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SOCIETÀ ITALIANA DI FISICA

BOLOGNA-ITALY

 EBSCOhost - printed on 2/13/2023 9:33 PM via . All use subject to https://www.ebsco.com/terms-of-use



ITALIAN PHYSICAL SOCIETY

PROCEEDINGS

OF THE

INTERNATIONAL SCHOOL OF PHYSICS

“ENRICO FERMI”

Course 204

edited by M. Agio, I. D’Amico and R. Zia

Directors of the Course

and

C. Toninelli

VARENNA ON LAKE COMO

VILLA MONASTERO

23 – 28 July 2018

Nanoscale Quantum Optics

2020

AMSTERDAM - WASHINGTON DC

 EBSCOhost - printed on 2/13/2023 9:33 PM via . All use subject to https://www.ebsco.com/terms-of-use



Copyright c© 2020 by Società Italiana di Fisica
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Preface

More than 60 people from all over the world, including students, researchers and lec-
turers, gathered in Varenna for the 204 Course of the International School of Physics “E.
Fermi” dedicated to Nanoscale Quantum Optics. The course was organized in collab-
oration with the COST Action MP1403 “Nanoscale Quantum Optics”, a network that
involved 28 European countries and more than 500 researchers.

Recent developments aiming at the realization of new technologies based on quantum
physics have been recognized by the European Commission as priorities, with the launch
of the Quantum Technology Flagship Programme. These are, for example, new crypto-
graphic techniques for security in telecommunications, new computing hardware that can
solve problems so far inaccessible even to the latest generation of supercomputers, and
new precision standards and sensors capable of measuring for instance extremely weak
magnetic fields, with applications ranging from materials science to medical diagnostics.
Nanoscale quantum optics combines these themes with nanophotonics, which addresses
the control of light and its coupling with matter on a nanometer scale, a miniaturization
comparable to the transition from valve-based electronics to integrated circuits. Struc-
tured materials provide confinement much beyond the wavelength scale, the interaction
of light with nanoscale object offers novel means for interfacing light with different de-
grees of freedom, and quantum optics experiments are being upgraded in miniaturized
nanophotonic platforms.

Based on such advances, the Course was therefore an opportunity to train new gener-
ations of scientists, who will have the privilege of doing research on topics that promise
great innovations in science and technology.

XIII
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XIV Preface

This proceedings book contains the following lecture and seminars held during the
school:

– “Basic concepts for quantum optics and quantum technologies”, by I. D’Amico,
introduces the background concepts.

– “Materials for quantum nanophotonics”, by N. P. de Leon, outlines the require-
ments for a range of quantum nanophotonics applications, and describes the key
material characteristics that affect physical properties related to these require-
ments.

– “Quantum optics and nonclassical light generation”, by J. Vuckovic et al., discusses
the theoretical underpinnings of the seminal experiments in solid-state quantum
optics.

– “Creating quantum correlations between quantum-dot spins”, by M. Atatüre, de-
scribes how to generate nonlocal quantum correlations between electron spins in
semiconductor quantum dots.

– “Platforms for telecom entangled photon sources”, by F. Sciarrino et al., reviews
different platforms used to generate telecom-entangled photon pairs, focusing in
particular on an integrated source realized by the femtosecond laser writing tech-
nique.

– “Quantum optics with single spins”, by L. C. Bassett, describes the quantum-
mechanical coupling between atom-like spin states and light, using the diamond
nitrogen-vacancy (NV) center as a paradigm. Moreover, it explains various meth-
ods that serve as the basis for advanced protocols at the heart of many emerging
quantum technologies.

– “Nanoscale sensing and quantum coherence”, by F. Reinhard, summarizes concepts
and techniques about single-qubit sensors, including an outlook to the major trends
of the field.

– “ Many-body physics and quantum simulations with strongly interacting photons”,
by D. G. Angelakis and Jirawat Tangpanitanon, focuses on interacting photons in
superconducting circuits for quantum simulation of both in and out-of-equilibrium
quantum many-body systems.

– “Nano-optomechanics”, by E. Verhagen, introduces the basic physical description
of optomechanical interactions at a tutorial level, and highlight several directions
of current research.
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Preface XV

In addition, among all poster contributions the following were selected for this book:

– “Photostable molecules on chip: a scalable approach to photonic quantum tech-
nologies”, by M. Colaiutti et al., presents the design and characterization of the
evanescent coupling between dibenzoterrylene molecules and a ridge waveguide
made of silicon nitride.

– “Environment spectroscopy with an NV center in diamond”, by S. Hernández-
Gómez et al., describes in detail a method to spectroscopically characterize the
spin bath around an NV center and identify the coherent coupling with the nearest
nuclear spins.

– “Ultrafast photonic quantum correlations mediated by individual phonons”, by S.
Tarragó Vélez and C. Galland, outlines a new technique to prepare and measure
the lifetime of the first phonon Fock state in diamond using single photon time-
correlated Raman spectroscopy.

In this collection of chapters we hope the readers will find a valuable overview of the
state-of-the-art and current trends in nanoscale quantum optics.

Mario Agio, Irene D’Amico, Costanza Toninelli and Rashid Zia
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Basic concepts for quantum optics and quantum
technologies

Irene D’Amico

Department of Physics, University of York - York, YO10 5DD, UK

International Institute of Physics, Federal University of Rio Grande do Norte - Natal, Brazil

Summary. — This introductory paper aims to provide a brief review of some basic
concepts in quantum optics and quantum information, such as quantization of the
electro-magnetic field, Fock and coherent states, quadrature operators, qubits and
quantum gates, entanglement, Bell states and Bell inequality, mixed states and the
density operator.

1. – Introduction

The field of nanoscale quantum optics (NQO) is rooted into quite different research
areas: quantum optics, photonics, fundamentals of quantum mechanics, quantum infor-
mation technologies, as well as low-dimensional condensed matter physics. Central to
NQO are interacting many-body quantum system [1] strongly coupled to electromagnetic
fields. These are some of the most difficult systems to be analysed experimentally and to
be accurately treated via theoretical means, due to particle-particle interactions, to the
necessity of treating light-matter interactions beyond linear response, to requirements for
maintaining light, light-matter, and matter quantum conherence, etc. In the last couple
of decades, these systems have also emerged as good prospective hardware for protocols

c© Società Italiana di Fisica 1
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2 Irene D’Amico

and devices relevant to quantum technologies [2]. Often NQO-related processes involve
out-of-equilibrium dynamics far from the steady-state, and desired results may be ham-
pered by interactions with the environment and other sources of noise and decoherence
such as fields or temperature fluctuations. All of this makes NQO a complex field, which
is growing under the hunger for technological achievements, and the stimuli of basic
research quests and experimental challenges.

Further contributions in these proceedings will detail the progress in various NQO
research topics; to support their understanding, this paper aims to briefly introduce
some basic concepts relevant to quantum optics and to technologies derived from quantum
information. In the first half of the paper we will review concepts important for quantum
optics, such as the quantization of the electromagnetic field and Fock states (sect. 2),
coherent states (sect. 3), quadrature operators and squeezed states (sect. 4). These
sections mainly follow related treatment by some well-known textbooks, as indicated.
From sect. 5, we will review some concepts relevant to quantum technologies: qubits
and quantum gates (sect. 5), quantum entanglement and Bell inequality (sect. 6), “spin
chains” as quantum buses (sect. 7), and finally in sect. 8 the concepts of pure and mixed
states and of the density operator.

2. – Quantization of the electromagnetic field and Fock states [3]

The cornerstone of quantum optics is the move from a classical description of elec-
tromagnetic fields to a full acknowledgement of the quantized nature of light and to the
understanding of its consequences, especially in relation to the interaction between light
and matter. The starting point is the quantization of the electromagnetic fields.

2.1. Classical field, plane wave. – We start by reviewing expressions for a classical
electromagnetic field and consider a plane wave propagating in free space along the
vector k with frequency ωk. In CGS units, the corresponding electric and magnetic fields
are, respectively,

E(r, t) = �εE0 exp[i(k · r − ωkt)] + c.c.,(1)

B(r, t) =
k × �ε

k
E0 exp[i(k · r − ωkt)] + c.c.,(2)

where k = ωk/c (with c the velocity of light), and �ε ⊥ k is the polarization vector, and
c.c. stays for “complex conjugate”. We note that, when considering all possible modes,
for each k̂ there could be two orthogonal polarizations, �εk,s, with s = 1, 2.

Given a volume V , the associated electromagnetic energy is

(3) U =
1
8π

∫
V

[E2(r, t) + B2(r, t)]dr,

leading, for a plane wave and up to fast oscillating terms, to

(4) U =
1
2π

|E0|2.
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Basic concepts for quantum optics and quantum technologies 3

In the Coulomb gauge, the corresponding vector potential is given by

(5) A(r, t) = �εA0 exp[i(k · r − ωkt)] + c.c.,

while E0 becomes

(6) E0 = i
ωk

c
A0.

2.2. Generic classical field . – We consider a travelling field within a cubic box of
volume V = L3. By expanding the field into plane waves and imposing periodic boundary
conditions, the allowed k-vectors are

(7) k = 2π
n
L

,

with n = (nx, ny, nz) and ni = 0,±1,±2 . . ., i = x, y, z. The vector potential is then

(8) A(r, t) =
∑

allowedk;s=1,2

Aks√
V

�εks exp[i(k · r − ωkt)] + c.c.,

with Aks determining the specific field. Plane waves are orthogonal, so that the associated
electromagnetic energy (3) becomes a summation of terms similar to (4) over the complete
set of allowed {k}. Then, using eq. (6), we obtain

(9) U =
1
2π

∑
allowedk;s=1,2

(ωk

c

)2

|Aks|2.

This equation expresses the energy of the electromagnetic field within the volume V as
a sum of modes.

2.3. Quantization of the electromagnetic field . – We associate each mode in the field
to a quantum of energy �ωk, with {nks} the number of quanta in the field. The total
energy in the field can then be written as

(10) U =
∑

allowedk;s=1,2

�ωknks.

A direct comparison between eqs. (9) and (10) then gives

(11) nks =
ωk

2π�c2
|Aks|2.

Next we associate U with the Hamiltonian operator Ĥ, and the fields A, E, B to
operators; nks becomes the number operator n̂ks = â†

ksâks, with â†
ks, âks creation and
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4 Irene D’Amico

annihilation operators for the mode ks. Finally the average occupation number is now
given by the Bose statistics

(12) 〈n̂ks〉 =
1

exp �ωk

kB
− 1

.

With these assumptions, and using eq. (11) we derive the relation

(13) Âks =

√
2π�c2

ωk
âks,

from which we obtain the expressions for quantized fields

A(r, t) =
∑

allowedk;s=1,2

√
2π�c2

V ωk
�εksâks exp[i(k · r − ωkt)] + h.c.(14)

E(r, t) = i
∑

allowedk;s=1,2

√
2π�ωk

V
�εksâks exp[i(k · r − ωkt)] + h.c.(15)

B(r, t) = i
∑

allowedk;s=1,2

√
2π�ωk

V

k × �εks

k
âks exp[i(k · r − ωkt)] + h.c.,(16)

where h.c. stands for “hermitian conjugate”. Equations (14), (15), and (16) describe
measurable operators. We note that, due to the choice of CGS units, electric and mag-
netic fields have the same prefactor.

As photons are bosons, creation and annihilation operators obey the bosonic commu-
tation relations

[âks, â
†
k′s′ ] = δkk′δs,s′ ,(17)

[âks, âk′s′ ] = 0.(18)

To obtain the correct form for the Hamiltonian, we need to substitute the quantized form
of the fields (14), (15), and (16) into eq. (3) and use the bosonic commutation relations.
The result is

Ĥ =
∑

allowedk;s=1,2

1
2

�ωk

(
â†
ksâks + âksâ

†
ks

)
(19)

=
∑

allowedk;s=1,2

�ωk

(
n̂ks +

1
2

)
.(20)

Equation (20) shows that, even in the absence of quanta in the field, the corresponding
energy is non-zero, and given by

∑
allowedk;s=1,2

1
2�ωk, the zero-point energy. We note
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Basic concepts for quantum optics and quantum technologies 5

that, by applying the quantization procedure directly to the classical results (9) —which
assumes all fields components to commutes— there would have been no zero-point energy.

2.4. Fock states and their properties. – The eigenstates |nks〉 of the number operator
n̂ks are known as Fock states. For a single mode ks we can then write

(21) n̂ks|nks〉 = nks|nks〉,

where nks = 0, 1, 2, . . .∞. State |0ks〉 is the vacuum state and contains no quanta of the
electromagnetic field. State |nks〉 can be generated by the vacuum state as

(22) |nks〉 =
1√
nks!

(â†
ks)

nks |0ks〉.

Fock states form a complete set of orthogonal states, and it can be shown that

âks|nks〉 =
√

nks|nks − 1〉,(23)

â†
ks|nks〉 =

√
nks + 1|nks + 1〉.(24)

When considering multimode fields, the related Fock states will be given by the product
state of the single mode ones

(25) |{nks}〉 = Πk;s|nks〉.

The application of a specific mode annihilation or creation operator will then result in

âks|{nks}〉 =
√

nks|nks − 1〉Πk′;s′ �=k;s|nk′s′〉,(26)

â†
ks|{nks}〉 =

√
nks + 1|nks + 1〉Πk′;s′ �=k;s|nk′s′〉.(27)

3. – Coherent states

3.1. Coherence in classical light [4]. – For classical fields, coherence describes the
“stability” of light. For example interference phenomena can be observed as long as the
frequency of light is stable and its spread is small enough. We can classify coherence into
temporal (or longitudinal) coherence and spatial (or transverse) coherence. A coherence
time τc is associated to the temporal coherence, with τc ≈ 1/Δω, with Δω the light
spectral width. A coherence length can then be defined as Lc = cτc. The coherence time
(length) corresponds to the time (path) during which the wave train has a stable phase.

3.2. Quadrature operators and Fock states in the quadrature space [3]. – For a field rep-
resented by a plane wave, E0 is a complex number, and, importantly, both its amplitude
and phase can be measured experimentally.
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6 Irene D’Amico

As previously seen, in quantum optics E0 corresponds to the annihilation operator
âks, which is not Hermitian; it is then custom to consider instead the two Hermitian
quadrature operators(1)

X̂ =
âks + â†

ks√
2

,(28)

Ŷ =
âks − â†

ks

i
√

2
,(29)

which inherit from (17) and (18) the commutation relation

(30) [X̂, Ŷ ] = i.

The above relation tells us that X̂ and Ŷ are related by canonical commutation relations,
so that Ŷ can be formally written as the momentum associated to X̂ in the quadrature
space, Ŷ = −i∂/∂X̂. Because of (30), Heisenberg uncertainty relation will apply, so that

(31) ΔX̂ΔŶ ≥ 1
2

,

where (ΔX̂)2 = 〈X̂2〉 − 〈X̂〉2 and similarly for Ŷ .
Formally the commutation relations (17), (18), and (30) are the same that we en-

counter when we move from the first to the second quantization of a particle trapped
by a one-dimensional harmonic potential. It is not surprising then, that when we wish
to express Fock states in quadrature space we formally obtain the eigenstates of the one
dimensional harmonic oscillator

ψnks
(X) = 〈X|nks〉(32)

= (2nksnks!
√

π)−
1
2 Hnks

(X) exp
(
−X2

2

)
.(33)

The uncertainty relation (31) then becomes

(34) ΔX̂ΔŶ = nks +
1
2

,

with (ΔX̂)2 = (ΔŶ )2 = nks + 1
2 , which shows that the vacuum state corresponds to the

minimum uncertainty relation.
We note that the mean value of the quadrature operators calculated for Fock states

is always zero, due to the orthogonality of Fock states. However from the existence of,

(1) We note that the coefficients entering the definition of X̂ and Ŷ may vary slightly depending
on the chosen text.
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for example, single-mode lasers, we expect quantum mechanics to allow for well-defined
amplitude and phase for the electromagnetic field: there must exist a set of “special”
quantum states which satisfy this requirement. Indeed these states are called “coherent
states” [5].

3.3. Coherent states and their properties [3]. – Coherent states are defined by the
requirement that E0 = 〈âks〉 be finite. They are the eigenvectors of âks, satisfying the
relation

(35) âks|αks〉 = αks|αks〉,

where αks is a complex number. The intensity of a coherent field, an observable, will
then be proportional to |E0|2, that is to the mean value of the number operator over the
relevant coherent state

|E0|2 = 〈αks|â†
ksâks|αks〉(36)

= |αks|2.(37)

The corresponding mean value of the quadrature operators becomes

〈αks|X̂|αks〉 =
√

2
αks,(38)

〈αks|Ŷ |αks〉 =
√

2�αks.(39)

It can be shown (see, e.g., [3]) that coherent states can be written in terms of Fock states
as

(40) |αks〉 = exp
(
−1

2
|αks|2

) ∞∑
nks=0

αnks

ks√
nks!

|nks〉.

Equation (40) implies that if the field is in a coherent state, the probability of measuring
a Fock state state is given by the Poisson distribution

(41) pnks
= |〈nks|αks〉|2 = exp(−|αks|2) (|αks|2)nks

nks!
,

with variance and mean given by |αks|2.
Coherent states form a complete set, but they are not orthonormal. In fact

(42) 〈αks|βks〉 = exp
(

α∗
ksβks − 1

2
|αks|2 − 1

2
|βks|2

)
,

so that any coherent state can be expressed in terms of other coherent states. Impor-
tantly, coherent states have always minimum uncertainty relationship, independently
from αks, i.e. ΔX̂ΔŶ = 1/2 = (ΔX̂)2 = (ΔŶ )2. Because of this, they are the best
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8 Irene D’Amico

quantum-mechanical analogue of the classical single-mode field: coherent states describe
wave packets that, subject to free evolution of the field, change phase but do not change
shape nor variance:

(43) |αks〉
Ĥ=�ω( 1

2+â†
ksâks)−−−−−−−−−−−−→ exp

(
−i

ω

2
t
) ∣∣∣exp

(
−i

ω

2
t
)

αks

〉
,

so that, under free dynamics, ΔX̂(t)ΔŶ (t) = 1/2 = (ΔX̂)2(t) = (ΔŶ )2(t).

3.4. Coherent states and the displacement operator [6]. – By using eqs. (22) and (40),
it can be shown that coherent states are displacements of the vacuum state

|αks〉 =
[
exp

(
−1

2
|αks|2

)
exp(αksâ

†) exp(−α∗
ksâ)

]
|0〉(44)

= D(αks)|0〉,(45)

where D(αks) is the displacement operator of amplitudes â and â†, that is

D−1(αks)âD(αks) = â + αks,(46)

D−1(αks)â†D(αks) = â† + α∗
ks.(47)

Importantly, D(αks) is unitary, with D†(αks) = D(−αks) = [D(αks)]−1. Using the
Baker-Campbell-Hausdorff formula, one can show that

D(αks) = exp
(
−1

2
|αks|2

)
exp(αksâ

†) exp(−α∗
ksâ)(48)

= exp(αksâ
† − α∗

ksâ)(49)

= exp
(
−1

2
|αks|2

)
exp(−α∗

ksâ) exp(αksâ
†).(50)

4. – Quadrature operators in quantum optics [6]

Let us consider the homogeneous single-mode electric field

(51) E(t) = i

√
2π�ωk

V
�εks

[
âks exp(−iωkt) − â†

ks exp(iωkt)
]
.

By substituting in it âks = (X̂ + iŶ )/
√

2 and â†
ks = (X̂ − iŶ )/

√
2, we obtain

E(t) = −2

√
π�ωk

V
�εks

[
Ŷ cos(ωkt) − X̂ sin(ωkt)

]
(52)

ω→−ω= −2

√
π�ωk

V
�εks

[
Ŷ cos(ωkt) + X̂ sin(ωkt)

]
.(53)
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Y

X

Y

X

Fig. 1. – (a) Vacuum state |0〉 represented in quadrature space. (b) Coherent state |α〉, with α
complex, in quadrature space. Both states have minimum uncertainty 1/

√
2.

Equation (53) clarifies that the operators X̂ and Ŷ correspond to the quadratures of the
quantized electric field, with phase difference π/2. Measurement of these observables will
then provide all necessary information on the characteristics of the quantized light. Sim-
ilarly, plotting these quadratures will help better understanding (as well as visualizing)
of the characteristics of different states of light, e.g. Fock’s versus coherent states. We
give some simple examples below.

4.1. Examples of visualization of quantum states of light . – To visualize a quantum
state of light |ψ〉 using the quadrature operators, we plot its measurable properties X =
〈ψ|X̂|ψ〉 and Y = 〈ψ|Ŷ |ψ〉, which give the position of the state in the quadrature space,
as well as the corresponding standard deviations ΔX̂ and ΔŶ which give an indication
of the state is spread.

In fig. 1a the vacuum quantum state |0〉 is visualized. For this state 〈0|X̂|0〉 = 0 and
〈0|Ŷ |0〉 = 0, while ΔX̂ = 1/

√
2 = ΔŶ , corresponding to minimum uncertainty.

In fig. 1b a coherent quantum state |α〉 is visualized. From eqs. (38) and (39), it
follows that 〈α|X̂|α〉 =

√
2
α and 〈α|Ŷ |α〉 =

√
2�α, while still ΔX̂ = 1/

√
2 = ΔŶ .

Comparison between fig. 1a and fig. 1b graphically demonstrates that indeed coherent
states are displacements of the vacuum state, in fact D−1(α)X̂D(α) = X̂ +

√
2
α and

D−1(α)Ŷ D(α) = Ŷ +
√

2�α.

4.2. Squeezed states [6]. – Given two Hermitian operators Â and B̂ with commu-
tation relation [Â, B̂] = iĈ, their expectation values will satisfy the uncertainty rela-
tionship ΔAΔB ≥ |〈Ĉ〉|/2. A quantum state is then a “squeezed” state if, for one of
the observables (say B̂), the relationship (ΔB)2 < |〈Ĉ〉|/2 is satisfied. In addition, if
ΔAΔB = |〈Ĉ〉|/2 is also satisfied, the state is an “ideal” squeezed state. The reduction
of quantum fluctuations in the expectation value of one operator must be compensated
by an increase in the other, so that the uncertainty relationship still holds.
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Y

X

Y

X

Fig. 2. – (a) Coherent state |α〉, with α ∈ �, represented in quadrature space. (b) The coherent
state |α〉 of panel (a) is squeezed along the X direction in quadrature space.

Coherent states may be squeezed by applying appropriate operators, see e.g. [6]. In
fig. 2 a coherent state with α ∈ 
 (panel (a)) is squeezed along X (panel (b)). The use
of squeezed states may improve measurements; this is the case, e.g. for interferometric
measurements of gravitational waves.

5. – Elementary building blocks for quantum technologies: quantum bits and
quantum gates

Focus on quantum information and related quantum technologies [2] has exponentially
increased in the last 20 years, leading to side-by-side progress of related theory and
experimental concepts and techniques, as well as to substantial investments by many
Countries worldwide.

At the core of quantum information there is the concept of “quantum bit” or “qubit”,
the quantum equivalent of the familiar unit of classical information, the bit. A qubit is
a quantum two-level system, with basis states |0〉 (or | ↑〉) and |1〉 (or | ↓〉). At difference
with its classical counterpart, and according to the principles of quantum mechanics, a
qubit can be in any linear superposition of its basis states, with its generic state being

(54) |Ψ〉 = α|0〉 + β|1〉,

with α, β ∈ C and |α|2 + |β|2 = 1. Each qubit must be isolated enough to be well-
defined as a two-level system; at the same time, it must be possible to change its state
in a controllable way —e.g. via electromagnetic fields or direct coupling other qubits—
to perform input/output operations and/or quantum logic gates. In matrix quantum
mechanics, qubits are represented by two-entry column vectors. For example, in the
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standard basis, state (54) becomes

(55) |Ψ〉 =
(

α

β

)
.

Quantum gates acting on a single qubit are then 2×2 matrices and two-qubit gates 4×4
matrices. In principle universal computation can be realized by using one and two-qubit
gates alone [7].

Similar to their classical counterpart, a sequence of quantum logic gates performs a
computational algorithm; however the opposite may not be true as there exist quantum
computation methods which are not based on quantum gates, notably “one-way quantum
computing” [8]. The latter is based on an entangled network of qubits; these qubits
are measured in such a way to produce the desired computation output, but without
explicitly performing a series of gates. In this case quantum gates between qubits may
be used to produce the initial computational resource, entanglement.

6. – Quantum entanglement

6.1. Entangled and unentangled states . – Quantum entanglement is a purely quantum
mechanical feature and accounts for part of a system quantum correlations [7]. Here we
will examine the concept of bi-partite entanglement: we will consider a quantum system
S formed by two subsystems, generally referred to as A and B, and define under which
conditions A and B are —or not— entangled.

Let us start by considering a two-spin (two-qubit) system in the overall quantum state

|ψ〉AB = (α| ↑〉 + β| ↓〉)A(γ| ↑〉 + δ| ↓〉)B(56)

= |Ψ〉A|Ψ〉B .(57)

As shown above, |ψ〉AB can be factorized in a state |Ψ〉A describing spin A by a state
|Ψ〉B describing spin B, which means |ψ〉AB is a “product state”. States like |Ψ〉AB are
not entangled. From the information perspective this implies that if we measure the
state of spin A no information is gained on spin B. In fact, whichever the result from
measuring spin A, |Ψ〉B remains unaffected and so does the probability of obtaining any
possible result from measuring B.

However if we consider the overall state given by

(58) |ψ〉′AB = (α| ↑〉A + β| ↓〉A)| ↓〉B + γ| ↓〉A| ↑〉B ,

we find that it is not possible to write it as a product state: |Ψ〉′AB is then an entangled
state. If we now measure system A and obtain, let us say, | ↓〉A, we see that this
measurement affects the state of B, changing the probability of obtaining | ↑〉B (now
|γ|2/(|γ|2 + |β|2)) or | ↓〉B (now |β|2/(|γ|2 + |β|2)) from a measurement of B. This shows
that there is a correlation between the state of system A and the state of system B.
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Fig. 3. – Two different partitions for the same ensemble of three particles.

The two-spin states

|Φ〉+ =
1√
2
[| ↑〉A| ↑〉B | + | ↓〉A| ↓〉B ],(59)

|Φ〉− =
1√
2
[| ↑〉A| ↑〉B | − | ↓〉A| ↓〉B ],(60)

|Ψ〉+ =
1√
2
[| ↑〉A| ↓〉B | + | ↓〉A| ↑〉B ],(61)

|Ψ〉+ =
1√
2
[| ↑〉A| ↓〉B | − | ↓〉A| ↑〉B ].(62)

are known as “Bell states” and are maximally entangled: this means that measuring one
of the subsystems determines completely the state of the other. Bell’s states represent an
alternative basis for a two-qubit system, and are often used within quantum technology
protocols. An instructive example is the one-qubit teleportation protocol [7].

Entanglement is naturally abundant in solid-state systems, while is it relatively dif-
ficult to entangle photons. In addition to quantum computation, it is a fundamental
resource for certain quantum cryptography protocols, quantum sensing, quantum simu-
lation, and quantum metrology.

6.2. Entanglement in systems with multiple degrees of freedom. – Quantum systems
are usually more complex than just two spins, for example they may include more than
two particles. In this case the entanglement of the system will depend on the partition
chosen. To understand this concept, let us consider three spin-1

2 particles in the state
|Ψ123〉 = |Ψ〉1|Φ〉+23 and the partitions sketched in fig. 3. It is clear that, when considering
partition (a), the subsystems are not entangled; however as particles two and three
are maximally entangled, partition (b), which “separates” them, will result in non-zero
entanglement.
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Realistic systems are even more complex, and they usually include qualitatively dif-
ferent degrees of freedom. For example even a system of just two electrons would be
characterized by their positions, momenta, and charges, in addition to their spins. When
discussing entanglement, it is then very important to specify which degrees of freedom
are considered, as, for the same overall system state, specific degrees of freedom may be
entangled while others may not.

An example of this situation is the ground state of two non-interacting electrons, eA

and eB , trapped by an harmonic potential. The overall wave function will be given by

(63) |ψAB〉 = be−ar2
Ae−ar2

B |Φ〉−,

where a is proportional to the characteristic frequency of the harmonic oscillator and
b is a normalization constant. Clearly if the spatial degrees of freedom rA and rB are
considered, |ψAB〉 is not entangled. However if the spin degrees of freedom are considered,
the two electrons are maximally entangled, as they are in the Bell state |Φ〉−.

A more complex example is given by comparing the behaviour of the average single-site
entanglement versus the spatial entanglement for the one-dimensional Hubbard model [9,
10]. The single-site entanglement describes the entanglement of one site with the rest of
the chain [11], while the spatial entanglement [12] refers to the entanglement between the
spatial degrees of freedom of the particles. When considering the behaviour with respect
to particle-particle interaction strength, the spatial entanglement is zero (minimum) for
non-interacting particles, while the single-site entanglement is maximum. The two types
of entanglement behave in a qualitative opposite way for most interaction strengths [9,10].

6.3. Entanglement and Bell’s inequality . – A main difference between quantum me-
chanics and our familiar “classical” world is that classically we assume that physical
properties of objects are independent of measures, and that measures simply reveal the
properties. For example if a car is blue, our intuition and experience tell us that it was
blue even before we looked at it and, unless repainted, it will continue to remain blue.

On the contrary, the “collapse of the wave function” postulate of quantum mechanics
implies that the act of measurement affects a system’s properties. For example let us
consider a particle not in the eigenstate of the relevant observable: measuring its position
will localize it or measuring its energy give to this a specific value, while before the
measurement it had a nonzero probability to be found elsewhere in space or to have
a different energy. Quantum mechanics provides rules by which we can predict the
probability of a certain measurement outcome but, with respect to measurement, it is
not a deterministic theory.

In classical mechanics a probabilistic measurement outcome is associated to incom-
plete knowledge of the system at hand; a natural question is then if it is the same for
quantum mechanics: are there “hidden variables” such that their knowledge could re-
store a deterministic theory of quantum measurement? Einstein, Podolsky and Rosen
argued that this was the case [13]. However in 1964 John Stewart Bell came up with an
outstanding proposal, and suggested an experiment for which quantum mechanics and
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local-hidden-variable theories were giving different predictions [14]: incredible but true,
the completeness of quantum mechanics could now be tested experimentally.

Bell proposed to measure specific observables and showed that a certain linear com-
bination of the results had an upper bound when calculated using local hidden variable
theory (Bell’s inequality [7, 14]). Bell’s inequality is derived under the “classical” as-
sumptions of realism (physical properties have definite values which exist independently
of observation) and locality (it is possible to set up laboratory conditions, e.g. distance
between experimental set-ups, such that measurements done by experimenter A cannot
influence measurements done by experimenter B). However, if the properties measured
belong to entangled particles shared between experimenters A and B, this inequality is
violated, and, as a consequence, either the hypothesis of realism or the one of locality, or
both, are incorrect.

Hence, measuring if Bell’s inequality is, or not, satisfied verifies if entanglement is
an actual property of nature, at least up to the local-hidden-variable theory. Existence
of entanglement means that measuring a subsystem A may indeed alter the state of a
different subsystem B, even if A and B are not coupled to each other by the overall
system Hamiltonian.

Bell’s inequality has been tested multiple times [15-24], and especially in the last
couple of decades [16-24]: in this period renewed interest in the fundamentals of quantum
mechanics was sparkled by the surge of quantum information theory and, at the same
time, technological advancements made it possible to design ever more sophisticated and
accurate experiments.

So far experimental evidence supports the results from quantum mechanics and shows
that entanglement is a quantum resource which goes beyond classical properties.

7. – “Spin chains” as eclectic quantum buses

Entanglement is a resource for many quantum technologies; however, to provide en-
tanglement to the related protocols it may be necessary not only to generate it, but also
to create specific entangled states, transport entanglement where needed, distribute it to
different parties, detect it, and/or store it for later use.

Depending on the protocol, various methods and different hardware have been pro-
posed to these aims. For example, when dealing with long distances, e.g. for quantum
communication, entangled photons are usually the medium of choice: they can be gen-
erated, for example, using quantum dots, and then transported or distributed using
optical fibers.

However within an electronic device there is often the necessity of transporting in-
formation resources between shorter distances, for example between different processors.
Devices for quantum technologies are no exception and it is clear that it would be advan-
tageous if these internal “quantum buses” could transfer faithfully not only simple qubits,
but also entanglement. Even better if they could also manipulate entanglement in useful
ways, actively contributing to the protocols themselves. This is the context in which it
has emerged the concept of “spin chains” as quantum buses to transfer and manipulate
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information and entanglement over mid-to-short distances (for early developments of the
use of spin chains within quantum technologies see, e.g., ref. [25]).

Spin chain here refers to a network of spins —not necessarily a linear chain— whose
dynamics is governed by a lattice Hamiltonian such as the Heisenberg [26], Ising [27],
Hubbard [28], Su-Schrieffer-Heeger [29], or the XY -Hamiltonian [25] models. In the con-
text of quantum technologies, and at difference somewhat with previous studies, the use
of these models focuses mainly on finite chains, non-equilibrium dynamics, entanglement-
related properties, robustness against imperfections, and topological properties.

Originally developed to treat strongly correlated electronic systems, spin-chain Hamil-
tonians turned out to be very versatile, and can be applied to describe a variety of
quantum systems, from chains of nanostructures [30-32], to arrays of cold atoms [33],
trapped ions [34] strings of fullerenes [35], photonic systems [36,37], etc. Applications to
specific physical systems may require inclusion of additional perturbative terms in the
Hamiltonian, for example to describe system-specific decoherence mechanisms or typical
fabrication defects (see e.g. ref. [38]).

Spin chains have been very fruitful for designing protocols to generate, transport,
distribute, and store entanglement [39-46]. This includes knitting and distributing clus-
ter states [47-50], which are relevant for one-way quantum computation. Importantly,
spin chains can be engineered such that their evolution under their natural Hamil-
tonian may transport quantum information without spoiling it (perfect state transfer
(PST) [32,51-53]), produce and/or distribute different types of entangled states between
relatively far-apart parties [43-50]. With the addition of light-touch control protocols,
spin chains whose natural dynamics produces entanglement can be made able to store
it afterwards [43, 45]. Various of these protocols have been proven to be fast with re-
spect to relevant decoherence mechanism and robust against fabrication defects (see
e.g. [38, 43,44]).

8. – The density operator

8.1. Why do we need a density operator? . – So far we have described a quantum
system using a coherent superposition of state vectors, e.g.

(64) |ψ〉AB = αA|Ψ〉A| + αB |Ψ〉B .

However this state is an idealization when compared to the actual states prepared and
analysed experimentally. In these, there will always be some statistical uncertainty due
to imperfections (e.g., in the procedure to prepare the quantum state), finite temperature
effects, unwanted interactions of the quantum state with the environment, etc. We then
need a description of a quantum state that, in addition to including quantum mechanical
uncertainties, accounts for classical statistical uncertainty. This is provided by the density
operator ρ̂ [7].

Quantum mechanics can be formulated in terms of the density operator, and, in ad-
dition, the related formalism allows for an easier description of situations where classical
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statistical uncertainty is present (e.g. experiments), and can be extended to describe open
systems and decoherence processes, all of which is crucial when dealing with protocols
and devices for quantum technologies.

8.2. Ensembles of quantum states: mixed and pure states. – The density operator
formalism is convenient to describe quantum systems whose state is not fully known.
Suppose that, e.g. due to imperfections in fabrication methods, a quantum system is in
the state |ψi〉 with probability pi. Then the ensemble {pi, |ψi〉} is called an ensemble of
pure states. The density operator for this quantum system is defined as

(65) ρ̂ =
∑

i

pi|ψi〉〈ψi|,

with
∑

i pi = 1, as for any classical probability. This is at difference with the quantum
uncertainty expressed by the coefficients in eq. (64) where instead

∑
i |αi|2 = 1. If at

least two of the pi coefficients in (65) are different from zero, we refer to ρ̂ as to a “mixed
state”. If the state of the system is not affected by classical uncertainties, then we refer
to it as a “pure state”, and its density operator is given by

(66) ρ̂ = |ψ〉〈ψ|.

8.3. Characterization of a density operator . – A density operator is Hermitian, ρ̂† = ρ̂.
An Hermitian operator ρ̂ is a density operator associated to some ensemble {pi, |ψi〉}

if and only if it satisfies the conditions

• Tr{ρ̂} = 1 (trace condition);

• ρ̂ is a positive operator, which means that, for any arbitrary state |φ〉, it satisfies
〈φ|ρ̂|φ〉 ≥ 0 (positivity condition);

• Tr{ρ̂2} ≤ 1, with Tr{ρ̂2} = 1 if and only if ρ̂ is a pure state.

8.4. Separable mixed states. – Previously we have defined entanglement for a pure
state: with respect to a specific partition, a state which cannot be factorized is entangled.
Here we extend this definition to mixed states.

A mixed state ρ̂, describing the bipartition A and B of the overall system, is separable
(i.e. not entangled) if and only if it can be written as a linear combination of pure product
states such as

(67) ρ̂AB =
∑

i

pi|Ai〉〈Ai| ⊗ |Bi〉〈Bi|.

Here |Ai〉 and |Bi〉 are vector states describing subsystems A and B respectively, and
0 ≤ pi ≤ 1 with

∑
i pi = 1. Vectors within {|Ai〉} or {|Bi〉} do not need to be orthogo-

nal. As the definition of separable states implies, different pure-state ensembles may be
represented by the same density operator.
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Summary. — Engineering coherent systems is a central goal of quantum science,
quantum optics, and quantum information processing. For quantum nanophotonics
applications, it is particularly important to design and control systems that exhibit
coherent optical transitions and long spin coherence times. This review outlines the
requirements for a variety of quantum nanophotonics applications, and describes the
key material properties that affect physical properties related to these requirements.

There has been an explosion of activity in the field of quantum nano-optics and
quantum nanophotonics over the past two decades. Broadly, this area encompasses a
large number of applications and research areas organized around controlling light-matter
interactions at the single-photon or single-atom level in solid-state systems. Building on
pioneering work in the cold atom community in the 80s and 90s using high-finesse cavities
to control atom-photon interactions [1], significant progress has recently been made in
engineering atom-like systems in the solid state that can interact strongly with light and
store quantum information for long periods of time. Such systems generally comprise a
defect or molecule that has well-defined, localized electronic states with narrow, selective
optical transitions. These narrow optical transitions form a manifold that isolates a
good two-level system for strong light-matter interactions, and in some cases they can
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be used to initialize or read out the ground electronic state. Although these features
are natural elements of cold atoms, interactions with a solid-state environment can lead
to decoherence of the optical transition, as well as the ground-state electronic spin.
Engineering atom-like systems in the solid state by creating defects or structures that do
not suffer from environment-induced decoherence is a central goal of the field.

1. – Desiderata for applications in quantum nano-optics

Here we will outline a few research areas in quantum nano-optics, and enumerate the
key desiderata for each application. Many of the key desiderata are overlapping, and
therefore lead to universal properties to engineer or search for in a quantum system.

1.1. Single-photon sources. – The simplest quantum system is a two-level system with
degrees of freedom that can be coherently manipulated. If these two levels are separated
by an optical transition frequency, this system can couple strongly to light. Reciprocally,
if a two-level system can strongly absorb a photon, in can also emit photons efficiently.
There is a rich field of research and applications aimed at using such quantum systems
to control and manipulate light. One such application is as single-photon sources for
quantum communication and quantum computing. The main requirements for single-
photon sources is that they are pure in that they should emit one photon at a time, and
transform-limited in that they do not exhibit dephasing beyond the linewidth determined
by the Fourier relationship between the wavepacket duration and the spread in frequency.
It is also helpful for single-photon sources to be bright; most applications will have a key
metric that scales with the rate of single photons. Finally, a typical requirement is that
single photons be identical in polarization, frequency, and spatial mode. For quantum
systems, the key desiderata therefore are that they exhibit a relatively short excited state
lifetime to increase the rate of single-photon emission, are highly optically coherent, do
not have parasitic emission that leads to background, and that they do not exhibit
changes or drift in the optical transition frequency, known as spectral diffusion. It is also
convenient if they exhibit a small static inhomogeneous distribution so that they can be
scaled.

1.2. Using quantum systems to control light . – Another field of research is build-
ing single-photon switches and transistors by achieving high cooperativity between a
quantum system and a photon mode, for example using cavity QED. The atom-photon
interaction can be parametrized by g, κ, and γ, where g is the single-photon Rabi fre-
quency that scales inversely with the mode volume as g ∝ 1√

V
, κ is the cavity decay rate

that scales inversely with the quality factor of the cavity, and γ is the bare spontaneous
emission rate of the atom. The enhancement of the atom-photon interaction is given by
the cooperativity, g2

κγ . When g is the largest parameter, such systems will exhibit strong
coupling, in which the photon coherently transfers between the atom and the cavity. In
the absence of this condition, the cooperativity gives the Purcell enhancement factor
of the spontaneous emission rate. In order to realize the full enhancement, the optical

 EBSCOhost - printed on 2/13/2023 9:33 PM via . All use subject to https://www.ebsco.com/terms-of-use



Materials for quantum nanophotonics 21

transition dipole of the atom should be coherent, similar to the requirement of optical
coherence for single-photon sources.

1.3. Quantum networks. – There are several theoretical schemes to extend the range
of quantum networks using quantum repeaters [2], in which single photons are entangled
with quantum memories and then used to distribute entanglement among these quantum
memories at remote nodes. This entanglement can then be used as a resource for telepor-
tation [3]. For such applications, the key desiderata are a long-lived quantum memory
in the form of a spin with long coherence time, an efficient spin-photon interface, high
collection efficiency, and high optical coherence.

1.4. Enhanced collection efficiency from a quantum system. – There is a broader class
of applications in which the most important figure of merit is simply the photon collec-
tion efficiency. For example, for nanoscale quantum sensing with NV centers in diamond,
the sensitivity scales with the number of photons collected per unit time, and nanopho-
tonic devices can be used to enhance the total collection efficiency. Furthermore, small
quantum computers with optical readout can generally benefit from higher collection
efficiency, motivating integration into nanophotonic devices.

2. – Examples of physical systems

Solid-state quantum systems can be ordered in terms of their degree of spatial local-
ization. Strain quantum dots are typically 10–100 nm, and their electronic wave functions
are primarily determined by the band structure of the surrounding host. Shallow donors
in semiconductors have wave functions with a spatial extent of a few nm, and they re-
semble hydrogenic orbitals that comprise the periodicity of the underlying lattice. Deep
defects and impurities such as color centers in diamond have angstrom scale wave func-
tions, and they resemble atomic or molecular orbitals.

Other systems that are used in quantum optics that are beyond the scope of this
overview include cold neutral atoms, which have been used as model systems in cavity
QED, trapped ions, which have been deployed in remote entanglement generation [4],
superconducting qubits, which have been an especially fruitful playground for cavity QED
and quantum optics in the microwave regime [5], and molecules such as terrylene [6],
which have a strong optical dipole but generally do not have spin degrees of freedom.

2.1. Quantum dots. – Quantum dots consist of islands of heteroepitaxially grown
materials in a semiconductor, where the island geometry results from strain due to lattice
mismatch. The most commonly studied system is InAs in GaAs. The smaller band
gap of InAs allows for free carrier confinement within the InAs, and the small spatial
extent of the InAs island leads to a large charging energy for electrons, which gives
rise to a discrete density of states. These electronic states can be used as quantum
memories, and the optical exciton can be used as an interface for photons. Because these
systems have such a large optical dipole (τ ≈ 100 ps, quantum efficiency near unity), they
are ideal systems for cavity QED experiments, and have been used as a model system
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for a number of quantum optics demonstrations [7]. However, the rapidly fluctuating
hyperfine field resulting from stiochiometric nuclear spins in GaAs limits quantum dot
spin coherence to less than 100 ns, limiting the utility of quantum dots for quantum
memories. Furthermore, despite significant efforts to improve growth homogeneity, the
static inhomogeneous distribution of the optical transition frequency can be quite large,
tens of nanometers, which hampers their application as single-photon sources.

2.2. Shallow donors. – Shallow donors are impurities in semiconductors that are en-
ergetically close to the band edge, such as phosphorous in silicon. They would ionize
to be dopants at room temperature, but at sufficiently low temperature the electron or
hole remains bound to the impurity atom in hydrogenic orbitals. These systems exhibit
excellent spin coherence, T1 ≈ 100 s, T2 ≈ 1 s at 4 K for isotopically purified silicon [8].
However, because they are so close to the band edge, optical transitions are highly ion-
izing. Most work on resonant excitation of shallow donors is performed on donor-bound
excitons rather than the optical transitions of the shallow donor itself [9]. Some recent
work has shown that chalocogen donors in silicon, which are energetically deeper, can
exhibit spin-selective optical transitions in the mid infrared, but their quantum efficiency
is unknown [10].

2.3. Defects and impurities. – Atomic and atom-like defects in solid-state hosts are
one of the leading experimental platforms for quantum information processing [11]. They
offer the possibility of excellent quantum coherence, enabling long quantum bit storage
times, and efficient and stable optical transitions that can be used to manipulate and
sense the qubit states. Furthermore, some of these systems can function under ambient
conditions and at room temperature, enabling their use as precise and versatile sensors.
Several defects have been intensively studied for these qualities over the last decade,
most notably the nitrogen vacancy (NV) center in diamond [12], which has a spin T1

of around 10 ms at room temperature, and hours at cryogenic temperatures in high-
purity diamond. The NV center also has transform-limited optical transitions, but the
zero phonon line only comprises a few percent of the total emission, limiting the total
effective quantum efficiency. More recent work has expanded the list of known candidates
for quantum applications to group-IV vacancies in diamond, such as the negative [13]
and neutral [14] silicon vacancy, and divacancies in SiC [15]. The negatively charged
SiV center exhibits more favorable optical properties than the NV center, but also has
much shorter spin coherence at 4 K. The neutral SiV has longer spin coherence and
excellent optical coherence with high apparent quantum efficiency, but spin-dependent
fluorescence has not yet been observed.

The types of defects that can be deployed in quantum technologies can be broadly
grouped into three categories: color centers (e.g. NV and SiV defects in diamond or
vacancy complexes in SiC), transition metals (e.g. Ti, Cr, V, etc.) and rare-earth ions
(e.g. Nd, Er, etc.). The latter two are interesting because they can be doped into a
wide range of host crystals with significant (in the case of transition metals) or mi-
nor (in the case of rare earths) alteration of their properties. For rare earth ions in
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particular, the submerged f shells are protected from the surrounding lattice, and T1 ≈
milliseconds is achievable below 1 K [16]. However, the T2 is typically much shorter,
around microseconds because known host materials for efficient rare-earth ion incorpo-
ration contain stoichiometric nuclear spins. Although rare-earth ions have very high
quantum efficiency, the optical transitions between f orbitals are forbidden because the
orbitals have the same parity, so they are very weak; the optical-excited-state lifetime is
typically milliseconds to hundreds of milliseconds. Recent work has achieved detection
of single rare-earth ions, either by confocal microscopy [17] or Purcell enhancement of
the emission rate using nanophotonics [18].

3. – Optical coherence and interactions with the environment

First, let us parametrize atom-photon interactions in general to identify the ideal case,
following the treatment in [19]. Using the density operator and optical Bloch equations,
the susceptibility χ of a medium of perfect two-level atoms, with ground state |1〉 and
excited state |2〉, can be written as

(1) χ = i
N

V

μ2

h̄ε0
(ρ11 − ρ22)

1
γ12 − iδ

,

where N
V is the density of the medium, μ is the optical transition dipole, γ12 = γ1+γ2

2 is
the average decay rate out of the two levels, δ is the detuning of the optical drive from
the resonant transition, and ρnn′ are elements of the density matrix:

(2) ρ̂ = ρ11 |1〉 〈1| + ρ12 |1〉 〈2| + ρ21 |2〉 〈1| + ρ22 |2〉 〈2| .

We can rewrite eq. (1) in terms of the spontaneous emission rate, γ given by the Einstein
A coefficient

(3) γ =
μ2

3πε0h̄

(
2π

λ

)3

to the following:

(4) χ = i
3

8π2

N

V
λ3(ρ11 − ρ22)

γ

γ12 − iδ
.

On resonance where δ = 0, we can write the linear susceptibility by considering ρ11 = 1,
ρ22 = 0, which assumes that all the population is in the ground state, and the drive is
weak,

(5) χ0 = i
3

8π2

N

V
λ3 γ

γ12
.
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So the linear susceptibility is purely imaginary. Physically, this means the medium is
absorptive, with no refraction. The electric field E will propagate through this medium as

(6) E(x) = E(0)e(−Im[χ]+iRe[χ])kx/2.

We also know, from Beer’s Law, that

(7) |E|2 = I(x) = I(0)e
−Nσx

2 ,

where eq. (7) is simply Beer’s law written in terms of the absorption cross section per
atom σ. Comparing to our expression for χ above, this gives

(8) σ =
3
4π

λ2 γ

γ12
.

When γ = γ12, the absorption cross section is on the order of λ2! This means that a
single atom can absorb a diffraction-limited photon. This condition where γ = γ12 is
referred to as radiative broadening. This requires that the optical transition has perfect
quantum efficiency and that the linewidth Δν is transform-limited, i.e. Δν = 1

2πτ where
τ is the excited state lifetime. In other words, there should be no linewidth broadening
from non-radiative processes or spectral diffusion.

There are a number of interactions with the host that can lead to broadening beyond
radiative broadening.

• First, if optical absorption results from absorption of a photon and a phonon, this
will give a broad linewidth for the phonon excited state. These processes can
generally be suppressed by cooling down to cryogenic temperatures, freezing out
the thermal population of phonons.

• Second, if the optical emission results from emission of a photon and a phonon,
the emitted photon will be shifted to the red and the linewidth will inherit the
characteristics of the phonon lifetime, which gives rise to broad phonon sidebands.

• Third, the difference in energy levels between |1〉 and |2〉 can change due to interac-
tions with electric, strain, or magnetic fields, leading to fluctuations in the optical
transition frequency known as spectral diffusion. Changes in the electric field can
arise from fluctuating trapped charges in the host, and this interaction comes from
the difference in static dipole moment for the ground and excited states. This con-
sideration leads the a natural strategy of searching for quantum defects that have
no permanent electric dipole moment, in order to make them insensitive to fluctu-
ating electrostatic fields. Fluctuations in magnetic fields from nearby nuclear spins
can also lead to spectral diffusion if the ground and excited states have different
hyperfine couplings. Since the hyperfine interaction is typically small (kHz–MHz
scale), this is generally only relevant for very narrow-linewidth emitters, such as
rare-earth ions.
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4. – Spin coherence and interactions with the environment

In order to parametrize magnetic interactions with the host environment, let us start
by writing down the Zeeman Hamiltonian for a spin �σ in a magnetic field �B:

(9) Ĥ = −1
2
h̄γ�σ · �B,

where γ is the gyromagnetic ratio given by γ = gμB

h̄ . If we start with the spin in a
superposition, |ψ(t = 0)〉 = 1√

2
(|0〉 + |1〉), we can solve the time-dependent Schrödinger

equation in the presence of an external magnetic field aligned with the quantization axis,
B = B0ẑ:

ih̄
∂

∂t
|ψ(t)〉 = Ĥ |ψ(t)〉 ,(10a)

|ψ(t)〉 =
1√
2

(|0〉 + eiγB0t |1〉) .(10b)

The time-dependent phase corresponds to Larmor precession of a spin around the Bloch
sphere. For an oscillating, AC magnetic field B = B1 cos ωtx̂, we can solve the time-
dependent Schrödinger equation in a rotating frame at the Larmor frequency, |ψ∗(t)〉 =
eiωLσzt/2 |ψ(t)〉, and then apply the rotating-wave approximation to eliminate rapidly
oscillating terms. When ω = ωL, this leads to a magnetic resonance, and the resulting
approximation for the Hamiltonian is given by

(11) H ′(t) = h̄Ωσx,

where Ω = γB1
2 is the Rabi frequency.

4.1. Dephasing . – Spins that experience inhomogeneous static magnetic fields will pick
up different phases over time. These effects are generally referred to as T ∗

2 processes.
Static inhomogeneity can give rise to ensemble linewidth broadening, while slowly varying
fields can lead to spectral diffusion of the magnetic resonance. In addition to inhomo-
geneities in the applied field over the volume of the sample, there can also be sources
of inhomogeneity intrinsic to the sample, such as strain gradients. Another dominant
source of dephasing is hyperfine interactions with nuclear and electronic spins in the host
material. Nuclear spins in particular can have exceptionally long spin-lattice relaxation
times, so they will look like a very slowly varying magnetic field.

4.2. Decoherence. – It turns out that inhomogeneities in low frequency fields are
relatively easy to cancel out using a Hahn echo pulse sequence. Remaining sources
of decoherence can arise from high frequency magnetic, electric, or strain fields. The
coherence time limited by these processes is referred to as T2. This is a poorly defined
term in that the measured T2 can depend on what pulse sequences you apply, and can
even be extended by driving the noise bath directly.
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The impact of nuclear spins in the host material on the coherence time of the quantum
defect will therefore depend on the density of nuclear spins. Nuclear spin-nuclear spin
interactions can lead to short nuclear spin T1, which gives rise to a rapidly fluctuating
magnetic noise bath that is difficult to decouple from. This is generally true for materials
in which the predominant isotopes have nonzero nuclear spin, such as III-V compounds.
In materials with a small minority of nuclear spinful isotopes, like diamond or silicon,
the natural abundance of nuclear spins give rise to a slowly varying bath that can be
cancelled out effectively with Hahn echo and other dynamical decoupling sequences.
Another subtlety is that nuclear spin flip-flops can be suppressed by a frozen core effect,
in which nuclear spins see a gradient in the magnetic field due to proximity to an electron
spin, causing them to be out of resonance with one another. This can lead to enhanced
T2 over what would be naively estimated from the nuclear spin density.

Other paramagnetic impurities in the host material with net electron spin can lead to
faster decoherence. For example, when the quantum defect of interest is at sufficiently
high density, spin-spin flip-flop interactions of nearest neighbors will look like a chang-
ing magnetic field for the central spin. This phenomenon is known as “instantaneous
diffusion.” Achieving long T2 is therefore in principle conceptually simple, in that it
requires a host material with nuclear spin-zero isotopes, free of paramagnetic electronic
impurities.

However, it is possible to create a particular quantum defect that exhibits shorter
T2 than would be expected from the host spin bath. For example, if there is a phonon-
mediated orbital relaxation, and these different orbitals experience different effective
magnetic fields from the environment because of differing spin-orbit or spin-spin coupling,
this orbital relaxation can also lead to decoherence. In such systems, although the spin T1

is long, and the host material is free of paramagnetic impurities, the fluctuating effective
magnetic field from orbital effects will lead to a drastically shortened T2. This mechanism
is responsible for the short T2 observed in the negatively charged group-IV vacancies in
diamond, for example.

4.3. Spin-lattice relaxation. – For a spin in vacuum, spin relaxation arises from equi-
libration with the blackbody environment. Since the density of states at low frequencies
is so small, this rate is essentially zero (1013 years at 10 MHz!). In a solid, these spin
relaxation times are much faster because of interactions with phonons. Because of this,
T1 relaxation is often referred to as spin-lattice relaxation. Phonons cannot flip the spin
directly because they do not have a direct magnetic component. Indirectly, they can
influence the spin relaxation by perturbing the lattice, which can look like a varying
magnetic field via spin-orbit coupling. This leads to the prescription that long T1 is typi-
cally achieved with either low spin-orbit coupling (low mass atoms) or low orbital-lattice
coupling (for example, with buried electron shells in d or f orbitals).

The microscopic mechanisms for T1 processes were extensively characterized in the
middle of the 20th century [20]. The rates will depend on the density of states of phonons
at the relevant energy scale, so stiff lattices with high Debye temperatures will allow for
longer T1. A non-exhaustive list follows:
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• A direct process is one in which a single phonon can induce a spin flip from one
sublevel to another. This should be linear in temperature at high temperatures,
and when the temperature is small compared to the energy splitting between spin
sublevels, it is exponentially activated.

• An Orbach process is a two-phonon process via an intermediate excited state. The
T1 relaxation rate will be exponential with temperature, with an activation energy
given by the energy position of the excited state.

• A Raman process is also a two-phonon process via a virtual state. The temperature
dependence is typically an odd power of temperature, and the exponent depends
on the exact conditions.

It is generally true that different processes will dominate at different temperatures, de-
pending on the available phonons and excited states. For example, it is common for a
given quantum defect to have crossover temperatures between direct, Orbach, and Ra-
man processes, where Raman processes dominate at the highest temperatures because of
the large density of available phonons.

5. – Prospects for quantum technologies

Only a handful of quantum defects and atom-like systems have been thoroughly char-
acterized and explored, and there are many more possibilities for new systems to achieve
better metrics than those that are currently known. Here I will briefly highlight a few
considerations for integration with nanoscale devices, which will be critical for deploy-
ment in any scalable quantum technology.

• In order to achieve long T1, the most important criteria is the selection of the
host material and the detailed interactions of the quantum system with phonons.
Optimizing this desideratum together with the demands of nanofabrication and
device functionality will be a central challenge in any search for new quantum
systems.

• For long T2, in addition to selecting a material that is free of nuclear spins, the host
material must also be free of other electronic defects. The relevant length scale is
set by spin-spin interactions with impurities; for spin 1/2 electrons, g = 2, this
scale is typically around 1 kHz at 30 nm. In other words, paramagnetic impurities
at the 100 ppb level will limit the spin coherence time to 1 millisecond. This poses
a grand challenge in purifying materials for quantum applications. Only a few
materials have been purified to ppb background impurity concentrations: silicon,
germanium, diamond, and a few others that are used as scintillators.

• For nanophotonic applications, the device dimensions will typically be on the order
of tens to hundreds of nanometers in order to confine a single optical mode. The
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purity and surface termination at these nanofabricated surfaces presents a signif-
icant challenge for future integration of quantum systems. Two areas of active
research are 1) to find quantum systems that are insensitive to noise at the surface,
and 2) to better control the surface termination.

REFERENCES

[1] Birnbaum K. M., Boca A., Miller R., Boozer A. D., Northup T. E. and Kimble

H. J., Nature, 436 (2005) 87.
[2] Duan L.-M., Lukin M. D., Cirac J. I. and Zoller P., Nature, 414 (2001) 413.
[3] Wehner S., Elkouss D. and Hanson R., Science, 361 (2018) 6412.
[4] Hucul D., Inlek I. V., Vittorini G., Crocker C., Debnath S., Clark S. M. and

Monroe C., Nat. Phys., 11 (2015) 37.
[5] Devoret M. H. and Schoelkopf R. J., Science, 339 (2013) 1169.
[6] Hwang J., Pototschnig M., Lettow R., Zumofen G., Renn A., Götzinger, S. and
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Summary. — This paper will focus on the theoretical and experimental study of
light-matter interaction in photonic structures. We will therefore start by describing
quantum optical models of optical cavities and waveguides. Then we will describe
the basic physics behind light matter interactions, and provide a theoretical analysis
of the phenomena that result from it. Finally, we will describe single-photon sources,
their characterization and introduce solid-state platforms that can be employed for
their implementation. Throughout this paper, we have tried to provide a sound and
complete description of the theoretical underpinnings of the seminal experiments in
quantum optics. Detailed derivations of some of the results employed in the main
text have been provided in the appendices.

1. – Quantum description of electromagnetic fields

Quantum description of electromagnetic fields is an essential part of the study of light-
matter interactions; even very fundamental effects such as spontaneous emission cannot
be explained with a classical model of electromagnetic fields. This section attempts to
give an overview of quantum optical models used for describing electromagnetic fields in
systems that support a discrete set of modes (e.g. lossless cavities) as well as in systems
that support a continuum of modes (e.g. waveguides).

c© Società Italiana di Fisica 29
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1.1. Lossless cavities: Systems with discrete modes. – Lossless optical cavities are often
an interesting mathematical model to understand the behaviour of a number of optical
systems. An ideal lossless cavity can be formed by enclosing a lossless permittivity
distribution within a perfect electrical conductor (PEC) or a perfect magnetic conductor
(PMC). It is well known in classical electromagnetic theory that such a system supports
a discrete set of modes En(x) at frequencies ωn which satisfy the following generalized
eigenvalue equation [1]:

(1) ∇×∇× En(x) =
ω2

n

c2
ε(x)En(x),

where ε(x) is the permittivity distribution inside the cavity, and En(x) satisfy the PEC
or PMC boundary conditions at the boundaries of the cavity. Quantum optically, it is
easy to show that each of these cavity modes behaves like a harmonic oscillator [2] —
more concretely, the physics of the n-th cavity mode are governed by the Hamiltonian
Hn:

(2) Hn = ωna†
nan,

where an is the annihilation operator for the mode which satisfies the commutation
relations [an, a†

m] = δn,m and [an, am] = 0. The Hamiltonian for the dynamics of all the
cavity modes taken together is simply a sum of the Hamiltonians Hn:

(3) H =
∑

n

Hn =
∑

n

ωna†
nan.

We note that in the Heisenberg picture, this Hamiltonian along with the commuta-
tion relationships mentioned above imply a time-harmonic evolution of the operators
an(t) — in particular, the solution of dan(t)/dt = −i[an(t),H(t)] = −iωnan(t) is sim-
ply an(t) = an(0) exp(−iωnt). This is consistent with the classical dynamics of optical
cavities, wherein the amplitude of the n-th cavity mode (which is the classical variable
corresponding to the operator an) oscillates in time at frequency ωn.

The electric field at a point x inside the cavity is now described by a Hermitian
operator E(x) given by

(4) E(x) =
∑

n

(
�ωn

2ε0Nn

)1/2

(En(x)an + E∗
n(x)a†

n),

where Nn is the normalization factor for the n-th mode defined by

(5) Nn =
∫

ε(x)|En(x)|2d3x.
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The electric-field operator in the Heisenberg picture is given by

(6) E(x, t) =
∑

n

(
�ωn

2ε0Nn

)1/2

(En(x)an exp(−iωnt) + E∗
n(x)a†

n exp(iωnt)).

An important point to note about the electric-field operator is that there is a separate
operator for each point x in the cavity — unlike quantum mechanics where the position
of the particle is itself an operator, the spatial position in quantum optics merely plays
the role of an index upon which an electric-field operator can be defined.

The quantum states of light in cavities can be most conveniently represented in the
Fock state basis. Consider only the Hilbert space of a single cavity mode — a complete
basis for this space is given by the states |n〉 constructed via

(7) |n〉 =
1√
n!

(a†)n |0〉 ∀ n ∈ {0, 1, 2 . . .},

where a is the annihilation operator for the cavity mode and |0〉 is the lowest-energy state
of the cavity mode, often referred to as the vacuum state (its defining property is the fact
that it is in the null space of the annihilation operator a|0〉 = 0). It is straightforward to
show that the state |n〉 is an eigenstate of the cavity Hamiltonian ωa†a with eigenenergy
nω. These states are also orthonormal (〈n|m〉 = δn,m) and complete (i.e. any allowed
quantum state of the cavity can be expressed as their superposition). The eigenstates
of the Hilbert space of all the cavity modes taken together can be easily constructed by
performing a tensor product of Fock states for different cavity modes:

(8) |n1, n2, n3 . . .〉 = |n1〉 |n2〉 |n3〉 . . . =
∏
k

1√
nk!

(a†
k)nk |vac〉,

where |vac〉 is the vacuum state of all the cavity modes taken together. Note that these
states are, by construction, orthonormal and complete. Furthermore, they are eigenstates
of the Hamiltonian H defined in eq. (3) with eigenenergy n1ω1 + n2ω2 + n3ω3 . . .. In
almost all problems, it is more convenient to define the N -photon subspace of the cavity
— this is defined as the space spanned by states of the form given in eq. (8) with
n1 + n2 + n3 . . . = N . As an explicit example of the construction of these subspaces,
consider a cavity with two modes — the (N = 1)-photon subspace then comprises of
the states of the form a0|1, 0〉 + a1|0, 1〉 where a0 and a1 are complex numbers which
satisfy |a0|2 + |a1|2 = 1. The N = 2 photon subspace comprises of states of the form
a0|2, 0〉 + a1|0, 2〉 + a1,0|1, 1〉, where |a0|2 + |a1|2 + |a1,0|2 = 1. Higher-order photon
subspaces can be constructed using a similar procedure.

An important property of Fock states, which is easily verified, is that the expectation
of the annihilation operator an or the creation operator a†

n vanish, and by extension the
expection of the electric-field operator (eq. (6)) vanishes irrespective of the “energy” of
the state. Consequently, the Fock states by themselves are not “classical” states of light,
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in which one might expect the average electric field inside the cavity to become stronger
with the energy of the state. The closest approximation of a classical state of light is the
coherent state |α1, α2, α3 . . .〉 defined by

(9) |α1, α2, α3 . . .〉 =
∏
k

Dk(αk) |0〉 ,

where Dk(αk) is the displacement operator for the k-th cavity mode defined by

(10) Dk(αk) = exp(αka†
k − α∗

kak).

Since the Fock states form a complete basis for the cavity mode, the coherent state
can be expressed as a superposition of Fock states. In particular, a simple expression for
Dk(αk)|0〉 can be formed by using the Zassenhaus formula together with the commutation
relationships for the cavity annihilation operators:

Dk(αk) |0〉 = exp(−|αk|2/2) exp(αka†
k) exp(−α∗

kak) |0〉(11)

= exp(−|αk|2/2)
∞∑

nk=0

αnk

k

nk!
(a†

k)nk |0〉

= exp(−|αk|2/2)
∞∑

nk=0

αnk

k√
nk!

|0, 0, . . . nk, 0 . . .〉 .

The coherent states defined in eq. (9) are eigenstates of the annihilation operator ak:

(12) ak |α1, α2, α3 . . .〉 = αk |α1, α2, α3 . . .〉 .

This can easily be verified using eq. (11). An immediate consequence of this property
is that the expectation value of the electric-field operator resembles a “classical” electric
field — in particular, note that
(13)

〈α1, α2, α3 . . .|E(x, t) |α1, α2, α3 . . .〉 =
∑

k

(
2�ωk

ε0Nk

)1/2

Re[Ek(x)αk exp(−iωkt)],

which, barring a normalization constant, resembles a harmonic field that classical cavities
support if initialized with some energy at t = 0. Moreover, it can be shown that the
standard deviation in the electric field [〈E2(x, t)〉 − 〈E(x, t)〉2]1/2 becomes increasingly
smaller compared to the expectation value of the electric field as the amplitudes of the
coherent state, αk, is increased, which further motivates the fact the coherent states are
a good approximation of classical states of light.
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1.2. Single-mode waveguide: System with a continuum of modes. – Together with
optical cavities, optical waveguides form the basic building blocks of quantum information
processing systems. However, unlike optical cavities, optical waveguides can no longer
be described with a discrete set of modes, rather they are described by a continuum
of modes. For simplicity, in this section, we will focus only on describing the quantum
optics of a single-mode optical waveguide — extension to multi-mode optical waveguides
is straightforward. Most of the analysis presented here closely follows section II of [3].

As is well known in the classical theory of optical waveguides, a single-mode waveguide
(with direction of propagation being the z-axis) can be described by modes of the form
Eβ(ρ) exp(iβz), where β is the propagation constant, Eβ(ρ) is the electric-field mode
profile and ρ ≡ (x, y) is the coordinate in the transverse plane of the waveguide. Such
a mode is supported at a specific frequency ω(β) which depends on the propagation
constant (the relationship between ω and β is often refered to as the dispersion relation
of the waveguide mode). Eβ(ρ) and ω(β) satisfy the following generalized eigenvalue
equation [1]:

(14) (∇T + iβẑ) × (∇T + iβẑ) × Eβ(ρ) =
ω2(β)

c2
ε(ρ)Eβ(ρ).

Quantum optically, an optical waveguide can be modelled with a continuum of harmonic
oscillators — each mode of the waveguide can be described by an annihilation operator
aβ which satisfies the commutation relationship [aβ , a†

β′ ] = δ(β − β′) and [aβ , aβ′ ] = 0.
The Hamiltonian governing the dynamics of the quantum state of the waveguide can
then be expressed as

(15) H =
∫ ∞

−∞
ω(β)a†

βaβdβ.

The electric field at each point on the waveguide is described by a Hermitian operator
given by

(16) E(x) =
∫ ∞

−∞

(
�ω(β)

2ε0N (β)

)1/2

[aβEβ(ρ) exp(iβz) + a†
βEβ(ρ) exp(−iβz)],

where

(17) N (β) =
∫

ε(ρ)|Eβ(ρ)|2d2ρ.

Note that a negative value of β corresponds to a mode propagating in −z-direction. In
most experimentally relevant systems, the waveguide mode is excited in a narrow band of
frequencies around an operating frequency ω0. The theoretical analysis of these systems
can be greatly simplified by assuming that the dispersion relationship ω(β) can be well
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approximated by two linear dispersions around ω0, ω+(β) for the forward-propagating
modes (β > 0) and ω−(β) for the backward-propagating modes (β < 0):

ω+(β) = ω0 + vG(β − β0) ⇐⇒ β+(ω) = β0 +
ω − ω0

vG
,(18a)

ω−(β) = ω0 − vG(β + β0) ⇐⇒ β−(ω) = −β0 − ω − ω0

vG
,(18b)

where vG is the group velocity of the waveguide mode, and β0 is the propagation constant
corresponding to ω0. The Hamiltonian can then be approximated by

(19) H ≈
∫ ∞

0

ω+(β)a†
βaβdβ +

∫ 0

−∞
ω−(β)a†

βaβdβ

and the electric-field operator can be approximated by

(20) E(x) ≈ E+(x) + E−(x),

where

E+(x) =
(

�ω0

2ε0N (β0)

)1/2

Eβ0(ρ)
∫ ∞

0

aβ exp(−iβz)dβ + h.c.,(21a)

E−(x) =
(

�ω0

2ε0N (−β0)

)1/2

E−β0(ρ)
∫ 0

−∞
aβ exp(−iβz)dβ + h.c.(21b)

Finally, it is customary to express the Hamiltonian and the electric-field operators as an
intergal over frequency ω as opposed to the propagation constant β. To do so, we define
an annihilation operator fω for the forward-propagating mode at frequency ω and an
operator bω for the backward-propagating mode at frequency ω via

(22) fω =
aβ+(ω)√

vG
and bω =

aβ−(ω)√
vG

.

It is straightforward to show that fω and bω satisfy [fω, f†
ω′ ] = δ(ω − ω′) and [bω, b†ω′ ] =

δ(ω − ω′). Note from eq. (18) both fω and bω are only defined for ω > ω0 − vGβ0.
However, since we are assuming that the waveguide mode is only excited in a narrow
band around a frequency ω0, unless ω0 is near ω0 − vGβ0, we can extend the frequency
range of definition of fω and bω from −∞ to ∞ and safely assume that there will be no
excitations at the fictiously introduced frequencies (ω < ω0 − vGβ0). In terms of these
operators, the total Hamiltonian can be expressed as

(23) H =
∫ ∞

−∞
ω(f†

ωfω + b†ωbω)dω
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while the electric-field operators for the forward- and backward-propagating modes can
be expressed as

E+(x) =
(

�ω0

2ε0N (β0)vG

)1/2

Eβ0(ρ) exp
[
− i
(

β0 − ω0

vG

)
z

]
(24a)

×
∫ ∞

−∞
fω exp

(
− i

ωz

vG

)
dω + h.c.,

E−(x) =
(

�ω0

2ε0N (−β0)vG

)1/2

E−β0(ρ) exp
[
i
(

β0 +
ω0

vG

)
z

]
(24b)

×
∫ ∞

−∞
bω exp

(
i
ωz

vG

)
dω + h.c.

Finally, we can introduce the spatial domain annihilation operators fz and bz for the
forward- and backward-propagating modes via

(25) fz =
∫ ∞

−∞
fω exp

(
− i

ωz

vG

)
dω√
2πvG

and bz =
∫ ∞

−∞
bω exp

(
i
ωz

vG

)
dω√
2πvG

,

which again satisfy the commutators [fz, f
†
z′ ] = δ(z − z′) and [bz, b

†
z′ ] = δ(z − z′). These

operators can be interpreted to be related to the creation and annihilation of an excitation
at a position z in the waveguide — a notion that can be made more concrete by noting
that the operators E+(x ≡ (ρ, z)) [E−(x ≡ (ρ, z))] depend entirely upon the opertor fz

(bz):

E+(x) =
(

�ω0

4πε0N (β0)v2
G

)1/2

Eβ0(ρ) exp
[
− i
(

β0 − ω0

vG

)
z

]
fz + h.c.,(26a)

E−(x) =
(

�ω0

2ε0N (−β0)v2
G

)1/2

E−β0(ρ) exp
[
i
(

β0 +
ω0

vG

)
z

]
bz + h.c.(26b)

Additionally, the Hamiltonian H in eq. (23) can be expressed in terms of fz and bz:

H =
∫ ∞

−∞
ω(f†

ωfω + b†ωbω)dω(27)

=
∫ ∞

−∞

∫ ∞

−∞
ω

[
f†

z fω exp
(
− i

ωz

vG

)
+ b†zbω exp

(
i
ωz

vG

)]
dωdz√
2πvG

= ivG

∫ ∞

−∞

(
b†z

∂bz

∂z
− f†

z

∂fz

∂z

)
dz.

While this form of the Hamiltonian might be less familiar to the reader, it can be seen
that the Heisenberg equations of motion reproduce the first-order wave equations for the
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operators fz and bz:

(28)
∂fz(t)

∂t
+ vG

∂fz(t)
∂z

= 0 and
∂bz(t)

∂t
− vG

∂bz(t)
∂z

= 0.

The Hilbert space of the waveguide mode is much richer compared to the Hilbert space
of a lossless cavity. For one, application of either the frequency domain or spatial domain
creation operators (f†

ω, b†ω or f†
z , b†z) to the vacuum state |vac〉 produces non normaliz-

able states — physically, application of the frequency domain creation operator creates
a “plane-wave” state which has excitations at all points along the waveguide whereas
application of the spatial domain creation opertor creates a “delta-function” state which
has excitations at all the supported frequencies. Constructing valid quantum states nec-
essarily involves constructing a wave-packet out of these non-normalizable states. In the
remainder of this section, we describe the notion of Fock states as well as coherent states
that can exist inside a waveguide mode — for simplicity, we will restrict ourselves to
states that only contain forward-propagating modes, states with backward-propagating
modes components will have a similar form.

To generalize the notion of the N -photon subspaces defined in sect. 1.1, we intro-
duce a N -photon frequency-domain amplitude ψ(N)(ω1, ω2 . . . ωN ), the modulus square
of which can be interpreted as the probability density of having N photons at frequencies
ω1, ω2 . . . ωN . The N -photon state can then be formally expressed as∣∣∣Ψ(N)

〉
=(29)

1√
N !

∫ ∞

−∞

∫ ∞

−∞
. . .

∫ ∞

−∞
ψ(N)(ω1, ω2 . . . ωN )f†

ω1
f†

ω2
. . . f†

ωN
|vac〉dω1dω2 . . . dωN .

For the state to be normalized (〈Ψ(N)|Ψ(N)〉 = 1), ψ(N)(ω1, ω2 . . . ωN ) should satisfy

(30)
∫ ∞

−∞

∫ ∞

−∞
. . .

∫ ∞

−∞
|ψ(N)(ω1, ω2 . . . ωN )|2dω1dω2 . . . dωN = 1.

This state can be alternatively be expressed in terms of a N -photon spatial-domain
amplitude ψ(N)(z1, z2 . . . zN ), which is related to the frequency domain amplitude via

ψ(N)(z1, z2 . . . zN ) =(31) ∫ ∞

−∞

∫ ∞

−∞
. . .

∫ ∞

−∞
ψ(N)(ω1, ω2 . . . ωN )

N∏
i=1

exp
(
− i

ωizi

vG

)
dωi√
2πvG

,

and the N -photon state |Ψ(N)〉 can be equivalently be expressed as
∣∣∣Ψ(N)

〉
=(32)

1√
N !

∫ ∞

−∞

∫ ∞

−∞
. . .

∫ ∞

−∞
ψ(N)(z1, z2 . . . zN )f†

z1
f†

z2
. . . f†

zN
|vac〉dz1dz2 . . . dzN .
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The spatial-domain representation of the N -photon state is especially convenient for
analyzing dyanmics of the waveguide mode, since time-evolution under the waveguide
Hamiltonian (eq. (23)) is equivalent to a translation of the spatial-domain amplitude
ψ(N)(z1, z2 . . . zN ) by vGt. To see this, note that the commutators for fω stated above
imply that [f†

ω,H] = −ωf†
ω or equivalently exp(−iHt)f†

ω exp(iHt) = f†
ω exp(−iωt). This

together with eq. (25) immediately implies that exp(−iHt)f†
z exp(iHt) = fz−vGt and

therefore

exp(−iHt)f†
z1

f†
z2

. . . f†
zN

=

[
N∏

i=1

exp(−iHt)f†
zi

exp(iHt)

]
exp(−iHt)(33)

=

[
N∏

i=1

f†
zi−vGt

]
exp(−iHt)

and hence

exp(−iHt)
∣∣∣Ψ(N)

〉
(34)

=
1√
N !

∫ ∞

−∞

∫ ∞

−∞
. . .

∫ ∞

−∞
ψ(N)(z1, z2 . . . zN )

[
N∏

i=1

f†
zi−vGt

]

× exp(−iHt)|vac〉dz1dz2 . . . dzN

=
1√
N !

∫ ∞

−∞

∫ ∞

−∞
. . .

∫ ∞

−∞
ψ(N)(z1 + vGt, z2 + vGt . . . zN

+vGt)f†
z1

f†
z2

. . . f†
zN

|vac〉dz1dz2 . . .dzN ,

wherein in the last step we made a change of integration variables zi → zi +vGt and used
the fact that exp(−iHt)|0〉 = |0〉 since H|0〉 = 0 by definition of the vacuum state. This
proves that the application of the propagator exp(−iHt) results in a translation of the
position-domain amplitude by vGt. This is analogous to the propagation of a classical
wave down the waveguide at the group velocity of the waveguide.

Finally, the notion of a coherent state introduced in sect. 1.1 can be generalized to
waveguides by introducing the displacement operator D[φ(ω)] defined via

D [φ(ω)] = exp
[ ∫ ∞

−∞
(φ(ω)f†

ω − φ∗(ω)fω)dω

]
(35)

= exp
(
− 1

2

∫ ∞

−∞
|φ(ω)|2dω

)
exp

(∫ ∞

−∞
φ(ω)f†

ωdω

)
exp

(
−
∫ ∞

−∞
φ∗(ω)fωdω

)
.

A coherent state, |φ(ω)〉 can then be defined by the application of this operator on the
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vacuum state

|φ(ω)〉 = D[φ(ω)]|vac〉(36)

= exp
(
− 1

2

∫ ∞

−∞
|φ(ω)|2dω

) ∞∑
N=0

1
N !

(∫ ∞

−∞
φ(ω)f†

ωdω

)N

|vac〉.

Physically, φ(ω) specifies the complex spectrum of the coherent state i.e. it contains
information about the contribution of various frequencies to the coherent state, as well
as their phase relationships. As in the case of optical cavities, these states are eigenstates
of the frequency domain annihilation operator fω — from eq. (36), it is straightforward to
show that fω|φ(ω)〉 = φ(ω)|φ(ω)〉. Such coherent states can be used as a fairly accurate
model for pulsed light coming out of sources of classical light such as a laser.

Finally, we conclude this section by pointing out that while the model developed above
was for a waveguide mode, it is a reasonable model for describing well-collimated free
space modes (e.g. a Gaussian mode being emitted by a fiber and focused by an optical
system) whose physics would otherwise be very complicated to describe exactly.

1.3. Model for lossy cavities. – Section 1.1 introduced the quantum optical model
for a lossless cavity. While this model serves as a good approximation in most cases,
it is not realistic since it ignores losses (radiation and absorption) in the cavity mode.
Incorporating cavity losses into our analysis is extremely important, and as we will see
in the section for light matter interaction, these losses are often the limiting factor in the
performance of quantum optical information processing systems.

An exact quantization of a lossy cavity with only radiation losses can be performed
directly using the Maxwell’s equations — a general approach to do this was first provided
by Glauber [4] who considered the quantum optics of an arbitrary dielectric media.
Explicit quantization of lossy Fabry-Perot cavities has been attempted by Dutra [5],
who provides a method for calculating the modes of the lossy resonator. Theoretically
treating absorption losses is more challenging, since the physics of the mechanism causing
absorption (e.g. motion of electrons in solids, or coupling to phonons) is either not exactly
known or very complicated. In this section, we will adopt a more phenomenological
approach and assume that the losses in the cavity arise from its interaction with a
continuum of harmonic oscillators [6], which we will refer to as the bath. More precisely,
we will model a lossy cavity with the following Hamiltonian:

(37) H = ωca
†a +

∫ ∞

−∞
ωb†ωbωdω +

∫ ∞

−∞
(ξa†bω + ξ∗b†ωa)dω,

where a is the annihilation operator of the cavity mode under consideration and ωc is its
resonant frequency and bω is the annihilation operator corresponding to the bath mode
at frequency ω. ξ is the coupling constant between the optical cavity and the bath,
and would govern how “lossy” the optical cavity is. Note that while we have assumed
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the cavity to only have a single mode, a similar model can be constructed for multi-
mode cavities by coupling each cavity mode to a different bath of harmonic oscillators.
Note that the relevant commuation relations satisfied by a and bω are: [a, a†] = 1,
[bω, b†ω′ ] = δ(ω − ω′), [a, bω] = 0 and [a, b†ω] = 0.

This model naturally captures exponential decay of the number of photons in the
lossy cavity mode. This is most easily seen in the Heisenberg picture — the Heisenberg
equations of motion for a(t) and bω(t) are given by

da(t)
dt

= −i[a(t),H(t)] = −iωca(t) − iξ
∫ ∞

−∞
bω(t)dω,(38a)

dbω(t)
dt

= −i[bω(t),H(t)] = −iωbω(t) − iξ∗a(t).(38b)

Integrating eq. (38b), we obtain

(39) bω(t) = bω(0) exp(−iωt) − iξ∗
∫ t

0

a(τ) exp(−iω(t − τ))dτ,

and therefore

(40)
∫ ∞

−∞
bω(t)dω = Φ0(t) − iξ∗

2
a(t),

wherein we have defined the operator Φ0(t) by

(41) Φ0(t) =
∫ ∞

−∞
bω(0) exp(−iωt)dω.

Note that the operator Φ0(t) depends entirely on the state of the bath at t = 0, since it
is defined in terms of the bath annihilation operators bω at t = 0. Substituting eq. (40)
into eq. (38a), we obtain the following differential equation for a(t):

(42)
da(t)
dt

= −iωca(t) − κ

2
a(t) − iξΦ0(t),

where we have introduced the decay rate κ = 2π|ξ|2. Experimentally, it is typical to
describe cavity losses in terms of a quality factor Q which is related to κ via Q = ωc/κ

— a high Q is indicative of a cavity mode with low loss. Note that the Heisenberg
equation of motion resulted in the appearance of the decay term −κa(t)/2. However,
unlike its classical counterpart, a term −iξΦ0(t) also contributes to the dynamics of a(t)
— this is often called the “Langevin noise operator”. It describes the impact of vaccuuum
fluctuations in the bath modes on the dynamics of the cavity. From a mathematical
standpoint, this term is necessary for the Heisenberg equations to be consistent with a
unitary evolution under the system Hamiltonian.
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Using this dynamical equation, we can show that the photon number inside the cavity
decays as a function of time. Consider initializing the cavity to some state |Ψ0〉, with the
bath being in the vacuum state |0〉 (i.e. the cavity-bath system is in the state |Ψ(0)〉 =
|Ψ0〉|0〉). In the Heisenberg picture, the expectation value of the photon number at time
t is given by n(t) = 〈Ψ(t)|a†a|Ψ(t)〉 = 〈Ψ(0)|a†(t)a(t)|Ψ(0)〉, and therefore:

dn(t)
dt

= 〈Ψ(0)| da†(t)
dt

a(t) |Ψ(0)〉 + 〈Ψ(0)| a†(t)
da(t)
dt

|Ψ(0)〉(43)

= −κ 〈Ψ(0)| a†(t)a(t) |Ψ(0)〉 − 2 IM[ξ∗ 〈Ψ(0)|Φ†
0(t)a(t) |Ψ(0)〉]

= −κn(t),

wherein in the last step we have used the fact that Φ0(t)|0〉 and 〈0|Φ†
0(t) = 0 since

bω(0)|0〉 = 0 and 〈0|b†ω(0) = 0. Therefore, n(t) = n(0) exp(−κt), where n(0) =
〈Ψ0|a†a|Ψ0〉, reproducing the intuitively expected result that the number of photons
in a lossy cavity exponentially decay with time.

Unlike the lossless cavity, the quantum state of a lossy cavity cannot be described by
a pure state due to its interaction with the bath. Its state is more accurately captured
by a density matrix ρ(t), which in turn can be represented by its matrix elements ρm,n(t)
on the Fock state basis:

(44) ρ(t) =
∑
m,n

ρm,n(t) |m〉 〈n| .

The time evolution of this density matrix obtained using the Lindblad master equation
formalism (derived in appendix A) is given by the Lindblad master equation

(45)
dρ(t)
dt

= −i[ωca
†a, ρ(t)] + κa†ρ(t)a − κ

2
{ρ(t), a†a},

where {·} is the Poisson bracket ({A,B} = AB + BA). This differential equation is
sufficient for completely characterizing the state of the cavity as a function of time.

2. – Light-matter interaction

In this section, we describe the fundamentals of light matter interaction — in particu-
lar, we will present a simple model for the light-matter interaction Hamiltonian, followed
by an analysis of a two-level system coupling to an optical continuum. We will also de-
scribe the physics of interaction between a two-level system and an optical cavity, often
called cavity quantum electrodynamics, and study the different coupling regimes that
emerge in such systems.

2.1. Interaction Hamiltonian. – The full quantum electrodynamic Hamiltonian de-
scribing the interaction between optical modes and charges (such as electrons) is a rather
complicated object — such an interaction was first described by Feynman in his seminal
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work on quantum electrodynamics [7]. Adopting a microscopic approach to light-matter
interaction, wherein we start from the physics of a single electron or hole interacting with
optical modes, and then build up to a model of a collection of such charges (e.g. quantum
dot) coherently interacting with optical modes, while possible, is rather complicated. An
extremely good model of light-matter interaction can be obtained by treating the material
system under consideration as a point dipole described by a Hermitian dipole moment
operator which interacts with the electric field of the electromagnetic system.

To build up this model, consider a material system with eigenstates |σ1〉, |σ2〉 . . . |σN 〉
— in the absence of an interaction with an optical field, these eigenstates describe possible
states that the material system can perpetually be in. In the presence of interaction with
an optical mode, however, there is the possibility of the system transitioning from one
state to another. In general, depending on the physics of the material system, an optical
mode can induce transitions between one or more pairs of states. Consider a situation
where the optical mode induces a transition between a state |e〉 ∈ {|σ1〉, |σ2〉 . . . |σN 〉}
and a state |g〉 ∈ {|σ1〉, |σ2〉 . . . |σN 〉}, where we assume that the energy of |e〉 is �ωe larger
than the energy of |g〉 (ωe is often referred to as the resonant frequency of the optical
transition). The Hamiltonian describing the evolution of these two states is given by

(46) Hmatter = ωe |e〉 〈e| = ωeσ
†σ,

where σ = |g〉〈e| is the de-excitation operator that transfers material system from the
excited state |e〉 to the ground state |g〉.

The dipole-moment operator between these two transitions can then be described by
three complex vectors μe,e, μg,g and μe,g:

(47) μ = μe,e |e〉 〈e| + μg,g |g〉 〈g| + μe,g |e〉 〈g| + μ∗
e,g |g〉 〈e| .

For most systems of interest, it can be argued from the parity of |e〉 and |g〉 with respect
to the dipole moment operator that μe,e = μg,g = 0, which simplifies eq. (47) to μ =
μe,g|e〉〈g| + μ∗

e,g|g〉〈e| = μe,gσ
† + μ∗

e,gσ. The vector μe,g governs the strength of the
dipole moment operator, and is often refered to as the “dipole moment” of the transition
between the states |e〉 and |g〉.

Classically, the potential energy of interaction between a dipole moment μ and an
electric field E(x) is given by −μ · E(xd), where xd is the position of the dipole. It is
therefore reasonable to posit that while describing this interaction in the language of
quantum physics, the interaction Hamiltonian between the material system modelled as
a dipole moment and an optical field with electric-field operator E(xd) is give by

(48) Hint = −E(xd) · μ
�

.

This interaction Hamiltonian provides us with a fairly general model for light-matter
interaction, and is applicable to a wide variety of physical systems. To gain more insight
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into the consequences of such an interaction Hamiltonian, it is useful to consider spe-
cific electromagnetic structures. For a single-mode optical cavity, using the electric-field
expression in eq. (6) we obtain

(49) Hint = gaσ† + g∗σa†,

where g is the coupling strength between the cavity mode and the material system:

(50) g = −
(

ωc

2�ε0Nc

)1/2

μe,g · Ec(xd).

Note that in eq. (53), we have ignored terms of the form aσ and a†σ† — an intuitive
explanation for approximating away this terms is that they correspond to processes
in which a photon is created and the atom as excited simultaneously (or its reverse),
which have a high frequency contribution to the system dynamics and thus average out
over the time scale of interest. This approximation is refered to as the “rotating” wave
approximation [8], and is only valid in the regime in which the coupling constant g is
much smaller than the frequencies ωc and ωe.

It is often convenient to define the mode volume V of the cavity mode, a dipole
position factor F(xd) and a dipole orientation factor O(xd) via

V =
Nc

max[ε(x)|E(x)|2] , F(xd) =
|E(xd)|√

max[ε(x)|E(x)|2] and(51)

O(xd) =
μe,g · E(xd)
|μe,g||E(xd)| ,

in terms of which the coupling constant g can be expressed as

(52) g = −
(

ωc|μe,g|2
2�ε0

)1/2F(xd)O(xd)√
V

.

This expression for g makes clear the interplay between the different factors that affect
the coupling between the material system and the cavity mode:

1) The mode volume V is a measure of how tightly confined the electromagnetic fields
are inside the cavity mode — reducing this mode volume increases the coupling
constant.

2) F(xd) is a measure of how large the cavity mode’s electric field is at the location
of the dipole as compared to other points in space — increasing this factor has a
proportionate impact on the coupling constant.

3) O(xd) is a measure of the relative orientation of the dipole with respect to the
cavity mode’s electric field — for a large coupling constant, it is desired to orient
the dipole along the cavity mode as much as possible.
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Finally, the complete Hamiltonian describing the coupled light-matter system is described
by

(53) H = ωeσ
†σ + ωca

†a + (gaσ† + g∗σa†).

The Hamiltonian in eq. (53) is refered to as the Jaynes-Cummings Hamiltonian, and will
be the subject of sect. 2.3.

A similar Hamiltonian can be written for the material system interacting with a
continuum of optical modes, such as those of an optical waveguide. The general form
of the interaction Hamiltonian in such a case under the rotating wave approximation is
given by

(54) Hint =
∫ ∞

−∞

[
ξaωσ† + ξ∗a†

ωσ
]
dω,

where aω is the annhilation operator for the mode at frequency ω and ξ is the coupling
constant between the optical mode and the material system. Note that we have assumed
that optical modes of all frequencies couple equally to the material system — this is
termed as the “Markovian” approximation. Explicit expression for the coupling constant
ξ can be obtained if the form of the optical modes are known — as an example, for a
material system coupling to a forward-propagating waveguide mode, using eq. (24a), we
obtain

(55) ξ = −
(

ωe

2�ε0N (βe)vG

)1/2

μe,g · Eβe
(ρ),

wherein we have assumed the dipole to be located at z = 0, and at a position ρd in the
transverse plane. Moreover, we have chosen ω0 in eq. (24a) to be ωe, since any excitation
or emission of interest would be close to the resonant frequency of the optical transition.
The total Hamiltonian of the coupled light-matter system is given by

(56) H = ωeσ
†σ +

∫ ∞

−∞
ωa†

ωaωdω +
∫ ∞

−∞
[ξaωσ† + ξ∗σa†

ω]dω.

Finally, we note that while writing the above expressions, we have only considered
one optical transition — in a number of material systems, there are multiple optical
transitions. The light-matter interaction Hamiltonian in such systems can simply be
expressed as a sum of interaction Hamiltonians for the different optical transitions, each
of which can be formulated as described above.

2.2. Two-level systems interacting with an optical continuum. – The earliest experi-
mental investigations of light-matter interactions studied the response of material systems
to free-space optical beams (e.g. light from lasers). Such experiments are naturally de-
scribed within the framework of the material system interacting with a continuum of
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optical modes. In this section, we consider such an interaction with the material system
having a single optical transition (i.e. a two level system). We show that the interac-
tion of a two-level system with a continuum of optical mode naturally gives rise to the
phenomenon of spontaneous emission, which is an exponential decay in the excited-state
probability of the system. Finally, we consider a coherently driven two-level system, i.e.
a system that would correspond to the material system being excited with the optical
field of a laser, and show that the interaction Hamiltonian described above naturally
gives rise to the optical Bloch equations describing the emitter state.

Spontaneous emission: Consider a two-level system initially in its excited state, and the
optical modes being in the vacuum state: |Ψ(0)〉 = |e〉|0〉. At time t, the coupled system
can evolve into a superposition of the two-level system being in the excited state with
the optical field being in the vacuum state, and the two-level system being in the ground
state with the optical field being in a single-photon state:

(57) |Ψ(t)〉 = Ae(t) |e〉 |0〉 +
∫ ∞

−∞
Ag(ω, t)a†

ω |g〉 |0〉dω,

where Ae(0) = 1 and Ag(ω, 0) = 0. Using the Schrödinger equation with the Hamiltonian
given in eq. (56), we obtain

i
dAe(t)

dt
= ωeAe(t) + ξ

∫ ∞

−∞
Ag(ω, t)dω,(58a)

i
∂Ag(ω, t)

∂t
= ωAg(ω, t) + ξ∗Ae(t).(58b)

Equation (58b) can be integrated to obtain

(59) Ag(ω, t) = −iξ∗
∫ t

0

Ae(τ) exp[−iω(t − τ)]dτ,

and therefore:

(60) i
dAe(t)

dt
=
(

ωe − i
γ

2

)
Ae(t),

where γ = 2π|ξ|2 is the spontaneous emission decay rate of the two-level system
into the optical continuum. The solution to the above equation is given by Ae(t) =
exp(−γt/2) exp(−iωet) — we thus see that the probability of the two-level system being
in the excited state decays exponentially with time (fig. 1(a)) due to its interaction with
the optical continuum. Moreover, using eq. (59), we can obtain Ag(ω, t):

(61) Ag(ω, t) = −iξ∗
exp[i(ω − ωe)t] exp(−γt/2) − 1

i(ω − ωe) − γ/2
.
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Fig. 1. – Spontaneous emission of a two-level system into a continuum of optical modes.
(a) Excited-state probability as a function of time. (b) Evolution of the spectrum of the emit-
ted single photon as a function of time during the spontaneous emission process. (c) The final
Lorentizian spectrum of the emitted photon.

Figure 1(b) shows |Ag(ω, t)|2/γ as a function of frequency ω and time t. Moreover,
we see that as t → ∞, the emitted single-photon pulse evolves into having a Lorentizian
spectral lineshape (fig. 1(c)).

Coherently driven two-level systems: Next, we consider the interaction of a two-level
system with a coherent state (e.g. from a laser source). Consider the system being
prepared in an initial state |Ψ(0)〉 = |g〉|α(ω)〉 = D[α(ω)]|g〉|0〉 where the optical mode is
in a coherent state, and the two-level system in the ground state. It is more convenient
to work with an equivalent state |Ψ′(t)〉 = D†[α(ω) exp(−iωt)]|Ψ(t)〉 which is related to
the true system state |Ψ′(t)〉 via a unitary transformation (this transformation is referred
to as Mollow transformation). Additionally, the equivalent state has the optical modes
initially in the vacuum state: |Ψ′(0)〉 = |g〉|0〉. Moreover, it can be shown that the state
|Ψ′(t)〉 satisfies Schrödinger’s equation with a Hamiltonian H ′ which is related to the
light-matter interaction Hamiltonian (eq. (56)) via (refer to appendix B for a derivation
of this result):

(62) H ′ = H + [Ω(t)σ† + Ω∗(t)σ],

where Ω(t) is given by:

(63) Ω(t) = ξ

∫
α(ω) exp(−iωt)dω.

Note that this is equivalent to using a time-dependent Hamiltonian for the system which
has an additional “driving” term, Ω(t)σ† + Ω∗(t)σ, added to it which models the impact
of the laser on the dynamics of the two-level system. The time-evolution of the two-level
system state can now be analyzed within the master equation framework described in
appendix A — the density matrix of the two-level system satisfies the following dynamical
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equation:

(64)
dρ(t)
dt

= −i[ωeσ
†σ + Ω(t)σ† + Ω∗(t)σ, ρ(t)] + γσρ(t)σ† − γ

2
{ρ(t), σ†σ}.

Expressing the density matrix in terms of its matrix elements, ρ(t) = ρe,e(t)|e〉〈e| +
ρe,g(t)|e〉〈g| + ρ∗e,g|g〉〈e| + (1 − ρe,e(t))|g〉〈g|, this dynamical equation can be explicitly
written out as two coupled differential equations in ρe,e(t) and ρe,g(t):

dρe,e(t)
dt

= −γρe,e(t) − i[Ω(t)ρ∗e,g(t) − Ω∗(t)ρe,g(t)],(65a)

dρe,g(t)
dt

= −iωeρe,g(t) − γ

2
ρe,g(t) − iΩ(t)[1 − 2ρe,e(t)].(65b)

The above equations are often referred to as the optical Bloch equations — historically,
these equations were first derived with a semi-classical model for the optical modes [9].
Such a semi-classical model, however, was unable to produce the decay terms in the
optical Bloch equations, which needed to be added in phenomenologically. A quantum
model of the optical modes, however, produces the decay terms naturally as a consequence
of the modes existing as a continuum.

Several qualitative features of the behaviour of a two-level system with a coherent state
can be deduced by solving the optical Bloch equations. Figure 2(a) shows the variation of
the excited-state population ρe,e(t) as a function of time t on excitation with a continuous-
wave coherent state resonant with the two-level system [Ω(t) = Ω0 exp(−iωet)]. In the
limit of very small coupling between the two-level system and the optical mode (γ → 0),
we observe that the two-level system oscillates between the ground state and the excited
state — this oscillations are referred to as Rabi oscillations. For γ �= 0, we observe
damped Rabi oscillations followed by the system settling to a steady state. Figure 2(b)
shows the variation of the excited-state population ρe,e(t) as a function of time t on
excitation of the two-level system with a Gaussian pulse Ω(t) = Ω0 exp(−t2/τ2

p − iωet) —
for a pulse longer than the life-time 1/γ of the two-level system, we observe some Rabi
oscillations followed by a spontaneous emission decay of the emitter into the ground state.
However, a pulse significantly shorter than the life-time 1/γ does not induce significant
Rabi oscillations in the two-level system — instead, it initializes the two-level system
into a superposition of the excited state and the ground state, followed by spontaneous
emission of a single photon. The superposition of the excited and ground states obtained
right after excitation by the pulse depends on the area under the pulse [10] — fig. 2(c)
shows the dependence on the average number of emitted photons E[n] as a function of the
pulse area — we observe oscillations in the number of emitted photons with pulse area.
This oscillations can be inuitively explained if we consider a two-level system without
decay excited with a short pulse — fig. 2(c) also shows the steady-state excited-state
population ρe,e(∞) obtained in such a system as a function of the pulse area. Clearly,
excitation by a pulse with area π results in the two-level system being in the excited
state, which in the presence of decay would result in the emission of a single photon with

 EBSCOhost - printed on 2/13/2023 9:33 PM via . All use subject to https://www.ebsco.com/terms-of-use



Quantum optics and nonclassical light generation 47

Fig. 2. – (a) Excited-state population (ρe,e(t)) in a two-level system resonantly driven by a
continuous-wave laser: Ω(t) = Ω0 exp(−iωet) in the presence and absence of decay. (b) Excited-
state population (ρe,e(t)) in a two-level system as a function of time when resonantly driven
with a Gaussian pulse Ω(t) = Ω0 exp(−t2/τ2

p − iωet). (c) Average number of emitted photons
E[n] as well as the steady-state excited-state population ρe,e(t → ∞) for a two-level system
without decay when excited with a short Gaussian pulse (γτp = 0.1) as a function of the pulse
area A =

√
πΩ0τp.

unit probability. This also forms the basis of most schemes for generating an on demand
single photon using a pulsed laser. Note however, that E[n] and ρe,e(∞) do not exactly
coincide with each other — this is a consequence of the fact that the coupling of the
two-level system to the optical modes also plays a role during the excitation process —
in particular, it has been theoretically and experimentally shown that driving with a 2π
pulse can induce emission of a two-photon state by the two-level system [11], as opposed
to no emission as would be suggested by ρe,e(∞).

2.3. Cavity quantum electrodynamics. – Interaction of a two-level system with a dis-
crete optical mode (such as the mode of an optical cavity) has significantly different
features from the its interaction with a continuum of optical modes described in the pre-
vious section. In this section, we will describe the basic properties of a two-level system
interacting with an optical cavity mode — the study of which is often called cavity quan-
tum electrodynamics in quantum optics literature. We will first consider the simple case
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Fig. 3. – (a) Eigenfrequencies of the lossless Jaynes-Cummings system. (b) The projection of
the eigenstates |φ+

n 〉 and |φ−
n 〉 on the subspaces with the two-level system being in the ground

and excited state. In particular, φ±
n,e = 〈e, n|φ±

n 〉 and φ±
n,g = 〈g, n + 1|φ±

n+1〉.

of their being no losses in the cavity, and then analyze cavity quantum electrodynamics
with a lossy cavity.

The interaction between a two-level system and a lossless cavity is described by the
Hamiltonian in eq. (53). A lot of insight into the behaviour of this system can be
gained from computing the eigenstates and eigenfrequencies of this Hamiltonian — this
is a straightforward exercise, and the reader may verify that the eigenstates |φ±

n 〉 and
eigenfrequencies ω±

n are given by (where n ∈ {0, 1, 2 . . .}):

ω+
n = (n + 1)ωc + δ + Γn,

∣∣φ+
n

〉
=

(δ + Γn) |e〉 |n〉 + g∗
√

n + 1 |g〉 |n + 1〉√
(δ + Γn)2 + (n + 1)|g|2 ,(66a)

ω−
n = (n + 1)ωc + δ − Γn,

∣∣φ−
n

〉
=

g
√

n + 1 |e〉 |n〉 − (δ + Γn) |g〉 |n + 1〉√
(δ + Γn)2 + (n + 1)|g|2 ,(66b)

where 2δ = ωe − ωc is the detuning between the two-level system and the cavity, and
Γn =

√
δ2 + (n + 1)|g|2. Note that n + 1 is the total number of excitations in the

eigenstates |φ±
n 〉 (i.e. the eigenstates either have n+1 photons in the cavity and the two-

level system in the ground state, or n photons in the cavity and the two-level system in
the excited state) — these eigensates are therefore often labelled as the (n+1)-excitation
eigenstates. Figure 3(a) shows the eigenfrequencies as a function of the detuning δ — this
dependence of the eigenfrequencies on the mismatch in resonance of the two interacting
system is often referred to as an “anti-crossing”. In particular, note that at δ = 0
(i.e. both the systems oscillate at the same frequency), the eigenfrequencies are split
by an amount proportional to the coupling strength |g| — this splitting, called Rabi
splitting, scales as 2|g|√n + 1 and is a direct consequence of the coupling between the
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two systems. Moreover, as the detuning between the cavity and the two-level system
becomes increasingly larger as compared to |g|, we note that the eigenfrequencies tend to
(n + 1)ωc and nωc + ωe which are simply the eigenfrequencies of the uncoupled system.
A similar impact of detuning on the coupling between the two systems can be observed
from fig. 3(b), which shows the probability of finding the two-level system in the ground
and excited state as a function of δ. It can be seen that at δ = 0, it is equally likely for
the two-level system to be in the ground and excited state — this corresponds to |φ+

n 〉
and |φ−

n 〉 being in an equal superposition of the states |e〉|n〉 and |g〉|n + 1〉:

∣∣φ+
n

〉
=

|e〉 |n〉 + exp(−iθg) |g〉 |n + 1〉√
2

,(67a)

∣∣φ−
n

〉
=

exp(iθg) |e〉 |n〉 − |g〉 |n + 1〉√
2

,(67b)

where θg = ∠g. As the detuning is increased, the eigenstates tend to |e〉|n〉 and |g〉|n+1〉,
which are the uncoupled states of the cavity and the two-level system.

An immediate consequence of the anti-crossing in the eigenfrequencies of the Jaynes-
Cummings system is a periodic exchange of energy between the cavity mode and the two-
level atom if only one of them is initially excited. To see this, consider exciting the cavity
with n photons at t = 0, with the emitter being in the ground state: |Ψ(0)〉 = |g〉|n〉.
Assuming that the cavity and the two-level system are resonant with each other, it follows
from eq. (67) that

(68) |Ψ(0)〉 =
exp(iθg)

∣∣φ+
n−1

〉− ∣∣φ−
n−1

〉
√

2
,

and since |φ+
n−1〉 and |φ−

n−1〉 are both eigenstates of the Hamiltonian,

|Ψ(t)〉 =
exp[i(θg − ω+

n−1t)]|φ+
n−1〉 − exp(−iω+

n−1t)|φ−
n−1〉√

2
(69)

= cos(gt
√

n) |g〉 |n + 1〉 − i sin(gt
√

n) exp(−iθg) |e〉 |n〉 ,

from which it is clear that the state of the coupled cavity two-level system oscillates
between the ground and excited states with a frequency 2g

√
n which depends on the

coupling strength between the cavity and the two-level system as well as the initial
number of photons in the cavity. This oscillatory behaviour is in stark contrast with
the case where the emitter is coupled to a continuum of modes (sect. 2.2), wherein the
emitter irreversibly and exponentially decays into its ground state.

Experimentally realizable cQED systems often have losses in the cavity modes, which
can have a significant impact on the properties of the system, in particular light emission
from such systems. Assuming that the losses in the cavity mode are accurately captured
by the model introduced in sect. 1.3, the spectrum of the light emitted and scattered
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Fig. 4. – (a) Trajectory of the eigenvalues λ±
0 of the effective Hamiltonian (eq. (70)) in the

complex plane obtained on varying κ from 0 to ∞. (b) Emission spectrum of the Jaynes-
Cummings system in the strong- and weak-coupling regimes. Refer to appendix for details on
its computation.

from the system depends on the eigenstructure of a non-Hermitian effective Hamiltonian:

(70) Heff = H − iκ
2

a†a,

where H is the Jaynes-Cummings Hamiltonian (eq. (53)) with a lossless cavity mode.
Details of how this effective Hamiltonian comes about are beyond the scope of this
paper — it is a consequence of applying the path integral formalism on calculating the
propagator of the full system (i.e. the coupled system formed between two-level system,
cavity mode and the bath), and integrating out the bath’s degrees of freedom. The
interested and theoretically inclined reader may refer to [12, 13] for more details. Note
that since Heff is non-Hermitian, its eigenvalues are complex — their real part indicates
approximately the central frequencies of the peaks in the system’s emission spectrum,
and their imaginary part indicates the linewidth of these peaks. Note that Heff has the
same form as the Hamiltonian in eq. (53) with ωc replaced by ωc − iκ/2 — therefore,
the eigenvalues λ±

n of Heff are given by eq. (66) with ωc being replaced by ωc − iκ/2.
Figure 4(a) shows the trajectory of the λ±

0 in the complex plane on varying the cavity
decay rate κ from 0 to ∞ and assuming the cavity and the two-level system to be resonant
with each other. We note that there are two regimes of the lossy Jaynes-Cummings
system — the strong coupling regime (κ < 4|g|, shown with solid lines) wherein the two
eigenvalues have the same imaginary part and different real parts and the weak coupling
regime (κ > 4|g|, shown in dashed lines) wherein the two eigenvalues have the same
real part and different imaginary parts. Consequently, in the strong coupling regime,
emission from the Jaynes-Cummings system (fig. 4(b)) has a spectrum that shows two
distinct peaks (corresponding to the distinct real parts of λ±

0 ) with the same linewidth,
whereas the emission spectrum in the weak coupling regime shows only one broad peak.
As noted above, for a lossless Jaynes-Cummings system, an emitter initally in the excited
state would periodically exchange energy with the cavity mode as opposed to decaying
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exponentially. A similar oscillation in the probability of the two-level system being in
the excited state Pe(t) can be observed in a lossy Jaynes-Cummings system when the
coupling constant |g| is much larger than the decay rate κ of the cavity (i.e. the system
is strongly coupled) — this shown in fig. 5(a): Pe(t) shows (damped) Rabi oscillations
whose frequency is ≈ 2g. When the cavity decay rate κ dominates (i.e. the system is
weakly coupled), the two-level system decays almost exponentially to its ground state
(fig. 5(a)). The decay rate of two-level system’s excited state is approximately given by
(refer to appendix C for a derivation):

(71) γ ≈ |g|2κ
(ωe − ωc)2 + κ2/4

.

Note that this expression indicates that it is possible to engineer the decay rate of the
two-level system by engineering the cavity that it couples to. γ is maximized when the
emitter is on resonance with the cavity (ωe = ωc) — in this case, γ ≈ 4|g|2/κ. Since
|g| ∼ 1/

√
V (where V is the mode volume of the cavity as defined in eqs. (51) and (52)),

and κ ∼ 1/Q, where Q is the quality factor of the cavity mode, γ ∼ Q/V . Therefore,
coupling a two-level system to a high-Q and low-V cavity can enhance its emission — this
effect is referred to as Purcell enhancement [14], and the enhancement of the decay rate of
the two-level system relative to its decay rate in vacuum is often termed as Purcell factor.

Note that a lossless Jaynes-Cummings Hamiltonian has eigenfrequencies that are not
equally spaced i.e. it has an anharmonic eigenspectrum. This anharmonicity gives rise
to the phenomenon of photon blockade and photon tunnelling, which are pictorially
depicted in fig. 5(b). Consider exciting a Jaynes-Cummings system (with no detuning
between the cavity and the two-level system) with a coherent state — a coherent state has
excitations of arbitrary numbers (eq. (36)), and thus it simultaneously tries to address all
the excitation subspaces of the Jaynes-Cummings Hamiltonian. If the frequency of the
coherent state is tuned to the frequency of the single-excitation eigenstates (ω±

0 = ωc±g),
then only the single-photon component of the incident coherent state is resonant with the
Jaynes-Cummings system, and all the higher-photon component are off-resonance. This
would result in a large transmission of the single-photon component of the incident state,
and a low transmission for all other components. This is depicted in fig. 5(b) — clearly,
P1 (probability of finding a single photon in the output state) peaks near the frequency of
the single-excitation eigenstates and P2 (probability of finding two photons in the output
state) is suppressed at the same frequency. This phenomena is referred to as photon
blockade, since it blocks that transmission of all but the single-photon components of the
input coherent state. In a strongly coupled Jaynes-Cummings system, photon blockade
could be used for the implementation of an on-demand single-photon source.

Similarly, if we choose the frequency of the coherent state to be resonant with half
the eigenfrequency of the two-excitation subspace (ω±

1 /2 = ωc ± |g|/√2), then a large
transmission of the two-photon component of the incident coherent state is expected,
along with a suppression of the single photon (and ≥ three-photon) component. This
is referred to as photon tunneling, since the two photons are transmitted together, as
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Fig. 5. – (a) Decay of energy from an excited two-level system in a lossy Jaynes-Cummings
system. Pe(t) is the probability that the two-level system is in excited state at time t. (b)
Schematic depiction of photon blockade and photon tunneling. (c) Probability of emission of
one photon (P1) and two photons (P2) as a function of the central frequency of an incident
coherent pulse. Note that both P1 and P2 are respectively normalized to their maximum value.

opposed to one after the other. This is confirmed by noting that P2 peaks near half the
frequency of the two-excitation subspace, while P1 is suppressed (fig. 5(c)). Theoretically,
we would expect a similar tunneling effect in the higher photon components of the incident
coherent state if the frequency of the incident coherent state is chosen appropriately — it
is, however, experimentally challenging to measure and characterize > two-photon states.

3. – Single-photon sources

Coupling optical modes to two-level systems, with or without a cavity, offers an
excellent platform to implement sources of nonclassical light. While there is a wide
variety of nonclassical light sources that are useful for different applications in quantum
information processing, quantum computing and quantum metrology, perhaps the most
important nonclassical light source would be a single-photon source. In this section, we
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Fig. 6. – A general block diagram of a single-photon source. A quantum system (two-level
system, Jaynes-Cummings system) is driven by a laser pulse and coupled to an output optical
mode in which it emits photons.

will introduce the definition of a single-photon source, relevant metrics for its quality as
well as the two-time correlation measurement which is a widely used experimental tool
for characterizing single-photon sources.

3.1. Characterizing the quality of single-photon sources. – A general block diagram
of a single-photon source is shown in fig. 6 — a quantum system (e.g. a two-level sys-
tem, or a Jaynes-Cummings system) designed to emit single photons emits light into
an optical mode (e.g. waveguide mode or an optical-fiber mode) which then feeds the
generated single photon into a quantum information processing system. In practice, the
quantum system may suffer from other losses, which is modelled as another bath. An
ideal single-photon source would emit the following state of light into the coupled optical
mode:

(72) |Ψ〉 =
∫ ∞

−∞
ψ(ω)b†ω |vac〉 dω,

where bω is the annihilation operator for frequency ω of the output optical mode, and
ψ(ω) is the complex frequency-domain amplitude of the single-photon source, and would
satisfy the normalization condition

(73)
∫ ∞

−∞
|ψ(ω)|2dω = 1.

Practical single-photon sources, however, may not emit a single photon with unity prob-
ability. Additionally, the presence of loss mechanisms would result in the state of the
optical waveguide being a mixed state. A more realistic state of a single photon in the
output waveguide can be expressed as the following density matrix:

(74) ρ = P0 |0〉 〈0| + P1ρ
(1) + ρ(χ),
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where P1 is the probability of single-photon emission into the output optical mode,
P0 = 1 − P1 is the probability of no photon emission. The density matrix within the
single-photon subspace ρ(1) as well as the off-diagonal density matrix between the vacuum
state and the single-photon subspace ρ(χ) is defined by

ρ(1) =
∫

ρ(1)(ω1, ω2)b†ω1
|vac〉 〈vac| bω2dω1dω2,(75a)

ρ(χ) =
∫ [

ρ(χ)(ω)b†ω |0〉 〈0|dω + ρ(χ)∗(ω) |0〉 〈0| bωdω
]
.(75b)

In writing these expressions, we have assumed the normalization condition that the trace
of ρ(1)(ω1, ω2) is 1:

(76)
∫

ρ(1)(ω, ω)dω = 1.

Note that in expressing the state of the single-photon source as eq. (74), we have assumed
that the source does not emit any higher number states (such as two-photon or three-
photon states). If desired, emission of higher number states can be incorporated into the
density matrix by adding terms corresponding to the two-photon subspace of the optical
mode’s Hilbert space.

Two metrics quantifying the deviation of the single-photon source (eq. (74)) from an
ideal single-photon source (eq. (72)) can now be defined:

1) Brightness: The brightness of a single-photon source is defined as the number of
“single” photons that the source emits. In terms of the density matrix, this is given
by its trace within the single-photon subspace:

(77) n =
∫

〈0| aωρa†
ω |0〉 dω = P1

∫
ρ(1)(ω, ω)dω = P1.

It is also useful to define the spectral brightness of the source as the diagonal
elements of the single-photon components of the density matrix, which can be
interpreted as the number of single photons emitted per unit frequency:

(78) n(ω) = 〈0| aωρa†
ω |0〉 = P1ρ

(1)(ω, ω).

An ideal single-photon source would have n = P1 = 1, thus exclusively emitting
single photons.

2) Trace purity : The trace purity is a measure of how pure the quantum state is. For
an ideal single-photon state (eq. (72)), the density matrix is simply an outer product
of the state with itself ρ = |Ψ〉〈Ψ| (or equivalently, P0 = 0, P1 = 1, ρ(χ)(ω) = 0 and
ρ(1)(ω1, ω2) = ψ∗(ω1)ψ(ω2)). Therefore, for a pure state, Tr(ρ2) = Tr(ρ) = 1. For a
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mixed state, it can be shown using a schmidth decomposition that Tr(ρ2) < 1 [15].
Therefore, it is reasonable to define this quantity as the trace purity:

(79) Trace purity = Tr(ρ2).

The brightness of a single-photon source can be experimentally estimated by simply
measuring the number of photo-detection counts from a single-photon source. However, a
direct measurement of the number of photo-detection counts cannot distinguish between
the number of single photons emitted by the source, as compared to the number of two-
or three-photon states emitted by the source. Additionally, measuring the trace purity
of the emitted single photons also requires a more experimentally sophisticated setup in
which we can interfere two identical single-photon sources with each other. The next
subsection goes into the details of two-photon correlation measurement, which forms the
basis of a number of experimental setups used for such characterization of single-photon
sources.

3.2. Two-time correlation measurements. – Consider a source emitting at z = 0 into
an optical mode, with spatial-domain annihilation operator bz, propagating along the
z-axis. The unnormalized two-time correlation function at a detector placed at z = L is
defined as the following Heisenberg-picture expectation:

(80) G(2)(t1, t2) = 〈b†z=L(t1)b
†
z=L(t2)bz=L(t1)bz=L(t2)〉.

It is often more convenient to work with a normalized version of the two-time correlation
function:

(81) g(2)(t1, t2) =
〈b†z=L(t1)b

†
z=L(t2)bz=L(t1)bz=L(t2)〉

〈b†z=L(t1)bz=L(t1)〉〈b†z=L(t2)bz=L(t2)〉
.

Moreover, in experimental settings, the photodetectors being used often has a response
time that is much larger than the temporal width of the light being emitted by the source.
This practical limitation prohibits an exact measurement of the g(2)(t1, t2) as a function
of (t1, t2) (or equivalently as a function of the photon arrival times), and the quantity
being measured is the integrated two-time correlation function g(2)[0] [16]:

(82) g(2)[0] =
1

N2

∫ ∞

−∞

∫ ∞

−∞
G(2)(t1, t2)dt1dt2,

where N is the expectation value of the number of photons in the emitted light:

(83) N =
∫ ∞

−∞
〈b†z=L(t)bz=L(t)〉dt.

Both g(2)(t1, t2) and g(2)[0] have remarkably different values for different states of light,
making it a suitable tool for characterizing the state of light emitted by a light source:
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1) If the light emitted contains at most single photons (pure or mixed), then
g(2)(t1, t2) = g(2)[0] = 0. A small value of g(2)[0] is therefore often treated as
an experimental signature of having a good-quality single-photon state.

2) For light emitted from an ideal coherent source (eq. (36)), g(2)(t1, t2) = g(2)[0] = 1
(this straightforwardly follows from the fact that the coherent state is an eigenstate
of the annhilation operator).

3) For an arbitrary N photon state (eq. (29)), it can be easily be verified that

(84) g(2)[0] = 1 − 1
N

.

Clearly, increasing the number of photons in the optical mode increases g(2)[0],
which tends to 1 as N → ∞.

Hanbury-Brown-Twiss interferometer : A popular experimental setup used for measure-
ment of the two-time correlation function is the Hanbury-Brown-Twiss interferometer
(fig. 7(a)). The output of the photon source is passed through a 50-50 beam splitter,
with two separate detectors placed at the outputs of the waveguides. A correlation mea-
surement between the two detectors would then be captured by the following two-photon
correlation function:

(85) g
(2)
HBT(t1, t2) =

Eϕ[〈a†
z=L(t1)b

†
z=L(t2)bz=L(t2)az=L(t1)〉]

Eϕ[〈a†
z=L(t1)az=L(t1)〉]Eϕ[〈b†z=L(t2)bz=L(t2)〉]

,

and its integrated version:

(86) g
(2)
HBT[0] =

1
NaNb

∫ ∞

−∞

∫ ∞

−∞
Eϕ[〈a†

z=L(t1)c
†
z=L(t2)cz=L(t2)az=L(t1)〉]dt1dt2,

where

(87) Na =
∫ ∞

−∞
Eϕ[〈a†

z=L(t)az=L(t)〉]dt, Nb =
∫ ∞

−∞
Eϕ[〈b†z=L(t)bz=L(t)〉]dt,

where Eϕ[·] is an average over the phase ϕ of the beam-splitter. This averaging is
necessary to include in the theoretical expressions for the two-time correlation since in a
practical experiment, the phase difference between the two interferometer arms is random
and changes during the course of the experiment (due to heating or other environmental
effects). As is shown in appendix D, these correlation functions are identical to the
correlation function defined in eqs. (81) and (82) and therefore directly inform us of the
properties of the light fed as input to the interferometer. Experimentally, this correlation
is measured using the start-stop scheme. Consider exciting the interferometer with a
photon source — we first wait for the detector D1 to click, followed by a click at the
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Fig. 7. – Schematic of (a) Hanbury-Brown-Twiss (HBT) interferometer and (b) Hong-Ou-Mandel
(HOM) interferometer. In both setups, θ = π/4 and ϕ is a random variable that models the
variation in phase-difference in between the two arms in the course of the experiment.

detector D2. The result of this experiment is a record of the time-difference τ between
the two click. This experiment is repeated to obtain similar measurements for τ — a
histogram of τ would then give the estimate of the probability of detecting a photon at
detector D2 conditioned on the probability of detection at D1 which would be a measure
of the following integrated two-time correlation function:

(88) G
(2)
HBT(τ) =

∫
Eϕ[〈a†

z=L(t)b†z=L(t + τ)bz=L(t + τ)az=L(t)〉]dt.

Typically, G(2)(τ) tends to saturate to a finite value as τ → ∞ — at this point the
two photons being measured at the two detectors are approximately uncorrelated, and
hence G(2)(τ) simplifies to a measure of the product of the detector efficiencies and the
transmission of the HBT setup. Consequently, we could normalize the experimental
measurement of G(2)(τ) to its value at τ → ∞:

(89) g
(2)
HBT(τ) =

G(2)(τ)
limτ→∞ G(2)(τ)

.

Hong-Ou-Mandel interferometer : In addition to characterizing the quality of the single-
photon source itself, which can be done with a g(2) measurement, another important
aspect of the single-photon source is its indistinguishability, i.e. if two single-photon
sources are designed and fabricated using the same process, is the emission from the
two single-photon sources identical. This question can be experimentally answered by
interfering the two single-photon sources using a Hong-Ou-Mandel (HOM) interferometer
(fig. 7(b)), which is the same setup as the HBT interferometer, but with the two single-
photon sources in its two arms. The measured correlation functions are again give by

(90) g
(2)
HOM(t1, t2) =

Eϕ[〈a†
z=L(t1)b

†
z=L(t2)bz=L(t2)az=L(t1)〉]

Eϕ[〈a†
z=L(t1)az=L(t1)〉]Eϕ[〈b†z=L(t2)bz=L(t2)〉]

,

and its integrated version:

(91) g
(2)
HOM[0] =

1
NaNb

∫ ∞

−∞

∫ ∞

−∞
Eϕ[〈a†

z=L(t1)b
†
z=L(t2)bz=L(t2)az=L(t1)〉]dt1dt2,
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where

(92) Na =
∫ ∞

−∞
Eϕ[〈a†

z=L(t)az=L(t)〉]dt, Nb =
∫ ∞

−∞
Eϕ[〈b†z=L(t)bz=L(t)〉]dt.

For a general single-photon source with density matrix given by eq. (74), it is straight-
forward to show that g

(2)
HOM[0] evaluates to (refer to appendix D for a derivation):

(93) g
(2)
HOM[0] =

2P1,aP1,b

(P1,a + P1,b)2

[
1 −

∫ ∞

−∞

∫ ∞

−∞
ρ(1)∗

a (ω1, ω2)ρ
(1)
b (ω1, ω2)dω1dω2

]
.

From this expression, it can be deduced that measurement of g
(2)
HOM[0] provides infor-

mation about how pure the emitted single-photon states are and how well the complex
spectrum of the two single photons overlap. To see this concretely, consider two limiting
cases:

1) Both sources emit pure single-photon states: In this case, the density matrix fac-
torizes ρ(1)(ω1, ω2) = ψ(1)∗(ω1)ψ(1)(ω2):

(94) g
(2)
HOM[0] =

2P1,aP2,a

(P1,a + P2,a)2

[
1 −

∣∣∣∣
∫ ∞

−∞
ψ(1)∗(ω)dω

∣∣∣∣
2]

,

from which it can clearly be seen that g
(2)
HOM[0] = 0 indicates that the two sources

have identical complex spectras. g
(2)
HOM[0] then provides information about how

distinguishable the two single-photon sources are.

2) Both sources are identical but not pure: Assuming that the two photons are iden-
tical and emitted with unity probability (i.e. P1 = 1), g

(2)
HOM[0] simplifies to

(95) g
(2)
HOM[0] =

1
2

[
1 −

∫ ∞

−∞
|ρ(1)(ω1, ω2)|2dω1dω2

]
=

1 − Tr[ρ2]
2

.

From this expression, it is immediately obvious that the g
(2)
HOM[0] is a measure of

trace purity Tr[ρ2] — if g
(2)
HOM[0] is small, then the emitted photons are nearly in a

pure state, else they are in a mixed state.

3.3. Solid-state implementation of single-photon sources. – This section describes two
solid-state platforms that can be used to realize the two-level systems that can interact
with well defined optical modes, and behave as sources of nonclassical light. We will
first discuss quantum dots, which are islands of small band-gap semiconductors trapped
inside a large band-gap semiconductors, followed by color centers, which are formed by
creating defects in a crystal lattice.
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Fig. 8. – (a) An atomic-force microscope (AFM) scan of the InAs quantum dots before capping
with GaAs layer. (b) Cross sectional transmission electron miscroscpe (TEM) image of a capped
quantum dot. (c) A typical photoluminescence spectrum of a quantum dot, showing single,
narrow emission line.

3.3.1. Quantum dots. Semiconductor quantum dots (QD) are small regions of one semi-
conductor embedded in a different semiconductor [17]. The most common, InAs/GaAs,
QDs are inclusions of InAs in a GaAs matrix. Owing to the difference in the bandgaps
of the two materials, a QD forms a potential well, which admits a handful of localized
electron and hole states. The level structure of QDs can be well understood through
the “particle in a finite potential well” problem. The Hamiltonian for a quantum dot
can be written as: H = He + Hh + Hc, where He, Hh are the bound electron and hole
Hamiltonians, respectively, in a potential determined by the geometrical shape and of
the QD and the band-gap mismatch of the dot and its host semiconductor; Hc is the
Coulomb interaction. In the case of a neutral QD, containing and electron-hole pair,
He and Hh each have a single particle form, and Hc consists of a single term for the
electron-hole Coulomb interaction. For a negatively charged QD with two electrons and
one hole, electron-electron Coulomb interaction, dependent on the excitation state of
each electron, needs to be considered.

Typically, QDs are several 10’s of nanometers in size, as seen in fig. 8(a) and (b). Most
commonly, InAs/GaAs QDs are grown by strain-driven self-assembly via molecular beam
epitaxy (MBE) or metalorganic chemical vapor deposition (MOCVD). The spontaneous
growth nature of QDs results in a dots randomly positioned on the substrate and varying
substantially in size. Naturally, variation in the QD size results in spectral variation
between different QDs.

Quantum dots are excellent single-photon sources because of their relatively short op-
tical lifetime (0.1–1 ns); narrow optical emission, seen in fig. 8(c); and near-unity quantum
efficiency, which means that the decay from the excited state to the ground state is almost
always accompanied by the emission of a photon. We can observe the nonclassical nature
of the light emitted by a quantum dot by measuring the second order autocorrelation
function, g(2)(τ), in the Hanbury Brown and Twiss configuration, discussed earlier in
the paper. Experimental observation of antibunching, a signature of a nonclassical light
source, is shown in fig. 9. Under pulsed excitation, perfect antibunching manifests itself
as the absence of a peak at zero time delay, signifying that every pulse carries at most
one photon. Experimental noise (presence of other sources of light in addition to the
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Fig. 9. – Antibunching observed in photon emission from a quantum dot that is not coupled to
a cavity, for (a) pulsed excitation, (b) continuous-wave excitation [18].

QD that can be excited by the laser pulse) prevent g(2)(0) from reaching the levels of
background noise. Under continuous-wave excitation, we see that the experimental data
matches well to the theoretical prediction for g(2)(τ) for a two-level system. The width
of this dip corresponds to the optical lifetime of the QD in the weak-drive limit.

The large dipole moment of a QD allows it to interact strongly with light: Thus, a QD
is an excellent choice for demonstrating strong coupling between a two-level system and
a nanophotonic cavity. In order to reach the strong coupling regime, g > κ/4 � γ, a QD
must be placed in a photonic resonator whose mode interacts strongly with the dipole
moment of the QD. Since the QD is much flatter than it is wide, it has a strong in-plane
dipole moment and a much weaker out-of-plane dipole moment: Thus, the QD will couple
well to the TE mode of an L3 photonic crystal cavity, which has a low mode volume and

Fig. 10. – (a) The QD-cavity system: A InAs/GaAs quantum dot situated inside an L3 pho-
tonic crystal cavity. The simulated cavity mode profile is plotted. (b) The Jaynes-Cummings
ladder for the QD-cavity system, showing the anharmonicity that enables photon-blocade (c)
Experimentally measured strong coupling between a QD and a L3 photonic crystal cavity. A
clear anti-crossing of the upper and lower polaritons is observed [19].
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Fig. 11. – (a) Diagram of an F-center in NaCl. (b) The F-center ground state: A trapped
electron. (c) The excited state: An electron-hole pair has eigenstates similar to that of a
hydrogen atom with a modified effective mass and charge. (d) Diagram of a Silicon Vacancy
(SiV−) in diamond. The 10 bound valence electrons contributed by the carbon atoms and the
silicon atom, as well as an additional electron acquired from the environment, form a 11-electron
state, shown in (e).

a high experimentally achievable quality-factor. Experimental demonstration of strong
coupling is shown in fig. 10. The tuning is achieved by sweeping the temperature of the
sample, enabled by the different response of the cavity resonance and the QD frequency
to temperature change. A clear anti-crossing is seen at the temperature at which the
cavity and QD frequencies align.

3.3.2. Color centers. Color centers — atomic point defects in crystals — have been
studied for almost a century, but only recently were the particularly interesting color
centers in Diamond and Silicon Carbide discovered and found to be promising for ap-
plications in single-photon sources and optically-addressable qubits. Fundamentally, the
nature of state confinement in color centers is different from that of QDs. Whereas a QD
can be modeled as an electron trapped in a classical, macroscopic potential, a color center
rather resembles a single optically-addressable atom, well-isolated from the environment.
The possibility of existence of bound states at a crystal lattice defect is made intuitive
from the perspective of the Bloch theorem, which states that a periodic potential admits
a continuum of propagating, nonscattering electronic states; when translational symme-
try is broken, a bound state can form. However, in order for a defect to be a “color
center”, it must admit at least two bound states that have an allowed optical transitions
between them in the visible or IR frequency. This restricts suitable candidate materials
to those with a large bandgap.

The first studied color centers are single-atom defects in an ionic crystal (referred to as
F-centers, for German fabre); An example of an F-center is a missing chlorine atom in a
crystal of table salt, NaCl (fig. 11(a)–(c)). Upon removal of a sodium atom, the vacancy
is filled with an electron from the environment, and the state has a binding energy of
EI . The set of bound states can be viewed as hydrogen-atom-like single electron states,
where the electron is orbiting around a hole “nucleus” [20].

In order to gain an understanding of the electronic structure of more complex color
centers, such as the Silicon Vacancy center in diamond (SiV−), one can use the linear
combination of atomic orbitals (LCAO) method. Each of the six carbon atoms con-
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Fig. 12. – (a) Spectrum of the SiV− at 4 K, with an inset showing the level structure from
which the four transitions, (denoted A, B, C and D) arise. (b) Tuning the cavity through the
four transitions selectively enhances them, which can be seen as large increase in the photon
emission rates. Measurement of the emitter lifetime on and off resonance is shown in (c) and
(d). Lifetime reduction of 10 times is observed.

tributes one sp3-hybridized orbital, and we assume that the interstitial Si modifies these
orbitals slightly and contributes its valence electrons to them. Thus, we have six orbitals
and 6 + 4 + 1 electrons, from the C atoms, the Si atom, and the environment, respec-
tively. This system can thus be equivalently modeled as a 1-hole system. Using group
theoretical analysis based on the crystal symmetry of the defect, one can understand the
color center’s orbital degeneracy [21]. In the case of the SiV−, the group theory analysis
arrives at two nondegenerate orbitals and two pairs of degenerate orbitals, as seen in
fig. 11(e).

The electronic transitions of color centers like the SiV− have a weaker dipole moment
than the quantum dots discussed in previous section. Furthermore, the dipole of the
SiV− (and many others) is at 45 degrees relative to that of the TE (or TM) cavity mode.
As a result of these factors, strong coupling between a color center and a photonic crystal
cavity has not yet been achieved. However, unlike quantum dots, color centers can have
very long (millisecond) ground state spin coherence times. Making use of this new degree
of freedom with which to store quantum information and to perform quantum operations
does not require strong coupling of the optical transition; a large cooperativity is already
sufficient for high-fidelity operation. Figure 12 shows the enhancement of a single SiV−

emitter by a photonic crystal cavity, demonstrating 42-fold increase of photon detection
enabled by the emitter-cavity interaction [22].

Appendix A.

Lindblad master equation

In this appendix, we present a derivation of the Lindblad master equation which
can be used for studying the evolution of quantum systems coupling to a continuum
of harmonic oscillators. The Hamiltonian for such a coupled system can be written as
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the sum of the system Hamiltonian Hsys, the Hamiltonian of the harmonic oscillator
continuum and an interaction Hamiltonian between the two:

(A.1) H = Hsys +
∫ ∞

−∞
ωa†

ωaωdω +
∫

(ξaωL† + ξ∗La†
ω)dω,

where L is the operator which describes the coupling between the system and the bath
modes, and ξ is the coupling constant between them. aω is the annihilation operator for
the bath mode at frequency ω and satisfies the commutator [aω, a†

ω′ ] = δ(ω − ω′). Both
the Hamiltonian for a lossy cavity (sect. 1.3), as well as the Hamiltonian describing the
interaction of a continuum of optical modes with a two-level system (sect. 2.2) can be
expressed in this form.

We consider a situation where the quantum system is initialized in the state |Ψsys〉
and the bath in the vacuum state |0〉: |Ψ(0)〉 = |Ψsys〉|0〉. The state of the coupled
system at time t is then given by |Ψ(t)〉 = exp(−iHt)|Ψ(0)〉. It is of interest to us to
only calculate the dynamics of the state, which is described by a time-dependent density
operator ρ(t):

(A.2) ρ(t) = Trbath[|Ψ(t)〉 〈Ψ(t)|] = Trbath[exp(−iHt) |Ψ(0)〉 〈Ψ(0)| exp(iHt)].

To derive a dynamical equation for ρ(t), we use the following simple property that it
must satisfy: if Ω is an operator defined on the Hilbert space of the system, and Ω̄(t) be
its expectation value as a function of time, then Ω̄(t) = Trsys[Ωρ(t)] and therefore:

(A.3)
dΩ̄(t)

dt
= Trsys

[
Ω

dρ(t)
dt

]
.

Alternatively, we could attempt to compute Ω̄(t), and consequently its time derivative,
in the Heisenberg picture. The Heisenberg equation of motion for the operator Ω(t) is
given by

(A.4)
dΩ(t)

dt
= −i[Ω(t),Hsys(t)] − iξ[Ω(t), L†(t)]Φ(t) − iξ∗Φ†(t)[Ω(t), L(t)],

where

(A.5) Φ(t) =
∫ ∞

−∞
aω(t)dω.

Note that we annotate any Heisenberg operator by writing it as a function of time (i.e.
Ω(t) is the Heisenberg operator corresponding to the Schrödinger operator Ω) except for
the density matrix which is a function of time in the Schrödinger picture. Moreover, we
assume that the Heisenberg and Schrödinger picture coincide at t = 0 (i.e. Ω(0) = Ω).
Similarly, the Heisenberg equation of motion for aω(t) is given by

(A.6)
daω(t)

dt
= −iωaω(t) − iξ∗L(t).
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Equation (A.6) can be integrated to obtain

(A.7) aω(t) = aω(0) exp(−iωt) − iξ∗
∫ t

0

L(τ) exp[−iω(t − τ)]dτ.

From which it immediately follows that

(A.8) Φ(t) =
∫ ∞

−∞
aω(t)dω = Φ0(t) − iπξ∗L(t),

where

(A.9) Φ0(t) =
∫ ∞

−∞
aω(0) exp(−iωt)dω =

∫ ∞

−∞
aω exp(−iωt)dω.

Note that since Φ0(t) depends only on the Schrödinger picture operator aω, it annhilates
|0〉: Φ0(t)|0〉 = 0. Using eqs. (A.4) and (A.8), we obtain

dΩ(t)
dt

= −i[Ω(t),Hsys(t)] − iξ[Ω(t), L†(t)](Φ0(t) − iπξ∗L(t))(A.10)

−iξ∗(Φ†
0(t) + iπξL†(t))[Ω(t), L(t)].

Note that Ω̄(t) = 〈Ψ(0)|Ω(t)|Ψ(0)〉 (in the Heisenberg picture, the quantum state of the
system does not change). Therefore:

dΩ̄(t)
dt

= −i 〈Ψ(0)| [Ω(t),Hsys(t)] |Ψ(0)〉(A.11)

−π|ξ|2 〈Ψ(0)| [Ω(t), L†(t)]L(t) |Ψ(0)〉 + π|ξ|2 〈Ψ(0)|L†(t)[Ω(t), L(t)] |Ψ(0)〉 ,

wherein we have used the fact that Φ0(t)|Ψ(0)〉 = Φ0(t)|Ψ0〉|0〉 = 0. Moreover, it is easy
to see that

〈Ψ(0)| [Ω(t),Hsys(t)] |Ψ(0)〉 =(A.12a)
Tr[(Ω(t)Hsys(t) − Hsys(t)Ω(t)) |Ψ(0)〉 〈Ψ(0)|] =
Tr[exp(iHt)(ΩHsys − HsysΩ) exp(−iHt) |Ψ(0)〉 〈Ψ(0)|] =
Tr[(ΩHsys − HsysΩ) exp(−iHt) |Ψ(0)〉 〈Ψ(0)| exp(iHt)] =
Trsys[(ΩHsys − HsysΩ)ρsys(t)] =
Trsys[Ω[Hsys, ρsys(t)]],

〈Ψ(0)| [Ω(t), L†(t)]L(t) |Ψ(0)〉 =(A.12b)

Tr[(Ω(t)L†(t) − L†(t)Ω(t))L(t) |Ψ(0)〉 〈Ψ(0)|] =

Tr[exp(iHt)(ΩL† − L†Ω)L exp(−iHt) |Ψ(0)〉 〈Ψ(0)|] =

Tr[(ΩL† − L†Ω)L exp(−iHt) |Ψ(0)〉 〈Ψ(0)| exp(iHt)] =

Trsys[(ΩL† − L†Ω)Lρsys(t)] =

Trsys[ΩL†Lρsys(t)] − Trsys[ΩLρsys(t)L†],
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〈Ψ(0)|L†(t)[Ω(t), L(t)] |Ψ(0)〉 =(A.12c)

Tr[L†(t)(Ω(t)L(t) − L(t)Ω(t)) |Ψ(0)〉 〈Ψ(0)|] =

Tr[exp(iHt)L†(ΩL − LΩ) exp(−iHt) |Ψ(0)〉 〈Ψ(0)|] =

Tr[L†(ΩL − LΩ) exp(−iHt) |Ψ(0)〉 〈Ψ(0)| exp(iHt)] =

Trsys[L†(ΩL − LΩ)ρsys(t)] =

Trsys[ΩLρsys(t)L†] − Trsys[ΩL†Lρsys(t)].

In the above calculation, we have used the fact that if A is an operator in the Hilbert
space of the quantum system, then

Tr[A exp(−iHt) |Ψ(0)〉 〈Ψ(0)| exp(iHt)](A.13)
= Trsys[ATrbath[exp(−iHt) |Ψ(0)〉 〈Ψ(0)| exp(iHt)]]
= Trsys[Aρsys(t)].

Using eqs. (A.11) and (A.12), we obtain

(A.14)
dΩ̄(t)

dt
= Trsys[ΩLρsys(t)],

where

(A.15) Lρsys(t) = −i[Hsys, ρsys(t)] + κLρsys(t)L† − κ

2
{ρsys(t), L†L},

where {·, ·} is the anti-commutator between two operators. Finally, since eqs. (A.3)
and (A.14) hold for an arbitrary system operator Ω, it follows that ρsys(t) satisfies the
following dynamical equation:

(A.16)
dρsys(t)

dt
= Lρsys(t) = −i[Hsys, ρsys(t)] + κL†ρsys(t)L − κ

2
{ρsys(t), L†L}.

Equation (A.16) is the Lindblad master equation that governs the time evolution of the
density matrix of the system. As a final comment, we note that the derivation provided
here differs from the ones in standard quantum optics or open quantum systems text in
the fact that it does not assume that the density matrix of the coupled system factorizes
into the density matrix of the system and the bath at every instant of time t.

Appendix B.

Mollow transformation

Often, a classical laser pulse is incident on a quantum system, causing it to undergo
transitions between its various levels and then re-emit the absorbed energy. The classical
laser can be described as the bath coupling to the quantum system initially being in the
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coherent state. For such systems, we cannot directly apply the Lindblad master equation
formalism described in appendix A since it assumes the bath to be in the vacuum state.
In this appendix we describe a unitary transformation on the state of the system, called
the Mollow transformation, that transforms the problem to one in which the bath is in
the vacuum state.

Consider a system with Hamiltonian HS coupled to a bath described by a continuum
of harmonic oscillators with mode annihilation operator aω. The complete system can
be modeled by

(B.1) H = HS +
∫ ∞

−∞
ωa†

ωaωdω +
∫ ∞

−∞
dω
(
ξaωL† + ξ∗La†

ω

)
,

where ξ is the coupling constant between the bath and the quantum system, and the
system coupled to the bath through the operator L. The initial state of the coherently
driven system corresponds to t = 0

(B.2) |Ψ(t = 0)〉 = D[α(ω)]|ΨS〉|0〉,

where D[α(ω)] = exp(
∫∞
−∞(α(ω)a†

ω − α∗(ω)aω)dω) is the displacement operator creating
a coherent state in the waveguide. We define a transformed state |Ψ′(t)〉 via

(B.3) |Ψ′(t)〉 = D†
t [α(ω)]|Ψ(t)〉

where

(B.4) Dt[α(ω)] = exp
[∫ ∞

−∞
dω
(
α(ω) exp(−iωt)a†

ω − α∗(ω) exp(iωt)aω

)]
.

The time evolution of the state |ψ̃(t)〉 can be computed by differentiating eq. (B.3) to
obtain an effective Hamiltonian

H ′(t) = D†
t [α(ω)]HDt[α(ω)] + i

d
dt

D†
t [α(ω)]Dt[α(ω)],(B.5)

with i
d
dt

|Ψ′(t)〉 = H ′(t)|Ψ′(t)〉.

We next compute the effective Hamiltonian H ′(t) using eq. (B.1). In particular, it follows
from the identities D†[α(ω)]aωD[α(ω)] = aω +α(ω) and D†[α(ω)]a†

ωD[α(ω)] = a†
ω +α∗(ω)

that

D†
t [α(ω)]HDt[α(ω)] = HS +

(
ξα(t)L† + ξ∗α∗(t)L

)
+
∫ ∞

−∞
dωωa†

ωaω(B.6)

+
∫ ∞

−∞
dωω|α(ω)|2 +

∫ ∞

−∞
dωω (aωα∗(ω) exp(iωt)

+ a†
ωα(ω) exp(−iωt)

)
+
∫ ∞

−∞
dω
(
ξL†aω + ξ∗a†

ωL
)
,

where α(t) =
∫∞
−∞ exp(−iωt)α(ω)dω/

√
2π.
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Now, we need to compute dD†
t [α(ω)]/dt — since Dt[α(ω)] is the exponential of a

time-dependent operator, this requires some care. Consider the problem of computing
the derivative of an exponential of a time-dependent operator A(t) = exp(φ(t)), with the
property that [φ(t),dφ(t)/dt] = ζ(t), with ζ(t) being a scalar. The derivative of A(t) can
be computed as

(B.7)
dA(t)

dt
= lim

δt→0

exp(φ(t + δt)) − exp(φ(t))
δt

.

Using the Baker-Campbell-Hausdorff equality it follows that

exp(φ(t + δt)) ≈ exp
(

φ(t) + δt
dφ(t)

dt

)
(B.8)

= exp(φ(t)) exp
(

δt
dφ(t)

dt

)
exp(−δt ζ(t)/2),

resulting in

(B.9)
dA(t)

dt
= exp(φ(t))

(
dφ(t)

dt
− ζ(t)

2

)
.

Specializing this result to: A(t) = D†
t [α(ω)] with φ(t) =

∫∞
−∞ dω(α∗(ω) exp(iωt)aω−α(ω)

exp(−iωt)a†
ω) and ζ(t) = 2i

∫∞
−∞ dωω|α(ω)|2 then

dD†
t [α(ω)]
dt

= iD†
t [α(ω)]

(∫ ∞

−∞
dωω (α∗(ω)aω exp(iωt)(B.10)

+ α(ω)a†
ω exp(−iωt)

)− ∫ ∞

−∞
dωω|α(ω)|2

)
,

with which we obtain

dD†
t [α(ω)]
dt

Dt[α(ω)] = i
∫ ∞

−∞
dωω

(
α∗(ω)aω exp(iωt) + α(ω)a†

ω exp(−iωt)
)

(B.11)

+
∫ ∞

−∞
dωω|α(ω)|2.

Putting together eqs. (B.5), (B.6) and (B.11)

(B.12) H ′(t) = H ′
S(t) +

∫ ∞

−∞
ωa†

ωaωdω +
∫ ∞

−∞
dω
(
ξL†aω + ξ∗a†

ωL
)
,

where

(B.13) H ′
S(t) = HS +

(
ξα(t)L† + ξ∗α∗(t)L†)

is the system Hamiltonian with an effective classical driving field added to it.
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Appendix C.

Decay of a two-level system into a lossy cavity mode

In this appendix, we consider the problem of analyzing photon emission from a two-
level system into a lossy cavity mode. We consider a Jaynes-Cummings Hamiltonian
(eq. (53)), with the cavity mode coupling to a bath (continuum of harmonic oscillators
(eq. (37))) — the full Hamiltonian of this system is given by

(C.1) H = ωca
†a+ωeσ

†σ+gaσ†+g∗σa†+
∫ ∞

−∞
ωb†ωbωdω+

∫ ∞

−∞
[ξbωa†+ξ∗ab†ω]dω.

where a is the annihilation operator of the cavity, σ is the de-excitation operator for the
two-level system and bω is the annihilation operator for the bath mode at frequency ω.
We initialize the two-level system in the excited state and the cavity and the bath to
the vacuum state: |Ψ(0)〉 = |e〉|0〉|0〉. The state of the coupled system at time t can be
written as

(C.2) |Ψ(t)〉 = Ae(t) |e〉 |0〉 |0〉 + Ac(t) |g〉 |1〉 |0〉 +
∫ ∞

−∞
B(ω, t)b†ω |g〉 |0〉 |0〉dω,

wherein we have expressed the state as a linear combination of states where the excitation
is either in the two-level system, cavity or the bath. Next, using Schrödinger’s equation
with the Hamitlonian given in eq. (C.1), we obtain:

i
dAe(t)

dt
= ωeAe(t) + gAc(t),(C.3a)

i
dAc(t)

dt
= ωcAc(t) + g∗Ae(t) + ξ

∫ ∞

−∞
B(ω, t)dω,(C.3b)

i
∂B(ω, t)

∂t
= ωB(ω, t) + ξ∗Ac(t),(C.3c)

where the initial conditions are Ae(0) = 1, Ac(0) = 0 and B(ω, 0) = 0. Integrating
eq. (C.3c), we obtain

(C.4) B(ω, t) = −iξ∗
∫ t

0

Ac(t) exp[−iω(t − τ)]dτ.

Substituting this into eq. (C.3b), we obtain

(C.5) i
dAc(t)

dt
= ωcAc(t) + g∗Ae(t) − iκ

2
Ac(t),

where κ = 2π|ξ|2 is the cavity decay rate. Equations (C.3a) and (C.3b) can be solved
together to obtain Ae(t) as a function of time. It is most convenient to do this using the
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Laplace transform technique — let f(s) be the one-sided Laplace transform of a function
f(t):

(C.6) f(s) =
∫ ∞

0

f(t) exp(−st)dt,

then it immediately follows that the one-sided Laplace transform of df(t)/dt is sf(s) −
f(0). Performing a one-sided Laplace transform on eqs. (C.3a) and (C.3b), we obtain

sAe(s) − 1 = −iωeAe(s) − igAc(s),(C.7a)

sAc(s) = −iωcAc(s) + g∗Ae(s) − iκ
2

Ac(s),(C.7b)

which can be solved simultaneously to obtain

Ae(s) =
s + iωc + κ/2

s2 + {i(ωe + ωc) + κ/2}s + |g|2 − ωe(ωc − iκ/2)
,(C.8a)

Ac(s) =
−ig∗

s2 + {i(ωe + ωc) + κ/2}s + |g|2 − ωe(ωc − iκ/2)
.(C.8b)

We can now compute the inverse laplace transform of Ae(s) to obtain Ae(t):

(C.9) Ae(t) =
(

λ+
0 − iωc − κ/2

λ+
0 − λ−

0

)
exp(−iλ+

0 t) −
(

λ−
0 − iωc − κ/2

λ−
0 − λ+

0

)
exp(−iλ−

0 t),

where λ±
0 are the single-excitation eigenfrequencies of the effective Hamiltonian (eq. (70)),

which are explicitly given by

(C.10) λ±
0 = ωc + δ − iκ

4
±
[(

δ − iκ
4

)2

+ |g|2
]1/2

,

where 2δ = ωe − ωc. Note that in the limit of κ going to 0, λ±
0 become completely real

and the solution for Ae(t) no longer exponentially decays with time. Note that in the
limit of κ � |g|, λ±

0 can be approximated by

λ+
0 ≈ ωc + δ − iκ

4
+
(

δ − iκ
4

)
= ωe − iκ

4
,(C.11a)

λ−
0 ≈ ωc + δ − iκ

4
−
(

δ − iκ
4

)[
1 +

|g|2
2(δ − iκ/4)2

]
≈ ωc − iκ|g|2

8(δ2 + κ2/16)
.(C.11b)

In the limit of large κ, the imaginary part of λ+
0 is much larger than the imaginary part

of λ−
0 . Therefore, exp(−iλ+

0 t) would decay to zero much faster than exp(−iλ−
0 t), and

effective decay rate of the two-level system would be dominated by the imaginary part
of λ−

0 . Therefore, the effective decay rate γ of the two-level system is given by

(C.12) γ ≈ κ|g|2
4δ2 + κ2/4

=
κ|g|2

(ωe − ωc)2 + κ2/4
.
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We can also compute the spectrum of the emitted photons using eq. (C.4): In the
limit of t → ∞, Ae(t) and Ac(t) would have completely decayed and all the energy would
now be in the bath. The spectrum of the emitted photon would thus be given by

lim
t→∞ |B(ω, t)|2 = |ξ|2

∣∣∣∣
∫ ∞

0

Ac(τ) exp(iωτ)
∣∣∣∣
2

=
κ

2π
|Ac(s = −iω)|2(C.13)

=
κ

2π

|g|2
|ω2 + i{κ/2 + i(ωe − ωc)}ω + ωe(ωc − iκ/2) − |g|2|2 .(C.14)

Appendix D.

Analysis of interferometers

D.1. Linear optical elements in loss channels. – In this part, we describe the Hamilto-
nians and derive the Heisenberg equations of motion for linear optical elements that act
on light propagating in an ideal loss channel. The two linear optical elements that we
consider here are the phase shifter and the beam splitter — almost all, more complicated,
linear optical elements can be decomposed into their cascades.

A phase shifter is a linear optical element that imparts a constant phase to the light
propagating through it. Physical realizations of phase shifters are often as simple as
just adding extra optical path lengths to the incident field, or using thermal or electro-
optical effects to change the local refractive index of the loss channel. Here we focus
on broadband phase shifters — phase shifters that impart the same frequency to all
the frequencies propagating in the loss channel. The Hamiltonian for broadband phase
shifter on a loss channel with frequency annihilation operator aω and spatial annihilation
operator az is given by

(D.1) Ĥ =
∫ ∞

−∞
ωa†

ωaωdω + vGV a†
z=0az=0,

where V is the “strength” of the phase shifter (this is related to the phase shift below)
and it is assumed that the phase shifter acts at x = 0 on the loss channel. Note that

(D.2)
∫ ∞

−∞
ωa†

ωaωdω =
∫ ∞

−∞
ωa†

zaω exp
(
− i

ωz

vG

)
dzdω√
2πvG

= −ivG

∫ ∞

−∞
a†

z

∂az

∂z
dz

with which the phase shifter Hamiltonian can be fully expressed in terms of the position
annihilation operator a(x):

(D.3) H = −ivG

∫ ∞

−∞
a†

z

∂az

∂z
dz + vGV a†

z=0az=0.

To analyze this system, we employ the Heisenberg picture — using the commutators for
the position annihilation operators allows a straightforward calculation of the equation
of motion for the Heisenberg picture annihilation operator a(t;x):

(D.4)
1
vG

∂az(t)
∂t

+
∂az(t)

∂z
= −iV az=0(t)δ(z),
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which we need to solve under the initial condition that az(0) is identical to the Schrödinger
picture operator az. Note that in the absence of the phase shifter (i.e. V = 0), this
equation can be trivially solved to obtain az(t) = az−vGt which correspond to the wave
packet in the loss channel propagating along the z-direction with velocity vG. For V �= 0,
a general solution to this equation can be written as

(D.5) az(t) =

⎧⎪⎪⎨
⎪⎪⎩

az−vGt, if z < −vGt,

Saz−vGt, if − vGt ≤ z ≤ 0,

ax−vGt, if z > 0,

where S is a scalar that captures the impact of the phase shifter on the loss channel. This
form of the solution for the dynamical equations can easily be physically interpreted by
noting that excitations in the loss channel propagate along the +z direction at a speed
vG. Since excitations that reach a point in the region z < −vGt and z > 0 at time
t would not have encountered the beam splitter (which is at z = 0), they are simply
described by translating the initial operator az in time. Excitations that reach a point
in the region −vGt ≤ z ≤ 0 at time t would have encountered the beam splitter at t = 0
which performed an (unknown) linear operation described by S on the operators. To
calculate S, we integrate eq. (D.4) across an infinitesmal interval around z = 0 to obtain

(D.6) az=0+(t) − az=0−(t) = − iV
2

[az=0+(t) + az=0−(t)].

Using this along with eq. (D.5), we immediately obtain

(D.7) S =
1 − iV/2
1 + iV/2

= exp(iϕ),

where ϕ = −2 tan−1(V/2) is the phase-shift induced by the phase-shifter.
A beam-splitter is a very commonly used linear optical device that interferes with two

propagating optical signals — physical realizations of a beam splitter typically used are
a partially transmitting mirror for free-space optical beams, and a directional coupler for
optical waveguides. While the exact dynamics of a beam splitter can be very complicated,
if we assume that the bandwidth of the beam splitter is much larger than the bandwidth
of the optical signals that it is interfering, it can be analyzed with a simple model, which
we describe in this section. Consider two loss channels, with frequency annihilation
operators aω, bω and spatial annihilation operators az, bz — the Hamiltonian for a
broadband beam splitter in between these two loss channels is given by

(D.8) H =
∫ ∞

−∞
ωa†

ωaωdω +
∫ ∞

−∞
ωb†ωbωdω + ivg

(
V ∗b†z=0az=0 − V a†

z=0bz=0

)
,

where we assume that the beam splitter couples the two loss channels at x = 0, and V
is a dimensionless constant that governs the strength of this coupling. As was done for
the phase shifter, this Hamiltonian can be expressed completely in terms of the position
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annihilation operator:
(D.9)

H = −ivG

[ ∫ ∞

−∞
a†

z

∂az

∂z
dz +

∫ ∞

−∞
b†z

∂bz

∂z
dz

]
+ ivG

(
V ∗b†z=0az=0 − V a†

z=0bz=0

)
.

To analyze this system, we employ the Heisenberg picture — using the commutators for
the position annihilation operators allows a straightforward calculation of the equations
of motion for the Heisenberg picture annihilation operators az(t) and bz(t):

1
vG

∂az(t)
∂t

+
∂az(t)

∂z
= −V δ(z)bz=0(t),(D.10a)

1
vG

∂bz(t)
∂t

+
∂bz(t)

∂z
= V ∗δ(z)az=0(t),(D.10b)

which we need to solve under the initial condition that az(0) and bz(0) are identical to
the Schrödinger picture operator az and bz, respectively. Note that in the absence of the
beam splitter (i.e. V = 0), these equations can be trivially solved to obtain az(t) = az−vGt

and bz(t) = bz−vGt which correspond to the propagation of a wave packet down the two
waveguides at velocity vG without coupling to each other. For V �= 0, a general solution
to these equations can be written as

az(t) =

⎧⎪⎪⎨
⎪⎪⎩

az−vGt, if z < −vGt,

Sa,aaz−vGt + Sa,bbz−vGt, if − vGt ≤ z ≤ 0,

az−vGt, if z > 0,

(D.11)

bz(t) =

⎧⎪⎪⎨
⎪⎪⎩

bz−vGt, if z < −vGt,

Sb,aax−vGt + Sb,bbz−vGt, if − vGt ≤ z ≤ 0,

bz−vGt, if z > 0,

(D.12)

where Si,j ∀ i, j ∈ {a, b} are coefficients of the scattering matrix for the beam splitter,
which we still have to compute. To determine these coefficients, we integrate with respect
to z eq. (D.10) across an infinitesmal region around z = 0 to obtain

az=0+(t) − az=0−(t) =
V

2
[bz=0+(t) + bz=0−(t)],(D.13a)

bz=0+(t) − bz=0−(t) = −V ∗

2
[az=0+(t) + az=0−(t)].(D.13b)

Using the expressions for az(t) and bz(t), these equations can be translated to a set of
linear equations in the scalars Sa,a, Sa,b, Sb,a and Sb,b which can be solved to obtain the
following expression for the beam-splitter scattering matrix:

(D.14) S =

[
Sa,a Sa,b

Sb,a Sb,b

]
=

1
1 + |V |2/4

[
1 − |V |2/4 V

−V ∗ 1 − |V |2/4

]
.
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The conventional definition of a beam splitter assumes that V is purely real, and defining
θ via sin θ = V/(1 + |V |2/4) and cos θ = (1 − |V |2/4)/(1 + |V |2/4), we obtain

(D.15) S =

[
cos θ − sin θ

sin θ cos θ

]
.

In particular, a 50-50 beam splitter is defined as a beam splitter with θ = π/4 —
this interferes with both the input ports equally, constructively in one output arm and
destructively in the other.

D.2. Analysis of Hanbury-Brown Twiss and Hong-Ou Mandel interferometers. – Here,
we analyze the two interferometers shown in fig. 7. Note that both the interferometers
apply the same optical transformation to the input fields — in one case, one of the arms
has the vacuum state as an input, whereas in the other case both arms are excited with
the light source being characterized. For our analysis, we assume that the photon pulses
assumed by the light have a pulse width that is much smaller than the other optical
lengths involved in the setup (e.g. the distance between the sources or detectors from the
phase shifters or beam splitters). In this case,

az=L(t) =
az=L−vGt − exp(iϕ)bz=L−vGt√

2
,(D.16a)

bz=L(t) =
az=L−vGt + exp(iϕ)bz=L−vGt√

2
,(D.16b)

where we assume that t = 0 is the time at which both the sources emit photons
and t is large enough for the light emitted by the sources to have propagated en-
tirely to the detectors — if this is not the case, then az=L(t) or bz=L(t) will sim-
ply annihilate the state |Ψ〉 emitted by the sources since L − vGt would lie outside
the spatial region corresponding to the photon pulse. Consider now the expectation
Eϕ[〈Ψ(0)|az=L(t1)bz=L(t2)b

†
z=L(t2)a

†
z=L(t1)|Ψ(0)〉] — using eq. (D.16) and explicitly av-

eraging over ϕ:

Eϕ[〈Ψ(0)| az=L(t1)bz=L(t2)b
†
z=L(t2)a

†
z=L(t1) |Ψ(0)〉] =(D.17)

1
4

[ ∑
v∈{a,b}

〈Ψv| v†z=L−vGt1
v†

z=L−vGt2
vz=L−vGt1vz=L−vGt2 |Ψv〉

+
∑

(u,v)∈S
〈Ψv| v†z=L−vGt1

vz=L−vGt1 |Ψv〉 〈Ψu|u†
z=L−vGt2

uz=L−vGt2 |Ψu〉

−
∑

(u,v)∈S
〈Ψv| v†z=L−vGt1

vz=L−vGt2 |Ψv〉 〈Ψu|u†
z=L−vGt2

uz=L−vGt1 |Ψu〉
]
,

where S = {(a, b), (b, a)} and we have assumed that the two sources are not entangled
with each other — note that if both the sources emit a pure state, then this would imply
that the state of the composite system is |Ψa〉|Ψb〉 and if the sources emit a mixed state,
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then the density matrix of the composite system is ρ̂aρ̂b. Consequently, the expectation
of a product of az and bz operators (and their conjugates) can be factorized:

(D.18) 〈Ψ(0)| fa[az, a
†
z]fb[bz, b

†
z] |Ψ(0)〉 = 〈Ψa| fa[az, a

†
z] |Ψa〉 〈Ψb| fb[bz, b

†
z] |Ψb〉 .

Similar expressions for the expections Eϕ(〈Ψ(0)|az=L(t)a†
z=L(t)|Ψ(0)〉) and

Eϕ(〈Ψ(0)|bz=L(t)b†z=L(t)|Ψ(0)〉) can be obtained by using eq. (D.16):

Eϕ(〈Ψ(0)| a†
z=L(t)az=L(t) |Ψ〉) = Eϕ[〈Ψ| b†z=L(t)bz=L(t) |Ψ(0)〉](D.19)

=
1
2

[ ∑
v∈{a,b}

〈Ψv| v†z=L−vGtvz=L−vGt |Ψv〉
]
.

With the help of these relationships, we can now prove the results about the two interfer-
ometers stated in sect. 3.2. Consider the Hanbury-Brown Twiss interferometer — since
the second waveguide (labelled by b(x)) is in the vacuum state, it follows that

Eϕ[〈Ψ(0)| a†
z=L(t1)b

†
z=L(t2)b

†
z=L(t2)az=L(t1) |Ψ(0)〉](D.20a)

=
1
4
〈Ψa| a†(L − vGt1)a

†
z=L−vGt2

az=L−vGt1az=L−vGt2 |Ψa〉 ,

Eϕ[〈Ψ(0)| a†
z=L(t)az=L(t) |Ψ(0)〉] = Eϕ[〈Ψ(0)| b†z=L(t)bz=L(t) |Ψ(0)〉]

=
1
2
〈Ψa| a†

z=L−vGtaz=L−vGt |Ψa〉 ,

from which it immediately follows that g
(2)
HBT(t1, t2) and g

(2)
HBT[0] are exactly equal to

g(2)(t1, t2) and g(2)[0].
Similarly, consider the Hong-Ou Mandel interferometer — assuming

that both the sources emit a single-photon state (pure or mixed), it im-
mediately follows that the second-order correlations in the sources vanish:
〈Ψv|v†

z=L−vGt1
v†

z=L−vGt2
vz=L−vGt1vz=L−vGt2 |Ψv〉 = 0 for v ∈ {a, b}. Using the

general form for the density matrix of the light emitted by a single-photon source, the
remaining expectations can be immediately evaluated:

(D.21) 〈Ψv| v†z=L−vGt1
vz=L−vGt2 |Ψv〉=P1,vρ(1)

v (L− vGt2, L− vGt1) for v∈{a, b}.

We can now evaluate the integrals appearing in the definition of g
(2)
HOM[0] — in particular

note that∫ ∞

−∞
〈Ψv| v†z=L−vGtvz=L−vGt |Ψv〉 dt=vGP1,v,(D.22a) ∫ ∞

−∞

∫ ∞

−∞
〈Ψv| v†z=L−vGt1

vz=L−vGt2 |Ψv〉 〈Ψu|u†
z=L−vGt2

uz=L−vGt1 |Ψu〉 dt1dt2 =

v2
GP1,vP1,u

∫∫
ρ(1)

v (x1, x2)ρ(1)(x2, x1)dx1dx2 =

v2
GP1,vP1,u

∫∫
ρ(1)

v (x1, x2)ρ(1)∗
u (x1, x2)dx1dx2,
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With these expressions, one readily obtains

(D.23) g
(2)
HOM[0] =

2P1,aP1,b

(P1,a + P1,b)2

[
1 −

∫ ∞

−∞

∫ ∞

−∞
ρ(1)

a (x1, x2)ρ
(1)∗
b (x1, x2)dx1dx2

]
.
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Creating quantum correlations between
quantum-dot spins
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JJ Thomson Ave., Cambridge CB3 0HE, UK

Summary. — This paper focuses on generating nonlocal quantum correlations
between electron spins in semiconductor quantum dots located far from each other.
Some of the key prerequisite concepts are covered in other contributions to these
proceedings and we focus on applying some of the concepts for creating correlated
spins. We start by describing how nonlocal correlations can be generated between
quantum systems that have no prior connection, by utilising a particular type of
measurement known as quantum erasure. We will focus on self-assembled semicon-
ductor quantum dots and contrast the observed results to other systems.

1. – Proximity and quantum correlations

Proximity is a fundamental requirement for essentially all physical phenomena involv-
ing correlations. Correlations require interactions and interactions bring forth a charac-
teristic length scale over which they can influence the dynamics of individual physical
entities. The particular nature of an interaction determines the desired length scale to
build correlations. This is fundamentally the same reason why correlated systems always

c© Società Italiana di Fisica 77
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emerge beyond a critical density, as is the case for atomic or polaritonic Bose-Einstein
condensation, or strongly correlated electron systems. The power of proximity holds
even for only a few, countable systems. Take two isolated and independent electrons,
for example. If we want the electrons to interact electrostatically, the distance between
the two electrons will determine the strength of this interaction via the inverse square
law. However, if we would like to correlate the spin orientations of these two electrons,
we would need magnetic interaction instead, which scales inversely as the sixth power of
the distance and casts an even more stringent requirement of proximity.

Now, let us assume there exists a physical mechanism, where our electrons can emit
(or scatter) single photons and each emission process results in changing their spin ori-
entation. If we detect a single photon coming from one of the electrons, we immediately
learn that a spin-flip event took place with that electron. If we have prior knowledge of
the spin orientation, we simply update our records and all is well in a somewhat classical
world. However, if we detect a single photon without the ability to tell from which of the
two electrons it originated, we end up with two coexisting possible scenarios regarding
the spin orientations of our electrons. This kind of measurement is also called a quan-
tum erasure [1]. In our situation, a quantum erasure measurement leads to a coherent
superposition of two different spin orientation combinations for our electrons, which is
nothing other than quantum entanglement! What is particularly worth emphasizing here
is that there is no requirement for the two electrons to have interacted directly with each
other.

This beautiful and powerful concept was first proposed in 1999 by Cabrillo and coau-
thors, using individual atoms and their optical transitions [2]. In this seminal proposal,
two well-separated atoms are exposed to weak excitation that could lead to the genera-
tion of a single photon and the flip of the atomic ground state simultaneously through
what is known as a lambda transition. If an atom is not excited, it does not generate a
photon and the ground-state spin remains unchanged. If an atom is excited, then a single
photon is generated and the ground-state spin is flipped. The excitation is weak such
that the probability to emit a single photon is significantly lower than 1, so most of the
time the opical excitation attempts fail, but occasionally one of the two atoms responds
to the excitation and generates a single photon (and flip the ground-state spin). With
much lower probability both atoms could emit a photon, in which case both ground-
state spins are flipped resulting in a product state for the two atoms, as before. Hence,
a measurement-based postselection of the one and only one photon emitted by the two
atoms generates the nonlocal quantum correlations we discussed so far. But, there is a
catch: this scheme relies crucially on not being able to distinguish the photons originating
from the two atoms.

The 1999 proposal has been demonstrated experimentally with a number of physical
systems [3-13] —each bringing its own strengths and weaknesses with respect to the
others regarding the fidelity and the rate of entanglement generation, as well as attainable
distances limited by the available coherence times. While such variations may be of
secondary importance in the validation of the ever counter-intuitive quantum physics,
this very process has in the meatime achieved a centre-stage role of creating quantum
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networks [14]. As such, various technical challenges including photon collection efficiency
and wavelength, ground-state coherence time and control fidelity, and feasably scalable
architecture of many nodes need to be addressed on the road to large-scale distributed
systems. This challenge alone is sufficient to motivate the years of research towards
achieving high-efficiency high-quality spin-photon interfaces in solids as competitive and
even adventageous alternatives to atomic systems. There are many material systems
under investigation, including diamond, silicon carbide and semiconductors [15]; here we
focus on self-assembled semiconductor quantum dots.

2. – Optically active semiconductor quantum dots

2.1. Essential properties. – Self-assembled indium gallium arsenide (InGaAs) quan-
tum dots (QDs), introduced in detail in other contributions to these proceedings, are
grown by Molecular Beam Epitaxy (MBE) and possess many desirable attributes as a
spin-photon interface system. They can host a confined spin deterministically [16] and
offer atomic-like spin-selective optical transitions. The optical emission wavelength varies
with the growth conditions affecting the size and shape of the QDs, but typically is cen-
tred around 950 nm with an inhomogeneous spread of around 100 nm. When using bare
samples this casts the challenge of finding QDs with identical emission whavelength, but
Stark tuning via electric field is used as a standard technique for spectrally overlapping
multiple QD photons. The purity and the coherence properties of QD-generated photons
are nearly ideal, where indistinguishability measurements via Hong-Ou-Mandel interfer-
ometry [17] consistently report beyond 95% indistinguishability in the last few years [18].
The electron (or hole) spin properties are typically less appealing for QDs: The inho-
mogeneous spin dephasing time, T ∗

2 , is typically between a few to hundred nanoseconds,
while the natural dephasing time, T2, is around a few microseconds. The limitation is
caused predominantly by the presence of the QD nuclear spin noise [19]. That said, these
modest timescales should nevertheless be considered in the context of all-optical ultrafast
coherent control on the order of only a few picoseconds [20,21].

2.2. QD spin devices. – Confining a single spin in a QD deterministically requires
electrical control via a Schottky diode structure. An n-doped GaAs layer provides the
electron reservoir and a Schottky contact allows energy band tilting as a function of
applied voltage. A tunnel barrier between an n-doped GaAs layer and the QD layer, and a
tunnel barrier above the QD layer both prevent charge leakage while maintaining electric
field. The Schottky diode structure is electrically contacted through Ohmic AuGeNi
contacts to the n-doped layer and a semitransparent Ti gate (∼ 6 nm) is evaporated
onto the surface of the sample. The photon collection is enhanced by the growth of a
distributed Bragg reflector region below the QD layer comprising alternating layers of
GaAs and AlGaAs thin layers and the placement of a superhemispherical cubic zirconia
solid immersion lens (SIL) on the top Schottky contact of the devices. This relatively
simple construction yields on average a few million photons per second at saturation
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with a photon outcoupling efficiency of 10% for QDs with an emission wavelength around
950 nm, which is sufficient to demonstrate nonlocal quantum correlations in spins.

3. – Measurement-based creation of quantum correlations

3.1. Entanglement concept . – The entanglement scheme of Cabrillo et al. [2] relies on
weak, phase-coherent excitation of two indistinguishable Λ-systems and the subsequent
detection of a single photon. First step is to initialise the two QD spins to the same
spin state |↓i〉 (with spin-1/2 ground states labelled as |↑i〉 and |↓i〉) by optical pumping.
The second step is to excite the two Λ-systems from the state |↓i〉 to initiate a Raman
scattering process with a small probability p � 1. The excitation pulse entangles the
ground-state spin of each QD with an emitted Raman photon [22-24]. Combining the
Raman modes from each QD on a 50:50 beam splitter erases the which-path information
conveniently (so long as the photons are indistinguishable), such that the total entangled
spin-photon state for the two QD devices is given by

|Ψ〉 = (1 − p)
∣∣↓QD1

↓QD2

〉 |0102〉(1)

+
√

p(1 − p)/2
(
eiφQD1

∣∣↑QD1
↓QD2

〉
+ eiφQD2

∣∣↓QD1
↑QD2

〉) |1102〉

+
√

p(1 − p)/2
(
eiφQD1

∣∣↑QD1
↓QD2

〉− eiφQD2
∣∣↓QD1

↑QD2

〉) |0112〉

+p/
√

2ei(φQD1+φQD2 )
∣∣↑QD1

↑QD2

〉
(|2102〉 − |0122〉) .

Here, the indices in the photonic number states designate the beam splitter output modes
(1 or 2), where the photon measurement will take place. φQD1

and φQD2
are the optical

phases accumulated along the path of the interferometer going through QD 1 and QD 2,
respectively, after the beam splitter transformation.

Detection of the one-photon contribution selectively in the beam splitter output
projects the two QD spins into the entangled state (|↑QD1

↓QD2
〉 ± eiΔφ |↓QD1

↑QD2
〉)/√2

with the sign depending on the output port that registers the Raman photon and
Δφ = φQD2

− φQD1
. For Δφ = 0 these states are in fact maximally entangled and

correspond to two of the four Bell states |ψ(±)〉. With a small but finite probability of p2

both QDs emit a Raman photon and flip their spin state, which results in a two-photon
state after the beam splitter (naturally exiting at the same output mode due to indistin-
guishability [17]), contributing to an intrinsic error in the entanglement generation of p.
Consequently, an optimal value range for p is determined through a compromise between
this error probability and the rate of entanglement generation, 2p(1 − p).

3.2. Experimental realisation. – Figure 1 is a basic illustration of the experimental
arrangement —a faithful replica of the Cabrillo proposal. A detailed description of what
we discuss below can also be found in Stockill et al. [13]. Two InGaAs QD devices,
QD 1 and QD 2, located in separate cryostats that are 2 metres apart, provide the two
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Fig. 1. – The experimental arrangement of the two QDs together with the optical paths and the
output ports for detection. The first beam splitter distributes the optical excitation pulses to
the two QD spins, while the second beam splitter combines the Raman photons from the QDs
completing the effective Mach-Zehnder interferometer.

spins we wish to correlate. 4 T magnetic field applied perpendicular to the QD growth
axis lifts the spin degeneracy of the ground and excited states of the QDs and forms
the desired Λ system. The two optical transitions linking the two spin ground states
to a common excited state, around 968 nm in this case, are therefore distinguishable by
their frequency (25 GHz difference); the lower-energy and higher-energy transitions are
denoted in red and blue, respectively. Stark tuning via electrical control further ensures
that the two QDs are identical from the perspective of all relevant optical transitions.
Initialisation and measurement of the spins utilise optical pulses derived from frequency-
stabilized single-mode lasers using fiber-based electro-optic intensity modulators. In
contrast, coherent spin rotations are achieved optically using 1 THz red-detuned pulses
from a mode-locked Ti:Sa laser picked with acousto-optic modulators. An additonal far-
off resonance continuous wave laser is used to measure the cumulative phase between
the two optical paths in the experiment (fig. 1) and stabilise this phase to ∼ 3◦ over a
DC-1.5 kHz range via a combination of electro-optic phase modulation and piezo-based
compensation.

The initialisation, rotation and measurement sequence is as follows: First, both spins
are optically pumped into the spin-down state. This is achieved with ∼ 97% fidelity per
spin. Second, a 160 ps long optical pulse drives the lower-energy transition of each QD
to generate a Raman photon and flip the spin state. The exitation probability, p, is set
to 7% in order to suppress the probability of both QDs being excited. The third step is
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Fig. 2. – Joint spin-state reconstruction through 3-photon coincidence events. Left: Joint spin
state population conditional on a single Raman photon detection event. An antisymmetric
population is retrieved with a probability of 85.7 ± 3.8%. The error bars represent the sta-
tistical uncertainty drawn from the 603 three-photon events that were used to reconstruct the
population. Right: Spin correlations in the transverse basis for projection of |ψ(+)〉 for Δφ = 0.

to detect a single Raman photon at one of the output ports of the beam splitter. The
degree of indistinguishability of the Raman photons in the two input modes as measured
via the Hong-Ou-Mandel two-photon interference is 93 ± 1% in these experiments. The
fourth step is to select the basis in which measurement will be conducted, obtained by
applying a 1 THz red-detuned pulse to yield coherent rotation of the two spins. The
fifth and final step in the sequence is to measure each spin individually using an 8 ns
long optical pulse driving the higher-energy transition. The outcome is the evidence of
entanglement between the spins obtained from spin correlations in different measurement
bases. Following this sequence with four different iterations, we can reconstruct the
population of {|↓QD1

↓QD2
〉, |↓QD1

↑QD2
〉, |↑QD1

↓QD2
〉, |↑QD1

↑QD2
〉}.

Figure 2 is a reconstruction of the projected two-spin state from the correlation of
three-photon coincidence events measured along two orthogonal axies. The first mea-
surement is the state in the population basis, parallel to the external magnetic field,
measuring directly the eigenstates of the spins (left panel). The detection of a Raman
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photon projects an antisymmetric spin population with a probability of 85.7±3.8%. The
uncertainty is set by the shot noise of the 603 three-photon detection events. The pres-
ence of population in the |↑QD1

↑QD2
〉 state is intrinsic to the entanglement generation

scheme, and follows the spin-flip probability p. Events in the |↓QD1
↓QD2

〉 state mainly
result from imperfect spin rotation and read-out. Figure 2 (right panel) shows correla-
tion measurements in the transverse basis. In this basis, quantum erasure imprints the
interferometric phase between the Raman modes onto the nonlocal state shared between
the two spins, which is tunable via the optical path length difference in the experimental
arrangement. For Δφ = 0, detecting a Raman photon in output mode 1 generates the
|ψ(+)〉 state, revealing a visibility of 39.5± 3.8%. We can estimate the Bell-state fidelity
from combining these two visibilities directly, which yields an average of 62.6 ± 2.3%
fidelity. This value constitutes around a 5 standard deviations of the mean from that
obtained from a classically described two-spin state. The measured fidelity is commen-
surate with cumulative error contributions, the most prominent ones being the double
spin-flip rate (limiting the fidelity to 93%), the imperfect mode overlap (a further reduc-
tion of 4%), the spin-state dephasing (a visibility reduction of 13%), and the imperfect
spin preparation and read-out (3% and 6%, respectively). Nevertheless, the rate at which
such correlations can be generated between two QD spins is around 8 kHz, which is sig-
nificantly higher than any other physical system tested through the Cabrillo scheme.
This is mostly due to the very high quality of the QD photons as well as their brightness.

4. – Outlook

In this lecture we started by introducing the role of proximity for correlated systems
and how we can remove it using concepts in quantum physics. We then picked one
physical system, namely the semiconductor quantum dots, as one of many spin-photon
interface systems, and showed how they can be used to demonstrate optically gener-
ated quantum entanglement between two confined electron spins. From the perspective
of entanglement generation rate based on photon measurements, the performance of
quantum dots surpasses that of all other physical systems investigated. Using current
state-of-the-art light-collection strategies discussed also in this School, the entanglement
rate could be improved to around 1MHz. This rate is comparable to the inverse of
electron-spin coherence time. It is therefore appropriate to end this paper by pointing
out that this sets an exciting benchmark for the prospect of attaining fault tolerant
scalability [25].
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Summary. — Entanglement represents a fundamental resource for quantum tech-
nologies, including quantum communication tasks. In this context, photons are the
ideal physical systems due to their capability of carrying information over long dis-
tances. Hence, it is fundamental to design reliable sources of entangled photons
in the telecom wavelength regime (around 1.55 μm), where optical fiber losses are
low. In this paper we review different platforms used to generate telecom entangled
photon pairs, and we focus in particular on an integrated source realized by the fem-
tosecond laser writing (FLW) technique, which allows to devise stable and compact
optical circuits in glass. We show how this technique can be employed to inscribe
waveguides in nonlinear crystals for generation of telecom entangled photon pairs
on a chip.
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1. – Introduction

Quantum resources promise to greatly enhance information tasks with respect to any
classical strategy. Several applications have been identified, including quantum computa-
tion, simulation, metrology and communication [1]. Different physical systems can be ex-
ploited to implement quantum information protocols, e.g.: trapped and cold atoms [2-4],
superconducting systems [5-7], nuclear and electronic spins [8-11] and photons [12]. The
latter ones are among the most studied and attractive systems due to their high mo-
bility and low interaction with the environment. Given these properties, photons can
be employed in several quantum information processes [13, 14]. In particular quantum
communication [15] is a fundamental task for future quantum networks, and photons are
the best candidate for such purpose thanks to their easiness and velocity of transmission
and to the long decoherence time. For long distance fiber optic quantum communication
appropriate wavelengths that lie in the telecom band have to be employed to minimize
losses, in particular around 1.3μm and 1.55μm.

Several degrees of freedom of the photon can be exploited to encode qubits and higher
dimensional states, and can be divided in discrete and continuous ones. Examples of dis-
crete degrees of freedom are: the polarization, living in a 2-dimensional space where an
orthonormal basis is represented by horizontal and vertical polarizations {|H〉, |V 〉}; the
quantized orbital angular momentum (OAM) that lives in an unbounded Hilbert space,
where an orthonormal basis is represented by optical vortices |m〉 with m ∈ Z; photon
number degree of freedom with basis |n〉, being n ∈ N the number of photons along a cer-
tain mode; time-bin or the path degrees of freedom, that can also be discretized in finite
separated optical modes. Examples of continuous degrees of freedom are field quadra-
tures and frequency modes. Suitable manipulation techniques of the different degrees of
freedom and single-photon detection apparatuses must then be developed to employ pho-
tons in quantum information protocols. In particular, three general steps are required:
generation-preparation of initial quantum states, manipulation of the states to accomplish
the desired task, and measurement to acquire information from the system. Several tech-
niques were then introduced in the last years to generate, manipulate and detect photons.

Generation and preparation of single photons have been demonstrated in different
platforms. In particular, it is fundamental to prepare entangled photon states. Indeed
entanglement is a distinctive quantum phenomenon predicted by Einstein, Podolsky and
Rosen [16], which was shown to be incompatible with local causality by Bell [17]. Re-
cent experimental realizations of Bell tests demonstrated in a nearly unambiguous way
that entangled states present correlations that cannot be explained by any classical local
hidden-variable theory [18-20]. Other experiments demonstrated, employing photons,
entanglement in relation with another peculiar trait of quantum theory such as wave-
particle duality [21-23]. Apart from its foundational importance, entanglement lies at
the basis of most quantum-enhanced information protocols [1,24-26]. Entangled photon
sources can be realized by exploiting nonlinear effects in χ(2) nonlinear crystals, in par-
ticular spontaneous parametric down conversion (SPDC), by exploiting four-wave mixing
(FWM) processes in different platforms or by devising quantum dot platforms.
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Several optical devices for each degree of freedom have been developed to manipulate
photonic states. For instance the two key elements to manipulate the path degree of free-
dom of photons are beam splitters (BS), that combine different optical modes, and phase
shifters (PS), that insert relative phase shifts between them. Through these two devices
one can realize any discrete unitary operation [27]. Manipulation of the polarization de-
gree of freedom can be performed through waveplates, birefringent materials introducing
a retardation between two orthogonal polarizations. An appropriate sequence of these
elements permits to implement any unitary operation on polarization qubits. Polarizing
beam splitters (PBS) spatially divide orthogonal polarizations and can be used as projec-
tors in this degree of freedom. States in the OAM degree of freedom can be generated and
manipulated by different devices: spatial light modulators (SLM) [28], that can change
the phase and the intensity of an optical beam in each point with a resolution given
by pixels area, and q-plates (QPs) [29], inhomogeneous anisotropic materials allowing
for manipulation of OAM states conditioned to the polarization states. An appropriate
architecture of cascaded QPs and waveplates acting on polarization coin, can engineer
arbitrary qudit states in the OAM space [30,31].

Single-photon detectors are then employed to measure the output state after manip-
ulation. Different kind of single-photon detectors have been developed at telecom wave-
lengths [32,33]. Among the most used ones for 1550 nm there are InGaAs single-photon
avalanche photodiodes (SPADs) [34-36], while higher efficiency is obtained at 1300 nm
with Ge-on-Si SPADs [37-39]. More efficient detectors are those realized by supercon-
ducting systems [40-43] also including photon number resolution capabilities [44-46].
Some of the other platforms used for detection are those based on quantum dots [47] and
up-conversion [48,49].

Besides the development of each component, future scalable and commercial quantum
technologies require the realization of reliable, low-cost, standardized, versatile, compact
and efficient quantum information platforms. All these requirements find a natural real-
ization in integrated photonic circuits [50-52]. Such circuits allow for a miniaturization of
processes performed in bulk apparatuses, thus reducing problems of stability and scala-
bility. Indeed, in the last few years it has been demonstrated the capability to manipulate
photons in directional couplers, to passively and actively control phase shifts, to rotate
polarization, to generate and detect single photons. The final aim is then to include
all building blocks for photonic quantum information in a single platform, namely: gen-
eration & preparation - manipulation - detection (fig. 1). Different integrated photonic
platforms have been developed for quantum information processing [12,53,54] with differ-
ent techniques: silica on insulator platforms [55,56], silica on silicon devices [56-58], III-V
semiconductors [59-63], UV writing [64,65] and femtosecond laser writing (FLW) [66-73].
While each platform presents its own advantages and drawbacks, no unique system has
been currently identified to support integration of all components in a single platform.

In this paper we will focus on the generation and preparation step in the telecom
wavelength regime. To this aim, we briefly review different sources of entangled photons
pairs of wavelengths at 1.55μm both in bulk and integrated platforms. We will then
focus in more details on the FLW technique, that can be used to write photonic circuits
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Fig. 1. – Miniaturization of quantum information processes steps in integrated photonic circuits.

for quantum information protocols in glass platforms. In particular, we will describe the
adoption of such technique to implement an integrated optical source based on interfacing
photonic circuits realized on different materials [74]. The implemented source is versatile
and allows to switch from the generation of path-entangled to polarization-entangled
photon states, thus also incorporating on the same platform optical elements for photon
manipulation.

2. – Platforms for telecom entangled photons sources

In this section we briefly review different architectures for entangled photon sources
in the wavelength range around 1.55μm. The platforms most commonly employed are
those based on SPDC, SFWM and quantum dots. In particular, we will focus on the
SPDC process, that is at the basis of the integrated source that will be described in
sect. 3.

2.1. SPDC sources. – Direct entangled photons sources based on SPDC processes in
nonlinear χ(2) crystals [75], were first introduced by Kwiat et al. [76], and now represent
one of the most common architectures adopted in photonic experiments [77].

SPDC can be described through the second quantization formalism [78]. A pump pho-
ton, with the frequency ωp and momentum �kp, is annihilated during the interaction with
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Fig. 2. – a) Non collinear SPDC generation in a χ(2) crystal (up) and momentum conser-
vation (down). b) Collinear SPDC generation in a periodically poled crystal with period
of poling Λ (up) and relative momentum conservation relation (down). p = pump pho-
ton, i = idler photon, s = signal photon and kx the momentum relative to photon x. c)
Scheme of a Sagnac-based source of entangled photons in polarization degree of freedom.
OI = optical isolator, HWP = half-wave plate, QWP = quarter waveplate, M = mirror,
DPBS = dual polarizing beam splitter, DHWP = dual half-wave plate, DM = dichroic mirror.

the vacuum field inside the nonlinear crystal, characterized by a second-order suscepti-
bility χ(2), and generates two photons: the idler one, with frequency ωi and momentum
�ki and the signal one, with frequency ωs and momentum �ks (fig. 2a). In this process
involving three photons, two constraints have to be satisfied:

i) energy conservation: ωp = ωi + ωs;

ii) momentum conservation (phase-matching condition): �kp = �ki + �ks.

Under these conditions the Hamiltonian of the process can be written as: H =
κ(âpâs

†âi
† + c.c.), where âx

† is the creation operator of the photon x (x = p, i, s),
and κ is a constant depending on χ(2) and the length of the crystal. Given a coherent
pump field |α〉p, the unitary operator describing the temporal evolution of the process,
with an interaction time t and τ ≡ κt, can be written as: U = exp[−iτ(âpâi

†âs
†+c.c.)] =

I + iγâi
†âs

† − γ2(âi
†âs

†)2 + . . ., being I the identity and γ2 the probability of generating
one photon pair. When a single pair is generated the state can be written as

|α〉p|0〉i|0〉s −→ âpâi
†âs

†|α〉p|0〉i|0〉s ≈ |α〉p|1〉i|1〉s.(1)

The phase-matching condition can be satisfied by birefringent crystals. Different ways
to fulfill the phase-matching condition are possible. In type-I phase matching the idler
and signal photons share the same polarization, orthogonal with respect to the pump
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polarization. Conversely, in type-II phase matching, the idler and signal photons are
orthogonally polarized.

The phase-matching condition strictly limits the geometry and the classes of nonlinear
crystals that can be used for photon-pair generation. In certain cases this excludes the
adoption of crystals with high nonlinear coefficients for a desired generation scheme.
In order to overcome such limitation it is possible to exploit a particular construction
geometry of ferroelectric crystals. Through an inversion of ferroelectric polarizations it
is possible to induce a periodic inversion of the sign of the crystal nonlinear coefficient,
with period Λ. Then, a new phase-matching condition for photon pair generation, called
quasi–phase-matching condition [79], holds:

�kp(T ) = �ks(T ) + �ki(T ) +
2π

Λ(T )
�z,(2)

where Λ(T ) is the poling period (including its dependence on the temperature T ), and
�z is the pump propagation direction. In this way, by appropriately choosing Λ and the
operating temperature, one can reach the generation of photons at the desired wave-
lengths and specific phase-matching properties [80, 81]. Periodically-poled crystals en-
able a third phase-matching configuration different from type-I and type-II, called type-0
phase matching. In this case, the idler and the signal share the same polarization of the
pump beam. For instance a collinear type-0 phase matching becomes possible, where
the photons are emitted with the same polarization and spatial direction of the pump
(fig. 2b).

The phase-matching condition and the energy conservation constraints generate cor-
relations between the idler and signal photons. Such correlations can be exploited in
suitable geometries to generate entangled states in different degrees of freedom. In par-
ticular one can directly generate an entangled state in polarization degree of freedom
using a type-II system: by appropriately orienting the crystal optical axis with respect
to the pump polarization, the two distinct emission cones (along which the idler and
signal photons are generated) can be made to intersect. In this configuration, the pho-
tons emitted along these two intersections are entangled in their polarization degree of
freedom [76]. Conversely when other geometries are employed, e.g. collinear generation,
or when other phase-matching conditions are satisfied, such as type-I or type-0, it can
be necessary to use interferometers with or without post-selection schemes to generate
entangled states. A possible choice of nonlinear crystal for generation of polarization-
entangled photons in the noncollinear scheme of [76] at telecom wavelength is beta barium
borate (BBO) [82].

In the telecom range other kind of sources are also used, different from noncollinear
type-II ones. In particular, a collinear geometry can be employed within interferome-
ters to generate entangled states. One of the most used nonlinear crystals for telecom
generation is periodically poled potassium titanyl phosphate (PPKTP), which can be
tailored to achieve high-purity polarization-entangled states of photons that are uncor-
related in the spectral and spatial degrees of freedom [83]. The crystal nonlinearity
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can be engineered by using different techniques to achieve specific generation charac-
teristics [84, 85]. Such crystal is used in several different configurations. A particular
geometry requires a type-II PPKTP generating pairs of photons along the same optical
mode. The walk-off between the photons is compensated by inserting a second crystal.
Finally, photons are probabilistically divided by means of a beam-splitter to obtain a
polarization-entangled state in a post-selected configuration [86, 87]. Alternatively, two
type-I crystals can be used to directly generate polarization-entangled states [88].

Sources based on interferometers often require an active phase-stabilization. In order
to avoid such technical issue, a Sagnac interferometer can be employed to generate entan-
gled photons from visible to telecom wavelengths [89, 90, 12]. This architecture has the
advantage of not requiring active stabilization, since the geometry is intrinsically stable
(fig. 2c). In such a geometry, a nonlinear crystal is placed in the centre of a Sagnac
interferometer, and photons are generated with a collinear type-II phase matching. The
pump beam with linear polarization at +45◦ enters in the interferometer through a dual
wavelength polarizing beam splitter (DPBS), that operates for both the wavelengths
of the pump and of the generated photons. The vertically-polarized component of the
pump is reflected by the DPBS, and counterclockwise propagates in the Sagnac. Before
being injected in the crystal, it propagates through a dual wavelength half-wave plate
(an half-wave plate for both the wavelengths at stake) that rotates the polarization to
satisfy the phase-matching condition. The generated photons are splitted by the DPBS
along two spatial directions (|V 〉|H〉 contribution). Conversely the horizontally-polarized
component of the pump is transmitted by the DPBS and propagates clockwise generat-
ing photons in the other direction and then producing the |H〉|V 〉 contribution. Finally
the two photons generation paths (clockwise and counterclockwise) are combined by the
DPBS, generating the state

|Ψ〉 =
1√
2
(|H〉|V 〉 + eiφ|V 〉|H〉).(3)

This scheme was applied in the telecom range both with a pulsed pump beam [91-
93] and with a CW pumping scheme [94, 95], obtaining high values of fidelity with a
maximally entangled state. Different Sagnac-based sources were realized also in a highly
nondegenerate configuration with type-I PPKTP crystals [96].

Besides Sagnac interferometer, other stable bulk interferometers can be employed for
generation of polarization-entangled states. For example in [83,20] a stable apparatus was
demonstrated, composed of calcite crystals used to split and recombine two generation
paths from a PPKTP crystal.

Another crystal employed for telecom entangled generation is periodically poled
lithium niobate (PPLN) [97], that was used in different bulk configurations [98-102].

Photons from bulk crystals are generated in different directions. To select a spe-
cific direction, single-mode fibers are commonly adopted. Furthermore the maximum
generation is limited in a small region of space inside the crystals, that is, the focal
region of the pump. A different approach has been shown to allow direct generation
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of photon pairs in waveguides. In this scenario, the pump is confined during all the
process and the emission occurs along a single mode. Several SPDC sources in nonlin-
ear waveguides [103] have been reported, with enhanced generation and collection effi-
ciencies: PPLN waveguides [104-121] (also for 1310 nm generation [122, 123]), PPKTP
waveguides [124], AlGaAs semiconductor waveguides [62,125-130], periodically poled sil-
ica fibers (PPSF) that remarkably do not require a walk-off compensation [131-133], and
GaAs-based semiconductor Bragg reflection waveguides (BRW) [134,135]. PPLN waveg-
uides were also employed in SPDC generation of three-photon polarization-entangled
states [136].

Generation of entangled photons in waveguides represents a first step towards inte-
gration of sources in miniaturized circuits. This provides advantages in terms of instrin-
sic stability, and would allow also for generation in waveguides with consequently high
brightness, coupling efficiency and fidelity of generated states. Such considerations mo-
tivate the realization of all-integrated platforms for suitable and stable sources. A recent
review on integrated sources of photonic quantum states can be found in [137]. Differ-
ent circuits were adopted to generate path-entangled states in chip exploiting PPLN
waveguides [113, 138, 139]. First partial attempts in the direction of full integrated
polarization-entangled states were done by using PPLN-based circuits [140]. However
for such degree of freedom few all-in-chip sources have been realized, in which all the
interferometric setup is integrated. In the next sections we will describe how this task
can be accomplished by the FLW technique, that permits to generate telecom entangled
photons within a tunable interferometer, embedded in an integrated circuit that includes
nonlinear waveguides [74]. In table I a list of SPDC sources of entangled photon pairs
with wavelengths around 1.55 μm is reported.

2.2. SFWM sources. – The generation of correlated photon pairs can also be obtained
through the process of spontaneous four-wave mixing (SFWM) in waveguides [141]. The
χ(3) nonlinearity of optical fibers enables the scattering of two pump photons of fre-
quency ωp1 = ωp2 = ωp (for simplicity we consider the case of degenerate pump photons)
to generate signal (ωs) and idler (ωi) photons according to the energy conservation con-
straint: ωi + ωs = 2ωp, and the momentum conservation: 2�kp = �ki + �ks (fig. 3a). The
Hamiltonian of the SFWM interaction, assuming that the pump consists of two fields p1
and p2, can be written as: H ∼ i�χ(3)âp1âp2âs

†âi
†, where âx

† is the creation operator
of the photon x (x = p1, p2, i, s). At first order, the generated two-photon state reads

|α〉p1|α〉p2|0〉i|0〉s −→ âp1âp2âi
†âs

†|α〉p1|α〉p2|0〉i|0〉s ≈ αp1αp2|α〉p1|α〉p2|1〉i|1〉s.(4)

SFWM can be then employed to generate polarization-entangled photons inside bire-
fringent fibers [142], in particular fiber-Sagnac loops [143-149]. A possible scheme [146] is
composed of a fiber loop in which a polarizing beam splitter (PBS) divides a linearly po-
larized pump at 45◦ (fig. 3b). The vertically polarized component of the pump is reflected
by the PBS and propagates clockwise along a dispersion shifted fiber (DSF) having a
zero-dispersion wavelength equal to the telecom pump wavelength. The nonlinearity of
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Table I. – Table of telecom SPDC entangled photons sources.

References Platforms Generated states λi,s range

[82] BBO type-II polarization 1550 nm

pulsed-pump entanglement

[83,20] PPKTP type-II polarization 1552 nm

pulsed-pumped interferometer entanglement

[86] chirped PPKTP type-II polarization 1490–1610 nm

CW-pumped interferometer entanglement

[87] PPKTP type-II polarization 1530–1595 nm

[95] CW-pumped interferometer entanglement 1540–1560 nm

[88,98] PPKTP, PPLN type-I polarization 810,1550 nm

[101] CW-pumped entanglement 795,1609 nm

[94] PPKTP type-II CW-pumped polarization 1550 nm

Sagnac interferometer entanglement

[91,92] PPKTP type-II pulsed-pump polarization 1584 nm

[93] Sagnac interferometer entanglement 1570 nm

[96,99] PPKTP, PPLN type-I polarization 810,1550 nm

Sagnac interferometer entanglement

[100] PPLN type-II polarization 1506,1594 nm

pulsed-pumped entanglement

[62] AlGaAs waveguide type-II polarization 1518 nm

[127] type-0/I pulsed-pumped entanglement 1635 nm

[128] AlGaAs waveguide type-II polarization 1560 nm

CW-pumped entanglement

[107] PPLN waveguides type-I polarization 1560 nm

[111] pulsed-pumped in interferometer entanglement 1434.6,1606.5 nm

[104,105,112] PPLN waveguides type-I polarization 1535–1560 nm

CW-pumped in interferometer entanglement

[114] PPLN waveguides type-II polarization 1559.8 nm

[115] CW-pumped entanglement 1551,1571 nm

[116] 1540.2 nm

[109] PPLN waveguides type-0 polarization 1542,1562 nm

[110] pulsed-pumped in interferometer entanglement 1538.8,1558.66 nm

[117] PPLN waveguides type-0 polarization 1560.5 nm

[119,106] CW-pumped in interferometer entanglement 1546,1574 nm
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Table I. – Continued.

References Platforms Generated states λi,s range

[124] PPKTP waveguides type-II polarization 1540 nm

pulsed-pumped in interferometer entanglement

[120] PPLN waveguides type-I path 1551.7,1548.5 nm

CW-pumped in interferometer entanglement

[131-133] PPSF type-II polarization 1500–1620 nm

entanglement

[134] BRW type-II polarization 1537,1575 nm

[135] CW-pumped entanglement 1550 nm

[138] PPLN CW pumped path 1560 nm

[139] pulsed-pumped integrated chip entanglement 1519.4 nm

[140] PPLN type-II CW-pumped polarization 1554.44 nm

partially integrated entanglement

[113] PPLN type-0 path 1560 nm

pulsed-pumped integrated chip entanglement

[74] PPLN type-0 CW-pumped path/polarization 1560 nm

all integrated FLW chip entanglement

the fiber enables the SFWM process in which two pump photons annihilate to generate
idler and signal photons with vertical polarization: |V 〉|V 〉. Conversely the horizontally
polarized component of the pump propagates counterclockwise along the same fiber gen-
erating a contribution |H〉|H〉. The two possible generation paths recombine in the PBS
and exit along the same output port. After suppressing the pump through a filter F and
separating the idler and signal photons through an arrayed waveguide grating (AWG),
the final state reads

|Ψ〉 =
1√
2
(|H〉|H〉 + eiφ|V 〉|V 〉),(5)

being φ a relative phase shift that can be modulated by acting on the polarization of the
pump beam.

SFWM (time-energy/polarization) entangled pairs sources can be realized through
integrated silicon waveguides [150-164] or AlGaAs waveguides [165]. SFWM generation
in waveguides, possibly enhanced by using a ring resonator architecture, is at the basis
of photon sources for Si-based photonic integrated circuits. Such circuits, that can be
realized in silica-on-silicon and silicon-on-insulator platforms, permit the realization of
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Fig. 3. – a) Energy diagram (up), momentum conservation (middle) of SFWM generation
in a nonlinear fiber for degenerate pump photons. p = pump photon, i = idler pho-
ton, s = signal photon, wx and kx the frequency and momentum relative to photon x =
p, i, s. b) Scheme of SFWM polarization-entangled photons generation in a fiber Sagnac
loop. DSF = dispersion shifted fiber, AWG = arrayed waveguide grating, F = pump filter,
PBS = polarizing beam splitter. c) Scheme of a FWM source of path-entangled photon pairs,
in a silicon-on-insulator device. The final state is obtained in the degenerate generation in which
the phase shift φ between the arms of the interferometer is set to zero.

integrated quantum photonics thanks to the properties of Si-based waveguides [55-58].
The high refractive index contrast of the waveguides allows high field confinement, thus
leading to reduced circuit size. Furthermore, such platforms present large nonlinearities
exploitable for entangled photons generation, and are compatible with different standard
electronics elements, and fast optical modulators. However, the possibility of supporting
the propagation of polarization-entangled states is currently prevented by birefringence.
For this reason, the main degree of freedom manipulated for quantum processes within
this platform is given by the optical path. It is then crucial to include sources of path-
entangled photon sources integrated in these devices. This aim can be accomplished by
exploiting SFWM [166-168]. A scheme for the generation of two-photons path-entangled
states [166] exploits the silicon-on-insulator integrated circuit represented in fig. 3c. The
pump beam enters along a waveguide and is equally split by a first directional coupler.
For each of the two paths, the pump beam enters in a spiralled waveguide where signal (s)
and idler (i) photons are generated by SFWM. The two parallel generations are combined
in a second coupler leading to the generation of an output state of the form

|Ψ〉 = cos φ

[
1√
2
(|1s1i〉A|0s0i〉B − |0s0i〉A|1s1i〉B)

]
(6)

+ sin φ

[
1√
2
(|1s0i〉A|0s1i〉B + |0s1i〉A|1s0i〉B)

]
,

where A and B are the two paths, and φ is a relative phase shift that can be tuned
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by means of a thermal phase shifter. For the case of degenerate generated photons and
φ = 0, the maximally entangled state is obtained: |Ψ〉 = 1√

2
(|2〉|0〉 − |0〉|2〉) (fig. 3c).

Note that a two-colour pump is necessary for degenerate generation, otherwise the pump
cannot be divided from the generated photons. Such platforms can be also exploited to
generate multidimensional entangled states [169].

2.3. Other sources. – SPDC and FWM are nondeterministic processes that cannot
be exploited to realize on demand sources. In order to achieve deterministic single-
photon sources different platforms have been proposed. In particular, quantum dots are
becoming a fundamental tool to generate single photons on demand [170-175]. They can
also be employed to generate entangled pairs at telecom wavelength, in both windows
around 1300 nm [176] and 1550 nm [177], by using InGaAs-based quantum dots.

3. – Femtosecond Laser Writing Technique for integrated source of telecom
entangled states

Here we will briefly describe the FLW technique and its capability to design circuits
that permit to generate and manipulate photons in both path and polarization degrees of
freedom. Then, we will show how such technique enables the realization of a modular and
reconfigurable path and polarization-entangled photon source in an integrated device [74].

3.1. FLW technique. – Femtosecond laser waveguide writing is a fabrication technique
that has been recently employed to design integrated quantum photonics platforms [68-
73, 178-181]. Femtosecond laser writing exploits strong laser pulses (in the femtosecond
regime), with energy lower than the energy gap of the substrate material. The laser
is focused inside the material substrate to induce a localized permanent modification
of the refractive index by non-linear absorption processes [68, 178, 182-187]. Moving
the substrate with respect to the laser focus, waveguides and complex photonic circuits
can be written at constant velocity with micrometric precision (fig. 4). Two writing
configurations can be adopted [179]. The longitudinal one, in which the substrate is
translated along the direction of the focused laser beam, has spatial range limitations
due to the working distances of the employed optics. Conversely, the transverse writing
configuration, in which the translation is perpendicular to the laser propagation direction,
leads to asymmetric waveguide cross sections (higher birefringence). This latter drawback
can be overcome by multiscan approaches. The features of the written waveguides depend
on different parameters such as wavelength and energy pulse of the laser, pulse duration
and the focus numerical aperture. FLW offers several advantages compared to other
microfabrication techniques such as lithographic technologies. The production cost is
relatively low and the fabrication process is fast (above 40 mm/s), without the need of
clean rooms. Circuits within the substrates can be written in the 3D space, allowing
for the realization of complex geometries [188-197]. In parallel, losses are relatively low:
propagation losses can reach values near 0.1–0.3 dB/cm while coupling losses ∼ 27% [198].
Laser-written waveguides in glasses can show a low birefringence and can be realized with
circular cross section, then they are polarization insensitive [199]. Hence, these waveguide
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Fig. 4. – Femtosecond laser writing on a glass via a transverse geometry.

support propagation of polarization qubits [200]. Different transparent materials, such
as glasses, crystals and polymers can be processed for the realization of FLW circuits.

Through the geometry of the waveguides, the path degree of freedom of the photons
can be manipulated. Appropriately chosen sequences of two-dimensional beam splitters
and phase shifters allow for the implementation of any arbitrary discrete unitary in the
path degree of freedom [27]. It is then crucial to obtain capability of implementing these
two key elements with high precision. Beam splitters can be realized through directional
couplers (DCs). In the lossless assumption, a directional coupler can be expressed by the
unitary matrix

Udr =

( √
T i

√
1 − T

i
√

1 − T
√

T

)
,(7)

where T is the coupler transmittivity. Such operation is achieved by means of the
evanescent fields coupling mechanism between two adjacent waveguides, which allows
the transfer of electromagnetic field amplitude from one waveguide to another. The two
key fabrication parameters of a directional coupler that permit to control the transmit-
tivity T are the interaction length, L and the distance d between the two waveguides
(fig. 5a), according to

T ≈ sin2(KL),(8)

where K is a coupling coefficient that decreases exponentially with the distance d.
A static phase shifter can be achieved by implementing a delay in one waveguide
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Fig. 5. – a) Scheme of a directional coupler, whose transmittivity depends on the length (L)
and distance (d) of interaction between the coupled waveguides. By appropriately controlling
the geometry, polarization independent beam-splitters or polarizing beam-splitters can be im-
plemented. b) Static phase shift (φ) can be controlled by appropriately bending one of the
waveguide. c) Tunable phase shifts can be obtained through thin gold thermoresistors upon the
waveguide: applying a voltage ΔV , the dissipated heat changes locally the waveguide index of
refraction. d) Cross sections of the waveguides at different rotations of angle θ.

compared to another. It can be written as the unitary transformation

Ups =
(

1 0
0 eiφ

)
,(9)

where φ is the relative phase shift. In an integrated device this is obtained by bending the
waveguide and hence stretching the optical path (fig. 5b). This method introduces a static
phase shift defined at the fabrication stage, that cannot be changed during the circuit
operation. FLW allows also to design circuits with reconfiguration capabilities, allowing
to change the phase shifts by means of thermal shifters [201,202]. These devices induce a
local change of the refractive index in an arbitrary point of the chip by exploiting thermo-
optics effects. Such operation can be performed by means of resistive heaters, constituted
by thin gold films (∼ 50 nm) deposited on the chip in the proximity of the waveguides.
The resistor pattern is defined by laser ablation, obtained by focusing on the sample
surface a femtosecond laser beam. By applying a voltage ΔV over the resistor, heat is
dissipated into the bulk of the chip changing locally the waveguide index of refraction,
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thus resulting in a phase modification. Given the dissipated power Pdiss = ΔV 2/R on
the ohmic resistor R, the phase shift Δφ induced on the waveguide can be expressed by

Δφ ≈ αPdiss,(10)

being α a coefficient dependent on the geometric, thermal and optical properties of the
substrate material. Then, through phase shifters and directional couplers, arbitrary
linear optical interferometers can be realized to obtain full control of the path degree of
freedom.

Moreover, the potential of the FLW technique allows to design integrated optical ele-
ments for manipulation of the polarization degree of freedom. In order to employ polar-
ization states inside the circuits, two requirements are necessary: i) directional couplers
whose splitting ratio is polarization independent that can be implemented by FLW, and
ii) optical elements that allow for the manipulation of the polarization. In this degree of
freedom, the two key optical elements are waveplates and polarizing beam splitter. Such
devices can be realized by the FLW technique [203-207]. In [204,205] directional couplers
were implemented with splitting ratio that can be regulated indipendently for horizontal
and vertical polarizations, enabling the integration of polarizing beam splitters. In [203]
integrated waveplates with arbitrarily rotated birefringence axis were realized. This is
obtained by modifying the writing laser beam angle with respect to the substrate. In
such a way the fabricated waveguide will have a tilted cross-section and hence tilted
birefringence axis, acting as a rotated waveplate.

FLW has been used for a broad range of quantum information applications. Inte-
grated circuits were used to perform: quantum gates [205, 208, 209, 189, 190], quantum
walks and simulation processes [210-213], generation of path-polarization hyper-entangled
and cluster states [214], boson sampling experiments [215-218] quantum contextuality
test [219], quantum multiphase estimation [220], sensing application [221], photon indis-
tinguishability test [222], quantum single-photon storage [223], state transfer of entangled
qubits [224], microfluidics in fused silica [225].

3.2. FLW for fully integrated source of telecom entangled states. – We describe here
how FLW can be exploited to implement an all-in-chip source able to generate path- or
polarization-entangled states at telecom wavelength with a modular approach [74]. Such
fully integrated source relies on the hybrid assembly of three circuits written on different
materials through the FLW technique. The three cascaded integrated devices implement
the entangled source and the third device can be changed to switch between polarization-
and path-entangled output states.

The first circuit is written in aluminum-borosilicate glass and includes a reconfigurable
and balanced directional coupler at 780 nm wavelength. The laser pulses, employed for
the writing process, have duration of about 300 fs, wavelength λpulses = 1030 nm, 1 MHz
repetition rate and 220 nJ pulse energy. The coupler, inscribed 25μm below the chip
surface, is used for single-mode manipulation of the continuous-wave pump at 780.31 nm
with waveguides having a 1/e2 mode size of 8×9 μm2 at that wavelength. The first device
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(D1) is covered by a 50 nm gold layer, required for a thermo-optic resistor (75 ohm) able
to implement a phase shift φ from 0 to 2π with a dissipated power up to about 0.4 W.
Such phase shift will be the relative phase in the generated polarization-entangled state
and will be the control of the amount of entanglement in the case of path entangled state.

The pump, equally divided by the first device, is coupled with ∼ 75% of efficiency to
the second 18 mm-long chip (D2), containing the nonlinear waveguides written in a PPLN
substrate. The crystal is z-cut and has a poling period Λ = 19.5 μm, satisfying a de-
generate type-0 phase-matching condition at room temperature with a pump wavelength
λp = 780.31 nm, corresponding to idler and signal wavelengths of λi,s = 1560.62 nm.
The two inscribed waveguides have a single-mode size of 12 × 12 μm2 for 780 nm and
18× 16 μm2 for 1550 nm wavelength. Waveguides were fabricated by exploiting a multi-
scan technique [226]. The waveguides have a very similar nonlinear properties since the
measured overlap between their second-harmonic generations was above 99%. The power
of SPDC emission from a waveguide pumped with an input power Pp, can be expressed
as [227]

PSPDC ∝ ωi

∫ ∣∣∣∣∣ sinh(l
√

(ωi/ωs)κ2Pp − Δ2)
l
√

(ωi/ωs)κ2Pp − Δ2

∣∣∣∣∣
2

dωs,(11)

where l is the length of interaction, κ the nonlinear coupling coefficient and Δ is the
phase mismatch.

The telecom photon pair generated by SPDC processes along the nonlinear waveg-
uides are coupled to the third device with an efficiency of ∼ 80%. The third chip is
necessary for the entangled state generation and can be chosen between two different
devices (D3a and D3b) depending on the desired output state. For the path-entangled
state D3a has to be adopted. The latter is composed of a balanced directional coupler at
1560 nm that recombines the two possible generation paths from the PPLN device. The
waveguides are written at 170 μm depth with respect to the glass surface, through laser
pulses of 370 nJ pulse energy. The mode profile is near circular with a 1/e2 diameter of
15.5 μm. Propagation losses of this device are approximately 0.3 dB/cm. To generate a
polarization-entangled state, the 37mm × 12 mm device D3b has to replace D3a. Such
circuit contains two integrated half-wave plates, with optical axis tilted, respectively, by
22.5◦ and −22.5◦, implemented through the technique discussed in [203], and achiev-
ing a polarization rotation efficiency > 98%. Then, a balanced polarization-insensitive
directional coupler at 1560 nm [228] recombines two possible generation paths.

Let us now discuss the generation process in more detail. We consider the case in
which a pump photon generates a photon pair. The pump is injected along the mode 2
of D1 propagating through the directional coupler and the phase shifter. The state at
the output of D1 reads

|Ψ〉in = |0〉1|α〉2 D1−−→ |α/
√

2〉1|eıφα/
√

2〉2,(12)

where state |β〉i stands for a coherent state along the mode i = 1, 2. Then, the pump
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enters in D2 and generates, through type-0 SPDC, a pair of degenerate telecom photons:

|α/
√

2〉1|eıφα/
√

2〉2 D2−−→ 1√
2

(|0〉1|2〉2 + eiφ|2〉1|0〉2
)
,(13)

where |k〉i stands for k photons in mode i = 1, 2.
Finally the two possible generation paths are combined in the directional couplers of

D3a or D3b. In the case of D3a the final state |Ψ(φ)〉afin is a path entangled state:

|Ψ(φ)〉afin = cos(φ/2)
[

1√
2

(|0〉1|2〉2 + |2〉1|0〉2)
]

+ sin(φ/2) |1〉1|1〉2.(14)

The degree of entanglement can be modified by tuning the phase shift φ, through a
change in the voltage applied on the thermoresistor. For φ = 0 we obtain the maximally
entangled NOON state: |Ψ(0)〉afin = 1√

2
(|0〉1|2〉2 + |2〉1|0〉2), while for φ = π the state will

be separable: |Ψ(π)〉afin = |1〉1|1〉2.
The generation can be switched from path- to polarization-entanglement by substi-

tuting D3a with D3b. In this case, photons along path 1 will be rotated by the half-wave
plate to a diagonal state, |+〉 ≡ 1√

2
(|H〉+|V 〉), while photons along path 2 will be rotated

by the half-wave plate to an antidiagonal state |−〉 ≡ 1√
2
(|H〉 − |V 〉). By post-selecting

to those cases in which one photon exits from each output port of D3b, the final state
|Ψ(φ)〉bfin will be

|Ψ(φ)〉bfin =
1√
2

(|+〉1|+〉2 + eiφ|−〉1|−〉2
)
,(15)

that is, a maximally entangled state in the polarization degree of freedom.
The experimental setup used in [74] to generate and analyze the generated states is

shown in fig. 6. A single-mode fiber array at 780 nm injects the pump beam, a CW
Ti:Sapphire laser, in input port 1 of D1. After the third chip, the generated photons
from the two output modes are collected in a second single-mode fiber array at 1560 nm
and are separated from the residual pump beam by long-pass filters with an extinction
ratio of 102 dB at 780 nm. The photons are detected by recording two-fold coincidences
between two single-photon detectors placed at the output. The first one operates in free
running mode and triggers the other in external gating mode (in this configuration, both
detectors reach an efficiency of 25%).

Let us first discuss the measurements on the path-entangled state (D3a inserted). In
this case there are two possible measurement configurations (fig. 6a): i) measurements of
the contribution |1〉1|1〉2 for which the two outputs are directly connected to the detectors,
ii) measurements on the contribution |0〉1|2〉2, obtained by injecting the output 2 into a
fiber beam splitter (FBS), whose two outputs are set to the detectors. The measurements
of the two contributions are performed separately. Given the state in (14), the detection
probability of the contribution |1〉1|1〉2 varies as sin2(φ/2) with respect to the phase shift
φ, while the probability of the contribution |2〉1|0〉2 changes as cos2(φ/2). The measured
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Fig. 6. – a) Scheme of the source of path entangled state. Two measurement configurations
are used to measure, respectively, the |1〉1|1〉2 (up) and |0〉1|2〉2 (down) generated terms. b)
Scheme of the source of path entangled state. FA = fiber array, D1 = first device composed
of balanced directional coupler at 780 nm and tunable phase shift φ, D2 = PPLN chip,
D3a = balanced directional coupler 1560 nm, fbs = fiber beam splitter, λ/2 = half-wave plate,
λ/4 = quarter-wave plate, D3b = device composed of half-wave plates and directional coupler
at 1560 nm, CP = polarization control, PBS = polarizing beam splitter, LP = long pass filter,
DET = single photon detector.

fringe patterns are shown in fig. 7a, and the corresponding fringes visibilities, are reported
in table II. The obtained results demonstrate the high quality of the generated state.

On the other hand, the measurements on the polarization-entangled state are per-
formed by a polarization stage and a detector for each output mode (fig. 6b). The
output state in (15) is rotated, by means of compensation waveplates, to the state

|Ψ(φ)〉b′fin =
1√
2

(|H〉1|H〉2 + eiφ|V 〉1|V 〉2
)
.(16)

Such state presents sinusoidal fringes as a function of φ when measured in the diagonal
basis |+ /−〉, while being constant in the |H/V 〉 basis (fig. 7b). The obtained visibilities
are reported in table II and demonstrate the quality of the generated state.

Finally we set to φ = π the phase shift in state (16), thus generating the Bell
state: |Φ−〉 = 1√

2
(|H〉1|H〉2 − |V 〉1|V 〉2). To fully verify the generated state, a quan-

tum state tomography [229] has been performed. The measured fidelity of the gener-
ated density matrix ρexp with respect to the ideal Bell state ρφ− was: F(ρexp, ρφ−) =
Tr[(√ρexpρφ−

√
ρexp)1/2]2 = 0.929±0.011. For such a state the purity was Ψ = Tr[ρ2

exp] =
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Fig. 7. – a) Measured fringe patterns for path-entangled state as a function of phase shift φ,
tuned by changing the applied voltage on thermo-resistor in D1. Green: |0〉1|2〉2 contribution.
Orange: |1〉1|1〉2 contribution. b) Measured fringe patterns for polarization-entangled state as
a function of phase shift φ, tuned by changing the applied voltage on thermo-resistor in D1.
Black: |+〉1|+〉2 contribution. Blue: |+〉1|−〉2 contribution. Red: |H〉1|H〉2 contribution. In all
plots, shaded regions are 1-σ confidence intervals on the fit parameters. Error bars are due to
the Poissonian statistics of the measured coincidences.

0.908±0.018, and the concurrence was C = 0.905±0.022. Furthermore another measure
of entanglement is performed through the quantity [230]: S ≡∑i=X,Y,Z |〈σi⊗σi〉|, where
σi (i = x, y, z) represent the Pauli matrices. For all separable states this inequality holds:
S ≤ 1, thus representing an entanglement witness on the state [24]. We measured a value
Sexp = 2.782± 0.015 (by subtracting for accidental coincidences). The separable limit is
violated by ∼ 118 standard deviations, thus demonstrating the presence of polarization
entanglement in the generated state.

4. – Conclusions

Reliable generation of entangled photons at telecom wavelength is a crucial require-
ment in the context of quantum communication and for future quantum networks. Dif-

Table II. – Table of the fringes visibilities for both the path- and polarization-entangled states
and for different measurement configurations. V raw are the experimental visibilities obtained
from raw data, while V are obtained by subtracting for accidental coincidences.

|0〉1|2〉2 |1〉1|1〉2 |+〉1|−〉2 |+〉1|+〉2

V 0.980 ± 0.004 0.970 ± 0.004 0.929 ± 0.017 0.957 ± 0.015

V raw 0.935 ± 0.003 0.877 ± 0.004 0.834 ± 0.018 0.858 ± 0.019
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ferent platforms have been developed to accomplish such task. A promising approach
employs integrated photonics circuits for stable, scalable and efficient implementation of
quantum information protocols. In particular FLW enabled the realization of a broad
range of photonic components including photon sources.

Recently a fully integrated source able to generate telecom photons in both the polar-
ization and path degrees of freedom was implemented by using the FLW technique. This
kind of platform promises to be a building block for future all-in-chip quantum processes
that will include on-chip sources, manipulation and detection [231-235]. Minimizing the
losses and maximizing stability and efficiency, fully integrated circuits can be employed to
accomplish several tasks that cannot be tackled with a bulk optics approach. A near term
goal is represented quantum-enhanced multiphase estimation experiments [236,237,220].
In this context, dynamical reconfigurability of the devices will permit to implement adap-
tive estimation protocols that generalize single-parameter approaches [238, 239]. This
would also require the development of integrated sources at wavelengths different from
1.55 μm, for applications in quantum sensing on biological systems [221]. The integration
of photon sources can also be a fundamental step to improve boson sampling experiments
in systems of progressively increasing size [215-218, 240-250]. Finally, integrated sources
can also become a significant tool for future satellite-based quantum network [251-255].
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DeMicheli M. P., Kastberg A., Labonté L., Alibart O., Martin A. and Tanzilli

S., Opt. Commun., 327 (2014) 7.
[118] Meany T., Ngah L. A., Collins M. J., Clark A. S., Williams R. J., Eggleton

B. J., Steel M., Withford M. J., Alibart O. and Tanzilli S., Laser Photon. Rev.,
8 (2014) L42.

[119] Vergyris P., Kaiser F., Gouzien E., Sauder G., Lunghi T. and Tanzilli S.,
Quantum Sci. Technol., 2 (2017) 024007.

[120] Schaeff C., Polster R., Lapkiewicz R., Fickler R., Ramelow S. and Zeilinger

A., Opt. Express, 20 (2012) 16145.
[121] Pomarico E., Sanguinetti B., Gisin, N., Thew R., Zbinden H., Schreiber G.,

Thomas A. and Sohler W., New J. Phys., 11 (2009) 113042.
[122] Martin A., Cristofori V., Aboussouan P., Herrmann H., Sohler W., Ostrowsky

D.B., Alibart O. and Tanzilli S., Opt. Express, 17 (2009) 1033.

 EBSCOhost - printed on 2/13/2023 9:33 PM via . All use subject to https://www.ebsco.com/terms-of-use



Platforms for telecom entangled photon sources 109

[123] Martin A., Issautier A., Herrmann H., Sohler W., Ostrowsky D. B., Alibart

O. and Tanzilli S., New J. Phys., 12 (2010) 1033.
[124] Meyer-Scott E., Prasannan N., Eigner C., Quiring V., Donohue J.M.,

Barkhofen S. and Silberhorn C., Opt. Express, 26 (2018) 32475.
[125] Lanco L., Ducci S., Likforman J.-P., Marcadet X., van Houwelingen J. A. W.,

Zbinden H., Leo G. and Berger V., Phys. Rev. Lett., 97 (2006) 173901.
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[206] Heilmann R., Gräfe M., Nolte S. and Szameit A., Sci. Rep., 4 (2014) 4118.
[207] Wang C. Y., Gao J. and Jin X. M., Opt. Lett., 44 (2019) 102.
[208] Viggianiello N., Flamini F., Innocenti L., Cozzolino D., Bentivegna M.,

Spagnolo N., Crespi A., Brod D. J., Galvão E. F., Osellame R. and Sciarrino

F., New. J. Phys., 20 (2018) 033017.
[209] Weimann S., Perez-Leija A., Lebugle M., Keil R., Tichy M., Gräfe M.,
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Summary. — Defects in solids are in many ways analogous to trapped atoms or
molecules. They can serve as long-lived quantum memories and efficient light-matter
interfaces. As such, they are leading building blocks for long-distance quantum
networks and distributed quantum computers. This paper describes the quantum-
mechanical coupling between atom-like spin states and light, using the diamond
nitrogen-vacancy (NV) center as a paradigm. We present an overview of the NV
center’s electronic structure, derive a general picture of coherent light-matter in-
teractions, and describe several methods that can be used to achieve all-optical
initialization, quantum-coherent control, and readout of solid-state spins. These
techniques can be readily generalized to other defect systems, and they serve as the
basis for advanced protocols at the heart of many emerging quantum technologies.

1. – Introduction

Solid-state spins are among the most versatile platforms for quantum science and
technology. Select semiconductor defects — exemplified by the nitrogen-vacancy (NV)
center in diamond — exhibit spin coherence at room-temperature and intrinsic optical
spin-readout mechanisms that underly their remarkable capabilities as room-temperature
qubits and quantum sensors. When used in this way, quantum-coherent control is per-
formed using microwaves that couple resonantly to the qubit’s electron spin Hamiltonian.
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Optical pumping and fluorescence are used for spin initialization and readout, respec-
tively, but these processes rely on dissipation through nonradiative and vibronic transi-
tions that involve coupling to phonons in the crystal and are therefore incoherent. When
the crystal is cooled down, however, the optical transitions between different orbital states
become coherent, and they can be manipulated using resonant optical fields just as the
spin is controlled with microwaves. Moreover, spin-orbit coupling mediates interactions
between optical fields and spins, enabling all-optical (i.e., microwave free) spin control,
robust spin initialization and readout, and various schemes for generating spin-photon
entanglement.

In this paper based on lectures from the 2018 Enrico Fermi Summer School on
Nanoscale Quantum Optics, we introduce a general picture for coherent light-matter
interactions based on coherent, dispersive interactions with spin-selective optical tran-
sitions based on the Jaynes-Cummings Hamiltonian for quantum electrodynamics. The
paper is organized as follows. In sect. 2, we introduce the spin and optical fine structure
of the NV center, including the role of various perturbations. Subsequently, in sect. 3
we summarize key concepts of quantum optics including the Jaynes-Cummings Hamilto-
nian, and show how coherent, dispersive, light-matter interactions give rise to the optical
Stark effect and the Faraday effect, which can be used respectively to control and measure
NV-center spin states. In sect. 4 we generalize the treatment to include more complex
dynamics exhibited by an optical Λ configuration, including coherent population trapping
and stimulated Raman transitions, and in sect. 5 we describe an alternate, non-dispersive
technique to probe and control quantum dynamics using ultrafast optical pulses. Sec-
tion 6 summarizes the paper and highlights future directions for the application of these
techniques to address other spin-qubit platforms, and to enable more advanced schemes
for quantum control within quantum networks. Much of the material is adapted from
Buckley et al. [1], Yale et al. [2], and Bassett et al. [3], and more information regarding
the experiments and models can be found in those references.

2. – Electronic structure of the diamond nitrogen-vacancy center

The NV center in diamond has been an object of fascination since the 1950s as
one of the predominant color centers in diamond, and the focus of intense study in
quantum information science since the turn of the 21st century [4]. Its popularity and
importance in quantum science stem from several key characteristics, including long spin
coherence of the triplet ground state, which persists to room temperature and above, and
efficient, stable, visible photoluminescence (PL) that can be used to measure the spin
state populations. The latter property stems from the NV center’s specific electronic
level structure, which at room temperature takes the effective form shown in fig. 1(a).
The spin-triplet ground state and optically excited state — which is responsible for
the visible PL — is connected to manifold of intermediate singlet states through an
inter-system crossing (ISC). The nonradiative ISC is mediated by phonons and the spin-
orbit interaction, and the rates in both the upper and lower branches depend on the
triplet spin projection. In particular, the upper ISC transition from the triplet excited
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Fig. 1. – Electronic structure of the diamond NV center. (a) At room temperature, rapid phonon
transitions within the orbitals of the 3E excited state lead to an effective spin-triplet with spin-
dependent non-radiate decay channels, γnr

ms
, through the ISC as shown. These dynamics produce

the NV center’s spin-dependent PL. (b) At low temperature, the orbital fine structure within 3E
is resolved. The unperturbed spin-orbit states evolve into two separated orbital branches as a
function of the transverse strain or dc Stark shift, δ. Eigenstates in (b) are calculated according
to eq. (2) for B = 0 G and αs = 0.

state occurs predominantly for the ms = ±1 spin sublevels (labeled according to the Sz

projection, where z is along the defect’s symmetry axis). These intrinsic, spin-dependent
optical dynamics provide the mechanisms for optical spin initialization and PL-based
spin readout that are used in a majority of NV-center applications, especially at room
temperature [5].

While the 3A2 ground state is an orbital singlet, the 3E excited state is an orbital
doublet. At room temperature, rapid phonon-mediated transitions between the orbital
branches result in an effective spin-triplet Hamiltonian as shown in fig. 1(a). At temper-
atures below ≈ 20 K, however, phonon-induced transitions are suppressed, and the fine
structure associated with the full six-dimensional excited-state Hamiltonian emerges in
the optical transitions, as shown in fig. 1(b) [6, 7]. At these temperatures, and in pure
diamond samples, the zero-phonon-line (ZPL) transitions become spectrally narrow, in
some cases approaching the lifetime limit, such that coherent Rabi oscillations can be
observed between the ground- and excited-state orbitals [8].

2.1. The electronic Hamiltonian. – The form of the NV center’s electronic Hamiltonian
can be derived and understood using group theory [9,10]. The ground-state Hamiltonian
is given by

(1) Hgs = Dgs

(
S2

z − 2
3

)
+ ggsμBS · B,
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where Dgs is the reduced matrix element (RME) for the axial spin-spin interaction, and
the second term describes the Zeeman interaction in terms of the Landé g-factor, ggs,
Bohr magneton μB, electron spin operator S (where S2 = 1, S± = Sx ± iSy), and
magnetic field B. We generally set h = 1 such that terms in the Hamiltonian can be
written in either energy or frequency units. Similarly, the excited-state Hamiltonian can
be written as a sum of terms due to intrinsic (spin-orbit, spin-spin) interactions and
extrinsic (magnetic, strain/electric) fields,

(2) Hes = Hso + Hss + HZ + HL + Hs.

Below we give explicit matrix expressions for these terms in the product basis |ε,ms〉 ∈
{(|X〉, |Y 〉) ⊗ (| − 1〉, |0〉, | + 1〉)}, where (|X〉, |Y 〉) are E-symmetry orbital states trans-
forming like the vectors (x, y) in the NV-center coordinate system. The spin sublevels
|ms〉 are eigenstates of the Sz operator, whereas the orbital part of the Hamiltonian can
be written in terms of the Pauli matrices σes

i (i = x, y, z) and σes
± = σes

z ± iσes
x , which op-

erate on the two-dimensional orbital excited-state degree of freedom, i.e., σes
z |X〉 = |X〉

and σes
z |Y 〉 = −|Y 〉. Note that σes

± are not the standard raising and lowering operators.
The only spin-orbit coupling allowed by symmetry is the axial one (i.e., proportional

to Sz [10]), with RME λ. In the product basis, this takes the form

(3) Hso = −λσes
y Sz =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 −iλ 0 0

0 0 0 0 0 0

0 0 0 0 0 iλ

iλ 0 0 0 0 0

0 0 0 0 0 0

0 0 −iλ 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The spin-spin interaction has three symmetry-allowed RMEs, corresponding to one axial
(Des) and two transverse couplings (Δ1,Δ2). This takes the form

Hss = Des

(
S2

z − 2
3

)
− Δ1

4
(
S2

+σes
− + S2

−σes
+

)
+

Δ2

2
√

2

({S+, Sz}σes
+ + {S−, Sz}σes

−
)

(4)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Des/3 −Δ2/2 −Δ1/2 0 iΔ2/2 −iΔ1/2

−Δ2/2 −2Des/3 Δ2/2 −iΔ2/2 0 −iΔ2/2

−Δ1/2 Δ2/2 Des/3 iΔ1/2 iΔ2/2 0

0 iΔ2/2 −iΔ1/2 Des/3 Δ2/2 Δ1/2

−iΔ2/2 0 −iΔ2/2 Δ2/2 −2Des/3 −Δ2/2

iΔ1/2 iΔ2/2 0 Δ1/2 −Δ2/2 Des/3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Here, {A,B} ≡ AB + BA denotes the anticommutator.
The Zeeman (HZ), diamagnetic (HL) and strain/dc-Stark (Hs) perturbations affect

only the spin or orbital degrees of freedom individually. The E symmetry of the excited
state allows different effective g-factors (g‖es, g⊥es) for axial and transverse components of
the Zeeman interaction, such that

HZ = g⊥esμB(BxSx + BySy) + g‖esμBBzSz(5)

= I2 ⊗ μB

⎛
⎜⎜⎝

−g
‖
esBz g⊥es(Bx + iBy) 0

g⊥es(Bx − iBy) 0 g⊥es(Bx + iBy)

0 g⊥es(Bx − iBy) g
‖
esBz

⎞
⎟⎟⎠ .

Similarly, the axial diamagnetic shift is given by the orbital operator

(6) HL = μBLzBzσ
es
y = μBLzBz

(
0 −i

i 0

)
⊗ I3,

where LzμB is the z component of the orbital magnetic moment. Symmetry implies that
transverse diamagnetic components are zero. The orbital magnetic moment is known to
be relatively small from measurements of circular dichroism [11, 12], with a value Lz =
0.05 that corresponds to a frequency shift of only LzμBB/h ≈ 50 MHz at B = 100 G. This
value is comparable to typical optical linewidths and smaller than most other terms in the
Hamiltonian, hence the diamagnetic shift is often ignored for measurements performed
at relatively low magnetic fields.

Finally, the perturbation due to transverse strain or electric fields is given by

(7) Hs = −δxσes
z + δyσes

x = δ

(
− cos(αs) sin(αs)
sin(αs) cos(αs)

)
⊗ I3,

where δx = δ cos(αs) and δy = δ sin(αs) are the strain (or dc Stark) perturbation com-
ponents in crystallographic x- and y-directions with units of energy, where the total
transverse perturbation has an effective angle αs (note the total energy splitting between
the orbital branches is 2δ).

2.2. Low- and high-strain regimes . – An arbitrary crystal strain tensor can be decom-
posed into components that transform according to the C3v irreducible representations
A1 (transforming like the vector z), and E (with components {Ex, Ey} that transform
like the vectors {x, y}, respectively). Similarly, the dc Stark perturbation due to electric
fields applied along z transform like A1 whereas transverse fields transform like E. Since
the perturbations affect the excited-state Hamiltonian in exactly the same way, the dc
Stark effect can be used to compensate an uncontrolled local strain [13]. Whereas trans-
verse strain/Stark fields shift the orbital energies and eigenstates according to eq. (7),
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the longitudinal perturbation is proportional to the orbital identity operator, amounting
to an overall shift of the optical transition frequency between the ground and excited
state, but no variations of the eigenstates within the excited-state manifold. The longi-
tudinal shift can be important when multiple NV centers need to be tuned to interact
with indistinguishable photons [14], however for control of individual defects it is gen-
erally possible to compensate this shift by tuning the laser, so this term is neglected
here.

Near δ = 0, it is convenient to use the spin-orbit basis in which the Hamiltonian is
nearly diagonal [10, 9], aside from the small spin-spin coupling Δ2. The spin-orbit basis
states can be written as follows in terms of the product basis:

|A1〉 = − i

2
(|X,−1〉 + |X, +1〉 + i |Y,−1〉 − i |Y,+1〉),(8a)

|A2〉 =
1
2
(|X,−1〉 − |X, +1〉 + i |Y,−1〉 + i |Y,+1〉),(8b)

|E1〉 ≡ |E±,x〉 = − i

2
(|X,−1〉 + |X, +1〉 − i |Y,−1〉 + i |Y,+1〉),(8c)

|E2〉 ≡ |E±,y〉 = −1
2
(|X,−1〉 − |X, +1〉 − i |Y,−1〉 − i |Y,+1〉),(8d)

|Ex〉 ≡ |E0,x〉 = − |Y, 0〉 ,(8e)

|Ey〉 ≡ |E0,y〉 = |X, 0〉 .(8f)

In this basis, the states are labeled according to the symmetry of the tensor product of
spin and orbital states, which can be obtained from tables of group-theoretic coupling
coefficients [15]. For example, the state |A1〉 transforms like the irreducible representation
A1. The arrangement of these levels at zero strain and zero magnetic field is shown in
fig. 1(b). It is important to work in this low-strain regime for some applications. For
example, spin-orbit optical selection rules that link particular spin states with circular
polarization states are present when |A1〉 and |A2〉 are excited-state eigenstates, and
these selection rules can be used to generate spin-photon entanglement [16] or to map
photon states onto spin states [17].

On the other hand, when the transverse strain/Stark perturbation is large, the
excited-state manifold splits into two orbital branches, each with (spin-independent) lin-
ear polarization optical selection rules for transitions to the ground state. This situation
occurs when the strain splitting, 2δ, dominates over the other coupling terms between the
orbital branches, the most important being the spin-orbit parameter λ = 5.33 GHz [3].
Since strain splittings observed for NV centers in high-quality bulk diamond typically
range between 5–50 GHz, this is often the natural situation for experiments, and it can
be useful when one wishes to isolate the role of a single orbital branch.

Below, we use the Schrieffer-Wolff transformation to derive approximate expressions
for the Hamiltonian in each orbital branch in this regime. Rotating the basis in orbital
space by the angle αs enclosed by the crystallographic x-axis and the direction of the
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transverse perturbation, we rewrite the Hamiltonian in the form

H̃ = e−iαsσes
y Hese

iαsσes
y = gμBBSz − λσes

y Sz − δσes
z(9)

+Des

(
S2

z − 2
3

)
− Δ1

4
(
e−iαsS2

+σes
− + eiαsS2

−σes
+

)
+

Δ2

2
√

2

(
eiαs {S+, Sz}σes

+ + e−iαs {S−, Sz}σes
−
)
,

where the strain term is block diagonal. Note that in this expression we have assumed
that the magnetic field is applied along z, and we ignore the orbital diagmagnetic shift.
In this basis, the states are labeled |ε,ms〉, where ε ∈ {L,U} are the lower-energy and
higher-energy states, respectively, and ms ∈ {−1, 0,+1}.

Provided that 2δ > λ, we can treat the inter-branch coupling as a perturbation,
dividing the Hamiltonian into

(10) H̃ = H0 + V,

with the inter-branch coupling term

V =(11) [
− λSz +

iΔ1

4
(
e−iαsS2

+ − eiαsS2
−
)

+
iΔ2

2
√

2

(
eiαs {S+, Sz} − e−iαs {S−, Sz}

) ]
σes

y .

Starting from this model, we apply quasi-degenerate perturbation theory in the form of
a Schrieffer-Wolff transformation

Heff = eGH̃e−G = H̃ +
[
G, H̃

]
+

1
2

[
G,
[
G, H̃

]]
+ O(G3)(12)

= H0 + V + [G, H0] + [G, V ] +
1
2

[G, [G, H0]] + · · · ,

where the generator G is defined such that G† = −G in order to eliminate the couplings
between the two strain-split branches in lowest order. The condition for this to work is
[G, H0] = −V , because it implies a transformed effective Hamiltonian

(13) Heff = H0 +
1
2
[G, V ],

which is second order in the couplings λ, Δ1, and Δ2. This effective Hamiltonian is
block-diagonal, i.e., it can be split up into a lower and upper branch component, each
containing the contributions due to virtual transitions via the other branch up to linear
order in the couplings.
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The effective Hamiltonian takes the general form

(14) Heff = Des

(
S2

z − 2
3

)
+ gμBBSz − δσes

z +

(
HL 0

0 HU

)
.

Within the lengthy expressions for HL and HU , we assume the strain splitting 2δ is the
dominant energy scale, and expand to lowest order in 1/δ to obtain

HL �(15) ⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−λ2

2δ
− Δ2

1

8δ
−1

8
e−2iαsΔ2f+(αs)

1
2
e−iαsΔ1

(
λ

δ
− 1
)

−1
8
e2iαsΔ2f+(αs)∗ 0

1
8
e−2iαsΔ2f+(αs)

1
2
eiαsΔ1

(
λ

δ
− 1
)

1
8
e2iαsΔ2f+(αs)∗ −λ2

2δ
− Δ2

1

8δ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+ O

(
1
δ2

)
,

for the lower branch and

HU �(16) ⎛
⎜⎜⎜⎜⎜⎜⎜⎝

λ2

2δ
+

Δ2
1

8δ

1
8
e−2iαsΔ2f−(αs)

1
2
e−iαsΔ1

(
λ

δ
+ 1
)

1
8
e2iαsΔ2f−(αs)∗ 0 −1

8
e−2iαsΔ2f−(αs)

1
2
eiαsΔ1

(
λ

δ
+ 1
)

−1
8
e2iαsΔ2f−(αs)∗

λ2

2δ
+

Δ2
1

8δ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+ O

(
1
δ2

)

for the upper branch. Here, we have introduced the expression f±(αs) = Δ1
δ +2e3iαs(2±

λ
δ ), which leads to an oscillation with the strain angle αs of the splitting between the
Sz = 0 and Sz = ±1 states at their respective crossing points. The diagonal elements in
eqs. (15) and (16) are the spin-orbit and spin-spin induced level repulsions between the
two branches, while the off-diagonal elements are second-order spin-flip terms.

3. – Coherent light-matter coupling

Experiments that probe spin-light coherence [1, 18], and related protocols for all-
optical coherent control [2, 3] of NV-center spins draw on a rich history in quantum
optics and atomic physics. For general background in this subject, we refer the reader
to excellent textbooks such as those by Gerry and Knight [19] or Cohen-Tannoudji and
Guéry-Odelin [20]. In this section, we give a brief introduction to the concept of coher-
ent coupling between a light field and atomic transitions, using the Jaynes-Cummings
Hamiltonian to derive expressions for the optical (ac) Stark effect and the Faraday effect.
This derivation naturally captures the correspondence between these two effects, which
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both result from the polariton energy shifts due to the interactions between the light field
and atomic transitions. We discuss how the concept was applied by Buckley et al. [1] to
demonstrate dispersive optical measurements of the spin state and all-optical coherent
spin rotations.

3.1. The Jaynes-Cummings Hamiltonian. – The Jaynes-Cummings Hamiltonian de-
scribes the interaction between light and matter in the rotating wave approximation (see,
e.g., Chapter 4 of Gerry and Knight [19] for a full derivation). It is typically used in the
context of cavity quantum electrodynamics to describe coherent coupling of an atom-like
system to the optical field in a cavity, however it can be applied more generally even
when cavities are not involved. For example, in the experiments by Buckley et al. [1]
and Yale et al. [2], the “cavity” is defined by the duration of a laser pulse, τ , which is
assumed to propagate in a single spatial mode that we can treat as a coherent state of
light with a well-defined electric-field amplitude and phase. We assume that the turn-on
and turn-off of this pulse is smooth, such that the interaction with the NV center is
adiabatic. We also neglect spontaneous emission and other forms of decoherence such as
spectral hopping and laser noise. A treatment of these effects can be found in ref. [1].

Our starting point is the dipole interaction Hamiltonian

(17) Hint =
√

FDW�μ · �E,

where �μ is the NV-center electric dipole, �E is the local electric field, and FDW = 0.04 ±
0.01 is the Debye-Waller factor, which empirically accounts for the reduced resonant
coupling between NV-center ground and excited states due to displacement of the nuclear
coordinates during optical transitions [21]. The dipole magnitude is directly related to
the NV center’s spontaneous decay rate γr = 1/13 ns−1 [22] through

(18) |�μ|2 =
3πε0�

4c3γr

E3
phnD

,

where Eph = 1.945 eV is the photon energy and nD = 2.4 is the refractive index of
diamond. The amplitude of the electric field can be expressed in terms of the total
number of photons n in the pulse and the effective equal-intensity optical mode area at
the NV-center Aeff through the classical irradiance

(19) I =
cnDε0

2
| �E0|2 =

nEph

τAeff
,

such that

(20) | �E0| =
√

2nEph

nDε0Aeffcτ
.
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By introducing the operators �̂E = | �E0|(â† + â) and �̂μ = |�μ|(σ̂+ + σ̂−) for the electric field
and optical dipole, respectively, we cast Hint into the form

(21) Ĥint � �Ω0

2
(
â†σ̂− + âσ̂+

)
,

where â† (â) and σ̂+ (σ̂−) are creation (annihilation) operators for optical photons and
atomic excitations, respectively. If the atomic ground and excited states are |g〉 and |e〉,
then σ̂+ = |e〉〈g| and σ̂− = |g〉〈e|. Here we neglect energy-nonconserving terms âσ̂− and
â†σ̂+ in the rotating wave approximation. The quantity Ω0 is the on-resonance optical
Rabi frequency, given by

(22) Ω0 =
√

FDW|�μ|| �E0 | cos(θ)
�

,

where θ is the angle between the optical dipole and the light’s linear polarization axis.
With the addition of the non-interacting Hamiltonian for the spin and light fields, given
by

(23) Ĥ0 = Eph

(
â†â +

1
2

)
+ Ej

σ̂
(j)
z

2
,

where Ej is the transition energy for the spin state with ms = j and σ̂
(j)
z = |ej〉〈ej | −

|gj〉〈gj | describes the NV-center orbital excitation, we obtain the Jaynes-Cummings
Hamiltonian describing the light-matter system when the spin is in state j,

Ĥ
(j)
JC = Ĥ

(j)
0 + Ĥ

(j)
int(24)

= Ephâ†â + Ej
σ̂

(j)
z

2
+

�Ω0

2

(
âσ̂

(j)
+ + â†σ̂(j)

−
)

,(25)

where we have set the optical zero-field energy to zero for simplicity.
The Hamiltonian ĤJC is naturally expressed in the basis of non-interacting polariton

states

(26)

⎧⎨
⎩
∣∣∣ψ(n,j)

0

〉
= |gj〉 ⊗ |n + 1〉 ,∣∣∣ψ(n,j)

1

〉
= |ej〉 ⊗ |n〉 ,

where |gj〉 (|ej〉) are the bare ground (excited) states of the NV-center orbital transition
for ms = j, and |n〉 is a photon-number Fock state of the electromagnetic field. By
diagonalizing ĤJC in this basis, we obtain the eigenenergies

(27) E±(n,Δj) = Eph

(
n +

1
2

)
± �

2

√
Δ2

j + Ω2
0(n) ,
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Fig. 2. – Light-matter coupling in the diamond NV center. (a) The interaction between an
atomic transition with ground and excited states {|g〉, |e〉} and a near-resonant laser field is
described by the Jaynes Cummings Hamiltonian in terms of polariton states {|G〉, |E〉} with an
energy shift ε. (b) Energy-resolved transitions for different spin sublevels in the NV center’s
optical fine structure produce spin-dependent interactions, which manifest (c) as optical Stark
rotations with frequency ΣS and a Faraday phase shift, ΦF as a function of laser energy. Panels
(a) and (c) are adapted from ref. [1] and reprinted with permission from AAAS.

where Δj = (Eph − Ej)/� is the detuning of the laser from the unshifted NV-center
transition frequency and the n-dependence of Ω0 (implicit through | �E0| in eq. (22)) is
shown explicitly. These eigenenergies take the form of an anticrossing about Δj = 0.

Since the atom is initially in the ground state and we assume that the onset of the
light field is adiabatic, the occupied state during the pulse will be the polariton eigenstate
having maximum overlap with |ψ0〉, which has energy Eg = E± for Δj ≷ 0. The observed
energy shift of this “|gj〉-like” state relative to its non-interacting energy

(28) Eg0 = Eph(n + 1) − Ej

2

is therefore given by

(29) εg(n,Δj) = Eg − Eg0 =
�Δj

2

[√
1 +

Ω2
0

Δ2
j

− 1

]
,

and is plotted in fig. 2(a). This energy shift, present for the duration of the laser pulse,
adds a net phase to the polariton given by

(30) Φ(n,Δj) =
τεg

�
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which in the far-detuned limit |Δj | � Ω0 reduces to

(31) Φ(n, Δj) � τΩ2
0

4Δj
= D

n

Δj
,

where

(32) D =
|μ|2FDWEph cos2(θ)

2�2cnDε0Aeff
.

In typical experiments using a high-NA free-space objective to focus on a single NV center
through a planar, (100)-oriented, diamond surface, D/2π ≈ 10 kHz, so the accumulated
phase per photon is only D/Δj ≈ 10−5 rad for typical detunings in the GHz range.
Nonetheless, an optical pulse with power ≈ 1 μW and duration ≈ 1 μs contains ≈ 106

photons, so we can still obtain an observable signal from the total accumulated phase.

3.2. The Faraday and optical Stark effects. – In order to obtain expressions for the
Faraday and optical Stark effects using this model, we need to resolve the resulting
polariton state into its spin and optical components. For that purpose, we calculate the
reduced density matrices

(33)

⎧⎨
⎩

ρ̂light = Trspin(ρ̂),

ρ̂spin = Trlight(ρ̂),

in terms of the full density matrix ρ̂ for polariton states, which we derive below. Whereas
the polariton states are naturally written in terms of the Fock basis of photon number
states, the laser field is best described by an optical coherent state, |α〉, defined by

(34) â |α〉 = α |α〉 .

The coherent state can be expanded in the Fock basis using the relation

(35) |α〉 = e−
|α|2

2

∑
n

αn

√
n!

|n〉 ,

which describes a Poisson distribution of Fock states, characterized by mean photon
number 〈n〉 = |α|2 and with uncertainty Δn = |α| =

√〈n〉. An initial polariton state
described by

(36) |Ψ0〉 =

⎛
⎝∑

j

βj |gj〉
⎞
⎠⊗ |α〉
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therefore evolves to the state

(37) |Ψ〉 =
∑

j

βj e−
|α|2

2

∑
n

αn

√
n!

eiΦ(n,Δj) |gj〉 ⊗ |n〉

after an interaction involving n photons. Using eq. (31) in the limit |Δj | � Ω0 we recast
this as

|Ψ〉 =
∑

j

βj e−
|α|2

2

∑
n

(
αeiφj

)n
√

n!
|gj〉 ⊗ |n〉(38)

=
∑

j

βj |gj〉 ⊗
∣∣αeiφj

〉
,(39)

where φj = D/Δj is the phase per photon accumulated by the state |gj〉 ⊗ |α〉. The full
density matrix of the resulting spin-light system is then given by ρ = |Ψ〉〈Ψ|.

We first consider the Faraday effect, which describes the observable properties of the
laser light following the interaction. The reduced density matrix for the optical field is
readily evaluated as

ρ̂light =
∑

k

〈gk| ρ̂ |gk〉(40)

=
∑

j

|βj |2
∣∣αeiφj

〉 〈
αeiφj

∣∣ .(41)

Thus the optical field is in the state |αeiφj 〉 with a probability |βj |2 equal to the initial
occupation probability of the spin state |gj〉. The observable quantity in this case is
the sinusoidal phase of the electric field, which for a coherent state α = |α|eiγ has an
expectation value given by

(42) 〈Ê(�x, t)〉α = −
√

2E0|α|�u(�x ) sin(ωt − γ),

where �u(�x ) describes the spatial mode and E0 is the vacuum electric field [19]. The
complex phase of the coherent state |α〉 is therefore reflected as the phase of the electric
field. In the experiment by Buckley et al. [1], only one linear polarization of light is
coupled to the transition j. Its phase is shifted relative to the non-interacting polarization
state by an amount φj , which rotates the linear polarization angle of the transmitted
light. Figure 3 shows a schematic of the experimental setup.

The experiment is performed in the intermediate-strain regime (2δ ≈ 17 GHz) where
the excited-state orbitals are energetically separated and can be individually addressed.
The approximate level structure of the ground state and lower-branch excited state is
shown in fig. 2(b); a relatively large axial magnetic field of Bz = 1920 G ensures that
the Ŝz eigenstates are a good spin basis for the excited state, however the spin-spin and
spin-orbit interactions shift the energies relative to the ground state as shown by eq. (15).

 EBSCOhost - printed on 2/13/2023 9:33 PM via . All use subject to https://www.ebsco.com/terms-of-use



128 Lee C. Bassett

Fig. 3. – Measurement setup. Schematic of the experimental setup used to measure Faraday and
optical Stark effects. A tunable laser near the NV-center ZPL at 637 nm provides the coherent
optical pulses. A second laser at 532 nm is used to initialize the NV-center spin and charge state.
[AOM: Acousto-optic modulator; SBC: Soleil-Babinet compensator]. Adapted from ref. [1] and
reprinted with permission from AAAS.

Thus, the optical resonance for different spin sublevels occur at different frequencies, with
the ms = −1 transition roughly 3 GHz lower in frequency than the ms = 0 transition.

We define the Faraday phase ΦF as the difference in phase between the ms = 0 and
ms = −1 spin states, given by

(43) ΦF = φ0 − φ−1 = D

(
1

Δ0
− 1

Δ−1

)
= −D

ωs

Δ0Δ−1
,

where ωs = (E−1 − E0)/� is the frequency spacing between the resonances.
Similarly, the reduced density matrix for the spin is given by

ρ̂spin = 〈α| ρ̂ |α〉(44)

=
∑
j,k

β∗
kβj exp

[−|α|2 (2 − eiφj − e−iφk
)] |gj〉 〈gk| ,(45)
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where we have used the identity

(46) 〈α | α′〉 = exp
[
−1

2
(|α|2 + |α′|2 − 2α∗α′)] .

Since φj � 1, we can approximate

(47) ρ̂spin �
∑
j,k

β∗
kβj ei〈n〉(φj−φk) |gj〉 〈gk| ,

from which we identify the effective spin states

(48) |spin〉 =
∑

j

βj ei〈n〉φj |gj〉 =
∑

j

βj e
i

τΩ2
0

4Δj ,

such that ρ̂spin = |spin〉〈spin|. Physically, this shows that the spin states acquire rela-
tive phases due to their different detunings from the light field, producing an effective
spin rotation. In the experiment [1], this relative optical-Stark-effect phase is directly
proportional to the corresponding Faraday-effect phase through the photon number:

(49) ΦOSE = nΦF.

The optical field in the experiment consists of two polarization modes, each with photon
number n, of which only one is coupled to the NV-center optical transitions, so the total
laser power is given by PL = 2nEph/τ , and the corresponding optical Stark frequency
shift is

(50) ΣS =
ΦOSE

2πτ
=

PL

4πEph
ΦF.

This proportionality in the far-detuned regime allows the two measurements to be shown
together on the same graph as in fig. 2(c).

Although the expressions above were derived assuming the limit of large detuning
(|Δj | � Ω0), the full expressions across the absorption resonance are known from other
arguments. The Faraday effect results from the real part of the frequency-dependent
refractive index of the atomic transition near an absorption resonance. As a consequence
of the Kramers-Kronig relation between the refractive index’s real and imaginary parts,
the full Faraday effect lineshape is known to be an odd Lorentzian of the form

(51) φj =
FjΔj

Δ2
j + Γ2

j

,

where Γj is the width of absorption resonance j and Fj is the Faraday amplitude. By
comparing this expression with eq. (43) in the far-detuned limit we see that the constant
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D takes the place of the Faraday amplitude F . Likewise, the shift in the Larmor preces-
sion rate due to the optical Stark effect is a direct consequence of the polariton energy
shift of eq. (29), and so is given across all detunings by

(52) Sj =
Δj

4π

[√
1 +

Ω2
0

Δ2
j

− 1

]
.

In comparing measurements to these expressions, we can extract experimental values for
Fj , Γj , and Ω0 for the appropriate transitions. For the data in fig. 2(c) from ref. [1],
we obtain F0 = 2π × 6.9 μrad · GHz, Γ0 = 2π × 140 MHz, F−1 = 2π × 7.6 μrad · GHz,
Γ−1 = 2π×300 MHz and Ω0 = 2π×70 MHz. The asymmetry in the curve mainly results
from the different absorption widths for the ms = 0 and ms = −1 transitions.

3.3. Discussion and implications. – The preceding derivation illustrates how coher-
ent light-matter interactions give rise to observable spin-dependent optical phase shifts
(the Faraday effect) and coherent, optical-power-dependent spin rotations (the optical
Stark effect). In principle, the Faraday effect provides a means to measure the spin
state nondestructively, i.e., without exciting the optical transition and re-initializing the
state. This is possible since the absorption resonance has a Lorentzian lineshape, varying
as 1/Δ2 for large Δ, whereas the Faraday phase shift is an odd Lorentzian, varying as
1/|Δ|. Nondestructive measurements are important for certain applications in quantum
information processing, and similar dispersive measurements are used extensively in the
circuit quantum electrodynamics paradigm of superconducting qubits [23]. In practice,
the Faraday phase shifts on the order of 10−5 rad are too small to allow high-fidelity, non-
destructive measurements of individual NV centers without an optical cavity to amplify
the interaction. Although it remains a challenge to fabricate nanophotonic optical cavi-
ties containing NV centers while maintaining stable optical transitions, such a platform
has recently been achieved for silicon-vacancy (SiV) centers in diamond [24], where dis-
persive interactions analogous to those we have discussed above can also serve to mediate
interactions between two SiV spins within the same cavity [25].

The optical Stark effect, meanwhile, provides a means to perform operations on a
spin qubit using light rather than microwaves, which can allow addressing of individual
qubits within optical networks. With enhanced interactions from an optical cavity, the
optical Stark effect can provide a means for generating spin-photon entanglement or
quantum operations between remote spins. Whereas the spin rotations that result from
the optical Stark shifts in a level structure like fig. 2(b) generate precession about the
qubit’s polar axis, variations in the energy level structure and experimental design can
enable rotations about arbitrary axes on the Bloch sphere, in addition to general protocols
for qubit readout and initialization [2], as we discuss in the next section.
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Fig. 4. – Physics of Λ configurations. (a) Three levels arranged in a Λ configuration. (b) Real-
ization of a Λ system for the NV center from an excited-state avoided level crossing.

4. – All-optical coherent spin control

In the previous section, the optical Stark effect — viewed as the spin-like component
of the coherent polariton dynamics as in eq. (44) — manifests as a relative energy shift
between spin sublevels, with no change in the spin eigenstates. This is analogous to the
application of a magnetic field along the defect’s symmetry axis. When treating two of
the triplet spin sublevels as a qubit, this amounts to a light-induced rotation about the
z-axis in the Bloch sphere. In order to achieve arbitrary unitary operations on a qubit,
however, rotations about two noncollinear axes are required. One can therefore ask if it
is possible to realize optical Stark effects that perturb the ground-state Hamiltonian in
more complex ways, e.g., to generate an effective magnetic field pointing along x or y.
Indeed, this is possible if one can engineer the electronic structure and optical transition
diagram to enable light-induced mixing of the spin eigenstates.

Such mixing occurs naturally in a level configuration known as a lambda (Λ) system,
where two lower-energy states (the qubit manifold) couple coherently to a single excited
state, as shown in fig. 4(a). Lambda configurations occur in a variety of quantum sys-
tems including atoms [26,27], trapped ions [28], quantum dots [29], and superconducting
qubits [30]. As we will show below, the concept of optical Stark rotations as applied to a
Λ system can be extended to realize arbitrary qubit operations; in this context they are
known as stimulated Raman transitions. Furthermore, the Λ configuration is the basis
for many well-known effects in quantum optics, including coherent population trapping
(CPT) [26], electromagnetic-induced transparency [31], slow light [32], atomic clocks [33],
and spin-photon entanglement [18].
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4.1. Dark states and coherent population trapping . – The essential feature of a Λ
system is the appearance of “dark resonances” that occur when two light fields coherently
drive both transitions to the excited state. When the light fields are tuned such that
their frequency difference exactly matches the resonance frequency of the ground-state
sublevels, the atom is no longer pumped to the excited state and therefore becomes
dark. This phenomenon can be simply understood from the following argument [20]. If
the atom is initially in a superposition of ground states,

(53) |ψ(t = 0)〉 = c1 |g1〉 + c2 |g2〉 ,

and it interacts with two laser fields characterized by instantaneous Rabi frequencies
(here assumed to be complex quantities),

(54) Ωi =
�μi · �Ei

�
,

then the amplitude for a transition to occur from state |gi〉 to the excited state, |e〉, is
proportional to the product ciΩi. If a ground-state superposition |ψ〉 exists such that

(55) c1Ω1 + c2Ω2 = 0,

then the amplitudes for the transitions from both ground states interfere destructively,
and the atom cannot be excited. This is called a dark state. Since both the probability
amplitudes ci and the electric field amplitudes �Ei are functions of time, the atom is not
guaranteed to stay in a dark state indefinitely; however, it is straightforward to show
that the condition of eq. (55) is maintained continuously if

(56) ε2 − ε1 = �(ω1 − ω2),

where εi and ωi are the ground-state energies and laser frequencies, respectively, i.e., if
the detuning of the two light fields matches the ground-state energy splitting.

The existence of a persistent dark state results in the phenomena of CPT and
electromagnetic-induced transparency. Starting from an arbitrary ground-state configu-
ration and subject to light fields satisfying eq. (56), the atom is transiently excited and
relaxes until it is trapped in the dark state and no longer interacts with the optical fields.
One can think of this dissipative process as a generalization of traditional optical pump-
ing, i.e., where only one arm of the Λ system is driven. Intuitively, if only transition
1 is driven, the system will quickly relax into a steady state with |g2〉 fully populated,
uncoupled to the optical field. This scenario is a special case of eq. (55) with Ω2 = 0,
where the dark state is |D〉 = |g2〉. In fact, a dark state satisfying eq. (55) is guaranteed
to exist for any values of Ωi, and there will always be a corresponding bright state, |B〉,
that is orthogonal to |D〉 and couples maximally to the optical field. Thus, by choosing
the amplitude and phases of the optical fields that define Ωi, one can initialize the system
into an arbitrary superposition of qubit ground states.
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While the CPT process is necessarily dissipative (i.e., non-unitary), coherent evolution
in the ground state can be achieved using dispersive interactions in analogy with the
optical Stark effect. When the optical fields satisfying eq. (56) are simultaneously detuned
from the resonance condition with |e〉 as shown in fig. 4(a), the resulting light shift occurs
only for the state |B〉 and not |D〉. In the qubit manifold, this manifests as a light-induced
rotation about the axis pointing from |D〉 to |B〉 in the Bloch sphere. The axis can be
chosen arbitrarily, including configurations on the equator when |Ω1| = |Ω2| that result
in complete population transfer between the qubit eigenstates. The effect in this context
is usually known as stimulated Raman transitions (SRTs), drawing inspiration from an
alternative picture of the process in terms of virtual transitions through the excited
state. However, it is important to understand that SRTs are a dispersive effect that do
not involve absorption. Again, whereas CPT varies with 1/Δ2, where Δ is the detuning
from the optical resonance(s), the effective Rabi frequency of SRTs scales with 1/Δ, so
it can be substantial even when absorption is negligible.

On a practical note, it is important to recognize that the condition to have a dark state
can only be sustained if the two optical fields have a deterministic phase relationship. If
the fields are derived from different lasers, they must be frequency and phase stabilized
to a suitable reference. Alternatively, if the required frequency difference occurs in the
radiofrequency or microwave spectrum, the two fields can be derived from a single laser
using an optical modulator to generate frequency sidebands. This is often the easiest
approach, and it is the one adopted by ref. [2].

4.2. Forming a Λ system from the NV center . – NV centers in diamond have long been
known to exhibit electromagnetic-induced transparency and CPT [34,11,35,36], evidence
that Λ configurations can be realized under certain conditions. At zero strain and zero
magnetic field, the spin-orbit eigenstates |A1〉 and |A2〉 are equal superpositions of the
ms = ±1 spin eigenstates, | ± 1g〉, with circular-polarization optical selection rules that
facilitate the generation of spin-photon entanglement [18] and CPT in the {|+1g〉, |−1g〉}
ground-state subspace [16]. However, it is often more convenient to work with a ground-
state qubit defined in a manifold including the ms = 0 sublevel, |0g〉, since this state is
naturally prepared by off-resonant optical pumping, and at low temperature it features
optical cycling transitions that facilitate robust, high-fidelity readout [37].

As is apparent from the spin-spin terms in the excited-state Hamiltonian, eq. (4),
and the approximate spin-triplet representations in the high-strain regime, eqs. (15)
and (16), the excited-state ms = 0 states are weakly admixed with ms = ±1 by the spin-
spin parameter Δ2. However, this parameter is rather small (Δ2 = 150 MHz [3]), so the
mixing only becomes apparent near an avoided level crossing, when the ms = 0 sublevel
becomes nearly degenerate with ms = +1 or ms = −1. Such a situation is depicted in
fig. 4(b), where the applied magnetic field is tuned such that a crossing occurs between
the ms = +1 and ms = 0 spin sublevels of the lower orbital branch, {|+1e〉, |0e〉}. (This
particular crossing can only occur when the strain is relatively small, since for large
transverse perturbations the |+ 1e〉 state is higher in energy than |0e〉 even when B = 0;
see fig. 1(b).) At the closest approach, the anticrossing levels are separated by an energy
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δe ≈ Δ2, and the eigenstates become

|Re〉 =
1√
2
(|0e〉 + |+1e)〉 ,(57a)

|Le〉 = − 1√
2
(|0e〉 − |+1e)〉 .(57b)

Either of these states can serve as the upper state of a Λ system connecting the {| +
1e〉, |0e〉} qubit states.

Yale et al. [2] explored this situation by tuning to an excited-state avoided level
crossing as shown in fig. 4(b) and modulating a tunable laser near 637 nm using an
electro-optic phase modulator in order to generate sidebands separated by the ground-
state resonance frequency, ωgs. This also allows for control of the relative phase between
the two optical fields and their relative amplitude through the power and phase of the
microwave signal applied to the modulator. These parameters determine the azimuthal
(φ) and polar (θ) angles of the dark state formed in the ground-state Bloch sphere.

4.3. All-optical initialization, control, and readout . – To describe the dynamics of
the NV-center spin under optical excitation as shown in fig. 4(b), we construct a model
including five energy levels: two out of the three ground-state levels |0g〉, |+1g〉, the two
mixed excited states |Le〉 and |Re〉, as well as the intermediate singlet |S〉, which plays a
role in mediating unintentional ISC transitions that cause dissipation. The Hamiltonian,
in the rotating frame, for the subspace spanned by these five basis states can be expressed
as

(58) H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ΔL 0 Ω cos(θ/2) Ω cos(θ/2) 0

0 ΔL Ωsin(θ/2)eiφ −Ωsin(θ/2)eiφ 0

Ω cos(θ/2) Ω sin(θ/2)e−iφ 0 0 0

Ω cos(θ/2) −Ωsin(θ/2)e−iφ 0 −δe 0

0 0 0 0 εS

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the ordering of the states is {| + 1g〉, |0g〉, |Re〉, |Le〉, |S〉}, ΔL is the detuning of
the laser frequency (ωL) from resonance to the |Re〉 Λ system, δe is the separation of
the excited state levels, Ω is the optical Rabi frequency, φ is the relative phase between
the two coherent light fields, and tan(θ/2) is the relative amplitude between the driving
fields.

The time evolution of the system includes both coherent and dissipative processes.
These can be captured using the Lindblad master equation,

(59) ρ̇ = i [ρ,H] +
∑
α,α′

Γαα′

(
σα′αρσαα′ − 1

2
σααρ − 1

2
ρσαα

)
≡ Wρ.
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The first term describes unitary evolution of the density matrix due to the Hamiltonian
of eq. (58), whereas the second term captures dissipative processes, with the Lindblad
operators σαα = |α〉〈α| = σ†

α′ασα′α and σα′α = σ†
αα′ = |α′〉〈α|. For n = 5 levels, the den-

sity matrix ρ is a Hermitian 5×5 matrix and can be described by n2 = 25 real parameters
(n2 − 1 = 24 including the normalization condition Tr(ρ) = 1). The superoperator W

can thus be viewed as a 25 × 25 matrix with rank 24.
The Lindblad operators describe incoherent, spontaneous transitions between states.

We denote the decay rate from the excited states (E = Le, Re) to the ground states (G =
0, 1) with Γ = ΓE,Gg

, the rate for ISC from the excited states to the singlet Γi = ΓE,S ,
and the inverse ISC rate from |S〉 to one of the ground-state levels as Γ′

i = ΓS,Gg
. The

spin relaxation rate in the ground state is Γ1 = 1/T1. At T ≈ 10 K, the thermal
frequency kBT/h ≈ 200 GHz exceeds the relevant NV level splittings ≈ 1 GHz by orders
of magnitude, and therefore Γ+1g,0g

= Γ0g,+1g
= Γ1/2. Pure dephasing between the two

ground-state levels is approximated by adding a term γ = 1/T2 = Γ0g,0g
. All other rates

are set to zero.
The state of the system after optical excitation during time t is obtained by integrating

eq. (59),

(60) ρ(t) = eWtρ(0),

where the initial state, ρ(0), is typically one of the ground states. Equation (60) admits
simple analytical solutions only for special cases, so in general we simulate the dynamics
numerically. Depending on the parameters, this model can describe both CPT and SRT.
In the idealized case Γ1 = γ = Γi = 0, and with only one of the excited levels included,
the system reduces to the three-level Λ system of fig. 4(a), and the stationary state ρ̄ in
the long-time limit t � 1/Γ obtained from ρ̇ = 0 as the null space of W is the dark state:

(61) |D〉 = cos(θ/2)|0g〉 − exp(∓iφ) sin(θ/2)| + 1g〉,

where the upper (lower) sign holds for the single excited state level being E = R (E = L).
With realistic parameters, the evolution is not so simple, since the ISC and spin

decoherence tend to disspate the system away from the ideal dark state. Furthermore,
we notice from eq. (61) that the dark states corresponding to the different excited states
|Le〉 and |Re〉 have opposite phases. When these states lie on the equator (θ = 0), they
are orthogonal, such that the dark states from one Λ system is actually the bright state
from the other. Since the separation between these states is small (δe/h ∼ 180 MHz
in ref. [2]), there exists a tradeoff between the speed of the operations, set by the laser
power, and the competition between these two orthogonal Λ systems, which becomes
more prevalent as the laser power increases.

In any case, the time-dynamics of the Bloch vector representing the qubit density
matrix can be obtained from

(62) b(t) = Tr (σρ(t)) ,
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Fig. 5. – All-optical control via coherent dark states. Experiments (points) and simulations
(curves) of quantum dynamics in the NV-center ground state driven by optical pulses designed
to achieve CPT (a) and SRT (b). Orange (top) and blue (bottom) trajectories correspond
to situations where the initial state is |0g〉 or | + 1g〉, respectively. Adapted from ref. [2] and
reprinted with permission from the National Academy of Sciences.

where the components of σ are the Pauli matrices in the ground-state subspace,

σx = | + 1g〉〈0g| + |0g〉〈+1g|,(63)

σy = i(| + 1g〉〈0g| − |0g〉〈+1g|),(64)

σz = |0g〉〈0g| − | + 1g〉〈+1g|.(65)

The fidelity of an operation can be calculated by comparing the final density matrix to
a target state, e.g. for initialization via CPT in the dark state |D〉,

(66) F (t) = 〈D|ρ(t)|D〉.

Figure 5 shows examples of experimental CPT and SRT trajectories from Yale et
al. [2] alongside simulations performed using this model. The measurements (points)
are acquired by performing Bayesian quantum state tomography to reconstruct the state
vector from experiments where the NV-center spin is repeatedly initialized, subjected to a
particular optical pulse, and then measured in one of three orthogonal bases. In addition
to arbitrary-basis initialization and coherent control via CPT and SRT, respectively, Yale
et al. [2] also demonstrated how the intrinsic fluorescence contrast between the bright
and dark state can be used to perform projective readout of the spin state in an arbitrary
basis. It is thus possible to perform full quantum operations, for example Rabi, Ramsey,
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or Hahn-echo spin coherence measurements, using light fields alone. Crucially, these
methods do not rely on the NV center’s intrinsic level structure and spin-dependent ISC
dynamics; they can be adapted to any system where a Λ configuration can be realized
through tuning of external electric or magnetic fields. Indeed, the methods have recently
been adapted to study the quantum properties of spin defects that do not exhibit an
ISC, for example the negatively-charged SiV in diamond [38, 39] and transition-metal
impurities in silicon carbide [40].

5. – Ultrafast control

The versatile concepts of light-matter coupling presented in sects. 3 and 4 underlie
many applications in quantum optics and quantum information science. In particular,
dispersive effects such as the Faraday phase shift, the optical Stark shift, and stimulated
Raman transitions provide a means to perform coherent quantum operations on indi-
vidual spins and to generate quantum correlations between light and matter. However,
practical limitations mean they are not always the most efficient method to control solid-
state defects. Although the technique is all-optical in the sense that only light fields
interact with the spin, generation of the requisite phase-locked optical fields demands
stable, tunable laser sources, optical modulators, and corresponding microwave equip-
ment. Moreover, the CPT and SRT trajectories shown in fig. 5 exhibit several drawbacks
of this technique as applied to the NV center specifically. The CPT trajectories do not
terminate on the surface of the Bloch sphere, indicating a partially mixed initialized
state, and the SRT trajectories rapidly spiral inwards towards a totally mixed state at
the Bloch-sphere center. These nonidealities result from various experimental factors
such as laser noise and spectral drift of the NV-center optical resonances, and from in-
trinsic properties of the NV center. One key limitation is the small spin-spin coupling
parameter, Δ2/h ≈ 150 MHz, responsible for the excited-state anticrossing that forms
a pair of Λ systems for the {|0〉, | + 1〉} spin sublevels as in fig. 4(b). Since the bright
state from one Λ system is the dark state for the other, competing dynamics between
the two Λ systems limit the fidelity of CPT initialization and add decoherence to SRT
operations. This dual-Λ configuration also limits the effective speed of SRT operations
(i.e. the ground-state Rabi frequency, Ωg) such that �Ωg � Δ2. For the NV center, the
practical limit is Ωg/2π ≈ 10 MHz, whereas traditional microwave control of the ground
state can facilitate high-fidelity operations at Rabi frequencies approaching 1 GHz [41].

5.1. Quantum control with ultrafast optical pulses. – In this section, we introduce
an alternate approach to achieving all-optical quantum control using ultrafast optical
pulses that mitigates some of these limitations [3]. This approach abandons the disper-
sive approximation of negligible optical excitation; rather, we directly leverage dynamics
generated by the excited-state Hamiltonian to achieve desired unitary operations on the
spin. Figure 6(a) shows the NV center’s orbital structure in the intermediate-to-high
strain regime. As described in sect. 2.2, transverse strain splits the excited state into
two orbital manifolds, each of which are connected to the ground state via orthogonal,
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Fig. 6. – Coherent spin control with ultrafast pulses. (a) Orbital structure of the NV center at
intermediate-to-high transverse strain. (b) Fine structure as a function of axial magnetic field in
the |L〉 orbital branch when δ = 6.7 GHz. (c) PL excitation spectroscopy as a function of axial
magnetic field, showing the level anticrossing between |L, 0〉 and |L, +1〉 around B = 110 G.
(d) Trajectories of the ground-state spin qubit as a function evolution time between two optical
pulses, for different settings of the magnetic field. Adapted from ref. [3] and reprinted with
permission from the AAAS.

linear-polarization selection rules. Whereas previously we considered optical pulses de-
rived from a continuous-wave laser with durations measured in nanoseconds, which can
resolve the NV center’s gigahertz-scale fine structure, an optical pulse with duration
� 1 ps has a bandwidth � 1 THz, much larger than the spin-dependent frequency split-
tings of the ground and excited states. Such pulses operate on the orbital degrees of
freedom only, effectively altering the orbital population instantaneously from the point
of view of the spin dynamics.

The orbital Hamiltonian with h = 1 in the {|G〉, |X〉, |Y 〉} basis with a strain δ in
direction αS is given by

(67) Horb =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0

0 f0 − δ

2
cos(αS)

δ

2
sin(αS)

0
δ

2
sin(αS) f0 +

δ

2
cos(αS)

⎞
⎟⎟⎟⎟⎟⎠ ,

where f0 = c/λ is the optical transition frequency. Each pulse corresponds to a unitary
operation on the orbital states, with parameters determined by the pulse intensity, shape,
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and polarization. We parameterize the electric field of the optical pulses by

(68) E(αE , βE) =

(
cos(αE) cos(βE) − i sin(αE) sin(βE)

sin(αE) cos(βE) + i cos(αE) sin(βE)

)
,

where αE is the angle of the linearly-polarized component (major axis) in the NV center’s
(x, y)-plane, and βE ∈ [−π

4 , π
4 ] defines the ellipticity, such that βE = 0 and βE = ±π

4

correspond to linearly and circularly polarized light, respectively. Using the dipole matrix
elements 〈X|ŷ|G〉 = −〈Y |x̂|G〉 (other combinations vanish), we find that a pulse of
polarization E(αE , βE) couples |G〉 to the orbital state

(69) |E〉 =

⎛
⎝ 0

−Ey

Ex

⎞
⎠ ,

leaving the orthogonal ES basis state,

(70) |E′〉 =

⎛
⎝ 0

E∗
x

E∗
y

⎞
⎠ ,

unaffected.
In the experiments by Bassett et al. [3], pairs of pulses were derived from a single seed

laser using beamsplitters and a delay line, so they were nominally identical. In this case,
we can treat the pulses as instantaneous unitary operators parameterized by a rotation
angle, θ, and with a relative phase, φ:

UFP1 = |E′〉 〈E′| + cos
(

θ

2

)
(|E〉 〈E| + |G〉 〈G|)(71a)

+ sin
(

θ

2

)
(|E〉 〈G| − |G〉 〈E|),

UFP2 = |E′〉 〈E′| + cos
(

θ

2

)
(|E〉 〈E| + |G〉 〈G|)(71b)

+ sin
(

θ

2

)
(eiφ |E〉 〈G| − e−iφ |G〉 〈E|).

Between the pulses, the system freely evolves according to the system Hamiltonian. The
evolution can include both unitary and dissipative processes, e.g., following a Lindblad
master equation similar to eq. (59).

Even though the pulses only act on the orbital degrees of freedom directly, spin-orbit
interactions in the excited state naturally induce spin dynamics during the free evolu-
tion period. Depending on the pulse parameters, this scheme can be adapted to probe
both orbital and spin dynamics on timescales spanning femtoseconds to nanoseconds,
and to realize deterministic control over the spin. For example, a pair of phase-locked
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optical pulses can be designed to perform a generalized Ramsey sequence on the three-
dimensional orbital Hamiltonian, where the first pulse generates a coherent superposition
of ground and excited states that proceeds to evolve, and the second pulse projects the
resulting state onto the measurement basis of excited states (which emit PL) and the
ground state (which is dark). This scheme can be adapted to probe orbital coherence
between the ground state and excited states or (by tuning the polarization to excite a
superposition of |L〉 and |U〉) coherence within the excited-state manifold. Alternatively,
by setting θ = π, the optical pulses can be designed to achieve full population transfer
from |G〉 to a desired excited state orbital, and vice versa. From the point of view of the
spin, this manifests as an instantaneous change in the Hamiltonian. For a pair of such
pulses that populates and subsequently depopulates the excited state after a time, t, the
excited-state evolution generates a deterministic unitary operation on the spin.

5.2. Applications. – This novel approach to generating coherent spin rotations by uti-
lizing free evolution in the excited state has several applications. As a time-domain spec-
troscopy technique, measurements of the spin dynamics that result from pairs of optical
pulses provide the means to map an arbitrary excited-state Hamiltonian. The technique
is termed time-domain quantum tomography (TDQT). In contrast to frequency-domain
spectroscopies which typically yield only the Hamiltonian eigenvalues, TDQT yields both
the eigenvalues and eigenvectors, from which it is possible to construct the full Hamilto-
nian matrix. TDQT also provides time-domain information about various non-unitary,
dissipative processes. Bassett et al. applied the TDQT technique to extract the spin-
orbit and spin-spin parameters of the NV center’s excited state Hamiltonian, and to study
the role of decoherence due to spontaneous photon emission, spectral diffusion, phonon-
mediated orbital relaxation, hyperfine-induced spin dephasing, and the state-selective
ISC transitions.

As a quantum control technique, the pulse timings can be chosen to achieve a desired
unitary quantum operation on the ground-state spin. If we are interested in the evolution
within a qubit subspace (and assuming we can effectively isolate the evolution to that
subspace within the excited state), we can view the effect of a pair of such pulses as a
temporary change in the effective magnetic field. With appropriate control over the pulse
timings and excited-state Hamiltonian, this all-optical, and microwave-free technique can
be applied to generate rotations for the ground-state spin qubit.

Consider for example the situation of the double-Λ configuration of fig. 4(b) that is
formed near an excited-state anticrossing of the |L, 0〉 and |L,+1〉 eigenstates. By tuning
the polarization of the optical pulses following eq. (69) such that the optically-coupled
excited state is |E〉 = |L〉, we can isolate most of the unitary dynamics to the four-
dimensional subspace spanned by {|G, 0〉, |G,+1〉} and {|L, 0〉, |L,+1〉}. To model this,
we start from a diagonal ground-state Hamiltonian

(72) Hgs =
ωgs

2
sz,

describing precession of the effective spin-1/2 qubit about the z-axis due to the effective
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external magnetic field with frequency ωgs. Here, sz is a spin-1/2 Pauli-z operator
acting on the {|G, 0〉, |G,+1〉} spin subspace. Similarly, the effective excited-state qubit
Hamiltonian describes a precession about an axis tilted by an angle η relative to the
ground state, and with a different frequency ωes,

(73) Hes =
ωes

2
(sin η sx + cos η sz) =

ωes

2
s′z.

Here we have set the complex phase of the off-diagonal matrix element to zero, since
in experiments this phase is convolved with the constant but unspecified relative timing
between the optical pulses and the microwaves used to address the ground-state spin.

The full four-dimensional Hamiltonian of this effective model is

(74) H =

(
Hgs 0

0 Hes + ωoptI

)
=

1
2

(1 − σz) Hgs +
1
2

(1 + σz) (Hes + ωoptI),

where ωopt is the optical frequency difference between |G〉 and |L〉, and σz is a Pauli
operator for the orbital GS-ES degree of freedom, i.e., σz|GS〉 = −|GS〉 and σz|ES〉 =
|ES〉. The action of a resonant ultrafast pulse with polarization Ĥ (see fig. 6) is described
by the unitary operator of eq. (71), which reduces to

(75) UFP(θ, φ) = cos
(

θ

2

)
− i sin

(
θ

2

)
(cos(φ)σx + sin(φ)σy),

corresponding to a coherent rotation in the {|G〉, |L〉} orbital basis by an angle θ about
an axis defined by |G〉 + e−iφ|L〉 (i.e., an equatorial axis in the orbital Bloch sphere).

The excited-state Hamiltonian parameters η and ωes can be tuned by the external
magnetic, electric, and strain fields. The effective expression, eq. (15), for the |L〉-branch
Hamiltonian is useful for identifying regimes in which unwanted mixing with other spin
and orbital states are minimized. Figure 6(b) shows the fine structure of |L〉 as a function
of Bz corresponding to the strain configuration (δ/h = 6.7 GHz, αs = −0.08 rad) from
ref. [3]. The configuration is similar to the one we considered in sect. 4, where an avoided
level crossing occurs between |L, 0〉 and |L,+1〉 around Bz = 110 G. The existence of such
an anticrossing is confirmed using standard photoluminescence excitation spectroscopy
as in fig. 6(c). However, frequency-domain spectroscopy only provides information about
the energy eigenvalues, not the eigenstates.

According to the Hamiltonian, the excited-state spin eigenstates are fully hybridized
at the center of the anticrossing; hence the effective precession axis in the excited state
is orthogonal to that of the ground state, lying in the equatorial plane of the qubit Bloch
sphere. At other field values, the precession axis is tilted by an angle η that approaches
zero far from the level anticrossing. These eigenstates are directly revealed by TDQT
measurements of the spin evolution between two ultrafast optical pulses, as shown in
fig. 6(d). The figures show trajectories that begin from an initialized state in either |0〉
or | + 1〉 (and, at B = 400 G, from a spin superposition state). The trajectories are
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fits to the raw TDQT data using an analytical model that captures both unitary and
dissipative dynamics [3].

At the center of the anticrossing where η = π/2, a full π-pulse on the spin qubit
can be achieved using a single pair of optical pulses. For sequences of multiple single-
qubit operations, the relative phase between pulses is deterministically set by the pulse
timings. In this way, universal quantum operations on the spin can be achieved using
pairs of identical optical pulses. Furthermore, whereas the dispersive SRT technique is
limited in this configuration to a Rabi frequency Ωg � 10MHz � Δ2, direct evolution
in the excited state occurs at the bare coupling rate, Ωg ∼ ωes ∼ Δ2. In the data of
fig. 6(d), Ωg = 260 MHz, corresponding to a π rotation in only 1.9 ns, which approaches
the fastest operation times demonstrated for NV centers using microwaves [41].

6. – Conclusions and future directions

The purpose of this paper is to provide an introduction to quantum optics in the
context of solid-state spins like the diamond NV center. However, the methods and
techniques we describe only scratch the surface of quantum optics and its potential
applications for quantum information science. For example, the CPT and SRT techniques
described in sect. 4 have been applied to realize alternate forms of robust quantum control
employing geometric phases [42-44]. Whereas we focused on the diamond NV center,
the techniques are general and are now routinely applied to other quantum systems
including quantum dots [45] and other defect systems [38, 39, 46, 40, 47, 48]. As the
number of materials platforms and applications for spin-based quantum technologies
expands [49,50], the importance of these techniques will only continue to grow.
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[20] Cohen-Tannoudji C. and Guéry-Odelin D., Advances in atomic physics: An overview,
in Annals of the Academy of Medicine (World Scientific, Singapore) 2011.

[21] Davies G., J. Phys. C: Solid State Phys., 7 (1974) 3797.

[22] Collins A. T., Thomaz M. F. and Jorge M. I. B., J. Phys. C: Solid State Phys., 16
(1983) 2177.

[23] Blais A., Huang R.-S., Wallraff A., Girvin S. M. and Schoelkopf R. J., Phys.
Rev. A, 69 (2004) 062320.

[24] Sipahigil A., Evans R. E., Sukachev D. D., Burek M. J., Borregaard J., Bhaskar

M. K., Nguyen C. T., Pacheco J. L., Atikian H. A., Meuwly C., Camacho R. M.,
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M., Edmonds A., Atatüre M., Bushev P. and Becher C., Phys. Rev. Lett., 120 (2018)
053603.

[48] Christle D. J., Klimov P. V., de las Casas C. F., Szász K., Ivády V., Jokubavicius
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Summary. — Small solid-state qubits, most prominently single spins in solids, can
be remarkable sensors for various physical quantities ranging from magnetic fields
to temperature. They package the performance of their bulk semiconductor coun-
terparts into a nanoscale device, sometimes as small as a single atom. This review
is a minimalist introduction into this concept. It gives a brief summary of quantum
coherence, Ramsey spectroscopy and a derivation of the “standard quantum limit”
of the sensitivity that a single-qubit sensor can reach. It goes on to discuss the sur-
prising improvement that dynamical decoupling has brought about and concludes
with an outlook to the major frontiers of the field.

1. – Introduction

The history of quantum mechanics is a history of repeated underestimation. When
it emerged in the early 20th century, its strange consequences were discovered only in
theory, and illustrated by a series of speculative “Gedankenexperiment”s. Observing
them in reality —on single photons, single atoms and single spins— seemed like an
impossible mission.

When it became reality half a century later, the experimental effort of these low-
energy experiments rivaled their early counterparts in high-energy physics. Operating a
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set of even few qubits involved a lab densely packed with electronics, optics and vacuum
setups, and a team of skilled students that would spend their days aligning dye lasers and
chasing leaks —an effort comparable to a lab-scale accelerator in the 1930s. Skepticism
remained whether these setups would ever make the way out of the lab into the real
world.

Today, this is a realistic prospect, which is largely owing to some decisive progress of
the 2000s and 2010s: the discovery of several qubits that can be implemented in the solid
state, in real devices interfaced with the classical world, partly even at room temperature
and ambient conditions. With this tool at hand, the attention of the scientific world is
increasingly shifting to a very different question: “what to do with it?” rather than “how
to do it?”.

The situation is remarkably similar to the early days of the laser, which was admired as
“a solution looking for a problem”. This problem, at least a major one, turned out to be
sensing. The perfectly monochromatic light of a laser lent itself to measurements of tiny
displacements in interferometers, precise spectroscopy of molecules and, since it enabled
diffraction-limited focusing, readout of compact discs. It is a tempting idea that perfectly
monochromatic matter —which qubits essentially are— will find similar applications.
Their narrow spectral lines could respond to tiny shifts imprinted by external fields,
making them attractive sensors for various quantities. In those applications where size
and effort do not matter, this development has already taken place. Atomic clocks
—which can be regarded a quantum sensor for frequency and phase— have become
the state of the art for timekeeping and have transformed our life by enabling satellite
navigation. Finding similar applications for the younger solid-state qubits remains an
exciting challenge. One obvious window of opportunity is sensing at the nanoscale.
Solid-state qubits are the smallest sensors that have ever been conceived —as small as a
single atom. Since such a tool has not existed until a decade ago, the mere smallness of
nanoscale sensors will open unchartered territory for applications, even in the case that
their sensitivity cannot be pushed beyond competing large-scale technology.

2. – Single molecules and spins as scanning probes

When scanning probe microscopy was invented in the 1980s, it quickly became clear
that it would become a generic tool, not limited to tunneling microscopy on conduc-
tive surfaces. This insight sparked the development of the atomic force microscope [1],
and subsequent proposals to use it as a novel detector for magnetic fields [2, 3] and
magnetic-resonance microscopy on small ensembles of spins [4]. At roughly the same
time, optical detection of single fluorescent molecules became widely available. This
catalyzed the development of numerous novel techniques in biology, ranging from fast
DNA sequencing [5] to superresolution microscopy [6-8], and led to a strong interest in
nanoscale optics. Scanning near-field microscopy was developed, a technique to image
optical properties with 10 nm-scale resolution by a subwavelength aperture formed by
the tip of a pulled glas fiber [9]. Using a single fluorescent molecule or color center as a
scanning probe in this technique became both a realistic vision and an attractive goal. It
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would push near-field microscopy to its ultimate resolution limit, enabling the study of
energy transfer between single molecules, single plasmons and other nano-emitters. This
technique has been proposed [10] and demonstrated [11], but failed to find widespread
adoption because molecules would photobleach too fast to enable reliable imaging and
color centers would reside too deep in their host crystal for photonic coupling.

Some visionaries were not scared away by these problems and proposed an even more
ambitious extension: to use a fluorophore with a stable electron spin, whose state could
be optically “read out” by fluorescence [12]. Some fluorophores of this kind were known
to exist, most prominently organic molecules with a metastable triplet state. Optically
detected magnetic resonance had already been demonstrated in these systems on the
level of single stationary molecules in pioneering work in the 1990s [13,14]. If successful,
a scanning probe microscope with such a sensor promised to transform near-field mi-
croscopy into a magnetic resonance microscopy technique. Spins in the sample coupling
to the sensor spin would cause spin flips that could be read out by fluorescence. The
whole arsenal of multidimensional magnetic resonance could be used to infer the location
of spins in the sample, potentially with atomic resolution. On a lower technical level,
shifts of the sensor spin resonance could be used to measure and image electric fields (via
a Stark shift) and magnetic fields (via a Zeeman shift).

It was around 2008 that this idea suddenly became a realistic prospect, when several
groups put forward proposals and demonstrations indicating that NV (Nitrogen-Vacancy)
defects in nanodiamonds could provide a photostable fluorescent nanoprobe with an
optically readable electron spin [15-18]. These properties had already been established
in the 80s [19] and, on the level of single spins, in the 90s [20]. We will not present
them in detail here, since this review will focus on spin sensing and is agnostic with
respect to the exact spin employed an the way its readout is implemented. Suffice it to
say that spin readout of the NV center is possible, because its fluorescence is slightly
spin dependent (fig. 1b). It is roughly 30% more intense if the center is prepared in its
lowest spin state |0〉, because fluorescence competes with a strong non-radiative pathway
when the center is prepared in a higher spin state |1〉. Due to some lucky incidents, this
nonradiative path has a preference to decay into the lower spin state |0〉, so that optical
excitation not only reads out the spin, but also initializes it into a known state (|0〉).
Finally, the energies of these spins states are shifted by magnetic fields, experiencing a
field-dependent Zeeman-shift Δω = γB, where γ/2π ≈ 30MHz/mT = 3 MHz/G denotes
the gyromagnetic ratio. Similar shifts exist for other physical quantities, but we will,
without loss of generality, focus on magnetic field sensing in the following.

These properties are the basis for the simplest sensing experiment —measuring mag-
netic fields by spectroscopy of the Zeeman shift (fig. 1c). Here, the sensor spin state is
continuously probed by a continous-wave laser and excited by a microwave at a tuneable
frequency ω. For most frequencies, the microwave will not be resonant with the spin
transition, so that the laser pumps the spin state into the bright state |0〉, causing a high
level of fluorescence. When the microwave is tuned into resonance (so that ω = ω0+γB),
it will excite the center into the dark state |1〉, which becomes visible as a dip in flu-
orescence. By this combined microwave-optical spectroscopy, the Zeeman shift can be
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Fig. 1. – Single spins as scanning probes. a) An optically readable electron spin at the tip of a
scanning probe microscope provides a sensor to image single electron and nuclear spins in sam-
ples, as well as magnetic fields. b+c) magnetic-field sensing by resonant spectroscopy. b) The
energy levels of an electron spin are shifted in a magnetic field by the Zeeman effect. c) Mea-
surement of the Zeeman shift by optically detected magnetic resonance (ODMR) spectroscopy.
Laser illumination pumps the spin into a specific state |0〉. A tuneable microwave switches the
spin into a less fluorescent state |1〉 if it is resonant with the Zeeman-shifted spin transition.

measured with reasonable precision, from which the magnetic field at the center can be
infered. These experiments reach a typical precision in the μT range, roughly 1% of the
Earth’s magnetic field. While this is inferior to most existing semiconductor sensors, it is
measured by the smallest sensor that can possibly be conceived, consisting of little more
than a single atom.

Single NV centers can be attached to the tip of a scanning probe microscope, either
by packaging them in nanodiamonds that can be glued to a commercial tip [17], or
by sculpting all-diamond AFM tips with a single center embedded at their apex [21].
Repeating the Zeeman spectroscopy experiment at every pixel of a scan, magnetic fields
can be imaged with higher resolution than the 10 nm-scale state of the art achieved by
magnetic-force microscopy. As an additional benefit, the stray field of the NV spin does
not exert backaction on soft-magnetic samples. These advantages have made spin-based
scanning probe magnetometry a fertile field of research, and highlight results include
images of moving domain walls [22, 23], antiferromagnets [24], Skyrmions [25, 26], hard
disk write heads [27] and superconducting vortices [28,29].

3. – Sensing by quantum coherence —reaching the fundamental limit of
sensitivity

3.1. Quantum coherence as a sensor . – The continous-wave protocol of fig. 1 has a
number of technical problems. Laser and microwave power need to be carefully tuned
to ensure that the microwave excitation performs exactly one full spin-flip between two
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Fig. 2. – Quantum phase as a sensor for level shifts. The phase φ of a coherent superposition
(|0〉 + eiφ |1〉) grows as φ = Δt under a spectral shift Δ.

fluorescence events. Furthermore, the spectral resolution depends on microwave power,
since a high-power pulse can excite spins even if its frequency is slightly off-resonant.

It is for these reasons that most experiments today are performed using pulsed proto-
cols, inspired by atomic clocks [30] and quantum logic. The key idea, presented in fig. 2, is
to employ the quantum-mechanical phase φ of a coherent superposition (|0〉+eiφ |1〉)/√2
as a sensor. To see why this phase is sensitive to a small spectral shift Δ = γB, we con-
sider a qubit evolving under the Hamiltonian

Ĥ =
�

2
(ω0 − Δ)σ̂z

rot. frame= −�

2
Δσ̂z.

Here we have applied a transformation into a rotating frame, essentially a renormalization
of the qubit energy, to remove the static energy ω0. The time evolution under this
Hamiltonian is

|ψ(t)〉 = exp
[
− it

�
Ĥ

]
|ψ(t = 0)〉(2)

= exp
[
i
Δt

2
σ̂z

]
|ψ(t = 0)〉(3)

|ψ(t=0)〉=(|0〉+|1〉)/√2
= (|0〉 + eiΔt |1〉)/

√
2(4)

up to an insignificant global phase e−iΔt/2. For a nonzero detuning Δ, the phase φ grows
over time. Since this evolution occurs in the absence of any manipulation and readout
pulses, it is insensitive to experimental fluctuations in laser and microwave power.

It is instructive to consider this evolution on the “Bloch sphere” (fig. 2). This sphere
is a map from SU(2) (spin states) to the unit sphere in R3. |0〉 and |1〉 are mapped to
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Fig. 3. – Rabi oscillations. A spin driven by a resonant microwave oscillates between states |0〉
and |1〉 by alternating phases of absorption and stimulated emission. A pulsed microwave drive
can be applied for a full spin flip (“π-pulse”) or can be stopped half-way (“π/2-pulse”), leaving
the spin in a coherent superposition (|0〉 + |1〉)/√2.

its south and nord poles, respectively. Coherent superpositions (|0〉 + eiφ |1〉)/√2 reside
on the equator, with φ translating into their geographical longitude. In this picture the
time evolution of eq. (2) is a rotation of the spin along the equator. Since this rotation
revolves with angular velocity Δ, it is very much reminiscent of the movement of the
needle in a classical instrument.

3.2. Creating and reading out quantum coherence —the Ramsey protocol . – In contrast
to a classical needle, the quantum-mechanical phase φ is invisible. Therefore, the protocol
of fig. 2 needs to be supplemented by two additional steps, one to prepare a coherent
superposition and one to convert the phase into a measurable quantity such as the spin
state itself (fig. 4). Both steps are implemented by microwave pulses, specifically “π/2”
pulses of carefully tuned length.

The key idea behind these pulses can be understood by considering the evolution of a
spin that is driven by a resonant microwave (fig. 3). A spin starting in state |0〉 will absorb
a photon from the microwave, flipping from |0〉 to |1〉. Somewhat counterintuitively, a
spin starting from |1〉 will flip back from |1〉 to |0〉, emitting a microwave photon by
stimulated emission. Under continuous driving, these processes will alternate, so that
the spin rotates back and forth between |0〉 and |1〉, a process known as Rabi oscillation.
This rotation revolves at an angular frequency Ω, referred to as Rabi frequency, which is
set by the power of the microwave drive. The effect of a microwave pulse depends on its
duration. It can be set to perform half of an oscillation, flipping the spin from |0〉 to |1〉.
Such a pulse is referred to as a π pulse, since its duration τ is chosen such that Ωτ = π.
Crucially however, the Rabi oscillation can also be stopped “half-way” between |0〉 and
|1〉, leaving the spin in the coherent superposition (|0〉 + |1〉)/√2. Since the duration of
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such a pulse is twice shorter (such that Ωτ = π/2), it is referred to as a π/2 pulse.
In a more rigorous manner, these effects can be derived from the Hamiltonian of

atom-light interaction

Ĥ =
�

2
(ω0 − Δ)σ̂z + �Ωcos(ω0t)σ̂y,

rot. frame= −�

2
Δσ̂z +

�Ω
2

(1 + e−2iω0t)σ̂y,

rot. wave approx.≈ −�

2
Δσ̂z +

�Ω
2

σ̂y.

Here the transformation into a rotating frame with frequency ω0 (step 1) not only renor-
malizes the qubit energy, it also introduces an oscillatory factor e−iω0t to all terms cou-
pling states |0〉 and |1〉, in particular σ̂y = i |0〉 〈1| + H.C. In this process the two
components cos(ω0t) = (eiω0t + e−iω0t)/2 of the cosine are transformed into a constant
term (1) and a rapidly oscillating term (e2iω0t). This latter term can be neglected in a
“rotating frame approximation” as long as Ω,Δ � ω0.

In this description, a microwave drive is equivalent to a rotation of the spin around
the axis y of the Bloch sphere, induced by the term proportional to σ̂y. Typically, the
drive is so strong that Ω � Δ, so that the term in σ̂z can be neglected whenever the
drive is applied. In these conditions, π and π/2 pulses correspond to the propagators

π̂ = exp
[
−i

Ωτπ

2
σ̂y

]
,

π̂

2
= exp

[
−i

Ωτπ/2

2
σ̂y

]
,

with

π̂ |0〉 =
π̂

2
· π̂

2
· |0〉 =

π̂

2
· (|0〉 + |1〉)/

√
2 = |1〉 .

With these ingredients we can understand the most fundamental quantum sensing proto-
col, the Ramsey sequence (fig. 4). An initial π/2 pulse prepares the spin into the coherent
superposition (|0〉+ |1〉)/√2. It is subsequently subjected to free evolution under a spec-
tral shift Δ for some waiting time τ , picking up a phase φ = Δt. A second π/2 pulse
converts this phase to a population inversion of the spin state by transforming the state
from (|0〉+ eiφ |1〉)/√2 to i sin φ

2 |0〉+ cos φ
2 |1〉. This population inversion is measurable,

since it affects the probability | 〈1|ψ〉|2 of finding the spin in state |1〉 at the end of the
sequence. This probability is an oscillatory function of φ

|〈1|ψ〉|2 = cos2
(

φ

2

)
=

1
2
(1 + cos φ).
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Fig. 4. – The Ramsey protocol. a) An initial π/2-pulse prepares a coherent superposition, which
undergoes free evolution to pick up a phase φ = Δτ . This phase is converted into spin population
by a second π/2-pulse. b) Sensitivity of Ramsey spectroscopy. For a fixed evolution time τ , the
spin state is an oscillatory function of the shift Δ. Its state can be measured with uncertainty
σp, which translates into an uncertainty σΔ on the measurement of Δ.

If there is no precession during the free evolution τ , the two π/2 pulses will add up to a
π pulse, leaving the spin in state |1〉 at the end of the sequence. Precession during τ will
be translated into a rotation between states |0〉 and |1〉.

Experimentally, φ can be varied both by varying τ and by varying Δ. In both cases,
the measurement result will trace an oscillatory function, referred to as Ramsey fringes
in the time and frequency domain, respectively. For sensing applications, the latter
implementation is more relevant. Here, the oscillating spin signal at the end of the
experiment provides a ruler for spectral shifts Δ, similar to the fringes of an optical
interferometer providing a ruler for displacement.

Since quantum sensing experiments typically aim at detecting very small signals, the
fringes are hardly ever recorded in their entirety. Instead, the sensor is operated at a
fixed detuning Δ0, chosen such that the spin signal p = | 〈1|ψ〉|2 is maximally sensitive to
small fluctuations in Δ. This is typically the slope of a Ramsey fringe, and operation at
this point can be ensured by applying a fixed detuning of Δ0 = π/(2τ) to the microwave
drive.

The precision of such a sensing experiment is limited by the precision of spin readout.
The measurement of p = | 〈1|ψ〉|2 will always have some experimental uncertainty σp,
which translates into an uncertainty σΔ on the measurement of Δ by Gauss’ law of error
propagation.

σΔ = −σp · dΔ
dp

∣∣∣∣
steepest slope

= σp · 2
τ

.

If all technical fluctuations are eliminated, the fundamental limit of σp is set by quantum
projection noise. A single measurement of p cannot access a floating point value between
0 and 1. Instead, spin readout will project the spin into either |0〉 or |1〉, providing one
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quantized bit of information (pmeasured = 0 or pmeasured = 1). Since we are operating at
the slope, where p ≈ 0.5, this measurement is always wrong, with an error of

σp =
√

〈p2
measured〉 − 〈pmeasured〉2 =

√
1/2 − 1/4 = 1/2,

〈·〉 denoting the expectation value. As we average the results of M repeated measure-
ments on N sensors operating in parallel, this error diminishes according to

σp =
1

2
√

MN

so that the sensor achieves a precision of

σΔ =
1

τ
√

MN
.

This result could have been obtained by common sense: a single measurement of duration
τ is able to measure a frequency with a Fourier-limited resolution 1/τ , and averaging the
result over M ·N uncorrelated measurements will boost precision by a factor of 1/

√
MN .

For simplicity, we have assumed single-shot readout, i.e. that the spin state can be
measured in a single experimental repetition. In experiments, this is frequently impos-
sible, for instance because of low detection efficiency of photodetectors or because the
readout signal differs by less than 100% between states |0〉 and |1〉. In this case, the
number of repetitions M has to be replaced by M/M0, where M0 denotes the number of
measurements required to measure the spin state once.

3.3. Decoherence and the fundamental limit to sensitivity . – The above expression for
σΔ is not yet a useful figure of merit for sensor performance, because σΔ can always be
boosted to infinite precision by averaging over a larger number of measurements N or by
increasing the slope of the fringes by increasing τ . Obviously, there are practical limits
to both of these tricks that need to be taken into account by a reasonable figure of merit.
In practice this is achieved by comparing sensor performance in terms of “sensitivity”, a
corrected figure of merit which we will derive in the following paragraphs.

Regarding averaging, it is important to note that this concept can be applied to any
sensor. A statement like “an NV qubit can measure fields with nT precision” is useless
(although we have made it above), since even a simple compass could in principle be
pushed to this level by averaging its signal over a long time. To discount for this effect,
sensor sensitivity is normalized to acquisition time. Since M measurements will take
a time T = M · τ , spectral resolution scales as σΔ = 1/(

√
τNT ), and the precision in

sensing a magnetic field is

σB =
σΔ

γ
=

1
γ
√

τNT
= ηB

1√
T

.(5)
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Here, the sensitivity ηB = 1/(γ
√

τN) provides a figure of merit that discounts for aver-
aging. A sensor that can reach a higher precision in a given amount of averaging time
is rated a better sensor, quantified by a lower value of sensitivity. Similar formulas can
be established for other quantities (E, T, . . .) that can be measured by spectroscopy of
some suitable spectral shift. The units of these figures are

[ηB] =
T√
Hz

, [ηE ] =
V/cm√

Hz
, [ηT ] =

K√
Hz

, . . . .

The slightly un-intuitive unit 1/
√

Hz is omnipresent whenever sensitivities are involved.
It is best understood as “sensor precision obtained after 1 second of averaging”.

Still, sensitivity as defined in eq. (5) is not a meaningful figure of merit, since it can
be pushed to arbitrary limits by increasing τ . The fundamental limit to this parameter is
set by a quantum-mechanical effect known as decoherence, which limits τ to values less
than the qubit’s “coherence time” T ∗

2 . Decoherence refers to the fact that a quantum
superposition (|0〉+eiφ |1〉)/√2 does not persist forever. It is a fragile state, which decays
into a “classical mixture”, where the qubit is in state |0〉 or |1〉 with 50/50 probability.
This state is different from the coherent superposition that the qubit started from, where
the spin in a way lives simultaneously in both |0〉 and |1〉. The difference can be quantified
by the density matrix

ρ̂ =
∑

i

pi |ψi〉 〈ψi| ,

where pi denotes the (classical) probability of the qubit to be prepared in a quantum
state ψi chosen from some set of states indexed by i. The density matrix ρ̂ can capture
the difference between “simultaneously |0〉 and |1〉” and “either |0〉 or |1〉 with 50/50
probability”, since

ρ̂
[
(|0〉 + eiφ |1〉)/

√
2
]

=
1
2

(
1 eiφ

e−iφ 1

)
,

ρ̂50/50 =
1
2
(|0〉 〈0| + |1〉 〈1|) =

1
2

(
1 0
0 1

)
.

We see that quantum coherence is quantified by the off-diagonal elements of ρ̂. To see why
quantum states have a tendency to decay from a coherent state into classical mixtures,
we consider a qubit that has some intrinsic uncertainty σΔ on its transition frequency
Δ (fig. 5b). This uncertainty could arise from a fluctuating magnetic background field,
for instance the stray field from nuclear spins in the carbon lattice in the case of an NV
center. We assume the background field to take a random value in each experimental
repetition, so that the detuning Δ is normally distributed with a probability density

p(Δ) =
1√

2πσ2
Δ

e
− (Δ−Δ0)2

2σ2
Δ .
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Fig. 5. – Decoherence. A random static background shift σΔ blurs the Ramsey fringes, inducing
a decay of spin contrast over a timescale T ∗

2 = 1/σΔ.

Each random value of Δ will lead to a different state (|0〉+eiΔτ |1〉) at the end of the free
evolution, so that the spin state before the second π/2 pulse is described as the statistical
mixture

ρ̂=
∫

dΔ p(Δ)

(
1 eiΔτ

e−iΔτ 1

)
Gaussian integral

=

(
1 e−

1
2 σ2

Δτ2
eiΔ0τ

e−
1
2 σ2

Δτ2
e−iΔ0τ 1

)
.(6)

The off-diagonal elements of this state decay as e−
1
2 σ2

Δτ2
for increasing evolution time τ ,

with a time constant

1/σΔ := T ∗
2 .

Since it is the off-diagonal terms that are converted into spin population by the second
π/2 pulse, this decay manifests itself as a decay of the time-domain Ramsey fringes
over a timescale of T ∗

2 (fig. 5c). This result can also be derived from a more classical
argument: a randomly varying detuning Δ will lead to randomly varying frequencies of
the time-domain Ramsey oscillations (fig. 5b). For small evolution times τ , this does not
have a visible effect, since the spin will roughly end in the same peak or valley in any
experimental repetition. For large evolution times, the measurement result is increasingly
randomized, with the spin ending randomly in a peak or a valley depending on the exact
value of Δ in a specific experimental repetition. Averaging over all these results can only
lead to one result: p = 0.5, zero spin contrast, no fringes.

Once decoherence is considered, the choice of τ in a sensing experiment is subject to a
compromise. Too short values will lower sensitivity, because the frequency-domain fringes
become less steep. Too long values will lower sensitivity, because decoherence reduces
fringe contrast and, concomittantly, their slope. An educated guess suggests that the
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optimum choice is τ ≈ T ∗
2 , long enough to build up a steep slope, but sufficiently short

to avoid death from decoherence. This guess is correct, as can be verified by an explicit
minimization of the sensitivity as a function of τ . With this choice, the sensitivity of a
quantum sensor reads

ηB =
1

γ
√

NT ∗
2

,(1)

which is known as the “standard quantum limit”. This relation is so fundamental that
it is referred to as “eq. (1)” by some researchers in the field [31] and in this review.

We conclude this section by a discussion of some of its more subtle implications

• It is a frequent misconception that a stronger coupling to the environment γ will
automatically yield a sensor with a better sensitivity, suggested by the fact that γ

appears in the denominator of eq. (1). The fallacy is that a stronger coupling to
the environment also impacts T ∗

2 = σ−1
Δ by increasing the frequency noise σΔ. A

famous example of this subtlety is the use of entangled states of multiple qubits
such as (|00〉 + eiφ |11〉)/√2. These have long been believed to result in better
sensitivity than a sensor built from independent qubits. Since their total magnetic
moment grows linearly with N , an entangled sensor employing a single effective
spin of N entangled qubits would at first sight achieve a sensitivity of 1/(γN

√
T ∗

2 ),
a factor of

√
N better than eq. (1) [32-34]. Unfortunately, stronger coupling also

increases the impact of background noise, so that increased decoherence shrinks T ∗
2

by a factor of N , spoiling the improvement [35,36].

• While we frequently speak of T ∗
2 as an intrinsic constant of a specific qubit, we

should think of it just as much as a constant of a qubit’s environment, quantifying
the level of intrinsic background noise. As a specific example, NV centers have
orders of magnitude higher coherence times than quantum dots, and we might easily
think of them as “better” qubits. Yet, both are based on the same quantum entity,
a single electron spin, and the difference merely results from the fact that nuclear
spins are a lot less abundant in diamond than in typical quantum dot materials
like GaAs. As a consequence, the relation might turn upside down if quantum dots
could be engineered in diamond, and the search for new spin qubits could result
in disappointment if it is focused on the wrong materials. Most importantly, both
qubits could become equally bad sensors when they have to be operated close to a
sample with high intrinsic noise.

4. – Sensing by dynamical decoupling —the hidden revolution

Despite its fundamental nature, eq. (1) can be broken. The key idea here is that T ∗
2 can

be extended to longer timescales if a tool is found to suppress buildup of a random phase
σΔτ in the presence of a random spectral shift σΔ. Such a tool is provided by quantum
control protocols, more complicated manipulations of the spin than a mere creation and
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Fig. 6. – Hahn echo. a) A π-pulse in the middle of the free evolution time mirrors the spin to
the back side of the equator, so that a phase acquired from a static shift Δ is exactly rewound
in the second half of the sequence. b) Coherence persists for a longer time T2 under the Hahn
echo sequence.

detection of coherence. The first protocol of this kind, known as “spin echo” or “Hahn
echo”, was developed by Erwin Hahn in 1950 [37]. It is presented in fig. 6. It differs
from standard Ramsey spectroscopy by an additional π-pulse, introduced in the middle
of the free evolution time. This pulse mirrors the spin state to the other side of the
equator, so that a phase built up by a constant detuning Δ in the first half of evolution
is exactly rewound in the second half. By this mechanism, the effect of a constant Δ is
canceled and decoherence is suppressed, so that τ can be chosen much longer than T ∗

2 .
In practice there is a new limit to τ , referred to as T2, arising from the fact that Δ is
never purely static and that the spin phase remains sensitive to fluctuations that vary
over the timescale of the Hahn echo sequence. This timescale is situated between T ∗

2 and
T1, the spin-flip lifetime of an incoherent spin state like |1〉.

At first sight the Hahn echo protocol appears to be useless for sensing, since it cancels a
constant detuning Δ. While this mitigates decoherence, it comes at the price of cancelling
a static signal, too. It turns out, however, that a qubit subjected to a Hahn echo sequence
remains sensitive to signals oscillating at a nonzero frequency and that this sensitivity
can actually be tuned to specific signal frequencies in a very selective manner [38-45].
The key idea, referred to as “quantum lock-in detection” or “dynamical decoupling” is
presented in fig. 7a. We consider a qubit that is exposed to an oscillating signal at a
frequency ν. This signal could not be detected in a Ramsey sequence, since positive
and negative half-cycles would imprint opposite phases on the spin and cancel over the
free evolution time. We can, however, effectively rectify the signal by applying periodic
π pulses to the spin, whose spacing τ is synchronized to the signal by the choice 2τ =
ν−1. Since each pulse induces a flip of the sensor spin, it effectively inverts the sign
of the signal in the flipping reference frame of the sensor. The effect of this scheme is
similar to classical lock-in-detection, where the signal would be inverted by a mixer or a
similar device. Signals at a frequency 1/(2τ) are rectified to DC (zero frequency) while
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Fig. 7. – Dynamical decoupling. a) A train of π-pulses acts as a lock-in grating, effectively
inverting the sign of the signal in the flipping reference frame of the sensor spin. b) The spectral
sensitivity of a spin under dynamical decoupling is modeled by a “filter function”, the Fourier
transform of a time-domain sensitivity function g(t). For a τ -periodic grating (right), the filter
function is peaked at a frequency 1/(2τ), so that the spin coherence decay traces an inverted
copy of the noise spectrum, turning the spin into a spectrum analyzer.

static shifts will be converted to some nonzero frequency so that their effect cancels over
time.

To employ this scheme in a sensing sequence, the lock-in grating of periodic π-pulses
is embedded into two π/2-pulses to create and read a quantum phase (fig. 7b). The
π-pulse grating tunes sensitivity to a specific frequency, which simultaneously suppresses
decoherence from static shifts and sensitizes the quantum phase to specific AC signals.
With dynamical decoupling, a qubit becomes a quantum spectrum analyzer. Ramsey
spectroscopy and Hahn echo can be regarded the two simplest incarnations of this con-
cept, tuning sensitivity to DC and 1/(2τ), respectively, but a whole multitude of novel
experiments can be conceived by playing with the placement of π pulses.

The spectral sensitivity of an arbitrary decoupling sequence can be computed by
a formalism known as the “sensitivity function” or “filter function” [38, 46]. In this
formalism the phase that a qubit picks up over a dynamical decoupling sequence is
written as

φ =
∫

dt g(t)Δ(t)
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where g(t) is a sensitivity function, modeling the effective inversion of the signal by the
π pulses. It can be constructed from a few simple rules. The initial π/2 pulse initializes
g with g(t) = 1, since it creates a coherent superposition whose phase is sensitive to
Δ. g changes sign with every π-pulse to model the effective inversion of the signal in
the flipping frame of the spin. Finally, g(t) = 0 before and after the initial and final
π/2-pulses, since there is no quantum coherence beyond these points. In an alternative
interpretation, g can be understood as the “Platonic ideal” of a signal that will impart
a maximum phase φ on the qubit.

In the most general case, a signal does not have a constant intensity and phase, so
that the quantum phase φ is a random variable with a variance 〈φ2〉. The spin signal
| 〈ψ| 1〉|2 at the end of the sequence can be computed from (6)

| 〈ψ| 1〉|2 =
1
2

(
1 + e−〈φ2〉/2

)
.

In the absence of a signal (〈φ2〉 = 0) coherence will be preserved, so that the final π/2-
pulse flips the spin into |1〉. A nonzero signal will induce decoherence (〈φ2〉 > 0), reducing
the spin signal. We now rewrite eq. (3), expressing the g and Δ involved by their Fourier
coefficients gn,Δn

φ =
∫ T

0

dt g(t)Δ(t),

f(t)= 1
T

P∞
−∞ fnei2πnt/T

=
1

T 2

∑
n,n′

gnΔn′

∫ T

0

dt ei2πnt/T ei2πn′t/T ,

R
...=Tδn′

n=
1
T

∑
n

gnΔ−n.

Here, T denotes the full length of the free evolution from the initial to the final π/2 pulse.
The variance 〈φ2〉 becomes thus

〈φ2〉 =
1

T 2

〈∑
n,n′

g∗nΔ∗
−ngn′Δ−n′

〉
,

〈ΔnΔ∗
n′ 〉=0

=
1

T 2

∑
n

|gn|2 |Δn|2 ,

=
∑

n

Sg(νn)SΔ(νn).

Here, the relation 〈ΔnΔ∗
n′〉 = 0 holds, since different Fourier components of noise are

uncorrelated. Sf (νn) = |fn|2/T denotes the power spectral density of a quantity f .
This final relation underlines the above statement that a dynamical decoupling sequence
sensitizes a qubit to noise at specific frequencies, described by the Fourier transform
Sg(νn) of the sensitivity function g(t).
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Table I. – Sensitivity of magnetic-field sensors. Grey shaded numbers denote extrapolations from
published values. Numbers differ from the shot noise limit of eq. (1) because the efficiency of
spin readout is not unity in most experiments. SQUID: Superconducting Quantum Inferference
Device.

Single NV Single NV NV NV Smartphone SQUID

(12C) ensemble ensemble Hall sensor

theory

N 1 1 1011 1016

(100 μm)3 (1 cm3)

T ∗
2 1 μs 228 μs 30 μs –

T2 300 μs 2 ms 50 μs 300 μs

ηDC 1 μT/
√

Hz 20 nT/
√

Hz 1 pT/
√

Hz – 30 nT/
√

Hz 1 fT/
√

Hz

ηAC 20 nT/
√

Hz 4 nT/
√

Hz 1 pT/
√

Hz 250 aT/
√

Hz 20 aT/
√

Hz

Refs. [15] [47,48] [49-51] [15] [52] [53,54]

Some practical examples of this concept are presented in fig. 7b. Ramsey spectroscopy
(left) has a constantly positive sensitivity function in the time domain, resulting in a filter
function with DC sensitivity in the frequency domain. It is insensitive to signals with
a frequency ν � τ−1, which average to zero over the free evolution. Accordingly, the
frequency-domain filter function is a lowpass filter with bandwidth 1/τ . Since noise is
mostly stronger at low frequencies, the spin signal decays on a fast timescale T ∗

2 under
Ramsey spectroscopy.

Under dynamical decoupling (specifically: the Carr-Purcell-Meiboom-Gill sequence,
right), the time-domain sensitivity function periodically alternates between +1 and −1.
The Fourier transform of this signal is peaked at a frequency 1/(2τ), and vanishes at DC,
modeling the fact that some AC signals are rectified while DC signals are suppressed as
discussed above. The sequence can be used as a quantum spectrum analyzer by varying
τ . This will displace the peak of maximum sensitivity across a wide range of frequencies.
The spin signal traces an inverted copy of the noise spectrum, with strong decoherence
occuring whenever the sensitivity peak coincides with a peak of noise. Since the sequence
equally supresses decoherence from DC background fields, coherence time under CPMG
rises to T2. By virtue of this second aspect, the sensitivity for detection of AC signals is
higher than the sensitivity obtained in a Ramsey sequence, and eq. (1) is modified to

ηB =
1

γ
√

T2N
.

The effect of dynamical decoupling can be profound (table I). For NV centers, T2

can be four orders of magnitude longer than T ∗
2 (10 ms [55] rather than 1μs), so that

sensitivity improves by two orders of magnitude whenever dynamical decoupling can be
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employed. Moreover, the ability to perform spectroscopy of a time-dependent magnetic
signal is a powerful benefit.

Arguably the most prominent example for the power of dynamical decoupling is the
detection of magnetic resonance signals from nanoscale samples, first achieved in 2013 [56,
57]. Here, a single stationary NV center, embedded few nanometers beneath the surface
of a bulk diamond, is employed as a quantum spectrometer to detect magnetic noise
from samples on the diamond surface. This magnetic noise is mostly dominated by
stochastic fluctuations of nuclear spins, peaked at the characteristic Larmor frequency
of the molecules on the surface. Dynamical decoupling has pushed the sensitivity of a
single NV center into a range where detection of this spin noise is possible. Both nuclear
spins [58] and electron spin signals [59] have been detected from single biomolecules.
The door seems open to transform magnetic resonance spectroscopy, previously limited
to mm-scale samples or complicated low-temperature setups [60], into a single-molecule
technique.

5. – Outlook —prospects and hopes after one decade

Despite the impressive progress over the past decade, the achievements of nanoscale
sensing by spin qubits have covered only a fraction of its full potential. Several important
goals remain open and great further breakthroughs are likely to emerge:

• Scanning probe magnetometry is still mostly based on measurements of strong DC
fields, using the Ramsey sequence or resonant spectroscopy. Dynamical decoupling
is hardly ever employed, so that orders of magnitude in sensitivity remain to be
harvested. The reason for this surprising fact is that spin coherence is strongly de-
graded in nanodiamonds and nanofabricated diamond tips. Clearly, this problem
is not fundamental, and will be overcome by improved fabrication, more robust
color centers or novel concepts for scanning probe positioning [61]. With better
sensitivity, novel samples will shift into reach. Likely targets are scanning-probe
imaging of nuclear spins —so far limited to some proof-of-principle experiments
in “best-case” conditions [62, 63], imaging of current patterns in solid-state sam-
ples [64], or spectroscopy of magnetic fluctuations as a tabletop complement to
neutron scattering experiments in materials science [65,66].

• Single-molecule magnetic resonance is so far limited to a mere spectroscopy tech-
nique and suffers from very slow data acquisition. Much of the power of its bulk
counterpart derives from imaging, most evident in the beautiful images provided
by clinical scanners. Translating this technique to a three-dimensional imaging
method for single molecules is technically challenging, but seems to be doable in
the years to come. Improved strategies for signal acquisition like Fourier process-
ing [67-69] and single-shot readout will be crucial to keep acquisition times at a
manageable level.

• Sensing using spins in nanoparticles has led to proof-of-principle measurements of
temperature inside living cells [70,71]. Progress is being made towards monitoring
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of chemical reactions [72,73]. Also, fluorescent defect centers in nanoparticles have
been used for superresolution microscopy [74, 75]. This application does not make
use of any spin properties and merely exploits the fact that the fluorescence of
color centers is photostable. All of these techniques have not found widespread
adoptance yet, presumably because directed attachment to specific parts of a cell
is difficult, owing to the complex surface chemistry of nanoparticles.

• While much work has been done using single spins as detectors for nanoscale signals,
all techniques discussed in this review can be scaled to sensing on the micron-scale,
using ensembles of spins as slightly larger detectors with better sensitivity. This
line of research has led to magnetic microscopy of inclusions in meteorites [76] and
bacteria [77] and, very recently, to NMR spectroscopy on μm-scale samples [78]. We
might soon see commercial magnetic microscopes and microfluidic NMR detectors.
With these detectors, magnetic resonance microscopy could ultimately bridge all
length scales between atomic resolution and the mm-scale resolution of clinical
scanners.

• Finally, the progress of the past decades can be seen as a success of quantum
control. In a first wave, manipulation of quantum states has been achieved in very
clean artificial systems like trapped ions or ultracold atoms in vacuum. In a second
wave, these achievements were extended to some selected solid-state systems. A
logical third challenge could be control of arbitrary spins in arbitrary samples.
Indeed, many streams of work are directed towards this goal. NV centers cannot
only be used to detect nuclear spins, but also to prepare them in a specific state by
polarisation exchange. This could lead to a novel way for nuclear hyperpolarisation
of arbitrary samples, a direction of research that is even starting to be pursued by
industry. If nanoscale magnetic resonance could be pushed down to the level of
single nuclei, solid-state phases could be studied in real materials with atomic
resolution, providing a third way between top-down studies on bulk samples and
bottom-up replication of matter in ultracold atoms. Dynamical decoupling as a
generic tool to tailor the spectral properties of materials could become the key to
translate quantum effects like slow light to a much wider range of materials [79].
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Summary. — Simulating quantum many-body systems on a classical computer
generally requires a computational cost that grows exponentially with the number
of particles. This computational complexity has been the main obstacle to under-
standing various fundamental emergent phenomena in condensed matters such as
high-Tc superconductivity and the fractional quantum-Hall effect. The difficulty
arises because even the simplest models that are proposed to capture those phe-
nomena cannot be simulated on a classical computer. Recognizing this problem in
1981, Richard Feynman envisioned a quantum simulator, an entirely new type of
machine that exploits quantum superposition and operates by individually manip-
ulating its constituting quantum particles and their interactions. Recent advances
in various experimental platforms from cold atoms in optical lattices, trapped ions,
to solid-state systems have brought the idea of Feynman to the realm of reality.
Among those, interacting photons in superconducting circuits has been one of the
promising platforms thanks to their local controllability and long coherence times.
Early theoretical proposals have shown possibilities to realize quantum many-body
phenomena of light using coupled cavity arrays such as Mott to superfluid tran-
sitions and fractional quantum Hall states. State-of-the-art experiments include
realization of interacting chiral edge states and stroboscopic signatures of localiza-
tion of interacting photons in a three-site and a nine-site superconducting circuit,
respectively. Interacting photons also serve as a natural platform to simulate driven-
dissipative quantum many-body phenomena. A 72-site superconducting circuit has
also recently been fabricated to study a dissipative phase transition of light.
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1. – Introduction

Quantum simulation is an emerging interdisciplinary field in physics [1-3]. It aims to
develop a new type of devices that exploit quantum coherence to answer questions about
models that describe complex quantum phenomena that are beyond the reach of a classi-
cal computer. Experimental progress in the past 30 years have made it possible to control
and manipulate individual quantum systems including trapped ions [4], cold atoms in
optical lattices [5], nuclear magnetic resonance (NMR) [6], interacting photons [7], quan-
tum dots [8], superconducting circuits [9], and nitrogen-vacancy centers [10]. These new
exciting developments transit quantum simulation from a theoretical proposal to the
realm of reality.

Below, we first discuss the concept of simulation on a classical computer, its limitation,
and motivation of quantum simulation. We then review various experimental platforms
for quantum simulation. We conclude the section by giving an overview of the lecture
which will be focused on interacting photons in superconducting circuits for quantum
simulation of both in- and out-of-equilibrium quantum many-body systems.

1.1. Computer simulation. – Imitating a complex real-world process or system by
simulating relevant models on a classical computer has been an essential technique for the
development of science and technology. To simulate something, one needs first to develop
a model that describes the characteristics and behavior of such system [11]. By changing
variables of the model in the simulator, one can make predictions about the behavior of
the real complex system. In many cases, these predictions can be used to reduce a high
cost of performing several trial-and-error experiments on the real system. For example,
the drug design process can be drastically speed up by appropriately modeling molecular
systems [12]. An airplane wing can be designed by simulating relevant drag forces via
fluid dynamics models [13].

In some cases, simulation is useful when it is difficult or not possible to perform ex-
periments on a real system. For example, the climate system can be predicted by solving
differential equations that represent essential factors of climate and their interactions
including atmosphere, oceans, land surface, and ice [14]. We note that the act of sim-
ulation itself, i.e., imitating real-world processes or systems, is not necessarily done on
a classical computer. For example, simulating a weightless in the outer space can be
done by aerobatic maneuvers on the Earth that undergo a parabolic motion [15].

1.2. Quantum simulation. – Despite the tremendous success of computer simulation
over the past 70 years from the nuclear detonation process in the Manhattan Project
in World War II [16] to forecasting of prices on financial markets [17], there remains a
large class of systems that are too complex to be simulated by any conceivable classical
computer. In physics, this usually involves simulating systems that are non-linear or
chaotic due to their non-integrability. In quantum mechanics, although the Schrödinger
equation is a linear equation, simulating it generally requires a computational cost that
grows exponential with the number of particles. For example, to describe a wavefunction
of N spin-1/2 particles, one needs to store 2N complex coefficients. Also, one needs
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to perform linear algebra to such vectors in order to evaluate physical observables that
describe the dynamics or even the ground state of the system. This task can be impossible
when N is as small as 50 which requires several petabytes of classical memories [18, 19].
This number is far less than the number of electrons in real materials which are of the
order of 1023. This computational complexity is the main obstacle to understanding
various fundamental emergent phenomena such as high-Tc superconductivity [20] and
the fractional quantum-Hall effect [21].

Recognizing this problem, in 1981 Richard Feynman envisioned an idea of a quantum
simulator, a machine that exploits quantum parallelism and operates by individually
manipulating its constituting quantum particles and their interactions [22]. Predictions
are made by performing appropriate measurements on those particles. Feynman proposed
to quantize both space and time to allow such simulator to be universal, i.e., that can
be programmed to simulate any quantum systems. The idea was later extended by Seth
Lloyd in 1996 [23], who proved that by evolving in small time steps, or trotterization, such
simulator could simulate the dynamics of any local quantum many-body Hamiltonian
with the time scale that grows only polynomially with the number of particles.

Such universal or a “digital” quantum simulator, however, requires full control over
quantum many-body systems and may still be a long time ahead. Alternatively, one
may aim at a less ambitious goal of an “analog” quantum simulator. The idea is to
use reasonably well-controlled quantum systems to simulate only certain classes of quan-
tum systems which are, nevertheless, interesting and cannot be simulated on a classical
computer. Building the latter may be less prone to errors because it does not require
trotterization. Also, phases of matter are typically robust against local perturbation.
Nevertheless, as pointed out in ref. [2], a functioning quantum simulator should i) be
able to mimic a simple model, or a family of simple models, ii) simulate models that are
of some relevance for applications, iii) simulate models that are computationally hard
for classical computers, and iv) allow for broad control of the parameters of the sim-
ulated model. Also, a quantum simulator should allow for validation, for example, by
benchmarking against a classical computer in the regimes where numerical or analytical
techniques exist or against different quantum simulators, ideally implemented in different
platforms which are subjected to different noises.

It might be hard, if not impossible, to prove that a given system cannot be efficiently
simulated with a classical computer. Many quantum many-body systems can be sim-
ulated on a classical computer with approximate numerical methods such as artificial
neural networks [24], tensor networks [25], dynamical mean-field theory, density matrix
renormalization group (DMRG) theory [26], density functional theory [27] and quantum
Monte Carlo [28]. However, they are known to be limited to certain classes of problems.
For example, DMRG is appreciable only to gapped systems in one dimension. Quantum
Monte Carlo does not work with fermionic statistics or frustrated models, due to the sign
problem. Mean-field theory only works when the correlation between sites is weak and
often fails in one dimension.

With this in mind, the models that benefited most from a quantum simulator are
expected to be the ones that involve a large amount of entanglements such as zero-
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temperature ground states of many-body Hamiltonians near the phase transition, non-
equilibrium dynamics of driven or quenched systems, and dissipative dynamics of open
systems. A quantum simulator can, for example, rule out or validate candidate models
such as the Femi-Hubbard model for describing high-temperature superconductivity [29],
check the eigenstate thermalization hypothesis with various quantum many-body sys-
tems [30], and compute accurate calculations of molecular properties for quantum chem-
istry [31,32].

1.3. Platforms for quantum simulation.

1.3.1. Cold neutral atoms in optical lattices. Ultracold atoms in optical lattices represent
one of the most versatile platforms for quantum simulation [5, 33, 34]. Optical lattices
are formed by interfering laser beams in different directions to create a controllable
standing-wave pattern that mimics the crystal lattice of a solid. Atoms can be trapped
in the optical lattice due to an effective periodic potential landscape induced by laser
beams via a dipole moment of the atoms. Ultracold atoms in optical lattices were first
used to simulate the celebrated Mott to the superfluid phase transition in the Bose-
Hubbard model [35]. Subsequent work has shown quantum gas microscopes which enable
fluorescence detection of atoms in single sites [36], quantum magnetism [37], possibilities
to create artificial gauge fields by lattice shaking or by laser-induced tunneling [38],
and realization of the Fermi-Hubbard model [39-42]. The Bose-Einstein condensation
to Bardeen-Cooper-Schrieffer crossover was also observed in the continuum limit [43].
Recently, cold atoms in optical lattices were recently used to study the breakdown of
the thermodynamics description of interacting boson gas in two-dimensional disordered
lattices [44]. Predicting a thermalized to a many-body localized phase transition in such
a system is currently not possible with a classical computer due to the lack of efficient
numerical techniques. A quantum simulator with 51 cold atoms trapped using optical
tweezers has also been realized to observe different ordering in quantum Ising model [45].

1.3.2. Trapped ions. Another approach for atom-based quantum simulators is the use
of trapped atomic ions held in linear radio-frequency traps [46,47]. Here ion crystals are
formed by balancing the Coulomb repulsion between ions and trap confinement force,
allowing them to be accurately controlled and manipulated. A wide range of models has
been simulated in trapped ion systems from spin models [48, 49], to dynamical phase
transitions [50] and discrete time crystal [50]. High controllability in trapped ions also
makes it a promising platform for quantum computing [51, 52]. The number of ions in
a quantum simulator varies by a large factor depending on their controllability. For
example, in 2012 a few hundreds of trapped ions with no local control were used to
realize the quantum Ising model [53], while a fully-programmable quantum simulator
was only recently realized with five atoms in 2016 [54]. This controllability is also a
crucial factor for building a scalable quantum simulator in addition to the number of
constituting atoms. Building a scalable quantum processor with high controllability and
long coherent time over a few hundred qubits and defining relevant real-world applications
are near-term challenges faced by all quantum technologies platforms [55].
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1.3.3. Solid-state systems. There are also platforms for quantum simulation that are
based on solid-state systems. For example, nitrogen-vacancy centers in diamond have
been recently used to observe signatures of discrete time crystal [45]. Donor spins in sili-
con have been used together with Nuclear Magnetic Resonance technique to demonstrate
quantum gates between two qubits [6]. A programmable quantum processor consisting of
two single-electron-spin qubits in a silicon/silicon germanium (Si/SiGe) double quantum
dot has been illustrated [56]. The Fermi-Hubbard model has also been simulated using
a quantum dot array in a GaAs/AlGaAs heterostructure semiconductor [8].

1.3.4. Interacting photons. In parallel to the above progress, a new type of quantum
simulators based on photons and hybrid light-matter excitations, known as polaritons,
has been slowly emerging [57,58], inspired by advances in the field of quantum nonlinear
optics and cavity quantum electrodynamics (QED) in the last two decades [7]. Pioneer
theoretical works have shown possibilities to realize strongly correlated states of lights
in coupled resonator arrays (CRAs) and to observe the Mott to the superfluid phase
transition of light [59-61]. Subsequent works extend the results to a family of many-body
phenomena including an artificial field for the fractional quantum Hall effect [62-64],
effective spin models [65-68], and topological transport of quantum states [69]. Signa-
tures of localization of interacting photons in a quasi-periodic potential have recently
been observed with a nine-site superconducting circuit by directly measuring statistics
of eigenenergies and spreading of energy eigenstates [70]. This platform will be the main
focus of this lecture.

Complementarily with cold atoms, interacting photons provide a natural setting for
simulating open quantum systems because light-matter systems dissipate to the environ-
ment and because they can be driven by external fields. The coupling to the environ-
ment is usually weak, and the bath is memoryless. Consequently, the system may reach
a dynamically-stable steady state that depends on the symmetries of the system [71].
Early theoretical works have shown that such steady states manifest various quantum
many-body phases [72-77] and can exhibit dissipative phase transitions (DPT) [78, 79].
A 72-site nonlinear superconducting circuit has recently been fabricated to study DPT
with light [80].

Perhaps, the most promising platform for realizing interacting photons is supercon-
ducting circuits where conventional optical and electron-beam lithography is used, allow-
ing CRAs to be designed with great flexibility and high controllability [9]. The circuit
is made superconducting by cooling to few milli-kelvins using a dilution refrigerator.
Photonic modes can be realized from the co-planar transmission line or an LC circuit
which effectively acts as a Fabry-Perot microwave cavity [81]. An “artificial” two-level
atom can be made from the use of Josephson junctions [82]. Both strong coupling [83]
and ultra-strong coupling [84] between an artificial atom and transmission line have also
been reported. Non-linear coupled resonator arrays up to 19 sites have been implemented
using superconducting circuits [70,85,86].

We note that there is also active research in the field of exciton polaritons in semicon-
ductor materials, realizing quantum fluid of light [87]. However, the interaction strength
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Fig. 1. – Two types of non-analyticity at a quantum phase transition. Eigenenergies of Ĥ =
Ĥ1 + gĤ2 as a function of g in the case of (a) [Ĥ1, Ĥ2] = 0 and (b) [Ĥ1, Ĥ2] 
= 0.

of such a system is typically weak at a few-photon level. Nevertheless, there are possi-
bilities to enhance such interaction, for example, by resonantly coupling a pair of cavity
polaritons to a biexciton state [88]. Experiments in this platform have led to realization
of exotic phases of matter such as non-equilibrium Bose-Einstein condensation [89, 90]
and non-equilibrium polariton superfluidity [91,92].

1.3.5. Conclusions. In this section, we have discussed several platforms for quantum
simulators. Next, we will discuss the basic concept of quantum phase transition with
a specific example of the Mott to the superfluid phase transition in the Bose-Hubbard
model. We then discuss the basic concepts in light-matter interaction, including field
quantization in a cavity QED, the Jaynes-Cummings model, and photon blockade. We
then review the early proposal for Mott to superfluid transitions of light, state-of-the-art
experiments, and various works on both equilibrium and driven-dissipative many-body
phases of light in CRAs. Lastly, we discuss circuit quantization and recent experimental
progress in achieving interacting photons in superconducting circuits.

2. – Quantum phase transitions

Identifying phases of matter is one of the main goals in condensed matter and material
science. During a phase transition, specific properties of the material change abruptly as
a result of the change of some external parameters. In classical physics, these parameters
could be, for example, temperature, pressure, electric or magnetic fields. Classical phase
transitions are driven by thermal fluctuations and cease to exist at zero temperature.
Quantum phase transitions (QPTs), on the other hand, exist at zero temperature and
are driven by quantum fluctuations [93]. Although, strictly speaking, absolute zero
temperature is not physically realizable, signatures of QPTs can be observed when the
energy scale of the thermal fluctuation kBT is much smaller than that of the quantum
fluctuations �ω, where ω is a typical frequency of the quantum oscillation.
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To concretize the above description of QPT, let us consider a Hamiltonian of the form

Ĥ = Ĥ1 + gĤ2,

where g is a dimensionless parameter. The QTP deals with the non-analytic dependence
of the ground-state energy,

E(g) = 〈G|Ĥ|G〉,

as the parameter g changes. Here |G〉 is the ground state of the system, i.e., Ĥ|G〉 =
E(g)|G〉. In the case of [Ĥ1, Ĥ2] = 0, non-analyticity can happen due to crossing of
eigenvalues, see fig. 1. In the case of [Ĥ1, Ĥ2] �= 0, non-analyticity can happen due
to the closing of the energy gap between the ground state and the first excited state
which happens in the thermodynamic limit. The latter is more common and has a closer
analogy to classical phase transitions, while the former often occurs in conjunction with
the latter. The QPT is usually accompanied by an abrupt change in the correlations in
the ground state.

2.1. Example: the Mott-to-superfluid phase transition. – The Fermi-Hubbard model
was originally proposed in 1963 by Hubbard [94] to approximately describe a conducting
to an insulating QPT of electrons in solids. Its bosonic version was proposed in the same
year by Gersch and Knollman [95] and was named the Bose-Hubbard model. The phase
diagram of the latter was first calculated in 1989 [96] and the corresponding QPT was
realized in cold atoms in optical lattices in [35]. Specifically, the Bose-Hubbard (BH)
model describes the system of N bosonic particles moving on a lattice consisting of L

lattice sites,

ĤBH = −J
∑
〈i,j〉

â†
i âj − μ

L−1∑
i=0

n̂j +
U

2

L−1∑
i=0

n̂j(n̂j − 1),(1)

where âj (â†
j) is a bosonic annihilation (creation) operator at site j, n̂j = â†

j âj is the
number operator at site j, 〈. . .〉 denotes the sum over nearest-neighbour, J is the hopping
strength between site i and j, μ is the chemical potential, and U is the on-site interaction.
The first term in eq. (1) describes kinetic energy of particles, the second term determines
the number of particles in the ground state, and the last term describes interaction
between particles.

To understand different phases exhibited by the BH model, let us first consider the
limit J = 0. In this case, ĤBH reduces to the sum of on-site Hamiltonians, i.e., ĤBH =∑

j ĥj , where ĥj = −μn̂j + U
2 n̂j(n̂j − 1). Hence, the ground state takes the form of

a product state |G〉 =
∏

j |n〉j , where |n〉j is an n-particle Fock state at site j, i.e.,
n̂j |n〉j = n|n〉j . The corresponding ground state energy is E(n) = L[−μn + U

2 n(n − 1)].
As shown in fig. 2-b, there are different level crossing between states with different integer
fillings n for μ = nU . The ground state has an energy gap, hence they should be stable
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Fig. 2. – The Bose-Hubbard model. (a) A sketch of cold atoms in optical lattices realizing
the Bose-Hubbard model. (b) The mean-field energy as a function of μ/U for three different
numbers of particles n = 1, 2, 3. The mean-field energy landscape in the Mott and the superfluid
phase are shown in (b) and (c), respectively.

against small changes in the Hamiltonian such as small tunneling. This integer-filling
ground states are known as Mott insulating states.

Another phase can be revealed by considering the limit U = 0, where the Hamil-
tonian is reduced to the tight-binding model Ĥtight binding = −J

∑
〈i,j〉 â†

i âj − μ
∑

j n̂j .
The Hamiltonian can be diagonalized by applying the quantum Fourier transform âk =
1√
L

∑ikj
âj . The Hamiltonian is then casted into the form Ĥtight binding =

∑
k ωkâ†

kâk,
where ωk is a constant depending on μ and k. For example, for a one-dimensional pe-
riodic lattice, we have ωk = −μ − 2J cos(k). For μ, J > 0, the ground state is then
|G〉 = (â†

k=0)
N |000 . . .〉 which is a product state in the momentum space, not in the

position space as in the Mott. This state is known as the superfluid state.

2.2. The mean-field phase diagram. – Now let us consider an approximate method to
calculate the many-body phases for the full range of J/U . The key idea is to decompose
âj = ψ + δâj , where δâj is the fluctuation from the mean value ψ ≡ 〈âj〉. The mean-field
approximation proceeds by dropping the second-order terms in δâj in the Hamiltonian,
assuming that correlations between sites can be ignored. This approximation becomes
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exact in infinite dimensions, but often fails in one-dimension. To see how this leads to
the sum of approximated on-site Hamiltonians, let us write the hopping term as

â†
i âj + H.c. = (ψ∗ + δâ†

i )(ψ + δâj) + H.c.(2)

= ψ∗ψ + δâ†
iψ + ψ∗δâj + δâiδâj + H.c.

≈ ψ∗ψ + δâ†
iψ + ψ∗δâj + H.c.

≈ ψ∗ψ + (â†
i − ψ∗)ψ + (âj − ψ)ψ∗ + H.c.

≈ â†
iψ + â†

jψ − ψψ∗ + H.c.

The full Hamiltonian is then written as

ĤBH ≈ ĤMF
BH =

∑
j

(
ĥ

(0)
j + V̂j

)
,

where ĥ
(0)
j = −μn̂j + U

2 n̂j(n̂j − 1)− Jzψ∗ψ and V̂j = −Jz(ψ∗âj + ψâ†
j) with z being the

coordination number, or the number of sites connected to site j via the hopping term.
We then write the mean-field energy as

En = E(0)
n + E(1)

n + E(2)
n + . . . .

By doing perturbation theory with respect to the V -term, the zeroth-order eigenenergy
is

E(0)
n =

⎧⎨
⎩

0, for μ < 0,

−μn +
U

2
n(n − 1) + Jzψ2, for U(n − 1) < μ < Un.

The first-order eigenenergy is zero E
(1)
1 = 〈n|V̂j |n〉 = 0. The second-order eigenenergy is

E(2)
n = ψ2

∑
n′

|〈n|V̂j |n′〉|2
E

(0)
n − E

(0)
n′

= (Jzψ)2
(

u

U(n − 1) − μ
+

n + 1
μ − Un

)
.

The mean-field energy is then En = const + m2ψ2 + . . ., where

m2

Jz
= 1 +

n

Ũ(n − 1) − μ̃
+

n + 1
μ̃ − Ũn

,

with μ̃ = μ/Jz and Ũ = U/Jz.
As shown in fig. 2-c and fig. 2-d, for m2 > 0 En, is minimized when ψ = 0. Hence the

ground state has U(1) symmetry, i.e., invariant under the transformation ψ → eiθψ, and
no quantum fluctuation between sites corresponding to the Mott insulating states. For
m2 < 0, En is minimized when ψ �= 0, implying that the ground state has a broken U(1)
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Fig. 3. – Phase diagram of the Bose Hubbard model. The mean-field phase diagram showing
the Mott and the superfluid phase is shown in (a). A more exact phase diagram calculated from
DRMG for the one-dimensional system is shown in (b). The result is reproduced from ref. [97].

symmetry corresponding to the superfluid state. The phase boundary can be computed
by solving the equation m2 = 0. The corresponding mean-field phase diagram is shown
in fig. 3-a. Figure 3b shows the phase diagram for a one-dimensional Bose-Hubbard
lattice calculated by a more exact density-matrix-renormalization-group (DMRG) tech-
nique [97], taking into account correlations between sites. We can see that the mean-field
theory can give a qualitative approximation of the phase diagram.

3. – Quantum many-body phases of light

3.1. Light-matter interaction. – Having discussed phases of matter, we now turn to
the experimental realization of photon-photon interactions and how many-body phases of
light can emerge. Engineering strong interactions at progressively low light intensity has
been one of the greatest challenges in optical science. In classical regime, photon-photon
interaction is achieved by shining an intense light beam to a non-linear material so that
the optical properties of the material such as refraction and absorption are modified and,
in turn, lead to power-dependent light propagation through the material [98]. Specifically,
the polarization P of non-linear media, defined as dipole moments per unit volume, can
be written as

P/ε0 = χ(1)E + χ(2)E2 + χ(3)E3 + . . . ,(3)

where ε0 is the electric permittivity of free space, χi is the electric susceptibility of
order i-th, and E is the input electric field. The higher-order terms account for non-
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linear optical phenomena such as second- or higher-harmonic generation, sum-frequency
generation, self-focusing, and optical solitons. However, as the light intensity is weaker,
the higher-order terms in eq. (3) are suppressed, and eventually, the material only exhibits
a linear response, making it difficult to achieve strong interaction at a few photon levels.

Another way to see this is to consider the probability p of one photon getting absorbed
by an atom. At resonance, this probability is maximized and proportional to the ratio
between the wavelength of light squared (λ2) and the transverse area of the laser beam
(d2), i.e., p ∼ λ2/d2. The number of atoms required to modify one photon is then
N ≈ 1/p. Due to the diffraction limit that prevents the focusing of the light beam
below the wavelength, this probability is typically small p � 1. Recent experiments have
achieved p ≈ 0.01–0.1 by concentrating laser light to a small area [99-102].

In the limit p → 1, the presence of one atom can substantially modify a single incident
photon. Since a single two-level atom can only absorb one photon at a time, a pair of
incident photons will experience an atomic response that is very different from that
of a single photon, hence realizing nonlinearity at the two-photon level. One way to
achieve this is to use a reflective cavity that enhances the interaction probability p by
the number of bounces, F , that the photon makes inside the cavity before leaking out.
The probability p approaches unity when η � 1, where η = Fλ2/d2 is the cooperativity.

3.1.1. Field quantization: mode of a simple optical resonator. Let us consider an optical
cavity consisting of two parallel perfectly reflecting mirrors, lying on the x-y plane at
z = 0 and z = L, see fig. 4. The electric field and the magnetic field inside the cavity
take the form

E(r, t) = exEx(z, t),

B(r, t) = eyBy(z, t),

respectively. By solving Maxwell’s equations assuming the boundary conditions
Ex(0, t) = Ex(L, t) = 0, we get

E(m)
x (z, t) = E0 sin(ω(m)

c t) sin(kmz),

B(m)
y (z, t) = B0 cos(ω(m)

c t) cos(kz),

where km = mπ/L, m is a positive integer, ω
(m)
c = ckm, c is the speed of light, E0 is

the amplitude of the electric field, and B0 = E0/c is the amplitude of the magnetic field.
The energy of the electromagnetic field inside the cavity is

E(m) =
1
2

∫
dV

[
ε0|E(m)

x (z, t)|2 +
1
μ0

|B(m)
y (z, t)|2

]

=
1
4
ε0E

2
0V
(
sin2(ω(m)

c t) + cos2(ω(m)
c t)

)
=

1
2

[
(p(m)(t))2 + (ω(m)

c )2(q(m)(t))2
]
,
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Fig. 4. – A sketch of a simplified optical cavity consisting of two plane mirrors at z = 0 and
z = L.

where V is the volume of the cavity, q(m)(t) =
√

ε0V

2(ω
(m)
c )2

E0 sin(ω(m)
c t), and p(m)(t) =√

V
2μ0

B0 cos(ω(m)
c t). One can see that the energy E(m) takes the form of the energy

of a simple harmonic oscillator where p(m)(t) and q(m)(t) are position and momentum
coordinates, respectively. From now on we will consider the lowest mode m = 1 and drop
the superscript (m).

Next, we perform second quantization by promoting p(t) and q(t) to operators, i.e.,

E(m) → Ĥcavity =
1
2
(
p̂2 + ω2

c q̂2
)
,

where [q̂, p̂] = i�. We then define the ladder operators as

â† =
ωcq̂ − ip̂√

2�ωc

,

â =
ωcq̂ + ip̂√

2�ωc

,

where [â, â†] = 1. The Hamiltonian is then written as Ĥcavity = �ωc(â†â + 1
2 ) which is

the form of a quantum harmonic oscillator. We will set � = 1 from now on for simplicity.

3.1.2. The Jaynes-Cummings interaction. The system consisting of a two-level atom
interacting with photons trapped in an optical cavity, as shown in fig. 5, is described by
the Hamiltonian

ĤJC = Ĥcavity + Ĥatom + Ĥint,

where

Ĥcavity = ωc

(
â†â +

1
2

)
(4)

is the Hamiltonian of the cavity. ωc is the fundamental frequency of the cavity. The
two-level atom is described as

Ĥatom = ωaσ̂+σ̂−,
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Fig. 5. – The Jaynes-Cummings model. (a) A sketch of an empty cavity with (b) its linear
spectrum. When the modes of the cavity coupled to the two-level system, the total system is
described by the Jaynes-Cummings model (c). (d) The resulting energy spectrum has non-linear
splitting proportional to g

√
n. An external laser with frequency ωlaser = ωc − g will be resonant

with the one-excitation state |1,−〉 but off-resonant with the two-excitation state |2,−〉 leading
to the photon blockade effect where only one photon can enter the cavity.

where σ̂+ = |e〉〈g| and ωa is the energy difference between the two eigenstates. The
atom interacts with the cavity mode by a dipole transition operator which is defined as
d̂ = d∗σ̂+ +dσ̂−, where d is the dipole moment. The interaction between the atom and
the cavity is described by the dipole interaction:

Ĥint = −d̂ · Ê(z, t)

= −E0(â + â†) sin
(πz

L

)
d̂

= g(σ̂+ + σ̂−)(â + â†)

= g(σ̂†â + σ̂−â + σ̂+â† + σ̂−â†),

where g = −E0 sin(πz
L ) is the light-matter coupling constant. E0 is the amplitude of

the field in the cavity of length L. z is the position in the cavity. We can see that
Ĥint contains terms that do not conserve the number of excitation. To see the effect of
these terms, we move from the Schrödinger picture into the interaction picture defined
by Ĥcavity + Ĥatom, i.e.,

Ĥint(t) = ei(Ĥcavity+Ĥatom)tĤinte
−i(Ĥcavity+Ĥatom)t(5)

= g
(
âσ̂−e−i(ωc+ωa)t + âσ̂+ei(ωa−ωc)t + H.c.

)
.

The terms â†σ̂− and âσ̂+ describe an emission and an absorption process, respec-
tively. They oscillate with a slow frequency ωa − ωc, while the counter-rotating terms
(âσ̂−e−i(ωc+ωa)t + H.c.) do not conserve number of excitations and quickly oscillate.
When |ωc − ωa|, g � ωc + ωa, the latter terms can be ignored, giving rise to a solvable
model known as the Jaynes-Cummings (JC) model [103, 104] first envisioned in 1963.
This approximation is known as the rotating-wave approximation. The JC model is then
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written as

ĤJC = ωaσ̂+σ̂− + ωcâ
†â + g(â†σ̂− + âσ̂+).

3.1.3. Eigenstates of the Jaynes-Cummings model. To obtain the eigenstates and the
eigenenergies of the JC model, we first notice that the Hamiltonian ĤJC commutes with
the total number excitation operator

N̂ = σ̂+σ̂− + â†â.

For n excitations, there are only two possible states which are i) |ψ1〉 = |n − 1, e〉 with
n− 1 photons in the cavity and the atom is in the excited state and ii) |ψ2〉 = |n, g〉 with
n photons in the cavity and the atom is in the ground state. The matrix elements of
ĤJC in this subspace,

H
(n)
JC,ij = 〈ψi|ĤJC|ψj〉(6)

for i, j ∈ {1, 2}, are written as

Ĥ
(n)
JC =

(
(n − 1)ωc + ωa g

√
n

g
√

n nωc

)
.

Diagonalizing this Hamiltonian, we obtain the energy eigenstates as

E±(n) = ωc

(
n − 1

2

)
± 1

2

√
(ωa − ωc)2 + g2n.(7)

with the energy eigenstates

|n,+〉 = cos
(αn

2

)
|n − 1, e〉 + sin

(αn

2

)
|n, g〉,

|n,−〉 = − sin
(αn

2

)
|n − 1, e〉 + cos

(αn

2

)
|n, g〉,

where αn = tan−1(2g
√

n/(ωa − ωc)). Excitations in |n,±〉 are a collective mode of
photonic and atomic excitations called a polariton. The cavity is said to be a non-linear
cavity because its eigenenergies now have non-linear dependence in n. The non-linearity
becomes maximized at resonance ωa = ωc, i.e., E±(n) = ωc(n−1/2)± 1

2g
√

n + 1. In the
large detuning limit |ωa − ωc| � g

√
n, the eigenenergies becomes approximately linear

in n, i.e.,

E±(n) ≈ ωcn ± 1
2
|ωa − ωc|.
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Fig. 6. – Quantum Rabi oscillation in a microwave cavity. (a) A simple diagram of the experi-
ment. Rubidium atoms effuse from the oven O and circular Rydberg atoms are prepared in the
box B. The atoms cross the cavity C made of two superconducting mirrors. (b) The observed
Rabi oscillation according to the Hamiltonian in eq. (6). The result is reproduced from ref. [109].

In this limit, the cavity modes are decoupled from the atom. In addition, the spectrum
is also approximately linear for a large number of photons n � 1, where

√
n + 1 ≈ √

n

since the energy gap between adjacent energy levels is approximately the same, e.g.

E±(n + 2) − E±(n + 1) ≈ E±(n + 1) − E±(n) ≈ ωc ± 1
2
g
√

n.

3.1.4. Early experimental realizations of strong light-matter coupling. Signatures of the
atom-cavity interaction were first observed in the 1980s via the change in the spontaneous
emission rate of an atom when placed in a cavity [105-107]. The cavity mode is said to
be “strongly coupled” to the atom when the light-matter coupling is much larger than
dissipation rate both to the input and the output waveguides K and to free space γ, i.e.,

g2 > Kγ.

In this limit, a single photon in the cavity has enough coherent time to allow reversible
exchange between the atomic and the photonic excitation before irreversibly leaking out
the cavity. Signatures of the strong light-matter interaction were first observed in the
optical regime in 1992 via normal mode splitting [108] and in the microwave regime in
1996 via quantum Rabi oscillation [109], see fig. 6. The former led to the first experi-
mental demonstration that single atoms can introduce a phase shift to a single photon
by approximately π/10 [110], while the latter led to the generation of Einstein-Podolsky-
Rosen pair of atoms in a controllable manner [111]. In superconducting systems, strong
coupling between a single artificial atom and a single microwave photon was later realized
in 2004 [83].

3.1.5. Photon blockade effect. Photon blockade refers to a situation in which interac-
tion between photons is so strong that the presence of a single photon in a cavity can
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Fig. 7. – Experimental realization of photon blockade. (a) A simple diagram of the experiment.
(b) The intensity correlation function g(2)(τ) as a function of the time delay τ between two
photons. g(2)(τ) drops to near zero at τ = 0, indicating the probability of detecting two photons
at the same time is strongly suppressed. The result is reproduced from ref. [113].

completely “block” another photon from entering the cavity. The term is used in anal-
ogy to the Coulomb blockade effect [112] where a single electron on a small metallic or
semiconductor device can block the flow of another electron when the charging energy
is much larger than the thermal energy. To understand photon blockade in the Jaynes-
Cummings model, imagine the cavity and the atom is initially in the vacuum state and
the ground state, respectively, i.e., |0, g〉. A laser beam is then shined to the system with
the frequency that is resonant with one of the one-excitation eigenstates, e.g.,

ωlaser = E−(1) = ωc − 1
2
g

(assuming ωa = ωc). Due to the resonance condition, the first photon that enters the
cavity will excite the cavity to the state |1,−〉. However, the frequency of the second
photon is now off-resonant with that of the two-excitation state |2,−〉,

E±(2) − E−(1) = ωc ∓ 1
2
g(
√

2 ∓ 1) �= ωlaser.

Hence the second photon is prevented from entering the cavity and the two photons
effectively “repel” each other. The first experimental breakthrough that showed direct
signatures of photon blockade was done in 2005 [113], through the anti-bunching statistics
of transmitted photons, see fig. 7. The result marks an exciting new era in nonlinear
quantum optics.

3.1.6. Quantum nonlinear optics with atomic ensembles. Before moving on to quantum
many-body physics with light, we would like to mention an alternative approach to en-
gineer strong light-matter interaction where photons are stored in an ensemble of atoms
which exhibits the so-called electromagnetically induced transparency (EIT) [114]. In
EIT, the optical response of an otherwise opaque atomic gas is modified by an extra
control field. This control field is strong and induces coherent coupling between a weak
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Fig. 8. – The Jaynes-Cummings-Hubbard model (a) A sketch of a coupled cavity array, imple-
menting the Jaynes-Cummings-Hubbard model. (b) Energy spectrum of the JCH model. (c)
The order parameter Var(Ni) of the lowest-energy state in the unit-filled manifold as a function
of detuning (ωa − ωc)/g for sites 3-7 with and without decay. The order parameter exhibits a
jump from zero to a finite value, corresponding to the Mott and the superfluid phase, respec-
tively. The transition gets shaper as the system’s size is increased as expected from quantum
phase transition. The results are reproduced from ref. [59].

probe pulse and atomic states leading to collective light-matter excitations, called polari-
tons. The latter results in a drastically reduced group velocity of the probe field, much
reduced linear susceptibility χ(1), and greatly enhanced nonlinear susceptibility χ(3). Ef-
fective strong polariton-polariton interaction is then induced by exciting the atoms to
the metastable Rydberg state with a high principal quantum number of approximately
100 [115]. The strong interaction between two Rydberg atoms that are separated by
less than the blockade radius introduces an energy shift when two of them are excited.
This energy shift is maximized when both controlled field and probe field are resonant
with the corresponding atomic states. The latter prevents both of them to get excited
simultaneously. Effectively, each Rydberg atom behaves like a “superatom” consisting
of Na atoms within the Rydberg radius but only one excitation, resulting in enhanced
cooperativity of η = Naλ2/d2.

In addition to the above Rydberg blockade, when the control laser is detuned from
resonance, it is possible to use EIT to engineer effective distance-dependent interaction
between photons. The attractive interaction between photons has been realized in this
way and two-photon bound states have been observed [116]. In the case of repulsive
interaction, it is predicted that photon crystallization could be formed [7].

3.2. Mott-to-superfluid transition of light in coupled resonator arrays. – Having real-
ized strong photon-photon interactions, it is natural to ask if photons can form many-
body states in analogy to real atoms in solid state. Pioneer works explored this question
by envisioning an array of coupled nonlinear cavities both with the Kerr type [60] and
the Jaynes-Cummings type [59, 61]. The latter, as shown in fig. 8-a, is described by the
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Hamiltonian,

ĤJCH =
L−1∑
j=0

(
ωaσ̂+

j σ̂−
j + ωcâ

†
j âj + g

(
â†

j σ̂
−
j + âj σ̂

+
j

))
− J

L−2∑
j=0

(
â†

j âj+1 + H.c.
)

,

where L is the size of the system, J is the hopping strength of photons between two
adjacent cavities, σ+

j (σ−
j ) is the raising (lowering) operator for the atom at site j, and

âj (â†
j) is a bosonic annihilation (creation) operator at site j. The model is known as

the Jaynes-Cummings-Hubbard (JCH) model. ĤJCH commutes with the total number
of excitations N̂ =

∑
j N̂j , where

N̂j = â†
j âj + σ̂+

j σ̂−
j .

Hence, as shown in fig. 8-b, the eigenspectrum of ĤJCH are grouped into manifold labeled
by the filling factor n̄ = 〈N̂〉/L, where 〈. . .〉 denotes an expectation value over a given
eigenstate. It is important to recall that when deriving the Jaynes-Cummings interaction
we have assumed that ωa and ωc are the largest energy scale in the system. This implies
that the ground state of ĤJCH is the vacuum, as depicted in fig. 8-b.

To observe many-body characteristics of ĤJCH, one can consider the lowest-energy
state |G〉n̄=1 in the unit-filled manifold. At resonance and g � J , photon blockade
prevents two photonic excitations at the same cavity, effectively switching off the hopping
process and leading to the Mott-like ground state, i.e.,

|G〉n̄=1 = |1,−〉 ⊗ |1,−〉 . . . ⊗ |1,−〉.

This state can be prepared by sending a π/2 pulse at frequency ωa − g to each cavity to
excite the vacuum state |0, g〉 to the lower polariton state |−1〉. To observe the superfluid
behavior of photonic excitations, one can adiabatically switch on either the coupling g or
the detuning ωa − ωc via, say, a Stark shift from an external field. In this limit, photon
blockade is suppressed and the system is effectively described by the tight-binding model

ĤJCH ≈ −J
∑

j

(
â†

j âj+1 + H.c.
)

.

The Mott-to-superfluid phase transition can then be probed by measuring the fluctuation
of the number of excitations, i.e.,

Var(Ni) =
√
〈N̂2

j 〉 − 〈N̂j〉2,

see fig. 8-c. Note that, unlike atoms in the Bose-Hubbard lattice discussed in sect. 2.1,
the number of excitations, in this case, is conserved. Hence the order parameter 〈ai〉
always vanishes both in the Mott and the superfluid phase.
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Fig. 9. – Phase diagram of the Jaynes-Cummings-Hubbard model. The mean-field phase dia-
grams with different detuning Δ ≡ ωa −ωc = 0,−2J, 2J are shown in (a)–(c), respectively. The
results are reproduced from ref. [61]. The DRMG phase diagram for the one-dimensional system
with Δ = 0 is shown in (d). The result is reproduced from ref. [117].

3.2.1. The mean-field phase diagram. To make a more explicit analogy to the atoms
in the Bose-Hubbard lattice, one can introduce the chemical potential term to the JCH
model [61]. Note that this is done by hand since photons do not naturally have a chemical
potential. Nevertheless, a possibility to engineer one has been proposed [118]. The JCH
model with the chemical potential is written as

ĤGC
JCH = ĤJCH − μN̂,

where μ is the chemical potential and the label “GC” stands for the grand canonical
potential. ĤGC

JCH still commutes with N̂ . However, it is now possible that the ground
state of the system is not the vacuum because the chemical potential term introduces an
energy shift of −μn̄L to the excited states of ĤJCH. This removes the need of restricting
ourselves to the n̄ = 1 manifold as before.

We then proceed to calculate the ground-state phase diagram of ĤGC
JCH by applying

the mean-field approximation ĤGC
JCH ≈∑j ĤMF

JCH(j), where

ĤMF
JCH(j) = (ωc − μ)â†

j âj + (ωa − μ)σ̂+σ̂− + g(â†σ̂− + âσ̂+)(8)

−2J(ψâ2 + ψ∗â − |ψ|2).

To numerically compute the phase diagram, we first write down ĤMF
JCH(j) in a matrix

form, keeping up to nmax excitations. For example, for nmax = 1 the matrix takes the
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form

ĤMF
JCH(j) =

⎛
⎜⎝

0 0 −2Jψ

0 ωa − μ g

−2Jψ∗ g ωc − μ

⎞
⎟⎠ ,

where |g, 0〉 = (1, 0, 0), |e, 0〉 = (0, 1, 0), and |e, 1〉 = (0, 0, 1). For nmax = 2 the matrix
takes the form

ĤMF
JCH(j) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 −2Jψ 0 0

0 ωa − μ g −2Jψ 0

−2Jψ∗ g ωc − μ 0 −2
√

2Jψ

0 −2Jψ 0 ωa + ωc − 2μ
√

2g

0 0 −2Jψ
√

2g 2ωc − μ

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The next step is to numerically obtain the ground state energy as a function of the
mean-field energy E [ψ] and find ψc that minimizes E[ψ]. The process is then repeated
until ψc is converged with nmax. The mean-field phase diagram of ĤGC

JCH as calculated in
ref. [61] is shown in fig. 9-a. A more accurate phase diagram was calculated numerically
using DMRG in ref. [117] and analytically in ref. [119].

3.2.2. Existing works on equilibrium many-body phases of interacting photons. Following
the pioneer works, there has been several work investigating various aspects of the JCH
model including many-body dynamics [120-122], ground-state entanglement [123, 124],
critical exponents at the phase transition [125] and its applications for quantum infor-
mation processing [126, 127]. Phase transitions in the JCH model and the BH model
have been shown to be in the same universality class. As shown in [59] in the Mott
regime, the JCH model also simulates the standard XY spin model where the presence
and the absence of a polariton in each cavity represent the state of spin up and down,
respectively. Subsequent works also show that the anisotropic Heisenberg spin model
can be simulated using coupled cavity arrays where each cavity contains a three-level
system [65-68]. Topological pumping of interacting photons to reliably transport Fock
states is discussed in ref. [69]. Artificial gauge field for photons can be engineered in
a 2D array using an external drive that controls the hopping phase of photons. When
combined with photon blockade, the ground state of the system can be mapped to the
Laughlin state, simulating the fractional quantum Hall state of light [62,63]. Such com-
bination has been realized with two microwave photons in a three-site superconducting
circuit chip [64].

3.2.3. State-of-the-art experiments. Here we briefly review two experimental works
that demonstrate exceptional control and a long coherent time of interacting photons in
superconducting circuits.
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Chiral ground-state currents of interacting photons in a synthetic magnetic field [64].
Using two interacting photons in a three-site superconducting circuit (see fig. 10-a), the
authors have realized two basic ingredients for simulating fractional quantum Hall states
of light, i.e., large interactions in the presence of a large magnetic field. The resulting
ground states exhibit chiral current of two hardcore photons, where the probability of
two photons being in the same site is strongly suppressed, see fig. 10-b. The artificial
magnetic field is created by periodically modulating the hopping strength between two
sites [128], i.e.,

Ĥchiral(t) =
3∑

j=1

ωjn̂j +
∑
j,k

Jjk(t)(â†
j âk + H.c.) − U

2

3∑
j=1

n̂j(n̂j − 1),(9)

where

Jjk(t) = J0 cos(Δjk + φjk),

with Δjk = ωj −ωk. J0 and φjk are constants. To understand how the effective magnetic
field is derived, let us consider the Hamiltonian of a pair of qubit

Ĥ = ωn̂1 + (ω + Δ)n̂2 + J0(eiΔt+iψ + e−iΔ−iφ)(â†
1â2 + H.c.) − U

2

2∑
j=1

n̂j(n̂j − 1).

We then move to a rotating frame via the unitary transformation e−iΔn̂2t. The Hamil-
tonian in the rotating frame reads

Ĥ = ω(n̂1 + n̂2) + J0(eiΔt+iφ + e−iΔ−iφ)(â†
1â2e

−iΔt + H.c.) − U

2

2∑
j=1

n̂j(n̂j − 1).

If J0 � Δ, we can apply the rotating-wave approximation and arrive at

Ĥ = ω(n̂1 + n̂2) + J0(â
†
1â2e

−iφ + H.c.) − U

2

2∑
j=1

n̂j(n̂j − 1).

Hence for a three-site lattice with a periodic boundary condition, the total “artifical”
magnetic flux is Φ = φ12 +φ23 +φ31. In the experiment, the sites in the superconducting
chip are inductively coupled to each other and can be tuned in nanosecond timescale using
an external (real) magnetic field. The coupling Jjk(t)/2π can take any value between
−55 MHz and +5 MHz, including zero. The initial state is prepared by applying a π/2
pulse at the first and the second site.

Spectroscopic signatures of localization with interacting photons in superconducting
circuits [70]. Statistical thermodynamics is one of the pillars of modern physics in
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Fig. 10. – Chiral edge states of interacting photons in superconducting circuits. (a) An optical
image of the superconducting circuit made by standard nano-fabrication techniques. It can be
described by the Bose-Hubbard Hamiltonian as shown in eq. (9). (b) Time evolution showing
chiral current of two interacting photons. PQj is the probability of finding one photon at site j.
Two photons are initialized at sites 1 and 2 by applying a π/2 pulse to the corresponding sites.
The chiral current can be understood by looking at the current of the hole, initially located at
site 3. The results are reproduced from ref. [64].

describing physical systems with a large degree of freedom. Its fundamental postulate
states that all accessible microstates associated with a given macro-state have equal
probability. In quantum physics, it has been observed that quantum many-body systems
would often evolve and reach a thermal equilibrium over time, regardless of a starting
state. However, disorders can prevent those systems from thermalization. The mech-
anism is known as many-body localization (MBL) [129, 30, 130-139]. Unlike quantum
phase transitions in the equilibrium case such as the Mott to the superfluid phase tran-
sition, the thermalized to the MBL phase transition is dynamical and involves all the
many-body energy eigenstates of the system.

Signatures of MBL have been observed in cold atoms in optical lattices [44, 140,
141], trapped ions [142] and superconducting qubits [143]. In all cases, a non-thermal
evolution is probed by monitoring the time dynamics of an initially localized state. In the
thermalized phase, the system spreads throughout the lattice over time leading to zero
population imbalance between sites. When the disorder is increased, and the system
is in the MBL phase, the system shows traces of the initial state after a long period.
Although this technique reveals signatures of MBL, directly probing many-body energy
eigenstates is still absent in the previous work.

In ref. [70], the authors observe signatures of the celebrated many-body localization
transition using interacting photons in a nine-site superconducting circuit. The measure-
ments of the relevant energy eigenenergies and eigenstates were done by implementing
a novel many-body spectroscopy method based on time evolution. The approach was
benchmarked by measuring the energy spectrum predicted for the system of electrons
moving in two dimensions under a strong magnetic field — the Hofstadter butterfly.

Here we outline the spectroscopy protocol performed in ref. [70], starting with a single
photon. We begin by initializing a photon at site p in the superposition state of |0〉 and
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|1〉, i.e.,

|ψ0〉p = |0〉1|0〉2 . . .

( |0〉p + |1〉p√
2

)
. . . |0〉L−1|0〉L

=
1√
2

(|Vac〉 + |1p〉) ,

=
2√
2

(
|Vac〉 +

8∑
α=0

Cp
α|E(1)

α 〉
)

,

where |1p〉 = â†
p|Vac〉, Cp

α = 〈1p|E(1)
α 〉, |Vac〉 is the vacuum state, and |E(1)

α 〉 is a one-

photon energy eigenstate with eigenenergy E
(1)
α . The system at time t is given by

|ψ(t)〉p =
1√
2

(
|Vac〉 +

∑
α

Cp
αe−iE(1)

α t|E(1)
α 〉
)

.

The operator âp is not Hermitian and therefore not observable. Nevertheless, one can
measure

〈X̂p〉 ≡ 〈â†
p + âp〉,

〈Ŷp〉 ≡ i〈â†
p − âp〉

and compute the expectation value

〈âp〉(t) ≡ 1
2

(
〈X̂p〉 − i〈Ŷp〉

)
=

1
2

∑
α

|Cp
α|2e−iE(1)

α t

at different times. The Fourier transform of 〈âp〉(t) then reveals the eigenenergies E
(1)
α

and the overlap |Cp
α|. The experiment is then repeated by varying all possible initial

configurations q ∈ {1, 2, . . . , L} and calculating

χ(1)(t) =
L∑

p=1

〈âp〉(t).

The latter ensures that all peaks will have appreciable amplitudes in the Fourier trans-
form.

To benchmark the method, the authors implement the 1D Harper model with one
photon in a nine-site superconducting circuit, i.e.,

Ĥ1-photon
Harper = Δ

8∑
j=0

cos(2πbj)n̂j − J
7∑

j=0

(
â†

j âj+1 + H.c.
)

.
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Fig. 11. – The Hofstadter butterfly (a) The Fourier transform of χ(1)(t) is shown for 100 values
of dimensionless magnetic field b ranging from 0 to 1. (b) For each b value, we identify 9 peaks
and plot their location as a colored dot. The numerically computed eigenvalues of the Harper
model are shown with gray lines. The color of each dot is the difference between the measured
eigenvalue and the numerically computed one. Spectroscopic signatures of localization with two
interacting photons. (c) The measured histogram P (r) of rβ s for Δ/J = 1 and 5. The dashed
lines are plots of PPoisson and PGOE according to eq. (10) and eq. (11), and the solid lines are
numerical simulations. (d) The participation ration PRSpace as a function of Δ/J .

The Harper model can be mapped to the 2D Quantum Hall model where b is mapped
to a magnetic flux [144]. The spectrum of the Harper model as a function of b ex-
hibits a butterfly-like structure similar to its 2D counterpart. The structure was first
proposed by Hofstadter in 1976 [145]. It is a fractal structure, meaning that small frag-
ments of the structure contain a copy of the entire structure. However, observing the
full butterfly in a conventional condensed-matter system requires an unphysically large
magnetic field in the order of ∼ 105 tesla that can “squeeze” one flux quantum through
a unit cell. Signatures of the butterfly were observed by using a superlattice structure in
graphene [146-149].

The authors of ref. [70] realize Ĥ1-photon
Harper by setting the cavity’s frequency ωj =

Δcos(2πbj). Since b in Ĥ1-photon
Harper is not related to a real magnetic flux, it can be easily

tuned from 0 to 1 in our setup. Figure 11a shows the Fourier transform of χ(2)(t) as a
function of b. A clear butterfly-like structure is observed as expected since the Fourier
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transform represents the eigenspectrum. However there are only nine single-particle
eigenenergies for each value of b, the fractal structure of the spectrum is not displayed.
In fig. 11-b, the measured peaks in the Fourier transform are compared with exact nu-
merics. The errors in the position of the peaks on average are found to be less than 2%.
This result illustrates high controllability and a low error rate of the setup.

By placing two photons into the system, the interacting Harper model is then imple-
mented, i.e.,

Ĥ2-photons
Harper = Δ

8∑
j=0

cos(2πbj)n̂j − U

2

8∑
j=0

n̂j(n̂j − 1) − J

7∑
j=0

(
â†

j+1âj + â†
j âj+1

)
.

Four different irrational values of b are chosen from [0, 1], and the corresponding ob-
servables are averaged. The irrational choice of b ensures that the periodicity of the
potential and lattice are incommensurate, mimicking the effect of disorder [150,151]. In
the experiment, U/2π and J/2π are fixed to 175 MHz and 50 MHz, respectively (U/J is
fixed to 3.5). For this value the ergodic to the localized phase transition of two photons
is expected to happen at Δ ≈ 2J [151].

Spectroscopy of the two-photon eigenstates is done in a similar way, i.e., the initial
state is prepared as

|ψ0〉p,q = |0〉1|0〉2 . . .

( |0〉p + |1〉p√
2

)
. . .

( |0〉q + |1〉q√
2

)
. . . |0〉L−1|0〉L

=
1
2

(|Vac〉 + |1p,1q〉) +
1
2

(|1p〉 + |1q〉) ,

where p �= q ∈ {1, 2, . . . , L} and |1p,1q〉 = |0〉1|0〉2 . . . |1〉p . . . |1〉q . . . |0〉L are the two-
photon Fock states. Then the measurement at time t reads,

〈âpâq〉(t) =
1
4

〈
X̂pX̂q − ŶpŶq − iX̂pŶq − iŶpŶq

〉
=

1
4

∑
β

|Cp,q
β |2e−iE

(2)
β t.

The experiment is then repeated for all possible pairs of p and q. The following quantity
is then calculated:

χ(2)(t) =
∑
p�=q

〈âpâq〉(t).

The eigenenergies are then obtained from the Fourier transform of χ(2)(t).
Since the difference between the ergodic and the localized phase is in its dynamics

which are determined by eigenenergies, one of the most direct way to probe the transition
is to study the distribution of the energy level [152-154]. Using the two-photon protocol,
the two-photon eigenenergies E

(2)
β are measured. Then the authors calculate the level
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spacing sβ = E
(2)
β+1 − E

(2)
β between two adjacent levels and level separation uniformity,

rβ ≡ min{sβ , sβ−1}
max{sβ , sβ−1} .

The level statistics is then defined as a histogram P (rβ) of rβ . In the localized phase
when the disorder is large, the levels are uncorrelated resulting in the Poisson distribution

PPoisson(rβ) =
2

(1 + rβ)2
.(10)

In the ergodic phase, it has been postulated that the statistics of energy levels is the same
as the ensemble of real random matrices, following the Gaussian orthogonal ensemble
(GOE) [154],

PGOE(rβ) =
27
4

rβ + r2
β

(1 + rβ + r2
β)5/2

.(11)

The measured level statistics is shown in fig. 11-c. It can be seen that at Δ < 2J the
peak of the distribution P (r) is located away from r = 0. As the disorder is increased
beyond 2J , this peak starts to shift towards r = 0, as expected from a finite precursor
of the thermalized to the MBL phase transition.

The amplitude of the peaks in the Fourier spectrum in the protocol also provides
informations about the probability of each energy eigenstate being present at each lattice
site {Pβ,j}. Perhaps, the most common way to quantify the spreading of the eigenstates
is to use the participation ratio (PR) [155]

PRSpace(β) =
1∑

j |Cβ
j |4

.(12)

Here |Cj
β |2 is the probability of having one or two photons at site j. PRSpace indicates

the number of lattice sites that are covered by each eigenstate.
The measured PRSpace as a function of Δ/J is shown in fig. 11-d. As Δ/J is in-

creased, the eigenstates with the highest and the lowest energies start to shrink, and
each eigenstate undergoes a delocalized to a localized transition at different disorder
strength. This energy-dependent transition is a finite-size signature of the mobility edge
in the thermodynamic limit [156].

3.3. Driven-dissipative many-body phases of interacting photons. – Up to now, we
have ignored the effect of dissipation by assuming that the dissipation rate is negligibly
smaller than a typical energy scale of the system. However, light-matter systems naturally
dissipate to the environment. One of the major developments in the field of many-body
physics with light is the study of non-equilibrium many-body phases. The latter happens
at the steady state where photon losses are compensated by external laser driving. For
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example, a coupled resonator array as described by the JCH model can be locally driven
by a coherent laser field. The total time-dependent Hamiltonian in the lab frame is
written as

Ĥtot(t) = ĤJCH +
L−1∑
j=0

Ωj(â
†
je

−iωdt + âje
iωdt),

where ωd is the frequency of the drive, Ωj is the amplitude of the coherent drive.
The time dependence can be removed by going the rotating frame defined by Û(t) =
exp[i(

∑L−1
j=0 â†

j âj)ωdt], i.e.,

ĤR
tot = Û(t)Ĥtot(t)Û(t)−1 + iÛ(t)

∂Û−1(t)
∂t

= ĤJCH − ωd

L−1∑
j=0

â†
j âj +

L−1∑
j=0

Ωj(â
†
j + âj).

The effect of dissipation can be captured by considering the Lindblad master equation

∂ρ̂

∂t
= Lρ̂ = −i

[
ĤR

tot, ρ
]

+
γ

2

L−1∑
j=0

(
2âj ρ̂â†

j − {ρ̂, â†
j âj}

)
,(13)

where γ is the loss rate, ρ̂ is the density matrix of the system, and L is the Lindblad super-
operator. The master equation is then obtained by first writing down the Schrödringer
for the total system and then tracing out the environment, assuming that the system and
the environment are initially in a product state and the bath is memoryless [103]. Due
to the memoryless bath, the system could reach a non-equilibrium steady state (NESS)
that depends on the symmetries of the system, i.e.,

∂ρ̂NESS

∂t
= 0.(14)

Comparison between the NESS of the JCH and the BH model in the driven-dissipative
scenario is discussed in ref. [157]. Similarities between the two models are found when
NESS contains a few photons per site, and the light-matter coupling is much stronger
than the dissipation rate g/γ ∼ 104. In 2009, Carusotto et al. [72] first showed fermion-
ized photons in a driven-dissipative BH array where the NESS of the system mimics
a strongly correlated Tonks-Girardeau gas of impenetrable bosons. In an independent
work, Hartmann [73] has studied crystallization of photons at the NESS of a similar dis-
sipative BH array but the with alternating local drive Ωj = −Ωe−iφj , where Ω is the am-
plitude of the drive and φj = jπ/2. Similar behavior is observed in the driven-dissipative
JCH array [74]. Signatures of fractional quantum Hall in a 2D driven-dissipative BH
array is discussed in [75]. Exotic phases at the NESS includes photon solid phases [77]
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and Majorana-like mode of light [76]. The effect of non-linear driving such as paramet-
ric down conversion has been discussed in [76, 158]. Probing many-body signatures of
non-linear resonator arrays using photon transport has been discussed in ref. [159]. A
nonlinear superconducting circuit with up to 72 sites has also been fabricated to study
the dissipative phase transition [80]. The role of long-range order and the symmetry in
driven-dissipative many-body dynamics will be discussed in ref. [160].

Below we briefly summarize the main results of some of the above proposals and the
experiment done in ref. [80, 161].

Fermionized photons in an array of driven-dissipative nonlinear cavities [72]. Here
photons blockade is assumed to be strong such that the probability of having two photons
at the same site is strongly suppressed. The latter mimics Pauli’s exclusion principle of
fermionic particles. In this limit, commutation relations of bosonic operators can also
be mapped to those of fermionic operators using the Jordan-Wigner transformation. In
this work, the authors examine such relation for the steady state of driven-dissipative
nonlinear cavities as described by eq. (14). The drive is assumed to be homogeneous.
Figure 12a shows the expectation value of the photon number operator 〈n〉 at NESS for
different value of detuning Δωp = ωd −ωc. The peaks happen when the frequency of the
drive is resonant with the energy of the non-driven system E(k) = ωc − 2J cos(k), where
k is the momentum mode. The effect of finite nonlinearities has also been studied.

Polariton crystallization in driven arrays of lossy nonlinear resonators [73]. Here the
author considers arrays of nonlinear resonators as described by the Bose-Hubbard model.
The drive has an alternating phase, Ωj = −Ωe−iφj . The correlation function between
site j and l at NESS is defined as

g(2)
r (j, l) = 〈â†

j â
†
l âlâj〉/〈â†

j âj〉〈â†
l âl〉.

For strong nonlinearities, g
(2)
r (i, j) exhibits density-density correlations indicating crys-

tallization of photons, see fig. 12-b.
Beyond mean-field bistability in driven-dissipative lattices: Bunching-antibunching

transition and quantum simulation [162]. Here the authors investigated the existence
of multiple non-equilibrium states of a driven-dissipative lattice in the limit U/J → ∞.
It was found that a commonly-used mean-field approximation which ignores spatial cor-
relations predicts regimes of bistability at the steady state. However, the matrix-product-
state–based analysis reveals that such bistability is an artifact of the mean-field method.
The authors also found a bunching-antibunching transition, fig. 12-c, captured by

C(j, r) =
〈n̂j n̂j+r〉
〈n̂j〉〈n̂j+r〉 ,

as the detuning Δ changes.
Photon solid phases in driven arrays of nonlinearly coupled cavities [77]. Here the

authors considered arrays described by the extended Bose-Hubbard model with cross-
Kerr nonlinearities. The mean-field and the matrix-product-state approaches are used
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Fig. 12. – Driven-dissipative phases and dissipative phase transitions. (a) fermionized photons
at NESS. The plot shows total transmission spectra as a function of the detuning for 5 cavities
with J/γ = 20. Difference curves correspond to the pumping amplitude Ω/γ = 0.1, 0.3, 1, 2, 3.
(b) Photon crystallization. The figure shows density correlations of the NESS for 16 cavities with
ωp = ωc, U/γ = 10, Ω/γ = 2, and J/γ = 2. (c) Bunching-antibunching transition. Correlations
C(j, r) as a function of detuning for j = 30, L = 61, J/γ = 2, Ω/γ = 1. (d) Photon solid
phases. The plot shows population imbalance at NESS for zero-detuning, J = 0, and Ω = 0.75.
(e) Observation of dissipative phase transitions. The plot shows the transmission as a function
of power and driving frequency, exhibiting a transition from a suppressed transmission regime
to the regime of dynamical bistability. (f) Dissipatively stabilized Mott Insulator. The plot
shows the number of photon, P1, at each site as a function of time. The results are reproduced
from [72,73,162,77,80,161], respectively.
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to calculate the NESS phase diagram that includes a photon crystal phase, see fig. 12-d.
The latter is defined by a non-zero population imbalance between two sub-lattices.

Observation of a dissipative phase transition in a one-dimensional circuit QED lat-
tice [80]. In this work, 72 coupled microwave cavities each coupled to a superconducting
qubit was fabricated to study dissipative phase transition. Microwave transmission 〈âj〉
is measured at the NESS. Figure 12-e shows the transmission as a function of power and
driving frequency, exhibiting a transition from a suppressed transmission regime to the
regime of dynamical bistability.

A dissipatively stabilized Mott insulator of photons [161]. In this work, the authors
engineered a dissipative bath to stabilize the Mott insulating phase of photons in a 8-site
superconducting circuit. The bath was done by introducing a lossy cavity attached to
the system. When a hole in the Mott insulator happens due to a single photon loss, a
coherent drive is autonomously applied to replace the hole with two photons of the same
size. The extra photon then coherently hops to the lossy cavity and quickly dissipates
away. The resulting Mott insulator is therefore dynamically robust again photon loss.

4. – Strongly interacting photons from superconducting circuits

We now turn our discussion to the implementation of cavity QED and light-matter
interactions using superconducting circuits. The idea of quantum phenomena in a macro-
scopic object is traced back to Josephson in 1962 [163] who predicted quantum tunneling
of Cooper pairs between two superconductors separated by a thin insulating barrier
known as a Josephson junction. In the late 1990s, quantized charges and Rabi oscilla-
tion of a capacitively shunted Josephson junction subjected to a weak microwave field
were observed [164,165], providing evidence that a macroscopic object can behave as an
effective quantum two-level system. This “artificial” two-level atom, also known as a
superconducting qubit, can then be coupled to modes of a harmonic oscillator such as
an LC circuit or a coplanar transmission line. The total system mimics the JC model
where a single atom coupled to a cavity. This analogy was put forward in 2004 where
strong coupling between a single microwave photon and a superconducting qubit was
observed [83], see fig. 13. Since the topology of a circuit can be fabricated almost arbi-
trarily using the conventional electron-beam lithography, superconducting circuits serves
as a scalable platform for quantum simulation with interacting photons. Artificial gauge
fields for interacting photons in this system have been realized [64]. A nine-site super-
conducting circuit with a long coherent time has been fabricated to study signatures of a
thermalized to a many-body localized transition [70]. A 72-site superconducting circuit
simulating the JCH model has been made to study dissipative phase transition of light
as discussed earlier [80].

In the following, we will discuss the standard circuit quantization [166] for an LC
circuit as a linear element and a particular type of a superconducting qubit called a
transmon qubit as a non-linear element. We conclude the section by reviewing state-of-
the-art superconducting chips implementing the BH and the JCH model.
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Fig. 13. – Strong coupling of a single microwave photon to a superconducting qubit. (a) The
superconducting chip including a coplanar transmission line that acts as a cavity. (b) A capacitor
to connect the transmission line to an input and output feed. (c) A superconducting qubit that
acts as an artificial atom. (d) Vacuum Rabi mode splitting. The results are reproduced from
ref. [83].

4.1. Microwave photons from an LC circuit . – An LC circuit is depicted in fig. 14. To
write down the Lagrangian for the circuit, we first write down the Kirchhoff’s law as

q

C
= L

dI

dt
,(15)

where q is the charge stored in the capacitor, I = dq/dt is the current, C is the capac-
itance, L is the inductance, Φ = LI is the flux. By differentiating eq. (15) with respect
to time, we arrive at an equation of motion for a harmonic oscillator

d2

dt2
q + ω2q = 0,

where ω = 1√
LC

is the frequency of the oscillator. The energies stored in the capacitor
and the inductor are

EC =
q2

2C
=

1
2
CΦ̇2

and

EL =
1
2
LI2 =

1
2L

Φ2,

respectively, where Φ = LI is a flux variable. The Lagrangian of the circuit is then
defined as

LLC ≡ EC − EL =
1
2
CΦ̇2 − 1

2L
Φ2.(16)
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Fig. 14. – Basic elements in superconducting circuits. Because an LC circuit is a harmonic
oscillator, it can be viewed as a linear cavity operating in the microwave regime or a mass
attached to a spring. The circuit can be driven coherently by applying an external voltage
in the same way that an external laser can drive a cavity. A capacitively-shunted Josephson
junction (c) behaves like a χ(2) nonlinear cavity which has an analogy to a mechanical pendulum.

This Lagrangian can be compared to that of a particle attached to a spring as shown in
fig. 14b. The flux Φ corresponds to the position of the particle x. The mass of the particle
is m = C, while the spring constant is k = 1/L. Similar to the harmonic oscillator, the
Hamiltonian of the LC circuit takes the form

HLC ≡ LLC −QΦ =
Q2

2C
+

Φ2

2L
,

where

Q =
∂LLC

∂Φ̇
= CΦ

is a conjugate momentum. By promoting Φ and Q to operators, we get a commutation
relation

[Q̂, Φ̂] = −i.

We define an annihilation operator as

â = i
1√
2Cω

Q̂ +
1√
2Lω

Φ̂,

respectively. The final Hamiltonian then takes the form

ĤLC ≈ �ω

(
â†â +

1
2

)
.
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We note that we choose to discuss an LC circuit here for simplicity. In the experiment,
a loss-noise coplanar transmission is usually used as a linear element [81]. We refer the
reader to ref. [167] for the detailed derivation of the circuit quantization of the latter.

4.2. A Kerr resonator from a transmon qubit . – Josephson junction provides a nat-
ural non-linear element for superconducting circuits. A capacitively shunted Josephson
junction is described by the Lagrangian

Ltransmon =
1
2
CΦ̇2 + EJ cos

(
Φ
Φ0

)
,(17)

where EJ is the Josephson energy and Φ0 = �/2e is a flux quanta. As shown in fig. 14, a
mechanical analogy of this system is a pendulum where C is the moment of inertia, EJ

is the gravitational energy, and Φ is the angle of the pendulum. Let us first understand
the harmonic oscillation limit of this system. Imagine the pendulum is initially placed at
its minima Φ = 0 and then subjected to a small kick that generates an oscillation around
this point. If the gravitational energy is large compared to the initial kinetic energy, then
this oscillation has a small amplitude. In the circuit picture, this corresponds to the limit
EJ/EC � 1 where EC = e2/2C. Subsequently, the expansion of the cosine function in
Φ can be truncated at to a finite order, i.e.,

Ltransmon ≈ 1
2
CΦ̇2 − 1

2LJ
Φ2 +

EJ

4Φ4
0

Φ4 + . . . ,(18)

where

LJ = Φ2
0/EJ

is an effective linear inductance. When keeping up to the second order, the system
reduces to a simple Harmonic oscillator with the frequency

ω = 1/
√

LJC.

Slightly away from this limit, the nonlinearity arises from the forth-order term. Hence,
the system becomes a non-linear oscillator. In the following we will perform the circuit
quantization while first keeping infinite orders and only apply truncation after normal
ordering of ladder operators. Without truncation, the Hamiltonian can be written as

Htransmon =
Q2

2C
+

Φ2

2LJ
+

∞∑
m=2

(−1)mEJ

(2m)!Φ2m
0

Φ2m,(19)

where

Q = C
∂Ltransmon

∂Φ̇
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is a conjugate momentum. As before, we promote Q and Φ to operators as

Φ̂ =

√
LJω

2
(â† + â),(20)

Q̂ = i

√
Cω

2
(â† − â),

where
[
â, â†] = i. We then apply normal ordering of the operators â and â† in Htransmon

using the formula [168]

(a + a†)2m =
m∑

k=0

2m−2k∑
i=0

(2m)!(a†)ia2m−2k−i

2kk!i!(2m − 2k − i)!
.

In the limit EJ/EC ≈ 50–100, the higher-order terms in Htransmon can be truncated up
to the forth order. As a result, the final Hamiltonian can be written as

Ĥtransmon ≈ (ω + δω)n̂ − U

2
n̂(n̂ − 1),(21)

where U = −EJe−λ2
λ4/4 is Kerr nonlinearity, δω = λ2EJe−λ2

, and λ = (2EC̃/EJ )1/4.
This Hamiltonian takes the same form of that of a Kerr resonator. Due to the n-
dependent nonlinearity, a vacuum state |0〉 and a one-photon Fock state |1〉 of the res-
onator can also be used as a qubit. A capacitively shunted Josephson junction operating
at this regime is known as a transmon qubit. Typical values of ω and U are ∼ 5–10 GHz
and ∼ 200–300 GHz, respectively [169]. Typical lifetime of photons in the transmon qubit
is 10–20 μs with the dephasing time around 2μs.

4.3. Different types of superconducting qubits. – For a larger nonlinearity EJ/EC̃ >

100, the transmon qubit is also known as a charge or a Cooper-pair-box qubit [164,165]
which was one of the first qubit design invented in early 1990. However, the charge
qubit suffers from charge noises and only has a lifetime of a few ns. We note that
there are several other designs of superconducting qubits such as flux qubits and phase
qubits [170-176] for quantum computing applications [177]. However, only a transmon
qubit can be mapped to a Kerr nonlinear resonator.

4.4. Nonlinear lattices from arrays of coupled transmon qubits.

4.4.1. The Bose-Hubbard model. Transmon qubits can be coupled in various ways such
as a simple use of a capacitor of which we provide details of the circuit quantization below,
a transmission line that creates virtual excitation exchange between qubits [179,180], and
a pair of Josephson junctions that allow the coupling to be tuned in situ using an external
flux [181-183]. Arrays of coupled transmon qubits are described by the Bose-Hubbard
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Fig. 15. – Arrays of coupled transmon qubits fabricated by (a) Google with L = 9 [178,70], (b)
IBM with L = 5 [85], (c) Regetti with L = 19 [86]. A 72-site superconducting chip implementing
the JCH model to study dissipative phase transition [80] is shown in (d).

Hamiltonian

ĤBHM =
L−1∑
j=0

ωj n̂j − U

2

L−1∑
j=0

n̂j(n̂j − 1) −
∑
〈j,j′〉

Jj,j′
(
â†

j â
′
j + H.c.

)
(22)

where n̂j = â†
j âj is a local number operator, Jj,j′ is the hopping coefficient between the

sites j and j′, ωj is the frequency of the resonator j. State-of-the-art superconducing
chips containing arrays of coupled transmon qubits with different topologies are shown
in fig. 15. The 9-site one-dimensional chip in fig. 15a was used to implement random
circuits for quantum supremacy [178] and to observe stroboscopic signatures of many-
body localization [70]. The 5-site chip in fig. 15b and 19-site chip in fig. 15c were used
to demonstrate quantum variational-based algorithms for quantum chemistry [85] and
quantum machine learning [86].

In the following we will give an example of circuit quantization of capacitively-coupled
transmon qubits, the circuit diagram is shown in fig. 16. The flux variable is defined as
φj = − ∫ Vjdt, where Vj is a voltage at the corresponding position. As will be shown
below, this quantity can be quantized to the form φj = α(âj+â†

j), where âj , â
†
j are bosonic

operators at site j and α is some constant that depends on the circuit’s elements. As
shown in [184], two parallel-connected Josephson junction with a flux bias Φg can be
thought of as an effective single Josephson junctions EJ where

EJ = (EJ1 + EJ2) cos
(

Φg

2Φ0

)√
1 + d2 tan

(
Φg

2Φ0

)
,

with Φ0 = �/2e and d = (EJ2 − EJ1)/(EJ2 + EJ1). The resonator’s frequency ωj is
related to EJ , hence it can be tuned on the fly, by changing the flux bias Φg.

Following the standard circuit quantization procedure [166], we first write down the
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Fig. 16. – Circuit QED diagram showing an implementation of the Bose-Hubbard Hamiltonian.

circuit’s Lagrangian as

L =
L−1∑
j=0

(
1
2
CJ φ̇2

j + EJ cos
(

φj

φ0

))
+

L−2∑
j=0

1
2
C(φ̇j − φ̇j+1)2,

Assuming C/(CJ + 2C) � 1, the Hamiltonian can be obtained using the Legendre
transformation [185],

H =
L−1∑
j=0

(
φ̇2

j

2C̃
+

φ2
j

2L̃
+

∞∑
n=2

(−1)nEJ

(2n)!Φ2n
0

φ2n
j

)
+

L−2∑
j=0

C

C̃2
qjqj+1,(23)

where

qj =
√

2C + CJ
∂L
∂φ̇j

is a conjugate momentum of φj , C̃ = CJ +2C is an effective capacitance and L̃ = Φ2
0/EJ

is an effective inductance. We then quantized φj and qj by defining ladder operators âj ,
â†

j according to

φ̂j = (L̃/4C̃)1/4(âj + â†
j),(24)

q̂j = i(C̃/4L̃)1/4(−âj + â†
j).(25)

The first two terms in eq. (23) become
∑

j ωâ†
j âj , where ω = 1/

√
L̃C̃ is a resonator

frequency. In addition, the capacitor C leads to the hopping term with J = −ωC
2C̃

. A

rotating-wave approximation is assumed, so we ignore the term (â†
j â

†
j+1 + H.c.).

The Josephson junction EJ introduces an anharmonicity to the resonator’s frequency.
Due to this anharmonicity, a vacuum state |0〉 and a one-photon Fock state |1〉 of the
resonator can be used as a qubit. A transmon qubit corresponds to the regime with
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a large EL̃/EC̃ > 1 where EC̃ = e2/2C̃ and EL̃ = Φ2
0/L̃, such that the terms higher

than the forth order can be neglected [184]. Hence, a transmon qubit can be thought
of as a resonator with an attractive Kerr nonlinearity U < 0. Taking into account the
normal ordering [186], we get U = −EJe−λ2

λ4/4, where λ = (2EC̃/EL̃)1/4. This normal
ordering also introduces a small normalization factor δω to the resonator frequency, with
δω = λ2EJe−λ2

.

4.4.2. The Jaynes-Cummings Hubbard model. A single superconducting qubit coupled
to a transmission line can be described with the Jaynes-Cummings model, where the
transmission line plays a role of a resonator, and a qubit plays a role of an atom. An
array of up to 72 coupled Jaynes-Cummings resonators which leads to the JCM model
has been implemented in ref. [80] to study dissipative phase transition.

5. – Conclusions and future aspects

Although implementing a universal quantum simulator which requires full control over
quantum many-body systems may still be years away, tremendous experimental progress
has been made during the past two decades. Two main approaches have emerged. The
first approach such cold atom systems provide a global control a large ensemble of quan-
tum particles, with possible local manipulation and measurement in some cases. The
second approach such as interacting photons in superconducting circuits provide more
flexibility on the local control and measurement while scaling up to 50–100 site are in cur-
rent progress. For the latter, one needs to develop both new experimental techniques and
new theoretical frameworks to maintain such controllability when scaling up. For exam-
ple, the many-body spectroscopy technique developed in ref. [70] allows one to resolve all
energy eigenstates and eigenenergies of the system. This result allows us to benchmark
the experiment with the theory and to reconstruct matrix elements of many-body Hamil-
tonians that a given circuit implements. However, when scaling up eigenenergies of the
system will become too dense to be resolved by the current resolution which is limited by
the coherence time of the system. Hence, obtaining full information of the Hamiltonian of
the circuit is not possible for a large system. To what extent the disregarded information
becomes essential to the physics of the system is still an open question. Constructing
the Hamiltonian of the system with limited details also require a new theoretical frame-
work. The latter also raises the question of how to systematically benchmark a quantum
simulator as it approaches the limit of classical computers. Identifying problems beyond
quantum physics that can only be solved with near-term quantum simulators is also
an important question that drives the field forwards. With these in mind, we conclude
that, due to exceptional local control systems, interacting photons in superconducting
circuits, although still in its early state, is one of the promising candidates for quantum
simulation.
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Summary. — This tutorial presents a brief introduction to the physical principles
of cavity optomechanics. When light and mechanical motion are both confined in
nanoscale structures, they can effectively couple through radiation pressure. This
lecture discusses the quantum limits to optical measurement of mechanical motion
and the basic physics of optomechanical interactions between photons and phonons.
It reviews several recent developments in the field that exploit state transfer, break-
ing of time-reversal symmetry, and nonlinearities to develop new ways to control
both light and motion in the classical and quantum domains.

1. – Introduction: coupling light and motion

The field of optomechanics studies the interaction between light — or, more broadly,
electromagnetic fields — and the mechanical motion of objects. This interaction, me-
diated by optical radiation pressure forces, occurs naturally in systems where a me-
chanical deformation alters the optical response of the system. The mechanical motion
that is considered is typically that of high-quality mechanical resonators. Such devices
find application in various contexts, due to their high spectral purity and susceptibility
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to tiny disturbances: in atomic-force microscopes, gravitational-wave detectors, time-
keeping (e.g. quartz oscillators in wrist watches) and signal processing (e.g. filtering
high-frequency electronic signals in modern cell phones).

Light provides excellent means to read out the motion of a mechanical resonator, due
to the wide abundance of high-quality laser sources and photodetectors, and because it
is a probe that introduces no more extra noise than fundamental quantum (shot) noise,
even at room temperature. Optical detection of motion can happen in various ways: For
example, by monitoring the phase of light reflected from a mirror that is free to move,
or that of light passing through an optical fiber whose refractive index is locally changed
due to strain associated with a deformation of the fiber.

Indeed, a plethora of systems has been developed in recent years in which optome-
chanical coupling is exploited, ranging from single nanoscale beads trapped in focused
laser fields, through on-chip integrated devices, all the way to the km-scale interferom-
eters that are used to detect gravitational waves. The scientific drive to develop those
systems not only lies in advancing mechanical-sensing performance, but in particular also
in the possibilities offered by optical forces. These principles allow new ways to control
mechanical systems with light, e.g. to create special quantum states of motion. Op-
tomechanical systems thus provide a test bed for quantum physics in massive mechanical
systems, for example to study potential decoherence mechanisms acting on such “macro-
scopic” entities. The developed control methods allow adding mechanical resonators to
the “quantum technology toolbox”, leveraging their long lifetimes and capability to cou-
ple to a variety of other (quantum) systems. In fact, through such couplings one thus
also gains new ways of optical control over other degrees of freedom via the mechanical
resonator, including over light itself. The field of optomechanics thus studies a range of
phenomena from both fundamental and technological standpoints, at the intersection of
quantum optics, nano- and micro-electromechanical systems (NEMS/MEMS), and pho-
tonics. It draws inspiration from related developments for gravitational-wave detection,
quantum information technology, and the control of cold ions and atoms with light fields.

To maximize optomechanical interactions, systems have been continuously improved
along two lines: On the one hand, minimizing optical and mechanical losses — confining
photons in optical cavities and phonons in mechanical resonators for the longest possible
times — effectively increases their interaction. On the other hand, co-localizing light
and motion in the smallest possible systems leads to large optomechanical coupling, as
mechanical displacements yield larger effects on small optical cavities, and as low mass
makes mechanical resonators more susceptible to optical forces. Thus, significant atten-
tion is given to nano-optomechanical systems that couple photons and phonons in small,
on-chip architectures. In this lecture, we will introduce the basic physical description of
optomechanical interactions at a tutorial level, and highlight several directions of current
research. For a much more elaborate introduction to the field, including historical con-
text, overviews of the studied systems, and in-depth theoretical descriptions, we refer the
reader to several excellent other texts, including the review on “Cavity optomechanics”
by M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt [1], and the book “Quantum
optomechanics” by W. P. Bowen and G. J. Milburn [2].
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Fig. 1. – A typical cavity optomechanical system, with a cavity whose optical length (and thus
its frequency ωc) is subject to the harmonic motion x of a mechanical resonator with frequency
Ωm. Optical and mechanical damping rates are κ and Γm, respectively.

1.1. The canonical cavity optomechanical resonator . – Although optomechanical sys-
tems take many forms, a simple model system serves to describe many of the observed
phenomena in all of them. It is depicted in fig. 1 and comprises an optical cavity of which
the length can change through the motion x(t) of a mechanical resonator — in this pic-
ture formed by the mass of the end mirror, whose motion is harmonically constrained
by a spring. We will briefly discuss the observable (classical) effects here, before turning
to a quantum description. For now, we will consider only a single optical mode (and
likewise, only a single mechanical mode). This is in many cases a valid approach, when
the damping of individual modes is small enough such that their resonant responses are
clearly separated in frequency, and a drive laser can be tuned to interact with effectively
only one cavity mode.

The cavity resonance frequency ωc/2π depends on the position x as

(1) ωc(x) = ωc + x∂ωc/∂x + . . . .

We define the frequency shift per displacement as G = −∂ωc/∂x, which can be shown
to be ωc/L for our model system, where L is the length of the Fabry-Pérot cavity. The
cavity is driven by a laser through the partially transparent left mirror. This means
that light must also be able to leak out of the cavity. The rate at which energy is lost
from the cavity is κ/2π; it is equal to the spectral linewidth of the cavity’s response.
The mechanical oscillator has resonance frequency Ωm/2π, typically in the Hz to GHz
range, and in any case much smaller than ωc/2π. The damping rate (linewidth) of the
mechanical oscillator is Γm/2π. Several effects can be discerned:

• When the frequency of a laser impinging on the cavity is tuned across its resonance,
the phase of the reflected light changes by 2π over a bandwidth of ∼ κ. On
resonance, this extra phase shift is π (as compared to an off-resonant laser). If
the mechanical oscillator moves, the resulting change of the resonance frequency is
imprinted as a phase change on the reflected light of monochromatic laser of fixed
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frequency. The reflected phase is thus directly proportional to mirror displacement,
and small motion can be read out with quantum-limited sensitivity, e.g. using
homodyne interferometry.

• The light in the cavity exerts a radiation pressure force on the mechanical oscillator,
which displaces it slightly in proportion to the laser power. But this changes the
cavity length, and thus the cavity’s optical response. As such, the optomechanical
interaction can be seen as an effective optical (χ3) nonlinearity. Moreover, as the
force strongly depends on the oscillator position (for some given laser frequency), it
effectively alters the restoring force that the mechanical oscillator feels, leading to
“softening” or “stiffening” and an associated change of the mechanical resonance
frequency (the “optical spring” effect).

• If the laser is slightly detuned from the cavity resonance, a mechanical position
change will lead to a change of the light intensity in the cavity. But because
of the finite response time of the cavity (given by 1/κ) this change will not be
instantaneous. As a result, the force on the oscillator will change — with some delay
— upon a change of oscillator position. Depending on the conditions, this can lead
to “automatic” damping or amplification of the oscillator’s motion. These effects,
summarized under the term dynamical backaction, are especially pronounced in
systems with small optical damping κ and small mechanical damping Γm. They
are at the basis of optical cooling of the mechanical resonator, for example.

In the following, we will first discuss how quantum mechanics limits the accuracy with
which the mechanical motion can be measured. We will then introduce a quantum optical
description of the system, and use it to describe radiation pressure effects. We will in
particular discuss optical cooling and state transfer. We conclude with reviewing several
research activities that exploit multimode optomechanical systems and nonlinearities to
develop new ways to control light and motion in the classical and quantum domains.

2. – Quantum measurements of motion with light

2.1. Measuring motion with a cavity . – The position of the mirror in fig. 1 determines
the cavity frequency, and through that the phase of an intracavity field. This, in turn,
can be detected by monitoring the light leaking out of the cavity. For a laser tuned to
resonance, a small displacement δx imparts a phase shift

(2) δφ = 4
G

κ
δx

on the outgoing laser beam. One can see the effect of cavity enhancement by comparing
this shift to the 4πδx/λ phase shift that a light beam acquires by direct reflection off
of a single mirror: For the Fabry-Pérot cavity, the phase shift per unit displacement
is enhanced by a factor 2c/Lκ, which is equal to the cavity Finesse (the number of
roundtrips light can make in the cavity before it decays) multiplied by a factor 2/π.
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Fig. 2. – (a) The amplitude and phase of the mechanical resonator’s oscillations are fluctuating
at a typical time scale 1/Γm due to Brownian motion and quantum fluctuations. (b) A measure-
ment of x(t) through detecting optical power fluctuations Popt will add imprecision noise. (c)
Fourier-transforming the measured fluctuations using an electronic spectrum analyzer to show
the electronic power spectral density (PSD) reveals the Lorentzian mechanical resonance with
linewidth Γm. (d) With the equipartition theorem, the spectrum can be calibrated to yield
the displacement spectral density Sxx. The constant background (blue) is the measurement
imprecision.

2.2. Mechanical frequency response. – So what is the motion that one typically wants
to detect? A mechanical resonator is of course most likely to oscillate with a frequency
near its natural resonance frequency. There, its susceptibility to external forces is highest.
This susceptibility χ(ω) specifies the displacement x = 
{x̃} induced by a harmonic force

{F̃0e

−iωt} with frequency ω and (complex) amplitude F̃0 through

(3) x̃(t) = x̃0e
−iωt = χ(ω)F̃0e

−iωt.

Note that we have introduced complex representations x̃ and F̃ of position and force,
respectively, for mathematical convenience. The susceptibility is that of a damped har-
monic oscillator and reads

(4) χ(ω) =
1
m

1
Ω2

m − ω2 − iΓmω
,

where m is the mass of the mechanical resonator. Near resonance of a high-Q resonator,
it can be approximated as a Lorentzian response:

(5) χ(ω) ≈ i
2mΩm

1
−i(ω − Ωm) + Γm/2

.

2.3. Mechanical fluctuation spectra and sidebands . – This sharply-peaked susceptibil-
ity thus also determines the spectrum of fluctuations that the resonator exhibits when
it is driven by a stochastic force that itself has a relatively flat spectrum. These can be
both vacuum fluctuations, giving rise to zero-point motion, or thermal noise leaking into
the resonator from its environment at elevated temperatures, giving rise to Brownian
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motion. The fluctuations are spread over a bandwidth ∼ Γm around the mechanical
frequency. It causes the mechanical resonator’s amplitude and phase to vary randomly
within a typical time scale 1/Γm (see example in fig. 2(a)). By measuring the phase
fluctuations of the optical output field, one gains a record of the mechanical fluctuations
x(t). The fluctuation spectrum can then be obtained through a Fourier transform. We
define a “gated” Fourier transform for a single record of measurement duration τ as [3]

(6) xτ (ω) =
1√
τ

∫ τ/2

−τ/2

dteiωtx(t).

Averaging many such measurements yields a smooth noise power spectrum 〈|xτ (ω)|2〉,
which approximates the noise spectral density Sxx(ω) as

(7) lim
τ→∞〈|xτ (ω)|2〉 = Sxx(ω).

This is the so-called Wiener-Khinchin theorem, which relates measurable noise spectra
to the Fourier transform of the autocorrelation function of x(t), which is the formal
definition of Sxx(ω) [3].

The total size of the fluctuations is determined by the equipartition theorem, i.e.
mΩ2

m〈x2〉/2 = kBT/2 in the limit of large temperature T , where kB is the Boltzmann
constant. For negligible temperature, only vacuum fluctuations remain, with 〈x2〉 = x2

zpf

and

(8) xzpf =
√

�

2mΩm
.

When one measures these fluctuations at frequency Ωm, for example using an electronic
spectrum analyser that analyses the detected photocurrent of a detector in the output
of an interferometer (see fig. 2(c)), one is essentially probing the beat of an optical field
at the input laser frequency ωl and that of optical sidebands at frequencies ωl ±Ωm. The
fact that the mechanical motion induces such optical sidebands is entirely equivalent to
Stokes and anti-Stokes Raman scattering, which produces down- or upconverted photons
by giving off or taking up a quantum of energy (phonon) from a mechanical resonator.
This notion is very useful, for example to distinguish quantum from classical (thermal)
fluctuations: If a mechanical resonator is in its ground state, it is incapable of providing
energy to upconvert a photon to higher energy. Thus, the fluctuation spectrum is nec-
essarily asymmetric. This asymmetry can be shown to be a direct consequence of the
commutation relations and can be observed e.g. by distinguishing Stokes and anti-Stokes
photons through judicious spectral filtering. Indeed, such tests of sideband asymmetry
are now standard ways to determine that a resonator has been prepared in its ground
state [4].
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2.4. Imprecision and backaction; the Standard Quantum Limit . – What is the smallest
motion that can be resolved? In order to evaluate sensitivity, we need to consider the
noise added by the measurement. A practical measurement of x(t) suffers from noise, such
that a recorded trace looks more like fig. 2(b). As a result, the observed noise spectral
densities are larger than the actual fluctuations in the absence of a measurement. Even
if one works hard to remove all sources of technical noise, one is left with unavoidable
quantum uncertainty, related to the fact that 1) the probe — light in this case — suffers
from quantum uncertainty, and 2) measurements tend to act back on the object under
study. Here we will qualitatively discuss these two factors and show how they are related.

On the one hand, the shot noise of the light carrying the measured signal to the
detector will produce fluctuations of the detected photocurrent. This produces a white
(frequency-independent) noise “background” in the spectra of Sxx(ω) that we derive
from the measurement, which is called the measurement imprecision (fig. 2(d)). Since
the amount of shot noise (as apparent on the photocurrent spectral density) scales linearly
with the light intensity and the signal we seek to detect quadratically, the measurement
imprecision (expressed as apparent displacement fluctuations Sxx(ω)) reduces when we
increase the laser power. In other words, we can detect phase fluctuations more accu-
rately if we use a larger number of photons; a direct consequence of the number-phase
uncertainty relationship.

However, this reduction of the measurement imprecision with increasing laser power
does not come without a price. For large enough power, the shot noise of the light in the
cavity starts to significantly affect the mechanical oscillator by exerting a stochastic radi-
ation pressure force. This measurement backaction causes extra mechanical fluctuations
Sba

xx(ω) = |χm(ω)|2Sba
FF (ω), where Sba

FF (ω) is the spectral density of the radiation pressure
force fluctuations. If the cavity lifetime is shorter than the mechanical period, Sba

FF (ω)
can be considered to be white noise (flat spectrum), as it originates in delta-correlated
shot noise. It scales linearly with optical power, increasing fluctuations of the mechanical
resonator even if the imprecision goes down. The total noise added by the measurement,
Sadd

xx = Simp
xx + Sba

xx, evaluated at the resonance frequency of the mechanical oscillator,
has a minimum for a certain optical power. This is called the Standard Quantum Limit
(SQL). Figure 3 shows the different contributions to the noise spectra for varying probe
power. It can be shown that the minimum noise is precisely equal to the spectral density
of the zero-point fluctuations,

(9) S̄add
xx (Ωm) ≤ S̄zpf

xx (Ωm) = 2
x2

zpf

Γm
=

�

mΩmΓm
.

Here, the horizontal bars denote that we are comparing “symmetrized” spectral densities,
averaged over positive and negative frequencies:

(10) S̄xx(ω) ≡ (Sxx(ω) + Sxx(−ω)) /2.

The appearance of the SQL is directly related to Heisenberg’s uncertainty principle.
As we are continuously monitoring the trajectory x(t) in time, we gain knowledge about
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Fig. 3. – Total displacement noise added by a measurement (purple) as a function of laser power.
It is a combination of imprecision (blue) and backaction (red). Insets depict the measured spectra
in three power regimes, when measuring zero-point fluctuations (grey).

the oscillator’s position and momentum. The uncertainty principle of course forbids to
do this with arbitrary accuracy on both degrees of freedom. However, several clever mea-
surement schemes exist to reduce the noise on the measurement of one of the quadratures
of motion (so-called “back-action evading” measurements) [5-7]. These include the possi-
bility to take pulsed, “snap-shot” measurements of displacement — which naturally gain
no information on momentum — and also provide routes to creating squeezed states
of the mechanical resonator, which exhibit reduced fluctuations in one of its quadra-
tures [8-10]. Moreover, squeezed light can be used to shift the SQL to a different power
for a chosen range of frequencies. Such methods are crucial to the working of the next-
generation gravitational-wave detectors, which will operate at conditions close to the
quantum limit [11].

We note that many optomechanical systems can now operate at measurement
strengths way beyond the standard quantum limit power PSQL. That does not automati-
cally mean that radiation-pressure-induced fluctuations dominate the resonator’s motion:
After all, since for most systems kBT � �Ωm, thermal fluctuations typically dwarf quan-
tum motion. However, several optomechanical experiments achieved the regime where
quantum backaction induces fluctuations of comparable size to thermal motion [12-14].

3. – A quantum optical description of cavity optomechanics

3.1. The optomechanical Hamiltonian. – In the preceding section, we already rec-
ognized the (back)action of optical forces in optomechanical systems. The interactions
mediated by these forces lead to rich behaviour. To introduce this, we will now discuss
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the basic cavity optomechanical system in terms of the annihilation operators â and b̂

of the optical cavity and mechanical resonator modes, respectively. The Hamiltonian of
the combined oscillators can be written as

(11) Ĥ = �ωc(x̂)â†â + �Ωmb̂†b̂ = �ωcâ
†â + �Ωmb̂†b̂ − �Gx̂â†â,

where we recognized that the optical frequency depends linearly on the position x̂ as
ωc(x̂) = ωc − Gx̂. We choose the origin of x such that the mean position x̄ = 〈x̂〉 = 0.
From the interaction term on the right, we immediately recognize the radiation pressure
force

(12) Frp = �Gâ†â.

Since x̂ can be expressed in terms of the phonon ladder operators as x̂ = xzpf(b̂ + b̂†),
we can write the cavity optomechanical Hamiltonian as

(13) Ĥ = �ωcâ
†â + �Ωmb̂†b̂ − �g0â

†â(b̂ + b̂†),

where we have introduced the vacuum optomechanical coupling rate g0 = Gxzpf . This
parameter signifies the optical frequency shift for a displacement by the size of the quan-
tum ground state, and is a general measure of photon-phonon coupling strength, ignorant
of e.g. the arbitrariness in defining x. Significant advances have been made towards op-
timizing this parameter, especially in nanoscale devices. In electromechanical systems,
mechanical motion is coupled to the GHz-frequency electromagnetic modes of on-chip
superconducting LC-resonators. Especially large coupling strengths are obtained by let-
ting the motion of thin micron-scale aluminum drums affect the capacitance across a
gap of few tens of nm [15]. Largest coupling strength are achieved in nanophotonic sys-
tems, such as high-index ring resonators where light is coupled to breathing motion of
the ring [16], and especially photonic crystal cavities [17-21]. There, light trapped in
nanobeam cavities within wavelength-scale mode volumes interacts with localized me-
chanical vibrations, either flexural beam vibrations at MHz frequencies or breathing
motion of the beam at GHz frequencies. In such systems, coupling rates g0/2π up to a
few tens of MHz have been achieved [22]. Optomechanical shifts are optimized through
design, and originate in the movement of dielectric boundaries near large field concentra-
tions (akin to an optical gradient force) [23] or in strain-induced changes of the refractive
index (electrostriction) [24].

3.2. The linearized Hamiltonian. – Interestingly, the interaction term in Hamilto-
nian (13) is cleary nonlinear; it contains products of more than two operators. This
in principle can lead to very interesting quantum behaviour, including the generation
of nonclassical states of motion and light and single-quantum interactions [25, 26]. This
nonlinearity can be seen, for example, in a simple thought experiment: A photon entering
the cavity on resonance exerts a force, displacing the resonator. This, in turn, shifts the
cavity frequency such that a second photon of the same frequency can no longer enter the
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cavity, establishing a form of single-photon blockade. However, for any such effect to be
observable, the cavity linewidth — which the Hamiltonian ignored — should be smaller
than the mechanical frequency and the photon-phonon coupling rate; g0 > Ωm > κ.
This is so far out of reach for solid-state optomechanical systems, by about two orders
of magnitude.

While it is conceivable that the single-quantum nonlinear regime of optomechanics is
reached in the future, a great degree of quantum control is still achievable for interac-
tion strengths reachable today, by enhancing the interaction through suitable laser drive
fields [1, 2]. To see how this comes about, we first transform the Hamiltonian (13) to
a frame rotating at the laser frequency ωl. A transformation is performed through a
unitary operator Û , which changes the Hamiltonian Ĥ as

(14) Ĥ → ÛĤÛ† − Û i�∂Û†/∂t.

To shift to a rotating frame, we take Û = exp(iωlâ
†ât)(1), to arrive at

(15) Ĥ = −�Δâ†â + �Ωmb̂†b̂ − �g0â
†â(b̂ + b̂†),

where we introduced the laser detuning Δ ≡ ωl − ωc. We note that in the Heisen-
berg picture, this Hamiltonian now describes the evolution of slowly varying operators â

(analogous to the light field in the cavity), etc.
We now consider that the cavity is driven by a coherent laser to large amplitude. It

then makes sense to write â = α + δâ, where α ≡ 〈â〉 =
√

n̄c is the (complex) amplitude
of the light field in the cavity expressed as the square root of the mean number of photons
n̄c, and all fluctuations of the optical field are contained in δâ. Thus, when expanding
the photon number, we get

(16) â†â = |α|2 + α∗δâ + αδâ† + δâ†δâ.

We now insert this in eq. (15) and neglect all terms with δâ†δâ assuming large drive
|α| � 1. The interaction part of the Hamiltonian (last term in eq. (15)) then reads

(17) Ĥint ≈ −�g0|α|2(b̂ + b̂†) − �g0(α∗δâ + αδâ†)(b̂ + b̂†).

The first term corresponds to a constant shift of the mechanical displacement due to
the radiation pressure of the classical drive field. We can omit it by implementing an
appropriate shift of the displacement’s origin and then in the following always use a new
detuning with respect to the (shifted) cavity resonance Δ → Δ−2g2

0 |α|2/Ωm. Moreover,
for a single optical mode we can always choose an appropriate gauge of intracavity phase
such that α is real. The interaction then becomes

(18) Ĥint ≈ −�g(δâ + δâ†)(b̂ + b̂†).

(1) For this transformation, Û âÛ† = e−iωltâ, Û â†Û† = eiωltâ†, and Û i�∂Û†/∂t = �ωlâ
†â.
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Here we have introduced the linearized coupling rate g = g0α. This Hamiltonian
describes two linearly coupled harmonic oscillators at resonance frequencies −Δ and
Ωm, coupled at a rate g that is controllable with the external laser drive. Note that the
optical-cavity mode δâ is the displaced field, describing the fluctuations of the light field,
i.e. the photons in sidebands of the drive field α. All dynamics of the system can be
deduced from the full Hamiltonian, by retrieving the evolution of an operator Â in the
Heisenberg picture through ˙̂

A = i
�
[Ĥ, Â] [1].

This interaction Hamiltonian describes many phenomena in optomechanics: it shows
how mechanical position fluctuations (b̂+ b̂†) are transduced to the optical phase quadra-
ture (δâ + δâ†) to facilitate motion measurement. And just like in classical coupled
oscillators, or atom-light coupling in cavity QED, we can distinguish weak- and strong-
coupling regimes when 2g < {κ,Γm} and 2g > {κ,Γm}, respectively. In the strong-
coupling regime, fluctuation spectra display normal mode splitting and Rabi oscillations
between photons and phonons occur [27, 28, 15, 29]. In the weak-coupling regime, the
optical cavity (plus the bath it decays to) can be considered to influence the decay rate
of the mechanical resonator in processes analogous to the Purcell effect in cavity QED.
This is in fact the source of optical cooling and amplification, effects known as dynamical
backaction [1, 30,31].

4. – Optomechanical cooling and state transfer

4.1. The resolved sideband regime. – If the optical (and mechanical) damping is smaller
than the mechanical frequency, the two oscillators are only coupled efficiently when they
are tuned to resonance, i.e. for Δ ≈ ±Ωm. To see what effect this has, we first shift to
an interaction picture by applying a new unitary (rotating frame) transformation

(19) Û = e−iΔδâ†δât+iΩmb̂†b̂t,

such that the Hamiltonian becomes

(20) Ĥint =−�g
(
δâb̂†ei(Δ+Ωm)t+δâ†b̂e−i(Δ+Ωm)t+δâb̂ei(Δ−Ωm)t+δâ†b̂†e−i(Δ−Ωm)t

)
.

Provided that (κ,Γm) < Ωm, the so-called resolved sideband regime, and likewise
g < Ωm, we can apply the rotating wave transformation to neglect some terms in the
above Hamiltonian. In particular, if the laser is detuned to the red mechanical sideband of
the cavity (Δ = −Ωm), we can neglect the last two terms in the interaction Hamiltonian
on the basis that they are oscillating very fast (at ±2Ωm) compared to the slowly varying
(resonant) first two terms and the cavity dynamics. For that detuning,

(21) Ĥint = −�g(δâ†b̂ + δâb̂†).

The evolution that this “beam-splitter” Hamiltonian describes corresponds to a contin-
uous swapping of the states between the optical and mechanical degrees of freedom at a
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Fig. 4. – Left: Schematic of optical cooling as a competition between different environments.
The mechanical resonator “b” is coupled at rate g to an optical mode a. Decay to the optical
bath thus competes with the intrinsic mechanical bath, characterized by a much larger thermal
occupancy nth. Thus, thermomechanical fluctuations entering the mechanical mode at rate γ can
be quickly dissipated in the optical bath, which is carrying no more than quantum fluctuations,
leading to a net cooling of the mechanical oscillator. Right: The cooling can be seen as a cavity
enhancement of anti-Stokes scattering processes A−. In the resolved sideband regime Ωm > κ
the Stokes scattering A+ is sufficiently suppressed to not imprint excess backaction fluctuations.

rate 2g. It thus enables state transfer between the optical and mechanical modes. For a
coherent drive, the optical field δâ corresponds to the vacuum, such that transfer of this
state to the mechanical mode naturally cools it. This is the principle of resolved sideband
cooling [32, 33].

For blue detuning (Δ = Ωm), a similar argument selects the last two terms:

(22) Ĥint = −�g(δâ†b̂† + δâb̂).

With this “two-mode squeezing” Hamiltonian, the simultaneous creation of a photon and
a phonon can lead to entanglement between the light field and the mechanical motion,
as well as the aforementioned amplification and self-oscillations.

4.2. Cooling rate and engineered reservoir . – Particular attention has been given to
optomechanical cooling, as it provides a way to prepare macroscopic resonators, which
normally suffer from significant thermal fluctuations, to their quantum ground state [32,
33]. Laser cooling happens most effectively in the weak-coupling regime at detuning Δ =
−Ωm, where the state transfer Hamiltonian (21) applies. Without cooling, a mechanical
resonator in equilibrium with a bath at temperature T , to which it is coupled with rate
Γm, is typically in a large thermal state with mean phonon occupation n̄th = kBT/�Ωm.
The cooling process can be pictured hand-wavingly as follows: under the influence of
the interaction, the displaced optical field δâ is swapped to the mechanical resonator,
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bringing it to its ground state. In turn, the thermal phonons are swapped to the optical
mode, from which they rapidly dissipate in the cold bath that the optical mode is coupled
to with decay rate κ. Thus, the optical cavity provides a path of decay for the mechanical
resonator, in addition to the intrinsic mechanical decay Γm (see fig. 4). It introduces a
reservoir to the mechanical resonator that is intrinsically cold. The rate of decay via the
cavity is

(23) Γopt =
4g2

κ
.

Provided that the total mechanical damping rate Γeff = Γopt + Γm remains smaller
than the cavity decay rate κ, the cooling rate can be increased by ramping up the laser
intensity. When the red-detuned cooling laser is applied, the total damping rate of the
resonator changes to Γeff = Γopt + Γm, and the fluctuations are reduced. In a classical
theory, the effective temperature of the mechanical mode could go to zero, according
to Teff = TΓm/Γeff . This is however only true for narrow-linewidth cavities, such that
Stokes processes, described by the interaction terms in eq. (22), are suppressed. If not,
these interactions — which are essentially the aforementioned quantum backaction — add
more phonons to the resonator than can be cooled. It can be shown that the minimum
achievable phonon number (in the limit of large laser power) is n̄min = (κ/4Ωm)2 [32,33].

In conclusion, in the resolved sideband regime the phonon number can become smaller
than 1 and the system can be cooled close to the mechanical ground state. This has been
achieved in 2011 for the first time at NIST in a nanoscale electromechanical system, and
since then reached in various other systems [34-36].

5. – Controlling photons and phonons

The above dynamics reveal a glimpse into the effects that are studied in optome-
chanics research which is by no means exhaustive. The interactions in these relatively
simple systems have sparked a wide variety of pursuits towards controlling both photons
and phonons in new ways, in both quantum and classical contexts. The latter includes
applications within time-keeping and signal synthesis and processing that exploit the gen-
eration of narrow-band mechanical oscillations. Indeed, in the standard optomechanical
system a blue-detuned laser drive induces mechanical amplification through dynamical
backaction, i.e., enhancement of the Stokes scattering process. For high enough optical
power, this negative Γopt overcomes intrinsic dissipation, resulting in a net mechanical
gain. Laser powers above this parametric instability threshold thus drive the mechanical
resonator into a regime of large self-oscillations reminiscent of lasing behaviour. The
amplitude of these oscillations is limited through nonlinear effects.

5.1. Optomechanically-induced transparency and cooperativity . – Moreover, the cou-
pling between optical and mechanical modes, induced by a detuned drive laser, also
provides a way to control the propagation of optical signals. An example is the effect
of optomechanically-induced transparency (OMIT): If a cavity is critically coupled to an
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input/output channel, an optical “probe” laser field tuned to cavity resonance ωc is nor-
mally absorbed. But in the presence of a red-detuned drive at ωc −Ωm, the beat of drive
and probe can resonantly induce mechanical vibrations. These in turn stimulate the cre-
ation of a modulation sideband of the drive laser at ωc — which can destructively interfere
with the probe field in the cavity. The result is a narrow frequency window of finite opti-
cal transparency. In essence, the two-way optomechanical coupling described by eq. (21)
provides an extra path photon-phonon-photon that excitations can take in the system,
and that can interfere with other paths. Similar effects of optomechanically-induced
absorption and amplification arise in the red-detuned regime due to the interaction in
eq. (22).

The OMIT window can be controlled by the drive laser, and leads to near-ideal
transmission at high drive power. The transparency becomes significant (exceeding 1/4)
if the so-called optomechanical cooperativity C exceeds unity. The cooperativity is defined
as

(24) C =
4g2

κΓm
.

This quantity, which combines coupling strength and dissipation, describes the strength
of many other optomechanical effects as well. For example, the condition C = 1 also
defines the optical field strength at which the standard quantum limit is reached.

A related quantity of importance is the quantum cooperativity Cq = C/n̄th, which is
effectively the cooperativity with mechanical dissipation rate replaced by thermal deco-
herence rate γ = Γmn̄th. Reaching Cq > 1 is a general condition for achieving optome-
chanical control in the quantum regime: It enables laser cooling to thermal occupancies
below 1 (either through sideband or active feedback cooling) [34, 35, 14], the observa-
tion of radiation pressure shot noise at equal level as thermal fluctuations [12], effects
such as optical and mechanical quantum squeezing [37, 38], quantum-coherent transfer
of signals [29,39], etc.

5.2. Beyond single-mode interactions. – A wide array of possibilities emerges when
extending optomechanical systems beyond the single optical and single mechanical modes
that compose the model system we discussed so far. For example, if two mechanical
modes are both coupled to a single optical-cavity mode, as depicted in fig. 5(a), a laser
field can lead to mechanical coupling: If the laser is detuned from cavity resonance, the
motion of one resonator will lead to a change of the intracavity photon number and thus
a change of the force on the other resonator, and vice versa. The condition for strong
mechanical coupling is C > 1 [40], and if the coupling exceeds decoherence (for Cq > 1),
the light field entangles the mechanical resonators [41]. Moreover, when combined with
self-oscillation and mechanical amplification, such systems allow the control and study
of synchronization of (nano)mechanical oscillators [42-44].

Conversely, if two optical modes are coupled to a single mechanical mode, as depicted
in fig. 5(b), optical control fields can stimulate coupling of the two optical modes via
the mechanical resonator. The state-transfer Hamiltonian (21) can be straightforwardly

 EBSCOhost - printed on 2/13/2023 9:33 PM via . All use subject to https://www.ebsco.com/terms-of-use



Nano-optomechanics 231

Fig. 5. – Examples of multimode optomechanical systems. (a) Two mechanical resonators can
be coupled via radiation pressure of a single cavity mode. (b) Two optical resonators interacting
with a single mechanical resonator facilitate state transfer from one cavity to the other via the
mechanical resonator.

extended to two optical modes if they are both excited by suitably red-detuned drive
fields. For large — and matched — cooperativities, probe light entering one cavity
on resonance will exit via the other. This mode conversion process preserves quantum
coherence if Cq > 1 [45-47].

Interestingly, the two cavity modes do not need to be at equal frequency, as long as
they are driven with suitable drive fields that create the couplings (fig. 6(a)). In fact, the
parametric optomechanical coupling even allows state transfer from microwave to optical
signals [48]. This provides a promising technological opportunity, as such a quantum-

Fig. 6. – Wavelength conversion and nonreciprocity using optomechanical coupling. (a) Two
drive fields mediate conversion of an optical signal from one cavity mode to another, via the
mechanical resonator. (b) As the phases of drive fields are imprinted on the photon-phonon
transfer in a nonreciprocal fashion, mechanically-mediated mode conversion can lead to effective
magnetic fields for light and sound.
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coherent link would be a nice way to connect optical photons — which can transport
quantum information virtually decoherence free at room temperature — to quantum
computers based on superconducting circuits that operate at GHz frequencies. Multiple
groups are thus pursuing the creation of such interfaces, by suitably combining optical
and microwave cavities with nanomechanical resonators [49-53].

5.3. Beyond reciprocity . – The fact that the parametric coupling mechanisms we
discussed provide conversion between optical and mechanical excitations at different fre-
quencies offers more interesting opportunities. These relate to the notion that optome-
chanical interactions can effectively break time-reversal symmetry for light or sound. For
charged particles such as electrons, magnetic fields can break time-reversal symmetry
and induce rich physical behaviour, from cyclotron orbits that depend on propagation
direction, to the Aharonov-Bohm effect which imprints a direction-dependent phase on
the wave function of a particle traversing a loop that encloses a magnetic flux, and one-
way transport in topologically protected edge states of quantum Hall insulators. These
effects have in common that they break reciprocity: If source and detector are exchanged,
transport amplitude and phase is not preserved.

Photons and phonons, in contrast, do not interact with magnetic fields (except very
weakly in magneto-optic materials). To create on-chip nonreciprocal and topological
components that break time-reversal symmetry in a similar way, optomechanical inter-
actions in multimode systems provide an interesting toolbox. When going from eq. (17)
to eq. (18), we ignored the phase of the drive field α. This was possible for a single
optical mode through an appropriate change of gauge. But in multimode systems, the
phase difference of drive fields cannot be generally gauged away, such that we should
remember to describe the coupling rates g for all modes as complex quantities, with
phases directly related to those of the optical drive fields. For example, for red detuned
drives the interaction Hamiltonian is generally of the form −�(gδâ†b̂ + g∗δâb̂†) for each
coupling. Here we see that the optical drive phase is imprinted nonreciprocally on the
photon-phonon transfer: If the creation of a phonon upon annihilation of a photon gains
a positive phase, the reverse path creating a photon in the same mode gains a nega-
tive phase. This is reminiscent of the Peierls phase that electron wave functions gain
as they travel in a magnetic vector potential. So if a photon transferred from mode 1
to mode 2 via a mechanical resonator acquires a phase Δφ = arg(g1) − arg(g2) (where
gi defines the drive-induced coupling rate of the resonator to each mode i), the reverse
process from mode 2 to 1 acquires a phase −Δφ. In analogy to the electronic Aharonov-
Bohm effect, this becomes observable when a path with such a nonreciprocal phase is
interfered with a different path (see fig. 6(b)). In suitably driven optomechanical sys-
tems, this has been used to create nonreciprocal optical and microwave elements such
as isolators and circulators, by implementing constructive interference of paths from
one port to another, but destructive in the opposite direction [54-63]. Similar mech-
anisms can also be used to break reciprocity for optically-mediated mechanical mode
transfer [64,65].

These effects rely on optical and mechanical resonances, and are thus inherently
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limited in bandwidth. The bandwidths can exceed the mechanical linewidth, as of-
ten the optically damped linewidth Γeff is the relevant bandwidth over which trans-
port can be controlled. Nonetheless, also those are typically limited fundamentally by
the cavity linewidth and/or the mechanical frequency. Various schemes seek to con-
trol photon and phonon transport over larger bandwidths, by exploiting propagating
light and sound waves in waveguides rather than cavities. While the absence of reso-
nant enhancement makes cavity-less approaches challenging, promising results have been
achieved [66,67].

Extending the creation of effective magnetic fields for optical or mechanical transport
to large numbers of modes in optomechanical lattices provides many opportunities. These
include in particular the creation of topological insulators for light and sound [68], with
intriguing properties such as one-way conduction of signals along the edge of the array,
topologically protected against backscattering. A flexible platform towards such goals is
offered by periodically structured dielectric slabs: Suitable patterns can offer simultane-
ous two-dimensional bandgaps for both light and sound at the nanoscale, with point or
line defects in the structure serving as optomechanical resonators and waveguides con-
necting them [69]. While the control over fabrication disorder makes the implementation
of such arrays challenging, continuous technical improvements could bring it into reach
in the near future.

5.4. Beyond linearity . – To create nonclassical states of light or motion, a certain
resource of nonlinearity is needed. Although the intrinsic nonlinearity of the optome-
chanical Hamiltonian (13) can have pronounced effects on thermal fluctuations with
n̄th � 1 [22], the regime where this nonlinearity is significant at the single-quantum level
is still out of reach for massive mechanical resonators.

Various techniques are however pursued to introduce nonlinearity in different ways. A
straightforward strategy to create a Hamiltonian describing a nonlinear coupling between
optical fields and motion is to enhance so-called quadratic coupling through design. If a
system is designed such that the linear term in the relation between optical frequency and
position in eq. (1) vanishes, the first leading term will likely be quadratic (ωc ∝ x2). In the
resolved sideband regime, this leads to a Hamiltonian that directly couples phonon num-
ber b̂†b̂ to the light field. This naturally occurs for example when a vibrating membrane is
placed exactly in the middle of a Fabry-Pérot cavity [70]. Especially if the reflectivity of
the membrane is high, the quadratic variation with position can be pronounced [71,72].
Quadratic coupling can in principle lead to the creation of nonclassical states (e.g. resem-
bling superpositions of x and −x), and to the detection of quantum jumps when single
mechanical quanta enter or exit the mechanical mode [70,73]. However, careful analysis
shows that sufficient cancellation of linear coupling puts stringent demands on loss and
fabrication precision that are equivalent to those to reach single-photon strong coupling
g0 > κ [74] — although nanoscale confinement in specific electromechanical systems may
somewhat relax those demands [75].

Thus, a multitude of efforts aim to couple intrinsically nonlinear quantum systems
to mechanical resonators in one way or another. An interesting approach is to leverage
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the fact that single-photon detectors are inherently nonlinear [76-78]. For a laser tuned
to the blue sideband of an optical cavity, the detection of a single photon emitted on
cavity resonance (in the Stokes sideband) “heralds” the presence of a single phonon if the
resonator was initially cooled to its ground state, as the phonon and Stokes photon must
have been created as a pair through the â†b̂† term in the Hamiltonian. A subsequent
“click” that detects an anti-Stokes photon for a red-detuned laser can prove the presence
of that phonon — as long as it was performed within a mechanical decoherence time.
Such protocols have been used for example to study entanglement between mechanical
vibrations of distant photonic crystal nanobeams, and nonclassical states of motion that
are conditioned on the detection of single photons [79,80]

To introduce quantum nonlinearity in a more deterministic fashion, researchers strive
to couple mechanical resonators to two-level systems, creating mechanical analogues of
cavity or circuit quantum electrodynamics — or the motion of trapped ions coupled to
two-level transitions [81]. For example, it has been proposed and demonstrated that
mechanical motion can influence the transition frequencies of semiconductor quantum
dots and nitrogen vacancy centers [82-86], or coupled to the latter via a magnetic field
gradient [86]. Moreover, optical emitters placed in suitable laser-driven optomechani-
cal systems can lead to phonon-emitter interactions [87, 88]. At this moment the most
advanced demonstrations have been provided using the techniques of circuit QED, cou-
pling superconducting qubits based on Josephson junctions to high-frequency bulk or
surface acoustic wave resonators through piezo-electric interactions, achieving high levels
of control over the quantum motion of resonators involving billions to trillions of moving
atoms [89-92].

6. – Conclusions

The field of cavity optomechanics, and in particular nano-optomechanics, has proven
a fertile ground to explore various intriguing physical concepts and develop technology
that could impact classical and quantum information processing as well as sensing and
metrology. Spectacular advances in system performance and control techniques, as well
as interfacing with other (quantum) systems in hybrid architectures, continue to show
the ability of optomechanics to create new scientific opportunities.
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[28] Gröblacher S., Hammerer K., Vanner M. R. and Aspelmeyer M., Nature, 460
(2009) 724.
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[82] Wilson-Rae I., Zoller P. and Imamoḡlu A., Phys. Rev. Lett., 92 (2004) 075507.

 EBSCOhost - printed on 2/13/2023 9:33 PM via . All use subject to https://www.ebsco.com/terms-of-use



238 Ewold Verhagen

[83] MacQuarrie E. R., Gosavi T. A., Jungwirth N. R., Bhave S. A. and Fuchs G. D.,
Phys. Rev. Lett., 111 (2013) 227602.

[84] Yeo I., de Assis P.-L., Gloppe A., Dupont-Ferrier E., Verlot P., Malik N. S.,

Dupuy E., Claudon J., Gérard J.-M., Auffèves A., Nogues G., Seidelin S., Poizat
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Summary. — In this manuscript we demonstrate the potential of a hybrid technol-
ogy which combines single organic molecules as quantum light sources and dielectric
chips. In particular, we discuss our approach based on evanescent coupling of diben-
zoterrylene molecules to silicon nitride waveguides and show a coupling efficiency
of up to 42 ± 2% over both propagation directions. Our results open a novel path
towards a fully integrated and scalable photon processing platform.
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1. – Introduction

Reliable and bright non-classical light sources are a fundamental ingredient for many
quantum technologies, such as sensing, imaging and metrology applications [1]. In the
last years single quantum emitters under pulsed excitation have been presented as deter-
ministic sources of indistinguishable single photons [2]. Among them, solid-state emitters
such as quantum dots [3], color centres in diamond [4] and single molecules [5] are par-
ticularly suitable for integration into photonic chips [6]. In particular, direct coupling
of single emitters to optical waveguides (WGs) is a powerful strategy to collect single
photons in well-defined propagating modes [7].

In this work, we present the design and characterization of the evanescent coupling
between Dibenzoterrylene (DBT) molecules and a ridge WG made of silicon nitride [8].
Room temperature measurements demonstrate competitive results with the state-of-the-
art [6,9], with an overall molecule-to-WG coupling efficiency up to (42±2)% and evidence
of low multi-photon probability inside the WG. The advantages of our approach include
an all-solid-state platform, a small footprint, simple fabrication methods and scalability.

2. – Evanescent coupling of single molecules to a nearby dielectric waveguide

Efficient light-matter interaction can be achieved placing a quantum emitter in the
strong evanescent field of optical dielectric waveguides on-chip [7]. Here we discuss the
design and the realization of a hybrid molecules-nanophotonic system made of spincoated
DBT:Ac crystals (n = 1.8) on Si3N4 (n = 2) WGs.

2.1. Single-molecule quantum emitters. – Dibenzoterrylene molecules embedded in
Anthracene (Ac) crystals (DBT:Ac) have key advantages for the coupling to photonic
structures, due to the wavelength of its main optical transition centerd at 785 nm, to its
photostability also at room temperature [10], and to the easy fabrication method which
allows to obtain few tens of nanometer films of DBT:Ac crystal via spin-coating.

The Jablonski diagram of a DBT molecule is depicted in fig. 1a. It shows the singlet
(S0, S1) and triplet (T1) electronic states with the relative vibrational multiplets. DBT
quantum yield results close to unity due to the small inter-system crossing probability
(10−4) to the rapidly decaying triplet state, and the zero-zero phonon line (00-ZPL)
is lifetime-limited at liquid helium temperature (� 40 MHz) [11]. The radiative (solid
arrows) and non-radiative decay processes (dashed arrows) are shown in the diagram. In
this work we show room temperature measurements where we use a non-resonant 767 nm
laser to pump the molecule to a vibrational level of a higher excited electronic state. The
single-molecule red-shifted emission at 785 nm can be measured by out-filtering the pump.

2.2. Design and fabrication of the hybrid photonic chip. – We have designed the
guiding structure such to have an important evanescent field at the emitter position,
and to simultaneously achieve a strong mode confinement and low losses. A rendering
of the nanophotonic circuit is sketched in fig. 1b. It consists of a glass substrate with a
500 nm-wide single-mode optical WG, and focusing grating couplers. Gratings are buried
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Fig. 1. – Evanescent coupling of DBT molecules to a ridge WG. a) Jablonski diagram of the
DBT:Ac system showing the singlet (S) and triplet (T) electronic states. Radiative (non-
radiative) transitions are represented by solid (dashed) arrows. b) Rendering of the silicon
nitride WG with grating outcouplers, coated with HSQ and gold. A zoom-in shows a thin
DBT:Ac crystal which is spin-coated onto the WG. c) Layout of the 3D numerical simulations.
A dipolar emitter (white arrow) mimicking a single molecule is placed in a 100 nm thick Ac
crystal. The transverse section shows the normalized electric field on the dipole plane. d) The
top panel displays the fluorescence map measured with the EMCCD camera, showing signal
both from the molecule position (region 1) and from the grating out-couplers. In the bottom
panel, the antibunching dips relative to the molecule position (1) and to the coupler area (2) are
displayed. Panels b, c, d were adapted with permission from P. Lombardi, et al., ACS Photon-
ics, 5 (1) (2018), pp. 126-132 DOI: 10.1021/acsphotonics.7b00521. c© 2017 American Chemical
Society.

with a hydrogen silsequioxane (HSQ) buffer layer to prevent the formation of crystals on
the couplers and consequent scattering, and a gold mirror is deposited on top to enhance
directionality. DBT single molecules embedded in thin Ac crystals are then drop casted
on the chip. The geometric parameters of the WG, i.e. a width of 500 nm and a thickness
of 175 nm, are optimized for single-mode operation at 785 nm and in order to maximize
the electric field of this fundamental mode at the position of the emitter. The grating
coupler is designed to fulfil mode-matching with a Gaussian-like mode, and to obtain
maximum out-coupling efficiency at the central emission wavelength of DBT (up to 90%,
according to finite elements simulations).

Figure 1c displays the layout of 3D numerical simulations for the estimation of the
emitter-WG coupling efficiency, i.e. β = ΓW G

Γtot
, being ΓWG the emission rate into the

WG mode and Γtot the total decay rate in the presence of the WG. A dipolar emitter
oriented along the y-axis is placed inside an Ac crystal to model a single molecule. The
β-factor is calculated as the Poynting vector flux through the detected area, delimited
by the red dashed line which surrounds the WG section, and is then normalized with the
total power flow radiated through a volume containing the emitter. Taking into account
the intrinsic variability imposed by the spin-coating of DBT:Ac on the chip, the optimal
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β ∼ 50% is obtain for a 180 nm thick Ac crystal, and for a distance of the emitter from
the surface of 10 nm.

2.3. Experimental results. – The experimental set-up is a two channel confocal micro-
scope, which allows to focus at the same time both the off-resonant excitation beam
(767 nm) through the substrate onto the WG area and the resonant reference laser
(785 nm) onto the grating couplers for the throughput characterization. A Hanbury
Brown and Twiss (HBT) set up allows to take measurements of the second-order corre-
lation function (g2(Δt)) of the fluorescence light.

An example of fluorescence map is shown in the top panel of fig. 1d. The emission is
partially lost in free space (bright spot at the molecule position in the center) and partially
coupled throughout the WG towards the couplers, in both directions (bright lateral
spots). The emitter-WG coupling efficiency is estimated by comparing the fluorescence
intensity on the EM-CCD camera in the couplers areas, Sc, with the molecule residual
emission into the free space, Sf , after appropriate background subtraction. Accounting
for the corresponding collection efficiencies ηc and ηf , the coupling probability to the
WG can be calculated as

(1) βmeas =
Sc/ηc

Sc/ηc + Sf/ηf
.

The out-coupling efficiency (ηc) of the WG is estimated with transmission measurements.
The resonant reference laser is focused into one of the couplers and light from the other
coupler is imaged, integrated over the coupler area and normalized to the same signal
obtained for reflection of the laser spot on a silver mirror (after background subtraction on
both images). The square root of this value corresponds to the single-coupler efficiency,
which is found to be ηc = 35 ± 5%, where the difference from the simulated value is
ascribed to a non-optimal HSQ thickness.

The collection efficiency ηf is estimated via 3D numerical simulations, as Poynting
vector flux through an area corresponding to the objective collection capacity. The value
is then normalized with the overall non-guided power flow and yields ηf = (5.1± 1.5)%.
Therefore, βmeas can be determined by direct confocal excitation of the molecule and
collection from the EM-CCD image. Integration of the signal in the respective regions
Sf and Sc (from both couplers) yields an average value of βmeas = 20% and a peak
value of βmeas = (42 ± 2)%, which is correctly described by the theoretical model when
accounting for possible different dipole positions.

To conclude, the quantum nature of the WG-coupled light is analyzed by measuring
the g2(Δt) off-chip, collecting light either from the illumination point or from one coupler,
i.e. the regions in the top panel of fig. 1d labelled with 1 and 2, respectively. The bottom
panel displays the correspondent measurements and fits, which yield g2

off(0) = 0.33±0.09
and g2

off(0) = 0.50± 0.05. After accurate background correction for the non-guided laser
scattering from the illumination point (see ref. [8] for details), we evaluate an on-chip
single-photon purity g2

on(0) = 0.01±0.10, which indicates a low multi-photon probability
inside the WG.
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3. – Conclusions

In this manuscript we discuss a possible platform to integrate single-molecule–based
quantum emitters into dielectric WGs, aiming at efficient emission, control and collection
of single photons on-chip. We use DBT molecules embedded in Ac crystals as reliable
sources of single photons, owing to their purity, brightness and photostability at room
temperature. We present the design and characterization of efficient evanescent coupling
between a single molecule and a ridge WG made of silicon nitride. Room temperature
measurements show competitive results with the state-of-the-art with a molecule-to-WG
coupling efficiency up to (42 ± 2%) and evidence of single-photon-source purity on-chip.
The advantages of our approach include an all-solid-state platform, a small footprint,
simple fabrication methods and scalability.
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Summary. — Nitrogen-vacancy (NV) centers in diamond have emerged in the
last decade as a prominent platform for quantum technologies. As for any qubit
system, a good understanding of their local environment is crucial to build quantum
devices protected from detrimental noise. Here, we describe in detail a method to
spectroscopically characterize the spin bath around an NV center, even when the
NV coherence time is short, and identify the coherent coupling with the nearest
nuclear spins. In the regime of weak qubit-bath coupling, the acquired knowledge
of the bath reliably predicts the qubit dynamics under different controls.

1. – Introduction

Characterizing the environment surrounding a qubit is important for quantum tech-
nologies, since it enables the development of strategies to increase coherence [1,2]. More-
over, the controlled and coherent coupling of a quantum sensor with its environment has

c© Società Italiana di Fisica 245
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Fig. 1. – (a) Scheme of the experimental setup. (b-d) Evolution of Pn under an XY-8 sequence.
(b) Varying the time between pulses, with n = 40. (c)-(d) Varying the number of pulses, fixing
t1 to the center of a � collapse (c) and a � collapse (d).

been proposed as a potential resource also for sensing and computing [3, 4]. Here we
present an experimental procedure to perform spectroscopy of a spin bath, sensed by the
electronic spin of a nitrogen-vacancy (NV) center in diamond. We also give a brief de-
scription of the procedure to characterize the coupling with single nearby nuclear spins.
Once the environment has been fully characterized, we discuss the predictive power of
the obtained noise model, a crucial requirement for quantum devices.

2. – Effect of the environment on the NV center

2.1. Spectroscopy method . – We explore the complex environment of the NV spin
qubit, formed by an ensemble of natural abundance (1%) 13C nuclear spins I = 1/2
randomly distributed in the lattice. The experimental setup is shown in fig. 1(a). We
use a home-built confocal microscope to initialize an NV center into the spin state ms =
0, and read out its final state after manipulation. An antenna next to the diamond
delivers microwave pulses used to coherently control the NV electronic spin. A permanent
magnet generates a magnetic field which we align with the NV quantization axis [5]. The
spectroscopy protocol is based on dynamical decoupling (DD) sequences composed by a
variable number n of π pulses, as explained in the next section. Each sequence is enclosed
in a Ramsey interferometer to map coherence into residual population Pn of ms = 0.

In fig. 1(b) we present the time evolution of Pn under an XY-8 sequence of n = 40
pulses as a function of the time between pulses, 2t1 (total measurement time T = 2nt1).
There are two different kinds of loss (collapses) of the electronic spin coherence. The
collapses due to the interaction with the spin bath are the broad ones and go down to
Pn = 0.5 (marked with � in fig. 1(b)). The analysis of these collapses gives access to the
noise spectral density (NSD) modeling the large spin bath, as shown in the next section.
Narrow collapses (marked with � in fig. 1(b)) can reach Pn < 0.5 and originate from
the interaction with individual strongly coupled nuclear spins. Characterizing the two
contributions to the signal loss gives us a full picture of the spin environment.
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The difference between the two interactions is even more evident when we fix t1 and
observe the behavior of the coherence in terms of the number of pulses. While the
collective spin bath induces an exponential decay of Pn, the coherent coupling to nearby
nuclei generates coherent oscillations, as shown in fig. 1(c)-(d), respectively.

In the presence of a classical stationary noise, the coherence function W (t) of the
qubit decays as

(1) W (t) = e−χ(t) with χ(t) =
∫

dω

πω2
S(ω)|Y (ω)|2,

where Y (ω) is the filter function [6] describing the used DD sequence, and S(ω) is the
NSD, which models the collective effect of the spin bath. When using an equispaced
DD sequence with large number of pulses [7] the filter function can be approximated
by a δ-function centered at ω = π/(2t1), and we can approximate the coherence as
W (nt1) � exp(− 2nt1

T L
2

). To characterize the NSD we extract the generalized coherence

time TL
2 from experimental data, as exemplified in fig. 1(c).

Although we could use the approximated expression S(ω) � π2

8 T L
2

to obtain the NSD
from the first collapse, this approximation is only valid for a large number of pulses,
whereas the coupling with the spin bath leads to a very fast decay (n < 8) for t1 around
the first collapse. This induces an artificial broadening on the NSD peak and leads to
an incorrect estimate of its maximum amplitude. To overcome the problem of strong
decoherence around the Larmor frequency ω = ωL of the nuclear spin bath, we take
advantage of the fact that the filter function of an equidistant sequence has harmonics
at ωl = (2l + 1)ωL, affecting TL

2 [7, 8],

(2)
1

TL
2 (ω)

=
8
π2

∞∑
l=0

1
(2l + 1)2

S(ωl).

In practice, we center the higher-order harmonics of the filter function around the
expected NSD peak, to extract the different harmonic contributions and combine them
to obtain a faithful estimate of the NSD. By fitting the experimental data to eq. (2)
we estimate the NSD, as shown in fig. 2(a). As detailed below, we find that the NSD
lineshape can be reliably extracted from a Gaussian fit of 1/TL

2 around the 1st- and 2nd-
order collapses (l = 1 and l = 2), without the need to measure even higher harmonics.

We demonstrate self-consistency of the method, and show that while the first collapse
of the signal does not provide reliable information to obtain the NSD, the analysis of 1st-
and 2nd-order collapses enables a correct reconstruction of the NSD. In our calculations
we assumed instantaneous π pulses, this approximation is better verified for the higher
harmonics, which are associated to lower frequencies.

To model the NSD we use a Gaussian noise peak centered at 750 kHz, shown as a
dashed line in fig. 2(b). Using eq. (1) we simulate the coherence of the qubit under a DD
sequence with equidistant pulses, and analyze the result to extract TL

2 and reconstruct
the original NSD peak. The dark-gray shaded area in fig. 2(b) corresponds to the NSD
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Fig. 2. – (a-b) NSD obtained with the 1st- and 2nd-order harmonics (light-gray), and with the
0th-order harmonic (dark-gray). The shaded areas include the error on the fit. (a) Result from
experimental data with B = 208(1) G. (b) Reconstruction of a model NSD used to proof self-
consistency of the method. The black dashed line (overimposed with the light-gray area) is the
original model NSD. (c)–(e) Dynamics of the electronic spin under different conditions. Points
represent the experimental data, and solid line the evolution predicted from the characterized
environment. (c)-(d) XY-8 sequence with n = 24 pulses at 310(1) G and 394(1) G, respectively.
(e) A XY-4 at B = 205(1) G, with n = 20 pulses at positions tij = T

80
(20i + 3j − 19), with

i = 1 . . . 4 and j = 1 . . . 5 [9].

reconstructed from the simulation of the first collapse, while the light-gray shaded area
represents the result of the reconstruction of the NSD using the l = 1, 2 harmonics.
Width and amplitude obtained with 0th-harmonic collapse are very different from the
original ones. On the other hand, using the first two harmonics allows us to reproduce
the original parameters of the Gaussian peak with less than 0.2% error.

The hyperfine interaction with a nearby nuclear spin induces modulations of the
coherence of the NV electronic spin in terms of the number of pulses [10-12], which can
be isolated from detrimental noise using equidistant DD sequences. In fig. 1(d) we show
an example of this coherent oscillation, together with the fit to a theoretical function,
calculated using conditional evolution operators, from which we extract the components
of the coupling strength between the NV spin and the nearby nuclear spin. More details
are reported in ref. [9].

2.2. Predictive power of the characterization. – In order to corroborate the predic-
tive power of the reconstructed environment model, we use the information to simulate
the evolution of the electronic spin for different magnetic fields and under different DD
sequences, and compare the results to corresponding new measurements. In fig. 2(c)-
(d) we present the spin coherence under an XY-8 sequence of 24 equidistant pulses for
two different strengths of the external magnetic field, in the regime of weak qubit-bath
coupling. The model successfully predicts the qubit evolution under sequences with non-
equidistant pulses, as shown in fig. 2(e) where we used an adaptive XY-4 [13] sequence
(more details in Supplementary materials of [9]). In all cases we verify a very good agree-
ment between data and simulation. We have also tested the model for adaptive XY-8
and Uhrig sequences [9], with similar results.
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By varying the magnetic-field strength, we tune the bath internal energy compared
to its coupling with the NV spin [9, 14]. At a low magnetic field (∼ 150 G or below) we
find that the controlled NV spin dynamics affects the spin bath [9]. Since the bath is
no longer independent from the NV, it is not possible to find a single NSD that would
correctly describes the evolution of the electronic spin.

3. – Conclusions

In conclusion, we have described a method to fully characterize the environment
comprising nuclear spins in diamond, using as a probe the electronic spin of an NV
center. We characterize both the spin bath and the nearby nuclear spins. By using
higher harmonics of the DD-sequence filter functions applied on the qubit, we overcome
the problem of short coherence time, and reconstruct a reliable environment model. We
find that this model predicts the dynamics of the NV spin under various DD sequences
and for different external magnetic fields, in the regime of weak qubit-bath coupling.
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Summary. — This contribution to the proceedings describes a new technique to
prepare and measure the lifetime of the first phonon Fock state in diamond using
single-photon time-correlated Raman spectroscopy. By using a pair of ultrafast
laser pulses of two different colors we can spectrally distinguish the Stokes photons
created during the first pulse from the anti-Stokes photons created during the second
pulse. Single-photon detection on the Stokes signal acts as a projective measurement
preparing the phonon in an energy eigenstate. During the lifetime of the phonon,
the second pulse, which arrives after a controllable delay, has a higher probability
of emitting an anti-Stokes photon than allowed by classical mechanics. Two-photon
quantum correlations between Stokes and anti-Stokes can therefore be used to map
the phonon decay.

1. – Description

This contribution to the proceeding was originally shown as a poster presentation
in the school. This poster explained our group’s recent work in developing a method
to probe phonon states by measuring photon correlations, which was recently published
in [1].
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2. – Experimental method

The aim of our experiment was to measure the dynamics of the first phonon Fock
state in diamond. Broadly speaking, our method is the following: First, a 100 fs laser
pulse interacts with the sample, creating with a low probability (typically < 1%) a
perfectly correlated pair of one optical phonon and one Stokes-shifted photon. The
photon is filtered from the laser and detected by an avalanche photodiode operated in
Geiger mode. Successful detection projects the state of the phonon into the first Fock
state (energy eigenstate). The phonon mode freely evolves for some time before a second
laser pulse interacts with the sample, which can annihilate the phonon (if present) and
in the process emits an anti-Stokes photon, which is filtered and detected using another
single-photon detector. In other words, one laser pulse first writes the state (together
with the measurement process), the phonon mode evolves for a certain amount of time,
and a second laser pulse reads the state. The scheme is therefore similar to the one
proposed in 2001 for atomic ensembles by Duan, Lukin, Cirac and Zoller [2], and can
therefore be used for a wide range of quantum information processing tasks.

To interact with the phonon mode of frequency ωph we use the Raman effect, where
the inelastic scattering of a laser of frequency ω0 gives rise to a signal at frequency
ω0 − ωph, called the Stokes (S) signal, and a signal at frequency ω0 + ωph, called the
anti-Stokes (aS). The emission of a Stokes photon is accompanied by the creation of a
phonon, while the emission of an anti-Stokes photon is accompanied by the annihilation
of a phonon.

In order to investigate the dynamics, we use two lasers, one of which has an adjustable
delay line along its path. We then look at the Stokes signal from one of the lasers, and at
the anti-Stokes from the other. Phonons typically decay in pico-second time scales. For
that reason, our experiments use ∼ 100 fs pulses from a mode-locked Ti:Sapph oscillator
and a synchronously pulsed OPO being pumped by part of the TiSa’s output.

Two lasers beams at different frequencies are used in order to spectrally distinguish
the Stokes from the anti-Stokes photons. The TiSa emits pulses centered on ∼ 810 nm,
while the OPO emits pulses centered on ∼ 690 nm. This wavelength configuration is
chosen purely for convenience, as the only requirement on the wavelengths is that the
Stokes and anti-Stokes should be distinguishable, and noise from the sample (e.g. from
photoluminescence) should be avoided.

The correlation between the S and aS photons are investigated using Time Correlated
Single-Photon Counting (TCSPC). Start-stop measurements are done, where the detec-
tion of a S photon triggers the start of a measurement, and the detection of an aS photon
triggers the stop. By doing this multiple times a histogram is built, from which the second
order cross correlation between the S and aS (g(2)

S,aS) can be calculated. In the histogram
shown in fig. 1, the peak at t = 0 corresponds to the events where both a S and aS
photons were detected during the same repetition rate of the lasers, while the side peaks
come from the events where the detectors clicked during different repetitions. The value
of g

(2)
S,aS is then calculated as the ratio of the t = 0 peak to the average of the side peaks.
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Fig. 1. – S-aS coincidence histogram measured for 20 minutes, with both write and read pulse
arriving at the sample simultaneously. The peak at time t = 0 represents the correlated events,
while the other peaks show accidental coincidences.

3. – Results

The classical limit for the S-aS correlations, found by applying the Cauchy-Schwarz

inequality to classical fields [3,4], is given by g
(2)
S,aS(0) ≤

√
g
(2)
S,S(0)g(2)

aS,aS(0), where g
(2)
S,S(0)

and g
(2)
aS,aS(0) are the Stokes and anti-Stokes auto-correlation functions, respectively.

Both of these functions follow thermal statistics, giving an upper bound on the maximum
classical value of g

(2)
S,aS(0) = 2. When both lasers overlap in time, as shown in fig. 1, we

find g
(2)
S,aS(0) = 63.4 ± 9.7, breaking the classical limit by 6 standard deviations.

The photon correlation is mediated by a phonon, which the write pulse creates and
the read pulse annihilates. As such, if the phonon has time to decay before the read
pulse arrives, the signal from the two lasers will no longer be correlated. Because of this,
measuring the S-aS correlations as a function of the delay between write and read lets
us measure the decay of the phonon mode, as shown in fig. 2. The correlations show an
exponential decay, where we measure the phonon lifetime to be τ = 3.9 ± 0.7 ps, which
is consistent with other measurements in the literature [5].

4. – Conclusion

Here we have demonstrated a method to prepare and measure the dynamics of the first
phonon Fock state. There’s nothing that depends on the specific properties of diamond,
so this method can be directly applied to other high-frequency phonon modes in different
types of systems. The wavelength tunability means that it can also be used to address
electronic or engineered transitions, giving the signal a resonant enhancement.
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Fig. 2. – Delay dependence of the S-aS correlations, with the measured correlations (black
squares) fitted with an exponential decay convoluted with the instrument response (grey line),
with a time constant of τ = 3.9 ± 0.7 ps.

This method can also be extended to multi-photon correlations in order to study
higher-order Fock states, or modified to start and stop on different Raman lines to study
phonon-phonon coupling.
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