at
our final result for the ratchet rate

σ log NUdσ
3
2

	 

≈ 1−

v
2

log2
e
v
+ 1

	 
h i
− σ log

ffiffiffiffiffiffiffiffiffi
v3

1− v

r
log e=vð Þ

1− v log e=vð Þ+ 5σ=6

" #
(2:46)

The second term in eq. (2.46) is supposed to be a small (but not negligible in prac-
tice) correction to the first term in the limit σ ! 0. This transcendental equation for
the normalized ratchet rate, v= 1=Udð Þdkav=dt, relates it to the selection strength
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σ = s=Ud, population size N, and mutation rate Ud. We can evaluate eq. (2.46) in two
ways. We can either plot N as a function of v and the other model parameters (solid
lines in Figure 2.7) or we can solve it iteratively for v at each given value of N.
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Figure 2.7: Examples of the analytically predicted rescaled substitution rate at specific parameter
values compared with simulation results. (A) Normalized ratchet speed as a function of population
size N: analytic results (solid line) versus simulation (symbols) (Rouzine et al., 2003). Beneficial
mutations are absent, α =0. Purple: Results for σ = s=Ud =0.1, eq. (2.46). The dashed lines are the
large-N asymptotics [(Gordo and Charlesworth, 2000), eq. (3a) and (3b)] and small-N asymptotics
[(Lande, 1998), eq. (2c), multiplied by NUd]. Green: Results for σ = s=Ud =0.01. Parameters are
shown. (B) Normalized adaptation speed as a function of N in the presence of both analytic results
(solid line) versus simulation (symbols). Green and purple curves correspond to two different
values of the less-fit allele fraction α (shown). Parameters including full mutation rate μL, selection
coefficient s, and total locus number L are shown (based on Rouzine et al. (2003)).
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2.6 General case and mutation-selection equilibrium

In Sections 2.4 and 2.5, we assumed that a population is either high below or high
above the steady state in terms of average fitness. When a population is not very far
from steady state, both deleterious and beneficial mutations are important for the
evolutionary dynamics. In the general case, the accumulation rate v can be ex-
pressed in terms of two composite parameters, the fraction of beneficial (compensa-
tory) genomic mutations, α, and the normalized log population size [(Rouzine et al.,
2003), Appendix, eqs. (19)–(21)]. The method is the same as described in the previ-
ous sections. We have

σ log
N
N*

� �
≈ 1− 2α− v−

v
2
log2u− v log u− 2αu log u, v< 1− 2α (2:47)

N* =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πVar k½ �p

μLξ α, vð Þ (2:48)

ξ α, vð Þ ⁓

1 α⁓ vj j⁓1
v log

e
v

	 

α, 0< v< 1

α log2
vj j
α

� �
, v<0, vj j � ffiffiffi

α
p

8>>>><
>>>>:

(2:49)

Equation (2.48) an approximate estimate for prefactor N*; for more accurate expres-
sions in the case of adaptation or ratchet, see the last terms in eqs. (2.33) and (2.46),
respectively. The lead of fitness wave x0 is given by

x0 = − 1=σð Þ − 2αu− v log u+ 1− vð Þ (2:50)

Analytic predictions of evolution speed at different values of less-fit allele fraction α and
population size N are compared with results of stochastic simulation in Figure 2.7B.

Steady state. If the population size is not too large, σ log N=N*� �
< 1, the pop-

ulation eventually arrives a steady state at the value of α, where the processes
of adaptation (Section 2.4) and ratchet (Section 2.5) exactly balance each other
(Figure 2.5C and D). (A steady state exists also at larger populations, but due to
beneficial mutation, it is very low in k and is close to the one-site model equilib-
rium discussed in Section 1.4.3.) Setting v=0 in eqs. (2.47) to (2.50), we obtain the
equilibrium position of the distribution center, kav = Lα (Rouzine et al., 2003)

σ log
N
N*

� �
= 1− 2α−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α 1− αð Þ

p
log

1− α
α

, v=0 (2:51)
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where N* = α
ffiffiffiffiffiffiffiffi
sUd

p
from eq. (2.49), and the lead is

x0 = −
1
σ

� �
1− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α 1− αð Þ

ph i
(2:52)

Numerically, except at very low population sizes, these values of α predicted by eq.
2.51 are quite small, α � 1. In other words, very few beneficial mutations are suffi-
cient to stop Muller ratchet [see (Rouzine et al., 2003), Figure 2B].

This analytic result has been confirmed in (Goyal et al., 2012) who used a simi-
lar method, with the only difference in the parameter N*⁓ s inside of the large loga-
rithm [see their Appendix, eq. (13) and Figures. 4B and S1]. In an experimental and
modeling work on poliovirus evolution, Xiao et al. (2017) tested both estimates of
N* and found that the difference is numerically minor in a broad parameter range.
These last authors also confirmed the validity of the analytic result (2.51) with the
help of Monte-Carlo simulations and showed that the two analytic results converge
in the limit of s=μLð Þ2 � α.

2.7 Transition to the one-locus model at large N

Figure 2.8 presents schematically the phase diagram in N and α, which shows the
dominant evolutionary forces and the evolution direction based on results obtained
in Sections 2.4 to 2.6. Random genetic drift, natural selection, and linkage are all
important in the regions of the delayed adaptation and Muller’s ratchet. In a broad
interval of population sizes N, log 1=sð Þ< log N � k logðσL), the adaptation rate is
small and depends on the population size very slowly as compared to the one-locus
dynamics (Chapter 1), In the third area, which stretches at large N and small α
(Figure 2.8), log N >Ud=s, linkage of loci is negligible, and the accumulation dynam-
ics of deleterious mutations crosses over to the one-locus prediction (Chapter 1). The
transition takes place when the high-fitness edge of the wave reaches to the fittest
possible sequence, k=0, that is, at xc = − kav.

We can conclude that the simple model from Chapter 1 can be used either in
the limit of recombination with very frequent crossovers, or when only one locus at
a time is strongly diverse. Only in the limit of extremely large N, the adaptation rate
V in eq. (2.25) has a transition to the one-locus deterministic result

V = s�k

which is eq. (1.61) with k=L � 1, μ � 1. This transition is caused by the fact that, at
infinite N, every genetic variant can be found in a population due to frequent muta-
tion events which break down linkage disequilibrium and make loci independent.
In agreement with this fact, models with N =∞ and no epistasis do not generally
find any advantage for recombination (Felsenstein, 1974; Kondrashov, 1993). These
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models, however, have little realism. The transition to independent-locus regime hap-
pens at asexual population sizes that are unrealistically large (Rouzine et al 2003)

None− locus ⁓ σLð ÞCk, C ⁓ 1 (2:53)

We remind that the number of segregating (diverse) loci in most populations counts
in millions and even in many RNA viruses in hundreds. Therefore, the estimate in
equation (2.53) may easily exceed the number of protons in visible universe.
Recombination, as we shall demonstrate in Chapter 3, is hugely advantageous to
adaptation, precisely because of interference effects and a limited population size.

2.8 Mutation with a variable effect on fitness

In the previous sections we assumed that all mutations have a fitness effect, either
positive or negative, but of the same magnitude, s. In real organisms, a broad var-
iation in s among loci is observed. A priori it is not obvious whether many sites
simply average out to an effective value of s (Hegreness et al., 2006). Early Monte-
Carlo studies (Fogle et al., 2008) showed that the approximation of an average s
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Figure 2.8: Schematic phase diagram of the overall direction and dominant factors of evolution.
The upper axis and the parameter values (shown) are representative for RNA viruses. For
organisms, the mutation rate per site is smaller, μ ⁓ 10− 9, and the number of loci is larger,
L> 106–107 (based on Rouzine et al. (2003)).
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may be valid when the distribution of s decays faster than an exponential at large s.
Simulation showed that if the tail of the distribution decays more slowly, the approxi-
mation of effective s fails and a broad range of svalues must be analyzed explicitly.

Significant progress in understanding these results was reached in two analytic
works (Good et al., 2012; Schiffels et al., 2011). Schiffels et al. (2011) generalized the
two-clone interference approach (Gerrish and Lenski, 1998) (Section 2.2) to include
a third, nested clone, which extend its validity to larger populations. The second
approach is more aligned with our aims and is described in detail in this section
(Good et al., 2012). The model considers a large number of loci and applies a version
of the traveling wave method described in in the previous Sections. This approach
employs a method adopted from (Neher et al., 2010) and is confirmed by the tun-
able approach (Hallatschek, 2010).

The main conclusion shows that the adaptation mechanism and the dependence
of adaptation rate on model parameters, indeed, essentially depends on the form of
the distribution tail of s at large s, as well as on a population size range (Figure 2.9).
If decay of the tail is slower than exponential, the important mutations are the few
mutations that have the largest fitness effect, similar to the clone interference mod-
els, Section 2.2 (Gerrish and Lenski, 1998; Schiffels et al., 2011). For faster-than-
exponential decay of the distribution, multiple sites are important, and the result
is reduced to that for adaptation at fixed s, Section 2.4, with some effective s. The

Figure 2.9: Mechanism of asexual adaptation when selection coefficient s varies among sites
resembles either the two-clone interference model (Section 2.2) or the traveling wave model with
fixed s (Sections 2.3 to 2.6) depending on how steep is the tail of the distribution and how large is
the population size (Good et al., 2012). A distribution of the selection coefficient of the form
exp − s=σ½ � is considered in the text, where σ is a constant parameter. Purple curve: the traveling
wave of the frequency of fitness classes. Orange bars: the most likely progenitor class. Purple bar:
a new fittest clone (based on Rouzine and Weinberger (2013)).
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most interesting case is the exponential decay of the distribution of s. In this regime,
both regimes take place, depending on the population size. Below we consider this
interesting case in detail.

2.8.1 Approach

As the models in the previous sections, the model in (Good et al., 2020) considers a
population of N individual genomes with beneficial mutation rate Ub per genome.
These mutations are assumed to take place in a large number of loci, each with its
own beneficial effect s which contributes linearly to the log fitness of a genome. We
will approximate the fitness landscape by a continuous distribution of selection co-
efficients among sites ρ sð Þ. Epistasis is neglected. We neglect deleterious mutation
with a small effect, which is correct when population size is sufficiently large and
the system is far from the steady state (Section 2.4). Deleterious mutations with very
strong effect do not contribute to evolution, for the obvious reason.

The method described below applies to a wide range of the forms of ρ sð Þ (Good
et al., 2012). Nevertheless, for the sake of simplicity and practicality, we will focus
on the case of the exponential distribution often observed in experiment (Acevedo
et al., 2014; Imhof and Schlotterer, 2001; Kassen and Bataillon, 2006; Stern et al.,
2014; Wrenbeck et al., 2017):

ρ sð Þ= 1
σ
e− s

σ (2:54)

where average selection coefficient σ is assumed to be much larger than the muta-
tion rate Ub.

As in Sections 2.3–2.6, a population develops into a solitary wave moved in fit-
ness coordinate with a constant average rate v=d�X tð Þ=dt and shape f xð Þ, where
x=X − �X tð Þ is the relative fitness of an individual X with respect to the average log
fitness �X tð Þ (Figure 2.10). In the previous section with constant s, we had X = − sk,
where k is the integer number of deleterious alleles existing against the background
of best-fit possible genome under given conditions. Here we use instead fitness no-
tation X and consider it any real number.

The shape of the traveling wave is rigorously determined, for fixed s, by the
method of stochastic threshold used in the previous sections (Rouzine et al., 2008;
Rouzine and Coffin, 2005, 2007, 2010; Rouzine et al., 2003). Alternatively it can be
obtained by using other methods of traveling-wave theory, such as tunable con-
straint models (Hallatschek, 2010) or stochastic calculations of the best-fit class
(Brunet et al., 2008; Desai and Fisher, 2007). However, all these approaches are less
convenient to apply for the case of distributed s. For our purposes, it will be suffi-
cient to employ an approximation to the true shape of the fitness profile. As we
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showed in Section 2.3.2, the wave becomes close to a Gaussian with the variance
given by the speed of adaptation v, eqs. (2.14), (2.10):

f xð Þ= 1ffiffiffiffiffiffiffiffi
2πv

p e− x2
2v (2:55)

where we rescaled notation −σv ! v, σx ! x and assumed small mutation rate,
v � U. The meaning of new notation, adaptation v, is the speed of the change in
fitness, as opposed to the substitution rate of less-fit alleles we used in previous
sections.

2.8.2 Probability of lineage establishment

Suppose we have a beneficial allele occurring in a genome and want to trace its fate.
It may either become extinct or survive. Competition of the allele in genome with fit-
ness X against the remaining population depends on time dependence of the average
fitness �X tð Þ, which increases at a constant speed, v, in the stationary process. As long
as the allele lineage remains smaller than the population size, we can analyze its be-
havior in terms of a branching process with birth rate B X, tð Þ= 1+X − �X tð Þ and death
rate 1, by the choice of time unit. We also include mutation from X to fitness X + s in
interval s, s+ds½ � with rate Ubρ sð Þds per genome per generation.

The rate of evolution is determined by the fixation (nonextinction) probability
w X, tð Þ of a lineage of a genome with fitness X at time t. In the simplest case, when
the population is small, and sweeps at different loci are rare and hence indepen-
dent, it is given by w= x (Haldane, 1927), see Chapter 1. When multiple fixation
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Figure 2.10: The process of adaptation (schematics). Genome frequency profile with given fitness,
f xð Þ, moves at a constant rate, v. The fixation probability, w xð Þ, increases sharply with x until it
reaches a thin border layer x = xc after which it transitions to the result of one-locus theory
(Chapter 1), w xð Þ= x (based on Good et al. (2012)).
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events occur at the same time, they interfere with each other, as discussed in
Section 2.2. When a lineage that does not become extinct early eventually takes a
large portion of the population, the branching-process formalism starts to break
down because of inter-lineage interaction effects. We assume that all lineages that
rise to such a size are already guaranteed to fix, so that we can equate the proba-
bility of the nonextinction at a low level, w X, tð Þ, with the probability that a line-
age is fixed.

To continue uninterrupted, a lineage has to undergo multiple mutations to
higher fitness values. This is necessary to escape the constant increase in the aver-
age fitness as the population. Such a process has been described in the case of re-
combination (Neher et al., 2010) discussed in Section 3.4 and to the mutational
surfing of genes in populations expanding geographically (Excoffier and Ray, 2008;
Hallatschek and Nelson, 2008).

In next sections, we will demonstrate that fixation probability w xð Þ satisfies the
equation

v
dw
dx

= xw xð Þ−w xð Þ2 +Ub

ð∞
0

ds ρ sð Þ w x+ sð Þ−w xð Þ½ � (2:56)

2.8.3 Self-consistency condition for the evolution rate

The survival of allelic lineages is linked to traveling wave by the condition that the
population adapts by generating new mutations that manage to get fixed. The prob-
ability of fixation of a single mutation of effect s, denoted π sð Þ, can be obtained
from fixation probability of a lineage of individual x, w xð Þ, by averaging over the
distribution of fitness backgrounds, f xð Þ, in which it could have occurred

π sð Þ=
ð∞
−∞

dx w xð Þf x− sð Þ (2:57)

Consistency requires that adaptation rate is given by the average fixation rate of
new mutations fix weighted by their fitness effect, as given by

v=NUb

ð∞
−∞

ds s π sð Þρ sð Þ (2:58)

The distribution of the fixed mutations in their fitness effect is

ρf sð Þ∝ π sð Þρ sð Þ (2:59)
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When taken together, eqs. (2.54)–(2.58) determine the distribution of fixed muta-
tions in s and the adaptation dynamics. We write down and analyze their solution
in the following section.

2.8.4 Fixation probability and adaptation rate

As shown in Section 2.8.5, when population sizes are large and mutation infre-
quent, w xð Þ found from eq. (2.56) experiences a sharp change at a threshold fitness,
x= xc, above which it approximates the one-locus result, w= x (Figure 2.10) and
below which it decays exponentially. One can approximate the fixation probability
piecewise as

w xð Þ≈
0 if x<0

xce
x2 − x2c
2v if 0< x< xc

x if x> xc

8>><
>>: (2:60)

where xc is determined by the condition

2=Ub

ð∞
0

ds ρ sð Þ e
sxc
v − 1
s

e− s2
2v + Ub

vxc

ð∞
xc

dx xe
x2c − x2

2v

ð∞
0

ds ρ sð Þe− s2
2v+

xs
v (2:61)

Intuitively, below the transition point, x< xc, allele fixation probability w xð Þ is pro-
portional to the integral of the lineage size in time, which is the total number of
mutational opportunities for the lineage. Fixation, in this case, is limited by the
rare event that the lineage mutates again. In contrast, fixation at x> xc is deter-
mined by the probability that the lineage survives random genetic drift. The point
xc, which is obtained from eq. (2.61), has the intuitive interpretation as the bound-
ary in fitness above which clonal interference does not decrease the fixation proba-
bility significantly.

To calculate the average fixation probability π sð Þ, we substitute w xð Þ from
eq. (2.60) and f(x) from eq. (2.55) into eq. (2.57) and then integrating yields

π sð Þ∝ e
sxc
v − 1
s

e− s2
2v + e

x2c
2v

vxc

ð∞
xc

dx x e− x− sð Þ2
2v (2:62)

This function, π sð Þ, determines the shift in s of those mutations that fix, as com-
pared to their raw distribution, ρ sð Þ. The distribution of fixed mutations is product
ρf sð Þ∝π sð Þρ sð Þ. Interestingly, π sð Þ has an interval of effective neutrality for s< v=xc,
where alleles fix with a probability approximately equal to π sð Þ= 1=N (Section 1.6.1)
(Schiffels et al., 2011). Above this characteristic value, the probability of fixation exponen-
tially increases in s before reaching the one-locus limit at s> xc.
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The approximate expressions for w xð Þ and π sð Þ contain the rate of adaptation v,
which is self-consistently obtained by substituting eq. (2.62) into condition (2.58).
This substitution produces a second relation between x and v. Explicit calcula-
tions are carried out in Section 2.8.5, and we summarize the main results below.
In Figures 2.11–2.13, we compare these analytical predictions to Wright–Fisher
simulations.

Assuming the exponential distribution of fitness effects, eq. (2.54), the integrals over
the selection coefficient s in eqs. (2.61) and (2.58) are sharply peaked at value s= s*

s* = xc −
v
σ

(2:63)
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Figure 2.11: Adaptation rate, v, as a function of the population size, N (A), and the beneficial
mutation rate, Ub (B), in the case of relatively small NUb. Parameters are shown. σ =0.01 is the
average selection coefficient, eq. (2.54). Symbols and solid line denote simulation and analytic
results, respectively (see text). Dashed line: two-clone interference theory prediction (Section 2.2)
(based on Good et al. (2012)).
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which represents the dominant value of the selection coefficient. This fact results to
two coupled equations for v and xc (Good et al., 2012)

2= Ub

σ

ffiffiffiffiffiffiffiffiffiffi
2πσ2

v

r
1+ σ

xc
+ v
σxc − v

� �
e

xc − v
σð Þ2

2v (2:64)

1=NUb
xc2

v
− 1+ 2xcσ

v
+ 2σ2

v

� �
e −

xc − v
2σ

σ (2:65)

In the general case, numerical solution is required for this system of equations, but
asymptotic analytical expressions for these quantities are feasible in two important
limits, as follows.

If the dominant fitness effect size is relatively large and comparable to the lead
of distribution, s* ⁓ xc, which takes place at intermediate population sizes (see fur-
ther), then the dominant mutations represent large jumps in fitness compared to
the lead of distribution, x− xcj j ⁓ xc on the order of magnitude (Figure 2.9, left or-
ange bar). In this case, one can solve eqs. (2.64) and (2.65) by iterations and obtain

v≈
σ2log2 NUbð Þ
2 log σ

Ub

	 
 , log NUbð Þ � 2 log
σ
Ub

� �
(2:66)
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Figure 2.12: Distribution of fitness effects of fixed mutations, ρf sð Þ. Solid purple line: the analytic
prediction. Blue dashed line: the prediction of the clonal interference theory (Section 2.2). Green
line: prediction of the one-locus model (Chapter 1). Parameters: N= 107, Ub = 10− 5, σ =0.01
(based on Good et al. (2012)).
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which holds at intermediate NUb. Here we neglected logarithmic factors inside of
large logs. For sufficiently large NUb, in contrast, most successful mutations will
have a relatively small effect compared to the lead and occur in genomes close to the
high-fitness transition point (s* � xc) (Figure 2.9, right orange bar). In this case, the
approximate expression for the adaptation rate from eqs. (2.64) to (2.65) has a form

v= 2σ2 log NUb log NUbð Þ½ �, log NUbð Þ � 2 log
σ
Ub

� �
(2:67)

Therefore, there are two distinct regimes of adaptation in the two intervals of population
size. One type of adaptation proceeds by large jumps in fitness comparable to the lead
of distribution, and it maps to two-clone interference model discussed in Section 2.2
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Figure 2.13: The average fitness effect of a fixed mutation as a function of the population size, N
(A), and beneficial mutation rate, Ub (B). Orange triangles and the purple solid curve show
simulation and analytic results, respectively. Dashed purple line: two-clone interference model
results (Section 2.2.). Parameters are as in Figure 2.12 (based on Good et al. (2012)).
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[which also assumed, we remind, an exponential mutation spectrum, eq. (2.54)].
Another type of adaptation occurs by relatively small jumps, and maps to the results of
the multi-locus model with a constant fitness effect of mutation, as long as selection
coefficient s and beneficial mutation rate Ub are replaced with the effective values

seff = s*, Ueff ⁓ Ub

ffiffiffiffiffiffiffiffi
2πv

p
ρ s*
� �

(2:68)

The second type of mapping can be shown to exist in the more general case than
the exponential mutation spectrum assumed here (Good et al., 2012). In the next
section, we derive these results formally.

2.8.5 Derivation of fixation probability

Our derivation is based on a mean-field approximation that individual lineages be-
come extinct or fix independently on each other, with fitness distribution of ge-
nomes given by its mean. As we have seen previously for other models, the details
of reproduction model have no impact on statistical quantities such as v and ρf sð Þ
(Chapter 1 and previous sections of this chapter). For dynamics of individual line-
ages, we can use a branching process technique in continuous time. The process
has birth rate B X, tð Þ= 1+X −X tð Þ, death rate D= 1, and mutations from fitness X to
fitness X + s, s+ds½ � occurring at rate Ubρ sð Þds.

We will use p n,X, tð Þ to denote the probability of extinction of a lineage that
starts from n individuals with fitness X at time t. The backward master equation in-
cluding birth, death, and mutation events reads

p n,X, t −dtð Þ= 1− n dt 2+X − �X tð Þ+Ub
� �� �

p n,X, tð Þ+ n dt 1+X − �X tð Þ� �
p n+ 1,X, tð Þ

+ n dt p n− 1,X, tð Þ+ n dt Ub

ð∞
0

ds ρ sð Þ p 1,X + s, tð Þ p n− 1,X, tð Þ (2:69)

Here the four terms represent the probabilities of nothing happening, birth, death,
and mutation, respectively. Passing to the continuous time limit, we obtain integro-
differential equation

−
1
n
∂

∂t
p n,X, tð Þ= − 2+X − �X tð Þ+Ub

� �
p n,X, tð Þ+ 1+X − �X tð Þ� �

p n+ 1,X, tð Þ

+ p n− 1,X, tð Þ+ Ub

ð∞
0

ds ρ sð Þp 1,X + s, tð Þp n− 1,X, tð Þ (2:70)

By assumption, each lineage becomes extinct independently. Therefore, we seek a
solution in the form n,X, tð Þ= p 1,X, tð Þn. We easily verify Equation (2.70) that has a
solution in this form, and p 1,X, tð Þ satisfies equation
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−
∂

∂t
p 1,X, tð Þ= − 2+X − �X tð Þ+Ub

� �
p 1,X, tð Þ+ 1+X − �X tð Þ� �

p 1,X, tð Þ2

+ 1+ Ub

ð∞
0

ds ρ sð Þp 1,X + s, tð Þ (2:71)

The fixation probability of one genome, w X, tð Þ, is related to the extinction proba-
bility p 1,X, tð Þ in the obvious way

w X, tð Þ= 1− p 1,X, tð Þ (2:72)

which can be substituted into eq. (2.71) to produce

−
∂w X, tð Þ

∂t
= X − �X tð Þ� �

w X, tð Þ− 1+X − �X tð Þ� �
w X, tð Þ2

+Ub

ð∞
0

ds ρ sð Þ w X + s, tð Þ−w X, tð Þ½ � (2:73)

Due to the translational symmetry of the right-hand side, the fixation probability of
lineage depends on absolute fitness X and time t as a function of the relative fit-
ness, x=X − �X tð Þ. Hence, we can replace the time derivatives with the derivatives in
x and arrive at the desired ordinary differential equation for wðx) given above

v
dw
dx

= xw xð Þ−w xð Þ2 +Ub

ð∞
0

ds ρ sð Þ w x+ sð Þ−w xð Þ½ � (2:56)

Here, we assumed x � 1. In other words, all relevant selection pressures are small,
and evolution is gradual.

Now, we need to solve eq. (2.56) for w xð Þ to obtain eqs. (2.60) and (2.61). The
left-hand side of eq. (2.56) represents the wave movement, and the three terms in its
right-hand side are due to selection, a nonlinear effect, and mutation. Although
we cannot obtain a general analytic solution, we can approximately solve it in dif-
ferent intervals of x. For large positive x, a typical lineage expands relatively fast.
Therefore, its fate will be sealed (die or be established) long before additional muta-
tions or the advance of the average fitness will be able to significantly impact its
growth. Thus, for large x, the first and second terms in the right-hand side of eq. (2.56)
dominate, which yields the standard one-locus result with x instead of s (Chapter 1):

w xð Þ≈ x (2:74)

This approximation remains valid if the other terms remain relatively small, which
occurs when x2 � v, x2 � Ub�s.

With x decreasing, eventually, the advance of average fitness X tð Þ will start having
a significant adverse effect on lineage dynamics on w. In this regime of interference,
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the fixation probability is greatly reduced, and the quadratic term w2 becomes small. If
we neglect also the mutation term, because mutation is rare, we obtain

v
dw
dx

≈ x w xð Þ

which yields

w xð Þ≈Aex
2= 2vð Þ (2:75)

where A is a constant of integration. The transition point between the interference
regime and the drift regime, x= xc, can be calculated by matching eqs. (2.74) to
(2.75) at xc, which yields

A= xce− xc2= 2vð Þ (2:76)

After substituting this solution, eq. (2.75), into eq. (2.56), the condition that the qua-
dratic term, w2, is negligible:

xc
x
e
x2 − x2c
2v � 1 (2:77)

This inequality holds, as long as xc � p
v and xc − xð Þ=xc � v=x2c. The exponential

slope in x in the left-hand side of eq. (2.75) defines the characteristic width of the
boundary layer between the two regimes, δ ⁓ v=xc , which is very narrow relatively
to the lead for xc � p

v. Also, our assumption that the mutation term in eq. (2.56) is
negligible at x= xc is valid as long as xc �

ffiffiffiffiffiffiffiffi
Ub�s

p
.

At even smaller fitness values, eq. (2.75) cease to apply, because it makes the
biologically meaningless prediction that fixation probability w xð Þ increases at fit-
ness values below the average. Fortunately, as long as inequality xc � p

v holds,
fixation probability w xð Þ for these fitness values is so low that we can effectively
approximate it by zero. The dominant contribution from w xð Þ comes from highly-fit
genomes, therefore, does not depend on the form of w xð Þ in this low-fitness region.
Combining all three segments of x, we obtain the desired formula for the probability
of fixation, w xð Þ, eq. (2.60).

While we have shown the existence of a sharp transition at x= xc, we have not
yet determined its location. Although the transition point location is determined by
eq. (2.56), it cannot be captured by the above approximate analysis. In order to ex-
tract xc from eq. (2.56), we use a method, as follows. We multiply its both sides by
the Gaussian factor exp − x2=2v

� �
and integrate over x. Then the main terms related

to the wave speed and natural selection cancel and we get an equality

ð∞
−∞

dx w xð Þ2e− x2
2v =Ub

ð∞
−∞

dx w xð Þ
ð∞
0

ds ρ sð Þ e− x− sð Þ2
2v − e− x2

2v

� �
(2:78)
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From the form of w xð Þ in eq. (2.60), the left-hand side of eq. (2.78) can be evaluated
by dividing the integration interval into two, one to the left from xc, and another to
the right. Because Gaussian functions change very rapidly near xc due to our as-
sumption xc � p

v, their arguments can be approximated with their linear expan-
sion in x− xc. As a result of integration in Eq. (2.78), we arrive at the condition for xc
given by eq. (2.61).

Now we need to calculate integrals in s in eq. (2.61) using eq. (2.54). We notice
that the dependence of both integrands on s is mostly determined by an exponen-
tial with an argument

g sð Þ= −
s2

2v
+ x
v
s−

s
σ

(2:79)

Note that g sð Þ reaches a narrow maximum at

s= s* ≡ xc −
v
σ

as given by eq. (2.63). At this maximum point

g s*
� �

= −
x− v=σð Þ2

2v
, g′′ s*

� �
= −

1
v

(2:81)

Hence, we can approximate these integrals with the integral of a Gaussian. If we
also assume s* � p

v, we readily arrive at eq. (2.64), the first of coupled equations.
Finally, in order to calculate wave velocity v, we substitute eq. (2.60) for the

fixation probability, and eq. (2.55) for the fitness profile, into the velocity consis-
tency condition, eq. (2.58), and evaluate the integrals using the same method. We
arrive at the second coupled equation, eq. (2.65). Together, eqs. (2.64) and (2.65)
allow us to solve for v and xc as explained above. This derivation was repeated for a
more general form of ρ sð Þ (Good et al., 2012).
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Chapter 3
Multi-site evolution with recombination

3.1 Two roles of recombination in adaptation

The main difference between asexual and sexual organisms is the presence of recom-
bination. During mating, genetic information is combined from two parental DNA, a
half from each, and is passed to the progeny. The evolutionary function of recombi-
nation is to create better-fit genomes. Natural selection amplifies them further. As we
demonstrate in this chapter, recombination can effectively diminish clonal interfer-
ence and expedite adaptation by orders of magnitude, even if the recombination rate
is relatively small. For example, in an average HIV-positive individual off therapy,
only ~1% of infected cells are infected with two different viruses and hence can un-
dergo recombination (Batorsky et al., 2011; Neher and Leitner, 2010). There are 3− 10
recombination crossovers per genome (Levy et al., 2004). Yet, even such a minor
rate of recombination is enough to speed up the rate of HIV adaptation several–
fold (Batorsky et al., 2011).

A new key parameter is the recombination rate per genome, r, defined as the
probability per generation that an individual has recombination with another ran-
domly chosen genome. It is also called the “outcrossing rate.” Another new parame-
ter is the average number of crossovers per genome, M. For example, in the human
genome, which has 100% sexual reproduction, we have r = 1, M = 2.5 crossovers per
chromosome, and 23 pairs of chromosomes.

Two limiting scenarios of adaptation exist, based on two main roles of recombi-
nation, as follows. A role of recombination is to bring together beneficial alleles to
the same fitness background (and, conversely, excise deleterious alleles). As illus-
trated in Figure 2, this operation counteracts the effect of clonal interference.
Another role of recombination is to facilitate the establishment of new beneficial
alleles into a population. As shown in Chapter 2, in asexual populations, new bene-
ficial mutations can survive in future populations and contribute to adaptation,
only if they occur in the fittest individuals. In sexual populations, recombination
can transfer alleles from modest genetic backgrounds to better-fit genomes and, in
this way, alleviate the negative factor of “background selection” (Rice, 2002). These
two roles of recombination are best studied in limiting scenarios of adaptation:

Role 1 is to generate new, better-fit sequences. This scenario corresponds to the evolu-
tion on moderate timescales, driven by recombination and selection alone. In
Section 3.2, we develop a model, which assumes that small frequencies of beneficial
alleles exist at all sites in the very beginning (e.g., due to previous mutation or migra-
tion events), but on different individual sequences (Rouzine and Coffin, 2005, 2007,
2010). Further mutation is assumed to be negligible. These individual alleles are joined
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by recombination into pairs and triplets, and so on, which eventually results in a trav-
eling wave in fitness coordinate. Due to selection, the wave propagates toward higher
fitness values. The wave speed, as usual, is limited by the extension of the stochastic
edge where establishment of new rare recombinants occurs (Figure 3.1). Then, phylo-
genetic relation of sequences kicks in decreasing the efficacy of recombination. The
frequencies of beneficial alleles at certain sites are gradually increased, at other sites,
beneficial alleles are eventually lost due to random drift and clonal interference.
Eventually, the wave stops due to inbreeding, when all genomes become the same.
We will consider this scenario in Sections 3.2 and 3.4.

Role 2: After the wave in Scenario 1 runs out of diverse sites, because all alleles at
each site are either lost or fixed, a new regime ensues where mutation is necessary to
infuse new alleles. Alternatively, the wave may not be formed to begin with, because
allelic copies per site are too few, or recombination is too rare to combine them
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Figure 3.1: A model of evolution in the presence of selection, recombination, and random drift.
(A) Haploid population in two consecutive generations. Green lines: genomes. Red circles: less-fit
alleles. (B) The recombination mechanism. Blue broken line: the route of RNA/DNA polymerase
between the two parental genomic templates (based on Rouzine and Coffin (2005)).
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quickly. In either scenario, adaptation requires continuous production of new benefi-
cial alleles. Adaptation in this case is very slow (Neher et al., 2010), because only sev-
eral sites have enough diversity to contribute to the recombination effect. In that
scenario, which we consider in Section 3.3, mutation and the fixation probability of a
beneficial allele are two factors limiting infusion of new alleles into a population.
Recombination assists with fixation of new alleles. In purely asexual populations,
only mutations occurring in the most-fit genomes survive and do not succumb to ex-
tinction clonal interference. Mutated alleles in less-fit genomes do not establish line-
ages, a consequence of clonal interference known as the “background selection”
effect (Rice, 2002). However, even very rare recombination events expand the interval
of probable fixation from the high-fitness edge toward the bulk of distribution. This
expansion occurs due to repeated leaps of good alleles from one genome to another
that is better-fit, a process termed “gene surfing” (Neher et al., 2010; Rice, 2002).

The biological roles of recombination are not restricted to the two listed roles.
The other roles include stopping Muller’s ratchet (Muller, 1932; Muller, 1964) and
compensating gamete defects. However, here we will consider only the limit of ad-
aptation, will neglect deleterious mutation, and focus on these two roles related to
beneficial mutations.

The value of outcrossing rate, r, and the length of evolution decide whether
Scenario 1 or Scenario 2 is the better description of adaptation process. Scenario 2
(allele-fixation) applies either when recombination rate r is small, near the cross-
over region to the purely asexual regime, or for any r in the long-term stationary
process. Scenario 1 applies in a broad range of recombination rates r but in tran-
sient (although, possibly, quite long) process. (In principle, one can imagine a situ-
ation where both mechanisms of recombinations work in synergy.)

For example, peoples who speak Indo-European languages and have diversity
T ~0.1%, did not need new mutations to detectably diverge from the common roots
over the last 6,000 years, because the combination of migration, founder effects, selec-
tion, and sexual reproduction is enough for evolution on that timescale, ~ 300 gen-
erations. However, on much longer timescales, such as tens of thousands of
years, we observe a substantial change of phenotype due to new adaptive muta-
tions. We consider both scenarios in Sections 3.2, 3.3, and 3.4.

3.2 Recombination and natural selection (no mutation)

3.2.1 Approximation of uncorrelated genomes

As we mentioned, the short-range evolution of a diverse population is driven by
natural selection and recombination alone. Our basic model (Figure 3.1) (Rouzine
and Coffin, 2005) is very similar to the asexual model in Section 2.2.
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It considers a population of N haploid genomes that have a large number of loci
L (or a diploid population of N=2 individuals without allelic dominance). All loci
have two alleles, as in our previous models, with a small fitness difference s � 1.
Generations do not overlap: all the genomes die and are replaced with their offspring.
The genome fitness with respect to the best possible fitness (progeny number) is
given by exp − skð Þ where k is the number of less-fit alleles. By the definition, the best
possible genome has k=0. The last expression assumes that epistasis (interaction be-
tween loci) is absent, and that all alleles have identical fitness effect. The effects of
epistasis will be considered in Volume II of this book.

3.2.1.1 Model of recombination
The mechanism of recombination depends on an organism. For the purpose of this
work, we will focus on assumptions and parameters relevant to a broad range of vi-
ruses. With some reservation, our results will also be relevant for short segments of
animal genomes, as long as the probability of recombination, r, is properly rescaled
and allelic dominance is absent; but we will talk, for a moment, specifically about
viruses. The effective size of virus population is given by the total number of virus
genomes inside of cells, N, which produce new infectious virus particles able to
reach new cells. An infected cell generates virus particles with RNA (or DNA) copies
of the viral genome, and these particles find new cells to infect. A cell coinfected with
two particles can produce some particles that contain recombined pairs of their ge-
nomes (Figure 3.1, bottom). Hence, fraction r of all genomes will undergo recombina-
tion with another virus genome, while fraction 1− r represents a copy of a single
parental genome. Parameter r is often called “the outcrossing rate.” Recombination
between the two genomes occurs due to random crossovers of the polymerase protein
between the two RNA templates (Levy et al. 2004).

We assume further that the number of crossovers per genome M is large and
fluctuates according to Poisson distribution, and that the recombinant is composed
of and equal mixture of each parental genome. Sometimes, the recombination rate
is defined not per genome but between two genome sites, r2. It is related to the ge-
nomic recombination rate as r2 = rMΔL=L, where ΔL is the number of base pairs be-
tween the two sites.

The critical assumption of this section, which will be lifted in Section 3.4, is that,
given the total number k of less-fit loci, they are distributed uniformly and randomly
among L available sites, and that their locations in different genomes do not corre-
late. Note that we do not assume full statistical independence of genomes, because
variance of k between genomes, Var k½ �, will be shown to be smaller than the Poisson
value,

ffiffiffi
�k

p
, where �k tð Þ is the population average of k. However, genomes will correlate

with each other only in the value of k. In Section 3.4, this approximation will be lifted
and site-by-site correlations will be taken into account. We also assume random mat-
ing: any pair of genomes has an equal probability to recombine.
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This basic model does not include mutation events, because we assume that all
necessary one-site alleles already exist in the beginning. We are interested in the
case when adaptation is recombination-driven and is much faster than asexual ad-
aptation due to mutation.

3.2.1.2 Validity range
The following derivation of the results in Section 3.2.2 is asymptotically exact in a
broad range of parameters given by strong inequalities, as follows:

1 � k � 1
s2
, s � r � s

ffiffiffi
�k

p

1 � ln Nrð Þ � min½�k, 1= s2�k
� �

, k s=rð Þ2log s
ffiffiffi
�k

p
=r

	 

(3:1)

As it easy to observe, for �k = 100− 1, 000 and s=0.01−0.05, the range of r,N is quite
broad. In what follows, we will neglect small terms with the use of eq. (3.1).

The most important, as we show later, is double inequality s � r � s
ffiffiffi
�k

p
. At

very small recombination rates, r � s, recombination is not important. In the
limit r � s

ffiffiffi
�k

p
, clonal interference effects are fully destroyed by recombination,

and the adaptation rate is equal to the deterministic independent-locus result,
V = sk 1− k=L

� �
(Chapter 1). This interval exists and is broad, since real populations

are usually far from the best-fit sequence, so that the number of alleles, k, is usually
much larger than 1.

3.2.1.3 Dynamic equations
We denote with f k, tð Þ the average frequency of genomes with k deleterious alleles
with respect to the best-fit possible sequence. For our model (Figure 3.1), the dy-
namic equation for f k, tð Þ has a form

f k, t + 1ð Þ− f k, tð Þ= e− s k − �k tð Þ½ � − 1
n o

f k, tð Þ+ r R k, tð Þ− f k, tð Þ½ � (3:2)

where t is time in generations, e− s�k tð Þ ≡
Ð
dke− skf k, tð Þ. Here notation rR k, tð Þ has the

meaning of the increase of the class with k alleles due to recombination, specific
form of R k, tð Þ is defined later, and − rf k, tð Þ is the loss of sequences from class k
due to recombination. Normalization condition has a formð

R k, tð Þdk =
ð
f k, tð Þdk = 1.

Here we study the evolution of genetic variation that already exists in the beginning
(“standing variation”). Hence, eq. (3.2) neglects new mutation events, whose role
will be considered in Section 3.3. In the above parameter range, eq. (3.1), we have
strong inequality s k− �k

�� ��� 1 for all relevant k; therefore, the exponential in eq. (3.2)
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can be approximated with the linear expansion in k− �k. In addition, f k, tð Þ can be
approximated with a function continuous in t (Section 3.2.5, Notes 1 and 2). As a re-
sult, we have

∂f
∂t

= − s k − �k tð Þ� �
f k, tð Þ+ r R k, tð Þ− f k, tð Þ½ �

�k tð Þ≡
ð
f k, tð Þkdk (3:3)

The form of the recombination gain function R k, tð Þ in eq. (3.3) varies between or-
ganisms. For example, bacteria exchange genomic segments, while viruses and
eukaryotes have crossover recombination with 50% of each parental genome
passed to the progeny. We will focus on the latter, although the technique can be
generalized for bacteria as well. We will stick to our main assumption that alleles
given k are scattered randomly within a genome. We assume that the frequency of
less-fit alleles per locus is small, �k tð Þ � L. When two genomes with k1 and k2 al-
leles recombine, they make an offspring genome with k= k1 + k2ð Þ=2+ ε1 + ε2 muta-
tions, where ε1 2ð Þ is the deviation of the random allele number in the copied half
of a parental genome from the average, restricted by the condition that the total
allele number in the genome is fixed and equal to k1 2ð Þ. Because all k are large, the
probability distribution of k has a Gaussian form centered at k = k1 + k2ð Þ=2. The
variance < ε1 2ð Þ2 > , is calculated from the average number of alleles in a half of a
genome, k1 2ð Þ=2, and the additional factor 1=2 is caused by the above restriction.
Because fluctuations of alleles are independent in the two parents (the central ap-
proximation), and, in the stated parameter range, the wave is narrow, k1 − k2j j � �k
(Section 3.2.5, Note 3), we have ε1 + ε2ð Þ2 = k1 + k2ð Þ=4≈ �k=2. The resulting expression
for R k, tð Þ has a form

R k, tð Þ= 1ffiffiffiffiffiffi
π�k

p
ð
dk1

ð
dk2f k1, tð Þf k2, tð Þe− k − k1 + k2ð Þ=2½ �2=�k (3:4)

Both fitness distribution f k, tð Þ and recombination function R k, tð Þ are illustrated in
Figure 3.2.

3.2.2 Main results

We start by describing our main results graphically. Their derivation will be given
in Sec 3.2.3. Just in asexual populations (Chapter 2), most fitness classes k, except
for genomes with smallest k and largest fitness, averaged over realizations, can be
treated in a deterministic way. We confirm this approximation further by Monte-
Carlo simulation down to very small population sizes, N ~ 102. Just as in asexual
case, the deterministic equation predicts (Section 3.2.3) a moving solitary wave in
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the fitness coordinate with an almost constant profile (Figure 3.2). The mean substi-
tution rate of beneficial alleles is the wave speed, V = −d�k=dt.

We start with the deterministic limit of infinite population, N =∞. In this limit,
the wave profile is Gaussian. The variance of k is given by the Poisson value �k which
shows that loci evolve independently of each other at infinite population size.
However, if population size is finite, Gaussian approximation works until a point, our
familiar high fitness edge, where the wave ends at a finite value of k (Figure 3.2).

As in the asexual case, the stochastic edge at small k deserves a special treatment.
Genomes beyond the leading edge (small k) are absent, simply because they did not
exist in the beginning. They are acquired gradually during the process of evolution.
(The genomes beyond the trailing edge are absent too, because they are already extinct,
but that edge is not interesting.) Rare recombinants born just outside the leading edge
that escape extinction limit the wave speed (Figure 3.2). To estimate fitness and the av-
erage time to generation of the edge class, we again apply the two-allele one-locus
model. Again, the emerging recombinant lineage is a minority variant, and the bulk of
the population is the majority variant. Further, we will obtain the expressions for the
wave width wand the wave speed V by a self-consistency condition, matching the time
to a new successful recombinant to the shift time of the wave. The result has a form

w2 = p�k, V = ps�k

p= ln Nrð Þ
ln Ns2�k=r
� � < 1, 1=N� r� s

ffiffiffi
�k

p
(3:5)
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Figure 3.2: Schematic of the moving solitary wave. Red and purple curves: and thin lines, fitness
class frequency, f k, tð Þ, and the recombination generator function R k, tð Þ, respectively. Spike: a
new recombinant clone generated beyond the wave edge; Δ, interval where most such clones are
generated; w and V, the width and the speed (evolution rate) of the wave, respectively (based on
Rouzine and Coffin (2005)).
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Note that the width and speed of the wave are related by Fisher’s theorem V = sw2.
Formula (3.5) neglects logarithms in the arguments of the two large logarithms,
which create a minor error in p.

In a finite population, the variance w2 in eq. (3.5) is smaller than the Poisson
value, �k, by a factor of p< 1, because linked loci do not evolve independently. The
width is related to the wave speed, as given by V = sw2. In agreement with Fisher
Theorem, the wave speed is smaller than its deterministic limit, V = s�k, correspond-
ing to the one-locus result. This is a manifestation of clonal interference partly com-
pensated by recombination (Chapter 2).

Equation (3.5) implies a critical value of population size, N ~ 1=r, below which
evolution by the described mechanism is not possible. The fair accuracy of eq. (3.5)
is confirmed by Monte-Carlo simulation at realistic parameter values (Figure 3.3). In
the range of very strong recombination, r=sð Þ2 � �k, the transition in r from V =0 to
maximal speed V = s becomes very sharp and cannot be described by this method.

Equation (3.5) is valid when less-fit loci are rare, �k � L. In the case when the
external condition sharply changes, the population can be less fit at most of L loci,
except for a minority of better-fit alleles. The fraction of alleles in genome,
�k=L, decreases gradually during adaptation almost from almost 1 to 0 and, in the
middle of the process, is not small. In this case, we can easily generalize the expres-
sion for V in eq. (3.5) by replacing �k in the variance of parental inheritance with
�k 1− �k=L
� �

. This gives, again, the independent-locus result from Chapter 1 reduced
by the factor of p.

The analytic result is compared to Monte-Carlo simulation for representative
parameter values in Fig 3.4 (Rouzine and Coffin, 2005). The details of this simula-
tion carried out in the same approximation of uncorrelated genomes are described
in Section 3.2.4. The fitness classes with k alleles are shown at different times
(Figure 3.4A and D). The average allele number �k decreases in time (Figure 3.4B, E).
The scaled slope V= s�k

� �
as well as the scaled variance w2=�k is compared in

Figure 3.3 with the analytic result for p, eq. (3.5) . We observe that the analytic re-
sult somewhat underestimates the accumulation rate.

If we consider a random realization of a wave (a simulation run), we observe
that it breaks down into separate peaks that become more dense as N increases
(Figure 3.4A and D). Nevertheless, the averaged and centered shape of the wave
agrees very well with the analytic result (Figure 3.4C and F). In particular, the
profile is slightly skewed, with a steep high-fitness cutoff, as expected from the
theory.

If population becomes smaller than a critical size, N < 1=r, the wave does not
get far, because it collapses into a single clone of identical sequences. Then the
wave stops, because recombination cannot generate new sequences (Figure 3.4G).
(As we will show in Section 3.4, the same stop eventually happens, in the long
term, at all parameter values, and even earlier than predicted in Figure 3.4G, due to
increasing correlations between genomes caused by inbreeding neglected here.) If
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the factor of mutation is included, the evolution speed is finite even below the criti-
cal population size (green curve in Figure 3.3).

We conclude that even relatively infrequent recombination is quite effective in
driving evolution compared to a purely asexual regime. The asexual evolution
speed is given by eq. (2.35), which is smaller than the speed driven by recombina-
tion by the large factor of k. The result for the asexual speed transitions to the inde-
pendent-site result V1− locus = s�k only at populations that are exponentially large in
parameter �k, as given by eq. (2.53). In contrast, evolution with recombination given
by eq. (3.5) reaches a half of the independent-loci rate already at a moderate
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Figure 3.3: Analytic predictions for the evolution speed compared with the Monte Carlo simulation
results, both obtained in in the approximation of uncorrelated loci. The average speed, V and
squared width, w2, of a solitary wave without mutation (μ=0Þ as a function of the population size,
N, for s=0.1 (top) and s=0.01 (bottom). Both quantities are scaled by their respective values in the
limit of infinite size. Orange circles: rescaled wave speed d�k=dt

� �
= s�k
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; purple circles: width
squared, w2=�k. Vertical bars: 67% statistical interval for the estimate of the average; purple lines,
analytic results (eq. (3.5). The average allele numbers at the start, kst, and at the sampling time, k0,
are shown. The values of r are on the curves. Simulation results are averaged over 40 random runs
(top) and 10 runs (bottom). Green lines: results for an asexual population for μ= 10−4 and the total
locus number L= 103 (based on Rouzine and Coffin (2005)).
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population size, such that N ~ 1=rð Þ s
ffiffiffi
�k

p
=r

	 
2
. Therefore, the short-term adapta-

tion under (even rare) recombination and natural selection is much more rapid
than the evolution due to new mutations and selection in the absence of recom-
bination provided the necessary better-fit alleles exist in the beginning. This re-
sult illustrates the fundamental evolutionary advantage of sexual reproduction.
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Figure 3.4: Examples of Monte-Carlo simulation of the traveling wave for the case with
recombination and no mutation and in the absence of inter-sequence correlations, f ðk, t). (A) Top
and bottom: logarithmic and linear scales. Curves in alternating colors: fitness class frequency
f k, tð Þ at different times (shown). Black lines: a fit with a Gaussian function. Model parameters are
shown. (B) Population-averaged less-fit number �k as a function of time. (C) Averaged centered
fitness class frequency ϕ xð Þ. Blue curve: the simulation result averaged over an interval of k
(shown) and over 40 random runs. Red line: analytic result (eq. (3.2.19)). (D–F) Analogous results
for a larger population size, N= 106. (G) Simulation below the critical population size, Nr < 1 (based
on Rouzine and Coffin (2005).
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3.2.3 Derivation

3.2.3.1 Solitary wave solution
Now we present derivation of the analytic results. We start with considering the
limit of infinite population size, N =∞, and then move on to finite population size.
A partial solution of eqs. (3.3) and (3.4) has the form of a traveling wave

f k, tð Þ=ϕ k − �k tð Þ� �
, R k, tð Þ= ρ k − �k tð Þ� �

(3:6)

The traveling wave solution, eq. (3.6), describes the gradual decrease in the average
number of deleterious alleles per genome �k tð Þ due to recombination and selection,
that is, the increase in the number of beneficial alleles. Substituting eq. (3.6), into
(3.3) and (3.4), we get

V
∂ϕ
∂x

= − sxϕ xð Þ+ r ρ xð Þ−ϕ xð Þ½ � (3:7)

ρ xð Þ= 1ffiffiffiffiffiffi
π�k

p
ð
dx1

ð
dx2 ϕ x1ð Þϕ x2ð Þe−

x− x1 + x2
2½ �2
�k (3:8)

where we introduced notation x= k − �k tð Þ, and

V = −d�k=dt

is the average substitution rate. In eq. (3.7) we neglected the fact that the wave pro-
file slowly varies in time, which approximation is justified, if the wave is far from
the origin, k =0 (Section 3.2.5, Note 4).

The general solution of eq. (3.7) has a form

ϕ xð Þ= b
w2 e

− x+bð Þ2=ð2w2Þ
ðx
x0

dx′ρ x′
� �

e x′+bð Þ2= 2w2ð Þ (3:9)

where x0 is a constant that we determine further, and new notation b and w2 is
introduced

b≡
r
s

(3:10)

w2 ≡V=s (3:11)

At infinite population size, eq. (3.9) must be valid at any value of x, even very far from
the wave center. Hence, we have x0 = −∞, otherwise, the function ϕ xð Þ at x< x0
would be negative. The only solution of eqs. (3.8) and (3.9), for which the integral in
eq. (3.9) does not diverge at x′= −∞, has the Gaussian form
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ϕ xð Þ= ρ xð Þ= 1ffiffiffiffiffiffi
π�k

p e− x2

2�k (3:12)

w2 = k (3:13)

For the wave speed, V, we have

V ≡ −
d�k
dt

= s�k, N =∞ (3:14)

Equation (3.12), which can be verified by direct substitution into eqs. (3.7) and (3.8),
shows that the Var[k� is equal to the Poisson value k, that is, that different alleles
are distributed independently between genomes, and different sites are indepen-
dent on each other. As it turns out, if the outcrossing rate r is sufficiently large (but
still may be smaller than 1Þ, loci can become effectively independent at finite N as
well. Equation (3.14) is the deterministic result for the one-locus model, eq. (1.61)
with f � 1 in Chapter 1.

3.2.3.2 Finite populations: stochastic edge
In the beginning, highly fit sequences do not exist yet; they are added gradually
at the leading edge, which is located at a negative value, x= x0. The value − sx0
is the average relative fitness of the best-fit sequence present in the population
(Figure 3.2).

As in the asexual model, at sufficiently large N, stochastic effects from random
mutation and genetic drift are negligible for fitness classes k located far from the
wave tips. Therefore, eq. (3.9) holds for fitness density δf k, tð Þh i averaged over the
statistical ensemble. In other words, in the right-hand side of eq. (3.3), we neglect
correlations δf k, tð Þδ�k� �

, where δf k, tð Þ and δ�k are fluctuations of the respective val-
ues between realizations. Monte-Carlo simulation demonstrates that this approach
predicts the average values of ϕ xð Þ,V, and w2 fairly accurately at N = 1, 000 and
larger (see Figures 3.3 and 3.4)), despite of strong fluctuations.

At finite x0, the integral in eq. (3.9) does not need to converge at x= −∞, and
values of w2 less than �k are possible. In Section 3.2.5 (Note 5), we show that (i) the
lead of distribution ϕ xð Þ is much longer than the wave width, x0j j � w, and (ii) in the
interval x0 < x< x0j j, a small edge region, x− x0 ~ δx � x0j j, determines the integral in
x′ in eq. (3.9). Therefore, in this interval of x, eq. (3.9) takes a Gaussian form

ϕ xð Þ= 1

w
ffiffiffiffiffi
2π

p e
− x+ bð Þ2

2w2 , w2 < �k, x0 < x< x0j j (3:15)
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b
ffiffiffiffiffi
2π

p

w

ðx
x0

dx′ρ x′
� �

e
x′+ bð Þ2
2w2 = 1 (3:16)

where the second equation follows from the normalization condition
Ð
dx ϕ xð Þ= 1

and eq. (3.9).
Therefore, w2 is the population variance of k, which can be lower than the

Poisson value �k. In other words, the distribution of k across genomes is narrower
than the Poisson distribution, since genomes are not fully independent and compete
for fitness. We have already seen this effect in Chapter 2 for asexual populations.

Substituting eqs. (3.15) into eq. (3.8) and integrating over x1 and x2, for the re-
combination gain function we obtain

ρ xð Þ= 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π �k +w2
� �q e

− x+ bð Þ2
�k+w2 , �k >w2 (3:17)

which is valid at any x. We can use asymptotics (3.15) for ϕ xð Þ, because the inte-
grals in x1 and x2 in eq. (3.8) converge at x1 2ð Þ ~w �j jx0

�� �� (Section 3.2.5, Note 5).
The edge location x0 can be linked to the value of w from the normalization

condition for fitness density, eq. (3.16). Substituting eq. (3.17) into eq. (3.16), expand-
ing the logarithm of integrand in eq. (3.16) linearly in x′− x0 (Section 3.2.5, Note 5),
and integrating in x′, we obtain

x20 ≈ �k
2p 1+ pð Þ
1− p

log
s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k 1− pð Þ

q
r

2
4

3
5, r � s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k 1− pð Þ

q
(3:18)

where we have neglected logarithmic factors in the argument of the large logarithm.
Substituting eq. (3.17) into eq. (3.9) yields

ϕ xð Þ= b

�k
3
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π 1+ pð Þp e

− x+ bð Þ2
2�kp

ðx
x0

dx′e
1− pð Þ x′+ bð Þ2
2p 1+ pð Þ�k (3:19)

p≡
w2

k
, 0< p< 1 (3:20)

We note eq. (3.19) represents a generalization of the Gaussian in eq. (3.15) and ap-
plies at any x> x0. In the four intervals of x, function ϕ xð Þ has the form
(i) x< x0, ϕ xð Þ=0;
(ii) 0< x− x0 � δx (Section 3.2.5, Note 5), ϕ xð Þ∝ x− x0 from eq. (3.19)
(iii) x0 < x< x0j j and x0j j− xj j � δx, ϕ xð Þ is given by the Gaussian in eq. (3.15);
(iv) x> x0j j, ϕ xð Þ∝ ρ xð Þ in eq. (3.17).
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Deterministic equation (3.18) relates the lead x0j j, to the standard deviation of allele
number, w, and hence to the evolution speed, eq. (3.11). In order to obtain a second
equation for x0j j and w, the stochastic dynamics at the edge has to be considered, as
follows.

3.2.3.3 Stochastic high-fitness edge
Figure 3.2 illustrates how the extension of the high-fitness edge with time occurs.
As in Chapter 2, we consider two genetic variants. The minority variant is a new
clone forming near the wave edge, which has an effective selection coefficient,
S= s x0j j. The rest of population is the majority variant. A new genome is created be-
yond the fitness edge by recombination, at x< x0. The rate per generation is, by the
definition, rNρ xð Þ, where ρðxÞis given by eq. (3.17). As already mentioned, in large
populations, the lead is relatively long, x0j j � w. Most beyond-edge genomes are
born in a narrow interval of x with a width Δ given by

Δ~
d log ρ
dx

����
����
− 1

x= x0

~ �k= x0j j � x0j j (3:21)

The value

G ~ rN ρ x0ð ÞΔ
is the total generation rate of these recombinants. After a recombinant is born, it
will probably become extinct in a few generations due to random drift. However, if
it is lucky to grow into a lineage above stochastic threshold fN ~ 1=S, which takes
place with a small probability ~S, the lineage will be established and extend the
wave forward. The mean time to a successful clone is

tseed ~ 1= Gsð Þ ~ 1

Nsr
ffiffiffi
�k

p ex
2
0= w2 + �kð Þ (3:22)

where we have substituted eq. (3.21) for Δ and eq. (3.17) for ρ x0ð Þ into the expression
for G. From the consistency condition for the evolution speed, the time to such a
successful recombinant is the same as the time in which the traveling wave moves
by interval Δ, as given by

tseed ~
Δ
V

~
1

x0j jsp (3:23)

where we used eqs. (3.11) and (3.20) for V and eq. (3.21) for Δ. From eqs. (3.22) and
(3.23), we obtain the desired second equation for x20

x20 ≈ �k 1+ pð ÞlogNr
p

(3:24)
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A logarithmic factor in the argument of the large logarithm was neglected. Solving
eqs. (3.18) and (3.24) together for x20 and p, we arrive at the desired equation (3.5).

The above derivation applies only if the total number of new recombinants per
generation is large, Nr � 1. Indeed, at Nr ~ 1, from eqs. (3.24) and (3.21), we obtain
x20 ≈ �k and Δ~ x0j j, so that our assumptions that the lead is long and that new
clones are generated in the vicinity of the high-fitness edge are no longer valid. In
this regime, the wave has to stop. Indeed, if a new clone is generated far ahead of
the wave, the wave becomes extinct due to fitness difference. The entire population
becomes now one clone of identical sequences. Because recombination cannot
make any new genomes, evolution comes to an end, until new mutations are pro-
duced. We conclude that, in the absence of mutation, there exists a critical point in
product Nr below which evolution is not possible. In agreement with this, eq. (3.5)
extrapolates to V =0 at this point.

3.2.4 Monte-Carlo simulation

To test and illustrate stochastic mechanics, we discuss the computer simulation
used in Figures 3.3 and 3.4. The algorithm developed in Rouzine and Coffin (2005)
considered the same model of population and monitored dynamics of discrete fit-
ness classes k and keeps the frequency of deleterious alleles k=L to be small.
Effectively, this corresponds to a simulation where genomes in each class are ran-
domized each generation to kill inter-genome correlations and make distribution of
alleles random in a genome with given k. This matches the model of recombination
to the analytic model, with one correction. To exclude self-recombination of a identi-
cal sequences, self-recombination of each fitness class is prohibited. This introduces
an error, because a fitness class can have many different sequences that could recom-
bine and produce high-fit progeny. However, because the width of the wave w is
large above the critical point in Nr, eq. (3.1), the error is modest.

The simulation shows that the results obtained for the wave should be inter-
preted in the statistical sense. Unless Nr is very large, the wave in each realization
consists of rare fitness classes with sparsely situated values of k within an ensem-
ble-averaged envelope (Figure 3.4). This is because most fitness classes represent
separate lineages born from infrequent recombinants.

The probability of having two clones within a class is 1=Δk, where Δk � 1 is
the average distance between adjacent classes. Therefore, the exclusion of the self-
recombination of a class is equivalent to the exclusion of clonal self-recombination.
In contrast, at very large N, the fitness classes are densely packed at adjacent integer
values of k. The self-recombination correction, in this case, is inaccurate, because
it throws away productive recombination between many clones within a class;
however, this is not very important, because the correction is small anyway: the
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probability of intraclass recombination is ~1=w � 1. Therefore, this approximation
always works, at any population size.

The simulation stores the integer sequence number n k, tð Þ for each class k at
generation t, where n k, tð Þ=Nf k, tð Þ. When a generation changes, the mean value
hn k, t + 1ð Þi is calculated for all k = 1, . . . , L, from the deterministic equation (3.3). The
recombinant generator function R k, tð Þ, given by the discrete version of eq. (3.4), is cor-
rected for the absence of recombination of each class with itself and re-normalized
back to 1. All classes with mean size hn k, t + 1ð Þi smaller than a set low threshold,
nemp � 1, are emptied in the next generation. To make stochastic simulation faster,
new sizes of nonempty classes, n k, t + 1ð Þ, are generated by one of the two methods:

Method 1. If the mean size of a class, hn k, t + 1ð Þi, is smaller than a set high thresh-
old nstoch � 1, and the total frequency of such groups in a population is less than a
set value ftot < 1, these classes are treated as stochastic. Their numbers n k, t + 1ð Þ are
generated with the use of random generator to obey Poisson distribution with the
calculated averages hn k, t + 1ð Þi. The remaining large groups are treated as deter-
ministic, and their size is calculated as n k, t + 1ð Þ= hn k, t + 1ð Þi.
Method 2. If the total frequency of stochastic classes exceeds a set threshold ftot, all
nonempty classes are calculated stochastically from multi-nominal random distri-
bution, as follows. N random points are generated within the interval 0, 1½ �, which
is then split into subintervals corresponding to classes k with widths proportional
to hn k, t + 1ð Þi. The new numbers n k, t + 1ð Þ are set to be the numbers of these ran-
dom points within interval k.

Method 1 greatly enhanced the speed of the algorithm, without a significant
loss in accuracy, at �k < 500 and arbitrarily large N. Both methods produced very
similar results when thresholds in Method 1 varied within intervals: nemp within
10− 4 − 10− 5, nstoch within 500− 1, 000, and ftot below 0.2 (Rouzine and Coffin, 2005).

For Monte-Carlo run, the time dependence of wave center �k tð Þ, the logarithm
of evolution speed log V tð Þ½ �= log �k tð Þ− �k t + 1ð Þ� �

, the normalized average variance
w2 tð Þ=�k tð Þ, and the centered wave profile ϕ xð Þ= n k, tð Þ=N, where x= k− round �k tð Þ� �
were calculated. The last three values were averaged over the time interval where
�k0 < �k tð Þ< 1.2 �k0, where �k0 denotes the allele number of sampling, and then over
10− 40 random computer runs with a different initial seed of random generator
(Figure 3.3). The combined averaging over time and realizations ensured a small
statistical error for the estimate of hpi (see vertical bars in Figure 3.3). The analytic
shape of the wave, eq. (3.15), was used as the initial condition to minimize transi-
tional time to the quasi-stationary simulated wave. Choosing the initial wave center
anywhere within (5 − 10) k0, one suppresses the residual effect of the choice of the
initial condition below the statistical error (Rouzine and Coffin, 2005).

Figure 3.4 shows some examples of simulated waves f (k, t). The log-averaged
adaptation rate Vav = ehlogVi and the wave width square w2

av =w2=�k0, scaled to their
respective independent-loci values, s�k0 and �k0, are shown in Figure 3.3 as a function
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of N and r. In accordance with the fundamental Fisher Theorem, eq. (3.11), the nor-
malized values of w2

av/�k0 and Vav= s�k0
� �

are very similar; they are also fairly close to
the analytic prediction, including The predicted critical point in Nr, where the evolu-
tion stops. The analytic dependence V versus N, eq. (3.5), is reproduced with a suffi-
cient accuracy to be practically useful. The analytic theory somewhat underestimates
the simulation result due, probably, to the continuous-in-k approximation used in
analytic formula (similar error was observed in the asexual model in Chapter 2). At
very large recombination parameters, r ~ s

ffiffiffiffiffi
k0

p
and larger, the above analytic theory

does not apply. Instead, we observe a steep rise in V from 0 to 1 when population
size crosses point N ≈ 30=r (Figure 3.3).

To conclude, we have derived an expression for the substitution rate of advan-
tageous mutations in the case of moderate-term evolution, when the initial popula-
tion has standing variation at multiple loci, and mutation can be neglected. Based
on our findings, we predict that even very small recombination alone is more effi-
cient for adaptation than mutation alone.

An important limitation of the model we considered is that it neglects with cor-
relation between genomes due to common ancestry of some loci. An appropriate
technique taking this factor into account will be presented in Section 3.4. Also,
when beneficial alleles do not pre-exist in a population, or in the long term evolu-
tion, both mutation and recombination are essential, and another approach has to
be used. Such an approach will be described in Section 3.3.

3.2.5 Approximations used

Here we will explain some approximations made in Section 3.2.2.

Note 1
In eq. (3.3), we assumed that, for all relevant k, s k − �k

�� ��� 1. Because the low-fitness
tail of distribution at large k is not important, we need to check this condition only at
the high-fit end, k − �k = x0 <0. Using eq. (3.24) for x0, we obtain the validity condition,

log Nrð Þ � 1= s2�k
� �

(3:25)

Note 2
We assumed in eqs. (3.2) and (3.3) that f k, tð Þ can be replaced with a function con-
tinuous in t, which implies V d logϕ=dxj j � 1. At negative x, d log ϕ=dxj j reaches
its maximum at x= x0, eq. (3.15), where we have

V
d logϕ
dx

����
����
x0

≈ ps�k
x0j j
w2 ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k log Nrð Þ

q
(3:26)
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where we used eq. (3.5) for V and w and eq. (3.24) for x0. We arrive at the validity
condition in eq. (3.25).

Note 3
When deriving eq. (3.5), the traveling wave was assumed to be narrow compared to
its distance from the point k =0, as given by x0j j � �k. Using eq. (3.24) for x0j j, the
validity condition becomes

log Nrð Þ��k (3:27)

Note 4
When calculating ∂f=dt in eq. (3.3) to obtain Eq. (3.7), we neglected the implicit de-
pendence of ϕ on t. This action is justified, if

dw
dt

∂ϕ
∂w

����
����� V

∂ϕ
∂x

����
���� (3:28)

From eqs. (3.20) for w2 and (3.5) for p, we get

d w2ð Þ
dt

= pV + �k
dp
dt

≈ pV (3:29)

From eq. (3.15), we have

∂ϕ
∂x

= −
x
w2 ϕ,

∂ϕ
∂w

= −
2x2

w3 ϕ (3:30)

Substituting eqs. (3.29) and (3.30) into eq. (3.28) and using p=w2=�k, eq. (3.28) a
form xj j � �k. It is sufficient that this condition is valid at x= x0, which is equivalent
to the condition that the wave is narrow, eq. (3.27).

Note 5
When deriving eq. (3.15), we assumed that x0j j � w, that is, the lead is longer than
the width of distribution. Using eqs. (3.18) and (3.5), we have

x0j j=w ~ log1=2 s=rð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k 1− pð Þ

q� �

which is much larger than 1, if

1− p � r=sð Þ2=�k.
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Using eq. (3.5) for p, the validity condition takes a form

r � s
ffiffiffi
�k

p
, log Nrð Þ � s

ffiffiffi
�k

p

r

 !2

log
s
ffiffiffi
�k

p

r
(3:31)

Over most of the interval xj j< x0j j, the integral in x′ in eqs. (3.9), (3.16), and (3.19)
was assumed to be contributed from a narrow interval, x′≈ x0. To conform it, at
x0j j− xj j � δx, where

δx ~ p�k= 1− pð Þ x0j j½ �

the integral in eq. (3.19) is mostly contributed from a region x′− x0 ~ δx. Using eq. (3.18),
we have δx= x0j j~ w=x0ð Þ2 � 1, which, again, yields the conditions in eq. (3.31).

3.3 Stationary evolution with recombination and mutation

In the previous section, we considered the case of evolution with pre-existing genetic
variation and no mutation. Here, we will consider another scenario (Neher et al.,
2010), where beneficial alleles are introduced all the time by new mutation events
and form a stationary traveling wave, acting in accord with recombination. The sta-
tionary process is established after a sufficiently long time when initial diversity and
recombination are no longer sufficient to maintain steady evolutionary process and
stationary cooperation between new mutation and recombination is required.

When deleterious mutations can be neglected, which is the case in a sufficiently
large population and not too close to fitness maximum (Chapter 2), the rate of adapta-
tion is the product of the total rate of beneficial mutations NUb, the magnitude of
their beneficial effect in fitness, s, and their fixation probability. As in Chapter 2, we
assume that the fixation probability is the probability that the allele becomes estab-
lished, that is, that its lineage grows to sufficiently high levels in a population and
will not become extinct due to stochastic fluctuations. In a population where all indi-
viduals have exactly the same fitness, a beneficial mutation with selective advantage
s has the probability of establishment, Pe ≈ s and 2s in the continuous and discrete
generation models, respectively (Moran, 1958). In a population with fitness variance,
however, a new beneficial mutation can occur on different genetic backgrounds, so
that its establishment probability will be greater if the genetic background is better-fit.
But even highly-fit genotypes are soon outcompeted by the other beneficial mutation
clones (clonal interference, Chapter 2). To avoid the fate of extinction, the descend-
ants of the allele have to jump to higher backgrounds by the means of recombination
(Rice, 2002) (Figure 3.5). As a result, the probability of survival for a new lineage de-
creases as the average adaptation rate increases, because it is harder for the moving
allele to keep up with evolving population. At the same time, the speed of adaptation
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(the speed of fitness gain) is limited by the establishment probability of new alleles.
Therefore, the speed and the establishment probability have to be determined from
two self-consistent conditions (Neher et al., 2010), as described further.

3.3.1 Model and approach

As in the previous sections, we consider a population of N haploid individuals, each
with its own fitness X. We assume that each mutation makes the same small change
in the fitness, s. If a genome is viewed as the best-fit sequence with k deleterious
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Figure 3.5: To become established, a new beneficial allele has to keep recombining with a fitter
genetic background. (A) Fitness distribution of the population f x, tð Þ(blue) moves toward higher
fitness values X with velocity v =σ2. The new mutation born into a genome with fitness X0 must
jump between genomes (orange bars) to keep up with the moving fitness distribution. The
mutation is established if at least one lineage survives indefinitely. (B) Diagram of clones for the
case when mutation becomes extinct, that is, all lineages die out. The probability of establishment,
w X, tð Þ, depends on the fitness X of the background genome and is found from eq. (3.34) (based
on Neher et al. (2010)).
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alleles, as we did in Section 3.2, we can write X = − sk. However, what follows does
not depend on the choice of the reference sequence, hence, we will use the later
notation X rather than k. As in the previous sections, we assume that a wide spec-
trum of genome fitness values is present, characterized by the fitness variance σ2 of
the population related to the variance of mutation load, w2, as given by σ2 = swð Þ2.
The number of progeny per individual is random and obeys Poisson distribution
with the average rate 1+X − �X tð Þ, where �X tð Þ is the mean fitness in the population,
and X − �X tð Þ � 1. The death rate is set to one. In addition to asexual reproduction,
an individual can recombine with a probability r with another individual. As previ-
ously, we assume that the number of crossovers sites M is large, M � 1. We also
assume, that the progeny fitness distribution obeys a Gaussian function centered at
the average of the fitness values of the two parents and has variance σ2=2 (Bulmer,
1980).

We must warn the reader that this model of recombination, used in the original
paper (Neher et al., 2010), implicitly assumes that sequences are very strongly cor-
related and underestimates the typical fitness difference between progeny and pa-
rents. In the previous section, we studied an opposite case and assumed that
sequences are not correlated at all. Hence, the variance of progeny fitness was
much larger, s�X=2, where �X = − s�k and �k is average number of deleterious alleles at
variable (segregating) loci. Our model in Section 3.2 overestimated the effect of re-
combination. An intermediate model describing sequence correlations more realis-
tically than these two extreme approximations will be considered in Section 3.4 (in
the absence of mutation).

We note that σ2 is proportional to the diverse allele number. Hence, σ2 reflects
the magnitude genetic variation in the adapting population. It is not a fixed param-
eter of the model, but is calculated self-consistently later, as a function of model
parameters.

The recombination process is characterized by outcrossing probability r and the
distribution of offspring fitness Y, given that a parent with fitness X mated with a
random member of the population, denoted as K X,Y, tð Þ. This function is connected
to our recombination generator, R k, tð Þ in Section 3.2, as

R Y, tð Þ=
ð
dX f X, tð ÞK X,Y, tð Þ

Because it is the distribution of offspring fitness, the recombination ‘‘kernel’’ is nor-
malized as 1=

Ð
dX K X,Y, tð Þ.

Further we assume that different loci are in linkage equilibrium, so that recom-
bination does not change the fitness distribution f X, tð Þ, as given by

f Y, tð Þ=
ð
dX f X, tð ÞK X,Y, tð Þ (3:32)
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which is equivalent to R k, tð Þ= f k, tð Þ in eq. (3.3). This corresponds to the case p= 1 in
Section 3.2. Indeed, in the stationary case with mutation, as we show later, the speed
of the wave is limited by the establishment of new mutations and not by global link-
age disequilibrium, p< 1, as it was in the standing-variation model, eq. (3.3).

According to our recombination model, during mating, two parents are re-
placed with two offspring. However, there is no need to follow both offspring, be-
cause a rare allele jumps only to one. Hence, we can focus on that lineage alone
and ignore the other offspring. Mating between two individuals with the same rare
allele is very unlikely and can be safely neglected. Also, as in the previous model,
we assume that recombination is not too infrequent, r � s.

3.3.1.1 Branching process and establishment probability
The probability that a new beneficial allele survives and establishes in the popula-
tion is the limiting factor of adaptation. This rare establishment occurs, and the fate
of allele is sealed, when the number of copies of the new allele is much larger than
unit but much smaller than the total population size, N. In this regime, the stochas-
tic dynamics of the new lineage can be described by a branching process that
includes the factors of stochastic birth, death, and random recombination events
that can move the allele between genomes.

The stochastic dynamics of the lineage is heavily influenced by the presence of
average fitness constantly increasing because of beneficial alleles fixing at the
other loci. The mean fitness, �X tð Þ, increases with rate v=d�X tð Þ=dt = σ2, where σ2 is
the fitness variance. The trajectory of a beneficial allelic lineage between genomic
backgrounds in an adapting population is depicted in Figure 3.5. To be established,
the allele has to keep jumping to better-fit backgrounds (Rice, 2002).

The establishment probability at time t −dt of descendants of a genome of fit-
ness X, defined as w X, t −dtð Þ, is related to the establishment probability at later
time t:

w X, t −dtð Þ=w X, tð Þ−dt 1+B X, tð Þ+ r½ �w X, tð Þ

+ dt B X, tð Þ 1− 1−w X, tð Þð Þ2
h i

(3:33)

+dt r
ð
dy K X,Y, tð Þw Y, tð Þ

(Barton, 1995), where B Xð Þ= 1+X − �X is the birth rate, and we included death rate 1.
After a division, each of the two offspring has probability 1−w of extinction. Hence,
the probability that, at least, one of these offspring will be fixed is 1− 1−w X, tð Þð Þ2,
see the second line in eq. (3.33).
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If an allele with fitness effect s is added by mutation on a genomic background
with fitness X, B Xð Þ above is replaced with

B Xð Þ= 1+X − �X tð Þ+ s

The adaptation process represents a traveling wave with the velocity v= d�X=dt. As
in Section 3.2, we assume that the profile of the fitness distribution f X, tð Þ around
mean �X does not fluctuate much between realizations, and that that the distribution
has a Gaussian shape, as in Section 3.2. We will not need to consider the edge of
f X, tð Þ this time, since the stochastic edge will naturally enter through establish-
ment probability, w x, tð Þ.

In a traveling-wave solution, w x, tð Þ depends on time only through �X tð Þ, and we
center fitness at �X tð Þ= vt + const, introducing x≡X − �X tð Þ, B= 1+ x+ s, and seek a so-
lution of the form

w xð Þ=w X − vtð Þ=w x, tð Þ
In these terms, eq. (3.33) simplifies to

v
dw
dx

= x+ s− rð Þw xð Þ− 1+ x+ sð Þw2 xð Þ+ r
ð
dy K x, yð Þw yð Þ (3:34)

At small fitness differences, s � 1, selection is important only on timescales much
longer than the time between generations, t � 1. In this case, term x+ s in the prefac-
tor of the quadratic term is negligible, and eq. (3.34) simplifies to (Neher et al., 2010)

Ψ w xð Þ½ �≡ v
d
dx

− x+ r
� �

w xð Þ− r
ð
dy K x, yð Þw yð Þ

= sw xð Þ−w2 xð Þ (3:35)

Here we introduce linear operator Ψ which will be useful later on. Let us examine the
limits of this expression at different outcrossing rates r. In the limit of very high r, we
will obtain further that the left-hand side of eq. (3.35) becomes zero, and we have
w xð Þ= s. This is the classical one-locus result in the absence of linkage in the genome.
In the general case of intermediate r, the establishment probability of a new mutation
that can arise in any individual, Pe, is the population average

Pe ≈
ð
dx f xð Þw xð Þ (3:36)

f xð Þ= 1ffiffiffiffiffi
2π

p
σ
e− x2= 2σ2ð Þ

Here f xð Þ is the centered fitness distribution of genomes with p= 1 (see Section 3.2).
In other words, the long-scale linkage of alleles that made the values of k in differ-
ent genomes correlate and determined the dependence of speed in Nr in the
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previous model, is assumed to be absent in this model, since the dependence is
driven by the changes of establishment rate with Nr and is much sharper. Indeed,
as will become later on, all the important changes in the speed of adaptation found
below occur at p≈ 1.

Please note that the left-hand side of eq. (3.35) vanishes after the population aver-
aging with the Gaussian factor f xð Þ, eq. (3.36), as is easy to verify by using v= σ2 and
eq. (3.32). This property originates from the above approximation that linkage disequi-
librium is absent, eq. (3.32). Hence, after averaging eq. (3.35) over population, we getð

dx f xð Þ sw xð Þ−w2 xð Þ� �
=0 (3:37)

When combined with eq. (3.36), eq. (3.37) provides an alternative expression for the
establishment probability:

Pe ≈
1
s

ð
dx f xð Þw2 xð Þ (3:38)

Together with eq. (3.35), this equation describes the ‘‘surfing’’ of a beneficial allele
between genomes illustrated in Figure 3.5.

The recombination kernel K x, yð Þ depends on the recombination model (Neher
et al., 2010). For the model we have chosen here, which is suitable for both viruses
and dominance-free segments of genomes of higher organisms, the fitness of the
progeny of two parents with fitness x and z is Gaussian distributed with the average
of x+ zð Þ=2 and the variance of σ2=2. Fixing fitness x of one parent and averaging
over fitness z of another, results in the recombination kernel

K x, yð Þ=
ffiffiffiffiffiffiffiffiffiffi
2

3πσ2

r
e
−
2 y− x

2½ �2
3σ2 (3:39)

3.3.2 Main results

3.3.2.1 Establishment probability and the speed of adaption
In the following section, we solve eq. (3.35) and obtain the expression for the aver-
age fixation probability, Pe, of a beneficial mutation. Then, we use it to calculate σ2

in a self-consistent manner. In the limit of interest, r � s, the final result has a form
(Neher et al., 2010)

Pe =
σ3log cr=sð Þ

sr
ffiffiffiffiffi
2π

p e− σ2=2r2ð Þlog2 cr=sð Þ, s � r � σ (3:40)

Pe = s 1−
4σ2

r2
+ � � �

� �
, r � σ (3:41)
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where c is a numeric coefficient on the order of 1. This expression is proportional to
the product of σ and a function of r=σ and 1=σ. [Note that in the limit of very small
s, s � exp − cr2=σ2ð Þ, the expression in eq. (3.40) breaks down. This is unlikely to
be relevant in practice.]

In the limit of small r, the fixation probability, eq. (3.42), decreases very rapidly
(exponentially) with decreasing r. This is because mutations occurring in individu-
als located in the high-fitness tail of the distribution have an exponentially larger
probability of being fixed than mutations in the most of the fitness distribution;
such rare mutations dominate the average fixation probability in the population. At
large r, eq. 3.41, the initial genetic background plays only a minor role, since the
allele hops quickly between genomes as compared to the speed of the wave. New
alleles emerging in any fitness background have a high chance of fixing. Therefore,
for large r, the result for Pe is close to the one-site result: Pe ≈ s.

The expressions for Pe presented above depend on the variance in fitness σ2. At
a small mutation rate, according to the Fischer theorem, the variance is equal to the
adaptation speed, v. The latter, in turn, is given by the product of the rate at which
new beneficial mutations alleles enter the population, Ub, their fitness effect s, and
the fixation probability Pe σð Þ, as given by

v= σ2 =NUbsPe σð Þ (3:42)

The adaptation rate can be obtained by solving for σ the self-consistency condition,
eq. (3.42). Substituting our result for Pe from eqs. (3.40) and (3.41) into (3.42) and
omitting logarithmic factors in the arguments of large logarithms, we find

v≈
2r2

log NUbð Þ
log2 r=sð Þ , 1 � r

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NUb

log NUbð Þ

s

NUbs2 1−
4NUbs2

r2
+ � � �

� �
,

r
s
�

ffiffiffiffiffiffiffiffiffi
NUb

p

8>>>><
>>>>:

(3:43)

As in the previous model in Section 3.2, evolution rate v is not proportional to the
total mutation rate in a population NUb, at low r and sufficiently large population
sizes, N. Rather, evolution rate is proportional to the logarithm of NUb. This is the
standard consequence of clonal interference of mutations arising at a large number
of evolving loci. Therefore, as in the asexual case in Chapter 2, due to clonal inter-
ference, only a tiny fraction of the beneficial mutations are able to fix in a popula-
tion. The tiny fixed fraction becomes larger as recombination rate increases. As a
consequence, the adaptation rate increases as r2 log NUbð Þ, until it crosses over to
the limit of independent loci, v=NUbs2.
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3.3.3 Computer simulation

In our analysis of the establishment probability of a beneficial mutation, we have
made several approximations, starting from the recombination model. To compare
the analytic results to simulations of a population of individual genomes, (Neher
et al., 2010) used a discrete generation algorithm, as follows.

Each individual produces a Poisson-distributed number of offspring with average
number exp X − �X

� �
. The population size, N′, is kept approximately constant with an

average of N by adjusting the overall rate of replication with factor α= 1−N′=N
� �

log 2.
Each individual is represented by a binary string, where each bit represents one locus.
Recombination is implemented, as follows. Each generation, offspring is randomly cho-
sen to be asexual with probability 1− r and sexual with probability r. The asexual part
is passed to the next generation. The sexual individuals are matched in random pairs,
and their loci are chosen randomly to produce haploid progeny. To optimize per-
formance, whenever a locus became monomorphic because of fixation or loss of an
allele, a mutation is introduced in a random individual. This technique allowed to
keep as many polymorphic loci as possible. However, beneficial mutation rate per ge-
nome Ub becomes a variable quantity, which increases with L and decreases with r
(Figure 3.6A, inset). The infusion rate of beneficial mutations, NUb, is determined by
measuring the average rate at which the new mutations are introduced, which is set in
simulation to be the sum of the extinction and fixation rates.

The average probability of establishment, Pe = hwi, is shown in Figure 3.6A as a
function of the outcrossing rate, for different values of L (roughly proportional to
NUb, see the inset). It is small at small r but increases sharply at high r and satu-
rates at Pe = 2s, the single-locus result for a discrete-time process. The increase of Pe

starts at larger r for larger NUb, which confirms our previous expectation that the
limit of frequent recombination is reached when r much larger than s. The agree-
ment between a numerical solution of the branching process equation, eq. (3.35),
and the stochastic simulation improves at high NUb, confirming that the approxi-
mations are valid, at least, for large populations.

The error of the analytic result is quite large at small r. A possible reason for the
large error is that, as we mentioned earlier, the chosen approximation of recombi-
nation with offspring fitness variance σ2=2 underestimates that variance. The algo-
rithm does not use this approximation but faithfully recombines random segments
of genomes. A more accurate treatment of recombination effect is considered in
Section 3.4 (in the absence of mutation).

The establishment probability w xð Þ of a new allele born into fixed background x
obtained from simulations is compared to the predictions based on eq. (3.35) in
Figure 3.6B. At very large recombination rates, wðx) is weakly sensitive to the back-
ground fitness, so that all new alleles have the same, nonexponentially small proba-
bility ~s, to establish. With decreasing r=σ, however, the dependence of the fixation
probability on x becomes stronger and stronger, and only new alleles generated on
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high fitness backgrounds have a chance. Note that at r=σ ~ 1, simulated w xð Þ decays
less rapidly at small x than predicted by eq. (3.35), pointing to the fact that the ana-
lytic model underestimates the effect of recombination. The likely reason for that and
for the discrepancy at small N are very strong inter-sequence correlations built into
the recombination model. The actual kernel is broader in progeny fitness.
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Figure 3.6: Fixation probability in a population with selection, recombination, and mutation.
(A) The average fixation probability scaled to its value in the frequent-recombination limit, as a
function of recombination rate per genome, r, for three different genome sizes L (shown).
Parameters: s=0.002, N= 20,000. Inset: The rate of beneficial mutations per genome per
population, Ub, as a function of r (see main text). The scaled fixation probability in the simulation
(solid lines) is calculated as v= 2NUbs2ð Þ and compared to the analytic results for the scaled
establishment probability Pe=s (dashed lines). (B) Pe=s as a function of the scaled relative fitness
of genome, x=s. The solid lines are simulation results for w xð Þ= 2sð Þ for different values of r=σ
(shown). Fixed parameters: L=6400; r =0.512,0.128,0.064,0.032. The dashed lines are
predictions for w xð Þ=s obtained by numerical solution of eq. (3.35) (based on Neher et al. (2010)).
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3.3.4 Analysis of establishment probability

Here we derive the announced results in eqs. (3.40), (3.41), and (3.43). We have to solve
eq. (3.35). Consider, first, the interval of moderate recombination rate, s � r � σ.
We will analyze eq. (3.35) in different intervals x. At very large positive x− r, we
can neglect with all terms but two, and the equation becomes x− rð Þw xð Þ≈w2 xð Þ with
solution w> xð Þ= x− r (Figure 3.7). In this regime, w xð Þ does not need recombination
jumps, but only the clonal growth reduced by r due to recombination from the clone.
Establishment occurs by clonal expansion not dependent on the rest of population. In
the opposite case of small x, w xð Þ is so small that the quadratic term and sw(x) can be
neglected and eq. (3.35) becomes

v
d
dx

− x+ r
� �

w< xð Þ− r
ð
dy K x, yð Þw yð Þ=0

x< xc =σθ (3:44)

In this regime, the only way for an allele to become fixed is to recombine onto better
backgrounds. We demonstrate further that the transition from w< xð Þto the saturated
behavior at large x,w> xð Þ, happens in a narrow interval around point x= xc ≡σθ,
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–4 –2

Ge
no

m
e 

fre
qu

en
cy

, f
(x

)
Es

ta
bl

is
hm

en
t p

ro
ba

bi
lit

y, 
w(

x)

0

~ 1/Θ

f(x)
w(x)

2 4 6
Θ–

Figure 3.7: Schematic plot of the establishment probability, w xð Þ. Purple: the fitness distribution
f xð Þ of the population as a function of scaled relative fitness x=σ,where σ =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var x½ �p

is the
distribution width. Red: establishment probability, w xð Þ, for r � σ. At small x, w xð Þ is small and
increases sharply proportionally to eðx�rÞ2=ð2σ2Þ. At larger x beyond a transition point, σθ, the
quadratic term in eq. (3.35) becomes important, producing the one-locus result, w xð Þ≈ x. The width
of the crossover region is of the order of σ=θ (based on Neher et al. (2010)).
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which plays the role analogous to the leading edge of the wave discussed in the previ-
ous Sections, even though its biological meaning is different.

At intermediate x, 0< x< σθ, the establishment probability w< xð Þ increases
steeply with x (but the quadratic term w2 still stays negligibly small). Because individ-
uals in this interval of x are much better-fit than the average individual, typically,
recombination generates offspring, which are less-fit that the parents. Therefore,
w< xð Þ is dominated by the first term in eq. (3.44), and the recombination term in
eq. (3.44) is a small correction. The solution of eq. (3.44) is a Gaussian

w< xð Þ=ϕ xð Þ eðx− rÞ2=ð2σ2Þ

where ϕ xð Þ is a slowly varying function.
Note that the amplitude of w< xð Þis left undetermined by eq. (3.44), because it is

uniform. Hence, the location xc = σθ of the crossover is not determined either. To
determine these values, and to make sure that w xð Þ satisfies the entire eq. (3.35), we
will use eq. (3.37) as an additional constraint. This equation involves two first mo-
menta of w xð Þ averaged with fitness distribution f xð Þ. The first moment is domi-
nated by intermediate x, because f xð Þw xð Þ decreases with x. The second is mostly
contributed from a narrow peak in x at the crossover point x= σθ. The condition
(3.37) then becomes a relation between Pe and θ

sPe ≈
σ θffiffiffiffiffi
2π

p e�θ2=2 (3:45)

It is convenient to rescale the variables as

x′= x
σ
, r′= r

s
, s′= s

σ
, w′= w

σ
(3:46)

and use a linear transform

Ω zð Þ≡ 1ffiffiffiffiffi
2π

p
ð∞
−∞

dx′e− x′− zð Þ2=2w′ x′� �
(3:47)

In this notation, the fixation probability can be represented as Pe = σΩ 0ð Þ. By using
the transform on eq. (3.35) we obtain an equation for Ω zð Þ

Λ Ω zð Þ½ �≡ 1ffiffiffiffiffi
2π

p
ð∞
−∞

dx′e−
x′− zð Þ2

2 Ψ w′ x′
� �� �

= s′Ω zð Þ− 1ffiffiffiffiffi
2π

p
ð∞
−∞

dx′e−
x′− zð Þ2

2 w′ x′
� �� �2

(3:48)

The left-hand side defines a linear operator Λ acting on Ω zð Þ, which will be found
later, and operator Ψ defined in eq. (3.35). The integral of w′ x′

� �� �2
in eq. (3.48) is
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dominated by a narrow peak near x′c = θ and can be evaluated using approximation
w′≈ θ:

Λ Ω zð Þ½ �≈ s′Ω zð Þ− θffiffiffiffiffi
2π

p e− θ− zð Þ2 = s′Ω zð Þ− s′Ω 0ð Þeθz − z2=2 (3:49)

were we used eq. (3.45) to obtain the second equation. The continuity condition
that the solution w< x′

� �
joins smoothly to w> x′

� �
implies that its linear transform

Ω zð Þ does not diverge at any z and is an analytic function of z. Now we need to find
Λ Ω zð Þ½ �.

It is useful to recall, at this point, that each offspring contains, on the average,
a half of each parental genome. The parent carrying the new allele pairs with a
random member of the population, which is likely to have the average fitness.
Hence, after recombination, the average fitness of the offspring is at a half dis-
tance from the average population fitness compared to that of the parent. As a re-
sult of this connection between parents and offspring, operator Λ links Ω zð Þ to
Ω zð Þ=2, as given by

Λ Ω zð Þ½ �= r′− z
� �

Ω zð Þ− r′Ω z=2ð Þ= s′Ω zð Þ− s′Ω 0ð Þ eθz − z2=2 (3:50)

where, we remind, Pe =σΩ 0ð Þ. Because we consider the case r′ � 1, we can also as-
sume z � 1. Approximating e− z2=2 ≈ 1, we can expand Ω zð Þ into a power series
Ω zð Þ= Pn=0 Ωnzn, where coefficients Ωn satisfy an equation

Ωn

Ω0
=
Yn
k = 1

1

r′− s′− r′2− k
− s′

Xn
j= 1

θ j

j!

Yn
k = j

1

r′− s′− r′2− k
(3:51)

The first term on the right-hand side contains consecutive factors that approach
1= r′− s′
� �� 1 for large n, which creates divergence in n. Therefore, it has to be can-

celed by the second term. By dividing the second product in eq. (3.51) by the first
product, the condition for convergence is that Ωn r′− s′

� �n ! 0 for n ! ∞, takes a
form

1= s′
X∞
j= 1

θ j

j !

Yj− 1

k = 1

r′− s′− r′2− k� �
≈
cs′

r′
eθ r′− s′ð ÞY∞

k = 1
1− 2− k� �

(3:52)

with c=
Q∞

k = 1 1− 2− k
� �

~ 1. The last approximate equality in eq. (3.52) is accurate
when s′ � r′ and hence r′− s′

� �
θ � 1. From eq. (3.52), for the rescaled crossover

point we obtain

θ≈
log cr′=s′
� �
r′− s′

(3:53)
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From eqs. (3.45) and (3.53), we arrive at the desired final expression for the popula-
tion-averaged establishment probability

Pe = σ Ω 0ð Þ= σ
X
n=0

Ωn =σ
log cr=sð Þ
s r − sð Þ ffiffiffiffiffi

2π
p e

− log2 cr=sð Þ
2 r − sð Þ2 (3:54)

3.4 Recombination, standing variation, and inbreeding

We return to the model with natural selection and recombination in the absence of
mutation considered in Section 2. Our intent is to include the effect of inbreeding be-
tween related individuals causing homology between genomes. We will show in this
section that, in the long term, inbreeding has a strong, adverse effect on adaptation.

3.4.1 Inbreeding slows down adaptation

As mentioned in Sections 3.2 and 3.3, the adaptation rate depends sensitively on
the model of recombination. In Section 3.2, we have considered an overly optimis-
tic model of recombination, where individual sequences with a given fitness are
not correlated (related) at all, which is correct in the short term when you start
from a diverse randomized population. In Section 3.3, we considered an overly
pessimistic model of recombination, in which sequences are strongly correlated,
and variance in offspring progeny is limited by the half variance of the genome
fitness among individuals and obtained the speed below Monte Carlo results. The
truth lies in between.

In the present section, we will develop a more realistic model of recombination
by calculating explicitly the dynamics of inter-sequence correlations (Rouzine and
Coffin 2007; 2010). Monte Carlo simulation (Gheorghiu-Svirschevski et al., 2007)
predicted that correlations due to common ancestry may be very strong for the rele-
vant range and, worse than that, they accumulate in time (Figure 3.8). The cause of
correlations is multiple mating of genomes within the limited pool of alleles, that is,
the effect of inbreeding. Correlations decrease the adaptation rate and cause progres-
sive extinction of beneficial alleles. Further, we generalize the formalism of Section 3.2
to take into account the inbreeding effect. Using the model in Section 3.2 as a starting
point, we will derive the evolution rate is a function of the current average fitness and
the model parameters (N, r, s, L). We will also obtain the clonal structure of fitness
classes and predict the fitness distribution of remote ancestors.

3.4 Recombination, standing variation, and inbreeding 131

 EBSCOhost - printed on 2/10/2023 3:21 PM via . All use subject to https://www.ebsco.com/terms-of-use



3.4.2 Model and approach

Our starting population model is similar to that in Section 3.2 (Figure 3.1). The de-
terministic bulk of fitness distribution is controlled by eqs. (3.3) and (3.4) or (3.7)
and (3.8), which take into account the effects of selection and recombination in the
absence of new mutations. These equations still predict a traveling wave with the
high-fitness stochastic edge (Figure 3.2). However, here we will take into account
phylogenetic relations between genomes which become important in the long-term
(Figure 3.8).

First, we need to re-define the distribution of recombinant offspring in fitness.
Suppose, two genomes with less-fit allele number k1 and k2, where k1 and k2 � 1,
undergo recombination. In general, allele number k of a specific progeny genome is
not a function of k1 and k2, because it depends on specific sequences and location
of crossovers points. However, if k1 and k2 are large, k1 � 1, k2 � 1, and we have
know something about the distribution of alleles within genomes and correlations
between genomes, it is possible to make a statistical prediction about the distribu-
tion of progeny recombinants in k and, hence, describe adaptation.

In Section 3.2, we considered the simplest model where genomes are unrelated
phylogenetically and alleles are distributed randomly and uniformly within each
parental genome with given allele numbers, k1 and k2, and a random half of each
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Figure 3.8: Monte-Carlo simulation with recombination of pre-existing variation and natural
selection. Curves show the trajectory of the fraction of sites identical by descent C estimated in
three independent ways against the average mutation load k (decreasing in time). The
recombination rate per genome is assumed to scale as r =N=N0 =0.5, where N0 = 104 is the
characteristic population size. The initial population has random sequences with a small frequency
of beneficial alleles at each site. Parameters are shown (based on Gheorghiu-Svirschevski et al.
(2007)).
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parent DNA goes to progeny. Then, the distribution of recombinant progeny over k

is Gaussian with the peak at k= �k ≡ k1 + k2ð Þ=2 and the variance k2 − �k
2 =d=2, where

d= �k 1− �k=L
� �

(3:55)

is the genetic half-distance between two random parental genomes. Equation (3.55)
can be derived from the fact that, in this simple model, the contributions to k from
each parents are statistically independent and obey a binomial distribution.

Now we need to generalize eq. (3.55) to account for genome relation causing
allelic correlations. For this end, we align a pair of individual genomes and define a
genome correlation measure, C, as the average fraction of sites that descend from
the same ancestors in both genomes. By the definition, correlations are absent in
the beginning of adaptation when all genomes are assumed to be unrelated, so
that, C=0 at t =0. In the process of evolution, more pairs of homologous sites be-
come related through common ancestors (Figure 3.8). New mutations in our new
model are neglected. Therefore, all homologous sites with a common ancestor must
carry alleles of the same type, the same as their ancestor. Therefore, such pairs do
not contribute the genetic distance and we have

d= 1−Cð Þ�k 1− �k=L
� �

(3:56)

Such related pairs do not contribute to the effect of recombination on fitness varia-
tion of offspring.

When C becomes close 1 (which, as we show later, happens at small recombina-
tion rates in the end of adaptation), a significant fraction of loci will be related not
only for pairs of genomes (sample size n= 2), but also across larger samples (n > 2)
and, eventually, across the entire population (n=N). We denote the frequency of these
completely correlated sites, at which the full population has a single ancestor, as Closs.
Such a all-correlated site is uniform in either the better-fit allele because the less-fit
allele became extinct, or in the less-fit allele because the better-fit allele became lost.
Monte-Carlo simulation (Gheorghiu-Svirschevski et al., 2007) in the parameter range
relevant for viruses shows that the loss of beneficial alleles is much important in the
traveling wave regime. The loss of less-fit alleles occurs only in the end when the trav-
eling wave has already arrived at its final destination (Section 3.4.7). Therefore, we
will neglect the loss of less-fit alleles.

Because the sites that lost beneficial alleles are uniformly and permanently less
fit (we assume no new mutations), do not evolve, and do not contribute to recombi-
nation, we need to exclude them from consideration by replacing L ! L− LCloss,
�k ! �k− LCloss. Then, the genetic half-distance in eq. (3.56) is generalized (Rouzine
and Coffin 2007, 2010)

d= L 1−Cð Þq (3:57)
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q≡
f1 −Clossð Þ 1− f1ð Þ

1−Closs
(3:58)

where f1 = �k=L is the less-fit allele frequency. As it is easy to show, q cannot exceed
f1 1− f1ð Þ. Thus, genetic distance d is decreased by the factor of 1−C due to pairwise
correlations and by a factor of q=½f1 1− f1ð Þ� due to N-wise correlations. We empha-
size that in our model, inter-genome correlations affect derivation only through
these two factors: in this model, correlations for samples of size larger than 2 but
less than N are not important.

3.4.2.1 Including genomic correlations
By the definition, C tð Þ is the chance that the most recent common ancestor for
two homologous sites exist within the time of evolution t, as given by TMRCA < t.
Therefore, C tð Þ monotonously increases in time as more pairs of genomes become re-
lated at an average site. We remind that initial sequences are not correlated, C 0ð Þ=0.
To describe dynamics of C tð Þ, it is convenient to introduce the density of coalescent
events in time. Term “coalescent” refers to two lineages fusing to the common ances-
tor when moving back in time. We define the effective population size for genealogy,
Nanc tð Þ, so that 1=Nanc tð Þ is the probability that two randomly sampled sequences at
a random locus descend in the previous generation from a common ancestor. In the
selectively neutral model, we would simply have Nanc tð Þ equal to the population size,
N (Kingman, 1982a, b). The factor of directional selection makes Nanc tð Þ smaller. In
these terms, the master equation for the dynamics of correlations C tð Þ has a form

dC
dt

= 1−C tð Þ
Nanc tð Þ (3:59)

In traveling wave regime, as we will show later, the coalescent density 1=Nanc tð Þ is a
function of the current state of population only, that is, it can be expressed in terms
of state variables and model parameters, but not on the initial conditions explicitly
(Section 3.4.7). Specifically, Nanc tð Þ will be expressed in terms of the current half-
distance, d tð Þ, and the model parameters (N, s, r, and L).

The average substitution rate V = − d�k=dt is shown below to be approximately

V = psd≈ sd.

which is eq. (3.5) with p≈ 1 and k replaced with d. Therefore, eq. (3.59) can be re-
written as

dC
df1

≈ −
L 1−Cð Þ
sdNanc

(3:60)

We will show later that Nanc depends on time only through d tð Þ, which, in turn, can
be expressed in terms of C, Closs, and f1, as given by eqs. (3.57) and (3.58). Therefore,
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the right-hand side of eq. (3.60) can be expressed in terms of C f1ð Þ, Closs f1ð Þ, f1 and
the constant model parameters.

We still lack an equation for Closs tð Þ. The proper treatment would be difficult,
and we take a shortcut. We will assume that Closs can be expressed directly in
terms of C alone using a relation following from a stationary neutral model. This
nontrivial approximation is justified analytically in Section 3.4.7 and tested below
in simulation. The dependence of Closs on C can be conveniently represented by an
interpolation formula (Figure 3.9)

Closs ≈ exp½− 2.53 1=C− 1ð Þ� (3:61)

Further, Closs, C, Nanc and d will be found self-consistently, as a function of average
allele frequency f1.
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Figure 3.9: The average fractions of homologous sites with a common ancestor for a pair of
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3.4.3 Main results

The results below are valid in a range of model parameters, as follows. This condi-
tions are explained as we go and summarized in Section 3.4.7: (i) To ensure the trav-
eling wave being far from the best-fit possible genome, k =0, or jx0j � kav, the total
number of loci L and the average allele number kav should be both much larger than
log Nrð Þ. (ii) At the same time, for a traveling wave to exist, the lead must be longer
than the distribution width, x0j j �

ffiffiffi
d

p
, which takes place at large population sizes,

Ns � 1 and Nr � 1. The first inequality is the condition of that selection is important
in the one-site model (Chapter 1). (iii) Triple inequality s � r � sL1=2 � log1=2 Nrð Þ.

The first inequality ensures that, in the main region of interest r ~ ½L= logðNrÞ�1=2,
the total number of recombination events per population Nr is large. Please note that
L in animals and plants is in millions, so that if s is not extremely small, the second
inequality r � sL1=2 is met even for r = 1, that is, a fully sexual population. Therefore,
our analysis, although inspired by virus evolution, is relevant for organisms as well.
The third inequality implies that the log-fitness difference between the best-fit and
the average genome, s x0j j, is smaller than 1.

As in Section 3.2, fitness distribution satisfies the wave equation (3.7), with k in
eq. (3.8) replaced by d, and the solution has a form of traveling wave with speed V
and shape ϕ xð Þ. We will obtain asymptotically accurate solutions for two important
overlapping intervals of the recombination rate (Rouzine and Coffin, 2007, 2010).

3.4.3.1 Small recombination rates
Analysis is especially simple if recombination rate is small, as given by r �
s L=log Nrð Þ½ �1=2. Then, the probability density of genomes with the less-fit allele
number k has the form of traveling wave that represents a Gaussian

ϕðxÞ=
1ffiffiffiffiffiffiffiffiffiffiffi
2πpd

p e
− x2
2pd, x> x0

0, x< x0

2
64 (3:62)

V = psd (3:63)

where p = V/sd, and d given by eq. (3.57). Note that eq. (3.62) is a straightforward
generalization of eq. (3.15) with variance w2 = pd. As in Section 3.2, the wave has a
high-fitness edge, x0 <0. Here parameter p and the edge location, x0 <0, are to be
determined from the same stochastic edge approximation as in Section 3.2. The re-
sult is the generalization of eqs. (3.5) and (3.24) for the parameter of large-scale
linkage disequilibrium, p, and lead, x0; to

p=Λ1= Λ1 + 2Λ2ð Þ (3:64)
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x20 =d
2Λ1 Λ1 +Λ2ð Þ
Λ1 + 2Λ2

(3:65)

Here we introduced two large logarithms by recursive relations

Λ1 ≡ log
Nrð1+ pÞ
4p

ffiffiffiffiffiffiffiffi
πΛ1

p � 1 (3:66)

Λ2 ≡ log
Λ2

β

ffiffiffiffiffiffiffiffiffiffiffiffi
2+ 2p
p

s !
� 1 (3:67)

and an important dimensionless parameter β which we will refer to as “the clone
decay parameter” given by

β≡
r x0j j
V

= r x0j j
psd

(3:68)

The composite parameter β, which features extensively in the story, represents the
total number of recombination events per genome during the time in which the
traveling wave moves by its lead, x0j j.

These results are valid if the recombination rate is sufficiently small, r � sw2= x0j j,
which is equivalent to condition 1− p � 1=Λ1 or to condition β � 1, which ensures
that the logarithm Λ2 is much larger than 1. The case of arbitrary β and larger r
will be considered later as well. As we mentioned, we assume a large total number
of recombination events per population per generation, Nr � 1, hence Λ1 � 1.
Note that eqs. (3.66) and (3.67) are equations for Λ1 and Λ2 which can be solved
iteratively. Because the dependence of the right-hand sides on Λ1 and Λ2 is loga-
rithmically slow, one or two iterations give a good accuracy.

The recombinant generator ρ xð Þ function introduced in eq. (3.7) is also easily
generalized from (3.17)

ρðxÞ= 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π 1+ pð Þdp e

− x2
1+ pð Þd (3:69)

Note that its width is large than that of the fitness distribution given by eq. (3.62)
due to the condition p< 1 and, unlike that distribution, does not have a cutoff at
high finesses, since it is a continuous noninteger function (Figure 3.2).

Based on eq. (3.64), parameter p slowly monotonously increases with the popula-
tion size, N, and the recombination rate, r, combined together into Λ1 ≈ log Nrð Þ. When
log Nrð Þ reaches d s=rð Þ2 ~ L s=rð Þ2, which value is much larger than 1 according to con-
dition (iii), we have Λ2 ~ 1 and p is close to 1, as given by 1− p ~ 1=log Nrð Þ. In this
case, if inter-sequence correlations were absent, the substitution rate V would sat-
urate at one-site result

V =V1 site = s kav 1− kav=Lð Þ, if C=Closs =0 (3:70)
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At smaller ln(Nr), we have p< 1 and V <V1site. Thus, factor p represents the adverse
effect of global linkage, which is partly offset by recombination, in the case when site-
site correlations are absent. Adaptation is slowed down compared to the deterministic
limit due to a combined effect of limited population size and limited recombination
rate, as follows. Firstly, due to finite population, the fitness distribution has a high-
fitness cutoff. Indeed, the lead x0j j diverges with Λ1 ! ∞, eq. (3.65). Secondly, finite
generation rate of new recombinants at the edge limits the speed of the wave.

The relative roles of global linkage p and correlations C are easy to understand
from Fisher Theorem, V = sVar k½ �, we already mentioned in previous sections. Our
problem is a particular case of it. Indeed, from eqs. (3.62) and (3.63), we have

Var½k�= pd, V = spd

so the theorem is met. If we forget about the loss of alleles for a moment, Closs =0,
we can write

Var½k�= pd = p 1−Cð Þ½kav 1− kav=Lð Þ� (3:71)

Factor kav 1− kav=Lð Þ in eq. (3.71) corresponds to the binomial distribution in the inde-
pendent-site limit, that is, for a very large recombination rate or a very large popula-
tion size. Factors p and 1−C represent the compression of the traveling wave due to
two different types of inter-genome correlations: factor p describes correlation in ge-
nome fitness − sk arising due to genome competition and finite population. Because
the fitness distribution has an edge with limited extension speed, selection squeezes
the distribution of k against the edge. As a result, Var k½ � connected to the adaptation
speed is decreased even if the genetic distance d is not affected. In contrast, correla-
tions of individual loci, represented by factor C, decrease Var k½ � by decreasing the
genetic distance. The loss of diverse sites, Closs >0, aggravates this effect. As we will
show, in the long term, site-site correlations have a much stronger adverse effect on
adaptation than global linkage has.

3.4.3.2 Large recombination rates
As we show later, all the interesting changes in correlation factor C and substitution
rate V occur at the characteristic value of recombination rate, r ~ sd= x0j j. At this
point, we have β~ 1, and parameter p is almost 1. In this region, the fitness distribu-
tion substantially deviates from the Gaussian in eq. (3.62). Hence, here we need to
use another approximation, which does not assume r � sd= x0j j, but instead treats
1− p � 1 as a small parameter. In this approximation, the fitness distribution ϕ xð Þ
has a form (see the derivation in Section 3.4.6)

ϕ xð Þ= 1ffiffiffiffiffiffiffiffi
2πd

p e− x2
2d− εβhβ uð Þ, x> x0 (3:72)
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ρ xð Þ= 1ffiffiffiffiffiffiffiffi
2πd

p e− x2
2d − 2εβhβ u=2ð Þ (3:73)

εβ = x20 d
� �

1− pð Þ�
u= x= x0j j

In the exponential in eq. (3.72), the term x2= 2dð Þ corresponds to the infinite popula-
tion (recombination rate) limit, p= 1. The term εβhβ uð Þ is not quadratic in u and,
hence, creates a non-Gaussian correction to the traveling wave. The values of
εβ, hβ uð Þ are determined by parameter β and will be calculated in Section 3.4.6. The
lead of the distribution x0j j is given by

x20 = 2d · Λ1 − 2εβhβ − 1=2ð Þ� �
Λ1 = log

Nr
2
ffiffiffiffiffiffiffiffi
πΛ1

p � 1 (3:74)

The adaptation rate is given by

V = sd 1− dεβ=x20
� �

where the second term in parentheses is relatively small, O 1− pð Þ. Thus, the de-
crease of adaptation rate V below the single-site model value, eq. (3.70), is
mostly due to the decrease in genetic distance d caused by correlations calcu-
lated further.

In the limit of small recombination rates considered before, β � 1, we have

hβ uð Þ= u2=2+ small termdiverging at u= − 1ð Þ
εβ = 4Λ2

Λ2 = logð2Λ2 = βÞ, β � 1

(3:75)

which confirms eq. (3.62) obtained in that limit. In the opposite limit β � 1, εβ is
exponentially small.

3.4.3.3 Genealogical properties
In order to calculate the dynamics of correlations due to phylogenetic relations,
we need to consider genealogy. We present an expression for the effective popula-
tion size, Nanc, which determines the density of coalescent events in time, 1=Nanc.
Consider two homologous sites in two randomly sampled genomes in current gen-
eration t. We introduce 1=Nanc as the probability of their two respective lineages in
the past cross, by an accident, in a selected generation far ago. It is given by
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1=Nanc =
ð∞
x0

dxφ2 xð ÞPcl xð Þ (3:76)

The factor φ2(x) in eq. (3.76) is the probability density that the two ancient ancestors
of two sampled sites belong to the same fitness class x. The term Pcl(x) is defined as
the probability that two genomes in fitness class x also belong to the same clone of
identical sequences. The accuracy of eq. (3.76), which implies that 1=Nanc depends
locally on time on relevant timescales, is discussed in Section 3.4.7.

The fitness distribution of a remote ancestor of a site will be obtained in
Section 3.4.6. Because that distribution is conditioned on leaving surviving progeny
in the far future, it differs strongly from the current fitness distribution, ϕ xð Þ. We will
show that the ancestor distribution function can be rescaled as

φ xð Þ≡ 1= x0j jð Þyβ x= x0j jð Þ

where function yβ x= x0j jð Þ depends on a single external parameter, β (see Figure 3.10
and Section 3.4.6).

To derive Pcl xð Þ, it is not enough to know the fitness distribution. We must learn the
fine clone structure of fitness classes, as it is done later on (Section 3.4.5). The result
has a form
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Figure 3.10: Fitness distribution of remote ancestors. Solid lines: Rescaled probability density yβ uð Þ as
a function of the scaled relative fitness of a remote ancestor, u. Values of β are shown on the curves.
The results are obtained numerically from eqs. (3.110) and (3.112) (based on Rouzine and Coffin (2007)).
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Pcl xð Þ = 1

2Λ′1
Fβ uð Þ

Fβ ðuÞ ≡ β exp − βð1+ uÞ+ εβ ð1− u2Þ=2+ hβðuÞ− 2hβð− 1=2Þ� �� �
Λ′1 ≡ log Ns

ffiffiffiffiffiffi
Λ′1

q� �
� 1

u≡ x= x0j j, − 1< u<0

(3:77)

Substituting Pcl(x) from these equations into eq. (3.76) and using the rescaled form
for the ancestor fitness distribution, φ xð Þ= 1= x0j jð Þyβ x= x0j jð Þ, we get

1
Nanc

= 1

d1=2ð2Λ′1Þ3=2
ð0
− 1

du y2βðuÞFβ ðuÞ (3:78)

Equation (3.78) represents a central result of this Section. It shows that the time to
the most recent common ancestor of a site pair is a product of d1=2ð2Λ′1Þ3=2 and a
universal function of the clone decay parameter, β.

In the limit of small or large β, we can obtain the asymptotic expressions for the
effective population size in eq. (3.78) in the general form (Section 3.4.7). At β ~ 1, we
calculated the integral in eq. (3.78) numerically based on eq. (3.77) for Fβ(u) and
results for εβ, hβ uð Þ, and yβ uð Þ given below in Section 3.4.6. Between the two as-
ymptotic limits, it can be approximated by an interpolation formula (Figure 3.11)
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Figure 3.11: Dependence of the effective population size on the clone decay parameter β. Dots:
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large β, eq. (3.127). Fat red line: interpolation formula, eq. (3.79) (based on Rouzine and Coffin (2010)).
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1
Nanc

=
ffiffiffi
2

p

d1=2Λ′1
3=2

ΛðβÞe− β

ΛðβÞ ≡ log
2ΛðβÞ
β

+ 15.0e0.53β2
� � (3:79)

This interpolation is asymptotically exact at very small and very large β and has
the accuracy of 1% in the entire interval of β, tested by the numeric calculation of
eq. (3.78) (Rouzine and Coffin, 2010). Thus, the density of coalescent events is a
function of only two parameters: dΛ3

1 and β.
Note that the coalescent timescale Nanc decreases monotonously with clone

decay parameter β (Figure 3.11). This result is easy to understand intuitively, be-
cause β controls the clonal structure of a population studied in Section 3.4.5. At
small β, a typical fitness class comprises one or a few large clones born at the high-
fitness edge of a population, Pcl is relative large, so that the time to common ances-
tor Nanc is short. At relative large outcrossing rates, such that β � 1, a fitness class
is broken into many small clones, Pcl is getting small, and the time to common an-
cestor becomes large.

3.4.4 Dynamics of inbreeding

Using eqs. (3.60) and (3.79), we can calculate the dynamics of the correlation pa-
rameter C. Quantities d, β, and Nanc, defined in eqs. (3.57), (3.68) and (3.79) can be
expressed in terms of C,Closs and f1 as

d= Lð1−CÞq

β= β′ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1−CÞqp (3:80)

1
Nanc

= s
γ

ΛðβÞe− βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1−CÞqp (3:81)

where Closs is related to C by eq. (3.61), and the factor q depends on f1 and Closs as
given by eq. (3.58).

We introduced in eqs. (3.80) and (3.81) two composite, constant model parameters

β′ ≡
r
ffiffiffiffiffiffi
2Λ

p
1

s
ffiffiffi
L

p (3:82)

γ≡ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LΛ1

′ 3=2
q

(3:83)
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where large logarithms Λ1 and Λ′1 are defined in eqs. (3.66) and (3.77), respectively.
Equations (3.80), (3.58) show that clone decay parameter β is a product of a rescaled
recombination rate, β′, and a universal function of correlations and allelic frequency.
At the intermediate level of correlations in the middle of adaptation, C ~ f1 ~ 0.5, we
have q ~ 1, and parameters β and β′ are of the same order of magnitude.

The composite model parameter γ characterizes the effective strength of selec-
tion for L sites, given the population size. It is analogous to product Ns in a one-site
model (Chapter 1).

Substituting Nanc from eqs. (3.80) and (3.81) into eq. (3.60), we obtain the mas-
ter equation for correlations caused by inbreeding (Rouzine and Coffin, 2010)

dC
df1

= −
1

Nancsq
= −

Λ½βðC, f1Þ�e− βðC, f1Þ

γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1−CÞq3ðC, f1Þ

p . (3:84)

Note that the right-hand side of eq. (3.84) depends on C and f1 and two constant
parameters β′ and γ. We assume the initial condition of a form C f1 = f0ð Þ=0, where
1− f0 � 1 is the initial frequency of beneficial alleles. Specific choice of 1− f0 has a
minor effect on our results.

Equation (3.84) is a first-order nonlinear ordinary differential equation for C f1ð Þ,
which is difficult to solve analytically. Numeric solution, at various scaled recombi-
nation rates β′ and γ= 10, is shown in Figure 3.12. We observe that at (relatively)
large recombination rates, correlations are weak, and the loss of beneficial alleles is
very small as well. At small β′, the effect of inbreeding is strong, and correlations
accumulate to high levels (Figure 3.12A). Eventually, adaptation fails when deleteri-
ous allele frequency reaches the end-point f1 = fend given by an equation

fend = Closs f1 = fend½ � (3:85)

The point f1 = fend represents the final, minimum frequency of less-fit alleles, and
the best recombination can do without new mutations. At this point, the population
becomes so completely inbred that recombination becomes useless without adding
new alleles. Hence we need to include new mutation, and we are back at the muta-
tion-recombination-selection regime described in Section 3.3.

As recombination and hence β′ decrease, the normalized substitution rate

V=ðsLÞ ≈ d=L= ð1−CÞq (3:86)

decreases and finally vanishes at the end-point. In addition, the dependence of the
average adaptation rate V on f1 deviates from the elliptical shape predicted by the
single-site model (Figure 3.12B).

The clone decay parameter β given by eq. (3.80) has a flat minimum in both f1
and β′ and diverges at the ends of the interval, f1 = 1 and f1 = fend (Figure 3.12C). The
divergence of β is due to a slowing speed of the traveling wave (formally, due to
small values of q) in the beginning and the end of evolution. At a slow speed,
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sequences have more time for recombination events. Consequently, the density of
coalescent events 1=Nanc, which is a function of β, has a flat maximum at interme-
diate f1 and sharply declines toward the beginning and the end of adaptation, eq.
(3.81) (Figure 3.12D). The flatness of the maximum is quite remarkable and sup-
ports our assumption about the quasi-neutral shape of the tree, which we used to
connect C and Closs..
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Solid curves: Fraction of homologous sites related for an average genome pair, C, at different
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� �1=2 = 10. The
results are obtained by solving eq. (3.84) numerically with the use of eqs. (3.58), (3.61), (3.80), and
(3.79) (based on Rouzine and Coffin (2010)).
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These results are meaningful only at those values of f1 and Nanc � N. The oppo-
site inequality would imply that an ancestral clone consist of less than one individ-
ual. Practically, for correct evaluation of dynamics of correlations, the average
1=Nanc over time has to be much larger than 1=N.

After the wave stops at the endpoint, it quickly collapses to a uniform popula-
tion, and the value of C abruptly (compared to our timescales) jumps to 1. The rapid
collapse to fully inbred population, evident in simulations, is beyond the scope of
our theory.

3.4.4.1 Averaging adaptation time, end point, and the timescale of genealogy
Thus, both evolution speed V and genealogical population size Nanc depend on allele
frequency f1 (Figure 3.12B and D), which itself depends on time from near 1 to 0:
df1=dt = −V=L. Now we average both over the period of the adaptation process.
A convenient measure is the normalized total time of adaptation

T
T1site

= T
T1site

ðf0
fend + 1− f0

df1
L
V

= 1
2 logð1− f0Þj j

ðf0
fend + 1− f0

df1
ð1−CÞq (3:87)

The upper limit of the integral f0 is the initial frequency of less-fit alleles, 1− f0 � 1
being that of beneficial alleles. The low limit of the integral implies that beneficial
alleles are fixed when their frequency averaged over the sites that did not lose al-
leles and completed adaptation is equal to 1− f0. Here

T1site =TðC=0Þ= 2
s
log

1
1− f0

(3:88)

is the value of T in the independent-site case, that is, in the limit of strong recombi-
nation. We notice that the integral in eq. (3.87) is mostly contributed from the two
divergence regions near the ends of integration interval, for the relative increase of
adaptation time due to linkage we obtain

T
T1site

≈
1−CðfendÞ=2
1−CðfendÞ , (3:89)

where C fendð Þ is the final value of C. Here we assumed log ð1� fendÞj j � log ð1� f0Þj j β′,
which condition is met when clonal decay parameter β′ is not extremely small.

As recombination rate and hence parameter β′ increase, the time of adaptation T
decreases and eventually saturates at its independent-locus limit T1site (Figure 3.13A).
However, at small recombination rates, adaptation is much slower, T=T1site � 1.
The half-point in β′ depends on parameter γ; at γ= 1, it is nearly β′= 1, which corre-
sponds to
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r = rc = s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L

2 log Nrð Þ

s

This characteristic value of outcrossing rate rc may be much larger or much smaller
than the full sexual reproduction point, r = 1, depending on the relevant number of
loci and the selection coefficient range.

For example, 740 million people living in Europe differ roughly in 0.1% of their
DNA which corresponds to 3 · 106 polymorphic nucleotides. Assuming that 1% of
these diverse loci, L= 3 · 104, are neither selectively neutral nor under balancing se-
lection but under directed selection, and that they can produce beneficial muta-
tions with s= 3% or larger, we obtain that rc � 1. Then the European population

Scaled recombination rate, β’=(r/s)[2Λ1/L]1/2
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Figure 3.13: Adaptation slow-down and the fraction of sites that fail adaptation, fend . (A) Inverse
scaled adaptation time T1site=T (red) and fend (purple) as a function of scaled recombination rate β′.
Values of scaled selection coefficient γ, eq. (3.83), are on the curves. (B) Purple curves: fend as a function
of the population size N for the case r Nð Þ=N=N0. Red curves: T1site=T . Blue curves: values of hpif1
calculated from eqs. (3.92) and (3.111), numeric results for εβ in Figure 3.17, and the dependence β f1ð Þ in
Figure 3.12. Open symbols: simulation results from Gheorghiu-Svirschevski et al. (2007). Parameters:
L= 100, s=0.1, two values of N0 are shown on the curves (based on Rouzine and Coffin (2010)).
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with r = 1 is in the rare recombination regime (β′< 1Þ. Conversely, if much fewer,
only 0.01% of the diverse loci are under directed selection, then we have rc ≈0.1, so
that the population with r = 1 is in the high-recombination limit (β′ � 1Þ. The exact
estimate of L depends on selection conditions.

The total maximal gain in beneficial alleles at the end-point, 1− fend, plotted as
a function of β′ roughly resembles the curve T=T1site (Figure 3.13A). As already men-
tioned, after time T has passed, the recombination-driven phase of evolution is
over, and the evolution rate is limited by new mutations. The role of recombination
is then reduced to assisting their fixation (Section 3.3.).

Now we average out over time the genealogy population size, Nanc. Integrating
eq. (3.59) in time, we can express correlation parameter at the end of adaptation,
C fendð Þ, in terms of the harmonic average in time, �Nanc, as given by

CðfendÞ= 1− exp − T=�Nanc
� �

1=�Nanc ≡
1
T

ðT
0

dt
NancðtÞ

(3:90)

Note that eq. (3.90) has the form of the cumulative distribution function of the coales-
cent time, with �Nanc analogous to the average time to the most recent common ances-
tor, hTMRCAi. In fact, the average coalescent time is not well-defined in our case,
because a population is not described at t <0, and some homologous site pairs never
get common ancestors, as given by C fendð Þ< 1. Yet, in the absence of better options,
we can interpret the harmonic average in time, �Nanc, as an analogue of hTMRCAi.

It is informative to compare genealogical time �Nanc to the total adaptation time,
T, and to its independent-locus analogue. Remarkably, making use of eqs. (3.89)
and (3.90), both are expressed in terms of final correlation parameter C(fend) only

�Nanc=T = log− 1 1
1−CðfendÞ

�Nanc=T1site =
1−CðfendÞ=2
1−CðfendÞ log− 1 1

1−CðfendÞ

(3:91)

We can see that ratio �Nanc=T monotonously decreases with C fendð Þ and, therefore,
monotonously increases with both parameters β′ and γ (Figure 3.14A). For rare re-
combination, β′ � 1, the inbreeding effect is strong, and �Nanc=T is small. For fre-
quent recombination, the inbreeding effect is weak, and �Nanc=T is large.

The ratio �Nanc=T1site (and, hence, the genealogical time �Nanc itself) has a more
complex dependence on C fendð Þ. It has a minimum at C fendð Þ≈0.72, eq. (3.91). As a
result, time scale �Nanc has an absolute minimum in β′ and γ′ where �Nanc ≈ 1.8 T1site

and T ≈ 2.3 T1site (Figure 3.14A). The increase of the effective population size at smaller
β′ is caused by the increasing loss of variable sites, Closs, which decreases the genetic
distance (q � 1) and hence increases the clone decay parameter β (see Figure 3.12C).
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The value of �Nanc as a function of population size N is shown for the “dilute virus
model”, r =N=N0 and parameter values relevant for an HIV population an infected un-
treated patient (Rouzine and Coffin, 2010) (Figure 3.14B). The reason why recombination
rate is assumed to be proportional to population density is that only a small fraction of
cells coinfected with two different virus genomes can produce recombinants, the rest
produce simple copies, that is, reproduce virus asexually. (Such a density-dependent
scaling of r is not appropriate for organisms, but the comparison is still useful in this
case, as long as one keeps in mind the rescaling.) In a window of N values, time �Nanc

can be much less than the prediction of the selectively neutral model, �Nanc =N
(Kingman, 1982a, b), provided N0, s, or L is sufficiently large. At the minimum of
�Nanc, the condition is N � 1.8T1site, which is equivalent to Ns � 4 log 1− f0ð Þj j. In
the opposite neutral case, where �Nanc >N, our derivation ceases to apply.
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Figure 3.14: Average effective population size Neff for genealogy. (a) Blue curves: Harmonic average
of �Nanc, normalized to the total adaptation time in the deterministic limit, T1site, as a function of
scaled recombination rate β′ at different values of scaled selection strength γ (on the curves). Green
curves: �Nanc, normalized to the total adaptation time, T . Brown line: Minimum value of �Nanc=T1site.
(b) �Nanc, as a function of population size N in the “dilute virus” case, r =N=N0. Parameters are
shown. (a), (b) Results are obtained from eq. (3.91) (based on Rouzine and Coffin (2010)).
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We have showed analytically, that the global linkage parameter p=V= sdð Þ is
approximately equal to 1, based on the inequality log Nrð Þ � 1. To test the accu-
racy of this approximation numerically for parameter values representative for a
virus, p was averaged out over f1, as given by

ph if1 =
1

1− fend

ð1
fend

pðf1Þdf1 (3:92)

In the region plotted in Figure 3.13B, we have 1− hpi<0.2, so that the approxima-
tion works.

3.4.4.2 Summary of Section 3.4
To summarize this section, the dynamics of inter-sequence correlations caused by
phylogenetic relation, the adaptation time, T, and the genealogical time �Nanc nor-
malized to T depend monotonously on only two composite model parameters: the
rescaled recombination rate, β

0
≈ r=sð Þ 2 log ðNrÞ = L½ �1=2 and the rescaled selection

coefficient, γ ≈ s L log3 ðNsÞ = 2� �1=2
. These two scaled parameters play the same role

as the two parameters of a two-locus model, Nr2 and Ns, respectively, where r2 is
the crossover rate between a locus pair. In the limit of frequent recombination or
large population size, correlations become small, and the adaptation speed satu-
rates at its single-site model limit.

For rare recombinations, correlations are strong, adaptation fails at many sites
that lose beneficial alleles, and is slow at the sites which complete adaptation. In
the general case, the population becomes completely inbred far before adaptation
is complete. Further adaptation can be continued only with the help of new muta-
tions, as described in Section 3.3.

As we show in the next subsection, the sensitivity of the outcome to the value of r
reflects rapid changes in the clone structure of a population affecting, in their turn,
genealogy time �Nanc. We will show that, at small β′, each fitness class is a single clone
of identical sequences, while at large β′, fitness class comprises many small clones.

3.4.5 Clone structure of fitness classes

To derive the coalescent probability given above in eq. (3.76), we need to understand
the clonal structure of population under selection and recombination (Rouzine and
Coffin, 2007). As we show now, each fitness class consists of clones, that is, groups
of identical sequences that are recombinants of different age and different size. A re-
combinant sequence generated near the high-fitness end of distribution, expands
due to natural selection and forms a clone, while also decaying due to recombination.
The relative size of a clone within a fitness class is determined by its age, that is, the
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time passed since its birth. We have competition between two factors: size of clones
and the number of clones of a given size. Older clones are much larger, because of
their exponential growth in time, but also much more rare than younger clones.
Indeed, to be old, a clone must be generated in the tail of generator function, ρ xð Þ,
with a high starting fitness − sx≈ − sxc. Hence, their generation rate is much smaller
than for younger and smaller clones (Figure 3.15). The relative contribution of clones
born at earlier and later times into a fitness class depends on parameter r. Further,
we show that, at sufficiently small r, each fitness group is dominated by lineages
born near the high-fitness edge.

3.4.5.1 Fitness of most likely parents
The fitness of a recombinant, − sx, fluctuates around the average fitness of its pa-
rents, because locations of alleles in two parents are random and uncorrelated,
except for the loci that have a common ancestor (fraction CÞ. New recombinants
with different fitness values − sx are generated at rates determined by the recom-
binant generation profile ρ xð Þ, eq. (3.69). As we will show, for a highly-fit recom-
binant − sx, where

ffiffiffi
d

p
� x, both parents have fitness values near an optimal

point − sxp= p+ 1ð Þ, that is, at p≈ 1, half-way between the offspring and the travel-
ing wave maximum (Figure 3.15). Indeed, parents with a higher fitness value are too
few, and less-fit parents are unlikely to produce such a highly-fit offspring. Indeed,
The general expression for the recombinant generation rate is given by eq. (3.8) where
�k is replaced with eq. (3.57) for the genetic half-distance, d, taking into account ge-
nome correlations:

ρ xð Þ= 1ffiffiffiffiffiffi
π�k

p
ð
dx1

ð
dx2 ϕ x1ð Þϕ x2ð Þe− x− x1 + x2ð Þ=2½ �2=d (3:93)

Substituting eq. (3.62) for ϕ xð Þ, we observe, that the integrand, which has a
Gaussian form, peaks at x1 = x2 = xp= p+ 1ð Þ, and that the peak has a small widthffiffiffi
d

p
� x Integrating in x1 and x2, we obtain, again, the recombinant generator in

eq. (3.69). Thus, for a recombinant genome with x <0, the most likely parents are
xp= p+ 1ð Þ (Figure 3.15). Thus, the parents of any offspring that is far above average
are likely to be “not at the level” with their child.

3.4.5.2 Analysis of clone structure
As already mentioned, a fitness class consists of lineages of different age. Each line-
age starts from a single recombinant individual who was fortunate to escape extinc-
tion by random drift and be established. In the traveling wave framework, it is most
convenient to label clones by their birth fitness, − sx′, (Figure 3.15). The number of
clones born and established within the interval x′, x′+dx

� �
is denoted as m x′

� �
dx’,

where
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mðx′Þ ≡ Nr ρðx′Þ� �
s x′
�� ��� �

1=Vð Þ, x′<0 (3:94)

where recombination generator ρ xð Þ is given by eq. (3.69). The first factor in the
right-hand side is the recombinant birth rate per generation per unit x, the second
factor is the establishment probability for the new recombinant, and factor 1=V is
the time interval in which the wave moves by unit in x.

A new sequence created at location x′<0 has a fitness advantage − sx′ with
respect to an average genome. The lineage is established in the population if its
size exceeds the stochastic threshold; 1= s x′

�� ��� �
, and it is fixed with certainty due

to natural selection. Then, as the wave peak moves toward it, the clone is grows
deterministically (Figure 3.15) and, simultaneously, loses sequences due to recom-
bination with genomes from other clones. The size n x′, x

� �
of a clone born at x′

and sampled later, when it has relative mutation load x> x′, can be obtained from
eq. (3.7) with n x′, x

� �
instead of ϕ xð Þ and without the term r ρ (x) responsible for

generation of new recombinants. The initial condition n x′, x′
� �

= 1= s x′
�� ��� �

corre-
sponds to the stochastic threshold of establishment. (Although it is defined up
to a numeric factor ~1, below we verify that the coefficient 1 is correct.) Solving
eq. (3.7), we obtain

n x′, x
� �

≡
1

s x′
�� �� e

s x′2 − x2
� �

2V + r x′− xð Þ
V = 1

s x′
�� �� e

1
pd

x′2 − x2
2 + r x′− xð Þ

s

h i
(3:95)

Wave profile log f (x)

Extinction

Less fit
new clone

Birth
of new
clone

0

Relative allele number, x

Progenitor
clones

x0

Figure 3.15: Each fitness class comprises many clones of different sizes born with different relative
fitness values x. The sketch shows the life cycles of two clones (blue and red bars, respectively)
from the same parents undergoing birth, growth, parenthood, further growth, contraction, and
extinction. A blue (or red) bar shows locations of the respective clone in x at consecutive time
intervals due to motion of the reference frame kav tð Þ to the left. In the middle of the high-fitness tail
of the distribution, clones recombine and create new offspring. Green: A clone is born at the edge,
x=x0, and later becomes as tall as its parents. Red: A clone is born short of the edge and never
grows enough to contribute to evolution (based on Rouzine and Coffin (2007)).
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The probability density of genomes in x,ϕ xð Þ, can be written as an integral over
clones generated in different locations (clones with different age), as given by

ϕ xð Þ = 1
N

ðx
x0

dx′m x′
� �

n x′, x
� �

(3:96)

where m xð Þ is given by eq. (3.94).
Note that factors m x′

� �
and nðx′, x) in the integrand of eq. (3.96) both change ex-

ponentially with x′, but in the opposite directions: at negative x′, m x′
� �

is increasing,
and n x′, x

� �
is decreasing with x′. In the case of rare recombination, β � 1, we have

1− p � d=x20, so that the second factor wins, and the integrand in eq. (3.96) is maxi-
mal at the lower limit, x= x0, with a sharp decrease toward smaller xj j. Also, at
β � 1, the term with r in eq. (3.95) describing the loss of sequences due to recombina-
tion can be neglected. We conclude that old clones born near the high-fitness edge of
the distribution x0 dominate fitness class x is dominated by (Figure 3.15). Using this
fact and integrating in eq. (3.96) over x′, for fitness classes not too close to the edge,
we arrive at a non-normalized Gaussian form of ϕ xð Þ, eq. (3.62). The normalization
factor follows from condition

R
dxϕðxÞ ¼ 1, and we also obtain a relationship be-

tween parameter p and the cutoff point, x0

x20 ≈d
2p 1+ pð Þ
1− p

log
s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d 1− pð Þp
r

" #
, r � s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d 1− pð Þ

p
(3:97)

which is a direct generalization of eq. (3.18) with �k ! d. The validity condition of
eq. (3.97) can be written as r x0j j � V, which implies that most sequences do not
have recombination before they become extinct. This condition confirms our
above approximation neglecting the recombination term in eq. (3.97). Using the
generalized form of eq. (3.24) with �k ! d obtained from the stochastic edge
consideration

x20 ≈d 1+ pð ÞlogNr
p

(3:98)

we again arrive at eqs. (3.64) and (3.65) for parameter p and lead x0. Thus, we re-
obtained the results for the fitness distribution obtained earlier in this section,
using an independent argument based on clone structure.

3.4.5.3 Life cycle of a clone
It is very informative for what follows to understand the fitness trajectory of a repre-
sentative large lineage dominating a fitness class (Figure 3.15). Suppose, a new line-
age is generated by recombination and established near the edge, x ≈ x0. As the
fitness distribution advances, the value of x decreases, and the clone grows in size
with a decreasing exponential speed. After the clone reaches the point x=0, which
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corresponds to the average fitness, it starts to contract due to negative selection
until, eventually, it becomes extinct. Before that, when the clone is at the most
likely parenthood point x= x0p= 1+ pð Þ(see earlier), its individuals mate with other
individuals of similar fitness. The offspring is broadly scattered in fitness, but one
of its genomes is lucky to create one offspring far at the high-fitness edge of the
distribution. This offspring starts a new lineage, grows up, reaches the parenthood
point, and the reproduction cycle repeats again.

We now choose an individual genome randomly and choose any locus in this
genome. Our task is trace the fitness of its ancestor lineage, − skanc tð Þ, back in time
based on the reproduction cycle shown in Figure 3.15. For that we need to recall that
this figure is in reference frame of the average population fitness, and that the travel-
ing wave is moving, while the fitness of each clone is fixed. A representative trajec-
tory kanc tð Þ is a broken line (Figure 3.16A) consisting from vertical segments
corresponding to the clonal expansion during asexual reproduction and horizontal
segments due to recombination with another genome. The length between mating
events fluctuates around hΔki= x0j j= 1+ pð Þ, which is the distance between the edge
and the optimal parenthood point in k. The average time interval between mating
events is hΔti= hΔki=V = x0j j=hV 1+ pð Þi. Because the birth point of an edge clone
and the point of parenthood both fluctuate between mating events, the jump
length Δk wobbles as well, according to a narrow distribution with a variance,
ðVar k½ �Þ1=2 ~ d � x0j j. Therefore, the long-range periodicity is absent from this bro-
ken-line trajectory. Therefore, sufficiently far back in time, independently on the
initial fitness today, the ancestor’s relative fitness can be found, with an almost
uniform probability density, anywhere in the interval between the birth point and
the optimal parenthood point, as given by x0 < x< x0p= 1+ pð Þ (Figure 3.16B). Thus,
only genomes with a very high fitness above the parenthood point are likely to
establish an uninterrupted lineage in the future.

Speaking in terms of the age of clones, the time interval Δt = x0j j= V 1+ pð Þ½ � is
the optimal reproduction age. In other words, only sufficiently young clones are
likely to leave descendants in the future.

3.4.5.4 Probability of finding two individuals in the same clone
In the previous sections, we expressed the density of coalescent events in terms of
the probability of two individuals with the same fitness to be accidentally found
within the same clone, eq. (3.77). Now we will derive it. If we use the continuous
approximation in x′, we obtain

Pd xð Þ =

ðx
x0

d x′ m ðx′Þn2 x′, x
� �

Nϕ xð Þ½ �2 (3:99)

where m xð Þ and n x′, x
� �

are given by eqs. (3.94) and (3.95), respectively.
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However, there are two reasons why the continuous-in-x′ approximation is in-
accurate in this case, both following from the fact that n x′, x

� �
enters the integrand

of eq. (3.99) in the second power. In the integrand of eq. (3.99), at large negative x′,
m x′
� �

decreases as expð− x′
2
=2dÞ, and n2 x′, x

� �
increases as expðx′2=dÞ. Therefore,

the integrand in eq. (3.99) decreases sharply from its lower limit. The rapid increase
has two effects, as follows. First, expanding the net exponential linearly near the
leading edge in x′− x0, we observe that the integral in x′ is mostly contributed from
a narrow interval near the edge

x′− x0 ~ d ln ρ=dx½ �− 1x0
~ω2 =x0

The region is of the same order as the typical distance between the birth locations
in x of adjacent clones born at the leading edge, Δx, given by
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kav(t) + x0

kav(t) + x0
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Figure 3.16: Fitness history in reverse and the fitness distribution of ancestors. (A) Thick broken
line in the blue area: a representative trajectory of the relative less-fit allele number, x tð Þ, of
ancestral lineage of a site in a genome at low recombination rates, r � sd= x0j j, that is β � 1. Thick
broken line in the green area: the trajectory at β � 1. Thin black lines: trajectories of the high-
fitness edge, the most likely parenthood point at β � 1, and the x =0, respectively. (B) Fitness
distribution for an ancestor at β � 1 compared to its contemporary population (based on Rouzine
and Coffin (2007)).
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Δx= d log ρ
dx

� �− 1

x0

(3:100)

Thus, two individuals (representing two ancestral lineages) are most likely to meet
in a small number of edge-born clones, and the contribution to Pcl of two adjacent
clones may differ several-fold. Therefore, a discrete sum instead of an integral is
due, with averaging over their birth locations.

The second issue is fluctuations between realizations. In eq. (3.99), we assume
that the lower limit in x′ is given by the average cutoff at x0, eq. (3.98). However, Pcl

is obviously quite sensitive to the birth place of the largest clone in a fitness class,
which we denote x0′, because it is in the argument of an exponential. The clones
that are, at rare times, created far ahead of the average edge, are much larger and
thus contribute much more to Pcl than representative edge clones near x0. In stands
to reason that Pcl xð Þ is mostly contributed from rare generations in a single large
clone born far ahead the average edge at x′ makes most of the entire fitness class, x,
as given by

n ðx0′ , xÞ =Nϕ xð Þ (3:101)

which implies that x0′ depends on x. Hence the probability of having two individu-
als meeting in the same clone is given by the probability to have the largest clone
born at x′< x0′ given by

Pcl xð Þ =
ðx0′
−∞

dx′m x′
� �

(3:102)

which replaces eq. (3.99). Substituting ϕ xð Þ and n x′, x
� �

from eqs. (3.72) and (3.95)
into eq. (3.101), for the birth location x0′ we obtainffiffiffiffiffiffiffiffi

2πd
p

Ns x′0
��� ��� exp

x′20
2d

+ εβ
2

1− u2 + 2hβ uð Þ� �
− β 1+ uð Þ +O ln− 1 Nrð Þ� �( )

= 1 (3:103)

Next, substitutingm xð Þ from eq. (3.94) and ρ xð Þ from eq. (3.72) into eq. (3.102), we get

Pcl =
d

x0′
�� ��m x0′

� �
= Nrffiffiffiffiffiffiffiffi

2πd
p exp −

x′20
2d

− 2εβhβ − 1=2ð Þ +O ln− 1 Nrð Þ� �( )
(3:104)

Finally, solving eq. (3.103) for x0′ � d1=2 iteratively in the first approximation and
substituting it into eq. (3.104), we arrive at eq. (3.77) of the main text.
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3.4.6 Fitness distribution of remote ancestors

Another important element used in Section 3.4.3 to derive the density of coalescent
events 1=Nanc is the distribution of ancestor fitness. As it is clear from lineage trajec-
tories discussed in Section 3.4.5, the fitness distribution of ancestors, y xð Þ, is very
different from the fitness distribution of a population, ϕ xð Þ (Figure 3.16B), and re-
quires a separate analysis.

3.4.6.1 Small recombination rates (β � 1Þ
We start with the case when the clone decay parameter β defined in eq. (3.68) is
small.We choose a site on an individual genome and address the fitness of a distant
ancestor. While the ancient population distribution is localized symmetrically near
its peak, the ancestor distribution, φ xð Þ, is nearly uniform with fitness above the
optimal parenthood point

φ xð Þ= x0j j 1+ pð Þ, x0 < x< x0p= 1+ pð Þ
0, otherwise

(
(3:105)

3.4.6.2 Population distribution in fitness at any recombination rate
Our next task is to calculate the modern fitness distribution in the general case of β.
Now we consider the general case when the clone decay parameter

β = r x0j j =V = r x0j j = psdð Þ (3:106)

is not necessarily small. Here x0 and p are given by eqs. (3.64) and (3.65).
In case β � 1, we could neglect with the clone decay due to recombination,

and the integrand in eq. (3.96) peaked at the low limit of integration. At larger re-
combination rates, such that β ~ 1 or β � 1, we have 1− p less or on the order of
d=x20, so that the integrand in eq. (3.96) no longer has a sharp peak at the lower
limit x= x0. This implies that clones born far from the edge inside of the wave,
x> x0, now give important contribution to fitness classes (and also decay signifi-
cantly), affecting our conclusions regarding the Gaussian form of ϕ xð Þ, as well the
ancestor history. For this case, we have to use an alternative formalism.

We start by observing that the relative difference between logarithm of fitness
distribution logϕ xð Þ and its deterministic limit is on the order of 1− p~ 1=log Nrð Þ,
eq. (3.62). Therefore, we can calculate the correction to the Gaussian as a first-order
correction in small parameter 1=log Nrð Þ � 1. We seek ϕ xð Þ in the form

ϕ xð Þ = 1ffiffiffiffiffiffiffiffi
2πd

p e− x2
2d− εh uð Þ (3:107)
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ε ≡ x20=d
� �

1− pð Þ≈ 2λ1 1− pð Þ
u ≡ x= x0j j

(3:108)

For the sake of convenience, to decrease the number of parameters, we replaced
1− p and x with scaled variables, ε and u, which are both on the order of 1 for β ~ 1.
In this notation, the recombinant generator in eq. (3.93) takes a form

ρ xð Þ = 1ffiffiffiffiffiffiffiffi
2πd

p e− x2
2d− 2εh u=2ð Þ (3:109)

An equation for non-Gaussian correction h uð Þ that follows from eqs. (3.7), (3.107),
and (3.109) has a form

εh uð Þ = εu2

2
+ β u−

ðu
0

du′ eεh u′ð Þ− 2εh u′=2ð Þ
" #

(3:110)

were β is the only fixed parameter. The value of ε is not an independent parame-
ter, it needs to be determined from the boundary condition at the edge. From the
clonal representation of the traveling wave, eq. (3.96), the fitness density is zero
at the edge, ϕ x0ð Þ=0, which implies that h uð Þ must diverge at u= − 1, h uð Þ ! ∞.
eq. (3.110) can be solved numerically with respect to h uð Þ and ε for different values
of fixed parameter β (Figure 3.17A).

In the limit β � 1, function h uð Þ is quadratic except near the edge, which agrees
with eq. (3.62). For the value of ε, in this range we have

ε≈ 4 ln½ð2=βÞlogð2=βÞ�≈ 4Λ2, β � 1

Hence, at small β, we have 1− p≈ 2Λ2=Λ1, which overlaps with expression for p in
the limit 1− p � 1, eq. (3.64). The two asymptotic expressions for p are valid in two
overlapping intervals of r and hence can be combined into an accurate interpola-
tion formula

p = Λ1

Λ1 + ε βð Þ=2 (3:111)

where ε(β) is plotted in inset in Figure 3.17A.
All these results have been obtained for r and N as independent parameters,

which is reasonable in most real-life scenarios. For the specific example of a dilute
viral infection, recombination is proportional to coinfection, and we have scaling
r =N=N0, where N0 is a fixed parameter. Examples of the dependence of p on N for
such scaling are plotted in Figure 3.17B. If inter-genomic correlations were absent
(C=0), p Nð Þ would represent the speed of evolution scaled to the deterministic
limit for independentsites.
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3.4.6.3 Ancestor fitness distribution at any recombination rate
The ancestor fitness distribution φ xð Þ has the rescaled form where rescaled distribu-
tion φ(x)≡ (1⁄x0) y uð Þ satisfies an equation

y uð Þ = β
ðu

max 2u, − 1ð Þ

du′eε h u ′ð Þ− 2hðu ′=2Þ½ �y u′
� �

(3:112)

where β is the only external parameter, u<0; and h uð Þ and ε are determined from
eq. (3.110). Numeric solution of eq. (3.112) for function y uð Þ is shown at different β
in Figure 3.10. In the limit β ! 0, the distribution is almost uniform within the
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Figure 3.17: Non-Gaussian correction to the log fitness distribution profile and the scaled
adaptation rate at C =0, p, in the general case of non-small recombination rates (β can be ⁓1 or
large). (A) Solid lines: normalized negative correction h uð Þ to log ϕ xð Þ, eq. (3.107), plotted at
different values of the parameter β (shown), as a function of the scaled relative number of less-fit
alleles, u= x= x0j j. Results are obtained by solving eq. (3.110) numerically. Inset: scaled negative
correction to the evolution rate ε, eq. (3.108), as a function of β. (B) The dependence of p on N for
C =0, for the case r =N=N0, at different N0 (shown), based on eq. (3.111). Parameters are shown
(based on Rouzine and Coffin (2007)).
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interval − 1< u< − 1=2, just as we obtained earlier (Figure 3.16B). At β~ 1, the distri-
bution shifts toward lower fitness values and, at β � 1, assumes a universal asym-
metric shape with a scale uj j~ 1=β. Thus, unless β is extremely large, β~

ffiffiffi
d

p
~
ffiffiffi
L

p
,

the conclusion that all ancestors are exceptionally well-fit for their time still holds,
although they no longer occupy the upper half of the fitness distribution tail as
they do in the rare recombination case β � 1.

To start the derivation of eq. (3.112), we note that each genomic site in a genome
has an ancestor genome in each past generation. Consider a site in a genome at
time tnow and its ancestral genome at time t < t now. The probability density φ x, tð Þ of
ancestor allele number x= k− kav tð Þ obeys a Markovian equation

φ x, tð Þ =
ð∞
x0

dx′P x x′
�� �φ x′, t + 1

� �
, x> x0

�
(3:113)

where Pðxjx′Þ is the probability density of the relative less-fit allele number of a par-
ent x, given the number x′ of a progeny genome. Then eq. (3.113) is solved backward
in time with the initial condition, φðx; tnowÞ= δ½x− xðtnowÞ�. The kernel Pðxjx′Þ can be
written in the form

Pðx x′Þ=Aðx′Þ ϕðx′−VÞδðx′− x−VÞ+ rρðx′−VÞPsexðx x′Þ�� ���� (3:114)

The first and the second terms in the brackets represent asexual reproduction by
clonal expansion and sexual reproduction by recombination, respectively.
Population density in fitness ϕ xð Þ and recombination generation rate ρ xð Þ are
given by eqs. (3.107) and (3.109), respectively. Kernel Psexðxjx′Þ is the normalized
probability density of parental fitness x assuming sexual reproduction and given
progeny genome fitness x′. The term −V appears due to the shift of the popula-
tion fitness distribution between the adjacent generations. Prefactor A xð Þensures
normalization with respect to parental fitness. Recollecting that ϕ xð Þ must be
zero at x≤ x0, the normalization factor A xð Þ takes a form

Aðx′Þ = 1=½ϕðx ′−VÞ+ rρðx ′−VÞ�, x′> x0 +V

1=½rρðx ′−VÞ�, x0 < x′< x0 +V
.

"
(3:115)

As we have mentioned several times, Psexðxjx′Þ is maximal at the likely parenthood
point, x≈ x′=2, and its characteristic width in x is ~

ffiffiffi
d

p
(Figure 3.15). On the other

hand, the characteristic scale of the ancestor distribution φ x, tð Þ in x is on the order
of x0j j, where x0j j �

ffiffiffi
d

p
. Therefore, in eq. (3.113), we can approximate Psexðxjx′Þ

with a delta-function, as given by

Psex x x′
�� � ≈ δ x− x′=2

� ��
(3:116)
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Substituting eqs. (3.115) and (3.116) into eq. (3.114), we obtain

Pðxjx′Þ= ½1−�rðx′Þ�δðx′− x−VÞ+ f�rðx′Þ+ ½1−�rðx′Þ�θðx0 +V − x′Þgδðx− x′=2Þ (3:117)

�rðx′Þ≡ rρðx′−VÞ
ϕðx′−VÞ+ rρðx′−VÞ (3:118)

Due to our basic assumption that evolution is slow, x0j j=V � 1, since the fitness
difference s x0j j between the average and the best-fit genome is smaller than 1, we
can formally and linearly expand the first delta function and the theta function in
eq. (3.117) in V, which yields

Pðxjx′Þ= δðx′− xÞ+V − δ′ðx′− xÞ+ δðx0 − x
′Þδðx− x′ 2Þ� �

+ �rðx′Þ δðx− x′ 2Þ− δðx′− xÞ� ��h
(3:119)

Substituting eqs. (3.119) into eq. (3.113), approximating as usual

φðx, t + 1Þ−φðx, tÞ≈ ∂ϕ=∂t

and integrating eq. (3.113) in x, we obtain

−
∂φðx, tÞ

∂t
=V

− ∂φðx, tÞ
∂x

+Vφðx0 +0, tÞ δðx− x0=2Þ− δðx− x0Þ½ �

+ 2�rð2xÞφð2x, tÞθðx− x0=2Þ− �rðxÞφðx, tÞ
(3:120)

We can decrease the number of independent parameters, by rescaling the variables
as given by

τ≡ tr=β, u≡ x= x0j j, yðu, τÞ≡ x0j jφðx, tÞ (3:121)

In the rescaled notation, eq. (3.120) writes

− ∂yðu, tÞ=∂τ= ∂yðu, tÞ=∂u+ yð− 1+0, τÞ δðu+ 1=2Þ− δðu+ 1Þ½ �
+ β 2ηð2uÞyð2u, tÞθðu+ 1=2Þ− ηðuÞyðu, tÞ½ �

(3:122)

ηðuÞ= exp fε½hðuÞ− 2hðu=2Þ�g (3:123)

where eqs. (3.107), (3.109) and (3.118) and strong inequality r � 1 are used.
The characteristic timescale in eq. (3.122) for is τ ~ 1, or t ~ β=r. If we go farther

back in time, the ancestor fitness distribution takes a stationary form that satisfies
an equation

dyðuÞ
du

= yð− 1+0Þ δðu+ 1Þ− δðu+ 1=2Þ½ �+ β ηðuÞyðuÞ− 2ηð2uÞyð2uÞθðu+ 1=2Þ½ � (3:124)

Note that η uð Þ diverges at the leading edge u ! − 1 due to the divergence of non-
Gaussian correction h uð Þ, eq. (3.124). To keep derivative dy=du finite, y uð Þ has to
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vanish at u ! − 1. Therefore, in eq. (3.12), the term with delta functions must be
zero. Integrating eq. (3.124) in u, we arrive at the promised eq. (3.112) we have used
in the previous sections.

We conclude that a single composite model parameter β proportional to the re-
combination (outcrossing) rate, r, and inversely proportional to the selection coeffi-
cient, s, decides both the history of dominant lineages and the rescaled fitness
distribution of distant ancestors. The average substitution rate, the fitness lead, and
the width of the fitness distribution of the entire population are all expressed in
terms of β and the genetic distance d (addressed in Sections 3.4.3 and 3.4.4).

3.4.7 Main approximations

Let us check approximations we have used in Section 3.4.

3.4.7.1 Neglecting the loss of deleterious alleles
Based on simulation results (Gheorghiu-Svirschevski et al., 2007), we assumed in
model formulation in Section 3.4.2 that common ancestor sites have, for large sam-
ples, only less-fit alleles. The rationale for neglecting the loss of deleterious alleles is
that, in the initial population (1− f0 � 1), less-fit alleles are much more abundant.

3.4.7.2 Time locality for the coalescent density
The present work considers a nonstationary process of adaptation. Therefore, the
coalescent event density 1=Nanc expressed in terms of the effective population size
Nanc in eq. (3.59) varies in time, specifically, through the genetic half-distance d
and clone decay parameter β. Please note that eq. (3.59) does not include a time
delay treating Nanc as a variable depending on the current state variables. This treat-
ment is in apparent contradiction with eq. (3.76), which links Nanc at current time t
to the fitness distribution of remote ancestors φ xð Þ. Also, Pcl xð Þ, which also depend
on time through d, must refer to the ancestral, earlier population as well. In gen-
eral, that could create a time delay in the original correlation dynamics.

Fortunately, as it has been shown in Section 3.4.6, the ancestor fitness distribu-
tion going back in time becomes independent on the initial condition and assumes
the calculated ancient value at t � β=r = x0j j=V. Coalescent events in this time inter-
val can be neglected provided the time interval of the wave shift by its lead, x0j j=V,
is much less than the coalescent time, Nanc. The resulting validity condition of eqs.
(3.59) and (3.76) under which they are asymptotically accurate, is x0j j � L or
log Nrð Þ � L. This strong inequality is equivalent to condition (i) stated in beginning
of Section 3.4.3 which ensures the existence of the traveling wave regime. Thus, un-
less populations are astronomically large for large L, “remote ancestors” are not
that far back in time.
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We also note that eq. (3.76) does not include the term of the probability that the
two individuals found within the same clone are also the same individuals. This is
because, once the two ancestral lineages converge, backward in time, into the same
clone, they will coalesce to the same individual in less than x0j j=V generations
backward with a probability equal to 1. As we just showed, such a short time is neg-
ligible compared to the average coalescent time Nanc.

3.4.7.3 Neutral model relation between Closs and C
We have assumed earlier that the fractions of related sites in a pair of genome and
a large sample of genomes are connected by the same relation as in a model with
selection. This is a nontrivial assumption, since it implies the same shape of the
genealogical tree, in the statistical sense, as in the neutral theory (Kingman,
1982a, b). The justification is, as follows. At a large rescaled selection coefficient,
γ~ sL1=2 > 1, the coalescent event density in time, 1=Nanc, does not change much
through most of the interval, f1 = 0; 1½ �. The coalescent density plummets rapidly
only at the ends of the interval, that is, near the beginning and the end of adapta-
tion (Figure 3.12D). Therefore, coalescent events are present mostly where their fre-
quency is almost constant. Therefore, the statistical shape of the phylogenetic tree
resembles the tree predicted by the stationary neutral model where that the coales-
cent frequency is given by 1=N (Kingman, 1982a, b), except that the timescale is
now Nanc rather than the total population size, N. Therefore, the relation between
Closs and C, which are the cumulative distributions of the coalescent time for an infi-
nite sample and a pair of genomes, respectively, can be approximated by the neu-
tral relation [Figure 3.9, eq. (3.61)]. This result in striking contrast to a purely
asexual regime where not only the timescale, but the shape of the tree is very differ-
ent from Kingman’s coalescent (Brunet et al., 2007; Desai et al., 2013; Neher and
Hallatschek, 2013).

3.4.7.4 Asymptotics of coalescent density
Let us derive the asymptotic expressions of Fβ uð Þ at small and large β in eq. (3.77).
At β � 1, asymptotic expressions for that hβ uð Þ and εβ are determined by eq. (3.75).
At β � 1, the value of εβ is exponentially small (cf. Figure 3.17A), and the second
term in the exponential in eq. (3.77) for Fβ uð Þ can be neglected. Based on this infor-
mation, we obtain two limiting cases

FβðuÞ=
2Λ2,Λ2 ≡ logð2Λ2=βÞ,
βe− βð1+ uÞ,

β � 1

β � 1

"
(3:125)
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Asymptotics of yβðu), u < 0, can also be derived analytically from eq. (3.112) to
obtain

yβðuÞ=
2θð− 1=2− uÞθðu+ 1Þ
βσðβuÞ, σðvÞ= Ðv

2v
dv′σðv′Þ

β � 1, u+ 1 � 1=β
β � 1

2
4 (3:126)

Substituting eqs. (3.125) and (3.126) into eq. (3.78), we obtain asymptotic expres-
sions for genealogical timescale Nanc

1
Nanc

=
ffiffiffi
2

p

d1=2Λ′1
3=2

×
Λ2 β � 1

ðβ2=4Þe− β Ð0
−∞

dv σ2ðvÞe− v ≈0.53 β2e− β β � 1

2
4 (3:127)

where numeric coefficient 0.53 is obtained by solving numerically eq. (3.126) for
normalized function σ vð Þ and calculating the integral in v in eq. (3.127). These limits
can be interpolated using ΛðβÞ in eq. (3.79), which has 1% accuracy.
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