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PREFACE 
 
 
 
I firmly believe that the core quality of any technician that makes them 

successful in the profession is a special style of mind, an engineering style 
of thinking. The features of this book stemmed from the fact that the 
author set himself the goal of not only providing knowledge on the 
designated issue, but also, perhaps mainly, honing the engineering style of 
thinking. Antenna synthesis provides an excellent opportunity to achieve 
this goal, since it differs from many other technical disciplines in the 
organic unity of complex mathematical abstractions and physical 
manifestations, which is a vital aspect of the engineering style of thinking. 
The photo in Fig. 3-3 can serve as a visual confirmation of this fact. It 
shows a setup that implements such a mathematical abstraction as an 
adjoint operator in the form of an electromagnetic field. Amazing! Isn’t it? 

The mentioned features are as follows. 
 First, the emphasis is not on the results of the synthesis, but on 

methodological aspects: how to formulate and solve the corresponding 
problems. At the same time, physical meaning and compliance with 
practical needs are the focus of attention. For example, in the synthesis of 
a given amplitude antenna radiation pattern (ARP), the deviation of ARPs 
in the form, taking into account random errors of reproduction of the 
nominal solution, need to be considered. 

 Second, it is best to teach creativity with your own ideas and 
developments. That is why the book is not an overview of the works in the 
field of antenna synthesis, so its bibliography contains only 49 references. 
The subject matter of the book is what the author did. 

 Third, Chapter 1 is devoted to the basics of functional analysis, 
without which it is hardly possible to understand the essence of antenna 
synthesis. This material is of broader interest, as is the Introduction, which 
discusses what an engineering style of thinking is. 

Who is this book for? Naturally, it is primarily for those who are busy 
with or interested in the development of antennas, since antenna synthesis 
is the theoretical basis of such activities.  

In addition, due to its focus on the formation of technical thinking, it is 
useful to students, graduate students and young engineers of many 
specialties and first radio communications. 
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As for the style of the book, at the end of the chapters there are 
training tasks and Mathcad programs in the Appendices, which allow the 
interested reader to think over or conduct their own research on the issues 
posed.  

In some places, the author’s comments interrupt the text. Smaller fonts 
and an enlarged left margin highlight them so you can skip them.  

Graphic visualization of everything is one of the facets of technical 
thinking. It is therefore not surprising that the book has so many figures. 

Acknowledgments 

The author considers it his pleasant duty to express his gratitude to his 
colleagues for many years of communication and cooperation, thanks to 
which his professional philosophy has become what it is. 
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INTRODUCTION:  
ENGINEERING STYLE OF THINKING 

 
 
 
The field of activity associated with techniques and technologies is 
extremely diverse and extensive. Nevertheless, some universal 
psychological qualities largely predetermine the ability to assimilate the 
relevant knowledge, to develop necessary skills, and success in the 
profession. A special mindset, which could be called an engineering way 
of thinking, is the most important, I think. 

The list that indexes different facets of thinking (thinking styles, 
methods and ways of thinking) consists of more than a hundred items. Not 
surprisingly, there are several scales used by psychologists to classify 
styles of thinking in accordance with their penchant for philosophy, 
sociology and management [1, 2], or psychology [3]. 

Along with Kirton’s adaptive vs. innovative cognitive styles [3], 
V. Gulenko defined four styles of thinking from another point of view [4]: 
causal, dialectic-algorithmic, holographic and vortex. Note that 
psychologists understand style of thinking merely as universal cognitive 
techniques without its relation to the subject of a thought. The engineering 
style of thinking, as I understand it, is much narrower and refers to the 
techniques of comprehending the world of technique and technologies. It 
relates closely to the criteria of competence, which is a very important 
measure of purpose and quality of training in the high school [5, 6]. 

Of what the engineering style of thinking consists 

The following mental qualities and skills form the engineering style of 
thinking: 

Firstly, curiosity and an overwhelming desire to understand the essence 
of any natural phenomena and the laws of the technical world. Of course, 
human curiosity does not restrict itself by the field of technique. Once 
during the spring I thought, “The spring sap will start moving. I wonder how 
the sap reaches the foliage at an altitude of 15 or 20 meters. What makes it 
rise? What pushes it or pulls it?” My reader, try and answer this. If you think 
of pressure, it should be of unbelievable values of 1.5 atm. Think of 
something else. 
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Secondly, a strong predilection for the quantitative analysis of physical 
processes and things. Three skills are of importance here: 1) to select 
measurable characteristics and parameters of the essential manifestations; 
2) to ignore irrelevant factors; 3) to identify quantitative relationships and 
laws that govern the world of technology. 

Thirdly, a proper arsenal of basic mathematical methods and techniques 
needed to solve a wide range of tasks in the relevant technical area. 

Fourthly, the ability to perceive the physical nature of analyzed 
processes, hidden in mathematical formalism. This not only gives a 
meaningful interpretation of the obtained results, but also can often speed 
up calculations through the use of heuristic assumptions and reasonable 
simplifications. Besides, very often it happens that among strict 
mathematical solutions, just a few comply with the terms of technical 
feasibility or other practical limitations, and we have to separate them 
from the formal solutions. To do this we must understand the physical 
nature of the processes and quantitative laws reflected by mathematical 
expressions. 

In Fig. 1, the diagram illustrates the role of thinking in an engineer’s 
activities. Just like any chart of a socio-psychological nature, it does not 
require detailed comments. We note only that there are two main functions 
of engineering thinking, as a summand of engineer competencies. It is the 
capability to plunge easily from the real physical world into the virtual 
world of mathematical descriptions (mathematical formalism), and then 
just as easily make the reverse transition to the physical reality, to the 
interpretation and understanding of the formal results. 
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Figure 1: Activities of an engineer 
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would have been acquired by all the students. This is the aim of the whole 
process of technical training in its entirety. 
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the Authority’s manager, the teacher and the student (Fig. 2). 

 

 
Figure 2: Three subjects of the educational process 
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How clever and ambitious (or not) school graduates are, those who go to 
universities is largely dependent on social prestige of the profession they 
have chosen. While prestige is a moral issue, in relation to this topic it has 
a very clear quantitative measure: the income that an average employee 
receives in the profession.  

Fig. 2 presents the subjects of educational processes along with social 
conditions that, catalyst-like, “do not participate in the reaction, but can 
greatly speed up or slow down it.” Always and in all circumstances, the 
professionalism of teachers is the most essential thing concerning the 
quality of education. Over many years of teaching at the Electronics and 
Telecommunications Institute (courses “Antennas and microwave 
devices,” “Electrodynamics” and others) pedagogical methods were 
worked out, that can be hopefully useful at teaching any technical 
discipline.  

Psychological issues 

1. It is very helpful to keep in mind that terms, definitions, physical 
and functional characteristics are as vital for any technical discipline, as 
the structural elements (bricks, beams, logs, etc.) for the building. That is 
why the question “What is it?” is pronounced so often in exams. Draw the 
students’ attention to a pleasant and inspiring fact that each term and each 
definition contains a small (easily exhaustible) amount of information. No 
matter how paradoxical it may sound, any student can and should know as 
clearly as professors or academicians what the spectrum of a signal, a band 
pass filter, the electric field vector, the antenna gain etc. are. 

2. A good student or a qualified engineer can make the right judgment 
whether he knew what was discussed, or not. So, sometimes he answers, “I 
do not know.” An unsuccessful student or engineer, as a rule, has no 
certainty on this matter. Typically, this is due to unsystematic learning—
attempts to grasp the current topic without mastering previous often-
simpler themes. 

A good piece of advice to such people is the following. Develop the 
habit, when faced with difficulties, of asking yourself two questions: a) 
whether the terms of the studied text are clear, b) whether what it is about 
is clear (not in detail, but in general). If necessary, leaf through the 
textbook again. In critical situations, seek someone’s help. In addition, of 
course, train your inner voice: “I know it,” or “I don’t understand it.” Such 
a strategy will not only result in successful learning but also will reduce 
the time consumption. 
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3. For so many students and engineers, a formula is a fetish: it is 
impossible to derive it and to find it in a textbook is the only way. There is 
a need to convince them that not even all the books together contain the 
answers to all situations. A strategy that is much more practical is to 
understand the general principles and laws and remember a small number 
of the corresponding formulas and relations. This will make it possible to 
get a formula for a particular case, without wasting time on an 
unsuccessful search. 

4. Some do not know how to control the calculations, find errors and 
assess the acceptability of results. There are standard techniques that help 
to cope with these limitations:  

First, dimensional analysis is elementary and surprisingly effective. If 
the obtained formula results in calculating the sine of 3 kg or the logarithm 
of 1 mm or something like that, do not do any calculations and look for 
errors. If this formula is from a textbook, it is likely you do not correctly 
perceive the notation of the variables.  

Second, it is useful to check formulas at special values of their 
variables, for which you know what it should be: in case of a short circuit 
or discontinuity, at zero or infinitely large value, etc. 

5. A very useful habit is to not rush into solving a new task, but try to 
understand it as a whole, find out its general structure or its features in 
order to pave the best way to a solution. I call this tactic a “shell 
approach.” 

Nature and its description 

A feature of the engineering profession as the brainchild of Applied 
Physics and Applied Mathematics is that it deals with something not 
completely known. For example, electrodynamics, based on paradigm of 
the macroscopic, explores notion of electromagnetic field (EMF). It 
elucidates the relevant lows that create the solid foundations for 
developing antennas, high-frequency devices, radio systems, and many 
other applications. Although a comprehensive answer to the question 
“What is EMF itself?” still awaited. Perception of the real complex and 
multifaceted world of nature through its manifestations is the fundamental 
principle of engineering thinking. Regularities of these manifestations 
established as strict quantitative relationships pave the way for the use of 
physical phenomena in technology. 

The transition from the world of reality to the world of quantitative 
descriptions of its manifestation begins with an introduction of significant 
measurable characteristics of the considered phenomenon, structure or 
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device. To the engineer, it is useful to bear in mind that the choice of these 
characteristics is not strictly predetermined. They are largely the result of 
professionals’ conventions. 

For example, apart from in our perception, the electric field vector, the 
“famous” vector E, does not exist. What does exist is an ability of EMF to 
exert a force F on a particle of matter, which is arranged in the given point 
in space and has a charge q. Coulomb’s law has proven useful in 
characterizing this property of EMF by vector E=F  Similarly, Ampere’s 
law regarding the force interaction of electric currents had led to an 
agreement to characterize the magnetic field associated with the currents 
by vector H. The pair of vectors E and H so fully characterize the 
properties of EMF, that specialists perceive these vectors as EMF itself. 

Such identification we use very often. For instance, we say, “transmit 
energy,” although the energy does not exist as a material something. After 
all, it is a property of a matter, or a body, or a field, and apart from its 
carrier does not exist. The same situation concerns information: it is 
customary to speak of it, as if it is something tangible and exists in itself. 
We must understand the conventionality of such expressions used for 
brevity. 

Creativity and ingenuity 

To exercise the creativity and ingenuity inherent to engineering 
thinking, unpretentious crafty tasks are useful. For the sake of 
concreteness, here are two examples of such tasks, which do not require 
the knowledge beyond the high school physics. I hope that they will please 
inquisitive readers, who, I hope, will try to answer the tasks before reading 
the paragraphs “If you still have not coped with the task, read the 
answer.”  
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Figure 3: Layout of the 12 m space telescope (a picture from [7]) 
 

The first of them I thought up under the impression of the Russia-
European project named “Millimetron.” The plan is to launch a large space 
telescope for exploring the universe [7]. Fig. 3 depicts its overall view, 
which is so grandiose that I cannot resist showing it. Among others, there 
are two amazing moments. 1) To achieve the desired angular resolution 
and needed mirror efficiency the overall surface accuracy should be 10 
microns for the whole 12 meter dish surface! 2) To detect the relict 
radiation (verifying the theory of primary blast is one of the many aims of 
the project), the required sensitivity is so high that no super receiver can 
achieve it. The only option is photon counters [8]! 

The last fact provoked the idea of the following task A.  
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Task A 
Conditions:  
Let us assume that a signal of a feeble cell phone’s transmitter of the 

power P = 5 mW, is radiated uniformly in all directions of a full solid 
angle. The carrier frequency of the signal is  = 1 GHz. 

What to do:  
Estimate the distance R from the cellular phone, which can serve as a 

boundary between two areas: one where the phone field exists in the form 
of a continuous electromagnetic wave (EMW) and the other where it 
become a discrete flux of photons (Fig. 4). 

 

 
 
Figure 4: The subject of Task A 

 
Some tips: 
1)  Note that EMF can be something continuous in space (for example, 

EMW) only under the condition that the density of photons—
elementary particles of the field—is extremely high. 

2)  Photon energy E is determined by Planck’s relation E = h  where 
h = 6.626 10-34 [J s] is the Planck constant and  is the frequency.  

3)  EMF propagates in free space in the form of a spherical wave, 
therefore the density of flaw of electromagnetic energy subsidizes 
along the distance r in the proportion of r2.  

Discussion: 
Of course, this task has no exact single-valued answer, because the 

condition that determines the boundary between the electromagnetic wave 
and the “photon discrete flux” is uncertain—there is no distinct 
determination. In fact, in this lies the usefulness of the task—a reader must 
make his own independent decision based on common sense. It is very 
typical for engineers to need to make a decision in the situation of 
essential uncertainty. 

If you still have not coped with the task, read the answer: 
As to the task, assume that we have to consider EMF as a discrete flux 

of photons if less then Nph = 105 photons fly through a surface area dS  of 
1 mm2 during a time span dt  of 1c. Then the obvious equation P dt dS  

R2) = Nph h  takes place, which results in the estimation R  77.5 km.  

R = ? 

EMW 

Photon  
flow 
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Task B 
Conditions:  
A tire of a rear wheel of a sports car became flat (Fig. 5a). There was 

no spare wheel in the car. A car garage was 5 km away along a highway. 
The driver became very distressed, since the tire would inevitably come 
into disrepair while driving or towing to the garage. Fortunately, he was a 
good engineer before becoming a professional driver. Therefore, clever 
thoughts came to his mind (Fig. 5b). He closed his eyes, moved his lips, 
shouted “Eureka!” and pressed the accelerator pedal down. 

 

 
a) 

 
b)                                                              c) 

 
Figure 5: A flat tire in three situations: a) a standing car; b) the driver’s thinking;  
c) a moving car 

 
What to do:  
Estimate the speed V at which the driver had to drive in order to save 

the tire (Fig. 5c). 
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Some tips:  
1)  Note that the centrifugal force can essentially substitute the force of 

air pressure expanding the tire in the normal situation. 
2)  Neglecting the sidewalls, we can consider a tire as a section of 

cylindrical tube (Fig. 5b). 
Discussion:  
This task, like the previous one, has no exact quantitative answer. 

However, we deal with assessing. Therefore, physical dependences and 
common sense fight uncertainty and pave the way to a meaningful 
estimation. Indeed, the pressure of a pumped tire P0 [Pa] gives rise to the 
force F0 = P0  [N] on area  of the tread surface. On the other hand, 
the centrifugal force Fcf introduced by the rotation of a tire due to moving 
the car with a speed V is Fcf =  (h S) V2  r where  h and r are the 
density, the depth and the radius of the tire, respectively. The desired 
estimation results from equation Fcf = F0.  

If you still have not coped with the task, read the answer:  
Let us assume that the pressure P0 is about 2 atm, the wheel radius r is 

25 cm, tire thickness h is 25mm, and the tire density  exceeds the density 
of water due to steel cords at 1.1 103 3. After transforming all the 
values to the uniform units, the estimation V  154.5  comes in force. 
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ABBREVIATIONS 
 
 
 
AA  antenna array 
AAA  adaptive antenna array 
APhD  amplitude and phase distribution 
ARP  antenna radiation pattern 
CCPW  converging cluster of plane wavs 
EMF  electromagnetic field 
EMW  electromagnetic wave 
PhF  phase front 
LPhC  local phase center 
LPF  low-pass filter 
MMRA  modified minimal residual algorithm 
MRA  minimal residual algorithm 
PhC  phase center 
PEMW  plane electromagnetic wave 
RMSD   root-mean-square deviation 
WLM  Woodward-Lawson method 
WV  weighting vector 
 
k =   wave number in free space 
[…]  dimension of physical value 

1, if
0, ifij

i j
i j

 is the so-called Kronecker delta 

sinc(x) = sin(x)  x is the so-called sinc-function 
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CHAPTER ONE 

SOME FUNDAMENTALS  
OF FUNCTIONAL ANALYSIS 

 
 
 

1.1. Introduction 

To master the topics of the following chapters with understanding, the 
knowledge of some fundamentals of functional analysis is necessary. The 
corresponding issues, as a rule, lie on the periphery of such university 
courses as “Special sections of mathematics” or “Methods of 
computational mathematics.” My teaching experience shows that many 
students do not know that. However, if you are an advanced reader, you 
may skip this chapter. Nevertheless, in my opinion, Section 1.3 is worth 
studying or, at least, reading. It outlines the ideology and effective 
algorithms used to analyze, synthesize and design not only antennas but 
also many other radio and electronics devices.  

I got acquainted with functional analysis [9, 10], a fascinating branch 
of mathematics, during my postgraduate studies, when I was working on a 
dissertation devoted to the problems of antenna synthesis. Since then, I 
have never ceased to admire how exquisitely and elegantly 
mathematicians are able to comprehend the fundamental structural 
concepts of the real world and to convey them in a generalized form, 
naturally, to the world of mathematical abstractions. It is impossible not to 
admire the effectiveness of methods and algorithmic tools generated from 
these abstractions to solve various tasks. In this there is something very 
much in common with the engineering style of thinking, more precisely its 
facet, connected with the transition from reality to quantitative 
descriptions reflecting the main manifestations of physical phenomena or a 
technical object. 

Therefore, I hope that this chapter will provide the reader with ideas 
about universal means of obtaining the best approximation to the desired 
functional characteristics of the devices designed. At the same time, it will 
contribute to the formation of a certain philosophical framework that 
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serves as reliable support and a compass in dealing with complex technical 
problems. 

Of course, only the basic issues of functional analysis will be discussed 
here without in-depth nuances, but with an emphasis on aspects that are 
important for the synthesis of antennas. 

1.2. Metric and space of functions  

Let us think about “What is space?” Try to define it not from the 
position of its physical essence (whether it is emptiness, whether a special 
kind of matter called ether), but in a purely ordinary sense as a universal 
container (without boundaries) for all that exists. By the way, any material 
object, existing in space, has spatial properties itself. Back to the question, 
what sense is behind our intuitive feel of space, the space in which we 
live? The question sounds very simple, but it is not easy to find a 
meaningful answer for it. 

Mathematics, with exceptional elegance, answers this question: “the 
space X is the set of points {x}, to each pair of which there is associated a 
number, called the distance ρ(xi, xj) or the metric1 of space.” The 
distance/metric, more precisely the rule of its definition, must satisfy the 
following axioms: for arbitrary points xi, xj, xk in X 

• the distance is a positive real value, i.e. ρ(xi, xj) ≥ 0; 
• if xi = xj, then ρ(xi, xj) = 0, and vice versa (!) (the axiom of identity); 
• ρ(xi, xj) = ρ(xj, xi) (the axiom of symmetry); 
• ρ(xi, xj) ≤ ρ(xi, xk) + ρ(xk, xj) (the axiom of triangle inequality). 
The first axiom (the distance cannot be negative) follows from the 

remaining axioms. Therefore, strictly speaking, it can be omitted, and 
mathematicians do this [10]. However, for us engineers, it is worth 
mentioning this property explicitly because it expresses an important 
fragment of intuitive human notions of distance in space. In some 
mathematical books, it is also present. 

It is obvious that these axioms are not the invention of mathematicians. 
It is the formalization of our intuitive perception of space and distance in 
it. In particular, the triangle inequality corresponds to the fact that the path 
from xi to xj is shorter or at least not longer than the path first traversed 
from xi to xk, and then from xk to xj. After intuition transformed into clear 
mathematical relations, huge possibilities arise for the use of the concept 

                                                
1 If the elements {x} of the set X are functions or objects of nature other than 
ordinary (Euclidean) points, then the term “distance” is not linguistically right. 
Therefore, the term “metric” is preferable, although both have the same meaning. 
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of distance as a quantitative measure of the closeness of elements of any 
nature, in particular functions. 

Consider the set F of functions f(x), referring to a particular function 
fi(x) and treating it as an abstract point of F. If we define a rule according 
to which the quantity ρ(fi, fj) satisfying the above axioms is determined 
(computed), then the concept of the distance between points in the set F 
(the distance between functions!) is introduced, and the set turns into a 
functional space—a space of functions. Since linguistically the phrase 
“distance between two functions” sounds strange, it is customary to use 
the more abstract term “metric” as applied to the functional space. 

Among the vast variety of possible metrics and the functional spaces 
generated by them, two metrics are most often used. The first is a metric 
defined by the equality: 

2
1 2C 1 22

( ( ), ( )) ( ) ( )b
af x f x f x f xρ = −∫  (1-1) 

which means the root-mean-square deviation (RMSD) of the functions. 
The relevant space is commonly denoted as C2. 

The second is a metric defined as follows:  

1 2L 1 2( ( ), ( )) max ( ) ( )
a x b

f x f x f x f x
≤ ≤

ρ = −  (1-2) 

that measures the value of the maximum deviation of the functions in the 
interval (a, b) where they exist. This metric name is “linear,” and L usually 
denotes the functional space that it generates.  

Figure 1-1 illustrates the difference in how the functions approach the 
same desired function f0(x) if the C2 or L metric is used. Taking into 
account that the metric Ex. 1-1 stands for RMSD, we can see that the value 

C 1 02
( ( ), ( ))f x f xρ  is remarkably bigger than C 2 02

( ( ), ( ))f x f xρ , therefore, the 
function f2(x) approaches f0(x) better than f1(x). The metric Ex. 1-2 controls 
local deviations and therefore, contrary to the previous situation, the value 

L 1 0( ( ), ( ))f x f xρ  is smaller than L 2 0( ( ), ( ))f x f xρ , and the function f1(x) 
approaches to f0(x) nearer than the function f2(x). 

 
 
Figure 1-1: Functions f1(x) and f2(x) approaching the function f0(x) 

f1(x) 
f2(x) 

f0(x) 
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1.3. Hilbert space of functions 

1.3.1. Introductory note 

Another, perhaps even more impressive, example of the extremely 
sophisticated generalization of the notion of our Euclidean space to 
abstract mathematical spaces is the notion of orthogonality, in particular, 
the orthogonality of functions.  

In common Euclidean space, the space in which we live, each point x 
can be determined by the radius vector x—a line segment directed from 
the coordinate system’s origin to the point x. The angle between the 
vectors and, in particular, their perpendicularity represents an important 
property of Euclidean space. To represent an arbitrary vector x as the sum 
of the basis vectors {ξn}: n nn a=∑x ξ  it is extremely convenient to use a 
system of mutually perpendicular unit vectors {ξn} forming the so-called 
orthonormal basis. The fact is that in this case each of the coefficients an 
of the expansion is determined independently of the others, as the 
projection of the vector x onto the basis vector ξn: ( , )n na = x ξ . If the 
basis vectors are not perpendicular to each other, then the procedure for 
finding the coefficients an becomes much more complicated and, as a 
result, requires solving a system of algebraic equations.  

Naturally, for function spaces the expansion of an arbitrary function 
f(x) over the system of basis functions {gn(x)} of ( ) ( )n nnf x a g x=∑  
plays the same important role as for the vector space. It is tempting that 
the basis functions have the same property of mutual “perpendicularity.” 
However, how do you define this property for functions? Can we 
introduce the notion of “angle” between functions and the property of their 
“perpendicularity”? Is it possible to introduce something analogous to the 
notion of “angle” between functions or the property of their 
“perpendicularity”? This problem is definitely more complicated than the 
notion of the distance between functions. Indeed, perceiving distance as a 
quantitative measure of the deviation of functions from each other, we can 
easily guess we should use the standard deviation as the distance between 
them. To introduce the concept of “perpendicularity” of functions, a much 
more sophisticated idea is required. To solve this problem, mathematicians 
generalize the notion of an inner product. 
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1.3.2. The cosine of the “angle” between functions.  
Orthogonality of functions 

Each student knows that the scalar (or inner) product of two Euclidean 
vectors is the product of their lengths/sizes by the cosine of the angle α 
between them: ( )1 2 1 2( ) |,    c s|  o= αξ ξ ξ ξ , where ξ1 and ξ2 are any 
vectors. From the geometric meaning of a inner product, a number of 
properties follow, the main of which are as follows. 1. If one of the vectors 
is a sum of vectors, then the inner product is equal to the sum of the inner 
products with each summand (property of linearity). 2. If the vectors ξ1 
and ξ2 are the same (ξ1 = ξ2 = ξ), then the inner product is not a negative 
quantity equal to the square of the length of the vector: (ξ, ξ) = | ξ |2 (the 
property of positive definiteness), and the equality (ξ, ξ) = 0 is satisfied 
only in the case of the zero vector ξ ≡ Ø. 3. In addition to that, it is clear 
that 1 2 1 2,  | ( ) | | | ≤ξ ξ ξ ξ , since cos(α) ≤ 1. The perpendicularity of the 
non-zero vectors ξ1 and ξ2 leads to the fact that their inner product is zero, 
since cos(α) = 0 for α = 90°. 

Reserving these semantic properties while defining a notion of inner 
product for elements of an arbitrary nature, in particular for the space F of 
complex-valued functions, mathematics defines it as follows. This is a 
complex number associating to each pair of functions f1 = f1(x) and 
f2 = f2(x) and denoted by (f1, f2), for which the following conditions hold: 

• for any three elements f1, f2 and f of F and any numbers α and β, the 
equality (α f1 + β f2, f) = α (f1, f) + β (f2, f) is true (the linearity of the 
inner product with respect to the first argument); 

• for any elements f1 and f2 the following equality holds (f1, f2) = 
(f2, f1)*, where the asterisk * denotes complex conjugation; 

• for any element f we have (f, f) ≥ 0, where (f, f) = 0 only for the 
zero-element f ≡ Ø (positive definiteness of the inner product). 

The quantity ( )    ,   f f f= , called the norm of the element f (in 
particular, a function), plays the same role as the length of the vector.  The 
norm of the difference of two elements satisfies all the axioms of the 
metric and thereby generates the corresponding space in which the 
distance is as follows ( ) ( )1 2 1 2 1 2 1 2,    ,f f f f f f f fρ = − = − − . The 
well-known and important Cauchy–Bunyakovsky–Schwarz inequality 
states that for all elements f1 and f2 of a Hilbert space it is true that  
|(f1, f2)| ≤ || f1 || || f2 ||. (1-3)  
The same inequality for Euclidean vectors means triviality: the cosine of 
the angle between the vectors cannot be greater than one.  
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Non-zero functions f1 and f2, whose inner product is equal to zero 
|(f1, f2)| = 0, for linguistic reasons are called not “perpendicular,” but 
orthogonal. It is clear that these terms are so absolute synonyms that, even 
with respect to vectors, the term “orthogonal” often replaces the term 
“perpendicular.” For example, they call a system, which unit vectors are 
mutually perpendicular, exclusively as an orthogonal coordinate system. 

There are different ways to define the inner product. For functions f(x) 
that are square integrable on the interval (a, b), the following expression 

21 2 1
*( ( ), ( )) ( ) ( )b

a
f x f x f x f x dx= ∫  (1-4) 

or  

21 2 1
*( ( ), ( )) ( ) ( ) ( )b

a
f x f x f x f x x dx= ρ∫  (1-4′) 

most often defines it. Here, ρ(x) is a real positive function reflecting the 
weight or importance of the different parts of the interval (a, b). It is 
apparent that the metric generated by the inner product Ex. 1-3, i.e. 

1 2 1 2 1 2( ( ), ( )) ( ( ) ( ), ( ) ( ))f x f x f x f x f x f xρ = − − , (1-5) 
is equal to the metric Ex. 1-1 because of trivial f(x) f*(x) = |f(x)|2. 

In the case of a vector space, Cartesian, cylindrical and spherical 
coordinate systems are of great interest, since their unit vectors install a set 
of mutually perpendicular vectors {ξj} (j = 1, ..., N) that satisfy the 

condition ( , )i j ij= δξ ξ where 
1, if
0, ifij

i j

i j

=⎧
δ = ⎨ ≠⎩

 is so-called Kronecker 

delta. In this case, for an arbitrary vector A, the coefficients ai of its 
decomposition A = Σ ai ξi in the basis vectors {ξi} have the explicit 
expression and therefore are calculated very simply: ai = (A, ξi). 

In the case of an N-dimensional functional space, the orthonormal 
basis formed by the set N mutually orthogonal normalized functions2 
{gj(x)} plays the same role. If Ex. 1-4 defines the inner product in the 
space under consideration and if for any pair of indices i and j the 

functions {gj(x)} satisfy the condition *( ) ( )
ji

b
i ja

g x g x dx = δ∫ , then any 

arbitrary function f(x) in this space has the following representation  
( ) ) ( ( ), ( )( ())j j j jj j

f x a g x f x g x g x= =∑ ∑ ,  (1-6) 

the coefficients aj of which are defined explicitly as 
*( ) ( )

b
j ja

a f x g x dx= ∫ . 

                                                
2 That is, functions satisfying the analogical condition ( ( ), ( ))ji i jg x g x = δ . 
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If the basis functions {gj(x)} are mutually orthogonal, but differ in 
norms, then Ex. 1-6 turns into the slightly different formula 

2

( ( ), ))
( ) )

|

(
(

(| ) ||
j

jj
j

f x g x
f x g x

g x
=∑ . (1-7) 

The space of functions with the notion of an inner product introduced 
for its elements and the metric generated by it is a so-called Hilbert space. 
The Hilbert space possesses all the properties of the Euclidean space of 
vectors. Therefore, it is very useful and meaningful to use vectors as a 
graphical visualization of functions in Hilbert space. 

1.3.3. Schmidt orthogonalization procedure 

An arbitrary set of N linearly independent functions {fn(x)} can be 
transformed to an equivalent system of N mutually orthogonal functions 

( ){ }n
f x⊥ . Equivalence is understood in the sense that any function f(x) 

that is a series f(x) = Σn an fn(x) can be represented by the series 
f(x) = Σn bn fn

┴(x). The corresponding procedure is the so-called Gram-
Schmidt process. That is because from any linearly independent functions 
f1(x) and f2(x) we can construct a function f2┴(x) = f2(x) – α21 f1(x), which is 
orthogonal to the function f1(x). Indeed, from the condition of 
orthogonality (f2(x) – α21 f1(x), f1(x)) = (f2(x), f1(x)) – α21 ||f1(x)||2 = 0 
immediately follows α21 = (f2(x), f1(x)) / ||f1(x)||2.  

The Gram-Schmidt process consists of the following recursions. The 
first function remains unchanged: f1

┴(x) = f1(x). The second function is 
orthogonalizing as described by f2

┴(x) = f2(x) – α21 f1(x). The third function 
is orthogonalizing with respect to both functions f1┴(x) and f2

┴(x). At step 
K, a function fK

┴(x) is formed from the function fK(x) 

1
21

( ( ), ( ))
( ) ( ) ( )

( )

K K j
K K jj

j

f x f x
f x f x f x

f x

⊥
−⊥ ⊥
= ⊥

= −∑ , (1-8) 

which is orthogonal to all the previously constructed functions {fj
┴(x)}. At 

each step or after completion of them, the normalization, which means 
replacing fj

┴(x) by fj
┴(x) / ||fj

┴(x)||, can produce an orthonormal basis of the 
space generated by the initial set of functions. Obtaining an orthonormal 
basis greatly simplifies further calculations. 
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1.3.4. Projection onto a subspace versus minimization  
of a root-mean-square deviation 

For simplicity and, most importantly, for getting a visual image that 
reflects the meaning of the process, it is expedient to start this subsection 
with the case of a vector space. Let F0 be some vector of an N-dimensional 
space F, and let {fk} (k = 1,...K) be a set of K (K <N) certain vectors in the 
same space F and, besides, K is less than N. How do we construct a linear 
combination of these vectors F = Σ akfk, providing the best approximation 
to the vector F0 in the sense of the minimum deviation ε2 = || F0 − F ||2?  

There are two logically different ways to obtain the result answering 
the question. It is useful to know both. 
 
Approach A. 

Let us write  

( ) ( )
( ) ( )

22
0 0 0 0

0

 , ,  

, , 

k k k k k kk k k

k k k k k kk k k

a a a

a a a

ε − − −

+

−== ∑ ∑ ∑
∑ ∑ ∑

F f F f F F f

f F f f
, (1-9)  

where (k, j = 1,...K), and consider this expression as a function of K 
variables αk. It is clear that the condition of equality to zero of all K partial 
derivatives determines the desired extrema 

2
0 1/ 2( , ) 2( , ) 0K

k k k j jja a=∂ε ∂ = − + =∑F f f f . These equations form a 

system of K algebraic equations for K unknown variables, the matrix form 
of which is <L> α = b, where <L> is the square matrix of the coefficients 
Ljk = (fk, fj), and the columnar vectors α and b are formed by coefficients 
{αk} and {bk = (F0, fk)}, respectively. 
 
Approach B. 
Imagine that the vector F0 of our three-dimensional space represents an N-
dimensional vector F0 belonging to the space F, and the plane containing 
the vectors f1 and f2 is the K-dimensional subspace FK, as shown below in 
Fig. 1-2. Correspondingly, the required vector F = Σ ak fk is a certain 
vector of this plane. Obviously, the deviation vector F┴ = F0 − F has the 
minimum length if the vector F coincides the projection of the vector F0 
onto the “plane” FK. In other words, the deviation vector F┴ must be 
perpendicular to any vector fk of the set FK. 
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Figure 1-2: Projection onto subspace FK of a vector space F  
 

Transforming the text above in terms of a mathematical relation, we 
easily gain the vector equation  

0 01 1( , ) ( , ) ( , ) 0K K
k k j j k k jk ja a= =− = − =∑ ∑F f f F f f f  (1-10) 

that, of course, coincides with the Ex. 1-9 obtained earlier. 
 
After defining the notion of an inner product of functions, there is no 

problem in minimizing the mean square deviation of the linear 
combination 1( ) ( )K

k kkF x a f x==∑  of a given set of functions {fk(x)} from 
the required function F0(x). We can easily do this in the above manner. 
Moreover, in the case of a functional space, we can use a meaningful 
graphical image (Fig. 1-2), representing functions in the form of vectors, 
since the inner product transfers the main characteristics of a vector space 
to a functional one. Applying approach B to this problem, we obtain the 
required coefficients {αk} of the expansion as a solution of the system of 
equations 
<L>a = p, (1-11) 
where <L> is a square matrix of order K, the coefficients of which are the 
mutual inner products of the functions {fk(x)}, namely Lkj = (fj(x), fk(x)); p 
is a column vector of the coefficients {pk = (F0(x), fk(x))}; and a is a 
column vector of the though-for coefficients {αk}. 

1.4. Adjoint operator. Selfadjoint operator 
and its spectrum 

In mathematics, the operator is the rule for mapping elements x from X 
to elements y from Y. Commonly, the denote A is in use for the operator. 
It is said that the operator A maps X onto Y or into Y depending on 

F0 

F 

f2 

F┴ =F0 − F 

f1 

FK 
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whether the set of its values coincides with the whole set Y or with its 
subset. It is clear that “operator” is a generalization of the notion of 
function to the case when the argument is not a numerical variable x, but 
an element of a different nature, for example, a function. If the set Y is a 
numerical axis, then we have an operator called a functional. Thus, an 
operator, a function, and a functional are terms for denoting certain types 
of mappings of one set on or into another. 

If the mentioned sets X and Y are Hilbert spaces G and F of the 
functions g(y) and f(x) respectively, then mathematicians introduce the 
notion of the operator A* adjoint to the operator A. The operator A* is the 
adjoint to A, if the equality 
(Аg(x), f(y)) = (g(x), A*f(y)) (1-12) 
is true for arbitrary elements g ∈  G and f ∈  F. At first glance, the Ex. 1-12 
is a pure formalism, the utility of which, perhaps, consists only in the fact 
that the operator A* acts in the opposite direction: mapping G onto F 
(Fig. 1-3). The remarkable features of the adjoint operator are not obvious. 
Some of them are discussed below, and others in Chapters 2 and 3 devoted 
to the use of the adjoint operator for solving some problems of antenna 
synthesis. 

 
Figure 1-3: Functional spaces G and F, operators A and A*, biorthogonal bases 
{gi(x)} and {fi(y)} 

 
Being an adherent or, perhaps, even a slave of the engineering style of 

thinking, which has an eagerness to identify cause-effect relationships and 
to form on this basis a systemic frame of knowledge, I have long been 
looking for an explanation of how the adjoint operator correlates with 
other mathematical concepts. I cannot insist that I am right, but it seems to 
me that mathematicians, introducing the concept of the adjoint operator, 

G 
F  A 

{fi(y)} {gi(x)} 

A* 

 A* 

  A G 
F  A 

{fi(y)} {gi(x)} 

A* 

 A* 

  A 
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had the purpose to transfer the notion of the transposed matrix to a 
functional space. 

Indeed, the classical scheme for solving the SLAE <A> x = y, where 
<A> is an M-by-N matrix, x and y are column-vectors of size M and N<M, 
respectively, is as follows. The left-multiplication of both parts of the 
original equation by transposed matrix <A>T leads to SLAE 
<B>x = <A>Ty with square matrix <B> = <A>T <A> of order N that can 
be easily solved. In the case of complex-valued matrices and vectors, the 
Hermitian matrix, which is a transposed matrix with complex conjugate 
elements, is in use. In the books on matrix algebra, I did not notice any 
mention of the fact that the transposed (or Hermitian) matrices satisfy the 
equation (<A>x, y) = (x, <A>Ty) for any vectors x and y of dimension N 
and M, respectively. Most likely, this is because the proof of this assertion 
is elementary. It suffices to write the equation in the form of sums. In 
Section 1.5, there is a task inviting the reader to do so. 

Returning to the Hilbert space of functions, let us mention the 
following properties used in the next chapters. 

An operator L mapping G onto itself is said to be selfadjoint if for any 
pair of elements g1(x) and g2(x) the equality 
(Lg1(x), g2(x)) = (g1(x), Lg2(x)) is true. In mathematics, it is proved that the 
eigenfunctions {gi(x)} of a selfadjoint operator L, i.e. such functions for 
which the equality  
L gi(x) = λi gi(x) (1-13) 
holds, form an orthogonal basis of the space in which this operator is 
defined. The numbers {λi} are eigenvalues. The set of eigenvalues {λi} 
and eigenfunctions {gi(x)} forms the operator spectrum. It plays a great 
role, allowing not only to justify various computational algorithms, but 
also to understand both the properties of the operator L itself and, more 
importantly, the features of the inverse operator L-1. This refers to the 
following. 

Let {gi(x)} be an orthonormal basis consisting of the normalized 
eigenfunctions of L. Let us expand an arbitrary function g(x) in the series 

( ) ( )i iig x a g x=∑ .  (1-14) 
Thanks to the orthonormality of the basis {gi(x)}, the coefficients {ai} are 
equal to the inner products ai = (g(x), gi(x)) that lead to easy calculations. 
The operator L transforms the function g(x) into the function β(x) 
β(x) = Lg(x). (1-15) 

Taking into account Ex. 1-14, we have 
( )(  ( ) L ( )) i i i i i i ii i ix a g x a g x b g xβ = λ ==∑ ∑ ∑ . (1-16) 
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Thus, the action of the operator L results in the transformation of the 
original coefficients {ai} into the coefficients {bi = λi ai}. In other words, 
the operator L is similar to a filter that weakens those components of the 
function g(x), to which small eigenvalues λi correspond. 

Now let us consider Ex. 1-15 as an equation for the unknown function 
g(x) and the given function β(x). To construct the inverse operator L-1, let 
us take into account the equality Ex. 1-16 

1 L  (( ) ))  ( ii
i

b
g x x g x−= β =

λ∑ . (1-17) 

Thus, the inverse operator “emphasizes or rises” the components 
corresponding to small eigenvalues. This leads to follows: if the spectrum 
of the operator L contains very small eigenvalues and the corresponding 
components are present in the given function β(x), then the norm of the 
solution g(x) = L-1g(x) can increase catastrophically, which is an attribute 
of solution instability. 

It is obvious that the operator L = A* A, formed by multiplication 
(sequential application) of the operators A* and A, is a selfadjoint 
operator. If {gi(x)} is an orthogonal basis composed of eigenfunctions of 
the operator L, then it is not difficult to verify that the functions {fi(y) = 
Agi(x)} form an orthogonal basis of the space F. The bases {fi(y)} and 
{gi(x)}, which are mutually transformed into each other by the operators 
A* and A respectively, are called biorthogonal and play an important role 
in studying the properties of these operators. In Fig. 1-3, triples of 
mutually perpendicular vectors depict these bases and figured arrows 
depict the actions of the operators A and A*. 

1.5. Training tasks 

Task 1A 

Transform a set of six power functions {xn} (n = 0…5) given on the 
interval (−1 < x < 1) into orthonormalize basis {gn(x)}. Imagine that you 
have only a sheet of paper and a pencil, and a head on your shoulders, of 
course. 

A hint: following the “shell approach”3 principle or a clue that standard 
Schmidt orthogonalization procedure will give you at the very first step, 
you can guess how to simplify the problem. 
 

                                                
3 Introduction/Psychological issues/point 5. 
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Task 1B 

Make sure that the operators ( ) ( , )А ( ) ( )
b

a
g x x y dx yg x = ψ = α∫  and 

** (А ( )) ( , ) ( )
d

c
f y xy dxf y x= ψ = β∫  mapping complex functions defined 

on the intervals (a, b) and (c. d), respectively, are mutually adjoint 
operators, i.e. satisfy the condition Ex. 1-12. 
 
Task 1C 
Assume that a selfadjoint operator L has two different orthogonal 
eigenfunctions, say, gk(x) and gm(x), to which the same eigenvalue 
corresponds, i.e. λk = λm = λ. Check whether the combination 

(( )) ) (k mxg x a g gb x= +  is an eigenfunction of the operator L? 
 
Task 1D 

A preliminary remark: If in the spectrum of some operator L there are n equal 
eigenvalues λ then the multiplicity of the eigenvalue λ is equal to n. 
 

In the situation resembling the previous task, somebody shows that each of 
five functions {fi(x)} is an eigenfunction of the operator L and all of them 
correspond to the same eigenvalue λ. John says, “This means that the 
multiplicity of the eigenvalue λ is equal to five.” Sam replies, “You are 
mistaken. It seems to me that the multiplicity of the eigenvalue λ is equal 
to three, if not less.” 

What would you do to settle the dispute? 
A hint: note that a set of functions may be linearly dependent. 
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CHAPTER TWO 

ANTENNA SYNTHESIS 
 FOR THE PREDETERMINED  

COMPLEX RADIATION PATTERN 
 
 
 

2.1. Introduction 

For the book, this chapter is central because it is devoted to the original 
and fertile idea of V.N. Dymsky: to use the adjoint operator for solving the 
problems of antenna synthesis. Just as a streamlet gives life to a stream 
that, supported by other sources turns into a river, this idea in combination 
with heuristic methods gave birth to a series of algorithms, theoretical and 
practical results. Chapter 2 combines the mathematical formalism of 
functional analyses with profound physical interpretation. On this basis, 
some original notions emerge, such as the power radiated in the desired 
antenna pattern, the pattern’s relief deviation, coefficient of error 
sensitivity, purely radiating distributions, etc. The adjoint operator 
converts the desired directional pattern into a distribution possessing some 
useful properties. It results in some convenient computational algorithms 
for the step-by-step optimization of a solution. 

An attractive feature of the issues discussed in the chapter is that, with 
reference to the antenna technique, “dry” mathematical abstractions turn 
into something that has a clear physical nature. We can reproduce them on 
the physical level and “perceive” them with the help of a measuring setup. 
This chapter trains a thoughtful reader with a quality important for 
engineers: the ability to see, to “feel” the physical meaning in formulas, 
mathematical transforms and their consequences. In the Introduction4, this 
quality is a mentioned ability to return with ease from the world of 
mathematical descriptions to the world of technical realities. 

I think that here it would be appropriate to say a few words about the 
relationship between physics and mathematics, which reveals itself 
sometimes in verbal swordplay between physicists and mathematicians. In 
                                                
4 See the diagram in Fig. 1-3. 
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the year 1963, I witnessed a scene of this kind. At a seminar on the 
diffraction of electromagnetic waves intended for young specialists, the 
eminent Soviet physicists and mathematicians: academician Fock V.A., 
corresponding members of the academy Vainshtein L.A. and Kupradze 
V.D., Professors Ufimzev Ya.P., Kurochkin A.P., Boldyrev Yu.Ya. and 
others delivered lectures. 

In one of his lectures—I quote from memory, perhaps not verbatim, 
but exactly in meaning—Lev Albertovich Vainshtein said: 

A rigorous formulation of the problem results in a differential equation of 
the hyperbolic type. However, the value of the coefficient for the last term 
on the left side of the equation is rather small. Therefore, we omit it and 
obtain an equation of parabolic type, which is much easier to solve. 
Without waiting for the mathematicians prove that such a replacement is 
permissible, we, the physicists, have received and continue to receive 
many new practically important results. 

Hearing the last phrase, Victor D. Kupradze (mathematician, President 
of the Academy of Sciences of the former Georgian Soviet Socialist 
Republic) jumped up from his seat, and with a slight Georgian accent, very 
emotionally but politely retorted: 

Lev Albertovich, you must consider the age of the listeners. These are 
young people, and your last words can cause them the false impression that 
mathematics is engaged in something known to the devil that has nothing 
to do with practice. No, I insist that the intention and purpose of 
mathematics is to study the laws of the real world and nothing else than 
this.  

Certainly, V. Kupradze was right: mathematical abstractions and 
formalities always correspond to reality, although often indirectly and 
remotely. By the way, sometimes physicists also resort to abstract 
concepts, the material realization of which does not exist. Vivid examples 
from the field of electrodynamics are so-called magnetic charges and 
currents. In the real world (strictly speaking, in the investigated region of 
the universe), no such field sources have been found. From my point of 
view, the concept of magnetic sources emerged not least for aesthetic 
reasons5 (the third factor that stimulates technological progress): from the 
belief in the harmony of the basic laws of nature, which should reveal 

                                                
5 Another thing is that the formalism of magnetic field sources leads to 
simplification of calculations for some real sources, for instance, by replacing a 
small loop of electric current with a magnetic dipole or a slot in the screen with a 
strip of surface magnetic current on the screen. 
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itself in the symmetry of Maxwell’s equations (compare the two versions 
of them given in the Tab. 2-1). The left-hand expressions correspond to the 
equations containing only real electric sources of the field (ρe and δδe). The 
right-hand expressions involve fictitious magnetic sources (ρm and δm) as 
well. Are they not cuter? By the way, it seems to be quite possible that 
Maxwell guessed to insert the summand ( ) / t∂ ε ∂E  into the first equation, 
also believing in the harmony of the laws of nature. At least, at that time 
there was no evidence or even a hint of the existence of this term. 

 
Table 2-1. Two forms of Maxwell equations 
 

 
The content of this and next chapters represents a striking example of a 

close and organic unity of very formal mathematical abstractions and 
physical sense. In this capacity, the chapter is useful for a wide range of 
readers as a whetstone for sharpening the engineering style of thinking. 

2.2. Operators describing antenna systems 

2.2.1. Direct, inverse and quasi-inverse operators 

In this chapter, we will consider the most general, fundamental issues 
of antenna synthesis. Therefore, assume that the synthesized antenna is 
formed by the field sources (electric currents, for certainty) distributed into 
a region v nearby some physical body w (Fig. 2-1). Let ρ denote the radius 
vector of points of the region v in a Cartesian coordinate system6 xyz and 
ro denote the radial unit vector of direction to the points on the spherical 
surface Ω where we control the antenna radiation field. The area Ω may be 

                                                
6
 Theoretically, the location of the origin does not matter. However, the desire to 

simplify formulas and calculations prompts us to coordinate its location with the 
antenna system geometry. 

Just electric sources Electric and magnetic sources 
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arbitrary: the whole sphere or a solid angle of any shape, or a plane, or a 
set of M directions { o

mr } (m = 1...M).  

 
 
Figure 2-1: Geometric reference: v – antenna region; w – physical body; Ω – far 
field zone; S – near-field area of possible interest 

 
The following expression describes the dependence of the complex-

valued vector radiation pattern F(ro) on the current distribution I(ρ) in the 
most compact and general form due to the use of the tensor formalism 

o( ) E ( )
v

dv= ∫F r I ρ . (2-1)  

It is obvious that ARP has two components F(ro) = Fθ(ro) θo + 
Fφ(ro) φo, and the vector function I(ρ), describing the amplitude, phase 
and polarization of the sources, consists of three components in the general 
case. To shorten the subsequent expressions, let us use notation ξ 
symbolizing a set of unit vectors {xo, yo, zo}—a triplet of vectors depicted 
by the dashed line in Fig. 2-1—to represent the polarization of the current. 
This leads to the following compact expression 

o( ) ( )Iξξ
=∑I ρ ρ ξ  (2-2)  

instead of I(ρ) = Ix(ρ) xo + Iy(ρ) yo + Iz(ρ) zo. In addition, if a cylindrical or 
spherical coordinate system is suitable for describing the polarization of 
the sources with regard to the geometry of the antenna, the Ex. 2-2 
remains intact since we can agree that ξ and ξo symbolize, respectively, the 
axes and the unit vectors of the corresponding coordinate system. 

It is clear that the tensor E —in principle, it is sufficient to consider 
it as a matrix whose entries are functions—should transform the current 
distribution I(ρ) into its far field, of course, up to without a certain 

 w 

 v  x 

 y 

 z 

 Ω 

 ρ ro 

 φ 
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multiplier7. It consists of six entries {Eθξ(ρ, ro), Eφξ(ρ, ro)}, each of which 
determines θ or φ components of the electric field corresponding to the 
unit value of the relevant component (Iξ = 1) of the current I located at the 

point ρ. The tensor 
1 2 3

1 2 3

o o o

o o o

0 0 0

E ( ) ( ) ( )

( ) ( ) ( )

, , , 

, , , 

E E E

E E E

θξ θξ θξ

ϕξ ϕξ ϕξ

= ρ r ρ r ρ r

ρ r ρ r ρ r

 

absorbs—or masks—all the computational difficulties associated with the 
diffraction of the EMF on the body w, except for the simplest bodies8, for 
which analytical solutions exist. 

It is useful to see what the universal Ex. 2-1 looks like in specific 
situations. First, if the antenna sources have fixed polarization, which 
remains unchanged in the synthesis process, then the required excitation 
distribution is worth determining as a scalar complex function of I(ρ), and 
Ex. 1-1 takes the following form 

o o( ) ( ) ( , )
v

I dv= ∫F r ρ f ρ r  (2-3)  

where f(ρ, ro) is the individual radiation pattern of the source located at the 
point ρ. 

Secondly, suppose that there is no body, so an electric current of 
arbitrary polarization (Ex. 2-2) exists in the region v in free space. Taking 
into account the fact that the radiation pattern of the differential volume dv 
at the origin with the unit current I = ξo in it is equal to the vector product 
[ro [ξo ro]] dv, we can write 

o o o o o( ) exp ( ) ( ) [ [ ]]
v

jk I dvξξ
= ∑∫F r ρr ρ r ξ r . (2-4)  

It is clear that the well-known phase term oexp( )jk ρr  is due to the 
difference in the path of the rays from the origin and from the point ρ to 
the observation point in the direction ro. In this term, the multiplication of 
two vectors (ρ by ro) means their inner product. 

Ex. 2-1 is so universal that it also includes antenna arrays, since the 
volume measure9 dv can be the set of δ-functions {δ(ρ − ρn)} and, of 
course, in this case the integral in Ex. 2-1 turns into the summation 

o
1( ) E ( )N

nn=
=∑F r I ρ . (2-5)  

                                                
7 By the way, the dimension of this multiplier is meter/volt. 
8 For example, a metal body in the form of a plane, a cylinder, wedge, sphere or 
ellipsoid. 
9 In mathematics, this type of integration is the Stieltjes integral [11]. 
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A more common expression is relevant to the case of an antenna array 
of sources having predetermined polarization: 

o o o
1( ) ( ) exp( )N

n n nn
I jk

=
=∑F r f r ρ r . (2-6)  

Here, In and fn(ro) are, respectively, the excitation coefficient and the 
individual vector pattern of the nth element if it locates at the origin of the 
global coordinate system. The meaning of the phase term exp(jk ρn ro) is 
the same as above. 

We will consider functions I(ρ) and F(ro) as elements of Hilbert spaces 
I and F, respectively, with the inner products defined as follows 
( )

( )

*
1 2 1 2

o o o * o
1 2 1 2

( ), ( ) ( ) ( )

( ), ( ) ( ) ( )

v
dv

d
Ω

=

= Ω

∫

∫

I ρ I ρ I ρ I ρ

F r F r F r F r
. (2-7)  

Here, as it was above, the asterisk * denotes complex conjugation; 
multiplied vectors (I1 and I2, F1 and F2) mean their inner product. The 
metrics generated—in accordance with Ex. 1-4—by inner products Ex. 2-7 
mean standard deviation. The square of norms usually associates with the 
antenna excitation power PI = ||I(ρ)||2 and radiation power PΣ = ||F(ro)||2, 
respectively. 

Ex. 2-1 determines a linear integral operator—we will denote it by U—
that maps the space I of excitation functions into the subspace Fv⊂ F of 
the radiation patterns that are realizable by sources distributed within the 
given region v. Thus, the simplest expression 
U I(ρ) = F(ro) (2-8)  
replaces initial Ex. 2-1 along with all its variations, for instance, Ex. 2-3–
2-6, as well as more detailed ones. We call the operator U, which describes 
what the ARP corresponds to the distribution I(ρ), a direct operator, 
bearing in mind that it acts from antenna input to its “output”. 

The task of synthesizing antennas is to solve Ex. 2-8 with reference to 
the desired ARP F0(ro) (the opposite direction from antenna “output” to its 
input). Since in the case of an unrealizable FRP F0(ro) there is no such 
excitation distribution I(ρ) that would satisfy Ex. 2-8, then the inverse 
operator—in the strict sense of the word—does not exist. The realistic 
aim of antenna synthesis is to construct a quasi-inverse operator 1U−

σ  that 
converts an arbitrary desired pattern F0(ro) into an excitation distribution 

1 o
0( ) U ( )−

σ σ=I ρ F r , which provides the best—in the certain sense—

approach to the desired pattern: 0U ( ) ( )σ ≈ °I ρ F r . 
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2.2.2. Adjoint operator, purely radiating and non-radiating 
distributions 

The operator that is adjoint to the operator U—we denote it by V—has 
some very attractive features, due to which it is useful to use it to construct 
a quasi-inverse operator. In his PhD thesis (Kazan Aviation Institute, 
1964, in Russian), Dymsky V.N. showed that the following integral 
transformation determines the adjoint operator V 

o * oV ( ) ( )E d
Ω

= Ω∫F r F r , (2-9)  

where asterisk * at a tensor denotes a Hermitian conjugation that is a 
combination of matrix transpose and complex conjugation.  

One of these features relates to the following. In antennas of some 
configuration, there may be specific current distributions that do not 
radiate10. They form a corresponding subspace IQ⊂ I of so-called reactive 
distributions. The orthogonal complement of the subspace IQ to the space 
I, which we denote by IΣ, corresponds to the semantic name “subspace of 
purely radiating distributions.” It turns out that the adjoint operator V 
maps the space F of arbitrary patterns ( )°F r  onto the subspace IΣ. 
Moreover, for any purely radiating distribution ( )I ρ ⊂ IΣ such a pattern 

( )°F r  exists that the equation ( ) V ( )= °I ρ F r  is true.  
The proof of the first statement follows easily from the Cauchy–

Bunyakovsky–Schwarz inequality (Ex. 1-3) and the adjoint operator 
definition (Ex. 1-10). Indeed, assume that the operator V maps a certain 
ARP F0(ro) to a current distribution p(ρ), i.e. p(ρ) = VF0(ro). Like a 
catalyst, this ARP does not affect the result of our reasoning, but it takes 
part in the process itself. Suppose that there exists a distribution I(ρ) 
different from the distribution p(ρ), such that the ARPs of both coincide: 
UI(ρ) = Up(ρ) = F(ro). The following elementary manipulations that use 
Ex. 1-10 and the assumption just made, is true: 

( )
( )

2 o o
0 0

o o
0 0

( ) ( )( )  ( ), ( )  (V , ( ))  ( , U ( ))

, U ( )  (V , ( ))( ( ) ) ( ) ( ,) ) (

= = =

= =

=p ρ p ρ p ρ F r p ρ F r p ρ

F r I ρ F r I ρ p ρ I ρ
 (2-10)  

Because of the Cauchy–Bunyakovsky–Schwarz inequality, we have a 
strict11 inequality |(p(ρ), I(ρ))| < ||p(ρ)|| ||I(ρ)||. Given Ex. 2-10 and 
replacing the left hand-side of the considered inequality with ||p(ρ)||2, we 

                                                
10 The radial-polarized current I(ρ) = I(ρ) ρo distributed central-symmetrically 
within a sphere is an obvious example. Some less trivial examples are below. 
11 Since functions p(ρ) and I(ρ) are different, as we assumed. 
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get ||p(ρ)|| < ||I(ρ)||. In other words, among all distributions I(ρ), ARPs of 
which F(ro) are identical, the distribution p(ρ), yielded by the operator V, 
has the smallest norm. 

This clearly indicates that the distribution p(ρ) is a purely radiating 
distribution. Indeed, an arbitrary distribution consists of two terms 
I(ρ) = IΣ(ρ) + IQ(ρ):  (2-11)  
purely radiating and non-radiating, respectively. Since the terms are 
orthogonal, the equality ||I(ρ)||2 = ||IΣ(ρ)||2 + ||IQ(ρ)||2 is in force. 
Consequently, the non-radiating term that does not change ARP simply 
increases the distribution norm. Therefore, the minimal distribution norm 
corresponds to the absence of this term. 

To see how pure radiating and non-radiating current distributions look, 
consider the two-dimensional case (Fig. 2-2): the electric current I(ρ)—
which may be uniformed along z-axis—is distributed in a region of radius 
R = 1.25 λ in the cross plane H of an infinite ideally conducting wedge, the 
outer angle of which is α0 = 300°. The ARP generated by the current is 
controlled in the same plane H and, of course, has only a φ-polarization 
F(φ) = Fφ(φ) φo. 

 
 
Figure 2-2: Geometric reference: w is metallic wedge of outer angle α0; S is the 
region of current sources; ρ and α are the polar coordinates of points within the 
region S; H is the plane where antenna sources locate and ARP Fφ(φ) is under 
control 

 
Perhaps the idea of how to find these distributions is no less important 

than the observation of their appearance. Electrical currents of both ρ- and 
α- polarizations produce a radiation field of the required polarization. 
Assume that the current distribution is 

I(ρ,α) = Iρ(ρ) sin(νnα) ρo + Iα(ρ) cos(νnα) αo.  (2-12)  

α ρ 
 
ρo 

α0

z 

φ 

R 
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Here, νn = nπ/α0 is the nth angular harmonic multiplier. Taking into 
consideration the well-known solution for diffraction on a wedge [12, 13], 
we can up to a constant multiplier, write the pattern corresponding to this 
current12 as following 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

1 10

1 1

  cos  

 

{
}

n n

n n

R
nF I J k J k

I J k J k d

ϕ ρ ν − ν +ρ=

α ν − ν +

ϕ ν ϕ ρ ρ ρ

ρ

+ +

−ρ ρ ρ ρ

∝ ∫
. (2-13) 

Here, Jν(x) denotes a Bessel function of the first kind for order ν. 
Ex. 2-13 denotes operator U for the task under consideration. Let the 

desired ARP is F0(φ) = cos(νnφ) φo. Taking into account that each 
summand in Ex. 2-13 corresponds to the relevant terms of the current Ex. 
2-12, we have  
( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( )

o
0 1 1

o
1 1

sin  V   

cos
n n

n n

n

n

J k J k

J k J k

ν − ν +

ν − ν +

+ += ϕ ∝ ρ ρ ν α

ρ ρ ν α−

p ρ F ρ

α
. (2-14)  

Fig. 2-3 shows halves of three current distributions I(ρ,α). The shades 
of gray, from the maximum (black) to zero (white), represent the 
amplitude reliefs and the short arrows indicate directions of the currents. 
Light gray lines are a coordinate grid with λ/4 spacing. The purely 
radiating distribution given by Ex. 2-14 is shown in Fig. 2-3a. It is clear 
that its ARP is F(φ) = cos(νnφ) φo. 

 

       
a                                  b                                 c 

Figure 2-3: Current distributions: a) a pure radiating distribution forming the pattern 
F0(φ) = cos(νnφ) φo; b) and c) − non-radiating distributions 

 
                                                
12 Except for the number n = 0 
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Perhaps the easiest way to construct a non-radiating distribution is to 
use the fact that the radiation of ρ- and α- components of the current p(ρ) 
is of the same pattern F(φ) = cos(νnφ) φo. Consequently, they will 
compensate each other’s field if the amplitudes of their fields are equal, 
and the phases differ by π. This idea results in the formula 

( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( )

o
Q1 0 1 1

o
1 1

  sV  in 

os/ c
n n

n n

n

n

J k J k

J k J k

ν − ν +

ν − νρ α +

= ϕ ∝ ρ ρ ν α −

ρ ρ α

+

λ νλ −

I ρ F ρ

α
. (2-15) 

Here, λρ is equal to ( ) ( ) 2
0 1 1| |

n n

R
J k J k dν − ν + ρ ρ ρ+ρ∫  and λα is equal 

to ( ) ( ) 2
0 1 1| |

n n

R
J k J k dν − ν + ρ ρ ρ−ρ∫ . Fig. 2-3b shows the non-radiating 

distribution IQ1(ρ). 
A more formal and at the same time a more fertile way of constructing 

non-radiation distributions can consist of two stages. First, it is necessary 
to choose some distribution I(ρ) that forms the same ARP as the 
distribution p(ρ). In our case, F(φ) = cos(νnφ) φo and, therefore, I(ρ,α), 
given by Ex. 2-12 with arbitrary functions Iρ(ρ) and Iα(ρ), is suitable. In 
accordance with Ex. 2-11, it consists of two terms: IΣ(ρ), which in the 
situation under consideration is equal to p(ρ), given by Ex. 2-14, and 
IQ(ρ). At the second stage, it is necessary to select the non-radiating term 
IQ(ρ) from the chosen distribution I(ρ). This goal is easily achievable via 
the Schmidt orthogonalization procedure (see Ex. 1-6). As a result, we 
have 

Q 2
( ( ) ( ))( ) () )

( )

,(= −
I ρ p ρI ρ I ρ p ρ

p ρ
. (2-16)  

Fig. 2-3c shows the non-radiating distribution IQ2(ρ), obtained with the 
help of the above expression from the distribution I(ρ), in which both 
functions Iρ(ρ) and Iα(ρ) are equal to ρ: Iρ(ρ) = Iα(ρ) = ρ. 

Varying the functions Iρ(ρ) and Iα(ρ) in an arbitrary way, we can obtain 
as many different non-radiating distributions as we like. Is it not surprising 
that for the considered space I of distributions generated by combinations 
Iρ(ρ) sin(νnα) ρo + Iα(ρ) cos(νnα) αo, for every nth angular harmonic, there 
is only one purely radiating and an unlimited number of non-radiating 
distributions? This means that there are an unlimited number of 
distributions I(ρ) generating the same ARP F(φ) = cos(νnφ) φo. 

It is difficult not to wonder how the above-mentioned is consistent 
with the electromagnetic uniqueness theorem. The theorem asserts that 
sources located on the surface can create any external electromagnetic 
field. This means that there is no need for internal sources to obtain any 
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radiation pattern. Thus, the electromagnetic uniqueness theorem has 
nothing to do with sources distributed continuously inside a closed surface 
and, therefore, it does not say anything about them. Moreover, the theorem 
hints at the fact that non-radiating distributions can exist. A thoughtful 
reader can take pleasure in deciphering a hint and obtaining evidence. 

Of course, the non-radiation problem is much more theoretical than 
practical, not least because antennas formed by a volumetric current hardly 
exist as a real construction. An inhomogeneous dielectric body illuminated 
by a feed makes the rarest exception. In addition to this, in widely used 
antenna arrays, which are discrete structures, non-radiating distributions 
do not exist in principle. Although in some very extravagant cases they 
can exist. For example, if the set of directions inaptly chosen to control the 
ARP so that its directions coincide with the nulls of ARP for some 
distribution in the antenna array, then this distribution turns out to be a 
non-radiating distribution. In addition, if the distance between the array 
elements is small enough and their number is large, then almost non-
radiating distributions exist. Indeed, the radiation of neighbor elements 
excited out of phase is insignificant. Summarizing the issue, we can state 
that even in practical cases it is worthwhile being aware of the possible 
existence of non-radiating distributions. 

2.3. Operators involving in antenna synthesis 
and their spectrums 

2.3.1. Selfadjoint and quasi-inverse operators  

Suppose that the desired ARP F0(ro) is realizable—belonging to the 
subspace Fv—and the equation 
U I(ρ) = F0(ro) (2-17)  
has an exact solution I(ρ). Multiplying this equation by the adjoint 
operator V, we obtain the equation 
L I(ρ) = p0(ρ) (2-18)  
with the selfadjoint operator L = VU and a purely radiating distribution 
p0(ρ) on the right-hand side to which the operator V maps the ARP F0(ro): 
p0(ρ) = V F0(ro). Using the inverse operator L −1, we can determine the 
exact solution as follows: 
I(ρ) = L −1V F0(ro). (2-19)  

Suppose now that the desired ARP does not belong to the subspace Fv. 
This means that it contains the term F0

┴(ro), which is orthogonal to the 
subspace Fv, that is, F0(ro) = F0v(ro) + F0

┴(ro). Thanks to the useful 
features of the adjoint operator V, it “ignores” the term F0

┴(ro), and 
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therefore the solution Ex. 2-19 reproduces only the orthogonal projection 
of an arbitrary desired pattern F0(ro) onto the subspace Fv: 
U I(ρ) = F0v(ro). In other words, the solution Ex 2-19 provides the best 
mean square approximation of the desired pattern and thereby defines the 
quasi-inverse operator Uσ

−1 = L −1V.  
The spectrum of a selfadjoint operator L, which is the set of its 

eigenfunctions {gn(ρ)} and eigenvalues λn, determines the basic properties 
of both itself and the inverse operator. Therefore, it would be useful and 
interesting to get the mentioned spectrum. Unfortunately, in the general 
case, this requires laborious calculations, and only in some particular cases 
is it possible to obtain it with the help of some sophisticated analytical 
reasoning. 

Denote the set of normalized eigenfunctions of the operator L by 
{gn(ρ)}. This means that Lgn(ρ) = λn gn(ρ) and (gn(ρ), gm(ρ)) = δnm

13. The 
set {gn(ρ)} composes an orthonormal basis of the subspace IΣ of purely 
radiating distributions. 

It is easy to see that, due to the structure of the operator L, the patterns 
corresponding to the distributions {gn(ρ)} are mutually orthogonal. Indeed, 
(Ugn(ρ), Ugm(ρ)) = (VUgn(ρ), gm(ρ)) = (Lgn(ρ), gm(ρ)) = λn (gn(ρ), gm(ρ)) = 
λn δnm. Thus, the radiation patterns 

o   U( ) ( ) /n n n= λG r g ρ  (2-20)  
compose the orthonormal basis of the subspace Fv. It is just as elementary, 
as above, to verify that the adjoint operator V performs a symmetrical 
inverse transformation 

o  V( ) ( ) /n n n= λg ρ G r . (2-21)  
If the bases gn(ρ) and {Gn(ro)} are known, then the following explicit 

expression defines the quasi-inverse operator Uσ
-1 

o o
1 o 0

0
( ),(

  
( ))

( ) ( ) ( )nn
n

nU −
σ= =

λ
∑ F r r

I ρ F r g ρ
G .  (2-22)  

Ex. 2-22 is not very important for practical implementations but it 
plays a large methodological role clearly indicating that the norm of the 
solution I(ρ) can raise catastrophically if the desired pattern 
F0(ro) = ∑n an Gn(ro) contains terms corresponding to very small 
eigenvalues.  

Fig. 2-4 illustrates the basic properties exhibited by operators U and V: 
the first maps the entire space I of arbitrary distributions on the subspace 
Fv of the patterns that are inherent to the antenna, and the second maps the 

                                                
13 Here,too, the notation δnm means Kronecker delta. 
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entire space F of arbitrary patterns on the subspace IΣ of purely radiating 
distributions. They also convert the bases {gn(ρ)} and {Gn(ro)} into each 
other. 

 
 
Figure 2-4: Mappings performing by operators U and V 

 
It is easy to verify that in subspaces IΣ and Fv there exist a unique pair 

of orthogonal bases that transform into each other with the help of 
operators U and V, as in Ex. 2-21 and Ex. 2-22. In some cases, this avoids 
the hard problem of solving the corresponding equation (Ex. 1-11) in order 
to obtain the eigenfunctions of the operator L. Indeed, we can simply 
choose some orthogonal basis in the subspace Fv or IΣ, and then, after 
using the operator V or U, respectively, check whether the resulting set of 
functions is orthogonal—we have the thought-for bases—or not—the 
attempt was unsuccessful. 

The aforementioned choice is a guess, in fact, and there is no universal 
rule on how to do it. However, in the case of antennas of some regular 
geometry, including antenna arrays, the right choice may seem obvious—
with caution in the non-use, or unrealizable ARP or non-radial 
distributions, respectively. 

2.3.2. Examples of spectrums: {gn}, {Gn}, {λn} – for some 
structures of sources 

For simplicity’s sake, let us limit ourselves to 2D situations. The 
following expressions [14] will be very useful to achieve the objective of 
this section: 

cos
00 (1 ) ( )cos( )j x m

m mm
e j J x m∞ψ

=
= + δ ψ∑ , (2-23)  
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cos 1
0 1 10cos (2 ) [ ( ) ( )] cos ( )j x m

m m mm
e j J x J x m∞ψ +

− +=
ψ = − δ − ψ∑  (2-24)  

where Jm(x) is Bessel function of order m. We will consider two cases: the 
electric current distributed on the plane of the section inside (or on the 
boundary) of the circular cylinder around the edge of an ideally 
conducting wedge (Fig. 2-2) or similarly distributed current in free space. 
For both cases the coordinate systems shown in Fig. 2-2—{z, ρ, α} for 
sources and {θ, φ} for a far-zone field—will be in use. 

Example 1: a circle of z-polarized current in free space 
Let the radius of the cycle be ρ0, and the current is Iz(α) = exp(±j n α). 

For θ = 90°, as it is, the obvious equality [ro[ro zo]] = θo is valid, and 
Ex. 2-4 for the straight operator U turns to be as follows: 

0
2 cos( )

0
( ) e e αj k j nF d

π ρ ϕ−α ± α
θ ϕ = ∫  (2-25)  

because the distribution I(ρ) consists only of the z-component I(ρ0, α) = 
exp(± j nα) zo and all the entries of the tensor <E> are equal to zero, except 
for the single entry Eθz, which is exp(jkρ0 cos(φ − α)). For simplicity, 
taking into account the further normalization of ARP, we omitted the 
factor ρ0 in Ex. 2-25. 

Substituting Ex. 2-23 (with ψ = φ − α) in Ex. 2-25 and performing the 
integration it is easy to obtain the following closed expression 

0( ) ( ) en j n
nF j J k ± ϕ

θ ϕ = ρ . (2-26)  
In this particular case, the Hermitian conjugated tensor <E>* has only 

one non-zero entry Ezθ = exp(−jkρ0 cos(φ − α)), therefore the adjoint 
operator V defined by Ex. 2-9, looks like this 

( ) 0
2 cos( )

0
( ) e V ( )j k

zp F F d
π − ρ ϕ−α

θ θα = ϕ = ϕ ϕ∫ . (2-27)  

Ex. 2-27 and Ex. 2-25 have a similar structure; therefore, if 
Fθ(φ) = exp(± j nφ), then we have  

0( ) ( ) en j n
z np j J k ± αα = ρ∓ . (2-28)  

Since the functions exp(± nx)} are mutually orthogonal in the interval 
0 < x < 2π, we have—after normalization and taking into account the 
equality |J−n(x)| =| Jn(x)|—the sought-for bases and eigenvalues as follows: 

0

0

( ) e / 2 }, { ( ) e / 2 },

{ ( )

{

}.

j n j

n n

n
n

n

J k

g G± α ± ϕα = πρ ϕ = π

λ = ρ
 (2-29)  

Try to answer the question of whether there is any non-radiating 
distribution in the case under consideration or not. For a thoughtful reader 
who wants to make their own decision before reading the hint, the text of 
the hint is “disguised” in italics below. 
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If the radius ρ0 of the sources’ circle is equal to a root of Bessel function, 
i.e. Jn(kρ0) = 0, then λn = 0, which means that the current distribution gn(α) 
does not radiate. The next question is how many non-radiating 
distributions can exist? It seems to me that there is only one. Although a 
rigorous answer should be sought somewhere in the very depth of the 
theory of Bessel functions concerning the problem of the multiplicity of the 
root of the equation Jn(kρ0) = 0, with a fixed value of kρ0 and variable 
integer n, if any. 

If the value of kρ0 does not coincide with some root of any Bessel 
function Jn(x) then, theoretically, non-radiating distributions do not exist. 
However, Bessel functions Jn(x) converges to zero if n » x. This means 
that the corresponding distributions, practically, do not radiate which 
accords to the physical sense: the size of the antenna puts a limit to the 
sharpness of its ARP. In other words, the number of effectively radiating 
angular harmonics is in some proportion with the antenna size.  

A rough approximation to this proportion is the following inequality 
n < 1.2 ρ0. Unfortunately, even in this interval the set of eigenvalues {λn} 
given by Ex. 2-29 can contain and, for a relatively large radius, inevitably 
contains very small eigenvalues corresponding to extremely weakly 
radiating distributions. 

Example 2: a circular loop with a α-polarized current in free space 
Using the above notations with the current Iα(α) = exp(±j n α) and 

obvious equality [ro[ro αo]] = cos(φ−α) φo, we have Ex. 2-4 for the direct 
operator U, which turns into the next 

0
2 cos( )

0
( ) cos( ) e e αj k j nF d

π ρ ϕ−α ± α
α ϕ = ϕ−α∫ . (2-30)  

It is because the distribution I(ρ) consists merely of the α-component 
I(ρ0,α) = exp(±j nα) αo and all the entries of the tensor <E> are equal to 
zero, except for the only entry Eφα, which is cos(φ−α) exp(jkρ0 cos(φ−α)). 

In this situation, the above line of reasoning results in the following 
expressions: 

0

1 0 1 0

( ) e / 2 }, { ( ) e / 2 },

{ ( )

{

( )}.

j n
n

j n

n n

n

n J k J k

g G± α ± ϕ

− +

α = πρ ϕ = π

λ = ρ − ρ
 (2-31)  

As the derivation ( )nJ x′ = dJn(x)/dx is equal to [Jn−1(x) − Jn+1(x)]/2 then 
the existence of non-radiating distributions depends on the condition 

0( ) 0nJ k′ ρ = , that is completely analogical to the previous condition 
Jn(kρ0) = 0. Therefore, all the above reasoning is true including about the 
extremely weakly radiating distributions. 
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Example 3: a circular loop with a ρ-polarized current in free space 
Repeating the above logic in relation to the current Iρ(α) = exp(±j n α) 

and [ro[ro ρo]] = sin(φ−α) φo, we will gain the following final expressions: 

0

1 0 1 0

( ) e / 2 }, { ( ) e / 2 },

{ ( )

{

( )}.

j n j

n

n
n

n n

n j

J k J k

g G± α ± ϕ

− +

α = πρ ϕ = π

λ = ρ + ρ
 (2-32)  

As for the non-radiating distributions, the situation is the same, as the 
previous one, plus the following addition: irrespective of the radius ρ0, the 
uniform distribution (n = 0) is non-radiating. This is clear and physically 
—the z-component of the fields of any pair of currents symmetrically 
located relative to the observation point, cancel each other—and formally: 
Ex. 2-31 yields zero for n = 0, since J−1(x) = − J1(x) .  

Example 4: a circle of Huygens elements in free space 
Independent of whether z- or α- polarization is the case, the individual 

pattern of the sources in the plane of circle is the same with regard to z- or 
φ- field component, respectively: f(α, φ) = 1 + cos(φ−α). Clearly, Ex. 2-3 
for I(α) = exp(±j α) transforms to the sum of Ex. 2-25 and Ex. 2-30 

0
2 cos( )

| 0
( ) [1 cos( )]e e αj k j n

zF d
π ρ ϕ−α ± α

ϕ ϕ = + ϕ−α∫  (2-33)  

Here the notation “z|φ” means or z- or φ- polarization. 
In this case, taking into account Ex. 2-29, Ex. 2-31, and being cautious 

with the imaginary unit in Ex. 2-31, we obtain 

0

0 0

( ) e / 2 }, { ( ) e / 2 },

{ ( )}

{

) ( .

j n j n

n n n

n n j

J k jJ k

g G± α ± ϕα = πρ ϕ = π

′λ = ρ + ρ
 (2-34)  

The advantageous, in practical terms, feature of this case is that, unlike 
the previous three cases, there are no small eigenvalues {λn} in the interval 
0 ≤ n < 1.2 ρ0. This is due to the fact that if 0( ) 0nJ k′ ρ = , then the value of 
|Jn(kρ0)| has local maxima, and, conversely, if Jn(kρ0) = 0, then the value of 
| 0( )nJ k′ ρ | is close to local maxima. Therefore, all the angular harmonics 
belonging to the mentioned interval are well-radiating distributions.  

Let us compare the analyzed structures. Fig. 2-5 demonstrates the 
above-mentioned and very important features of the spectrums {λn} 
inherent in field sources of analyzed configurations.  
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Figure 2-5: Eigenvalues {λn} inherent in sources continuously distributed along a 
circle of 3 λ radius: a) z-polarized electric current; b) α-polarized electric current; 
c) ρ-polarized electric current; d) Huygens elements 

 
The presented computational data are consistent with understandable 

regularities. First, in all the cases, the eigenvalues λn for n > 25—that is, 
more than 1.3 kρ0—are sufficiently small to be of interest. Secondly, the 
current of ρ- polarization is hardly suitable for emission in the plane of its 
location, because so many of its initial harmonics radiate poorly. 
“Example 3” is present mainly for the sake of theoretical completeness. 
However, it is necessary when synthesizing the current distribution with 
non-predetermined polarization—similar to Ex. 2-14. Thirdly, Huygens 
sources have the flattest dependence λ(n) in the interval n < kρ0, which 
means they can radiate each of the corresponding harmonics equally 
effectively. 

Physically, it is clear that in the first three cases, the small eigenvalues 
correspond to those harmonics at which a resonance occurs when, due to 
isotropic or quasi-isotropic radiation, the fields emitted by sources and 
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opposite sources compensate each other. Those resonances are impossible 
in the case of Huygens sources due to their directed—cardioid—radiation 
pattern. 

Example 5: a circular array of z-polarized currents in free space 
Let there be N sources, which are z-polarized currents, located 

uniformly along the circle of radius ρ0 in free space. Their angular 
coordinates are αk = 2π k /N, where k = 0 ... N−1. 

Bearing in mind the same idea of using current distributions and ARPs 
of the harmonica type, we cannot start at trying-out the set of APRs 
{Gn(φ) = exp(±j n φ)}, as it was convenient and successful above. The 
point is that being a discrete structure the antenna array cannot produce 
those patterns precisely; consequently, they do not belong to subspace Fv 
of the patterns inherent in the antenna array.  

Let’s try to start in the opposite way: to check whether the set of 
harmonics {gn(αk) = exp(j n αk)} with n = 0… N−1 makes the orthogonal 
basis of the subspace IΣ of purely radiating distributions. For simplicity’s 
sake, we postpone normalization to the final stage. Since in any antenna 
array, non-radiating distributions cannot be, the subspace IΣ coincides 
with the total space I. After and if the verification is successful, it will be 
necessary to find out whether the diagrams {Gn(φ) = U gn(α)} are mutually 
orthogonal. 

Advice. My dear reader, try to guess, please, why do we ignore the set 
{gn(αk) = exp(−j n αk)}? It is useful—not least for training the engineering 
style of thinking—to reveal at the end of your studies a striking similarity 
to the well-known stroboscopic effect: here—discreteness in space, there—
discreteness in time.  

In the case under consideration, the following formula defines the inner 
product of any pair of distributions gn(α) and gm(α) in antenna array  

1
0),  )) exp( ( ( ) )( ( N

n m kk
g g j n m−

=
α α = − α∑ . (2-35)  

If n ≠ m that is the situation of our interest, Ex. 2-35 actually contains 
the sums of cosine and sine. In the outstanding mathematical reference 
book14 Gradshteyn I.S. and Ryzhik I.M. “Table of Integrals, Series, and 
Products.” (Eighth edition, 2014), one can find two formulas of trigonometric 
summation that we have combined into following two-story expression 

( ) ( ) ( )
0

sin sin
( ) / 2 sin ( 1) / 2 cosec / 2

cos cos

n

k

kx nx n x x
=

= +∑ . (2-36)  

                                                
14 Available at: https://www.sciencedirect.com/book/9780123849335/table-of-
integrals-series-and-products. 
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To apply Ex. 2-36 to Ex. 2-35, the following substitutions are 
necessary: n = N − 1, x = 2π (n − m) /N, which leads to the equality 
(n + 1) x / 2 = π (n − m). This means that the middle term on the right-hand 
side of Ex. 2-36 is equal to zero for any n and m ≠ n. If m is equal to n, 
then it is obvious that Ex. 2-35 yields the value of N. By the way, Ex. 2-36 
gives the same15. Consequently, the set of N mutually orthogonal functions 
{gn(α)} does form an orthogonal basis of the N-dimensional space IΣ. 

As for the set of ARPs {Gn(φ) = U gn(α)}, in the case of the antenna 
array Ex. 2-23 converts to the sum  

( ) 0 cos(1
0

)e  e kk j
n k

kN j nG
ϕ−α−

=

ραϕ = ∑ . (2-37)  
The substitution Ex. 2-23 into Ex. 2-37 yields 1+δ0m: 

( ) 0

1
0 00(1 ) ( ) e cos ( ) kj nm

m m k
N

n m k
j J k mG ∞ α−

= =
+ δ ρϕ −α= ϕ∑ ∑ . (2-38)  

In fact, Ex. 2-38 is a Fourier series. A possible way to find out whether 
functions {Gn(φ)} are mutually orthogonal involves analyzing the 
coefficients of the series. The substitution of the trivial exp(j n αk) = 
cos(n αk) + j sin(n αk) transforms the last summation in Ex. 2-38 to the 
following: ∑k exp(j n αk) cos(φ − αk) = [cc(n, m) + j sc(n, m)] cos(m φ) + 
j [ss(n, m) − j cs(n, m)] sin(m φ). Here the notations 

1
0
1
0

cc( , ) = ,

ss( , )

cos ( ) cos ( )

sin (= )sin ( ),

N
k

k

k

k

k

k
N

nn m

n

т

n тm

−
=
−
=

α α

α α

∑
∑

 (2-39)  

1
0
1
0

sc( , ) = ,sin ( ) cos ( )

cos ( ) sin (cs( , ) = )

N

k k k

k k
N

k

n m

n m

n т

n т

−
=
−
=

α α

α α

∑
∑

 (2-40)  

are in use. First, it is easy to see, that in view of Ex. 2-36 both sc(n, m) and 
cs(n, m) are equal to zero, regardless of the values of numbers n and m. 
This leads to the following entry for Ex. 2-38 

( ) 0
0

  [cc( , ) cos( ) ss ( , ) sin( )]( )mn m
m

G n m m j n m mJ k
∞

=
ϕ = ζ ϕ + ϕρ∑ . (2-41)  

Here, ζm denotes (1+δ0m) jm. 
Secondly, rearranging Ex. 2-39 to the summation of cos(k π(n ± m)/N) 

makes it possible to use Ex. 2-36 and obtain a resultant expression, the 
terms of which, unfortunately, need a cumbersome analysis with regard for 
the various combinations of the values of the numbers N, n and m and their 
parity as well. In order not to make mistakes during this analysis, it is very 

                                                
15 Clearly, cos(π(N−1)(n−m)/N)|m=n is equal to 1 and the discovering uncertainty 
sin(π(n−m)) cosec(π(n−m)/N)|m=n yields N. 
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useful to calculate Ex. 2-39 directly for a series of combinations of 
numbers N, n, m. 

Advice: People who are committed to the engineering style of thinking 
strive to visualize everything they are dealing with. Such a habit helps to 
reveal and understand the basic regularities or any features that are much 
more difficult to identify from formulas. In the case under consideration, 
we can easily draw—e.g. in MathCad—the dependencies cc(n, m) and 
ss(n, m) as functions of m with a set of combinations of parameters N and 
n, and then to draw the tables summarizing the results as shown below. 

In Fig. 2-6, empty cells mean that both sums cc(n, m) and ss(n, m) are 
equal to zero. Cells crossed diagonally contain symbols representing 
sums—cc(n, m) above and ss(n, m) below the diagonal—normalized to the 
maximum equal to 2, which is equal to N. Symbols “1”, “0”, “+” and “−” 
denote the values 1, 0, 0.5 and −0.5, respectively. 

 

     
a                                                    b 

 
Figures 2-6: Typical patterns of the sums cc(n, m) and ss(n, m): a) the case of an 
even number N; b) the case of for an odd number N 

 
Obviously, the number of sources N limits the number of harmonics 

(0 ≤ n ≤ N −1), and both trigonometric sums cc(n, m) and ss(n, m) in 
reference to the number m have a period equal to N. Therefore, it is 
enough to draw the initial (0 ≤ m ≤ N −1) part of the tables. Depending on 
the parity of N, the sum patterns are slightly different, retaining a cross-
like structure. Fig. 2-6a corresponds to N = 6 and Fig. 2-6b – to N = 7.  
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Taking into account Ex. 2-41 and meaning of symbols “+” and “−”, 
and omitting the factor N/2 for simplicity, we see that  and  denote 
(cos ( ) sin ( )) e j mm j m ϕϕ + ϕ =  and (cos ( ) sin ( )) e j mm j m − ϕϕ − ϕ = , 
respectively. Then ARP Gn(φ) = Ugn(αk)) given by Ex. 2-41, seems to be 
as follows 

( )
00

( )
01

( ) ( ) e

( ) e

pN n j pN n
n pN np

pN n j pN n
pN np

G N j J k

N j J k

∞ + + ϕ
+=

∞ − − − ϕ
−=

ϕ = ρ +

ρ

∑
∑

. (2-42)  

Perhaps not from Ex. 2-42 but with reference to Fig. 2-6 it is clear that 
(Gn(φ), Gs(φ))|n≠s = 0. Indeed, if s ≠ N − n then the functions Gn(φ) and 
Gs(φ) do not contain harmonics with the same indexes m which is an 
explicit indication that the functions are orthogonal. Otherwise, the 
functions Gn(φ) and Gs(φ) have terms with the same indices m, but they 
correspond to the opposite phase variations e jm ϕ  and e jm− ϕ , and 
therefore they are orthogonal in the interval 0 ≤ φ ≤ 2π.  

Thus, the functions given by Ex. 2-42 are mutually orthogonal, and 
after normalization, we obtain the following final expressions:  

  2 2
0 0

0 1

( )
00

( )
01

e  , ( ) ( )(

1( ) ( ) e
2
1 ( ) e
2

)
kj n

n k n pN n pN n
p p

pN n j pN n
n pN np

n

pN n j pN n
pN np

n

g J k J k
N

G j J k
N

j J k
N

α ∞ ∞

+ −
= =

∞ + + ϕ
+=

∞ − − − ϕ
−=

α = λ = ρ + ρ

ϕ = ρ +
λ π

ρ
λ π

∑ ∑

∑

∑

 (2-43)  

Since Bessel functions Jm(x) rapidly decrease for m > 1.2 x, it is 
practically acceptable to limit the summations in Ex. 2-43 by the condition 
p < [3.6 kρ0/N] or even by p < [2.4 kρ0/N]. Here, square brackets mean a 
value truncated to an integer. 

Example 6: z-polarized current distributed continuously in free space 
between two circles of radius ρ1 and ρ2. 

Unlike Example 1, the current distribution is now a function of two 
variables Iz(ρ, α). As for the dependencies on α, it remains tempting to 
choose harmonics. However, what functions should we try for 
dependencies on ρ? Intuition is silent. 

On the other hand, it is clear that Fourier series can represent any ARP 
that is a smooth function in interval 0 ≤ φ < 2π. So why not try the basis 
{ ( ) e / 2 }n

j nG ± ϕϕ = π ? The adjoint operator V maps a function Gn(φ) to  
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2 cos( )
0

( , ) e ( ) 2 ( ) ej k n j n
n n ng G d j J k

π ρ ϕ−α ± αρ α = ϕ ϕ = π ρ∫  (2-44)  

It is clear that inner product of any pair gn(ρ, α) and gm(ρ, α) 
2

1

2 *
0

( ( , ), ( , )) ( , ) ( , ) α
mn m ng g g g d d

ρ π

ρ
ρ α ρ α = ρ α ρ α ρ ρ∫ ∫  is equal to zero if 

n ≠ m, i.e. functions {gn(ρ, α)} are mutually orthogonal. After 
normalization, the following formulas arise 

2

1

2

( ) 1( , ) e , ( ) e
2

2 ( )

n j n j nn
n n

n

n n

J k
g j G

J k d

± α ± ϕ

ρ

ρ=ρ

ρ
ρ α = ϕ =

λ π

λ = π ρ ρ ρ∫
. (2-45) 

As for non-radiation distributions, the situation is similar to that 
described in Section 2.2.2 above. The distribution Iz(ρ, α) = I(ρ) e j nα  with 
an arbitrary function I(ρ) produces the same ARP Fθ ~ e j nϕ  and only one 
of them— gn(ρ, α) given by Ex. 2-45—is the purely radiating distribution. 
Any others contain a non-radiating term belonging to the subspace IQ. We 
can select this term using Schmidt orthogonalization procedure (Ex. 1-6) 
with reference to the distribution gn(ρ, α). 

Other Examples. In some other cases we can obtain the spectrums 
{gn(ρ, α)}, {Gn(φ)}, {λn} using the above arguments. Tab. 2-1 is a 
directory for a number of 2D situations. 

2.4. Set of parameters evaluating the quality of antenna 
synthesis solutions 

The most common characteristics that evaluate the quality of obtained 
excitation distribution are those that feature the preciseness, energetic 
effectiveness and stability of the solution. Of course, there are other 
important characteristics, such as directivity, beam width, side-lobe level, 
bandwidth, and so on. Nevertheless, we can note that the directivity factor 
and the side-lobe level somehow correlate with the accuracy of the 
solution—if the desired pattern is a δ-function, of course—and bandwidth 
is directly dependent on solution stability. 

1. Concept of the power radiated into the desired pattern 
It is always possible and very useful to represent any real antenna 

pattern F(ro) as a sum of two orthogonal terms F(ro) = α F0(ro) + F┴(ro), in 
which the first term differs from the desired pattern F0(ro) only by some 
scalar factor α, as is shown in Fig. 2-7. 
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Figure 2-7: Orthogonal decomposition of the ARP ( )°F r  

 
According to this decomposition, the power P∑ = ||F0(ro)||2 radiated by 

the antenna is of two terms P∑ = P0∑ + P┴, the first of which V.N. Dymsky 
called “the power radiated into the desired pattern,” and following him, we 
will use this meaningful term. The second term is an energy measure of 
the deviation of the actual pattern F(ro) from the desired F0(ro) one. Since 
according to Ex. 1-6 the factor α is equal to (F(ro), F0(ro)) / ||F0(ro)||2 then 
the power radiated into the desired pattern is as follows 
P0∑ = |(F(ro), F0(ro))|2 / ||F0(ro)||2. (2-46)  

2. Mean square deviation of an antenna pattern’s shape 
The value of the normalized standard deviation an antenna pattern 

F(ro) from the desired one  
σ = || F(ro) − F0(ro) || / || F0(ro) ||  (2-47)  
is a common characteristic evaluating the accuracy of the solution. Note 
that the value of σ depends on the scale factor. Suppose we have two 
patterns F1(ro) and F2(ro), which differ only in some scale factor μ: 
F2(ro) = μ F1(ro). In a practical sense, these patterns are equal, but standard 
deviation σ estimates their accuracy as not equal to each other. 

It would be reasonable to slightly modify the characteristic σ so that it 
depends only on the shape of the ARP (on its angular function) regardless 
of the scale factor. A simple idea of how to achieve the goal is to calculate 
the standard deviation, but for a pre-scaled ARP as follows: 

o o o
0 0opt( ) (|| || / || |) ) |(σ γ= −F r F r F r . The search for the optimal scale 

factor leads to the following variation task: 0
2( )min || ||( )

γ
− γ° °F r F r . The 

condition d||…||2/dγ = 0 results in the following optimal complex value 
γopt = ((F0(ro), F(ro))/||F(ro)||2. Finally, the following formula for the 
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normalized mean square deviation of antenna pattern’s shape is in 
force: 

2 2 22
0 01 | ( ||( ), ( ) | || || ||( ) ( )σ = − ° ° ° °F r F r F r F r . (2-48)  

It is interesting to note that variables 2σ , P∑, P0∑ , and P┴ are in a very 

close and meaningful dependence: 2σ  = 1 − P0∑ / P∑ = P┴ / P∑.  
Of course, the values of both measures—the standard deviation of σ 

and σ—are equal for the solution obtained by the MRSD algorithm, since 
the scaling of that solution is automatically optimal. However, if the 
solution arises because of optimization under additional constraints, for 
example, with restriction of its norm (so-called regularization) or during 
various iterative procedures, then σ more adequately estimates the 
accuracy of the solution. 

 
Commentary with reference to 2σ  
Honestly, I do not understand why such a rational and useful thing as the 
deviation of the shapes of radiation patterns published many years ago—in my 
dissertation [15] and some articles [16-18]—remains unnoticed. Of course, I 
did not expect something like applause or the widespread use of this thing. 
Nevertheless, even being a modest person, I expected that the idea would be 
worth recognizing by the relevant scholars. Sometimes, when discussing such 
situations in a conversation “from heart to heart,” I tell the students: “It’s not 
my fault; it’s a prank of humanity that it ignores something worthwhile.”  
 
By the way, mathematicians use the meaningful notation {ρ°, φ°, z°} and 
{r°, θ°, φ°} for a standard basis set of vectors for cylindrical and spherical 
coordinate systems, respectively. However, why for the Cartesian system 
do they use the meaningless notation {i, j, k} instead of the logical {x°, y°, 
z°}? Perhaps this is so because humanity values the vagueness of the 
humanitarian style of thinking above a clearness of the engineering style. 
Nevertheless, following Dymsky, I prefer to use the notation {x°, y°, z°}, 
and the students more than approve of it, they like it. 

3. The solution’s sensitivity to random errors  
An important feature of the solution—as an amplitude and phase 
distribution (APhD) in antenna—is the relation Q = ||I(ρ)||2/||F(ro)||2, 
often called the reactivity of APhD and interpreted as the ratio between 
the total excitation power (with regard to the reactive component) and 
the radiated power. In my opinion, the interpretation is not strict but 
physically justified, because it somehow reflects the reactivity of the 
antenna.  
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However, the parameter Q has another meaning simultaneously16. With 
a typical statistics of random errors δI(ρ), which inevitably accompany the 
reproduction of the nominal distribution I(ρ), the relative dispersion 
δ2 = D(δF(ro)) / ||F(ro)||2 of random deviations δF(ro) of ARP, caused by 
the distribution errors δI(ρ), is equal to the following: δ2 = ε2 Q/ Q0. Here, 
δ2 = D(δI(ρ)) / ||I(ρ)||2 is the relative dispersion of errors δI(ρ), and Q0 is a 
value that depends only on the geometry of the antenna. 

Thus, Q = ||I(ρ)||2/||F(ro)||2 is solution’s sensitivity to random errors 
of its reproduction. 

2.5. Uniqueness and stability of antenna synthesis solution 

2.5.1. Introductory remarks 

As for the uniqueness of antenna synthesis solutions, the situation is 
simple. If there are two17 solutions I1(ρ) and I2(ρ) to which the same ARP 
corresponds, then the distribution I(ρ) = I1(ρ) − I2(ρ) does not radiate. The 
converse is true as well: if there are non-radiating distributions in the 
antenna, the solution of the antenna synthesis cannot be unique. Thus, non-
uniqueness of the antenna synthesis solution is the other side of the 
existence of non-radiating distributions. 

It is not difficult to cope with this problem, imposing an additional 
condition on the sought-for distribution. For example, the mentioned 
condition may be as following: ||I(ρ)||2 ≤ Pmax or equal to it the condition 
||I(ρ)||2 ≤ Q0 ||U I(ρ)||2. The choice of certain values for Pmax or Q0 is a 
vague task, for the solution of which there is hardly anything else than a 
method of trial and error. 

The other way to cope with the problem of non-uniqueness is to get the 
best approximation to the desired ARP F0(ro), seeking for a solution into 
subspace purely radiating distributions IΣ. In fact, the quasi-inverse 
operator Uσ

-1 = L-1V, given by Ex. 2-22, determines this precisely, thanks 
to the peculiarities of the adjoint operator V that maps an arbitrary desired 
pattern F0(ro) to the subspace IΣ. 

The problem of the stability of the solution is much broader. Even in 
the case of antenna arrays in which non-radiating distributions do not exist 
and the solution of any synthesis task is unique, its stability can be 
unacceptably poor, since some eigenvalues can be very small. Moreover, 
this is so in an infinite-dimensional situation, when the continuously 

                                                
16 See Section 2.4. 
17 Especially if there are several of them. 
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distributed sources are along a certain curve, on a surface or inside a 
volume. Mathematicians have proved [19] that eigenvalues of any 
selfadjoint operator are positive and zero can be the only point of their 
convergence. This means that in the case of continuously distributed 
sources, the operator L has infinitesimal eigenvalues causing an infinite 
increase in the solution norm (Ex. 2-22 shows this explicitly) and its 
instability. There are two ways to enhance the stability of the solution: 
regularization (stems from formal reasoning) and optimization (stems from 
physical reasons). 

2.5.2. Regularization 

A brief remark about an ill-posed problem 
From a definition given by Jacques Hadamard, a well-posed problem 

should have the following three properties [20]: 1) a solution exists; 2) the 
solution is unique; 3) the solution’s behavior changes continuously with 
the initial conditions. If any of the conditions do not satisfy, the problem 
becomes an ill-posed one.  

The inverse problems, to which the synthesis of antennas relates, are 
often ill-posed, mainly because of the third condition. Even if a problem is 
well-posed, it can still be ill-conditioned, meaning that a small deviation in 
the right side of the equation can result in much larger alteration in the 
solution, as it is with antenna arrays.  

In the case of continuously distributed sources, the antenna synthesis 
equation UI(ρ) = F0(ro) is certainly an ill-posed mathematical problem, 
since infinitesimal changes o

0 ( )δF r  in the right side of the equation can 
cause finite changes δI(ρ) in its solution. In such situations, Tikhonov 
regularization is a commonly used method [21, 22]. The general idea of 
regularization is to impose an additional condition onto the sought 
solution. Very often this condition is the inequality constraining the norm 
of the solution: ||I(ρ)||2 ≤ Pmax.  

Using the method of Lagrange multipliers to solve the optimization 
task that is to minimize ||F0(ro) − U I(ρ)||2 while satisfying the condition 
||I(ρ)||2 ≤ Pmax, we obtain the following equation instead of Ex. 2-18 
L I(ρ) + μ I(ρ) = (L + μ E) I(ρ) = p(ρ), (2-49)  
where E is the identity operator—a unit matrix in the finite dimensional 
case—and μ denotes the Lagrange multiplier whose value must be such 
that the imposed condition is met. 

It is clear that the eigenfunctions {gn(ρ)} of operator L serve 
simultaneously the eigenfunctions {gn(ρ)} of operator (L + μ E) with 
eigenvalues {λn + μ}. Indeed, a series of equalities (L + μ E) gn(ρ) = 
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Lgn(ρ) + μ Egn(ρ) = λn gn(ρ) + μ gn(ρ) = (λn + μ) gn(ρ) is obviously true. 
Thus, the solution Ex. 2-22 transforms into regularized distribution, which 
is 

( )0 ( ), ( )
( ) ( )n

n n
n n

μ
° °

= λ
λ +μ∑

F r G r
I ρ g ρ . (2-50)  

Consequently, by virtue of Ex. 2-20, the ARP Fμ(ro) = U Iμ(ρ), 
corresponding to this solution, turns into the following expansion in 
functions {Gn(ro)} 

( )0 ( ), ( )
( ) ( )n

n n
n n

μ
° °

= λ °
λ

°
+μ∑

F r G r
G rF r  (2-51) 

If μ = 0 then Ex. 2-51 yields Fμ(ro)|μ=0 = ∑n (F0(ro), Gn(ro)) Gn(ro), which 
coincides with the orthogonal projection Fσ(ro) of the desired ARP F0(ro) 
onto the subspace Fv: Fσ(ro) = ∑n (F0(ro), Gn(ro)) Gn(ro). In other words, 
the pattern Fσ(ro) is the best (in sense of the RMSD) approximation, which 
the considered antenna can provide to the desired pattern F0(ro). 

To study the quality of regularized solution we will analyze how its 
preciseness and reactivity depend on the value of Lagrange multiplier μ. 
So as not to be dependent on the orthogonal component Fo

┴(ro) of the 
desired ARP, calculating RMSD σ as a deviation from the best approach 
Fσ(ro) is worthwhile. By the way, this will also be useful because its range 
of values is clear in advance: between zero, if the solution is the most 
accurate, and a unit, if the solution itself is null. Thus, the following 
formula will be in use 

2 2 2

2 2 2 2

( ) ( ) ( )|| || / || ||

| | [1 / ( ) ] | |nn n n
n n

a a

σ μ σ−

λ λ

σ = ° ° ° =

− +μ∑ ∑
F r F r F r

. (2-52) 

Here, an = (F0(ro), Gn(ro)) are the expansion coefficients of the pattern 
Fσ(ro) in the orthonormal basis {Gn(ro)}. 

To study the regularization effectiveness in detail let as consider 
synthesizing a circular—cylindrical, more precisely—antenna of Huygens 
elements in free space. Assume that the radius of circle ρ0 is equal to 1.5 λ 
and the desired ARP is a δ-function in direction φ = 0°. 

Several simplifying comments before proceeding to the calculations 
First, in the case under consideration, theoretically, there are an infinite 

number of terms in any of the series Ex. 2-50 ÷ 2-52. However, from 
computational constraints, not to mention practical reasons, this number 
Nmax must be finite. Say, one hundred or even dozens can be satisfactory. 

Secondly, taking into account the parity of the task, which leads to the 
equality of the coefficients for the harmonics corresponding values +n and 
−n, it is advantageous to combine these harmonics by going over to the 
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cosine decompositions. This will halve the number of the series’ terms and 
transform Ex. 2-34 to the followings: 

0 0 0

0 0 0

( ) cos ( ) / }, { ( ) cos ( ) / },

2 if 0
{ ( ) ( )}, .

1 if 0

{ n n

n n n n

n nn n

n
J k

G

jJ k
n

g α = α ε πρ ϕ = ϕ ε π

=⎧′λ = ρ + ρ ε = ⎨ ≠⎩

 (2-53) 

To calculate the derivation Jn
'(kρ0), the equation Jn

'(kρ0) = [Jn–1(kρ0) − 
Jn+1(kρ0)]/2 is usually used, known in the Bessel functions theory [23]. 

Thirdly, in accordance with the above, the projection Fσ(φ) of the δ-
function onto the space Fv substitutes the desired ARP. Taking into 

account Ex. 2-53 and the fact that 
0

1 0 ,   ( ( ) ( ))n n
n

a G= δ ϕ ϕ
ε

− =
π

 we 

can write the following formulas for the desired ARP Fσ(φ), the 
regularized distribution Iμ(α), the reproduced ARP Fμ(φ) and their 
characters σ and Q: 
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  (2-54) 

Finally, the reactivity of eigenfunctions {gn(α)} is obviously inversely 
proportional to the eigenvalues: Qn = ||gn(α)||2 / ||Ugn(α)||2 = 1/λn. Thus, the 
minimal and maximal reactivity are inherent in the eigenfunctions 
corresponding to λmax and λmin, respectively. The reactivity of any other 
distribution I(ρ) = ∑n an gn(ρ) is between those limits: Qmin = 1/λ max and 
Qmax = 1/λ min. In the case under consideration, the limits are Qmin = 3.92 
and Qmax = 200.52. 

Calculations 
In view of the structure of the spectrum {λn} shown in Fig. 2-5d, in 

order not to complicate displaying the calculation results in detail, we will 
restrict the number of terms in the expansions by Nmax = 25. Fig. 2-8a 
shows dependences of accuracy σ or σ and reactivity Q—the crucial 
characteristics—of solution Iμ(α) obtained while the Lagrange multiplier μ 
varies over a wider range than usual.  
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a                                                        b 

Figure 2-8: Regularization of the antenna synthesis solution: a) the dependences of 
standard deviations σ and σ on the reactivity Q in decibel; b) ARPs |Fμ(φ)| 
corresponding to four values of the Lagrange multiplier μ 

 
The common range of μ variation is from 0 (the point a: σ|μ=0 = 0; 

Q|μ=0 = 19.25) to ∞ (the point b: σ|μ=∞ = 1; Q|μ=∞ = 5.34). The exact 
solution Iμ(α)|μ=0 (point a) can be unacceptable due to high reactivity, 
whereas the solution Iμ(α)|μ=∞ seems entirely useless with regard to 
approaching the desired ARP (point b with σ = 1(!)). However, this 
follows from Ex. 2-54 that if the value of μ is significantly higher than 

λmax, then the relations ( )
max

0
00

1 cos( ) 1 ( )
N

n
nn

n
pI

=
μ

α
≈ λ =
μ ε μ

α α∑  are in 

force. Here, p0(α) = V Fσ(φ), as we shall see in the next section, is a fairly 
good solution. The problem behind the value of σ = 1 for the point b is that 
the solution Iμ(α)|μ→∞ becomes vanishingly small due to scale factor 1/μ.  

In Fig. 2-8b, there are four patterns Fμ(φ) the first of which 
corresponds to the value μ = 0, i.e. is exactly the pre-assigned ARP Fσ(φ). 
The dashed line highlights it. When the multiplier μ increases to the level 
near the value of the minor eigenvalues, the contribution of the “high-
frequency” terms corresponding to large values of n and small values of 
λn, decreases in accordance with the factor λn/(λn + μ). This leads to some 
expansion of the main lobe. After μ becomes larger than λmax, the shape of 
the pattern Fμ(φ) practically does not alter. Only its level reduces inversely 
proportional to the value of μ: Fμ(φ) ≈ Up0(φ) / μ. To make this pictorially 
clear, in Fig. 2-8b the curve in the light gray color displays this pattern 
after optimal scaling in accordance with the aforementioned factor 
((F0(φ), Fμ(φ))/||Fμ(φ)||2. In doing so, the square deviation σ2 becomes 
equal to 0.16 that is not so bad. 
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At the same variation of μ from 0 to ∞, the curve of dependency σ(Q) 
starts at the point a (Fig. 2-8b) and ends at the point c ( σ|μ=∞ = 0.401; 
Q|μ=∞ = 5.34). Note that the solution Iμ(α) remains unchanged, but the 
value of the corresponding deviation σ, determined by Ex. 2-48, is 
significantly smaller than σ, due to optimal scaling of the patterns Fμ(φ). 

The range of reactivity inherent to the considered system of sources—
from Qmin = 3.92 to Qmax = 200.52—is wider than the range 5.34 ÷ 19.25 
to which the reactivity of regularized solutions Iμ(α) belongs. It is 
interesting how the dependences of σ(Q) and σ(Q) behave in the entire 
range of Q. To find this out, we need to solve the following constrained 
optimization problem: to minimize ||Fσ(ro) − U I(α)||2 while satisfying the 
condition ||I(α)||2 / ||U I(α)||2 = Q. 

Rewriting the condition in the form Q ||U I(α)||2 − ||I(α)||2 = 0, and 
using the method of Lagrange multipliers reduces the optimization 
problem with the restriction on reactivity Q to the same equation given by 
Ex. 2-49. The difference is that the μ factor can now be negative. 

If the value of μ varies from zero to −λmin, then the solution reactivity 
rises from the value Q|μ=0 = 19.25 to the maximum possible value of Qmax 
= 1/λmin = 200.52, while the accuracy deteriorates. Obviously, these 
solutions are of no practical interest. Therefore, in Fig. 2-8a, 
corresponding portions of the curves σ(Q) and σ(Q) to the right of the 
point a are present on the truncated interval only for the sake of 
universality. 

If the value of μ varies from −∞ to −λmax, then the reactivity of the 
solution decreases from the value of Q|μ=∞ = 5.34 to the minimum value of 
Qmin = 3.92, while the accuracy deteriorates. The portion of the curve σ(Q) 
between points c and d (σ|μ=−λmax = 0.98; Q|μ=−λmax = 3.92) displays the 
quality of the corresponding solutions Iμ(α). Since low reactivity is a very 
attractive factor, a solution with Q <5.34—to the left, but, of course, near 
the point c—can be of interest. 

The values of the variables σ and σ for the regularized solutions Iμ(α) 
differ significantly for the most important type of low-reactive 
distributions. It is clear that the variable σ gives a much more accurate 
evaluation of the solution quality, and the variable σ unreasonably 
provokes us to use more reactive distributions. 

2.5.3. Solution optimization with consideration for random 
errors of its subsequent implementation 

Regularization, as a method for solving ill-posed or ill-conditioned 
problems, constructs such an algorithm that ensures the solution’s stability 
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according to Hadamard. In practice, this means that small changes on the 
right-hand side of the equation could result in rather small, or at least not 
drastic, alterations in the solution. Regularization perfectly fits inverse 
tasks arising in many fields of technology, in particular, for any kind of 
indirect measurements. 

Bearing in mind the antenna technique, we can refer to retrieving the 
antenna current distribution Ia(ρ) from the measured18 ARP Fa(ro), which 
reduces to the solution of the following equation U Ia(ρ) = Fa(ro). Since 
instrumental errors δFa(ro) distort the measurement data Fa(ro), it is vital to 
restrict the sensitivity of the retrieval algorithm towards random 
distortions δFa(ro). The regularization paves the way to do so. 

The situation with antenna synthesis, which deals with the same 
equation U Iσ(ρ) = F0(ro), see Ex. 2-17, is markedly different from the 
above. The right part of this equation is the desired optimal ARP F0(ro), 
uniquely determined by the requirements for the operation of the radio 
system to which this antenna serves. Suppose that Ivan and Michael do not 
know each other. They develop their own radio system and asked Diego—
the mathematician—to solve the relevant Ex. 2-17. It so happened that the 
optimal patterns for both systems turned out to be very close. 

Obviously, Ivan does not care whether the solution given to Michael 
will be close or substantially different from the solution that he received 
from Diego. Just like Michael is indifferent to the solution for Ivan. Maybe 
Diego would be not pleased obtaining essentially different solutions for 
very close tasks. Being a mathematician and following Hadamard, he 
desires that the behavior of the solution changes continuously with the 
initial conditions, and perhaps he used regularization. 

If so, what reasoning did he use to choose the value of the Lagrange 
multiplier μ? With the indirect measurements mentioned above, when we 
know the level of instrumental errors changing the right side of the 
equation, even then the choice of the value of μ is such a vague task that 
after all, we have to make a heuristic decision based on the previous 
experience. 

By the way, it looks absurd, but if the desired ARP F0(ro) coincides with 
the eigenfunction Gm(ro), which corresponds to the minimal eigenvalue 
λm = λmin and, accordingly, to the worst distribution gm(ρ), then, according 
to the Hadamard concept of sustainability, the problem of antenna 
synthesis acquires the highest stability. Indeed, let the dimension of the 
task is limited by N (say, we deal with an antenna array of N elements). 

                                                
18 The measurements can take place in the Fraunhofer zone that allows the use of a 
compact chamber. 
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Assume that distortion δF(ro) = ΣnαnGn(ro) of the right side of the 
synthesis equation Ex. 2-8 is a random function, which coefficients {αn} 
are statistically independent with zero mean and equal variances σ2 = ε2/N. 

Then, as a consequence of Ex. 2-22, the variance ( ) 2
δI ρ  of distortions 

of the solution δI(ρ) is ε2 Σn(1/λn). The solution I(ρ) = U-1 Gm(ro) is, 
obviously, equal to ( ) /m mλg ρ . Therefore, the relative level of the 

solution distortions is ( ) 2
δI ρ /|| I(ρ) ||2 = λm ε2 Σn(1/λn). This equality 

means that the smaller the value of λm, the higher the stability of the 
solution Ex. 2-8 (in the sense of the Hadamard concept). The worse the 
desired pattern F0(ro), the better. Is not it discouraging?  

As for Ivan and Michael, they do have an interest in the stability of the 
solution of equation Ex. 2-17, however, this stability is in the opposite 
direction: from left to right. This is because at synthesizing antenna, the 
source of deviations is not the deformation of the desired ARP F0(ro), but 
distortion the nominal current distribution Iε(ρ) due to unavoidable 
random errors δI(ρ) accompanying its implementation.  

In these circumstances, the current ARP formed by the antenna is 
F(ro) = U (Iε(ρ) + δI(ρ)) = Fε(ro) + δF(ro), where Fε(ro) = U Iε(ρ)  is the 
nominal ARP and δF(ro) =U δI(ρ) is a random deviation from it due to 
errors δI(ρ). Therefore, the standard deviation σ determined by Ex. 2-47, 
is a random variable.  

Clearly, the level of errors δI(ρ) is not an absolute value, but a relative 

value. In other words, the variance of errors ( ) 2|| ||δI ρ —here and further, 
the bar over the variable denotes the mathematical expectation—is 
proportional to the square of the nominal distribution norm as follows 

2 2 22( )|| || || ||( )εξ = = εδI ρ I ρ . (2-55) 
Here, ε is a percentage accuracy of realization.  

It is of great practical interest to find such a nominal solution Iε(ρ), 
which provides the minimum mean value of the standard deviation σ ARP, 
while the errors δI(ρ) have a certain level ε. Below I discuss the approach 
and the results very close to those obtained by Shifrin Ya.S. and 
Kornienko L.G., who dealt with this problem in the framework of the 
statistical theory of antennas [24]. The fact is that we all conducted our 
studies independently and contemporaneously. 

Let us write the random function δI(ρ) in the form of the sum 
( )n nn

α∑ g ρ  where coefficients {αn} correspond to a widely used 
statistical model hat embodies following assumptions: the coefficients are 
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statistically independent complex values with zero means and equal 
variances of their real and imaginary parts. In particular, this means that in 
the case of the antenna array, the errors {δIn(ρ)} of the excitation 
coefficients of its elements are also, as usual, independent complex values 
with equal variances and zero means. It is clear that because of Ex. 2-55 
the variance of any random coefficient αn is 

( ) ( )2 22 2/ /n N Nεα = = εδI ρ I ρ . (2-56) 
With an eye on the mean square deviation (MSD) σ2 (Ex. 2-47), let us 

write the obvious equation ||F0(ro)−F(ro)||2 = ||F0(ro)−Fε(ro)||2 − 
2 Re[(F0(ro)−Fε (ro), δF(ro))] + ||δF(ro)||2. It is clear that the average value 
of the middle term on the right-hand side of the equation is equal to zero. 
Taking into account the equalities ( )o o( ) U ( )n n nn

δ α= δ = λ∑F r I ρ rG  

and Ex. 2-55, we obtain the following result for a variance 2σ  of the 
variable σ:  

o 2

2
2 2 2

avr
0

|| ||( )
|| ( ) ||

ε
εσ = σ + ε λ

I ρ
F r

. (2-57) 

Here, σε =||F0(ro)−Fε(ro)|| / ||F0(ro)|| is the root-mean-square deviation 
of the realized ARP Fε(ro) from the desired ARP F0(ro) for the nominal 
distribution Iε(ρ) and avr nn

Nλ = λ∑  is the average value of the 
eigenvalues {λn}. 

Ex. 2-57 explicitly asserts that the nominal distribution Iε(ρ), which 
minimize the value 2σ , coincides with the relevant solution of the 
regularization problem (Ex. 2-50). Indeed, having a certain norm, it must 
minimize the value of σε, i.e. belong to the set of solutions that Ex 2-50 
defines. The difference is that instead of a rather vague restriction on the 
norm ||Iε(ρ)||, now with regard to the specified level of errors ε2, the 
condition of minimization of the value 2σ  uniquely defines the exact 
value of regularization multiplier μ. What do you think about this 
difference? Is it significant or trifling? 

To clarify the situation, Fig. 2-9a shows the dependencies 2 ( )Qσ  
calculated using Ex. 2-57 and the regularized distribution Ex. 2-50 as the 
nominal solution Iε(ρ). At that, we considered the same situation as in the 
Section 2.4.2 (see the paragraph “Calculations” in it), but with a larger 
number of angular harmonics N = 28 for obtaining more expressive 
dependencies. 
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a                                                        b 

 
Figure 2-9: The standard deviation of the σ and σ variables (a and b, respectively) 
as a function of the reactivity of the antenna synthesis solution for three levels of 
accuracy: black, dark gray and light gray, respectively, to a value of ε2 equal to 
0.1, 0.04 and 0.01 

 
The value of the Lagrange multiplier μ varies in the same range as in 

the case of Fig. 7 and the reactivity Q of the regularized solution Ex. 2-50 
is the abscissa of the chart. The dash-dotted line shows the dependence of 
the root-mean-square deviation σ of ARP for the nominal solution Iε(ρ) (as 
if ε2 is equal to 0). This dependence corresponds to that in Fig. 2-8a, and 
the points a, b mark the same situations: μ = 0, μ = ∞, respectively. The 
reactivity Qp = 7.28 dB corresponds to the point b and characterizes a very 
attractive solution discussed in the next chapter. 

In Fig. 8a, three solid lines of different shade shows dependencies 
2 ( )Qσ  for the values of error variance ε2 = ||δI(ρ)||2/||I(ρ)||2 equal to 0.1, 

0.04 and 0.01, respectively. The small triangles on them mark the optimal 
solutions minimizing the mean value 2σ  if the implementation accuracy 
corresponds to a certain level (given by ε2).  

Of course, the mathematically average value of σ is a decisive 
parameter. However, it is interesting to see the features according to some 
cases of reproducing the nominal solution while errors of a certain level 
are inevitable. To satisfy this desire, we simulated ten random realizations 
δI(ρ) having a normal distribution of the coefficients {an} with zero mean 
and a given variance (Ex. 2-56). In Fig. 2-9a, near each of the three curves, 
you can see three clusters of ten points that represent the results for ten 
random implementations of the following solutions: the optimal solution 
(central cluster), the solution with a higher reactivity (cluster on the right), 
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and the solution with less reactivity (barely noticeable19 left cluster). Fig 2-
8a demonstrates that the results of direct statistical simulations are in a 
good agreement with the dependencies predicted by Ex. 2-57. 

Let us carry out a similar analysis of the statistical characteristics of the 
variable σ determined by Ex. 2-48. Denoting ξ2 = ε2 ||I(ρ)||2/N and 
P0 = Σn λn |an|2 we can easily obtain the following formulas 

o o o 2
0 ( ), ( ) ( || ( ))+ δF r F r F r = |(F0(ro), F(ro))|2 + ξ2 P0 and 

o o 2 o o o o|| ( ) ( ) || ( ( ) ( ), ( ) ( ))+ δ = + δ + δF r F r F r F r F r F r = ||F(ro)||2+ ξ2 Σnλn, 

which lead to the expression 
o o 2 2

2 0
o 2 2

0
o 2

0

( ), ( )) |
1

|| ( ) || (||
| (

)( ) || nn

P+ ξ
≅ −

ξ λ
σ

+ ∑
F r F r

F r F r
. 

Finally, assuming that the value of ξ2 is rather small, we can write 
o o 2

2 2 20 0
avro 2 o 2 o 2

0 0

( ), ( )) |1 (1 )
|| ( ) || || ( ) || || ( )
|

||
( P

Q Q
N

σ ≅ − − ε λ −ε
F r F r

F r F r F r
. (2-58) 

Fig. 2-9b shows results of calculations by formula Ex. 2-58 with data 
similar to those shown in Fig. 2-9a. Points a, c and d on the dash-dotted 
curve correspond to the same points in Fig. 2-8b. It is clear that the 
dependences in Fig. 2-9a and Fig. 2-9b are very similar because 
parameters σ and σ are inherently close. However, in the range of 
moderate values of reactivity Q (about Qp) that is most important for 
practice, they are clearly different. It is worth being aware that the value of 
the parameter σ (Ex. 2-47) “suffers” from a decrease in the norm of the 
solution (due to the large value of μ) and unjustifiably encourages us to 
use solutions with a higher reactivity. Therefore, using the parameter σ 
(Ex. 2-48) for statistical optimization is more reliable, since it is free from 
this disadvantage. 

 
The discussed problem closely relates to the so-called super directivity 
problem. The point is this. As the number of eigenfunctions increases—for 
an antenna array, it coincides with the number of antenna elements—the 
accuracy of approaching a desired ARP F0(θ) increases even with other 
conditions being the same.  
 
Consider a linear antenna array. Let F0(θ) be the δ-function in the direction 
normal to the array. The best practical solution is an in-phase distribution 
with equal amplitudes. The narrowest main beam corresponds to it. 
Nevertheless, with a large number N, the solution of the synthesis problem 

                                                
19 The less reactivity the closer the points of the cluster are located. This is why 
each left cluster looks like a slightly expanded spot. 
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gives a complex amplitude-phase distribution, which corresponds to a 
narrower beam. That is why such a solution is called super directed. From 
the above, it is clear that this solution is extremely sensitive to random 
errors of implementation. The example shown in Appendix A of the 
Mathcad program “Super-Directionality and Errors” allows you to explore 
the problem. I believe that the reader who decides not to miss this 
opportunity will get a certain pleasure from a visual acquaintance with an 
interesting phenomenon. 

2.6. Local amendments of the antenna radiation pattern 

The mean square approach to the desired ARP F(r°) that solution Ex. 
2-19 provides does not always meet the requirements in full. Most often, 
this refers to the level of side lobes. What can we do to improve the 
solution? 

Of course, we can define the inner product underlying the synthesis 
task and its solution Ex. 2-19, using Ex. 1-4′, and increase the value of the 
weight function ρ(r°) for those areas where side lobes caused our concern. 
However, this way is rather vague. The strategy is clear, but it is uncertain 
a priori how much the increase in the values of the function ρ(r°) will 
affect the side lobes. The only possibility on this path is a tedious process 
of trial and error. 

Another way to solve a problem stems from a sensible and practical 
idea that everyone can easily generate. In order to change the ARP in a 
certain narrow region, leaving it almost intact outside the region, it is 
enough to add a beam-like ARP with a proper complex multiplier or a set 
of those ARPs, if necessary. 

For simplicity’s sake let us consider the task in scalar formulation. For 
antenna of arbitrary geometry, we can get a beam gm(r°) pointing in a 
certain direction mr  by synthesizing the desired radiation pattern, which is 

the delta function 0F ( ) δ( )m= −° °r rr . At that, the adjoint operator V gives 

a very attractive approximate solution *
0) (V F ) ( )( , mp f= ° = ρ rρ r  that 

completely accords to a reasonable physical principle: in order to get a 
maximum at the direction mr , the excitation distribution p(ρ) should 
provide the in-phase addition of the fields of all antenna elements at this 
direction. Thus, the following formula represents a wanted beam: 

*

*

( , ( ,) )
( U )

)
) (

( )(

m

m n
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m

n n

df f
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f f
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r
. (2-59) 
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Here v is the area of antenna sources—a line or a surface, for 
instance—fn(r°) is ARP of the n-th element of the antenna array. 

Assume the ARP that needs to be improved is F(r°) and the maxima of 
its side lobes are at a set of directions { mr } (m = 1…M). Then M 
conditions are obvious: 

1( ) ( )M
m' m m'mm

F ga
=

+ = β∑r r , (2-60) 

where m′ is the same index as m, {am} are sought-for coefficients, and β is 
the limitation value, form a system of M second-degree equations—after 
squaring, naturally. To work around the difficulties connected with solving 
the system Ex. 2-60, we can rearrange conditions in the following manner 

( )1 ( ) | ( ) | ( ) / | ( ) |M
m m' m' m' m'm m g Fa F F

=
= − −β∑ r r r r . (2-61) 

The idea behind Ex. 2-61 is simple: to get the sum of the beams, the 
amplitude of which in the { m'r } directions is equal to the needed 

difference | ( ) |m'F −βr , and the phase is opposite to the phase ( )m'F r . 
Ex. 2-61 is an M order system of linear equations for M unknowns {am}. 

Fig. 2-10 shows what the above procedure results in for a linear source 
L = 7.5 λ and initial ARP F(θ) = sinc((πL /λ)sin(θ)).20 In this case, beams 
are gm(θ) = sinc[(πL /λ)(sin(θ) – sin(θm))]. We decided to reduce five side 
lobes locating in a set {θm} = {–27.8°, –19.5°, –11.5°, 11.5°, 19.5°}—why 
not—to the level β = 0.0562 = –25 dB. The above starting directions {θm} 
after minor corrections turned to be {–24°, –17°, –11.5°, 11.5°, 17°}. 
 

 
 
Figure 2-10: Reducing five side lobes of a linear 20λ-source to the level –25 dB: 
gray and black lines show initial and amended ARPs, respectively 

 
                                                
20 The so-called sinc-function is sinc(x) = sin(x) / x. 
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Fig. 2-11 shows analogical results for a circle antenna array of twenty 
elements, the individual ARP of which are radial oriented cardioids 
fn(θ) = (1 + cos(θ – αn)) exp(ja cos(θ – αn)). The spacing between elements 
is equal to 0.45 λ, so radius a = 0.225 λ N /π.  

 
Figure 2-11: Reducing six side lobes of a circle array of twenty elements with 
spacing 0.45λ to the level β = –23dB: gray and black lines show initial and 
amended ARPs, respectively 

Ex 2-59 determines the beams { *) (( ) )(nm n m ng f fθ = θ θ∑ }. The 
initial ARP was the beam at the direction θm = 0. The level of restriction 
for six side lobes was equal to –23 dB. The same as above, a starting set of 
directions {θm} was equal to positions of the initial ARP maxima, and got 
minor corrections in course of calculations. 

The interested reader can use the programs “Reducing the Level of a 
Set of Side Lobes of Antenna Array” from Appendixes B and C to explore 
the problem and understand why the correction is useful. 

2.7. Training tasks 

Task 2A  
Try to prove that for any purely radiating distribution I(ρ)⊂ IΣ there is 

such a pattern F(r°) that the adjoint operator V maps into I(ρ). In other 
words, this means that the operator V maps the space F not into subspace 
IΣ, but on it—as a whole. 

A hint: Use proof by contradiction assuming that I(ρ) is orthogonal to 
subspace, to which the operator V maps the space F. This assumption 
equal to the equation (I(ρ), VF(r°)) = 0, from which you can logically 
come to the needed statement. 

 
Task 2B  
Let distributions I1(ρ) and I2(ρ) differ, but their ARPs be the same 

UI1(ρ) = UI2(ρ). Certainly, ΔI(ρ) = I1(ρ) − I2(ρ) is a non-radiating 

0° – 30° – 60° 30° 60° θ  

dB 

– 10 

– 20 

– 30 

 EBSCOhost - printed on 2/14/2023 3:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Two 
 

52 

distribution. Assume that functions I1
┴(ρ) and I2

┴(ρ) are obtained as a 
result of orthogonalization the initial functions towards the ΔI(ρ). The 
question is “Are the functions I1

┴(ρ) and I2
┴(ρ) purely radiating or not?” 

 
Task 2C 
Prove that the pair of orthogonal bases {gn(ρ)} and {Gn(ρ)} in the 

subspaces IΣ and Fv are the only pair of orthogonal bases mutually 
interconnected by the operators U and V, as shown in Ex. 2-20 and 2-21. 

A hint: Assume that all the eigenvalues {λn} are different. 
 
Task 2D 
Consider a pure 2D situation when a current I(α) = I(α) αo flows in free 

space along a circular cylinder of radius R. Are there any non-radiating 
distributions I(α) there? 

 
Task 2E 
Are there any non-radiating distributions {In} in the above 2D situation 

with cosine currents {In(α) = In cos(α) αo} on a set of N circular cylinders 
of radiuses {Rn} n = 1,…N? If yes, how many linear independent non-
radiating distributions exist? 

 
Task 2F 
Why, under a constrained minimization of σ, are the conditions 

||I(ρ)|| < I0 and Q < Q0 equivalent to each other, while at minimization of σ 
they are not equivalent?  

 
Task 2G 
The bases {Gn(r°)} and {gn(ρ)} correspond to an antenna array of N 

elements, and eigenvalues are in descending order. The required ARP is 
o o

0 ( ) ( )n nn
F a G=∑r r . A regularized solution to the problem is equal to 

o( ) / ( )n n n nn
a g λ λ +μ∑ r . Write the formulas for σ2 and σ2 for two 

values of the regularization parameter: μ = −λ1 and μ = −λN. 
 
Task 2H 
Prove that Ex. 2-61 is equal to Ex. 2-60. 
 
Task 2I 
To obtain the results shown in Fig. 2-10 the set of directions {θm} = {–

27.8°, –19.5°, –11.5°, 11.5°, 19.5°} corresponding to maxima of the initial 
ARP, we have changed to {θm} = {–24°, –17°, –11.5°, 11.5°, 17°}. Why 
we do so? What would happen if we did not make the changes? 
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CHAPTER THREE 

THE METHODOLOGY OF THE ADJOINT 
OPERATOR 

 
 
 

3.1. Introduction 

Dear reader, before you start looking through this chapter, I have to 
confess that it is my pleasure to explain anything associated with the 
adjoint operator, which is relevant to antenna synthesis. There are two 
good reasons why I like it. 

First, being a devoted admirer of the engineering style of thinking, I 
used to seek a deep physical interpretation for any mathematical 
formalities, much more for such a sophisticated one as the adjoint 
operator. Of course, often there is only a heuristic way to take a guess 
about the physical nature hidden behind mathematical formalities. It is 
especially nice if this happens, as it did with the adjoint operator in my 
case. 

Second, the adjoint operator inherent several very attractive and useful 
features are inherent to the adjoint operator in addition to mentioned one, 
which is mapping any arbitrary desired ARP F0(ro) into the subspace IΣ of 
purely radiating distributions. 

3.2. Adjoint operator applied to the synthesis of antennas. 
Energetically optimal solution 

The adjoint operator V depends on the direct operator U through the 
condition Ex. 1-10, which means equality for the following inner products 
(see Ex. 2-7) in spaces F and I:  
(UI(ρ), F(ro)) = (I(ρ), VF(ro)). (3-1)  

Thanks to tensor symbolism, Ex. 2-1 and Ex. 2-9 define the operators 
U and V in the most compact and universal forms. However, their 
compactness makes it difficult to perceive some physical aspects behind 
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them. Therefore, let us consider specific antennas, describing them by 
commonly used clearer formulas. 

Assume that the antenna's sources continually locating in area v have a 
fixed orientation/polarization. Therefore, a scalar complex function I(ρ) 
describes the excitation distribution (amplitude and phase dependencies). 
Let the radiation pattern of a source located at the point ρ correspond to a 
vector function f(ρ,ro). Then the following pair of equations define the 
operators U and V 

o o

o o * o

( ) U ( ) ( ) ( , )

( ) V ( ) ( ) ( , )

v
I I dv

p d
Ω

= =

= = Ω

∫
∫

F r ρ ρ f ρ r

ρ F r F r f ρ r
. (3-2)  

The top line of Ex. 3-2 is actually a copy of Ex. 2-3. In the integral on 
the second line, the multiplication of vector functions means their inner 
product, and the asterisk symbolizes the complex conjugate value. The 
function p(ρ) is an antenna distribution to which the adjoint operator V 
maps an arbitrary radiation pattern F(ro). It is not difficult to make sure 
that the formula in Ex. 3-2 for adjoint operator V satisfies the condition 
Ex. 3-1. 

For an antenna array consisting of N elements of fixed polarization, the 
expressions for the operators U and V are obviously very similar 

o o

o o * o

( ) U ( ) ( ) ( )

( ) V ( ) ( ) ( )

n nn

n n

I I

p d
Ω

= =

= = Ω

∑
∫

F r ρ ρ f r

ρ F r F r f r
. (3-3)  

If the polarization of antenna sources (say electrical current) may be 
arbitrary then generally speaking the distribution I(ρ) must be a vector 
function having three components in every point ρ. We will use the 
shorten record mentioned in Section 2.2.1 o( ) ( )Iξξ

=∑I ρ ρ ξ  in which ξ 

and oξ  denote three axes of some coordinate system and its vectors, 

respectively. Therefore, the summation actually is 3 o
1 ( )

m mm
Iξ=∑ ρ ξ . 

Using nation ξ, we can transform Ex. 3-2 to the following expressions 

( )

o o

o o * o o

( ) U ( ) ( ) ( , )

( ) V ( ) ( ) ( , )

v
I dv

d

ξ ξξ

ξξ Ω

= =

= = Ω

∑ ∫
∑ ∫

F r I ρ ρ f ρ r

p ρ F r F r f ρ r ξ
. (3-4)  

Here, o( , )ξf ρ r  denotes the radiation pattern of the sources located at the 
point ρ and polarized along the vector ξ°. 
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At last, in case of antenna array with elements of variable polarization, 
the following expressions define the direct and adjoint operators 

( )
o o

o o * o o

( ) U ( ) ( ) ( , )

( ) V ( ) ( ) ( , )

n nn

n n

I

d

ξ ξξ

ξξ Ω

= =

= = Ω

∑ ∑
∑ ∫

F r I ρ ρ f ρ r

p ρ F r F r f ρ r ξ
. (3-5)  

The adjoint operator V, in addition to the attractive ability to map 
any—desired for example—radiation pattern into a purely radiating 
distribution, disclosed in Section 2.2.2, has other very useful properties. 

First, the well-known Cauchy–Bunyakovsky–Schwarz inequality 
states that the inequality |(f1(x), f2(x))| ≤|| f1(x)|| ||f2(x)|| is true for any two 
functions f1(x) and f2(x) in a Hilbert space. It turns into equality, only if the 
functions f1(x) and f2(x) are equal to each other or differ by a constant 
factor. Let us compose the ratio  

0

o 2
0

o 2 2
0

| ( ( ) ) | P / P
|| (

, U ( )
() || || ||) Σ= I

F r I ρ
F r I ρ

, (3-6)  

where P0∑, determined by Ex. 2-46, is the power radiated by distribution 
I(ρ) into the desired pattern F0(ro), and the square of the norm PI = ||I(ρ)||2 
is, as commonly interpreted, the power of the excitation I(ρ). 

From the Cauchy–Bunyakovsky–Schwarz inequality accounting for 
the basic property of the adjoint operator (F0(ro), UI(ρ)) = (VF0(ro), I(ρ)), 
it follows that the considered ratio P0∑ / PI reaches the maximal value if the 
distribution I(ρ) is equal to VF0(ro). In other words, the distribution 
I(ρ) = VF0(ro) is optimal in the following sense: among all distributions 
with a restricted norm ||I(ρ)||2 ≤ const it radiates into the desired pattern 
F0(ro) the maximum power P0Σ. With this in mind, Dymsky called this 
distribution an energetically optimal solution to the synthesis problem and 
introduced a special notation p0(ρ) = VF0(ro), to which we will follow. 

Very interesting and pleasant to those who are fond of the adjoint 
operator is the fact that it, the adjoint operator, provides a very useful and 
widely used in practice distributions. Let us find out these facts.  

Situation A. If a desired pattern F0(ro) = δ(ro − o
mr ) oζ  is a delta 

function in some direction o
mr  with polarization given by the Jones vector 

oζ 21, then, taking into account Ex. 3-4, we have 
o o o o o o

0
* *

4
o( ) ,( ) ( ) ( ( ), )m mdξξ ξ ξπ

= − Ωδ =∑ ∑∫p ρ ρ r rf ζ f ζr ρ r ξ . (3-7)  

                                                
21 In the most general case, the Jones vector ξ° consists of θ- and φ- components 
reproducing, elliptical polarization. 
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Here, ξ symbolizes three axes of a coordinate system used to describe 
vector structure of the distribution I(ρ) or p0(ρ); { oξ } is the base set of 

coordinate vectors; o ),(ξf ρ r  is the vector function describing the 
radiation pattern of a source that has ξ-polarization and locates in the point 
ρ. Ex. 3-7 shows that distribution p0(ρ) = V δ(ro − o

mr ) oζ  corresponds to 
the widely used beamforming principle. That is, the excitation of sources 
must be proportional to the complex conjugate values of their individual 
radiation patterns in the given direction o

mr , taking into account the 

prescribed polarization oζ  of the desired ARP, as well. 
In the very common and simplest situation, the orientation of antenna 

sources is fixed and the polarization of their patterns is similar. Then 
Ex. 3-6 simplifies to the well-known scalar equality 
p0(ρ) = f*(ρ, o

mr ), (3-8)  
that expressively represents the beamforming principle. 

Situation B. Another fact confirming the significance of the adjoint 
operator is as follows. The ARP F(θ) of a 2a long linear antenna 
composed of isotropic sources—the array factor, in other words—
corresponds to the obvious formula [25] that in terms of the commonly 
used variables z and θ is as follows: 

cos( ) ( ) e
a j k z
a

F I z dzθ
−

θ = ∫ . (3-9)  

Defining, as usual, the abstract angular variable u = k cosθ, we can 

rewrite Ex. 3-9 as a Fourier transform ( ) ( ) e
a ju z
a

F u I z dz
−

= ∫ . Therefore, 

the inverse Fourier transform ( ) ( ) e j z uI z F u du
∞ −
−∞

= ∫  defines the 

distribution I(z) corresponding to the ARP F(u). Here the integral along 
with the interval |u| ≤ k of real angles −1 ≤ sinθ ≤1 includes the interval 
|u| > k of imaginary angles |sinθ| > 1. 

Clearly, the square of the norm ||F(u)||2, corresponding to the first 
interval, is the radiated power P∑ and the square of the norm ||F(u)||2, 
corresponding to the second interval, corresponds—as it is believed—to 
the reactive power PQ. The desired ARP F0(u) is usually not realizable by 
an antenna of a given length 2a and, therefore, has no analytic 
continuation into the interval |u| > k of imaginary angles. In addition, we 
always strive to minimize antenna reactivity. So it is quite reasonable to 
set F0(u) = 0 for the intervals |u| > k. This leads to the following expression 
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/2 cos
0 0 0/2

( ) ( ) e ( ) e sin
k j z u j k z
k

I z F u du k F d
π− − θ

− −π
= = θ θ θ∫ ∫ . (3-10) 

Of course, the function Ex. 3-10 exists along the entire z-axis, since the 
antenna must be infinite in order to approach an unrealizable ARP. A 
common and successful method for creating an effective real antenna is to 
implement the excitation I0(z) given by Ex. 3-10 along the actual antenna 
length −a≤ z ≤ a [25]. For example, this means that if the desired ARP 
F0(θ) = δ(θ − θ0) is a δ-function in the θ0 direction, then the distribution 

0cos
0 ( ) e j k zI z − θ=  corresponds to a very practical solution, which is the 

uniform amplitude and linear phase distribution. In the direction θ0, it 
provides the in-phase summation of waves emitted by the antenna sources, 
which is in good agreement with common sense if we strive to maximize 
the directivity in this direction. 

Another well-known consequence of Ex. 3-9 is that if the desired ARP 

F0(θ) is a sector function 0
1 if | |

( )
0 if | |

F
θ ≤Δθ⎧

θ = ⎨ θ >Δθ⎩
, then a very practical 

distribution in the antenna is the truncation of function sinc(z), that is 

0

sin( sin( )) | |
sin( )( )

0 | |

k z
z a

k zI z
z a

Δθ⎧ ≤⎪ Δθ= ⎨
⎪ >⎩

. 

It is easy to see that in the case under consideration, replacing r0 by θ, 
ρ by z, f(ρ,r0) by exp(j k z cosθ) and dΩ by 2π sinθ, we convert Ex. 3-2 for 
operators U and V to the following expressions 

sin

/2 sin
0 0 0/2

( ) U ( ) ( ) e

( ) V ( ) 2 ( ) e cos

a j kz
a

j kz

F I z I z dx

p z F F d

θ
−

π − θ
−π

θ = =

= θ = π θ θ θ

∫

∫
. (3-11) 

Thus, the adjoint operator V in this case is nothing but the inverse 
Fourier transform Ex. 3-10, commonly used to synthesize a linear antenna.  

Second, let assume that the desired ARP is realizable, i.e. has an exact 
decomposition into a basis set {Gn(ro)} 

0 ( ) ( )n nn
a° = °∑F r G r . (3-12)  

In fact, the distribution p0(ρ) is an approximate solution of the 
synthesis problem UI(ρ) = F0(ro), to which the following series correspond 

0 0( ) ( ), U ( ) ( )n n n n n nn n
a a= λ = λ °∑ ∑p ρ g ρ p ρ G r . (3-13) 

Comparison with the series for the exact solution Ex. 3-12 reveals that 
the terms of the series Ex. 3-13 differ by the factors λn. In what does this 
result? Of course, it leads to some deterioration in accuracy. However, on 
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the other hand, it leads to a decrease in reactivity, i.e. to better energy 
efficiency of the antenna. The reactivity of the exact solution I(ρ) and 

solution p0(ρ) are ( )
( ) 2I

22 | |

| |

/  ||  ||
 
|| U ||

n nn

nn

a
Q

a

λ
= =

∑
∑

I ρ
I ρ

 and 

p 2
0

22
0

2
|| ( ) ||  
|| U ( ) |

| |

| ||
n nn

n nn

a
Q

a

λ
= =

λ
∑
∑

p ρ
p ρ

, respectively. The very important and 

interesting thing is, that such characteristics of the solution p0(ρ) as the 
values of the reactivity Qp and the square deviation σ2 belong to the curve 
σ2(Q) of their optimal combination. In Fig. 2-7a and Fig. 2-8b, there are 
points marked by c that are related to the solution p0(ρ). This attractive 
quality of the adjoint operator V inspires the idea of constructing a 
sequential refinement algorithm, based on using the operator V at each 
step of recursions. Section 3.3 is devoted to this algorithm. 

Third, the most impressive feature of operator V is that it is defined at 
any space point ρ regardless of whether there is an antenna element or not. 
It turns out that the function p0(ρ) refers to the electromagnetic field 
created by a converging stream—or cluster in a discrete version—of the 
incident plane waves, whose complex amplitudes and polarization depend 
on the required ARP F0(ro). Therefore, we can calculate or even measure 
(!) the function p0(ρ) and use it at the design stage. It turns out that this is 
especially useful for choosing the location of the elements of the antenna 
array. The corresponding procedure is under consideration in Section 3.4. 

3.3. Recursive procedure applying the adjoint operator to 
enhance the solution 

3.3.1. Introductory note 

As justified above, the distribution p0(ρ) to which adjoint operator V 
maps a prescribed ARP F0(ro), is a rather good solution of the antenna 
synthesis problem that provides an attractive compromise between its 
accuracy and reactivity. However, in certain situations, accuracy can be of 
most importance. Then it seems promising to develop a recursive 
procedure, at each step of which the adjoint operator V gives a consequent 
amendment used in some way to correct the solution. Due to the energy 
efficiency of the operator V, this way of improving the solution accuracy 
will lead to a reasonably moderate increase in its reactivity. One can 
continue recursion to achieve acceptable accuracy of the solution or the 
limit to its reactivity. 
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At the simplest iterations 1( ) ( ) ) V (  k k k
⊥

+ = + °I ρ I ρ rF , where 

0( ) ( U )–( )k k
⊥ ° = °r F rF I ρ . This means that the amendment to the 

previous solution Ik(ρ) corresponds exactly to what the V-operator maps 
the remainder ( )k

⊥ °F r of the required ARP from the previous step. 
Obviously, the convergence of such iterations leaves much to be desired. 
Say, if F0(ro) = GN(ro), then at the kth iteration we have 

2 2 2|| ( ) || (1 )k
k

k N
⊥σ = ° = − λrF . This means a very slow convergence if the 

eigenvalue λN is sufficiently small. 
Therefore, let us rethink the significantly better and more popular 

algorithm, the so-called minimal residual algorithm (MRA) [26], which 
corresponds to the following iterations 

1    ( ) ( ) ( )k k k k+ = + γI ρ I ρ p ρ  (3-14) 

with V( ) ( )k k
⊥= °p ρ F r  and 2( ( ), U ( ))/ || U ( ) ||k k k k

⊥γ = °F p ρr p ρ . The 
factor γk is similar to that in the Schmidt orthogonalization procedure—see 
Section 1.3.3. Consequently, in step k + 1, it minimizes the deviation 
between the amending ARP γkUpk(ρ) and the remainder 
 ( )k

⊥ °F r  = F0(ro) – UIk(ρ) left after the previous step. Due to this, in the 
above situation, when the desired ARP F0(ro) coincides with some 
eigenfunction Gn(ro), we get the exact solution in the very first iteration. In 
any case, the factor γk improves solution by optimal scaling the 
amendment in each step, and consequently it speeds the convergence of 
the iterations. 

In general, as it clearly follows from Ex. 3-12 and Ex. 3-13, the 
accuracy of the solution p0(ρ) = VF0(ro) depends strongly on the operator 
L = VU spectrum {λn} and the spectrum {an} of the desired ARP, that is 
the set of coefficients in the decomposition of a function F0(ro) into a basis 
set {Gn(ro)}. 

A good idea would be to find the worst combination first, study the 
situation in order to understand the problem, and then develop an efficient 
algorithm to overcome it. There are several ways to find the worst 
combination of the spectrums {λn} and {an}, which in the first step 
corresponds to the maximum value of the square deviation  

2 2 2
0 0 0 0|| ( ) U ( ) || / || ( ) ||σ = ° − γ °F r p ρ F r . (3-15) 

One of these ways stems from the engineering style of thinking and is 
surprisingly easy and enlightening. 

First, let us turn Ex. 3-15 into an explicit expression with respect to 
spectrums {λn} and {an}. The optimal scaling up by the factor γ0 turns σ2 
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into the normalized mean square deviation of antenna pattern’s form 2σ  
given by Ex. 2-48, which is now 

2
2 0 0

2 2
0 0

| ( ( ), U ( )) |1
|| ( ) || || U ( ) ||

°
σ = −

°
F r p ρ

F r p ρ
. (3-16) 

One can obtain this result directly plugging 

0 0 0
2

0( ( ), U ( )) / || U ( ) ||γ = °F p ρ p ρr  into Ex. 3-15 and making necessary 
simplifications. In view of Ex. 3-12 and Ex. 3-13, the final expression is, 
as follows 

2 2
2 1

2 2 2
1 1

| | | |
1

| | | |

N
n nn

N N
n n nn n

a

a a
=

= =

λ
σ = −

λ

∑
∑ ∑

. (3-17)  

Suppose that we synthesize a certain antenna, and corresponding 
spectrum {λn} is fixed in descending order with the maximum value 
λ1 = λmax and the minimum value λN = λmin. Bearing in mind the search for 
the extreme spectrum {an} and taking into account Ex. 3-17, we denote 
new unknowns {xn = |an|2} simplifying Ex. 3-17 to the form  

2
2 1

2
1 1

| |
1

N
n nn

N N
n n nn n

x

x x
=

= =

λ
σ = −

λ

∑
∑ ∑

. (3-18)  

There are at least three ways to solve the problem. 

3.3.2. The good students’ way: constrained optimization method 

The need to solve some constrained optimization problem often arises in 
any technical field. Therefore, if not knowledge, then at least awareness of 
the relevant methods is important for any engineer, and not just for antenna 
designers. That is why I put forward this perhaps slightly formal but 
universal and elegant method in the first place. 

Let us start. It is clear22 that the value of Ex. 3-18 does not depend on 
the scaling factor for the sought-for coefficients {xn}. Therefore, without 

loss of generality, we can set 1 1N
nn

x
=

=∑  and seek for a maximum of 
Ex. 3-18 by solving the following constrained optimization problem 

2 2
1 2 1 1

1 2 1

min ( , ... ) | |

subject to constrain: ( , ... ) 1 0

N N
N n n n nn n

N
N nn

f x x x x x

g x x x x

= =

=

= λ λ

= − =

∑ ∑
∑

. (3-19)  

                                                
22 Read the arguments in the paragraph above Ex. 2-48. 
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The Lagrange multipliers method is a common and effective way to 
solve the problem [27]. Nowadays, searching for a “constrained 
optimization problem” on the Internet, any good student can easily find 
relevant chapters of a book or lectures on this topic23 with comprehensive 
examples and detailed instructions for using the method. 

The Lagrangian function for the minimization problem is L({xn}, μ) = 
f({xn}) – μ g({xn}). A thought-for solution must turn the values of 
Lagrangian’s partial derivatives to zero with respect to any of the variables 
{xn} and μ. As a result, after elementary simplifications in view of the 

obvious 2
1 0N

n nn
x

=
λ >∑ , we can write the following system of equations 

( ) ( )22 2 22 0

1 0

n k k n k k k k k kk k k k

kk

x x x x

x

⎧ λ λ − λ λ λ −μ λ =⎪
⎨
⎪ − =⎩

∑ ∑ ∑ ∑
∑

. (3-20)  

Note that changing the variables {xn} alters two values only, say 
a = k kk

xλ∑  and b = 2
k kk

xλ∑  figuring in the first line of Ex. 3-20 as 
multipliers. This line actually defines N equations for n = 1...N, but only 
two of them can be satisfied. Denote the corresponding indices by i and j. 
Therefore, variables with other indices should not be present, i.e. xn = 0 for 
n ≠ i and n ≠ j, and system Ex. 3-20 turns to three equations 

2 2 2

2 2 2

2 0

2 0

1 0

i i

j j

i j

ab a b

ab a b

x x

⎧ λ − λ −μ =
⎪⎪ λ −λ −μ =⎨
⎪ + − =⎪⎩

, (3-21)  

where a = λi xi + λj xj and b = λi
2
 xi + λj

2
 xj. Subtracting the second equation 

from the first to eliminate the variable μ and substituting the third equation 
(xj = 1 – xj) there, after simple but tedious manipulations, we get the 
solution {xi = λj / (λi + λj), xj = λi / (λi + λj)}.  

It is a typical situation regarding constrained optimization. Initially, we 
get some swarm of solutions from which we have to separate suitable ones 
or one. In our case, it is about uncertainty with respect to indices i and j. 
Looking to Ex. 3-17 and bearing in mind that there are only two terms in 
each sum, we can easily guess that the less λi differs from λj, the closer the 
subtracted term approaches unity. Consequently, the right solution is  
{x1= λmin/(λmax+λmin), xN = λmax/(λmax+λmin)}, (3-22) 

                                                
23 For instance, to read “Constrained Optimization: Step by Step”, one can use 
URL: https://www3.nd.edu/~jstiver/FIN360/Constrained%20Optimization.pdf 
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if eigenvalues have a descending order, i.e. λ1 = λmax and λN = λmin. As for 
the spectrum {an} corresponding to the worst situation for the solution 
p0(ρ) = V F0(ro), which interests us now, it looks like this: 

{ }min max,0...0,λ λ .  

3.3.3. The average students’ way: a partial derivatives method 

Imagine you are an average student. Of course, an average student 
likes simplifications—readily uses Ex. 3-18 instead of Ex. 3-17—and 
knows that at the extrema of the function 

( ) ( ) ( )2 2
1 2 1, n n n n nn n nN x xf x x x x= − λ λ… ∑ ∑ ∑ , its partial 

derivatives must be equal to zero. This fact leads to a system of N 
equations ∂f/∂xn =0. He is lazy enough to write long expressions, and 
smart enough to set up the following notations x = {xn}, ( ) n nn

u x= λ∑x , 

( ) nn
v x=∑x , 2( ) n nn

w x= λ∑x , which shrinks the formula to f(x) = 1 – 
u2(x)/[v(x) w(x)]. He understands that ∂u(x)/∂xn = λn, ∂v(x)/∂xn = 1, and 
∂w(x)/∂xn = λn

2. As a result, nth equation of the system is as follows 
[2 λn u(x) v(x) w(x) – u2(x) (w(x) + λn

2 v(x))] / [v(x) w(x)]2 = 0. It is clear 
that for any solution x0—except for the zero vector—the values of all 
functions u(x0) = a, v(x0) = b, and w(x0) = c are greater than zero. 
Therefore, after multiplying by [v(x0) w(x0)]2 and dividing by u(x0), the 
last equation takes a very simple form 
2λn b c – a (c + λn

2 b) = 0. (3-23)  
A sought-for solution x0, defining the values a, b, and с, must satisfy a 

linear system of order N represented by Ex. 3-20. Even if these values are 
independent variables—the student thinks—the above system had no 
solution if N > 3. This means that the function f has no extrema inside the 
boundary determined by the obvious constraints xn = |an|2 > 0 and gets 
maximal and/or minimal values at some boundary points only. 
Consequently, at least one of the variables {xn} must be equal to zero. 
Deleting this variable from their set and repeating the same reasoning for 
the function of the remaining variables, they discover that the function f 
gets the maximal value at the boundary point at which all the variables are 
zero, with the exception of perhaps three of them, say n = 1, n = 2. n = 3. 
In other words, a sought-for solution has to be x0 = {x1, x2, x3, 0…0}. 
“Great, I love simplifications,” the student rejoices. 

Now let us deal with the first two equations: 2λ1 b c – a (c + λ1
2 b) = 0 

and 2λ2 b c – a (c + λ2
2 b) = 0. Subtracting the second from the first gives 
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2 (λ1 – λ2) b c – (λ1
2 − λ2

2) a b = 0.  (3-24) 
From Ex. 3-24 it is strikingly clear that the variable b does not matter, 

i.e. may have any value. Fine, suppose that b = 1. Since only two 
variables—a, and c—remain, the third equation is superfluous and, 
consequently, x3 = 0. The assumption b = 1 means x2 = 1 − x1, a = λ1 x1 + 
λ2 (1 − x1) and c = λ1

2 x1 + λ2
2 (1 − x1). This turns Ex. 3-24 into equation of 

one variable x1: 2λ1
2 x1 +2λ2

2 (1 − x1) = (λ1 + λ2) (λ1 x1 + λ2 (1 − x1). 
Having performed the necessary substitutions and permutations—with 
errors and subsequent corrections—the student finally obtained the result 
{x1= λ2/(λ1 + λ2), x2= λ1/(λ1 + λ2)}, which satisfies the equation Ex. 3-24.  

3.3.4. The creative students’ way: a method of engineering style 

Dear reader, the aim of this section is to show how effective and elegant it 
would be solving the above problem under “the guidance” of an 
engineering style of thinking. First, it is worth trying to find out some 
structural features of the problem, without going into details. I used to call 
it the shell principle: do not start with an in-depth investigation; try to 
understand a frame of the problem as a whole, as if looking at it from 
above. Let us go. 

What is the score of the problem? The spectrum {λn} is a given. We 
search for a spectrum {an} to which the ARP F(ro) = UV F0(ro) = 

( )n n nn
a λ °∑ G r  makes the worst approach to the desired ARP 

F0(ro) = ( )n nn
a °∑ G r . A mean square deviation of the forms—given by 

Ex. 3-18—serves a measure of the patterns deviation. Then the thought-for 
spectrum {an} must contain at least two non-zero components, because the 
ARPs F0(ro) and F(ro) have the same form—σ = 0—otherwise. It is also 
clear from Ex. 3-18 that the mutual ratio of the variables {xn = |an|2} 
matters, not a scale factor. 

Someone can quickly decide that the desired worst situation arises 
when using the components of the spectrum {λn} with the greatest 
difference, namely λmax and λmin. Accordingly, he will think about solution 
x0 = {x1, 0…0, xN}, deciding what the ratio x1/xN should be. 

For an unhurried person who does not like to “jump” to a decision and 
prefers to approach it gradually, the following reasoning may be 
appropriate. First, it is clear that the spectrum x0 must have at least two 
components. Second, x1 and xN must be present in order for the maximum 
deviation between F0(ro) and F(ro) to be possible. Assume that x2 > 0. This 
will appear as if instead of λ1 and λ2 there is a resulting eigenvalues λ, 
which lies between λ1 and λ2—depending on the ratio x2/x1. Thus, although 
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we are interested in increasing the ARP deviation, it will decrease, because 
the difference λ − λ2 becomes smaller than λ1 − λ2. The situation is the 
same with any other element xn. Accordingly, the solution x0 should be 
{x1, 0…0, xN}. 

It is very interesting that we can find the desired ratio between x1 and 
xN from an engineering point of view, avoiding the tedious analysis of 
Ex. 3-18 partial derivatives. Indeed, what does the engineer do in the first 
place, trying to solve the problem? He “depicts a problem” to perceive its 
core. Let us go this way.  

The commonly used vector representation for functions leads to the 
image in Fig. 3-1a. There, vectors G1, GN, F0, and F depict the base 
functions G1(ro), GN(ro), the desired ARP F0(ro) and ARP 
F(ro) = UV F0(ro), respectively. In what way does the objective function 
σ2 “peep out” from the picture? It is clear that the ARP scale factor relates 
to the length of the corresponding vector, and the ARP form determines its 
orientation. Thus, σ2 is in some—maybe nonlinear—proportion with the 
angle φ0 – φ. Moreover, given that |(F0, F)| = |F0| |F| cos(φ0 – φ), we can 
see that Ex. 3-16, in this case, turns to σ2 = sin2(φ0 – φ). 

    
a                                                          b 

Figure 3-1: Graphical representation of iterations of the minimal residual 
algorithm: a) searching the worst situation in the first step; b) stepwise 
convergence of ARPs Fk to the exact solution F0. 
 

Given the eigenvalues λ1 and λN, we have to find such a vector F0—in 
fact, the coefficients a1 and aN—from which the vector F deviates as much 
as possible. Denoting ξ = aN /a1 and α = λN / λ1 we can write tg(φ0) = ξ and 
tg(φ) = α ξ. To simplify the task it is worth searching for maxima not of 
the angle (φ0 – φ) itself or its sine, but for maxima of tg(φ0 – φ). Then the 
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task turns into maximizing the function f(ξ) = ξ / (1+ α ξ2) with the 
elementary result 1ξ = α . In the above notation, this means xN /x1 = 
|aN|2 /|a1|2 = λ1 / λN. 

Figure 3-1b shows the results in nine initial steps of the MRA with 
spectrums {λ1 = λmax = 1, λN = λmin =1/9} and {a1 =1, aN = 3}. Here, Fk is 
ARP obtained in step k. The dashed line traces the process of stepwise 
convergence ARP Fk to the prescribed ARP F0. It is striking that in the 
second step—as it is in any even step k—the ARP Fk actually coincides 
with F0, except for some scale factor. However, following the MRA 
course, Fk will approach F0 after many steps of the zigzag route. 

3.3.5. Modified minimal residual algorithm 

Based on the above, in order to accelerate the convergence of the MRA 
in the worst situation, a modified minimal residual algorithm (MMRA) 
had emerged [28]. It includes optimal scaling not only for the amendment 
in the step but also for the whole solution at the end of this step. As a 
result, iterations Ex 3-14 turn to the following 
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Of course, the benefit of implementing this algorithm depends on 
spectrums {λn} and {an}. As for antenna syntheses, the solution reactivity 
Q is of no less importance than a convergence speed. Fig. 3-2 displays the 
numerical results for two intentionally selected situations. 

The first one corresponds to the rather typical spectrum 
{λn = cos2(π n/(2N+2)} with dimension N = 12. The deliberate assumption 
of the desired ARP spectrum was of inverse proportion {an = λN / λn} to get 
a hard situation, in which the modified algorithm shows an impressive 
speed advantage—in step k = 27, for example, σ is –30 dB instead of –10 
dB—and noticeable decrees in solution reactivity as well. 

The second situation is less extravagant with a spectrum24 {λn = |Jn(a)|} 
corresponding to an antenna array of N = 18 isotropic elements evenly 
located on a circle with a radius of electrical length ka = 2.2 π. The chart 
in the right top corner of Fig. 3-2b shows this spectrum. The used uniform 
spectrum {|an|= 1} corresponds to the desired ARP, which is a beam in 

                                                
24 See Ex 2-29. 
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some direction having the maximum directivity. From Fig. 3-2b, we can 
see that the results for both algorithms are very close to the optimal 
combination of σ and Q—the dashed line—but MMRA achieves –30 dB 
accuracy at step k = 26, while MRA achieves it at the 50th step. 

 

 
a 

 
b 

Figure 3-2: Comparison of algorithms: black dots – MMRA; gray dots – MRA; 
dashed line – optimal dependency Q(σ). The main chart represents the reactivity 
Qk and the root square deviation σk of solutions generated by both algorithms. The 
charts in bottom left corner show σk for 60 (a) or 40 (b) steps 
 

Of course, not only the number of steps is important, but also the 
duration of the calculations. MMRA requires additional multiplications 
that increase time-consuming. The thorough comparison has to consider 
this. However, this goes beyond the scope of this book, which focuses on 
antenna synthesis methodology, ideas and methods, and, to a lesser extent, 
results. 
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3.4. Configuring the antenna array geometry with regard 
to a desired radiation pattern 

3.4.1. Sequential selection of antenna elements 

Let us start with a trivial thing. If f(ρ,r0) is the vector pattern of the 
antenna source located at some point ρ, and A(ro) denotes the polarization 
and the complex amplitude of the plane wave incident from the direction 
r0, then the dot product A(ro) f(ρ,r0) determines the signal s(ρ) that the 
wave induces on the antenna element. Suppose now that the incident 
waves come from all directions, forming a convergent cluster of plane 
waves (CCPW). In this situation, the following expression defines the 
complex amplitude of the received signal 

o o( ) ( ) ( , )s d
Ω

= Ω∫ρ A r f ρ r . (3-26) 

Comparing Ex. 3-26 with the second line of Ex. 3-2, one can easily 
guess that if A(ro) = F0

*(ro) then the signal s(ρ) is equal to 
p0

*(ρ) = [V F0(ro)]*. This godsend makes it possible to develop such a 
technical setup that is actually the adjoint operator V in the flesh. Indeed, 
it suffices to place the proper number M of radiating sources onto the 
surrounding sphere of a large radius in free space, excite them in 
accordance with the function F0

*(ro) conjugate to the required ARP and 
measure the signals from the antenna elements. If the antenna does not 
exist yet, the following way is appropriate. A probe equivalent to the 
antenna element is moving along the aperture of the future antenna or into 
a set of points {ρn} in the case of an array antenna. The conjugate of the 
measured signals s(ρ) is the sought-for APhD p0(ρ). 

In Fig 3-3a, the photo shows “a device for approximate solving 
antenna synthesis problem” [USSR Patent 1297006, 1971], which realizes 
the above idea for two-dimensional situations. It consists of six panels 
with four half-wave dipoles in each, arranged into a semicircle with a 
radius of 10 m25. Uniformly excited dipoles correspond to a sector ARP 
F0

*(ro), which is a sector of 180° with a phase center in the center of the 
circle. 

 

                                                
25 Because of overall dimensions, the only room able to hold it was the assembly 
hall of the faculty. In the background, you can see the stage with the curtain down 
and the blackboard. 
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                           a                                 b                   c                      d 

Figure 3-3: The measurement setup (a) and experimental results for the desired 
ARP as follows: 180°-sector pattern with a phase center at a distance of λ/4 in 
front of the body (b) and inside the body (c); δ-function at the axis of symmetry (d) 
 

To the side of the photo there are three pictures of the measurement 
results. They show how the signal received by an electric dipole depends 
on its location in the area near the metal body of a certain aerodynamic 
profile. In Fig 3-3d, the picture shows not only the amplitude relief, as 
well as others, but also phase fronts with 90°-discrete. It is clear that a 
single emitting dipole was in use to create an incident plane wave for the 
case of F0(ro) = δ(ro– 0°) related to Fig. 3-3d. 

In the past century, as applied to a physical body of a complex form, 
obtaining a solution p0(ρ) = VF0(ro) from an experiment might be of some 
practical interest since the necessary calculations were impossible. At 
present, it remains useful mainly as a curious idea to develop the capacity 
for creativity and innovation, since the feasibility of implementing 
electrodynamics modeling has increased tremendously. 

The adjoint operator V has two attractive features. The first one, which 
the pictures in Fig. 3-3 give a clear hint at, is that the operator maps a 
desired ARP into some field p0(ρ) = VF0(ro), determined—existing, we 
can say—at any point ρ, regardless of whether there is an antenna element 
there or not. The second one is as follows. It is easy to show26 that in the 
case of a single source located at a point ρ, the ratio P∑0/PI, that determines 
the source’s energetic efficiency in the sense of Ex. 3-6 is proportional to 
|p0(ρ)|2. So relief |p0(ρ)|2 describes how the energy efficiency of a source 
with respect to the ARP F0(ro) depends on its location ρ. 

Bearing in mind the desired pattern o
0 ( )F r , it seems to be reasonable 

to choose the locations of array antenna’s sources in the following manner. 
The first source is to be placed at point ρ1 of the maxima of the field 

                                                
26 Explanations for problem 2 in section 3-5 are helpful. 
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|V F0(ro)|. Let’s assume the pattern F1(ro) is the best mean square 
approximation to F0(ro) at this stage, and F1

┴(ro) = F0(ro) – F1(ro) is the 
difference between them which should be regarded as a desired pattern at 
the next step. Therefore, it is worth placing the second element at point ρ2 
of the maxima of the field |VF1

┴(ro)|. Let’s assume the pattern F2(ro) is the 
best mean square approximation to F0(ro) with the help of two chosen 
sources, and F2

┴(ro) = F0(ro) – F1(ro) is the difference between them, and 
so on.  

Of course, this is a heuristic but advisable procedure also because, in 
addition to the positive features mentioned above, at any kth step, the 
value of the relief |VF k–1

┴(ro)| equal to zero at all points {ρi} where the 
previous sources (i = 1…k – 1) are. Consequently, each new source cannot 
be too close to the others, and the antenna array designed in this way will 
have a reasonable spacing. This prevents the occurrence of high reactive 
antenna arrays. 

3.4.2. Comparison results 

To assess the benefits of applying the procedure described above, and 
to demonstrate suitable soft computing techniques, consider the following 
formal two-dimensional task—see Fig. 3-4a. We need to place seven 
infinite current filaments parallel to the edge of an ideally conducting 
wedge of outer angle α0 = 270°, bearing in mind the desired ARP F0(φ), 
which is a 180°-sector angled φ1 = 15° from the face of the wedge. A 
circle of radius 1.75 λ limits a sources’ region. 

  
                        a                                                                 b 
 
Figure 3-4: a) geometry of the task; b) MSD σN in decibel and reactive ratio QN for 
three types of arrays build of N = 1…7 elements. Stars, circles and squares depict a 
type obtained using the operator V, a “flying geese” and a circle, respectively 
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Using Sommerfeld’s strict solution of the problem of the diffraction of 
electromagnetic waves on an ideally conducting wedge [12] and omitting 
non-essential—as it is for any ARP—multipliers, we can write the ARP of 
a source located at the point (ρ, α) as follows 

/2
1( , , ) e ( ) sin ( ) sin ( )m

m

j
m mm

f J k∞ − ν π
ν=

ρ α ϕ = ρ ν α ν ϕ∑ . (3-27) 

Here, νm = m π / α0,  k is the wave number, and ( )
m

J xν  is the Bessel 
function of non-integer order νm. Using notation fm(ρ, α) for coefficients of 
the series above converts Ex. 3-27 in a more compact form 

1
/2

( , , ) ( , ) sin ( ),

where ( , ) e ( ) sin ( ).m
m

m mm

j
m m

f f

f J k

∞
=

− ν π
ν

ρ α ϕ ≅ ρ α ν ϕ

ρ α = ρ ν α

∑  (3-27′) 

On the interval (0...α0) functions {Gm(φ) = sin(νm φ)}, each having 
square of the norm ||Gm(φ)||2 equal to α0 /2, form an orthogonal basis. 
Therefore, the following series represents the desired ARP 

0 1( ) sin ( )mm
F a m∞

=
ϕ = νϕ∑ , (3-28) 

under the obvious condition—see Ex. 1-7—that the coefficients {am} are 
as follows am = (F0(φ), Gm(φ))/||Gm(φ)||2 = 2 [cos(mν φ1 – cos(mν φ2)] / m. 

Let us consider Nth step of the described above procedure of 
consequent positioning the antenna elements. There are N – 1 sources 
located already at points {(ρn, αn)} (n = 1…N – 1) that produce some ARP 
FN–1(φ) and leave for the current step N the residual pattern 

1 0 1( ) ( ) ( )N NF F F⊥
− −ϕ = ϕ − ϕ  as desired ARP. Assume that 

1 1( ) sin ( )N m mm
F b

∞⊥
− =

ϕ = ν ϕ∑ .  
First, we have to explore the amplitude relief of the function 

1V ( )NF⊥
− ϕ , which is 

( ) *0
1 1( , ) ( ), ( , , ) ( , )

2N N m mm
p F f b f∞⊥

− =

α
ρ α = ϕ ρ α ϕ = ρ α∑ , (3-29) 

second, to find the point (ρN, αN) of its maximum for the Nth sources, 
third, to resolve the system of equations, corresponding to Ex. 1-11. Here, 
this system is <L> uN = vN, where the matrix entries Ln,j (n, j = 1…N) are 
the dot products of elements’ ARP (f(ρj, αj, φ), f(ρn, αn, φ)), and vN is a 
column vector of dot products (F0(φ), f(ρn, αn, φ)). The column vector uN 
of sought-fore coefficients {un} defines the current—in Nth step— 

antenna’s pattern 1( ) ( , , )N
N n n nn

F u f
=

ϕ = ρ α ϕ∑ , which provides the best 
mean square approximation to the ARP F0(φ). The new residual 
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0( ) ( ) ( )N NF F F⊥ ϕ = ϕ − ϕ  will give rise to the next step. In the initial step 

k = 1, as said above, the ARP 1( )kF⊥
− ϕ , which should determine the choice 

of the first element, is the desired ARP F0(φ).  
The data in the first column of Tab. 3-1 correspond to an antenna array 

synthesized by arranging its elements as described above. There are 
relieves |pN(ρ, α)| for four odd steps—N = {1, 3 5,7}. The shades of gray 
from white to black represent the amplitudes from zero to the maximum 
value, which, due to normalization, was always equal to one. A grid of 
lines with an interval of λ / 4 makes it possible to judge about the real 
position of any point around the wedge. The thin and bold dashed lines 
represent, respectively, the desired ARP |F0(φ)| and the ARP reproduced 
by the array antenna of N elements. In the current step, a new element lays 
in the dark area of the relief, so the white circle depicts it. In contrary, 
black circles depict the previously chosen elements. 

The other two columns correspond to some regular geometric 
structures of antenna arrays, just to compare and evaluate the profitability 
of configuring the antenna array in a special way using the operator V. To 
make the comparison fair, the “wings” of the “flying geese” arrays were 
parallel to the wedge faces and offset from them by a distance of λ / 4. The 
spacing of the array elements was λ / 2, as usual in practice.  

As for circular arrays, their geometry, as it seems, corresponds to a 
reasonable principle. The elements are distributed uniformly on a circle 
with a spacing of λ / 2. In addition, the outer elements are at a distance of 
λ / 4 from the wedge faces. This leads to a simple dependence between the 
radius R of the circle and the number N of elements R = 0.5 N λ/ α0. 

Under each picture in Tab. 3-1, there are data for the most important 
characteristics of the antenna, i.e. MSD σN, valuating how the realizable 
ARP FN(φ) approximates the required ARP F0(φ), and the reactivity Q of 
the antenna. For clarity, these data plotted in Fig. 3-4b in the form of lines 
marked with stars, circles and squares for the three compared cases, 
respectively. Moreover, there are all seven points—for N = 1…7—on each 
line. The abscissa in Fig. 3-4b is composed of two segments: linear for 
2.4 < Q <3 and a logarithmic for 3 < Q <100, highlighted by a thick 
abscissa line. 

The data in Tab 3-1 and dots {σN, QN} in Fig. 3-4b show that 
synthesized array, which has difficult to predict geometry, is the best in 
terms of both MSD and low reactivity. The circular arrays for N = 5 turns 
out to be very bad due to the high reactivity Q5 = 89.2. It is a consequence 
of the unfortunate value of the radius R of the circle for a particular 
number N = 5 of sources. 
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To avoid the restrictions caused by the voluntary choice of regular 
geometry for antenna array, we conducted a statistical study. Fig. 3-5 
shows its results. There is a plot with 1,500 dots, each of which represents 
values σ7 and Q7 for an antenna array of seven sources randomly placed in 
the following manner.  

The radius of 1.75 λ, as before, limited the area for the sources. A 
complete set of source locations was a grid of evenly distributed 30,937 
points, separated by a distance of 0.02 λ. A random number generator 
selected a point for the first source. In the next steps of the process, a 
random point supplemented the existing array only if the distance between 
it and each of the previous ones was greater than 0.2 λ. This reduces the 
probability of impractical geometry arising when the sources are too close 
to each other. Otherwise, a poorly radiating distribution, to which high 
reactivity corresponds, would appear more often. 
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Table 3-1: Geometry of arrays, the reproduced ARP and the quality 
characteristics σN and QN for the odd numbers N antenna elements 
from one to seven 
 

Antenna types: 
Synthesized array “Flying geese” array Circular array 

 
σ1 = –6.9 dB; Q1=2.61 

 
σ1 = –4.9 dB; Q1 = 2.57 

 
σ1 = –4.9 dB; Q1 = 2.57 

 
σ3 = –13.8 dB; Q3 = 2.6 

 
σ3 = –8.2 dB; Q3 = 2.53 

 
σ3 = –8.6 dB; Q3 = 2.45 

 
σ5 = –16.7 dB; Q5 = 2.76 

 
σ5 = –9.0 dB; Q5 = 2.52 

 
σ5 = –10.1 dB; Q5 = 89.2 

 
σ7 = –19.2 dB; Q7 = 2.77 

 
σ7 = –9.3 dB; Q7 = 2.51 

 
σ7 = –16.7 dB; Q7 = 7.41 
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Figure 3-5: MSD σ7 and reactive ratio Q7 for 1500 randomly generated arrays of 
seven elements 

 
The biggest dot in Fig. 3-5 corresponds to the best of the 1,500 arrays. 

Its quality corresponds to the values σ7 = –16.5 dB and Q7 = 7.78—8.9 in 
decibel. The synthesized array of seven elements demonstrates better 
results for both σ7 = –19.2 dB and Q7 = 2.77—see highlighted in bold the 
data in the bottom left cell of Tab. 3-1. 

A priori, it is clear that most of the randomly generated arrays will be 
of poor quality, and good ones will rarely appear. If σ7 < –15 dB is an 
acceptable value then, in accordance with Fig. 3-5, the probability of the 
appearance of an acceptable array is about 0.0045.  

However, we have to bear in mind that the above-promoted method of 
combining the antenna elements is quite reasonable, but no one has proved 
its optimality. Therefore, in principle, some random array can surpass the 
synthesized one. Nevertheless, the best results we obtained after a large 
number of repetitions of a random choice were σ7 around –17.2 dB and Q7 
in the range from 5 to 15. 

3.5. Training tasks 

Task 3A 
Taking into account that 2

0 ( ( ), U ( ))/ || U ( ) ||k k k
⊥= °γ F p p ρr ρ , show 

that 2 2
0 0 0 0|| ( ) U ( ) || / || ( ) |σ = ° − γ °F r p ρ F r  coincides with the normalized 

mean square deviation of antenna pattern’s form 2σ  given by Ex. 2-48 
after substitution 0U( )) (° = pr ρF . 

 

–5

–10

–15

–20

σ7, dB 

5 10 15 20 Q7, dB 
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Task 3B 
Show that for a single source located at a point ρ, the ratio 0P PΣ I  is 

equal to |p0(ρ)|2. Here, p0(ρ) = VF0(ro), P∑0 is the power radiated into 
desired ARP—see Ex. 2-46—and PI is the power of excitation that turns 
to |p0(ρ)|2 in the considered case.  

 
Task 3C 
The setup for measuring the APhD p(ρ) = VF0(ro), shown in Fig. 3-3, 

needs a device tuning the excitation distribution in accordance with the 
function F0

*(ro). Unfortunately, you have a tuning device that is actually a 
multi-channel receiver which cannot work in transmission mode. Is it 
possible to reorganize the system so that it uses the given multi-channel 
receiver as a tuning device? If yes then prove it. 

 
Task 3D 
Is it possible to modify the measurement setup shown in Fig. 3-3 to get 

rid of phase shifters that adjust arg(F0*(ro)), and confine ourselves to 
using power dividers only? 

 
Task 3E 
Make sure that the formula in Ex. 3-2 for adjoint operator V satisfies 

the condition Ex. 3-1. 
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CHAPTER FOUR 

PHASE PATTERN OF THE ANTENNA AS AN 
ADDITIONAL FACTOR IN OPTIMIZATION 

 
 
 

4.1. Introduction 

Not only for reading this chapter but in principle it is important to keep 
in mind that ARP F(ro), describing the far field of an antenna at a certain 
frequency, cannot be anything but a complex function of the direction 
represented by the radial unit vector ro. In calculations, it usually consists 
of the real and imaginary parts F(ro) = F′(ro) + jF″(ro) but from a physical 
point of view, it is more meaningful to present it as a combination of the 
amplitude A(ro) and phase ψ(ro) patterns ( )( ) ( ) e jF A ψ °° = ° rr r . Even if 
ARP F(ro) is a real function F′(ro) or A(ro)—if we allow(!?) amplitude to 
be negative—it does not mean a disappearing phase pattern at all. This 
means only that the antenna radiates, or we want it to create, an ideally 
spherical wave with a phase center exactly at the origin. 

In practice, the phase patterns of the overwhelming majority of 
antennas do not play any role and can be arbitrary. The exceptions are 
feeds of parabolic antennas or lenses that must emit a spherical wave, or 
antennas of some rare navigation systems for which the first variation of 
phase ψ(φ) = φ is of great importance. By the way, on-board satellite 
navigation antennas for both GPS and GLONASS systems must meet 
extremely stringent requirements for the stability of their phase diagrams. 
However, these antennas are unique in terms of their number. 

It would seem that the design of the antenna for the required amplitude 
pattern should be the mainstream problem in the theory of synthesis. 
However, the situation is different. As far as I can judge, there are two 
reasons for this. First, the magnitude of a series of complex functions 
nonlinearly depends on the coefficients of the series. Therefore, the 
minimization of the deviation of the antenna’s amplitude pattern |F(ro)| 
from the required amplitude pattern |F0(ro)|—even in the sense of least 
squares—refers to the issues of non-convex programming [29] with all its 
difficulties, not to mention the problem of non-uniqueness of the solution. 
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Second, antennas of widely used geometry, such as linear, circular, planar 
array or aperture, usually have an ARP with the phase center at their 
physical center. 

Among the many works that the Internet responds with to the request 
“non-convex programming”, I would like to recommend the presentation of 
the lecture “Non-convex optimization”27, which suites for those who intend 
to get an idea of the problem, avoiding deep immersion in it. 

As mentioned above, the mainstream research concerns the problems 
of synthesis in the classical formulation for the desired ARP, given as a 
complex function. This is the case even if sometimes they look like real 
functions. In fact, as stated above, these are just situations that correspond 
to the phase center at the origin. The least squares method for 
approximating the required complex ARP F0(ro) is well developed and 
provides analytical solutions based on the orthogonal projection scheme 
described in Section 1.3.4. The method is applicable to very general 
structures of antennas, for example, an antenna array of any geometry 
consisting of not-identical sources, as well as sources distributed 
continuously over some surface. 

It is obvious that the solutions of the synthesis problems depend both 
on the prescribed phase pattern ψ0(ro) and on the desired amplitude pattern 
|F0(ro)|. If a phase pattern ψ0(ro) does not matter, why not use it as an 
additional factor to enhance the sought-for solution? This chapter is about 
how to actualize this opportunity in several situations for relevant 
purposes. 

4.2. Synthesis of the antenna array for a desired amplitude 
pattern 

Assume that the array antenna consists of N elements with individual 
ARPs {fn(ro)} (n = 1…N) and the desired amplitude ARP is A0(ro). To use 
the least squares method, let us prescribe the desired ARP 

0 ( )
0 0( ) ( ) e jF A ψ °° = ° rr r , where ψ0(ro) is an arbitrarily selected function, to 

which we assign the role of a desired phase pattern. In particular, it can be 
ψ0(ro) = const, say, zero. 

By making the N x N matrix <L>, which entries Ln k = (fk(ro), fn(ro)) are 
equal to inner products of individual ARP of the antenna elements 
(n, k = 1…N), and solving the following system of equations 
<L> W = p, (4-1) 

                                                
27 URL: http://www.cs.cornell.edu/courses/cs6787/2017fa/Lecture7.pdf 
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where p is the vector of N entries pn = (F0(ro), fn(ro)), we harvest the vector 
W of N excitation coefficients {Wn}, which provides a minimum to the 
squares deviation of realized ARP ( ) ( )nn nF fW° = °∑r r  from the desired 
one F0(ro). 

Let us denote the amplitude and phase patterns of the realized ARP 
F(ro) by A1(ro) and ψ1(ro), respectively. Otherwise, this means 

1( )
1( ) ( ) e jF A ψ °° = ° rr r . Denote the square deviations of the complex and 

amplitude patterns as σ1
2 = ||F0(ro) – F(ro)||2 and Δ1

2 = ||A0(ro) – A1(ro)||2, 
respectively. 

Since the square norm ||…||2 means integration 2| ... | d
Ω

Ω∫ , where Ω 

is a manifold of the variable ro—simply put, the area of a sphere or part of 
a circle of a unit radius in which ARPs exist—then the inequality σ1

2 ≥ Δ1
2 

holds true in any case. For further reasoning, it is a very important fact that 
inequality turns into equality only if phase patterns ψ0(ro) and ψ1(ro) 
coincide. 

If the phase pattern ψ1(ro) differs from our choice of ψ0(ro), then let us 
respect the antenna’s “response” and use it as a new prescribed phase 
pattern in combination with a fixed amplitude pattern. This leads to a new 
desired pattern 1( )

0 0( ) ( )e jF A ψ °° = ° rr r  and, consequently, to a new vector 
p. Solving the updated system of equations given by Ex. 4-1, we get a new 
vector W of excitation coefficients, which produces a new ARP 

2 ( )
2( ) ( ) e jF A ψ °° = ° rr r . How does this affect the square of the deviation at 

the second step σ2
2? Let us evaluate its value. 

In the manifold of vectors W, there is the previous vector W1. If it 
appeared at the current stage, then σ2

2 would be equal to Δ1
2. Indeed, the 

ARP F2(ro) would coincide with 1( )
1 1( ) ( ) e jF A ψ °° = ° rr r . Since the current 

desired pattern is 1( )
0 ( ) e jA ψ °° rr , the following chain of equalities would 

be true 1 1
2 2(2

2
) ( ) 2

0 1 0 1 1( ) e ( ) e ( ) ( )j jA A A Aψ ° ψ °= ° − ° = ° −σ ° = Δr rr r r r . 

However, the least squares method generates—by solving the matrix 
equation Ex. 4-1—a different vector W, which is the best in sense of 
square deviation σ2. Consequently, σ2

2 is less than Δ1
2. 

Continuing the above process of successive corrections of the 
prescribed phase pattern, we get a number of gradually improving 
solutions. The following infinite chain of inequalities characterizes their 
accuracy 
σ 1

2 > Δ1
2 > σ2

2 > Δ2
2 >…> σk

2 > Δk
2 > σk+1

2 > Δ k+1
2 >…  (4-2) 
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Ex. 4-2 clearly shows that reducing the deviation of complex APR goes in 
parallel with bettering the amplitude pattern, which is of the highest 
concern to us. 

From Ex. 4-2, it seems almost obvious that the sequence of the phase 
patterns {ψk(ro)} arising during the above process converges to a certain 
phase pattern ψst(ro). A particularity of this pattern is that if we combine it 
with the desired amplitude pattern A0(ro)—prescribing the complex pattern 
F0(ro)—then a phase pattern of the realizable ARP F(ro) is exactly the 
phase pattern ψst(ro). In terms of Chapter 2—see the last paragraph of 
Section 2.2.1—the following concise expression represents this statement 

st st( ) ( )1 st
0( ) U ( )e ( ) ej jF A Aψ ° ψ °−

σ° = ° = °r rr r r . (4-3) 
Here, the lines under the phase patterns are to emphasize the mentioned 
fact. Since the quasi-inverse operator Uσ

–1 maps the phase pattern ψst(ro) 
into itself—in combination with a fixed amplitude diagram, of course—it 
is logical to call it a stationary phase pattern. The superscript used comes 
from this name. 

In my thesis [16], I proved several theorems regarding the synthesis of 
the desired amplitude patterns. My article [30] includes the three most 
valuable ones. 

Consider the functional 
22

0( ) ( ) ( )n nn
A W fΔ = ° − °∑W r r , (4-3) 

which serves a measure of mean square deviation for two amplitude 
patterns: the desired one A0(ro) and the realizable one corresponding to the 
excitation vector W. Vector W can be arbitrary. 

First, there is at least one stationary phase diagram for any antenna and 
an arbitrary desired amplitude pattern. Second, any point of the local 
minimum of the functional Δ2(W) corresponds to a certain stationary 
phase pattern. Third, strictly speaking, the converse is not true, since the 
functional Δ2(W) may have saddle points [31] which also correspond to 
stationary patterns, but rather specific ones. Their meaningful name is 
unsustainable stationary phase patterns. 

Indeed, suppose that the above calculations came very close to a saddle 
point moving towards its minimum. Due to the finite accuracy of the 
calculations, a current point W can easily “slide” to the area where the 
saddle shows itself as having a maximum. Then the process will move 
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away—perhaps rather slowly at the beginning—from the saddle point and 
come to the end at some genuine local minimum28. 

Unfortunately, unlike the functional σ2(W), minimization of which is 
the main issue of Chapter 3, the functional Δ2(W) is non-convex. This 
means that it may have several, perhaps a number of local or even global, 
minima. We can easily construct an appropriate formal example. 
Obviously, if an array antenna consists of N elements, the individual 
amplitude patterns of which are the same, say, ao(r°), and the required 
amplitude pattern Ao(r°) is equal to ao(r°), then the functional Δ2(W) has N 
global minima Δ2 = 0, each of them corresponds to excitation of the single 
element of the array. Thus, in this situation, a set of stationary phase 
patterns has at least N phase patterns that are the phase patterns of the 
antenna elements. 

I tried to find out how many stationary phase patterns an array antenna 
can have. At first, it seemed me that no more than the number of elements. 
However, the simplest example had destroyed that hope. Let the two 
above-mentioned elements be in points x1 = –d and x2 = d, where spacing d 
is less than λ/2, and Ao(φ) is ao(φ), as before. Then, in addition to the two 
stationary phase patterns, which are ψst(φ) = exp(± j k d cos(φ)), the third 
one ψst(φ) = 0 appears, as is easy to see. The question also remains open 
whether there is a combination of the array antenna and the desired pattern 
Ao(r°), to which the only stationary phase pattern corresponds. 

To demonstrate how the process of an iterative approach to a desired 
amplitude pattern works, consider the array antenna shown in Fig. 4-1. 

 

 
 
Figure 4-1: Geometry of an array antenna of elements with cardioid ARP 

 

                                                
28 This is a rare situation when we have to thank the finite preciseness of the 
calculus. 
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On a circular arc of radius Ra = 2 λ, there are seven sources distributed 
symmetrically versus the x-axis with a spacing d = 0.55 λ. Therefore, their 
angular coordinates are αn = (n – (N – 1) /2) d /Ra, where N = 7 and 
n = 0…N – 1. Striving for a nontrivial situation, let us assume that the 
required amplitude of ARP is a non-symmetrical sector function A0(φ) = 1 
for the interval (φ1 = –45° < φ < φ2 = 75°) and A0(φ) = 0 outside of it. 

A complete set of computational formulas is as follows. Elements’ 
ARPs are cos( )( ) (1 cos( )) e nj k a

n nf ϕ−αϕ = + ϕ−α . In Ex. 4-1, the entries of 
the matrix L, which are mutual inner products of the functions fn(φ), are 

2 *
, 0

) ( ) (kn k nf f dL
π

ϕ ϕ ϕ=∫ . The column vector p depends on the phase 

pattern ψm(φ) at the current step m, and its entries are 
2

1

( ) *e ( ) mj
nnp f dψϕ ϕ

ϕ
ϕ ϕ= ∫ .  

It is surprising and interesting that the entries Ln,k turn out to be real 
values. Their explicit expression follows from a very useful series—for 
analytical investigation in antenna analysis and synthesis—that is 

cos( )
00e (2 ) ( ) cos( )j k a n

n nn
j J ka n∞ϕ

=
= − δ ϕ∑ , where δ0n is a Kronecker 

symbol. Some tips on how to derive the expression are contained in the 
training tasks 4-D and 4-E, aiming towards such a valuable facet of 
engineering style of thinking as the ability to perform analytical studies. 
Of course, modern numerical modeling tools reduce the need for analytical 
research. However, only analytical studies can reveal universal properties 
or regularities of the problem under interest. 

Fig. 4-2 – Fig. 4.5 demonstrate how the considered recursions work 
depending on initial phase patterns ψ0(φ). The dash-point line depicts the 
desired amplitude pattern A0(φ). The bold dashed line and the bold line 
correspond to the ARP F1(φ), respectively, in the first step m = 1 and in 
the final step m = 80 of the procedure. The thin gray lines show ARP 
Fm(φ) for an intentionally selected sequence of steps m = 2, 3, 6, 11, 20, 
40. The idea of choice is clear: to take into account that the rate of 
convergence slows down dramatically when the process approaches a 
point of a local minimum. 

Amplitude and phase patterns refer to the left and right axis, 
respectively. Phase patterns are of interest—and, by the way, well 
determined—only on the interval (φ1 < φ < φ2). In figures captions, there 
are values Δm

2 of the square deviation of the amplitude patterns 
Am(φ) = |Fm(φ)| from the desired one. 
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Figure 4-2: Synthesizing the sector amplitude pattern Ao(φ). The initial phase 
pattern ψ0(φ) = 0 corresponds to phase center at the origin. Deviations Δm

2 are 
Δ1

2 = 0.14; Δ2
2 = 0.11; Δ3

2 = 0.10; Δ6
2 = 0.097; Δ11

2 = 0.095; Δ20
2 = 0.092; 

Δ40
2 = 0.089; Δ80

2 = 0.086 
 

 
 
Figure 4-3: Synthesizing the sector amplitude pattern Ao(φ). The initial phase 
pattern ψ0(φ) = k a cos(φ) corresponds to phase center at the central element of the 
array. Deviations Δm

2 are Δ1
2 = 0.21; Δ2

2 = 0.16; Δ3
2 = 0.14; Δ6

2 = 0.12; 
Δ11

2 = 0.105; Δ20
2 = 0.096; Δ40

2 = 0.091; Δ80
2 = 0.089 

 
The choice of ψ0(φ) = 0 represented by Fig. 4-2, is a formal but rather 

typical one for those who do not take into account that this means 
gratifying the desire to have a phase center of ARP at the origin, located 
quite far outside the area occupied by the antenna sources. It seems to be 
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better to place the phase center close to the antenna area, say, at the point 
(a, 0) of the central source. Fig. 4-2 shows the corresponding results that 
do not meet our expectations for a better approximation. Before drawing 
any conclusions, let us try two more situations with a phase center to the 
left and right side of the area. 

 

 
 

Figure 4-4: Synthesizing the sector amplitude pattern Ao(φ). The initial phase 
pattern ψ0(φ) = 0.8 ka cos(φ) – 0.5 ka sin(φ) corresponds to phase center by the left 
side element of the array. Deviations Δm

2 are Δ1
2 = 0.39; Δ2

2 = 0.34; Δ3
2 = 0.31; 

Δ6
2 = 0.25; Δ11

2 = 0.18; Δ20
2 = 0.13; Δ40

2 = 0.11; Δ80
2 = 0.10 

 

 
 

Figure 4-5: Synthesizing the sector amplitude pattern Ao(φ). The initial phase 
pattern ψ0(φ) = 0.8 ka cos(φ) + 0.5 ka sin(φ) corresponds to phase center by the 
right side element of the array. Deviations Δm

2 are Δ1
2 = 0.20; Δ2

2 = 0.16; Δ3
2 = 

0.14; Δ6
2 = 0.12; Δ11

2 = 0.102; Δ20
2 = 0.089; Δ40

2 = 0.083; Δ80
2 = 0.083 
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What do we see? First, all four stationary phase patterns differ from 
each other and are rather close to the initial ones. The most amazing thing 
is that in the situation shown in Fig. 4-2 it is as if the local phase center 
was moving inside a rather small area at the origin. This means that the arc 
antenna array can create a field, whose phase front in a limited range of 
angles corresponds mainly to an expanding cylinder. This explains the 
seeming paradox. 

Second, in each situation the process comes to almost the same value 
of deviation Δ2 of about 0.086. This makes us think that the relief of the 
functional Δ2(W) resembles a hilly landscape with dents of the same 
depth. By the way, I found that the phase pattern ψ0(φ) = 0.4 ka cos(φ) – 
0.03 ka sin(φ), corresponding to the phase center at the point (0.4 a, –0.03 
a), almost exactly is stationary. At least, the deviation Δ2 value was equal 
to 0.088 from the first step to the 80th. 

It is quite predictable that starting with the function ψ0(φ) 
corresponding to the phase center far away from the antenna area, the 
process converges very quickly from an initial value of 0.6 or more to a 
value of about 0.09 with a phase pattern similar to one of the above. 

Since the subject of the book is mainly ideas and methodology for 
solving problems of synthesis and not results in themselves, I provide 
interested readers with a program in order they to try to investigate 
functional Δ2(W) on its local and global minima.  

4.3. Modified Woodward-Lawson method 

The idea of the Woodward-Lawson method (WLM), meaningfully 
called the method of superposition of beams, is very sound and at the same 
time rather simple. Obviously, the ARP of a linear antenna having a length 
L and consisting of isotropic sources with the excitation distribution 
I(x) = I0 exp(–j β x), corresponds—after scaling—to the formula 

/2

/2

sin ( )
( ) exp ( ( sin( ) ) sinc( ),

where sin( ) / , / 2.

L

L

u u
F u j kx x dx u u

u u

u L u L

β
β−

β

β

−
= θ −β = = −

−

= π θ λ = β

∫  (4-4) 

As usual, θ is a real angle from the antenna normal and the variable u is a 
so-called generalized angular variable uniquely associated with θ in the 
interval ±π L/λ. 

Ex. 4–4 defines a beam of a typical form sinc(u – uβ) that has the equal 
to unity maximum at the point u = uβ and zeros at all the points 
un = uβ ± nπ, where n is an integer. The WLM uses this particularity of the 
sinc-function to synthesize the desired ARP F0(θ). It deals with a set of 
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beams {gn (u) = sinc(u – u0 – nπ)} to approximate the function F0(u)29 by 
the series 

0

0 0 0 0 0

( )
0 0

( ) ( ) ( ) ( ) sinc( ),

( ) ( ) e .

nn n
j u n x

n

F u A u n g u F u n u u n

I x F u n − + π

= + π = + π − − π

= + π

∑ ∑
∑

 (4-5) 

Here index n alters in the interval satisfying the inequality 
−Nπ < u0 + nπ < Nπ, were N is a truncated value of L/λ, and coefficients an 
are equal to the values of the desired ARP at the directions {u0 + nπ}. 

It is worth noting that WLM is attractive not only by extreme 
simplicity of obtaining the solution Ex. 4-5. The reactivity 
Q = ||I(x)||2 / ||F(θ)||2 of the generated solution I(x) is rather low by virtue of 
the fact that the functions {fn (u)} form an almost orthogonal basis due to a 
proper spacing for sinc-functions, which is π. 

An attentive reader can note that the traditional expressions for WLM 
do not contain the term u0, as if the value of u0 in Ex. 4-5 is zero. What is 
the meaning of the term u0? If u0 = 0, then the maxima of the functions 
fn(u) are located at the points un = nπ that are multiples of π. Alteration of 
the term u0 results in shifting the entire set of functions {fn (u)} along the 
u-axis by the distance u0 without changing their mutual arrangement. 
Suppose that the required ARP F0(u) has a sharp maximum at some point 
u0. It is obvious that among the set {fn (u)} it is useful to have a function 
whose maximum is at this point precisely. Ex. 4-5 provides this 
opportunity, not excluding the traditional situation. 

Due to mentioned particularities of the base functions {fn (u)} the 
values of both ARPs—F(u) specified by Ex. 4-5, and F0(u)—coincide in 
the set of points {un =u0 + nπ}, which means coincidence of functions F(θ) 
and F0(θ) in the set of corresponding angles {θn}. 

The proposed by us [32] modification of the WLM includes much 
more significant thing than a mere nothing u0. The idea stems from a 
rather instructive point of view inherent in engineering style of thinking. I 
mean the permanent attention to and disclosure of the physical meaning of 
mathematical formalities. 

It is important to bear in mind that the desired ARP in Ex. 4-5 is 
actually a complex function. Even if we set its values {F0(un)} as the real 
values, this―as above―just means that we require the ARP F0(u) having 
a phase center at the origin. However, we are omly interested in a certain 
amplitude pattern A0(u), while the phase pattern does no matter and can be 
arbitrary. 

                                                
29 This function is the desired ARP, explicit expression of which appears after 
replacing u by Lπ sin(θ)/λ. 
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The solution given by Ex. 4-5 has a very interesting feature. Due to the 
peculiarities of the used basis functions {gn (u) = sinc(u − u0 − nπ)}, the 
equalities F(un) = an = F0(un) are true. Consequently, the equations 
A(un) = |F(un)| = |F0(un)| = A0(un) are true regardless of the phase terms 
{ψn)} in the set {F0(un) = A0(un) exp(j ψn)}. Why not use this extra degree 
of freedom to improve the amplitude ARP A(u) = |F(u)| in reference to the 
desired one A0(u)? 

It is clear that finding the optimal set of phase values {ψ(un)} as a 
solution of the task   2

0 0{ }
min || ( ) | ( ) ( ) | ||n

n

j
n nn

A u A u e g uψ

ψ
− ∑  is a  pretty 

hard problem of non-convex optimization, the main challenge of which is 
imposed by the presence of a set of local minima. A common method of 
solving such a problem is stochastic gradient descent, for which the better 
the starting point—that is the initial set {ψn}—the better. Of course, we 
can force a computer to test many random sets {ψn} for this, but it is very 
thrilling to try to help—or even compete—the computer with human 
shrewdness. 

Let us start thinking. In any case, we can equate to zero one of the 
phases of a set. It is logical to do this for the “main”, say, the nth element 
of maximum amplitude |an|. Changing the phase ψn+1 of the next term will 
noticeably affect how the function |F(u)| behaves in the interval 
u0 + nπ < u < u0 + (n+1)π  between the nth and (n+1)th reference points, 
whereas the conditions |F(un)| = A0(un) and |F(un+1)| = A0(un+1)  remain 
intact. Therefore, there is a certain value ψn+1 that provides the best 
approximation to the required function A0(u) in the considered interval. 
For instance, we can try to fulfill the equality |F(uk)| = A0(uk), where 
uk = (un + un+1)/2 is the midpoint of the interval. On the same reason we 
will find the value ψn+2 taking into account the next interval 
u0 + (n+1)π < u < u0 + (n+2)π, etc. In the same way, we can move down 
from the nth element. 

 
Remark: it is worth emphasizing that such a method of optimizing the 
phase set uses the fact that each sinc-function gn(u) acts efficiently in its 
rather narrow local range because outside the interval ±π its values are 
relatively small. Of course, the above-mentioned iterative procedure easily 
turns into a computational program, but it is quite fascinating to execute it 
manually. In Appendix D, there is a corresponding Mathcad program 
called “modified WLM” to provide interested readers with the pleasure of 
beating our results shown below. Certainly, it is possible. 

 
To demonstrate the above way of enhancing the WLM’s solutions we 

considered the following task: to synthesize the cosecant pattern: 
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A0(θ) = sin(θ0)/sin(θ) if θ0 ≤ θ ≤ π/2, and A0(θ) = 0 otherwise, with a ten-
wavelength line source. The angle of a cosecant maximum θ0 = 6º. In 
terms of the generalized angle u = 10 π sin(θ) we have u0 = 3.284, 
A0(u) = u0/u and an = u0/( u0 + (n – 10) π) if n ≥ 10, and an = 0 otherwise. 
Thus, Ex. 4-5 turns to be 

20
0 0 010( ) ( ) e sinc( )nj

n
F u A u n u u nψ

=
= + π − − π∑ . (4-6) 

In several minutes, we came to the following set of phases 
{ψ10,…ψ20} = {0º, 88º, 39º, 95º, 50º, 89º, 44º, 103º}. Fig. 4-6 shows the 
gained results. The x-axis is actually the variable u divided by Lπ/λ. What 
positive changes related to the modified WLM can we see? First of all, in 
addition to the reference points {un = u0 + n π} where ARP |F(un)| and 
A0(un) are the same—marked by circles—new points of coincidence 
appear between them. Second, the ripple to the right of u0 has become 
noticeably less. 

 

 
 
Figure 4-6: Synthesizing cosecant ARP: gray line 1 is the desired amplitude 
pattern A0(θ); bold dashed gray line 2 and bold solid black line 3 are ARP derived 
from classical WLM and modified WLM respectively 
 

Remark: in [33], the authors proposed an iterative algorithm for the 
improvement of an original ARP of a linear source by adding new beams 
where local amendments in the current ARP are desirable. In particular, 
they demonstrate, as we do, a cosecant ARP of a ten-wavelength line 
source produced in accordance with WLM and after improving. They did 
not change the phase pattern, and the results obtained are less impressive. 

Unfortunately, the side lobes to the left of u0 have increased. This may 
be acceptable if the cosecant ARP illuminates the ground and side lobes 
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look up, where there are no sources of intense interference or noise. 
However, it would be better to rectify the situation here. Section 2.6 gives 
one of the possible approaches to the local amending ARP. However, we 
can think about less strict limitations on the side lobes, just wanting to 
lower them. Then the following way can match these intentions. 

Since the side lobes have maxima between the zeros located at 
{un = u0 + (n – 10) π} (n = 0..9), so it is worth making a pi/2-shift for all 
these ten functions in order to align the positions of their maxima with the 
maxima of the side lobes. In result, we obtain functions 
{ ( ) (  sinc –  / 2)n ng u u u= + π } (n = 0,..9). In Fig. 4-6, thin solid and 
dashed lines depict two shifted functions 9g  and 8g , respectively. For 
clarity, we have lowered them by 5 dB. 

Adding these functions with weights {bn} to the Ex. 4-6 gives 
9

0( ) ( ) ( )n nn
F u F u b g u

=
= +∑ . There are several ways to determine the 

coefficients {bn}, including the heuristic one. To reduce values { ( )nF u } 
of side lobes’ maxima it seems to be reasonable to set ( )n nFb u= −μ , 
where μ is a real coefficient of value 0 < μ < 1.  

9
0( ) ( ) ( ) ( )n nn

F u uF u F g u
=

= −μ∑ . (4-7) 

This rule provides subtraction of the “beams” ( )ng u  from the corresponding 
side lobe, and μ defines the degree of suppression. The bold black line in 
Fig. 4-7 shows the amplitude ARP according to Ex. 4-7 with μ = 0.64.  
 

 
Figure 4-7: Synthesizing cosecant ARP: gray line 1 is the desired amplitude 
pattern A0(θ); bold dashed gray line 2 and bold solid black line 3 are, respectively, 
ARP derived from classical WLM and modified WLM plus side lobes suppression 

0 –0.5 –1.0 0.5 sin(θ) 

 1 

2 

3 
|F(θ)|, 
  dB 

–20 

–30 

–10 

 EBSCOhost - printed on 2/14/2023 3:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



Phase Pattern of the Antenna as an Additional Factor in Optimization 89

The level of side lobes became even lower than that of the Woodward-
Lawson pattern represented by the dashed gray line 2 in Fig. 4-7, though 
the starting ascent slightly deteriorated. A reader can use the mentioned 
“modified WLM” program from Appendix D to see the influence of μ on 
the solution and find a compromise between the side-lobe level and the 
steepness of the ascent that he prefers. 

Of course, the techniques of lowering the level of side lobes to a 
prescribed value—see Section 2.5—are applicable here. However, the 
purpose of the book is mainly to discuss the various approaches to the 
problem of synthesis, rather than to demonstrate the best achievable 
results. The interested reader can combine the programs “modified WLM” 
and “Reducing the Level of a Set of Side Lobes” to restrict, for instance, 
three side lobes to the level –25 dB or five of them to –30 dB. 

4.4. Antenna array synthesis with attenuation of a near-
field in the given area 

In some cases, the structure of the antenna near-field must meet 
additional requirements. For example, to facilitate electromagnetic 
compatibility, it is important to minimize the field intensity in the area S 
provided for the protected device. Similarly, in situations where the 
physical body may be present or absent near the antenna, in order to make 
ARP fixed, it is important that the near-field in the corresponding area S be 
as weak as possible. 

All antenna synthesis techniques presented in Chapter 2 will be 
applicable to these situations if they use the extended ARP concept, which 
includes the near-field of the antenna. It would be natural to call the 
combination of ARP and near-field in the area S as “generalized ARP.” 
Let us use the following notation ( , ) { ( ), ( )}° = ° μF r r F r E r  for it. Here r 
denotes a radius vector of the points in S (Fig. 2-1), ( )E r  is the antenna 
near-field, and μ is a scaling factor, the role of which will be clear—from 
below. Now the inner product is  
( ) * 2 *

1 2 1 2 1 2( , ), ( , ) ( ) ( ) ( ) ( )
S

d dS
Ω

° ° = ° ° Ω + μ∫ ∫F r r F r r F r F r E r E r . (4-8) 

For simplicity, let us confine ourselves to the case of an antenna array. 
We denote the generalized individual pattern of the n-th element as 

( , ) { ( ), ( )}n n n° = ° μf r r f r e r  and the excitation complex amplitude as In. 
Then ARP and near-field are ( ) ( )n nn

I° = °∑F r f r  and 

( ) ( )n nn
I=∑E r e r , respectively. With regard to Ex. 4-8 the square 
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deviation of generalized ARP F(r°, r) from a desired one F0(r°, r) is as 
follows 

2 2
0 0

22
0

( , ) ( , ) ( ) ( )

( ) ( )
S

d

dS

Ω
° − ° = ° − ° Ω +

μ −

∫
∫

F r r F r r F r F r

E r E r
. (4-9) 

In the above-mentioned case, ideally, there should be E0(r) = 0 (no field in 
S). Then the right-hand side of Ex. 4-9 turns to be σ 2 + μ2 Є, where σ 2 and 
Є denote, respectively, square deviation ARPs and near-field energy in S. 

It is very clear that the scaling factor μ plays two roles. First, its 
dimension balances the dimensions of the addends—this may be a formal 
nothing but is important in meaning. Second, it sets the proportion 
between the requirements of the accuracy of the ARP and attenuation of 
the near-field: the larger the value of μ, the stricter limitation to the field 
intensity. 

Finding out whether it is possible to eliminate the influence of a 
physical body—metallic as a rule—located in front of the antenna 
aperture, we obtained very interesting, even intriguing results. Definitely, 
the above approach is suitable for this study, because if the field in S is 
absent, then the current in the body brought in here does not appear, and 
the body does not affect the ARP. It turns out that the antenna phase 
pattern again plays a crucial role in this. 

For simplicity, we have considered a 2D situation: a linear array of N 
sources, which are parallel infinite electric current filaments. The desired 
radiation pattern was a sector function from 30° to 150° for the angle θ 
measured from the x-axis of the array. The area S was a circle of radius λ 
centered on the sector symmetry line at a distance of 4 λ from the origin. 
Therefore, it certainly eclipsed the aperture of the antenna array.  

To balance the summands in objective function Ex. 4-8, we used the 
value μ = 1/ Є1 where Є1 is the value of the energy in S when a single 
source located at the origin has excitation coefficient W1 = 1. We 
synthesized the antenna array in two ways. 

Strategy A is the one described in Section 3.4. The required ARP F0(θ) 
is a real function, which means there is a desire to have a phase center at 
the origin. The number of sources N increases consistently from 1 to 25, 
and at each step, the adjoint operator V determines the place for the 
current successive source. Fig 4-8 demonstrates the corresponding results. 

Strategy B is similar to the previous one with regard to the consistent 
increasing of sources and the use of the operator V for placing a sequential 
source. However, it differs in that at each stage it optimizes the phase 
diagram, as described in Section 4.2. Fig. 4-9 shows the results obtained 
here. 
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In all the charts below, the shades of black—the darker the more 
intense—present relief of the antenna near-field in the region (–
7 λ < x < 12 λ, 0 < y < 13 λ). The spacing of grid lines is λ. The dots under 
the x-axis represent the positions of the sources. Under each chart, there 
are δ2- and Є-values characterizing the quality of synthesized array of N 
sources: δ2 is the square deviation of the amplitude pattern AN(θ) at the 
current step N from the required A0(θ); Є is the normalized value in 
decibels relative to the value Є1 of a single source at the origin.  

 

  
(a) N = 5, δ2 = 0.188, Є = –2.26 dB        (b) N = 10, δ2 = 0.155, Є = –3.14 dB 

  
(c) N = 15, δ2 = 0.143, Є = –3.27 dB      (d) N = 25, δ2 = 0.135, Є = –3.33 dB 

 
Figure 4-8: Linear array of N sources synthesized to form a sector ARP with phase 
center at the origin and limited field energy in the area S (Strategy A) 
 

Data presented in Fig. 4-8 clearly show that the suppression of the near-
field in the area S leads to a deep decreasing ARP in the directions down-
shadowed by that area. This seems quite understandable from common 
sense. Moreover, these data indicate that this negative effect persists 
almost independently of the number of N sources. 

The situation becomes significantly different if the antenna phase pattern 
is not predetermined, but changes to optimize the objective function Ex. 4-9. 
Fig. 4-9 shows the results of the corresponding calculations. They confirm 
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the encouraging fact that, in principle, it is possible to achieve at the same 
time both a good approximation to the desired ARP and a very weak field 
in the area S. Obviously, the number N of sources—the more, the better—
plays a crucial role in achieving this. 

From the standpoint of physics, the situation may be as follows. The 
left-hand side of the antenna array radiates mainly to the left of the area S, 
the right-hand side—mainly to the right of the area S. In other words, the 
phase pattern corresponds to the local phase center, which moves along a 
complex trajectory along—or, most likely, around—the antenna array. 
Such a phase structure causes leakage of the field to the shadow region of 
the area S. 

 

  
(a) N = 5, δ2 = 0.143, Є = –5.48 dB       (b) N = 10, δ2 = 0.07, Є = –10.3 dB 

  
(c) N = 15, δ2 = 0.034, Є = –12.3 dB     (d) N = 25, δ2 = 0.013, Є = –16.9 dB 

 
Figure 4-9: Linear array of N elements synthesized to form a sector amplitude 
pattern with limited field energy in the area S (Strategy B) 
 

Fig. 4-10 shows in detail the dependences δ2(N) and Є(N) for both 
methods, and two values of the scale factor μ: μ1 = 1/Є1 and μ2 = 3.3μ1. 
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(a) μ = μ1                                     (b)  μ = μ2 

 
Figure 4-10: Dependences δ2(N) and Є(N) corresponding to: Strategy A – gray 
color and Strategy B – black color 
 
The light gray boxes in Fig. 4-10(a) highlight a set of situations that 
coincide with those depicted in Fig. 4-8. In general, the dependences in 
Fig. 4-10 are trivial: an increase in the coefficient μ leads to a significant 
decrease in the value of Є accompanied by some deterioration of the 
approach to the desired ARP. However, in the case of Strategy A—with 
fixed phase pattern—the deterioration is very serious, while for Strategy B 
it is much less so. Another striking difference between the strategies is that 
increasing the number of sources within Strategy A has a very limited 
effect, while for Strategy B this is a powerful factor. 

Let us think about why the optimization of the phase pattern gives such 
a wonderful effect of improving ARP and weakening the field in S at the 
same time. If we were psychologists, our emotional and reasonable answer 
could be this: “The antenna likes a gentle developer who listens and takes 
into account its response to his requests, and is ready to please him.” 

It seems that changes in the phase structure make the near-field flow 
around the obstacle S, and this is to some extent true: as noted above, the 
field fills the shaded area. However, this happens rather gradually than 
abruptly. 

4.5. Local phase center of antenna far-field and its 3D 
hodograph 

4.5.1. Introductory notes 

Any antenna radiates a spherical wave, so each component of its far 
field has the following structure: [A(θ,φ) exp(jψ(θ,φ))] exp(–jkr) / r, where 
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A(θ,φ) and ψ(θ,φ) are amplitude and phase patterns, respectively, and the 
last .factor describes spherical divergence of the field. 

A phase center (PhC) of an antenna is such a point that, if it is taken as 
an origin, the phase of a given field component over the surface of the 
radiation sphere is constant: ψ(θ,φ) = ψ0. Strictly speaking, a real antenna 
hardly has a PhC regarding a solid angle of 4π sr. Therefore, for practice, it 
is vital to define the concept of a local phase center (LPhC), which is the 
center of a sphere reproducing a rather small piece of the phase front (PhF) 
of a radiation field near the remote observation point. 

The location of LPhC depends on the observation direction. As a result, 
the LPhC draws a curve in a two-dimensional situation or a surface in a 
general situation. Often their configuration is unpredictable. For brevity, we 
will call them the hodograph 2D or 3D, respectively.  

Since the LPhC hodograph is completely dependent on the phase 
pattern ψ(θ, φ), this is actually just another way of graphical representation 
of the function ψ(θ, φ). However, this way is more meaningful in the 
applications30, when the location and biases of LPhC are extremely 
important functional characteristics of the antenna. 

Unfortunately, not many works are devoted to methodological issues of 
LPhC definition and analysis of its hodographs. 

4.5.2. Calculus techniques 

Let the function ψ(θ, φ) be the phase pattern of an antenna. In the far 
field region, the equiphase surface r(θ, φ), i.e. PhF, accords to an obvious 
formula 
r(θ, φ) = R0 + ψ(θ, φ)/k. (4-10) 
A piece of sphere, the center of which (xc, yc, zc) is LPhC corresponding to 
the direction (θ, φ), should approximate a small area dS of the surface 
r(θ, φ) at a given point r(θ, φ). Fig. 4-11 visualizes the problem. 

                                                
30 The feeds for lens or parabolic reflectors must have a PhC at the focus point. 
PhC becomes of great interest in relation to satellite positioning systems, the high 
accuracy of which is due to phase measurements at the carrier frequency. 
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(a)                                      (b)                                     (c) 

 

Figure 4-11: Calculating LPhC location (xc, yc, zc): (a) 2D situation; (b) 3D 
situation, 1 - a piece of the PhF surface, 2 - approximating sphere; (c) three typical 
sets of four, five and nine reference points 

Clearly, there is some degree of uncertainty in the very concept of 
LPhC. First, in general, at the observation point r(θ, φ), the principal 
curvatures of the phase front can differ. Second, the result of 
approximation depends on the techniques used. Third, the distance R0 and 
the angle span dΩ of the area dS—the matters of choice—to some extent 
affect the result of the calculation. 

Using inverse trigonometric functions to calculate the phase pattern 
ψ(θ, φ) results in a saw-tooth shape of the phase pattern and spurious jumps 
of the LPC. If available, phase unwrapping functions31 cope with the 
problem. Otherwise, standard inverse trigonometric functions 
supplemented by comparing the new value with the previous one and 
changing—if necessary—the memorized number of additional 2π-periods 
will do. 

2D Hodograph. 
If it is clear that ARP has a principal plane, say the xy-plane, in which 

LPhC hodograph lies, hen 2D situation is the case (Fig. 4-11a). Let define 
three points 1, 2, 3 on a PhF line, which correspond to the set of angles {α 
+ δ, α, α – δ} with a relatively small angular spacing δ. Their location 
points and distances from the origin are (x1, y1), (x2, y2), (x3, y3) and R1, R2, 

                                                
31 Matlab and Octave have such a function called unwrap(). 
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R3, respectively. The LPhC coordinates (xc, yc) must satisfy two obvious 
equations: 

2 2 2 2
2 c 2 c 1 c 1 c

2 2 2 2
3 c 3 c 1 c 1 c

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

x x y y x x y y

x x y y x x y y

⎧ − + − = − + −⎪
⎨

− + − = − + −⎪⎩
, (4-11) 

the solutions of which are 
c 2 3 1 3 2 1

c 3 2 1 2 3 1

 –  – ( ( ) ( ))/
(  –  – / ( ) ( ))

x d y y d y y

y d x x d x x

D

D−=

−= . (4-12) 

Here, the following denotes 2
2

2
2 1( – 2 )/d R R= , 2

3
2

3 1( – 2 )/d R R= , and 

2 1 3 1 3 1 2 1( )( ) –  –  –( )( )  – x x y y x x yD y= −  are in use.  
When the angle α varies, the coordinates (xc, yc) of the LPhC change, 

drawing a curve {xc(α), yc(α)} that is a 2D hodograph of LPhC.  
3D Hodograph  
Let there are K points on the PhF surface within a rather small solid 

angle dΩ (Fig. 4-11b). That is Ri = Ri ri, where ri is the radial unit vector 
pointed to the ith direction (θi, φi), and Ri = R0 + ψ(θi, φi)/k is the distance to 
the ith point of the PhF, given by Ex. 4-10; i = 1...K indexes the points. Let 
ds = xs xo + ys yo + zs zo be the radius vector to the center of the 
approximating spherical surface of radius Rs. Taking into account the 
remoteness of the PhF reference points, we can use the following 
expression for the distance ρi = |Ri − ds|: ρi = Ri − [(xc cosφi + yc sinφi ) sinθi 
+ zc cosθi]. The quadratic approximation error σ2 is a function of unknown 
variables: 2 2

с с с s sσ ( , , , ) ( ρ )K
ii

x y z R R= −∑ . Equating its derivatives to 
zero results in a system of four linear algebraic equations written below in a 
matrix form 

2

c
2

c
2 c

s

cs cs ss cs c cs cs

sscs ss ss ss c ss

ccs c ss c c

cs ss

i i i i i i i ii i i i i

i ii i i i i i ii i i i

i iii i i i i ii i i i

iii i ii i i

Rx
Ry

z Rc
R Rc K

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ ∑ ∑ ∑ ∑
∑∑ ∑ ∑ ∑
∑∑ ∑ ∑ ∑
∑∑ ∑ ∑

, (4-13) 

where cs  cosφ sinθi i i= , ss  sinφ sinθi i i= , c  cosθi i= , and 

( )0  ψ θ ,  φ /i i iR R k= + . 
Clearly, the number K of points cannot be less than four, and the 

angular spacing δ between them must be small enough, but not necessarily 
equal. Intuition and expediency restrict potential arbitrariness. In particular, 
δ must be of tenths of the angular resolution of the antenna. Besides, as the 
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reference points are located within a small solid angle dΩ, there is no 
reason to use a large number of them. Fig. 4-11(c) shows three most 
practical sets of the reference points K = {4, 5, 9}. In our calculations, the 
spacing δ of both angles was the same and varied from 0.5° to 5°. 

4.5.3. Phase patterns and 2D hodographs related to Section 4.4 

Perhaps it does not matter much, but it is interesting to see how the 
LPhC hodographs change when a specific phase pattern arises in the course 
of its optimization towards the amplitude ARP. In [34], there are some 
examples regarding the synthesis of linear arrays of five or fifteen sources 
reproducing, respectively, sector or cosecant amplitude patterns. 

Let us look at the features of phase patterns inherent in solutions for 
constrained optimization that are the matter of Section 4.4. Fig. 4-12 
replicates the ARP from Fig. 4-8(c) and Fig. 4-9(c) in Cartesian coordinates 
and additionally shows phase patterns. It is quite expected that the phase 
pattern ψ(θ) in Fig. 4-12(a) deviates little from zero within the interval from 
30° to 120°, whereas in Fig. 4-12(b) the same is changing much more. Due 
to this difference, the respective amplitude pattern is much closer to the 
desired sector. 

If, as it was in Section 4.4, the antenna array consists of parallel infinite 
filaments of electric current, then a two-dimensional situation takes place, 
and LPhC certainly moves in the x-y cross-section drawing 2D hodograph 
(xc(θ), yc(θ)). Fig. 4-13 shows hodographs that relate to the phase patterns 
represented in Fig. 4-12. 

The hodograph graphical image is a set of small dots corresponding to 
the angles {θi} within the mentioned interval with a spacing of 1°. Between 
the dots, there are small tip arrows indicated directions of LPhC movement. 
The grid of gray lines with λ-spacing allows us to estimate the location of 
hodograph points. Small squares in the x-axis point out the sources’ 
positions. On some of the hodographs there are labels with values of 
corresponding angles {θi}. 
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(a) 

 
(b) 

 
Figure 4-12: Amplitude and phase patterns related to the linear antenna array of 
fifteen sources (N = 15) synthesized for producing a sector ARP: (a) matches 
accords Strategy A with phase center at the origin; (b) accords Strategy B with 
optimization of the phase pattern. Bold solid and dotted lines depict amplitude 
patterns |F(θ)| and |F0(θ)|, respectively; thin line relating to the right axis depicts 
phase patterns 
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(a)                                                               (b) 

 
Figure 4-13: 2D hodographs of the phase patterns ψ(θ) shown in Fig. 4-12 

 
To clearly understand the interrelation between the phase pattern ψ(θ) 

and its hodograph, it is important to keep in mind that the first and second 
derivatives of the function ψ(θ) result in shifting LPhC transversally and 
along the θ-line, respectively. We see that in the case of Strategy B the 
movements of LPhC are more intense everywhere and in particular at 
interval 90° < θ < 120°. 
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4.5.4. Competition: 3D hodograph versus 2D hodograph 

To render a final verdict on which of the two hodographs is better, let us 
consider a concrete example. Suppose, N elements lie uniformly on a circle 
of radius a = λ / 2 in the x-y plane. Their angular coordinates, measured 
from the x-axis, are αn = 2 π (n−1)/N. Suppose that the individual patterns 
are axially symmetric with respect to the direction αn, and have the shape of 
rotational cardioids fn(θ, φ) = 1 + sin(θ) cos(φ − αn). The excitation 
distribution Un is in-phase and uniform. Thus, the array pattern is 

1
(θ,φ) [1 sin θ cos (φ α )] exp( sinθ cos(φ α ))N

n nn
F j k a

=
= + − −∑ . (4-14) 

It is clear that Ex. 4-14 defines ARP that is symmetric with respect to 
the x-y plane, and LPhC lies in this plane—θ = π/2—for any direction φ in 
it. Therefore, it is tempting to determine the 2D hodograph defining LPhC 
coordinates {xc(φi), yc(φi)} by formulas Ex. 4-12 with three points {φi – δ, 
φi, φi + δ}. Moreover, it is interesting and easy to find out that if, in 
addition to the points mentioned, the fourth one (φi, θi = π/2 – δ) or (φi, θi = 
π/2 + δ) is in use, then Ex. 4-13 defines a 3D hodograph corresponding to 
the possible displacement of LPhC from the x-y plane, while its xc and yc 
coordinates remain unchanged. 

When debugging the program, we varied the distance R0 and the 
angular step δ in the ranges of 102 λ ÷ 104 λ and 0.5° ÷ 5°, respectively. The 
constancy of the obtained results confirmed the reliability of both 
algorithms leading to Ex. 4-12 and Ex. 4-13. The final calculations were 
carried out at R0 = 103 λ and δ = 2.5°.  

Fig. 4-14 shows 2D hodographs corresponding to the phase patterns in 
the x-y plane of the above circular array. The gray lines form a coordinate 
grid with a mesh density of λ/8.  

 

   
(a)                                        (b)                                       (c) 

 
Figure 4-14: 2D hodographs of a circular array of N elements: (a) N = 10; (b) N = 8; 
(c) N = 7 
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The dependence of 2D hodographs on the number of array elements N 
is completely predictable. The number N ≥ 10 is large enough for the 
phase pattern to become flat ψ(φ) ≈ const, and the center of curvature 
identified with LPhC to lay at the origin. As N decreases, the fluctuations 
in the phase pattern ψ(φ) increase, and, therefore, the alternating 
oscillations of the second derivative ψ"(φ) increase. Due to that, the radius 
of curvature decreases for ψ"(φ) > 0 and increases for ψ”(φ) < 0, and 
LPhC moves along a star-like line. Each hodograph has several numbered 
teeth, which begin with “1” for the angle φ = 0°, and continue for 
increasing angles φ. In the case N = 8, the “asterisk” of the hodograph is so 
small that the shown image region is only λ/8 × λ/8. It is clear that the 
number of 2D hodographs’ teeth is 2 N, since the function ψ"(φ) is N-
periodic. At first glance, in the case of N = 7, this rule is incorrect for an 
uncertain reason. However, there are actually fourteen overlapping teeth, 
and in Fig. 4-14(c), the slashes separate their double numbers. 

Fig. 4-15 shows the isometric projections of the 3D hodographs for the 
same situations as above. They consist of “ribs” (φ = const) and “hoops” 
(θ = const) in 5° increments for both angles. 

 

   
(a)                                        (b)                                       (c) 

 
Figure 4-15: 3D hodographs of a circular array of N elements: (a) N = 10; (b) N = 8; 
(c) N = 7 

 
The results obtained from Ex. 4-13 with five and nine reference 

points—see Fig. 4.11c, K = 5 and K = 9—are too close, so the case K = 5 is 
not presented for brevity. Taking into account the symmetry of the patterns 
with respect to the x-y plane, we show a 3D hodograph in the half-space 
z > 0. The bold dots represent the antenna element locations in isometric 
projections. Remembering that the radius of the antenna array is equal to 
λ/2, one can judge the extents of the hodograph surfaces. 

For the sake of shape observation, in Fig. 4-15 there are 3D hodograph 
fractions corresponding to the solid angle of the observation directions 
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90° ≤ θ < 180° and 90° ≤ φ < 360°. Therefore, the “starting” point “1” 
(θ = 90°, φ = 90°) lies on the y-axis. 

As the number of elements N = 10 is sufficiently large for a radius of 
λ/2, the considered array is equal to a continuous in-phase excited circle. 
Bearing in mind that the array factor of the circular antenna of isotropic 
elements is a real Bessel function J0(ka sinθ), which means that the antenna 
has an exact PhC located at the origin, someone may suspect (like the 
author suspected) that the represented 3D hodograph for the case of K = 10 
is not true. However, given the cardioid patterns, another expression 

appears ( ) 2π sin θ cos (φ α)
0

θ,φ  (1 sin θ cos (φ α)) e αj kaF d−= + −∫  resulting 

in the phase pattern ( ) φ 
1

0
= 90

sinθ J ( sin θ)ψ θ arctg
J ( sin θ

|
)

k a
k a°

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
. In accordance 

with Ex. 4-13, it generates the “rib” shown in bold in Fig. 4-15(a). 
By the way, the location of the point “1” has a clear physical sense. The 

frontal part of the circle, the elements of which have the patterns oriented in 
the positive direction of the y-axis, makes the main contribution to the field 
at the direction (θ = 90°, φ = 90°). This is why LPhC shifts from the origin 
to a large part of the radius. Due to the axial symmetry of the pattern, the 
“rib” moves in a circle as φ changes.  

It is clear that in the region near the x-y plane (θ ~90°), when the 
number N of elements decreases, the fluctuations increase both in the 
patterns and, consequently, in the hodographs. Moreover, the LPhC 
motions caused by changing φ at θ = 90° do not repeat the corresponding 
2D hodograph. In the polar region (θ ≈ 180°), the hodographs shown 
demonstrate the shape stability. This is due to the fact that the pattern of a 
circle array defined by Ex. 4-14 contains the factor “a sin θ”, which, as it 
were, decreases the radius a and, consequently, a smaller number of N 
elements makes the array to be equal to a continuous circle. 

4.6. Communication system’s adaptive antenna arrays 
with the phase pattern steering circuit 

4.6.1. Introduction 

An adaptive antenna array (AAA) is an effective tool to increase the 
resistance of radio telecommunication systems to interference. In receive 
mode, it automatically reduces the ARP magnitude in the direction of 
interference sources to suppress their signals. AAA consists of antenna 
array (AA) of several antenna elements whose weighted signals form the 
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output signal. Fig. 4-16 shows the relevant block diagram where the 
control unit, commonly called a processor, produces the current signals to 
adjust the weighting coefficients {Wn} that compose a weighting vector 
(WV) W. It implements the appropriate control algorithm, usually using 
digital signal processing. 

 

 
 
Figure 4-16: Block diagram of an Applebaum adaptive antenna array 

 
The basic properties of AAA depend primarily on this algorithm. Let us 

try to determine the structure of the processor in the same way as to 
synthesize the antenna. This means that the starting point is the objective 
function. It is crucial that the objective function G(W) minimized by the 
algorithm—the optimization criteria, in other words—would be adequate 
to the requirements for the functioning of the system. What are the 
requirements for any communication system? 

Obviously, in the absence of interference, the processor must form such 
a WV W0, which yields the optimal ARP F0(r°), covering the service area. 
When interference occurs, it is due to change WV in order to form ARP 
with dips in the directions of interference sources and, at the same time, to 
preserve the service area as much as possible. 

Option 1. It turns out to be [35] that the classical Howells-Applebaum 
scheme [36] minimizes the objective function G1(W) = Pout + μ |W − W0|2, 
where Pout is the output power of interference32. The true sense of this 
function is that decreases of Pout take place under restrictions for the 

                                                
32 For simplicity, we neglect receiver noise, since it is a minor factor in relation to 
strong interference. 

Processor 
min G(W) 
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deviation of WV W from the original W0. It is evident that the coefficient 
μ changes the ratio between the achieved decrease in Pout and the value of 
the deviation ||W − W0||2, which assesses the deterioration in coverage of 
the required area, albeit indirectly. 

The very practical AAA type implements a real-time gradient descent 
procedure, corresponding to a simple and comprehensive idea: to send a 
signal proportional to the gradient component at the integrator input. With 
tips given in the Task 4G, one can easily obtain the following expression 
for the gradient of the objective function G1(W) 

2
1 0| |( )G = < > +μΔ −W W W WR . (4-15) 

Here, < R > is a covariance matrix of interference signals {Sn} at the 
AA outputs. The first term in Ex. 4-15, which we will denote as the vector 
g, is in fact a vector of covariance of the output signal Sout with signals 
{Sn}, i.e. *

out{ }nS S= =< >g WR . The upper line means averaging over an 
interval greater than the interference correlation time, which is the 
reciprocal of the receiver bandwidth. Fig. 4-17 shows a block diagram of a 
processor that adjusts WV according to the gradient descent procedure, 
which realizes the rule dW/dt ~ −ΔG1(W). To understand its operation, it 
is useful to take into account that a low-pass filter (LPF) with a large time 
constant is almost equivalent to an integrator. 

 

 
 
Figure 4-17: Block diagram of a processor minimizing objective function G1(W) 

 
Option 2. Thinking about improving AAA functionality, we can easily 

guess that it is better to control directly the deviation of the current ARP 
F(r°) = ∑Wn fn(r°) from the initial optimal ARP F0(r°) using the objective 
function G2(W) = Pout + μ || F(r°) − F0(r°)||2. This leads to the following 
expression for the gradient of the function G2(W): 

2 0( ) )(G = < > + −μ <Δ >W W W WR Z . (4-16) 
Here < Z > is a square matrix of the so-called mutual resistances of AA 
elements ( ) *( ) , ( ) ( ) ( ) dnk n k n kZ f f f f

Ω
== ° ° Ω° °∫r r r r . 
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Sout 
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W g 

Processor 
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The similarity of the gradients in Ex. 4-15 and Ex. 4-16 results in a 
likeness of the relevant block diagram of the AAA processors that realize 
the gradient descent algorithm. Fig. 4-18 relates to the objective function 
G2(W). 

 
 
Figure 4-18: Block diagram of a processor minimizing objective function G2(W) 
 

Option 3. Clearly, coverage of the service area depends on the current 
amplitude pattern |F(r°)| only. The phase pattern of ARP F(r°) does not 
matter. Consequently, a constraint that is more adequate to the 
communication system could be || A0(r°) − |F(r°)| ||2 that results in the 
following objective function 

2
3 0( ) || ( ) | ( ) | ||G A F= < > −μ °+Δ °RW W r r . (4-17) 

Here A0(r°) = |F0(r°)| is the initial optimal amplitude pattern 
corresponding to WV W0. Taking into account the issue of Section 4.2, we 
can propose the structure shown in Fig. 4-19, which realizes in real time 
the above iteration method of best mean square approach to the desired 
amplitude pattern A0(r°). 

 
 
Figure 4-19: Block diagram of the processor minimizing objective function G3(W) 
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F(r°) = ∑Wnfn(r°) 

F0(r°) = A0(r°) F(r°)/|F(r°)| 
b = {(F0(r°), fn(r°))} 

w0 = <Z>−1b 
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Certainly, the temp, in which the computing unit renews the current 
desired WV W0, must be in less than the temp of changing WV W by the 
processor. Say, its period times must exceed the time constant of the LPF. 

As the aim of this Section is to teach, how the methodology of antenna 
synthesis concerning optimization of a phase pattern can help in improving 
AAA functionality we do not demonstrate in these examples. The 
interested reader can find them in [35]. Although, with regard to assessing 
the efficiency of the transformation of the first objective function into the 
following two, from the general judgments, the following is clear. 

First, with regard to assessing the efficiency of converting the first 
objective function into the next two, it is clear from general judgments 
that, in a real situation, the functions G2(W) and G1(W) are almost equal, 
since for AA with a very usual spacing around λ/2 the matrix <Z> is close 
to a diagonal one. Therefore, the norms ||F(r°) − F0(r°)|| and ||W(r°) − 
W0(r°)|| are practically proportional to each other. 

Second, the objective functions G3(W) and G1(W) can be significantly 
different, subject to certain situations. In [35], there are some relevant 
examples. 

4.7. Training tasks 

Task 4A 
Prove that the chain of inequalities Ex. 4-2 is true in the general situation. 
Find out the condition under which the strict inequality sign “>” needs to 
be replaced with “≥” or even “=.” 
 
Task 4B 
Prove that any local minima of the functional Δ2(W) correspond to a 
certain stationary phase pattern. 
 
Task 4C 
Try to construct the simplest situation, say N = 2, to which the number of 
stationary phase patterns is greater than N. 
 
Task 4D 
Using the decomposition 00

exp( cos ) (2 ) ( ) cos( )n
n nn

j x j J x n
∞

=
ϕ = − δ ϕ∑ , 

make sure that in the case of a circular antenna of isotropic sources and 
ARP controlled in the plane of the circle, we have: {gn(α) = cos(nα)}, 
{Gn(φ) = cos(nφ)}, {λn = Jn(ka)}, where a is the radius of the circle. 
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Hint. Take into account the fact that if the operator U maps an orthogonal set 
of functions {un(α)} into an orthogonal set of functions {wn(α)} then these 
sets are the biorthogonal bases {gn(α)} and {Gn(α)}, respectively. 

 
Task 4E 
Using the decomposition from the task 4D show that the individual pattern 
of a cardioid source with the polar coordinates (a, α) is 

( )0 1 10( , ) (2 ) ( ) ( ) ( ) cos( ( ))n
n n n nn

f j J ka j J ka J ka n∞
− +=

⎡ ⎤α ϕ = − δ + − ϕ−α⎣ ⎦∑ . 
 
Task 4F 
Write up the formula for 10 λ linear sources distribution I(x), which ARP 
accords to Ex. 4-7. 
 
Task 4G 
Taking into account the obvious 2

out out| |P S=  and out n nn
S W S=∑ , show 

that gradient ΔPout(W) = (∂Pout/∂Wn′ +j ∂Pout/∂Wn″)T = <R> W. 
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CHAPTER FIVE 

USING ANTENNA SYNTHESIS TECHNIQUES 
FOR ANTENNA PATTERN RETRIEVAL FROM 

DATA TAKEN IN NON-IDEAL ENVIRONMENTS 
 
 
 

5.1. Introductory notes 

As mentioned, antenna synthesis, at its core, refers to the inverse 
problems of mathematics. Similar problems arise in other fields of 
engineering. Therefore, the techniques developed for the synthesis of 
antennas are of wider interest. 

In acoustics, for example, one of the ways to suppress the radiation 
field of a membrane or a metal shell excited by external sources is to use 
an active vibration compensation system. The system consists of several 
special vibrators, a number of sensors, and a control circuit that generates 
the excitation signals for the vibrators necessary to compensate for—to 
suppress—the external field of vibration. For several years, the author has 
been working on this problem in cooperation with the Acoustic Institute of 
the USSR Academy of Sciences [37−39].  

The most dangerous vibrations occur at resonant frequencies. 
Therefore, the problem of active vibration compensation is in many ways 
analogous to the problem of antenna array synthesis. The signals {Sm} 
from the sensors, more precisely, their current complex amplitudes, taken 
with reverse phases, play the role of the required ARP F0(rm). The matrix 
of transfer coefficients from each vibrator to each sensor—which depends 
on the physical properties and geometry of the body—is the matrix of the 
direct operator U. By the way, the adjoint operator V, used as shown 
above in Section 3.4, can “advise” where to place the vibrators if their 
location is not predetermined. 

In some ways, however, the problem of compensating the field of 
vibration is simpler than the synthesis of an antenna. First, it does not 
include the task of optimizing the phase pattern of the generated vibration 
field, because it must be exactly the inverse of the phase pattern of the 
current vibration. Second, there are no problems with side lobes or local 
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amendments to the solution. For this reason, we have limited ourselves to 
mentioning this problem with the above references and devoted this 
chapter to much more enlightening issues related to specific ARP 
measurement procedures. 

Modern vector network analyzers allow taking ampliphasometric 
measurements in automatic mode with subsequent digital processing of 
data. This enables us to use in practice sophisticated procedures for the 
retrieval of ARP from measurements taken under conditions far from ideal. 
For example, the illuminating field is significantly different from a plane 
wave due to the short distance to the radiating antenna and/or due to 
reflections from the walls of the measuring chamber. 

The pioneer works in this field were theoretical rather than practical 
[40–42]. Since then, many studies on various aspects of primary 
measurements and data processing algorithms have been carried out, for 
example. The recently approved doctoral dissertations [43, 44] confirm the 
relevance of research in this field until nowadays. Among the measurement 
methods that include the subsequent reconstruction of ARP, there are three 
groups [43]. First, planar parallel scanning the antenna near-field and 
transformation of obtained data to the far field. Second, measuring the 
antenna field in the Fresnel zone, and transforming it to the far field. Third, 
a probe of the illuminating field within the boundary of the test area by a 
sensor with precisely known ARP, and using the obtained data to retrieve 
the true ARP of measurement of the antenna under test. The methodology 
of the CCPW proposed by us [45, 46] belongs to the third group. So as not 
to send English-speaking readers to these publications in Russian, the 
following paragraph briefly repeats the methodological background of the 
CCPW techniques. 

In the practice of antenna measurements, compact anechoic chambers 
are widely used. Sometimes, a special device, the so-called collimator, 
serves as an irradiator that reproduces a plane wave, more precisely, a piece 
of a plane wave within the test area. Retrieving ARP from measurement 
data taken in non-ideal conditions allows the weakening of the 
requirements both to the absorbers coating the camera walls and to the 
collimator up to using a regular feeding horn. This is an additional reason 
for the interest in retrieving ARP. 
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5.2. Methodology of a converging cluster of plane waves  
at a retrieving antenna pattern 

The possibility of using CCPW for the approximation of a real field in 
an area free of sources arises from two circumstances [46]. First, the 
following integral transformation gives the Green’s function of a free space 
[47] and, therefore, an arbitrary field in any region outside the source 

2 2 2exp( )1( , , ) 2 2 2 28

k z j x j yx y x y
G x y z d dx y

kx y

± β +β − − β − β∞ ∞
= β β∫ ∫

π −∞−∞ β +β −

. (5-1) 

From the physical point of view, Ex. 5-1 is a continuous solid (two-
dimensional) cluster of plane electromagnetic waves propagating from a 
source located at the coordinate origin. This cluster includes both uniform 
waves—for βx

2 + βx
2 > k2—and evanescent waves—for βx

2 + βx
2 < k2. Since 

the inhomogeneities capable of supporting evanescent waves are quite far 
away from the antenna under test, therefore the contribution of those waves 
to the field in the antenna test area is negligible. It is clear that the 
illuminating field is a converging cluster of waves, since its sources are 
outside the test zone, and because of the above reasons, it contains only 
uniform plane waves. 

Second, since ARP determines the response of the antenna to the 
incident uniform plane wave, the output signal of the antenna illuminated 
by CCPW corresponds to a convolution type integral whose core is ARP. 

For simplicity’s sake, let us focus on the two-dimensional scalar 
situation, when the ARP Fa(φ) is measured in a plane and the field 
illuminating it is a CCPW in the same plane. In Fig. 5-1, a gray arrow with 
a transverse segment, symbolizing the phase front, depicts a separate plane 
wave of CCPW. A triplet of them artificially shows the cluster itself. 

Assume that the source of the illuminating cylindrical wave is located at 
point D relatively close to the antenna under test (AUT). At the first stage, 
it is necessary to determine the complex amplitudes A(φ) of cluster’s 
waves—called the spatial spectrum of the cluster—reproducing the 
illuminating field. For this, the probe, whose ARP f0(ψ) is precisely known, 
rotates along a circle of radius R0.  
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a                                                         b 

 
Figure 5-1: Reference geometries: (a) stage 1 − probing CCPW; (b) stage 2 − 
measuring with AUT 

 
It is obvious that the signal V(α) at the probe output, where α is the 

angular position of the probe, is the sum of the signals from each plane 
wave. Thus, the following convolution integral describes dependency 
between the functions V(α) and A(φ) 

2
pr0

( ) ( ) ( )V F A d
π

α = ϕ−α ϕ ϕ∫ . (5-2) 

Here, 0pr 0 e( ) ( ) (xp cos( ))F f jkRα αϕ− = ϕ−αϕ−  is the ARP of the probe 
displaced from the origin by radius R0. After the measurements at step 1, 
the function V(α) is known, and the solution of the equation Ex. 5-2 defines 
the spatial spectrum A(φ). 

It is not hard to see that Ex. 5-2 coincides with the equation for the 
synthesis of a circular antenna of radius R0, the sources of which have an 
individual ARP f0(ψ). In that case, functions V(α) and A(φ) are the desired 
ARP is the sought-for distribution, respectively.  

At the second stage, we rotate AUT—say, the linear antenna of length 
Lа (Fig. 5-1(b)), measure the signal U(α) at its output, and reconstruct the 
ARP Fa(φ) by solving the following convolution equation 

2
а а0

( ) ( ) ( )U A F d
π

α = ϕ ϕ−α ϕ∫ , (5-3) 

the kernel A(φ) of which we know from the previous stage.  
It is clear that the surface S of probe rotation should cover the test area: 

R0 > Lа/2. Indeed, the coincidence of the tangential components of the 
electric field of the illuminating wave and that of the CCPW—as a 
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consequence of Ex. 5-2—allows us to assert33 that in the case under 
consideration the CCPW field inside S coincides with the illuminating field. 
At the same time, as the calculations show, the field outside S has an 
amazing and hardly predictable structure, which has nothing to do with the 
real field [46]. By the way, in the same situation, if the electric and 
magnetic surface currents, in accordance with the Lava equivalence, 
produce an illumination field inside S, then they give zero fields outside S.  

Likely, it would be very practical to use a spherical wave source, for 
example, a small horn as an illuminating antenna. In this case, strictly 
speaking, the uniqueness theorem forces us to go over to a closed surface S 
and to a continuous CCPW. Nevertheless, the calculations show that if we 
deal with the measurement of the antenna of a small transverse size, then 
the approximation of the illuminating field by a plane CCPW provides 
acceptable results. 

In the absence of an analytic solution, it is necessary to reduce Ex. 5-2 
to a system of linear algebraic equations (SLAE). The simplest way, which 
is hardly inferior to the Galerkin-Ritz method [48], is to replace the 
continuous CCPW with a discrete cluster of N plane waves with the angle 
spacing Δ = 2π/N between them, and perform measurements in quite a large 
number M > N of points with spacing δ = 2π/M. Then each of the equations 
Ex. 5-2 and Ex. 5-3 transforms into a system of M equations. If ARP of the 
probe is a cardioid, and the antenna pattern is sought-for as a series 

а 1( ) ( )K
k kkF a g=ψ = ψ∑  with using K basis functions {gk(ψ)}, then two 

following SLAE appear with N unknowns {An} and K unknowns {ak}, 
respectively 

1
00( ) (1 cos( )) exp( cos( ))N

m n n m n mnV A jkR−
=α = + ϕ −α ϕ −α∑ , (5-4) 

( )1
а 1 0( ) ( )K N

m k n k n mk nU a A g−
= =α = ϕ −α∑ ∑  (5-5) 

where φn = (n − 1) Δ and αm = (m − 1) δ. 

5.3. Calculation results 

At present, when studying any problem, computer simulation can and 
usually does successfully substitute the physical experiment. In our case, 
we need to simulate the “measurements”, that is, to determine the 
appropriate formulas for the signals V(αm) and U(αm) received at position 
αm. 

                                                
33 On the grounds of the uniqueness of the Maxwell’s equations solution. 
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If the probe’s ARP is a cardioid f0(ψ) = 1+cos ψ, then the following 
expression is true 

( )( ) ( ) / ( ) ( (  (1 cos ) exp ))m m m mr jk rV α = + ψ α α − α , (5-6) 

where 2 2
0 0(   2 si) nm mr D R DRα = + − α  is a distance from the source 

at D to the probe—see Fig. 5-1(a))—and cos(ψ(αm)) is obviously equal to 
(D cosαm –R0)/r(αm). 

Let assume that AUT is a linear antenna of length La formed by in-
phase and uniformly excited sources with cardioid individual patterns (Fig. 
5-1(b)). Then the following expression defines the signal U(αm) received by 
the rotating antenna 

a

a

/2
/2

(1 ) expcos ( )( ) ( ( ))
(

,
),m m

L

m
L

jk r d
r

U
−

+
− α ξ= ξ

α ξ
β

α ∫ , (5-7) 

where the integration variable ξ is a coordinate along the antenna, 
2 2( , s n) 2 (i )m mr D D+ −α ξ = ξ ξ α  is a distance from the integration 

point ξ to the point D; β is the angle between the normal n° to the antenna 
and the direction to the source in the point D. With some work—just write 
n = −sin(αm)x° + cos(αm)y° and r(αm, ξ) = −ξ cos(αm) x° + (D −ξ sin(αm)) y° 
and use the dot product—it can be shown that cosine of the angle β 
corresponds to the following formula cos(β) = D cos(αm)/r(αm, ξ). 

The results presented below relate to the following geometry: the test 
area of radius R0 = 8 λ locates at the distance of 35 λ from the source D. 
AUT is the aforementioned linear antenna with a length of La = 15 λ.  

Fig. 5-2 (a) shows the spatial spectrum {An}, gained by solving the 
equation Ex. 5-4. Bold bars refer to the left axis and depict amplitudes |An|. 
The black dots connected by a gray line refer to the right axis and display 
the argument of the complex values An. 

 

  
(a)     (b) 

 

Figure 5-2: Stage 1: (a) spatial spectrum {An}; (b) field of CCPW 
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Because of the geometrical symmetry about the y-axis, the spectrum 
{An} is an even function with respect to the angle φ = 90°. For obvious 
reasons, its main part is in the interval 60° < φn < 120°. The CCPW 
obtained sets up the electric field 

( , ) exp( ( cos sin ))n n nn
E x y A k x y= ϕ + ϕ∑ . The plot in Fig. 5-2(b) shows 
the relief of the amplitude of this field in shades of gray from white to 
black, the more, the darker. Dimensions of the plot are 60 λ along the x-axis 
and 70 λ along the y-axis. It is clear that the field maximum is at point D, 
where the source is located. A white circle outlines the test area of radius R0 
= 8 λ. Although difficult, we can see that inside it the field corresponds to a 
cylindrical wave emanating from D. In the upper right corner of the plot, 
there is a more detailed picture of the field in this area after normalizing to 
its maximal value. 

Fig. 5-3 illustrates what happens in the second stage. The distance D = 
35 λ is too short, and the phase distribution of the illuminating field along 
the x-axis is very close to a quadratic dependence with a phase shift of 286° 
at the ends x = ±15 λ. That is why the signal U(α)—a gray curve—
resembles the ARP of a linear antenna with a similar quadratic phase 
distribution, which leads to the expansion and bifurcation of the beam. 

 

 
 
Figure 5-3: Stage 2: ▬▬ signal U(α);   ▬▬ retrieved ARP Fa(ψ)  
 

The retrieval ARP—a black curve in Fig. 5-3—coincides with the true 
ARP, which is Fa(θ) = 0.5 (1 + cosθ) sinc(0.5 kLa sinθ). Here θ is the 
angular coordinate measured from the normal to the antenna, and function 
sinc(x) is sin(x)/x. Of course, several factors limit the retrieval precession. 
The main factors are the measurement accuracy and algorithm’s parameters 
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such as numbers N, M, K that influent onto conditioning SLAE Ex. 5-4 and 
5-5, and on methodological accuracy as well. The interested reader will 
find the relating issues in [46]. Antenna synthesis techniques can alleviate 
some of the above problems. 

5.4. An improvement of retrieval techniques 

Let us look at Ex. 5-4 from the point of antenna synthesis. Bearing in 
mind its equation ∑n Un f (xn, ψ) = F0(ψ) let us use the notation v(φn, α) for 
the function (1 + cos (φn − α)) exp(jk R0 cos (φn − α)). It has a clear 
meaning of a signal induced in a rotating probe by a plane wave incident 
from the direction of φn. Then Ex. 5-4 turns to be ∑n An v(φn, α) = V(α). It 
differs from the antenna synthesis equation only in the notations: An, φn, 
and α are equal to Un, xn, and ψ, respectively; signals v(φn, α) and measured 
signal V(α) play the role of an individual pattern of antenna array’s element 
and the required ARP, respectively. In these terms, CCPW is a specific 
antenna array whose elements are plane waves, and the signals at the output 
of the probe, depending on the angle α, substitute antenna patterns. Clearly, 
“the required ARP” is a complex function, the phase pattern of which is 
important. 

Formally, we have to use a very small angular spacing Δ = 2π/N, 
converting Ex. 5-2 to SLAE Ex. 5-4 by substituting the integration for the 
summation. However, by doing this, very soon we find that the so-called 
curse of dimension imposes a hard limit on the maximum value of N. Thus, 
in the above situation, Mathcad “refuses” to solve Ex. 5-4, if N > 130. On 
the other hand, if N < 110, the number of terms in series Ex. 5-4 is not 
sufficient to get a good approximation for the measured signal V(α). Thus, 
with reference to value N, we have to balance between a poor 
approximation and an ill-conditioned system of equations.  

It is clear that Tikhonov’s regularization can help overcome the problem 
of poor conditionality. However, why not try to deal with the problem from 
the other—less formal and typical to the engineering style of thinking—
point of view. I mean the perception of Ex. 5-4 as the task of approximation 
of the measured function V(α) with CCPW, which is a set of directions 
{φn} and a spatial spectrum {An}. As mentioned above, this task is 
completely analogous to the synthesis of an antenna array. Thinking this 
way, we immediately ask ourselves the questions: “Why should the waves 
be distributed evenly? In the end, it seems useful to increase the density of 
the waves in the direction where the real source is. Why not use the idea of 
sequential choosing their directions {φn} as described in Section 3.4.1?” 
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Though I am sure that the idea is promising, I have not yet verified the 
idea by appropriate calculations and invite interested readers to do it on 
their own, possibly at the same time as me. 

Numerical simulation of the investigated procedure for the ARP 
retrieval from the results of measurements taken in non-ideal conditions 
demonstrates the stability of the results as well as the possibility of 
achieving high accuracy, which requires a rational choice of the number of 
CCPW waves. Evidently, this number depends on the wavelength of the 
working area. The methodology may be of interest for the measurement 
setup with a collimator, allowing you to increase the size of the working 
area with respect to the collimator size. Evaluation of the effectiveness of 
this approach can be the subject of further research.  
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A: Program “Super Directivity and Errors” 
Notations: 

L − length of the linear antenna array [in wavelengths!] 
N − number of elements 
ε − relative error of implementation of the nominal solution 
d − spacing [in radians] 
{xn} − coordinates of the antenna elements [in radians] 
<A> − matrix of SLAE for synthesizing the nominal distribution 
{B} − the unit vector of the right side of SLAE  
{U} − the nominal distribution 
F0(θ, U) − ARP according to the nominal distribution 
F0_(θ) − ARP according to the in-phase uniform distribution 
δ − standard deviation of the errors 
F1(θ, V1) − F5(θ, V5) − ARPs of five implementations of the nominal 

distribution 
|U| − the norm of the nominal distribution 

 
Recommendations 

1. Rewrite the program code shown on the next page in the 
Mathcad environment. Where necessary, use imaginary units. 

2. Format the X-Y Plot with seven traces as shown below. 

 
3. Run the program; change the values of ε, N, and L. Make sure 

that when N exceeds a certain threshold—while L is constant—
the ARP distortions increase catastrophically. 
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Program code 

F5 θ( )
Fa θ V5,( )
max mF5( )

:=mF5θ Fa θ V5,( ):=

F4 θ( )
Fa θ V4,( )
max mF4( )

:=
mF4θ Fa θ V4,( ):=

F3 θ( )
Fa θ V3,( )
max mF3( )

:=mF3θ Fa θ V3,( ):=

F2 θ( )
Fa θ V2,( )
max mF2( )

:=
mF2θ Fa θ V2,( ):=

F1 θ( )
Fa θ V1,( )
max mF1( )

:=mF1θ Fa θ V1,( ):=

F0 θ( )
Fa θ U,( )

max mF0( )
:=mF0θ Fa θ U,( ):=

// The sets {mF0} - {mF5} are the corresponding normalized ARPs

V5 U rnorm N 0, δ,( )+ i rnorm N 0, δ,( )⋅+:=
V4 U rnorm N 0, δ,( )+ i rnorm N 0, δ,( )⋅+:=
V3 U rnorm N 0, δ,( )+ i rnorm N 0, δ,( )⋅+:=
V2 U rnorm N 0, δ,( )+ i rnorm N 0, δ,( )⋅+:=

// V1 - V5 are
// five ARP with
//  random errors:
// in-phase and
// quadrature ones 

V1 U rnorm N 0, δ,( )+ i rnorm N 0, δ,( )⋅+:=

δ ε U⋅:=

Fa θ U,( )

n

Un e
ixn cos deg θ⋅( )⋅

⋅∑:=
θ 0 180..:=U lsolve A B,( ):=

Bn 1:=An m, J0 dx n m−( )⋅[ ]:=xn dx n⋅:=dx
2π L⋅
N 1−

:=

m 0 N 1−..:=n 0 N 1−..:=ε 7 10 3−×:=N 8:=L 1.5:=
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B: Program “Reducing the Level of a Set of Side Lobes  
of a Linear Antenna Array of Cardioid Sources” 

Notations: 
d − spacing [in radians!] 
N − number of elements 
ψ0 − main beam direction [in radians] 
K − the number of side lobes that are subject to decrease 
β − the level of restriction 
f(n, θ) − ARP of nth element 
{I0n} − initial excitation distribution to produce the main beam 
F0(θ) − initial normalized ARP 
Ψ − set of K angles [in radians] to which restrictions apply 
beam(k, θ) − a function defining kth normalized beam 
{A k, m} − matrix of the SLAE for the restrictions 
g − the right side vector of the SLAE 
F1(θ) − ARP after local amendments 

 
Recommendations 

4. Rewrite the program code shown in the next page in the Mathcad 
environment. Where necessary, use imaginary units and complex 
conjugates (looks like a line under a variable or function). 

5. Format the X-Y Plot with the number of grids on X-axis equal to 
5*(Xmax − Xmin) and tree traces as shown below. 

 
6. Run the program; change the restriction value β and, if 

necessary, adjust the set Ψ; change the values ψ0, N, K and the 
set Ψ. For starters, you can keep in mind the following 
combinations: 
N = 10, K = 6, ψ0 = 0, Ψ = (-0.65 -0.45 -0.28 0.28 0.45 0.68), 
N = 15, K = 6, ψ0 = 0, Ψ = (-0.42 -0.3 -0.2 0.2 0.3 0.42). 

7. To more accurately install the Ψ array, watching the side lobes of 
the ARP, expand the graph and increase the number of grids 
along the X-axis. 

8. In the end, be free to change all the parameters and improve the 
program itself, as you like.  
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C: Program “Reducing the Level of a Set of Side Lobes  
of a Circular Antenna Array of Cardioid Sources” 

Notations: 
d − spacing [in wavelength!] between elements 
N − number of elements 
a=d N − radius of the circle [in radians!] 
{αn} − angle coordinates of antenna elements 
ψ0 − main beam direction [in radians] 
K − the number of side lobes that are subject to decrease 
β − the level of restriction 
f(n, φ) − ARP of nth element 
{I0n} − initial excitation distribution to produce the main beam 
F0(φ) − initial normalized ARP 
Ψ − set of K angles [in radians] to which restrictions apply 
beam(k, φ) − a function defining kth normalized beam 
{Ak,m} − matrix of the SLAE for the restrictions 
g − the right side vector of the SLAE 
F1(φ) − ARP after local amendments 

 
Recommendations 

1. Rewrite the program code shown in the next page in the Mathcad 
environment. Where necessary, use imaginary units and complex 
conjugates (looks like a line under a variable or function). 

2. Format the X-Y Plot with the number of grids on X-axis equal to 
fifteen and three traces as shown below. 

 
3. Run the program; change the restriction value β and, if 

necessary, adjust the set Ψ; change the values ψ0, N, K and the 
set Ψ. Be free to change all the parameters and improve the 
program itself, as you like. 

4. To more accurately install the Ψ array, watching the side lobes of 
the ARP, expand the graph and increase the number of grids 
along the X-axis. 
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D: Program “Modified Woodward-Lawson Method”  
for Synthesizing Linear Source with Cosecant Radiation 

Pattern 

Notations: 
L − the length of the source [in wavelength] 
N − the number of π-sections of abstract angle coordinate u = 0.5 kL sinθ 
δ − the direction of the cosecant maximum [in radians!] 
N1 − the number of right-hand beams to form a cosecant descent 
N2 − the number of left-hand side lobes of ARP 
A(u) − cosecant ARP 
{u1} − a set of directions for the right-hand beams 
{u2} − a set of directions for the left-hand beams 
f1(n1,u) − the right-hand beam with index number n1 
f2(n2,u) − the left-hand beam with index number n2 
F0(u) − ARP corresponding to the classical WLM 
{β} − a set of phases for the right-hand beams [in radians!] 
{w1} − a set of excitation coefficients for the right-hand beams 
F1(u) − ARP corresponding to the modified WLM 
μ − to what proportion should the side lobes be reduced 
{w2} − a set of excitation coefficients for the left-hand beams 
F2(u) − ARP corresponding to the modified WLM plus reducing the level 
of lobe labels  

 
Recommendations 

1. Rewrite the program code shown in the next page in the Mathcad 
environment. Where necessary, use imaginary unit i. 

2. Format the X-Y Plots with traces as shown below, respectively. 

 
3. Run the program; alter the phase column {β}, change the values 

μ. Be free to change all the parameters and improve the program 
itself, as you like. 
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dB x( ) 20 log x( )⋅:= y x( ) dB A x deg⋅( )( ):=

y0 x( ) dB F0 x deg⋅( )( ):= y1 x( ) dB F1 x deg⋅( )( ):=

y2 x( ) dB f2 0 x deg⋅,( )( ) 5−:= y3 x( ) dB f2 1 x deg⋅,( )( ) 5−:=

0 30 60 90 120 150 180
30

20

10

0

y u( )

y0 u( )

y1 u( )

y2 u( )

y3 u( )

u

y4 x( ) dB F2 x deg⋅( )( ):=

0 30 60 90 120 150 180
30

20

10

0

y u( )

y0 u( )

y4 u( )

u
 

 EBSCOhost - printed on 2/14/2023 3:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



BIBLIOGRAPHY 
 
 
 

1. Davis B. Inventions of Teaching: a Genealogy. (Routledge, London, 2004), 
344. 

2. Kirton, M. “Adaptors and Innovators: a Description and Measure.” Journal of 
Applied Psychology. 61 (1976): 622−29.  

3. Stum J. “Kirton’s Adaption-Innovation Theory: Managing Cognitive Styles in 
Times of Diversity and Change.” Emerging Leadership Journeys, 1 (2009): 
66−78. 

4. Gulenko V.V. “Forms of Thinking.” Socionics, Mentality and Psychology of 
Individuals. 43 (2002), (in Ukrainian). 

5. Krasnova V.I. “Implementation of the Competency Approach in the 
Educational Process of High School.” Kazan Pedagogical Journal. 3 (2009): 
10-14, (in Russian). 

6. Zhuk O.L. Teaching Students: Competence Approach. (RIHS, Minsk, 2009), 
336 (in Russian). 

7. “Spektr-M Observatory Takes Shape.” Accessed July 09, 2019. 
http://www.russianspaceweb.com/spektr_m.html 

8. Karasik, B.S., and Sergeev, A.V. “THz Hot-Electron Photons Counter.” IEEE 
Transactions on Applied Superconductivity, 15 (2005): 618−623. 

9. Vulih B.Z. Introduction to functional analysis (2nd ed.). (Science, Moscow, 
1967): 416. 

10. Kolmogorov, A.N., Fomin, S.V. Elements of the Theory of Functions and 
Functional Analysis. Dover Publications; Dover Books on Mathematics edition 
(February 16, 1999): 128. 

11. Jeffreys, H. and Jeffreys, B. S. “Integration: Riemann, Stieltjes.” In Methods of 
Mathematical Physics, 3rd ed. 26-36 Cambridge, England: Cambridge 
University Press, 1988. 

12. Ufimtsev, P.Ya. “Edge Wave Diffraction Theory.” In Introduction to the 
Physical Theory of Diffraction (Binom, Moscow, 2012): 372 (in Russian). 

13. Hönl H., Maue A.W., Westpfahl K. Theorie der Beugung. Handbuch der 
physic. (Springer-Verlag OHG, Berlin, Göttingen, Heidelberg, 1961), 218. 

14. Yanke E., Emde. F., Lesh F. Special Functions: Formulas, Graphs, Tables 
(Nauka, Moscow, 1964): 344 (in Russian). 

15. Choni Yu.I. “Synthesis of Emitters Located near the Metal Body.” PhD thesis. 
(Kazan Aviation Institute, 1968) (in Russian). 

 EBSCOhost - printed on 2/14/2023 3:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



Bibliography 
 

128 

16. Choni Yu.I., Morozov G.A. “Optimization of Solutions for Antenna Synthesis 
Problems with Regard to Random Errors of their Implementation.” KAI 
Proceedings. 164 (1974): 108−111 (in Russian). 

17. Dymski, V. N.; Choni, Yu. I. “An approximate solution of problems of antenna 
synthesis allowing experimental simulation.” Radiophysics and Quantum 
Electronics, 13 (September, 1970): 1069−1075. doi: 10.1007/BF01032776 

18. Choni Yu.I. “Adjoint Operator Method and its Aspects in Regard to Antenna 
Synthesis.” 86-91. In IХ Proceedings of the 2013 IX International Conference 
on Antenna Theory and Techniques, (Odessa, Ukraine, September 2013) doi: 
10.1109/ICATT.2013.6650690 

19. Hook, Stephen M. “Inequalities for Eigenvalues of Selfadjoint Operators.” 
Transactions of the American Mathematical Society, 318 (March, 1990): 
237−259. 

20. Blanchet L., Faye G., “Hadamard regularization”, Journal of Mathematical 
Physics, 11 (2000): 7675–7714.  doi:10.1063/1.1308506 

21. Tikhonov, A.N., Arsenin V.Y. Solution of Ill-posed Problems. (Washington: 
Winston & Sons, 1977): 258. 

22. Golub, G. H., Hansen P. Ch., O'Leary D. P. “Tikhonov Regularization and 
Total Least Squares,” SIAM Journal on Matrix Analysis and Applications, 1 
(1999), pp. 185-194. doi.org/10.1137/S0895479897326432 

23. Watson, G. N. A Treatise on the Theory of Bessel Functions, 2nd ed. 
(Cambridge, England: Cambridge University Press, 1966): 816. 

24. Kornienko, L.G., Shifrin, Ya.S. “Statistical synthesis of antennas.” 275−297 In 
Problems of Antenna Engineering, ed. L.D. Bakhrakh, D.I. Voskresensky. 
Moscow: Radio and Communication, 1989, 368 (in Russian). 

25. Balanis, Constantine A. Antenna Theory: Analysis and Design, 4th Edition 
(New Jersey, John Wiley & Sons, 2016): 1072 

26. Krasnoselsky M.A., Vainikko G.M., Zabreiko PL. et al. Approximate solution 
of operator equations. (Nauka, Moscow, 1969): 456. 

27. Bertsekas, D.P. Constrained Optimization and Lagrange Multiplier Methods 
(Computer Science & Applied Mathematics) (Academic Press, Cambridge, 
1982), 412, doi: org/10.1016/C2013-0-10366-2 

28. Choni, L.V., Choni, Yu.I. “A Modified Minimum-residual Algorithm.” 
Computational Mathematics and Mathematical Physics. 36 (1996): 139−144. 

29. Boyd, S., Vandenberghe, L. Convex optimization. (Cambridge University 
Press, New York, 2009), 730. 

30. Choni, Yu.I. “Synthesis of an antenna according to a given amplitude radiation 
pattern.” Radio Engineering and Electronic Physics. 16 (1971): 770−778. 

31. Buck, R.C. Advanced Calculus. (Waveland Press, Long Grove, 2003), 160. 

 EBSCOhost - printed on 2/14/2023 3:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



Selected Topics on Antenna Synthesis 129 

32. Choni, Yu.I., Tsupikov A.E. “Improving the Accuracy of Reproduction of a 
Desired Pattern in the Synthesis of Linear Source or Array Antenna in the 
Framework of the Beamforming Method.” Antennas, 123 (2007): 34−36 (in 
Russian). 

33. Raju, G.R.L.V.N. Srinivasa, Raju, G.S.N. “Synthesis of Cosecant and Square 
Patterns for EMC Applications.” IOSR Journal of Electronics and 
Communication Engineering (IOSR-JECE), 9 (July - August 2014): 01-06. 

34. Choni, Yu.I. “Hodograph of Antenna’s Local Phase Center: Computation and 
Analysis.” IEEE Transactions on Antennas and Propagation, 63 (June 2015): 
2819−2823, doi: 10.1109/ TAP.2015.2417894. 

35. Choni, Yu.I., Hassan, A. “Optimal Adaptive Antenna Arrays for Asynchronous 
Communication System.” IEEE Transactions on Antennas and Propagation. 
60 (2012): 3071− 3076. 

36. Monzingo, R.A., Miller, T.W. Introduction to Adaptive Arrays. (New York, 
John Wiley & Sons, 1980), 555. 

37. Gavrilov AM, Dymsky V.N., Chabdarov Sh.M “Design of exciter system based 
on a given energy spectrum of random vibration.“ Soviet Aeronaut. 18 (1975): 
29−33. 

38. Vyalyshev A.I., Gavrilov A.M., Lyubashevsky G.S., Tartakovsky B.D., Choni 
Yu.I. “Synthesis of Systems for Compensation of Vibration and Sound Fields.” 
Soviet Physics. Acoustics. 23 (1977): 136−139. 

39. Anfinogentov V.I., Lyubashevsky G.S., Tartakovsky B.D., Choni Yu.I. “On the 
Optimal Distribution of the Excitation Potentials in the Synthesis of 
Compensation Systems of Vibro-Acoustic Fields.” Akusticheskij Zhurnal. 29 
(1983): 728-232. 

40. Bennet J.C. and Griziotis, A. “Removal of environmental effects from antenna 
radiation patterns by deconvolution processing.” Proceedings of the IEE 
Conference, 1 (1983): 224–228. 

41. Bakhrakh, L.D., Kremenetsky, S.D., Kurochkin, A.P., Usin, V.A., Shifrin, 
Ya.S. Methods for measuring parameters of radiating systems in near-field. 
(Science, Leningrad, USSR, 1985), 272 (in Russian). 

42. Plokhikh, S.A., Sazonov, D.M., Scherbakov, V.I. “Reconstruction of Antenna 
Patterns sing the Reference Antenna Method from Measuring Amplitude and 
Phases in the Near-Field”, Izvestiya Vuzov, Radioelectronics, 2 (1987): 59−64, 
(in Russian). 

43. Zhao, W. “Retrieval of Free Space Radiation Patterns through Measured Data 
in a Non-Anechoic Environment.” PhD dissertation, (Syracuse University, 
USA), 2013. 

 EBSCOhost - printed on 2/14/2023 3:14 PM via . All use subject to https://www.ebsco.com/terms-of-use



Bibliography 
 

130 

44. Krivosheev, Yu.V. “Measurement of Antenna’s Characteristics in the Fresnel 
Zone on a Sparse Grid of Angles,” Doctoral dissertation, (Moscow, RF, 
“MPEU”), 2014 (in Russian).  

45. Choni, Yu.I., Pirozhenko, S.A. “Retrieval of the Antenna Pattern from the Data 
Obtained in Non-Ideal Environments,” Izvestiya Vuzov, Radioelectronics, 2 
(1992): 43−50 (in Russian). 

46. Choni, Yu.I., Abuhadma, L.K.T., Danilov, I.Yu. “Antenna Pattern Retrieval 
from Measurements in Non-Ideal Anechoic Chamber.” 376−382 In 2018 
Systems of Signals Generating and Processing in the Field of on Board 
Communications. Moscow, (March 2018) doi: 10.1109/SOSG.2018.8350647. 

47. Markov, G.T., Petrov, B.M., Grudinskaya, G.P. Electrodynamics and 
propagation of radio waves (Sovetskoe radio, Moscow, 1979), 376. 

48. R. L. Taylor, “Ritz & Galerkin: The road to the finite element method.” 
Bulletin of International Association for Computational Mechanics, 12 (2002): 
2–5. 
 

 EBSCOhost - printed on 2/14/2023 3:14 PM via . All use subject to https://www.ebsco.com/terms-of-use


	Dedication
	Epigraph
	Table of Contents
	Illustrations
	Preface
	Introduction
	Abbreviations
	Chapter One
	Chapter Two
	Chapter Three
	Chapter Four
	Chapter Five
	Appendices
	Bibliography



