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1

The National Income and Product Accounts and other economic statistics—
designed in an age when the structure of the economy was vastly different 
than that of today—do not yet fully account for the wide range of innovative 
activities that are plainly evident in everyday experience. This limitation of 
our existing measurement system significantly hinders researchers, analysts, 
and policy makers. Better measures of innovative activity are necessary to 
understand the challenges and consequences of innovation and to inform 
the design of policies that best promote it.

In March 2017, the Conference on Research in Income and Wealth 
(CRIW) of the National Bureau of Economic Research (NBER) held a con-
ference at the McDonough School of Business at Georgetown University 
in Washington, DC. The purpose of this conference was to bring together 
academic researchers, staff from the statistical agencies, and members of 
the broader community studying and assessing innovation to advance  
the agenda of more completely and systematically accounting for innova-
tive activity in national accounts and other economic statistics. This volume 
includes most of the papers presented at the conference. The papers have 
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2    Carol Corrado, Jonathan Haskel, Javier Miranda, and Daniel Sichel

undergone review and, in some cases, substantial revision since their pre-
sentation at the conference. These revisions importantly reflect the excellent 
comments provided by discussants at the conference and two anonymous 
reviewers of the volume.

Before getting to a summary of the conference, the conference organizers 
and attendees would like to thank those who made the conference a success 
and the NBER/CRIW volume possible: the NBER and CRIW for finan-
cial support, Georgetown University’s McDonough School of  Business  
for hosting the conference, and NBER staff, especially Helena Fitz- Patrick for  
crucial assistance in compiling this volume and Brett Maranjian for excep-
tional organizational and logistical support.

I.1  Background

This conference and volume focus primarily on the challenges of how best 
to measure innovation, track its effects on economic activity and inflation, 
and understand how innovation has changed the structure of an increas-
ingly digitized economy. At the same time, the chapters also relate to chal-
lenges of economic measurement that long have been the subject of CRIW 
conferences.

Measuring innovation is a challenging task, both for researchers and for 
national statisticians. One approach statisticians use is to conduct a survey 
that measures innovation, and an international consensus has developed 
a manual and definition of innovation for this purpose. Published as the 
“Oslo Manual” (OECD/Eurostat 2018), innovation is defined as “a product 
or process (or combination thereof) that differs significantly from the unit’s 
previous products or processes and that has been made available to potential 
users (product) or brought into use by the unit (process).” This definition 
distinguishes between innovation as an outcome (an innovation) and the 
activities through which innovations come about (innovation activities). It is 
difficult to measure the value (and thus the impact) of innovation outcomes 
using surveys, however.1

Another approach is that implicit in a simple macroeconomic growth 
model whereby the fruits of innovation are subsumed in total factor pro-
ductivity (TFP). This approach also is not entirely satisfying. Indeed, the 
concern about TFP growth as a measure of  innovation is perhaps best 
captured by Moses Abramovitz’s observation in a 1956 article that TFP in 
many ways is a “measure of ignorance” (Abramovitz 1956). Digging deeper 
into Abramovitz’s perspective, he showed that an index of US output was 
1,325 in 1944–53 relative to 100 in 1869–78 but that inputs were 381 rela-

1. Surveys that follow the Oslo Manual aim to capture whether or not the organization has 
introduced new products or brought new processes into use during a reference period (e.g., two 
years). While this provides a “count” of innovation outcomes for the period, it does not get at 
their relative value or economic importance.
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tive to 100. From this, he concluded that almost all growth in US output 
was over and above growth of measured inputs. He wrote, “Since we know 
little about the causes of productivity increase, the indicated importance 
of this element may be taken to be some sort of measure of our ignorance 
about the causes of economic growth in the United States.” Despite ongoing 
concerns sparked by Abramovitz, he actually provided what is perhaps the 
best response—one that has animated many CRIW conferences, including 
this one—in the part of his comment that is not often quoted. The full sen-
tence is as follows: “Since we know little about the causes of productivity 
increase, the indicated importance of this element may be taken to be some 
sort of measure of our ignorance about the causes of economic growth in 
the United States and some sort of indication of where we need to concentrate 
our attention” (italics added).

The papers in this conference are in the spirit of the latter point made 
by Abramovitz—namely, the continued need to concentrate attention on 
sources of growth and innovation, including analyses of direct innovation 
outcome measures such as patents and “Oslo Manual” survey- based data. 
For those not familiar with work on innovation, four themes in this confer-
ence show what a very long way the innovation measurement literature has 
come since the time of Abramovitz’s writing. First, consider that real output 
measures depend on both nominal output and quality- adjusted prices, and 
both are challenging to measure when there is innovation and structural 
change in an economy. Today’s Census Bureau surveys cover virtually all 
services industries, whereas in Abramovitz’s time, coverage of industry sec-
tors outside of manufacturing was extremely limited. The development and 
implementation of firm- level databases based on linked waves of business 
registers and associated surveys have put a spotlight on the importance of 
new business formation and firm- level entry and exit as a channel through 
which productivity change occurs.2

Obtaining price measures that correctly adjust for quality change and the 
introduction of new goods remains as daunting a task as it was in Abra-
movitz’s time, especially in sectors undergoing rapid change (e.g., digital 
services) and products for which defining a constant- quality unit of output 
is difficult (e.g., cloud services or semiconductors). But a huge literature 
has addressed these issues and illustrates the progress that has been made. 
Emphasis in recent years has been on whether changes due to digitization 
and whether some improvements in consumer welfare should be included in 
GDP, topics this conference directly addresses and advances.3

Second, measuring value added at the industry, firm, or establishment 
level (as well as measuring TFP) requires better measured flows of labor 

2. See, e.g., Foster, Haltiwanger, and Krizan (2006); and Foster, Haltiwanger and Syverson 
(2008, 2016). For a survey, see Syverson (2011).

3. Recent reviews of these literatures include Byrne and Corrado (2017a, 2017b); Corrado 
et al. (2017); Dynan and Sheiner (2018); Moulton (2018); and Sichel (2019).
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4    Carol Corrado, Jonathan Haskel, Javier Miranda, and Daniel Sichel

and capital services—including quality- adjusted input prices for purchased 
inputs—to better isolate the spillovers (i.e., social returns) that should be part 
of TFP. This task entails many of the same issues confronted in accurately 
capturing real output (e.g., relevant disaggregation and theory- consistent 
formulas for aggregation as exemplified by the seminal contributions of 
Jorgenson and Griliches 1967 and Diewert 1976) as well as keeping up with 
ongoing change in the economy. For tangible capital, a key challenge is 
obtaining quality- adjusted prices for capital goods undergoing rapid quality 
change. For purchased services and intangible capital, more fundamental 
definitional issues come into play as well. And for both intangible capital 
and some types of high- tech capital, businesses produce capital goods on 
their own account (rather than purchasing them in the market), and these 
new means of production will require new techniques of measurement. In 
each of these cases, much of the new activity is spurred by innovative activ-
ity, which only can be tracked fully if  economic measurement can account 
for each of these pieces.

Third, the importance of intellectual property in market capitalization 
of public firms and of intangible capital in overall investment has increased 
dramatically in recent decades, as highlighted in Lev (2001); Corrado, 
Hulten, and Sichel (2009); Corrado and Hulten (2010); Lev and Gu (2016); 
and Haskel and Westlake (2017). Some types of intangible capital gener-
ally are captured in national accounts as both outputs and inputs, includ-
ing research and development (R&D), software, mineral exploration, and 
artistic and literary originals. Getting accurate measures of investment and 
capital (both nominal and real) for these assets is essential for tracking 
inputs to innovation. Some types of intangible capital identified by Cor-
rado, Hulten, and Sichel (2005, 2009)—including industrial design, orga-
nizational capital, training, and brand equity—typically are not counted 
as business investment in national accounts. These assets are extensively 
deployed by businesses and so affect economic growth, though their effect 
on measured economic growth is confounded by their omission from mea-
sures of output (not counted as business investment) and from measures of 
inputs (not counted as productive capital). Because intangible capital often 
is connected to innovative activity, improving measures of intangibles will 
facilitate a fuller tracking of innovation. Moreover, because of the difficul-
ties of measuring activities related to intangibles, it is important to derive 
alternative measures of innovation, such as counts of trademarks and self- 
reported innovation in addition to patents.

Fourth, as with the asset boundary related to intangible capital, the defini-
tion of GDP implicitly considers some activities in scope while others are 
considered out of scope. For example, most household production is not 
counted in GDP because GDP largely focuses on economic activity medi-
ated by markets. This choice can create challenges when certain activities 
shift from households to market- mediated activity or the other way. For 
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example, consider a worker who becomes an Uber driver. Some of her out-
put is unrecorded, as she drives family to school (nonmarket work). Some 
is recorded as output via credit card data when she drives paying riders, but 
her business capital input is not measured because she uses a household 
car. Or the output of a part- time delivery person is recorded, but due to 
difficulties of  reporting hours and self- employment status, labor input is 
not recorded. Similarly, home computers, tablets, and smartphones have 
boosted the “domestic capital stock” and have enhanced home production 
by either using the devices directly (booking flights from home, writing 
Wikipedia entries) or enabling a marketplace to exist where none existed 
before (ride- sharing). These examples highlight the importance of thinking 
hard about the appropriate asset and activity boundaries for GDP and how 
appropriate boundaries may have changed over time.

This framework, while quite broad, provides context for the conference 
and the chapters in this volume, summarized below.

I.2  Summary

To set the stage for the conference, CRIW chair Katharine Abraham and 
NBER president James Poterba opened the conference with remarks in the 
morning. Abraham highlighted CRIW’s rich history and emphasized why 
now, in an era of fake news and alternative facts, it is more important than 
ever to get right basic facts about the economy. She also highlighted key 
challenges in economic measurement, including declining response rates to 
economic surveys. Poterba developed Abraham’s broad measurement theme 
and suggested that intense public and business interest in economic statistics 
creates a historic opportunity for making progress on improving measures 
of the economy. To seize this opportunity effectively, Poterba highlighted 
the importance of bringing together statistical agencies from around the 
world, academics, and the business community. Poterba also put a smile on 
the faces of CRIW members with his comment that the CRIW is a jewel  
in the crown of the NBER.

The papers in the conference took different approaches to investigating 
our ignorance surrounding innovation, and they largely relate to four broad 
questions. First, how should current measurement frameworks be expanded 
to incorporate more fully the role and consequences of innovative activity? 
Second, what new approaches and data would be most useful to enhance 
our understanding of innovation? Third, how has innovation changed the 
structure of the economy, including production processes, labor markets, 
and financial activities? Finally, what changes within the current measure-
ment framework would improve our ability to more fully capture innovative 
activity?

On the first theme of how current measurement frameworks should be 
expanded, one question of particular interest is whether and how the asset 

 EBSCOhost - printed on 2/8/2023 7:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



6    Carol Corrado, Jonathan Haskel, Javier Miranda, and Daniel Sichel

and production boundaries used in current measurement frameworks (such 
as in the national accounts) need to be adjusted to more fully account for 
innovation- related changes in output and inputs. The issue of boundaries 
and definitions is taken up by the first chapter in this volume. In “Expanded 
GDP for Welfare Measurement in the 21st Century,” Charles Hulten and 
Leonard I. Nakamura make a powerful argument that GDP, as a measure of 
production, omits much of the benefits arising from the digital revolution. 
They highlight that consumer choices today are informed by far more infor-
mation than in the past and, with advances in communications technology, 
that information is free or very low cost and readily available 24/7 in almost 
any location. In addition, many benefits of the digital revolution directly 
benefit consumers without ever appearing in GDP (including the significant 
inputs of consumer time that are required to produce them). Thus they argue 
that there is a disconnect or wedge between growth in real GDP and that of 
consumer well- being. To capture this idea, they follow Lancaster (1966) and 
supplement the conventional growth accounting framework with a technol-
ogy for consumer decision- making. This approach yields an expanded mea-
sure of GDP (which the authors refer to as EGDP). With this framework, 
the authors analyze the wedge between real GDP and consumer well- being. 
Based on a series of case studies, the authors make the case that this wedge 
likely is large enough to be consequential and too large to be ignored.

Diane Coyle’s lunchtime talk at the conference covered some similar 
themes. She offered insightful perspectives on several key issues for GDP 
and welfare measurement, including production boundaries, the provi-
sion of free goods, the role of outlet substitution as new ways of buying 
goods and services arise, the digitization of consumer goods, the role of 
bundling of goods and services and cross subsidies, and cross- border issues. 
Coyle highlighted the need to think through the boundary between what 
should be counted as quality change or left as unmeasured consumer sur-
plus and accounted for elsewhere, as in Hulten and Nakamura (above). She 
also argued that even in conventional national accounts, the production/
nonproduction boundaries are more fluid than often recognized: the treat-
ment of owner- occupied housing, for example.

Chapter 2 by Javier Miranda and Nikolas Zolas (“Measuring the Impact 
of Household Innovation Using Administrative Data”) highlights a differ-
ent aspect of how activity boundaries implicit in the definition of GDP lead 
to the nonmeasurement of certain categories of production and innovative 
activity within the household sector. In particular, they focus on patents 
obtained by businesses without employees as a proxy for identifying house-
hold innovation given that such businesses usually represent household 
entrepreneurs. They find that the value of household innovations patented 
between 2000 and 2011 is $5 billion. This estimate may seem modest, but 
survey evidence suggests only a small fraction of household innovations 
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actually is patented.4 This topic relates directly to the very engaging dinner 
talk on household innovation by Eric von Hippel. He made the case that 
household innovation is pervasive, creates substantial value, and contributes 
importantly to household well- being. Chapter 2 by Miranda and Zolas, 
along with von Hippel’s talk and his contemporaneously issued book (von 
Hipple 2017), highlights efforts to better understand this area of household 
innovation and production.

Another way in which current measurement frameworks can be expanded 
is by digging more deeply into the detailed dynamism underlying economic 
growth, and the availability of detailed microdata makes this possible. In 
chapter 3, “Innovation, Productivity Dispersion, and Productivity Growth,” 
Lucia Foster, Cheryl Grim, John C. Haltiwanger, and Zoltan Wolf  draw 
on the literature on firm dynamics to investigate how microdynamics feed 
through to aggregate or industry measures of productivity growth. They 
study the US economy using the Longitudinal Business Database (LBD), an 
establishment- level database founded on the Business Register and consist-
ing of the universe of employer businesses in the nonfarm business sector of 
the United States (about 7 million establishments and 6 million firm observa-
tions per year for 1976–2013). The authors investigate how the dispersion of 
productivity at the industry level and the growth of productivity respond to a 
surge of entry, looking in particular at high- tech and other industries. They 
draw on the idea of Gort and Klepper (1982), who suggested that an initial 
wave of entrants, who are experimenting and learning, will subsequently 
be selected out into leavers and stayers. This pattern would lead to a rise 
and then a fall in productivity dispersion that ultimately would be followed 
by subsequent productivity growth. This outcome is the broad pattern the 
authors observe in the US data: in the late 1990s, there was an increase in 
the entry rate and productivity dispersion, but this was followed by falling 
entry and growth, and although contrary to the theory, rising dispersion.

Another set of chapters in this volume focuses on the development and 
utilization of  new data and approaches to measuring innovative activity 
and its economic effects. Measuring and tracking innovation and innova-
tive activity is increasingly difficult yet critical from a policy and manage-
rial perspective. In chapter 4, “How Innovative Are Innovations? A Multi-
dimensional Survey- Based Approach,” Wesley M. Cohen, You- Na Lee, and 
John P. Walsh summarize key challenges with existing administrative and 
survey- based measures and propose that an expanded focus be taken when 
designing firm- based surveys to include richer data at the level of individual 
innovations. In their empirical analysis, the authors demonstrate the useful-
ness of this conceptual approach using their new innovation survey. They 
then suggest new or improved measures of innovation consistent with this 

4. See Sichel and von Hippel (forthcoming).
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approach that were not included in the survey. The authors show how shift-
ing our attention from the firm as the unit of analysis to the innovation helps 
us assess the technological significance of an innovation, its likelihood of 
success, and ultimately its potential impact on the state of current knowl-
edge. The authors argue that this complementary approach will allow policy 
makers and managers to make better- informed investment decisions based 
on an improved understanding of innovations and their markets.

Trademarking represents another unexplored source of information for 
tracking innovation, and in chapter 5, “An Anatomy of US Firms Seek-
ing Trademark Registration,” Emin M. Dinlersoz, Nathan Goldschlag, 
Amanda Myers, and Nikolas Zolas make a strong case that trademarking 
is a valuable indicator of innovative activity. In particular, they construct a 
new administrative dataset that combines data on trademark applications 
and registrations from the US Patent and Trademark Office Trademark Case 
Files Dataset (TCFD) with data on all firms from the US Census Bureau’s 
LBD. The resulting dataset is comprehensive, covering all employing firms 
regardless of size, industry, or location between 1976 and 2015. It is the first 
effort to systematically link these data in the United States and provides a 
way to explore the value of the intangible associated with trademarks, such 
as brand awareness and product loyalty, as well as nonpatented innovations 
and their relation to business dynamics. In their chapter, the authors explore 
the relation of trademark application filing to firm employment, revenue 
growth, and firm innovative activity as measured by R&D and patents. The 
authors show trademark registration is a precursor of firm success and is 
tied to innovation. Firms in the United States have substantially higher 
employment and greater revenue in the period following first filing for a 
trademark relative to control firms. The chapter also finds higher average 
R&D expenditure and patenting by first- time trademark filers both before 
and after initial filing compared to control firms.

Regarding the sources of innovation, chapter 6, “Research Experience as 
Human Capital in New Business Outcomes,” by Nathan Goldschlag, Ron 
Jarmin, Julia Lane, and Nikolas Zolas brings together several datasets to 
examine the linkages among university R&D, human capital, and business 
start- ups. The key underlying idea is that knowledge assets—typically not 
captured on a firm’s balance sheet—are critical to understanding the value 
of a company, its ability to innovate, and ultimately its success. This chap-
ter explores how an employee’s prior work and research experience affects 
the outcomes of start- up firms, including growth, survival, and innovative 
activity. The authors draw from a rich set of administrative data sources, 
including payroll transaction data from the human resource files of 22 major 
research universities, unemployment insurance wage records underlying the 
Longitudinal Employer Household Dynamics (LEHD) dataset, Internal 
Revenue Service (IRS) form W- 2, and the Longitudinal Business Database 
to construct new measures of workplace experience for US workers, includ-
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ing direct measures of research experience as well as experience in R&D 
labs, high- tech businesses, and universities. The authors find evidence of the 
importance of these forms of previous employee experience to the outcomes 
of start- up firms generally and high- tech firms specifically.

A third topic of the conference focused on how innovation is changing 
the structure of the economy, including production processes, labor mar-
kets, and financial activities. One area where innovation has had high vis-
ibility is in the rise of the “gig” economy. In chapter 7, “Measuring the Gig 
Economy: Current Knowledge and Open Issues,” Katharine G. Abraham, 
John C. Haltiwanger, Kristin Sandusky, and James R. Spletzer provide a 
typology of  work arrangements and review how different arrangements, 
and especially gig activity, are captured in existing data, noting that a chal-
lenge for understanding recent trends is that the monthly Current Popula-
tion Survey of households and administrative data (e.g., tax data) paint a 
different picture, with the former showing little evidence of the growth in 
self- employment that would be implied by a surge in gig activity and the 
latter providing evidence of considerable recent growth. The authors match 
individual- level survey and administrative records and find that a large and 
growing fraction of those with self- employment activity in administrative 
data have no such activity recorded in household survey data. Promising 
avenues for improving the measurement of self- employment activity include 
the addition of more probing questions to household survey questionnaires 
and the development of integrated datasets that combine survey, administra-
tive, and potentially, private data.

One of the key relationships that needs to be understood better in the 
modern economy is that between new types of  tangible capital (notably 
information and communications technology [ICT]) and new types of orga-
nizational forms: think of the revolution in the print media industry, for 
example, or the effect of computerization on just- in- time- style manufactur-
ing. In chapter 8, “Information and Communications Technology, R&D, 
and Organizational Innovation: Exploring Complementarities in Invest-
ment and Production,” Pierre Mohnen, Michael Polder, and George van 
Leeuwen investigate whether ICT (hardware), R&D, and organizational 
change are complementary in production and how much they influence total 
factor productivity. Such an investigation requires combinations of datasets 
(another theme of this conference). Typical firm- level datasets have informa-
tion on outputs (such as sales) and on inputs (such as capital and operating 
spending) but do not typically have information on organizational change. 
Surveys of innovation and organization have the latter information but typi-
cally not accounting data. Thus Mohnen, Polder, and van Leeuwen merge 
together the Dutch Business Register and Oslo Manual–based innovation 
survey data. In their merged dataset, which spans 2008–12, 45 percent of 
manufacturing and 35 percent of service sector firms report organizational 
innovation (the introduction of new business practices, knowledge man-
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agement systems, methods of  workplace organization, and management 
of  external relations). They find strong complementarities between ICT 
investment and organization innovation. Their approach enables them to 
calculate rates of return, and they find the highest rate of return to be for 
firms investing in ICT but also organizational innovation.

Innovation and its attendant implications for organization of activity also 
may affect the distribution of income. This issue is explored in chapter 9, 
“Digital Innovation and the Distribution of Income,” by Dominique Guel-
lec. He suggests that features of the digital economy such as economies of 
scale might lead to market concentration and rents for “superstar firms,” 
feeding through into high returns for “insiders” in those firms (such as top 
executives) and for shareholders and thus income inequality. One counter-
vailing force is that entry might be easier with digital technologies, and thus 
the position of top firms might be easier to challenge. The author finds that 
the forces of concentration seem to have prevailed. To investigate the impli-
cations, he looks at how labor shares of GDP evolved across 27 Organisation 
for Economic Co- operation and Development (OECD) countries within 
16 manufacturing industries over the period 1995–2011. The chapter finds 
that labor shares have fallen, controlling for other factors, in those country- 
industries with growing patenting (their preferred measure of innovation). 
Combining these results with other evidence suggesting that top executive 
pay has risen in country- industries where concentration has risen, Guellec 
argues that the growth of digital economy has had a tendency to lower the 
labor share and widen labor- income inequality.

Baruch Lev’s lunchtime talk focused on how ongoing innovation (espe-
cially the rising importance of  intangible capital) has affected financial 
accounting. Because these assets are central to firm value but only captured 
in limited ways on firm financial reports, Lev made the case that financial 
reports have become increasingly less useful indicators of  company per-
formance and that share price informativeness also has been falling. His 
comments highlighted the important role that could be played by business 
accounting in tracking innovative activity and how making progress on eco-
nomic measurement will require collaboration among many different groups 
of stakeholders.

A final topic addressed by the chapters is how best to improve innovation- 
related measures of economic activity within the current conceptual frame-
works for measurement. In chapter 10, “Factor Incomes in Global Value 
Chains: The Role of Intangibles,” Wen Chen, Bart Los, and Marcel P. Tim-
mer extend the usual approach to modeling production, arguing that studies 
need to look at cross- border production to complement country studies. 
They set out a global value chain (GVC) production function that tracks 
the value added in each stage of production in any country- industry and 
define a new residual as the difference between the value of the final good 
and the payments to all tangibles (capital and labor) in any stage. They 
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focus on GVCs of manufactured goods and find the residual, which they 
interpret as income accruing to intangibles that are (mostly) not covered in 
current national accounts statistics. They find this residual—the return to 
intangibles in their system—to be rather large. They also document decreas-
ing labor and increasing capital income shares over the period 2000–2014 
as mainly due to increasing income for intangible assets—in particular, in 
GVCs of durable goods. They further suggest that this period should be 
seen as an exceptional period in the global economy during which multi-
national firms benefitted from reduced labor costs through offshoring while 
capitalizing on existing firm- specific intangibles, such as brand names, at 
little marginal cost.

Accurate measures of quality- adjusted prices can be challenging to obtain 
for products undergoing rapid technical advances, such as semiconductors. 
Getting these prices right is critical given the role that semiconductors play 
as one of the general- purpose technologies underlying the digital revolu-
tion. In chapter 11, “Measuring Moore’s Law: Evidence from Price, Cost, 
and Quality Indexes,” Kenneth Flamm provides a comprehensive history 
of the evolution of semiconductor technology in recent decades and how 
these developments generated the rapid price declines often summarized 
in Moore’s law. Flamm provides evidence that since around 2000, both the 
pace of  technical advance and the rate of  price declines have slowed for 
high- volume semiconductors—including memory chips, microprocessors, 
and custom- chip designs outsourced to contract manufacturers. (This gen-
eral pattern also is evident in official measures of semiconductor prices.) 
If  Flamm’s assessment is right, this slowdown bodes ill for future gains 
in productivity with a critical element of the digital revolution developing 
more slowly. However, Flamm’s results (and those implicit in official price 
indexes) are not without controversy, and his discussant, Stephen Oliner, 
raised a variety of questions and pointed to other work that reaches a dif-
ferent conclusion.5

In chapter 12, “Accounting for Innovations in Consumer Digital Services: 
IT Still Matters,” David Byrne and Carol Corrado present a framework for 
measuring the GDP impacts of innovations in consumer content delivery, 
which have been especially rapid since the advent of the 21st century, or the 
“mobile information age.” They argue that the flow of services from consum-
ers’ connected IT capital capture what Brynjolfsson and Saunders (2009) 
call “free goods” and that this service flow should augment the existing 
measure of personal consumption in GDP. They develop a quality- adjusted 
price index for these services as well as the paid- for access services (already 
included in GDP) that are needed for content delivery via consumer- owned 
IT devices. Their estimates imply that accounting for these innovations in 
consumer content delivery matters: the innovations boost the consumer 

5. See Byrne, Oliner, and Sichel (2018).
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surplus of connected users by about $30,000 (2017 dollars) from 2004 to 
2017 and contribute more than .5 percentage points per year to US real 
GDP growth during the last 10 years. Their accounting of innovations in 
consumer content delivery is (conservatively) estimated to have moderated 
the post- 2007 GDP growth slowdown by nearly 0.3 percentage points per 
year. The price index for paid- for content delivery services (i.e., cellular, cable 
TV, and multidevice streaming services) that they develop in this chapter 
has a similar impact on consumer price inflation—that is, relative to official 
consumer prices calculated by the Bureau of Economic Analysis, Byrne and 
Corrado argue elsewhere that prices for consumer digital access services 
(alone) have had an increasing deflationary impact since 1987 (Byrne and 
Corrado 2020).

Cloud computing is one area where developments have leapt ahead of 
measurement. In chapter 13, “The Rise of Cloud Computing: Minding Your 
Ps, Qs, and Ks,” David Byrne, Carol Corrado, and Daniel Sichel document 
the explosive growth of cloud computing, develop new quarterly hedonic 
price indexes for cloud computing services, and investigate the puzzle of why 
investment in IT equipment in the National Income and Product Accounts 
(NIPAs) has been so weak while capital expenditures for IT equipment 
associated with cloud infrastructure has exploded. On prices, the chapter 
focuses on those at Amazon Web Services and estimates that from 2009 
to 2016, cloud computing prices fell rapidly, with quickening and double- 
digit declines after 2014. On the IT equipment puzzle, the chapter argues 
that cloud service providers are undertaking large amounts of own- account 
investment in IT equipment and that some of this investment may have been 
missed in the GDP accounts. (In the 2018 Comprehensive Revision of the 
NIPAs, the Bureau of Economic Analysis took steps to better capture this 
own- account investment.)

The final chapter is by Erich H. Strassner and David B. Wasshausen of 
the Bureau of Economic Analysis (BEA): “BEA Deflators for Information 
and Communications Technology Goods and Services: Historical Analysis 
and Future Plans.” With an aim toward facilitating and encouraging further 
price research, the chapter first provides a historical perspective and analysis 
of BEA’s information and communications technology (ICT) prices, includ-
ing an overview of the sources and methods used to construct their quality- 
adjusted prices. The authors then discuss current work and future plans for 
continuing to ensure the accuracy of BEA’s price indexes and correspond-
ing inflation- adjusted measures and provide an update that assesses recent 
progress as reflected in BEA’s 15th comprehensive update of the national 
accounts, released in 2018.

I.3  Conclusion

As in past NBER and CRIW conferences, this one stimulated a rich dis-
cussion by experts in the areas covered by the volume. Discussants’ com-
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ments on the chapters provided extremely valuable insights and stimulated 
further conversation. For these contributions, we thank discussants Barry 
Bosworth, Bronwyn Hall, Shane Greenstein, Jonathan Haskel, Stephen 
Oliner, Mark Roberts, and Scott Stern. As noted above, we also were fortu-
nate to have three dynamic speakers during meals provide insightful com-
ments that dovetailed tightly with the themes of the conference. For these 
comments, we thank Diane Coyle, Baruch Lev, and Eric von Hippel for their 
important contributions to the conference.

In addition, we were fortunate to conclude the conference with a terrific 
panel discussion on next steps. That panel, chaired by Ernst Berndt, included 
Dennis Fixler, Erica Groshen, Ron Jarmin, and Scott Stern. Berndt focused 
on the relationship between the academic/research community and the sta-
tistical agencies. While in the past, academics have offered suggestions for 
how statistical agencies can improve statistics, Berndt suggested that the 
statistical agencies offer suggestions on research topics to academics as well 
as suggestions for organizational collaboration. Fixler reviewed progress 
on measuring innovation made by the Bureau of Economic Analysis in the 
past decade. He also highlighted some key areas in which further progress is 
needed, including ongoing efforts to improve quality adjustment, how best 
to incorporate private data, and how best to integrate and share data with 
other statistical agencies. Groshen picked up on the conference theme of the 
interaction between innovation and organizational structure and empha-
sized that the statistical system needs to be responsive to changes in organi-
zational structures in the economy. Specifically, all data need to have identi-
fiers so that data can be linked, aggregated, and disaggregated correctly. She 
also argued that statistical programs should, where possible, be reengineered 
to replace survey data with administrative data to engender, at least in part, 
increased efficiency and nimbleness in our measurement system. Like Ber-
ndt, Jarmin focused on the importance of collaboration between statistical 
agencies and outside researchers. Echoing Fixler, he noted the importance of 
thinking through how best to link in specialized data from private sources. 
He also highlighted the potential value of collecting different datasets in a 
centralized place for researchers to access as easily as possible given data 
security and resource constraints. Stern focused on the central question of 
the conference: What is innovation? He noted that economists are good at 
measuring inputs to innovation with a presumption that these inputs trans-
late into output that is valued. He also highlighted the importance of better 
understanding innovation that occurs outside firms and more fully thinking 
through how we account for the benefits of innovation. As an example, he 
cited solar energy, which has a modest effect on GDP but is potentially very 
significant in reducing a negative externality.

As organizers of the conference, we believe that important progress was 
made on Abramovitz’s charge to dig deep to better understand our igno-
rance about innovation. As noted, understanding the sources and implica-
tions of innovation is a vast and complex problem. Given the wide range of 
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approaches and data presented and discussed at the conference, we believe 
that further progress will depend on greater collaboration between micro-  and  
macroeconomists, between researchers and practitioners, between the busi-
ness community and statistical agencies and researchers (not least because of 
the immense amount of data possessed by the private sector), and between 
those who directly study innovation and those who work on broader issues 
of  productivity, economic growth, and economic transformation. In our 
view, the problem is too complex for any individual or single approach to 
meet the challenge. It is our hope that the conversations and ideas sparked 
at the conference will be the basis of continued progress and collaboration.
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1.1  Introduction

We are in the midst of a technological revolution of tectonic proportions, 
centered on the rapid advances in the generation, transmission, use, and 
storage of information. Schmidt and Rosenberg (2014) have termed it “the 
Internet Age,” an era in which “the Internet has made information free, copi-
ous, and ubiquitous” (10–11). However, its reach goes beyond the internet 
per se to include major advances in health care and higher education and 
structural changes in finance, banking, and indeed nearly all sectors of the 
economy. Moreover, it is more than just a profusion of new products. The 
information revolution has led to major changes in the organization of firms, 
the location of production, and the way goods and services are distributed. 
One result has been an increase in the well- being of consumers.

The question addressed in this chapter is whether the procedures cur-
rently used to measure GDP adequately capture this increase. There are 
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good reasons to think that they do not.1 The new information goods do not 
always play by the same “rules” as those typically counted in GDP, which 
is an aggregate measure of the goods and services whose value is, for the 
most part, determined by market transactions. Much of the information 
available over the internet is not accompanied by direct transactions, in 
effect at a direct price of zero, so there is no monetary yardstick with which 
to estimate its value to the consumer. Thus while some of this information 
does indeed involve economic activity supported by transactions that are 
captured in GDP, the direct consumer welfare value of the information is 
not counted as GDP.

The statistical system has also struggled with the advent of  new or 
improved goods that deliver superior outcomes per dollar of expenditure. 
Improvements in the effectiveness of  outcomes have occurred in a wide 
range of  goods, from transportation and electronic equipment to health 
and welfare services. Even before the digital revolution, the service sector 
posed problems for economic measurement because output is often mea-
sured in terms of inputs rather than outcomes, and as Griliches (1992, 1994) 
has noted, it is not even clear what actually constitutes output. The digital 
revolution has increased these problems with innovations like minimally 
invasive surgery, which brings an enormous increase in patient comfort at a 
relatively small increase, or even decrease, in resource cost.

The improvement in consumer welfare is the common theme that links 
the measurement problems associated with the “free” information and the 
advent of new and better goods and services. One response has been to focus 
on how current GDP procedures can be adapted to accommodate the range 
of goods involved, but this approach faces an uphill battle. The essential 
problem is about not just how efficiently goods and services are produced 
but also how effectively they are used in consumption to generate welfare. 
The basic hypothesis of this chapter is that the two are not the same.

Our recent research has approached this problem by bringing consumer 
choice into the GDP measurement framework using the standard utility 
maximization framework of  economic theory (Hulten and Nakamura 
2018), extending the “production” approach to GDP by adding a separate 
technology for the consumption of goods. It follows Lancaster (1966), who 
argued that consumer utility is derived from the characteristics of bundles 
of  goods acquired and not from the goods themselves and that there is 
a consumption technology that transforms goods, measured at production 
cost, into consumption “activities” or “commodities” that provide utility. 
This approach allows for an explicit modeling of the wedge that may exist 
between the acquisition cost of the goods acquired and the resulting out-
comes (as with health care), and that outcome may depend on idiosyncratic 

1. For example, Coyle (2014) remarked that GDP was “a measure of the economy best suited 
to an earlier era.”

 EBSCOhost - printed on 2/8/2023 7:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



Expanded GDP for Welfare Measurement in the 21st Century    21

factors like the existing state of health or education, on which the outcome 
is contingent.

Once the consumption technology wedge is introduced into the analysis, 
it is but a short additional step to assume that it may shift over time as the 
innovations introduced by the digital revolution enable consumers to make 
more efficient use of their incomes. We term this form of innovation output 
saving, since a given level of welfare can be achieved with fewer resources, 
but it could equally be called utility augmenting, since it allows consumers 
to get more “bang for their buck.” In effect, this treats the consumption 
technology in the same conceptual way that Robert Solow (1957) adopted in 
his analysis of the productivity residual, which measured costless “resource- 
saving” shifts in the production function. The latter describes an increase in 
the productivity of inputs, while the output- saving innovation refers to the 
“productivity” of the consumption technology.

We then adapt the conventional equivalent and compensating variations 
of standard economic theory to measure the increase in consumer utility 
arising from output- saving innovation. This results in a general equilibrium 
dollar metric for measuring the benefits from innovations that go directly 
to the consumer. We add this dollar metric to conventional GDP to obtain 
an expanded concept of GDP. Expanded GDP (EGDP) provides a natural 
framework for incorporating the results of empirical research on the infor-
mation economy into a broader measure of consumer well- being. It allows 
for the possibility that aggregate economic welfare can increase more rapidly 
than conventional real GDP during periods of rapid innovation.

The next two sections of this chapter set out the conceptual framework 
and rationale for EGDP.2 The goal is to decompose the growth rate of EGDP 
into output saving, resource saving, resource using, and input accumula-
tion. This is essentially the conventional growth accounting framework with 
output- saving innovation added and costless product quality change reclassi-
fied as part of the consumption technology. The material that follows is then 
devoted to an examination of the empirical work that supports each of the 
sources of growth. The final section pulls together the results to address the 
question of whether the implied estimate of EGDP may have grown faster 
than real GDP over the last three decades. Our estimates suggest that it did.

1.2  The Theory of Aggregate Output

1.2.1  Gross Domestic Product and Income

GDP in nominal prices is, with some exceptions, an estimate of the value 
of goods and services that flow through markets in a given year. GDP in 

2. The technical derivations and assumption can be found in our previous paper (Hulten and 
Nakamura 2018) on which the current chapter builds.
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constant prices is a synthetic concept that pulls together the corresponding 
quantities of goods and services. It is not a good itself, though in growth the-
ory it is often treated as such, but an index of aggregate output whose base 
year value equals nominal GDP. GDP is linked to gross domestic income 
(GDI) by the circular flows of inputs and output through product and fac-
tor markets.3 The representation, shown in figure 1.1, divides an economy 
into two basic functions: the production of goods and services and their 
consumption by households, which also supply the inputs into production. 
The linkage between these flows is determined, in the production sector, by 
a production function Q = F(L,K ) that links the flow of output Q to the 
flow of inputs of labor L and capital K via the prevailing technology F(∙); 
on the consumption side of the economy, the utility function U(C,H,W ) 
transforms the output C into utility and guides the decision of how much of 
the available time endowment to allocate to leisure H and how much to labor 
L as well as the decision about how much consumption should be deferred 
to future years by building up wealth W. The outer counterclockwise flow 
shows the stream of payments into and out of the two sectors as they enter 
and exit the markets for outputs and inputs. They indicate, in the top part 
of the diagram, the identity between the amount spent by consumers and 
the amount received by the producer, which together define nominal GDP. 
At the bottom, the producers’ factor cost is the consumers’ income, defin-
ing GDI. The balancing of supply and demand in the product and factor 
markets establishes the equalities of the flows. To complete the picture, the 
revenue that flows into the business side is equal to the factor cost that flows 

3. See Patinkin (1973) for a discussion of the structure and history of the circular flow model.

Fig. 1.1 Circular flow diagram for GDP and GDI
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out, and the income that flows to the consumer flows out as expenditure on 
products. The resulting GDI equals GDP, some $20 trillion in the United 
States as of mid- 2018.

Nominal GDP is measured in the prices prevailing in each year. It sums 
the product of the price of each good and the corresponding quantity, just 
as nominal GDI sums the product of the price of each input and its quantity. 
An estimate of the price change is typically used to deflate the nominal value 
to arrive at the corresponding quantity, which is represented in figure 1.1 
by the inner clockwise flow that tracks the movement of output and input 
quantities between producers and consumers. Prices are represented implic-
itly in figure 1.1 by the intersection of the supply and demand functions in 
the markets for inputs and outputs. They play a central role in regulating 
the composition of the flow of goods. They also play a key role in efforts 
to introduce the benefits of new and improved goods into the circular flow 
representation of the economy.

The aggregate nature of GDP and GDI masks a wealth of detail in the 
underlying input- output structure of the economy. Thus GDP is not a mea-
sure of  the entire production of  goods by the constituent sectors of  the 
economy, since sectoral production also includes the intermediate goods 
delivered to other industries as inputs. The consumption, investment, gov-
ernment, and net exports components of GDP are “final demand” goods 
available for current or future consumption, domestic and foreign. This is a 
point that should not be ignored when assessing the impact of innovation on 
the economy, since the innovation may appear very differently when it enters 
a sector of the economy than when it impacts final demand (e.g., Hulten 
1978). The I- O structure of the economy also implies that GDI is equal to 
the total value added of labor and capital and not the total cost of produc-
tion across sectors, which also includes the cost of the intermediate inputs.

Household production deserves special comment given the attention it 
has received in the literature on the mismeasurement of GDP. One prob-
lem with accounting for household production is its conflation with goods 
consumption, since both occur within the home and often involve the same 
agents. The boundary between the production of a meal in a restaurant and 
the same meal produced at home by the same chef is not so much a matter 
of production as the method of distribution.

1.2.2  Capital Formation

GDP and GDI are snapshots of the size of the aggregate economic flows 
in a time period. The bulk of US GDP goes to the provision of current wants, 
while the investment component represents the use of  current resources 
to satisfy future consumption. Provision for future wants is, however, not 
explicitly represented in the traditional circular flow framework, although 
this need not be the case. Figure 1.1 shows that the traditional framework 
can be expanded to include the flows of investment from the product mar-
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kets to a separate capital account, in which there is the producers’ stock of 
capital K on the one hand and the consumer wealth W that it implies on the 
other. This wealth arises from the decision by consumers to defer current 
consumption by saving, which diverts resources away from the production 
of consumption goods to the production of capital goods. This investment 
adds to the existing capital stock and builds the future capacity needed to 
produce consumption goods in the future. The result is shown in the area in 
the center of figure 1.1 labeled “asset pool.”4

The pool of the productive capital contains different types of tangible 
capital (equipment and structures) as well as intangible capital. Intangible 
capital includes R&D, investments in product development and marketing, 
customer support, and human resources and organizational development. 
These investments are intended to develop new or better goods, processes, 
and markets on the one hand and to improve the organization and man-
agement of firms on the other. Until quite recently, expenditures for intan-
gible capital except computer software (only added in 1999) were treated as 
intermediate inputs and thus ignored in the circular flow representation of 
the aggregate economy. This changed in 2013 with the capitalization by the 
Bureau of Economic Analysis (BEA) of R&D and expenditures for artistic 
originals. This move added 3 percent to 4 percent to US GDP that had there-
tofore gone uncounted, but this amount accounts for less than half  of the 
list of intangibles advocated by Corrado, Hulten, and Sichel (2005, 2009).

1.3  GDP and Consumer Welfare

1.3.1  Diagrammatic Exposition of Innovation and GDP

The circular flow model is a descriptive framework that links the flow of 
goods and payments in the economy. The role of both the utility and pro-
duction functions is to transform the flow of inputs and outputs that passes 
through their segments of the economy. They are treated symmetrically in 
this process. However, this is emphatically not the way they are treated in 
standard economic theory, where the maximization of utility is the objective 
of economic activity and the production technology is a constraint on the 
achievable outcome. A schematic representation of this optimization exer-
cise is shown in figure 1.2, where the first three links show labor and capital 
being transformed by technology into output (real GDP) via the produc-
tion function. The output is then transferred to the consumer through the 
product market, in which the volume and price of each good are determined 
by the interaction of supply and demand. Once the price and quantity of 
each good are determined, aggregate GDP follows immediately. Under the 
standard optimization assumptions, the resulting GDP represents the maxi-

4. This figure is based on figure 2 of Corrado and Hulten (2015).

 EBSCOhost - printed on 2/8/2023 7:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



Expanded GDP for Welfare Measurement in the 21st Century    25

mum attainable utility. An increase in real output Q is assumed to increase 
utility, and a proportional increase in Q may result in an equal proportional 
increase in utility (but only if  the marginal utility of real income equals one). 
In this case, a comprehensive measure of real GDP is a sufficient statistic for 
estimating the increase in well- being (in the sense of the utility function).

Innovation affects output in two ways in this setup. The production func-
tion can shift upward for a given combination of labor and capital, causing 
the inputs to be more productive. This is the situation envisioned by Robert 
Solow in his 1957 formulation of the total factor productivity (TFP) resid-
ual, in which the shift is treated as an autonomous process that is costless in 
terms of the need for resources (it falls as “manna from heaven”). It includes 
innovation due to inspiration and tinkering but mainly represents knowledge 
spillovers, which Nordhaus (2005) argues is the primary source of macro-
innovation. It is labeled “resource- saving” in the figure due to the costless 
improvements in productivity it enables. The second source of innovation 
shown in the figure is systematic investment in innovation. This involves the 
intangible capital noted in the preceding section. Because it implies a sys-
tematic commitment of resources, it is labeled “resource- using” in the figure.

There is a further distinction between innovation that increases the quan-
tity of output and innovation that increases the quality of existing goods or 
introduces new goods that is implicit in figure 1.2. The former is typically 
called “process- oriented” technical change, while the latter is “product- 
oriented.” This is the rationale for distinguishing between more or “better” 
output in the GDP part of the figure, reflecting the convention that “bet-
ter” is typically expressed as more output for purposes of measurement, to 
the extent that an adjustment is actually made.

1.3.2  GDP Expanded to Allow for Direct Consumption Benefits

Most thinking about GDP has focused on figures 1.1 and 1.2. Indeed, 
figure 1.2 illustrates the point at which the conventional measurement frame-
work leaves off. However, an increase in the consumption efficiency and 

Fig. 1.2 Resource- saving and resource- using innovation
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the increase in well- being it enables do not fit easily in the conventional 
framework. To address this problem, we have proposed expanding the figure 
above to include a separate technology for consuming the goods obtained 
from producers. It follows Lancaster’s 1966 “New Approach” to consumer 
theory in which consumer utility is derived from the characteristics of the 
goods acquired and not from the goods themselves, and there is a consump-
tion technology that transforms goods, measured at production cost, into 
consumption “activities” or “commodities” that provide utility.

This is relevant for the issues at hand, since once the idea of a separate 
technology for consumption is introduced, the distinction between output 
and outcomes has a natural theoretical basis.5 Moreover, it is reasonable 
to expect that the technology might change over time in ways that make 
consumer choice more efficient, as, for example, when an increase in infor-
mation allows consumers to derive more utility from the amount of money 
or time expended. This form of innovation is “utility- augmenting,” since it 
enables an increase in consumer welfare for the same amount of resources, 
or equivalently, it is “output- saving,” since the prior level of welfare can be 
achieved with fewer resources. As a concrete example, consider a free social 
media app that steers drivers away from traffic jams, enabling them to reach 
their destinations more swiftly with less expenditure on gasoline. The app 
lets consumers make better driving decisions, but there is no visible transac-
tion. Without the expansion of GDP that we propose, the app shows up in 
GDP as a decline in output.

Figure 1.3 adds a consumption technology to the schema set out in figure 
1.2. The concept of GDP shown in the middle of the figure is now real output 
measured at resource cost. This is the output acquired at its marginal cost of 
production and is the output that is transformed by the consumer into the 
Lancaster commodities that yield utility. Output- saving/utility- augmenting 
innovation operates as a link between resource output and commodity util-

5. The importance of the interaction between producer and consumer is also emphasized 
by Peter Hill (1999).

Fig. 1.3 Innovation including output- saving consumption technology
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ity and is the source of the wedge between GDP growth and the increase in 
well- being. The size of this wedge is also affected by costless improvements 
in the quality of the resource output transferred to the consumer. The cost-
less feature of quality change means that the marginal resource cost of a 
higher- quality version of a good is zero, and the benefit in terms of increased 
utility goes directly to the consumer as opposed to the conventional practice 
of treating it as simply more of the older version of the product. In other 
words, the conventional approach implicitly treats costless improvements 
in the product quality as a shift in the production function (resource- saving 
technical change), whereas we propose to treat it as a shift in the consump-
tion technology (output- saving technical change).

The expansion of conventional output from figure 1.2 to figure 1.3 can be 
formalized as a change in the utility function from U(Qt) to U[c(Qt,t)]. The 
consumption technology c(Qt,t) replaces Qt, and the time- shifter t is present 
in the consumption technology to allow the transformation of resource- 
based goods into Lancaster commodities to become more efficient over time, 
yielding more utility per unit output. It parallels the productivity- enhancing 
manna- from- heaven role played by the t- shifter in the Solow production 
function. The consumption technology c(Qt,t) models the wedge between 
the two sides of the economy and introduces a conceptual richness that GDP 
alone cannot achieve. In addition, it can be extended to accommodate addi-
tional state variables, as in section 1.8, where we discuss state contingency 
in health and education.

1.3.3  The Consumption Technology and Expanded GDP

What exactly does a separate consumer technology mean for the measure-
ment of GDP? Is there a dollar metric of the size of the output- outcome 
wedge? The problem is that the right- hand side of figure 1.3 links output 
in constant dollar prices to utility whose natural units are unobservable 
utils. However, this is a familiar problem in economic theory. The standard 
solution is to appeal to the compensating and equivalent variations (the CV 
and EV ) associated with the utility maximization problem as monetary met-
rics of the distance between two indifference curves on the utility function. 
The CV and EV are measures of the willingness to pay for moving from a 
lower to a higher indifference curve, thereby converting a change in utility 
into a monetary value whose units are commensurable with those of GDP.6 
Figure 1.4 shows how this might work.

The production possibility frontier PPF0 for two goods, X and Y, is shown 
in this figure at an initial point in time (t = 0). It represents the maximal 
combinations of X and Y that can be produced from the labor and capital 

6. Since our objective is to obtain a dollar metric of output- saving innovation that can be 
incorporated into the conventional GDP framework, the question of how much happier the 
consumer feels is not a concern in this chapter. How much the consumer is willing to pay for 
the change in utility is.
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available in that year given the prevailing technologies for producing the 
goods (the first three stages of figure 1.3). U0 is the highest attainable indif-
ference curve of the representative consumer, and the tangency between this 
indifference curve and the PPF0 constraint is located at the point A associ-
ated with the optimal X0 and Y0. The tangency defines the equilibrium prices, 
PX

0  and P0
Y, and the line P0

XX0+P0
YY0, defines GDP0. The slope of the GDP 

line at A can therefore be interpreted as the ratio of the marginal costs of 
producing X and Y but also as the ratio of the marginal utilities of consum-
ing these goods.

The growth of labor and capital, plus resource- saving and resource- using 
technical change, causes the PPF0 to shift upward to PPF1 between periods t 
= 0 and t = 1. An equilibrium is established at the point B on the expansion 
path 0G at a higher indifference curve U1r with an amount of real GDP1r = 
P0

XX1r + P0
YY1r. The subscript r is used here to denote that the quantities of 

X and Y are measured in resource units. The dollar value of the real growth 
occurring between the two periods equals GDP1r – GDP0r, and the rate of 
growth is (GDP1r – GDP0r,) /GDP0r. The allocation of this rate among the 
growth in the inputs and technology can be estimated using the Solow (1957) 
residual method. GDP1r – GDP0r in this diagram is also the change in the 
amount of real consumption expenditure.

This is where the usual “theory” of GDP leaves off, as in figure 1.3. When 
the utility- augmenting Lancaster consumption technology is included in the 
analysis, a second source of value comes into play. An increase in the amount 
of information freely available for consumer choice or a costless improve-
ment in product quality causes the utility function to shift outward to U1e in 
figure 1.4 even though output in resource units (X1r,Y1r) remains unchanged, 
as do real GDP1 and prices (P0

X,P0
Y ). At these prices, the tangency between 

U1e occurs at the point C. This tangency implicitly defines a new frontier 

Fig. 1.4 GDP, EGDP, and the compensating variation
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labeled EPPF1 to emphasize that it is the effective- output possibility frontier 
associated with the production possibilities frontier PPF1. A pair of virtual 
outputs (X1e,Y1e) are defined in which the outputs are now denominated 
in efficiency units (hence the subscript e). This convention transforms the 
units of X and Y from the cost of the resources they embody into the units 
of the utility they convey. If  the transformation results in the same propor-
tion θ for both goods, as in figure 1.4, the result is X1e = (1 + θ)X1r, and Y1e 

= (1 + θ)Y1r. This is the phenomenon we have called utility- augmenting (or 
output- saving) technical change: an increase in utility for the same amount 
of resource- based output (occurring in this example at the rate θ).7

A little algebra establishes that the shift in utility from U1r at B to U1e at C 
is related to θ in the following way: U1e = (1 + θ)U1r, under the simplifying 
assumptions of figure 1.4 so that θ = [(U1e) – U1r)] /U1r = ΔU /U. In other 
words, the rate of change of output- saving technical change is associated 
with the rate of change in utility between points B and C in figure 1.4. This 
is hardly surprising in view of the way we have defined output- saving tech-
nical change. A more important result emerges from the fact that the line 
tangent to U1e at C can be used to define what we have termed expanded 
GDP. EGDP1 = P0

XX1e + P0
YY1e. It then follows that EGDP1 = (1 + θ)(P0

XX1r 
+ P0

YY1r) = (1 + θ)GDP1. In other words, output- saving technical change 
leads to a grossed- up form of real GDP as conventionally defined. Here is 
where the CV and EV measures of the willingness to pay enter the analysis. 
Since relative prices are assumed not to change during the move from B to 
C, we denote the CV /EV by V and note that it is the monetary “distance” 
between the lines EGDP1 and GDP1. In other words, V = EGDP1 – GDP1 = 
(1 + θ)GDP1 – GDP1, from which it follows that V = θGDP1 and that θ = V/
GDP1. This result is significant for the issues at hand because it shows that 
the unobservable rate of output- saving technical change, θ, is potentially 
observable through the use of consumer surplus techniques.8

It is also important to emphasize that the definition of V used in arriving 
at EGDP is a general equilibrium concept involving both X and Y and that 
V must be estimated accordingly. The implication of this point is not readily 
apparent in figure 1.4 because it is drawn with indifference curves that shift 
in a parallel way and because the θ is the same for both X and Y. In this 

7. Figure 1.4 is a simplified formulation from Hulten and Nakamura (2018). It is meant to 
illustrate the underlying role of a utility- enhancing shift in the consumption technology in a 
general equilibrium context. We have adopted a utility function that embodies simplifying 
assumptions. The indifference curves of  U(X,Y ) are homothetic (radial blowups of  a base 
curve), so the shifts have a neutral effect on the consumption Y /X ratio when relative prices 
do not change.

8. V in these equations is defined as the distance between the indifference curves in two time 
periods, and θ refers to the rate at which the consumption technology shifts over the interval. 
The interval may refer to one year (the simple case analyzed in this section) or the cumulative 
effects of many years. In general, V should not be used as a direct measure of θ and therefore 
should not itself  be added to annual GDP to arrive at EGDP unless adjusted for the time 
horizon involved to get at θ.
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situation, the expansion path of the economy, 0G, is a straight line, and the 
price ratio PX/PY is constant. When there are separate rates for each good, 
θX and θY , the price ratio PX/PY can change, as can the expansion path. In 
this case, the EV and CV differ, since they reflect different ratios. This is a 
familiar problem, but it implies that a partial equilibrium estimate of either 
θX or θY separately holding the price of the other good constant, VX or VY, 
does not capture the full impact of the change in the θ. Moreover, the sum of 
the resulting partial equilibrium VX or VY is not equal to the general equilib-
rium V except under very strong restrictions on the utility function (Varian 
1992). This, too, should be kept in mind when evaluating studies that add a 
partial equilibrium estimate of the willingness to pay for various technology 
goods to annual GDP.

1.3.4  Information and Product Quality Change as Sources of 
Output- Saving Innovation

The rationale for output- saving innovation has thus far been presented 
largely in terms of the benefits of increased information for efficient con-
sumer choice and the associated V as a monetary metric of those benefits. 
However, the output- saving effect is more general in its scope. Two types 
of  the output- saving technical changes can be distinguished. The first is 
product- disembodied innovation, μ, which includes the benefits of increased 
information but also includes costless improvements in outcomes in the 
provisions of  many services (e.g., improvements in convenience, the dif-
fusion of  best- practice techniques in the service sectors). The second is 
product- embodied innovation in consumption goods, which itself  comes in 
two forms: improvements in the design of existing goods (quality change) 
and the advent of innovative new goods that embody characteristics not seen 
before or not available in past years.

Quality change and new goods share the common feature that they are 
goods that embody desirable new features. However, they differ in the way 
the features affect utility. In the first, new varieties of existing goods enter the 
market with superior characteristics, and it is common to treat the superior 
variety as though it were equivalent to having more of the inferior variety it 
replaces. In terms of figure 1.4, this treats the good X1e as a multiple (1 + β)
X0, holding μ and λ constant and letting β denote the rate of quality change 
(also, Y1e is a multiple (1 + β)Y0). In this formulation, “better” is assumed to 
be equivalent to more. This approach incorporates product quality innova-
tion at a rate β into the analysis of figure 1.4 symmetrically with μ. Both 
are calibrated using the equivalent increase in the bundle (X0,Y0). The sum 
of the two equals the rate of output- saving innovation—that is, θ = μ + β.

The compensating variation V developed in figure 1.4 provides a met-
ric for a generic θ but could in principle be applied to μ and β separately. 
However, because the latter is embodied in products that are transacted in 
markets, there is another avenue of approach to the problem of estimating 
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β based on prices. It exploits the fact that, because the change in utility is 
assumed to be costless, the amount of money spent to purchase the quanti-
ties (X1r, Y1r) is the same as the amount associated with (X1e, Y1e)—that is, 
that P0

XX1r + P0
YY1r = P0

XeX1e + Y1e. The PXe and PYe are the shadow prices 
of the effective outputs X1e and Y1e and are denominated in equivalent units 
(we assume here that there is no pure price inflation, so the accounting can 
be done in base- year prices). Since the same expenditure P0

XX1r allows the 
consumer to acquire X1e, P0

Xe, P0
XX1r = P0

XeX1e. It then follows that P0
X /P0

Xe is 
equal to the X1e /X1r, which in turn equals (1 + β). Thus as utility increases by 
the factor β, the cost of acquiring this utility falls. This formulation reduces 
the problem of estimating β to the problem of estimating the relevant price 
ratio. We will revisit this approach in the sections that discuss the associated 
empirical procedures and problems.

One further point is important here. Because output- saving technical 
change means that each dollar spent on either good “buys” more utility, this 
increase would normally imply that more of the good subject to technical 
change would be demanded by consumers and that the quantity demanded 
would increase to the point at which the gap between the new marginal utility 
and acquisition price would be extinguished. However, the opportunity for 
this arbitrage does not exist in all cases. When a superior pharmaceutical 
drug arrives in the marketplace, the individual consumer does not respond 
by buying more of the drug until the marginal utility equals the old one but 
instead purchases the new standard regimen. Nor do people necessarily usu-
ally purchase more personal computers as their efficiency increases and the 
efficiency price falls; there may even be a shift to less- expensive tablets. There 
are many situations in which the market mechanism does not arbitrage the 
benefits of innovation, and in this case, there will be a gap between the goods 
measured at cost of acquisition and the corresponding benefits received, and 
this gap may persist, giving rise to utility- enhancing innovation.

1.3.5  Quality Change Embodied in New Goods

The treatment of quality change in its β form relies on the assumption 
that “better” can be measured in terms of more of an inferior good. This is 
a tidy solution that locates β in the theoretical framework of figure 1.4 and 
is useful for empirical work. But “better as more” embodies the paradox 
that a good that is sufficiently superior that it needs separate treatment is 
also essentially a multiple of the replaced good. However, it may be more 
accurate to regard the superior variety as a new good that offers capabilities 
that the previous version did not. Again, a pharmaceutical drug with a high 
degree of efficacy does not achieve the same outcomes as multiple doses of 
an earlier treatment with a low degree of efficacy.

Unfortunately, treating a significant change in the β quality as a new good 
leads to a host of other problems. From a theoretical standpoint, a new good 
Z cannot be located on the XY axis of figure 1.4. It appears on a new Z axis 

 EBSCOhost - printed on 2/8/2023 7:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



32    Charles Hulten and Leonard I. Nakamura

and becomes incorporated in GDP as PXX + PYY + PZZ. Because of the 
sudden appearance of the Z, there is no prior price or quantity with which 
to estimate the gain in consumer utility from its arrival. The Hicks- Rothbart 
solution is to regard quantity of Z as zero prior to its introduction because 
its theoretical price was too high and there was zero consumer demand. The 
solution posits the existence of a “reservation” price that is just low enough 
to attract consumers to the market for Z. The difference between the reserva-
tion price and the actual price prevailing when the good is introduced is then 
used as a measure of the increase in utility resulting from the arrival of Z. 
The empirical problem is then to estimate this reservation price.

It should also be noted that the implementation of the reservation price 
approach requires econometric modeling. This, in turn, requires assump-
tions and procedures that lie outside of the normal sphere of data measure-
ment. It is also time consuming and must be repeated for each new good, so 
it is not economical for use in statistical programs that produce annual data 
series that must be internally consistent over time. This problem applies to 
the Bureau of Labor Statistics (BLS) price program, and they thus use an 
imputation procedure that, as we shall see, has the general effect of linking 
the new good to the subcategory to which it is assigned at, or near, the mean 
value of the other goods in the subcategory. This way of incorporating new 
goods into the price indexes used to compute real GDP is conceptually the 
same as the way it treats quality change in existing goods, except that it 
refers to quality change in a class of goods that may or may not be closely 
related. This approximation procedure may thus miss much of the value of 
the innovation embodied in truly new goods like the internet.

1.4  The Estimation of Innovation and EGDP

1.4.1  An Overview

The Industrial Revolution and its aftermath have resulted in a dramatic 
increase in income. Angus Maddison’s 2007 estimates of world GDP since 
1700 suggest that real- world GDP per capita increased by almost ninefold 
over the period 1700–1998, with most of the increase coming during the 
later stages of the Industrial Revolution. Moreover, the increase from 1700 
to 1998 was by far the largest in the countries that led that revolution. The 
increase in the countries of Western Europe was nearly 18- fold, and that in 
the United States over the shorter 1820–1998 period was estimated to be 
22- fold, leaving the rest of the world far behind. Moreover, estimates of real 
GDP per capita in the national accounts (table 7.1) show that real GDP per 
capita has increased by over 250 percent from 1950 to 2017 and by around 
50 percent from the inception of the internet in the early 1990s to 2017.

The centuries since the start of the Industrial Revolution also witnessed 
extraordinary improvements in the well- being of individuals. The world of 
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1820 lacked effective medical treatments for most serious afflictions. The 
discovery of  the germ theory of  infection by Joseph Lister was a major 
step forward, ultimately persuading surgeons they should wash their hands 
prior to surgery. The development of effective forms of anesthesia was also 
a huge advance in medical treatment (today, it is hard to imagine surgery 
without it). Antibiotics in the 20th century allowed the treatment of routine 
infections that previously led to many deaths. Similarly, the development 
of vaccines brought fearsome diseases like smallpox, diphtheria, tetanus, 
yellow fever, and polio more or less under control, with enormous increases 
in human well- being. The medical revolution proceeds apace with impor-
tant breakthroughs in surgery (noninvasive, robotic, and nano). Diagnostic 
procedures have evolved from the simple X- ray (a breakthrough in its day) 
to CT scans and MRIs. These innovations have had a major impact on life 
expectancy, which increased from 48 years to 78 years over the course of the 
20th century. How much GDP would society be willing to sacrifice in order 
to protect these gains?

Significant increases in welfare also occurred in other areas. The first half  
of  the 19th century was a period without electricity, flush toilets, central 
heating, telecommunications, and automobiles and aircraft. The growth in 
labor- saving home appliances, like automatic washing machines and refrig-
eration, brought large and direct gains in the well- being of families, as did 
residential air conditioning. Many advances have come since the mid- 20th 
century. As recently as 1950, a quarter of America’s homes had no flush toi-
let, according the US Census Bureau housing data. In 1990, only 1 percent 
of US homes lacked complete plumbing facilities, but in 1940, nearly half  
lacked complete plumbing. Improvements in sanitation were also important 
in increasing public health. In 1960, about one in five households had no 
telephone available. Wood was used as a major heating fuel in 1940 (23 per-
cent) but virtually disappeared by 1970 (only 1.3 percent). Robert Gordon 
(2016) has chronicled the gains in welfare that arose from many of these 
innovations.

The rapid uptake of digital goods is significant in this regard. According 
to Census estimates, the fraction of adults with internet use at home went 
from one in five in 1997 to nearly three- quarters in 2012. Moreover, estimates 
by the Pew Research Center show that the percentage of adults who use at 
least one social media site increased from less than 1 in 10 in 2005 to two- 
thirds in 2015, and other Pew surveys found that the market penetration 
of  smartphones more than doubled from 2011 to 2016, from 35 percent 
to 77 percent.9 The rapid uptake was matched by a dramatic increase in 
speed and capacity. In 1988, internet speeds on dial- up modems were 9.6 Kb, 
while 2G cellular speeds were about the same. Now broadband speeds up to 
1 gigabit are available in a few locations, and 100 Mb and higher speeds are 

9. US Census Bureau (2014); Perrin (2015); Pew Research Center (2017); Anderson (2015).
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widely available. And 4GLTE cellular speeds are 100 Mb, and these too are 
in wide use. Over a 27- year period, from 1988 to 2015, speeds have gone up 
some 10,000 times, or a 40 percent annual rate.

1.4.2  Sorting Out the λ, μ, and β Effects

The overview of  the preceding section suggests that a high degree of 
innovation activity accompanied a sustained growth rate of real GDP. The 
question raised in this chapter is whether the gains in individual well- being 
are fully valued by the corresponding gains in income per capita and, if  not, 
how much additional welfare was generated by a shift in what we have called 
the consumption technology. In more precise parametric terms, innovation 
enters the picture via the λ, μ, and β. The remaining sections of this chap-
ter review a more detailed look at the link between the growth in real GDP 
per capita and the growth in consumer well- being and EGDP, with a view 
toward assessing their potential magnitude and the implied biases vis- à- vis 
current statistical practice.

The parameters λ, μ, and β and intangible capital are part of the larger 
framework underlying the figures. We have studied this framework in the two- 
sector (X,Y ) case, but the problem at hand involves the impact of innovation 
on the growth rates of aggregate real GDP per capita and individual welfare, 
so it is appropriate to reformulate the problem in a one- sector form. The 
various components of interest come together to form the basic framework 
linking the growth in welfare per capita, u – ℓ, to the growth in output per 
worker, (qr – ℓ), and the parameters of output- saving innovation. This yields 
the basic economy- wide sources- of- welfare- growth equation of this chapter:

(1) u – ℓ = μ + β + (qr – ℓ).

This equation indicates that the representative person’s welfare depends on 
both the amount of income they have and how well they use it. (The vari-
able qr– ℓ here represents the growth rate of output per worker measured at 
resource cost, not effectiveness.) The term q r – ℓ can be further decomposed 
to yield the conventional Solow sources- of- output- growth equation:

(2) qr – ℓ = λ + vK(k – ℓ) + vN(n – ℓ).

This second equation indicates that the growth rate of output per worker is 
composed of the following elements: the growth rate of tangible capital per 
worker (k – ℓ) and the growth rate of intangible capital per worker (n – ℓ), 
each weighted by their respective income shares, vE and vN. These income 
shares are proxies for the corresponding elasticities of output in the standard 
Solow sources- of- growth framework. The λ measures the resource- saving 
technical change, while vN(n – ℓ) is a measure of resource- using intangible 
innovation.10

10. A more detailed description of the sources- of- growth model and the role of the income 
shares is given in the survey by Hulten (2001).
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Two elaborations of (1) and (2) are necessary for the empirical literature 
described in the following sections. As previously noted, the statistics on real 
GDP in the United States embody a correction for quality change, implying 
that the observed growth rate is qe = qr + β if  the correction for β is complete 
and accurate. This correction implies, in turn, that equation (1) must also 
be modified to account for the fact that the use of qe as the output growth 
means that β is suppressed into output and does not appear explicitly in (1), 
with the result that

(3) u = μ +(qe – ℓ) = λe +vK(k – ℓ) + vN(n – ℓ).

The qe- based TFP residual conflates the true λ productivity, the shift in 
the production function, with the quality effect, with the result that λe = λ 
+ β. In other words, the use of real GDP, as presented in official statistics,  
has the effect of concealing the true shift in the production function, unless 
the magnitude of β is known. However, the size of β is nowhere shown in 
the official statistics.

A second modification of this framework is needed because, as we shall 
see, the β that gets embedded in qe and λe is estimated with a significant 
degree of bias, giving β′ instead. The bias in β results in a corresponding bias 
in output growth, which becomes qe′ = qr + β′. When this biased estimate is 
used in place of qe, the growth equation becomes

(4) u = θ + [β – β′] + (qe′ – ℓ) = λe′ + vK(k – ℓ) + vN(nℓ).

The qe′- based TFP residual now conflates the productivity effect and the 
biased quality effect, with the result that λe′ = λ + β′. As before with (3), 
neither the biased β′ nor the degree of bias [β – β′] is recorded in official 
statistics. However, there are numerous occasional studies of the bias in price 
statistics that can be used to get an impression of its potential magnitude.

1.5  The Supply- Side Contribution to Overall Growth

1.5.1  The Sources of Output Growth

The sources- of- growth results for the US private business economy, based 
on equation (4), are shown in table 1.1 for the period 1948 to 2007. A version 
of this sources- of- growth model is presented in this table, derived from stud-
ies of Corrado and Hulten (2010, 2015), where it is shown that the annual 
growth rate of private business efficiency output per unit of labor over the 
period 1948 to 2007 averaged 2.4 percent. The sources of this growth are 
reported in the rows of table 1.1, which correspond to the elements on the 
right- hand side of (2) (with the addition of a term that corrects for changes 
in the composition of the labor force, due largely to increased educational 
attainment). For the period as a whole, this decomposition reveals that the 
deepening of tangible capital accounted for 27 percent of the 2.4 percent out-
put growth, of which 10 percent came from information and communications 
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technology (ICT) equipment per worker hour. Intangible capital contributed 
17 percent, of which only 4 percent came from formal R&D. Changes in 
the composition of the workforce added 8 percent, while the TFP residual 
explained by the other sources made the largest contribution at 47 percent.

These estimates refer to the period as a whole. A look at the subperiods 
reveals some important within- period trends. It is significant for the tax-
onomy of innovation presented in section 1.3 that the long- term trend in 
TFP moved downward since the 1960s. TFP grew at an average annual rate 
of 1.8 percent over the period 1948 to 1965 and explained almost half  of the 
growth rate of output per worker hour; the growth rate fell to 1.2 percent in 
the most recent period, 1995 to 2007, and its contribution to output growth 
fell from 60 percent to just over 40 percent. The declining trend in TFP is 
also evident in figure 1.5, which plots the time trend in the four- year moving 
average over the slightly longer period up to 2011 (because of the moving 
average, the initial year shown is 1955). The growing gap between TFP and 
output per worker hour indicated a declining relative contribution of TFP 
to the latter.

However, while the trend in TFP is downward, the contribution of intan-
gible capital deepening, vN(n – ℓ), shown in table 1.1, followed a generally 

Table 1.1 Sources of growth in US private business sector (average of annual growth rates)

  1948–2007  1948–73  1973–95  1995–2007

1. Output per hour [qe—ℓ] 2.41 2.99 1.56 2.76

Percentage point contribution to output 
per hour of:

2. Tangible capital [sK(k – ℓ)] 0.65 0.76 0.52 0.67
Memo: ICT equipment 0.23 0.11 0.28 0.37

3. Intangible capital [sN(n – ℓ)] 0.42 0.30 0.39 0.74
Memo: R&D (NSF/BEA) 0.10 0.08 0.07 0.17

4. Labor composition 0.20 0.15 0.26 0.2
5. TFP [β′ + λ] 1.14 1.78 0.39 1.16

Percentage of total contribution to output 
per hour of:

2. Tangible capital 27% 25% 33% 24%
Memo: ICT equipment 10% 4% 18% 13%

3. Intangible capital 17% 10% 25% 27%
Memo: R&D (NSF/BEA) 4% 3% 4% 5%

4. Labor composition 8% 5% 17% 7%
5. TFP  47%  60%  25%  42%

ICT refers to information and communications technology equipment, BEA to the Bureau of Economic 
Analysis, NSF to the National Science Foundation, TFP to total factor productivity. The latter includes 
both β′ and λ terms, since the hyperoutput concept, Qe, is used in these data rather than resource- based 
output, Qr. The procedures used to estimate product quality innovation are, at best, incomplete, hence 
the β′ rather than a true β.
Source: Corrado and Hulten (2010, 2015).
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upward trend. An important implication of these contrasting trends is that 
there has been a shift away from costless resource- saving innovation (aug-
mented by the product- quality part of what we have termed output- saving 
innovation) toward costly resource- using innovation, as represented by 
vN(n – ℓ). The sum of the two has not changed all that much, but the welfare 
implications have. Resource- saving innovation is a “free lunch” in terms of 
the direct increase in welfare, while resource- using innovation represents 
a sacrifice in consumption. The free lunch is the better alternative from 
the welfare standpoint, but it is really not a choice variable. On the other 
hand, it is no great surprise that as technological complexity rises, innova-
tion requires more than serendipity to be sustained, hence the increased 
importance of systematic and focused investments in innovation and the 
associated equipment and learning.

Resource- saving and resource- using technical changes are not the only 
factors in the innovation process. ICT equipment has been an important 
coinvestment of intangible capital during the digital revolution, as has the 
increase in the composition of the labor force toward more educated and 
highly skilled workers. When the growth in the contribution of human capi-
tal is combined with the ICT term and then added to the intangible capital 
term, the result shows a substantial change from the period 1948–73 to 
1995–2007, from 0.56 percent in the earlier period (19 percent of overall 
growth) to 1.31 percent (a 47 percent contribution). Thus the relative con-
tribution of TFP has declined, but innovation and its correlates have not, 
although the composition has changed.

1.5.2  Critique of the Growth Accounting Results

Growth accounting produces estimates that are by far the most secure 
results in the empirical chain linking resources and technology to EGDP in 
figure 1.3. They are supported by national accounting data assembled by 
the BLS in its official productivity estimates. They are, however, inevitably 

Fig. 1.5 Growth in output per hour and TFP, US NFB, 1955–2011
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not without problems. Indeed, Abramovitz (1956) famously noted that the 
TFP residual is, in a sense, a “measure of our ignorance,” since it sweeps 
together all the factors that affect output growth that cannot be measured 
explicitly. These include not only the effects of costless advances in technol-
ogy, which are partly due to spillover externalities of technical knowledge 
whose property rights are hard to protect, but also nontechnological fac-
tors such as the omitted variables like infrastructure capital, nonmarket but 
resource- using output from household production, and chronic biases in 
the estimation of service- sector output. And even if  the TFP residual were 
accurately measured, there is still the identification problem of sorting out 
the separate magnitudes of β and λ.

There is also a troublesome identification problem arising from the failure 
to account adequately for the effect of  fluctuations in aggregate demand 
on the intensity of use of labor and capital. Capital is measured as a stock 
of accumulated past investment (adjusted for depreciation) rather than as 
a flow of actual services emanating from the stock. The stock itself  does 
not change much during fluctuation in demand, but the flow of productive 
services does, and the degree of capital utilization changes over the business 
cycle. As a result, the gap between the stocks and flows is forced into the 
residual measure of TFP, causing the procyclicality of TFP seen in figure 
1.5. It is for this reason that the time period covered in table 1.1 stops at 
2007, the year before the Great Recession. Thereafter, TFP growth dropped 
significantly and, indeed, turned negative, indicating a contraction in the 
level of productive efficiency.

A negative growth rate of TFP is plausible during sharp downturns in eco-
nomic activity, but it is hard to reconcile with its conventional interpretation 
as an indicator of technical change over longer periods of time. However, 
this is precisely what happens in some individual industries, notably those 
engaged in the production of services. Another part of the BLS productivity 
program presents growth accounting estimates for individual industries in 
the US economy based on a variant of (3) in which output, gross of deliver-
ies to other industries, is decomposed into the share- weighted contribution 
of the inputs, now expanded to intermediate inputs obtained from other 
industries. The concept of λ at the industry level and the estimate of residual 
TFP reflect changes in the efficiency with which gross output is produced. 
The resulting TFP growth is found to be zero for the service sector (North 
American Industry Classification System [NAICS] industries 54 through 
81) over the period 1987–2015. It is actually negative for the shorter period 
1987–2007. Moreover, the TFP annual growth rate is negative for the entire 
1987–2015 estimates for some service subsectors: Educational Services 
(−0.5 percent); Ambulatory Health Care (−0.4 percent); Hospitals, Nurs-
ing, and Residential Care (−0.9 percent); Management of Companies and 
Enterprises (−0.4 percent); and Legal Services (−0.3 percent).

It is possible that lower productivity is inherent in the production of ser-
vices, and they possibly suffer from Baumol’s cost disease, although this 
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is controversial and, in any event, refers to labor productivity (output per 
unit labor) and does not envision negative productivity change.11 Indeed, 
negative TFP growth over three decades is highly implausible, and all the 
more so when it is recognized that these decades span the digital revolution. 
To emphasize this point, if  the level of TFP in education were indexed to 
100 in 1987, the index would fall to 87 in 2015. For Hospitals, Nursing, and 
Residential Care, the index in 2015 would fall to 77. This indicates a drop in 
TFP in education and health care of a large magnitude that would certainly 
have been noticed “on the ground” had it actually occurred.

While the Baumol explanation may play a role, the dominant fac-
tor explaining a prolonged period of negative TFP is most likely output 
mismeasurement. The mismeasurement explanation was discussed by Zvi 
Griliches (1994), who observed that “the conceptual problem arises because 
in many services sectors it is not exactly clear what is being transacted, what 
is the output, and what services correspond to the payments made to their 
providers” (7). He thus labeled the industries we are discussing as hard- to- 
measure industries. A consequence is that there is no agreement as to the 
units of measurement that underlie output of some services, and current 
procedures may not even be getting the resource- based Qr right, much less 
the efficiency- based Qe. However, price deflators are also part of the prob-
lem, for, as he observed in 1992, there are a “number of service industries 
series . . . deflated by makeshift deflators.”

The Griliches statement touches on one of the key ideas modeled in our 
framework: that consumer outcomes are different from produced output, 
and output is different from the expenditures. These measurement issues 
are echoed in Cutler and Berndt (2001), who point to what they have called 
the “output movement” in health economics, which attempts to measure 
the impact of medical care on health outcomes rather than the amount of 
resources expended. In the case of output and productivity of the educa-
tion sector, Triplett and Bosworth (2004) summarized the proceedings of 
their April 2000 Brookings- sponsored workshop and observed that “there 
was very little agreement on how to develop strong quantifiable measures 
of either output or productivity. Particular concerns were expressed about 
how to adjust for variations in education quality” (286).

In defense of the BLS program, the BLS website that presents the non-

11. The Baumol disease explanation of the lower productivity was challenged by events after 
the first productivity slowdown. Triplett and Bosworth (2004) found the services were not that 
much a drag on overall output per worker growth. Looking at a longer period than Griliches, 
they report a speed- up in services relative to the goods- producing sectors. Labor productivity in 
the services rose from an average annual growth rate of 0.7 percent during the 1987–95 period to 
2.6 percent in the years 1995–2001; for the goods- producing sector, the corresponding numbers 
were 1.8 percent and 2.3 percent, respectively. They also find that 80 percent of the increase 
in the overall growth in output per unit labor after 1995 was due to ICT’s contribution to the 
service sectors, contrary to the hypothesis that services were inherently resistant to productivity 
change. However, Sichel (1997) argues that only a limited amount of the productivity slowdown 
can be attributed to the change in industrial composition per se.

 EBSCOhost - printed on 2/8/2023 7:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



40    Charles Hulten and Leonard I. Nakamura

manufacturing industry productivity estimates contains this disclaimer: 
“Output and the corresponding inputs for nonmanufacturing industries 
are often difficult to measure and can produce productivity measures of 
inconsistent quality. Customers should be cautious when interpreting the 
data.”12 It is hard to criticize the BLS for not fully solving the problems with 
service sector output measurement highlighted by Griliches.

1.5.3  Problems with Measuring Intangible Capital

We have thus far focused on problems with the estimates of  TFP, but 
there are also problems associated with the intangible capital term in (3) and 
table 1.1. The intangible capital term, vN(n – ℓ), is a proxy for resource- using 
innovation, but it too is subject to measurement error. Intangible capital 
tends to be produced within an enterprise on an own- account basis, and its 
intangible nature makes the extent of its presence hard to detect. Moreover, 
own- account production does not generate an explicit price and quantity 
from which its quantity and value can be inferred. Instead, much of our 
information about this kind of capital is obtained from general surveys or 
from imputations with a large scope for error. As previously noted, the BEA 
moved in 2013 to capitalize R&D and artistic originals and to add them to 
GDP rather than treating them as within- firm intermediate goods that do 
not find their way into GDP.

Software had been represented in the national accounts since 1999, but 
even the list of intangibles included by the BEA and presented in the BLS 
productivity estimates falls short by about one- half  of the longer list in the 
taxonomy developed by Corrado, Hulten, and Sichel (2005, 2009). The esti-
mates in table 1.1 are based on an updated version of the Corrado- Hulten- 
Sichel framework and thus differ from those presented in the BLS productiv-
ity tables, which include only a partial list.13

1.6  Estimates of Innovation on the Consumption Side of the Economy

1.6.1  An Overview of the Problems Involved

The previous section reviewed the empirical work on the two main vari-
ables of supply- side innovation: the Solow residual and the intangible capital 
effect. We turn now to the consumption side and the variables that shift the 
consumption technology, μ and β. This type of  innovation is inherently 

12. Multifactor Productivity and Related KLEMS Measures from the NIPA Industry Data-
base, 1987 to 2016 (https:// www .bls .gov /mfp /mprdload .htm).

13. One consequence of capitalized intangibles is that the relative importance of TFP as a 
source of growth falls from 50 percent to 39 percent when moving from the BLS TFP estimates 
to the fuller list (Corrado and Hulten 2014, table 3). Another consequence is that the resulting 
investment is added to GDP, which is thereby increased in size, but not so much in its rate of 
growth, which is only modest.
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more difficult to measure because it involves a shift in utility, for which 
there are no regularly published estimates, whereas production- side innova-
tion involves output, for which such estimates are available. Moreover, the 
latter is based on well- established concepts, while the factors that shift the 
consumption technology are new to this chapter. However, conventional 
statistical practice does include some of the effects of β in the adjustment 
of output for quality change, although the implied β is not shown explicitly 
and is associated with production, not consumption. Measuring the effects 
of μ is even more of a challenge, since it is not embodied in specific goods, 
though it does emanate from goods (as internet information does from com-
puters and smartphones). This example points to another complication that 
arises because μ and β are linked in ways that make them hard to separate 
(medical care offers numerous other examples, such as the computer- based 
machinery that enables minimally invasive surgery).

This said, estimating μ and β can at least be approached via individual 
studies of their value as revealed by consumer preference. We will review 
some of these sources of information in the remaining sections of this chap-
ter. We first focus on the measurement of quality change and the evidence 
of the potential size of β found in academic research and government pro-
grams. Much of the literature relating to β is actually about the bias with 
which β is estimated in official statistics, which is the rationale for the refor-
mulation of our basic model to include the explicit bias term [β – β′] in (4). 
We postpone our discussion of the disembodied term μ in sections dealing 
with the internet, health care, and education.

1.6.2  Estimates of Product Quality Change

The problem of measuring product quality change is one of  the most 
heavily studied issues of measurement statistics, with three blue- chip pan-
els presenting assessments of the degree of product quality bias in official 
price indexes and recommending solutions: the 1961 Stigler Commission, 
the 1996 Boskin Commission, and the 2002 Schultze Commission. Major 
assessments of the procedures used by BLS and BEA have been published by 
members of those agencies (Moulton and Moses 1997; Groshen et al. 2017). 
There is, in addition, a large academic literature. The overall thrust of these 
efforts is a consensus (though perhaps a weak one) that price statistics have 
been, and still are, subject to a variety of measurement biases, and the main 
question is about the magnitude of the biases.

The fact that biases have lingered over many decades is a testament to just 
how difficult the problems are. Indeed, Shapiro and Wilcox (1996) called 
quality change “the house- to- house combat of  price measurement” and 
argued that “there is no simple formula that one can apply to deduce a 
magnitude of the problem, nor any simple solution. Unfortunately, there 
is no substitute for the equivalent of a ground war: an eclectic case- by- case 
assessment of individual products” (124). This combat has, however, pro-
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duced some notable victories, and the case of computers is a salient example. 
The BEA makes a quality adjustment to the output price of computers and 
peripheral equipment in personal consumption expenditures in order to 
reflect the advances in computing power enabled by Moore’s law, with the 
result that the price fell at an average annual rate of −1 percent from 1960 to 
1985, then by −21 percent per year from 1985 to 2000, followed by a −11 per-
cent decline from 2000 to 2015. These declines imply a high rate of quality- 
induced price change Pe when compared to a baseline scenario of no change 
in the resource price Pr. And computers are not the only example of rapid 
quality change. The BEA’s prepackaged computer software and accessories 
price deflator also includes an adjustment for quality change (Abel, Berndt, 
and White 2007), and it declined at an average annual rate of −17 percent 
over the period 1985–2000 and by −5.5 percent from 2000 to 2015.

Moore’s law applies to goods directly affected by the silicon revolution, 
like computers, but its reach is far wider. Computer chips and software are 
embedded in many devices, from smartphones to vehicles and machine tools. 
Byrne and Corrado (2017b) provide estimates of the implied wired telecom-
munications services deflator based on measures of the improving quality 
(and rapid deflation) of telecommunications equipment developed in Byrne 
and Corrado (2015) and methods described in Byrne and Corrado (2017a). 
They do so for nonresidential wireless services rather than for personal con-
sumption expenditures, and they find a rate of deflation 7 percentage points 
below the official measures from 2004 to 2014. This study points to the need 
to distinguish between the quality change in a good that accrues to consum-
ers and that which affects the supply of goods passing through markets.

As for a broader range of goods, Bils and Klenow (2001) use the Con-
sumer Expenditure Survey to estimate “quality Engel curves” for 66 durable 
goods using the idea that richer households pay more for each good. They 
estimate that quality growth averages 3.7 percent per year for their sample of 
goods, with 2.2 percent showing up as pure price inflation, and conclude that 
BLS procedures do not fully account for the impact of quality upgrading.

Some mention must also be made of product innovation brought to mar-
ketplace in the form of new goods. Hausman (1996) examined the introduc-
tion of a new brand of breakfast cereal and found that the treatment of new 
goods in official statistics missed a significant amount of the innovation that 
had occurred. Hausman’s 1999 study of the introduction of mobile cellular 
telephones reached the same conclusion.

1.6.3  The BLS Price Measurement Program

The BLS is the government agency charged with the bulk of the Shapiro- 
Wilcox house- to- house combat in the price measurement battle. It is the 
source of many of the price statistics used by the BEA to derive real GDP, 
but its main task is to prepare a monthly report on the prices consumers pay 
for a sample “basket” of goods, with the general objective of determining 
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how much the cost of living has increased due to monetary price inflation. 
Price inflation erodes the “bang for the buck” of each dollar of income, and 
the Consumer Price Index (CPI) indicates (in principle) how much addi-
tional income is required to maintain the average consumer at the previous 
period’s level of  utility if  nominal income were not to change. The CPI 
can thus serve as a cost- of- living adjustment for wage and other contracts 
and government benefit programs, but it also measures the general rate of 
price inflation in consumer goods and the erosion in purchasing power that 
implies. Since an improvement in product quality provides more “bang for 
the buck” for each dollar spent and offsets the inflationary erosion, it must 
be taken into account.

One implication of product innovation is that the same basket of goods 
cannot be priced repeatedly over a period of time when new, and sometimes 
superior, goods enter the marketplace and find their way into the basket, and 
others are driven out of the market by innovation. The agents assigned to go 
out each month to price these goods in a retail outlet are often confronted 
with the problem of finding alternative items to price. The procedures they 
follow are described in chapter 17 of the BLS Handbook of Methods (US 
Bureau of Labor Statistics 2018).

The prescribed procedures are complicated and not easy to summarize. 
Fortunately, the survey by Groshen et al. (2017) gives an excellent and up- to- 
date overview of the program. When an item that was priced in the preceding 
month goes missing, the agents look for a similar item with which to replace 
it in the sample. This matched- model approach is the “cornerstone” of the 
CPI program. Groshen et al. (2017) report that for the period from Decem-
ber 2013 to November 2014, “matches were found for items in the Consumer 
Price Index 73 percent of the time. Of the remaining 27 percent of items that 
were not matched, 22 percent reflected temporarily missing items, such as a 
bathing suit in Milwaukee in December. The other 5 percent represented a 
permanent disappearance” (190–91). These percentages are on a monthly, 
not annualized, basis. They go on to say,

When a match permanently ends in the Consumer Price Index and the 
same good cannot be tracked from one period to the next, then (except 
for housing) the Bureau of  Labor Statistics initiates a quality adjust-
ment procedure after a replacement good has been established. When the 
replacement has characteristics very similar to the exiting product, the 
price of the replacement product is used in place of the exiting product. 
For example, of the 5 percent of the CPI that represented permanently 
disappearing items during the period noted above, three- fifths of those 
items were replaced by a similar good. For the remaining two- fifths, where 
the characteristics were judged to be insufficiently close, BLS staff made a 
quality adjustment to the replacement product’s price. (191).

The nature of the quality adjustments made to the prices of the missing 
two- fifths is one of the salient questions about the CPI’s ability to account 
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adequately for product innovation. According to the CPI chapter 17 in 
the BLS Handbook (US Bureau of Labor Statistics 2018), the adjustment 
involves an imputation procedure:

Imputation is a procedure for handling missing information. The CPI 
uses imputation for a number of  cases, including refusals, inability to 
collect data for some other reason (the item may be out of season), and 
the inability to make a satisfactory estimate of the quality change. Substi-
tute items that can be neither directly compared nor quality adjusted are 
called noncomparable. For noncomparable substitutions, an estimate of 
constant- quality price change is made by imputation. There are two impu-
tation methods: Cell- relative imputation and class- mean imputation. (20)

It is these last two imputations that are the source of much controversy. 
When a new good like the cell phone or the ATM arrives in the marketplace, 
it is assigned a price that reflects the average price change of the goods in 
the product class to which it is assigned (or the average price of a subset of 
goods in the class). Thus, as previously noted, the technological innovations 
embodied in wholly new goods are incorporated with a procedure based on 
the price of goods that do not embody the innovation.

This problem extends to the rotation of items into and out of the sampling 
frame. The BLS Handbook states, on page 12 of the CPI chapter 17, that 
“to enable the CPI to reflect changes in the marketplace, new item and outlet 
samples are selected each year, on a rotating basis, for approximately 25 per-
cent of the item strata in each PSU [primary sampling unit]” (US Bureau of 
Labor Statistics 2018). This rapid substitution is a welcome feature of the 
price program because it allows new goods to enter the CPI sample, includ-
ing those that embody innovative new technology. Overlap procedures are 
used in incorporating the rotated sample into the index.

The price hedonic method is another way that quality and sample com-
position issues are handled in the CPI.14 Groshen et al. (2017) report that 
“in the Consumer Price Index, about 33% of the total expenditures in the 
underlying basket of goods are eligible for quality adjustment with hedonics. 
Housing- related expenditures account for most of this share” (192).15 These 
statistics suggest that very few item categories are subject to the hedonic 
method, despite the recommendation of  the Stigler Commission (1961) 
review of price measurement that specifically referred to the Griliches study 

14. The basic idea of price hedonics is to regress the observed transaction price of a sample 
of goods on a set of characteristics to estimate the shadow price of each characteristic. The 
price of a bundle with more, or different, characteristics can then be estimated and, by exten-
sion, the price of a bundle that possesses more characteristics. Computers are a prime example. 
Here, the unit price of a new model of computer that embodies a faster processor speed, better 
graphics, and more memory often remains more or less the same (controlling for inflation) as 
the preceding inferior model.

15. The hedonic regression for housing- related expenditures estimates the rate of deteriora-
tion of rental units over time, so the reported inflation rates are higher than the rate of rental 
price increase to account for the worsening quality of the rental unit over time.
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of hedonics in new cars. For its treatment of the price of cars, the BLS uses 
a measure of the resource cost of new car features rather than hedonic mea-
sures of the value of car features in both the PPI and the CPI programs. In 
this method, the costs of new options added to the standard light vehicle 
are removed from new car prices in estimating inflation. Recent decades 
have been a period of remarkable technological innovation in autos, often 
at relatively low cost per automobile, using sensors, computer power, and 
software to improve driving. These improvements include safety warning 
signals, enhanced cruise control, self- parking, and backup vision. The BLS 
uses the cost method primarily for autos.

The totality of  the CPI program is enormous given the huge number 
of  items in the universe of  all consumer goods and services. It is all the 
more impressive because the process must be repeated month after month, 
without fail. And this is far from the only BLS program, since the bureau 
is also responsible for many other data collection programs. Moreover, it 
accomplishes its main mission: to provide a timely cost- of- living adjustment 
that is accepted by those affected by the outcome. This political economy 
aspect is perhaps its most important feature given the large transaction costs 
involved in bargaining and renegotiation that would need to occur in the 
absence of an acceptable price index (indeed, this was the genesis of  the 
CPI). To accomplish its mission, the BLS must contend with the dynamic 
nature of the economy and the changing quality of goods, but again, this is 
not its main mission. One consequence is that the BLS does not report the 
amount of the quality correction it makes—its implicit estimate of β. That is 
embodied in its price estimates that are used for output deflation by the BEA.

1.6.4  The Bias in Quality Measurement

More attention has been given to the size of the implied bias in the price 
deflators (and the bias in β) than to the size of β itself. The subject has gen-
erated numerous studies, articles, and conference volumes (including some 
in the Conference on Research in Income and Wealth Studies in Income 
and Wealth series). These studies tend to produce mixed results about the 
size of the CPI bias. The estimates by Groshen et al. (2017) present a recent 
assessment of the overall bias based on past studies (including Lebow and 
Rudd 2003; Greenstein and McDevitt 2011). They put the downward bias 
in the annual growth of real GDP at −0.26 percent in 2015 due to consumer 
goods and at −0.15 percent due to private investment (real GDP growth 
was around 2.0 percent in that year). The former is particularly relevant 
to this chapter, since the “PC services (including internet)” component of 
the −0.26 percent downward bias was only –0.04 percent (the contribution 
of medical bias was −0.12 percent). The “raw” annual bias in PC/internet 
services was an annual −6.50 percent (based on Greenstein and McDevitt 
2011), but the GDP share of  this category was so small that the share- 
weighted growth bias barely moved the GDP needle.
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Other studies have also found larger biases than those reported in Gro-
shen et al. (2017). Bils (2009) concludes that “price inflation for durables 
has been overstated by nearly 2 percentage points per year” and found that 
the BLS procedures for the CPI for autos and trucks understated quality 
improvements by 2.6 percentage points a year over that period. Indeed, when 
a large part of the value of a new car is due to electronics and software, new 
car features have very little additional resource cost and thus are unlikely to 
appear as a price reduction. Thus the gradual advent of a driverless car, with 
a concomitant increase in leisure for the driver and reduction in accidents, 
is not likely to appear in measures of output. The aforementioned 2001 Bils 
and Klenow study of 66 durable goods also concluded that BLS procedures 
do not fully account for the impact of  quality upgrading. Other studies 
are consistent with this conclusion. Based on their review of the available 
evidence, Shapiro and Wilcox (1996) place the midpoint (median) of their 
subjective probability distribution for the overall bias in the CPI at just under 
1.0 percentage point per year with an 80 percent confidence interval stretch-
ing from 0.6 percentage point per year to 1.5 percentage points per year. 
Byrne, Fernald, and Reinsdorf (2016) provide estimates of the annual biases 
in investment price deflators, which range from 0.9 percent for software to 
12.0 percent for computers and peripherals (the Greenstein and McDevitt 
[2011] estimate is in the middle of this range).

The four studies of the value of broadband evaluated by Syverson (2017) 
provide estimates of  consumer surplus that he extrapolates to 2015 that 
range from a low of $17 billion to a high of $132 billion, including the Nevo, 
Turner, and Williams (2016) study of internet access. It might also be noted 
that the hedonic regression for internet broadband services used in the BLS 
PPI program includes a regression coefficient on download speed that sug-
gests the 40 percent increase in speed experienced historically and would 
translate to a 12 percent further annual decrease in price.16 This, in turn, 
would result in a decrease in the growth rate of the total PCE deflator that, 
if  applied to both internet access and cellular phone service, would increase 
real output by $32 billion annually.

1.7  Information, the Internet, and Consumption Technology

1.7.1  The Nature and Value of Information

Measuring the amount of information that floods our senses every day is 
problematic, and in any event, it is not the volume of information in bits or 
bytes that matters for economic measurement. What matters is the perceived 
value to the recipient, and this depends on the way the information is orga-
nized, its relevance (often situational), its credibility or perceived accuracy, 

16. See US Bureau of Labor and Statistics (2019).
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and its timeliness. Too much unstructured or irrelevant information can have 
a negative effect—the noise- to- signal problem. The valuation of informa-
tion is thus difficult, and it is compounded by the fact that most information 
flows without data- specific prices.

The information revolution has increased both signal and noise. For the 
purpose of this chapter, we confine our attention to the disembodied output- 
saving innovations in the information that provide value to consumers, where 
value is determined by the amount they would be willing to pay if  necessary 
for that which is in fact provided free of direct charge. We have formulated 
this as the parameter μ. The magnitude of  this parameter, as measured  
by the willingness- to- pay metric V of  section 1.3, is of great consequence for 
the question of whether the growth rate of conventional real GDP provides 
a satisfactory measure of  the dynamic changes in the economy over the 
course of the digital revolution. Addressing this question is the overarching 
goal of this chapter, and to this end, the rest of this section will marshal the 
available evidence on the size of V and μ.17

1.7.2  Current Treatment of Information in the Statistical System

BEA data from the US national accounts by industry show that the GDP 
originating in the category “Information- communications- technology- 
producing industries” amounted to $1.1 trillion in 2016, or about 6 percent 
of GDP. The scope of this category is rather broad, including the manufac-
turing of computer and electronic equipment, which, when removed, causes 
this fraction to fall to 4.5 percent. A still narrower grouping with a focus on 
information services includes only “Data processing, Internet publishing, 
and other information services” (1.5 percent) and “Computer systems design 
and related services” (0.6 percent). Together, these two industries account 
for $400 billion.

When the focus shifts to the consumer expenditures component of GDP 
(PCE), BEA data for the categories “Telecommunication services” and 
“Internet access” show that consumers spent $230 billion on the categories 
“Telecommunication services” and “Internet access” in 2016, or 1.8 percent 
of PCE and 1.2 percent of GDP. When expenditures for “Information pro-
cessing equipment” and “Telephone and related communications equip-
ment” are added to the list, the total increases to around $380 billion, or 
3.0 percent of PCE and 2.0 percent of GDP. By way of comparison, Groshen 
et al. (2017) report a GDP share for the category “PC services (including 

17. Any attempt to assess the role of  information in promoting consumer utility should 
recognize its public good nature. It is nonrival (one person’s use of the internet does not crowd 
out anyone else’s use), and it is difficult and cumbersome to create markets that price indi-
vidual “units” consumed. Determining the optimal amount of a public good and determining 
its value are classic problems in public finance. Many information goods can be classified as 
partial public (or “club”) goods for which access fees are charged (e.g., the use of the gasoline 
tax to finance road systems). Some are pure public goods, as with information broadcasted 
over networks.
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Internet)” of 0.6 percent for 2015 (the ratios we report are virtually the same 
for 2015 as in 2016). The larger point is that, in any case, the GDP associated 
with the digital economy is small using national accounting data.

If  this were the final word on the subject, then the aggregate consequence 
of the digital revolution may be smaller than many of its enthusiasts claim. 
However, this is far from the last word. Many of  the information goods 
consumed are transferred without a direct charge, and there is thus no mon-
etary value to include in GDP. The cost to providers of producing the good 
is often defrayed using indirect or ancillary revenues. Google and Facebook 
illustrate this problem. They are firms that have as their primary functions 
serving consumers with search results and social networking, respectively, 
and, each firm’s economic model is to provide its primary function at no 
direct cost to the consumer, supporting this economic activity with advertis-
ing. The two companies, together, in their annual reports reported annual 
revenues in 2016 of over $115 billion, largely from advertising, and had a 
total market value of roughly $1 trillion as of mid- 2017. This business model 
implies that the flow of payments does not relate to the price or quantity of 
the information goods provided to consumers. The monetary flows involved 
appear in GDP via the prices and quantities of the goods that are advertised.

Some part of the total value of information is covered by system access 
fees charged for network use. These payments tend to be blanket fees that are 
unrelated or only loosely related to the quantity or value of the information 
or social interaction on which value is based. Moreover, it is also true that 
some of the information offered at a zero marginal cost over the internet or 
other media is simply free, provided pro bono publico by internet application 
developers (von Hippel 2016; Sichel and von Hippel 2019), or crowdsourced 
and without a measured resource cost.

The value of the information services actually recorded in GDP is in the 
range of $100 billion to $400 billion, depending on how broad a definition 
is used.18 The question is how much this range understates the true value to 
consumers, as revealed by the price they would be willing to pay for the “free” 
information goods. This is the question to which we now turn.

1.7.3  The Measurement Literature on the Internet’s Contribution 
to Welfare

A small but growing number of studies address the measurement issues 
implied by Schmidt and Rosenberg’s (2014) remark that “the Internet has 

18. It should be emphasized that the internet is scarcely the only channel through which infor-
mation reaches the population. Education is an even more important channel, whether learning 
takes place in schools or at home or among peers. Books and other media are important, as 
is life experience. Much of this escapes GDP, and a full account would be a challenging task. 
Our goal in this chapter is limited to an analysis of how costless increases in digital sources of 
information can provide consumer benefits beyond those recorded in GDP and thereby present 
a different assessment of economic progress.
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made information free, copious, and ubiquitous.” They cover both the inter-
net and the explosion in timely information it enables but also the devices 
needed to enable the digital revolution. The former are associated with dis-
embodied output- saving technical change, μ, and will be the focus of the 
studies reviewed below.

There are several ways to measure the value of the internet’s information 
and entertainment flows, one of  which is to use econometric techniques 
to estimate the expenditure function or the compensating and equivalent 
variations associated with the utility function (V), or the system of demand 
equations associated with these functions. This can, in principle, get at the  
non- GDP contribution to consumer welfare in a framework that also 
includes the GDP contribution to the extent that goods are priced. This is 
the approach followed by Redding and Weinstein (2020).19

Another line of attack on the problem is to introduce time cost into the 
analysis of value. A search engine can be seen as creating consumer value 
by reducing the time cost involved in acquiring information, and Varian 
(2009) adopts this approach using a finding from Chen, Jeon, and Kim 
(2014), who had students at the University of Michigan obtain answers to 
questions using either a search engine or the library of the University of 
Michigan. The students who used the search engine were more successful, 
getting answers to questions posed in an average of 7 minutes compared to 
22 minutes using the library. Varian calculated an implied individual con-
sumer value of roughly $500 per year. Goolsbee and Klenow (2006) use a 
value- of- time approach but focus on the internet as a whole using a paramet-
ric consumption function analysis. They estimate that the value of the time 
spent on the internet translates into a consumer surplus of $2,500 to $3,800 
per year. Syverson (2017) also conducts an exercise in which he updates the 
Goolsbee and Klenow estimate of the value of the internet and obtains a 
measure of the aggregate increase in the value of broadband of $842 billion 
in the post- 2004 time period. Other creative approaches to the consumer 
surplus problem use questionnaires, surveys, and microdata. The literature 
includes Brynjolfsson, Hu, and Smith (2003); Aguiar and Waldfogel (2018); 
Quan and Williams (2016); and Dolfen et al. (2019).

Another way to deal with zero prices is with direct measures of willing-
ness to pay. An unusual opportunity to estimate willingness to pay with 
a free good is discussed in Noll, Peck, and McGowan (1973). The slow 
diffusion of broadcast TV meant that some rural households had to pay 
for broadcasts that were free elsewhere. Using demand analysis, they were 
able to estimate that households would be willing to pay some 3 percent 
of income for free TV. However, such natural experiments are rare in the 

19. The Redding- Weinstein methodology assumes that time- varying demand shifts cancel 
on average. This assumption may not be valid when net gains in consumer technology, such as 
those generated by the internet, occur.
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literature. One alternative is simply to ask people about their willingness 
to pay for a search engine. Varian (2009) used Google consumer surveys to 
ask this question and found that on average, consumers were willing to pay 
$36 a year for search engines, a much smaller number than his back- of- the- 
envelope welfare calculation. However, more recent work by Brynjolfsson 
et al. (2018) suggests that the minimum payments consumers would accept 
(willingness to accept or WTA) for loss of access to search engines may be 
as large as $5,000 a year. This estimate suggests a value of about $1 trillion 
missing from GDP from search alone.

A small industry has arisen in evaluating consumer willingness to accept 
the price of Facebook. Brynjolfsson, Eggers, and Collis (2019) report a will-
ingness to accept Facebook of about $506 per user, with 202 million users, 
or $100 billion in aggregate. They also estimate that this amount adds 0.05 
to 0.11 percentage points to the growth of real GDP (in other words, the 
increment to μ is between 5 and 11 basis points). In another study, an auc-
tion experiment conducted by Corrigan et al. (2018) puts the value of doing 
without Facebook for an entire year at $1,000 to $2,000 per adult person 
in the United States, with an implied value of as much as $250 billion to 
$500 billion a year. The largest- scale experiment, Allcott et al. (2019), finds 
a similar value.

Finally, Nakamura, Samuels, and Soloveichik (2018) argue that even if  we 
measure the cost of “free” information and entertainment in terms of their 
cost of production, the gains from marketing- supported information and 
entertainment are substantial. Taken from the cost side alone, total nomi-
nal value in 2015 was $103 billion from internet contributions to personal 
consumption expenditures. This cost estimate does not include the volunteer 
time invested by consumers in creating internet content, nor does it attempt 
to estimate any consumer surplus—just business- paid input costs in produc-
ing internet content. The authors argue that including their conservative 
methodology would lower the PCE deflator by roughly 0.1 percent.

In sum, the results of  different approaches vary from as little as $100 
billion to considerably more than $1 trillion. This range of values suggests 
that there is ample potential for welfare gains to the consumer beyond those 
that are not included in the value of personal consumption expenditures 
and GDP. However, it is important to recall the caveats of section 1.33 of 
this chapter. The studies reviewed in this section are mostly focused on indi-
vidual goods like Facebook, and the results are partial equilibrium estimates 
of their value and thus are incomplete efforts to get at our EGDP. While 
doing so is a valuable step in this direction, goods with the broad scope 
of Facebook and the internet are bound to affect relative prices for many 
other goods in the economy, and the ceteris paribus assumption of  par-
tial equilibrium analysis is increasingly problematic as the importance of a 
good increases. Moreover, the important study by Brynjolfsson, Eggers, and 
Collis (2019) illustrates another issue raised in passing in section 1.3.3: the 
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aggregate willingness to accept Facebook is large in dollar terms, but when 
expressed as an annual rate rather than a cumulative total, the contribution 
to GDP is found to amount to only 0.05 to 0.11 percentage point.

1.8  Health and Education: Individual Heterogeneity and the Role of 
State Contingency

The consumption technology as formulated in this chapter refers to the 
average state of health or knowledge, whereas much of the actual gain from 
innovation is contingent on an individual’s current state of  being or on 
changes in that state. The benefit of a health care intervention or expendi-
ture, for example, depends on the state of health, and it is often shocks to 
that state that trigger the demand for the intervention. Moreover, the suc-
cess of the intervention is often contingent on the severity of the shock (the 
same is true of some legal and financial problems). Other interventions are 
intended to improve the ambient state of being. The benefits of obtaining 
an education, for example, involve a move from one level of  knowledge  
to another. Similarly, some health interventions are intended to improve the 
ambient state of health through healthier lifestyles and preventative medi-
cine. Moreover, education and health interventions may interact in ways 
that strengthen each other.

A health care innovation, such as minimally invasive surgery, will gener-
ally affect a subset of the population, and perhaps only a small subset. The 
gains to those affected may be quite large, but they appear small when aver-
aged into the total population. Moreover, some innovations may allow a 
subset of those afflicted that were previously untreatable to be helped. The 
innovation may improve the welfare of that subset, but if  the success rate 
of the treatment is lower for this group than for the population as a whole, 
and if  success rates are used as an indicator of innovation, the metric may 
send a false signal.

An extension of the EGDP program to allow for individual heterogene-
ity in contingent states is not easy, since it involves the utility of individuals 
and a way of aggregating their utilities. The standard way is to appeal to an 
explicit social welfare function (as opposed to the one implied by the use of 
averages). This step involves the introduction of value judgments into the 
measurement of GDP and EGDP. This is a major step, and since the basic 
thrust of this chapter is to explore the EGDP concept per se, it is a step we 
will defer to subsequent research.

1.8.1  Innovation in Health Care

The review of the bias in price statistics by Groshen et al. (2017) identified 
health care as a major source of the accuracy problem. Health care has been 
a hard- to- measure industry for a long time because of the problems associ-
ated with the disconnect between expenditures and outcome that forms the 
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basis for the “output movement” described by Cutler and Berndt (2001). It 
has been the beneficiary of rapid innovation, much of which has improved 
outcomes for given levels of expenditure, which constitute our output- saving 
technical change. The case of minimally invasive surgery has been noted 
already, but there are many other examples.

Recent studies have found large potential biases in health care. For 
example, Dauda, Dunn, and Hall (2018) find that annual medical price infla-
tion declined by 4.8 percent relative to aggregate inflation rates over the 
period 2001–14. With health care expenditures accounting for 17 percent to 
20 percent of personal consumption during this period, this would add close 
to 1 percent to the growth rate of the total. They also report that for heart 
attacks, congestive heart failure, and pneumonia, 30- day risk- adjusted mor-
tality rates fell significantly over this 13- year period (−39 percent, −25 per-
cent, and −40 percent, respectively), while 30- day risk- adjusted expenditure 
rose much less rapidly (−1 percent, +20 percent, and +11 percent, respec-
tively). In other words, outcomes have improved over the period with much 
less of an increase in spending, the very phenomenon our framework seeks 
to address.

Output- saving innovation is also present in the studies by Chernew et al. 
(2016), who report that disability- adjusted life years increased 1.8 years at 
age 65 between 1992 and 2008, of which they attribute 1.1 years to improved 
health treatment, particularly of heart disease and vision problems. Along 
the same lines, the Murphy and Topel (2006) calculation of the value of the 
20th century increases in life expectancy from 48 to 72 finds a very large 
number, $1.2 million per person, for the representative person in 2000 in 
the United States. However, it should be noted that valuing human capital 
is a perilous enterprise, as is assigning changes in the value to factors other 
than medical treatment (Fogel 2012). Still, taken together, these health care 
studies highlight the importance of outcomes (longevity, mortality rates) as 
opposed to expenditures.

Another example of utility- enhancing technical change comes from the 
recent study by Rothwell et al. (2016), who found that taking aspirin for 12 
weeks following a stroke or ministroke lowers the probability of a recurrent 
stroke or heart attack during that period from 4.3 percent to 1.9 percent. The 
cost of avoiding one stroke or heart attack is thus $40, assuming an aspirin 
cost of  $.01 per tablet, orders of  magnitude smaller than the consumer 
benefit, however measured.

1.8.2  The Case of Education

There have been major gains in educational attainment in the United 
States but also large expenditures and poor test results (see summary in 
Hulten and Ramey 2019). Education premia have led to rising incomes for 
much of the population, and increased productivity has propelled output 
growth. The average quality of  life has doubtless risen as well, but how 
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much more tuition college students would be willing to pay over and above 
the amount they already pay for this enhanced quality of life is unclear.20 
In this section, we explore another aspect of  education’s impact of  indi-
vidual welfare: the importance of initial states and individual heterogeneity 
in assessing the welfare benefits of education.

Formal education is an output of  the schooling industry, but student 
learning and maturation are the relevant outcomes. Schooling is an impor-
tant channel through which learning occurs, but family, peers, and personal 
experience all make important contributions to these outcomes. Student 
“inputs” of effort are also important and depend on idiosyncratic character-
istics like motivation and general openness to change. As Hulten and Ramey 
(2019) observe, “[Poor] K- 12 results cannot be attributed to the quality of 
schooling alone . . . Research suggests that the cognitive and noncognitive 
skills developed by age three have fundamental effects on the ability to learn. 
Thus, K- 12 schools have little control over key inputs into their production 
functions” (8).

Improvements in the outcomes of historically underserved student popu-
lations have a large payoff to society and, importantly, to those individuals 
who stand to benefit. Tracking the gains to the average student will tend to 
understate the gains to this population not only in terms of increased per-
sonal income but also in the nonmonetary improvements in the quality of 
their life. Subsuming these gains in a measure based on average experience 
thus risks missing some of the most important welfare benefits of improved 
educational outcomes.21

1.9  Final Thoughts on the Path Ahead for EGDP Measurement

In his 1994 American Economic Association (AEA) presidential address, 
Griliches observed, “It is not reasonable for us to expect the government to 
produce statistics in areas where concepts are mushy and where there is little 
professional agreement on what is to be measured and how” (14). This obser-
vation applies in full force to the current measurement problems associated 
with the technological revolution currently underway. These problems are 
as much a matter of inadequate theoretical development as of inadequate 
statistics. Addressing the former is the rationale for our current work. To this 
end, we have proposed the theoretical construct of expanded GDP as a new 
measure of aggregate economic activity that builds on existing GDP. Our 
review of the empirical literature and the available data suggests that this 

20. Education plays an important role in the quality of life. It exposes people to ideas and 
possibilities that expand consumer horizons and enhance the enjoyment of life. Put in economic 
terms, it allows people to get more enjoyment out of each dollar they spend, as with the shift 
in the consumption technology.

21. Quality- adjusted labor is considered exogenous in our discussion, but education partially 
endogenizes it.
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effect is nonnegligible, perhaps amounting to as much as a trillion dollars or 
more. While it is true that the GDP share of the digital economy is relatively 
small, as some have noted, we have shown in our earlier paper that the effect 
on EGDP growth can be quite large despite this small share (Hulten and 
Nakamura 2018). In our previous study, we conducted a thought experi-
ment in which the bias in price deflators noted by Groshen et al. (2017) when 
combined with the impact of output- saving technical change could easily 
be a full percentage point (100 basis points) higher. Given that the average 
annual top- line growth of  the private business sector shown in table 1.1 
of this chapter is 2.76 percent for the period 1995–2007, a 100 basis point 
increase is significant.

We emphasize that this hypothetical estimate is not intended as our best 
guess at the contribution of output- saving innovation to expanded economic 
growth, but it is intended to show that the consumption technology and its 
utility- enhancing effect are potentially too large to be ignored. We recognize 
that adding a consumption technology to the conventional GDP framework 
is by no means an easy task, and one not to be undertaken lightly. Part of the 
value of GDP lies in the continuity of the time record that allows for meaning-
ful comparisons with past eras, and there is thus a tension between updating 
the accounts to reflect the current economy and maintaining comparability 
over time. One way to deal with this quandary is through the use of satellite 
accounts to bridge the gap. A satellite account preserves the main accounting 
structure of GDP while at the same time providing a home for the more specu-
lative estimates emerging from the study of the current technical revolution.

Fortunately, the BEA has already made a start in this direction with its 
innovation accounting and limited capitalization of intangible assets. This 
innovation accounting could be expanded in several important ways. One is 
to extend the current list of intangible capital included in GDP to encompass 
a broader range of intellectual property, enterprise- specific human capital, 
and organizational assets. Another important step is for the BLS and the 
BEA to work together to improve price statistics so that they more accurately 
reflect and classify product innovation. Taking on the challenge posed by 
new goods, like the internet and mobile communication devices, is of cen-
tral importance in this regard. Yet another major step within the scope of 
existing statistical programs is for the BLS to report separately the extent 
of product innovation already embodied in its quality- corrected price esti-
mates. Finally, the research from the “outcome movement” in health care 
research should be accorded a high priority.22

The task of building a full innovation satellite account is daunting. The 
history of the national accounts is a history of overcoming one daunting 

22. It must also be said that the BLS is continually working to improve the CPI and the PPI. 
For example, it is moving to what has been called a diagnosis or a disease- centric approach 
(Roehrig 2017). The BEA has also made much progress on the problem of measuring outcomes 
in the provision of health care services, but the path ahead is long and difficult.
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challenge after another. The result of these efforts has been what Samuel-
son and Nordhaus have called “One of the Great Inventions of the 20th 
Century.”23
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2.1  Introduction

The study of  innovation has traditionally centered on the institution 
where it is believed to be conducted, which has primarily consisted of the 
firm. The underlying assumption is that innovation is the output from an 
R&D production function that has the inventor at its core and where the 
inputs (materials and human capital) are fully accounted for. Some of the 
inputs may take the form of knowledge originating outside the firm, like 
universities, government labs, and other firms. In this regard, government 
and university labs have long been recognized as sources of  knowledge 
and invention. Other firms may contribute to the R&D process through 
research joint ventures or may license their technologies. Increasingly, how-
ever, researchers are highlighting the importance private households play 
as sources of invention and innovation in this process (e.g., von Hippel, de 
Jong, and Flowers 2012; Arora, Cohen, and Walsh 2016). In this chapter 
we aim to contribute to this strand of the literature by using US Census 
Bureau administrative data combined with United States Patent and Trade-
mark Office (USPTO) patents data to document household innovations. The 
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use of administrative data gets around some of the problems with current 
studies in this area, specifically small sample sizes in household surveys, 
low power estimates, and low response rates that may raise questions about 
nonresponse bias (Deming 1990).

Use of administrative data provides a rich tapestry of the types of innova-
tions undertaken by households and their characteristics, but it has its own 
limitations. We focus on the set of household innovations we can identify in 
administrative data—that is, those that are granted a patent by the USPTO. 
Admittedly, this excludes perhaps what might be the lion’s share of house-
hold innovation: that which is not patented. By contrast, we focus on what 
might be the most valuable innovations (Arora, Cohen, and Walsh 2016), 
and we do so in a systematic manner. We match these patents to Census 
Bureau administrative files to understand the demographic characteristics 
of household inventors as well as the characteristics of the unincorporated 
businesses they start to get a sense for their impact and value.1 Use of admin-
istrative records comes with other important limitations. Specifically, there 
is no way for us to determine whether these patents were developed during 
leisure time or as a remunerated activity. Here we make the strong assump-
tion that if  they have not been assigned to a firm, there was no direct remu-
neration for the development of the innovation.

When documenting the characteristics of  household innovations, we 
describe the technology classes they fall under, their impact and novelty as 
captured by the analysis of backward and forward looking citations, and the 
breadth of their application as captured by a generality index. In addition, 
we document the characteristics of inventors, their age, gender, race, and 
origin. When looking at business formation, we examine the dynamics of 
unincorporated businesses that are tied to inventors and their performance 
relative to similar businesses without inventors, specifically their revenue 
and growth performance.

We find household inventors are disproportionately US-born relative to 
salaried inventors. They are relatively white. Household inventors are also 
disproportionately under 25 or over 55. Across the board we find a deficit in 
female and black inventors relative to the overall working- age population. 
Household inventors work on technology classes disproportionately tied to 
consumer products, such as design, mechanical and other. Patents associ-
ated with household innovation are about half  as likely to be considered 
“radical.”2 In terms of value, household innovations accumulate approxi-
mately 27–33 percent fewer citations on average. While their citation impact 
is smaller, it remains remarkably high. Finally, we find that few household 

1. Patents by independent inventors have been found to display the largest rates of transfer 
(Serrano 2010), so in future drafts we will explore the characteristics of patents that transition 
to existing firms.

2. We follow the definition in Dahlin and Behrens (2005): a radical innovation is one that is 
considered novel, unique, and impactful.
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inventors attempt to create a business around their invention. When they do, 
these businesses have higher revenues on average and are more than twice as 
likely to transition to hire their first employee than nonemployers who do 
not patent. Back- of- the- envelope calculations suggest patented household 
innovations granted in a given year might generate revenue between $7.2 bil-
lion and $8.2 billion in 2000 dollars.

The remainder of the chapter is structured as follows. Section 2.2 pro-
vides background. We follow with a description of the data in section 2.3. 
We describe basic features of patented household inventions in section 2.4. 
Our analysis of business formation and outcomes follows in section 2.5. We 
conclude in section 2.6.

2.2  Background

Innovation is traditionally thought of as a process that takes place inside a 
firm. In this context, outside sources of knowledge and invention, including 
universities, government labs, and other firms, have long been recognized as 
important inputs to the firm’s R&D function. Increasingly, however, innova-
tion researchers are focusing on households as important sources of knowl-
edge and innovation. The study of household innovation, however, has been 
hampered by data availability.

The first set of household innovation studies looked at user innovations 
in specific product markets. Early examples include von Hippel (1976) and 
Shah (2000), who look at user innovation in scientific instruments and new 
sporting goods, respectively. Their methodology involves a retrospective 
study of a selected sample of commercially successful innovations as iden-
tified by either experts in the field or direct analysis of new product features. 
This was followed by interviews of relevant product and industry experts. 
Both of these authors find that a large percentage of the innovations were 
in fact invented, prototyped, and tested by users of the equipment rather 
than the equipment manufacturer. In the case of scientific instruments, von 
Hippel (1976) finds existing instrument manufacturers would incorporate 
user innovations into their products with a focus on improved engineering. 
In the case of sporting goods, Shah (2000) finds users built innovative equip-
ment for their own use. The inventors tended to be young, and they often 
built businesses in order to appropriate the benefits from their innovations.

Follow- up studies have tried to more broadly describe the characteris-
tics of the innovators and the rate of user innovation. Lüthje (2004) con-
ducts a survey of users of outdoor sporting equipment identified from the 
direct mail order listing of two sporting goods manufacturing firms. While 
response rates are relatively low at 26 percent, the author finds a large share 
of respondents, 37 percent, claimed at least one idea. Of these, 30 percent 
claimed their idea provided a solution to a problem that was not offered 
by the manufacturer. Reportedly, only 4 in 10 took their ideas beyond con-
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cept by developing prototypes. Franke and Shah (2003) look at innovation 
within four distinct communities of extreme sports enthusiasts. Communi-
ties of consumer users were identified through websites or competition ros-
ters. With a survey response rate of 38 percent, the authors find 32 percent 
of community members claimed an innovation, and of these, 14.5 percent 
considered the innovation to be a completely new product. In their sample, 
23 percent of innovators believed their innovations had been or would be 
commercialized by a third party. These innovators did not appear to benefit 
financially from their innovations. Whether results from these and other 
surveys of leading users and enthusiasts are representative of broader user 
communities remains an open question.3

Von Hippel, de Jong, and Flowers (2012) take a broader approach to 
this question by conducting a household survey to look at inventions by 
a representative sample of consumers in the United Kingdom. These are 
innovations tied to households and their unincorporated businesses. Spe-
cifically, they look at the development and modification of consumer prod-
ucts by product users. The types of household innovations they focus on 
exclude on- the- job innovations, which are already accounted for in official 
statistics. Instead, they focus on innovations that were developed during 
uncompensated leisure time. With a survey response rate of 15 percent, they 
find 6.2 percent of UK consumers engaged in consumer product innova-
tion in the previous three years. When comparing against the amount of 
R&D investment by UK firms, they estimate the volume of household- based 
expenditures exceeded that of firms by a factor of 2.3 times.4 They conclude 
private households are a major source of invention.

The survey of von Hippel, de Jong, and Flowers (2012) is centered on 
consumer product innovations. The bulk of  the innovations, 98 percent, 
are product modifications rather than new product creations. Most of the 
innovations, 80 percent, are in a few product classes that are related with how 
people spend their time: crafts and tools, sports and hobbies, gardening, as 
well as child, dwelling, or pet related. Only 17 percent of the innovations are 
believed to be adopted by others to some degree, and only 2 percent of the 
innovations are protected by intellectual property rights. There are relatively 
few software innovations. Von Hippel, de Jong, and Flowers (2012) are the 
only study collecting demographic information from a representative con-
sumer sample rather than a community of interest. They find that inventors 
tend to be male, educated, and either a student or over age 55. Issues with 
this and other representative consumer surveys that have followed include 
high nonresponse rates, small sample sizes, and confusion regarding the 

3. A good survey of consumer user studies can be found in de Jong (2016).
4. Von Hippel, de Jong, and Flowers (2012) find the average customer invention requires an 

expenditure of £101 and 4.8 days.
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definition of  innovation by consumers. With these limitations, a general 
conclusion is the apparent low adoption rates of innovations by enterprises.

Following a different approach, Arora, Cohen, and Walsh (2016) conduct 
a survey of manufacturing firms to examine the extent to which US firms 
use external sources of invention for their innovations. Arora, Cohen, and 
Walsh (2016) focus on the whole manufacturing sector regardless of industry 
or whether firms own patents or conduct R&D. Their sample is drawn from 
the Dun & Bradstreet business frame but adjusted with US Census Bureau–
based weights to match the population of manufacturing firms by indus-
try, size, and age. For the analysis, they focus on product innovations (and 
exclude process innovations) at firms with more than 10 employees. With 
response rates of 30.3 percent, they find that of the 16 percent of firms that 
innovated (introduced a product that is new to the market), 49 percent report 
their most important new product originated from outside. They find cus-
tomers are the most pervasive source of inventions, although not the source 
of the most valuable ones. The more valuable inventions are sourced from 
technology specialists, who include independent inventors. These inventors 
patent their own inventions at relatively high rates (56 percent)—higher 
than university, supplier and customer sourced inventions (at 36 percent, 
34 percent, and 16 percent, respectively). They find independent inventors 
are also a more common source of inventions for small firms.

2.3  Data

We focus our analysis on patented household innovations. Our primary 
source of patent data is the US Patent and Trademark Office PTMT Custom 
Patent Data Extract. These data are produced annually from the biblio-
graphic text (i.e., front page) of the patent documents. The source covers 
all granted patents by the USPTO and detailed information, including the 
patent number, type of patent, filing date, issue date, inventor information, 
assignee name at time of issue, and classification information for each.

We impose some initial restrictions on the patents we analyze—namely, 
keeping those that have been granted domestically while excluding govern-
ment patents. Table 2.1 looks at the number of patents by assignee type in 
our sample. We center our analysis on patents granted between 2000 and 
2011. Our sample includes a total of 1.29 million patents granted between 
2000 and 2011. The bulk of these, 80 percent, are assigned to businesses. 
Most of the remaining patents, 19.2 percent, are unassigned. There are very 
few patents, 0.8 percent, assigned to individuals. While unassigned patents 
are assumed to belong to the inventor, it will be the case that some of these 
belong to firms but were not assigned at time of grant. We explore the extent 
of this problem by reviewing patents with large teams of inventors to get a 
sense for the amount of noise in the data. Our assumption is that the average 
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firm patent will be developed by larger teams of inventors. The results can 
be seen in figure 2.1. The team size distributions for unassigned and indi-
vidual assigned patents are fairly similar and well to the left of firm- assigned 
patents. Unassigned patents have the larger share of single- inventor patents 
(nearly 80 percent of unassigned patents have a single inventor). Looking at 

Table 2.1 US patents by assignee type and year

  Individual  Business  Unassigned  Total

2000 970 79,500 21,500 107,000 
2001 980 82,900 20,100 109,000 
2002 930 81,200 19,000 106,000 
2003 890 82,900 18,300 107,000 
2004 860 80,100 16,300 101,000 
2005 790 71,400 13,500 89,000 
2006 980 88,700 16,200 110,000 
2007 870 81,600 14,900 101,000 
2008 760 81,400 14,300 99,400 
2009 850 84,700 13,400 102,000 
2010 960 108,000 16,500 130,000 
2011 950 110,000 15,900 130,000 
Total 10,800  1,032,000  200,000  1,290,000

Source: Authors’ calculations based on public USPTO data on granted patents by US entities 
between 2000 and 2011.
Notes: Counts are rounded to comply with disclosure requirements.

Fig. 2.1 Kernel distribution of team size by assignee type, 2000–2011
Source: Own calculations based on USPTO data on granted patents applied for between 2000 
and 2011.
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the right tail of the distribution, we find that fewer than 1 percent of unas-
signed and individual- assigned patents have inventor team sizes of five or 
more, compared to the nearly 7 percent of firm- assigned patents.

Firm- assigned patents present a challenge to us. The patent data do 
not include firm identifiers or flags that might help us distinguish patents 
assigned to employers from those assigned to nonemployer businesses. It is 
not unreasonable to think, however, that independent inventors might assign 
their patents to their own unincorporated nonemployer business. However, 
we do not want to exclude these inventors from our analysis, since their 
patents might be particularly valuable. We rely on the US Census Bureau 
longitudinal patent- business database (BDS- IF) to identify and exclude 
from our analysis patents assigned to employer businesses while keeping 
those assigned to nonemployer businesses.5 We identify patents assigned to 
nonemployer firms by matching all patents to the US Census Bureau’s Busi-
ness Register of nonemployer firms.6 A large percentage of patents, nearly 
80 percent, match to the employer universe files. The employer matches 
tend to be based on the assignee name and address, while the nonemployer 
matches mostly occur through the inventor. We remove the known employer 
matches from Graham et al. (2018) from our universe of matches, leaving 
us with approximately 200,000 raw nonemployer firm matches. Our set of 
initial matches requires further refining. A high- quality firm- inventor match 
does not guarantee the inventor is matched to its firm, particularly when 
the match may not be unique. Therefore, we retain only cases where the 
social security number of the inventor and the social security number in 
the nonemployer firm record line up.7 This filtering process leaves us with a 
total set of approximately 125,000 patents. We remove an additional 55,000 
patents by only keeping the unduplicated matches.8 Finally, we drop patents 
that are associated with nonemployers that have an unusually large number 
of patents assigned to them.9 This leaves us with a total of 68,000 patents 

5. The BDS- IF identifies patents assigned to employer businesses while keeping those 
assigned to nonemployer businesses. See Graham et al. (2018) for details of  the matching 
methodology. Briefly, it uses both the assignee and inventor information to form a match. The 
use of two independent pieces of information to identify the assignee firm provides a high level 
of reliability in the match.

6. All businesses that file an income tax form to the Internal Revenue Service (IRS) authori-
ties and have no associated payroll tax form are included in the nonemployer Business Register. 
See appendix A for details of the matching methodology.

7. This comparison is done indirectly. The Census Bureau strips personally identifiable 
information from all of its internal files to protect the confidentiality of records. Specifically, 
the Census Bureau replaces an individual’s name and address (and social security number, if  
present) with a protected identification key (PIK) using the PVS system. Each name- address 
pairing has a unique PIK in the system. The Census Bureau assigned a PIK to the patent data 
using the name and location information.

8. The PVS system does not guarantee an inventor in the USPTO database will receive a 
unique person identifier. In cases where the identifying information is not unique enough, 
multiple PIKs are assigned.

9. These might be holding entities with no associated employers.
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associated with nonemployer businesses that we are confident belong to the 
inventors behind the patents.

Table 2.2 shows the percentage of patents matched to employer businesses 
(E) and nonemployer businesses (NE) by assignee type and year. Patents that 
remain unmatched (U) are not associated with business activity as captured 
by the Business Register. Table 2.2 highlights a clear separation in the match 
rates by assignee type, with the vast majority of firm- assigned patents linked 
to employer firms. By contrast, individual- assigned patents have much lower 
match rates. Only about 50 percent of patents are associated with some form 
of business activity, with most of it tied to nonemployer firms. Finally, only 
30.4 percent of unassigned patents are tied to some form of business activity.

2.4  Characteristics of Patented Household Innovations

In this section, we describe the characteristics of patents and inventors 
associated with what we call patented household innovations, which include 
patents that are either unassigned or assigned to individuals. We contrast 
those with patents assigned to firms. We start by describing differences in 
the demographic composition of the inventors associated with the patents 
before delving into the characteristics of the actual patents.

2.4.1  Inventor Demographics

To highlight potential differences in demographic characteristics of inven-
tors associated with household innovations, we link demographic informa-

Table 2.2 Percentage of patents by assignee type, type of business, and year

Individual Business Unassigned

  E  NE  U  E  NE  U  E  NE  U

2000 2.1 57.9 40 91.5 1.8 6.7 0 28.8 71.2
2001 1.4 63.8 34.7 91.6 1.9 6.5 0 29.2 70.8
2002 (D) 55.5 44.5 92 1.7 6.3 0 23.5 76.5
2003 (D) 56.9 43.1 92.4 1.7 5.9 0 23.7 76.3
2004 (D) 53.8 46.2 92.2 1.7 6.1 0 23.9 76.1
2005 1.6 55.6 42.7 91.8 1.8 6.4 0 25.3 74.7
2006 2 51.4 46.6 91.8 1.8 6.3 0 23.7 76.3
2007 1.8 52.3 45.9 92.2 1.7 6.1 0 21.5 78.5
2008 2.6 48.1 49.3 92.2 1.7 6.1 0 21.4 78.6
2009 1.4 50.5 48.1 92.3 1.7 6.1 0 21.4 78.6
2010 1.3 55.5 43.3 92 1.7 6.2 0 23.5 76.5
2011 1.7 56.3 42 90.9 1.9 7.2 0 23.9 76.1
Total 1.3  55  43.7  91.9  1.8  6.3  0  24.4  75.6

Source: Authors’ calculations based on public USPTO data on granted patents applied for 
between 2000 and 2011.
Notes: Type of business: E = Employer, NE = Nonemployer, U = Unknown. (D) identifies 
suppressed values.
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tion from administrative US Census Bureau files to the inventors in the pat-
ent records. They provide basic demographic information, including gender, 
race, country of origin, and birth date for all people in the United States 
with a social security number.

Information from the demographic files is linked by use of a protected 
identification key (PIK) available on both sets. We are not able to uniquely 
identify all inventors in the patent documents in our files due to limitations 
of the data.10 There are 1.48 million inventors associated with the 1.29 mil-
lion patents that form our analysis. We are able to obtain demographics for 
inventors on 856,000 of the 1.29 million patents.11 Overall, we find inventors 
tied to firm assignees are more likely to be uniquely identified than individual 
assignees or unassigned patents. We also find that the patents unmatched 
with demographic data are mostly concentrated in the sectors of “Design” 
and “Plants.” Details of the matching procedure’s results can be found in 
appendix B.

Table 2.3 shows demographic information for the set of  inventors we 
were able to identify by assignee type and type of economic activity. There 
are some notable differences in the demographic composition of the pat-
ent types but also some similarities. The first thing to notice is that the vast 
majority of patents are filed by males. This is true across all assignee types 
and is consistent over time.12 Innovation activity, whether household or 

10. The identification would be greatly facilitated if  the USPTO were able to collect either 
a birth date or an SSN/TIN.

11. We are able to identify demographics from 884,000 patents, but 28,000 of the patents are 
later classified as reassigned, which are dropped from our analysis.

12. Time series results note shown.

Table 2.3 Inventor demographics by assignee type and type of business

Individual Business Unassigned

  E  NE  U  E  NE  U  E  NE  U

Male 86.5 91.4 90.6 92.1 91.8 90.7 (0) 89.3 87.7
US born 72.1 82.1 80.3 66.1 67.4 63.2 (0) 82.8 81.3
Black 1.8 2.1 3.5 0.9 0.9 1 (0) 3.1 4.2
White 78.4 84.8 83.1 73.9 75.8 72.9 (0) 84.2 83.1
Other 19.8 13.1 13.4 25.2 23.3 26.1 (0) 12.6 12.8
Age < 25 1.8 1.6 3.9 0.5 1.2 0.9 (0) 2 2.3
< Age < 55 73.9 67.1 58 81 75.3 77.1 (0) 65 63.1
Age > 55 24.3 31.4 38.1 18.5 23.5 22 (0) 33 34.5

Total Inventors* 110 6,600 1,200 1,320,000 19,200 77,100 (0) 37,300 38,400
Total Patents*  60  4,700  1,100  666,000  10,800  40,400  (0)  31,100  35,100

Source: Authors’ calculations based on public USPTO data on granted patents applied for between 2000 
and 2011.
Notes: Type of business: E = Employer, NE = Nonemployer, U = Unknown. * Counts are rounded to 
comply with disclosure requirements. (D) identifies suppressed values.
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firm based, appears to be a male dominated activity. This is consistent with 
Bell et al. (2016), who find a similar deficit in female innovators. However, 
it should be noted that we cannot distinguish whether females (and other 
groups of inventors) are less likely to invent or rather less likely to patent 
given that they have invented. This is one of the key limitations of using 
patent data, which remains a proxy for innovation and does not necessarily 
capture all forms of innovation.

Firm- based patents disproportionately favor foreign- born inventors rela-
tive to individual- assigned patents and unassigned patents, with approxi-
mately one- third of  inventors affiliated with firm- assigned patents being 
foreign born compared to 20 percent for other assignee types. Given this, 
it is perhaps not too surprising that firm- assigned patents are less likely to 
be associated with black or white inventors and nearly twice as likely to be 
associated with “other” races relative to individual- assigned and unassigned 
patents. The share of foreign- born inventors outweighs their relative share in 
the labor force at 16.7 percent of the total in 2015.13 We find there is a deficit 
of black inventors across the board, again consistent with Bell et al. (2016).14

Finally, individual- assigned and unassigned patents disproportionately 
favor both older (over 55) and younger inventors (under 25). Nearly one- 
third of the household inventors are 55 years and older compared to the 
20 percent found in firm- assigned patents. This is consistent with von Hip-
pel, de Jong, and Flowers (2012), who find household innovations are dis-
proportionately tied to students and men over 55.

To summarize our findings, household innovators (associated with indi-
vidual assigned and unassigned patents) are more likely to be US born, 
white, under 25, and over 55 than firm based innovators. In the case of the 
latter, the proportion of household innovators above the age of 55 is more 
than 12 percentage points higher (31.6 versus 18.8). Across the board, we 
find a deficit of  female and black inventors relative to the population of 
employed workers and an overrepresentation of foreign- born inventors.

2.4.2  Technology Class

We next focus on the types of technology classes associated with house-
hold innovations. Previous research has focused on consumer product inno-
vations and has found innovations tended to be focused in a few product 
classes. Here we focus on the broader set of patented innovations. We look at 
the technology composition by assignee type. We also look at those that lead 
to direct business activity and those that do not. For our classification, we 
use the primary United States Patent Classification (USPC) code assigned 
to each patent and group them into eight broad classes consisting of the fol-

13. Shares of foreign- born in the labor force are reported in Bureau of Labor Statistics (2016).
14. Blacks and whites made up 12 percent and 79 percent, respectively, of the labor force 

population in 2015 (Bureau of Labor Statistics 2016).
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lowing: Chemicals; Computers and Communication (C&C); Design; Drugs 
and Medicine (D&M); Electrical and Electronics (E&E); Mechanical; Plant 
Patents; and Other. The grouping by USPC class is based on Hall, Jaffe, and 
Trajtenberg (2001) and expanded to include new patent classes as detailed in 
Dreisigmeyer et al. (2014). Table 2.4 shows the breakdown by assignee type. 
We find firm- assigned patents are disproportionately in Chemical, C&C, and 
E&E relative to individual assignee and unassigned patents. By contrast, 
they are underrepresented in Design, Mechanical, and Other. Table 2.A12 
in appendix C provides a listing of  technology subcategories associated 
with each broad class. Among the technologies included in Mechanical and 
Others are Motors, Engines, and Parts; Transportation; and Miscellaneous, 
such as hardware and tools. Others include Amusement Devices, Apparel 
and Textile, and Furniture and House Fixtures, and miscellaneous, such 
as Robots and Aquatic Devices. All are fairly typical consumer products. 
Design patents provide protection to ornamental designs embodied in or 
applied to an article of manufacture. Analysis of the top 50 companies hav-
ing been granted design patents shows that these are dominated by technol-
ogy, automotive, and consumer product companies.15

Table 2.5 breaks down the previous table by business activity. The patterns 
here replicate the findings discussed regardless of business type. A few things 
stand out. First, the majority of  Design patents are not associated with 
business activity and remain unmatched. This is true for both individual- 
assigned and unassigned patents and suggests fundamental differences, per-
haps in the value of design patents vis- à- vis utility patents and maybe the 

15. For details, see report from Intellectual Property Owners Association (2015).

Table 2.4 Percent of US patents by assignee type and technology class

   Individual  Business  Unassigned  

Chemical 6.9 10.7 5 
C&C 11.3 29.4 5.8 
Design 19.8 9.2 27.1 
D&M 10 11.4 6.4 
E&E 8.6 18.2 8.1 
Mechanical 16 10.6 17.5 
Others 26.7 10.1 29 
Plant 0.6 0.4 1.1 

 Total*  10,800  1,030,000  200,000  

Source: Authors’ calculations based on public USPTO data on granted patents applied for 
between 2000 and 2011.
Notes: Technology Class: C&C = Computers and Communications, D&M = Drugs and Med-
ical, E&E = Electrical and Electronic. * Total patent counts in this row are rounded to comply 
with disclosure requirements.
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requirements for grants. Second, patents with a firm assignee in the Drugs 
and Medical class are harder to match to business databases, perhaps due 
to the complex structure of firms developing them.

We combine our technology classes with the individual demographics to 
identify compositional differences between employer patents and household 
innovations. Table 2.6 takes the difference in the proportion of patents by 
technology class and demographic characteristic between nonemployer pat-
ents and employer patents. The table highlights several key differences, most 
of which are significant. Design patents clearly differentiate themselves in 
terms of demographics. The previous sections have alluded to the fact that 
nonemployer patent holders are disproportionately male, US born, white, 
and older than employer patent holders. However, this does not seem to 
be the case for Design patents, where the opposite holds. It appears design 
patents in employer businesses are disproportionally associated with white, 
male, US- born inventors, where they might hold a relative advantage, signal-
ing the very different nature of these types of patents.

2.4.3  Team Size

Evidence from surveys and product studies suggest the complexity and 
knowledge embodied in household innovations might not run very deep. A 
typical story might be that of a consumer who modifies the face of a clock 
to teach their kids how to tell time.16 Consistent with this, survey data also 
show that the average expenditure in developing a household innovation 
is not very high. In this section, we explore whether this is also true of 

16. This story is taken from von Hippel, de Jong, and Flowers (2012).

Table 2.5 Patent technology class: Percent by assignee type and type of business

Individual assignee Business assignee Unassigned

  E  NE  U  E  NE  U  E  NE  U

Chemical 7 8.6 4.8 10.7 10 10.8 0 6.1 4.6 
C&C 16.8 15.1 6.3 29.5 29.4 28.1 0 9.3 4.6 
Design 14 3 41.1 9.3 6.9 9.4 0 4.8 34.3 
D&M 25.9 11.6 7.6 11 13.5 16.6 0 7.8 6 
E&E 15.4 10.4 6.2 18.5 13 15.2 0 9 7.8 
Mechanical 11.2 18.9 12.6 10.8 9.8 8.7 0 22.5 15.8 
Others 7.7 32.3 20.3 10 13.9 9.9 0 40.4 25.3 
Plant 2.1 0 1.2 0.3 0.9 0.9 0 0.1 1.4 

Total*  140  5,900  4,700  949,000  18,000  65,500  0  49,000  151,000 

Source: Authors’ calculations based on public USPTO data on granted patents applied for 
between 2000 and 2011.
Notes: Each column adds up to one. Technology Class: C&C = Computers and Communica-
tions, D&M = Drugs and Medical, E&E = Electrical and Electronic. Type of business: E = 
Employer, NE = Nonemployer, U = Unknown. * Total patent counts in this row are rounded 
to comply with disclosure requirements. (D) identifies suppressed values.
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patented household innovations. We follow Jones (2009) and use team size 
as a measure of the complexity and depth of knowledge associated with a 
particular innovation. The burden- of- knowledge hypothesis would indicate 
that household innovations require smaller team sizes.

Figure 2.1 plots the distribution of team sizes by assignee types and shows 
that firm- assigned patents tend to have significantly larger team sizes on 
average. The size distribution for individual assignee and unassigned pat-
ents is fairly similar and rests well to the left of  firm- assigned patents. A 
large share of  individual- assigned and unassigned patents are developed 
by a single inventor relative to patents assigned to firms. There are single 
inventors on 60.7 percent of individual- assigned patents and 83.5 percent of 
unassigned patents versus 30.8 percent on firm- assigned patents. Table 2.7 
tabulates the mean team size by assignee type, technology class, and type 
of  business and finds similar results across them. Team sizes for patents 
matched to nonemployer businesses tend to be significantly smaller on aver-
age than patents matched to employer firms, having on average nearly one 
fewer team member. Patents with no associated business activity have the 
smallest team size on average. Consistent with Jones (2009) and Kim and 
Marschke (2015), Drugs and Medicine and Chemicals tend to be composed 
of the largest inventor teams, while Design patents consist of the smallest 
teams.

2.4.4  Impact

Household survey data indicate that the impact and quality of household 
innovations might not be very high. Survey respondents often indicate they 
do not expect their inventions to be adopted. In this section, we explore 

Table 2.6 Demographic differences by technology class: Nonemployer versus employer

  Male  
US 

born  Black  White  Other  
Age  
< 25  

25 < Age 
< 55  

Age  
> 55

Chemical 0.8* 7.1*** 0.6*** 5.3*** −5.9*** 1.2*** −11.3*** 10.2*** 
C&C 0.3 6.6*** 0.6*** 4.5*** −5*** 0.5*** −9.9*** 9.3*** 
Design −6.1*** −0.9 4.3*** −5.8*** 1.5* 1.7*** −8.7*** 7*** 
D&M 2.1*** 5*** 0.7*** 3.9*** −4.6*** 0.7*** −11*** 10.3*** 
E&E 0.1 8.2*** 0.7*** 7.4*** −8.2*** 1.4*** −13.2*** 11.8*** 
Mechanical −0.9*** 7*** 0.9*** 4.8*** −5.8*** 1.2*** −11.6*** 10.4*** 
Others −5.4*** 6.4*** 2*** 2.8*** −4.7*** 1.1*** −8.9*** 7.8*** 
Plant 1 28.8*** −0.7 −12.5** 13.2*** 1.9 −12.2 10.3 
Total  −1***  10.4***  1.1***  7.1***  −8.3***  1.1***  −11.8***  10.8*** 

Source: Authors’ calculations based on public USPTO data on granted patents applied for between 2000 
and 2011.
Notes: Numbers represent the difference in the proportion of patents between nonemployer and em-
ployer patents. Technology Class: C&C = Computers and Communications, D&M = Drugs and Medi-
cal, E&E = Electrical and Electronic. Type of business: E=Employer, NE = Nonemployer, U = Un-
known. * p < .05, ** p < .01, *** p < .001.
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whether this extends to patented household innovations. In this section, we 
follow the literature and use citation counts as a noisy measure of the qual-
ity of a patent and its technological impact. We then use a new measure of 
impact that takes account of the structure of forward-  and backward- looking 
citations to identify radical patents. Finally, we examine whether these inno-
vations are general purpose or instead narrow in application. We ignore trun-
cation issues in the analysis, assuming similar impacts across types of patents.

2.4.4.1  Citations

For our citation measures, we use the latest citation count (as of December 
2015) collected from PatentsView and link them to our dataset. Figure 2.2 
shows the distribution of citation counts by assignee type. Table 2.8 reports 
the means by assignee type, business type, and broad technology class. On 
average, individual- assigned patents have a lower mean citation count than 
firm- assigned patents. The mean citation for firm- assigned patents is 16.4, 
while the mean citation count for individual- assigned patents is 11.3 and 
10.2 for unassigned patents.17 The difference in average citation counts is 
driven in part by an across- the- board lower citation count across technol-
ogy classes. However, some of the largest differences in mean citation counts 
can be found in the Design, Mechanical, and Others categories—precisely 
the areas where household innovations are concentrated—so composition 
effects contribute to the overall difference. More interesting, perhaps, is the 
finding that household innovations are quite heavily cited on average, and 

17. Approximately 160,000 patents out of the 1.29 million have zero citations. The proportion 
of patents with zero citations by matched data and assignee type is approximately equivalent 
to the proportion of total patents by matched data and assignee type.

Table 2.7 Mean team size by technology class, assignee type, and type of business

Individual assignee Business assignee Unassigned

  E  NE  U  E  NE  U  E  NE  U

Chemical 3.1 1.93 1.38 3.06 2.47 2.86 0 1.48 1.32 
C&C 2.67 1.88 1.31 2.65 2.32 2.53 0 1.47 1.27 
Design 1.9 1.68 1.42 2.21 1.7 2.11 0 1.28 1.19 
D&M 2.92 1.9 1.46 3.1 2.45 2.91 0 1.53 1.39 
E&E 2.18 1.76 1.31 2.56 2.13 2.4 0 1.38 1.22 
Mechanical 1.63 1.68 1.24 2.49 1.98 2.3 0 1.29 1.15 
Others 1.73 1.67 1.27 2.44 1.98 2.28 0 1.29 1.15 
Plant 2 1 1.04 1.25 1.15 1.3 0 1.68 1.31 
All patents  2.38  1.8  1.36  2.65  2.24  2.49  0  1.37  1.21 

Source: Authors’ calculations based on public USPTO data on granted patents applied for 
between 2000 and 2011.
Notes: Technology Class: C&C = Computers and Communications, D&M = Drugs and Med-
ical, E&E = Electrical and Electronic. Type of business: E = Employer, NE = Nonemployer, 
U = Unknown. (D) identifies suppressed values.
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in some areas, such as Computers and Communications and Electrical and 
Electronic, the difference is not very large. Looking at the citations across 
type of business activity, we find patents have a mean citation count of 16.4, 
13.4, and 11.4, respectively, for patents associated with employer businesses, 
nonemployer businesses, and no business activity. Again, these differences 

Fig. 2.2 Kernel distribution of citation counts by assignee type, 2000–2011
Source: Own calculations based on USPTO data on granted patents applied for between 2000 
and 2011.

Table 2.8 Mean citation count by technology class, assignee type, and type  
of business

Individual assignee Business assignee Unassigned

  E  NE  U  E  NE  U  E  NE  U

Chemical 8.9 7.52 7.25 10.42 8.78 11.77 0 7.08 6.22 
C&C 17.04 23.21 19.89 20.34 23.92 21.93 0 16.41 14.41 
Design 6.65 8.58 6.18 12.32 11.38 10.7 0 8.55 7.07 
D&M 18.86 23.73 17.65 25.73 22.81 21.75 0 18.66 15.32 
E&E 12.09 13.1 9.61 13.84 16.26 15.14 0 10.6 8.88 
Mechanical 10.88 7.81 7.78 11.79 14.88 12.64 0 8.13 6.56 
Others 9 9.98 8.98 14.45 12.39 12.3 0 8.03 7.72 
Plant 1.67 0.5 0.36 0.31 0.35 0.32 0 0.76 0.29 
All patents  13.1  13.28  9.34  16.36  16.49  16.81  0  10.13  8.09 

Source: Authors’ calculations based on public USPTO data on granted patents applied for 
between 2000 and 2011.
Notes: We exclude patents with zero citations. Technology Class: C&C = Computers and 
Communications, D&M = Drugs and Medical, E&E = Electrical and Electronic. Type of 
business: E = Employer, NE = Nonemployer, U = Unknown. (D) identifies suppressed values.
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appear to be driven by composition effects as well as generally lower citation 
counts within particular technology classes.

To examine differences in citation counts after controlling for technology 
composition, we run a Poisson regression on citations, looking at the impact 
of business type after controlling for patent class (main USPC code) and 
grant year (table 2.9). Column 1 looks at citation impact by business type 
and column 2 by assignee type. Focusing on column 1, we see the difference 
in the logs of expected citations is 0.288 units higher for patents matched to 
employer firms and 0.06 units higher for patents matched to nonemployer 
firms relative to unmatched patents, holding everything else constant. (These 
values convert the above coefficients into interpretable units.) This is equiva-
lent to a citation count that is 33.4 percent higher for employer- matched 
patents and 6.2 percent higher for nonemployer- matched patents, for a differ-
ence of 27 percent in citations between employer and nonemployer patents. 
Looking at the differences in citations by assignee type, column 2, we find a 
similar difference between firm- assigned patents and individual- assigned pat-
ents. The coefficient values give a difference in the logs of expected citations 
of 0.096 units higher for firm- assigned patents and –0.247 units lower for 
individual- assigned patents relative to reassigned patents. This is equivalent 
to a citation count that is 10 percent higher for firm- assigned patents and 22 
percent lower for individual assigned patents, for a difference of 32 percent.

Table 2.9 Pseudo- maximum log likelihood regression on patent citations

Citations Citations
 Dependent variable  (1)  (2)  

Grant year −0.1616*** −0.1622*** 
(0.00760) (0.00757) 

Team size 0.07265*** 0.06831*** 
(0.00426) (0.00403) 

Employer patents 0.23618***  
(0.02269)  

Nonemployer patents 0.07342***  
(0.01385)  

Unmatched patents Dropped Dropped
Firm- assigned patents  0.04132 

 (0.02733) 
Individual- assigned patents  −0.2460*** 

 (0.02746) 
Unassigned patents Dropped Dropped
USPC fixed effects Yes Yes

Constant 326.192*** 327.522*** 
(14.7814) (14.7207) 

 Observations  1,290,000  1,290,000  

Standard errors are clustered at the USPC Technology Class level. * p < .05, ** p < .01, *** p 
< .001.
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2.4.4.2  Radical Patents

Household innovators will be relatively resource constrained compared to 
firms. These innovators might choose to focus on technologies that require 
smaller investments and prior knowledge—they are not complex. Consis-
tent with this idea, section 2.4.2 documented the disproportionate weight 
design patents have among household innovators. In this section we explore 
whether this might lead them also to work on innovations that represent 
breaks with past knowledge within specific technology fields. Also in this 
section, we assess the proportion of breakthrough patents among patented 
household innovations as defined by whether they represent a “radical” 
break from existing knowledge in that field. Since it is the focal point of a 
new technological trajectory, the patent itself  must be cited.

Our measure builds on the concepts of Dahlin and Behrens (2005) but is 
extended to the universe of patents in the USPTO patent database (Dreisig-
meyer et al. 2014). Dahlin and Behrens (2005) define the term radical inven-
tion as one that meets three properties: (1) it is novel, meaning it has dis-
tinctive features that are missing in previously observed inventions; (2) it is 
unique, meaning it is the focal point of a new technological trajectory; and 
(3) it must be adopted, meaning it should influence future inventions. The 
authors operationalize this idea by examining both forward and backward 
citation patterns for any given patent. Forward citations are citations to a 
patent made by other later patents. It is a measure of the patents impact 
on future inventions and its value in the market. Backward citations are 
defined by the prior art cited by the patent itself. Backward citations contain 
information about the radicalness of  the innovation. The more radical a 
technology, the more likely it is to cite prior art outside its own patent class, 
since this will necessarily involve combining different elements rather than 
inventions from its own field.

Table 2.10 reports the number of patents (per thousand) that qualify as 
being radical by assignee type, business type, and technology class. In gen-
eral, patents matched to employer firms are more than twice as likely to 
be considered radical versus patents matched to nonemployer firms and 
unmatched patents. This does not appear to be driven by compositional 
differences in the patent types, as employer- match patents and firm- assigned 
patents consistently have higher rates of radical patents across all technol-
ogy classes. Design patents appear to have high rates of radical innovations. 
Many of these appear to be self- referencing and do not have much of an 
impact outside the patenting firm, suggesting these might be dispropor-
tionately defensive patents. While there are relatively fewer radical patents 
among household innovators, there is still a nontrivial number of them. We 
examine some of the radical patents identified. The bulk of them are found 
in Computers and Communications, Design, and Drugs and Medical. They 
include a system for providing traffic information to a plurality of mobile 
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users connected to a network, a system for dynamically pushing informa-
tion to a user utilizing a global positioning system, a method and apparatus 
for securing a suture, and a flash memory drive with a quick connector. All 
these technologies had broad impacts in their fields.

2.4.4.3  Generality Index

Finally, we describe the breadth of impact patented household innova-
tions have outside of their own fields. Some technologies are more specific, 
with a limited application across industries, while others have a wider field 
of application. We use the patent classification codes to generate a measure 
of generality, Gi, that is close to that used by Hall and Trajtenberg (2004) 
as follows:

Gi =
j

ni

sij
2 ,

where sij denotes the percentage of citations received by patent i that belong 
to patent class j out of ni patent classes. This is simply the square root of the 
Herfindahl concentration index, and therefore if  a patent is cited by subse-
quent patents that belong to a wide range of fields, the measure will be low 
and close to 0. By contrast, if  the citations are concentrated in a few fields, 
the measure will be close to 1. Furthermore, if  a patent has a single citation 
in the same technological field, this measure will be equal to 1 and it won’t 
be defined when it receives no citations.18

18. This modified measure of generality retains important properties of metric spaces (or 
distance functions) that allow us to measure the distance, instead of just a similarity, between 
two patents.

Table 2.10 Proportion of radical patents (per thousand) by technology class, 
assignee type, and type of business

Individual assignee Business assignee Unassigned

  E  NE  U  E  NE  U  E  NE  U

Chemical 0 3.9 4.5 18.1 17.5 17.6 0 1.7 2 
C&C 41.7 14.5 6.7 14.1 18.7 15.5 0 5.7 3.7 
Design 0 11.2 9.8 28.4 19.8 21.9 0 9.4 12.3 
D&M 0 13.1 8.4 25.6 22.8 22.3 0 3.4 3.2 
E&E 0 6.5 0 13.2 15.2 14.8 0 2.3 3.1 
Mechanical 0 4.5 3.4 12 17.8 16.5 0 2.8 2.3 
Others 0 5.7 3.1 15.2 13 16.5 0 1.8 1.4 
Plant 0 0 0 1.6 0 5.2 0 0 0.5 
Total  7  7.8  6.4  16.8  17.2  17.4  0  2.9  5.7 

Source: Authors’ calculations based on public USPTO data on granted patents applied for 
between 2000 and 2011.
Notes: Technology Class: C&C = Computers and Communications, D&D = Drugs and Med-
ical, E&E = Electrical and Electronic. Type of business: E = Employer, NE = Nonemployer, 
U = Unknown.
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We compute a Generality Index for patents in our sample that were granted 
up through 2008 to limit the impact of right censoring. Table 2.11 looks at 
the mean generality index by assignee type, type of business activity, and 
technology class. In general, firm- assigned patents find application across 
a broader set of  technological fields. This is particularly true for Chemi-
cal, Drugs and Medical, and Mechanical. Independent inventors appear to 
focus on technologies that have narrower impacts. Across the board and as 
expected, patents in Computers and Communications and Chemical have 
broader applicability, receiving the highest number of citations outside their 
field. By contrast, Design patents have the most limited application.

2.5  Business Formation and Outcomes

Having established how patents associated with household innovations 
differ from traditional patents, this section looks at the types of businesses 
associated with household innovations—their characteristics, innovation 
dynamics, and outcomes. The goal is to assess whether the innovator is 
able to monetize their innovation through either increased business income, 
possibly from licensing, or the use of the patent. There are other ways the 
inventor might monetize their innovation that we do not observe here, 
such as through direct payments.19 It should be noted that the majority of 
patented household innovations are not directly tied to a business that the 
inventor owns. Table 2.5 shows that only 19 percent of patented household 
innovations, those accounted for by individual assignee and unassigned pat-

19. This form of income might be observed through their income tax forms.

Table 2.11 Mean (modified) generality index by technology class, assignee type, and 
type of business

Individual assignee Business assignee Unassigned

  E  NE  U  E  NE  U  E  NE  U

Chemical 0.6 0.64 0.62 0.6 0.61 0.59 0 0.63 0.65 
C&C 0.58 0.59 0.6 0.63 0.62 0.63 0 0.62 0.63 
Design 0.87 0.8 0.86 0.88 0.84 0.88 0 0.79 0.86 
D&M 0.63 0.68 0.71 0.66 0.66 0.65 0 0.68 0.71 
E&E 0.62 0.66 0.69 0.66 0.64 0.65 0 0.66 0.68 
Mechanical 0.61 0.72 0.71 0.67 0.66 0.66 0 0.7 0.72 
Others 0.64 0.69 0.7 0.67 0.68 0.67 0 0.69 0.7 
Plant  1  1  1  0.99  1  0.99  0  1  1 

Source: Authors calculations based on public USPTO data on granted patents applied for 
between 2000 and 2011. 
Notes: Technology Class: C&C = Computers and Communications, D&D = Drugs and Med-
ical, E&E = Electrical and Electronic. Type of business: E = Employer, NE = Nonemployer, 
U = Unknown.
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ents, are associated with a business. The equivalent rate for patents with a 
declared business assignee is 93 percent.

2.5.1  Characteristics of Patenting Firms: Industry, Age, and Size

We start by looking at the industry composition of the nonemployer firms 
that obtain a patent. Patenting nonemployer firms are extremely rare. Out of 
more than 20 million nonemployer firms in a typical year, only around 5,000 
firms will seek out a patent (less than 0.03 percent). We limit our analysis 
to nonemployer firms that are born after 2000. We exclude existing non-
employers born prior to avoid left censoring in the patents we can match.20 
Figure 2.3 shows the industry composition of patenting nonemployer firms 
weighted by number of patents they own (top) and that of all nonemployer 
firms (bottom). Figure 2.3 shows that a disproportionate share of patents 
originate at nonemployer firms that engage in Professional Services, fol-
lowed by Finance and Real Estate and Retail. This is very different from the 
industry composition of nonemployer firms, which is dispersed much more 
evenly across industries.

Businesses associated with household innovations differ from the overall 
population of nonemployer businesses. We are interested in understanding 
whether the trigger for creating these businesses is the expectation of a pat-
ent grant and thus a means to try to capitalize on an innovation or instead 
if  the business activity predates the patent application. We explore similar 
patterns for firms with employees. Figure 2.4 graphs the distribution of firm 
age when the firm/inventor applies for their first patent for both employer 
and nonemployer firms.21 We define firm age based on the year the business 
first filed income taxes. We look at applications by patenting firms in 2010. 
We limit our analysis to firms up to age 10. If  a firm first files income taxes 
after the application is filed, we assign a negative age equal to the difference 
between application year and birth year. Figure 2.4 shows that a significant 
share of businesses apply for their patent before they generate revenue. The 
mass of distribution is to the left of their second year of business activity. 
Approximately 43.6 percent of nonemployer firms that are granted a patent 
apply for the patent prior to starting their nonemployer business activity. For 
many other businesses, the birth of the business coincides with the patent 
application year. A nontrivial number of patent applications, 18 percent, 
are filed three or more years after starting the business activity. Compared 
to employer businesses, household innovators are more likely to start their 
businesses at the time of  application, although the two distributions are 
centered around age 0. The tighter distribution for nonemployers can be 
attributed to the shortened life cycle of nonemployer firms, most of which 

20. Currently we can only work with patent data starting in 2000. If  we were to include 
incumbent nonemployers in 2000, there would be no way for us to determine which ones 
received a patent prior to 2000.

21. We only observe granted patents.
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Fig. 2.3 Industry composition of nonemployer firms, 2000–2011
Source: Own calculations based on USPTO and US Census Bureau data on granted patents 
applied for between 2000 and 2011.
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are very short- lived with more than 50 percent of nonemployer firms exiting 
before year two and 70 percent of nonemployer firms exiting by year three 
(Fairlie and Miranda 2017).

We are interested in understanding the revenue generated by household 
innovations vis- à- vis innovations tied to established employer businesses. 
Figure 2.5 looks at the revenue distribution for firms that own patents as a 
function of their employer status. As before, we focus on the cross section 
of firms age 10 or less in 2010. Revenue follows a log- normal pattern with 
the distribution centered at $10,000 for household innovations.22 Revenue 
for innovative employer businesses is similarly shaped but centered around 
much larger revenues of $1.2 million. Businesses associated with household 
innovations do not appear to generate much income on average at time of 
application. There is, however, a fairly wide distribution with a standard 
deviation of $97,500.

Figure 2.6 looks at income growth before and after patent grant. To avoid 
composition effects as a result of firm exit, we show results for a balanced 
panel of firms that survive for a minimum of five years. For comparison we 
show revenue for employer businesses. We normalize revenue to equal 100 
at grant time, t, to facilitate comparison with employer businesses. Figure 
2.6 shows that income growth prior to patent grant is considerable and very 

22. It should be noted that firms that patent prior to starting their business (negative age 
firms) are not included in the distribution.

Fig. 2.4 Kernel distribution of age of nonemployer firm for first patent, 2010
Source: Own calculations based on USPTO and US Census Bureau data on patent- holding 
firms age 10 years or less in 2010.
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Fig. 2.5 Kernel distribution of size of nonemployer firm for first patent, 2000–2011
Source: Own calculations based on USPTO and US Census Bureau data on granted patents 
applied for between 2000 and 2011.

Fig. 2.6 Total income before first patent, balanced panel
Source: Own calculations based on USPTO and US Census Bureau data on granted patents 
applied for between 2000 and 2011. Sample includes a balanced panel of  patenting firms 
centered at patent grant.
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similar for both employer and nonemployer business. In the two years prior 
to patent grant, revenue grows by 25 percent relative to the base. Income 
plateaus for nonemployer businesses shortly after grant and starts declining 
one year after. Very few firms transition to employer status, so this pattern 
is not due to excluding successful exits out of  nonemployment. Revenue 
growth by employer businesses seems to be very different after grant. These 
firms display an acceleration of revenue that seems to exhaust itself  two 
years after grant. Overall, these results suggest that on average, household 
innovators are not as successful in capitalizing their innovations after grant.

2.5.2  Dynamics and Transition to Employer Status

Finally, we look at the probability that a nonemployer business hires 
employees—in particular whether patenting activity is associated with the 
successful growth expansion to a business that generates paid jobs for other 
individuals. For this exercise, we focus on the cohort of new nonemployer 
start- ups in 2000 and ask ourselves how many transition into employer sta-
tus each year after.

We find that of the approximately 5.24 million new nonemployer entrants 
in 2000, around 100,000 eventually transition to employer firms over their 
lives, for a cumulative transition rate of approximately 2 percent. Of this 
cohort, 3,700 nonemployer firms hold a patent. Of these, 125 will transition 
to employer firms over their life cycles, for a cumulative transition rate of 
around 3.4 percent, or 70 percent higher than nonpatenting firms. Annual 
transitions are graphed in figure 2.7. As we can see, patenting firms are more 
than twice as likely to transition to employer firms within the first two years 
relative to nonpatenting firms.

Fig. 2.7 Transition to employer firms by year, 2000 cohort
Source: Own calculations based on USPTO and US Census Bureau data; 2000 cohort of 
nonemployer business.
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2.5.3  The Value of Household Innovations

Relatively few household innovations become the foundation of a busi-
ness. However, those that do give us an indication of  the value of  these 
innovations if  only from the revenue they generate. Household innovations 
that do not directly translate into a business owned by the inventor might 
be expected to generate income in other ways that we do not observe in the 
data, such as contracts or direct payments. Many others might be monetized 
by incumbent companies with specific market knowledge and resources to 
market and profit from the innovation. Many others may simply never be 
pursued directly but contribute to the knowledge base that generates other 
innovations. Other innovations might go unnoticed, and yet others may 
simply have no value at all. Assigning value to these innovations is difficult 
if  not impossible. However, a simple back- of- the- envelope calculation might 
give us a sense of the magnitude of their overall value. To this end, we cal-
culate a range of potential values based on both the marginal and average 
direct incomes generated by businesses owned by household inventors. We 
focus first on innovations tied to nonemployer businesses. We calculate the 
average income generated by those businesses while they remain in opera-
tion. For simplicity, we ignore income generated by these businesses after 
they hire their first employee, since there are relatively few transitions. We 
base our calculation on the cohort of firms born in 2000 that own a patent. 
We track these firms through 2011 or until they exit.

Our starting point for identifying the economic value of these patents is to 
first come up with a revenue elasticity for each patent grant. In Table 2.12, we 
run several revenue specifications based on known factors that are seemingly 
unrelated to the innovation itself  but can potentially impact the revenue 
stream of these businesses. These include technology sector and zip code–
year controls, as well as demographic controls (male, US born, race, and 
age) across the full nonemployer sample and patenters only. In column (5), 
we control for selection using a Heckman selection model. The results from 
our specifications reveal that patents have a positive and significant impact 
on revenue. Across all nonemployer and patenting firms, the specifications 
suggest that a 10 percent increase in granted patents is associated with a 
0.3 percent to 0.4 percent increase in revenue (combining the elasticities of 
the patent application and grant), while a 10 percent increase in citations 
is associated with a 0.03 percent to 0.06 percent increase in revenue. These 
results are consistent after controlling for selection.

In attempting to compute the economic value of these patents, we first 
need to tabulate the total number of household innovations as measured by 
patents and the number of businesses associated with these patents. Tables 
2.1 and 2.2 tell us that we have approximately 93,000 matched patents to non-
employer businesses. These 93,000 patents match to 42,000 unique nonem-
ployer businesses (2.2 patents per business). Assuming the same employer- 
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to- nonemployer match ratios in table 2.2 and applying them to the set of 
unmatched patents gives us 184,000 unmatched nonemployer patents, which 
would convert to approximately 83,000 nonemployer businesses (assuming 
the same ratio of patents per business). We therefore need to approximate 
the revenue streams for the 83,000 “missing” nonemployer businesses to 
tabulate the full economic impact of household innovations. Nonemployer 
businesses with patents generate approximately $10,200 in annual revenue 
on average (versus $9,700 generated on average for nonemployer businesses 
that hold no patents). Nonemployer businesses with patents also have an 
average survival rate of 3.95 years (versus 2.72 years for nonemployer busi-
nesses without patents). Therefore, if  we take the aggregate lifetime revenue 
of  the 42,000 nonemployer businesses with patents, we get an economic 
value of approximately $1.7 billion (or $18,500 per patent). Applying the 
same values to the 83,000 “missing” nonemployer businesses with patents 
gives us a cumulative economic value of $5.0 billion for all household inno-
vations between 2000 and 2011 in real 2000 dollars.

It is important to note that this calculation requires a number of strong 
assumptions that may differ greatly from reality. First, the revenue gener-
ated by businesses started by household inventors themselves is the same 
as the revenue generated by household innovations whose outcomes we 

Table 2.12 Regression results on nonemployer revenues

OLS OLS OLS OLS

Heckman 
selection 

(second stage)
Regression  (1)  (2)  (3)  (4)  (5)

Sample  All  Patenters only  All  Patenters only  All

Citations 0.0048*** 0.0060*** 0.0045*** 0.0056*** 0.0039*** 
(0.0003) (0.0009) (0.0003) (0.0009) (0.0008) 

Patent applications 0.0305*** 0.0260*** 0.0262*** 0.0175*** 0.0254*** 
(0.0009) (0.0039) (0.009) (0.0039) (0.0011) 

Patent grants 0.0135*** 0.0078*** 0.0117*** 0.0079*** 0.0139*** 
(0.0010) (0.0023) (0.0009) (0.0023) (0.0011) 

Team size −0.0019*** −0.0027*** −0.0027*** −0.0035*** −0.0026*** 
(0.0003) (0.0009) (0.0003) (0.0009) (0.0004) 

Demographic controls No No Yes Yes Yes
Zip- year fixed effects Yes Yes Yes Yes Yes
Patent- sector fixed effects Yes Yes Yes Yes Yes
R2 0.019 0.259 0.062 0.278  
Observations  198,110,000  41,500  198,110,000  41,500  198,110,000

Notes: Robust standard errors are clustered at the patent- sector level. Selection equation for column 5 
includes demographic controls and zip- year fixed effects. The selection coefficient is –6.0557 with SE 
0.0628 and is significant to the 0.1 percent. * p < .05, ** p < .01, *** p < .001.
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are not able to observe, including those sold to or appropriated by existing 
businesses. Second, businesses started by household inventors would not 
generate revenue were it not for the innovation. Third, the cost of develop-
ing the innovation is negligible. Finally, we have limited our analysis to pat-
ented household innovations. While arguably the most valuable innovations, 
likely they represent but a small portion of all household innovations. We 
have made no effort to place an economic value on innovations that are not 
known to the patent system.

2.6  Conclusion

Households are increasingly recognized as an important source of inven-
tion and innovation. Survey data show independent inventors contribute 
substantially to consumer product innovations that are later incorporated 
into the products of incumbent firms. A challenge with survey data is the 
small sample sizes, which either limit what we can learn about the most 
valuable innovations (the right tail of  the distribution) or limit the scope 
of the innovations we can study. In this chapter, we use administrative data 
from the US Patent and Trademark Office and the US Census Bureau to 
describe patented household innovations in a systematic way. While pat-
ented innovations arguably represent but a very small slice of household 
innovations, they are perhaps the most valuable one. We match these patents 
and their inventors to US Census Bureau demographic and business data. 
We explore the demographic characteristics of  housed inventors vis- à- vis 
salaried inventors, the characteristics and impact of their innovations, and 
their value when these inventors monetize their innovations through their 
own business.

We find household inventors are disproportionately born in the United 
States when compared with salaried inventors, and consequently they are 
also relatively white. Businesses that hire inventors disproportionately hire 
foreign- born inventors relative to their size in the population—an indication 
these corporations might engage in brain gain by tapping foreign markets. 
Household inventors are disproportionately under 25 and over 55, consis-
tent with the idea that household innovation is a leisure activity. Across the 
board, whether household or corporate inventors, we find a deficit in female 
and black inventors relative to the population as a whole.

Looking at the types of innovations, we find household inventors work 
in technology classes disproportionately tied to consumer products, such as 
Design, Mechanical, and Other. These patents are about half  as likely to 
be considered “radical” when compared with corporate patents. In terms 
of value, household innovations accumulate approximately 27 percent to 
32 percent fewer citations on average. While their citation impact is smaller, 
it remains remarkably high, with an average of  13.6 citations per patent 
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(through December 2016). Finally, we find that relatively few household 
inventors start a business around their innovation. Only 19 percent of house-
hold innovations are tied to a business. These businesses average $10,000 in 
revenue at time of patent application and are more than twice as likely to 
transition to hire their first employee than nonemployers who do not patent.

Finally, our back- of- the- envelope calculations suggest patented house-
hold innovations granted between 2000 and 2011 may generate approxi-
mately $5.0 billion in revenue in 2000 dollars. While this might not be 
extraordinary when compared to the value of  corporate patents, it is 
nontrivial, which raises important questions about R&D and innovation  
policy.

To conclude, patented household innovations have impact and value. 
Many of  them are radical and represent breakthroughs in their fields. 
Despite efforts to understand their role in the economy, our knowledge of 
innovations and their inventors remains limited. Administrative data help 
shed light on this population and their impact. Combined with a targeted 
survey of household inventors and their patented inventions, this could go 
a long way to expand our knowledge in this area.

Appendix A

Matching Process and Data Construction

In this section, we outline the matching process between USPTO- granted 
patents and the full nonemployer dataset (Integrated Longitudinal Busi-
ness Database, or ILBD) at Census. We start by describing the individual 
datasets and features of the datasets that will be matched. We then outline 
the matching algorithm and post a number of statistics on the match rates 
across different patent types.

2.A1 USPTO Patent Data

The USPTO patent database consists of all granted patents applied for 
between 2000 and 2011 by US entities. We use the patent class information 
to impose restrictions on the set of patents used in our analysis. Depending 
on the patent documents, patents can be assigned to firms, individuals, or 
governments. These can each be either domestic or foreign. In addition, 
the patents can be unassigned. This happens when the inventors have not 
granted the rights to the invention to a corporation, university, or govern-
ment agency or to other individuals. In these cases, the patents are assumed 
to remain with the inventor, but in some cases, they can later be reassigned 
to firms. We exclude from the set of patents we analyze those that belong to 
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governments and all foreign patents. We assume these are not tied to inde-
pendent US- based inventors and exclude all foreign entities as well as gov-
ernment patents.23 Counts of domestic patents with inventor and assignee 
data are plotted in figure 2.1.

Our matching algorithm attempts to create name and address matches 
from two distinct sources of information contained in USPTO patents: (i) the 
assignee, typically a firm, for whom patent ownership belongs and (ii) the 
inventor—persons who may or may not be affiliated with a firm that came up 
with the patent. In cases where no assignee is named, it is assumed that the 
patent’s ownership belongs to the inventor and/or inventors. We are primar-
ily interested in collecting names and any geographical data associated with 
the patents. We compile our matching database from two distinct sources of 
data from USPTO, each associated with either the assignee or the inventor.

2.A1.1 Cleaning of USPTO Assignee Data

The matching information for assignees is limited to the firm name, city, 
and state. We use city and state as our blocking variables and allow for fuzzy 

23. We only keep patents of assignee type “02 —US Company and/or Corporation” and type 
“04—US Individual,” as well as patents with missing assignee information that originate in the 
United States and contain US inventor data.

Fig. 2.A1 Mean (modified) annual patent application counts of granted US pat-
ents by application year, 2000–2013
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matching based on name. We start with approximately 1.29 million patent 
observations across all years and drop around 260,000 patents that do not 
have an assignee name to match against, leaving us with 1.03 million patents 
to match assignee information against. Nearly all of the 1.03 million patents 
have geographic information, including city and state, to match against.

In each year, there are on average 18,000 unique assignee names to match 
against and slightly more geographic pairs, indicating that a small subset 
of  assignees applies for patents from multiple locations. The total num-
ber of unique assignees between 2000 and 2011 is approximately 102,000 
and provides potential matches for 1.03 million patents (80 percent of pos-
sible matches).

2.A1.2 Cleaning of USPTO Inventor Data

Inventors are listed separately from the assignees and are considered 
wholly different, as they are typically employees of the assignee firms. Inven-
tor data contains a separate identifier for each inventor and also contains 
city-  and state- level geographic data. Multiple inventors can work on each 
patent. The number of inventors greatly exceeds the number of assignees. 
Because the ILBD mainly consists of person- level identifiers, inventors will 
serve as a primary matching criterion.

In each year, there are around 160,000 unique inventor names on average 
to match the ILBD against and nearly 1 million unique individuals associ-
ated with patents granted between 2000 and 2011. Nearly all of  the data 

Table 2.A1 Assignee counts from USPTO data on granted patents by US entities, 
2000–2011

  
All 

patents  
Domestic patents  

with assignees  
Unique assignee-
geographic pairs  

Unique 
assignees

2000 107,000 79,500 20,800 18,800
2001 109,000 82,900 21,000 18,900
2002 106,000 81,200 19,600 17,800
2003 107,000 82,900 19,200 17,700
2004 101,000 80,100 18,600 17,200
2005 89,000 71,400 17,100 15,900
2006 110,000 88,700 19,900 18,300
2007 101,000 81,600 18,300 17,000
2008 99,400 81,400 17,900 16,700
2009 102,000 84,700 17,900 16,700
2010 130,000 108,000 21,200 19,800
2011 130,000 110,000 21,700 20,200
Total 1,290,000  1,030,000  123,000  102,000

Source: Authors’ calculations on public USPTO data on granted patents applied for by US 
entities between 2000 and 2011.
Notes: Counts are rounded to comply with disclosure requirements.
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contains geographic information of some form, including city and/or state, 
with a small proportion of inventors applying for patents across multiple 
locations. Combining these data with the assignee data gives us the full 
matching criteria to perform our name and address match. To summarize 
our matching frame, we have approximately 180,000 unique inventors and 
assignees to match the ILBD against in every year. These 180,000 inventors 
and assignees represent around 110,000 patents in each year for 1.29 million 
total patents.

2.A2 Integrated Longitudinal Business Database Cleanup

On the nonemployer side of the data, we start by combining all the indi-
vidual cross sections of the ILBD from 2000 to 2011. The ILBD consists of 
both nonemployer businesses (identified with an Employer Identification 
Number, or EIN) and sole proprietorships (identified by a PIK). The break-
down and counts of businesses of each type are as follows.

The identifying information used to link to the patents consists of a name, 
city, and state, along with a unique identifier that is able to link nonemployer 
businesses over time. Names are given by two separate name variables. We 
separate the two name variables and stack them with their unique identifier 
in order to obtain every name combination in the database. In addition, 
approximately 55 percent of the names consist of two individuals separated 
by an ampersand, such as “John & Jane Doe.” We separate out each of these 

Table 2.A2 Inventor counts from USPTO data on granted patents by US entities, 
2000–2011

  
All 

patents  
Domestic patents 

with inventors  
Unique inventor-
geographic pairs  

Unique 
inventors

2000 107,000 107,000 161,000 153,000 
2001 109,000 109,000 166,000 158,000 
2002 106,000 106,000 165,000 157,000 
2003 107,000 107,000 169,000 160,000 
2004 101,000 101,000 164,000 156,000 
2005 89,000 88,900 149,000 142,000 
2006 110,000 110,000 177,000 167,000 
2007 101,000 101,000 166,000 157,000 
2008 99,400 99,300 166,000 157,000 
2009 102,000 102,000 175,000 165,000 
2010 130,000 130,000 220,000 205,000 
2011 130,000 130,000 222,000 207,000 
Total 1,290,000  1,290,000  1,200,000  990,000 

Source: Authors’ calculations on public USPTO data on granted patents by US entities be-
tween 2000 and 2011.
Notes: Counts are rounded to comply with disclosure requirements.
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observations into two observations (e.g., “John Doe” and “Jane Doe”). All 
together, these combinations give us more than 297 million unique observa-
tions for the 183 million nonemployer businesses to match against.

2.A3 Matching Algorithm

Once the two matching datasets have been completed, we run the follow-
ing name and address matching algorithm in order of best possible match to 
worst possible match: (a) Name, City, and State: Only the inventor dataset 
of  the USPTO contains CITY data; (b) Name and State: Includes both 
inventor and assignee data and consists of the largest possible match; and 
(c) Name Only: Worst possible match set, but we can keep unique matches.

We use the SAS PROC DQMATCH algorithm to run the match. After 
each step, we only keep the residual nonmatched patents so that each patent 
can only be matched according to one of the criteria sets above. Table 2.A4 
provides summary statistics on the full match rates by step. These consist of 
the raw matches (prior to any cleaning).

We are able to match approximately 80 percent of the 1.29 million pat-
ents that we start out with. More than two- thirds of the matches occur at 
the highest quality, where the patent’s assignee/inventor’s name, city, and 
state matched a nonemployer business’ name, city, and state. Approximately 
one- fifth of  the matches occur at the “name and state” resolution, with 
the remaining matches occurring at the “name” resolution. Each of these 
matches can occur through an inventor match, an assignee match, or for 
some patents, both. The breakdown of match by identifier is as follows.

Table 2.A3 Nonemployer businesses counts by type

 Year  
Nonemployer  

businesses  
Nonemployer  

EIN  
Nonemployer  

PIK  

2000 16,530,000 2,120,000 14,410,000 
2001 16,980,000 2,230,000 14,750,000 
2002 17,650,000 2,270,000 15,380,000
2003 18,650,000 2,420,000 16,230,000
2004 19,520,000 2,530,000 16,990,000
2005 20,390,000 2,670,000 17,720,000
2006 20,770,000 2,590,000 18,180,000
2007 21,710,000 2,620,000 19,090,000
2008 21,350,000 2,540,000 18,810,000
2009 21,700,000 3,000,000 18,700,000
2010 22,110,000 3,000,000 19,110,000
2011 22,490,000 3,050,000 19,440,000

 Total 239,850,000  31,040,000  208,810,000  

Source: Nonemployer statistics.
Notes: Counts are rounded to comply with disclosure requirements. PIK, protected identifica-
tion key; EIN, employer identification number.
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Nearly 70 percent of the matches occur through the inventor, which is 
expected, since nearly 90 percent of the patent- matching criteria are through 
the inventor. About 14 percent of patents are matched through both the 
inventor and the assignee, with the remaining being matched through the 
assignee. The next step in the matching process is to filter out the patents 
that are actually linked with employer firms, keep patents that have identi-
fied inventors in the Person Identification Validation System (PVS) process, 
drop duplicate matches (e.g., more than one identifier for a patent- name 
combination), and finally augment our data using unique PVSed patents.

2.A4 Cleaning the Set of Matches

Starting with our set of 103 million matches, the first step in the cleaning 
process is to remove all the patents associated with employer firms using an 
existing Census firm- level crosswalk (see Graham et al. 2018). These patents 
may have matched to the nonemployer data either through the inventor who 
is employed by an employer firm that is the assignee or if  the name of the 
nonemployer business is very similar or identical to the name of an employer 
business. The existing Census firm- level crosswalk exists from 2000 to 2011 
and covers more than 1.5 million patents, of  which 958,000 originate in 
the United States, with the remaining belonging to foreign assignees with 
US subsidiaries. This crosswalk was created using a triangulation of name- 

Table 2.A4 Number of patent matches by match criteria, 2000–2011

   
Number of  

matches  
Total matches 

(%)  

Match Criteria 1—Name, City, and State 713,000 69
Match Criteria 2—Name and State 207,000 20
Match Criteria 3—Name Only 117,000 11

 Total  1,037,000    

Source: Authors’ calculations using ILBD data.
Notes: Counts are rounded to comply with disclosure requirements.

Table 2.A5 Breakdown of matches by identifier, 2000–2011

  
Matched  
patents  

Inventor  
only  

Assignee  
only  Both

Match Criteria 1—Name, City and State 713,000 500,000 102,000 112,000 
Match Criteria 2—Name and State 207,000 130,000 53,000 24,000 
Match Criteria 3—Name Only 117,000 78,000 26,000 13,000 
Total Patents  1,037,000  708,000  181,000  149,000 

Source: Authors’ calculations using ILBD Data.
Notes: Counts are rounded to comply with disclosure requirements.
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address matching of assignee data merged with linked employee- employer 
inventor data. The crosswalk covers around 90 percent of all domestic pat-
ents with firm assignees. Filtering out the employer patents will remove 
approximately 80 percent of the patents matched to the nonemployer data 
(838,000 patents were removed). This suggests that a large percentage of 
inventors at employer firms also have nonemployer businesses. Not all of 
the patents from these inventors are removed from the final dataset—only 
the patents that are identified as being assigned to an employer firm.

The next step in the cleaning of  the matches involves filtering out the 
matches that have not been linked to Census data using the Census Bureau’s 
PVS. The PVS process assigns an anonymous, unique person identifier 
(PIK) to individuals using name and address information and matching 
it against the Social Security Administration’s numerical identification file 
(Numident). The matching process is probabilistic, and it is possible for an 
individual to receive multiple identifiers (PIKs), especially if  they provided 
only partial information. The USPTO patent data underwent the full PVS 
process for the original Census firm- level crosswalk, generating PIKs for all 
the inventors identified in patents, based on names and a zip code. Because 
the information used to generate these matches is rather coarse (only name 
and zip), approximately 30 percent of  the patent- inventor combinations 
have a unique identifier (PIK), while 75 percent have fewer than five identi-
fiers. The zip code is the unique characteristic here that we miss in our non-
employer matching process and hence can be used to validate our existing 
matches. Our filter involves directly linking all the PIKs assigned to each 
patent from the PVS process and merging them with the PIKs generated 
in the nonemployer matches. We drop patents that were matched to the 
nonemployer through the inventor name but are not identified in the PVS 
process. This removes nearly 40 percent of the existing matches.

The third step in the filter process drops duplicate matches by patent 
identifier and name. These are patents that cannot be assigned to a specific 
person or business because of multiple matches. There are several instances 
where patents match to multiple nonemployer identifiers after the name and 
address match and after the filters have been applied. Think of an inven-
tor named David Smith in Washington, DC, and a company named David 
Smith also located in Washington, DC. First, there are possibly many unin-
corporated entities named David Smith, so the match might not be unique. 
Even if  the match is unique, we do not know whether the owner is the inven-
tor (i.e., there are many David Smiths). Since there is no way to distinguish 
between these nonemployer matches, we elect to drop them. This removes 
45 percent of existing matches.

The next step in the filter process involves “winsorizing” our existing 
matches by the assignee code. In this case, we count the number of patents 
by assignee code- year and drop the patents for the assignee code- year com-
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binations that are in the top 0.5 percent. This number ranges between 20 
and 50 patents per year. Our assumption is that due to size constraints, the 
number of patents a nonemployer business can produce in a year is limited, 
and these observations are likely to have been missed by the existing Cen-
sus firm- level crosswalk or are “unique” for entirely different reasons. This 
removes a further 7.5 percent of matches.

Finally, we augment our matches using the unique inventor identifiers 
from the PVS process. As mentioned earlier, approximately 30 percent of the 
patent- inventor combinations have a unique identifier (PIK). We keep the 
ones with the unique identifier and merge them with the full nonemployer 
database to identify nonemployer businesses that our matching method-
ology may have missed. We then augment our existing matches with this 
database. This increases the number of matches by approximately 5 percent 
for a total of 68,400 matched patents. Table 2.A6 summarizes the full effect 
of each matching stage.

This completes the matching process for the nonemployer data. Starting 
from 1.29 million patents, we are able to successfully match 68,400 patents to 
the nonemployer data. The full breakdown of matches by dataset is below.

We denote the “unmatched” as unknown, since a fairly large proportion 
of these patents were initially matched to the nonemployer dataset but were 
dropped either because the inventor’s personal identifier was not listed in the 
PVS process or because the invention- name combination had more than one 
individual listed (dropped out during deduplication process). A breakdown 
of the “Unknown” matches is given in table 2.A8.

Table 2.A6 Filtering out employer patents, 2000–2011

Grant  
year  

Original  
match  

Removal of  
employer patents  

Keep  
PVS  

Drop  
duplicate  

Winsorize and 
augment with PVS

2000 83,800 19,700 14,400 10,500 10,200
2001 86,000 19,000 14,100 10,500 10,100
2002 84,100 18,000 11,300 8,700 8,300
2003 85,100 17,300 10,900 8,500 8,200
2004 80,900 15,900 9,900 7,600 7,400
2005 71,800 13,700 8,500 6,800 6,500
2006 88,500 16,500 9,900 8,000 7,700
2007 81,300 14,700 8,500 6,800 6,500
2008 80,600 14,300 8,000 6,400 6,100
2009 83,200 14,000 8,000 6,400 6,000
2010 106,000 18,200 10,700 8,700 8,200
2011 106,000 18,300 10,400 8,300 7,900
Total  1,037,000  200,000  125,000  97,000  93,000

Source: Authors’ calculations using LBD Data. 
Notes: Counts are rounded to comply with disclosure requirements.
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Table 2.A8 tells us that approximately 141,000 of  the 273,000 unknown 
patents were unmatched across all Census datasets, which implies that 
around 132,000 patents were linked to the nonemployer. Of these, approxi-
mately 67 percent were dropped, as they were not listed in the PVS pro-
cess, with the remainder dropping due to being either duplicates or “win-
sorized.”

Table 2.A7 Total matches by type, 2000–2011

Grant year Total  Employer  Nonemployer  Unknown

2000 107,000 72,700 10,200 24,400
2001 109,000 75,900 10,100 23,200
2002 106,000 74,700 8,300 23,000
2003 107,000 76,600 8,200 22,100
2004 101,000 73,800 7,400 20,200
2005 88,900 65,500 6,500 16,900
2006 110,000 81,500 7,700 20,600
2007 101,000 75,300 6,500 18,800
2008 99,300 75,100 6,100 18,200
2009 102,000 78,200 6,000 17,800
2010 130,000 99,500 8,200 22,000
2011 130,000 99,900 7,900 22,100
Total  1,290,000  949,000  93,000  249,000

Source: Authors’ calculations using LBD Data.
Notes: Counts are rounded to comply with disclosure requirements.

Table 2.A8 Breakdown of unknown matches, 2000–2011

Grant  
year  

Total  
unknown  Unmatched  Matched  

Drop in  
PVS process  

Duplicates/
winsorized

2000 24,400 14,800 9,600 6,400 3,200
2001 23,200 14,200 9,000 6,000 3,000
2002 23,000 13,300 9,700 7,700 2,000
2003 22,100 13,000 9,100 7,400 1,700
2004 20,200 11,600 8,600 7,000 1,500
2005 16,900 9,600 7,300 6,100 1,100
2006 20,600 11,700 9,000 7,900 1,100
2007 18,800 10,500 8,300 7,400 900
2008 18,200 10,000 8,300 7,400 800
2009 17,800 9,700 8,100 7,200 900
2010 22,000 11,900 10,200 8,900 1,200
2011 22,100 11,600 10,500 9,500 1,100
Total  249,000  142,000  108,000  89,000  18,600

Source: Authors’ calculations using LBD data.
Notes: Counts are rounded to comply with disclosure requirements.
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Appendix B

Matching Demographics to Patent Data

Matching the patent data to the demographic data is a relatively straightfor-
ward process of merging multiple files and dropping duplicate matches allo-
cated in the PVS process. We start with the original patents that have under-
gone the PVS process. Of our starting point of 1.29 million patents, 989,000 
have undergone the PVS process (76.7 percent). These 989,000 PVSed pat-
ents have 2.28 million inventor names associated with the patents (average 
team size of approximately 2.3) and 9.98 million inventor PIKs associated 
with them, indicating that each inventor name has on average around 4 PIKs. 
We start by keeping the PIK with the highest PVS score by patent- inventor 
combination. This removes 3.76 million of the 9.98 million starting inventor 
PIKs. We want to unduplicate the remainder of these PIKs and only keep 
the inventors with a unique PIK. Removing all the duplicate PIKs associ-
ated with each inventor name leaves us with 1.79 million unique inventor 
PIKs associated with nearly 884,000 patents from the 989,000 patents that 
underwent the PVS process. A yearly breakout of the counts is below.

If  we break out the counts by assignee type, we find differences in the ratio 
of the patents that undergo the PVS process by assignee type, along with 
differences in the ratio of inventors with unique PIKs by assignee type. Firm 
assignees are most likely to have undergone the PVS process (82 percent), 
followed by individual assignees (75 percent), while fewer than 50 percent of 

Table 2.A9 Breakdown of PVS process for inventors, 2000–2011

Grant  
year  Patents  

PVS  
patents  

Inventor  
names  

Inventor  
PIKs  

Inventor 
PIKs  

(highest PVS)  

Unique  
Inventor  

PIKs  

Patents with  
unique  

inventor PIKs

2000 107,000 82,700 165,000 748,000 418,000 128,000 71,800
2001 109,000 88,400 183,000 802,000 468,000 143,000 77,600
2002 106,000 79,100 172,000 760,000 442,000 136,000 70,100
2003 107,000 80,900 180,000 787,000 470,000 143,000 72,200
2004 101,000 77,900 175,000 754,000 453,000 139,000 69,600
2005 89,000 69,700 159,000 693,000 422,000 126,000 62,500
2006 110,000 83,800 196,000 853,000 531,000 155,000 75,300
2007 101,000 74,300 177,000 773,000 496,000 139,000 66,900
2008 99,400 72,700 176,000 750,000 486,000 138,000 65,500
2009 102,000 77,000 190,000 833,000 546,000 149,000 69,500
2010 130,000 101,000 252,000 1,110,000 731,000 198,000 91,500
2011 130,000 102,000 255,000 1,130,000 755,000 199,000 91,800
Total  1,290,000  989,000  2,280,000  9,980,000  6,220,000  1,790,000  884,000

Source: Authors’ calculations.
Notes: Counts are rounded to comply with disclosure requirements. PIK, protected identification key.
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unassigned patents undergo the PVS process. Looking at the proportion of 
inventors that have unique PIKs by assignee type, we find that nearly 91 per-
cent of  inventors in firm- assigned patents have a unique PIK associated 
with their name. This is higher than the ratio found in individual- assigned 
patents (83 percent) and the ratio in unassigned patents (76.7 percent). The 
full breakdown by assignee type is below.

Starting from the nearly 884,000 patents with unique inventor PIKs, we 
then merge it with the Census Numident file, which contains the demo-

Table 2.A10 Breakdown of PVS process for inventors by assignee type, 2000–2011

Individual assignee Business assignee Unassigned

Grant 
year  Patents  

PVS  
patents  

Patents 
with unique 

inventor  Patents  
PVS  

patents  

Patents 
with unique 

inventor  Patents  
PVS  

patents  

Patents 
with unique 

inventor

2000 970 810 650 79,500 65,100 58,300 21,500 13,400 10,200
2001 980 870 710 82,900 71,500 64,500 20,100 12,500 9,500
2002 930 660 560 81,200 66,200 60,100 19,000 8,900 6,700
2003 890 670 560 82,900 68,400 62,400 18,300 8,500 6,500
2004 860 640 550 80,100 66,600 60,700 16,300 7,700 5,900
2005 790 600 490 71,400 60,000 54,800 13,500 6,800 5,200
2006 980 700 600 88,700 72,800 66,500 16,200 7,500 5,900
2007 870 620 510 81,600 65,000 59,600 14,900 6,400 4,900
2008 760 490 430 81,400 64,100 58,700 14,300 6,000 4,600
2009 850 590 470 84,700 68,500 62,800 13,400 5,800 4,400
2010 960 720 590 108,000 89,700 82,400 16,500 7,800 6,000
2011 950 730 610 110,000 90,800 83,300 15,900 7,800 6,000
Total  10,790  8,090  6,720  1,032,000  849,000  774,000  200,000  98,900  75,800

Source: Authors’ calculations.
Notes: Counts are rounded to comply with disclosure requirements.

Table 2.A11 Breakdown of demographic match rate by sector, 2000–2011

Sector  Individual assignee  Firm assignee  Unassigned

Chemical 75.1 82.2 47.1
C&C 73.9 81 52.1
Design 11 11.4 9
D&M 75 83 50.7
E&E 75.4 82.2 43.6
Mechanical 75.6 82.1 47.4
Others 75.7 80.9 51.8
Plant 11.9 10.1 5
Total proportion 62.1  75  38

Source: Authors’ calculations using LBD data.
Notes: Counts are rounded to comply with disclosure requirements.
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graphic information we are interested in. The Numident match rate is 
around 100 percent, thus completing the full demographic matching process 
for each patent. Turning back to the unmatched patents, we break down the 
match rate by sector. We show that the patents without unique PIKs and 
no demographic data are mainly concentrated in the “Design” and “Plant” 
patent sector, as shown in table 2.A11.
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3.1  Introduction

We explore the dynamic relationship among business entry, productivity 
dispersion, and productivity growth in order to develop an indirect indica-
tor for recent innovation in an industry. We hypothesize that periods of 
rapid innovation are accompanied by high rates of entry, significant experi-
mentation, and as a result, a high degree of within- industry productivity 
dispersion. Following this experimentation phase, successful innovators 
and adopters grow, while unsuccessful innovators contract and exit yield-
ing productivity growth. Thus patterns in the dynamic relationship among 
entry, productivity dispersion, and productivity growth may help direct our 
attention to areas of the economy where innovation has likely occurred. We 
examine these patterns using a new economy- wide dataset tracking entry, 
productivity dispersion, and productivity growth at the firm level.
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We pursue an indirect approach to measuring innovation in order to over-
come the challenges of directly measuring innovation. Much of the innova-
tion literature measures inputs to innovation (such as R&D expenditures) 
or proxies for the output of  innovation (such as patents), but it is likely that 
such direct measures capture only a small fraction of firm innovative activity. 
We attempt to identify innovation through its impact on more easily mea-
sured concepts (entry and productivity). This is analogous to the approach 
in astronomy of measuring black holes through the characteristics of nearby 
visible stars whose properties act according to laws of nature. While social 
science does not have laws of  nature as such, economics has organizing 
principles about the behavior of economic agents that help direct our atten-
tion to areas of the economy where innovation is likely to have occurred. 
Our objective is to explore this indirect approach with some novel empirical 
analysis and in turn to discuss questions that can be addressed with these 
and related data.

We do this by weaving together the literature on productivity dispersion 
and growth and the literature on innovation and firm dynamics. Starting 
with the former, the large within- industry productivity dispersion commonly 
found in the firm- level productivity literature (Syverson 2011) may reflect 
many factors and mechanisms: idiosyncratic productivity shocks, mana-
gerial ability and practices, frictions, distortions, degree of  competition, 
economies of scope, and product differentiation. In healthy economies, real-
location of resources away from low- productivity to high- productivity firms 
acts to reduce this dispersion and yields productivity growth. We explore a 
related but distinct hypothesis relating within- industry productivity disper-
sion and productivity growth in the context of innovation dynamics within 
industries.

For the second strand of the literature, we build on Gort and Klepper 
(1982), who hypothesize stages of  firm dynamics in response to techno-
logical innovations. While they focus on product innovations, their insights 
apply to process innovations as well. An insight key for our purposes is that 
periods of rapid innovation yield a surge in entry and a period of significant 
experimentation followed by a shakeout period when successful developers 
and implementers grow while unsuccessful firms contract and exit. This is 
relevant for productivity dispersion because the success or failure of entre-
preneurs in the process of  experimentation can contribute to dispersion, 
the subsequent reallocation of resources, and eventually, economic growth.

A large literature has developed models of innovation via creative destruc-
tion with some of these features.1 Related theoretical models that highlight 
the role of entrants and young firms for innovation in models of creative 
destruction include Acemoglu et al. (2017). These creative destruction mod-

1. For example, Jovanovic (1982); Klette and Kortum (2004); and Lentz and Mortensen 
(2008).
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els of innovation are related to the empirical literature that finds that the 
reallocation of resources is an important determinant of aggregate produc-
tivity growth.2 Also related to these ideas are the now well- known findings 
that young businesses, particularly those in rapidly growing sectors, exhibit 
substantial dispersion and skewness in the growth rate distribution.3

The evolution of the productivity distribution within the context of inno-
vation dynamics is an underexplored area of empirical research due, in part, 
to data limitations. Gort and Klepper (1982) investigated their hypotheses 
primarily using firm- level registers that permitted tracking entry, exit, and 
continuers in industries but not outcomes like productivity growth and 
dispersion. While there has been an explosion of research using firm- level 
data since then, much of what we know about productivity dispersion and 
dynamics is about the manufacturing sector (Syverson 2011). We overcome 
these data limitations by exploiting a newly developed economy- wide firm- 
level database on productivity (Haltiwanger et al. 2017).

Using this database, we investigate these issues focusing on the nature 
of  the relationship between industry productivity growth and within- 
industry productivity dispersion. We also look at the relationship between 
firm dynamics and the evolution of the firm- level productivity dispersion 
in industries undergoing rapid productivity growth. Our investigation takes 
place in the context of the surge in US productivity in the 1990s to early 
2000s and the subsequent productivity slowdown.4 Some have hypothesized 
that this reflects a slowdown in the pace and implementation of innovation 
and technological change, especially in the IT- intensive sectors (Gordon 
2016; Byrne, Oliner, and Sichel 2013). Others have argued that there is an 
increase in frictions and distortions slowing down productivity- enhancing 
reallocation dynamics (e.g., Decker et al. 2018) or the diffusion in productiv-
ity (Andrews, Criscuolo, and Gal 2016).

We first report broad patterns in aggregate and microdata that provide 
additional motivation for our analysis. We show that the period prior to 2000 
has rising entry, increased within- industry productivity dispersion, and high 
productivity growth in the high- tech sectors of the US economy. In contrast, 
the period following 2000 has falling entry, increased within- industry pro-
ductivity dispersion, and low productivity growth in the high- tech sectors. 
We also find within- industry dispersion in productivity is much greater for 
young compared to mature firms. These findings are not novel to this chapter 
(see Decker et al. 2016, 2018) but serve as a useful backdrop for our analysis.

To help understand these broad- based patterns, we use firm- level data 

2. See Griliches and Regev (1992); Baily, Hulten, and Campbell (1992); Baily, Bartelsman, 
and Haltiwanger (2001); Petrin, White, and Reiter (2011); and Foster et al. (2017).

3. See Dunne, Roberts, and Samuelson (1989); Davis, Haltiwanger, and Schuh (1996); Halti-
wanger, Jarmin, and Miranda (2013); and Decker et al. (2016).

4. See Fernald (2014); Byrne, Sichel, and Reinsdorf (2016); and Andrews, Criscuolo, and 
Gal (2016).
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for the US private sector to construct measures of  firm entry, within- 
industry productivity dispersion, and industry- level productivity growth at 
a detailed industry level. We use low- frequency variation to abstract from 
high- frequency cyclical dynamics and a difference- in- difference specification 
that controls for time and industry effects. We find that a surge in entry in 
an industry is followed by a rise in within- industry productivity dispersion 
and a short- lived slowdown in industry- level productivity growth. Following 
this, there is a decline in productivity dispersion but an increase in produc-
tivity growth. These findings are larger quantitatively for industries in the 
high- tech sectors of the US economy.

We also explore the contribution of reallocation dynamics to productivity 
growth to better understand the role innovation plays in the reallocation of 
resources between firms. We find there is a high contribution from increased 
within- industry covariance between market share and productivity under-
lying the productivity surge in the high- tech sectors in the late 1990s. The 
productivity slowdown in the post- 2000 period in high- tech is due to both 
a decrease in within- firm productivity growth and also a decrease in this 
covariance.

Our findings are broadly consistent with the Gort and Klepper (1982) 
hypotheses that a period of innovation yields a period of entry and experi-
mentation followed by a shakeout period with successful firms growing and 
unsuccessful firms contracting and exiting. In this respect, some aspects of 
our results provide microlevel evidence for the hypothesis that the produc-
tivity slowdown is due to a decreased pace of innovation and technological 
change. However, we are reluctant to make that inference for at least two 
reasons. First, our investigation does not include direct measures of innova-
tion. Second, the patterns in the post- 2000 period are not consistent with 
a slowdown in innovation as the primary source for the post- 2000 produc-
tivity slowdown. With that hypothesis, we would have expected to observe 
a decline in productivity dispersion; instead, the findings in Decker et al. 
(2018) show dispersion rises even though the fraction of activity accounted 
for by young firms falls dramatically in the post- 2000 period.5

We view the results from our empirical exercises as suggestive, highlight-
ing the potential measurement benefits of studying the joint dynamics of 
entry, productivity dispersion, and productivity growth. In the second half  
of the chapter, we discuss open questions and next steps suggested by our 
analysis with a focus on the measurement and analysis of innovation.

The rest of the chapter proceeds as follows. We next provide discussion on 
the conceptual underpinnings of our empirical analyses and interpretations. 

5. There are additional reasons to be cautious in this inference. Decker et al. (2018) find that 
there has been a decrease in responsiveness of growth and exit to productivity growth. The lat-
ter is consistent with an increase in adjustment frictions. We discuss these issues further below.
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We describe the data and measurement issues in section 3.3. Our empirical 
exercises examining patterns of entry, productivity dispersion, and produc-
tivity growth and reallocation dynamics are in section 3.4. In section 3.5, 
we discuss open questions, measurement challenges, and areas for future 
research suggested by our analysis. Section 3.6 presents concluding remarks.

3.2  Conceptual Underpinnings

We begin by reviewing the sources of measured productivity dispersion 
within industries. For this purpose, it is critical to distinguish between under-
lying sources of technical efficiency and measured productivity across firms 
in the same sector. In empirical applications, the latter is typically some mea-
sure of “revenue productivity,” which sometimes is a multifactor measure 
of input and other times is revenue per unit of labor. In either case, revenue 
productivity measures are inherently endogenous to many different mecha-
nisms and factors. For ease of discussion, we follow the recent literature in 
referring to measures of technical efficiency as TFPQ, revenue measures of 
total factor productivity as TFPR, and revenue- based measures of labor 
productivity as LPR.

As noted in the introduction, measured productivity differences between 
firms may be attributed to a variety of factors. The link that connects innova-
tive activity and dispersion is experimentation following an innovation that 
generates heterogeneity in the factors that cause dispersion. Many models 
of  firm heterogeneity start with the premise that there is some source of 
exogenous as well as endogenous differences in TFPQ across firms. In some 
models, this is due to inherent characteristics of the firm reflecting perma-
nent differences in the technology distribution (e.g., Lucas 1978; Jovanovic 
1982) that may in turn stem from many factors, such as managerial ability. 
In other models, the firms are subject to new, and typically persistent, draws 
of TFPQ each period (Hopenhayn 1992; Hopenhayn and Rogerson 1993; 
Ericson and Pakes 1995). Endogenous differences in TFPQ may stem from 
differences in adoption of management practices (e.g., Bloom et al. 2019) 
or differences in realizations of endogenous innovations in investment (e.g., 
Acemoglu et al. 2017).6 A variety of reasons have been put forth to justify 
how high-  and low- TFPQ firms can coexist (i.e., why the most productive 
firms do not take over the market); these range from economies of scope 

6. Even in these cases with endogenous adoption of management practices or investment in 
innovation, there still is typically an underlying exogenous source of heterogeneity that induces 
heterogeneous adoption/investment and/or there are stochastic returns from such adoption/
investment. These potentially endogenous factors play an important role. For example, using 
data from the Management and Organizational Practices Survey, Bloom et al. (2018) find large 
differences in management practices across plants, and these differences explain about one- fifth 
of the difference between the 90th and 10th productivity percentiles.
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(Lucas 1978), to product differentiation (Melitz 2003), to adjustment fric-
tions (Hopenhayn and Rogerson 1993; Cooper and Haltiwanger 2006), and 
all of these factors likely play some role empirically.

These factors, together with the ample evidence that there is price hetero-
geneity within sectors (Syverson 2004; Foster, Haltiwanger, and Syverson 
2008; Hottman, Redding, and Weinstein 2016), imply that revenue produc-
tivity (TFPR and LPR) dispersion will also be present within sectors and 
revenue productivity measures will be correlated with TFPQ at the firm level 
(Haltiwanger 2016; Haltiwanger, Kulick, and Syverson 2018).7 Thus one 
source of variation in measured revenue productivity across sectors and time 
is variation in dispersion in TFPQ as well as other idiosyncratic shocks to 
fundamentals such as demand shocks. Another factor that impacts within- 
industry revenue productivity dispersion is the business climate, as broadly 
defined to include distortions in output and input markets that impede 
growth at more- productive firms and contraction and exit at less- productive 
firms. This has been the theme of the recent misallocation literature (Restuc-
cia and Rogerson 2008; Hsieh and Klenow 2009; Bartelsman, Haltiwanger, 
and Scarpetta 2013). An economy or industry that experiences a deteriora-
tion in the business climate should, from this perspective, exhibit a decline 
in productivity along with a rise in dispersion in revenue productivity. The 
intuition is that rising frictions and distortions reduce the tendency for mar-
ginal revenue products to be equalized, implying in turn a rise in revenue 
productivity dispersion. A detailed discussion on how these factors affect 
dispersion in revenue- based productivity measures can be found in Foster 
et al. (2016).

As another example, Hurst and Pugsley (2011, 2017) emphasize that 
nonpecuniary benefits play an important role in the occupational decision 
to become an entrepreneur. Their insight is that the potentially different 
incentives underlying entrepreneurial behavior will be reflected by measured 
differences in productivity as well as firm size and growth. They argue that 
there are large differences across sectors in terms of attractiveness for entre-
preneurs with high nonpecuniary benefits. This might be yet another fac-
tor that helps account for dispersion in TFPQ within some industries, but 
this is likely less important in innovation- intensive industries. Such sectoral 
heterogeneity is one of the (many) reasons we control for detailed industry 
fixed effects in our empirical analysis.

How do innovation and firm dynamics associated with innovation relate 

7. There is a knife- edge case emphasized by Hsieh and Klenow (2009): with constant returns 
to scale and isoelastic demand without adjustment costs or other factors (like overhead labor), 
revenue productivity should have zero dispersion in equilibrium even if  there is dispersion in 
TFPQ. The reason is the elasticity of firm- level prices with respect to TFPQ is equal to exactly 
−1 in this knife- edge case (see Haltiwanger, Kulick, and Syverson 2018). This knife- edge case 
is interesting theoretically to help fix ideas but is not very useful empirically, since there is much 
evidence that factors such as adjustment costs make this knife- edge case irrelevant in practice.
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to heterogeneity in measured productivity? The basic idea in Gort and Klep-
per (1982) is that a period of intensive transformative innovation within an 
industry is accompanied by (and/or induces) entry. This period is charac-
terized by entrants engaging in substantial experimentation and learning. 
Since experimentation and learning involve trials and errors, which yield 
different outcomes, there is likely to be an increase in dispersion in TFPQ 
accompanied by increases in dispersion in TFPR and LPR. In addition, if  
increased innovation and entry beget a higher share of young businesses 
and they are more likely to face more frictions, uncertainty, and distortions, 
then dispersion in TFPR and LPR will rise further.8 As the experimentation 
phase identifies successful innovators and adopters of  new products and 
processes, these firms are likely to grow, while their unsuccessful competi-
tors will contract and exit. This process leads to a period of productivity 
growth from both within- firm productivity growth (at successful innovators) 
and productivity- enhancing reallocation dynamics. The latter should reduce 
productivity dispersion through both selection and also the maturing of the 
more successful firms.

With the above considerations in mind, we hypothesize that the innova-
tion dynamics described in Gort and Klepper (1982) imply the following 
about entry, productivity dispersion, and productivity growth dynamics. 
Following a surge in entry accompanying innovation, we should observe 
a period of rising dispersion in LPR within industries that will in turn be 
followed by increased industry- level productivity growth. The latter will 
reflect both within- firm productivity growth of the successful developers 
and adopters and the reallocation of resources to such firms.

The impact of innovation dynamics on productivity dispersion hypoth-
esized by Gort and Klepper (1982) is consistent with the many different 
sources of  productivity dispersion discussed above. Instead, we view the 
Gort and Klepper hypothesis as providing insights into potentially impor-
tant driving forces for low-frequency within-industry variation in the 
dynamic relationship among innovation, entry, productivity dispersion, and 
productivity growth. The empirical analysis that follows focuses on these 
low- frequency within- industry dynamics.

3.3  Data and Measurement

Our main dataset in this chapter is a newly developed extension to the 
Longitudinal Business Database (LBD). The LBD is an economy- wide, 

8. We use the term frictions for factors that the social planner cannot overcome, such as 
adjustment costs that are part of the technology of adjustment. In contrast, we use the term 
distortions for market failures, policies, or institutions that impede firms adjusting to their 
optimal size. Jovanovic (1982) provides motivation for greater information frictions faced by 
young firms. Hsieh and Klenow (2009) provide motivation for why young firms are likely to 
face higher distortions due, for example, to imperfect capital markets.
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establishment- level database primarily derived from the Census Bureau’s 
Business Register and augmented by other survey and administrative data 
(see Jarmin and Miranda 2002). It covers the universe of employer busi-
nesses in the nonfarm business sector of the United States: about 7 million 
establishments and 6 million firm observations per year for 1976–2013. It 
contains establishment- level information on detailed industry, geography, 
employment, and parent firm affiliation. The LBD has robust links for 
businesses over time, making this dataset particularly well suited for the 
measurement of business dynamics such as job creation and destruction, 
establishment entry and exit, and firm start- ups and shutdowns. These links 
make it possible to aggregate the establishment- level data to the firm level, 
where firm growth dynamics abstract from mergers and acquisitions and 
other ownership activity.

A firm start- up is defined as a new firm entity with all new establish-
ments; a firm exit is defined as a firm entity that ceases to exist, with all 
of  its establishments shutting down; and firm growth is measured as the 
employment- weighted average of the establishments owned by the firm (for 
details see Haltiwanger, Jarmin, and Miranda 2013). These features also 
make it feasible to define firm age in a manner that abstracts from mergers 
and acquisitions and ownership change activity. A firm’s age is determined 
by its longest- lived establishment at the time of  the firm’s founding and 
then progresses one additional year over calendar time. Firm- level industry 
is measured as the modal industry for the firm based on its employment 
shares across six- digit or four- digit North American Industry Classification 
System (NAICS) industries. In this analysis, we focus on four- digit NAICS 
industries.9

We do not use direct measures of innovation in our empirical analysis; 
instead, we use a surge of entry and young firm activity as an indirect proxy 
for innovative activity. Gort and Klepper (1982) suggest that stage 1 of a 
period of increased within- industry transformative innovation is followed 
by a surge of entry (stage 2). To shed further light on this process, we group 
industries into high- tech and other industries (which we call nontech). For 
high- tech, we adopt the strategy of Decker et al. (2018), who follow Hecker 
(2005) in defining high- tech industries as the science, technology, engineer-
ing, and math (STEM)- intensive industries. In practice, high- tech industries 
include all of  the standard information and communications technology 
(ICT) industries as well as biotech industries.

9. One concern is that this definition of industry is a potential source of measurement error 
for large, complex multiunits, especially since much of our analysis exploits within- industry 
variation in productivity dispersion and growth. The use of four- digit as opposed to six- digit 
industry effects mitigates this concern somewhat. Decker et al. (2018) have explored this issue 
using a more sophisticated approach to controlling for industry- year effects (based on taking 
into account the full distribution of employment shares for each firm) and found that the pat-
terns of dispersion and growth within industries are largely robust to this concern.
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Our productivity measure relies on the recently developed firm- level mea-
sures of nominal revenue in the LBD developed by Haltiwanger et al. (2017). 
Haltiwanger et al. (2017) use nominal revenue data at the tax reporting or 
employer identification number (EIN) level from the Business Register (the 
underlying source for the LBD) to create measures of nominal revenue for 
over 80 percent of firms in the LBD for their sample period. To mitigate 
issues of selection due to missingness, they develop inverse propensity score 
weights so that the revenue sample is representative of the full LBD. We 
use the Haltiwanger et al. (2017) revenue- enhanced LBD in our analysis, 
including the propensity score weights. Following Decker et al. (2018), we 
convert nominal revenue to real measures using Bureau of Economic Anal-
ysis (BEA) price deflators at the industry level (this involves using four- digit 
deflators when available and three-  or even two- digit deflators otherwise). 
Our firm- level measure of labor productivity (hereafter “productivity”) is 
the log of the ratio of real revenue to employment. A key limitation of this 
measure is that the output concept is a gross concept rather than value 
added, so it is not readily comparable across industries (see Haltiwanger 
et al. 2017). Following Haltiwanger et al. (2017) and Decker et al. (2018), 
we focus on patterns controlling for detailed (four- digit) industry and year 
effects.10 We provide further details about this in our empirical exercises 
below.

Our econometric analyses are based on industry/year- specific moments of 
firm- level productivity. We construct within- industry measures of produc-
tivity dispersion and within- industry measures of productivity growth and 
supplement these with industry- level information on start- up rates from the 
full LBD. We tabulate measures such as the share of employment accounted 
for by young firms (“young” is less than five years old) and the share of 
employment accounted for by start- ups (firm age equal to zero). The ver-
sion of the LBD we use covers 1976–2013 so that we can construct these 
measures for years prior to the available revenue data (available 1996–2013). 
This facilitates some of the dynamic specifications that use lagged entry rates 
in our analysis below.

Our dispersion measure throughout this chapter is the interquartile range 
(IQR) within an industry in a given year. We focus on the IQR because it is 
less sensitive to outliers than the standard deviation (see Cunningham et al. 
2017). Our measure of within- industry productivity growth aggregates real 
revenue and employment data to the four- digit industry level, and then we 
compute the log first difference at the industry level. In our exercises using 
the Dynamic Olley- Pakes decomposition developed by Melitz and Polanec 

10. Haltiwanger et al. (2017) and Decker et al. (2018) use six- digit NAICS as compared to our 
use of four- digit NAICS. We use the latter for two reasons. First, this mitigates the measurement 
problems of using modal industry. Second, the focus of our analysis is industry- level regressions 
using moments computed from the firm- level data. The six- digit NAICS data are quite noisy 
for industry- level analysis, particularly analysis that is not activity weighted.
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(2015), we exploit firm- level changes in labor productivity as well as the other 
terms in that decomposition.

Finally, the focus of this chapter is on the longer- term relationship among 
these three important concepts of entry, productivity dispersion, and pro-
ductivity growth. We have two strategies to attempt to abstract away from 
business- cycle variation. In some exercises, we use Hodrick- Prescott (HP) 
filtering to ameliorate the impact of business cycles; in other exercises, we 
use three- year nonoverlapping periods to conduct our analysis.

3.4  Empirical Evidence

We examine the relationship among innovation, entry, productivity dis-
persion, and productivity growth motivated by the hypotheses in Gort and 
Klepper (1982), discussed in section 3.2. Assuming that the businesses in 
high- tech industries are more innovative than those in other sectors, these 
hypothesized Gort and Klepper (1982) dynamics should be more likely to 
occur in these industries. We explore whether this is the case in our data by 
examining whether the nature of the dynamics differs between high- tech and 
nontech industries. We start our empirical analysis by providing some basic 
facts about the patterns of entry, productivity dispersion, and productivity 
growth for industries grouped into the high- tech and nontech sectors. These 
basic facts are already reasonably well known in the literature, but they pro-
vide helpful motivating evidence for our subsequent analysis.

3.4.1  Basic Facts

We start with the key industry- level indicator concerning start- ups and 
the share of activity accounted for by young firms. In figure 3.1, we plot 
the employment shares for high- tech (solid line) and nontech (dashed line) 
industries for both start- ups (PANEL A) and young firms (panel B). There 
are noticeable differences in the start- up patterns for high- tech as compared 
to nontech in panel A. While nontech shows a gradual decline over time in 
employment shares, high- tech shows a humped- shape pattern culminating 
in the three- year period between 1999 and 2001. This difference is even more 
dramatic for young firms, as is shown in panel B of figure 3.1. Together these 
panels highlight the surge in entry and young firm activity in high- tech in 
the 1990s.11

We next turn to the second key moment of interest: within- industry pro-
ductivity dispersion. We start by simply examining the within- industry dis-
persion of productivity for firms based on their age (young versus mature) 
and whether they are in high- tech or nontech. Again, dispersion is mea-
sured by the interquartile range within an industry in a specific year. We 

11. The patterns in figure 3.1 are already well known (see, e.g., Haltiwanger, Hathaway, and 
Miranda 2014; and Decker et al. 2016).
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use the same time- invariant industry employment weights to aggregate the 
industry- level patterns to high- tech and nontech industries. Figure 3.2 plots 
dispersion for young (solid lines) and mature (dashed and dotted lines) and 
high- tech (heavier line and dashes) and nontech.12

As expected, young firms (regardless of their tech status) have more dis-

12. Note that this figure is similar to analysis conducted in Decker et al. (2018). See their figure 
7. The latter controls for six- digit industry effects. Also, Decker et al. (2018) use a more sophisti-
cated manner of controlling for such effects for multiunit establishment firms that have activity 
in more than one six- digit industry. The patterns we show in figure 3.2 are consistent with these 
alternatives, suggesting our use of four- digit industry effects is not distorting the patterns.

Fig. 3.1 Share of employment at high- tech and nontech industries
Source: Tabulations from the LBD.
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persion within industries than do mature firms (solid lines are well above the 
dashed and dotted lines). The differences between high- tech and nontech 
vary over the two firm age groups. For young firms, high- tech generally 
has greater dispersion than nontech; for mature firms, nontech has greater 
dispersion than high- tech. This difference is a reminder that there are many 
things driving dispersion, and nontech is a heterogeneous group. Moreover, 
within firm age groups, dispersion is rising throughout the whole sample 
period. This is consistent with the Gort and Klepper (1982) hypotheses of 
more experimentation; however, it is also consistent with potentially rising 
frictions for young firms leading to greater dispersion in productivity.13

Finally, we examine labor productivity growth at the aggregate (broad 
sector) level from official Bureau of Labor Statistics (BLS) statistics and 
aggregates using our microlevel data. We start by focusing on BLS data. 
Panel A of  figure 3.3 plots BLS labor productivity growth rates for the 
high- tech and nontech broad sectors measured as employment- weighted 
within- industry (four- digit) labor productivity growth based on gross output 
per worker. For employment weights, we use time- invariant employment 
shares so that the depicted patterns hold industry composition constant. 
We present four measures in this panel: the annual BLS labor productivity 
growth (dashed and dotted lines) and the smoothed HP filtered version of 
this growth (solid lines) for high- tech (heavier lines) and nontech industries. 
It is evident from the annual versions of the plots (dashed and dotted lines) 

13. Decker et al. (2018) explore the hypothesis of whether rising dispersion is due to rising 
frictions/distortions and focus on declining responsiveness to shocks as one potential explana-
tion. We return to discussing this issue further below.

Fig. 3.2 Within- industry dispersion in labor productivity
Source: Tabulations from the LBD. Dispersion is the interquartile range of within- industry 
log revenue per worker. Industry defined at the four- digit NAICS level.
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that there is substantial cyclicality. Turning to the HP filtered (solid) lines, 
we see productivity growth rising in high- tech and then falling sharply post 
2000, confirming earlier studies. Nontech has much more muted patterns 
but rises slightly in the 1990s and falls post- 2000.

Next we look at the aggregates constructed from the firm- level data 
and compare them to the BLS data. The microaggregates are based on 
employment- weighted within- industry labor productivity growth measured 
by log real gross output per worker. That is, using the firm- level data, we first 
construct industry- level labor productivity growth and then use the same 
type of time- invariant industry employment weights to aggregate to high- 

Fig. 3.3 Labor productivity growth for high- tech and nontech industries
Source: BLS and tabulations from the dataset described in Haltiwanger et al. (2017).
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tech and nontech sectors. Panel B of figure 3.3 plots the HP filtered labor 
productivity growth rates for BLS aggregate data (solid lines, repeating those 
from panel A) and Census microdata (dashed and dotted lines) for high- tech 
(heavier lines) and nontech. We find that micro- based aggregates track BLS 
productivity patterns reasonably well.

3.4.2  Dynamic Relationship between Entry and Productivity

To explore the dynamic relationship among entry, productivity dispersion, 
and productivity growth, we use a panel regression specification exploit-
ing industry- level data (from microlevel data) over time using a standard 
difference- in- difference approach. The hypotheses from Gort and Klepper 
(1982) are that a surge of within- industry entry will yield an increase in dis-
persion followed by an increase in productivity. To investigate these hypoth-
eses, we estimate the following specification:

(1)  Yis = s + i +
k=1

2

[ k Tech Entryis k + kNonTech Entryis k] + is ,

where Yis denotes either within- industry/year productivity dispersion or 
within- industry productivity growth. Since we are primarily interested in 
low- frequency variation, we calculate productivity growth as the three- year 
average for subperiods in our sample (1997–99, . . . , 2009–2011, 2012–13; 
note that the last period is only two years). We use a standard difference- in- 
difference specification with period effects (λs) and industry effects (λi). The 
tech dummy is equal to 1 if  industry is in high- tech and is 0 otherwise; the 
nontech dummy is equal to 1 if  industry is nontech and is 0 otherwise. Entry 
is the start- up rates from the full LBD. In order to examine the role of lags, 
we take advantage of the fact that we can measure start- ups for earlier peri-
ods, so we compute start- ups for the additional three- year periods: 1991–
93, 1994–96. We let the impact of entry have a distributed lag form over 
two three- year subperiods encompassing a total of six years. We view this 
analysis as exploratory, and it would be of interest to consider even richer 
dynamic specifications that potentially allow for the type of long and vari-
able lags that Gort and Klepper (1982) suggest are potentially important.

The results of the specification on productivity dispersion are shown in 
table 3.1. We find that an increase in entry in one subperiod (three- year 
period) leads to a significant increase in productivity dispersion in the next 
subperiod. Moreover, this effect is larger in the high- tech sector. The fact that 
the coefficients on the second lag are not significant suggests that this effect 
at least diminishes over time. We interpret this to mean that following an 
innovation (as proxied by the entry rate), there is an increase in productivity 
dispersion shortly thereafter representing the experimentation and differen-
tial success in the development and adoption of innovations.

The analogous results from the productivity growth specification are 
shown in table 3.2. Here there is a different pattern in the timing. An increase 
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in the start- up rate results in a decrease in productivity growth in the next 
subperiod, although this effect is only statistically significant in nontech. 
This suggests there is some evidence that the period of experimentation and 
dispersion can yield an initial drag on productivity. It is only in the subse-
quent periods that we see an increase in productivity growth. The productiv-
ity growth impact is larger for firms in high- tech industries as compared to 
firms in nontech industries.

The dynamic responses for both productivity dispersion and productivity 
growth are depicted in figure 3.4. While the patterns are more pronounced 
for high- tech, they are also present for nontech. The finding that the entry- 
to- dispersion- to- growth dynamics are present for industries outside of high- 
tech suggests that the Gort and Klepper (1982) hypothesized dynamics may 
be more pervasive across a broad range of industries. Further investigation 

Table 3.1 Productivity dispersion and entry

Lag 1 Entry ∗ Tech 0.929**
(0.458)

Lag 1 Entry ∗ Nontech 0.563***
(0.190) 

Lag 2 Entry ∗ Tech −0.791
(0.491)

Lag 2 Entry ∗ Nontech −0.082
(0.174)

Industry effects Yes
Period effects Yes
R2 0.93

 Number of observations 1,541  

Source: Panel regression estimated from industry by year moments computed from the reve-
nue enhanced LBD.

Table 3.2 Productivity growth and entry

Lag 1 Entry ∗ Tech −0.516
(0.367)

Lag 1 Entry ∗ Nontech −0.791***
(0.152)

Lag 2 Entry ∗ Tech 1.136***
(0.393)

Lag 2 Entry ∗ Nontech 0.871***
(0.139)

Industry effects Yes
Period effects Yes
R2 0.38

 Number of observations 1,541  

Source: Panel regression estimated from industry by year moments computed from the reve-
nue enhanced LBD.
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of these issues and the differences in the patterns across industries is an 
important area for future research.

Given these results, an interesting and open question is whether these 
dynamics help account for the aggregate patterns of productivity growth 
and dispersion. Even though more research is needed, we think that the Gort 
and Klepper (1982) dynamics are not sufficient to understand the patterns in 
figures 3.1–3.3 for high- tech, particularly in the post- 2000 period. In high- 
tech, we observe a rise in entry (figure 3.1), a rise in productivity dispersion 
(figure 3.2), and a rise in productivity (figure 3.3) in the 1990s. While the tim-
ing is not exactly consistent with figure 3.4, these 1990s patterns are broadly 
consistent with Gort and Klepper (1982) hypothesized dynamics. However, 
in the post- 2000 period, we observe a decline in entry and productivity but a 
continued and even sharper rise in within- industry productivity dispersion. 
From the Gort and Klepper (1982) perspective, we should have observed a 
decline in productivity dispersion.

What factors might account for the rising within productivity dispersion 
in the post- 2000 period? Decker et al. (2018) find that there has been declin-
ing responsiveness of firms to shocks. They find that high- productivity firms 
are less likely to grow, and low- productivity firms are less likely to shrink 

Fig. 3.4 Changes in productivity dispersion and growth from a 1 percent (one- time) 
increase in entry rate
Source: Authors tabulations from estimated coefficients; see tables 3.1 and 3.2. The left side of 
the chart represents one subperiod after entry (years 4–6); the right side represents two sub-
periods after entry (years 7–9). High- tech (T) results are in gray; Nontech (NT) results are in 
black. Solid bars show results for productivity dispersion; hashed bars show results for pro-
ductivity growth. The black “whiskers” show approximate 95 percent confidence intervals. 
Thus the first gray bar shows the change in three- year- average productivity dispersion after a 
1 percentage point increase in the three- year- average entry rate for high- tech. All other bars 
are analogous.
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and exit in the post- 2000 period relative to earlier periods. They argue that 
this is consistent with a rise in frictions and distortions and helps explain the 
decline in productivity and the pace of reallocation in the post- 2000 period. 
They also note that a rise in frictions is consistent with a rise in dispersion 
in revenue labor productivity, as the increase in frictions will slow the pace 
at which marginal revenue products are equalized. It may also be the case 
that the same increase in frictions helps account for the decline in entry in 
the post- 2000 period.

For current purposes, this discussion is a reminder that many factors other 
than innovation dynamics underlie the joint dynamics of entry, productivity 
dispersion, and productivity growth. In the next section, we explore some 
of these issues by examining the nature of the contribution of allocative 
efficiency to productivity growth in high- tech.

3.4.3  Dynamic Micro- Macro Productivity Decomposition

In principle, the rise in productivity growth following the experimental 
phase in the Gort and Klepper (1982) framework should be due to both 
within- firm productivity growth of the successful innovators and the real-
location of resources toward such successful innovators. To investigate these 
issues, we use the Dynamic Olley- Pakes (DOP) decomposition developed by 
Melitz and Polanec (2015).

Melitz and Polanec (2015) extend the Olley- Pakes (OP) method to include 
entry and exit in a manner that allows for careful tracking of within- firm 
changes. Similar to Olley- Pakes, their decomposition of an index of industry- 
level productivity growth includes terms for changes in average productivity 
growth and a covariance term, but they split these components out to dis-
tinguish between firms that continuously operate and firms that enter and 
exit. Their decomposition is shown in equation (2):

(2) Pit = pit,C + covC ( ft, pft) + Nt(PNt PCt) + Xt 1(PCt 1 PXt 1),

where Δ indicates year- over- year log difference; Pit is the index of industry- 
level productivity in industry i in period t defined as the weighted average 
of firm- level productivity using firm- level employment weights θft (the share 
of employment of firm f in total industry employment);Pit is the unweighted 
average of (log) firm- level productivity for the firms in industry i; C denotes 
continuer firms (those with employment in both t – 1 and t) so that and  
Ct–1 and Ct denote continuers in periods t − 1 and t, respectively; Nt denotes 
entrants from t – 1 to t; and Xt–1 denotes firms that exit from t − 1 to t. The 
first term in the expression, pit,C, represents average (unweighted) within- 
firm productivity growth for continuing firms; the second term, covC (θft, 
pft), represents the change in covariance among continuing firms; the third 
term captures the contribution of entry; and the fourth term captures the 
contribution of exit.

Using the weighted average of  firm- level productivity as an index of 
industry- level productivity is common in the literature but must be used with 
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appropriate caution. As Decker et al. (2018) show, applying this approach 
with total factor productivity (TFP) yields traditional industry- level TFP 
measures (industry output per composite input) only under constant returns 
to scale and perfect competition. In the absence of the latter, variations in 
this index will exhibit greater volatility than traditional measures of TFP, 
as the curvature in the revenue function will yield lower reallocation than 
is implicit in using this index. Still, this index for industry- level labor pro-
ductivity tracks traditional measures of output per worker relatively well in 
practice (see figure 3.3). Moreover, appendix B of Decker et al. (2018) shows 
that the OP decomposition theoretically tracks aggregate labor productiv-
ity more closely than aggregate TFP measures over the empirically relevant 
range of adjustment costs. We use the DOP decomposition using labor pro-
ductivity with appropriate caution about interpretation.

In the DOP framework, the changing covariance terms depend critically 
on (1) there being dispersion in productivity across firms, (2) the covariance 
between productivity and employment share being nonzero within indus-
tries, and (3) the covariance changing over time. We first calculate the com-
ponents in equation (2) for each industry in each year and then aggregate 
the annual components to the high- tech level using time- invariant industry 
employment weights in order to keep industry composition constant (as we 
have done in figures 3.1–3.3). Focusing on the contribution of the within- 
industry dynamics in the high- tech sector in this manner helps us understand 
the role of dispersion for this critical innovative set of industries.

Figure 3.5 reports the annual DOP decomposition, where all components 
are smoothed by the HP filter. We find declining DOP within and covari-
ance terms indicating smaller contributions by both firm- level productivity 
growth and between- firm reallocation. We find only a modest role for net 
entry, but this should be interpreted with caution, since this is the average 
annual net entry contribution reflecting the contribution of entrants in their 
first year. The contribution of entry arguably takes time, and our evidence 
from table 3.2 suggests that this is the case.14

We draw several inferences from our related exercises in this section. First, 
the late 1990s were a period of rapid productivity growth, intensive entry, 
high young- firm activity, rising productivity dispersion (for young firms in 
particular), and a large contribution of reallocation activity. Second, the 
industry level difference- in- difference regressions imply complex timing: 
entry yields rising productivity dispersion almost shortly after but impacts 

14. It might seem surprising that the change in the DOP within is so low and then turns 
negative. Decker et al. (2017) conduct related analysis of the DOP decomposition for the entire 
private sector. They emphasize that the weighted within term of decompositions such as the 
Foster, Haltiwanger, and Krizan (2001; FHK) decomposition is larger than the DOP within 
term. They note that the DOP within is based on unweighted changes in productivity dominated 
by small firms. For the purposes of the current chapter, this is not a critical issue. In unreported 
results, we have found that the weighted FHK within is larger than the DOP within and always 
remains positive. However, it declines in the same fashion as the DOP within for high- tech.
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productivity growth with a significant lag. Third, during the productivity 
slowdown, entry declined, contributions from within- firm productivity 
growth were smaller, and reallocation activity declined. Fourth, produc-
tivity dispersion kept rising during this period. This last piece of evidence 
does not mesh well with the Gort and Klepper (1982) dynamics, suggesting 
that rising dispersion after the 2000s appears to be outside the scope of this 
model. As we have noted above, one possible explanation for the latter is 
rising frictions and distortions.

3.5  Conceptual and Measurement Challenges

Our empirical analyses in section 3.4 are intended to be exploratory. Our 
results suggest that there are systematic patterns in the joint dynamics of 
entry, within- industry productivity dispersion, and within- industry pro-
ductivity growth that shed light on innovation dynamics. However, there 
are many open conceptual and measurement questions about using this 

Fig. 3.5 Dynamic Olley- Pakes decomposition of aggregate productivity growth 
and weighted within- plant growth in high- tech industries
Source: Tabulations from the LBD. Decompositions at the four- digit level for industries in the 
high- tech sector. Four- digit decomposition averaged across industries using time invariant 
employment weights.
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indirect approach to capturing innovation, especially with respect to direct 
approaches to measuring innovation. In this section, we describe those 
open questions in light of ongoing and potential measurement and research 
efforts to understand innovative activity. We do not attempt to provide a 
survey of the voluminous literature on measuring innovation. Instead, we 
highlight recent and current efforts with a focus on US statistical agencies in 
general and the US Census Bureau in particular. As background, the work 
from two large related research projects at the US Census Bureau lies behind 
much of the indirect approach taken in this chapter. The first of these, the 
LBD project, seeks to improve measures of firm dynamics. The second of 
these, the Collaborative Micro Productivity (CMP) project, seeks to prove 
the usefulness of producing higher moment statistics from microlevel data 
(using productivity as the pilot statistic; see Cunningham et al. 2017).

In the remainder of this section, we discuss four areas of interest for the 
measurement of innovation and productivity: direct measures of innova-
tion, linking firm entry and innovation, intangible capital measures, and 
high- frequency versus low- frequency analysis. We view this section of the 
chapter as relating ongoing efforts to improve measurement in this area to 
the indirect approach we have taken in the analysis above.

3.5.1  Direct Measures of Innovation: R&D Expenditures and Patents

Direct measurement of innovation is a challenge. In this subsection, we 
highlight a few approaches to this challenge that are particularly relevant 
and feasible. Some of these activities are part of ongoing research projects 
underway at Census. One common approach is to measure inputs to inno-
vative activity, such as R&D expenditures. The Census Bureau conducts 
the Business Research and Development and Innovation Survey (BRDIS) 
in accordance with an interagency agreement with the National Science 
Foundation (NSF). The BRDIS (or its predecessor, the Survey of Industrial 
Research and Development, or SIRD) has collected firm- level information 
on R&D expenditures since 1953. Griliches (1980) was one of the first users 
of this microdata from the SIRD (combining it with other Census data sets). 
Since then, the survey has expanded in scope from its original focus on large 
manufacturing companies. However, there remain many challenges with 
using R&D expenditures to proxy innovation activities (see Foster, Grim, 
and Zolas 2016), and we focus on a few of the more relevant challenges. 
First, measurement quality may vary over sectors of the economy because 
measuring R&D expenditures is more complicated in some sectors (e.g., 
the service and retail sector; see Brown, Plewes, and Gerstein 2005). Sec-
ond, measurement quality may vary over types of firms because activities 
that constitute R&D and innovation activity are easier to capture in large, 
mature firms with dedicated R&D divisions or establishments. Start- ups 
and young businesses are inherently engaged in developing products, pro-
cesses, and customer base, but it is likely difficult for such firms to break out 
separate expenditures. Third, more generally, traditional R&D activity is a 
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narrower concept of innovative activity compared to the broader perspective 
discussed below on intangible capital accumulation.

Measuring innovative activities using patents is another commonly used 
alternative approach. Using patents and patent citations as indicators of 
innovation has a long history (see the survey by Griliches 1990). Patents 
and patent citations as indicators suffer from many of the same limitations 
as R&D expenditures. They are more informative in some sectors and tech-
nologies compared to others. Pavitt (1988) argues that they offer differential 
protection across sectors and technologies. This also leads to differential 
propensities across firms to patent their innovative activity. Like R&D 
expenditures, this means that patents may miss important innovative activ-
ity. On the flip side, patenting activity can also provide false positives for 
innovation when they are used as a defensive measure. Interestingly, Gort 
and Klepper (1982) use patents as one of their three measures of innovation 
in their empirical exercises but conclude “that patents are not a good mea-
sure of the rate of technological change” (650).

There have been research efforts to integrate the R&D and patent data 
into the LBD. For example, the research by Acemoglu et al. (2017) takes 
advantage of such integration in a manner closely related to the issues we 
address in this chapter. Specifically, they find that in the innovation- intensive 
industries (essentially industries with sufficient R&D and patent activity), 
young firms are the most innovation intensive as measured by innovation 
to sales ratios. Their analysis shows the potential promise of such data inte-
gration.15 However, Acemoglu et al. (2017) focus on only about 5 percent 
of all US firms.

Another example is the ongoing Census Bureau project integrating mea-
sures of innovation into the LBD to enhance both the Business Dynamics 
Statistics and the data infrastructure available to the research community 
(through the Federal Statistical Research Data Center network). The strat-
egy is to produce an indicator for innovation based on a multidimensional 
concept that can encompass measures such as R&D expenditures and pat-
ents (as well as indicators such as being part of a high- tech industry; see 
Goldschlag and Miranda 2016). One of the first steps in this research project 
is building a firm- level indicator of patenting activity.

Building on the experience of earlier researchers linking patent activity 
to the LBD, Graham et al. (2015) supplement this with linked employee- 
employer data from the Longitudinal Employer Household Dynamics 
(LEHD) infrastructure.16 This allows them to link not only on the business 

15. This research predates the development of the revenue- enhanced LBD, which is what we 
use in the empirical part of this chapter.

16. The LEHD program has worker- level information matched to businesses for much of the 
private employers in the United States. The core of LEHD data are wage records from State 
Unemployment Insurance programs linked to establishment data from the Quarterly Census 
of Employment and Wages (QCEW). The number of records in LEHD data has increased over 
time as states have joined the voluntary partnership; in the most recent year, the LEHD data 
tracks more than 130 million worker records each quarter.
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assignee name but also on inventor names listed, increasing their match rate 
to about 90 percent—an improvement over other earlier efforts of about 
70 percent to 80 percent. Improvements in the matching and imputation 
methodologies to create an integrated data infrastructure are currently areas 
of active research; future research may delve into some measure of patent 
quality.

An ongoing challenge for any attempt to measure innovation is sparsity. In 
any dataset, such rare behavior shows up as possibly long gaps in incumbent 
innovator activity. Alternatively, it also implies that most business start- ups 
do not engage in traditionally defined innovative activity. Hurst and Pugs-
ley (2011) find that “most surviving small businesses do not innovate along 
any observable margin. Very few report spending resources on research and 
development, getting a patent, or even obtaining copyright or trademark 
protection for something related to the business” (74). This finding that 
many start- ups are not inclined toward being innovative but are instead 
“lifestyle” entrepreneurs, is not inconsistent with the literature that finds 
that start- ups are an important source of innovation. As Acemoglu et al. 
(2017) note, start- ups and young firms are more innovative than older firms, 
but this is conditional on the start- ups and young firms being in innovation- 
intensive industries. Similarly, Graham et al. (2015) find that patenting is a 
relatively rare event for small firms but that most patenting firms are small. 
It also points to the importance of taking into account innovative activity 
not well captured by traditional measures.

Recognizing the potential importance of these innovative activities for 
start- ups and young businesses, the Annual Survey of Entrepreneurs (ASE) 
included an innovation module for 2014 and adjusted the sample to try to 
capture innovative firms (see Foster and Norman 2017).17 The ASE module 
on innovation is based on parts of NSF’s Microbusiness Innovation Sci-
ence and Technology (MIST) Survey. The ASE innovation module has eight 
questions combining questions on inputs to innovation and direct measures 
of innovation. For the former, information is collected on the types of R&D 
activities, their cost and funding, and the associated number of employees 
engaged in R&D. Direct measures of innovation are in questions concerning 
process and product innovations, where innovations are broadly defined to 
include products or processes new to the market and those new to the firm. 
Process innovation questions focus on the nature of the innovation, such as 
whether it is a new way to make purchases or a new way to deliver goods or 
services. Furthermore, in recognition of the importance of these small firms 
in innovation, the Census Bureau fielded in 2017 a version of the BRDIS that 
targets microbusinesses (Business R&D and Innovation for Microbusinesses 

17. The ASE will produce annual data on economic and demographic characteristics of 
employer businesses and their owners by gender, ethnicity, race, and veteran status for refer-
ence years 2014–16. The ASE represents a partnership between the Census Bureau, the Ewing 
Marion Kauffman Foundation, and the Minority Business Development Agency (MBDA).
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Survey). Our analysis suggests that integrating the ASE with the revenue- 
enhanced LBD has considerable promise.

Starting with reference year 2017, the ASE will be subsumed into the 
Annual Business Survey (ABS). In partnership with NSF, the Census 
Bureau intends to conduct the ABS for reference years 2017–21. This firm- 
level survey will also replace the Survey of Business Owners and Business 
R&D and Innovation for Microbusinesses Survey (however, the Business 
R&D and Innovation Survey will continue to collect R&D activities for 
firms with 10 or more employees). Thus the ABS will bring together four 
areas of inquiry: business characteristics (including financing); owner char-
acteristics (including gender, ethnicity, race, and veteran status); research 
and development activity and costs (for small firms only); and innovation 
activities. The ABS is also planned to have a modular component for topi-
cal questions. Approximately 850,000 employer firms will be sampled in 
the baseline reference year of 2017 and 300,000 in the remaining years (see 
Foster and Norman 2017).

With fully integrated data, the type of analysis conducted in this chapter 
could be greatly enhanced. Such analysis would permit direct measures of 
innovation that would be useful for either hypothesis testing or external 
validity checks. Direct measures integrated with other elements of the data 
infrastructure would be very useful also for exploring possible heterogeneity 
in the type of dynamics we have discussed.

In addition, our findings suggest that tracking the joint dynamics of entry, 
productivity dispersion, and productivity growth offers a potentially useful 
cross check for traditional measures of innovation. Suppose, for example, 
that we observe Gort and Klepper (1982) dynamics in an industry where 
the traditional measures of R&D and patents do not capture innovation; 
this could suggest that this is an industry where these traditional measures 
are less informative about innovation dynamics. We regard combining the 
indirect and direct approaches to measuring innovative activity as a high 
priority for future research.

3.5.2  Linking Entry and Innovation

Our analysis suggests a tight link between surges in innovation and entry; 
however, there are open “chicken and egg” questions about their respective 
timing and interactions. For example, a surge of innovation may occur first 
at incumbent firms, and this could induce entry. Alternatively, the surge of 
innovation may occur jointly with the surge in entry because innovators 
create new firms to engage in innovative activity. The Gort and Klepper 
(1982) model distinguishes between these two sources and their impacts: 
innovations from incumbent firms tend to produce incremental changes, and 
innovations from sources outside the set of current producers tend to pro-
duce transformational changes and thus induce entry. While some evidence 
and models suggest the latter is important (see Acemoglu et al. 2017), it is 
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possible that the dynamics are more subtle, so this remains an open area of 
measurement and research.

One way to investigate this would be to track the career paths of indi-
vidual innovators and their links to firms. Using the LEHD infrastructure 
to link the individual innovators into the revenue- enhanced LBD would 
enable exploring the inherent chicken- egg issues about innovation and entry. 
That is, one could examine whether transformational innovations arise from 
employees of incumbent firms who then go on to spin off new firms. If  this is 
the case, it may appear that the innovation occurred outside the incumbent 
firm when, in fact, it was incubated at the incumbent firm.

A challenge here is that innovators may go from being employees of 
incumbent firms to being business owners of  new firms and ultimately 
become employees of the new firm if  and when the firm incorporates. This 
implies that tracking the career history of innovators will also involve track-
ing business owners. Administrative and survey data on business owners will 
thus need to be integrated into the data infrastructure. A team at Census is 
exploring the use of person- level business owner identifiers in the adminis-
trative data for this purpose.18 Our analysis highlights the substantial payoffs 
from such data integration, as this has the potential to greatly enhance our 
understanding of  the connection between entrepreneurship and innova-
tion, as well as the subsequent productivity and job growth gains from such 
activity.

A related challenge here is that, as discussed above, there are a host of fac-
tors that impact the incentives for entry into entrepreneurship that may yield 
surges or declines in the pace of entry within a country or industry. Recall 
that the Hurst and Pugsley (2011, 2017) hypothesis is that nonpecuniary 
benefits are the primary driver of many entrepreneurs and that entrepre-
neurs entering for such motives are concentrated in specific industries. A 
surge or decline in entry in such sectors may have little to do with innovation 
and productivity growth. Sorting the relative importance of the factors influ-
encing entrepreneurship is an important area of research. The ASE includes 
some questions concerning the motivations and aspirations of entrepreneurs 
(see Foster and Norman 2017, for a discussion). One question concerns rea-
sons for owning the business and includes checkboxes for responses such as 
“Wanted to be my own boss” and “Best avenue for my ideas/goods services.” 
A second question asks about aspirations for the business over the next five 
years and includes checkboxes for responses such as “Larger in terms of 
sales or profits” and “About the same amount of sales or profits.” Tracking 
the career history of  entrepreneurs as well as incorporating information 

18. A recent example of the application of integrated data is Bell et al. (2017). Using data 
on patents, tax records, and test scores from New York school districts, they show that family 
income and exposure to innovation during childhood significantly increases the propensity to 
become inventors.
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about the activities and incentives of entrepreneurs as discussed in this sec-
tion should help in this effort.

3.5.3  Intangible Capital

Another interesting area of inquiry is to relate the innovative activities 
associated with entrants and young firms to the growing literature on mea-
suring and understanding the growth of intangible capital. One interpreta-
tion of our work in this chapter is that we use entry as a proxy for innovation. 
It might be fruitful to think about the time and resources associated with 
entry and young- firm activity as a measure of intangible capital investment. 
This perspective is consistent with the broad view of intangible capital of 
Corrado, Hulten, and Sichel (2005, 2009) and Corrado et al. (2013), who 
define intangible capital expenditures as any current- period expenditures by 
firms intended to enhance future production or sales. Other studies apply 
narrower definitions of innovation and intangible investment, focusing on 
the effects of spending on specific categories of intangible assets, such as 
employer- funded training, software, R&D, branding and design, and pro-
cess improvement (see Awano et al. 2010 for more details). A recent example 
of estimating the contribution of innovation and intangible investment to 
growth can be found in Haskel, Goodridge, and Wallis (2014). Exploring 
such issues within the context of the joint dynamics of entry, dispersion, and 
growth would be of considerable interest.

We think a strong case can be made that entrants and young firms are 
inherently engaged in intangible capital investment. Likewise, young firms 
are engaged in activities to develop products and processes and to break 
into markets (such as developing a customer base; see Foster, Haltiwanger, 
and Syverson 2016). The experimentation phase we have discussed, and pro-
vided some evidence in support of, is another form of investment in activity. 
Kerr, Nanda, and Rhodes- Kropf (2014) make a related point in arguing that 
“entrepreneurship is fundamentally about experimentation” (25).

Exploring how to measure and track the indirect approach we have advo-
cated in this chapter within the context of the measurement and contribu-
tion of intangible capital would be of considerable interest. Haltiwanger, 
Haskel, and Robb (2010) discuss and consider some promising possibili-
ties for tracking intangible capital investment by new and young firms. For 
example, they find that young firms appear to be actively investing in vari-
ous forms of intangible capital (using tabulations from the Kauffman Firm 
Survey that queries firms about their activities). Even though they find sup-
porting evidence, they highlight the difficulties of obtaining such measures 
from entrants and young firms. The founders and employees of new firms 
are engaged in many tasks, so probing questions are needed to elicit the time 
and resources that should be considered as intangible capital investment.

Overall, our view is that the conceptual approach of intangible capital 
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investment advocated by Corrado, Hulten, and Sichel (2005, 2009) has 
the greatest potential for direct measurement of investment in innovative 
activities. This approach takes the appropriate broad- based perspective on 
innovative investment activities and advocates capitalizing expenditures on 
these activities in the same manner as for physical capital expenditures. The 
challenge here is developing measurement instruments that can capture such 
intangible investment activities for all sectors and all firms, including young 
and small firms. We regard our indirect approach as complementary to the 
intangible capital approach. Combined with suitable measures of the latter, 
our approach could be used to study the stochastic and uncertain payoffs 
of investments in intangible capital. In addition, as with direct approaches 
to measuring innovation, our indirect approach could be used for external 
validity or cross validation of intangible capital measurement.

3.5.4  High-  versus Low- Frequency Variation

Understanding high-  versus low- frequency productivity dispersion and 
productivity growth dynamics would be another useful area of inquiry. The 
empirical results in section 3.4 suggest that an increase in industry- specific 
entry rates leads to increases first in productivity dispersion and then in 
productivity growth. As emphasized above, we estimated these relationships 
using low- frequency variation with the express intent of abstracting from 
cyclical dynamics. Since the contribution of innovation may materialize with 
potentially long and variable lags (see Griliches 1984) and may even arrive in 
multiple waves (Syverson 2013), long- run variation seems more appropriate 
for estimation purposes.

On the other hand, the appropriate horizon at which other factors affect 
dispersion is less clear a priori. Some of the results in the literature on fric-
tions and distortions are based on annual average indicators (see, e.g., Hsieh 
and Klenow 2009; Foster et al. 2017). In addition, other evidence indicates 
that the effect of changing frictions may also be detected at higher frequen-
cies. A recent example is Brown, Dinlersoz, and Earle (2016), who find that 
yearly dispersion measures increase during and after periods of deregula-
tion.

While it may be of interest to abstract from short- run variation for cer-
tain research questions, it may be that cyclical dynamics are present and 
interact with lower- frequency dynamics. For example, Kehrig (2015) and 
Bloom (2009) document that within- industry productivity dispersion varies 
negatively with the cycle: it is greater in recessions than in booms. In addi-
tion, there is evidence that periods of Schumpeterian creative destruction 
coincide with recessions—although the extent to which this holds varies over 
cycles (see, e.g., Foster, Grim, and Haltiwanger 2016).

To help illustrate the effects of these complicating factors, we have esti-
mated simple two- variable panel vector autoregression specifications (VAR) 
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using annual time series on productivity dispersion, entry, and productivity 
growth by pooling high- tech industries (four- digit NAICS) between 1997 
and 2013. One can think of these VARs as high- frequency analogues of the 
analysis in section 3.4. We show these high- frequency results to illustrate 
that developing a way to think about low-  and high- frequency dynamics in 
an integrated manner would be of interest.

All the results reported below are derived from stable first- order VARs, 
where the underlying coefficients and standard errors are generalized method 
of moments (GMM) based and the lag order of the VAR is implied by stan-
dard information criteria.19 The first impulse response function is estimated 
using changes in entry and dispersion, with this Cholesky ordering. Results 
are shown in panel A of figure 3.6: dispersion increases significantly in the 
wake of a positive change in entry, and the effect lasts two to three years. 
This finding is broadly consistent with our findings in section 3.4.20

However, investigation of other high- frequency dynamics reminds us of 
the many different factors in the joint distribution of entry, productivity 
dispersion, and productivity growth. Using a two- variable VAR relating 
productivity dispersion and productivity growth, we find (in unreported 
results) evidence of Granger causality from productivity growth to produc-
tivity dispersion. Panel B of figure 3.6 shows that a positive (high- frequency) 
productivity shock has a short- lived negative response on within- industry 
productivity dispersion. The short- lived negative response may be consistent 
with a number of theories. First, it may reflect the effect of cyclical varia-
tion in uncertainty (see Bloom 2009). Alternatively, a negative response may 
be related to demand- driven fluctuations in the price of fixed inputs that 
lead to positive selection among more productive firms (see Kehrig 2015 for 
more details). There are other possibilities as well, as there might be some 
interaction between these high- frequency dynamics and the lower- frequency 
dynamics that have been the focus of much of our discussion in this chapter.

A potentially useful approach would be to investigate the empirical per-
formance of cointegrating relationships. The main advantage of the con-
cept of cointegration would be its straightforward use in decomposing time 
series variation into high-  and low- frequency dynamics, especially if  it is 
reasonable to assume that different forces generate variation at different 

19. We use the Stata module documented in Abrigo and Love (2016). The module integrates 
all the necessary steps of the empirical implementation: parameter estimation, hypothesis test-
ing, lag order selection, and impulse response estimation.

20. The two variables in this VAR are the industry entry rate and the change in the within- 
industry productivity dispersion. The panel VAR has industry effects but no year effects. This is 
different from our low- frequency panel regressions in section 3.4, which relate entry to the level 
of within industry dispersion controlling for both industry and time effects. We used forward 
orthogonal deviations to remove industry effects from the VARs because this transforma-
tion tends to outperform the first- difference transformation when using GMM; see Hayakawa 
(2009).
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frequencies—for example, when the long- run dynamics of entry and dis-
persion are related because of innovative activity and short- run variation is 
associated with business cycle fluctuations.

In short, this discussion of high-  versus low- frequency variation high-
lights some of the challenges and limitations of the indirect approach we 
are advocating in this chapter. While we think much can be learned from 
our indirect approach, many other factors impact the joint dynamics of 
entry, dispersion, and productivity growth that need to be considered and 
controlled for in trying to draw inferences about innovative activity.

3.6  Concluding Remarks

Our findings suggest that there are rich joint dynamics of  firm entry, 
within- industry productivity dispersion across firms, and within- industry 
productivity growth that help shed light on innovation dynamics. The pat-
terns are broadly consistent with models of innovation where periods of 
rapid innovation are accompanied by a surge of entry. Such a surge in entry 
induces a rise in productivity dispersion and productivity growth within 
industries. Productivity growth stems from within- firm productivity growth 
by, and reallocation of resources toward, successful innovators.

Our analysis is intended to be exploratory. Our objective is to discuss the 
conceptual and measurement challenges, exploring these joint dynamics that 
appear to be important for understanding the complex nature of innovation. 
Part of the conceptual challenge is that alternative factors may influence the 
joint dynamics of entry, productivity dispersion, and productivity growth. 
For example, changes in frictions and distortions yield a distinct pattern 
of comovement, as emphasized by the recent literature. Second, moment 
shocks to the distribution of idiosyncratic productivity and profitability at 
cyclical or other frequencies are also likely important.

In terms of measuring innovation, there are efforts underway (and already 
interesting research based on such efforts) to integrate traditional measures 
such as patents, R&D expenditures, and the indicators of firm and industry 
dynamics that are a focus of our analysis. We think there will be substantial 
payoff from such efforts at further data integration. We also emphasize that 
even as this effort becomes increasingly realized, some open questions will 
remain. For example, if  we can detect the presence of an innovative period in 
an industry as suggested by the results of this chapter, then it will be interest-
ing to cross check the joint dynamics of entry, productivity dispersion, and 
productivity growth against traditional innovation measures.

We also think that the indirect approach suggested in this chapter can be 
fruitfully combined with the ongoing efforts to measure innovative activ-
ity by capitalizing intangible capital expenditures. Combining these efforts 
would serve as a useful cross check but also provide the ability to investi-
gate the stochastic and heterogeneous returns to investment in intangible 
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capital expenditures. Combining these efforts would also help overcome the 
known challenge that traditional indicators such as R&D expenditures and 
patents may not capture the full extent of young firms’ innovative activity. 
Capturing intangible investment by entrants and young firms is especially 
challenging, since the founders and workers at young firms are inherently 
engaged in multitasking as they try to survive and ramp up production and 
their customer base for the future.

It is our view that overcoming these conceptual and measurement chal-
lenges will involve a multidimensional approach. First is continuing and 
expanding the integration of  both person- level and business- level data. 
Currently, these include both survey and administrative sources, but they 
could also include commercial data. Second is continuing efforts to link 
these data longitudinally and to improve these links. Third is using a more 
focused approach to survey content and to use special modules like those in 
the Annual Survey of Entrepreneurs (or the forthcoming Annual Business 
Survey) to ask deeper questions about hard- to- measure concepts such as 
intent to innovate. Fourth is using economic relationships between relatively 
easy- to- measure concepts (such as entry and productivity dispersion) to help 
direct our measurement efforts toward areas of the economy where innova-
tion is taking place. The payoff from these efforts could be substantial. It will 
only be through such efforts that we can understand the complex and noisy 
process through which innovation leads to productivity and job growth.
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4.1  Introduction

Policy makers, scholars and managers have a keen interest in tracking 
innovative activity. Measuring innovation has, however, proven difficult. For 
example, in the last couple of  years, the Organisation for Economic Co- 
operation and Development (OECD) revised the Oslo Manual, the basic 
handbook for survey- based measures of innovation, reflected particularly in 
the Community Innovation Survey (CIS) administered across Europe. In the 
United States, the National Science Foundation (NSF) has sponsored two 
workshops on innovation indicators, and following earlier work in Europe 
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and elsewhere, NSF has begun to track self- reported innovation in its Busi-
ness R&D and Innovation Survey (BRDIS). One challenge with existing 
innovation surveys (e.g., BRDIS, CIS) is that it is not clear what respondents 
mean when they report that they have introduced to the market a product 
or process that is new or significantly improved. Underlying this question 
of  interpretation is the concern about whether reported innovations are 
“important.” For example, does a reported innovation reflect simply a new 
flavor of toothpaste, or is it the first 3D printer? In this chapter, we suggest 
that the question of what respondents mean by “innovation” and the related 
question of its importance are fundamental ones that should be addressed 
conceptually and that this conceptualization should precede and guide mea-
surement.

We start with Schumpeter’s distinction between invention and innovation 
(Schumpeter, 1934). Invention refers to a discovery or the creation of a novel 
tangible (or virtual) artifact. Innovation refers to the commercialization of 
an invention—that is, the introduction of an invention to the market—and 
all that entails. Accordingly, we accept the definition of an innovation as a 
good, service, or process that is new to the market.1 We suggest, however, 
that simply defining an innovation as being “new or significantly improved” 
is insufficient. Without knowing more, we cannot assess how innovative or 
important the innovation is. In this chapter, we propose moving beyond a 
categorical judgment of an innovation that focuses exclusively on novelty 
(e.g., “first to market”) to consider the question of what features of an inno-
vation potentially affect social welfare or, indeed, the likelihood of the inven-
tion being discovered and commercialized to begin with. In this chapter, we 
first propose what the relevant features may be. We then empirically illustrate 
the usefulness of such a multidimensional characterization using recently 
collected survey data for the US manufacturing sector and selected service 
sector industries. Finally, we provide some suggestions for new attribute- 
based innovation measures and conclude the chapter.

Figure 4.1 helps clarify the distinctions we are trying to highlight. The 
figure shows the innovation process, from the inputs (such as R&D) and its 
various determinants (such as technical information and information on 
market needs), to ideas (some of which are observable through patent data), 
to innovation (the new or significantly improved good, process, or service), 
to the social welfare impacts. This figure is used to organize the conceptual 
discussion rather than being an attempt to impose a “linear model” on the 
innovation process. For simplicity, the many external influences and feed-
back loops are excluded. A key distinction in this schematic is between the 

1. In this chapter, we are not analyzing organizational or marketing innovations, which have 
also begun to be incorporated into innovation surveys. In addition, while we are discussing 
innovations by firms, much of what we discuss would also apply to public or nonprofit sector 
innovations, where one might use the phrase “implementation of the invention” rather than 
“introduction to the market.”

 EBSCOhost - printed on 2/8/2023 7:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



How Innovative Are Innovations?    141

characteristics of the innovation and its impact. We argue that it is important 
to measure how “innovative” an innovation is, separate from its impacts, in 
order to understand the relationships between inputs and innovations and 
between innovations and their impacts (Dahlin and Behrens 2005).

A fair question is, Why collect data on the characteristics of innovations 
per se? Why not just focus exclusively on their social welfare impacts, includ-
ing their impacts on, say, productivity growth, lives affected, and so on? The 
reason is that, from both a managerial and policy perspective, it is useful to 
know, first, what kinds of innovations are worthy of private or public invest-
ment. Should they be innovations that are technologically significant in the 
sense that they represent a large inventive step? How about the prospective 
utility of the investment—reflecting the acuteness or the pervasiveness of 
a social need? At a first order, managers and policy makers make decisions 
that target specific features of an innovation, typically assuming some rela-
tionship between those features and an innovation’s impact, either on profit, 
sales, and growth for managers or on social welfare for policy makers.

Correspondence between features of an innovation and their impact is 
not, however, straightforward. As a consequence, we need measures char-
acterizing those features to better understand what features impact social 
welfare, including how and under what conditions, as well as to better under-
stand the drivers of the different features of innovation. To illustrate, what 
we may call technological significance is not necessarily predictive of impact. 
For example, consider the discovery of high- temperature superconducting 
materials. This was a Nobel Prize–winning discovery that was expected to be 
transformative for the cost of electricity transmission and numerous other 
applications. That has not come to pass, at least not yet, largely due to the 
inability to manufacture such materials at commercial scale. Or consider the 
introduction of the Segway, a technically challenging achievement that was 
initially also thought to be transformative—at least by its inventor, Dean 
Kamen—for human- level transportation. Segways are indeed now commer-
cialized and in use, but they are far from transformative. At the same time, 
there are numerous instances of innovations that are technologically incre-
mental that have had enormous economic impacts. Consider, for example, 
the introduction of self- service grocery stores (and the follow- on innovation 
of the shopping cart) or the commercialization of containerized shipping. 
Neither of these innovations reflected large inventive steps technologically, 

Fig. 4.1 The innovation process
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but their impacts on productivity and economic growth have been substan-
tial. Thus we suggest that it would be helpful for policy makers and manag-
ers to understand, for example, the circumstances under which more or less 
substantial technological leaps may pay off, particularly if  those leaps come 
at considerable expense. Such understanding requires, however, measures of 
the relevant characteristics of an innovation—and that those characteristics 
be identifiable independent of their ultimate commercial or social impacts.

In this chapter, we are also arguing that we need surveys to collect data 
on critical features of innovations. But why? Why not rely exclusively on 
existing administrative patent data or R&D survey data to characterize 
innovations? Why go to the additional expense and effort of designing and 
administering surveys to characterize innovation? First, we would suggest it 
is not a question of using either administrative data or innovation surveys. 
Indeed, these approaches can complement one another, by allowing us both 
to use one modality to address questions that cannot be addressed by the 
other and also, where both approaches can be used, to compare findings to 
illuminate the virtues and limitations of each. For example, by comparing 
survey- based and patent- based measures of knowledge flows from public 
research institutions, Roach and Cohen (2013) showed that the patent cita-
tion data systematically underestimate the knowledge flows from public 
research to industrial R&D—by as much as 50 percent. At the same time, 
this comparative exercise suggested that as a measure of knowledge flows 
from public research, patent references to the nonpatent literature were a 
superior measure to using references only to other patents.

One possible advantage of innovation surveys over patent and existing 
R&D data is that large- scale innovation surveys offer a more flexible vehicle 
for collecting data than either the R&D or patent data, at least currently. 
With innovation survey data, at least when one is in a position to guide 
the formulation of questions, one is not restricted to the construction of 
measures from preexisting administrative data or from long- standing stan-
dardized surveys constructed for other purposes, including the R&D data 
collected through financial reporting systems or national statistical agencies. 
At the same time, survey data come with their own limitations, with pitfalls 
that may afflict sample construction as well as survey design and administra-
tion. Hence we begin below with a summary assessment of the advantages 
and limitations of R&D and patent data as measures of innovation. The 
purpose is to make an argument for supplementing these conventionally 
employed data sources with surveys that collect data on specific attributes 
of innovations that allow one to assess their importance.

In section 4.2 of the chapter, we briefly review several current approaches 
to measuring innovation, including R&D surveys, patent data, and innova-
tion surveys. In section 4.3 we discuss the multiple dimensions of innovation 
that innovation surveys can be designed to capture. In section 4.4 we make 
an initial effort to empirically operationalize those dimensions. In section 
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4.5, we conduct a number of exploratory, empirical analyses to illustrate 
the utility of this multidimensional characterization. Section 4.6 suggests 
alternative measures of these dimensions of innovation. Section 4.7 presents 
our conclusions.

4.2  Current Approaches to the Measurement of Innovation

Social scientists, from different disciplines and often with different schol-
arly objectives, have used different data sources in their statistical studies 
of innovation. The three major data sources employed to study innovation 
are government data on R&D expenditures, patent- based measures, and 
survey- based measures.2

4.2.1  R&D Expenditures

R&D expenditures reflect an input into the innovative process, with 
research expenditures typically thought to be associated with invention and 
development associated with the prototyping and other activities designed 
to prepare an invention for market introduction. Innovation scholars, par-
ticularly economists, have typically used R&D data either as a dependent 
variable in studies of  the factors driving firms’ investments in innovative 
activities or as a factor of  production—R&D or knowledge capital—in 
analyses of productivity growth. An advantage of R&D expenditure data is 
their availability, at least for public companies in the United States. Data on 
nonpublic companies are accessible via confidential NSF data, which also 
provide limited data on R&D composition across the categories of basic, 
applied, and development activity and, more recently, R&D dedicated to 
product versus process innovation.

It has been widely recognized since Mansfield (1968), however, that, while 
R&D is a key input into both invention and innovation, it is not the only one. 
Mansfield estimated that R&D expenditures reflect only about 50 percent 
of  the investment required to bring an innovation to market, with addi-
tional investments in marketing, distribution, and manufacturing required 
for commercialization. We also know from a survey of  the inventors of 
patented inventions that not all the patented inventions of firms originate 
from the firms’ R&D operations, although most do (Lee and Walsh 2016). 
In addition, other sources of innovation within firms escape any recognition 
by either R&D or patenting activity, and these can be important, as shown 
by the literature on learning by doing (Thompson 2012; cf. Hollander 1965 
for Dupont’s rayon manufacturing processes).

There is perhaps an even more significant challenge to thinking that R&D 
expenditures are a reliable index of firms’ innovative activities. On the basis 

2. See section 2 of  Cohen and Levin (1989) for an early critical discussion of R&D and 
patents as measures of innovation.
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of the survey data used for the present study, Arora, Cohen, and Walsh 
(2016) indicate that for the US manufacturing sector, 49 percent of innovat-
ing firms report that the invention underlying their most important prod-
uct innovation in the 2007–9 period was acquired from an outside source. 
Moreover, this percentage varies substantially across industries and across 
firms within industries. Hence for a significant (and varied) share of innova-
tions, the R&D (or other inventive activity) that produced the underlying 
invention did not occur in the innovating firm, weakening the link between 
a firm’s own R&D and its innovations.

There are other well- known concerns with R&D data. Griliches (1979) 
long ago argued that a proper measure of innovative input should reflect 
not the knowledge generated by R&D in any one period but the services of 
an accumulated stock of knowledge. Such an exercise, however, runs into 
challenges tied to the specification of lags, the determination of an appropri-
ate depreciation rate, and the impact of spillovers from other firms (Cohen 
and Levin 1989).

4.2.2  Patent Measures

In addition to R&D data, patent data are also often used in studies of 
innovation. An important virtue of  patents as a data source is that pat-
ent applications are vetted and curated by examiners. In addition, recent 
efforts by scholars such as Hall, Jaffe, and Trajtenberg (2001) and Li et al. 
(2014) have added value to these administrative data by cleaning the data, 
constructing useful measures based on the data, and making the data more 
accessible, creating an important data resource for innovation scholars. 
Another virtue of such data is that patents and linked documentation offer 
a wealth of information that lends itself  to creative use and measure con-
struction. Indeed, scholars have employed patent data to construct analogs 
to a number of the characteristics of innovations considered below, as well 
as other features, including, for example, measures of originality, generality, 
novelty, and economic value (Jaffe and De Rassenfosse 2017).

Notwithstanding these considerable virtues, patents reflect an intermedi-
ate outcome of the innovative process—invention—and thus do not consti-
tute a measure of innovation (i.e., newly commercialized product/process) 
per se. Underscoring this limitation, only a fraction of patented inventions 
are ever commercialized (Griliches 1998; Svensson 2015; Walsh, Lee, and 
Jung 2016). Moreover, for those patents that are commercialized, the cor-
respondence between patents and commercialized products varies substan-
tially. In what are called discrete product industries, such as chemicals and 
pharmaceuticals, a new product may comprise relatively few patented ele-
ments. In contrast, in complex product industries such as computers, tele-
communications equipment, and others, there may be hundreds of patents 
or more tied to a given product (Cohen, Nelson, and Walsh 2000; Nagaoka 
and Walsh 2009).
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Even as a measure of invention, patents are also limited. First, not all 
inventions are patented, and patent propensity (measured as the percentage 
of innovations associated with at least one patent) varies considerably across 
industries. For example, according to Arora, Cohen, and Walsh (2016), pat-
ent propensities in the manufacturing sector range from 11 percent in the 
furniture industry to 72 percent in the medical equipment industry, with an 
average product patent propensity of about 50 percent.

4.2.3  Surveys

Numerous survey efforts have addressed innovation, and we will only 
briefly identify a handful here. Surveys dealing with innovation may be 
divided into three groups: (1) surveys focusing on R&D and its correlates, 
including the “Yale Survey” (Klevorick et al. 1995; Levin et al. 1987) and 
the “Carnegie Mellon Survey” (Cohen, Nelson, and Walsh 2000, 2002); (2) 
surveys of  inventors of  patented inventions (Giuri et al. 2007; Nagaoka 
and Walsh 2009); and (3) surveys tracking innovation itself. In this chapter, 
we are only concerned with the latter, the most prominent of which is the 
CIS, which was first administered in 1992 and is now administered widely 
in Europe, with equivalent surveys administered across the globe. While 
surveys also have a variety of limitations and concerns (as documented in 
the Oslo Manual), including cost, sampling issues, response biases, and 
difficulties with questionnaire design, here our main concern with innova-
tion surveys as currently designed is the problem of interpretation. What 
do respondents mean when they report “new to the market” innovations, 
and are these reported innovations important? If  so, in what sense? Is there 
an impact on sales, profits, growth, and so on? What about industry- wide 
impacts?

4.3  Toward a Multidimensional Perspective

In this chapter, we are proposing that some portion of innovation surveys 
employs the innovation as the unit of analysis and focuses on selected attri-
butes of identified innovations as a basis for constructing measures of those 
attributes. By adopting this perspective, we are departing from the standard 
approach of the CIS and almost all innovation surveys in current use. Tak-
ing the firm as the exclusive unit of analysis, the CIS asks respondents to 
address questions regarding a firm’s innovations considered collectively. For 
example, the CIS commonly asks what percentage of sales are accounted for 
by all products that are new to the market.3 The approach described here, in 

3. The CIS questions, following the harmonized July 2014 version of the CIS questionnaire, 
ask for the prior three years, 2012–14, whether the respondents introduced any “new or signifi-
cantly improved goods” that were (1) “New to your market”; (2) “Only new to your enterprise”; 
or (3) “A ‘first’ in your country, Europe or the world?” The survey then asks what share of total 
turnover comes from each of these categories.
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contrast, is most effectively implemented if  questions are framed in terms of 
a specific innovation. The proposed approach, however, is not a substitute 
but a complement to current practice. While firm- level analyses can answer 
some questions about innovation, innovation- level analyses can answer oth-
ers, and as a practical matter, both types of questions can be implemented 
in the same instrument. The impossibility of using surveys to collect data 
on the population of all innovations, however, requires careful attention to 
sampling strategies.

We begin with a basic definition of an innovation that is consistent with 
that employed in CIS surveys. We define an innovation as a new or signifi-
cantly improved offering (i.e., a good, service, or process) that is “new” rela-
tive to the status quo ex ante in a given market. As argued above, however, we 
suggest that characterizing an offering as “new or significantly improved” is 
not very helpful if  we ultimately want to understand how and to what degree 
a new offering impacts social welfare. Going beyond a categorical judgment 
of novelty, we suggest five features of an innovation to be potentially relevant 
for an assessment of its potential social welfare impact. We are not claiming 
that this is a definitive list but simply hope to initiate a dialogue around the 
idea that for the purpose of assessing the impacts of innovation, it is useful 
for innovation surveys to characterize different dimensions of innovation.

4.3.1  Features of Innovations

In this section, we identify features of an innovation that are potentially 
tied to its social welfare impact. These particular features are drawn from 
writings on innovation in a range of fields, including economics, history, 
organizational theory, and sociology.4 These attributes do not characterize 
innovations in any absolute sense (e.g., the absolute gain in efficiency of 
an algorithm) but characterize innovations in relation to a context such as 
the state of technical knowledge, market acceptance, the capabilities of a 
firm to bring an innovation to market, or even the capacity of the broader 
market environment to support a new product’s commercialization. Some of 
these attributes, such as technological significance, bear on the invention(s) 
underlying an innovation, while others, such as utility, characterize the com-
mercialized product or process.

Technological Significance. The technological significance of an innova-
tion may be characterized in terms of either its novelty or its impact on tech-
nical performance. Regarding novelty, one would want to know the extent 
to which the technical characteristics of an innovation differ from existing 
products or processes. How novel or technologically different is an identified 
innovation as compared to existing goods, processes, or services? To what 

4. We do not claim that our focus on the features of identified innovations is novel. As noted 
above, scholars working with patent data have long been constructing measures of different 
features of inventions.
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extent does an innovation reflect an advance in the underlying knowledge? 
This notion of technological novelty resembles what a patent examiner tries 
to assess by judging both an invention’s absolute novelty against prior art 
and whether an invention is nonobvious (where nonobviousness may be 
more critical for our purposes). In Europe, examiners assess the “inven-
tive step,” which is closer to the concept of this dimension of technological 
significance. Several different patent- based measures have been constructed 
and employed in the past to evaluate degree of  novelty.5 The correspon-
dence between degree of novelty and ultimate social impact is, however, not 
straightforward, as suggested by the observation that the preponderance 
of patents is never commercialized. However, without some independent 
metric of technological significance (i.e., one not based on impact), we are 
unable to answer the question of when or how technological novelty leads to 
greater or lesser impact and what aspects of the innovation process produce 
more or less novel technologies.

A second way to characterize the technological significance of an innova-
tion is the degree to which an innovation improves the technical performance 
of a process or a product as compared to prior generations of similar pro-
cesses or products. For example, we might track the degree of improvement 
in the clock speed of a microprocessor, the conversion rate of a solar cell, or 
the improvement in fuel efficiency of a new automobile engine. For a process 
innovation, technological performance improvement would be reflected in 
the cost savings per unit of output. For products and processes, one compli-
cation with this characterization is that the relevant performance dimensions 
of a new or improved product can be complex, and the assessment of per-
formance improvements may also be challenging where such improvements 
are only realizable when a product is implemented with other technologies 
or in different organizational settings (see below). Moreover, there may well 
be improvements in performance unrelated to the technology of a prod-
uct or process. Finally, an open question is the strength of the relationship 
between the first way of characterizing technological significance—that is, 
the novelty of an advance—and the degree to which the associated innova-
tion affects the technological performance of a product or process.

Utility. Utility may be characterized in terms of  the pervasiveness or 
acuteness of  the need addressed by the innovation. Although firms and 
others have expectations regarding the utility of a new or improved product 
at the moment of introduction, it is difficult to assess utility without evidence 

5. For example, Fleming (2001) and Strumsky and Lobo (2015) classify inventions as novel 
if  the associated patent reflects “combinatorial novelty” either by being the first instance of a 
(new) technology (United States Patent and Trademark Office [USPTO] subclass) on a patent 
or if  it is the first instance of a particular pairwise combination of existing technologies on 
patents. Shane (2001) assessed the novelty of an invention simply on the basis of the number 
of backward citations. Text- analysis methods have been used to check for the technological 
distance between new patents and existing patents (Yoon and Kim 2012).

 EBSCOhost - printed on 2/8/2023 7:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



148    Wesley M. Cohen, You-Na Lee, and John P. Walsh

of actual impact on use. Pragmatically assessing utility could entail gather-
ing data on the sales of a new product over time, though such data are also 
limited as a measure of  demand for an innovation, since they reflect the 
interaction of supply and demand and also reflect related decisions, such 
as those around marketing and distribution. Nonetheless, detailed data on 
price and volumes would be helpful. And more helpful still would be sales 
data on any prior generations of a new product, allowing one to begin to 
assess the incremental benefit.

One problem, however, with market- based measures of utility is the pos-
sibility that for some products and in some settings, there may be numerous 
individuals who could benefit from a new product but lack the means to 
pay for it. Consider, for example, the utility of a malaria vaccine in sub- 
Saharan Africa. The need for such a vaccine is obvious, suggesting a differ-
ent, nonmarket- based measure of utility, such as lives saved or improved.

We might also examine utility of  an invention or innovation in terms 
of its potential for increasing firms’ abilities to achieve future innovations, 
possibly spawning a wide variety of  subsequent technologies and appli-
cations. One may think of two ways in which an innovation may signifi-
cantly contribute to subsequent innovation. First is the use of the technol-
ogy as an input to the research process for other innovations (i.e., research 
tools). Some innovations in biotechnology might be of this sort. CRISPR 
is a recent example; recombinant DNA is an earlier example. Second are 
general- purpose technologies (GPTs) that can generate a wide variety 
of  applications across numerous industries (Bresnahan and Trajtenberg 
1995). The microprocessor, the computer, and the internet are prominent  
examples.

Distance or “Implementation Gap.” The management literatures on cor-
porate strategy and organizations (e.g., Adner 2006; Teece 1986) and the 
economics literature on diffusion (e.g., David 1990; Rosenberg 1976) high-
light a third attribute of  innovations related to both their probability of 
being implemented and their impact. These literatures suggest that the com-
mercialization of innovations may be affected by (1) the innovating firm’s 
internal capabilities, including the expertise and capabilities it possesses or 
can readily acquire, as well as the way the firm is managed or organized; 
(2) the organizational capabilities of prospective consumers or users of the 
innovation; (3) the availability of essential complementary technical com-
ponents required for the development of the innovation; and (4) the external 
availability of complementary goods, services, and technologies that support 
the sale of the innovation. What we are calling “distance” or an “implemen-
tation gap” may thus be due to factors internal or external to the innovating 
firm. Whether internal to the firm or not, implementation gaps can affect the 
success with which a firm commercializes an invention or, indeed, whether 
an invention is commercialized at all. The premise for considering what we 
are calling “distance” is that innovations are not implemented in isolation; 
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their implementation typically depends on the availability of other artifacts, 
capabilities, and forms of organization within and across firms—both inter-
nal and external to the innovating firm.

Implementation gaps internal to the firm may be the consequence of con-
straints on existing capabilities, including manufacturing, marketing, and 
sales capabilities. The inventor of  a new tennis racket, for example, may 
not be able to commercialize the product due to limited access to market-
ing capabilities or distribution channels. On the other hand, if  the requisite 
capabilities are easily developed or are readily available via market transac-
tions, then the implementation gap is less. Consider, for example, clinical 
testing of drugs. Over the past three decades, such capabilities have become 
readily available as a service. As a consequence, they represent less of a con-
straint on, say, a biotech firm’s efforts to develop a drug and get it through 
the FDA approval process, assuming that the biotech firm has sufficient 
financial resources. Marketing and sales capabilities in the pharmaceutical 
industry are, however, more difficult to access or develop internally.

An external implementation gap that has constrained the commercial-
ization of electric automobiles is the absence of a well- developed network 
of  charging stations. Another instance of  distance imposed by the envi-
ronment external to the innovating firm is when customers do not possess  
the skills and processes that would enable adoption of a new product or it 
would take a substantial reorganization of their capabilities to implement 
the innovation. For example, Kubota, Aoshima, and Koh (2011) describe 
two rival chemical innovations (resists) for semiconductor production where 
one was readily incorporated into existing semiconductor manufacturing 
practices while the other, although higher in technological significance, 
required major readjustments in the existing production processes of the 
users. In this case, the resist with lower technological significance but lower 
distance and, in turn, lower cost of adoption dominated over the more tech-
nologically significant but higher distance resist.

Uniqueness. For uniqueness, the issue is whether anyone else could have 
independently commercialized a similar offering at about the same time, in 
which case an innovation would be judged as less unique. The argument here 
is analogous to Merton’s (1973) arguments about simultaneous discovery in 
science (calculus, for example). Simultaneity may occur because two or more 
firms are working on developing the same innovation or because two or more 
firms have access, perhaps via licensing, to the same invention that would 
become an input to their innovative activity. Or as Marshall (1890) argued 
when discussing agglomeration benefits, low uniqueness may result because 
the ideas are “in the air,” available to all to build on. In contrast, there may be 
cases where particular firms or inventors have special capabilities or distinc-
tive insights that are not broadly shared, and hence the observed innovation 
would be unlikely to have developed had not that innovator developed them. 
These may include cases where the components of the idea lay fallow for a 
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long time before somebody was able to incorporate them into the innova-
tion. One could argue that Merck’s development and introduction of statins 
was such a case of high uniqueness, as many firms had the chemical in their 
hands while failing to develop the innovation (cf. Baba and Walsh 2010). 
In contrast, the business model innovation of  self- service grocery stores 
appears to have been independently invented in various parts of the country 
at about the same time (Zimmerman 1955). The social welfare implication 
of less uniqueness is that society may still reap the benefits of an innova-
tion even if  a specific innovating firm failed to pursue development of the 
innovation or ceased production or delivery.

Imitability. The question is how easy it is for another firm to copy an 
innovation once the idea of the innovation is known or introduced to the 
market. To the extent that an innovation is imitable, the prospects for its 
diffusion increase, potentially affecting a broader swath of society. As Teece 
(1986) highlights, imitability is a function of replicability and the strength of 
intellectual property protection. To the extent that patents, for example, are 
more easily invented around, patents constitute less of a barrier to imitation 
and the diffusion of the innovation. Replicability refers to others’ ability to 
copy, notwithstanding intellectual property protection, and is likely to be a 
function of both the distribution of capabilities across prospective imitators 
and the particular characteristics of the technology, such as the complex-
ity and observability to outside firms of the innovation or the process that 
produced it. An example of both the importance of others’ capabilities and 
observability is the Toyota Production System, a process innovation. Toyota 
freely gave tours of its factories because it was confident that others could 
not readily reproduce the whole of its production process even if  they saw it 
in action, due to its complexity and the considerable tacit and other knowl-
edge that underpins it (Spear and Bowen 1999). An example of the role of 
complexity and low visibility is hybrid corn. Because the corn was a double 
hybrid and the parent stocks were kept secret, one could not readily tell 
from the final product how to copy the innovation, although with significant 
experimentation, one could develop rival hybrids. In contrast, once one sees 
a self- service grocery store, one can readily replicate the innovation absent 
barriers to entry or other impediments to imitation.

Also affecting replicability is the degree to which the knowledge is “sticky,” 
meaning that it is more likely that only some firms or other entities have the 
requisite skills to commercialize an invention because those skills are either 
learned in- house through their development of  the technology or devel-
oped from significant experience in the industry (von Hippel 1994). Some 
surgical innovations may be of this form and hence may be less imitable, 
at least until a new cohort of surgeons can be trained in the new methods. 
In contrast, other surgical innovations may involve standard skills of the 
profession applied in a new way and hence can be readily imitated once 

 EBSCOhost - printed on 2/8/2023 7:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



How Innovative Are Innovations?    151

the new technique is publicized. Industries also may differ systematically in 
how practice- based versus science- based knowledge is (Jensen et al. 2007). 
Arora and Gambardella (1994) and von Hippel (1994) both argue that more 
science- based knowledge regimes are likely to provide more widespread 
access to relevant knowledge and hence greater imitability.

4.3.2  Further Considerations

These different attributes of an innovation do not operate independently 
of one another. And indeed, it is typically interactions across these attri-
butes that would assist efforts to characterize and ultimately understand the 
impact of an innovation. Consider, for example, a technologically significant 
innovation that is deployed in an environment lacking essential complemen-
tary infrastructure: a malaria vaccine. Although technologically significant 
and addressing a need that is both pervasive and acute, the vaccine’s admin-
istration in sub- Saharan Africa may be quite limited in the face of an imple-
mentation gap tied to a need for constant refrigeration and skilled personnel 
for its administration. A counterexample is provided by the technologically 
significant discovery (awarded the Nobel Prize in medicine) that ulcers are 
caused by bacteria. Utility could be quickly realized because the distance 
tied to the implementation of this discovery was virtually nil; physicians in 
industrialized nations were already employing the appropriate antibiotic for 
a range of other ailments. An example of an innovation, no component of 
which was high on technological significance at the time of its introduction 
but that yielded widespread utility and, in turn, impact was iTunes. The key 
to iTunes’ success was a set of  existing complementary components and 
capabilities, including a well- designed physical device, the iPod; easy- to- use 
software; and the availability of a range of digital rights agreements that 
enabled an extensive song catalog.

The example of  iTunes raises another challenge for using surveys to 
assess the importance of  a given innovation—time. The iTunes innovation 
would never have succeeded had not other innovations preceded it, from the 
microprocessor to the internet, the MP3 player, and so on. Surveys capture 
data, however, at a point in time. And many innovations may yield utility, 
but as suggested above, only once other foundational inventions and neces-
sary complements and organizational changes have been realized. David’s 
(1990) comparison of the diffusion of the dynamo to that of  the computer 
provides a clear illustration of the point as it applies to GPTs. Similarly, 
it took many years to fully realize the utility of  the networked computer, 
and hence the payoff from the various attributes of  the innovation was not 
realized until long after its initial commercialization. Moreover, many pio-
neering innovations are subject over time to subsequent improvements that 
affect their diffusion (Rosenberg 1976). And of course, the attributes of  an 
innovation will condition incentives that in turn affect the likelihood that 
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an invention will be commercialized to begin with (see the middle part of 
figure 4.1). The implication is that survey- based measures that capture the 
different features of  an innovation at a point in time may not be predictive 
of  long- run impact.

Given measures of the characteristics of innovations, managers, policy 
makers, and economists are obviously interested in assessing their impacts 
on firms, industries, consumers, and so on. It is obviously the case, however, 
that those impacts depend on numerous other factors. A clearer understand-
ing of these attributes and the factors conditioning their impacts, however, 
are key to understanding not only the ex- post impacts (the last arrow in fig-
ure 4.1) but also the ex- ante drivers of innovation (e.g., incentives to engage 
in R&D or to convert ideas into innovations—the first two arrows in figure 
4.1). For example, if  we take the case of the battery- powered electric car, we 
can imagine problems related to “distance” at each arrow in our diagram. 
To begin, there is the problem of going from R&D to ideas, which may be 
related to the absorptive capacity of auto firms for the knowledge necessary 
for electric car production (see Cohen and Levinthal 1990, and Henderson 
and Clark 1990). Then there is the problem of going from ideas to innova-
tion, which may be related to automakers’ capabilities related to batteries 
and electric motors, an aspect of  the “distance” considered in this chap-
ter. Finally, there is also the “distance” due to ex- ante consumer practices 
related to driving habits, the range of electric cars, and the availability and 
costs of complementary services, such as charging stations. More generally, 
a full understanding of the attributes of an innovation and their impacts 
on various aspects of social welfare depends heavily on contextual factors, 
including firm capabilities, appropriability conditions, market structures, the 
common practices of buyers, and other variables—long studied—that will 
interact with the different attributes of an innovation in affecting outcomes, 
as reflected in the last arrow in figure 4.1.

4.4  Data and Measures

The purpose of the empirical analyses below is to illustrate the usefulness 
of developing survey- based measures of the different dimensions of inno-
vations for (1) increasing the interpretability of  survey- based innovation 
measures, (2) providing new insights into the correlates and possible impacts 
of innovation, and (3) stimulating further empirical and theoretical work. 
The analysis does suffer from an important limitation: the data were not 
collected for the purpose at hand.6 As a consequence, they provide a limited 

6. The objective of  the original project was to characterize the “division of  innovative 
labor”—that is, the degree to which innovating firms acquired their major innovations from 
outside sources, the sources used, and the channels through which inventions are acquired. 
Our findings on the division of innovative labor for the US manufacturing sector are provided 
in Arora et al. (2016).
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basis—but a basis nonetheless—for making our argument. In this section, 
we describe our data and the measures employed.

4.4.1  Data: Survey Design

Our data are from a phone survey of  firms in US manufacturing and 
selected service sector industries (see Arora et al. 2016 for more details on the 
sample).7 Our sampling frame was the Dun & Bradstreet (D&B) Selectory  
database. Note that we not sampling on being innovators nor on being R&D 
performers (in contrast to the survey efforts of Levin et al. 1987 and Cohen, 
Nelson, and Walsh 2000).8

To obtain a substantial number of  innovators from each industry, we 
stratified our sample along multiple dimensions. To begin, we selected all the 
D&B cases in our population of industries.9 The sample was stratified into 28 
industries at the three-  or four- digit North American Industry Classification 
System (NAICS) code level. Furthermore, the sampling frame was divided 
by size (Fortune 500; over 1,000 employees but not Fortune 500; 500 to 1,000 
employees; 100 to 499 employees; 10 to 99 employees; and 1 to 9 employees) 
and by whether the respondent is a start- up, defined as a single- product firm 
that is less than five years old.

We oversampled large firms, notably firms over 1,000 employees, with 
Fortune 500 firms sampled with certainty across all business units.10 We also 
oversampled (1) start- up firms; (2) firms from more innovative industries, 
using CIS data from Europe to estimate innovation rates for each industry; 
(3) those in NAICS code industry 533 (lessors of intellectual property) as a 
primary or secondary industry; and (4) less- populated industries to ensure 
minimum sample sizes for industry- level estimates. Other categories were 
undersampled. While we used the D&B industry classifications for sampling, 
the D&B industry classifications of respondents’ industries were confirmed 
and, if  necessary, updated based on survey responses. We use these updated 
industry classifications for our analyses. Furthermore, we use a postsample 
weighting procedure (described below) to make the data representative of 

7. NORC, at the University of Chicago, administered our survey.
8. This sampling strategy is analogous to that employed by the Community Innovation 

Survey (CIS) in Europe and the US National Science Foundation (NSF) Business R&D and 
Innovation Survey (BRDIS).

9. Because all cases stay in the sample, errors in the D&B data used for stratification only 
affect the efficiency of the sampling, not its representativeness (Kalton 1983).

10. For the Fortune 500 firms in our sample, we collected information on the parent firm and 
all its subsidiaries listed in D&B in our population industries, even if  those were not the main 
industry of the parent firm. The parent firm and its subsidiaries were grouped into business 
units, defined as a firm’s activities within a given NAICS industry, with the parent firm and 
each subsidiary grouped by its primary NAICS code. The sampling unit for the Fortune 500 
firms is a business unit, defined as the firm’s activity in a NAICS industry. Thus a diversified 
Fortune 500 firm may appear multiple times in the sample. All firms other than Fortune 500 
firms were assigned a single sampling unit based on their primary NAICS code, implying that 
we are treating these as single- industry firms.
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the US firm population in manufacturing and our selected business service 
industries.

The survey design included cognitive testing of the questionnaire with 
potential respondents, pretesting of the instrument and protocol, and mul-
tiple rounds of follow- up contacts to increase response rate. We designed 
the survey instrument with a branching logic so that noninnovative firms 
received only a brief  questionnaire, and firms that innovated were asked 
more details about their innovation process and outcomes. The sample 
consisted of 28,709 cases. An initial screening eliminated many cases (e.g., 
bakeries that are in retail, not manufacturing), leaving a final sample of 
22,034. The interview protocol started with a D&B contact name—ideally 
the marketing manager, product manager, or for smaller firms, the business 
manager. We then worked through the receptionist or other contacts to find 
an appropriate respondent.11

The survey was in the field from May to October 2010. In the end, we 
received 6,685 responses, yielding an adjusted 30.3 percent response rate. 
Nonresponse bias tests comparing D&B data for respondents and non-
respondents show that the sample represents the population on firm age, 
being multiproduct, region, and its likelihood to export. With a 20 per-
cent response rate, units of  Fortune 500 firms were somewhat less likely 
to respond. Similarly, large firms, multiunit firms, and public firms were 
somewhat less likely to respond. With regard to industry- level response rates, 
pharmaceuticals had a low response rate, but still over 20 percent. A recod-
ing of industry assignments to reflect survey responses rather than initial 
D&B categorizations identified another 179 out- of- population respondents.

We reweighted the sample with postsample weights based on US Cen-
sus data on the population of firms in our industries, size strata, and age 
strata. We constructed a matrix of these three dimensions of stratification 
from a custom report provided by the US Bureau of the Census12 and then 
constructed a set of weights for our 5,871 responses in the relevant industry 
and size categories that reflect the population distribution of  this three- 
dimensional matrix. After applying these weights, our sample should repre-
sent the underlying population in terms of the industry- size / start- up distri-
bution (Kalton 1983). These weights are used in all our empirical analyses.

For the purposes of this chapter, we exclude the very smallest establish-
ments (less than 10 employees). The result is a sample of 5,157 cases for the 
manufacturing sector and 714 observations for the service sector, weighted to 
reflect the underlying Census- derived distribution on industry- size / start- up.

11. According to the interview script, an appropriate respondent would be “the marketing 
manager or another person in your company familiar with the firm’s products and services.” 
This flexibility in finding an appropriate contact person was a key rationale for using a phone 
survey rather than post mail or email surveys.

12. We thank Ron Jarmin and his team at the US Bureau of the Census for providing this 
report.
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4.4.2  Descriptive Statistics

In this study, we focus exclusively on product, rather than process, innova-
tions. Following prior innovation surveys, we asked the respondent if  the 
firm had earned any revenue in 2009 from a new or significantly improved 
good or service introduced between 2007 and 2009. For those that said yes, 
we asked whether their most significant innovation (defined as that product 
innovation accounting for the plurality of  2009 sales in the respondent’s 
market) was new to the market—that is, introduced “in this industry before 
any other company.”13 We do not specify a geographical boundary to the 
“industry” and are thus not limiting responses to a local or domestic mar-
ket.14 Table 4.1 provides illustrative examples of innovations introduced by 
firms in the manufacturing sector. For the purpose of this chapter, we will 

13. Our new- to- the- market (NTM) figure may underestimate the percentage of firms intro-
ducing NTM innovations. For example, a firm’s most significant (i.e., highest- selling) innova-
tion may not be NTM, but it’s second most significant innovation may be, implying that the 
firm is incorrectly classified as not being an NTM innovator. However, any bias is likely to be 
small because a sizable fraction of firms introduces only one innovation during the sample 
period (see Arora et al. 2016).

14. We also did not count as innovators firms that either reported that they introduced their 
“most significant innovation” outside of the 2007–9 time window or reported zero 2009 sales 
revenue due to this innovation.

Table 4.1 Examples of innovations in sampled manufacturing industries

Industry  Innovation

Food Antioxidant chocolates
Food Live active cheddar cheese with probiotics
Beverage Vitamin- enhanced flavored spring water
Textile Heat- resistant yarn 
Textile New varieties of garments
Paper Low- surface- energy light tapes resistant to air, water, detergents, 

moisture, UV light, and dust
Paper Hanging folder with easy slide tab
Petroleum Nondetergent motor oil 
Chemicals BioSolvents—water- based emulsion technology
Pharmaceutical Oral gallium to prevent bone decay
Pharmaceutical Inhalation anesthetics
Plastics Styrene- based floor underlayment 
Minerals Multiwall polycarbonate recyclable panels 
Minerals Solar glass and coating technologies for solar modules
Metals Solder system and nanofoils
Metals New water faucets and bath products
Electronics USB- to- GPIB interface adapter
Electronics 20- h IPS alpha LCD panel
Semiconductors Linear voltage regulators
Semiconductors Phase change memory
Transport equipment Improved alcohol sensing system

Notes: Reprint of table 1 in Arora, Cohen, and Walsh (2016).
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call firms that introduce a new or significantly improved product that is new 
to the industry “innovators” and firms that introduce new or improved prod-
ucts that are only new to the firm, but not new to the industry, “imitators.”

Tables 4.2a and 4.2b present summary statistics for the rates of innovation 
and imitation overall and by industry, where we aggregate our observations 
of firms into 23 manufacturing industry groups and 7 service sector industry 
groups, defined largely at the three- digit NAICS code level. The figures in 

Table 4.2a Manufacturing: Descriptive statistics

Manufacturing Industries (N)  
NTF Inno  

(N)  
NTF Rate  

(%)  
Innovator  

(N)  
Inno Rate  

(%)  
Imit Rate  

(%)

Food (302) 138 39 54 13 25
Beverage and Tobacco (60) 28 43 10 18 23
Textile Mills (39) 20 49 8 26 22
Textile Product Mills (76) 28 36 12 16 16
Apparel and Leather (97) 35 33 14 12 18
Wood Product (75) 19 21 5 7 12
Paper (125) 50 31 30 16 14
Printing and Related Support (187) 85 42 18 7 33
Petroleum and Coal Products (47) 14 30 6 20 8
Chemical (except Pharma) (318) 183 52 97 25 25
Pharmaceutical and Medicine (128) 80 62 34 31 25
Plastics and Rubber (340) 185 47 74 17 26
Nonmetallic Mineral (324) 102 29 36 9 18
Primary Metal (325) 132 38 44 9 26
Fabricated Metal (426) 183 38 63 10 26
Machinery (389) 197 45 103 21 22
Computers/Electronics (except 

Semiconductor) (287) 202 67 108 36 29
Semiconductor and Other (302) 199 60 93 28 28
Electrical Equipment (315) 189 56 93 28 24
Transportation Equipment (344) 192 50 102 27 21
Furniture and Related Product (263) 117 41 41 14 24
Medical Equipment (136) 83 55 37 21 33
Miscellaneous (except Medical) (252) 144 55 68 26 26

Manufacturing all (5157) 2,605 42 1,150 16 24

Large (1267) 829 65 465 39 23
Medium (946) 533 54 229 23 29
Small (2944)  1,243  39  456  13  23

Notes: NTF Inno (N): Number of  new- to- the- firm innovators; NTF Rate (%): Share of  new- to- the- 
firm innovators; Innovator (N): Number of  innovators (i.e., those having a new- to- the- market innova-
tion); INNO_RATE (%): Share of  innovators (i.e., those having a new- to- the- market innovation); 
Imit Rate (%): Share of  imitators: If  the respondent reports a new- to- the- firm innovation but not a 
new- to- the- market innovation, then it is an imitator (note that due to missing data on one or the other 
item, it is possible for the aggregate percentages of  Innovator and Imitator to not sum to percentage 
of  NTF).
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tables 4.2a and 4.2b and all subsequent tables are weighted to be representa-
tive of firm size and industry distributions.

Tables 4.2a and 4.2b show that 42 percent and 47 percent of firms in the 
manufacturing and service sectors, respectively, report introducing a new- 
to- the- firm (not necessarily new- to- the- market) or significantly improved 
products in the prior three years in manufacturing. There are significant 
differences in the rates of  new or improved product introduction across 
industries. For example, at least 60 percent of  firms in computers, phar-
maceuticals, semiconductors and software publishing introduced a new- 
to- the- firm (NTF) product, while less than 30 percent of firms in wood or 
mineral products did so. If  we limit product innovations to the introduction 
of  something new to the market (NTM), qualifying a respondent as an 
innovator, we find that 16 percent of manufacturing firms and 18 percent of 
our service sector firms report having introduced such an innovation, with 
rates of 30 percent or higher in computers, pharmaceuticals, and software 
publishing, while wood, printing, mineral products, and metals have rates 
below 10 percent. As noted, in what follows, the term innovation refers to 
products that are new to the market.

Tables 4.2a and 4.2b also show that larger firms are more likely to innovate 
and more likely to introduce new products. In manufacturing, we find that 
39 percent of small firms but 65 percent of large firms report introducing 

Table 4.2b Selected service sector industries: Descriptive statistics

Service industries (N)  
NTF Inno  

(N)  
NTF Rate  

(%)  
Innovator  

(N)  
Inno Rate  

(%)  
Imit Rate  

(%)

Software Publishers (87) 63 74 30 36 36
Motion Picture and Sound (47) 28 58 8 17 40
Telecommunications (101) 64 59 20 15 42
Data Processing (83) 48 51 17 15 35
Professional, Scientific, and 

Tech Svc (162) 79 42 34 17 23
Engineering Svc (130) 54 35 23 13 21
Computer Systems Design (104) 63 56 23 25 28

Service all (714) 399 47 155 18 27

Large (145) 99 69 51 38 30
Medium (98) 68 64 21 20 41
Small (471)  232  44  83  17  25

Notes: NTF Inno (N): Number of new- to- the- firm innovators; NTF Rate (%): Share of new- to- the- firm 
innovators; Innovator (N): Number of innovators (i.e., those having a new- to- the- market innovation); 
INNO_RATE (%): Share of innovators (i.e., those having a new- to- the- market innovation); Imit Rate 
(%): Share of imitators: If  the respondent reports a new- to- the- firm innovation but not a new- to- the- 
market innovation, then it is an imitator (note that due to missing data on one or the other item, it is 
possible for the aggregate percentages of Innovator and Imitator to not sum to percentage of NTF).
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new products (i.e., new to them). For innovations (i.e., new to the market), 
the rates in manufacturing were 13 percent and 39 percent for small and 
large firms, respectively—and the rates were similar in the service sector. 
Thus larger firms are more likely to have at least one innovation, which is 
expected in light of the relationship between firm size and R&D (cf. Cohen 
and Klepper 1996). Interpreting the difference between an industry’s rate 
of NTF product introductions (which include NTM and NTF) and NTM 
product introductions as measuring imitation (Imit Rate in tables 4.2a and 
4.2b), we find that the imitation rate is relatively stable across industries in 
manufacturing but much less so in the service sector. It also appears to be 
nonmonotonically related to size in both the manufacturing and service 
sectors, with the medium- sized firms characterized by the highest imitation 
rates.

To assess the validity of our survey, we compare our manufacturing sector 
findings regarding innovation rates with those from other innovation sur-
veys. The rank- order correlations between our survey- based NTM innova-
tion rates at the industry level and other innovation- related measures, such 
as the percentage of firms that conduct R&D or patent, are high, above 0.7.15 
For the cross- national comparisons, one might expect differences across 
otherwise comparable national economies simply due to differences in the 
distribution of respondents across firm size classes and industries and the 
fact that innovation rates differ across these dimensions. Nonetheless, as 
compared to 42 percent of  our respondents that earned revenue in 2009 
from NTF products introduced since 2007, the CIS in the United Kingdom 
reports that about 34 percent of manufacturing respondents had introduced 
such a new product between 2006 and 2008. For Germany, 49 percent of 
manufacturing respondents report introducing an NTF product. Turning 
to innovation, about 38 percent of the NTF respondents in our survey had 
introduced a product that was NTM as well. The comparable figure for the 
United Kingdom is 51 percent, and that for Germany is 45 percent. Thus 
despite differences across the three countries in the rate at which manufactur-
ing firms introduce new products, the share of those products that are NTM 
is similar. Moreover, the overall rates of product innovation are also similar 
to our estimate of 16 percent, ranging from about 17 percent for the United 
Kingdom to 22 percent for Germany. Thus our data appear to benchmark 
reasonably well with CIS data from Germany and the United Kingdom, 
which is reassuring since the question we employ to initially identify “NTM” 
innovators resembles the question employed in the CIS.16 Moreover, our 

15. Our patent data were obtained from PATSTAT, from which we estimated the percent of 
firms in each industry that had a patent application.

16. Note, however, that the means from our survey, and from the CIS, are much higher than 
those from the US BRDIS or Japan’s National Innovation Survey. And yet the correlations 
are quite high between the BRDIS industry percentages and our industry percentages for the 
same indicators.
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measure of innovation corresponds sensibly with other innovation- related 
measures (see Lee 2015 for a detailed analysis).

4.4.3  Measure Construction

The key questions that motivate this chapter are as follows: What do 
respondents mean by “innovation,” and how important are those innova-
tions? Our approach to designing our survey allows us to begin to address 
these issues. Rather than asking about a firm’s innovations overall, as does 
the CIS (e.g., the percentage of sales accounted for by the firm’s innova-
tions), we ask the respondent to answer follow- on questions with respect to 
a specific innovation—their most important innovation—in an identified 
line of business, where “most important” is defined as that new or signifi-
cantly improved product accounting for a plurality of their sales in the line 
of business.

Below we describe measures corresponding to the innovation characteris-
tics highlighted in the prior section. It is important to recall that the survey 
providing the data for this analysis was not designed to develop the kind 
of multidimensional assessment of innovation that we are proposing. As a 
consequence, the attributes identified above are only partially represented 
and are subject to the limitations discussed below.

The measures are constructed as follows:

1. Technological significance. We will measure only one aspect of techno-
logical significance, novelty and nonobviousness, on the basis of whether an 
invention underlying the innovation had a patent associated with it—a patent 
filed by either the innovating firm or an outside entity such as another firm 
or a university if  the innovation was acquired from that entity (PATENT). 
A patent will primarily reflect whether an examiner judged the invention 
to be novel and nonobvious. This measure suffers from several limitations. 
First, as suggested above, this measure does not reflect the second dimension 
of technological significance—the product performance improvement tied 
to the product. Second, the measure is categorical rather than continuous. 
Third, it is subject to the points raised above regarding patent data—that 
not all inventions are patented, and the propensity to patent varies across 
industries and firms. Fourth, the measure is tied to a patent, and in complex 
product industries such as computers, the technological significance of a 
new product transcends that of any one patentable element given that the 
commercialized product may embody numerous patented and unpatented 
elements.

2. Utility. We measure utility by the percentage of  the respondent’s 
sales in a line of business accounted for by their most important innova-
tion (INNO_SALES). This measure should reflect the revenue impact of 
their most important innovation and thus, at least in a relative sense, the 
prevalence of the need that the innovation addresses. This figure, however, 
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depends on not only the utility buyers derive from the product but also the 
pricing, marketing, and other decisions made by the firm and, more gener-
ally, reflects the interaction of demand and supply conditions. Moreover, 
this measure only reflects the short- run market impact of the innovation, 
and many new products take some time before their market potential is 
more fully realized.

3. Distance. We measure only internal distance, not the external distance 
characterizing the external market environment discussed above. To assess 
distance from the respondent’s existing capabilities, we use responses to two 
survey questions. We asked innovating firms whether, in order to commer-
cialize the innovation, they developed new sales and distribution channels 
(New_Mktg) and, in a separate question, whether they had invested in new 
types of  equipment or hired employees with distinct skills (New_EqSk). 
Below, we will occasionally use these measures separately. The form of 
this measure that we will feature, however, is whether the innovator both 
acquired new equipment and personnel with distinct skills and developed 
new distribution channels (NEW_CAPAB). The undertaking of either or 
both of these activities suggests that the innovation is substantially new to 
the firm in the sense that to commercialize the innovation, the firm had to 
acquire assets, capabilities, or relationships that they did not previously pos-
sess. A limitation of this measure is that it reflects investment decisions on 
the part of the firm and thus reflects not only distance but also whether the 
firm expected the new product in question to be valuable enough to justify 
the investment in these new capabilities, potentially conflating measures of 
distance with the other dimensions of the innovation that may condition 
the expected value of the innovation, such as utility or technological sig-
nificance.

4. Imitability/uniqueness. Our survey data do not permit us to distinguish 
between these two related concepts. Moreover, the only survey measure that 
comes close to imitability is respondents’ judgment of the number of firms 
that “have introduced or are likely to introduce” a competing innovation 
(INNO_RIVALS). A limitation of this measure is that it conflates two con-
cepts: technological competition and imitability. What the measure directly 
reflects is the former, though presumably intensity of technological competi-
tion faced by a firm should be related to the latter.

As noted above, none of these measures are “clean” in the sense of only 
measuring the innovation attribute in question, and they may be conflated 
with other factors. For example, PATENT and NEW_CAPAB conflate what 
we would like to measure with the expected economic value of an innova-
tion. At the same time, such shortcomings might be viewed more favorably: 
the incorporation of the expected economic value of the innovation into the 
firm’s decision to invest in patents or capabilities might thereby make these 
indicators more accurate reflections of the importance of the innovation. 
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Despite these limitations, we argue that our measures nonetheless reflect to 
some degree the different dimensions of innovation identified above and 
provide a basis for addressing the question of how important a respondent’s 
“most important” innovation is and in what sense.

4.4.4 Interpreting the Measures

4.4.4.1  Are the “New or Significantly Improved” Innovations Important?

Using the measures of the different dimensions, one can estimate innova-
tion rates for which there is some confidence that the innovations in question 
are significant beyond the simple assessment of whether a product is simply 
new to the market. In this section, we build on our findings reported above 
that 16 percent of firms are innovators (i.e., with new- to- the- market innova-
tions) in the manufacturing sector and 18 percent in the service sector, as 
shown in tables 4.2a and 4.2b. How does the innovation rate change if  we  
focus, say, on just those innovations that garner more than 10 percent, or 
even 50 percent, of an innovator’s sales? The rates drop markedly, to 8 per-
cent and 5 percent, respectively, for the manufacturing sector and 11 per-
cent and 8 percent for the service sector industries, suggesting that a sizable 
fraction—about half  for manufacturing—that report a new- to- the- market 
innovation are realizing 10 percent or less of their business unit sales rev-
enue from that new product. One qualification to this particular criterion 
for establishing significance is that, given that it is based on the share of a 
firm’s own sales in a market, the percentage of sales for a new product will 
be affected by the size of the firm. For example, the same new product that 
may account for 10 percent of  a large firm’s sales may represent a much 
larger share of sales for a small firm. The consequence is that, in using this 
particular measure for assessing the utility of a given innovation, one typi-
cally needs to control for firm size, as we do in analyses below.

Another possible filter for assessing importance is the percentage of inno-
vations that are sufficiently different from what firms produced or delivered 
previously that they had to purchase new types of equipment or hire per-
sonnel with different skills (New_EqSk) to bring the innovation to market. 
As noted above, this variable not only reflects distance but, given that it is a 
realization, also reflects a judgment of the expected value of an innovation. 
From table 4.3a, we see that 47 percent of innovating respondents in the 
manufacturing sector reported this to be the case, implying that only about 
8 percent of our respondents in the manufacturing sector (i.e., 16 percent ∗ 
47 percent) introduced an innovation that required such investments. What 
about innovating firms having to develop new sales and distribution chan-
nels (New_Mktg)? Only 6 percent of respondents (i.e., 16 percent ∗ 39 per-
cent) in the manufacturing sector introduced an innovation requiring such 
activity. Finally, what is the rate at which firms undertook both of these 
activities to commercialize their innovations—that is, develop new distri-
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bution channels and acquire new types of equipment or hire personnel with 
different skills (NEW_CAPAB)? In the manufacturing sector, only 4 percent 
(i.e., 16 percent ∗ 24 percent) of respondents meet this standard for firms’ 
most important innovations. In the service sector, table 4.3b shows that 
60 percent of innovating respondents reported that they had to purchase 
new types of equipment or hire personnel with different skills, implying that 
11 percent of respondents introduced an innovation requiring such invest-

Table 4.3a Summary statistics for innovation indicators for manufacturing sector

Manufacturing industries (N)  

Inno  
Rate  
(%)  

Inno  
Sales  
(%)  

Patent  
Rate  
(%)  

INNO  
RIVALS  

(N)  

NEW  
CAPAB  

(%)  

New  
Mktg  
(%)  

New  
EqSk  
(%)

Food (302) 13 17 32 2.0 25 38 49
Beverage and Tobacco (60) 18 32 59 2.5 70 80 70
Textile Mills (39) 26 5 66 2.7 41 52 52
Textile Product Mills (76) 16 12 40 1.5 28 28 30
Apparel and Leather (97) 12 18 72 1.6 28 72 38
Wood Product (75) 7 15 3 2.7 52 76 76
Paper (125) 16 12 37 1.6 31 43 36
Printing and Related Support (187) 7 19 38 2.8 43 57 76
Petroleum and Coal Products (47) 20 11 71 4.0 24 48 29
Chemical (except Pharma) (318) 25 14 46 2.1 16 36 30
Pharmaceutical and Medicine (128) 31 31 66 2.4 7 21 42
Plastics and Rubber (340) 17 16 57 2.3 18 34 44
Nonmetallic Mineral (324) 9 13 45 2.0 12 29 25
Primary Metal (325) 9 9 36 2.0 20 31 52
Fabricated Metal (426) 10 17 41 2.0 15 22 52
Machinery (389) 21 19 58 2.1 19 35 44
Computers/Electronics (except 

Semiconductor) (287) 36 24 62 2.3 27 41 49
Semiconductor and Other (302) 28 23 65 2.4 30 41 56
Electrical Equipment (315) 28 20 62 2.4 15 34 34
Transportation Equipment (344) 27 26 46 1.9 23 32 47
Furniture and Related Product (263) 14 20 44 2.6 10 35 36
Medical Equipment (136) 21 27 77 2.5 42 59 67
Miscellaneous (except Medical) (252) 26 19 51 2.3 35 58 47

Manufacturing all (5157) 16 19 50 2.2 24 39 47

Large (1267) 39 12 72 2.5 16 30 45
Medium (946) 23 14 53 2.5 22 35 48
Small (2944)  13  21  46  2.1  26  42  47

Notes: INNO_RATE (%): Share of innovators (i.e., those having a new- to- the- market innovation); 
Inno_Sales (%): Mean % of total sales from new- to- the- market innovations; Patent Rate (%): Share of 
innovators that patented any part of their new- to- the- market innovation or have a patented externally 
sourced innovation; INNO_RIVALS (N): Mean number of rivals capable of introducing competing 
innovation; NEW_CAPAB (%): Share of innovators that developed new sales/distribution channels and 
bought new types of equipment or hired employees with new skills; New_Mktg (%): Share of innovators 
that developed new sales/distribution channels; New_EqSk (%): Share of innovators that bought new 
types of equipment or hired employees with new skills.
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ments (i.e., 18 percent ∗ 60 percent). Similarly, 51 percent of  innovators 
had to develop new sales and distribution channels, implying that 9 percent 
of respondents had an innovation requiring such activity (i.e., 18 percent 
∗ 51 percent). Only 7 percent (i.e., 18 percent ∗ 40 percent) of respondents 
had an innovation that required both kinds of new capabilities. This exercise 
distinguishes between the larger share of firms that have reported innovation 
per the simple “new- to- the- market” criterion from innovations that likely 
differ from what the firms have commercialized before and are of  much 
greater value given that the measure signals investment in new equipment, 
personnel, and sales capabilities.

Thus we suggest that using criteria based either on percentage of sales or 
on significant investments tied to commercialization can inform judgments 
about the relative importance of respondents’ innovations. We are also able 
to flexibly apply such measures as screens to refine those judgments.

4.4.4.2  Are the Dimensions Distinct?

We have suggested that while in theory our measures should reflect dis-
tinct features of an innovation, the measures as constructed are also likely 
related for reasons outlined above. To assess how distinct they are from one 
another, we calculated the correlations among these measures, computed  

Table 4.3b Summary statistics for innovation indicators for selected service sector industries

Service industries  

Inno  
Rate  
(%)  

Inno  
Sales  
(%)  

Patent  
Rate  
(%)  

INNO  
RIVALS  

(N)  

NEW  
CAPAB  

(%)  

New  
Mktg  
(%)  

New  
EqSk  
(%)

Software Publishers (87) 36 25 56 2.9 41 67 42
Motion Picture and Sound (47) 17 28 84 2.7 59 59 75
Telecommunications (101) 15 28 56 2.5 45 48 76
Data Processing (83) 15 44 21 2.5 68 93 70
Professional, Scientific, and 

Tech Svc (162) 17 26 58 2.3 45 56 56
Engineering Svc (130) 13 15 37 2.6 19 19 55
Computer Systems Design (104) 25 34 38 3.4 35 49 67

Service all (714) 18 27 47 2.8 40 51 60

Large (145) 38 26 74 3.0 46 60 54
Medium (98) 20 13 49 2.7 28 47 43
Small (471)  17  29  43  2.7  40  50  64

Notes: INNO_RATE (%): Share of innovators (i.e., those having a new- to- the- market innovation); 
Inno_Sales (%): Mean % of total sales from new- to- the- market innovations; Patent Rate (%): Share of 
innovators that patented any part of their new- to- the- market innovation or have a patented externally 
sourced innovation; INNO_RIVALS (N): Mean number of rivals capable of introducing competing 
innovation; NEW_CAPAB (%): Share of innovators that developed new sales/distribution channels and 
bought new types of equipment or hired employees with new skills; New_Mktg (%): Share of innovators 
that developed new sales/distribution channels; New_EqSk (%): Share of innovators that bought new 
types of equipment or hired employees with new skills.
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at the industry level, as shown in table 4.4. For the purpose of this exercise, 
we define our industries at a relatively disaggregated level, at the three-  or 
four- digit NAICs code level, and apply a cutoff of  at least 10 innovator 
observations per industry. This breakdown yields 32 manufacturing indus-
tries.17 This analysis could not be conducted for our selected service sector 
industries due to too few industries that meet the 10 observation cutoff. For 
the manufacturing sector, we observe that while a number of  these vari-
ables are correlated, it would appear that they do reflect distinct dimensions. 
Using our main indicators (INNO_SALES, PATENT, INNO_RIVALS, 
and NEW_CAPAB), we find that none of the correlations exceed 0.4, and 
relatively few are significant at conventional levels. We also find that each 
is correlated with the rate of innovation but none with a correlation coef-
ficient above 0.5. We also observe that some of these dimensions are more 
closely related than others. For example, INNO_SALES, the average share 
of sales due to the innovation, is correlated with NEW_CAPAB, the per-
centage of  innovating firms’ investment in new types of  equipment, per-
sonnel, and the development of distribution channels (r = 0.38), sensibly 
suggesting a link between investment in innovation commercialization and 
demand conditions. We also observe that our measure of the technologi-
cal significance of the innovation—namely, the percentage of innovations  

17. We started with 41 disaggregated manufacturing industries. After excluding manufactur-
ing industries with fewer than 10 innovators, we ended up with a total of 32 manufacturing 
industries.

Table 4.4 Correlations (for manufacturing industries having 10 or more innovators)

  
Inno  
Rate  

Imit  
Rate  

Inno  
Sales  

Patent  
Rate  

INNO  
RIVALS  

NEW  
CAPAB  

New  
Mktg

Inno Rate 1.00
Imit Rate 0.13 1.00
Inno Sales 0.22 0.17 1.00
Patent Rate 0.43 0.11 0.39 1.00
INNO_RIVALS 0.15 0.70 0.22 0.08 1.00
NEW_CAPAB −0.15 0.14 0.38 0.27 −0.10 1.00
New Mktg −0.12 0.04 0.12 0.45 −0.18 0.79 1.00
New EqSk  −0.04 0.11  0.51  0.36  0.00  0.79  0.56

Notes: N = 32 disaggregated manufacturing industries. INNO_RATE (%): Share of innova-
tors (i.e., those having a new- to- the- market innovation); Inno_Sales (%): Mean % of total 
sales from new- to- the- market innovations; Patent Rate (%): Share of innovators that patented 
any part of their new- to- the- market innovation or have a patented externally sourced innova-
tion; INNO_RIVALS (N): Mean number of rivals capable of introducing competing innova-
tion; NEW_CAPAB (%): Share of innovators that developed new sales/distribution channels 
and bought new types of equipment or hired employees with new skills; New_Mktg (%): Share 
of innovators that developed new sales/distribution channels; New_EqSk (%): Share of in-
novators that bought new types of equipment or hired employees with new skills. Bold means 
p < .05.
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within an industry that are linked to a patent (PATENT)—is also correlated 
with INNO_SALES (r = 0.39). Although PATENT is a rather imprecise 
measure of technological significance given the low bar for patentability, the 
relationship is consistent with a link between the incentive to patent an inno-
vation and its economic value. PATENT is also sensibly correlated with the 
percentage of firms within industries that claim to be innovators (r=0.43). 
In our correlation matrix, we also include the variable IMITATORS, which 
is the percentage of firms that report that they introduced a product new 
to the firm but not to the industry. We see that this measure is strongly and 
sensibly related to our measure of imitability, INNO_RIVALS (r = 0.70), 
our measure of the number of firms that “have introduced or are likely to 
introduce” a competing innovation.

4.4.4.3  Selected Cross- Industry Differences and Similarities in the Nature 
of Innovation

Table 4.5 ranks 24 industries on our measures of the different attributes of 
innovations (based on disaggregated industries spanning manufacturing and 
business services, again dropping industries with fewer than 10 innovators, 
and then aggregating to the displayed industry categories) and thus high-
lights important similarities and differences in the character of innovation 
across industries. In the table, we have highlighted the top third and bottom 
third of  industries on each measure to illustrate the variation in innova-
tion characteristics across industries. Some examples may help illustrate 
the multidimensionality of innovation and how this varies across industries. 
To start with some typical examples, we observe that medical devices—
typically thought of as a highly innovative industry—ranks highly on most 
dimensions of innovativeness, particularly share of sales, the patent rate, 
and investments in new capabilities for commercializing their innovations, 
although it is only average in terms of the innovation rate (INNO_RATE). 
Computers and semiconductors also rank either high or average on several 
dimensions. On the low- innovation end, we have industries such as min-
eral products and metal products, which have low rates of innovation and 
relatively low values on several of our dimensions of innovativeness (sales, 
patenting, and new capabilities). We see a similar pattern in engineering 
services (with low rates of innovation, sales from innovation, patenting, and 
investment in capabilities) even though this might be seen as a technology- 
based industry. Hence these industries largely follow the patterns we expect, 
although medical equipment is more imitator dominated than many might 
expect. On the other hand, when we compare chemicals and plastics with 
pharmaceuticals, we see some telling differences. We find all three of these 
chemistry- based industries at or above the median for innovation, with phar-
maceuticals the highest and all at or above the median on patenting, again 
with pharmaceuticals the highest. Pharmaceuticals stands out in terms of 
the share of sales from the innovation, with its 31 percent well above the 
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mean, while chemicals and plastics are well below the mean at 14 percent and 
16 percent, respectively. Recalling that this share- of- sales figure reflects the 
share of business unit sales for the innovation that accounts for a plurality 
of the respondent’s revenue, these results suggest that drug companies are 
much more focused on single blockbuster innovations as compared to other 
chemicals industries that appear to be focused on a larger number of innova-
tions with more modest market impacts. Also, all three show low rates of 
investment in new capabilities, but with pharmaceuticals the lowest by far. 
Hence while the innovations in chemicals, especially pharmaceuticals, are 

Table 4.5 Industry “innovativeness” rankings

Industry (no. of innovators)  
INNO 
RATE  

Inno 
Sales  

Patent 
Rate  

NEW 
CAPAB

Food (54) 13 17 32 25
Beverage and Tobacco (10) 18 32 59 70
Textile Product Mills (12) 16 12 40 28
Apparel and Leather (14) 12 18 72 28
Paper (30) 16 12 37 31
Printing and Related Support (18) 7 19 38 43
Chemical (except Pharma) (88) 25 14 45 15
Pharmaceutical and Medicine (34) 31 31 66 7
Plastics and Rubber (74) 17 16 57 18
Nonmetallic Mineral (36) 9 13 45 12
Primary Metal (37) 13 10 41 23
Fabricated Metal (51) 16 19 43 16
Machinery (86) 22 19 52 22
Computers/Electronics (except Semiconductor) (108) 36 24 62 27
Semiconductor and Other (93) 28 23 65 30
Electrical Equipment (93) 28 20 62 15
Transportation Equipment (102) 27 26 46 23
Furniture and Related Product (41) 14 20 44 10
Medical Equipment (37) 21 27 77 42
Software Publishers (30) 36 25 56 41
Data Processing (17) 15 44 21 68
Professional, Scientific, and Technical Svc (28) 16 25 55 53
Engineering Svc (23) 13 15 37 19
Computer Systems Design (15) 24 24 35 40

Mean 20 21 50 29
Median  17  19  46  26

Notes:Based on 37 disaggregated industries spanning manufacturing (N = 32) and business 
services (N = 5), again dropping industries with fewer than 10 innovators and then aggregating 
to the displayed industry categories, excluding Miscellaneous Manufacturing industries. Bold 
reflects the top tercile on a given dimension; italics indicate the bottom tercile. INNO_RATE 
(%): Share of innovators (i.e., those having a new- to- the- market innovation); Inno_Sales (%): 
Mean % of total sales from new- to- the- market innovations; Patent Rate (%): Share of innova-
tors that patented any part of their new- to- the- market innovation or have a patented exter-
nally sourced innovation; NEW_CAPAB (%): Share of innovators that developed new sales/
distribution channels and bought new types of equipment or hired employees with new skills.
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ranked highly on market impact and technical significance, they also tend 
to be low on our measure for distance, even compared to medical devices. 
These figures suggest clear differences in the nature of innovation across 
industries and suggest differences in innovation strategies. For example, 
firms in some industries tend to hew closely to existing capabilities or focus 
more on blockbusters.

4.5  Illustrating the Utility of Measuring the Characteristics 
of Innovations

4.5.1  Differences across Sectors and Industries

With these measures, we can also compare empirical patterns across sec-
tors and industries that further reflect differences in both the nature of inno-
vation and its impact. For example, above we saw the baseline innovation 
rate between the manufacturing and service sectors to be close: 16 percent 
versus 18 percent, respectively (See tables 4.2a and 4.2b). Once we consider 
impacts and “significant” innovation rates, the story changes. For example, 
we see that the average percent of business unit sales accounted for by the 
firm’s most important innovations (INNO_SALES) is substantially higher 
in the service sector, at 27 percent, versus 19 percent for the manufactur-
ing sector (see tables 4.3a and 4.3b). We also observed in section 4.4 that a 
higher proportion of respondents in services—7 percent (i.e., 18 percent ∗ 40 
percent)—invested in new types of equipment and personnel and developed 
new distribution channels relative to the 4 percent observed in the manufac-
turing sector. We probe what may lie behind this pattern by comparing the 
sales revenue distributions of innovations in manufacturing versus software.

4.5.2  Software versus Manufacturing

In figure 4.2, we present a frequency distribution of the percentage of 
respondents in, respectively, the manufacturing sector and software indus-
tries, ordered by the contribution of their most important product innova-
tion to business unit sales. For this analysis, we define software broadly to 
include software publishers, data processing, and computer systems design 
(cf. tables 4.2b and 4.3b). What we observe for the manufacturing sector 
is expected—namely, that the share of respondents largely declines as the 
reported share of business unit sales accounted for by their most impor-
tant innovation increases. In other words, it is relatively rare for a recently 
introduced innovation (i.e., a new- to- the- market product)—even that which 
accounts for a plurality of a firm’s sales in a market—to account for more 
than 50 percent of business unit sales. We find the opposite pattern, how-
ever, for software, where the percentage of respondents increases with the 
reported share of business unit sales accounted for by their most important 
innovation. Indeed, it is common for software firms’ most important innova-
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tion to account for more than half of the business unit sales.18 To see whether 
these differences are driven by differences in the size distribution between 
manufacturing and software, we examine the business unit size distribu-
tions. Figure 4.3 shows that the size distributions are very similar between 
those two sectors, with a large percentage of small firms in each, suggesting 
that the differences in business unit sales in figure 4.2 may not be driven by 
differences in the size distribution. We confirmed this by using a linear prob-
ability model, regressing a dummy variable indicating whether an innovation 
accounted for more than a 50 percent share of business unit sales against 
a dummy variable representing software (versus manufacturing), as well as 

18. One qualification is that we have compared software with all manufacturing. However, 
when we compare software with only those manufacturing industries that may be considered 
high innovation intensity industries, identified as those with above- the- median industry share 
of sales from products that are new to the firm, we find similar differences in the frequency 
distributions.

Fig. 4.2 Share of sales from innovation, manufacturing vs. software

Fig. 4.3 Distribution of business unit size, manufacturing vs. software
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the log of business unit employees, and find that software innovations are 
significantly more likely to account for more than 50 percent of sales, even 
controlling for business unit size. We find the same result if  we use more than 
a 25 percent share as the dependent variable.

To understand the different frequency distributions in figure 4.2, we might 
consider that a new software product can reach a larger market more quickly 
and at lower cost than a new product in the manufacturing sector due to digi-
tization and the low cost of distribution via the web. In contrast, the invest-
ment and associated adjustment costs and time lags for expanding capacity 
and distributing goods are much higher in manufacturing. This would sug-
gest that in software, the cost of expansion tied to a successful product will 
be lower and the returns to investment in the production and distribution 
of a product higher than in manufacturing, consistent with the notion that 
greater scale can be achieved with a lower fixed cost investment in software.19

While the greater returns to fixed investment in product and sales capabili-
ties may explain more rapid growth in software sales tied to a firm’s highest- 
selling new product, it alone cannot, however, explain our figure 4.2 results 
showing that very high sales shares associated with this highest- selling inno-
vation are more common in software than in manufacturing. What could 
provide an explanation is the possibility that software firms’ most important 
new products are more likely to replace a prior leading product in software 
as compared to manufacturing; that is, software firms’ leading products are 
more likely to cannibalize prior generations of a leading product. If  this were 
true, we should see little change in software firms’ market share tied to new 
product introductions. To consider this possibility, in table 4.6 we present  
the results of  a simple ordinary least squares (OLS) probability model 
regressing the direction of the change in market share on INNO_SALES 
and log of business unit (BU) size. We code whether a respondent’s market 
share declines (coded as “−1”), stays the same (coded as “0”), or grows 
(“+1”). Consistent with our conjecture, we observe no relationship between 
market share change and INNO_SALES in software. In contrast, in manu-
facturing, we see a significant positive relationship between direction of 
change in market share and INNO_SALES.20

19. If  the returns to investment in production and distribution tied to innovation in software 
exceed those in manufacturing, we might expect to see a stronger link between the share of 
own- business unit sales tied to firms’ most important new products (INNO_SALES) and their 
investment in new equipment, personnel, and distribution channels (NEW_CAPAB), as well as 
between INNO_SALES and a component of NEW_CAPAB—namely, whether the firm devel-
oped new marketing and distribution channels to commercialize the innovation (New_Mktg). 
Indeed, the correlation between INNO_SALES and NEW_CAPAB for software (r = 0.30) 
exceeds that for manufacturing (r = 0.15), and the correlation between INNO_SALES and 
New_Mktg (r = 0.43) reflects a much tighter link between investment in the development of 
new sales and distribution channels and revenues in the software industry than that observed 
for the manufacturing sector (r = 0.12).

20. Due to the large standard error on the estimate of the coefficient for INNO_SALES for 
software firms (N = 54), we cannot, however, reject the null hypothesis that the coefficients for 
manufacturing and software are equal (F = 1.06, p = 0.3). The results are qualitatively identical 
when we use an ordered logit model.
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4.5.3  Competition and Innovation

In this section, we consider whether we can use our measures of innova-
tion and its attributes to shed light on one of the long- standing preoccupa-
tions of the literature on innovation: the link between market competition 
and the innovative performance of industries.21 Using the measures con-
structed above, we explore a conjecture—that the link between competition 
and innovation may differ markedly depending on the nature of competition 
within industries. For this analysis, we propose dividing industries into two 
types—one where product innovation is central to competition and another 
where product innovation matters less for competition—where firms com-
pete, for example, mainly via price or advertising. Using the same sample 
of manufacturing industries employed in section 4.4, we divide these indus-
tries into two groups. We will use our measure of the percentage of sales 
due to products that are new to the firm—but not necessarily new to the 
market—to coarsely distinguish between industries where competition fea-
tures innovation versus industries where it does not. We again apply a cutoff 
of 10 observations of innovators per industry and divide the industries at the 
median value of this measure (i.e., the percentage of sales due to products 
that are new to the firm) and simply characterize the 16 industries that are 
above the median as innovation intensive and the other 16 industries as not.

Table 4.7 shows the means for our featured variables between the two 
industry groups. As shown in table 4.7, almost all the innovation indicators 
in the innovation- intensive industries exceed their corresponding values in 
the less- innovation- intensive industries. What is surprising is the relationship  

21. See Cohen (2010) for a review of this vast literature.

Table 4.6 Regression of market share change on innovation sales share, for 
manufacturing and software

MS change MS change 
(manufacturing) (software)

Estimate Estimate Estimate Estimate Estimate Estimate
Parameter  (SE)  (SE)  (SE)  (SE)  (SE)  (SE)

INNO_SALES  0.006*** 0.005***  0.002 0.000
 (0.001) (0.001)  (0.005) (0.005)

ln(BU Size) −0.033**  −0.022 −0.162**  −0.161**
(0.015)  (0.015) (0.062)  (0.062)

Intercept 0.651*** 0.398*** 0.500*** 1.263*** 0.553*** 1.251***
(0.074) (0.041) (0.085) (0.223) (0.201) (0.261)

N 899 899 899 54 54 54
R2  0.008  0.032  0.035  0.109  0.003  0.109

Notes: OLS regression coefficients displayed with *at .10; ** at .05; *** at .01. Standard errors 
in parentheses.
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between technological competition and industry innovation rates. For 
this exercise, we employ our measure, INNO_RIVALS—the number of 
firms that “have introduced or are likely to introduce” a competing inno-
vation—as a measure of  the intensity of  competition based on product 
innovation rather than as a measure of imitability. Comparing more-  and 
less- innovation- intensive industries, we observe a clear difference in the rela-
tionship between the percentage of firms that are innovators (not imitators) 
within industries (INNO_RATE) and INNO_RIVALS. In the innovation- 
intensive industries, the correlation is 0.47. In the less- innovation- intensive 
industries, in contrast, the correlation is –0.10 and statistically insignificant.22 
This difference is consistent with the idea that in more innovation- intensive 
industries, competition stimulates product innovation—approximating 
what Aghion et al. (2005) have called “neck and neck” competition—while 
in less- innovative industries, where competition may largely take other forms 
(e.g., price), there is little relationship between the share of innovating (new- 

22. We also find a sharp qualitative difference in the relationship between the percentage of 
firms that are innovators within industries (NTM) and the percentage of firms that are imita-
tors (IMITATOR). In the innovation- intensive industries, the correlation is 0.46, while in the 
less innovation- intensive industries, the correlation is −0.30.

Table 4.7 Innovation indicators for low and high innovation intensity industries

Manufacturing

NTF sales

   All (4,590)  Low (2,286)  High (2,304)  

INNO RATE (%) 18 16 20
Imit Rate (%) 25 24 25
INNO SALES (%) 20 17 22
NTF Sales (%) 24 20 27
Patent Rate (%) 51 45 55
NEW_CAPAB (%) 24 21 26
New Mktg (%) 39 36 42
New EqSk (%) 46 41 51

 INNO_RIVALS (N) 2.2  2.1  2.3  

Notes: For industries having 10 or more innovators. Low/high based on below or equal to / 
above median of industry means of the percentage of sales due to new- to- the- firm innova-
tions. INNO_RATE (%): Share of innovators (i.e., those having a new- to- the- market innova-
tion); Imit Rate (%): Share of imitators; INNO_SALES (%): Mean % of total sales from 
new- to- the- market innovationsl NTF Sales (%): Mean % of total sales from new- to- the- firm 
innovations; Patent Rate (%): Share of innovators that patented any part of their new- to- the- 
market innovation or have a patented externally sourced innovation; NEW_CAPAB (%): 
Share of innovators that developed new sales/distribution channels and bought new types of 
equipment or hired employees with new skills; New_Mktg (%): Share of innovators that de-
veloped new sales/distribution channels; New_EqSk (%): Share of innovators that bought 
new types of equipment or hired employees with new skills; INNO_RIVALS (N): Mean num-
ber of rivals capable of introducing a competing innovation.
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to- the- market) firms and firms subject to more- intense competition around 
product innovation. Consistent with this observation is the possibility that 
in innovation- intensive industries, there is greater pressure to develop and 
commercialize more- significant product innovations to “escape from com-
petition” (per Aghion et al. 2005). To probe this, we examine the relationship 
between the average share of business unit sales attributed to the firm’s most 
important innovation, INNO_SALES, and investment in new capabilities to 
commercialize the innovation, NEW_CAPAB. Across the more innovation- 
intensive industries, the correlation is 0.47, as compared to −0.12 in the less 
innovative industries. This suggests that in the innovation- intensive indus-
tries, where technological competition is more severe, firms are introducing 
more “distant”—and likely more valuable—innovations requiring more 
investment in new capabilities, while in the less- innovation- based indus-
tries, there is little relationship between the sales share attributable to new 
products and the need for new capabilities, suggesting that the innovations 
introduced in such industries are more incremental and more closely tied 
to existing capabilities. A substantive implication of this argument is that 
for models tying R&D to the intensity of competition, it may be useful to 
recognize that the forms of competition differ across industries, and inno-
vation of a more substantive, perhaps more technical, sort is simply not an 
important means of competing in many industries.

4.5.4  Innovation- Level Indicators of Value and Outside Sources 
of Invention

Analyzing innovators’ acquisitions of  inventions from outside sources 
using the same data as employed here, Arora, Cohen, and Walsh (2016) also 
illustrate the value of our innovation- specific attributes. For the present pur-
pose, we will build on one of the questions addressed in Arora, Cohen, and 
Walsh (2016): For firms that acquire their key inventions from an outside 
source, how does the value of those inventions vary by source? For example, 
how does the value of inventions acquired from customers compare with 
that from other sources—say, internally generated suppliers, or what Arora, 
Cohen, and Walsh call “technology specialists,” which include universities, 
independent inventors, and contractors.

The extent to which a firm’s innovation draws on a particular source should 
reflect the net surplus—the value of the invention from that source minus the 
cost of acquiring and commercializing it. Arora, Cohen, and Walsh (2016) 
report that customers are the most pervasive outside source of inventions in 
the manufacturing sector. A further analysis showed, however, that inven-
tions sourced from technology specialists are of higher value and that the 
high share of customer- sourced inventions is associated with a relatively low 
cost of acquisition. Arora, Cohen, and Walsh (2016) did not, however, go 
further than interpreting all their measures as simply different indicators of  
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the economic value of innovation. They did not consider what particular 
features of innovation each of those different measures might also reflect. 
Reinterpreting these measures as reflecting distinct features of innovation, 
we relate the likelihood of scoring high on these different dimensions to the 
origin of these innovations—that is, whether they originate from suppliers, 
customers, technology specialists (universities, engineering firms, or R&D 
service contractors), other firms in the industry, or internally. In our frame-
work, the different dimensions of innovations include (1) utility, measured as 
whether the associated sales accounts for more than 50 percent of business 
unit sales; (2) distance, measured as whether the innovator invests in new 
equipment or hires personnel with distinct skills (New_EqSk) to commer-
cialize the innovation (distance) or develops new sales and distribution chan-
nels (New_Mktg); and (3) technological significance, measured as whether 
there is a patent on the innovation. Table 4.8 presents the results.23 Since all 
the dependent variables in table 4.8 are expressed as dummy variables, we 
can compare coefficients across the specifications. We see that the impacts of 
particular sources vary across the different dimensions of innovation. Specif-
ically, inventions originating from technology specialists have an especially 
strong association with technological significance compared to their impact 
on the distance or utility measures, which is consistent with the notion that 
innovations sourced from technology specialists are best characterized by  

23. These are based on tables 5a and 5b in Arora, Cohen, and Walsh (2016).

Table 4.8 Different dimensions of innovativeness of innovations by source

Econ. val. Distance Tech. sig.

  Sales >50%  New_EqSk  New_Mktg  Patent

Customer −0.06*** −0.04 0.00 −0.08**
(0.02) (0.04) (0.04) (0.03)

Supplier 0.06** −0.19*** 0.01 −0.11**
(0.03) (0.05) (0.05) (0.05)

Tech special 0.07*** 0.14** 0.10** 0.28***
(0.03) (0.05) (0.04) (0.04)

Other firm −0.03 0.00 0.02 −0.08
(0.03) (0.06) (0.06) (0.06)

Controls (R&D, size, industry 
dummies, parent size, age) Yes Yes Yes Yes

Obs 927 1,012 1,017 1,019
R2  0.15  0.14  0.16  0.26

Selected results from Arora, Cohen, and Walsh (2016).
Notes: Excluded category is Internal. OLS regression coefficients displayed with *at .10; ** at 
.05; *** at .01. Standard errors in parentheses.
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their technological significance. On the other hand, we find a clear negative 
relationship between suppliers as a source and the likelihood that the inno-
vating firm invests in new types of equipment—that is, distance as compared 
to its relationship with utility or technological significance. This is consistent 
with the notion that existing equipment suppliers in particular are unlikely  
to offer innovation ideas that will require their customers—that is, the inno-
vating firms—to purchase types of equipment that are very different from 
what they are already employing. In other words, supplier- sourced inno-
vations tend to be characterized by relatively low distance. This analysis 
suggests that our dimensions can be used to understand not just the rela-
tive value of different sources, as Arora, Cohen, and Walsh (2016) do, but 
also the nature of the innovations derived from different sources (e.g., their 
technical significance or distance). Furthermore, these analyses again show 
a benefit of focusing on a single innovation when asking about sources of 
innovation, as this is what allows comparisons of the character of innova-
tion across the different sources of the underlying invention.

4.6  Suggestions for New Attribute- Based Innovation Measures

As noted, the survey providing the basis for our empirical analyses above 
was not originally designed for developing measures of all the attributes of 
innovation considered in our conceptual discussion. In this section, building 
on both our conceptual discussion and empirical analyses, we offer sugges-
tions for other measures of the different attributes of innovation featured 
in our conceptual discussion. Recall that these measures should focus on a 
specific innovation. We will again confine our discussion to product innova-
tions and survey- based measures.

Technological Significance. Our current measure of technological signifi-
cance is a dichotomous measure of  whether an invention underlying the 
innovation had a patent associated with it. As suggested above, this mea-
sure is limited. First, the technical standards for patentability are low, and 
second, a large fraction of inventions are not patented. To overcome the 
limitations of this measure, one suggestion is to ask respondents to assign 
scores for the invention underlying the innovations, asking respondents for 
their judgments regarding technological significance (No and Walsh 2010; 
Walsh, Lee, and Nagaoka 2016). For example, adapting language from the 
survey of American and Japanese inventors of patented inventions (Naga-
oka and Walsh 2009), one might simply ask respondents, “Compared to 
other technical developments in your field during the year the focal innova-
tion was commercialized, how would you rate the technical significance of 
your invention?” with the corresponding categories: Top 10 percent, Top 25 
percent but not top 10 percent, Top half but not top 25 percent, Bottom half, 
and Don’t know. Although this measure may not be free from potential 
reporting biases, it represents an expert assessment of relative technological 
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significance.24 This question is also targeted to technological significance 
apart from the innovation’s economic value or impact. One may also pose 
a prior question to assess whether the innovation—that is, the firm’s new 
or significantly improved product—reflects any technological advance at 
all and to what extent. One approach would be to ask whether the product 
is based on the firm’s own R&D or if  it embodies purchased (e.g., licensed) 
technology. A complementary line of questioning might assess whether the 
technology embodied in the new product differs markedly from competing 
firms’ products. One would then, of course, define what “markedly” may 
mean—for example, employing new technological approaches to solving 
technical problems.25

To assess whether the innovation actually reflects a technological advance 
affecting product performance, one could inquire if  the innovation was func-
tionally superior on any performance dimension to existing products or 
whether it was simply different but not functionally superior (e.g., a different 
flavor of toothpaste or a new clothing design). To the extent that there are 
well- established performance metrics (e.g., clock speed for chips, conversion 
rate for solar cells, miles per gallon, or miles per charge), one might elicit 
estimates of performance improvements over existing products.

Another aspect of technological significance is whether the innovation in 
question provides a basis for subsequent advance. We would again suggest a 
question based on observable behavior or outcomes. For example, one may 
inquire whether the firm has a follow- on R&D project dedicated to improv-
ing the product or has contracted with another firm to do so.

Utility. Our main measure employed in our empirical analysis reflected the 
share of own sales linked to a new product. This measure, as noted above, is 
limited given that it reflects not only some measure of utility on the part of 
buyers but also the pricing, marketing, and other decisions made by the firm. 
There are, however, any number of other questions that one might ask to 
elicit information about utility. For example, respondents may have a sense 
of both the addressable market—that is, the potential market size—and the 

24. Prior work suggests this may be a useful ordinal measure of technological significance. 
Walsh, Lee, and Nagaoka (2016) report that among patents granted in the United States and 
also filed in Japan and Europe (triadic patents), 15 percent of US inventors rated their patents 
in the top 10 percent in technical significance, and 34 percent reported being in the bottom 50 
percent. Since we would expect an overrepresentation of inventions of high technical signifi-
cance in a sample of triadic patents (compared to all patented and unpatented inventions), 
these figures suggest that inventors were reasonably accurate in their assessments of the relative 
technological significance of their patents. This self- reported measure has also been shown to be 
correlated with commercialization of the invention, project size (the number of person- months 
dedicated to the project), patent scope (the number of IPC classes the patent spans), and for-
ward citations, all of which we might expect to be correlated with technological significance 
(No and Walsh 2010; Walsh, Lee, and Nagaoka 2016).

25. One caution in implementing these questions is that marketing or similar personnel may 
not be able to assess the technical contributions of their or others’ innovations, requiring use 
of a different- respondents- for- different- questions approach, as in the NSF Business R&D and 
Innovation Survey.
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share of the addressable market that their product reached. Presumably the 
size of the addressable market will relate to the product’s expected growth 
in sales over time. Such information again, however, reflects outcomes of 
pricing and other decisions on the part of the firm and its rivals. We would 
also want to ask whether the new product is sold mainly to existing cus-
tomers, new buyers in a market that the firm currently serves, or buyers in 
a new market. The answer to these questions would also be useful in our 
consideration of the dimension of “distance” discussed below. Potentially 
bearing on both utility and technological significance, one could also inquire 
whether the innovation reflects an improvement on an existing product or 
an altogether new product.

Other questions addressing utility would consider whose utility. For 
example, one could ask whether it is end consumers or firms that buy the 
firm’s new products. Per the discussion above on whether a firm’s innovation 
provides the basis for subsequent advance, it would also be useful to know 
whether the firm’s innovation is employed by firms in either its industry or 
other industries in follow- on R&D leading to new products or technologies, 
which would be the case, for example, with general- purpose technologies.

Another important limitation of  market- based measures of  utility, as 
noted above, is that there are innovations for which most prospective users of 
a new product may not be able to afford the product (e.g., a malaria vaccine 
in Africa). Thus in lieu of market- based metrics, it would be useful to ask, 
for example, how many lives may be affected or even saved by the provision 
of the product. In some industries (e.g., hospitals or medicine), one could 
also elicit measures of improvements in patient outcomes (e.g., time until 
recovery, reductions in mortality or morbidity, changes in life expectancy).

Distance. As discussed above, we think of distance or the implementa-
tion gap as reflecting the degree to which either the firm’s own capabilities 
or the external environment—particularly the absence of complementary 
goods or services—may constrain the firm’s ability to commercialize a new 
invention. We suggest that our two measures employed in our empirical 
analysis—whether the firm needed to acquire new equipment or person-
nel with new skills, on the one hand, or acquire new sales or distribution 
channels, on the other—represent useful measures. One necessary change, 
however, is to separate the question of hiring new personnel from that of 
acquiring equipment.

Another question regarding the internal constraints on commercializa-
tion would be to inquire if  the firm needed to reorganize its operations in 
any way to commercialize the innovation.26 Similarly, one might consider if  
commercialization of the product required entirely new organizational units 

26. To make this more concrete, one might ask if, in the course of commercializing the inno-
vation, the firm had to modify any business objectives, the way decision rights are allocated 
in the firm, the way product or personnel performance is evaluated, or reporting structures or 
incentive systems or if  new alliances and partnerships with other firms in previously unrelated 
downstream or upstream industries had to be developed.
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or capabilities to produce and/or deliver the product. An example is the iPod, 
which required a new platform, iTunes, to deliver music and challenged an 
assumption that music should be sold in a physical album and that online 
music file sharing should be free.

To the extent that the inventions underlying an innovation originate from 
other industries or reflect technologies that are not typically employed by 
the firm, this may limit the ease with which the firm’s own capabilities and 
practices will support the innovation or even its acquisition. Therefore, we can 
measure distance by asking the respondent if the concept for the new product 
originates from their own industry or from a different industry or employs 
technologies with which the firm has no experience.27 We could also ask 
whether developing the invention required expertise from outside the firm.28

There is also that aspect of  distance concerned with the external con-
straints on commercialization. Specifically, it would be useful to know if  
commercialization of  the product required complementary products or 
services offered by other firms and whether the lack of such complements 
impeded either the quality or the availability of the firm’s new product. For 
example, Walsh, Lee, and Jung (2016) asked if  the reasons for not commer-
cializing an invention included delays in the availability of complementary 
technologies or the absence of application technologies.

Replicability/Uniqueness. Currently, our measure, based on the number of 
firms that “have introduced or are likely to introduce” a competing innova-
tion, not only conflates imitability with technological competition; it also 
does not clearly distinguish the concept of replicability from that of unique-
ness. To address uniqueness, future surveys could ask if  the innovating firm 
was aware of other firms developing similar products at the time of product 
introduction. For another indicator of uniqueness, one could ask firms what 
share of their innovation projects overlap with those of their rivals, where 
high overlap suggests less uniqueness.29

To probe replicability, one could ask if  another firm introduced a compet-
ing alternative and, if  so, how long it was after the innovating firm’s product 
introduction (i.e., replicability), which is adapted from the Carnegie Mellon 
Survey administered by Cohen et al. (2000). Furthermore, one can also 
ask imitators the same question: How long was it until they introduced a 
competing alternative to the innovator’s product innovation? Asking these 
questions of both innovators and imitators would provide a validity check at 
the industry level. One could also measure replicability at the industry level 
by asking about the use of reverse engineering as a source of information 
about competitors’ products.30 Also, for those who externally sourced their 

27. Such measures resemble bibliometric measures that use information on the technological 
distance between the focal invention’s technology class and the technology classes documented 
in the patent’s prior art references.

28. A similar question was asked in the Carnegie Mellon Survey (Cohen et al. 2000).
29. A version of this question was asked in the Carnegie Mellon Survey (Cohen et al. 2000).
30. A version of this question was asked in the Carnegie Mellon Survey (Cohen et al. 2000).
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innovation, one could also ask whether the focal firm could have acquired a 
similar innovation elsewhere, as was done in the Arora, Cohen, and Walsh 
(2016) survey. One could use this as a measure of uniqueness, especially if  
the measure was used at the industry level since it suggests whether innova-
tions are available from multiple sources.

While the bulk of our discussion has been about product innovation (in 
part reflecting the dominance of  questions about product innovation in 
the Arora, Cohen, and Walsh 2016 survey), one could also measure vari-
ous dimensions of process innovation. Technological significance could be 
measured using similar items, asking for a ranking comparing the process 
innovation to others in the industry (see the discussion above for a sample 
item). One could also measure performance improvements, such as time 
or cost per unit reductions, as measures of technological significance (as 
is regularly modeled in the learning by doing literature). Distance could be 
measured by indicators relating to the need to purchase new equipment or 
hire personnel with new skills in order to implement the process innova-
tion. Similarly, measures of engineering hours expended implementing the 
process innovation might be another measure of the distance from existing 
practices. Uniqueness could be measured with items similar to those used  
for product innovation. For example: “Could this process innovation have 
been sourced from another engineering firm from the one used? Could a 
different plant of the same firm have developed this process innovation?” 
One might also ask if  the process innovation depended on the existence of 
unique equipment or unique skills among the workforce. The Fosbury flop 
in high- jump is one example of a significant process innovation, in terms of 
performance, with low uniqueness (and also high replicability). Replicability 
might be measured by the importance of secrecy for protecting the process 
innovation (similar to the items in the Carnegie Mellon Survey asking about 
the importance of secrecy for appropriating the returns to process and to 
product innovations, respectively). As noted above, the Toyota Production 
System is seen as having low replicability and hence little need for secrecy. 
Process innovations in the food and chemicals industries that depend on 
customized bacteria might be another example of low replicability. Utility 
may be measured by the share of a firm’s products that benefited from the 
process innovation, or by the share of the firms in an industry that adopted 
the process innovation. Statistical quality control or lean manufacturing 
processes might be examples with very high utility.

* * *

In addition to the above suggestions for guiding future innovation surveys’ 
assessments of selected attributes of innovation, we would make one addi-
tional suggestion related to survey design more generally. We would encour-
age surveys to address these detailed questions not only to the innovators 
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within an industry but to the imitators as well. Many questions about the 
social welfare impacts of innovation turn on the degree to which firms can 
and do imitate others’ products.

4.7  Conclusion

We suggest that with proper design, innovation surveys can provide 
valuable data on innovation rates that inform judgments about whether 
the reported innovations are important, and in what sense, and thus are 
more interpretable than claims that such innovations are simply “new to the 
market.” There are several keys to doing this. First, we recommend asking 
respondents questions about a specific innovation in an identified line of 
business. In our case, the questions focused respondents on their business 
unit’s most important innovation, defined as that which accounted for a 
plurality of revenue in a line of business.31 To advance our understanding of 
the impact of innovation, we also recommend conceptualizing innovation as 
having different dimensions. We proposed five that are potentially linked to 
the social welfare impacts of innovation: technological significance, utility, 
distance (or implementation gap), uniqueness, and imitability.

The chapter also illustrates the utility of our approach, using newly col-
lected data from an innovation survey of the US manufacturing sector and 
selected service sector industries to construct measures corresponding, how-
ever roughly, to the proposed dimensions of innovation. Using these data, 
we showed how the measured characteristics could inform judgments about 
the importance of innovations in different industries. By recognizing the 
distinct features of innovations, we also showed how these features, when 
combined in novel and distinct ways in selected industries, can provide a 
more nuanced view of innovation and its complexity. Finally, we used our 
constructed measures to provide some simple, illustrative insights into the 
nature of innovation and its impact and how that may differ across indus-
tries distinguished by sector or by the intensity of innovation competition. 
More importantly, in these exercises employing our measures of the different 
dimensions of innovation, we established empirical relationships and pat-
terns that raise questions for future research. Future work could also test the 
implications of these dimensions for firm or macroeconomic outcomes—for 
example, incorporating our dimensions into Crepon, Duguet, and Mair-
esse’s (1998) models. In addition, complementary qualitative studies of 
the development and commercialization of specific innovations may help 
unpack the dimensions more clearly and develop our understandings of how 
the various dimensions of innovations relate to firm and industry conditions, 
outcomes, and social welfare impacts.

31. One could instead ask respondents to focus, for example, on their most recent new prod-
uct to reduce the biases that come from focusing on “most important” innovations.

 EBSCOhost - printed on 2/8/2023 7:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



180    Wesley M. Cohen, You-Na Lee, and John P. Walsh

References

Adner, R. 2006. “Match Your Innovation Strategy to Your Innovation Ecosystem.” 
Harvard Business Review 84:98–107.

Aghion, P., N. Bloom, R. Blundell, R. Griffith, and P. Howitt. 2005. “Competition 
and Innovation: An Inverted- U Relationship.” Quarterly Journal of Economics 
120:701–28.

Arora, A., W. M. Cohen, and J. P. Walsh. 2016. “The Acquisition and Commer-
cialization of  Invention in American Manufacturing: Incidence and Impact.” 
Research Policy 45 (6): 1113–28.

Arora, A., and A. Gambardella. 1994. “The Changing Technology of Technologi-
cal Change: General and Abstract Knowledge and the Division of Innovative 
Labour.” Research Policy 23:523–32.

Baba, Y., and J. P. Walsh. 2010. “Embeddedness, Social Epistemology and Break-
through Innovation: The Case of the Development of Statins.” Research Policy 
39:511–22.

Bresnahan, T. F., and M. Trajtenberg. 1995. “General Purpose Technologies ‘Engines 
of Growth’?” Journal of Econometrics 65:83–108.

Cohen, W. M. 2010. “Fifty Years of Empirical Studies of Innovative Activity and 
Performance.” In Handbook of the Economics of Innovation, edited by Bronwyn H. 
Hall and Nathan Rosenberg, 129–213. Amsterdam: Elsevier.

Cohen, W. M., and S. Klepper. 1996. “A Reprise of Size and R&D.” Economic Jour-
nal 106 (437): 925–51.

Cohen, W. M., and R. C. Levin. 1989. “Empirical Studies of Innovation and Market 
Structure.” Handbook of Industrial Organization 2:1059–1107.

Cohen, W. M., and D. A. Levinthal. 1990. “Absorptive Capacity: A New Perspec-
tive on Learning and Innovation.” Administrative Science Quarterly 35:128–52.

Cohen, W. M., R. R. Nelson, and J. P. Walsh. 2000. “Protecting Their Intellectual 
Assets: Appropriability Conditions and Why US Manufacturing Firms Patent 
(or Not).” NBER Working Paper No. 7552. Cambridge, MA: National Bureau 
of Economic Research.

Cohen, W. M., R. R. Nelson, and J. P. Walsh. 2002. “Links and Impacts: The Influ-
ence of Public Research on Industrial R&D.” Management Science 48:1–23.

Crépon, B., E. Duguet, and J. Mairesse. 1998. “Research, Innovation and Productiv-
ity: An Econometric Analysis at the Firm Level.” Economics of Innovation and 
New Technology 7:115–58.

Dahlin, K. B., and D. M. Behrens. 2005. “When Is an Invention Really Radical? 
Defining and Measuring Technological Radicalness.” Research Policy 34 (5): 
717–37.

David, P. 1990. “The Dynamo and the Computer: An Historical Perspective on the 
Modern Productivity Paradox.” American Economic Review 80:355–61.

Fleming, L. 2001. “Recombinant Uncertainty in Technological Search.” Manage-
ment Science 47:117–32.

Giuri, P., M. Mariani, S. Brusoni, G. Crespi, D. Francoz, A. Gambardella, W. Garcia- 
Fontes, A. Geuna, R. Gonzales, and D. Harhoff. 2007. “Inventors and Inven-
tion Processes in Europe: Results from the PatVal- EU Survey.” Research Policy 
36:1107–27.

Griliches, Z. 1979. “Issues in Assessing the Contribution of Research and Develop-
ment to Productivity Growth.” Bell Journal of Economics 10 (1): 92–116.

Griliches, Z. 1998. “Patent Statistics as Economic Indicators: A Survey.” In R&D 
and Productivity: The Econometric Evidence, edited by Zvi Griliches, 287–343. 
Chicago: University of Chicago Press.

 EBSCOhost - printed on 2/8/2023 7:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



How Innovative Are Innovations?    181

Hall, B. H., A. B. Jaffe, and M. Trajtenberg. 2001. “The NBER Patent Citation Data 
File: Lessons, Insights and Methodological Tools.” Cambridge, MA: National 
Bureau of Economic Research.

Henderson, R. M., and K. B. Clark. 1990. “Architectural Innovation: The Reconfig-
uration of Existing Product Technologies and the Failure of Established Firms.” 
Administrative Science Quarterly 35 (1): 9–30.

Hollander, S. 1965. The Sources of Increased Efficiency: A Study of DuPont Rayon 
Plants. Cambridge, MA: MIT Press.

Jaffe, A. B., and G. De Rassenfosse. 2017. “Patent Citation Data in Social Science 
Research: Overview and Best Practices.” Journal of the Association for Information 
Science and Technology 68:1360–74.

Jensen, M. B., B. Johnson, E. Lorenz, and B. Å. Lundvall. 2007. “Forms of Knowl-
edge and Modes of Innovation.” In The Learning Economy and the Economics of 
Hope, edited byBengt- Åke Lundvall, 155–82. London: Anthem.

Kalton, G. 1983. Introduction to Survey Sampling. Thousand Oaks, CA: Sage.
Klevorick, A. K., R. C. Levin, R. R. Nelson, and S. G. Winter. 1995. “On the 

Sources and Significance of Interindustry Differences in Technological Oppor-
tunities.” Research Policy 24:185–205.

Kubota, T., Y. Aoshima, and Y. Koh. 2011. “Influence That Distance from the Divi-
sional Environment Has on the Innovation Process: A Comparative Analysis of 
ArF Resist Materials Development.” IIR Working Paper. Tokyo: Hitotsubashi 
University Institute of Innovation Research.

Lee, Y.- N. 2015. “Evaluating and Extending Innovation Indicators for Innovation 
Policy.” Research Evaluation 24:471–88.

Lee, Y.- N., and J. P. Walsh. 2016. “Inventing While You Work: Knowledge, Non- 
R&D Learning and Innovation.” Research Policy 45:345–59.

Levin, R. C., A. K. Klevorick, R. R. Nelson, S. G. Winter, R. Gilbert, and Z. Grili-
ches. 1987. “Appropriating the Returns from Industrial Research and Develop-
ment.” Brookings Papers on Economic Activity 3:783–831.

Li, G.- C., R. Lai, A. D’Amour, D. M. Doolin, Y. Sun, V. I. Torvik, Z. Y. Amy, and  
L. Fleming. 2014. “Disambiguation and Co- authorship Networks of the US Pat-
ent Inventor Database (1975–2010).” Research Policy 43:941–55.

Mansfield, E. 1968. Industrial Research and Technological Innovation: An Econo-
metric Analysis. London: Longmans, Green.

Marshall, A. 1890. Principles of Economics. London: Macmillan.
Merton, R. K. 1973. The Sociology of Science: Theoretical and Empirical Investiga-

tions. Chicago: University of Chicago Press.
Nagaoka, S., and J. P. Walsh. 2009. “Commercialization and Other Uses of Patents 

in Japan and the US: Major Findings from the RIETI- Georgia Tech Inventor 
Survey.” Research Institute of Economy, Trade and Industry (RIETI).

No, Y., and J. P. Walsh. 2010. “The Importance of  Foreign- Born Talent for US 
Innovation.” Nature Biotechnology 28:289–91.

Roach, M., and W. M. Cohen. 2013. “Lens or Prism? Patent Citations as a Measure 
of Knowledge Flows from Public Research.” Management Science 59:504–25.

Rosenberg, N. 1976. “Factors Affecting the Diffusion of Technology.” In Perspectives 
on Technology, edited by N. Rosenberg, 189–210. London: Cambridge University 
Press.

Schumpeter, J. 1934. Capitalism, Socialism, and Democracy. New York: Harper & 
Row.

Shane, S. 2001. “Technological Opportunities and New Firm Creation.” Manage-
ment Science 47:205–20.

Spear, S., and H. K. Bowen. 1999. “Decoding the DNA of the Toyota Production 
System.” Harvard Business Review 77:96–108.

 EBSCOhost - printed on 2/8/2023 7:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



182    Wesley M. Cohen, You-Na Lee, and John P. Walsh

Strumsky, D., and J. Lobo. 2015. “Identifying the Sources of Technological Novelty 
in the Process of Invention.” Research Policy 44:1445–61.

Svensson, R. 2015. “Measuring Innovation Using Patent Data.” IFN Working Paper.
Teece, D. J. 1986. “Profiting from Technological Innovation: Implications for Inte-

grations, Collaboration, Licensing and Public Policy.” Research Policy 15:285–305.
Thompson, P. 2012. “The Relationship between Unit Cost and Cumulative Quantity 

and the Evidence for Organizational Learning- by- doing.” Journal of Economic 
Perspectives 26:203–24.

Von Hippel, E. 1994. “‘Sticky Information’ and the Locus of Problem Solving: Impli-
cations for Innovation.” Management Science 40:429–39.

Walsh, J. P., Y.- N. Lee, and T. Jung. 2016. “Win, Lose or Draw? The Fate of Patented 
Inventions.” Research Policy 45:1362–73.

Walsh, J. P., Y.- N. Lee, and S. Nagaoka. 2016. “Openness and Innovation in the 
US: Collaboration Form, Idea Generation and Implementation.” Research Policy 
45:1660–71.

Yoon, J., and K. Kim. 2012. “Detecting Signals of New Technological Opportunities 
Using Semantic Patent Analysis and Outlier Detection.” Scientometrics 90:45–61.

Zimmerman, M. M. 1955. The Super Market: A Revolution in Distribution. New 
York: McGraw- Hill.

 EBSCOhost - printed on 2/8/2023 7:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



183

5.1  Introduction

Attracting consumers and retaining them as loyal customers are critical 
for a firm’s survival and growth. Among the many ways of building and pro-
tecting a loyal customer base, trademarks are unique. By protecting a firm’s 
intangible assets, trademarks can reduce consumer search and switching 
costs, lower the expense of introducing and marketing new products, and 
generate brand awareness and loyalty. While trademarks generally facilitate 
establishing and enhancing goodwill, they may not always be directly linked 
to a particular attribute of  the firm. Goodwill can be generated through 
investment in consistent quality, exceptional customer service, a distinctive 
portfolio of products, or a unique service or innovation that makes a firm 
stand out. The fact that not all firms file to register trademarks, despite the 
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relatively low cost of doing so, suggests that certain firms stand to benefit 
more from trademark registration than others.1

Theory contends that firms use trademarks to appropriate the returns 
from investments in goodwill. Firms are therefore more likely to select into 
trademark registration when the returns to reputation, product quality, 
and scale and scope expansion are high.2 Likewise, when innovative activity 
complements goodwill by enhancing product or service quality and inducing 
customer loyalty, firms have more motivation to protect accumulated and 
anticipated goodwill with a trademark registration. The benefits derived 
from using a trademark can, in turn, affect firm performance and productiv-
ity. When firms successfully leverage trademarks to differentiate goods or 
services and insulate themselves from copying and competition by register-
ing trademarks, they can achieve faster growth. At the same time, the price 
elasticity of  demand for firms with trademarks can be lower, leading to 
higher markups. Maintaining higher markups, in turn, may intensify firms’ 
advertising and marketing activities or foster further investment in quality 
enhancement and process or product innovation. Consequently, protection 
of trademarks through registration can have long- term consequences for a 
firm’s competitive position in the market as well as the industry concentra-
tion.

While theory suggests trademarks can play a critical role in firm dynam-
ics and innovation, empirical research regarding which firms in the United 
States use trademarks and the benefits they thereby derive is relatively sparse, 
especially when compared to other intellectual property such as patenting. 
The small but growing body of empirical literature on trademarks relies 
primarily on application and registration data from other countries, par-
ticularly the United Kingdom, Australia, and France. Such firm- level stud-
ies generally find trademark filing and/or registration to be correlated with 
product differentiation, marketing, and innovation, though results vary 
by industry. The prior literature also finds a positive relationship between 
trademark registration and firm market value, productivity, and survival, 
indicating that the private value of trademarks to firm is positive, though 
there is yet no clear conclusion regarding their social value. Still, most firm- 
level research to date relies on datasets of large, publicly traded firms, which 
casts doubt on the applicability of results to the population of firms that 
seek trademark registration.

One major obstacle to empirical analysis of trademark use by firms in 

1. One rationale for why not all firms file to register trademarks is provided by Landes and 
Posner (1988, 271–72): If  trademarks signal consistent quality, quality may be costly to main-
tain and can be verified by consumers after purchase. Hence only the firms that can afford to 
provide such consistent quality will tend to seek trademark registration.

2. See, e.g., Landes and Posner (1987, 1988) and Economides (1988) for theoretical argu-
ments on the connection between trademarks and consumer behavior. For recent models of 
firm dynamics under costly and gradual customer acquisition, see Dinlersoz and Yorukoglu 
(2012) and Gourio and Rudanko (2014).
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the United States is the lack of comprehensive data on firm- level trademark 
activity. Recently, however, there has been substantial progress on this front. 
The United States Patent and Trademark Office (USPTO) has made avail-
able trademark data that covers nearly 7 million trademark applications for 
the period 1870–2015. The USPTO Trademark Case Files Dataset (TCFD) 
is a remarkable synthesis of various trademark activity by firms.3 It con-
tains detailed information on applications for trademark registration as well 
as the commercial use, renewal, assignment, and cancelation of registered 
trademarks. It identifies the date an application is filed with the USPTO and 
proceeds to registration and what product categories or classes of goods 
and services are covered by a registration. However, the TCFD has little to 
contribute regarding the characteristics of  the firms that seek trademark 
registration and when exactly in their life cycle they do so. It is, therefore, 
not possible to uncover how trademark filing is related to firm characteristics 
and dynamics with the TCFD alone.

This chapter reports on the construction of a new dataset that combines 
the TCFD with firm- level microdata at the US Census Bureau. The dataset 
fills a void in the literature by linking trademark activity with firm charac-
teristics, performance, and dynamics in the United States. It provides infor-
mation on the incidence and timing of trademark filing and registration 
over the life cycle of  a firm and thus opens several research possibilities. 
The trademark- firm linked data can be used to explore not only what kind 
of  firms seek to register trademarks but also when they do so and how 
trademark filing is related to firm dynamics, such as entry, survival, employ-
ment and revenue growth, and R&D and patenting intensity. This chapter 
provides a first look at the connection between trademark filing and broader 
measures of  firm outcomes based on the constructed data. An objective 
of  this initial analysis is to explore some of  the selection and treatment 
effects associated with seeking federal trademark registration in terms of 
firm growth and innovation.

Key events early in the life cycle of firms may signal the emergence of high- 
growth firms and generate skewness in firm outcomes. There is a growing 
interest in identifying precursors of successful businesses. Recent research 
indicates that having a patent or a trademark application is highly corre-
lated with the ultimate success of an early entrepreneurship activity, as mea-
sured by rare events such as an IPO or a high- value acquisition.4 Analysis 
of the constructed data likewise indicates that trademark filing is correlated 
with employment and revenue growth. There appears to be strong selection 
into trademark registration based on firm size and age, though size is a 
more critical correlate. Firms that do not apply for trademark registration 

3. See Graham et al. (2016) for details on the construction and features of  the USPTO 
Trademark Case Files Dataset.

4. See, for instance, Fazio et al. (2016).
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in their initial years are unlikely to do so unless they experience employ-
ment growth. Difference- in- difference analysis suggests sizable treatment 
effects, with firms seeking trademark registration having substantially higher 
employment and greater revenue in the period following first filing relative 
to similar control firms.

Among the least studied aspects of  trademarks is their ability to cap-
ture firm innovation. Trademarks can be used to capture the value of firm 
innovative outputs that are not covered by patents, such as innovations in 
retail, services, customer relations, and knowledge- intensive products. Little 
is known, however, about this function of  trademarks. More evidence is 
needed on firms’ use of trademarks to appropriate returns from innovation  
and the relationship between trademark activity and more traditional mea-
sures of innovative activity. Firm- level analysis of the constructed data indi-
cates that firms with R&D and patent activity are very likely to apply to 
register trademarks. Further, the relatively high copresence of trademark 
applications and R&D activity in firms without patents suggests that, for  
at least some firms, trademarks may capture innovative outputs of R&D 
investment not accounted for by patents. Difference- in- difference analysis 
also supports a complementarity between applying to register trademarks 
and innovative activity, showing higher average R&D expenditure and patent-
ing by first- time trademark filers both before and after initial filing compared 
to similar control firms. These initial results warrant further investigation. 
Still, they provide preliminary evidence that trademark filings are corre-
lated with firm innovation and that trademark- based metrics may serve to  
improve measurement of innovation in the economy.

The chapter is organized as follows. The next section gives a brief  over-
view of the prior literature leveraging firm and trademark application data 
predominantly from countries other than the United States. Section 5.3 
provides the theoretical motivation for analyzing the connection among 
trademarks; applications for trademark registration; and firm character-
istics, dynamics, and innovation. Section 5.4 discusses the data inputs and 
the algorithm used to match the trademark data with data on firm charac-
teristics. The analysis in section 5.5 documents the characteristics of firms 
that seek trademark registration and provides a first look at how trademark 
filing is correlated with firm growth and innovation. Section 5.6 concludes 
with a discussion of the streams of future research made possible by the 
trademark- firm linked data.

5.2  Prior Literature

There is a small but growing body of empirical work concerning trade-
marks. Much of the recent work examining trademark data at the firm level 
is limited to the European and Australian context. For the United States, 
most research leverages datasets of publicly traded firms, such as Compu-
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stat, which cover a fraction of those firms seeking trademark registration. 
The lack of comprehensive data on trademark filing by private firms and 
small to medium- sized enterprises has been a major impediment to empiri-
cal research regarding the use of trademarks and the relationship among 
trademark filing and firm characteristics, dynamics, and innovative activity 
in the United States.

Schautschick and Greenhalgh (2016) provide a comprehensive survey of 
the empirical research on trademarks. Several conclusions emerge from the 
survey. First, there has been considerable growth in trademark application 
demand since the mid- 1970s in Australia, the United Kingdom, and the 
United States, with qualitatively similar trends in trademark- filing growth 
across these countries between 1975 and 2002.5 The services sector, as  
well as deregulated and restructured industries, exhibit the highest rates 
of growth in trademark- filing growth during this period. Interestingly, the 
surge in trademark applications appears to lead a similar surge in patent 
filings in developed countries by about 10 years. Still, there is no formal 
econometric analysis that establishes the connection between the timing 
of patents and trademarks at the firm- level, and whether firm trademark 
filing leads or lags patent applications is an open question. Second, at the 
country level, increased demand for product variety and quality appears 
to drive growth in trademark applications compared to the expansion of 
output. In general, the studies surveyed indicate that trademark filing is cor-
related with product differentiation, marketing, and innovation. However, 
the degree of this correlation depends on the industries investigated. Finally,  
firm- level studies indicate that firms use trademarks to protect identity and 
reputation and that the private value of trademarks to firms is generally 
positive, but there is no clear conclusion on the social value of trademarks. 
The latter depends on the trade- off between market efficiency–improving 
and procompetitive effects of trademarks and the potential for firms to make 
inefficient investments to protect reputation and leverage reputational assets 
to erect barriers to entry. Further research is needed to assess the relative 
magnitudes of these different effects.

At the macro level, Baroncelli, Fink, and Javorcik (2005) also document 
a number of regularities in trademark registrations across countries. Using 
World Intellectual Property Organization data for a panel of countries over 
the period 1994–98, they find evidence that higher development is corre-
lated with a dominance of domestic brands at home and a stronger pres-
ence of these brands in foreign markets, as indicated by foreign residents’ 
share of trademark registrations. However, they also note growth in foreign 
trademark registrations held by entities in developing countries, potentially 
reflecting increased exports to markets in more developed countries and the 
resulting need to protect growing brands. At the sector and industry level, 

5. See figure 2 in Schautschick and Greenhalgh (2013).
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Baroncelli, Fink, and Javorcik (2005) observe that most trademark regis-
trations occur in industries characterized as R&D intensive, particularly 
scientific equipment and pharmaceutical sectors, and advertising intensive, 
such as clothing, footwear, and food products. Business services also exhibit 
higher trademark registration intensity—a finding echoed by Millot (2011) 
for Germany and France.

Multiple studies document the relatively rapid growth in service marks 
between 1980s and 2000s in developed countries—Greenhalgh, Longland, 
and Bosworth (2003) for the United Kingdom; Jensen and Webster (2004) 
for Australia; and Graham et al. (2013) for the United States. In particular, 
the latter study finds that service marks filings grew by nearly 50 percent 
between 1998 and 2000 in the United States, potentially as a result of the 
dot- com boom of the late 1990s.6 These patterns reflect the growing impor-
tance of the service sector in developed economies and potentially denote 
a rise in service- related innovations. the value of which is captured through 
trademarks.

A handful of studies leverage firm- trademark matched datasets to exam-
ine the connection between firm characteristics and trademark filing or reg-
istration activity. Greenhalgh, Longland, and Bosworth (2003) use panel 
data on medium and large manufacturing firms in the United Kingdom and 
find an inverse relationship between trademark- filing intensity and firm size. 
Smaller firms, as measured by either employment or sales, exhibit higher 
trademark- filing intensity. However, the panel consists mainly of large, pub-
licly listed firms with many subsidiaries, which calls into question the appli-
cability of results to the broader population of firms relying on trademarks.

Greenhalgh and Rogers (2008) use data on both manufacturing and ser-
vice firms in the United Kingdom to investigate the role of  firm charac-
teristics on activities related to intellectual property, including trademark 
filing. They find that while intellectual property assets are not always mono-
tonically related to firm growth, size is nevertheless a strong predictor of 
whether a firm applies for a patent and/or seeks trademark registration. 
Their study also indicates diminishing returns to firm size in terms of such 
activity. In both services and manufacturing, patent and trademark- filing 
intensity declines as firms get larger. The results of both Greenhalgh, Long-
land, and Bosworth (2003) and Greenhalgh and Rogers (2008) denote the 
significant relationship between trademark- filing intensity and firm size in 
the United Kingdom, a finding replicated by Jensen and Webster (2006) for 
Australian firms.

Sandner (2009) provides a detailed investigation of  companies’ trade-
mark portfolios using the world’s largest publicly traded companies—those 
included in the Reuters and Compustat financial databases. The study identi-
fies 4,085 companies that satisfy the selection criterion in their latest income 

6. See figure 16 in Graham et al. (2016).
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statement.7 Results indicate that companies build trademark portfolios to 
deliberately protect the company brand. Using trademark applications to 
infer brand management decisions, the study finds that product introduc-
tions prompt varied decisions regarding whether to extend existing trade-
marks or devise novel trademarks to cover new products. Thus trademark 
filings can reflect both the creation of  new brands and the expansion of 
existing brands to encompass new products.

Sandner and Block (2011) use data from various countries, including the 
United States, to assess the market value of trademarks. They find a positive 
effect of trademark registrations on firm value, controlling for patenting and 
R&D activity. However, their study is limited to Community Trademarks 
registered by the Office for Harmonization in the Internal Market (now the 
European Intellectual Property Office, or EUIPO) and publicly traded firms 
from Compustat. The final dataset consists of a relatively small set of 1,216 
large, publicly traded firms, and the results, like those of most prior studies 
at the firm level, provide little information on trademark registrations held 
by private firms.

A few studies have focused specifically on trademark filings by small to 
medium- sized firms. Greenhalgh and Rogers (2007) build a database that 
spans the entire set of UK firms for the period 2001–5. The database con-
tains millions of  small to medium- sized firms matched with trademark 
applications and substantially expands on the scope of the studies discussed 
earlier, even though the time period covered is relatively short. One main 
conclusion that emerges from this study is that smaller firms are more intel-
lectual property intensive, tending to have higher volumes of patent and 
trademark applications relative to their assets, compared to larger firms.

To examine such firms’ motivation to seek federal US trademark regis-
tration, Block et al. (2015) use an online survey of 600 small and medium 
trademark applicants in internet and technology sectors selected from 
CrunchBase (formerly TechCrunch), a crowdsourced database of US firms. 
They use factor analysis to establish three distinct motivations for seeking 
trademark registration—protection, marketing, and exchange. They then 
use cluster analysis to build a typology of firms based on trademark moti-
vations, resulting in four clusters—trademark skeptics, marketing- focused 
trademark users, marketing plus protection- focused trademark users, and 
trademark advocates.8 This study demonstrates that there may be signifi-
cant heterogeneity in firm motivations for seeking trademark registration. 
In a related paper using a comparably sized sample of small and medium 
firms in Belgium, Flikkema, De Man, and Castaldi (2014) investigate how 

7. Companies with revenues of 400 million Euros or more (as of the time of the analysis).
8. Trademark advocates value all trademark motives highly, while the marketing- focus group 

values trademarks for marketing purposes but does not report protection or exchange as moti-
vation for filing. The marketing plus protection- focused group is the largest, comprising one- 
third of the firms, and ranks both marketing and protection motives highly.
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companies use and interpret trademarks. Their analysis reveals that 60 per-
cent of recently registered trademarks indicate innovative activity, mainly in 
the form of product or service innovation. These results encourage further 
scrutiny into trademark filings by small and medium firms, especially in 
the United States, where research has been largely limited to large, publicly 
traded firms.

Recent work has also utilized the USPTO Case Files Dataset in conjunc-
tion with other datasets in the United States to study incentives to use and 
protect trademarks and assess the value of trademarks for firms. Aurora, 
Bei, and Cohen (2016) explore the incentives to use and protect trademarks 
for firms in the United States by bringing together survey data from the Divi-
sion of Innovative Labor on firms’ new product development activities and 
industry- level data from the NETS (National Establishment Time- Series) 
database to understand the connection among trademarks, competition, 
and first- mover advantages. Heath and Mace (2017) offer evidence, using 
the Federal Trademark Dilution Act and its subsequent revision, that trade-
mark protection through registration has economically significant effects in 
the case of publicly traded firms in Compustat. These studies, nevertheless, 
do not provide a comprehensive analysis of trademark- filing propensity for 
all firms in the United States.

The existing literature summarized so far highlights the need for compre-
hensive longitudinally linked firm- level trademark data in the United States, 
especially for privately held firms. The rest of the chapter describes how this 
type of dataset is constructed by combining trademark- related information 
from the USPTO Case Files Dataset with data on firms, public and private, 
available at the US Census Bureau. It then demonstrates how the new dataset 
can be used to better understand the connection between trademark filing 
and firm attributes, dynamics, and innovation.

5.3  Theoretical Motivation

The theoretical literature sets forth a variety of ways trademarks can be 
related to firm outcomes and performance.9 A fundamental function of 
trademarks highlighted in theory is that of an information signal to promote 
market efficiency and reduce consumer search costs, especially for experi-
ence goods. As source- identifying devices, trademarks convey information 
regarding the unobserved attributes of a firm and its products (e.g., quality) 
and therefore reduce information asymmetry and consumer search costs, 
particularly in markets where the attributes of goods or services are not read-
ily discernible. Firms are incentivized to invest in goodwill to reap rewards 
from the reputational value exemplified by the trademark. Thus trademarks 

9. See, e.g., Landes and Posner (1987, 1988, 2003) and Economides (1988) for reviews and 
assessment of the theory of trademarks.
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with positive reputational value can facilitate customer acquisition, gener-
ate customer loyalty, and facilitate scale and scope expansion. As a result, 
trademarks can reduce the price elasticity of demand, allow firms to main-
tain higher prices, and facilitate investment into not only further reputation- 
building activities but also R&D and innovation. Additionally, by protecting 
a firm’s intangible assets and stock of goodwill, trademarks insulate firms 
from competition and infringement of their products or services.

In view of the various theoretical roles of trademarks summarized above, 
one expects both strong selection and treatment effects associated with appli-
cation for trademark registration. Firms for which reputational assets would 
yield higher returns are more likely to select into trademark registration. A 
more productive firm with better growth prospects, a firm that can commit to 
high quality, or a firm with a large customer base stands to gain more from 
trademark registration because the benefits accrue from a larger current and 
future stock of goodwill. Thus firms that seek to register a trademark for the 
first time may be those that are larger, more productive, have better product 
quality, and experience faster growth. In particular, young firms with an 
innovative product or service expected to yield a large future profit stream 
may seek trademark registration with a higher propensity.

Trademarks can also induce potentially large treatment effects. Trade-
marks can contribute to the firm’s ability to expand into other product 
types and new markets based on the established brand name, goodwill, and 
loyalty. Trademarks can also prevent the infringement of  a firm’s brand 
and the erosion of its stock of goodwill. In markets with relatively homo-
geneous goods, trademarks can serve a role akin to product differentiation 
based on quality and reduce the intensity of price competition. This reduc-
tion can lead to higher markups and growth for firms that can success-
fully differentiate themselves using trademarks. All of these effects suggest 
that the posttrademark- filing dynamics of a firm can differ from both the 
pretrademark- filing dynamics and the dynamics of firms that do not seek 
to register trademarks at all.

The innovative activity of firms is likely to have a significant impact on 
both selection and treatment effects associated with trademarks. Firms that 
engage in R&D and patenting may be more likely to seek trademark reg-
istration ex post to appropriate greater returns from their innovations. For 
instance, a firm that invests in product and process R&D is more likely 
to generate higher- quality products, sustain lower costs, or induce more 
demand and customer loyalty and hence build a larger stock of goodwill. 
Such firms have a greater incentive to protect accumulated and anticipated 
goodwill with a trademark registration. Therefore, when innovating firms 
select into trademark use, an application for trademark registration would 
follow R&D and patenting as a lagging indicator of innovative activity.

Trademark filing may also directly reflect innovative activity not cap-
tured by R&D or patents. Many service innovations, or innovations in 

 EBSCOhost - printed on 2/8/2023 7:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



192    Emin M. Dinlersoz, Nathan Goldschlag, Amanda Myers, and Nikolas Zolas

information-  and knowledge- intensive industries, may be better protected 
by trademarks rather than patents. More generally, where innovations are 
not patent- eligible subject matter or were developed with informal protec-
tion mechanisms, firms may be more likely to seek trademark registration 
to protect against imitation and secure the firm’s current and future stock 
of goodwill. To the extent that trademark applications reflect such innova-
tions and their associated goodwill, the knowledge of which firms apply for 
trademarks can enable more accurate identification of the broader popula-
tion of firms engaging in innovative activity.

Trademarks may also enhance firms’ innovation activity. A large stock of 
goodwill, accumulated and protected by trademarks, can increase a firm’s 
incentives for innovation. A firm with many loyal customers can benefit 
more from cost- reducing R&D, since reductions would spread over a larger 
customer base. Similarly, product introductions can be more valuable and 
involve less risk of imitation for firms with a trademark, as new products can 
readily enjoy the existing protection and established goodwill of the firm’s 
trademark. Furthermore, where strong goodwill enhances market power, 
firms with trademarks may be more likely to invest in exploratory R&D. 
These considerations suggest that firms may engage in R&D and patent-
ing more intensely after they secure a trademark registration. In this sense, 
trademark filings may also be leading indicators of innovative activity.

In summary, theory suggests that there may be strong selection and treat-
ment effects associated with a trademark application. Both the pre-  and 
posttrademark evolution of firms with a trademark application may differ 
significantly from that of  firms that do not seek trademark registration. 
Furthermore, innovative activity captured by R&D and patenting can be 
strongly correlated with trademark filing. These two types of activities can 
complement each other, leading to high firm- level correlation among trade-
mark application, R&D, and patenting. The relative timing of innovation 
and trademark filing over the firm life cycle may be informative in under-
standing whether trademark applications can serve as precursors to innova-
tion. Empirical analysis in the following sections will explore some of the 
selection and treatment effects associated with trademark filings suggested 
by the theory of trademarks. It will also examine the connection between 
trademark filings and innovative activity, as measured by R&D and patents, 
at the firm level.

5.4  Data

This section describes the datasets used to link trademark application 
filing information with longitudinal firm data. It provides an outline of the 
methodology for matching trademark data to firms. Because the trademark 
data consist of  many separate files and a large number of  variables, it is 
important to develop a strategy for using all the relevant information from 
trademark applications by firms to facilitate the matching process.
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5.4.1  Data on Trademarks

The data on trademarks comes from the USPTO TCFD. This dataset was 
constructed by economists at the USPTO from trademark case files made 
available by the USPTO on the Data .gov website. The case files were orga-
nized and streamlined to form several electronic files that can be readily used 
by researchers to conduct large- scale analysis. The accompanying paper, 
Graham et al. (2013), provides an excellent account of how the TCFD was 
constructed and a first look at some of the patterns of trademark- filing activ-
ity that emerge from the data. The TCFD contains detailed information on 
USPTO trademark applications and registrations for the period 1870–2015. 
The information on trademarks includes, but is not limited to, ownership, 
assignment, prosecution events, classification, and renewal history.

In the United States, trademark registrations are subject to a use require-
ment, which obligates the owner to use the mark on goods or in connection 
with services in order to establish and maintain trademark rights. The use 
requirement derives from American common law and subsequent codifica-
tion in federal statutes.10 An entity establishes and can enforce common 
law trademark rights solely by using a mark in commerce. A federal US 
trademark Principal Register registration confers benefits beyond common 
law, specifically national- scope rights, prima facie evidence of ownership, 
and recordation with US Customs and Border Protection for preventing the 
importation of infringing goods.

The TCFD captures only information on entities that seek a federal US 
trademark registration. It does not capture the population of  firms that 
relies solely on common- law trademark rights. This is an important distinc-
tion because the selection and treatment effects considered here are lim-
ited to those associated with filing for federal trademark registration at the 
USPTO. Results may not be applicable to the broader set of firms with only 
common- law trademark rights.

To file a US trademark application, an applicant must specify the goods 
and services on and for which she uses or intends to use the trademark. 
The identified goods and services define the scope of trademark protection 
covered by the registration and generally cannot be overly broad.11 Still, 

10. Under American common law, a trademark owner has the exclusive right to prevent 
unauthorized third parties from using the same or similar mark on goods and services where 
such use would likely cause confusion among consumers as to the source of the goods and 
services offered under the mark. An entity may establish trademark rights solely by using a 
distinctive mark on the goods or in connection with the services. Registration at the state or 
federal level provides additional benefits but is not necessary for an entity to create and enforce 
common- law trademark rights. The Lanham Act of 1946 (“Trademark Act”) established the 
modern US federal trademark registration system, providing for the protection of trademarks 
used in commerce and registered with the USPTO (15 U.S.C. § 1051 et seq.).

11. The US adopted the International Classification of Goods and Services under the Nice 
Agreement (the so- called “Nice Classification”) on September 1, 1973. Prior to that date, the 
USPTO used a US trademark classification system. Our match is restricted to trademarks 
registered under the Nice Classification system.
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even within the same class, there can be considerable variation in the speci-
ficity of the goods and services listed and thereby the breadth of trademark 
protection.

An applicant can apply to register a trademark already in commercial use 
or for which she has a bona fide intent to use the trademark on the identi-
fied goods or in connection with the identified services.12 However, such 
“intent- to- use applications” can only be registered after the owner uses the 
trademark in the ordinary course of trade in commerce and provides a dec-
laration and evidence supporting such use to the USPTO.13 Filing for a US 
trademark registration costs a relatively small fee per class.14 During substan-
tive examination, the USPTO determines whether the applied- for trademark 
is legally protectable and there is no “likelihood of confusion” with a previ-
ously registered trademark owned by another party.15 If  the examining attor-
ney determines the applied- for mark is registrable, the USPTO publishes the 
trademark for a limited opposition period, during which time third parties 
may file a formal opposition to the registration. Oppositions are fairly rare, 
instituted in less than 3 percent of published applications (Graham et al. 
2013). Unopposed applications for trademarks already in use are issued a 
US trademark registration. Allowed intent- to- use applications must first 
establish commercial use before the applied- for mark can be registered.

A trademark owner can renew a US trademark registration indefinitely 
so long as the trademark is used on the listed goods or in connection with 
the listed services. The owner must provide proof of continued use and pay 
prescribed fees to the USPTO 6 years after registration and at each 10- year 
renewal event.16 Failure to do so results in the registration being canceled.

12. To file based on use in commerce under Trademark Act §1(a), the owner must submit 
a declaration stating that the mark is used in the ordinary course of trade in commerce that 
Congress can regulate—that is, interstate commerce or commerce between the United States 
and foreign nations, as of the filing date. See TMEP §901.03. To file based on intent to use under 
§1(b), the applicant must have a bona fide intention to use the mark in commerce on the goods 
and services listed in the application in the near future. See TMEP §1101.

13. Intent- to- use applications became available to applicants in November 1989 as a result 
of the Trademark Law Revision Act of 1988. A small but growing minority of applications are 
filed with the USPTO based on a foreign application or registration for the same trademark 
or an extension of an international registration to the United States. Authorized by interna-
tional treaties, such applications can be registered prior to the trademark being used in US 
commerce; however, generally only applicants with a foreign “country of origin” can obtain 
such US trademark registration. Owners with foreign addresses are excluded from the match 
with US firm data.

14. For most of the time period covered by the matched data, the per- class filing fee ranged 
from $175 to $375 for a paper filing and $325 to $335 for an electronic filing.

15. An applied- for trademark can be refused as not registrable if, among other possible 
grounds, it is generic or merely descriptive; geographic; a surname; deceptive; a municipal, 
state, national, or foreign flag or insignia; or the name, likeness, or signature of a living person 
used without their consent (15 U.S.C. §1052). See TMEP §1200. Examining attorneys search 
existing registrations and pending applications for similar trademarks and assesses whether the 
use of the applicant’s trademark on the identified goods or in connection with the identified 
services is likely to cause confusion among consumers (15 U.S. C. §1052(d)). See TMEP §1207.

16. In the sixth year after the registration date, the trademark owner must maintain the reg-
istration by filing an affidavit or declaration of continued use and provide specimen(s) depict-
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Data coverage in the TCFD varies over time. Graham et al. (2013) indi-
cate that there is little coverage of classification, prosecution events, and 
owner records for trademark registrations issued before 1962.17 The cover-
age improves for registrations issued during the period 1962–77, and there 
is substantial improvement in coverage for filings and registrations after 
1977. Coverage becomes nearly 100 percent after 1982. Key data items are 
populated at a rate of 89 percent or more for the period 1977–2015. Firm- 
level longitudinal micro data are available in the US Census Bureau starting 
in 1976. Much of the well- covered 1977–2015 period in the TCFD coincides 
with the coverage of the data on firm characteristics. However, left censor-
ing of the firm data in 1976 and relatively lower coverage of the trademark 
data before 1977 implies that firms born before 1976 may not match with 
any trademark data, even if  they applied for or registered a trademark before 
1977. Likewise, for firms born before 1977, there is no way to assess whether 
a matched trademark filing reflects the firm’s first trademark application—a 
key trademark- related event in the life cycle of firms. Therefore, the primary 
focus of the empirical analysis will be on firms born in or after 1977.

5.4.2  Data on Firms

The trademark data are matched with the US Census Bureau’s Business 
Register (BR), which contains administrative data for the universe of non-
farm businesses in the United States. The BR is also the sampling frame for 
the Census Bureau’s economic surveys. It contains information on a firm’s 
employment, payroll, and revenues, as well as geography and industry clas-
sification of  their associated establishments. Analysis of  firm trademark 
activity requires longitudinal data to track firms over time and identify when 
in their life cycle such activity occurs. The Longitudinal Business Database 
(LBD) provides a longitudinally linked version of the BR at the establish-
ment level for the period 1976–2014. The LBD also enables identification 
of entry and exit of firms and establishments. Since the LBD coverage starts 
in 1976, there is no age information for firms established in that year. The 
empirical analysis is restricted to firms born in or after 1977 to avoid this 
censoring in age and ensure accurate identification of the first occurrence 
of a trademark filing in a firm’s life cycle.

The primary measures of firm size used in this chapter are employment 
and revenue. Prior work, detailed in Haltiwanger et al. (2017), has linked 
observations in the BR to construct a longitudinal firm revenue database. 

ing use in US commerce for the listed goods and services and pay prescribed fees (15 U.S.C. 
§§1058(a)(1)). See TMEP §1604. Ten- year renewal terms were instituted for registrations issued 
on or after November 16, 1989. Registrations issued prior to that date had 20- year terms until 
the first renewal event following that date. Thus all live registrations are subject to 10- year 
terms as of November 16, 2009. Registrants must pay separate maintenance and renewal fees 
for each class in the registration. For most of the time period covered by the matched data, the 
fee for (paper or electronic) filing an affidavit or declaration of use is $100 per class, and the 
fee for (paper or electronic) filing a renewal application ranged from $300 to $400 per class.

17. See table 1 in Graham et al. (2016).
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The analysis here uses this database to examine the connection between firm 
revenue growth and trademark filing.

In addition to the BR, the matching process utilizes the Integrated Lon-
gitudinal Business Database (ILBD). Even after matching to the BR, there 
are many trademark applications in the TCFD that do not match to an 
employer firm. Many of these trademarks may be owned by nonemployer 
businesses that do not appear in the BR. The ILBD contains individuals’ 
income tax records, including Schedule C earnings from an individually 
operated business or sole proprietorship.18 The ILBD nonemployer universe 
is used to identify matches for those trademark applications that were not 
matched to the employer universe in the BR. These nonemployer trademark 
links are used primarily to better understand the accuracy of the matching 
process. Future work will leverage these links to examine the dynamics of 
nonemployer firms seeking federal trademark registration.

5.4.3  Matching Process

In the absence of disambiguated identifiers, such as an Employer Identi-
fication Number (EIN), shared between the TCFD and the BR, name and 
address matching techniques must be applied to combine the two datasets.19 
The TCFD contains over 7.2 million trademark applications and 17.4 mil-
lion ownership records.20 The universe of TCFD records is filtered to include 
only the applications filed in or after 1976 (the beginning of the BR data) and 
excludes foreign businesses, federal and state government entities, and all 
individuals. After imposing these restrictions, there are over 5 million unique 
trademark records that have the potential to match to the BR and LBD.

The first step of the matching strategy to link the TCFD and BR is to 
extract all unique combinations of  name and address information from 
the TCFD. Matching algorithms then clean and standardize the name and 
address fields in both the TCFD and the BR.21 Once standardized, an initial 
subset of potentially matching records is identified based on weak match 
criteria applied to names only. From this subset, matches of different qual-
ity are extracted using various combinations of fuzzy and exact name and 
address matching. A string comparator that captures the similarity of text 
across fields is used to further refine and subset matches. More than 80 per-
cent of matches rely on the business name and three address (street, city, 
and state) fields—relatively strict criteria that tend to yield higher- quality 

18. See Davis et al. (2007) and Haltiwanger and Jarmin (2007) for details on the construc-
tion of the ILBD.

19. For a detailed description of the matching methodology, see the appendix.
20. Ownership records are captured in the TCFD at key points in the trademark’s life cycle 

(e.g., filing, publication, registration) even if  there is no change in ownership. This inflates 
the number of  ownership records in the TCFD beyond the number of  unique trademark 
application- owner pairs.

21. Common strings, such as “LLC” and “LTD,” and punctuation, such as “.” and “@,” 
are removed.
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matches. Results from the BR match are then integrated with the LBD. 
Information from the LBD is leveraged to further refine matches.

A trademark application filing can predate a firm’s entry to the BR, as 
some firms may apply for a trademark registration even before they become 
employers (pay their first wage or hire their first employee). Thus trademark 
applications that do not match to the BR are matched to the ILBD, the uni-
verse of nonemployer businesses. For this study, matches to nonemployer 
businesses are used primarily to better understand the quality of matches to 
the employer universe. Future work will investigate the growth and transi-
tion dynamics of nonemployer businesses seeking trademark registration.

Ultimately, 83 percent of  trademark records match to the LBD and 
2.4 percent to the ILBD. The LBD match rate declines over time, falling 
from 89 percent in the 1980–89 registration year period to 73 percent for 
the 2010–14 period. However, the matches become less ambiguous over 
time. The share of  unique matches rises from 59 percent in the 1980–89 
registration year period to 88 percent for 2010–14. The declining match rate 
is primarily driven by businesses identified as Limited Liability Companies 
(LLCs) in the TCFD. LLCs are one of the fastest growing business types in 
the trademark applicant universe and in the general population of firms. To 
explore the declining match rate, several hypotheses are investigated, includ-
ing deteriorating string quality, a compositional shift in trademark filings 
toward nonemployers, and the growth of  informal business. As detailed 
in the appendix, there is no obvious culprit that can explain why a declin-
ing share of trademark owner records in the TCFD match to the LBD. A 
random sample of matches is classified by clerical review as either true or 
false positives. These classifications are then used to calculate the precision 
of the TCFD- LBD matches. The precision of matches is over 90 percent 
and remains stable over time aside from a slight decline to 87 percent in the 
2010–14 period.

5.5  Analysis

This section provides a first look at the characteristics of firms seeking 
federal trademark registration in the United States based on the constructed 
data. For the purposes of this chapter, a “trademark- filing firm” is defined as 
one that has filed an application for a trademark at some point in its life cycle. 
In view of the theoretical motivation, the main goal of the empirical anal-
ysis is to understand both selection and treatment effects—how trademark- 
filing firms differ from those that do not file trademark applications both 
before and after their first trademark filing. At the firm level, first trademark 
application is identified by the first- ever filing of an application to register 
a trademark with the USPTO. The analysis therefore focuses on selection 
and treatment effects of trademark- filing activity via the federal trademark 
system, and nontrademark- filing firms comprise firms without any trade-
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mark applications, regardless of whether they do or do not own trademarks 
under common law. While it would be ideal to separate nontrademark appli-
cants into two subsets—those that own common- law trademarks and those 
that do not—the lack of comprehensive data on common- law trademark 
rights- holders prevents such differentiation. However, since the dynamics 
of  firms with common- law trademark rights would tend to be more like 
those of formal trademark- filing firms, the inclusion of the former in the 
nontrademark- filing group would tend to reduce, rather than inflate, selec-
tion and treatment effect estimates.

It should also be noted that not all trademark applications mature to 
registration. Applications can be abandoned during substantive examina-
tion or following allowance for failure to establish commercial use of the 
applied- for mark or as a result of third- party opposition proceedings. The 
analysis presented here focuses on trademark application filing because it is 
the first indication of a firm’s intent to register a trademark. It endeavors to 
fill a gap in the prior literature regarding which firms seek trademark reg-
istration and when in their life cycle they enter into this activity. However, 
because legal benefits accrue from trademark registration, not application 
filing, treatment effects would tend to be larger for firms whose applications 
mature to registration. Thus including all trademark- filing firms, regardless 
of whether an application proceeds to registration, would yield more con-
servative estimated treatment effects. Subsequent research will also consider 
the treatment effects of registration alone.

For the empirical analysis, only firms born in or after 1976 are considered. 
As discussed before, this restriction ensures that left- censoring of firm age 
does not affect results, but it also renders the age distribution of firms to be 
heavily skewed toward young firms in the earlier part of the sample period. 
The age distribution gradually evolves to be more representative over time. 
In particular, in 1977, the only firms in the sample will be new firms born 
in that year. However, for any given year t > 1977, firm age will range from 
zero (firms born in year t) to t – 1977 years (firms that were born in 1977 and 
survived until at least year t). Some of the empirical analysis considers only 
the later years of the sample period, when the firm age distribution is more 
representative. Specifically, the results for t + 1997 are presented whenever 
the analysis demands a representative firm age distribution.

The analysis focuses on the first- ever filing to register a trademark by a 
firm, regardless of whether the trademark is eventually registered or not. 
This critical event denotes when in their life cycle firms select into the popu-
lation of firms that apply to register a trademark. In principle, one can use 
the filing date variable in the TCFD associated with each trademark applica-
tion to identify the timing of the firm’s first trademark activity. However, the 
process is a bit more complicated, because there can be several applications 
for the same trademark corresponding to use in different classes or on differ-
ent products within the same class. For instance, a firm may initially apply to 

 EBSCOhost - printed on 2/8/2023 7:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



An Anatomy of US Firms Seeking Trademark Registration    199

register a trademark for computer hardware services but may later extend the 
same trademark to another product offering, such as customized computer 
software. For cases where there is more than one application for a trademark 
or multiple trademarks, the minimum filing date across the firm’s portfolio 
of trademark applications is used to identify the first- ever trademark filing.

5.5.1  Trends in Trademark Filing by Broad Sectors of the Economy

To paint a broad picture of trademark- filing activity in the United States, 
consider first some general patterns of trademark applications across sec-
tors of the economy. Figure 5.1 shows the distribution of firms that file to 
register a trademark for the first time by sector based on their NAICS sector. 
(Vintage consistent industry classifications developed by Fort & Klimek 
[2018] are used to classify firms by industry in which they have the larg-
est total employment.) Note that the number of first- time trademark- filing 
firms grows initially for all sectors starting with the beginning of the sample 
through the 1990s. This trend is, in part, driven by the fact that only new 
and relatively young firms are present in the sample for the earlier years, as 
discussed earlier. Since younger firms may have more incentive to apply for 
trademark registration relative to older counterparts, the number of first- 
time trademark filers increases as the stock of young firms initially expands 
and dominates the sample age composition. Later in the sample period, 
the distribution of firm age approaches a more representative one, and the 
number of first- time trademark- filing firms becomes relatively more stable 
in many sectors.

Fig. 5.1 Number of firms filing for a trademark for the first time, by sector over time
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There is a notable expansion of first- time trademark filing by professional 
services firms starting with the 1990s, when the firm age distribution becomes 
relatively more representative, and extending through the mid- 2000s. Similar 
growth in first- time filing is evident for wholesale firms and, to a limited 
extent, retail firms. In contrast, first- time trademark filing by manufacturing 
firms has somewhat declined during the same period, likely reflecting the 
decline of  manufacturing in the United States that has accelerated espe-
cially in the 2000s. Surprisingly, there is more entry into trademark filing by 
wholesale firms compared to retail firms over the sample period, possibly 
indicating the greater importance of goodwill in business- to- business trans-
actions. Throughout the sample period, first- time trademark filers in the 
“Other Firms” category are both the largest and fastest growing, which is 
expected given that this category lumps together industries that are likely 
to be trademark intensive, such as information, education and health care, 
entertainment, accommodation, and food and other services.22

The dot- com era spike in trademark applications is also clearly visible 
before 2000, mainly for professional services firms and “Other Firms.”23 
This spike is potentially related to the proliferation of internet- based com-
merce and a need to identify and protect brands in cyberspace. As the 2001 
recession hits, first- time trademark filing declines sharply. Thereafter, entry 
by new trademark filers increases across sectors, except manufacturing, until 
the Great Recession in 2007. Overall, first- time trademark filing appears to 
be procyclical, at least in recent decades. By the end of the sample in 2013, 
the largest number of first- time filers are in the “Other Firms” category, fol-
lowed by professional services, wholesale, and manufacturing. Among all 
sectors, retail has the fewest number of first- time trademark filers as of 2013.

5.5.2  Who Trademarks, When, and How Much?

This section examines the patterns of trademark filing by firm size and 
age, the two key conditioning variables frequently used in the firm dynamics 
literature. The number of employees and the age of firms when they first 
file a trademark application are important in understanding the potential 
selection effects of trademarks. This section also explores the intensity of 
trademark filing, as measured by the number of trademark applications per 
firm, and firm size and age.

5.5.2.1  Firm Size, Age, and Trademark Activity

Table 5.1 presents, by year, the average size (employment) and age of firms 
that filed for a trademark registration for the first time during the period 
1997–2013 (labeled as “Firms with first TM filing”). It also contains, for 

22. The “Other Firms” category includes the firms classified in the industries outside of man-
ufacturing, retail, wholesale, and professional services. See table 5.2 for a list of all industries.

23. These trends are also seen in high- tech industries, where young firm activity surged in the 
1990s and then collapsed after 2001. See Goldschlag and Miranda (2015) for details.
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comparison, the same statistics for firms that have not filed to register a 
trademark as of the specified year (labeled as “Firms with no TM filing”), 
have at least one trademark filing up to that year (labeled as “Firms with 
a TM filing”), and have filed for a new trademark registration in that year 
(labeled as “Firms with current- year TM filing”).

The main message from table 5.1 is that first- time trademark- filing firms 
are young but also large relative to firms that do not seek trademark regis-
tration. The average firm age at the time of the first trademark filing ranges 
from four to six for most years included in table 5.1, indicating that many 
firms that seek trademark registration for the first time do so relatively 
early in their life cycles. The average age of first- time trademark- filing firms 
increases over time. However, this pattern is evident in each category in table 
5.1, reflecting, in part, the overall aging of the US firm population as a result 
of the persistent decline in new firm entry—a trend extensively documented 
in recent research.24 The rise in mean age over time is also driven by the fact 
that firms in the analysis get older as one moves further away from the initial 
year of the sample (1997).

The first- time trademark filers are also relatively large. For instance, in 
1997, firms that first filed to register a trademark had an average of roughly 
76 employees, nearly eight times the average employment of firms that had 
no trademark applications. This gap narrows in subsequent years, mainly 
because the average size of first- time trademark- filing firms declines, while 
that of nontrademark- filing firms is largely constant. Still, in 2013, the aver-
age employment of  first- time trademark filers was roughly 58, about six 
times that of firms with no trademark filings.

24. See, e.g., Decker et al. (2016).

Table 5.1 Firm size (employment) and age for trademarking and nontrademarking firms

Firms with a 
TM filing

Firms with 
current-year 

TM filing
Firms with first 

TM filing
Firms with no 

TM filing Average 
number 
of TMs 
per firmYear  

Mean 
size  

Mean 
age  

Mean 
size  

Mean 
age  

Mean 
size  

Mean 
age  

Mean 
size  

Mean 
age  

1997 100.1 7.8 190.5 6.2 75.9 4.0 9.5 6.5 2.3
1999 102.0 8.3 180.2 6.2 50.2 4.0 9.7 7.0 2.4
2001 101.3 8.9 214.3 7.2 54.9 4.6 10.0 7.6 2.3
2003 93.5 9.7 200.5 7.8 50.9 4.8 9.6 7.9 2.2
2005 89.6 10.3 196.7 8.1 47.8 4.9 9.5 8.2 2.3
2007 89.8 10.7 186.5 8.4 52.7 5.2 9.7 8.7 2.2
2009 84.5 11.5 188.9 9.3 48.0 5.9 9.5 9.6 2.1
2011 81.5 12.2 186.5 9.6 46.6 5.7 9.4 10.2 2.2
2013  83.9  13.8  200.8  11.6  57.5  8.3  9.7  10.8  2.2
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Table 5.1 also shows that firms that have filed for at least one trademark 
(“Firms with a TM filing”) are larger and older than the firms that do not 
apply for trademark registration. Likewise, firms that apply to register addi-
tional trademarks in any given year (“Firms with current- year TM filing”) 
are much larger than nontrademark- filing firms but also tend to outsize 
firms that have at least one trademark application. Interestingly, these firms 
that continue to build their trademark portfolios tend to be younger than 
firms with some trademark- filing activity. One interpretation of this result 
is that firms that continue to seek trademark registration are mostly large 
and successful companies that expand their scale and scope by introduc-
ing new products and services under the brand name and goodwill already 
established.

The patterns in table 5.1 are also apparent by sector. Table 5.2 presents 
the average firm size and age for the panel of trademark and nontrademark- 
filing firms across all years in the 1997–2013 period. In each sector, firms 
that apply to register a trademark for the first time are, on average, much 
larger than firms that do not seek trademark registration. The difference in 
average size is the largest in agriculture, mining, and utilities, where first- time 
trademark- filing firms maintain 16 times more employees on average. The 
smallest difference is in retail, where the average employment of first- time 
filers is more than double that of nontrademark- filing firms. Sector- level 
differences in average firm age also mirror the pattern found for the general 

Table 5.2 Firm size (employment) and age for trademarking and nontrademarking firms: 
Sectoral differences

Firms with a 
TM filing

Firms with a 
current year 

TM filing
Firms with 

first TM filing
Firms with no 

TM filing

Industry  
Mean  
size  

Mean  
age  

Mean  
size  

Mean  
age  

Mean  
size  

Mean  
age  

Mean  
size  

Mean  
age

Agriculture, Mining, and Utilities 203.5 14.4 536.7 11.0 181.3 8.0 11.3 11.3
Construction, Transportation, 

and Warehousing 92.8 14.4 238.7 12.2 81.6 10.2 7.4 10.7
Manufacturing 113.9 16.7 282.2 14.4 53.3 8.8 17.5 13.4
Wholesale 43.6 15.0 99.4 12.8 38.1 8.5 8.5 12.1
Retail 68.3 12.5 201.1 9.9 19.4 7.4 7.9 10.5
Information 76.6 13.0 256.6 10.9 61.5 6.5 8.6 9.4
Finance and Real Estate 88.5 14.0 233.8 12.3 64.4 9.5 5.2 10.7
Professional Services 39.3 12.1 84.5 9.3 43.5 7.0 5.5 10.3
Management and Admin. 

Support 153.8 14.1 345.9 12.0 116.9 9.0 15.8 9.9
Education and Health Care 210.4 14.3 487.9 12.2 126.8 9.4 15.7 11.6
Entertainment, Accommodation, 

and Food 94.0 12.2 212.3 9.9 44.8 7.6 15.5 8.5
Other Services  32.6  14.7  68.1  12.8  25.3  9.5  5.7  13.0
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population of firms in table 5.1. Across sectors, first- time trademark- filing 
firms are, on average, 2.5 years younger than the firms without trademark 
applications. The largest age disparity is in manufacturing, where first- time 
filers are nearly 5 years younger, on average, than firms that do not apply 
for trademark registration. In construction, transportation, and warehous-
ing, however, the difference in average age between first- time filers and 
nontrademark- filing firms is only 0.5 years.

Across sectors, firms that have at least one trademark application and 
those that apply to register additional trademarks are, on average, 10 and 
25 times larger, respectively, than firms that do not seek trademark registra-
tion. Again, the largest differences in average employment are in agriculture, 
mining, and utilities, as well as finance and real estate.

Figure 5.2 plots the relationship between the propensity of a firm having 
applied to register a trademark and its size measured by employment. The 
likelihood of a trademark filing increases with size for all sectors, though 
the patterns of  growth differ. The probability of  having a trademark fil-
ing increases much faster with employment for smaller firms in wholesale, 
manufacturing, and professional services. For example, the probability that 
a firm with roughly 20 employees (≃3 in log scale) in one of these sectors 
files to register a trademark is 0.20 to 0.30. This probability increases to 
around 0.40 at 55 employees (≃4 in log scale). For retail, on the other hand, 
the likelihood of a trademark filing is relatively low until approximately 150 
employees (≃5 in log scale), after which it grows sharply and catches up to 

Fig. 5.2 Probability that a firm has a trademark filing, by firm size and sector
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the other sectors. For any given firm size, the probability of a trademark 
filing is generally highest in manufacturing and wholesale sectors, though 
professional services is a close third, and retail is roughly equivalent for very 
large firms. In general, figure 5.2 reinforces the results in tables 5.1 and 5.2 
and indicates there is a strong connection between firm size and trademark 
filing.

The relationship between firm age and propensity to apply to register a 
trademark, plotted in figure 5.3, is not as strong. While the probability that 
a firm has a trademark filing increases with age in general, the rate of growth 
is much less pronounced compared to size. In addition, the relationship is 
not necessarily monotonic.

Across sectors, the steepest increase in the probability of filing to regis-
ter a trademark generally occurs between age 0 (new firms) and age 5. As 
firms age, there is little to no, or even negative, growth in the probability of 
trademark filing. The most sustained growth is in manufacturing, where the 
probability rises from roughly 0.08 to 0.20 between age 0 and age 36 (the 
oldest firms in the sample). Combined with figure 5.2, the patterns in figure 
5.3 suggest that firm size is a more critical correlate of trademark applica-
tion than firm age and that firms who do not seek trademark registration 
in the early years of their life cycle are unlikely to do so unless they experi-
ence employment growth. Thus the relationship between firm growth and 
trademark filing transcends mere firm experience and survival, hinting that 

Fig. 5.3 Probability that a firm has a trademark filing, by firm age and sector
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the decision to apply for a trademark registration is a strategic one made 
by the firm.

The analysis so far indicates that first- time trademark filing is concentrated 
in young and large firms. There appears to be strong selection into trademark 
filing, at least based on two key observable firm characteristics: size and age. 
This finding is consistent with the theoretical view that firms that are suc-
cessful and grow in size early in their life cycles have a greater incentive to 
formally protect their goodwill through registered trademarks. In addition, 
the fact that trademark filers are much larger and older than nontrademark- 
filing firms suggest that trademark- filing firms continue to perform better 
after initial trademark application, pointing to potential treatment effects of 
trademarks that will be explored further in subsequent sections.

5.5.2.2  Firm Trademark Intensity

The analysis thus far has focused on the characteristics of  trademark- 
filing firms without considering how intensely those firms rely on trademark 
registrations to protect their goodwill. One measure of trademark intensity 
is the number of trademark applications filed by a firm, akin to the number 
of  patent applications or products per firm. Figure 5.4 shows the kernel 
density plot of  the count of  trademark applications per firm during the 
sample period. The distribution exhibits the typical features of firm- level 
discrete outcomes: it is highly positively skewed and has a long right tail. 
Most firms have a small number of trademark filings (fewer than 3), but 

Fig. 5.4 Distribution of firm trademark intensity (number of trademark filings by 
a firm)
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there are also many firms with large trademark application portfolios in the 
right tail of the distribution—some with at least 15 trademark filings. Such 
large trademark portfolios may result from firms expanding into related and 
unrelated business lines to take advantage of established goodwill but can 
also reflect rebranding or other marketing activities. It is important to note 
that the skewness in firm trademark application intensity is different than 
that in patent intensity. Patent applications are highly concentrated among 
a small number of top patenting firms, whereas trademark filings are much 
more dispersed, and the top applicants hold relatively smaller portfolios.

How much has trademark- filing intensity changed over time? Do firms 
own increasingly larger application portfolios on average? Table 5.1 docu-
ments the average number of trademark filings per firm by year over the 
period 1997–2013. For the years covered in the table, the average is around 
two trademark applications per firm. While the average is somewhat higher 
in the earlier years, it appears to be relatively stable, suggesting little change 
in overall trademark- filing intensity over time.

5.5.3  Trademarks and Firm Growth

Both theory and the prior descriptive analysis suggest that there are strong 
selection and treatment effects associated with trademark application fil-
ing. This section focuses on the evolution of firms before and after their 
first trademark filing, without any attempt to identify a causal link between 
trademark application and firm evolution. The goal is to determine whether 
trademark- filing firms differ from nontrademark- filing firms in key outcome 
measures both before and after the initial filing. To do so, the analysis first 
considers the growth trajectory of newly formed firms that apply to regis-
ter a trademark in their first year compared to those that do not. It then 
uses nearest- neighbor propensity score matching to identify a more precise 
control group for all treated firms (the ones that apply for a trademark reg-
istration for the first time) and more closely examines the treatment effects 
associated with first- time trademark filing. It should be noted, however, 
that the matching estimator does not eliminate concerns due to unobserved 
characteristics of treated firms.

5.5.3.1  Firm Growth before and after Trademark Filing: New Firms

Figure 5.5 presents the firm size- age profile for all new firms (age zero 
firms) that apply to register a trademark in their first year versus those that 
do not seek trademark registration at all. The figure suggests that firms that 
file in their first year of existence tend to have a very different growth trajec-
tory compared to nontrademark- filing firms. Trademark- filing new firms 
also tend to be larger, even in their first year, compared to nontrademark- 
filing counterparts. This result suggests a strong selection into trademark fil-
ing at firm birth based on size. Average employment for first- year trademark 
filers is higher for any given age, and the employment gap between the two 
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groups widens as firms age. Firms that file for a trademark registration upon 
birth tend to experience a steeper increase in employment in their first year. 
Average employment more than triples from roughly 2.5 employees in year 
zero to nearly 10 employees by year one. While both types of firms tend to 
grow with age, average employment grows much faster for the firms with a 
trademark application filing compared to those without one.25

Note that these trends are not conditional on industry, year of birth, or 
any other observables for new firms. The size- age profile of new firms, both 
trademark filing and nontrademark filing, is likely to vary based on such 
factors. Likewise, selection into a trademark filing is likely to be correlated 
with various firm characteristics other than size. To more carefully consider 
the relationship between trademarks and growth, the next section introduces 
a propensity score matching method used to control for the effects of some 
observables at the firm level.

5.5.3.2  Firm Growth before and after Trademark Filing: Propensity 
Score Matching

To form a control group for all first- time trademark- filing firms (not 
just the new firms) based on their observable characteristics, a propensity 
score matching methodology is implemented. The indicator of  first- time 

25. Note also that figure 5.5 is not conditional on survival, so it does reflect the differences in 
failure rates for firms that apply for a trademark registration versus those that do not.

Fig. 5.5 Average employment of new firms over time, by trademark filing status in 
the year of birth
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trademark filing in any given year is modeled as a function of  firm size 
(employment), age, average payroll (payroll per employee), multiunit status, 
industry fixed effects, and prior- year size in a logit framework. The model 
is estimated for each year separately. The predicted probabilities from the 
estimated model are then used to attach a propensity score to all firm- year 
combinations—treated and nontreated. For each treated firm, a matching 
firm is selected through propensity score nearest- neighbor matching. The 
control group is further restricted to matching firms of the same age as the 
treated firm in the year of first trademark filing. In some cases, this process 
yields more than one match for each treated firm. The analysis proceeds with 
weights, when needed, to account for multiple matches.

Figure 5.6 plots average employment before and after the first trademark 
filing for firms that apply to register a trademark (treated) and the matching 
control firms (untreated).26 The year of the first trademark filing is normal-
ized to t = 0 and is indicated by a vertical line in figure 5.6. For the two years 
prior to trademark filing (t = –1, –2), the average employment for treated and 
control firms is relatively similar. Nevertheless, treated firms are somewhat 
larger on average, including at the year of  the trademark filing. Average 
employment grows for both treated and control firms before filing. However, 

26. For the control group, the mean for any firm outcome measure is calculated using weights, 
which are equal to the inverse of the number of control firms corresponding to a given treated 
firm.

Fig. 5.6 Average employment before and after first trademark filing, treated vs. 
control group
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while average employment increases substantially for the treated firms after 
filing, there is a much smaller increase for the control group. As a result, the 
gap in average size between treated and control groups grows considerably. 
Five years after first filing (t = 5), the average employment of the trademark- 
filing firms is nearly twice that of the control group.

For better visual comparison of the trends, in figure 5.7, mean employ-
ment levels are normalized to one for both groups at t = –2 two years before 
the first trademark filing. The difference in mean employment between the 
two groups is statistically significant for each period t.27 Figure 5.7 makes 
it clear that average employment is increasing in the year prior to filing for 
both treated and control groups. After filing, however, there is continuing 
growth in average employment for treated firms but much less expansion for 
the control group. In particular, average employment for the treated firms 
five years after the first trademark filing (t = 5) is about 80 percent higher 
than at the time of filing. For the control group, mean employment exhibits 
little growth in the five years following filing.

Figure 5.8 repeats the exercise in figure 5.7 with firm revenue for treated 
and control firms. Prefiling revenue trends are similar for the two groups but 
diverge at the year of first filing. The average revenue gap between treated and 

27. Confidence intervals are not shown because the large number of firms in the sample 
generates very precise averages with tight confidence intervals. Therefore, the differences are 
statistically significant for each t.

Fig. 5.7 Normalized average employment before and after first trademark filing, 
treated vs. control group
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control groups is fairly constant through two years after filing but expands 
considerably thereafter. For treated firms, revenue increases by about 100 
percent five years after trademark filing. The control group exhibits a much 
more modest growth of about 35 percent over the same horizon. As in the 
case of employment, these patterns suggest the presence of potentially large 
benefits to trademark- filing firms in terms of revenue.

Taken together, figures 5.6–5.8 show considerable differences in the 
growth of employment and revenue for trademark- filing firms compared 
to their matched controls for both pre-  and postfiling periods. Prefiling pat-
terns suggest the potential presence of  selection based on unobservables 
not accounted for in propensity score matching, as treated firms tend to be 
somewhat larger on average than the controls—though the difference is not 
substantial. Postfiling patterns also indicate the likely presence of trademark 
treatment effects. Treated and control firms diverge substantially in terms 
of average employment and revenue after first trademark filing. The gap in 
mean employment and revenue between the two groups expands noticeably 
two years postfiling. This pattern may simply reflect application pendency 
at USPTO or suggest that some effects of trademark filing are more gradual 
and take time to emerge.28

28. The average total pendency at USPTO for trademark applications is 8 to 12.5 months 
depending on the method of filing. See https:// www .uspto .gov /dashboards /trademarks /main 
.dash xml.

Fig. 5.8 Normalized average revenue before and after first trademark filing, 
treated vs. control group
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To understand the connection among firm growth, innovation, and 
trademark application filing further, the following difference- in- difference 
regression framework is considered for the treated firms and their matched 
controls:

(1) Yit = + F FILEi + PPOST_FILEit + FP FILEi POST_FILEit

+YEARt + INDUSTRYi + it,

where the treatment status of  firm i is indicated by FILEi, and the time 
period t after treatment by POST_FILEit. The dependent variable Yit is 
the inverse hyperbolic sine transformation of the four dependent variables 
considered:

Yit = ln Yit + Yit
2 + 1( ).

This transformation is useful, in particular because there are several cases 
of no patenting or R&D expenditure in both treated and control groups. 
The coefficients βF and βFP measure, respectively, the effects of  being in 
the treated group (trademark- filing firms) prior to treatment and being in 
the treated group and in the treatment period (years after first filing for 
trademark- filing firms).

Table 5.3 presents the results from the estimation of (1). The first two 
columns show the estimates for employment and revenue as the dependent 
variables that measure size. Note two key overall results in table 5.3. First, 
estimates of  the βF coefficient indicate that treated firms are, on average, 

Table 5.3 Regression analysis of the relation between various firm outcomes and the 
first trademark filing

Dependent variable 

Independent variables  Employment  Revenue  R&D exp.  Patents 

FILEi 0.143*** 0.323*** 0.406*** 0.011*** 
[0.015] [0.023] [0.121] [0.002] 

POST_FILEit 0.997*** 0.197*** 0.191* 0.001 
[0.018] [0.011] [0.075] [0.001] 

FILEi × POST_FILEit 0.297*** 0.195*** 0.783*** 0.013*** 
[0.008] [0.013] [0.133] [0.001] 

CONSTANT 6.459*** 7.376*** 5.108*** −0.011** 
[0.032] [0.018] [0.069] [0.003] 

R2 0.24 0.18 0.41 0.05 
N  9.5M  5M  80K  10M 

Notes: All regressions include industry (four- digit NAICS) and year fixed effects. All depen-
dent variables are transformed using hyperbolic sine transformation. Standard errors clus-
tered by industry are in parentheses. *, **, *** indicate significance at 10, 5, and 1 percent, 
respectively. N is rounded to avoid disclosure. Each control firm is weighted by the total num-
ber of control firms for the corresponding treated firm.
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larger in terms of both employment and revenue than the control group in 
the period before trademark filing. This finding indicates the likely presence 
of unobserved characteristics, not controlled for via propensity score match-
ing, that are correlated with trademark filing. Second, estimates for the βFP 
coefficient indicate sizable treatment effects. In the period following the first 
trademark filing, treated firms have, on average, approximately 34 percent 
higher employment and 24 percent greater revenue compared to the con-
trol group.29 Overall, the results of the regression analysis for employment 
and revenue suggest that there are significant selection and treatment effects 
associated with first trademark filing. These effects will be investigated in 
further detail in future work.30

5.5.4  Trademarks and Innovative Activity

Next, consider the firm- level connection between different types of inno-
vative activity and trademark applications. The theoretical motivation in 
section 5.3 suggests that investments in goodwill accumulation and innova-
tion can be complements. An implication is that measures of these two types 
of investments should be correlated to some degree at the firm level. The next 
section explores the copresence of trademark applications and innovative 
investment, as measured by R&D, and innovative output, as measured by 
patents. It also examines the timing of the first trademark filing relative to 
that of R&D expenditures and patenting.

The patent data are derived from patent- firm linked data from the US 
Census Bureau, which combines the Longitudinal Business Database with 
the USPTO’s patent database.31 The firm- level R&D data are sourced from 
the Standard Industrial Research and Development Survey (SIRD) and 
Business R&D and Innovation Survey (BRDIS), conducted by the US 
Census Bureau for the National Science Foundation.32 While the patent 
and trademark data pertain to the entire set of firms observed in the LBD, 
R&D expenditure data are only available for firms sampled in the SIRD 
and BRDIS. To analyze the trademark- filing and patent application activity 
by R&D- performing firms, the sample is therefore restricted to those firms 
that reported some or no R&D activity in the SIRD and BRDIS. While 

29. Note that (1) implies that the percent change in Yit + Yit
2 + 1( ) for the treated group in the 

treatment period can be estimated as 100[exp( ˆ
FP) –1]. For Yit not too small, the last estimate also 

approximates the percent change in Yit due to a change in FILEi × POST_FILEit from 0 to 1, 
because Yit + Yit

2 + 1 ≃ 2Yit – for Yit not too small.
30. In particular, more stringent matching processes will be explored to understand whether 

the control group can match the treatment group better during the pretreatment period. This 
exercise will further clarify whether the differences in the pretreatment period between the 
treated and control groups are due to unobserved characteristics of the treated firms or can be 
eliminated with further refinement of the matching process.

31. See Graham et al. (2015) describing the “triangulation” process linking USPTO patents 
with the Census LBD. Their work has been extended to include patenting activity by firms 
from 2011 onward.

32. See Foster, Grim, and Zolas (2016) for more details on this survey and the characteristics 
of R&D- performing firms.
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the survey, combined with the survey weights, is intended to be nationally 
representative, the raw (unweighted) firm counts, which tend to skew heavily 
toward R&D- performing firms, are used.

5.5.4.1  Firm- Level Correlation and Relative Timing of R&D, Patents, and 
Trademark Filings

Table 5.4 presents information on the copresence of innovative activity 
among trademark- filing firms. It shows the fraction of firms with patent 
applications and R&D activity for firms that have filed for a trademark reg-
istration and all firms in the United States. The share of trademark filers with 
patenting and/or R&D activity remains relatively small (between 8 percent 
and 9 percent of trademark- filing firms own at least 1 patent application 
and 3 percent to 7 percent perform R&D). However, table 5.4 indicates that 
trademark- filing firms are 15 to 20 times more likely to file for a patent or 
perform R&D compared to a typical US firm. From the perspective of bet-
ter measuring firm innovation, this result is encouraging. To the extent that 

Table 5.4 Patent application and R&D activity for all firms versus firms with 
trademark filing

All US firms

Year Firms  
% of firms 

with patents  
% of firms 
with R&D  

% of firms with 
patents and R&D

1997 4,700,000 0.40 0.17 0.10 
1999 4,900,000 0.46 0.18 0.11 
2001 4,900,000 0.51 0.19 0.12 
2003 5,200,000 0.53 0.23 0.14 
2005 5,500,000 0.53 0.29 0.16 
2007 5,600,000 0.54 0.32 0.17 
2009 5,300,000 0.58 0.42 0.22 
2011 5,300,000  0.60  0.47  0.24 

Firms with trademark filing

Year Firms  
% of firms 

with patents  
% of firms 
with R&D  

% of firms with 
patents and R&D

1997 126,000 8.33 3.33 1.98 
1999 154,000 8.44 3.31 1.95 
2001 169,000 9.17 3.43 2.07 
2003 182,000 9.34 4.07 2.42 
2005 202,000 9.41 4.85 2.87 
2007 227,000 9.03 5.07 2.91 
2009 241,000 9.13 5.81 3.32 
2011 254,000  9.06  6.69  3.66 

Notes: The figures provide fractions of firms that have ever applied for a patent or performed 
R&D. Patent data comes from USPTO and R&D data from the BRDIS. Figures are rounded 
for disclosure purposes.
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trademark data capture forms of innovation not typically accounted for by 
patents, this finding suggests that broadening the definition of innovating 
firms to include trademark- filing firms can enhance the identification of the 
innovative segment of the firm population. On the other hand, if  most trade-
marks are used merely to differentiate largely homogeneous products rather 
than introduce true product or process innovations, trademark- filing firms 
may contribute little to the understanding of innovative activity by firms.

The picture is very different when considering the copresence of trade-
mark filings among patent applicants and R&D active firms. Among the 
firms that have filed for a patent or performed R&D, table 5.5 suggests that 
the majority have applied for at least one trademark registration, with the 
rate steadily rising over time. Among patent- filing firms, 55 percent had 
applied for at least one trademark registration in 1997, with this figure ris-
ing to nearly 72 percent in 2011. Among R&D- performing firms, 52 percent 
had filed for at least one trademark registration in 1997, and as many as 
68 percent had done so in 2011. More interesting, however, is the change in 

Table 5.5 Copresence of trademark filing, patent applications, and R&D activity

Firms with patent applications 

Year Firms  
% of firms  

with trademarks  
% of firms  
with R&D  

% of firms with  
trademarks and R&D

1997 19,000 55.26 25.79 13.16 
1999 22,500 57.78 24.44 13.33 
2001 25,000 62.00 23.20 14.00 
2003 27,500 61.82 25.82 16.00 
2005 29,000 65.52 30.34 20.00 
2007 30,500 67.21 31.80 21.64 
2009 31,000 70.97 37.10 25.81 
2011 32,000  71.88  39.06  29.06 

R&D-performing firms

Year Firms  
% of firms with  

trademarks  
% of firms 

with patents  
% of Firms with  

trademarks and patents

1997 8,000 52.50 61.25 31.25 
1999 8,800 57.95 62.50 34.09 
2001 9,200 63.04 63.04 38.04 
2003 12,000 61.67 59.17 36.67 
2005 16,000 61.25 55.00 36.25 
2007 18,000 63.89 53.89 36.67 
2009 22,000 63.64 52.27 36.36 
2011 25,000  68.00  50.00  37.20 

Notes: The figures provide fractions of firms that have ever applied for a patent or trademark, 
or performed R&D. Patent data comes from USPTO and R&D data from the BRDIS. Figures 
are rounded for disclosure purposes.
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the proportion of R&D- performing firms seeking patents versus trademark 
registrations. In 1997, more than 61 percent of R&D- performing firms filed 
for at least one patent (versus the 52 percent that applied for at least one 
trademark registration). By 2011, the balance of innovative output changed, 
where only 50 percent of R&D- performing firms filed for at least one patent 
(versus the 68 percent that applied for at least one trademark registration). 
From an innovation measurement perspective, this reversal in output among 
R&D- performing firms supports the notion that for at least a subset of 
firms, trademarks may capture innovative outputs of R&D investment not 
accounted for by patents.

Combined, tables 5.4 and 5.5 hint that trademark filing may be a precur-
sor to innovative activity in the form of patenting or R&D, with trademark 
registration growing in importance among innovative firms. This lends 
some support to the theoretical argument that firms that engage in patent 
and R&D activity also invest in protecting the gains from innovation—
potentially in the form of a higher- quality product, better reputation, or 
larger customer base.

Figure 5.9 shows the distribution of firms based on the timing of patent 
activity relative to the first trademark application filing. Each bar indicates 
the proportion of  patent and trademark filers as a function of  the date 
of their first patent filing relative to the date of the first trademark filing. 
The timing of patent activity relative to the timing of trademark activity 
is grouped into five- year bins before and after time zero—the reference  

Fig. 5.9 Timing of first patenting application relative to first trademark filing for 
firms that do both
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point that indicates the firm filed for its first patent in the same year it filed 
for its first trademark registration. Nearly 10 percent of patent and trade-
mark filers filed for their first patent and trademark registration in the same 
year. Approximately 25 percent of patent and trademark filers filed for their 
first patent one to five years after their first trademark filing, and around 
17 percent filed for their first patent in the one to five years prior to their 
first trademark application. In fact, almost 50 percent of firms with both 
patent and trademark applications filed for their first patents and trademark 
registrations within a five- year window, which strongly supports the notion 
that the two activities are intertwined. With respect to the overall timing of 
the two activities, in the majority of cases (59 percent), the first trademark 
application filing leads to or coincides with the first patent filing. This result 
lends some support to the theoretical argument that firms that trademark 
also invest the returns from accumulated goodwill into product and process 
innovation.

5.5.4.2  Patenting and R&D Spending before and after Trademark Filing

This section analyzes further the link between trademarks and innovation 
by examining issued patents and R&D expenditures by trademark- filing 
firms before and after their first trademark filing compared to a control 
group. It utilizes the same control group of nontrademark- filing firms iden-
tified via propensity score matching as in the analysis of employment and 
revenue above.

Figure 5.10 plots the average number of patents before and after the first 
trademark filing for firms that apply to register trademarks (treated) and 
the matching control firms (untreated). Mean patenting counts are again 
normalized to one for both groups at t = –2 two years before the first trade-
mark filing. Trends in average patenting leading up to trademark filing are 
somewhat different. Average patenting increases for both groups in the year 
prior to filing. However, while the treated group exhibits a large increase in 
the year of filing, the control group’s average patenting declines. After filing, 
average patenting grows at a similar rate for both treated and control firms, 
though the gap does expand two years postfiling. Between t = 2 and t = 5 
growth in the average number of patents is about 30 percent for the treated 
firms compared to only about 15 percent for the control group.

The difference- in- difference model specified in (1) is used to analyze 
innovative activity for treated and control groups before and after the first 
trademark application. The last two columns of table 5.3 report the estima-
tion results for R&D expenditures and the number of issued patents as the 
dependent variables. For both the R&D expenditures and the number of 
patents, the treatment group has higher values for the prefiling period, as 
indicated by the estimated value of βF. As in the case of employment and 
revenue, this finding suggests the likely presence of unobserved factors that 
result in higher patent and R&D activity for treated firms prior to trademark 
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filing. In the postfiling period, average R&D expenditure and patenting by 
treated firms are higher than those of control firms, as the estimated values 
of βFP suggest.

Overall, the results suggest that both selection and treatment effects asso-
ciated with trademark filing are relevant for understanding firm- level inno-
vative activity, as the theory suggests. Further investigation of both of these 
effects with a more stringent matching process to obtain a control group is 
left for future work.

5.6  Conclusion

The progress of  empirical research on trademark activity by US firms 
has been largely hampered by the lack of comprehensive firm- trademark 
linked data. This chapter reports on the construction of a new firm- level 
longitudinal dataset that allows for the tracking of trademark- filing activity 
over the life cycle of a firm. The dataset brings together the USPTO’s Trade-
mark Case Files Dataset and the US Census Bureau’s Business Register and 
the Longitudinal Business Database for the period 1976–2014. Using the 
linked dataset, it is possible to identify if, and when, a firm first applies for a 
trademark. This key event is then tied to firm characteristics and dynamics 
to understand the nature of selection associated with trademark filing as well 
as the treatment effects related to a trademark application.

Fig. 5.10 Normalized average number of patents before and after the first trade-
mark filing, treated vs. control group
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The data are used to examine how firm employment, revenue, R&D expen-
ditures, and patenting change after a firm’s first trademark filing compared 
to their prefiling levels. The analysis suggests the potential presence of strong 
selection and treatment effects associated with trademarks. Compared to the 
general population of firms, first- time trademark filers tend to be younger 
and larger firms. In addition, an initial analysis using a propensity score 
matching exercise indicates that average firm employment and revenue tend 
to be higher for firms after they file for their first trademark compared to 
a control group. For first- time trademark- filing firms, both patenting and 
R&D activity are also higher after the filing, again, compared to a control 
group.

The results also indicate that while most of the firms that have applied 
for trademark registration do not engage in innovative activity as measured 
by patent filings or grants, the proportion of trademark- filing firms with a 
patent application is significantly higher than that of all firms. To the extent 
that trademarks capture firm- level innovative activity not accounted for by 
patents, the relatively small presence of patents in trademark- filing firms and 
the copresence of trademark applications and R&D expenditure without 
any patenting are encouraging in terms of broadening the definition of the 
innovative segment of firms in the economy beyond simply those that have 
patents. Nevertheless, a sizable fraction of  firms with patents and R&D 
activity also tend to have trademark applications. This finding may indicate 
that trademark registrations are used by innovative firms to protect poten-
tial gains from innovation. However, the reverse may also be true. Where 
trademark filing proceeds patent and R&D activity, firms may be investing 
the gains from accumulated goodwill into product and process innovation.

The trademark- firm linked dataset opens up several possibilities for future 
research. For instance, there is a large body of work in the marketing lit-
erature for which the dataset is highly relevant. The theoretical literature 
emphasizes a connection between trademarks and customer acquisition and 
loyalty- building by firms. Various models focus on the role of trademarks 
in reducing consumer search and switching costs, establishing brand loy-
alty and goodwill, and signaling quality.33 In general, by protecting a firm’s 
investments in marketing and reputation- building, trademarks can lead to 
a higher intensity of advertising and marketing expenditures, as trademark 
registrants can better appropriate the benefits from such expenditures. The 
new dataset can be instrumental in testing some of these theoretical impli-
cations.

There is also more to explore regarding the connection between trade-
marks and firm scale and scope. In particular, the role of trademark registra-

33. See, e.g., Landes and Posner (1987, 1988) and Economides (1988) for theoretical argu-
ments on the connection between trademarks and consumer behavior. For recent models of 
firm dynamics under costly and gradual customer acquisition, see Dinlersoz and Yorukoglu 
(2012) and Gourio and Rudanko (2014).
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tion in new product introductions and changes in a firm’s product portfolio 
can be examined. For instance, using changes in the narrowly defined indus-
try classifications for a firm’s products before and after trademark filing, one 
can investigate whether trademark registrations facilitate scope expansion 
into products that are not closely related to a firm’s core product portfolio.

Another avenue of research that can benefit from the new dataset is the 
valuation of  trademarks. The dataset allows for the observation of  first 
trademark registration by a firm, as well as its subsequent trademark regis-
trations, and trademark reassignments. Reputation indicated by a trademark 
is a valuable asset that needs to be protected.34 A reputable name or mark can 
also be traded.35 The information contained in the trademark applications 
and assignments can be used, in conjunction with measures of firm value, to 
attach valuations to trademarks. In addition, the oppositions placed against 
a trademark filing and the resulting procedural outcomes observed in the 
dataset can be used to measure the inherent value of certain trademarks, as 
oppositions would be unlikely if  the trademark was of little value.

Appendix

Data Construction

Given the lack of disambiguated identifiers, such as an EIN, that are shared 
between the TCFD and the BR, the two datasets have to be brought together 
using name and address matching techniques. The current matching effort is 
focused on matching domestic businesses observed in the trademark owner-
ship database to the employer firm universe. Future work will incorporate 
businesses found in the trademark assignments database, which captures the 
transfer of trademarks between businesses, foreign trademark- filing firms 
with domestic establishments, and nonemployer trademark- filing firms. The 
final output of the matching methodology will be firm- level links between 
Census Bureau data and records in the TCFD.

The input frame for the matching process is the ownership databases in the 
TCFD. Several conditions are used to subset the raw owner file records that 
will be considered for matching to the BR. First, the filing, registration, and 
publication dates are used to exclude all trademarks for which the maximum 
year is less than 1976, the earliest year of the BR. Second, the country field is 
used to identify domestic trademark owners. Finally, the owner data file also 
contains certain types of businesses that are unlikely to be covered in the BR. 
These include entities representing federal and state governments as well as 

34. See Cabral (2005) for a review of the theoretical literature on the economics of reputation. 
See also Cabral and Hortacsu (2010) and Cabral (2012) for studies of reputation on the internet.

35. See Tadelis (1999) for a theoretical analysis of reputation as a tradeable asset.

 EBSCOhost - printed on 2/8/2023 7:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



220    Emin M. Dinlersoz, Nathan Goldschlag, Amanda Myers, and Nikolas Zolas

individuals. The owner entity type code is used to exclude these cases from the 
match to the BR. Table 5.A1 shows the count of unique trademarks and owner 
records after applying each restriction to the sample.36 The owner file initially 
contains more than 7 million trademarks and 17 million owner records. This 
reduces to almost 5 million trademarks and 12 million owner records after 
excluding foreign, federal, state, and individuals and those before 1976.

The first step in the matching process is the extraction of all unique name 
and address combinations from the owner data file. The owner data file con-
tains an observation for each owner recorded for each trademark applica-
tion, registration, and publication from 1870 to 2014.37 Name and address 
information are collected at different times during a trademark’s life cycle, 
often for the same business entity. Not only are there multiple instances of 
the name and address information for one or more businesses associated with 
a trademark; there are also different types of business names. For example, 
each record in the TCFD may include “former,” “doing business as,” and 
“composed of” business names. Each owner record also includes two street 
address variables, which correspond to the first and second lines of the own-
er’s street address. In many cases, the owner’s full street address is split across 
these fields. It is not always the case, however, that line 1 should precede line 2. 
For example, line 1 might include the suite number, while line 2 contains the 
street address or vice versa. In order to maximize the chances of identifying 
a match for each business in the TCFD, each unique name (across all name 
types) is combined with combinations of line 1 and line 2 of the street address 
(i.e., line 1, line 2, line 1 concatenated with line 2, and line 2 concatenated with 
line 1). This process produces one or more name and address combinations 
that have the potential to match to the BR for each owner record.

The next step in matching the TCFD data to the BR is the cleaning and 
preparation of both datasets. First, common strings that provide little iden-
tifying information for matching are removed from both datasets. These 
include symbols and punctuation (e.g., “&,” “.,” “@”), common words 

36. Each trademark has one or more “owner records,” or records in the ownership database. 
Each record captures a different stage of the application, review, and registration process.

37. As noted above, we exclude records filed, registered, and published prior to 1976.

Table 5.A1 Input frame

 Input frame  
Trademarks 
(thousands)  

Ownership records 
(thousands)  

Owner file 7,214 17,381 
Excluding pre- 1976 6,907 16,937 
Excluding foreign 5,939 14,407 

 Excluding federal, state, individual  5,048  12,289  

Source: USPTO Trademarks Casefile Database, author’s calculations.
Notes: Counts in thousands.
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(e.g., “and,” “the”), and abbreviations or designations (e.g., “Co.,” “LLC,” 
“LTD”). Additional standardization procedures are used to standardize the 
name, street, and city fields.38 Values in the state field are cleaned and stan-
dardized, and the zip code field is subset to five digits. These cleaning algo-
rithms are applied to the name and addresses from both the TCFD and the 
BR. Once cleaned, the name and addresses from both datasets are matched 
using fuzzy string techniques combined with a blocking methodology.

The matching of the TCFD to the BR proceeds in several steps. First, an 
initial subset of potential matches is identified based on a relatively loose 
name- only match criterion between all unique name and addresses extracted 
from the TCFD and all establishments in the BR.39 All matches not meeting 
this very loose criterion are excluded. Matches of different quality from this 
initial match set are extracted based on combinations of name and address 
fields. These match categories are based on whether the match is on the name 
in conjunction with different address fields (street, city, state, and zip code). 
Next, a string comparator is used to further clean and subset the matches. 
The Jaro- Winkler (JW) string comparator, which takes values ranging from 
zero to one as a function of how similar two strings are, is calculated for the 
TCFD and BR name and city pairs. Additionally, a composite JW score is 
calculated across all three fields. Name- only matches, which tend to be of the 
lowest quality, and matches made using only the name and a single address 
variable are kept only if  the JW score between the name fields is greater than 
0.85.40 Across all match passes, only the highest- quality pass is kept for each 
TCFD name and address. Among the remaining matches, the composite JW 
score is used to select only the highest- quality matches.

The next step of the matching aggregates the establishment- level results 
from the BR match described above to the target firm- level match and inte-
grates those matches with the LBD. From the LBD, the first and last year 
of observation for each firm ID are extracted. All unique combinations of 
TCFD name and address and firm ID are kept. The first and last firm years, 
in combination with the minimum and maximum trademark- filing years 
associated with each TCFD name and address, are used to clean firm- level 
matches. Since trademark filing can plausibly occur well before a firm enters 
the employer universe, all matches that occur within a three- year window 
before and after the firm’s first and last year observed in the LBD are kept.

The final stage of the cleaning algorithm involves additional disambigu-
ation of business names in the TCFD in order to increase the number of 
unique firm- TCFD matches. First, additional name standardization is per-
formed to group matched and unmatched cases. Information from the LBD 

38. These standardization procedures include algorithms found in the SAS Data Quality 
suite.

39. This and other fuzzy name matches are done using SAS Data Quality algorithms. Where 
noted, we use the Jaro- Winkler string comparator to clean matches.

40. This and other cutoff values were reached by visual inspection of the matches and JW 
scores. The score of 0.90 balanced Type I and Type II errors.
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is then leveraged to further reduce multiple matches. In eliminating certain 
duplicate matches, matched firms are required to have positive employment, 
and cases where a firm has more than 10 trademarks and at the same time the 
number of trademarks exceed the number of employees are also dropped. 
Table 5.A2 shows the match quality distribution for the resulting linked data. 
The majority (81 percent) of matches use a combination of name, street, city, 
and state. Note also that less than 10 percent of the matches rely on name 
only, which is a relatively weak criterion that will tend to generate more false 
positives compared to matches with address blocking.

In order to better understand why TCFD name and addresses do not 
receive a firm match, unmatched cases are matched to the nonemployer 
business register (ILBD). The ILBD is based on administrative data on 
income tax returns (Form 1040 with attached Schedule C[s]). In the ILBD, 
some of the observations include individual’s names, while others pertain 
to firm names. To carry out the match, an algorithm is applied to determine 
whether an observation likely represents an individual’s name. Steps gener-
ally similar to the match to the BR are then followed to match the unmatched 
trademarks to the names and addresses appearing in the ILBD. For this 
study, these matches are used primarily to better understand the quality of 
matches to the employer universe. Future work will investigate matches to 
nonemployer businesses and their growth and transition dynamics.

Table 5.A3 shows the match rates between trademarks in the TCFD owner 
file and the LBD and ILBD by decade. This table also reports the percent 
of employer matches that are unique. The overall match rate to the LBD is 
over 83 percent and 2.4 percent to the ILBD. The first point to note is that 
the number of trademarks filed each year has grown substantially over time. 
The match rate to the employer universe has fallen about 16 points between 
the 1980s and the 2010s. The percent of matches that are unique is increasing 
over time, rising from 59 percent in the 1980s to 88 percent in the 2010s. The 
match rate to the nonemployer universe, in contrast to the employer match, 
has been growing since 1990.

Analysis of the underlying matched and unmatched records reveals sev-

Table 5.A2 Match quality distribution

 Match pass  Share of matches  

Name, Street, City, State 81.3 
Name, State, Zip Code 4.8 
Name, Zip Code 0.0 
Name, State 5.1 

 Name Only  8.7  

Source: USPTO Trademarks Casefile Database, Business Register, author’s calculations.
Notes: Match passes listed in order of decreasing quality.
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eral patterns.41 First, the decline in match rates begins in the late 1990s and 
speeds up around 2010. As shown in figure 5.A1, the decline is most pro-
nounced among records identified as “Limited Liability Company” (LLC) 
in the TCFD. The match rate for LLCs falls from about 91 percent in the 
early 1990s to less than 45 percent in 2014. In addition, LLCs are the fastest 

41. For this analysis, only the registered trademarks are considered rather than applications 
for trademarks, since registered trademarks require demonstration of commercial use and thus 
may be better associated with employer businesses in BR and LBD.

Table 5.A3 Match rates by decade

LBD ILBD

Years  Trademarks  match rate  Percent unique  Match rate

1980–89 363,000 88.8 59.0  
1990–99 582,000 88.8 64.6 1.4 
2000–2009 1,058,000 83.9 75.2 2.7 
2010–14  649,000  73.3  87.7  3.8 

Source: Observation counts rounded. USPTO Trademarks Casefile Database, LBD, author’s 
calculations.
Notes: Decades are defined by trademark registration year. Percent unique is the share of 
matches that are to a single firm id. The range of the BR and LBD is 1976 to 2014 and the 
range of the ILBD is 1993 to 2014.

Fig. 5.A1 LBD match rate by legal form of organization
Source: USPTO Trademarks Casefile Database, LBD, author’s calculations.
Notes: Only registered trademarks included. Corporations and LLCs are identified using the 
legal entity type code found in the TCFD.
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growing entity type in the TCFD over this period, rising from about 2,000 
filings in 1990 to almost 100,000 filings in 2014. The fraction of LLCs has 
also been growing over this period in the general population of firms.

To investigate the declining match rate between the TCFD and the LBD, 
several hypotheses for the decline are explored, including deteriorating 
string quality, a compositional shift toward nonemployers, and the growth 
of  informal businesses. First, if  the quality of  the string variables in the 
TCFD (e.g., name and address fields) declines over time, this could adversely 
affect the match rate to the LBD. To explore this hypothesis, measures of 
mean string length are constructed over time for both names and addresses. 
The average name length and match rate exhibit very similar time series pat-
terns with a simple correlation of 0.96. Moreover, the average string length 
of the name variable falls from almost 24.5 characters to fewer than 22.5, 
which could represent an 8 percent loss of  information over the period. 
Figure 5.A2 shows the relationship between string length and match rate 
over time. Both relatively short and long string names have lower match 
rates. Importantly, the match rate declines over time for all string lengths. 
This implies that the decreasing information in the TCFD name field is 
unlikely to account for the declining match rate to the LBD.

Another potential explanation for the decline in match rates would be a 
compositional shift toward nonemployers among businesses filing for trade-
marks. As shown in Table 5.A3, the match rate to the ILBD does increase 
over time. However, the increased matches to the nonemployer universe are 

Fig. 5.A2 Match rate and string length
Source: USPTO Trademarks Casefile Database, LBD, author’s calculations.
Notes: Match rates on the y axis suppressed to avoid the disclosure of sensitive information.
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not enough to make up for the decline in the LBD match rate. Assuming 
all TCFD businesses not found in the LBD were true nonemployers, the 
ILBD match rate would need to be at least five times larger to fill the gap in 
the falling employer match rate.42 It is also the case that the vast majority 
of records in the ILBD are person records derived from tax filings for sole 
proprietorships. These records often have the individual filer’s name as the 
name of record in the ILBD. Manual inspection of the unmatched cases 
later in the time series suggests that the vast majority of unmatched cases 
include business names rather than person names.

If  a growing share of trademark application filings are associated with 
informal or not- yet- implemented business ideas, one would expect the match 
rate to employer firms to fall over time. A number of the unmatched cases 
filed in recent years appear to have a web presence on platforms such as Etsy 
or Facebook. It could be the case that either these types of businesses do not 
earn enough revenue to file a Schedule C or the businesses were operated 
only sporadically. According to the 2017 Internal Revenue Service (IRS) 
instructions for form 1040, self- employed individuals who had net earnings 
of less than $400 were not required to file a Schedule C and would therefore 
not appear in the ILBD. Additionally, the 2017 IRS instructions for form 
Schedule C clarify that a “sporadic activity or a hobby does not qualify 
as a business.” With trademark application fees as low as $275 for elec-
tronic applications, it is possible that some individuals file for trademarks in 
order to protect the potential exploitation of a business idea that otherwise 
remains a hobby.43 As with a compositional shift toward nonemployer busi-
nesses, a growing share of informal businesses in the TCFD would prove the 
declining match rate to the BR to be innocuous.

Finally, the quality of the matches is analyzed. A random sample of over 
350 matches is classified as either a true or false positive by clerical review. 
Once classified, the precision of the matching methodology can be mea-
sured. The precision measure, commonly used to evaluate the quality of 
information retrieval algorithms, captures the proportion of matches that 
are true matches. The match turns out to be fairly precise, with an overall 
precision score of 94 percent, meaning that 94 percent of the matches repre-
sent true matches based on the sample analyzed. The precision of matches is 
relatively stable over time, falling slightly by the end of the period.

Name and address matching techniques result in robust linkages between 
the information in the TCFD and Census Bureau information on businesses 

42. As an additional validation we compare the share of nonemployers specifically among 
LLCs in the BR from 2007 to 2014, years for which we are able to distinguish LLCs. The share 
of nonemployers among LLCs is actually falling in the BR over time, a finding inconsistent 
with a compositional shift toward nonemployers among the universe of  LLCs driving the 
decline in match rates.

43. Trademark applications may be filed as “use in commerce” or “intent to use in commerce.” 
In either case, in order for an application to obtain registration, the USPTO requires proof that 
a trademark is used in commerce. See Graham et al. (2013) for details.
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in the BR and LBD. The TCFD is relatively large, containing over 5 mil-
lion trademarks. Over the period, about 83 percent of these trademarks are 
matched to at least one firm ID. While the match rate somewhat declines 
over time, the ambiguity of those matches—that is, how many TCFD rec-
ords end up being linked to multiple firm IDs—also declines. The decline 
in match rate is concentrated among records flagged as LLCs in the TCFD. 
Several potential explanations for the decline in the employer match rate 
are explored, but none are able to entirely explain the patterns observed in 
the data. Ultimately, matches prove to be of high quality, with a precision 
score of over 90 percent.
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6.1  Introduction

Start- ups and entrepreneurial firms contribute disproportionately to 
job creation and productivity growth (Decker et al. 2014; Acemoglu et al. 
2018). The workforce composition of young firms plays an equally impor-
tant role in shaping dispersion in start- up outcomes (Audretsch, Keilbach, 
and Lehmann 2006; McGuirk, Lenihan, and Hart 2015). Human capital, 
whether acquired through experience (Glaeser, Kerr, and Ponzetto 2010), 
on- the- job training (Lazear and Shaw 2007; Bender et al. 2016; Bloom et al. 
2014), or university- based research experience, is an important determinant 
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of growth and survival for young firms. Moreover, this relationship may 
be particularly salient for innovative, R&D- intensive, and high- tech firms, 
who increasingly demand a highly trained workforce. This chapter contrib-
utes to this literature by developing new measures of workplace experience, 
particularly within R&D- intensive and high- tech firms. We also make use 
of an entirely new data source that directly measures research experience. 
We examine the relationship between those measures and start- up survival, 
growth, and innovative activities such as patenting and trademarking.

We describe the construction of four new human capital measures derived 
from two different sources. The first is a direct measure of research experi-
ence derived from a new dataset drawn from the human resource files of a 
set of research- intensive universities. The data capture all payroll transac-
tions for all individuals—including undergraduate students, graduate stu-
dents, and postdoctoral fellows—employed on funded scientific projects at 
22 major universities (Lane et al. 2015). These data are the first to directly 
measure the human capital developed through project- level investments in 
university science. The second, third, and fourth measures are indirect in 
nature. They are drawn from LEHD (Longitudinal Employee- Household 
Dynamics) and W- 2 data and create new worker- level measures of human 
capital based on whether each worker has worked in R&D labs, high- tech 
businesses, or universities.

We also describe the construction of two new datasets on start- ups. The 
first of  these is a Startup Firm History File drawn from the Longitudi-
nal Business Database (LBD), supplemented with additional information 
from the Census Bureau’s Business Register. In addition, we create a Startup 
Worker History File derived from worker- level data on jobs and earnings. 
These new files provide a national frame of start- ups, their survival, and their 
growth between the years 2005 and 2015, as well as a national frame of all 
workers affiliated with these start- ups.

Our results suggest that a one- worker increase in the number of high- 
human- capital employees in a start- up firm’s workforce is associated with 
a lower probability of survival to the next period by 0.74 to 4.8 percentage 
points, depending on the experience type. However, for start- ups that do 
survive to the first period, the hiring of one of these workers in the founding 
year is associated with a 1.3 to 4 percentage point increase in employment 
growth and a 2.2 to 5 percentage point increase in revenue in the following 
year. This is suggestive evidence that high- human- capital employees elect 
to go to more high- risk start- ups that exhibit “up or out” dynamics—either 
exiting or growing quickly. On the innovation side, the addition of one high- 
human- capital individual is positively related to patent and trademark out-
comes in the next period, with patent filings increasing by 0.5 to 9.2 percent-
age points and trademark filings increasing by 1.5 to 7.5 percentage points in 
the following year. Our measures of human capital also explain a significant  
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amount of the variation in innovation outcomes, where the inclusion of our 
basic measures of human capital help explain an additional 40 percent of 
variation in patenting outcomes and 11 percent of variation in trademark-
ing outcomes.

The direction of  causality may be complex in this setting. Start- ups 
with inherently risky ideas or production technologies may exhibit higher 
demand for high- human- capital workers. Moreover, there may be several 
important channels through which high- human- capital workers impact 
young firms. First, high- human- capital workers may simply represent an 
important input to the firm’s production technology. Alternatively, there 
may be important interaction effects between high- human- capital workers 
and the tacit knowledge they bring to the firm. Regardless of the mechanism, 
the results presented in this chapter are consistent with the view that there 
is a positive and significant relationship between workforce experience and 
business start- up outcomes.

6.2  Background

Our focus on start- ups is informed by literature that suggests that young 
entrepreneurial businesses are important for introducing and diffusing 
innovations in the economy. Several authors have shown indirect linkages 
between formal investments in research and innovation and entrepreneur-
ship and economic growth (Bania, Eberts, and Fogarty 1993; Lowe and 
Gonzalez- Brambila 2007; Hausman 2012). In particular, the work of 
Akcigit and Kerr (2018) shows that the relative rate of major inventions is 
higher in small firms and new- entrant firms. Guzman and Stern (2016) note 
that the early- stage choices of  start- ups—their “digital signatures”—are 
particularly important in predicting their future success.

There is a growing literature linking human capital to the survival and 
growth of such new businesses (Audretsch, Keilbach, and Lehmann 2006; 
McGuirk, Lenihan, and Hart 2015). In particular, the decision to start a 
business and its subsequent productivity and success are associated with 
having an entrepreneurial workforce (Glaeser, Kerr, and Ponzetto 2010; 
Syverson 2010). Related work also suggests that highly innovative indi-
viduals make “exceptional” contributions to economic growth (Kerr et al. 
2016). Indeed, the personnel economics and management literatures draw 
on extensive studies of businesses and human resource practices, which sug-
gest that many productive businesses either invest in job- based training or 
seek to hire well- trained individuals (Lazear and Shaw 2007; Bender et al. 
2016; Bloom et al. 2014). A related literature links external R&D invest-
ment and the success of the R&D efforts of individual firms (Tambe 2014). 
In- depth studies of the components of intangible assets in contributing to 
firm productivity and success invariably mention the importance of train-
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ing (Corrado, Hulten, and Sichel 2005). In addition to affecting innovative 
outcomes, human capital measures such as on- the- job training have also 
been linked to firm productivity (Black and Lynch 1996; Bartel et al. 2014).

For our purposes of measuring the relationship between human capital 
and start- up outcomes, we draw on two sets of literature. The first has stud-
ied human capital acquisition through learning by doing and experience. 
The second addresses the transmission of new knowledge through the flows 
of individuals from one business to another.

The role of experience in terms of learning how to perform complex new 
tasks through trial and error has been extensively discussed in the endog-
enous technical change literature (Romer 1990). There is also a great deal 
of  evidence to support the notion that past experience imparts valuable 
business skills (Lafontaine and Shaw 2016) and that firm growth can be 
significantly affected by workers with experience in R&D activities (Jones 
2002; Acemoglu et al. 2013).

The role of university research training specifically on innovative activity 
and business start- ups is supported by compelling anecdotal evidence. This 
includes linking the growth of Silicon Valley to the presence of Stanford, 
the success of Boston to the excellent set of universities in the area, and the 
arising of the Research Triangle to the research activity of Duke University, 
the University of North Carolina, and North Carolina State. An extensive 
literature ties regional economic development clusters to the presence of 
active research universities, suggesting that research- trained individuals flow 
into innovative new businesses (Hausman 2012; Glaeser, Kerr, and Ponzetto 
2010; Kantor and Whalley 2013, 2014). To this end, Corrado and Lane note 
that the data needed to determine the economic and social value created by 
innovation in organizations should include “detailed data on workers—
their skills, their responsibilities, and their knowledge—including their flows 
across companies were desired for transformative research on the combined 
process of entrepreneurship and innovation” (Corrado and Lane 2009).

Taken together, these various literatures are consistent with the notion 
that hiring workers with experience is a way firms gain tacit knowledge, par-
ticularly when ideas are complex (Duranton and Puga 2004; Gertler 2003). 
The work of Lee Fleming and coauthors, for example, suggests that if  there 
are impediments to research- experienced workers moving from one firm 
to another, less innovation occurs (Fleming, King, and Juda 2007; Marx, 
Singh, and Fleming 2015). Our own work suggests that research- trained 
workers are more likely to work at firms with characteristics closely linked 
to productivity (Zolas et al. 2015).

However, there has been little work done in terms of measuring the experi-
ence of workers at different types of firms. The Annual Survey of Manufac-
tures provides counts of production and nonproduction workers; most other 
business data sources simply provide counts of employees. In principle, a 
particularly useful source of evidence in this context is economy- wide linked 
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employer- employee data, such as the LEHD data (Abowd, Haltiwanger, and 
Lane 2004). Abowd, Haltiwanger, and Lane (2005) have used linked data to 
compute person- specific measures of human capital but do not directly com-
pute measures of research experience. While some work has shown that there 
are returns to experience at R&D- performing firms (Barth, Davis, and Free-
man 2016), there has been no study to our knowledge that directly measures 
experience in high- tech firms, R&D labs, universities, or scientific projects 
and ties it to start- up outcomes. In this chapter, we analyze the link between 
these types of experience and among workers at start- ups and the outcomes 
of those start- ups, including survival, growth, and innovative activity.

6.3  Framework, Data, and Measurement

We follow much of the literature (Lazear and Shaw 2007; Bender et al. 
2016; Bloom et al. 2014) in adopting a simple reduced- form framework to 
examine outcomes for start- ups in terms of their survival, employment and 
revenue growth, and innovative activities, such as being granted patents 
and registering trademarks. Conceptually, outcomes (Y ) for start- up firm 
f at time t are driven by the quantity and quality of human capital (HK) it 
employs as well as standard controls such as capital (K), technology (A), and 
external factors (X) such as macroeconomic conditions and industry factors:

(1) Yft = F(Aft,Kft,HKft,Xft).

There is some evidence that the effect of human capital will be important for 
businesses whose production processes involve performing complex tasks 
(Ichniowski, Shaw, and Prennushi 1997). As a result, the analysis that fol-
lows provides separate analyses for high- tech businesses; the scale of the data 
permits such detailed analyses. The rest of this section describes how such 
businesses are identified, how the human capital measures are constructed, 
and how start- up outcomes are measured.

6.3.1  Identifying and Classifying Start- Ups

The Startup History file is constructed as an unbalanced panel dataset. 
The primary frame for the data is the LBD, supplemented with additional 
information from the Census Bureau’s Business Register, upon which the 
LBD is based. We utilize this file to identify start- ups as age- zero firms. 
Once the start- ups have been identified, we supplement the data with geo-
codes (state-  and county- level FIPS, along with Census Tract information 
if  available) and Employer Identification Numbers (EINs) taken from the 
Business Register. These variables are used to subsequently characterize the 
workforce associated with each start- up gathered from both LEHD and 
W- 2 records. The full file contains data on employment, payroll, industry, 
geography, firm type, and birth/death of the firm.

For the purpose of characterizing worker experience, firms are classified 
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as R&D labs, high- tech, or universities. The R&D lab measure is created by 
identifying R&D laboratories within R&D- performing firms. First, we iden-
tify R&D- performing firms using the Business R&D and Innovation Survey 
(BRDIS) and the Survey of Industrial Research and Development (SIRD).1 
A firm is classified as an R&D- performing firm if it has positive R&D expen-
ditures during the year the employee was affiliated with the firm. R&D lab-
oratories are identified by establishment- level industry codes, specifically 
North American Industry Classification System (NAICS) 5417, which is 
defined as “Scientific Research and Development Services.” The high- tech 
definition is based on the relative concentration of science, technology, engi-
neering, and math (STEM) employment by industry as in Hecker (2005) 
and Goldschlag and Miranda (2020). We use the high- tech classification 
to both subset the universe of start- ups within a year and to characterize 
worker experience, identifying individuals with prior experience in high- tech 
industries. The university measure is derived from Integrated Postsecondary 
Education Data System (IPEDS) and Carnegie Institute data, which provide 
a frame of universities in the United States. We use the national university 
research outlays collected by the National Center for Science and Engineer-
ing Statistics at the National Science Foundation to subset our sample of 
universities to the top 130 research universities, which account for 90 percent 
of total federally funded university- based R&D expenditures.

While capital, financing, management, and macroeconomic conditions 
are not directly measured in the data, because the data are longitudinal, we 
can include firm and time/industry/geography fixed effects.

6.3.2  Human Capital Measures

The first three human capital measures are derived from a new dataset 
called the Startup Worker History File, which characterizes the workforce 
associated with each start- up in its first year. It is created from the universe 
worker- level data on jobs derived from administrative records in both the 
LEHD and W- 2 records and covers the period 2005–15.

The frame covers each paid job for each worker from 2005 to 2015 as 
reported at both the EIN level via Internal Revenue Service (IRS) form W- 2 
and state- level unemployment insurance wage records. The latter underlie 
the core LEHD infrastructure (Abowd, Haltiwanger, and Lane 2004) used 
to generate the Quarterly Workforce Indicators (QWI) and are necessary 
to identify the establishment for the bulk of multiunit firms (Abowd et al. 
2009). The combined data includes more than 3 billion person- EIN- year 
observations (approximately 70 percent match across the W- 2 and LEHD 
universes, 20 percent are found only in the W- 2 records, and 10 percent 
are only found in LEHD). These data are enhanced with the LEHD Indi-
vidual Characteristics File (ICF), which includes demographic data on  

1. We use the SIRD to identify R&D firms between 2005 and 2007 and BRDIS for 2008–14. 
Firms with positive expenditure in R&D in a given year are classified as R&D performing.
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persons, including sex, age, race, and place of birth. We are able to link 43 
million of the 3 billion person- EIN- year observations to start- ups in their 
birth year, giving us an average of nearly 4.5 million person- start- up obser-
vations each year.2

The first three measures of  human capital are indirect in nature, since 
they do not directly measure research experience. They are derived from 
an individual’s work history in the years prior to being employed at a given 
start- up in its first year and capture employment experience in R&D labs, 
high- tech businesses, and universities. In the case of R&D labs, we include all 
workers employed in an R&D- performing firm in an R&D lab (2007 NAICS 
code 5417). We classify workers as having high- tech experience if  they have 
worked in a high- tech industry and their earnings in those positions fall 
within the top half  of the earnings distribution within that industry for a 
given year. This earnings condition minimizes the likelihood of classifying 
workers in support or administrative roles as having high- tech experience. 
We use a similar approach to classify workers with experience at national 
research universities.

The fourth, more direct measure is derived from UMETRICS data (Lane 
et al. 2015), which include, at the time of writing, 22 universities accounting 
for about 26 percent of all federally funded research.3 The data are derived 
from universe personnel and financial records of participating universities. 
Although four files are provided by each university, the key file of interest 
in this project is the employee file. These individuals will compose a subset 
of the university experienced workers described previously. For each funded 
research project, both federal and nonfederal, the file contains all payroll 
charges for all pay periods (identified by period start date and period end 
date). This includes links to both the federal award ID (unique award num-
ber) and the internal university identification number (recipient account 
number). In addition to first name, last name, and date of birth, the data 
include the employee’s internal deidentified employee number and the job 
title (which we map into broad occupational categories). The Catalog of 
Federal Domestic Assistance (CFDA), which is included in each award iden-
tifier, allows us to classify projects by the funding agency. The years covered 
by each university’s data vary, as each university provided data as far back 
as their record keeping allowed.

6.3.3  The Start- Up Worker History File

The start- up worker history file, from which our human capital measures 
are derived, is constructed in three steps. The first step involves identifying 

2. This figure differs from the reported Business Dynamics Statistics (BDS), which calculate 
employment at start- ups at a specific point in time (March 12). Our figures are higher, reflecting 
employee- employer transitions (i.e., workers who work briefly for a start- up and then move to 
a different job). The 48 million observations represent 37.8 million unique individuals.

3. UMETRICS stands for Universities: Measuring the Impacts of Research on Innovation, 
Competitiveness and Science.
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person and firm characteristics in the years prior to start- up. The LEHD 
and W- 2 data provide worker histories for 260 million individuals for each 
employer (at the EIN level) for each year in the period 2005–15. Their indi-
vidual characteristics are captured by matching to the ICF, which provides 
information on date of birth, foreign- born status, and sex.

The EIN of their employers is then matched to the BRDIS/SIRD data 
to determine whether the employer is an R&D- performing firm. There are 
74,000 of those EINs and 420,000 resulting EIN- year observations. A subset 
of these records will be associated with the R&D lab NAICS industry. The 
EIN is also matched to firms in 61 six-digit high- tech industries. Employ-
ment on a grant is determined by a match to UMETRICS data; there are 
340,000 research- experienced individuals between 2005 and 2015.

Start- ups are identified as firms of age zero. The total worker history file 
thus has 530.3 million protected identification key (PIK)- EIN- year start- up 
observations. Of those, 43.2 million observations are associated with start- 
ups in year zero.

Figure 6.1 provides a graphical illustration of the process.
The second step involves measuring human capital at the start- up level. 

There are 4.9 million EINs associated with age- zero firms in the data, of 
which about 35,000 have hired individuals with work experience in R&D- 
performing labs—the number of  such employees totals 67,000. About 
371,000 EINs have hired at least one individual with high- tech experience—
the number of these employees totals 806,000. About 442,000 EINs have 
hired at least one university- experienced employee; the number of  these 
totals 882,000. There are about 11,000 start- ups that have hired a total of 
13,000 individuals with research experience at the UMETRICS universities. 
The process is described graphically in figure 6.2.

The third and final step involves merging the start- up EIN file with the 

Fig. 6.1 Start- up worker history file
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Start- Up Firm History File, classifying start- up types and outcomes at time 
t = 0 and calculating how many survive to the year subsequent to their birth. 
That information is graphically presented in figure 6.3. Of the 4.9 million 
start- ups we observe, 3.4 million survive to the next period, or about 69 per-
cent. This compares to 71 percent for start- ups with at least one employee 
with R&D lab experience, 72 percent for high- tech and university experience, 
and 64 percent for research experience.

6.3.3  Start- Up Outcomes

While a wide variety of outcome measures can be generated, here we focus 
on survival to period t + 1, employment growth between t and t + 1, revenue 
growth between t and t + 1, patenting in t + 1, and trademarking in t + 1.4 
Survival is a binary indicator for start- ups that have positive employment 
in t + 1. Employment growth and revenue growth are calculated as the log 
difference of  employment between t and t + 1, which can be interpreted 
as a percentage change. Patenting and trademarking in t + 1 is measured 

4. We track outcomes only to t + 1 due to limitations on how far back in time each UMET-
RICS institution’s data goes. Outcomes measured further in the future would limit the sample 
of start- ups and individuals under consideration.

Fig. 6.2 Creating start- up file

Fig. 6.3 Start- up history file
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as applying for a patent in t + 1 that is eventually granted and filing for a 
trademark in t + 1 that is eventually registered.

Start- ups are linked to patent grants and trademark filings through 
existing crosswalks between United States Patent and Trademark Office 
(USPTO) and Census data. Patent linkages are based on a triangulation 
methodology first described in Graham et al. (2018). Their linkage meth-
odology simultaneously leverages information on both patent inventors 
and assignees in combination with job- level information from the LEHD 
to distinguish between true and false matches. By using more informa-
tion than traditional patent- linkage efforts (e.g., fuzzy business name and 
geography), the triangulation match produces more and higher- quality 
linkages. Trademarks are matched to start- ups using the match described in 
chapter 5 of  this volume (Dinlersoz et al.). The business name and address 
information found in the USPTO’s Trademark Case File Database are 
used to create firm- trademark linkages. To measure innovative outcomes 
of  start- ups, we identify whether a start- up applied for a patent in the year 
after its birth (t + 1) that was eventually granted. Similarly, we identify 
whether each start- up filed for a trademark in t + 1 that was eventually 
registered.

6.4  Basic Facts

This section establishes some basic facts on the human capital composi-
tion of start- ups and their outcomes.

6.4.1  Start- Up Facts

We begin by highlighting some facts regarding start- ups and their out-
comes. Between 2005 and 2015, one- year survival rates typically hover 
around 68 percent but are higher for high- tech start- ups in every year. As is 
well known, the number of start- ups dropped in 2007 by 25 percent (rela-
tive to 2005) and by 33 percent the following year—by 2013, the start- up 
count was still at the same level. High- tech start- up employment follows a 
similar pattern: the total number of employees at t = 0 declined by more than 
30 percent between 2005 and 2014.

It is rare for start- ups to have high- human- capital workers as employees in 
their first year.5 Approximately 0.25 percent of employees at start- ups have 
experience working in an R&D laboratory, around 2.5 percent have experi-
ence working at a high- tech firm, and 2 percent have been linked through 
their earnings with a research university. The proportion of start- ups that 
have individuals formerly paid on research grants is even smaller, with fewer 

5. It is important to keep in mind that the results are left- censored, as the LEHD has some-
what limited coverage prior to 2000.
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than 0.05 percent of employees being linked to a research grant from one of 
the 22 UMETRICS universities.

Table 6.1 provides some information about the characteristics of start- ups 
in their initial year of existence. The vast majority of start- ups, across all 
start- up types, start off very small in their first year: 75 percent of all start- 
ups have fewer than 5 employees at time t = 0; more than 50 percent of start- 
ups have 2 or fewer employees. Fewer than 5 percent of start- ups have more 
than 20 employees in the initial period. While the average revenue for start- 
ups exceeds half  a million dollars per year, this measure is somewhat skewed, 
as the median start- up generates less than a quarter million dollars in its first 
year, with the median revenue being even smaller in high- tech firms. While 
these size characteristics are mostly consistent across firm types, the payroll 
per employee and innovation measures are quite different. High- tech firms 
offer the highest mean payroll per employee, paying nearly twice as much 
as a typical start- up, and have innovation rates (as measured by patents and 
trademarks) that are three to five times higher than the typical start- up.

The dataset also enables us to describe the human capital composition of 
the start- up workforce. Table 6.2 documents the employment composition of 
all start- ups in the left- hand panel and high- tech start- ups in the right- hand 
panel. Individuals in start- ups that have at least one high- tech- experienced 
employee are younger, less likely to be female or black, more likely to be 
foreign born, and more likely to be Asian than other start- ups. Individuals in 
start- ups that have at least one university-  or research- experienced employee 

Table 6.1 Start- up statistics at year 0

All start-ups  Mean  Fuzzy median  Standard deviation

Employment 5.6 2.0 16.5
Payroll per employee (thousands) 29.6 17.7 84.0
Revenue (thousands) 540.2 232.5 958.7
Patents 0.02 — 3.1
Trademarks  0.06  —  0.7

High-Tech Start-ups  Mean  Fuzzy median  Standard deviation

Employment 4.0 1.5 14.4
Payroll per employee (thousands) 54.4 39.8 64.8
Revenue (thousands) 428.9 181.2 824.4
Patents 0.11 — 10.2
Trademarks  0.20  —  1.2

Notes: Statistics calculated pooling 2005–15 start- ups in the LBD and tabulating the first- year 
statistics. Because employment figures are captured at a stationary point in time (March 12), 
if  a firm is shown to have zero employment in their birth year, then the following year’s em-
ployment is taken as the employment at t = 0. Fuzzy medians are calculated by taking the 
mean of firms between the 45th and 55th percentile levels. Real revenue is in 2009 dollars.
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are even younger but are more likely to be female; research- experienced 
start- ups are more likely to be Asian and less likely to be black.

The demographic differences are even starker among start- ups in high- 
tech industries. Overall, employees in these start- ups are less likely to be 
female, more likely to be foreign born, much less likely to be black, and 
much more likely to be Asian. These patterns are even stronger for those 
with university and research experience.

The literature suggests that high levels of human capital should be dis-
proportionately valued by firms with complex production processes (Abowd 
et al. 2005). That is borne out by our data. Even though high- tech start- 
ups account for only 4.4 percent of all start- ups in the United States, they 
account for 17 percent of start- ups hiring at least one R&D- experienced 
worker, 36 percent of start- ups hiring high- tech workers, 6 percent of start- 
ups hiring university- experienced workers, and 8 percent of start- ups hiring 
research- experienced workers.

Of course, the first three human capital measures, while extremely valu-
able in measuring potential research experience (in the same spirit, but in 
more detail, than older measures such as employment tenure and labor mar-
ket experience), include a variety of workers. 

The direct measures offered by UMETRICS enable us to tease out the 
relationships in more detail. Table 6.3 shows the subset of start- ups who 
hired workers employed on research grants in the 22 UMETRICS universi-
ties by funding source. In all cases, start- ups that hired funded researchers 
were more likely to be high- tech—the ratio is particularly high for those 
hiring individuals who worked on grants funded by the National Science 
Foundation, the Department of Defense, and the Department of Energy.

The detail included in the UMETRICS data allows us to similarly char-

Table 6.3 Distribution of start- ups hiring research experienced workers by funding source

  NIH  NSF  DOD  DOE  
Other 
federal  Nonfederal

Number of start- ups hiring 
UMETRICS workers 3,500 1,900 700 400 5,400 3,000

Proportion of start- ups in  
high- tech (%) 7.2 16.8 21.0 17.4 6.4 9.4

Ratio relative to proportion of all 
start- ups in high- tech (4.4%)  1.64  3.82  4.77  3.95  1.45  2.14

Notes: Statistics calculated pooling 2005–15 start- ups in the LBD and tabulating the funding sources for 
each of the UMETRICS experienced workers. UMETRICS workers can be funded through multiple 
agencies and start- ups can hire multiple UMETRICS experienced workers, so that the counts are not 
mutually exclusive. Figures have been rounded for disclosure purposes. (D) indicates that the number has 
been suppressed for disclosure.
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acterize the propensity to be in high- tech industries by the skill level of 
researchers, as reported in table 6.4. Start- ups hiring graduate students and 
faculty are much more likely to be high- tech than other start- ups; the pattern 
for undergraduate hiring is much more similar to the start- up distribution 
as a whole.

Finally, the data enable us to drill down into the more detailed industry 
distribution of start- ups. Table 6.5 shows vast compositional differences in 
the worker types of high- tech start- ups within narrowly defined industries. 
More than 85 percent of  all high- tech start- ups are in the fields of  com-
puter design (NAICS 5415), engineering (NAICS 5413), or R&D laborato-
ries (NAICS 5417). More than half  of high- tech start- ups are in computer 
design. While there is some variation in the shares of each worker type across 
these industries, more than 80 percent of each of the worker types are affili-
ated with a start- up in one of those three industries. Although only 5 percent 
of high- tech start- ups are R&D labs, almost two- thirds of start- ups who 
hired workers with R&D experience and over one- third of start- ups hiring 
workers with research experience are R&D labs.

6.4.3  Start- Up Outcomes and Human Capital Composition

This section provides some initial descriptive results about the link 
between workforce experience and start- up outcomes (survival to period  
t + 1, employment growth to t + 1, Revenue growth to t + 1, patent in t + 1, 
and trademark in t + 1). We start by first exploring the proportion of start- 
ups that experiences each type of outcome considered.

Figure 6.4 provides some useful initial insights about start- up outcomes. 
Although, by and large, start- ups that hire workers with R&D, high- tech, 
and university experience are more likely to survive than those that do 
not, start- ups that hire UMETRICS- experienced individuals show about 
the same survival rate as the typical start- up. Moreover, in the analyses 

Table 6.4 Distribution of start- ups hiring research- experienced workers by occupation

  Faculty  
Graduate 
student  Postgraduate  Undergraduate  Other

Number of start- ups 3,500 1,900 700 400 5,400
Proportion of start- ups in  

high- tech (%) 12.0 15.2 9.8 6.0 8.3

Ratio relative to proportion of all 
start- ups in high- tech (4.4%)  2.73  3.45  2.23  1.36  1.89

Source: LBD combined with UMETRICS worker file.
Notes: Statistics calculated pooling 2005–15 start- ups in the LBD and tabulating the funding sources for 
each of the UMETRICS experienced workers. Start- ups can hire multiple UMETRICS experienced 
workers so that the counts are not mutually exclusive. Figures have been rounded for disclosure purposes. 
(D) indicates that the number has been suppressed for disclosure.
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Table 6.5 Industry sector of high- tech start- ups at year 0

All start-ups
Start-ups hiring workers with

Start-up sector  Counts  
Distribution 

(%)  

R&D 
experience 

(%)  

High-tech 
experience 

(%)  

University 
experience 

(%)  

Research 
experience 

(%)

AERO MANU 700 0.30 0.18 0.36 0.34 (D)
COMM MANU 700 0.30 0.27 0.36 0.34 (D)
COMP DESIGN 128,100 54.28 14.64 53.80 46.21 40.83
COMP MANU 800 0.34 0.27 0.29 0.34 (D)
DATA PROCESS 6,700 2.84 1.00 2.99 4.14 4.17
ENGINEER 61,500 26.06 6.36 28.47 20.69 14.17
INFO SERVICE 8,800 3.73 0.91 1.82 5.86 5.00
INSTRUM MANU 1,800 0.76 0.91 1.02 1.03 1.67
INTERNET 1,300 0.55 0.18 0.58 0.69 (D)
ISP 2,600 1.10 0.18 1.09 0.69 (D)
OIL GAS 4,500 1.91 0.18 2.04 1.03 (D)
PHARMA 1,100 0.47 1.64 0.58 1.03 1.67
RD LAB 12,900 5.47 67.82 3.80 14.14 28.33
SEMI MANU 1,600 0.68 0.91 0.88 1.03 1.67
SOFTWARE 3,500 1.48 0.82 1.75 2.76 4.17

Total  236,000  11,000  137,000  29,000  1,200

Notes: Statistics calculated pooling 2005–15 start- ups in the LBD. Figures have been rounded for disclo-
sure purposes. (D) indicates that the number has been suppressed for disclosure.

Fig. 6.4 Outcomes of all start- ups, t + 1
Notes: Figure shows the share of each start- up sample that experiences each outcome.
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that follow, we find that the higher survival rates for firms that hire high- 
human- capital workers are primarily a compositional effect. Controlling 
for other characteristics of  the start- up, such as industry and size, these 
firms are generally less likely to survive. Consistent with an “up or out” 
dynamic, start- ups hiring high- human- capital individuals are more likely to 
see employment growth than those in the economy at large, and this is par-
ticularly true for UMETRICS start- ups. The picture is a little different for 
revenue growth—UMETRICS start- ups have lower revenue growth. Patent 
and trademark activity are consistently substantially higher for all start- ups 
hiring experienced workers—and UMETRICS start- ups are second only to 
start- ups that hire R&D- experienced workers in both of these dimensions 
of innovation. As figure 6.5 shows, an almost identical pattern holds true, 
albeit at different levels, for high- tech start- ups.

For high- tech start- ups, we see a greater proportion of firms patenting and 
trademarking, especially among start- ups with high- human- capital workers. 
The “up- or- out” dynamic is even clearer for start- ups with research- trained 
workers in high- tech industries, which are less likely to survive, more likely 
to hire additional employees, and more likely to trademark.

6.5  Analysis

In this section, we expand on the framework provided in equation (1) 
and formalize our model to control for a number of  nonhuman capital 

Fig. 6.5 Outcomes of high- tech start- ups, t + 1
Notes: Figure shows the share of each start- up sample within high- tech industries that experi-
ences each outcome.
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characteristics. We assume that the functional form of equation (1) is a 
linear combination of exponential functions, allowing us to use a log- linear 
estimation and calculate multiple outcome measures for each start- up (sur-
vival, employment growth, revenue growth, patenting, and trademarking) 
one year after the birth of the firm. We regress these outcomes against the 
start- up’s workforce and other characteristics in the year of firm birth (t = 0).

Our main empirical specification is as follows:

(2) Yf = + 1 ln EARNf 0 +
k=1

9

kSIZEkf 0 + 2 ln AGEf 0 + 3 ln FEMALEf 0

+ 4 ln FOREIGNf 0 + 5 lnRDf 0 + 6 lnHTf 0 + 7 lnUNIf 0

+ 8 lnResearch Experiencef 0 + .

The key measures of interest are the workforce human capital measures—
the number of workers who have worked in R&D- performing firms, high- 
tech firms, and universities—as well as the number who have direct research 
experience. As noted above, survival is a binary measure capturing whether a 
start- up had positive employment in t + 1, employment and revenue growth 
is calculated as the log differences in the values between t and t + 1, and pat-
enting and trademarking is a binary measure capturing whether the start- up 
applied for a patent that was eventually granted or filed for a trademark that 
was eventually registered. The earnings variable is the inverse hyperbolic sine 
transformation of the start- up worker’s earnings (collected from the W- 2 or 
LEHD).6 The size categories consist of six separate groupings: 1 employee, 
2–5 employees, 6–9 employees, 10–19 employees, 19–49 employees, and 50 
or more employees. For worker types, we take the inverse hyperbolic sine 
transformation of the number of each type of worker at the start- up at time 
t = 0. Other controls include zip code- year fixed effects and industry fixed 
effects.

The richness of the data permits the introduction of many controls. In 
particular, we can include mean earnings of the firm workforce as well as 
firm employment size categories. We interact demographics with each of the 
R&D worker types to identify potential nonlinearities of being a certain type 
of worker (e.g., female university worker).7

Since the Census Bureau data does not have direct measures of  tech-
nology, we control for industry, detailed geography, and year using fixed 
effects. External macroeconomic conditions are proxied by zip code- year 
fixed effects and industry fixed effects.

6. We use the inverse hyperbolic sine transformation to address the fact that many start- ups 
have zero high- human- capital workers.

7. Note that these interaction terms are the result of  multiplying continuous counts of 
employees falling into each group and that any given employee may belong to any number of 
designated groups.
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6.5.1  Baseline Results

We begin by simply describing the contribution of each factor to start- up 
outcomes. Table 6.6 describes the explanatory power of a group of covari-
ates to the start- up outcomes of  survival, employment growth, revenue 
growth, patenting, and trademarking in the next period. Table 6.6 shows 
that just controlling for location and industry fixed effects can explain a 
small share of the variance in outcomes. Including initial firm characteris-
tics, such as employment size and mean earnings at t = 0, contributes sig-
nificantly to the share of variance explained in all the outcomes. Including 
demographic controls—such as the mean age of the employees, number of 
female employees, foreign- born status, and race—increases the explanatory 
power for future employment growth but has little effect on revenue, sur-
vival, and innovation. Including our basic human capital measures leads to 
an insignificant increase in the explanatory power of the model in survival 
and employment growth across all firms but does have significant power in 
our model for revenue growth, patenting, and trademarking. In particular, 
the human capital elements contribute an additional 40 percent in explana-
tory power for patenting outcomes in the following period and an addi-
tional 10 percent in explanatory power for trademarking. These patterns 
continue to hold for high- tech start- ups, with human capital contributing 
an additional 25 percent in explanatory power for patents and an additional 
4.5 percent in revenue and 4.7 percent in trademarking. Table 6.6 highlights 
the explanatory power of human capital in relation to start- up growth and 
innovative outcomes.

Table 6.7 provides the key results associated with the full regression. 
Briefly, the relationship between the different measures of human capital 
and start- up survival and growth (in terms of both employment and rev-
enue) is measurable and quite large. Start- ups that employ workers with 
experience working in R&D labs, high- tech, and universities are less likely 
to survive. Our human capital measures are clearly associated with positive 
employment and revenue growth. Using the fully controlled specification, 
our results suggest that employing one additional R&D worker is associ-
ated with a 1.4 percentage point increase in employment growth (condi-
tional on survival).8 This figure increases to 4 percentage points for one 
additional high- tech worker and 3.6 percentage points for a former univer-
sity employee.9 We see similar patterns in revenue growth. For all start- ups, 
the hiring of one additional high- human- capital worker is associated with 
a 1.4 to 4 percentage point increase in employment growth and a 2.3 to  

8. Note that the coefficient interpretation is based on adding a single worker of a given type 
to the mean number of workers of that type at time t = 0 across all start- ups.

9. Again, it is important to note that we are not making claims about the direction of causal-
ity. Start- ups with more volatile ideas or production technologies may be more likely to hire 
high- human- capital workers.
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5 percentage point increase in revenue growth (conditional on survival). We 
see fairly large coefficients on the patenting and trademarking outcomes for 
R&D lab workers, with the addition of one R&D lab worker contributing 
a 9.2 percentage point increase in patent filing and a 7.5 percentage point 
increase in trademark filing.

The second panel of table 6.7 reports the results for the subset of start- ups 
that hired employees from the 22 institutions that provided UMETRICS 
data. The interpretation of the coefficient is thus relative to the effects of 
hiring an individual trained on a research grant over and above those who 
simply have experience working in one of these 22 universities. The results 
are consistent. Start- ups that hired research- trained individuals were more 
likely to fail than those who only hired university- experienced individuals 
(which are in turn more likely to fail than other start- ups, as established in 
the first panel). However, those that survive are more likely to create jobs, 
have higher revenue, and file more patents and trademarks. However, those 
that survive have higher revenue and file more patents and trademarks rela-
tive to start- ups that hired university- experienced workers.

The third and fourth panel of table 6.7 delves more deeply into the types 
of projects and skill embodied within our direct measure of human capital. 
Start- ups that hire workers funded by Department of Defense (DOD) and 
Department of Energy (DOE) grants are much more likely to patent, again 
relative to start- ups that hire nonresearch- trained workers at these universi-
ties. Start- ups that hire workers trained on National Institutes of Health 
(NIH)-  and National Science Foundation (NSF)- funded grants see greater 
employment growth. Interestingly, faculty, graduate students, and postgrads 
contribute more to patenting and trademark activity, while undergraduates 
are associated with greater employment growth.

Table 6.8 reports estimates similar to the top panel of table 6.7 (with the 
full set of controls) but for start- ups in high- tech industries. The results are 
substantively unchanged. The magnitude of the coefficients is also signifi-
cantly larger than the coefficients in the previous table, which confirms our 
hypothesis that the relationship with measures of human capital is more 
sensitive among high- tech start- ups. In the case of  employment growth, 
increasing the number of high- human- capital workers by 10 percent is asso-
ciated with a 0.29 to 0.93 percentage point increase in employment growth 
and a 0.63 to 0.88 percentage point increase in revenue growth for high- tech 
firms. The same increase in R&D- lab- experienced workers is associated with 
a 1.82 percentage point increase in patenting and a 1.14 percentage point 
increase in trademarking.10

In addition to these tables, we have estimated the same specification over 
different- size groups of start- ups and find that the results are robust and do 

10. Disclosure limitation protocols preclude us from doing a deeper dive using UMETRICS- 
only data.
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not differ greatly. To summarize our empirical findings, with the exception of 
survival, we find mostly positive and significant associations between R&D 
experience, high- tech experience, university experience, and research- trained 
experience and start- up performance. These human capital measures are 
associated with much riskier outcomes: survival of such start- ups is signifi-
cantly less likely. However, conditional on survival, these basic measures of 
human capital have positive and significant effects on employment growth 
and revenue growth for the following period. The explanatory power of 
these measures is surprisingly high, contributing more than 15 percent to the 
cumulative explanatory power of high- tech start- up employment growth.

6.6  Conclusion

This chapter leverages new data about workforce human capital that can 
be used to provide more insights into the survival, growth, and innovative 
activity of  new businesses. Our human capital measures have a negative 
impact on survival but a significant and positive association with employ-
ment growth and revenue growth conditional on survival. These results are 
consistent with the view that there is a relationship between workforce expe-
rience and business start- up outcomes. While it is important to note that 
the cumulative magnitude of the effects of these human capital measures 
on start- up outcomes is relatively small, it is also important to consider that 
these are very basic measures of human capital (binary and extensive margin 
type measures).

Overall, these findings point to the important role human capital plays in 
the outcomes of young businesses. While we neglect to say that the relation-

Table 6.8 OLS on high- tech start- up outcomes, 2005–15

  
Survival,  

t + 1  

Employment 
 growth,  

t + 1  

Revenue  
growth,  

t + 1  
Patent,  

t + 1  
TM,  
t + 1

ln RDf 0 −0.0515*** 0.0287 0.0632* 0.182*** 0.114***
(0.00706) (0.0146) (0.0305) (0.0211) (0.0239)

ln HTf 0 0.0423*** 0.0823*** 0.0865*** −0.00551* 0.00308
(0.00549) (0.00366) (0.00638) (0.00234) (0.00417)

ln UNIf 0 −0.00633 0.0933*** 0.0879*** 0.0142* 0.0711***
(0.00429) (0.00748) (0.0127) (0.00648) (0.0137)

Other controls Yes Yes Yes Yes Yes
Observations 210,000 140,000 95,000 210,000 210,000
R2  0.358  0.377  0.089  0.104  0.129

Notes: Observations are start- up- year combinations. Robust standard errors in parentheses. 
*p <.05, **p <.01, ***p < .001; controls included for size and average earnings, proportion of 
workforce that is female, foreign born, and interactions of female, foreign born with research 
experience.
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ship is causal, there are multiple mechanisms that may suggest this is the 
case. One mechanism by which these human capital measures might affect 
start- up outcomes is through knowledge diffusion. A worker’s experience 
in university- based research activities and the experience individuals gain 
by working in different types of  environments (R&D laboratories, high- 
tech industries, and/or universities) might transmit tacit knowledge that is 
valuable to firms. Moreover, the importance of tacit knowledge may vary 
by the types of tasks workers perform, which is consistent with the evidence 
that our human capital measures are relatively more important in high- tech 
industries. A firm’s investment in technology may also affect the value of 
human capital, making some types of knowledge more valuable through 
complementarities and others less valuable through substitutability. These 
types of interactions provide scope for future research using these data.

As always, there is much more to be done with these data, particularly 
as the time series grows. It should be possible to include more information 
about the project level factors identified by Corrado and Lane as impor-
tant, such as “the roles of: organizational practices (employment and man-
agement); organizational characteristics (employee knowledge and skills, 
business model, IT use); environmental and cultural factors (location and 
networks); entrepreneurial factors (firm age and origin)” (Corrado and Lane 
2009). In future work, we will do just that. We will expand the analysis of 
research experience to capture network effects as well as the effects of inten-
sive exposure to research- intensive environments. We will also examine a 
broader set of outcome measures, including for start- ups that went public or 
became exceptionally large. It is always difficult to identify causal relation-
ships, but we have begun to investigate the effects of sharp changes in fund-
ing, such as the 2009 American Recovery and Reinvestment Act (ARRA), 
as well as changes in funding to different research areas.
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7.1  Introduction

In recent years, the popular press has been full of  stories premised on 
the idea that the share of US jobs that do not involve a formal employer- 
employee relationship is large and growing. Both media sources and scholars 
have adopted the term gig economy to refer broadly to these less- structured 
work arrangements as well as more narrowly to the subset of flexible jobs 
mediated through various online platforms. The latter have been viewed as 
yielding an increasingly “on- demand” economy where goods and services 
can be acquired through apps on smartphones and other web- based appli-
cations. The current discussion regarding alternative work arrangements 
echoes an earlier discussion that arose in the late 1980s and 1990s (e.g., 
Abraham 1988, 1990; Barker and Christensen 1998). Then as now, there 
was talk of dramatic growth in the number of people working in contingent 
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or precarious jobs—positions in which workers had no long- term connec-
tion to a particular business but were employed to complete a specific task 
or for a defined period of time—or under other nonstandard employment 
arrangements. The recent resurgence of  interest in nontraditional work 
arrangements reflects the perception that new technology, along with the 
restructuring of business enterprises made possible by this technology, is 
producing an accelerated pace of change in the organization of work that  
is having important effects on both workers and firms.

While there has been considerable discussion about the changing nature 
of work and its broader implications for workers and firms, different sources 
of data send conflicting messages regarding the prevalence of nonemployee 
work generally and gig employment specifically. Individuals performing 
nonemployee work should be classified as self- employed. In the Current 
Population Survey (CPS) and other household surveys, the percentage of the 
workforce that is self- employed has shown no upward trend and in fact has 
been drifting downward since at least the mid- 1990s. In contrast, administra-
tive data derived from tax filings provide stronger support for the popular 
perception that nonemployee work arrangements are a growing phenom-
enon (see, e.g., Katz and Krueger 2019a). More definitive evidence regarding 
trends in nonemployee work is essential for understanding how changing 
work arrangements may be affecting workers and their families, as well as for 
investigating the implications of ongoing changes in the structure of work 
for firm performance, productivity, and growth. Better information about 
the features of nonemployee work—who is doing it, what types of tasks 
they are performing, how households are combining income from nonem-
ployee work with income from other sources, and why firms choose to use 
gig and other nonemployee workers in place of traditional employees—also 
is needed. In this chapter, we show how administrative and other data can 
be used in conjunction with household survey data to improve our under-
standing of the gig economy and the broader implications of changing work 
arrangements.

Much of the discussion of the gig economy, as well as the broader discus-
sion of nonemployee work arrangements, has focused on the implications 
of growth in these arrangements for workers and their families. On the one 
hand, gig work may appeal to individuals for whom it provides the flex-
ibility to better match their skills to work projects. Making a similar point, 
Hurst and Pugsley (2011), for example, argue that self- employed workers 
enjoy substantial nonpecuniary benefits in the form of  being their own 
boss, being able to set their own schedule, and so on. On the other hand, 
some performing gig work are not doing so by choice. Similar to others who 
are not employees of the firms for which they are providing labor services,  
gig workers do not enjoy the legal rights and protections afforded under 
the unemployment insurance system, the workers compensation system, 
the Fair Labor Standards Act, and other laws and regulations written with 
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more traditional employment arrangements in mind (Harris and Krueger 
2015). Further, those who rely primarily or exclusively on self- employment 
are markedly less likely to have health insurance or a retirement plan (Jack-
son, Looney, and Ramnath 2017) and may have hours and earnings that are 
substantially more variable and less predictable.

Advances in technology resting on digitization and the interconnectivity 
of  the internet have made it increasingly attractive for firms to reorgan-
ize their activities to have more work performed by individuals who are 
not employees of the firm. These new technologies make it more feasible 
to organize work on a project- specific basis, utilizing a changing cast of 
workers with the mix of skills that is appropriate for each project (National 
Academies Press 2017). Similar to the motivations that have been posited for 
other sorts of contracting out (Abraham and Taylor 1996; Dube and Kaplan 
2010; Goldschmidt and Schmieder 2017), utilizing nonemployees as they are 
needed rather than hiring traditional employees may be a means of reducing 
wage and benefit costs as well as positioning the firm to respond quickly to 
shifts in demand. These same technological advances have facilitated the 
segmentation of the various aspects of firms’ production processes more 
generally (see, e.g., Fort 2017). On the other hand, while offering some clear 
advantages to firms, increased reliance on outsourcing generally and non-
employees specifically also implies less accumulation of firm- specific human 
capital. Even within narrowly defined sectors, there is enormous heterogene-
ity in the productivity and profitability of individual firms (see, e.g., Foster, 
Haltiwanger, and Krizan 2001). Differences in the ability to attract, train, 
and retain high- quality workers, especially those performing functions that 
are core to the firm, seem likely to be an important part of the explanation 
for this heterogeneity in firm- level outcomes.

Growth in nonemployee work also matters for the measurement of eco-
nomic activity. The current system of economic measurement is designed 
for a world in which workers have a traditional employment relationship or 
operate a formal business. Nonemployee work may not be fully captured in 
existing data sources. Each month, for example, the CPS collects informa-
tion from households about work that household members have done for 
pay or profit. Similar to the questions asked on other household surveys, 
the CPS employment questions may not always cue respondents to report 
work outside of a conventional job or business and are not designed to probe 
regarding the nature of the arrangements under which work occurs. Further, 
they focus primarily on the main job a person holds, with a more limited 
set of questions asked about additional work activity. Other surveys collect 
information from businesses on the number of people they employ and the 
hours those employees work but do not attempt to measure the labor input 
of people who are not on those businesses’ payrolls.

To the extent that an increasing share of  the work embodied in firms’ 
products is supplied by nonemployees whose hours are not well captured 
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by existing data collections, measures of labor productivity growth may be 
distorted. Labor productivity is defined as output per hour worked. The 
Bureau of Labor Statistics (BLS) major- sector productivity program uses 
CPS data to measure the hours of  the self- employed. If  there have been 
increases in nonemployee work that are not well captured by the CPS, the 
growth in labor hours may have been understated and the growth in labor 
productivity correspondingly overstated. Further, if  different sectors have 
made more-  or less- intensive use of nonemployee labor input, the pattern 
of growth in productivity may have been distorted as well.

In principle, measures of  multifactor productivity should take into 
account firms’ use of purchased services. Multifactor productivity is defined 
as output relative to an index of inputs to production, weighted accord-
ing to their shares of production costs. So long as purchased services are 
well measured, changes in the amount of  nonemployee labor embedded 
in those services will be reflected in measured multifactor productivity. In 
practice, limited data on purchased services are collected, and estimates 
of how the use of these services is allocated across industries may not be 
especially accurate. Houseman (2007), for example, cites evidence suggest-
ing that estimates from the input- output tables used in the construction of 
industry productivity statistics significantly understated the growth in the 
use of staffing services in manufacturing during the 1990s. Similar problems 
may exist with respect to the measurement and allocation of labor services 
provided by nonemployee workers.

A somewhat different measurement problem may arise if  nonemployee 
workers sell services directly to consumers or produce tangible or intan-
gible capital. In principle, one would like this output to be included in gross 
domestic product and incorporated into the measurement of productivity. 
Information on output is collected primarily through surveys and censuses 
of the employer businesses that account for the lion’s share of production. In 
constructing its estimates of total output, the Bureau of Economic Analysis 
adjusts the figures for employer businesses using information on the revenues 
of nonemployer businesses (Bureau of Economic Analysis 2017). Still, any 
failure of the existing measurement system to fully capture output for final 
demand that is produced by nonemployee workers could be an additional 
source of distortion in measured trends in output and productivity.

In this chapter, we seek to clarify what different sources of data can tell 
us about changes in the prevalence and nature of both gig employment and 
nonemployee work arrangements more generally over time. We begin with 
a discussion in section 7.2 of the heterogeneity of nonemployee work and 
the challenges this heterogeneity poses to its measurement and assessment. 
Section 7.3 considers the two main types of  data that have been used to 
study past trends in nonemployee work—surveys of households and admin-
istrative data. The discrepancy between the flat or declining trend in self- 
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employment shown by measures based on household surveys and the long- 
term growth in similar measures based on administrative data is a significant 
puzzle. To reconcile these conflicting trends, we turn to analysis of a newly 
created linked data file that contains household survey data from the Annual 
Social and Economic (ASEC) supplement to the CPS and administrative 
information based on tax records for the same individuals. Preliminary find-
ings based on this linked file are reported in section 7.4. Although there is 
some CPS- ASEC self- employment for which we can find no corresponding 
tax records, the amount of such undocumented self- employment has been 
relatively stable; in contrast, there has been a notable increase in the volume 
of self- employment activity reported to the Internal Revenue Service (IRS) 
that is not reported on the CPS- ASEC. Looking to the future, section 7.5 
considers ways in which household survey data on nontraditional employ-
ment might be improved, and section 7.6 evaluates how employer survey 
data, tax data, and naturally occurring private- sector data might be used 
more effectively to improve our understanding of gig employment specifi-
cally and nonemployee work more generally. Finally, section 7.7 offers some 
initial thoughts about a path forward. Recognizing the limitations of each 
of the individual available sources of data, efforts to develop linked datasets 
that combine household survey data, tax data, employer survey data, and 
potentially, naturally occurring private- sector data are likely to have a high 
payoff, permitting greater insight into the changing nature of work than is 
possible using any single data source.

7.2  Typology of Work Arrangements

Although there has been a great deal of interest in the growth in non-
traditional work arrangements in the US labor market, discussion of these 
arrangements has not always fully recognized their considerable heteroge-
neity. Combining arrangements with very different characteristics and then 
attempting to generalize about them runs the risk of being quite misleading. 
Table 7.1 lays out a typology that attempts to clarify similarities and differ-
ences across a variety of ways of organizing work, separated broadly into 
employee and self- employment arrangements. The table also identifies where 
these arrangements might be captured in household survey and administra-
tive data, as well as where gig employment specifically might be counted.

7.2.1  Work Arrangements and Their Characteristics

One challenge in characterizing the evolution of work arrangements is 
that there are many different ways to organize work. The first column of 
table 7.1 lists a number of work arrangements that have been discussed in 
the literature. The categories listed in the table are not necessarily mutually 
exclusive, and in some cases, a job might fall into more than one category. In 
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addition, any given person may have multiple jobs and work under multiple 
arrangements. The next five columns of the table identify some key dimen-
sions along which the listed work arrangements may differ.

Despite ongoing changes in the organization of work, traditional employ-
ment still accounts for the largest share of work in the US labor market. 
These are jobs on which a worker is paid a wage or salary, generally has 
some expectation of job security, may be full- time or part- time but has rea-
sonably predictable hours and earnings, and is supervised by the same firm 
that pays her wage or salary. On- call workers and other direct- hire workers 
with varying schedules also appear on the payroll of the firm where they are 
employed, but their hours change depending on the needs of the firm, and 
there may be periods when they do not work at all. A direct- hire temporary 
worker is someone who is employed for a limited term. Direct- hire tempo-
raries include seasonal employees such as lifeguards hired for the summer 
or sales clerks hired for the busy winter holiday season.1

An alternative to using workers hired directly onto a firm’s own payroll is 
to use contract company workers on either a short- term or long- term basis. 
Temporary help agencies supply labor to businesses with intermittent, sea-
sonal, or other temporary demands for labor; professional employer orga-
nizations (PEOs) provide workers or services on a more permanent basis; 
and other contract firms may provide specific services on either a short- term 
or a long- term basis. Individuals in these arrangements are employees, but 
the firm on whose behalf  work is being performed (the client) is a different 
entity than the firm writing the worker’s paycheck (the agency, PEO, or 
other contract firm).

As among employee arrangements, there is considerable diversity among 
the various categories of self- employment. The self- employed include busi-
ness owners who may have a well- established clientele and a relatively pre-
dictable flow of work. These businesses may be incorporated, organized 
as partnerships, or operated as unincorporated sole proprietorships. The 
self- employed also include independent contractors or freelancers who earn 
money by performing one- off tasks for which they are paid an agreed sum. 
Such workers may not be able to count on steady work, and their hours 
and earnings may be volatile.2 A day laborer is a person who gets work by 
waiting at a place where employers pick up people to help with short- term 
tasks. In some communities, for example, individuals seeking work may be 
known to wait in a convenience store parking lot or similar location. On- 
demand or platform workers can be thought of as the modern version of 
day laborers, but with work obtained by claiming tasks listed through an 

1. Interestingly, the share of jobs that are seasonal has dropped significantly in recent decades 
(Hyatt and Spletzer 2017).

2. Independent contractors and freelancers could be folded into the unincorporated sole 
proprietor category, but some of those who would describe themselves as independent contrac-
tors or freelancers may not think of themselves as operating businesses.
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online intermediary rather than by waiting for work at a physical location. 
Examples of the increasing number of online platforms that facilitate the 
matching of workers to those requiring services include Uber, TaskRabbit, 
Mechanical Turk, and Upwork.

The first characteristic we have identified as relevant to distinguishing 
among the various work arrangements is simply whether the person is paid 
a wage or salary. This can be thought of as shorthand for whether those 
working under the arrangement are likely to be covered by unemployment 
insurance, workers compensation, the Fair Labor Standards Act, and other 
labor market laws and regulations that are applicable to employees but gen-
erally not to those who are self- employed.3

A second important characteristic of a work arrangement is whether the 
work relationship can be expected to continue. This construct has been used 
by the BLS as the basis of its definition of contingent work (Polivka 1996a). 
Under that definition, a contingent worker is anyone who does not expect 
their job to last or reports that their job is temporary. Most traditional 
employees would not view their employment as contingent, but for consis-
tency with how the BLS has applied this concept, we have allowed for the 
possibility that someone in such a position might consider their job to be at 
risk because they expect the business where they work to close or their posi-
tion to be eliminated. Accordingly, we have entered “most” rather than “yes” 
for traditional employees in the column summarizing whether a continuing 
work arrangement exists. Someone who works only when called in or who 
has a varying schedule may nonetheless have an ongoing relationship with 
the firm at which they work. Workers supplied by a temporary help agency 
or other contract firm may have only a short- term relationship with the dif-
ferent firms that make use of their services but a continuing relationship with 
the temporary help agency or contract firm. In contrast, we would not expect 
direct- hire temporary workers to have an expectation of continuity in their 
work relationship. Among the self- employed, business owners seem likely to 
expect that their work arrangement will continue. Some independent con-
tractors and freelancers also may have an expectation of continuity, but to 
the extent that they work on a task basis, this is less likely to be the case, and 
we have entered “no” for them in the column capturing this characteristic. 
Day laborers and on- demand or platform workers are unlikely to anticipate 
a continuing work relationship.

The third and fourth work characteristic columns pertain to whether the 
person in the listed work arrangement has a predictable work schedule and 
whether their earnings when working are predictable. Predictable hours  
and earnings are part of what defines a traditional employee arrangement. 

3. The application of these laws and regulations to the owners of incorporated businesses 
who pay themselves a wage or salary is complicated, but in many states, business owners are 
permitted to opt in to coverage under the unemployment insurance and workers compensa-
tion systems.
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During the term of her employment, a direct- hire temporary worker is likely 
to have relatively predictable hours and earnings, and the same is likely to be 
true of most contract company workers. An on- call worker will have unpre-
dictable hours, but her pay while working is likely to be relatively predictable. 
Among the self- employed, a business owner’s schedule may not be entirely 
predictable, but we would expect there to be a fair amount of regularity in 
her work hours and have entered “yes” in the relevant rows of the column 
capturing the predictability of hours; the earnings from time devoted to a 
business, however, may be less predictable. Both hours and earnings are apt 
to be unpredictable for independent contractors or freelancers, day laborers, 
and on- demand or platform workers.

A final work characteristic identified in the table, applicable only to those 
who are paid a wage or salary, captures whether on- the- job supervision is 
provided by the same firm that pays the worker’s salary. This would be the 
case for traditional employees, on- call workers, and direct- hire temporary 
workers, all of whom are hired onto the payroll of the firm requiring their 
services. It would not be the case, however, for the employees of temporary 
help agencies or other contract firms who perform tasks under the supervi-
sion of the client firm but are paid by a different firm. This characteristic 
is associated with the so- called fissuring in the labor market that has been 
identified by some scholars as having weakened the opportunities and pro-
tections for workers who previously would have been employed directly by 
the firm for which they provide services but now are employed by a different 
company (Weil 2014).

7.2.2  Capturing Different Work Arrangements in Household Survey 
and Administrative Data

The next three columns of  table 7.1 indicate where the different work 
arrangements might appear in household survey or tax data. Household 
surveys such as the CPS, the American Community Survey (ACS), and oth-
ers commonly distinguish among wage and salary workers, the incorpo-
rated self- employed, and the unincorporated self- employed. In addition to 
traditional employees, on- call workers, direct hire temporaries, temporary 
help agency workers, PEO workers, and other contract company workers 
generally should be categorized as wage and salary workers in these data. 
The incorporated self- employed also typically are treated as wage and sal-
ary workers in published household survey statistics, though if  a different 
breakout is desired, it often is possible to identify them separately. Work 
arrangements for which the table’s first column indicated not being paid 
a wage or salary generally should be categorized as unincorporated self- 
employment in the household survey data; this includes partnerships, sole 
proprietorships, most independent contractors and freelancers, day laborers, 
and on- demand or platform workers.

Turning to tax data, wage and salary earnings produce information 
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returns that are provided to the employee and submitted to the IRS. A Form 
W- 2 is required for any job on which an individual earns $600 or more in 
wages or salary during a year. Wages or salaries that owners of incorporated 
businesses pay themselves are reported on the same form. Incorporated busi-
ness owners also may receive distributions of business profits reported on 
a Schedule K- 1 or payments of dividends reported on a Form 1099- DIV. 
Proceeds flowing from a partnership business to the individual partners 
are reported on a Schedule K- 1. In contrast, sole proprietors and others 
doing nonemployee work may earn income for which there is no associ-
ated information return. If  there is an information return, it is likely to be a 
Form 1099- MISC (for payments of nonemployee compensation of $600 or 
more by a business to any individual during a year) or, since 2011, possibly 
a Form 1099- K (for settlement of payment card transactions or transactions 
conducted through third- party networks such as PayPal that exceed certain 
thresholds).

Anyone who receives self- employment income for services provided total-
ing $433 or more over the course of a year is required to file a Schedule SE, 
the form that is used to calculate self- employed individuals’ Social Security 
and Medicare tax liability. This applies to anyone who receives distribu-
tions of partnership income or has other earnings from unincorporated self- 
employment activity. For the purpose of calculating personal income tax lia-
bility, individual tax filers use Schedule E to report receipt of S- corporation 
profits or partnership income and Schedule C to report income from an 
unincorporated sole proprietorship or other self- employment activity. The 
requirement to include a Schedule C with a self- employed tax filer’s return 
applies even if  the individual received no information returns in connection 
with their taxable earnings and even if  business expenses fully offset the 
gross payments received.

The final column of table 7.1 indicates where we should expect gig employ-
ment to appear in household survey and administrative data. We first need 
to define what we mean by a gig worker. The term gig originated in the music 
industry, where musicians go into the studio to record one song or play in a 
band for one performance. The musicians with such gigs have no expectation 
of recording at the same studio the following day or playing with the same 
band the following night. Borrowing from the music industry, we define 
gig employment as one- off jobs on which workers are paid for a particular 
task or for a defined period of  time. In terms of  the work arrangement 
characteristics examined in table 7.1, a gig worker is not paid a wage or 
salary, does not expect a continuing work relationship, and does not have a 
predictable work schedule or predictable earnings when working. Applying 
this definition to the characteristics we have assigned to the various work 
arrangements, independent contractors and freelancers, day laborers, and 
on- demand or platform workers should be considered gig workers.

In household survey data, gig workers should be included among the 
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unincorporated self- employed, but that group also includes people who 
are not gig workers. Another limitation of many household surveys is that 
because they focus on main jobs, the resulting data do not capture gig work 
that is supplemental to a person’s primary employment. In tax data, some 
gig workers may receive a Form 1099- MISC, but the same form also may 
be used to report payments to other self- employed individuals who are not 
gig workers. The same is true of  payments reported on a Form 1099- K. 
We would need to know more about the reason a payment was received—
specifically, whether it was a payment to an unincorporated self- employed 
worker performing a one- off job—to determine whether the recipient should 
be considered a gig worker. Further, not all gig work generates either a Form 
1099- MISC or Form 1099- K. All gig workers who are required to file a tax 
return should report their gross earnings and expenses from their gig work 
on a Schedule C. In addition, so long as their earnings exceed a minimum 
threshold, they should report their net earnings from gig work on a Sched-
ule SE. While gig workers generally should be filing these schedules, not all 
Schedule C or Schedule SE filers are gig workers.

To the extent that household survey data or tax data allow us to identify 
everyone with either primary or secondary employment as an unincorpo-
rated self- employed worker, in principle, that information should provide 
an upper bound on the number of gig workers. Trends in unincorporated 
self- employment, which can be constructed using publicly available data 
from multiple sources, thus are a first place to look for suggestive evidence 
of whether gig employment has been growing over time.

7.3  Historical Data on Nonemployee Work Arrangements

Several household surveys conducted by the US Census Bureau produce 
regular data on the prevalence of self- employment among working Ameri-
cans. The monthly CPS, conducted by the Census Bureau for the Bureau of 
Labor Statistics, is the source of official statistics about the US labor mar-
ket. The CPS is an interviewer- administered household survey that includes 
questions about labor market activity during a specific reference week. CPS 
data can be used to identify household members whose main job during the 
survey reference week was in self- employment. More limited information is 
collected about second jobs. Each spring, the CPS- ASEC collects informa-
tion about income and employment over the prior calendar year, including 
information on the longest job and on calendar- year self- employment earn-
ings. Finally, since 2005, the ACS, a large mixed- mode survey conducted on 
a rolling basis throughout the year, has been another source of published 
self- employment estimates. These refer to the main job during the survey’s 
reference week (described to the respondent as “last week”).

More recently, analysts have turned to tax records in an effort to learn 
about the prevalence and nature of nonemployee work. As already noted, 
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sole proprietors and general partners who have net earnings at or above 
just $433 (a threshold set in 1994) are required to file a Schedule SE, Self- 
Employment Tax. The Master Earnings File (MEF) database maintained 
by the Social Security Administration incorporates information on self- 
employment income from the Schedule SE together with information on 
any wage earnings reported on a Form W- 2 that a person may have received 
during the year. The Census Bureau receives an extract (called the Detailed 
Earnings Record, or DER) that includes MEF records for each CPS respon-
dent for whom a protected identification key (PIK), an encrypted Social 
Security Number, is available. This extract can be used to estimate the num-
ber of people filing a Schedule SE each year. In addition, any tax filer with 
gross nonfarm self- employment income earned as an unincorporated sole 
proprietor (including income earned as an independent contractor or free-
lancer, day laborer, or on- demand or platform worker) is required to file a 
Schedule C. The Schedule C information is a key ingredient in the construc-
tion of the master list of nonemployer businesses maintained by the Census 
Bureau.4

Whereas both Schedule SE and Schedule C are filed by individuals receiv-
ing self- employment income, Form 1099- MISC is filed by businesses that 
make payments of nonemployee income of $600 or more to any entity or 
individual during the calendar year. Tracking entities or people who received 
one or more Form 1099- MISC reporting nonemployee compensation dur-
ing a calendar year offers another perspective on trends in self- employment. 
The fact that a Form 1099- MISC with a checked nonemployee compensa-
tion box may be reporting a payment to a business rather than an individual 
complicates the interpretation of the Form 1099- MISC data. In addition, 
a considerable amount of self- employment income has no associated Form 
1099- MISC.5 Since 2011, Form 1099- K has been used to report settlement 
of payment card transactions or settlement of third- party network transac-
tions in excess of $20,000 or 200 transactions per year. Some self- employed 
individuals may receive a Form 1099- K, but this is relatively unusual, and 
most Form 1099- Ks are not issued to unincorporated self- employed indi-
viduals.

Figure 7.1 shows the trends in a number of different measures of the self- 
employment rate (the number self- employed under different definitions as 

4. Businesses are included on the list if  they report $1,000 or more in gross revenue (or in 
construction, $1 or more in gross revenue). In addition to information about unincorporated 
sole proprietors derived from Schedule C filings, the master list of nonemployer businesses also 
incorporates tax return information about C- corporations, S- corporations, and partnership 
businesses that do not have employees.

5. The data appendix provides additional details about the various household survey and 
administrative data sources just described. Although occasional supplements to the monthly 
CPS have asked more probing questions about the nature of individuals’ employment arrange-
ments, these questions have not been asked routinely, and consideration of the data generated 
by these occasional supplements is deferred to later in the chapter.
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a percent of the corresponding total employment measure). The four series 
at the bottom of figure 7.1 all derive from household survey data. The series 
based on the monthly CPS captures the percent of employed people who 
are unincorporated self- employed on the main job held during the survey 
reference week, averaged across the 12 months of the year. This series has 
trended steadily downward, falling from 8.3 percent in 1996 to 6.3 percent 
in 2016. The main job series based on ACS data is conceptually comparable 
to the monthly CPS series and, although slightly lower in level, shows a 
similar downward trend over the years for which it is available. There are two 
household survey measures derived from the annual CPS- ASEC. The first 
shows the percent of people with any employment during the year whose 
longest job was in unincorporated self- employment and who had positive 

Fig. 7.1 Household survey and administrative data self- employment rates, 
1996–2016
Sources: Nonemployers and Nonemployer Sole Proprietors downloaded from US Census 
Bureau website. 1099- MISC, Individual plus Business, and 1099- MISC, Individuals from US 
Department of the Treasury (2015). DER Self- Employed from authors’ tabulations of linked 
CPS- ASEC and DER data. CPS ASEC, Longest Job Last Year and CPS ASEC, All Jobs 
Last Year from authors’ tabulations of public- use CPS- ASEC files. CPS Monthly, Main 
Job Last Week downloaded from BLS website. ACS, Main Job Last Week downloaded from 
US Census Bureau website.
Note: Plotted estimates are self- employment as a percent of employment. For most series, 
employment is number of people with earned income during the calendar year from either the 
DER (for series based on tax data) or the CPS- ASEC (for two CPS- ASEC series). For the CPS 
and ACS Main Job Last Week series, employment is people employed during the survey refer-
ence week.
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self- employment earnings. The second adds people whose longest job was 
not unincorporated self- employment but who had positive self- employment 
income from work outside of their longest job. These series have fluctuated 
somewhat but exhibit no clear trend. By construction, the first three of these 
series do not capture self- employment that is supplemental to a primary job. 
In principle, however, the more inclusive CPS- ASEC series should pick up 
both primary and secondary self- employment activity, and that measure 
behaves similarly to the others.

Five self- employment series based on administrative data series appear 
in the upper part of figure 7.1. These series are most comparable in con-
cept to the more inclusive CPS- ASEC series that captures earnings during 
the calendar year from both primary and secondary self- employment. In 
each case, the numerator is some measure of the number of people or enti-
ties with self- employment earnings during the year, and the denominator 
is the number of individuals with earnings from any source in the DER. 
The share of people with earnings in the DER who have self- employment 
earnings has trended upward, rising from 9.5 percent in 1996 to 11.3 per-
cent in 2012 (the last year for which we currently have these data).6 Census 
counts of nonemployers are available from 1997 through 2016; published 
data identify sole- proprietor nonemployers separately beginning in 2004. 
Both have trended upward as a percent of the number of earners and, over 
the period from 2004 through 2016, when both are available, the upward 
trend in the series for sole- proprietor nonemployers has tracked the upward 
trend in the series for nonemployers overall.7 Finally, the number of enti-
ties receiving nonemployee compensation reported on a Form 1099- MISC, 
taking individuals and businesses together, and the number of individuals 
for whom such compensation was reported are currently available for the 
period 2000–2012. These measures also have grown relative to the number 
of people with earnings.

Figure 7.1 makes clear that different data sources provide quite differ-
ent answers to the simple question, What is the level and trend of  self- 
employment in the US economy? Others have noted divergences between 
specific series; Katz and Krueger (2019a), for example, show the divergent 
trends in estimates of self- employment based on monthly CPS data and IRS 
Schedule C filings. Figure 7.1 shows that this divergence is quite general. 
Household surveys consistently show lower levels of self- employment than 
tax data and a relatively flat or declining long- term trend in self- employment 
as contrasted with the upward trend that is evident in tax data.

6. The DER estimates are based on a data file containing linked individual records from the 
CPS- ASEC and the DER that is discussed in the next section of the chapter.

7. For 2013–16, we do not have the DER estimate of the number of people with earnings dur-
ing the year needed to construct the self- employment rates based on the Census nonemployer 
data. We have extrapolated the 2012 DER employment estimate forward using information 
on the change in employment from the Current Employment Statistics survey. See the data 
appendix for further details.
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It would be nice to be able to say that one or the other type of measure—
estimates based on household survey data or estimates based on tax data—
accurately represents the prevalence and evolution of self- employment over 
time. In truth, however, measures of both types suffer from potential weak-
nesses. On the one hand, constraints on the length of  the monthly CPS 
and ACS questionnaires mean that neither survey instrument probes deeply 
about household members’ work arrangements. This may contribute to a 
variety of  reporting errors. For example, a household survey respondent 
might fail to mention informal work that they do not think of  as a job, 
something that further probing might uncover. To take another example, a 
household member who is doing work for a business may be reported as an 
employee of that business, even in cases where further probing might reveal 
that the person is in fact an independent contractor or freelancer. To the 
extent that nontraditional work arrangements are of growing importance, 
these problems could have become more serious over time.

On the other hand, administrative data capture only the information that 
is reported to the tax authorities on tax or information returns. Nonreport-
ing or underreporting of income to the tax authorities is an acknowledged 
issue, especially with regard to self- employment income and other types 
of income that do not generate an information return that is submitted to 
the IRS. As already noted, anyone who makes payments of wage or salary 
income of $600 or more to an employee over the course of the year is required 
to file a Form W- 2 with the IRS to document that payment. Businesses that 
make payments of $600 or more to a self- employed individual for services 
rendered are required to report those payments on a Form 1099- MISC. In 
2011, business tax forms were modified so that business owners now must 
certify when they file their tax returns that all required Form 1099- MISCs 
have been completed and submitted. Also taking effect in 2011 was a require-
ment that payment settlement entities that process electronic payments to 
businesses report those payments to the IRS on a Form 1099- K if  they 
exceed certain thresholds. There is no requirement, however, for households 
that pay for services to file a 1099- MISC. Despite efforts by the Congress 
to tighten the requirements for information reporting, a great deal of self- 
employment income generates no associated information return (Govern-
ment Accountability Office 2007; Slemrod et al. 2017). Further, information 
returns capture only gross payments. To determine self- employment earn-
ings, it is equally important to be able to gauge the expenses incurred in con-
nection with this gross income, but these expenses generally are not subject 
to required information reporting (Government Accountability Office 2007; 
Slemrod et al. 2017). Not surprisingly, tax audit studies have shown that 
virtually all wage and salary income is reported on individual tax returns, 
but a notably smaller share of net nonfarm proprietor income and net farm 
income is reported (Slemrod and Bakija 2008).

One question is whether changes in information reporting requirements, 
such as those introduced in 2011, could have affected the reported preva-
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lence and amounts of self- employment income. Research to date has not 
identified discontinuities in the administrative self- employment time series 
associated with changes in reporting requirements. With respect specifically 
to the changes introduced in 2011, this may be because the relatively minor 
increases in reported gross self- employment income that the changes appear 
to have induced were offset by the reporting of increased expenses (Slemrod 
et al. 2017).

Another potential issue to flag is that in the household survey data we 
have examined, our attention has been focused on the unincorporated 
self- employed, the group that is conceptually most comparable to the self- 
employment for which we have information in the DER. If the self- employed 
have become more likely over time to incorporate, the trend in a series 
that included the incorporated self- employed might be more meaningful 
(Hipple and Hammond 2016). We have recomputed both the monthly CPS 
and the ACS self- employment series with the incorporated self- employed 
included. Including them in the series does not change the conclusion that 
self- employment as measured in the household survey data has been steady 
or declining rather than increasing as in the tax- based administrative data.

7.4  Reconciling Household Survey and Administrative Estimates of 
Nonemployee Work

The most straightforward approach to understanding the discrepan-
cies between household survey and administrative data estimates of self- 
employment is to compare information from the two sources for the same set 
of people. Using an internal Census Bureau identifier—the PIK—we have 
linked records from the CPS- ASEC to administrative records from the DER 
for the years 1996 through 2012 (the latest year for which we currently have 
data from the DER). The PIK is missing for approximately 20 percent to 
30 percent of CPS- ASEC records, depending on the year. As described in 
the data appendix, we have reweighted the records with a PIK based on their 
characteristics to represent the population age 16 and older as a whole. In both 
of the datasets incorporated into the linked file, we identify unincorporated 
self- employment based on reports of self- employment earnings during the 
calendar year. To be more specific, in the CPS- ASEC, a person is defined as 
self- employed if they have a longest job during the year that is unincorporated 
self- employed and positive self- employment earnings or, if  the longest job 
was not unincorporated self- employed, if they have positive self- employment 
income from some other job.8 In the DER, a person is defined as self- employed 
if they had self- employment earnings reported on a Schedule SE.

8. In the CPS- ASEC, we do not know whether self- employment earnings other than from 
the longest job are from incorporated or unincorporated self- employment, though we expect 
most self- employment outside of the longest job to be unincorporated self- employment. See 
the data appendix for further discussion.
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We have used these data to ask how well the CPS- ASEC and the DER 
agree with respect to the classification of  individuals as self- employed. 
Table 7.2 displays a weighted cross- tabulation of self- employment status in 
the CPS- ASEC with self- employment status in the DER, using data that are 
pooled across the years 1996–2012. Although the two data sources should 
be measuring essentially the same thing, there is substantial disagreement 
between them regarding individuals’ self- employment status. On average, 
over the 17 years for which we have data, 65.4 percent of those with self- 
employment income in the DER do not report any self- employment income 
in the CPS. Conversely, 51.1 percent of those with self- employment income in  
the CPS- ASEC do not report any self- employment income in the DER.

The fact that there is disagreement between the household survey and 
administrative data employment measures is not surprising. In earlier 
research, we found that on average over the period 1996–2003, about 6 per-
cent of individuals who had unemployment insurance (UI) earnings during 
the first quarter of the year reported no CPS wage- and- salary employment 
in a UI- covered sector during the year’s first three months. Conversely, about 
18 percent of individuals reporting CPS wage- and- salary employment in 
a UI- covered sector during the first three months of the year had no first- 
quarter UI earnings (Abraham et al. 2013). Similarly, in weighted tabula-
tions using the linked data file that we are using to explore the sources of 
discrepancy in alternative self- employment series, 9.3 percent of those with 
DER wage- and- salary income had no reported CPS- ASEC wage- and- salary 
income for the same year. Conversely, 12.4 percent of those with reported 

Table 7.2 Cross tabulation of self-employment status in linked CPS- ASEC and 
DER data, 1996–2012

  
DER not 

self-employed  
DER  

self-employed  Total

CPS- ASEC not self-employed 
Number 202,311,037 10,459,170 212,770,208
Row Share 95.1% 4.9% 100.0%
Column Share 97.2% 65.4% 95.0%

CPS- ASEC self-employed 
Number 5,776,887 5,531,764 11,308,651
Row Share 51.1% 48.9% 100.0%
Column Share 2.8% 34.6% 5.0%

Total
Number 208,087,924 15,990,935 224,078,859
Row Share 92.9% 7.1% 100.0%
Column share  100.0%  100.0%  100.0%

Source: Authors’ tabulations of linked CPS- ASEC and DER data.
Notes: Numbers reported are for population age 16 plus. Data annual averages for years 1996–
2012 pooled. Tabulations are weighted.
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CPS- ASEC wage- and- salary income for a year had no DER wage- and- 
salary income for that same year.

What is surprising, however, is the size of  the off- diagonal cells in the 
tabulations shown in table 7.1. Whether taking the DER self- employed or 
the CPS- ASEC self- employed as the base, a majority of those who are cat-
egorized as self- employed in the dataset in question are not categorized as 
such in the other dataset. At least to some extent, this reflects the wide variety 
of arrangements under which self- employment activity may occur. Neither 
the household survey data nor the administrative data may be ideally suited 
to pick up all of that activity.9

We also are interested in how the discrepancy between the CPS- ASEC and 
the DER measures of self- employment has changed over time. Figure 7.2a 
displays the number of self- employed people as measured in the CPS- ASEC 
annual earnings data and the corresponding measure based on earnings data 
from the DER. While self- employment based on the DER grew markedly 
between 1996 and the mid- 2000s, the corresponding CPS- ASEC measure 
was lower to start with and has been stagnant. Figure 7.2b shows the off- 
diagonals associated with cross- tabulating the CPS- ASEC and DER data 
on a year- by- year basis—that is, it plots the number of people who are self- 
employed in the DER but not the CPS- ASEC and, separately, the number 
who are self- employed in the CPS- ASEC but not the DER. It is apparent 
that virtually all of the growth in DER self- employment relative to CPS- 
ASEC self- employment can be attributed to growth in the number of people 
who are self- employed in the DER but not in the CPS- ASEC.

To further explore the discrepancy between the two measures of  self- 
employment, we have looked a bit more closely at these off- diagonals, group-
ing those who are self- employed in the DER but not the CPS- ASEC into 
three mutually exclusive categories:

1. No CPS- ASEC employment. No wage- and- salary or self- employment 
income in the CPS- ASEC; self- employment income in the DER.10

2. Self- employment second job not reported in CPS- ASEC. Only wage- 
and- salary income in the CPS- ASEC; both wage- and- salary income and 
self- employment income in the DER.

3. CPS- ASEC job wage and salary, classification issue. Only wage- and- 
salary income in the CPS- ASEC; only self- employment income in the DER.

9. Some of the information used to categorize individuals as self- employed in the CPS- 
ASEC is imputed rather than directly reported. We chose to retain CPS- ASEC records with 
imputed information because that makes the data we analyze more consistent with the data 
used in the production of published statistics. Usable information on which values are imputed 
is available from 1997 forward. In calculations for the 1997–2012 period based on a sample 
restricted to cases with directly reported information and reweighted accordingly, we estimate 
that 63.4 percent of those with DER self- employment have no CPS- ASEC self- employment, 
and 44.3 percent of those with CPS- ASEC self- employment have no DER self- employment.

10. Individuals in this category may have only self- employment income or both wage- and- 
salary and self- employment income in the DER.
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Those in the first two groups may be people performing self- employment 
work who do not think to report it (or for whom the CPS respondent in 
their household does not think to report it), whether because the activity 
in question generated only a small amount of earnings or for some other 
reason. The third group may be capturing those who think of themselves 
as employees and may in fact be employees according to the relevant legal 
criteria but are paid as nonemployees and classified that way in the tax 
data. Given the growing concerns about worker misclassification (see, e.g., 
Leberstein 2012), for some purposes this group may be the most interesting.

Fig. 7.2a CPS- ASEC and DER self- employment

Fig. 7.2b CPS- ASEC vs. DER Self- employment off- diagonals
Source: Authors’ tabulations of linked CPS- ASEC and DER data.
Note: In fig. 7.2a, solid line is number of people with positive self- employment income in the 
DER and dashed line is number of people with positive self- employment income in the CPS- 
ASEC. In fig. 7.2b, solid line is number of people with positive self- employment income in the 
DER but no self- employment income in the CPS- ASEC and dashed line is number of people 
with positive self- employment income in the CPS- ASEC but no self- employment income in 
the DER. Tabulations are weighted.
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We also have grouped those who are self- employed in the CPS- ASEC but 
not in the DER into three mutually exclusive categories:

4. No DER employment. No wage- and- salary or self- employment income 
in the DER; self- employment income in the CPS- ASEC.11

5. Self- employment second job not recorded in the DER. Only wage- 
and- salary income in the DER; both wage- and- salary income and self- 
employment income in the CPS- ASEC.

6. DER job wage and salary, classification issue. Only wage- and- salary 
income in the DER; only self- employment income in the CPS- ASEC.

The fourth and fifth categories capture self- employment income that is 
reported in the CPS- ASEC but does not appear in the tax data, either work 
generating too little income to trigger tax- reporting requirements or off- the- 
books work. Category six may be capturing individuals who are indeed self- 
employed but operate an incorporated business, meaning that they should 
not have been counted in the CPS- ASEC measure of unincorporated self- 
employment and would appear in the tax data as having wage and salary 
income but not self- employment income.

Figure 7.3a shows the evolution of the three groups within the DER{SE=1}/
CPS- ASEC{SE=0} category; figure 7.3b shows the evolution of the three 
groups within the CPS- ASEC{SE=1}/DER{SE=0} category. Whereas 
there has been growth in all three of the DER{SE=1}/CPS- ASEC{SE=0} 
groups, employment in the three CPS- ASEC{SE=1}/DER{SE=0} groups 
has changed very little.

One way to summarize the information presented in these figures is to cal-
culate the shares of the growing discrepancy between the number of people 
with self- employment income according to the DER and the number of 
self- employed people according to the CPS- ASEC accounted for by each 
of the different groups. For this purpose, we have averaged the numbers for 
the two starting years and the two ending years in our data series and then 
calculated the overall change in the discrepancy between those averaged 
endpoints. Note that either increases in the size of the DER{SE=1}/CPS- 
ASEC{SE=0} groups or decreases in the size of the CPS- ASEC{SE=1}/
DER{SE=0} groups could have contributed to the overall discrepancy.

The percentages of the growth in the overall discrepancy accounted for 
by each of the six groups described above are shown in table 7.3. As was 
apparent from figure 7.2, the growing discrepancy between the DER and 
CPS- ASEC estimates of self- employment is accounted for entirely by the 
growing number of  people identified as self- employed in the DER who 
are not so identified in the CPS- ASEC. This growth is split roughly evenly 
among the three DER{SE=1}/CPS- ASEC{SE=0} groups. The net effect of 

11. Individuals in this category may have only self- employment income or both wage- and- 
salary and self- employment income in the CPS- ASEC.
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Fig. 7.3a Decomposing DER {SE = 1}/CPS-ASEC {SE = 0} off- diagonal

Fig. 7.3b Decomposing CPS-ASEC {SE = 1}/DER {SE = 0} off- diagonal
Source: Authors’ tabulations of linked CPS- ASEC and DER data.
Note: In each panel, off- diagonal shown as solid line is sum of three labeled subcomponents. 
SE is self- employed; W&S is wage and salary. Tabulations are weighted.
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changes in the size of the CPS- ASEC{SE=1}/DER{SE=0} off- diagonals is 
small and works in the direction of slightly offsetting the growing size of the 
DER{SE=1}/CPS- ASEC{SE=0} off- diagonals. In other words, the main 
issue is that there are an increasing number of people who are earning self- 
employment income and reporting that income to the tax authorities but for 
whom that income is not being reported in the CPS- ASEC.12

A possible explanation for the increasing number of  people with self- 
employment activity that is captured in the DER but not reported in the 
CPS- ASEC might be that more of them are doing self- employment work 
that generates only a small amount of income. We note, however, that the 
average self- employment earnings of those with self- employment captured 
in the DER but not the CPS- ASEC are relatively substantial, averaging 
about $14,400 in 2012 dollars over the years 1996 through 2012 covered by 
our sample, and further, this average earnings level has not trended down-
ward over time.13

7.5  Improving Household Survey Measures of Nonemployee Work

The preceding discussion has documented that the CPS- ASEC informa-
tion on calendar- year earnings is missing a significant and increasing amount 

12. In the reweighted sample that excludes cases with imputed information, which can be 
constructed for the period from 1997 through 2012, it is also the case that each of the three 
groups with DER self- employment but no CPS- ASEC self- employment accounts for roughly 
a third of the discrepancy in growth between the DER and CPS- ASEC series.

13. The earnings figures reported are averages of the 17 annual values. Among those who have 
self- employment earnings in the DER but not in the CPS- ASEC, DER earnings are largest for 
those with only wage and salary earnings in the CPS- ASEC and only self- employment earnings 
in the DER, averaging about $24,300 in 2012 dollars over the 1996–2012 period. DER self- 
employment earnings averaged about $11,500 for the group with no CPS- ASEC employment 
and about $7,900 for those who are missing a self- employment second job in the CPS- ASEC. 
There was no downward trend in DER self- employment earnings over our sample period for 
any of the three groups.

Table 7.3 Accounting for growth in discrepancy between DER and CPS-ASEC 
self-employment estimates, 1996–97 to 2011–12

 Off-diagonal category  
Percent of growth in 

discrepancy explained  

DER {SE = 1}/CPS-ASEC {SE = 0}
1. Missing CPS- ASEC SE 1st job 34.5%
2. Missing CPS- ASEC SE 2nd job 38.4%
3. CPS- ASEC W&S job, DER SE job 35.2%

CPS-ASEC {SE=1}/DER {SE=0}
4. Missing DER SE 1st job −11.6%
5. Missing DER SE 2nd job 5.2%

 6. DER W&S job, CPS- ASEC SE job  −1.8%  

Source: Authors’ tabulations of linked CPS- ASEC and DER data.
Notes: SE is self- employed; W&S is wage and salary. Tabulations are weighted.
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of self- employment activity. Because this series has behaved so similarly to 
other series based on household survey data, there is reason to suspect that 
the same is true of other household survey measures of self- employment.

One way to improve existing household survey measures of  self- 
employment and alternative work arrangements more generally would be 
to add survey questions that probe more directly regarding these arrange-
ments, either as part of  the core survey or (perhaps more plausibly) on 
periodic supplements. The Contingent Worker Supplement (CWS) to the 
CPS, fielded on several occasions between 1995 and 2017, has included ques-
tions both about whether the individual expects his or her employment to 
continue and about whether the person’s main job was as an independent 
contractor, on- call worker, temporary agency worker, or worker at a con-
tract firm (see Cohany 1996; Polivka 1996a, 1996b). The smaller Quality of 
Worklife (QWL) supplement to the General Social Survey also has produced 
estimates on the prevalence of the same four alternative work arrangements 
on the main job.

Estimates of the prevalence of alternative work arrangements based on 
the CWS for six years between 1995 and 2017 are shown in the top panel of 
table 7.4; estimates from the QWL supplement to the General Social Survey 
(GSS) for four years between 2002 and 2014 are shown in the table’s bottom 

Table 7.4 Estimates of the prevalence of selected work arrangements on main job (percent of 
all workers)

Source  
Independent  
contractors  

On-call  
workers  

Temporary help  
service workers  

Contract firm  
employees

Contingent Worker Supplement, 
Current Population Survey, 
BLS estimates

1995 6.7 1.7 1.0 0.5
1997 6.7 1.6 1.0 0.6
1999 6.3 1.5 0.9 0.6
2001 6.4 1.6 0.9 0.5
2005 7.4 1.8 0.9 0.6
2017 6.9 1.7 0.9 0.6

Quality of Worklife Survey, 
General Social Surveya

2002 13.9 2.1 0.7 2.5
2006 13.7 2.6 1.0 3.7
2010 13.3 3.7 1.4 3.1
2014  14.1  3.1  0.5  2.7

Source: Bureau of Labor Statistics press releases reporting Contingent Worker Supplement (CWS) find-
ings and authors’ tabulations of General Social Survey data.
Notes: CWS work arrangements defined in Cohany (1996). Quality of Worklife Survey estimates based 
on answers to question about work arrangements. First response option is “work as an independent 
contractor, consultant or freelance worker”; second is “on call, and work only when called to work”; 
third is “paid by a temporary agency”; and fourth is “work for a contractor who provides workers and 
services to others under contract.”
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panel. Although the estimates from the two surveys differ with regard to the 
estimated prevalence of some types of work—in particular, work as an inde-
pendent contractor—they agree that the prevalence of the different alterna-
tive work arrangements has not trended upward over time. It is important 
to note, however, that these questions were asked only about people who 
had already been identified as employed in response to the surveys’ stan-
dard employment questions and only about their main jobs. Both of these 
features mean that there is likely to be work under alternative arrangements 
that, in part by design, the two surveys do not capture.

In October and November 2015, before the fielding of the 2017 CWS, 
Lawrence Katz and Alan Krueger arranged for the core CWS questions to 
be collected on the Rand- Princeton Contingent Work Survey (RPCWS) 
administered as part of the Rand Corporation’s online American Life Panel 
(ALP; Katz and Krueger 2019a). The intention was that the RPCWS would 
produce estimates for 2015 that could be compared to the CWS estimates 
for earlier years. In contrast to the 2017 CWS, the 2015 RPCWS produced 
substantially higher prevalence rates for all four types of alternative work 
than had been estimated in the 2005 CWS—results that were interpreted as 
evidence of substantial growth in the prevalence of these arrangements on 
individuals’ main jobs. Given these findings, many people were surprised 
when the 2017 CWS estimates turned out to be so similar to the 2005 CWS 
estimates. There are several reasons, however, to have suspected that the 
RPCWS estimates might not be directly comparable to the earlier CWS 
estimates.

First, the RPCWS data were collected through an online survey panel, 
the ALP, whose members are assembled from a variety of sources with an 
unknown response rate.14 Given the way in which it was assembled, the 
RPCWS sample may be less representative of  the population than the 
CWS sample in ways that reweighting based on observables cannot fully 
correct. More specifically, the concern is that, even holding their demo-
graphic characteristics constant, people who are willing to participate in 
an online survey panel also might be more likely than others to work under 
nonstandard arrangements. Second, whereas the CWS asks respondents to 
provide information for all members of their households, the RPCWS asks 
respondents to report only for themselves. To the extent that respondents 
are able to report more fully about their own experiences than about the 
experiences of others in their household, this could mean that relying only 
on self- reports will produce more accurate information than accepting both 
self  and proxy reports but by the same token may undermine the compa-
rability of the RPCWS to the CWS. Third, the RPCWS and the CWS col-
lected informa tion for different times of the year, with the CWS asking about 

14. See Pollard and Baird (2017) for a description of the methods used to create the ALP 
panel.
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work during a mid- February reference week and the RPCWS asking about 
work during an October or November reference week. It is possible that 
the reliance on alternative work arrangements fell between 2015 and 2017 
as the labor market tightened, but this seems unlikely to explain the large 
difference in the estimates from the 2015 RPCWS and the 2017 CWS. We 
view the different findings obtained in the two surveys as a cautionary tale 
about the importance of consistency in measurement for assessing trends 
in work arrangements.15

While the CWS, GSS, and RPCWS gather information about work 
arrangements that is not normally collected, they are not designed to 
identify nonemployee work done by people the standard questions do not 
identify as employed or for whom self- employment is not a primary job. 
As discussed in the previous section of the chapter, there are a significant 
number of people with no self- employment income during the year in the 
CPS- ASEC who do have self- employment income in the DER. On average 
over the 1996–2012 period, 19.3 percent of  these people had no income 
from employment in the CPS- ASEC. Another 44.9 percent had only wage 
and salary income in the CPS- ASEC but wage and salary income plus 
self- employment income in the DER, suggesting that the CPS- ASEC may 
have missed a self- employment second job.16 These numbers refer to self- 
employment at any point during the year rather than to self- employment 
at a point in time. Nonetheless, they suggest that there may be a significant 
amount of nonemployee work that would not be uncovered by probing only 
about an already- reported main job.

Several other recent surveys have contained questions designed specifi-
cally to learn about the prevalence of informal work activity. The Enter-
prising and Informal Work Activities (EIWA) survey (Robles and McGee 
2016) was administered as an online survey to the GfK KnowledgePanel in 
October and November 2015. It contained a battery of items asking respon-
dents about informal income- generating activities over the prior six months, 
including providing in- person services such as child care, housecleaning, or 
landscaping; selling new or used items at garage sales or flea markets; and 
selling services, selling items or renting property online. The EIWA estimates 
indicate that 36 percent of the adult US population engaged in at least one 
of these activities during the six- month reference period. Although there 
might be debate about whether renting or selling items should count as work 
activity, the survey estimates show that 27 percent of the adult population 
earned income by housecleaning, house sitting, yard work, or other prop-
erty maintenance tasks and that 17 percent earned income by babysitting or 
providing child care services.

15. Katz and Krueger (2019b) revisits the results reported in Katz and Krueger (2019a) and 
comes to much the same conclusion.

16. In the previously mentioned dataset that drops imputed observations, the corresponding 
percentages for the period 1997–2012 are 19.5 percent and 45.0 percent.
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The 2015 Survey of Household Economics and Decisionmaking (SHED), 
also administered via the GfK KnowledgePanel, contained a single ques-
tion about whether a respondent was currently engaged in informal work 
activity. Among adults who were not students and not retired, about 20 per-
cent of those under age 30, 15 percent of those age 30 to 44, and 11 per-
cent of  those age 45 and older said they were engaged in informal work 
(Board of Governors 2016). The 2016 SHED adopted the more detailed set 
of questions about informal work activity developed for the EIWA and a 
one- month reference period; the 2017 SHED collected similar information 
(Board of Governors 2017, 2018). In the SHED data, over those two years, 
an estimated 28.1 percent of all adults reported having earned money from 
informal work activities during the previous month (Abraham and House-
man 2019). A final recent survey, the Survey of Informal Work Participation 
(SIWP), also finds high rates of participation in informal work activities. 
Among household heads surveyed in the two waves of the survey conducted 
in January and December 2015, an estimated 32.5 percent were currently 
engaged in paid informal work, not including survey work, and 18.5 percent 
were engaged in informal work after also excluding work related to renting 
and selling (Bracha and Burke 2019).

One caveat regarding the three surveys just discussed—the EIWA, the 
SHED, and the SIWP—is that all were administered via online survey pan-
els. Although each was weighted to match the demographic characteristics 
of the target population, as with the RCPWS, the concern is that the survey 
samples may in certain respects be unrepresentative. More specifically, one 
might fear that people who are willing to participate in an online survey 
panel also may be more likely than otherwise similar individuals to partici-
pate in informal work. Taking into account losses during the course of panel 
recruitment, the response rates to the EIWA and the SHED are just 4 percent 
to 5 percent; the response rate for the SIWP is not reported but is likely to 
be similar. Although there is no one- to- one relationship between response 
rates and nonresponse bias (Groves and Peytcheva 2008), the surveys’ low 
response rates reinforce concern that those participating may be atypical. 
As discussed by Abraham and Houseman (2019), it is at least somewhat 
reassuring that the estimated share of people in the 2017 SHED who earned 
money within the past month by driving using a ridesharing app is of the 
same order of magnitude as estimates for the same time period from other 
sources. Unfortunately, comparable benchmarks for other types of informal 
work are lacking.17

17. In addition to the EIWA, SHED, and SIWP, the Survey of Income and Program Par-
ticipation includes a category for reported work on a person’s main job that cannot easily be 
classified as either work for an employee or self- employment. The utility of these data is lim-
ited by the fact that they do not allow different arrangements within the “other” category to 
be distinguished. The McKinsey Global Institute (MGI) independent work survey (Manyika 
et al. 2016) also attempted to capture all informal or independent work, whether it represented 
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A recent survey experiment described in Abraham and Amaya (2019) 
provides some additional evidence about how different approaches to prob-
ing for informal employment might affect the share of  people for whom 
employment activity is reported (the employment rate) and the share of 
those with employment for whom more than one job is reported (the mul-
tiple job- holding rate). The experiment was embedded in a survey carried 
out for the 2016 Joint Program in Survey Methodology (JPSM) practicum. 
Subjects for the survey were recruited using Mechanical Turk, Amazon’s 
crowdsourcing platform, and the specific estimates thus cannot be general-
ized, but the qualitative findings shed useful light on some of the factors 
that may affect household survey responses to questions about work activity.

The survey collected information on the characteristics of the members of 
respondents’ households. It also asked questions to identify each household 
member’s employment status and, for those who were employed, whether 
they held more than one job. With the exception of some special questions 
concerning sexual orientation and gender identity included for testing, all 
the questions about household members’ characteristics and employment 
status were taken directly from the CPS questionnaire. Additional ques-
tions about informal work activity were asked about one randomly selected 
member of each survey respondent’s household. In one version, randomly 
assigned to half of the cases, respondents were asked a global yes/no question 
about whether there had been any such work activity during the reference 
week (the global question). In the second version, respondents were asked 
about each of six different possible types of informal work activity, with 
examples provided for each of them, and to indicate whether any other type 
of informal work activity had been performed (the detailed question).18 In 
cases where employment had already been reported for the person to whom 
the added probe applied, the respondent was asked to indicate whether any 
reported informal work activity had been included in the responses to the 
standard CPS employment questions. Employment rates and multiple job- 
holding rates were computed based on the responses to the CPS questions 
and then recomputed to incorporate the additional work activity uncovered 
by probing.

The first row in the upper panel of table 7.5, summarizing selected results 
from Abraham and Amaya (2019), displays the employment rate that is 
estimated based on the standard CPS questions; the second row displays 
the augmented employment rate that incorporates the additional informa-
tion provided in response to the informal employment probe; and the third 

a person’s primary work or was supplemental to a primary job. The independent work concept 
applied in the MGI survey, however, is not comparable to that applied in other research.

18. The six types of activity in addition to the “other” category were services to other people; 
services to a self- employed individual or business; performing as an actor, musician, or enter-
tainer; driving for a ride- sharing service; assisting with medical, marketing, or other research; 
or posting videos, blogs, or other content online. A list of examples was given for each category.
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row shows the difference between the two estimates. The employment rate 
is defined as the percent of the sample categorized as employed during the 
survey reference week. The second panel of the table reports similar infor-
mation on the multiple job- holding rate for those categorized as employed 
based on the standard CPS questions. The multiple job- holding rate is the 
percent of this group who had more than one job during the survey reference 
week. Estimates are shown separately for respondents asked to report for 
themselves and those asked to report for another member of their house-
hold, in each case differentiated by whether the respondent received the 
global probe or the more detailed probe.

Probing to ask about informal work activity produced notably higher 
estimated employment and multiple job- holding rates whether respondents 
were reporting for themselves or for another member of their household and 
whether the respondent received the global or the detailed probe. As already 
noted, the sample of Mechanical Turkers used in the study is not representa-
tive of the population as a whole, and the magnitude of the changes in these 
estimated rates likely would have been different in a more representative 
sample. Still, the fact that probing has such a consistent effect on the esti-
mates suggests that learning about informal work activity is likely to require 
asking more than the standard employment questions.

In addition, the estimates suggest that asking the global question versus 
the more detailed question about informal work may make a larger differ-
ence when the respondent is answering questions about someone else. For 
those reporting about their own work activity, the two forms of the ques-
tion have very comparable impacts, and the differences between the effects 
of the two question treatments are not statistically significant. In contrast, 
when the respondent is reporting for another household member, asking 
the detailed probe rather than the global probe produces a larger increase 
in both the estimated employment rate and the estimated multiple job- 
holding rate. Given the nature of the survey sample, the magnitudes of the 
differences between the estimates for respondents and those for others in 
the household are unlikely to generalize, but it is informative that detailed 
probing makes a larger difference compared to using a global probe when 
respondents are being asked about others in the household rather than about  
themselves.

Other recent research also has produced results suggesting that the stan-
dard CPS questions may not fully capture informal work activity. The 2015 
SIWP surveys included employment questions similar to those on the CPS 
together with additional questions about informal work. Assuming that any-
one who was currently engaged in informal work activity should have been 
counted as employed, accounting for that work would have raised the point 
estimate of the overall employment rate for household heads from 65.1 per-
cent to 69.6 percent, a 4.5 percentage point increase, though the survey 
sample was relatively small and this increase was not statistically significant 
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(Bracha and Burke 2019). In a 2015 survey of Mechanical Turk respondents 
conducted by Lawrence Katz and Alan Krueger, taking into account small 
jobs or gigs beyond the main job that were not reported in response to the 
CPS employment questions almost doubles the multiple job- holding rate, 
raising it from 39 percent to 77 percent (Katz and Krueger 2019b). Taken as a 
whole, these findings suggest that standard household survey questions may 
miss some individuals’ primary work activities, perhaps because the survey 
respondent does not think of them as a job, and that there is a sizable risk 
they will fail to uncover secondary work activity. Devising an appropriate 
set of more probing questions that could be asked at regular intervals on 
ongoing household surveys would allow trends in work activity and work 
arrangements to be gauged more accurately.

7.6  Other Sources of Information on Nonemployee Work

In addition to household survey data and the earnings information derived 
from Schedule SE that we have already discussed, useful information about 
nonemployee work could be gleaned from employer surveys, other tax rec-
ords and associated data repositories, and information held by private firms. 
We discuss each of these potential data sources briefly in turn. A central 
theme of this discussion will be that the integration of survey, administra-
tive, and private data has the potential to add important new insights to our 
understanding of the changing nature of work.

7.6.1  Employer Surveys

A natural approach to learning about alternative work arrangements 
would be to ask employers. Employer- provided information is unlikely to 
be especially helpful for learning about how alternative work arrangements 
fit into workers’ careers but could be quite helpful for learning about the 
scale of  such activity and thus for productivity measurement. Capturing 
firms’ use of contract workers is an issue that has been of particular concern 
to the federal statistical agencies. More specifically, the agencies have recog-
nized that for the purpose of measuring sectoral productivity, the employees 
of professional employer organization (PEO) and temporary help service 
(THS) firms should be assigned to the industry in which they are actually 
working rather than to staffing services. Dey, Houseman, and Polivka (2012) 
used data from the Occupational Employment Survey on the occupational 
distribution of staffing services employees together with information from 
the Contingent Worker Supplement on the industries in which staffing firms 
place workers to estimate the industry distribution of placements by PEO 
and THS firms. Over the 1989 to 2004 period studied in their paper, account-
ing for such placements had a noteworthy impact not only on trends in the 
input of labor to manufacturing but also on measures of manufacturing 
labor productivity.
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While recognizing that this issue needs to be addressed, both BLS and 
Census have faced challenges in fully capturing and allocating THS and PEO 
activity. For a number of cycles, the Economic Census has included ques-
tions for PEO firms about the industries in which leased workers are placed 
(Lombardi and Ono 2010), but similar questions are not asked of temporary 
help service firms, nor is it clear that they would be able to answer them. BLS 
carried out a study in 2005 to assess the feasibility of collecting information 
from THS and PEO firms in the Current Employment Statistics (CES) sur-
vey on where they placed workers. The conclusion was that many THS and 
PEO firms do not have records concerning the industry of their clients, and 
a substantial minority would be unable or unwilling to provide this informa-
tion on the CES (Bureau of Labor Statistics 2005). Both the Census and the 
BLS efforts just described sought to be able to allocate the employees of the 
PEO and THS firms across industries, an important but limited objective. 
Obtaining this information would still leave unanswered important ques-
tions about firms’ use of the services of self- employed individuals working 
on their own account.

In principle, both the services provided by contract company workers and 
the services provided by sole proprietors, independent contractors, and so 
on should be captured in the Business Expenses Survey (BES) conducted 
by the Census Bureau as a part of the Economic Census and its program 
of annual economic surveys. Rather than asking service suppliers to pro-
vide information about their customers, the BES asks the firms that are 
customers to report on their spending for these services. The information 
obtained through the BES is an important ingredient in the construction 
of the Input- Output tables. The categories of expenses for which firms are 
asked to report vary somewhat depending on the industry but include a 
category for temporary staff and leased employees obtained through THS 
or PEO firms, a category for purchased professional and technical services, 
and categories for other types of purchased services. The data are collected 
annually for manufacturing and services but only once every five years for 
other industries, and they are denominated in dollars rather than in the 
amount of  labor used to produce the service in question. Perhaps more 
important for our purposes, the payments in any category that a firm makes 
to individuals working as independent contractors or freelancers are aggre-
gated with the payments made to more traditional businesses and cannot 
be separately identified.

Another interesting effort to collect information from the users of labor 
supplied under various arrangements was the addition of a module on this 
topic to the 2015 Annual Survey of  Entrepreneurs (ASE).19 The module 
included questions on whether the firm used different types of workers—

19. The ASE is a survey of approximately 290,000 employer firms, of which just under half  
are less than 10 years old. See Foster and Norman (2016) for further details about the ASE.
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full time; part time; day laborer; temporary help service employee; leased 
employee; or contractors, subcontractors, independent contractors, or out-
side consultants—as well as questions regarding what share of  the total 
number of workers were of each type and the types of tasks each type of 
worker performed. The approach developed for the 2015 ASE is interesting 
in part because it offers the possibility of insights into the use of nonem-
ployee workers by young businesses that may be more innovative in their 
workforce organizational structure.

Brown, Earle, and Lee (2019) have begun to look at the data from the ASE 
module. Their initial estimate is that 30 percent of US firms make at least 
some use of contract workers, with those workers accounting for 14 percent 
of  full- time- equivalent work effort overall. Relative to full- time employ-
ees, they find contract workers are most likely to be involved in operations, 
product development, and technology development activities and least likely 
to be involved in management and human resources activities. They also 
observe that new businesses are more likely than established businesses to 
use contract workers. There is certainly more to be gleaned from a care-
ful examination of the data from the new ASE module, including insights 
about how well the module questions on the use of workers under alternative 
arrangements have performed and whether they might be adapted for use 
in other settings.

7.6.2  Tax Data

The analysis described earlier in the chapter based on CPS data integrated 
with records from the DER demonstrates the value of administrative data 
for studying the evolution of employment arrangements. That analysis made 
use of information on annual earnings reported on Schedule SE. That sched-
ule does not contain information about the individuals or firms for which 
self- employment work is performed. Form 1099- MISC, used to report busi-
ness payments of nonemployee compensation to contract workers, contains 
a tax identifier for both the payee and the payer. This means that access to 
1099- MISC data in principle allows researchers to match individuals to the 
firms for which they are performing work (see, e.g., Collins et al. 2019). Some 
individuals may have long- standing self- employment relationships with a 
single firm; these should be reflected in the individual receiving a 1099- MISC 
from only one employer identification number (EIN) for many years con-
secutively. Other individuals may receive multiple 1099- MISC forms from 
multiple EINs with considerable turnover in the latter. These two patterns 
would imply quite different work arrangements from the perspective of both 
the individual and the firm.

Integration of other sorts of tax data also has the potential to yield new 
insights. As an example, in other recent work, we have created a data file 
containing information on self- employed sole proprietors derived from the 
microdata that underlie the Census Bureau nonemployer statistics, the unem-
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ployment insurance wage records contained in the Longitudinal Employer 
Household Dynamics (LEHD) infrastructure, and personal characteristics 
from the Census Bureau’s Individual Characteristics File. We are using these 
data to study changes in the Taxi and Limousine Services industry during 
the period of explosive growth it has experienced following the introduc-
tion of online apps for matching workers to customers, looking at both new 
entrants and incumbents in the industry (Abraham et al. 2018). This is just 
one example of the sorts of analyses that can be carried out using this data 
infrastructure.

7.6.3  Financial Data

Anonymized individual- level financial records are another potential 
source of  information about certain forms of  nonemployee work. In an 
interesting stream of research, Farrell and Greig (2016a, 2016b) and Far-
rell, Greig, and Hamoudi (2018) use transaction- level data from customers 
with JP Morgan Chase banking and credit card accounts to examine flows 
of income that originate from a set of  online platforms identified by the 
research team. Their findings suggest that online platform workers reflect a 
small but rapidly growing sector of the workforce. The findings also suggest, 
however, that such work is a secondary source of income for most house-
holds, reinforcing the importance of looking beyond the main job to develop 
a complete understanding of the role of nonemployee work.

Taking a somewhat different approach, Koustas (2018) analyzes transaction- 
level data for the users of one company’s online personal financial management 
software. In a sample of individuals identified as receiving regular biweekly 
paychecks, he finds that work as an Uber driver mitigates fluctuations in pay 
and makes a significant contribution to allowing drivers to smooth their con-
sumption when earnings from a main job fluctuate.

7.6.4  Private- Sector Company Data

A final source of information that has been used by researchers interested 
specifically in the rise of the online platform economy has been person- level 
data from companies in the online platform sector. Hall and Krueger (2018), 
for example, analyze administrative data on Uber’s “drivers/partners” 
derived from the company’s records. In addition, to enhance the admin-
istrative data, they also carried out a survey of these drivers/partners. To 
help provide perspective on their findings, they compare patterns of activity 
of drivers/partners to information from the American Community Survey 
on taxi drivers and chauffeurs. They find, for example, that Uber drivers/
partners work fewer hours per week than taxi drivers and chauffeurs.

While the findings from these various studies are fascinating, the proper-
ties of many of the new private data sources are not yet fully understood. 
The JP Morgan Chase Institute has taken significant steps to facilitate access 
by outside researchers to their data, and other organizations also have devel-
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oped collaborative relationships with outside researchers. The involvement 
of outside researchers undoubtedly will be helpful for learning about the 
strengths and weaknesses of these new types of data. Greater access by the 
research community to such data more generally and, ultimately, integration 
of these data in an appropriately secure environment with the survey and 
administrative records discussed above seem like worthy longer- term goals.

7.7  Conclusion and a Path Forward

The widely perceived rise of  the gig economy is as yet not well mea-
sured or well understood. Gig economy workers should be classified as 
self- employed, but data from the core traditional household surveys do not 
show an increase in self- employment activity. There is more evidence in the 
administrative data of growth in the number of individuals receiving income 
from self- employment, though much of the growth observed in these data 
occurred between the mid- 1990s and the mid- 2000s, prior to the emergence 
of the app- based gig activity that has captured the popular imagination. If  
available data on self- employment are failing to capture ongoing growth in 
nonemployee work activity, estimates of growth in labor inputs may be too 
low, estimates of aggregate productivity growth may be too high, and the 
pattern of estimated productivity growth may have been distorted.

A challenge in understanding and measuring the rise of the gig economy 
is being able to document where such activity fits into the full range of non-
employee work. Identifying the key attributes that characterize different 
forms of nonemployee work may help us close in on the traits of jobs that 
are most appropriately characterized as gig work. In the framework we have 
developed, gig workers are a subset of the unincorporated self- employed 
as identified in multiple data sources. We have discussed the challenges to 
quantifying the prevalence of gig employment using either existing house-
hold survey data or administrative records on their own.

Our analysis highlights the potential payoff from improvements in eco-
nomic measurement along two key dimensions. First, there is a high poten-
tial payoff to modules conducted at regular intervals on ongoing household 
surveys that would probe more deeply about nonemployee work activities. 
This should not be surprising, since gig employment is often a secondary 
activity that existing household surveys are not well designed to capture. 
Such activity may not be mentioned by respondents in cases where gig work 
is not a person’s primary activity and where the standard household survey 
employment questions do not cue adequately that it should be reported. To 
the extent that job attributes define the various types of nonemployee work 
arrangements, probes about employment usefully could be supplemented 
with questions about job attributes.

A second improvement in economic measurement would be to develop 
estimates based on survey and administrative data that have been integrated 
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at the individual level. Such integration offers great potential for under-
standing the changing nature of work, particularly for nontraditional work 
activities that are inherently difficult to define and measure. Measures derived 
from tax data show an increasing amount of self- employment that is being 
missed in household surveys, yet the tax data by themselves are not informa-
tive about who these workers are and may be missing “off- the- books” work. 
Linking tax data with household survey data gives us not only the worker’s 
demographic characteristics but also the worker’s family characteristics—
something that is crucially important for understanding how gig employ-
ment is related to family income and health insurance coverage. In addition, 
to the extent that household surveys capture “off- the- books” work that is 
not reported to the tax authorities, the two sources together may provide a 
more complete picture than either source alone.

A key missing piece of the puzzle is to understand where nonemployee 
work fits into the career paths of workers. The limited evidence that is cur-
rently available suggests that much of  the online platform / on- demand 
nonemployee work to date has been supplemental in nature rather than 
something that participants have undertaken as a primary activity. There 
is, however, much more to be done to better understand how individuals 
are combining traditional employment and nonemployee work. Longitudi-
nal matched employer- employee data that also fully integrate nonemployee 
work activity will be invaluable for addressing these questions. Developing 
this data infrastructure will be challenging but is something we believe can be 
accomplished by building on the work we already have done to integrate the 
CPS- ASEC, DER, LEHD, and nonemployer business data infrastructures. 
Being able to add Form 1099- MISC data, including identifiers for both the 
recipients and the providers of reported payments of nonemployee compen-
sation, would greatly enhance the value of the integrated data infrastructure. 
More generally, we envision making use of survey and administrative data to 
measure and analyze the full taxonomy of nonemployee work in the context 
of the career paths of workers over their life cycles.

Data Appendix

Household Survey Data on Self- Employment. The CPS is a monthly house-
hold survey with a sample that represents the civilian population of  the 
United States. The basic monthly CPS questionnaire collects relatively rich 
information on the characteristics of all members of selected households 
age 16 and older, including their age, sex, race, ethnicity, nativity, disability 
status, and education. The monthly instrument also contains questions to 
determine whether household members were employed during the survey 
reference week (normally the week that includes the 12th of the month) and, 
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if  so, whether each person had more than one job during that week. For those 
categorized as employed, the CPS asks about the occupation and industry of 
the main job, hours on the main job, and combined hours on any other jobs. 
Additional questions are asked that allow a person’s status on their main job 
to be categorized as wage and salary, self- employed with an incorporated 
business, self- employed with an unincorporated business, or unpaid family 
worker. In published BLS statistical series on self- employment based on the 
monthly data, individuals who operate an incorporated business are cat-
egorized as wage and salary workers rather than as self- employed, but both 
the incorporated and the unincorporated self- employed can be identified 
in the underlying microdata. Information on the industry, occupation, and 
type of employment for any reported second jobs is collected for a quarter 
of the sample—those in the so- called outgoing rotation groups—and is not 
collected at all for any additional jobs. Finally, for the quarter of the sample 
in the outgoing rotation groups, the monthly CPS collects information on 
earnings on the main job. Except for the information on disability status, 
which has been collected since June 2008, all of these data are available on 
a consistent basis beginning in 1994, the year of the most recent major CPS 
redesign.

The ASEC supplement administered each spring to CPS households col-
lects information for the preceding calendar year. Respondents are asked 
about the number of weeks during the year worked by each member of the 
CPS household, the number of jobs each household member held during the 
year, and the industry, occupation, and type of the longest job.20 These data 
allow the longest job held during the year to be categorized as wage and sal-
ary, self- employed incorporated, self- employed unincorporated, or unpaid. 
In addition, the CPS- ASEC supplement contains questions about wage 
and salary income and business income received during the year, whether 
from the longest job or from other jobs. The data on business income from 
employment other than the longest job combine income from incorporated 
and unincorporated self- employment. We use the responses to these ques-
tions to construct a self- employment indicator that equals one if  a person 
is classified as self- employed unincorporated on their longest job and has 
positive self- employment earnings or, if  the longest job was not unincorpo-
rated self- employment, has positive self- employment income on a job other 
than the longest job. Data from the CPS- ASEC supplement are available 
beginning in 1962.

Although we do not know whether self- employment earnings on a job 
other than the longest job are from incorporated or unincorporated self- 
employment, we expect most self- employment outside of the longest job 
to be unincorporated self- employment. We cannot look at this directly but 

20. Individuals who hold two jobs simultaneously rather than in sequence are instructed to 
report holding just one job.
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have looked at data from the monthly CPS that, for those in the outgoing 
rotation group, capture class of worker both for the main job and for any 
second job. Using these data, we identified people who were self- employed 
unincorporated on their main job or were either self- employed incorporated 
or self- employed unincorporated on a second job. Consistent with our prior 
that secondary incorporated self- employment is relatively rare, only about  
2 percent to 3 percent of those categorized as self- employed according to this 
definition were so classified only because of a second job that was reported 
to be incorporated self- employment.

The ACS is a Census Bureau survey with a very large sample that repre-
sents the US civilian population. For each household member age 15 years 
or older, the ACS asks whether the person worked for pay during the prior 
seven days (“last week”). For those who are reported to have worked, addi-
tional questions collect information about the main job held during the 
reference week—the industry and occupation of the work and whether the 
person was a wage and salary worker, self- employed with an incorporated 
business, self- employed with an unincorporated business, or an unpaid fam-
ily worker. The ACS also requests the total amounts of employee compensa-
tion and self- employment income earned by each household member over 
the prior 12 months. These data could in principle be used to construct an 
earnings- based measure of self- employment activity. Because the questions 
on the ACS do not ask separately about income from the longest job versus 
income from other jobs, however, the resulting measure would encompass 
everyone reporting income from either incorporated or unincorporated self- 
employment. ACS estimates of self- employment on the main job last week 
are available from 2005 through the present. Although some ACS data were 
collected beginning in 2001, the survey was not fully implemented until 2005, 
and that is the first year for which published estimates are available.

Tax Data on Self- Employment. The Master Earnings File (MEF), main-
tained by the Social Security Administration, is one source of administrative 
data on self- employment earnings. The MEF includes information on each 
W- 2 a person received for calendar years from 1978 onward, including the earn-
ings reported on the W- 2 and the employer from whom those earnings were 
received, and on the total self- employment earnings in each of the same years 
reported on a Schedule SE filed by the taxpayer. A Schedule SE is required of 
sole proprietors, general partners, and farmers with gross self- employment 
earnings above a defined threshold that effectively has been set at $433 over 
the period covered by our analysis. More than 85 percent of Schedule SE 
filers are sole proprietors (Jackson, Looney, and Ramnath 2017). The MEF 
records are not public, but an extract called the Detailed Earnings Record 
(DER) covering all linked CPS- ASEC and Survey of Income and Program 
Participation (SIPP) respondents for whom there is a PIK has been provided 
to the Census Bureau for specified statistical uses. The extract delivered to 
the Census Bureau for the CPS- ASEC sample used in our analysis contains  
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information on MEF earnings for 1978 through 2012 for individuals in the 
1997 through 2013 CPS- ASEC samples, from whom survey information 
referencing the years 1996 through 2012 was collected.

The Census Bureau’s Business Register (BR) is the master business list 
that the Census Bureau maintains for use as a sample frame for all of its 
business surveys as well as a source that is tabulated directly to produce 
a variety of business statistics. The BR is based primarily on administra-
tive data from business income and payroll tax returns. It includes records 
for both employer and nonemployer businesses. Each record on the file is 
assigned a detailed industry code. Employer businesses are those with posi-
tive payroll in a year, while nonemployer businesses are those with qualifying 
business revenue but no paid employment. As stated on the Census Bureau’s 
website, “Most nonemployers are self- employed individuals operating unin-
corporated businesses (known as sole proprietorships), which may or may 
not be the owner’s principal source of income.” To be included in the non-
employer universe for tabulation, other than in construction, a business 
must have at least $1,000 in gross revenue (in construction, the threshold 
is at least $1 in gross revenue). Businesses with more than some maximum 
amount of annual revenue are excluded from the nonemployer universe on 
the grounds that businesses with revenues over the threshold amount are 
likely to have employees and thus to appear on the list of employer busi-
nesses. The upper revenue threshold is determined based on the business’s 
legal form of organization (sole proprietorship, partnership, or corporation) 
and industry. Information about payroll and other business costs also is 
recorded in the BR. Published data on nonemployers are available beginning 
in 1997, and statistics broken out by legal form of organization have been 
produced since 2004.

Form 1099- MISC also contains information relevant to assessing trends 
in self- employment income. This is the tax form used by businesses to report 
payments of  nonemployee compensation. Applicable regulations require 
that a Form 1099- MISC be filed by business payers when nonemployee com-
pensation paid to any source equals or exceeds $600 over the course of a 
year; applicable amounts are recorded in Box 7 of the form. One complica-
tion is that a Form 1099- MISC may be issued either to an individual (using 
a Social Security Number [SSN]) or to a business (using an EIN). Further, 
the dollar amounts reported on Form 1099- MISC are gross payments rather 
than the net amounts earned by the recipient after expenses. Individuals or 
businesses performing work for an individual rather than for a business will 
not receive a Form 1099- MISC. Staff at the Department of the Treasury have 
compiled counts of the number of individuals and the number of businesses 
receiving Form 1099- MISCs that had positive amounts reported in Box 7, 
Nonemployee Compensation, for each year from 2000 through 2012. These 
counts are available from the US Department of the Treasury (2015).
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To calculate a self- employment rate—the share of workers who are self- 
employed—a measure of the total number of workers is needed to serve 
as the denominator. The denominators for the monthly CPS and the ACS 
measures are estimates of the number of people employed during the survey 
reference week based on the same survey. For the two CPS- ASEC measures, 
the denominator is the estimated number of people with any work activity 
during the year in question, again based on the same survey. The denomina-
tor for all the measures based on administrative data is the estimated num-
ber of people with any employment during the year based on the earnings 
captured in the DER.

We do not have DER data for 2013–16. For those years, we projected the 
2012 DER employment estimate forward using the ratio of annual average 
employment from the Bureau of Labor Statistics monthly payroll survey 
(formally, the Current Employment Statistics survey) for the year in ques-
tion to 2012 annual average payroll survey employment. Over the years from 
1996 through 2012, the annual percent change in employment estimated 
using the DER and the percent change in annual average payroll survey 
employment have a correlation of 0.89, and the two series also had a simi-
lar mean annual growth rate (0.72 percent for the payroll survey and 0.76 
percent for the estimate of employment based on the DER). The similarity 
in the two series’ behavior over the 1996–2012 period gives us reasonable 
confidence that the DER employment values we project for 2013 through 
2016 should be approximately correct.

Linked Household Survey- Administrative Data File. Individuals in our 
linked household survey- administrative sample were members of a house-
hold for which a CPS- ASEC interview was conducted in at least one year 
between 1997 and 2013. In each case, the reference period for these inter-
views was the prior calendar year, meaning that information was obtained 
for calendar years 1996 through 2012. These CPS- ASEC individuals were 
linked to W- 2 and Schedule SE earnings information provided to the Census 
Bureau by the Social Security Administration in the form of the DER, the 
previously mentioned extract from the MEF. This linking was performed 
using the PIK, which is a replacement for the SSN.

The PIK is missing for 20 percent to 30 percent of ASEC respondents, 
depending on the year. We used propensity score methods to reweight the 
sample of people for whom we have a PIK so that they represent the popula-
tion as a whole. For each year, we estimated a regression model in which an 
indicator for having a PIK was regressed on indicators for age group, gender, 
race, education, marital status, foreign- born status, state of residence, and 
whether the person reported being employed in the relevant CPS- ASEC. 
We used the coefficients from this model to calculate each individual’s prob-
ability of having a PIK and applied a weight adjustment factor equal to the 
inverse of this probability to the CPS- ASEC estimation weight. Individuals 
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with a PIK were retained in our sample regardless of whether we were able 
to locate any W- 2 or Schedule SE earnings for them in the DER.

The presence of imputed values for self- employment status in the CPS- 
ASEC creates another complication. These values are imputed for indi-
viduals representing approximately 20 percent of the population. We have 
replicated our analysis with all these cases dropped from the linked sample 
and the data reweighted using propensity score methods to account for 
the loss of  observations that lack directly reported information on self- 
employment. Restricting our attention to individuals with directly reported 
self- employment status had little effect on the conclusions to be drawn from 
our analysis.
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8.1  Introduction

In the eyes of most historians of science and technology, information and 
communications technology (ICT) can be classified among general purpose 
technologies (GPT) such as the wheel, steam power, the combustion engine, 
and electricity (Lipsey, Carlaw, and Bekhar 2005; Jovanovic and Rousseau 
2005; Brynjolfsson and McAfee 2014). It took some time before ICT showed 
up in the productivity statistics, but by now it is common to distinguish 
between ICT and non- ICT capital in productivity analysis, and a great deal 
of  economic and labor productivity growth in the last 30 years has been 
ascribed to ICT capital deepening (Jorgenson, Ho, and Stiroh 2008). Even 
skeptics have acknowledged the transformational power of digital technol-
ogy, although some claim that the economic benefits are short- lived and that 
the impact of ICT does not stand up to that of earlier GPTs (e.g., Gordon 
2016).

Another channel through which ICT affects labor productivity growth is 
through its potential impact on total factor productivity (TFP). One explana-
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tion for the differential success of ICT capital in fostering productivity has been 
the argument of complementarity between ICT investment and investment in 
intangible assets, such as organizational capital (Brynjolfsson and Saunders 
2010; Bresnahan, Brynjolfsson, and Hitt 2002). Firms need to reorganize their 
way of operating to benefit from digital technology and vice versa.1

Beyond its contribution to TFP via organizational change, ICT can also 
increase the returns to R&D, generating a string of new technological inno-
vations. It can also make R&D more effective in the sense that it facilitates 
the gathering, documenting, and sharing of knowledge and information. 
Finally, besides the potential to improve research effectiveness, these charac-
teristics of ICT can also improve the possibility and quality of collaboration 
between researchers.

In this chapter, we look at the triangle between ICT, technological, and 
nontechnological innovation. In particular, we look at R&D as an instance 
of technological innovation and organizational change as a nontechnologi-
cal innovation. Parts of this triangle and its relation to productivity have 
been covered extensively in the literature. Putting the pieces together in one 
framework is a novelty of our analysis. We shall reassess the contribution 
of ICT to TFP growth and reexamine the hypothesis of complementarity 
between organizational innovation and ICT. In addition, we shall explore 
whether the returns to ICT and R&D are mutually reinforcing, in the sense 
that innovation is ICT facilitated and, vice versa, that the returns from ICT 
stem in part from the generation of knowledge.

The chapter is structured as follows. In section 8.2, we briefly review the 
literature on the role of ICT and R&D for productivity, on the complemen-
tarity between ICT and organizational innovation, and on the GPT aspects 
of ICT. Section 8.3 is devoted to modeling aspects. In section 8.4, we describe 
the data and the main variables. In section 8.5, we present the estimation 
results, and in section 8.6, we conclude.

8.2  The Literature

A vast literature has documented evidence of different determinants of 
productivity both at the macro-  and at the microlevel (see Syverson 2011). 
Among the determinants, investment in ICT and the generation of knowl-
edge feature prominently.

One strand of the literature has estimated the returns (private and social) 
to R&D and the contribution of R&D to TFP or economic growth follow-
ing the seminal work by Griliches (1979) and with some recent advances by 
Doraszelski and Jaumandreu (2013); see, e.g., Hall, Mairesse, and Mohnen 
(2010) for a review of the literature. Another branch has related R&D to 
innovation and innovation to productivity, the workhorse model being the 

1. At the aggregate level, network and spillover effects can arise, and digital technology may 
improve the allocation of resources (Syverson 2011).
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CDM model as proposed by Crépon, Duguet, and Mairesse (1998); see 
Mairesse and Mohnen (2010) for an overview. Neither line of research has 
considered the complementarity with ICT, although recently Polder et al. 
(2010) and Hall, Lotti, and Mairesse (2013) have modeled R&D and ICT 
investment as inputs into innovation, defined as product, process, and orga-
nizational innovation.

In parallel, many studies have investigated the effect of the adoption of 
ICT equipment on economic performance (see, e.g., Stiroh 2010) without 
an explicit role for R&D. Some studies have used aggregate or sectoral data; 
others have used firm data. The studies that use macro or sectoral data have 
mainly analyzed the effect of ICT or R&D on productivity within a growth 
accounting framework (see Draca, Sadun, and van Reenen 2007, and Biagi 
2013 for reviews of  the literature) but not so much the complementarity 
between ICT and R&D in raising productivity.

A substantial effort has been made to measure the stocks of intangibles—
including R&D but also software, databases, and organizational capital—
and to assess their importance in (intangible- adjusted) cross- country GDP 
growth (Corrado, Hulten, and Sichel 2009; Corrado et al. 2013). These 
industry- level data are beginning to be used to explore complementarities 
between different types of assets. Chen, Niebel, and Saam (2014) and Cor-
rado, Haskel, and Jona- Lasinio (2017) find evidence of  a positive direct 
effect of ICT on TFP, as well as a significant indirect effect through its inter-
action with intangibles. Using EU KLEMS data, Pieri, Vecchi, and Ven-
turini (2017) explore complementarities between ICT and R&D in reducing 
technical inefficiencies.

By contrast, the empirical studies that have been conducted on the 
hypothesis of  complementarity between ICT and organizational change 
are mainly based on microdata (Bresnahan, Brynjolfsson, and Hitt 2002; 
Black and Lynch, 2001; Caroli and Van Reenen, 2001; Crespi, Criscuolo, 
and Haskel 2007; Van Reenen et al. 2010; Riley and Vahterv 2013). The 
available econometric evidence shows that a combination of  investment 
in ICT and changes in organization and work practices facilitated by 
these technologies contributes to firms’ productivity growth. Case studies 
reveal that the introduction of information technology is combined with a 
transformation of the firm, including investment in intangible assets, and 
a change in the relation with suppliers and customers. Electronic procure-
ment, for instance, increases control over inventories and decreases costs 
of  coordinating with suppliers. In addition, ICT offers the possibility for 
flexible production, such as just- in- time inventory management, and enter-
prise resource planning.

Whereas there is a lot of empirical backing at the firm level for the comple-
mentarity between ICT and organizational innovation, there is less evidence 
of a complementarity between R&D and ICT or between ICT and techno-
logical innovations in the form of new products or processes. Hall, Lotti, 
and Mairesse (2013) on Italian data; Rybalka (2015) on Norwegian data; 
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and Aboal and Tacsir (2018) on Uruguyan data find no conclusive evidence 
in favor of either a complementarity or a substitutability between R&D and 
ICT. Many studies have investigated the role of ICT in fostering R&D or 
innovation, however. For German firm data, Cerquera and Klein (2008) find 
that ICT is associated with an increase in the variation of productivity across 
firms and that this process of creative destruction gives incentives for firms 
to invest in R&D. Also for Germany, Engelstätter (2012) finds that different 
types of software have a positive effect on product and process innovation 
and moreover that there is complementarity between software and orga-
nizational practices in their effect on innovative performance. Polder et al. 
(2010) find that ICT investment is important for all types of  innovation 
in services, while it plays a limited role in manufacturing, and Kleis et al. 
(2012) find that investments in information technology increase innovation 
output as measured by the number of patents. Van Leeuwen and Farooqui 
(2008) show that e- sales and broadband use affect productivity significantly 
through their effect on innovation output. Finally, Forman and van Zee-
broeck (2012) find that internet connections increase collaborative research 
but not the productivity of lone researchers or of researchers located close 
to each other. In contrast, Spiezia (2011) concludes from an Organisation 
for Economic Co- operation and Development (OECD)- led international 
comparison study on firm data that ICT usage does not increase the prob-
ability of coming up with a new innovation developed in- house.

Finally, a related line of research looks at complementarities between dif-
ferent types of innovation or different types of ICT. Miravete and Pernías 
(2006) and Martínez- Ros and Labeaga (2009), for instance, find comple-
mentarity between product and process innovation by looking at the adop-
tion decision. This result is confirmed in Polder et al. (2010), who look at 
complementarity in the production function. This latter study also finds that 
product and organizational innovation are complements, while process and 
organizational innovation are found to be substitutes. For ICT, following an 
approach methodologically close to ours in the current chapter, Kretschmer, 
Miravete, and Pernías (2012) find that different types of software are sub-
stitutes in production. The results of Bartelsman, van Leeuwen, and Pol-
der (2017), however, point to complementarity as well as substitutability, 
depending on the types of software considered.

In our chapter we will address the triangle of complementarity between 
ICT (hardware), R&D, and organizational change by looking at the joint 
firm- level binary investment decisions together with their productivity 
effects.

8.3  Model

While it is true that ICT and R&D can be considered as inputs in the 
innovation process, ICT and even R&D play a direct role in the produc-
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tion function besides affecting innovation. Therefore, in contrast to Polder 
et al. (2010); Hall, Lotti, and Mairesse (2012); and Rybalka (2015), we do 
not resort to a CDM type of model (Crépon, Duguet, and Mairesse 1998), 
with innovation inputs only affecting productivity through a knowledge pro-
duction function. Instead, we shall model ICT, R&D, and organizational 
innovation as binary choices with simultaneous feedback effects—that is, 
when two strategies are complements in the sense that doing one increases 
the returns of doing the other (Milgrom and Roberts 1990), the returns from 
adoption (and therefore the adoption decisions) are mutually dependent.

In our model, firms choose combinations of investments (i.e., “investment 
profiles”) based on their (ex- ante) expected returns in terms of productivity 
growth. When multiple investments are involved, there is a “complementar-
ity bonus” (or “substitutability penalty”) added to the return on the indi-
vidual investment. Given the simultaneous modeling of  the productivity 
equation, the ex- post effects of the investments on productivity growth will 
be consistent with the ex- ante expected returns that prompted the choice for 
that specific combination of investments.2 We thus model complementarities 
in terms of an objective function where the strategy choices (or investments) 
are themselves endogenous, as in Kretschmer, Miravete, and Pernías (2012), 
who combined the adoption and production approach recommended by 
Athey and Stern (1998).

Modeling the direct effect of ICT and R&D on productivity also brings 
our analysis closer to the literature on intangibles and growth accounting 
using industry- level data (Corrado, Hulten, and Sichel 2009), where R&D 
and ICT are considered separate types of capital. Also in conformity with 
the introduction of stocks of intangibles in the production function as in 
Corrado, Hulten, and Sichel (2009), we consider it more appropriate that 
investment affects the growth rather than the level of total factor produc-
tivity. The productivity levels depend on the stocks of knowledge, organi-
zational capital, and ICT capital. The productivity growth rates instead 
depend on the increases in these stocks. We do not model the choice of the 
investment levels, only the binary choices as to whether investments in ICT, 
R&D, and organizational innovations are made.

8.3.1  Investment Stage

In order to test for the presence of complementarity between innovation 
strategies (in particular, between investing in ICT, R&D, and organizational 
innovation), we first consider the adoption approach—that is, the detec-
tion of joint use of strategies for reasons other than correlations in unob-
served determinants (Milgrom and Roberts 1990; Athey and Stern 1998). 

2. It could be argued that the strategy choices are made on the basis of another objective 
function than total factor productivity growth and that therefore, as well as for reasons of 
limited managerial foresight or unforeseen developments, there may be a difference between 
ex- ante and ex- post complementarity.
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This approach is close to that of Miravete and Pernías (2006) and was also 
applied by Bartelsman, van Leeuwen, and Polder (2017) and Van Leeuwen 
and Mohnen (2017).

Consider an objective function that depends on the realization of the com-
bination of strategies, or states. The contribution to the objective function Oit

j 
achieved by the adoption of each individual strategy, yit

j {0,1}, where j denotes 
ICT, R&D, and organizational innovation, is given by the following expression:

(1) Oit
j = j xit

j +
k j

( jk /2)yit
k + it

j yit
j .

For reasons of identification, αjk = αkj. The “return” from the adoption 
of strategy j depends on exogenous variables xit

j, which may be strategy spe-
cific, the adoption of the other strategies yit

k, and a random error term it
j . 

The error terms are assumed to be jointly normally distributed with unitary 
variances (for reasons of identification) but nonzero covariances. The depen-
dence on the adoption of other strategies makes this a simultaneous model, 
in which the choice of strategies is endogenously determined. This allows us 
to test for potential complementarity at the investment stage in the sense that 
firms adopt a combination of strategies that they think will be beneficial.

The total level of the objective, which will be left unspecified for now but 
modeled in section 3.2 as the contribution to TFP growth, is given by

(2) TOit =
j

Oit
j.

As shown by Lewbel (2007), this way of writing the objective function 
avoids any incoherency and incompleteness problem—that is, it guarantees 
the existence and uniqueness of the endogenous dummy variables for any 
given realization of the exogenous variables.

Let us illustrate the model by working with two strategies, denoted as 
y j 0,1{ }, j = 1, 2. For example, if  state (1,1) is chosen, where the first posi-
tion refers to strategy y1 and the second position to strategy y2, then the 
contribution to TFP growth is given by3

(3) TOit(1,1) = 1xit
1 + 12 + 2xit

2 + it
1 + it

2 .

The coefficient α12 captures the complementarity (if  positive) or substitut-
ability (if  negative) between the pair of strategies. For every combination of 
strategies, we can compute the value of the objective function. To estimate 
the parameters of the model, we write down the probability of every possible 
state. For instance, the probability that strategy 1 and strategy 2 are chosen, 
denoted as state (1,1), is derived from the upper and lower bounds of the 

3. Notice that for notational convenience, α12 = α21 in equation (3) corresponds to α12 /2 + 
α21 /2 in equation (1).
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distribution of the error terms given that the value of the objective function 
under (1,1) must be higher than under any pair of strategies:

(4.1) TOit(1,1) > TOit(0,0) 1xit
1 + 12 + 2xit

2 + it
1 + it

2 > 0

(4.2) TOit(1,1) > TOit(1,0) 2xit
2 + 12 + it

2 > 0

(4.3) TOit(1,1) > TOit(0,1) 1xit
1 + 12 + it

1 > 0.

State (1,1) is therefore associated to the following area of the distribution 
of the error terms:

(5.1) it
1 > ( 1xit

1 + 12)

(5.2) it
2 > max[ ( 2xit

2 + 12), ( 1xit
1 + 12 + 2xit

2 + it
1 )],

where (5.1) follows directly from (4.3) and (5.2) follows from combining (4.1) 
and (4.2) while conditioning on it

1 . The same reasoning can be applied to 
derive the adoptions for the other states.

State (1,0) is adopted when

(6.1) TOit(1,0) > TOit(0,0) 1xit
1 + it

1 > 0

(6.2) TOit(1,0) > TOit(0,1) 1xit
1 + it

1 > 2xit
2 + it

2

(6.3) TOit(1,0) > TOit(1,1) 2xit
2 + 12 + it

2 < 0.

(7.1) In other words, when it
1 > 1xit

1 and

(7.2) it
2 < min[ ( 2xit

2 + 12), ( 1xit
1

2xit
2 + it

1 )].

State (0,1) is adopted when

(8.1) TOit(0,1) > TOit(0,0) 2xit
2 + it

2 > 0

(8.2) TOit(0,1) > TOit(1,0) 2xit
2 + it

2 > 1xit
1 + it

1

(8.3) TOit(0,1) > TOit(1,1) 1xit
1 + 12 + it

1 < 0.

(9.1) In other words, when it
1 < ( 1xit

1 + 12) and

(9.2) it
2 > max[ ( 2xit

2), 1xit
1

2xit
2 + it

1 ].

State (0,0) is adopted when

(10.1) TOit(0,0) > TOit(1,0) 1xit
1 + it

1 < 0

(10.2) TOit(0,0) > TOit(0,1) 2xit
2 + it

2 < 0

(10.3) TOit(0,0) > TOit(1,1) 1xit
1 + 2xit

2 + 12 + it
1 + it

2 < 0.

(11.1) In other words, when it
1 < 1xit

1 and

(11.2) it
2 < min[ 2xit

2, ( 1xit
1 + 2xit

2 + 12 + it
1 )].
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As shown in Miravete and Pernías (2006), when α12 = 0, the subdivision 
of the space of ( it

1, it
2) is the same as for the bivariate probit. When α12 > 0, 

the states (1,1) and (0,0) are defined over a larger region of that error space, 
and if  α12 < 0, the states (1,0) and (0,1) are defined over a smaller region of 
that error space.

8.3.2  Productivity Growth Equation

Going one step further, the return from each investment profile can 
be measured in terms of  productivity growth. The objective, which was 
left unspecified in equation (2), is then explicitly specified. In this way we 
integrate the strategy adoption equations with the productivity growth 
equation. This is what Kretschmer, Miravete, and Pernías (2012) have done 
in combining the “adoption approach” and the “productivity approach” 
of  complementarity in the words of  Athey and Stern (1998). Like them, 
we distinguish between observed and unobserved determinants of  inno-
vation; hence firms may adopt different strategies even if  the observed 
determinants are the same. We differ from Kretschmer, Miravete, and Per-
nías (2012) in that we use not economic profits but productivity growth 
rates. Instead of  combining dichotomous data on two types of  software 
innovation with continuous variables on scale and profit, which depend on 
the innovation choices, we combine three dichotomous innovation indica-
tors (ICT, R&D, and organizational innovation) with productivity growth 
rates that depend on the choice of  investments. Another difference is that 
instead of  maximizing a likelihood function with analytical conditional 
distributions, an expression that becomes more tedious to derive as the 
number of  equations increases, we work with simulated conditional likeli-
hoods.

To that effect, we shall estimate a total factor productivity growth equa-
tion, which depends on the chosen investment profiles. TFP growth is the 
portion of output growth that is not explained by the growth rates in the tra-
ditional inputs, labor and capital. In the case of two strategies, TFP growth 
would be given by the following expression:

(12) TFPit
˙ = t + TOit = t + ( 1xit

1 + it
1 )yit

1 + ( 2xit
2 + it

2)yit
2 + 12 yit

1 yit
2 + it

3 ,

where γt represents disembodied technical change and it
3 represents unob-

servable determinants of TFP growth.
TFPit can take four values depending on the realizations of the error terms 

it
1  and it

2 :

•  State (1,1): t + 1xit
1 + 12 + 2xit

2 + it
1 + it

2 + it
3 in the region defined 

by (5.1) and (5.2).
•  State (1,0): t + 1xit

1 + it
1 + it

3 in the region defined by (7.1) and (7.2).
•  State (0,1): t + 2xit

2 + it
2 + it

3 in the region defined by (9.1) and (9.2).
•  State (0,0): t + it

3 in the region defined by (11.1) and (11.2).
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If  we assume the random vector [ it
1, it

2, it
3 ]  to be normally distributed 

with mean 0 and variance- covariance matrix Ω, then the likelihood function 
associated with the observed choices of strategies and the observed values 
of TFP growth is given by

(13) L =
i,t

f1{TFPit [ t + ( 1xit
1 + it

1 )yit
1 + ( 2xit

2 + it
2)yit

2 + 12 yit
1yit

2] | it
1, it

2}

F2( it
1, it

2)

where f1( | it
1, it

2) is the (conditional) univariate normal density function of 
it
3 conditional on values of it

1  and it
2, and F2( it

1, it
2) is the bivariate normal 

distribution of it
1  and it

2. If  we define the four regions of ( it
1 , it

2) as R(1,1), 
R(1,0), R(0,1), and R(0,0), respectively, and the corresponding truncated 
distributions as F2( it

1, it
2) | R(1,1) and so on, then the likelihood function can 

also be written as

(14) L =
i,t

f1[TFPit ( t + 1xit
1 + 12 + 2xit

2 + it
1 + it

2) | R(1,1)]

F2[ it
1, it

2 | R(1,1)] f1[TFPit ( t + 1xit
1 + it

1 ) | R(1,0)]

F2[ it
1, it

2 | R(1,0)] f1[TFPit ( t + 2
' xit

2 + it
2) | R(0,1)]

F2[ it
1, it

2 | R(0,1)] f1[TFPit t | R(0,0)]F2[ it
1, it

2 | R(0,0)].

In practice, the variance- covariance matrix must be imposed to be posi-
tive definite. This can be done by using a Cholesky factorization of Ω. In 
the appendix, we indicate the various steps taken to calculate the maximum 
simulated likelihood using the Geweke- Hajivassiliou- Keane (GHK) proce-
dure (see Train 2003; Cappellari and Jenkins 2006).

We measure TFP growth using the index approach—that is, we assume 
constant returns to scale, equilibrium factor holdings, and perfectly com-
petitive markets such that the output elasticities can be measured by the 
observed factor shares, which we allow to vary over time and to be industry- 
specific. We are interested in differences in the contributions to TFP growth 
for firms adopting different investment profiles: (0,0), (1,0), (0,1), and (1,1). 
These differences can be estimated by drawing values for it

1  and it
2 from their 

respective domains of definition and then averaging over the different draws. 
We are also interested in finding out whether those different investments 
reinforce each other. This indication of complementarity (or substitutabil-
ity) is given by the sign of coefficient α12.

The model we have just presented can be generalized to more than two 
strategies. In the remainder of the chapter, we shall work with three strate-
gies: investment in ICT, R&D, and organizational innovation. To determine 
the optimal investment profile—that is, the combination of strategies—each 
combination needs to be compared with seven other combinations. We shall 
estimate pairwise complementarities and returns from investing in ICT only, 
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R&D only, organizational innovation only, pairs of investments, all three 
of them, or none at all.

8.4  Data

The data used in this exercise are sourced from the Business Register and 
different surveys at Statistics Netherlands, which are linked at the firm level. 
The sample includes firms in the manufacturing sector (NACE Rev. 2 10 to 
33) as well as the services sector (NACE Rev. 2 50 to 93).4 Production data 
(value added, capital depreciation costs, and employment) are taken from 
the Production Statistics (PS). Capital services are proxied by depreciation 
costs (observed at the firm level). Value added and depreciation cost are 
deflated using industry- level price information from the Dutch National 
Accounts. Information on the age of a firm and whether it is foreign- owned 
are derived from the Business Register.

Information on R&D and organizational innovation, as well as the export 
status, is sourced from the Community Innovation Survey (CIS). Organi-
zational innovations include the introduction of  new business practices, 
knowledge management systems, methods of workplace organization (i.e., 
system of decision- making), and management of  external relations. The 
CIS provides information on whether a firm is stated to have performed 
such an innovation in the three- year period ending in the year preceding the 
survey (e.g., the CIS 2010 is carried out in 2011 and concerns innovation in 
the period 2008–10). R&D investment is the sum of internal and external 
R&D and, unlike organizational innovation, refers only to the last year of 
the survey.

Information on ICT investment comes from the investment survey and 
concerns hardware only.5 We have decided to treat the three investment types 
in the same way, and therefore we work with binary data for ICT and R&D, 
which is the only type of information we have for organizational innova-
tion. In our analysis, a firm classifies as investing in ICT and R&D when the 
investment is positive, but the investment should also have some substance. 
This is to improve the identification of any effects of investment on TFP, 
where really small investments can be expected not to make any difference, 
and we need to distinguish between those and more substantial investment 
efforts. By way of threshold, we therefore exploited industry- specific data 
on depreciation cost by type of investment. The investment dummies then 

4. The commercial R&D sector, NACE Rev 2 code 72, is excluded from the analysis, as well 
as oil and petroleum, NACE Rev 2 code 19.

5. From 2012 onward, the Dutch Investment Survey includes information on investment 
in software. We therefore focus on hardware, as including software would have substantially 
reduced the number of observations in our analysis.
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equal 1 when the ratio of the firm’s investment to its value added exceeds 
the share of the depreciation cost for that capital good in value added in the 
firm’s industry. Table 8.A1 reports the annual average of these thresholds by 
industry. Thus the investment dummies can be loosely interpreted as captur-
ing whether a firm has expansionary investments or not over and above the 
average industry replacement rate.

Our data span the period from 2008 to 2012. We assume that R&D and 
ICT in period t and ORG (organizational innovation) in period t − 2 to t 
affect TFP growth between year t and year t + 1. Because CIS only covers 
even years, the eventual estimation sample refers to 2008, 2010, and 2012, 
where TFP growth concerns growth from 2008 to 2009 and so on. A sensi-
tivity analysis, where the timing of the ICT and R&D investment dummies 
refers to t − 2 rather than t, gave more or less similar results as those reported 
in the results section of this chapter.

Table 8.1 gives the summary statistics by sector for the key variables used 
in the estimation separately for manufacturing and services. Firms in both 
sectors are on average of a similar size, whereas manufacturing firms are 
slightly older than their counterparts in services. Moreover, manufacturing 
firms are more often foreign- owned and are more likely to export. Overall, 
the share of exporting firms is relatively high, which is probably due to the 
fact that we observe mainly larger firms.

Average TFP growth is negative in both sectors, with a similar magnitude 
of, respectively, minus 5 percent in manufacturing and minus 4 percent in ser-
vices. The fact that our data period includes the financial crisis of 2008/2009 
explains these substantial negative growth figures, where average (median) TFP 
growth was minus 10 (minus 5) percent in these years. In the other years, the 
crisis aftermath, TFP growth is roughly around 0. Table 8.2 also shows that for 

Table 8.1 Summary statistics for the estimation sample (2008–12, even years)

Manufacturing Services Total

    Mean  SD  Mean  SD  Mean  SD

ICT investment share of firms 0.42 0.49 0.40 0.49 0.41 0.49
R&D investment share of firms 0.27 0.44 0.19 0.39 0.22 0.41
organizational innovation* share of firms 0.45 0.50 0.35 0.48 0.39 0.49
TFP growth** % −0.05 0.31 −0.04 0.29 −0.04 0.30
Employment Fte 257.31 436.03 241.01 526.86 247.21 494.33
Age Years 24.31 15.18 20.13 15.05 21.72 15.24
Export status share of firms 0.82 0.39 0.56 0.50 0.66 0.47
Foreign owned  share of firms 0.34  0.47  0.26  0.44  0.29  0.46

* Organizational innovation refers to the period t − 2 to t.
** TFP growth refers to growth from t to t + 1.
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each investment profile, there are firms reporting negative as well as positive 
growth and that the third quartile of the TFP growth distribution is always 
positive. Interestingly, the distribution of TFP growth seems to roughly move 
to the right with the number of investments—that is, average and median TFP 
growth, as well as the first and third quartile of the distribution, are larger for 
those profiles where multiple investments are combined. This is an indication of 
complementarity between these investments, which will be tested more formally 
in our econometric model. Nevertheless, firms do not often combine these 
investments; witness the frequency distribution of the profiles. In manufactur-
ing, about two- thirds of the observations concern cases where a firm does not 
invest at all or in a single strategy only. In services, this share is even higher, with 
about three- quarters of the sample.

Table 8.3 reports the summary statistics of the variables that are input 
to the TFP growth calculation. Using a Laspeyres index, TFP- growth was 
calculated as the ratio of the volume changes in value added and the total 

Table 8.2 Combinations of investment strategies (estimation sample, 2008−12, 
even years)

Manufacturing TFP growth*

Profile  N  %  Mean  Median  Q1  Q3

000 802 0.29 −0.067 −0.029 −0.186 0.095
001 430 0.15 −0.062 −0.014 −0.170 0.094
010 123 0.04 −0.062 −0.009 −0.224 0.081
011 266 0.09 −0.023 −0.014 −0.146 0.097
100 484 0.17 −0.039 −0.018 −0.158 0.092
101 335 0.12 −0.054 −0.039 −0.192 0.106
110 140 0.05 −0.088 −0.021 −0.211 0.127
111 227 0.08 −0.008 0.018 −0.124 0.128
  2,807           

Services TFP growth*

Profile  N  %  Mean  Median  Q1  Q3

000 1,665 0.36 −0.048 −0.020 −0.159 0.094
001 659 0.14 −0.059 −0.018 −0.156 0.077
010 181 0.04 −0.024 0.020 −0.158 0.112
011 259 0.06 −0.041 0.001 −0.149 0.097
100 948 0.21 −0.038 −0.014 −0.147 0.094
101 450 0.10 −0.030 −0.006 −0.130 0.105
110 162 0.04 −0.019 −0.008 −0.156 0.138
111 252 0.06 0.001 0.006 −0.126 0.128
  4,576           

Notes: Q1 and Q3 are the first and third quartile of  the distribution. Combinations of ICT, 
R&D, and organizational innovation, where 0 = no investment and 1 = positive (net) invest-
ment. Organizational innovation refers to the period t − 2 to t. * TFP growth refers to growth 
from t to t + 1.
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of inputs, where the capital and labor changes have been weighted by their 
lagged factor shares at the industry level. This approach takes into account 
differences in the nature of  the production process between industries. 
Clearly, the average TFP growth differs across industries, with the pharma-
ceutical industry being a clear outlier.

8.5  Results

In this section, we report the estimation results of the integrated model 
with three types of investment, the returns for each investment profile, and 

Table 8.3 Summary statistics for the production variables (by industry, estimation sample, 
2008−12, even years)

Industry 
variables 

Averages across 
years

Firm variables averages across industry  
and years

  
Capital  
share  

Labor  
share  

Value  
added  Employment  

Capital  
services  

TFP  
growth

Manufacturing
10–12 Food and beverages 0.35 0.65 22,468 265 3,400 −0.050
13–15 Textile, leather products 0.27 0.73 9,898 115 741 0.017
16–18 Wood and paper, printing 0.32 0.68 13,527 162 2,092 0.012
20 Chemicals 0.50 0.50 42,740 195 6,386 −0.092
21 Pharmaceuticals 0.52 0.48 69,118 433 5,176 0.283
22–23 Plastics, construction 

products 0.28 0.72 12,611 192 1,943 0.037
24–25 Basic metals and –products 0.24 0.76 11,222 144 1,113 −0.002
26 Electronic products 0.40 0.60 23,626 239 1,497 0.137
27 Electric equipment 0.50 0.50 31,100 410 4,059 −0.047
28 Machinery n.e.c. 0.28 0.72 22,889 233 2,486 −0.025
29–30 Transport equipment 0.33 0.67 37,808 398 4,730 0.039
31–33 Other manufacturing, repair 0.15 0.85 19,807 482 1,069 −0.005

Services
58–60 Publishing, movie, radio 

and TV 0.16 0.84 22,784 247 4,405 −0.040
61 Telecommunications 0.62 0.38 57,741 275 25,460 0.073
62–63 IT and information services 0.12 0.88 15,288 170 1,497 0.036
69–71 Management, tech. 

consultancy 0.10 0.90 20,151 253 1,100 −0.032
73–75 Advertising, design and 

other 0.11 0.88 8,622 126 627 0.023
G Wholesale and retail trade 0.20 0.80 15,598 218 1,460 −0.023
H Transportation and storage 0.32 0.68 25,648 309 3,430 −0.006
I Accommodation and food 

serving  0.17  0.83  10,424  213  1,894  −0.030

Notes: Value added and depreciation cost in prices of 2008. Employment in full- time equivalents.
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the individual returns of each investment, both on average and as a contri-
bution to the return of each investment profile. Anticipating that the pat-
terns differ across industries, we present the estimation results separately for 
manufacturing and services.

8.5.1  Complementarities

In table 8.4, we report the results for the integrated model with simultane-
ous discrete- choice investment equations for ICT, R&D, and organizational 
innovation, mutual dependence among the three types of investment, and 
controlling for firm size, export status, age, and foreign ownership and for 

Table 8.4 Estimation results of the investment plus productivity equations (based on maximum 
simulated likelihood)

Manufacturing (N = 2,807) Services (N = 4,576)

  Coeff.  SE  p-value  Coeff.  SE  p-value

ICT log employment −0.079*** 0.017 0.000 0.060*** 0.013 0.000
export status −0.121*** 0.045 0.008 −0.014 0.029 0.637
log age 0.012 0.016 0.452 0.000 0.012 0.996
foreign ownership −0.086** 0.038 0.024 −0.091** 0.033 0.006

R&D log employment −0.005 0.024 0.838 −0.068*** 0.016 0.000
export status 0.524*** 0.074 0.000 0.289*** 0.041 0.000
log age −0.004 0.027 0.869 −0.002 0.019 0.930
foreign ownership 0.019 0.050 0.704 −0.104** 0.044 0.019

ORG log employment 0.147*** 0.021 0.000 0.108*** 0.015 0.000
export status −0.004 0.054 0.942 −0.044 0.034 0.195
log age 0.011 0.021 0.605 0.008 0.015 0.574
foreign ownership 0.116** 0.044 0.008 0.070* 0.038 0.064

TFP growth Year 2010 0.164*** 0.018 0.000 0.101*** 0.014 0.000
Year 2012 0.118*** 0.023 0.000 0.071*** 0.017 0.000
intercept −0.653*** 0.021 0.000 −0.498*** 0.014 0.000

complementarities ICT- R&D 0.251*** 0.027 0.000 0.175*** 0.025 0.000
ICT- ORG −0.044 0.038 0.245 0.046** 0.019 0.018
R&D- ORG 1.279*** 0.072 0.000 1.129*** 0.020 0.000

Correlations ρ12 −0.229*** 0.034 0.000 0.173*** 0.024 0.000
ρ13 0.166*** 0.044 0.000 0.045** 0.019 0.018
ρ14 −0.742*** 0.021 0.000 0.811*** 0.007 0.000
ρ23 −0.771*** 0.036 0.000 −0.061* 0.035 0.079
ρ24 0.254*** 0.049 0.000 0.011 0.032 0.733
ρ34 −0.517*** 0.028 0.000 −0.695*** 0.015 0.000
σ4 0.553*** 0.015 0.000 0.503*** 0.010 0.000

  Log- likelihood  −6,561.12  −9,912.21

Notes: Significance at 10 percent (*); 5 percent (**); 1 percent (***). Intercepts in the probit equations 
and sector dummies for services are not reported. ρij is the correlation between the error terms of 
equations i and j. The equations are numbered as follows: 1 = ICT, 2 = R&D, 3 = ORG, 4 = TFP 
growth.
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four industry subsectors in services.6 Firm size can be seen to be positively 
associated with investing in our sample, except for investments in ICT for 
firms in manufacturing and in R&D for firms in services. Exporting firms 
are more frequently observed to invest in R&D and less frequently in ICT 
and are found to be not particularly different from nonexporting firms in 
terms of the frequency of organizational innovation.7 Age is not found to 
be significant in any of the three equations. Foreign ownership is positively 
correlated to organizational innovation and negatively, whenever significant, 
to ICT and R&D investments. As already mentioned before, aggregate TFP 
growth in the Netherlands was negative just after the crisis of 2008 but then 
recovered in the following years, which is reflected in the year dummy pat-
tern. The correlations between the error terms are significant, attesting to 
the existence of unobservables that are correlated in the adoption and the 
productivity equations, which justifies our estimation approach.

The three types of investment turn out to be complementary in the sense 
that they reinforce each other in increasing TFP growth and hence that the 
probability of investing in one increases the probability of investing in the 
other one. It is only for ICT and organizational innovation that we do not 
obtain a positive and significant interaction term. In the logic of our model, 
two investments are carried out simultaneously if  they yield a larger contri-
bution to TFP growth than if  they are carried out separately or not at all. 
Three investments are carried out simultaneously if  together they increase 
TFP growth by more than any pair of investments, individual investment, or 
no investment at all. The coefficient for the combination of ICT and orga-
nizational innovation is significantly smaller than the other α coefficients 
in both sectors. This is surprising because given the existing evidence in the 
literature, one would expect this relation to be relatively strong. A possible 
explanation for this finding is that we consider investment in hardware only, 
while the complementarity with organizational innovation could lie more 
in the use of software and specific types of telecommunication equipment.

By contrast, the R&D and organizational innovation combination is sig-
nificant and has the highest coefficient in both sectors. This suggests that 
firms that invest in R&D benefit from a simultaneous organizational change. 
Such a complementarity could be related to the introduction of  knowl-
edge management systems or the management of external relations (such 
as information flows or coordination of collaborative innovation efforts), 
which are seen as an organizational innovation and clearly could improve the 
effectiveness of R&D. To our knowledge, there is not much evidence in the 
literature on this relation, and our finding suggests that it could be explored 

6. We report in table 8.4 the estimated coefficients and not the marginal effects. However, the 
qualitative conclusions about patterns of significance remain the same.

7. Clearly, the causality can run both ways. Including export status is meant to control for 
the degree of international activities here.
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in further detail. While the magnitude of the coefficient seems quite large 
here, our analysis of the implied average returns in the next section shows 
that these are plausible.

Finally, investing in ICT and investing in R&D are found to be comple-
mentary decisions, in the sense that investing in one increases the productiv-
ity of investing in the other one. This lends supports to the idea that ICT 
is a general- purpose technology that facilitates innovation and increases 
the output and productivity of R&D (Jovanovic and Rousseau 2005). Vice 
versa, investing in R&D increases the returns to ICT by generating knowl-
edge that can be shared and diffused through new technology.

In sum, our results suggest that firms consider investment in ICT, R&D, 
and organizational innovation simultaneously and that they believe that 
simultaneous investment can be beneficial. In the next section, we shall 
examine the implied average returns of investing in certain profiles and from 
individual investments.

8.5.2  Returns on Investments

In our model, the expected return from a given investment profile is the 
same as the ex- post return in terms of TFP growth. If  a certain profile is 
chosen, it is because its realized return is higher than the return on any other 
investment profile. In table 8.5, we present the average and the standard 

Table 8.5 Average returns of individual investments depending on the investment profile

Manufacturing Services

Profile    Obs  Mean  St. dev  Min  Max  Obs  Mean  St. dev  Min  Max

(0,0,1) ORG only 430 0.107 0.035 0.033 0.238 659 0.090 0.025 0.039 0.205
ORG 0.107 0.035 0.033 0.238 659 0.090 0.025 0.039 0.205

(0,1,0) R&D only 123 0.034 0.009 0.010 0.053 181 0.024 0.009 0.006 0.047
R&D 0.034 0.009 0.010 0.053 181 0.024 0.009 0.006 0.047

(0,1,1) R&D and ORG 266 0.057 0.031 0.003 0.195 259 0.033 0.011 0.010 0.061
R&D 0.021 0.012 −0.001 0.088 259 0.012 0.006 −0.001 0.030
ORG 0.036 0.025 0.002 0.159 259 0.021 0.008 0.007 0.041

(1,0,0) ICT only 484 0.145 0.052 0.035 0.335 948 0.143 0.027 0.071 0.231
ICT 0.145 0.052 0.035 0.335 948 0.143 0.027 0.071 0.231

(1,0,1) ICT and ORG 335 0.164 0.027 0.105 0.266 450 0.121 0.036 0.053 0.298
ICT 0.083 0.016 0.052 0.140 450 0.062 0.019 0.027 0.159
ORG 0.081 0.016 0.039 0.129 450 0.058 0.019 0.024 0.146

(1,1,0) ICT and R&D 140 0.044 0.014 0.012 0.075 162 0.037 0.013 0.012 0.082
ICT 0.025 0.008 0.006 0.044 162 0.021 0.007 0.007 0.043
R&D 0.020 0.007 0.004 0.039 162 0.016 0.006 0.005 0.038

(1,1,1) all investments 227 0.102 0.023 0.017 0.174 252 0.064 0.024 0.023 0.165
ICT 0.059 0.011 0.013 0.082 252 0.036 0.013 0.014 0.091
R&D 0.004 0.007 −0.019 0.023 252 0.008 0.006 −0.003 0.028

  ORG    0.039  0.014  0.005  0.091  252  0.020  0.009  0.005  0.062
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deviation of the returns earned on the seven investment profiles in manu-
facturing and in services.8 In the example of two strategies given above, the 
return to adopting investment profile (1,1) would be given by

[( 1xit
1 + 12 + 2xit

2 + it
1 + it

2) | R(1,1)]F2[ it
1, it

2 | R(1,1)],

where R(1,1) are all values of it
1  and it

2 defined by restrictions (5.1) and (5.2).
These returns are to be understood as above- normal rates of return, since 

R&D and ICT are not subtracted from the traditional inputs (labor and 
capital) in the calculation of TFP growth. In part, these returns are random 
in the sense that they depend on unobservables that lie in a truncated part of 
their distribution, which is determined by the observed investment profile, 
and are to be understood as the returns conditional on having chosen that 
investment profile multiplied by the probability of choosing that investment 
profile. They are calculated via simulation using the same draws as in the 
estimation procedure. They are also conditional on the values taken by the 
vector of explanatory variables xit

1 and xit
2. According to our model, for each 

observation, the alternative investment profiles yield a return lower than 
the observed profile. In the case of pairs or triplets of investment, the joint 
returns are subdivided in the table into the return contributions made by 
the individual investments.

It is remarkable that the ranking of the returns per investment profile and 
even the magnitudes of those returns are very similar for firms in manufac-
turing and in services. The highest average return is earned by firms that 
invest at the same time in ICT and organizational innovation followed by 
firms that invest in ICT only. While this may seem surprising recalling the 
result of  no complementarity for this combination, as reported above, it 
should be noted that we are not comparing the same firms under alterna-
tive investment profiles. The differences in return could be due to different 
characteristics of  the firms, such as size, age, or export status. Likewise, 
the returns for firms that invest in all three strategies are smaller than the 
returns for firms that invest only in ORG, only in ICT, or in both ORG 
and ICT, whereas according to the complementarities, we would expect the 
highest returns for firms that invest in all strategies. That would only be 
true when comparing the same firm under different scenarios, while in our 
case, the composition of the sample of firms choosing any of the profiles  
differs.9

Finally, table 8.6 presents the average returns to each individual invest-
ment conditional on the firms’ characteristics. These returns are calculated 
as follows. The average rate of return on R&D, for instance, is the return a 
firm gets if  it belongs to the set of investment profiles (0,1,0), (1,1,0), (0,1,1), 

8. Note that the returns in the (0,0,0) case, where no investment takes place, is 0 by definition 
and is not reported.

9. In most cases, the alternative (counterfactual) returns (not shown) are negative, although 
they only need to be lower than the returns earned on the chosen investment profile.
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and (1,1,1) multiplied by the respective probabilities of choosing each of 
those profiles. Since a firm can be in eight zones of the space spanned by 
( it

1, it
2, it

3), which are themselves determined by the firm’s characteristics, and 
since it makes a positive return on a particular investment only if  it actually 
invests in it, the average rate of return is a weighted average of the returns in 
the four profiles in which it is active regarding that investment.

It is interesting to notice that the returns are again very similar in manu-
facturing and in services. Investing in ICT yields on average an implied rate 
of return close to 10 percent, which can go as high as 33.5 percent in manu-
facturing and 23.1 percent in services. R&D earns on average only 1.8 per-
cent in manufacturing and 1.4 percent in services, with at most 8.8 percent 
in manufacturing and 4.7 percent in services. This is definitely lower than 
the average rates of return on R&D reported in Hall, Mairesse, and Mohnen 
(2010) and those reported for the Netherlands by Bartelsman et al. (1989). 
The implied rate of return on organizational innovation lies in between the 
rate on R&D and ICT, with an average of 7.3 percent in manufacturing and 
5.9 percent in services and a maximum that exceeds 20 percent.

8.6  Conclusions and Further Research

This chapter has investigated the relation between investments in ICT, 
R&D, and organizational innovation and the contributions of  different 
investment profiles on TFP growth at the firm level in Dutch manufacturing 
and services. We find that, overall, the investment decisions are complemen-
tary in the sense that investing in one strategy increases the probability of 
investing in another because joint investments lead to higher TFP growth 
than do individual investments. We find a relatively strong complementarity 
between R&D and organizational innovation, which could be related to new 
ways of managing knowledge systems and external relations improving the 
productivity of R&D. To our knowledge, this relation has not been explored 
intensively in the literature. The fact that the magnitude of the complemen-
tarity between ICT and organizational innovation is lower than the other 
complementarities also merits some further investigation, in particular con-

Table 8.6 Average returns to individual investments conditional on firms’ 
characteristics

  Obs  Mean  Std. dev.  Min  Max

Manufacturing
ICT 1,186 0.097 0.055 0.006 0.335
R&D 756 0.018 0.014 −0.019 0.088
ORG 1,258 0.073 0.040 0.002 0.238

Services
ICT 1,812 0.097 0.054 0.007 0.231
R&D 854 0.014 0.009 −0.003 0.047
ORG  1,620  0.059  0.035  0.005  0.205
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sidering software investments in addition to those in hardware only. There is 
clear evidence that ICT and R&D complement each other. This implies that 
R&D policies could stimulate investments in ICT, and conversely, policies 
designed to stimulate ICT also increase the demand for R&D. Our results 
imply that ICT earns on average a rate of return of 9.7 percent, followed by 
6 percent to 7 percent on organizational innovation and a modest 1.4 percent 
to 1.8 percent on R&D.

The research could be extended in a number of directions. First, infor-
mation on the separate types of organizational innovation available in our 
data could be exploited (business practices, knowledge systems, and external 
relations), as those types could relate differently to ICT and R&D. Second, 
as mentioned above, it will be good to consider software investment next to 
hardware investment, even though for the Netherlands, we only have data 
from 2012 onward for this type of asset. Third, we could estimate the elastici-
ties of labor and capital simultaneously with the returns to ICT, R&D, and 
organizational innovation. A fourth extension would be to use the intensi-
ties of R&D and ICT in the productivity growth equation instead of, or in 
addition to, just the binary information.

Appendix

Calculation of the Maximum Simulated Likelihood

This part is based on Train (2003) and Cappellari and Jenkins (2006). For 
simplicity, we take the case of two strategies and one performance equation. 
The example can easily be generalized to three strategies and one perfor-
mance equation. We start by using a Cholesky factorization of Ω:

1

2

3

= C
it
1

it
2

it
3

=
c11 0 0

c21 c22 0

c31 c32 c33

it
1

it
2

it
3

with

= C C =
1 21 31 3

21 1 32 3

31 3 32 3 3
2

,

and each it
j ( j = 1,2,3) follows a standard normal distribution. We set the 

variances of it
1  and it

2 equal to 1 for reasons of identification. In order to 
have this Ω matrix, elements of  C are as follows: c11 = 1, c21 = ρ21, c31 = 
ρ31σ3, c22 = 1 c21

2( ), c32 =(ρ32σ3 – c31 ∗ c21) /c22, c33 = ( 3
2 c31

2 c32
2 . The 

ρij coefficients are imposed to stay between −1 and 1 by using the following 
reparameterization:
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ij =
exp(2 ij) 1
exp(2 ij) + 1

.

We can rewrite 
it
1

it
2

it
3

=
c11 it

1

c21 it
1 + c22 it

2

c31 it
1 + c32 it

2 + c33 it
3

.

Inequalities (5.1), (7.1), (9.1), and (11.1) can be rewritten as

(5.1′) it
1 > ( 1xit

1 + 12)

(7.1′) it
1 > ( 1xit

1)

(9.1′) it
1 < ( 1xit

1 + 12)

(11.1′) it
1 < 1xit

1 .

The first step of the maximum simulated likelihood algorithm consists 
in drawing for each alternative a value from the corresponding truncated 
standard normal distribution of it

1  using initial values of the parameters. 
Let us denote this value as dit

1.
Inequalities (5.2), (7.2), (9.2), and (11.2) can be rewritten as

(5.2′) it
2 > max[ (a2it + 12) /c22, (a1it + a2it + 12) /c22]

(7.2′) it
2 < min[ (a2it + 12) /c22, a1it a2it( ) /c22]

(9.2′) it
2 > max( a2it /c22,(a1it a2it) /c22)

(11.2′) it
2 < min( a2it /c22, (a1it + a2it + 12) /c22)

where a1it = 1xit
1 + dit

1, a2it = 2xit
2 + c21dit

1 .
The second step consists in drawing for each alternative a value from the 

corresponding truncated standard normal distribution of it
2 using initial 

values of the parameters. Let us denote this value as dit
2.

The third step consists in changing from it
3 to it

3 so that the final likeli-
hood function becomes

(14′)

 

L =
i,t

1
c33

((TFPit [ t + 1xit
1 + 12 + 2xit

2 + (1 + c21)dit
1

+ c22dit
2) c31dit

1 c32dit
2( /c33) 2(dit

1,dit
2) |R(1,1)

1
c33

((TFPit ( t + 1xit
1 + dit

1) c31dit
1 c32dit

2) / c33) 2(dit
1,dit

2) | R(1,0)

1
c33

((TFPit ( t + 2xit
2 + c21dit

1 + c22dit
2) c31dit

1 c32dit
2) / c33)

2 (dit
1,dit

2) | R(0,1)
1

c33

((TFPit t c31dit
1 c32dit

2) /c33)

2(dit
1,dit

2) | R(0,0),
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where dit
1 and dit

2 are draws from each of  the truncated bivariate normal 
distributions 2(dit

1, dit
2) | R(.) defined over the region R(.), itself  defined by 

the boundaries of it
1  and it

2, and where φ(.) is the univariate standard nor-
mal density function and Φ2 the bivariate normal cumulative distribution 
function. It is important here to account for the Jacobian of the variable 
transformation (1/c33).

In our application, the model has four equations, and a step is added 
between the second and third step above. The logic is the same, but there 
are eight inequalities to take into account and eight elements in the likeli-
hood function. The steps are repeated 50 times, and then an average is taken 
of the corresponding values of the likelihood function.10 The parameters 
of the likelihood function are then estimated using a numerical maximiza-
tion algorithm at each iteration repeating the simulation- based computation 
of the likelihood function starting from the updated values of the estimated 
parameters.

10. Experiments with up to 200 draws did not produce very different results.

Table 8.A1 Depreciation shares in value added by industry (average across years)

   ICT  R&D  

10–12 Food and beverages 0.002 0.018
13–15 Textile, leather products 0.003 0.008
16–18 Wood and paper, printing 0.004 0.006
20 Chemicals 0.002 0.091
21 Pharmaceuticals 0.002 0.195
22–23 Plastics, construction products 0.002 0.027
24–25 Basic metals and –products 0.002 0.017
26 Electronic products 0.002 0.182
27 Electric equipment 0.003 0.211
28 Machinery n.e.c. 0.004 0.085
29–30 Transport equipment 0.002 0.073
31–33 Other manufacturing, repair 0.003 0.016
58–60 Publishing, movie, radio and TV 0.007 0.004
61 Telecommunications 0.016 0.005
62–63 IT and information services 0.016 0.023
69–71 Management, tech. consultancy 0.007 0.011
73–75 Advertising, design and other 0.008 0.010
G Wholesale and retail trade 0.005 0.005
H Transportation and storage 0.006 0.006

 I Accommodation and food serving  0.002 0.002 

Source: Statistics Netherlands, Growth accounts.
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9.1  Introduction

Income inequalities have increased in most Organisation for Economic 
Co- operation and Development (OECD) countries over the past three 
decades (OECD 2015a). In the United States, the income share of the top 
1 percent has soared, rising from earning on average 27 times more than the 
bottom 1 percent in 1980 to 81 times more in 2014. The top 1 percent income 
share is now almost twice as large as the bottom 50 percent share. There has 
been close to zero growth for working- age adults in the bottom 50 percent 
of the distribution since 1980 (Piketty, Saez, and Zucman 2016).

In this chapter, we argue that the increasing importance of digital innova-
tion (which are new products and processes based on or embodied in soft-
ware code and data in and beyond IT industries) is magnifying innovation- 
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based rents that contribute to increasing the income share of the top groups. 
Specifically, the chapter focuses on inequality coming from market rents 
accruing to top executives, key employees, and shareholders but little to the 
average employee. Figure 9.1 summarizes the mechanisms at work in my 
framework.

Digital innovation has received surprisingly little attention in spite of the 
increase in market rents—the return on productive resources, notably capi-
tal, in excess of what is needed for resources to be deployed in production—
and in spite of the fact that in recent years, the evolution of top incomes owes 
much to increased returns to capital (CEA 2016; Piketty, Saez, and Zuc-
man 2016). This explanation adds to others that point to globalization, the 
financialization of the economy, unskilled- labor- displacing technologies, 
and the weakening of trade unions as causes of growing income inequali-
ties. These other changes also have to do with digitalization, which has been 
an enabler or a driver for globalization, financialization, and skills- biased 
technical change.

Viewed from the perspective of  digital innovation, the increase in top 
income inequality partly results from the nonrival character of these intan-
gible products, referred to as digital nonrivalry (DNR) in the remainder of 

Fig. 9.1 Impacts of digital innovation on market structures and the distribution 
of income
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the chapter. This, however, does not imply that restraining innovation would 
improve the well- being of the low-  and medium- income categories: innova-
tion is a major driver of economic growth and also a source of benefits to 
all groups in society, including the most disadvantaged.

The impact of digital innovation on income distribution is reflective of 
the well- known effects of innovation on market structures. It has been rec-
ognized since Schumpeter (1911) that innovation requires and generates 
market rents. Successful innovation endows innovators with a temporary 
market exclusivity based on first- mover advantage, intellectual property 
rights (IPR) protection, brand reputation, network externalities, and entry 
barriers. This exclusivity allows innovators to set prices above the marginal 
cost and gain rents. The nonrivalrous nature of knowledge means that the 
costs of new ideas come mainly from their development—typically through 
R&D, design, and market research—while costs of implementing and dif-
fusing them are much lower or even nil. This gives rise to large returns to 
scale; the more an idea is applied, the lower the average cost. Increasing 
returns to scale favor large firms and concentrated market structures.

The effects of nonrivalry are magnified by intangible (digital) products 
that have constituted an increasing share of the US economy over the past 
decades (Corrado, Hulten, and Sichel 2005, 2009). With wider use of infor-
mation technology (IT), software, and data, the marginal cost of production 
is essentially nil, and the intangible component makes most of the value of 
products. This applies particularly to fully intangible products such as soft-
ware, as increasing returns to scale are tied essentially to the intangible com-
ponent of a product. The tangible components might generate economies of 
scale, but not to the same extent as the intangible ones, because their variable 
costs are not zero (with materials, labor, and other input needed to produce 
additional units). Effects apply beyond the IT sector because software code 
and data are increasingly important across all fields of the economy.

As a consequence of digital nonrivalry, a growing number of industries 
are subject to “winner- take- all” dynamics—that is, markets akin to tourna-
ments in which the best offer wins the race and captures most (if  not all) 
of the market (Rosen 1981). Such market concentration allows winners to 
extract a rent by raising the price of output and/or lowering the price of 
inputs. Moreover, globalization has allowed successful firms to dominate not 
only their national market but also the larger global one, hence increasing 
the size of the corresponding market rent.

Digital innovation also lowers the costs of innovation, raising opportuni-
ties for “creative destruction”—the process by which new products replace 
current products, sometimes involving the exit of incumbent producers and 
entry of new ones—as it reduces barriers to entry on many markets. The 
capital requirement for programming software, the core of digital innova-
tion, is much lower than for other types of innovative activities, such as those 
requiring special facilities to develop innovations (e.g., laboratories and 
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experimental settings in pharmaceuticals). The intangible nature of knowl-
edge and the opportunities for rapid scale- up facilitate creative destruction. 
This is exemplified by the “app economy”; individual innovators and small 
companies offer their products on the internet at no direct cost.

Where opportunities for creative destruction and market entry arise, the 
level of  risk is higher than in the past: while in traditional markets, new, 
superior products may reduce the market share of incumbents, in a winner- 
take- all market, new, (even slightly) superior products can result in new firms 
taking over the entire market. Incumbents in such winner- take- all markets 
have higher market shares than firms in other markets. However, firms and 
investors run the risk of losing it all, as more creative destruction generates 
more instability in market shares and hence in income.

Higher risk leads investors to demand a risk premium, in turn increasing 
the average return to capital. These dynamics are most visible in the venture 
capital market, but they extend to other types of investment as well. This 
increase in risk explains in part why the average return on capital and its 
dispersion between firms have increased over the past two decades as digi-
talization was progressing (Furman and Orszag 2015).

From the perspective of innovation dynamics, market entry and creative 
destruction may reduce market concentration arising from the scale econo-
mies digital innovation allows for. Which of the two opposite forces domi-
nates depends on the technology, business strategies, and of course, policy 
(including antitrust, entrepreneurship, and IPR). In terms of technology, 
radical changes in the basic technologies (e.g., the PC replacing the main-
frame) reduce the advantage of incumbents and therefore favor newcomers 
and competition; by contrast, technology stability favors incumbents and 
concentrated market structures.1

In terms of business strategies, incumbents can identify and implement 
new, more powerful ways to protect their market position in the digital 
economy, hence mitigating the level of risk they are faced with. First are 
network effects—the more customers a product has, the more valuable it is 
to each of them—complemented by limited portability (customers cannot 
easily change from one product to a competitor). Technical standards are 
another related effect: large players encourage standards that increase entry 
cost and reduce customer’s mobility. Third is blocking competitors from 
access to data. In the digital economy, data are the primary input for many 
innovations and services. This is reinforced in more recent technologies like 
artificial intelligence. Fourth, large firms can play the role of “integrators” 
by acquiring start- ups that have been successful in promoting new products 

1. This is not systematic, however, as one can see from the example of artificial intelligence. 
The main players are the same as with the internet, because some of the key competitive factors 
are the same in both cases (notably access to large amounts of data).
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and integrating them into their own offer. This has the twofold advantage 
of enriching their product portfolio and preempting potential competition.

Empirical evidence provided in this chapter shows that the forces tend-
ing toward more market concentration have prevailed over competition- 
enhancing forces of digital innovation, resulting in winner- take- all markets 
that are characterized by higher market concentration and more creative 
destruction. Market power and creative destruction are not in contradiction 
with each other. Competition in digital innovation is not about prices—in 
which case, the threat of new entry would discipline the incumbents—but 
about innovation, as new products are so innovative that they take over the 
market no matter the price charged by current incumbents.

How do the rents from digital innovation affect income distribution? They 
are mainly shared among shareholders and investors, top executives, and 
key employees of the winning firms, who are already in the top tier of the 
income distribution (as they own capital and skills and hold managerial and 
leading positions in firms), hence contributing to increased income inequali-
ties. Shareholders have benefitted from a steady increase in dividends and 
share prices over the past decades. This has come with an increased disper-
sion in profits across firms (that many investors accommodate by pursu-
ing portfolio diversification strategies). As a result, the share of capital (vs. 
labor) in national income has increased in the United States and most other 
OECD countries, particularly in innovation- intensive economic activities. 
Top executives have benefitted from increased compensation with the expan-
sion of high- powered incentive schemes (like stock options and bonuses), 
which are aimed at monitoring their decisions in the riskier environment of 
winner- take- all dynamics (Hall and Liebman 1998).

Labor has not gained as much from rents, with the exception of the top 
categories. Indeed, top employees of successful firms have benefitted to a 
certain extent, as shown by the importance of cross- firm wage inequality in 
total income inequality (Song et al. 2015). Average employees, however, have 
been less successful in gaining from the rents for a number of reasons. They 
face more competition in the labor market and are increasingly employed in 
temporary work arrangements. Workers employed under alternative work 
arrangements (such as temporary help agency workers, on- call workers, 
contract workers, and freelancers), which represent the bulk of job creation 
in the United States for 2005–15 (Katz and Krueger 2016), are in a weak 
negotiating position when it comes to sharing rents. These effects of digital 
innovation and, more broadly, intangibles on labor add to the impacts that 
arise from how different worker occupations and skills profiles complement 
or substitute to these new technologies (see, e.g., Autor and Dorn 2013; 
Haskel and Westlake 2017).

Lower entry barriers that facilitate creative destruction also enable 
increased social mobility, as newcomers can displace incumbents. Turnover 
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in the top income categories has increased in recent decades and is positively 
related to the intensity of innovation activity (as, e.g., across US states in 
Aghion et al. 2015).

The remainder of  this chapter is structured as follows: section 9.1 
describes global trends in innovation and the distribution of income. Section 
9.2 defines DNR and explains why it is increasingly important. Sections 9.3 
and 9.4 analyze the impacts of digital innovation on economies of scale and 
market concentration and on the costs of innovation and creative destruc-
tion. Section 9.5 discusses implications of these changing market trends on 
the distribution of income, while section 9.6 lists open research questions.

9.2  Digital Innovation and the Distribution of Income: Global Trends

Many OECD economies have seen an increase in income inequality. In 
particular, the top categories of income distribution increased their share in 
total income. This trend coincides with the growing importance of digital 
innovation. Figure 9.2 plots Patent Cooperation Treaty (PCT) applications 
and the income share of the top 1 percent for a group of OECD countries. 

Fig. 9.2 Top 1 percent income share and PCT patent applications for selected 
OECD countries, 1987–2009
Source: The World Top Incomes Database, http:// topincomes .g -  mond .parisschoolofeco-
nomics .eu/ (accessed July 15, 2015) for the 1 percent income share data; OECD Patents Sta-
tistics for PCT patent applications.
Note: The statistics are based on a GDP- weighted average for the following 13 OECD coun-
tries: Australia, Canada, Denmark, France, Germany, Japan, Netherlands, New Zealand, 
Norway, Sweden, Switzerland, the United Kingdom, and the United States. The selection is 
based on data availability over the 1987–2009 data period. The data appendix provides further 
information.
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Both series show an initially modest upward trend, followed by acceleration 
in the mid- 1990s. Interestingly, information and communications technol-
ogy (ICT) patents show the strongest upward trend of all, highlighting the 
growing importance of ICT in innovation.

Comparing business R&D spending (as a proxy for digital innovation) 
with trends in the top 1 percent income share gives a more mixed picture 
(figure 9.3). In a group of countries that includes the United States (jointly 
with Norway, the United Kingdom, and Australia), the share of the top  
1 percent income owners increased more substantially than the intensity 
of R&D investments. In another group of countries (including Denmark, 
Germany, Japan, and Switzerland), strong business R&D investments coin-
cided with positive but modest increases in the top 1 percent income shares 
over the past two decades. These differences may result from diverse country 
policy approaches to income inequality as well as from diverse industry 
dynamics and structures. Differences may also be driven by how economies 
are engaged in digital innovation and consequently in the degree to which 
digital innovation activities affect market structures and the distribution of 
income.

Fig. 9.3 Changes in the top 1 percent income share over 1981–2010 relative to 
business R&D spending as percentage of GDP in 2010
Source: The World Top Incomes Database, http:// topincomes .g -  mond .parisschoolofeco-
nomics .eu (accessed July 15, 2015), for the 1 percent income share data; OECD Science and 
Technology Indicators for business expenditure on research and development (BERD) as 
percentage of GDP. The data appendix provides further information.
Note: The two lines are exponential trends for the two groups of countries.
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9.3  Digital Nonrivalry and Its Growing Importance

9.3.1  Digital Nonrivalry

Digital innovation gives knowledge (design, IPR, software code or data) 
a more prominent role in the value share of new products and processes 
than does “traditional” innovation, which is only partly intangible as the 
knowledge component of  tangible products. Digital innovation is fully 
intangible and consequently allows for what we refer to here as digital non-
rivalry (DNR). Hal Varian referred to the key components of digital innova-
tions as essentially ideas, standards specifications, protocols, programming 
languages, and software rather than “physical devices”—consequently as 
innovations without physical constraints (Varian 2003).

Economists have long been familiar with the concept of nonrivalry when 
it comes to knowledge: one piece of knowledge can be used simultaneously 
by any number of users, at any scale, at low or even zero marginal cost. For 
instance, once assembled or designed, inventions can serve any number of 
users at no additional cost. This property contrasts with tangible (or physi-
cal) goods: two people can discuss fully the same idea, but they cannot eat 
the same apple. Nonrivalry favors “fluidity” or “ubiquity,” ideas spread-
ing instantaneously and everywhere at zero marginal cost. By contrast, the 
cost of producing the intangible product itself  (referred to as “original” in 
national accounting) is sunk—that is, it is not incurred again with every 
additional use of the product.

The impact of nonrivalry on the real world economy has been limited until 
recently because ideas needed a physical carrier; they had to be embodied in 
a tangible good to be stored, disseminated, or commercialized: it could be a 
book, a new car (embodying an invention), and so on. Physical embodiment 
means significant production and transportation costs and favors inertia, 
as it requires time and resources to make the physical carrier of the idea. To 
diffuse the idea, you need to print and physically distribute the book and 
access the idea embodied in it; you need to buy the book. The price of an 
individual copy of the book will not reflect the total cost of producing the 
idea, which (in equilibrium) is shared among all copies. And this price will 
also include the cost of producing and diffusing physical copies of the book. 
The same holds with a new object—say, a car. You need to produce the new 
car and distribute it physically, and customers need to go to the shop and buy 
it. The cost of inventing the new car is split between all copies sold. Hence 
when ideas are embodied in physical goods, nonrivalry is only partial, and the 
real- world economics of ideas is a mix of nonrival and traditional physical 
goods economics.

With computers and the internet, the need for a physical carrier disappears. 
Ideas, once encoded in electronic bits, can be disseminated instantaneously 
everywhere. They really become ubiquitous and accessible at a quasi- zero 
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marginal cost: we move from partial nonrivalry to total nonrivalry, which we 
refer to here as DNR in order to differentiate from broader- based nonrivalry 
and stress that its realization is tied to digitalization. With DNR, there are 
no more limits and delays on the diffusion of ideas: it suffices to access the 
site where they are presented, possibly to download a file.

9.3.2  The Growing Importance of Digital Nonrivalry

The effects of DNR have become increasingly important because of the 
growing importance of intangible investments over tangibles. In the United 
States, business investment in intangibles has risen almost continuously for 
the past 40 years, starting with the electronics revolution of the 1970s and 
increasing its pace over the past decades (Nakamura 2001). In the 2000s, 
intangible investments have become relatively more important than tan-
gibles (figure 9.4). Among intangibles, computer software—a component 
of intangible investments—has been among the most dynamically increas-
ing parts (Corrado, Hulten, and Sichel 2005, 2009). Until recently, official 
statistics have not accounted well for the large changes; Corrado, Hulten, 
and Sichel (2009) estimated that the omission of  such investments from 
published macroeconomic data has consequently led to underestimates of 
USD 800 billion (as of 2003), excluding more than USD 3 trillion of busi-
ness intangible capital stock.

Fig. 9.4 Business investment in intangible and tangible capital, United States, 
1972–2011 (percentage of adjusted GDP)
Source: OECD, based on unpublished update on C. A. Corrado and C. R. Hulten, “How Do 
You Measure a ‘Technological Revolution?,” American Economic Review: Papers and Proceed-
ings 100 (May 2010): 99–104.
Note: Estimates are for private industries excluding real estate, health, and education.
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The effects of DNR are also widespread across the economy because digi-
tal innovation is increasingly relevant across many other industries. Branstet-
ter, Drev, and Kwon (2015), for instance, show that between 1981 and 2005, 
IT assets have become increasingly critical in production in “traditional” 
sectors such as automobiles, aerospace and defense, medical devices, and 
pharmaceuticals. Spending on software increased substantially over time, 
and software engineers represent an increasingly important share in employ-
ment not only in telecommunications, software, and hardware industries 
but also in other industries, such as finance, business services, machinery 
manufacturing, and other information- provider services (figure 9.5).

Fig. 9.5 Share of employment in software- related occupations within industries in 
the United States, 2002, 2005, 2010, and 2015
Source: US Bureau of Labor Statistics (2016), Occupational Employment Statistics (OES) 
Survey, Department of Labor.
Note: Panel B reports the share of employment in software for industries in which the share is 
higher than 2 percent of total employment. Industries are provided at the four- digit NAICS 
2012. The data appendix describes the occupations included as software related.
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9.4  Impacts of Digital Innovation on the Economies of Scale and 
Market Concentration

9.4.1  Implications of Digital Nonrivalry for Market Concentration on 
Global Markets

DNR allows for massive economies of scale that favor market concen-
tration, because with DNR, the marginal cost of diffusion is also zero for 
the producers: the more products sold, the lower the average cost. Once the 
idea has been produced and formatted, there is no need to print copies or 
assemble embodying objects; it is enough to upload the idea to a website, 
and it becomes accessible to all with a computer and an internet connection. 
The marginal cost of delivering it to customers is null; hence the unit cost 
declines linearly with the quantity sold. If  a digital product succeeds on the 
market, the production volume can quickly adapt to demand, and sales can 
increase while unit costs decrease. Producers will aim to supply the entire 
market. Such phenomena have been observed in many industries under vari-
ous names, such as “blockbusters” (pharmaceuticals, movies, aeronautics) 
or “superstars” (sports). In such conditions, companies with a large pool of 
customers have an advantage in cost over competitors, which can result in 
natural monopolies.

Mass production in manufacturing as developed in the Fordist model of 
production lowered marginal cost compared to specialized production in the 
previous, craftsmanship- based model. However, the marginal cost was still 
positive. By contrast, the marginal cost of producing knowledge- intensive 
products (beyond the first unit) is essentially zero. A corollary of this idea 
is that investments are largely used to produce “originals”—that is, to inno-
vate, not to produce more copies of the same template. This amounts to the 
pure fixed costs and zero marginal costs textbook case that is an absolute 
exception for most production processes—except for information goods, for 
which it is the baseline case (Varian 2003).

On the process side, IT has lowered communication costs, hence raising 
the efficient size of firms whatever their industry. It is possible with IT to 
coordinate highly segmented and dispersed value chains of very large size. 
This factor is pushing toward higher market concentration in all industries. 
Evidence collected by Mueller, Simintzi, and Ouimet (2015) shows that the 
average size of the largest firms has increased significantly in 14 of the 15 
countries they studied between the mid- 1980s or mid- 1990s and 2010. The 
average size of the top 50 (100) firms in the United States grew by 55.8 per-
cent (53.0 percent) between 1986 and 2010.

Hence IT coupled with globalization have transformed both product mar-
kets and production processes in the direction of favoring large size and 
concentration. Brynjolfsson et al. (2007) show evidence of higher market 
concentration for more IT intensive industries for 1996–2006 compared to 
the previous period of 1987–95 (figure 9.6).
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In markets for digital innovation, economies of scale are reinforced by sev-
eral factors that foster market concentration and opportunities for smaller- 
scale producers to challenge incumbents: first- mover advantage, reputation 
effects, IPR, network effects, and product bundling, whereby different prod-
ucts are sold jointly, as the marginal cost is negligible. There are also oppor-
tunities for smaller- scale producers, as discussed in the next section. The 
expression “scale without mass” (Brynjolfsson et al. 2007) captures a closely 
connected idea, that it takes little time and investment for a small company 
(in terms of the number of employees) to become a global behemoth (in 
terms of turnover), as digital goods can be reproduced at the cost of a click.

A consequence of such economies of scale is the emergence of winner- 
take- all market structures—that is, markets with highly asymmetric mar-
ket shares (Rosen 1981). The market dynamics are akin to tournaments, 
in which the best offer wins the race and captures most (if  not all) of the 
market. The winner’s product may only be marginally better than the alter-
natives, but a market with no substantial distribution costs and where up- 
scaling is nearly instantaneous (for instance, by distributing services on the 
internet) gives the winning innovation the opportunity to gain most of the 

Fig. 9.6 Growth in market concentration of more and less IT- intensive industries, 
1996–2006 and 1987–95
Source: Brynjolfsson et al. (2007) based on Compustat.
Note: HI refers to the Herfindahl index of firms’ sales.
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market quickly. The Economic Census shows high rates of concentration 
for some of the markets closely associated with the digital economy and the 
economies of scale it allows for. For instance, among business- to- business 
electronic market providers, the top four providers held 34 percent of the 
sales 2012 (North American Industry Classification System [NAICS] code 
42511). By contrast, the average share of  the top four businesses in the 
wholesale business (NAICS code 42) was 5.6 percent.

Winner- take- all market effects are a well- known phenomenon in 
innovation- intensive markets. The value distribution of  innovations has 
been shown to be very skewed. Only a few innovations are of high value, 
while most provide little gain: this has been measured, for instance, using 
the monetary evaluation given by patent holders to their titles (Harhoff, 
Scherer, and Vopel 2003) and in terms of the number of citations and other 
measures of patent quality (see, e.g., OECD 2015b). This results from a few 
firms dominating markets for those innovations. This tendency is accentu-
ated by digital innovation.

Concurrent with digital innovation, globalization favors market concen-
tration, as lower barriers to operating across borders allow for the emergence 
of  a few global leaders (instead of  a multiplicity of  national ones) that 
benefit from the larger scale offered by global markets. This is illustrated by 
IT sectors with global leaders such as Google and Amazon but also across 
other more traditional industries in which digital innovation has become 
increasingly important (in product or in processes), such as pharmaceuticals, 
automobiles, or chemicals.

Assessing the market shares of  these global actors is challenging, as 
national- level data only capture resident firms but not all market competi-
tors. As an imperfect proxy, figure 9.7 computes the shares of the top 1 and 
5 global companies among the 2,500 top R&D companies across different 
sectors; the evidence shows strong levels of concentration in some of the very 
dynamic sectors that are highly associated with digital innovation—notably 
software and computer services, financial services, and electronic and electri-
cal equipment. Figure 9.8 plots the market shares of software and computer 
services against those of heavy industries.

9.4.2  Rents in Global Knowledge- Intensive Markets

Digital innovations generate higher rents than other innovations. The 
fact that successful innovators raise rents is not new; it was conceptualized 
in 1911 by Schumpeter. It is a necessary condition for innovation to occur. 
What is new is the scale at which this is happening, as reflected in large profit 
margins in sectors where digital innovation is important. Health technol-
ogy, technology services, and electronic services were first, third, and fourth 
in the Forbes 2015 ranking of most profitable sectors, with profit margins 
of 20.9 percent, 16.1 percent, and 13.2 percent, respectively (finance was 
in second position, with margins of 17.3 percent; Forbes 2015). Aggregate 
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Fig. 9.7 Share of the top 1 and 5 companies in total sales of leading R&D firms 
in 2015
Source: EU (2016), EU R&D Scoreboard 2016. The shares are computed as the sales share of 
the top 1 and 5 firms within the total number of firms of the 2,500 R&D most- intensive firms 
of the EU R&D Scoreboard. The number of firms included in the total for each sector is in-
cluded in brackets.

Fig. 9.8 Distribution of the 100 largest firms in terms of sales among the top R&D 
firms within the software and computer services and heavy industries sectors in 2015
Source: EU (2016), EU R&D Scoreboard 2016.
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statistics also show that in the United States, the share of corporate profits 
in income increased (see figure 9.13 in section 9.5).

The evolution of firm profits is also consistent with increasingly winner- 
take- all market structures: the top percentiles of  firms ranked by return 
on invested capital (ROIC) have grown most significantly, from less than 
30 percent in the early 1990s to 100 percent in 2014 (figure 9.9). The lowest 
percentiles (25th) had a constant ROIC, and the median increased slightly. 
Data collected by McKinsey suggest that “two thirds of the non- financial 
firms with an average ROIC of 45% or higher between 2010 and 2014 were 
in either the health care or the IT sectors” (Furman and Orszag 2015). Other 
suggestive evidence of more winner- take- all dynamics is the rise in the share 
of  nominal GDP of the Fortune 100 biggest American companies from 
33 percent in 1994 to 46 percent in 2013 (The Economist 2016). Players 
closely associated with the digital economy have gained in importance in 
this ranking. Those in traditional industries in which digital innovation has 
become more important also rank highly.

Several supply-  and demand- side characteristics favor incumbents’ rents. 
On the supply side, economies of  scale in knowledge- intensive products 
feed efficiency and consequently firms’ market shares. One reason is that 
it is often not straightforward for followers to imitate a successful product 
immediately. Also, the advance over competitors allows first movers to hire 
the most skilled and creative workers (who in turn benefit from interact-
ing with equally productive peers). Moreover, in various markets, econo-

Fig. 9.9 Return on invested capital excluding goodwill, US publicly traded nonfi-
nancial firms
Source: Furman and Orszag (2015) based on Koller, Goedhart, and Wessels (2015).
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mies of scope strengthen incumbents’ market positions, as in the extreme 
case of platforms (e.g., Amazon, Apple, Facebook, or Google). These are 
best placed to launch new products or to profitably scale up existing ones 
(possibly invented by other firms that platforms will acquire and integrate), 
as they have a large consumer base that competitors cannot easily match. 
Owing to standards and reputation effects, products do not travel easily 
across platforms, and entry for competitors is restrained. Hence while tech-
nically newcomers might scale at little cost, they may not get the rewards 
unless they access leading platforms. These supply side conditions shape the 
extent to which new entrants can challenge incumbents.

On the demand side, a firm’s or product’s reputation often influences 
consumer choice in favor of incumbents; these constraints reduce entrants’ 
opportunities to successfully penetrate markets in spite of the low product 
scaling costs. The market success of a product can stimulate further sales 
by incumbent producers, hence reducing opportunities for new entrants. 
Also, the technical complexity of  certain knowledge products magnifies 
incumbents’ advantage, because greater complexity increases the informa-
tion asymmetry between consumers and producers; consumers prefer to buy 
from sellers with a specific brand with high reputations as a guarantee that 
the product is of good quality. Moreover, network effects—that is, product 
value for each user increasing with the number of users—matter in core 
sectors of the digital economy. Examples include software programs (the 
number of users of the software and its interoperability), social networks 
(the number of friends/colleagues/partners to communicate with), online 
auctions (the number of bidders and sellers), and internet search engines.2 
Ownership of big data is also an increasingly important source advantage 
for incumbents, as competitors can only obtain the same quality of data with 
difficulty. The advantage of data ownership is increasing as, for instance, 
machine- learning algorithms become more intelligent with larger access to 
data, reinforcing the advantage of incumbents with access to such data.

Regulatory and policy conditions, including with IPR and standards, are 
also critical. In allowing firms to protect their digital innovations, they create 
barriers for competition. There is, consequently, much scope for policy to 
influence market concentration. Standards, which may restrict entry at the 
same time as they may enable innovation, also apply more where production 
processes make intense use of digital innovations.

Certain factors may limit market concentration. One factor is the diversity 

2. In the case of internet search engines, the network effects are indirect—that is, one group 
of users benefits from larger uptake by another group of users. Internet search engines offer 
users access to information to attract advertising revenues from firms, which they use to develop 
their services to attract the largest possible number of users. Pricing and other strategies are 
strongly affected by indirect network effects. For example, profit- maximizing prices may entail 
below- marginal cost pricing to one set of customers over the long run. In fact, many two- sided 
platforms charge one side prices that are below cost and sometimes even negative. Thus rents 
are not observed directly, as would be the case for single- client markets.
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of consumers’ tastes, which can lead to fragmented markets and monopolis-
tic competition “à la Chamberlin” instead of large winner- take- all markets. 
However, digital innovation may make product differentiation less costly, 
allowing companies to extend their control beyond small niche markets by 
supplying different market segments, chasing potential competitors from 
their respective domains. Another and more important factor that limits 
market concentration comes from new entry and creative destruction that 
arises with lower costs of digital innovation, as discussed next.

9.5  Impacts of Digital Innovation on the Costs of Innovation, Market 
Entry, and Creative Destruction

This section discusses how digital innovation’s effect on the costs of inno-
vating may trigger a more rapid displacement of existing products, increas-
ing the risk for firms to lose market revenue. Creative destruction and market 
entry may also reduce the market concentration DNR has facilitated.

9.5.1  Lower Entry Costs for Digital Innovations Allow for More 
Creative Destruction

The costs of  innovating have been reduced in a number of  ways with 
digital innovation. First, IT has lowered entry costs compared to many 
markets, including the costs of producing, managing, and communicating 
new knowledge (see, e.g., Paunov and Rollo 2016 for evidence of the use of 
the internet on firm innovation in developing countries). For instance, the 
emergence of  “the cloud” has done away with large upfront investment, 
giving access to computing power at a low price. Second, the downstream 
costs of innovating—that is, the costs of producing and disseminating digi-
tal innovations—are reduced or even disappear with DNR. Using digital 
means for advertising and distributing a product (e.g., opening a web page 
on Amazon) also allows producers of physical goods to reduce marketing 
costs; they can reach the global market without having to incur large, sunk 
investment in branding and so on. This is even more the case for some of 
the most dynamic digital knowledge products, such as software and online 
services, which can be distributed directly on the internet (no transporta-
tion cost). Third, scaling costs are also lower for digital innovations, as they 
are immediately scalable and can reach an unlimited number of customers. 
Opportunities to “scale without mass” (i.e., the production of goods and ser-
vices that require many fewer labor and capital inputs relative to traditional 
“tangible” products, as a large share of the product is intangible) extend 
beyond pure digital products (such as software or pure online services).

The lower cost of commercializing innovations allows for more market 
entry and creative destruction at a more rapid pace, increasing incumbents’ 
risk to lose most if  not all market revenue. Even where new products pro-
vide only minor improvements relative to existing ones, they may challenge 
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incumbents. In the traditional industrial economy, even minor changes to a 
product would mean incurring significant costs to reach customers (retool-
ing, marketing, etc.). With the digital economy, the main cost of introduc-
ing a new product is the cost of  invention, as production and marketing 
costs are low or even nil. Invention costs themselves may also be low in the 
case of weak differentiation (technical similarity). Yet businesses facing low 
downstream production costs may launch marginally improved products 
on the market as in winner- take- all contexts; even innovations with only a 
marginal advantage over competing products may gain all the market. This 
reinforces the impact of the reduction in cost on the incentive to launch new 
innovations. Technical change, however, may not be more rapid overall, as 
it depends on total research effort. Appendix A provides a simple model of  
the impacts of  cost reductions for digital innovations on the sequencing  
of innovation.

There is evidence that digital innovation has indeed increased risk that 
firms face in markets. Brynjolfsson et al. (2007) show that “creative destruc-
tion” (i.e., changes in firms’ rank of sales in their respective industries) was 
more important in more IT- intensive industries following the mid- 1990s 
(figure 9.10). Statistics on the volatility of stock market valuations of traded 
US companies show a similar increase over the 1990s and continued high 
levels from then onward (figure 9.11).

Fig. 9.10 Creative destruction in high-  and low- IT- intensive sectors, 1996–2006 
and 1987–95
Source: Brynjolfsson et al. (2008) based on Compustat.
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Volatility measures of financial investments also point to higher risk in 
more innovation- intensive sectors: betas (that estimate investment volatil-
ity) are higher than 1 (indicating greater risk compared to the entire market) 
in the biotechnology, internet, computer, and electrical equipment indus-
tries, while less knowledge- intensive industries, such as food processing and 
tobacco, display betas lower than 1 (figure 9.12). Also, Faurel et al. (2015) 
show that US firms registering more new trademarks faced higher volatility 
of stock market return and earnings for the 1993–2011 period.

9.5.2  Impacts of Market Entry and Creative Destruction on  
Market Concentration

Market concentration and creative destruction are not in contradiction 
with each other in markets where competition is based on digital innovation. 
In such markets, competition is not about prices—in which case, the threat 
from new entry would discipline the incumbents—but about radical product 
innovation, as successful new products fully displace existing ones, taking 
over the market no matter the price charged by incumbents. This also means 
that until the next innovation comes, incumbents keep their market position 
and do not have to bother about competition. The massive scale economies 
combined with business strategies that allow retention of  market power 
allow winners to reap rents until they are replaced by successful challengers.

While the evidence shows that market concentration has increased with 
digital innovation—that is, that the current context is one where market 
concentration and creative destruction coexist—the threat of market entry 
and creative destruction may also reduce market concentration. The extent 
to which market concentration is reduced depends on technology, business 
strategies, and policy. Where technology brings radical change, newcomers 
can challenge incumbents more than where incumbents can rely on master-

Fig. 9.11 Stock market volatility of traded US- based companies, 1989–2014
Source: Bas, Paunov, and Rodriguez- Montemayor (2017) based on Compustat.
Note: The figure plots the median standard deviation of the annual stock market price of US- 
based traded firms.
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ing the technology. For instance, traditional car manufacturers find them-
selves confronted with new business models such as the one implemented 
by Uber, which provides car sharing as an alternative to car ownership. 
Also, where incumbents have fewer opportunities to exploit network effects, 
platform dominance, leading technical standards, and data access,3 more 
competitive market conditions may result. The latter critically depends on 
policy (including antitrust, entrepreneurship, and IPR).

Creative destruction may be challenged on winner- take- all markets 
because winning comes with advantages that allow incumbents to retain 
rents for at least a period of time. Particularly large market players benefit 
from economies of  scale and scope and often from network economies. 
These provide them with the capital and networks needed to capitalize on 

3. In the digital economy, data are the primary input for many innovations and services. This 
is reinforced in more recent technologies like artificial intelligence.

Fig. 9.12 Estimates of selected sectors’ betas relative to the entire financial market 
for US firms in 2008–12
Source: Damodaran (2015) based on data from Bloomberg, Morningstar, Capital IQ, and 
Compustat.
Note: The beta of a sector is a measure of the volatility, or systematic risk, of  a financial invest-
ment in a sector in comparison to the financial market as a whole. The betas are estimated by 
regressing weekly returns on stock of companies within a sector against a benchmark index 
representative of the financial market, which is the NYSE composite index. Regressions are 
based on data within a time window of five years previous to the reference year. The beta is 
unlevered by the market value debt- to- equity ratio for the sector making use of the following 
formula: Unlevered Beta = Beta / (1 + (1 – tax rate) (Debt/Equity Ratio)). The unlevered beta 
is the beta that would be obtained if  the investment was on a company without any debt. The 
risk of an investment is, in general, higher when the ratio between debt and equity within a 
sector is higher. In this way, the focus is on the level of  risk, which is only driven by the char-
acteristics of  the sector other than the financial structure of companies within the sector. 
Further details can be found at http:// pages .stern .nyu .edu / ~adamodar/.
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and upscale innovations. This includes the advantages large incumbents can 
reap from big data with better tools to make use of them. These may con-
tribute to the marginalization of small players by a feedback loop, whereby 
better data allow better services, further enhancing their advantage. More-
over, in consolidated markets, incumbents have succeeded in establishing 
their products as essentials (as, for instance, is the case for different digital 
platforms). In this context, challengers develop new, more radical innova-
tions but do not immediately replace winners. Anecdotal evidence shows 
that most of the many new entrants are quickly pushed out of the market 
(see, e.g., Decker et al. 2014 for evidence on the United States).

While start- up failure is not surprising in itself—as new business ideas 
usually have higher failure rates—the issue is that among the successful ones, 
most are taken over by incumbents. Examples include YouTube (acquired 
by Google) or Instagram and WhatsApp (both acquired by Facebook). This 
is also the case in other industries like biotechnology, where most successful 
start- ups are taken over by big pharmaceutical firms that increasingly act 
like platforms, which possess unique marketing and financial infrastruc-
tures and can externalize the most exploratory innovation to start- ups that 
they acquire when successful. While these acquisitions reduce competition 
and creative destruction, they may contribute to increasing the efficiency of 
industry ecosystems, as good radical innovations developed in small firms 
can create more value once deployed at larger scale.

9.6  How Do Rents Generated by Higher Market Concentration and 
Greater Risk Affect the Distribution of Income?

This section discusses how changes in market structures and risk brought 
by digital innovation have affected the distribution of income. It describes 
the mechanisms accounting for higher returns to the top of  the income 
distribution—resulting in higher returns to capital, top executives, and top 
employees but less to average workers. The mechanisms explain aggregate 
findings by Forbes (2000) on the correlation between higher growth across 
US states and higher levels of  income inequality and returns to the top  
1 percent and 10 percent and by Aghion et al. (2015) on differences in inno-
vation intensities and higher returns to the top 1 percent.

9.6.1  Effects of Digital Innovation on the Distribution of Income

The impact channel of digital innovation on the distribution of income 
that has been discussed in the literature is about complementarity or sub-
stitutability to different types of labor. The debate, which dates back to the 
industrial revolution, has aimed at identifying whether technological change 
is skill- biased or not (see Haskel et al. 2012). More related to digital innova-
tion, several studies have investigated the substitution effects of automation, 
specifically with regards to routinized operations that machines can easily 
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execute (see Goos and Manning 2007; Autor and Dorn 2013; Michaels, 
Natraj, and Van Reenen 2014). Also, Acemoglu and Restrepo (2016) show a 
robust negative effect of the adoption of robots on employment and wages. 
As to effects on pay of  top income groups, Haskel and Westlake (2017) 
discuss how the rise of intangibles in the economy—closely related to an 
increase in digital innovation—may also result in superstar pay for managers 
and other key employees.

The channel linking digital innovation to the distribution of income we 
discuss herein is different and stems from digital innovations’ impacts on 
market structures. It does not relate to how capital and labor complement 
or substitute for digital innovation. Winner- take- all market structures affect 
the distribution of income in two ways. First, market concentration results in 
higher market rents. This affects the distribution of income due to important 
differences in the negotiation power of different claimants to these rents, 
including investors, top executives, and different workers. Second, higher 
market risk as generated by more creative destruction results in higher com-
pensation for risk takers (owners, investors, and executives). The specific 
implications for different input factors and the evidence are discussed below.

9.6.2  Higher Returns to Capital Invested in the Digital Economy

Winner- take- all market conditions have resulted in higher returns to the 
capital affecting the distribution of income as capital ownership is concen-
trated among the highest income groups (Atkinson 2015). The returns to 
capital invested in digital innovation increase because the market rents are 
mainly captured by the residual claimants, who are the investors and manag-
ers, while employees’ wages are largely fixed in the labor market. “Efficiency 
wage” mechanisms ensure that some of the rent goes to employees. Rents 
are not necessarily “excessive”—that is, higher than required—from an 
incentive/efficiency perspective. Investors require a risk premium to invest, 
as market risk is higher with more creative destruction.

An indicative piece of evidence of more rents for investors and owners 
is that over the past decades, corporate profits have increased while interest 
rates have decreased (figure 9.13). If  there were no rents, then corporate 
profits would follow the path of interest rates, as these reflect the returns to 
capital in the economy. Barkai (2016) also documents a substantial increase 
in the profit share of US businesses over the past 30 years. Recent work by de 
Loecker and Eeckhout (2017) also shows that markups and market power 
increased since the 1980s.

As pointed out by Kornai (2016), anecdotal evidence from the Forbes 400 
richest individuals includes a number of key actors of digital innovation: 
Bill Gates (Microsoft), Larry Ellison (Oracle), Michael Bloomberg (Bloom-
berg), Mark Zuckerberg (Facebook), Larry Page and Sergey Brin (Google), 
and Jeffrey Bezos (Amazon).

The evolution of top income share has been a capital- driven phenomenon 
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since the late 1990s (Piketty, Saez, and Zucman 2016). Data for 2000–2014 
show that growth of average income per adult owed mostly to growth in 
capital income, which grew by 2.2 percent per year, while labor income grew 
by 0.1 percent per year.

Investigating the relationship between profits and the top 1 percent 
income, figure 9.14 shows the evolution of median and average profits of 
US stock- market- traded firms for 1992–2013 and pretax income for the top 
1 percent and the middle 40 percent. Figure 9.15 shows a strong positive cor-
relation between the growth rates of the top 1 percent income and profit: 0.48 
(for the median) and 0.51 (for the average). By contrast, correlation between 
the middle 40 percent income and profits is lower (of 0.12 for the median and 
of 0.24 for the average). This suggests that the evolution of profits influences 
income inequality, as it benefits the top 1 percent but not others.

Bas, Paunov, and Rodriguez- Montemayor (2017) show that markets char-
acterized by higher concentration and volatility (to proxy for risk) are associ-
ated with higher profits (column 1 of table 9.1). Market volatility benefits 
profit more than wages but less than executive pay (columns 2 and 3 of table 
9.1). These results are obtained for the following specification:

(1) ijt = + herf Sh_Top5jt 1 + vol Volatilityjt 1 + Xijt +

Jjt + st + i + t + ijt,

where ijt stands for the log profits as well as the profit- to- wage and profit- 
to- executive- pay ratios. Sh_Top5 and Volatility, respectively, refer to the 

Fig. 9.13 Corporate profits and real interest rates (in percentages) for 1985–2015
Source: Based on data on corporate profits and the GDI from the Bureau of Economic Anal-
ysis, Bureau of Labor Statistics published May 27, 2016. Data on the one- year real US Trea-
sury rate are taken from the US Treasury (http:// www .multpl .com /1 -  year -  treasury -  rate /
table) using the CPI for the United States from the OECD Main Economic Indicators data-
base.
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share of the top 5 percent of firms and the standard deviation of firms’ stock 
market valuations for industry j at time t – 1. The specification includes time 
trends across industry sectors (τst) to control for sector- specific time trends 
that may affect executive pay and correlate with changing market dynamics. 
The authors also include firm fixed effects (λi) and year fixed effects (λt) to 
isolate any time- invariant unobservable differences in pay across industries, 
firms, and executives and year- specific shocks to executive pay from our 
estimates. Jjt is a vector of industry controls that includes industry size and 
capital intensity. Xijt is a vector of firm observable characteristics varying 
over time that includes firm size, profit margins, and revenue.

9.6.3  The Declining Return to Labor

A corollary of higher returns to capital is the decreasing share of labor 
in value added in many OECD countries over the past three decades 
(figure 9.16). Official statistics from the US Bureau of Labor Statistics show 
a decline of the share of labor in the United States from 64 percent—a value 
that stayed constant from the immediate post–Second World War period—
to 58 percent from the mid- 1980s onward (Elsby, Hobijn, and Şahin 2013).4 
Official statistics may underestimate the decrease in the labor share because 

4. Karabarbounis and Neiman (2014) also show that the share of corporate gross value added 
paid to labor declined by 5 percentage points for 59 economies over 1975–2012. Using industry- 
level data, Alvarez- Cuadrado, Van Long, and Poschke (2014) find that the income share from 
labor has declined in all but 3 of a set of 16 industrialized economies over the same period.

Fig. 9.14 Evolution of profits of publicly traded US- based firms and the US pretax 
income of the top 1 percent and middle 40 percent, 1992–2014 (2003 = 1)
Note: Profit data are computed using data for publicly traded firms in all industry and service 
sectors with the exception of the mining, quarrying, and oil and gas extraction sector (NAICS 
21), excluding in this way the influence of the price of natural resources on the trend, and 
NAICS sectors 55–92.
Source: Bas, Paunov, and Rodriguez- Montemayor (2017), based on Compustat for profits, 
and Piketty, Saez, and Zucman (2016) for pretax income of the top 1 percent and middle  
40 percent.
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intangibles are not adequately accounted for in capital. Corrado, Hulten, 
and Sichel (2009) show that the USD 1 trillion increase in GDP (in 1999) 
arising from addition of intangible investment to GDP results in an equal 
increase in gross domestic income (GDI), all of which accrued to the owners 
of capital, consequently decreasing the share of labor income.

Several pieces of evidence point to a role of digital innovation in account-

Fig. 9.15 Correlation of annual growth rates of profits and the average top 1 per-
cent and middle 40 percent of the US pretax incomes, 1992–2014
Source: Bas, Paunov, and Rodriguez- Montemayor (2017), based on data on corporate profits 
from Compustat, and Piketty, Saez, and Zucman (2016) for pretax income of the top 1 percent 
and middle 40 percent. Growth rates are computed on real income and profits, applying the 
same deflator as described in Piketty, Saez, and Zucman (2016).
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ing for those changes. First, figure 9.17 shows that the labor share in the 
United States decreased significantly in the more R&D- intensive sectors but 
not in the least R&D- intensive sectors. Also, Koh, Santaeulàlia- Llopis, and 
Zheng (2015) show that the lowering of the labor share in the United States 
over the past three decades stems mainly from an increase in the income 
share of knowledge capital—that is, IPR and software and not physical capi-
tal. Related evidence comes from Karabarbounis and Neiman (2014), who 

Table 9.1 Impacts of market dynamics on profits

Profitsft Profit to wage ratioft Profit to executive pay ratioft

Dependent variables:  (1)  (2)  (3)

Concentration (s, t − 1) 0.181* 0.202 −0.253
(0.103) (0.150) (0.222)

Volatility (s, t − 1) 0.024 0.118*** −0.102***
(0.018) (0.031) (0.036)

Firm controls Yes Yes Yes
Industry controls Yes Yes Yes
Industry- time trend Yes Yes Yes
Firm fixed effects Yes Yes Yes
Year fixed effects Yes Yes Yes
Observations 44,570 10,039 9,584
R2  0.95  0.86  0.76

Source: Bas, Paunov, and Rodriguez- Montemayor (2017) based on ExecuComp and Compu-
stat for 1992–2013.
Notes: Market concentration is measured using the share of the top 5 percent of firms in total 
industry sales while market volatility is measured as the average annual standard deviation of 
firms’ stock market value at the 6- digit NAICS industry level. See Bas, Paunov, and Rodriguez- 
Montemayor (2017) for a description of the other variables used in this estimation. Robust 
standards errors corrected for clustering at the 6- digit- industry- year level are reported in pa-
rentheses. *** p < .01, ** p < .05, * p < .1.

Fig. 9.16 Labor share in value added for the OECD- 21 in percentages, 1975–2013
Source: OECD National Accounts Database.
Note: The figure shows statistics for the following 21 OECD countries with available data: 
Australia, Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Ja-
pan, Luxembourg, Mexico, the Netherlands, Norway, Portugal, Republic of Korea, Spain, 
Sweden, the United Kingdom, and the United States.
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find that countries and industries experiencing larger declines in the relative 
price of investment—a development mainly due to IT investments—had 
larger declines in labor shares.

Second, table 9.2 provides regression results for 27 OECD countries over 
1995–2007 that show more direct evidence on the effects of  innovation, 
following the methodology first proposed by Rajan and Zingales (1998). 
In our context, we compare the trends in labor share of income, concentra-
tion, and firms’ mobility between industries that are relatively more and less 
dependent on R&D investments as a function of country level innovation, 
controlling for both industry-  and country- year effects. The advantage of 
this approach is that it avoids cross- country comparison (which is more 
subject to endogeneity concerns deriving from omitted variables biases). 
The estimated regression is as follows:

(2) Ycjt = 0 + 1(Patentingct Patent Intj ) + 2(Graduatesct Skill Intj)

+ 3(Capitalct Capital Intj) + 4(Financect Intang Intj)

+ 5(Tradect Transportj) + 6(Union Densityct Low Skilled Sharej)

+ 7(GDPct K Intj) + ucj + ct + cjt

where Ycjt is the labor share and β1 is our coefficient of interest, indicating 
the effect of innovation—proxied for by patenting at country level and inter-
acted with industry patent intensity—on the labor share. We also test for 
the effects of other factors that may be correlated with innovation and affect 

Fig. 9.17 Labor share of industry value added in the United States by sectoral 
R&D intensity in percentages, 1971–2011
Source: OECD STAN Database.
Note: Labor share of income is measured as labor costs (compensation of employees) over 
value added. Sectors are assigned to R&D intensity categories following OECD “OECD Tax-
onomy of Economic Activities Based on R&D Intensity,” OECD Science, Technology and 
Industry Working Papers, No. 2016/04. (Paris OECD, 2016). The “medium R&D intensity 
sectors” category combines the medium- high- , medium- , and medium- low- intensity sectors.
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the labor share. This includes controls of the availability of human capital, 
finance, and capital, as well as the importance of labor unions and trade. 
We also add country GDP as well as country- year and industry- year fixed 
effects to account for and control for other country and industry factors and 
their evolution over the period analyzed. The data appendix provides details 
of the variables we use.

Our findings show a negative relation between labor shares and patenting 
performance, even as the effects of finance, skills, capital, labor unions, trade, 
and GDP are controlled for. We also find a negative effect of a more skilled 
labor force on the labor share. This may also be related to labor- replacing 

Table 9.2 Evidence on the impacts of innovation on the labor share from industry data for 
1995–2011 across 27 OECD countries

Industry labor compensation over value added

Dependent variable  (1)  (2)  (3)  (4)  (5)

Patentsc * Patent intensityind −0.054* −0.056* −0.068** −0.058** −0.064**
(0.032) (0.030) (0.028) (0.028) (0.027)

Graduatesc * Skill intensityind −0.202* −0.201* −0.183* −0.184*
(0.115) (0.116) (0.110) (0.106)

Capitalc * Capital intensityind 0.038 0.068 0.043 0.009
(0.421) (0.419) (0.423) (0.430)

Financec * Intangible assetsind −0.336** −0.349** −0.336** −0.324**
(0.145) (0.143) (0.145) (0.145)

Tradec * Transport equipmentind 0.196* 0.178 0.128
(0.115) (0.112) (0.113)

Union Densityc * Low- skill intensityind 0.007* 0.008*
(0.004) (0.004)

GDPc * Capital intensityind 0.393
(0.317)

Country- year fixed effects Yes Yes Yes Yes Yes
Industry- year fixed effects Yes Yes Yes Yes Yes
Observations 4,070 4,070 4,070 4,070 4,070
R2  0.25  0.26  0.26  0.27  0.27

Source: Regressions based on data from the OECD MSTI and STAN databases.
Notes: Regressions use data for 16 manufacturing industries in 27 countries and over a period of 17 years 
between 1995 and 2011. Both dependent and independent country- level variables are in logarithms. 
Industry- level exposure variables are normalized. As a consequence, coefficients are interpretable as dif-
ference in the elasticity of the dependent variable, to changes in the country- level variables, between in-
dustries with maximum exposure and industries with minimum exposure. Therefore, the coefficient on 
Patentsct * Patent intensityind in column (5) reads as follows: the difference in the elasticity of the labor 
share to an increase in country- level innovation (Patents), in industries with the highest patent intensity 
(1) compared to industries with the lowest patent intensity (0), is −0.064. For instance, if  patenting 
doubled (increase by 100 percent), then the labor share in industries with high patent intensity would 
decrease by 6.4 percent more than in industries with low patent intensity. The identification is based on 
the hypothesis that industries that use patents more intensively have a lower labor share than industries 
that rely relatively less on patents. The data appendix provides definition of variables included. Robust 
standards errors are reported in parentheses. *** p < .01, ** p < .05, * p < .1.
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effects of technological change. The evidence is coherent with evidence by 
Bassanini and Manfredi (2012), who find for industries across 25 OECD 
countries over the 1980–2007 period that 80 percent of intra- industry labor- 
share contraction can be attributed to total factor productivity growth and 
capital deepening.

Third, other evidence that supports our model on the effects of winner- 
take- all markets on the decrease in the labor share includes recent evidence 
by Barkai (2016) and Autor et al. (2017). Barkai (2016) finds that the decline 
in the labor share is due to an increase in markups, thus confirming the link 
between the labor share and rent sharing. Autor et al. (2017) show across 
different datasets for the United States and other countries that the fall in the 
labor market share is strongest in industries with stronger market concentra-
tion and that market concentration is stronger in more technology- intensive 
industries.

Digital innovation is of course not the only cause behind the decreasing 
labor share and higher rewards to capital. Other factors have contributed 
as well, including the weakening of unions (as also shown in our results in 
table 9.1). Also, decreasing labor returns do not automatically translate into 
higher rewards to capital invested in digital innovation. Some of the gap 
may be related to higher depreciation rates: modern forms of capital, such 
as computers, software, and other communication technologies, depreci-
ate much faster than equipment of the past. Computer R&D has an esti-
mated depreciation rate of 40 percent (Li and Hall 2016). Moreover, capital 
includes, aside from intangible assets, real estate, tangible capital, and capital 
stocks of the government sector. Bonnet et al. (2014), for instance, shows 
evidence of higher returns to real estate.

Finally, several measurement issues need to be addressed to adequately 
measure the labor share, especially as digital innovation rises in importance. 
This includes accounting for the contribution of intangibles to income. The 
gap between income accounts that take intangibles into account and those 
that do not widens (Corrado et al. 2009). In addition, Elsby, Hobijn, and 
Şahin (2013) show that the methods used to impute the labor and capi-
tal income earned by entrepreneurs, sole proprietors, and unincorporated 
businesses influenced the changing labor shares reported by the US Bureau 
of  Labor Statistics. The downward trend, however, remains even if  self- 
employment is not taken into account (Karabarbounis and Neiman 2014). 
The gross labor share may also be much higher than the net labor share once 
tax deductions are taken into account. Bridgman (2014) finds, however, that 
adjustments to taxes are modest for most countries, including the United 
States.

9.6.4  Higher Returns to Executives

Growing risk has increased the impact of managers’ decisions on profits. 
Under stable market conditions, decisions made by managers make little dif-

 EBSCOhost - printed on 2/8/2023 7:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



352    Dominique Guellec

ference, as market shares have some inertia and the quality of decisions can 
be averaged over time. In winner- take- all markets, a manager’s decision that 
is just marginally better or worse than that of competitors can result in large 
gains or alternatively large losses. The mechanism operates as described by 
Rosen (1981) when characterizing the earnings of the most successful ath-
letes and entertainers (“superstars”), which exceed by far the predictions of 
conventional models. Evidence on the rewards of executives relative to firms’ 
net sales shows striking differences in rewards for the top 90th percentile 
in a few key sectors of  activity: IT- related services, innovation- intensive 
manufacturing, and IT- related manufacturing (table 9.3). Top managers in 
finance and insurance and extractive industries also receive high pay; this 
evidence points to the role of other factors such as the financialization of 
the economy in explaining changes in the distribution of income.

In addition, top managers’ activity is subject to information asymmetry: it 
is difficult to monitor their actual capacity and effort, especially where only 
marginal differences might make a big difference in the outcome and where 
market risk is high. Competition between firms to attract the best manag-
ers has consequently increased, giving top managers the ability to negotiate 
favorable compensation packages. For those reasons, top managers have 
been able to capture part of  the higher rent and have seen their average 
pay—particularly nonwage compensation—rise much faster than other 
employees who have less influence on firms’ performance. There is the more 
intensive use of high- powered incentives such as stocks and stock options 
that give executives a share in the company’s profits, boosting the pay for the 
winners and, in theory, punishing losers (Lerner and Wulf 2007; Hall and 
Liebman 1998; Murphy 1998). More than three quarters of executive pay 
in 2014 were due to nonwage compensations—up from slightly more than 

Table 9.3 Share of executive compensation in net sales over 1992–2014, on average 
and by percentile

Sector  10th  50th  90th  Average

IT- related services 0.3% 2.0% 16.9% 6.4%
Innovation- intensive manufacturing 0.3% 1.7% 13.4% 5.4%
Finance and insurance 0.2% 1.5% 7.7% 3.5%
IT- related manufacturing 0.3% 1.3% 6.7% 2.8%
Extractive industries 0.1% 1.1% 7.6% 2.8%
Non- IT- related services 0.1% 0.5% 2.8% 1.3%
Noninnovative manufacturing 0.2% 0.6% 2.3% 1.2%
Retail and wholesale trade 0.1% 0.4% 2.0% 1.0%
Transportation  0.1%  0.4%  1.6%  0.7%

Source: Bas, Paunov, and Rodriguez- Montemayor (2017) based on ExecuComp and Compu-
stat.
Notes: Further detail on the categorization of industries is provided in the data appendix.
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half  in 1992. It is also these shares rather than the salary per se that explain 
the higher reward to top deciles during the period of the dot- com bubble.

Moreover, as is the case for investors, important nonwage compensa-
tion means that managers share in the market risks and consequently may 
claim higher risk compensation. One piece of evidence on risks for manag-
ers is their turnover rate. Checking the rates across sectors of activity, we 
find indeed that it is larger for IT and innovation- intensive activities. Over 
2000–2013, top executives in IT- related services have the highest exit rate, 
with more than 1 in 5 leaving their position (this number may also partly 
reflect executives leaving for other firms as part of “poaching of the best”; 
figure 9.18). IT- related manufacturing is the second highest. The rate has 
increased relative to other sectors compared to 1993–99.

Digital innovation has evolved at the same time as top managers have seen 
their rewards increase, also in IT- intensive sectors. In the United States, the 
CEO- to- worker compensation ratio was 29.0 to 1 in 1978, grew to 122.6 to 
1 in 1995, and was 272.9 to 1 in 2012 (Mishel and Sabadish 2013). An esti-
mated 40 percent of the top 0.1 percent in the United States are managers 
in nonfinancial industries (Bakija et al. 2010 as quoted in CEA 2016). Top 
managers in sectors where digital innovation is important receive returns that 
are higher than expected from their industries’ share in total sales (table 9.4). 
Executives in the IT- related services industries represented nearly one in five 
of the top 1 percent of executives in 2000–2014, a similar share to executives 

Fig. 9.18 Annual turnover rate of leading executives by sector of activity, for 
1993–2013
Source: Bas, Paunov, and Rodriguez- Montemayor (2017), based on ExecuComp.
Note: Further detail on the categorization of industries is provided in the data appendix.
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in finance and insurance. IT- related manufacturing is in third rank in terms 
of the share of top executives, above its rank in industry sales. Other sectors 
represent higher shares in sales than of top 1 percent executives.

Bas, Paunov, and Rodriguez- Montemayor (2017) show that winner- take- 
all market characteristics—that is, markets that are characterized by higher 
industry market concentration and market volatility (to proxy for risk)—are 
associated with higher pay of the top executive of US- based traded compa-
nies. Their evidence is based on the following specification:

(3) Payifjt = + herf Sh_Top5jt 1 + vol Volatilityjt 1 + X fjt + Zifjt

+ Jjt + st + if + t + ifjt,

where Pay stands for executive i’s pay of firm f in industry j at time t. Zeijt is 
a vector of executive- specific controls and includes the age of the executive, 
their tenure in the firm, and whether they are about to leave the firm (as pay 
may differ prior to executives’ departure). Other variables are as specified 
for equation (1), described above.

Columns (1) and (2) of table 9.5 show a positive association between mar-
ket concentration, volatility, and executive pay at both executive and firm 
levels. Specifically CEOs—that is managers who decide on firms’ strategies 
(column 3)—receive higher pay on these markets. It is not the fixed- wage 
component but the share that varies with firm performance that is higher on 
more concentrated and volatility markets (column 4). This finding points to 
the role of risk compensation in executive pay. The effects of market concen-
tration on executive pay are also consistent with that of Gabaix, Landier, 

Table 9.4 Distribution of the top 1 percent of executives across sectors of activity

2000–2014 1992–99

  

Share of 
the top 

1%  

Industry 
share in 

sales  

Share of 
the top 

1%  

Industry 
share in 

sales

Finance and insurance 24.9% 19.3% 26.5% 13.3%
IT- related services 24.1% 11.3% 21.4% 9.8%
IT- related manufacturing 12.4% 7.6% 9.8% 7.9%
Retail and wholesale trade 8.9% 13.0% 8.6% 13.7%
Innovation- intensive manufacturing 8.7% 7.1% 7.5% 7.9%
Extractive industries 7.4% 14.5% 3.5% 13.3%
Non- innovative manufacturing 6.9% 8.9% 9.5% 13.6%
Non- IT- related services 4.0% 7.9% 7.3% 8.5%
Transportation  2.7%  10.4%  5.9%  11.9%

Source: Bas, Paunov, and Rodriguez- Montemayor (2017) based on ExecuComp and Compu-
stat.
Notes: Further detail on the categorization of industries is provided in the data appendix.
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and Sauvagnat (2014), who show that CEOs in larger- sized firms get more 
pay. Although not identical, firm size and market power are correlated.

The evidence reported associates executive pay to winner- take- all market 
characteristics of their own industry. The rent- sharing effects should apply 
with regards to executives’ own industry because higher pay arises from 
the profits generated in executives’ own industry and executives’ ability to 
negotiate shares in profits in their company. This would not be affected by 
market dynamics in other sectors than executives’ own because rents are 
not transferable.

Table 9.5 The impacts of market concentration and volatility on top executive compensation in 
the United States, 1992–2013

Executive 
payift

Executive 
pay shareft

Executive 
payift CEOs 
vs. others

Executive 
wage payift

Dependent variables:  (1)  (2)  (3)  (4)

Concentration (s, t − 1) 0.474*** 0.006*** −0.067
(0.165) (0.001) (0.099)

Volatility (s, t − 1) 0.103*** 0.026*** −0.006
(0.021) (0.007) (0.012)

Concentration (s, t − 1) × CEOs 0.650**
(0.262)

Concentration (s, t − 1) × Other executives 0.335
(0.255)

Volatility (s, t − 1) × CEOs 0.121***
(0.023)

Volatility (s, t − 1) × Other executives 0.091***
(0.022)

P- Value of the Difference in Coefficients 
for Concentration

0.00

P- Value of the Difference in Coefficients 
for Volatility

0.07

Firm controls Yes Yes Yes Yes
Executive controls Yes No Yes Yes
Industry controls Yes Yes Yes Yes
Executive- firm fixed effects Yes No Yes Yes
Firm fixed effects No Yes No No
Year fixed effects Yes Yes Yes Yes
Observations 42,407 8,608 42,407 42,407
R2  0.79  0.47  0.79  0.76

Source: Bas, Paunov, and Rodriguez- Montemayor (2017) based on ExecuComp and Compustat.
Notes: Market concentration is measured using the share of the top 5 percent of firms in total industry 
sales while market volatility is measured as the average annual standard deviation of firms’ stock market 
value at the 6- digit NAICS industry level. Robust standards errors corrected for clustering at the 6- digit 
NAICS- year level are reported in parentheses. See Bas, Paunov, and Rodriguez- Montemayor (2017) for 
a description of the variables used in this estimation. Robust standards errors corrected for clustering at 
the 6- digit- industry- year level are reported in parentheses. *** p < .01, ** p < .05, * p < .1.
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However, developments across the economy at large are also relevant 
to executive pay because executives may have transferable skills that can 
be applied in other markets. This means that the market characteristics in 
one sector may influence the pay in another. This is well illustrated by the 
Heckscher- Ohlin model that can obtain very different outcomes compared 
to a single- industry model (see Haskel et al. 2012). This regards executive pay 
compensation given in winner- take- all markets as skills that complement 
capital in the digital innovation economy. These effects are not adequately 
captured if  the focus is only on developments in executives’ own indus-
try. The role of such effects is consistent with the finding in Bas, Paunov, 
and Rodriguez- Montemayor (2017) of strong significant effects of market 
dynamics across the larger industry in which executives operate. However, the 
effects are no longer significant if  industry characteristics are also included 
in those regressions, suggesting that effects of market dynamics operate at 
the specific industry level. Evidence from the 20- year panel of executives of 
ExecuComp also shows that few executives switch to other industries.

Interestingly, during the “dot- com bubble” of 1999–2000, a period during 
which the stock market value of IT companies skyrocketed, these companies 
increased rewards to their executives (figure 9.19A). During the period, the 
total compensation of the highest- paid group increased substantially more 
than that of other groups. Other industries did not experience similar trends 
(figure 9.19B).

The trend in executive pay over 1992–2013 closely mimics the evolution of 
the income of the top 1 percent, similar to the evidence shown in figure 9.14 
for profits. The correlation between growth rates of the top 1 percent income 
and executive pay is high: 0.63 (for the median) and 0.70 (for the mean). The 
correlation between the growth rates of the middle 40 percent and execu-
tive pay is slightly lower for both the median (0.47) and the mean (0.60; 
figure 9.20). This evidence suggests that executive pay influences income 
inequality as profits do. The stronger correlation of average compared to 
median executive pay suggests that the dispersion of executive pay is also 
related to income inequality.

Finally, evidence on the wealthiest 400 Americans is also consistent with 
the “superstar” explanation: Kaplan and Rauh (2013) find that in 2011 
compared to 1982, the richest individuals were less likely to have grown 
up wealthy but had a university education and succeeded in industries—
technology, finance, and mass retail—where digital innovation has driven 
growth. Andersson et al. (2009) show that the firms operating in the US 
software sector with high potential upside gains to innovation pay “star” 
workers, notably programmers, more than firms that operate less innovation- 
intensive industries.

9.6.5  Labor Compensation

Digital innovation may also be expected to increase the rewards to those 
employees that play a critical role in securing rents of winning firms. Emerg-
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ing microevidence shows rent sharing with workers. Song et al. (2015), for 
instance, find that over 1978–2012, inequality in US labor earnings increased 
across firms, within industries and US states, which is suggestive of  rent 
sharing with employees. Evidence from the United Kingdom suggests these 
rents are shared with more skilled workers; Mueller, Simintzi, and Ouimet 
(2015) find that in this country, wage differentials between high- skilled and 
either medium-  or low- skilled jobs increase with firm size, while differen-
tials between medium-  or low- skilled jobs are either invariant to firm size 
or (if  anything) slightly decreasing. They also identify a link between wage 
inequality and the average number of employees of the largest firms in Aus-
tralia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, 
Greece, Italy, the Netherlands, Spain, Sweden, the United Kingdom, and 
the United States over 1981–2010. Card, Heining, and Kline (2013) also 
find that increasing heterogeneity across firms explains over 60 percent of 
the growth in wage inequality across occupations and industries in West 

Fig. 9.19 Trends in executive income by income decile for 1992–2014 (2003 = 1)
Source: Bas, Paunov, and Rodriguez- Rodriguez- Montemayor (2017), based on Compustat.
Note: Further detail on the categorization of industries is provided in the data appendix.
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Fig. 9.20 Correlation of annual growth rates of executive pay and the average top 
1 percent and middle 40 percent of the US pretax incomes, 1992–2014
Source: Bas, Paunov, and Rodriguez- Montemayor (2017), based on data on executive pay 
from ExecuComp and Piketty, Saez, and Zucman (2016) for pretax income of the top 1 per-
cent and middle 40 percent. Growth rates are computed using deflated income and executive 
pay, applying the same deflator as described in Piketty, Saez, and Zucman (2016).
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Germany over 1985–2009. The increased wage differential between highly 
skilled workers and others as reflected in those studies is not likely to be 
related to skill- biased technological change, as it depends on the size of the 
employer, and there is little reason why technical trends would differ across 
differently sized firms. An explanation in terms of rent sharing is more plau-
sible, as rents may differ across firms.

Evidence provided by Bas, Paunov, and Rodriguez- Montemayor (2017) 
on publicly traded firms in the United States that report on wage payments 
shows no association of firms’ wage pay and average wages in more concen-
trated and volatile markets, which is different from the findings on effects on 
executive pay and profits (tables 9.1 and 9.5).

The negotiation power of most workers, however, is weaker for a number 
of reasons. First, labor market pressure, which tends to equal the price of 
similar labor across firms, is stronger for employees than for managers. It 
is more difficult to replace managers than a number of workers. Second, 
another factor that reduces labor’s share in rents is that information asym-
metries regarding capacity and effort that allow negotiating higher pay are 
often less prominent for employees than for managers. Third, IT- enabled 
outsourcing and more temporary work arrangements weaken workers’ con-
nections to winning firms, increasing the competitive pressure on employees 
(Goldschmidt and Schmieder 2015). From 2005 to 2015, virtually all job 
creation in the United States was related to alternative work arrangements, 
defined as temporary help agency workers, on- call workers, contract work-
ers, and independent contractors or freelancers (Katz and Krueger 2016). 
Goldschmidt and Schmieder (2015) show that reducing rent sharing was one 
of the motivations for German firms to outsource noncore activities, such 
as food, cleaning, security, and logistics services starting in the early 1990s.

9.6.6  Opportunities for Social Mobility

Inequality indicators capture the relative position of individuals at any 
point in time; an important question these indicators do not address is 
whether individuals in lower income categories have the opportunity to 
move upward (Jones and Kim 2014). In many countries, higher inequalities 
are, however, associated with lower upward social mobility (as described by 
the so- called Great Gatsby curve). Chetty et al. (2014), for instance, find that 
a child born in the 1980s to parents in the bottom 20 percent of the income 
distribution has only a 7.5 percent chance of moving to the top 20 percent.

Social mobility is connected to creative destruction, as this mechanism 
triggers a change in market winners (and losers), affecting respective incomes 
as new winners move up the distribution (while new losers move down). With 
digital innovation’s impacts on the incidence and role of creative destruc-
tion, social mobility may increase in the digital innovation economy.

There is some evidence connecting social mobility and innovation: anec-
dotal evidence from the Forbes 400 list of the richest Americans shows that 
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between 1982 and 2001 (as digital innovation was progressively taking off), 
the share of individuals who were not wealthy prior to their business success 
compared to that of individuals who inherited their wealth (an indicator of 
cross- generational social mobility) increased. However, having professional 
skills is a critical precondition for success: the share of people with a col-
lege education rose in the list from 77 percent in 1982 to 87 percent in 2011 
(Kaplan and Rauh 2013). Recent empirical work also suggests that social 
mobility increases with innovation: Aghion et al. (2015) shows that US states 
with more innovation- led growth had higher upward social mobility over 
the 1995–2010 period.

9.7  An Open Research Agenda

This chapter puts forward an understudied mechanism that links digi-
tal innovation to changing market structures and, consequently, impacts 
on the distribution of income. It provides initial evidence pointing to the 
importance of this mechanism. Further evidence is important to improve 
our understanding of the issues and channels involved. The following areas 
in particular are critical.

First, the changes brought by digital innovation require continued efforts 
to measure the phenomenon of software- based innovations and relevant 
intangible investments. With continued technological progress, developing 
the right types of indicators is by nature a moving target that requires con-
tinued adaptation. While a decade ago indicators on computer and internet 
access were suitable for analysis, at present such an indicator is at best of 
weak interest given widespread adoption and the further development of 
digital innovations. It is important to know more about digital innovations 
across firms, industries, and countries over time to trace systematically the 
effects of digital innovation on market dynamics. Such evidence is particu-
larly important to explore the wider impacts of digital innovation beyond 
the sectors most closely associated with the digital economy, such as soft-
ware and hardware producers, search engines, and online portals. Evidence 
on digital innovation and intangible investments at sector and firm levels 
are also important.

Second, the impacts of  digital innovations on market dynamics in the 
United States and other countries require further attention. An analysis of 
economic census data would allow testing of the extent of changes and in 
what contexts they arise. Recent work by Autor et al. (2017) and de Loecker 
and Eeckhout (2017) provides first evidence on the evolution of  market 
concentration. Analyses of  risk would also be important. Analyses need 
to address a number of conceptual challenges; accounting for “redefining” 
the industry associated with particular businesses is increasingly important 
as the digital economy changes markets. For instance, IT firms’ investments 
in automated cars points to the company’s role as competitor in a number 
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of markets. Moreover, the absence of monetary transactions in two- sided 
markets such as online search engines also requires thinking about what 
measures of market concentration to use in addition to traditional sales- 
based measures.

Third, there is the large agenda on impacts of winner- take- all markets on 
the incomes of different groups in society and on social mobility. Matched 
employer- employee data allow documenting, beyond executives and inves-
tors, which workers benefit from rent sharing and which are excluded. 
Such data also allow an understanding of whether digital innovation cre-
ates opportunities for social mobility and, if  so, how. Documenting the 
evidence of  countries can allow an understanding of  whether country- 
specific contexts, including differences in opportunities provided for social 
mobility, affect how winner- take- all markets impact the distribution of  
income.

Fourth, further analyses aimed at assessing the relative importance of the 
new channel linking innovation to the distribution of income outlined in 
this chapter compared to others (financialization, globalization, skill- biased 
technological progress, etc.) would also be an important development.

Appendix A

The Impact of Reduced Costs of Innovation on the Sequencing 
and Versioning of Innovation

The effects of reduced costs of innovation on the rate of innovation in the 
context of digital innovations can be accounted for in a simple two- period 
framework.

In the basic, one- period setting, the total cost of a product is

C = R + F + d*V,

where R is the investment in research (fixed cost), F is the fixed cost for pro-
ducing and marketing the product (setting up a factory or retooling, setting 
up or reorienting a commercial network, etc.), d is the variable unit cost, 
and V is the volume of sales.

The turnover is

S = p*V,

where p is the unit price.
A firm will decide to engage in the research investment leading to the 

product if  and only if  the (expectancy of) profit is positive—that is, the 
(expected) turnover exceeds the (expected) cost:

Condition 1: S > C ⇔ V > (R + F)/(p—d) = V°.
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There is a minimum volume of expected sales V° below which the com-
pany will not engage in innovation.

Digital innovation reduces the fixed cost of producing, marketing, and 
distributing the product, and the variable unit costs approach zero. Accord-
ing to Condition 1, V° is decreasing in F and in d, meaning that the lower 
fixed cost of production and marketing, or a lower variable unit cost, makes 
it profitable for a firm to innovate with a lower expected volume of sales. This 
implies that digital innovation reduces the threshold for triggering spending 
in innovation, resulting in more innovations.

The impact of digital innovation on the cost of innovation also makes 
it more rewarding for a firm to split its innovations into smaller parts and 
market those new products rather than launch more advanced new products 
(cumulating several rounds of innovation) at longer time intervals. This can 
be described by defining two periods of production.

Assuming that the research, production, and sale can be sequenced in 
two periods if  the firm decides to, the firm can produce and sell a “partial 
version,” or a “smaller innovation” version, of the final good. Across two 
periods, 1 and 2, the costs and turnover equations are as follows:5

C1 = R/2 + F + d*V1

C2 = R/2 + F + d*V2

S1 = p*V1

S2 = p*V2

The supplementary cost for the firm generated by sequencing its innova-
tion is due to further production and marketing fixed costs that are incurred 
every time the firm issues a new product, independently of the degree of 
novelty and the volume of sales of the product.

By accessing the market earlier, the firm can increase total sales by steal-
ing customers from competitors. This is reflected in the assumption that V1 
+ V2 = V + V′ > V.

The condition for the firm to divide its innovation in two smaller innova-
tions is that profit should be higher when it does so (it should also be positive, 
Condition 1):

Condition 2: (S1 + S2) – (C1 + C2) > S – C ? F < (p – d)V′

This condition is all the easier to satisfy with low F and d. This is exactly 
what happens with digital innovation. F is lower due to digital distribution, 

5. We ignore discounting of period 2 because (i) the difference between the two periods is 
often a question of months and because (ii) interest rates have been very low for a decade. 
Introducing discounting would also not provide additional insights into the main mechanism 
we illustrate.
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and d is even zero for digital products. Therefore, digital innovation tends 
to accelerate the pace of innovations and increase versioning by making it 
beneficial to split innovations over time into smaller marketable pieces. In 
addition, in a winner- take- all context, small innovations, with only a mar-
ginal advantage over competition, might be enough to gain all the market: 
this reinforces the impact of the reduction in cost on the incentive to put 
innovations of a small size to market rapidly.

Appendix B

Information on Data Used

9.B1  Industry Categories Used in Tables 9.3 and 9.4 and Figures 9.18  
and 9.19

The SIC two- digit industries of all firms in ExecuComp and Compustat 
are categorized into the following groups:

•  Extractive industries include Metal Mining (10); Coal Mining (12); Oil 
and Gas Extraction (13); Mining and Quarrying of Nonmetallic Miner-
als (14); and Petroleum Refining and Related Industries (29).

•  Construction includes Construction—General Contractors and Opera-
tive Builders (15); Heavy Construction, Except Building Construction, 
Contractor (16); and Construction—Special Trade Contractors (17).

•  IT- related manufacturing includes Industrial and Commercial Machin-
ery and Computer Equipment (35) and Electronic and Other Electrical 
Equipment and Components (36).

•  Innovation- intensive manufacturing includes Chemicals and Allied Prod-
ucts (28) and Measuring, Photographic, Medical, and Optical Goods, 
and Clocks (38).

•  Noninnovative manufacturing includes Food and Kindred Products (20); 
Tobacco Products (21); Textile Mills Products (22); Apparel, Finished 
Products from Fabrics and Similar Materials (23); Lumber and Wood 
Products, Except Furniture (24); Furniture and Fixtures (25); Paper and 
Allied Products (26); Printing, Publishing and Allied Industries (27); 
Rubber and Miscellaneous Plastic Products (30); Leather and Leather 
Products (31); Stone, Clay, Glass, and Concrete Products (32); Primary 
Metal Industries (33); Fabricated Metal Products (34); and Miscella-
neous Manufacturing Industries (39).

•  IT- related services include Business Services (73); Communication 
(48); and Engineering, Accounting, Research, and Management Ser-
vices (87).
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•  Finance and insurance includes Depository Institutions (60); Nonde-
pository Credit Institutions (61); Security and Commodity Brokers, 
Dealers, Exchanges and Services (62); Insurance Carriers (63); Insur-
ance Agents, Brokers and Service (64); and Holding and Other Invest-
ment Offices (67).

•  Retail and wholesale trade includes Wholesale Trade—Durable Goods 
(50); Wholesale Trade—Nondurable Goods (51); Building Materials, 
Hardware, Garden Supplies and Mobile Homes (52); General Mer-
chandise Stores (53); Food Stores (54); Automotive Dealers and Gaso-
line Service Stations (55); Apparel and Accessory Stores (56); Home 
Furniture, Furnishings and Equipment Stores (57); Eating and Drink-
ing Places (58); and Miscellaneous Retail (59).

•  Transportation includes Railroad Transportation (40); Local and Sub-
urban Transit and Interurban Highway Transportation (41); Motor 
Freight Transportation (42); Water Transportation (44); Transporta-
tion by Air (45); Transportation Services (47); and Transportation 
Equipment (37).

•  Non- IT- related services include Electric, Gas and Sanitary Services (49); 
Real Estate (65); Hotels, Rooming Houses, Camps, and Other Lodging 
Places (70); Personal Services (72); Automotive Repair, Services and 
Parking (75), Motion Pictures (78), Amusement and Recreation Ser-
vices (79); Health Services (80); and Educational Services (82).

9.B2 Data on the Distribution of Income in Figures 9.2 and 9.3

Data on the top 1 percent income share (before taxes) are taken from 
the World Top Incomes Database, http:// topincomes .g -  mond .paris  school 
of  economics .eu/ (accessed July 15, 2015).

The following adjustments are undertaken to deal with missing values:

•  For figure 9.2, missing values of the top 1 percent income share (before 
taxes) have been replaced by the year in parentheses for the indicated 
year: Germany: 1987 (1986), 1988 (1989), 1990 (1989), 1991 (1992), 
1993 (1992), 1994 (1995), 1996 (1995), 1997 (1998), 1999(1998), 2000 
(2001), 2009 (2008); Italy: 1996 (1995), 1997 (1998); Netherlands: 
1987 (1985), 1988 (1989); Switzerland: 1988 (1987), 1990 (1989), 1992 
(1991), 1994 (1993); United Kingdom: 2008(2007). The data series of 
the top 1 percent income share used for each country (and period) are 
as it follows: Australia: Main series: 1976–2010; Canada: Main series: 
1986–2000; Longitudinal Administrative Data: 2001–2010; Denmark: 
Adults: 1986–2010; France: Main series: 1976–2012; Germany: Main 
series: 1976–2008; Ireland: Main series: 1986–2009; Italy: Main series: 
1976–2009; Japan: Main series: 1986–2010; Netherlands: Main series: 
1986–2012; New Zealand: Adults: 1986–2012; Norway: Main series: 
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1986–2011; Sweden: Main series: 1986–2013; Switzerland: Main series: 
1986–2010; United Kingdom: Married couples and single adults: 
1986–1989; Adults: 1990–2012; United States: Main series: 1986– 
2014.

•  For figure 9.3, missing values of the top 1 percent income share (before 
taxes) have been replaced by the year in parentheses for the indicated 
year: Finland: 2010 (2009); Germany: 1981 (1980), 2010 (2008); Indone-
sia: 1981 (1982); Ireland: 2010 (2009); Italy: 2010 (2009); Malaysia: 1981 
(1983). The data series on the top 1 percent income share used for each 
country (and period) are the following: Australia: Main series: 1981 and 
2010; Canada: Longitudinal Administrative Data: 2010; Main series: 
1981; Denmark: Adults: 1981 and 2010; France: Main series: 1981 and 
2010; Germany: Main series: 1981 and 2010; Ireland: Main series: 1981 
and 2010; Italy: Main series: 1981 and 2010; Japan: Main series: 1981 
and 2010; Malaysia: Main series: 1981 and 2010; Netherlands: Main 
series: 1981 and 2010; New Zealand: Adults: 1981 and 2010; Norway: 
Main series: 1981 and 2010; Singapore: Main series: 1981 and 2010; 
South Africa: Adults: 2010; Married couples and single adults: 1981; 
Spain: Main series: 1981 and 2010; Sweden: Main series: 1981 and 2010; 
Switzerland: Main series: 1981 and 2010; United Kingdom: Adults: 
2010; Married couples and single adults: 1981; United States: Main 
series: 1981 and 2010.

9.B3  Industry-  and Country- Level Data Used for Labor Share Regressions 
Reported in Table 9.2

Regression results reported in table 9.2 combine several OECD industry 
and country data, including the OECD database for Structural Analysis 
(STAN) and the Main Science and Technology Indicators (MSTI). The 
data are complemented with data from EU KLEMS, the OECD National 
Accounts database, and the World Bank Enterprise Surveys. The variables 
are defined in table 9.A2 jointly with their sources.

The estimating sample combines data for the following 27 countries: 
Australia, Austria, Belgium, Canada, Czech Republic, Estonia, Finland, 
France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Luxembourg, 
Mexico, the Netherlands, New Zealand, Poland, Portugal, Korea, Slovak 
Republic, Slovenia, Spain, Sweden, the United Kingdom, and the United 
States.

The industries covered include the following 15 industries at three-  and 
two- digit ISIC Rev. 4 level as defined in the OECD STAN database: basic 
metals, construction, electrical equipment, food products, beverages and 
tobacco, motor vehicles, trailers and semitrailers, machinery and equipment 
n.e.c., other nonmetallic mineral products, paper and paper products, print-
ing and reproduction of recorded materials, rubber and plastic products, 
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textiles, transport equipment, transportation and storage, wholesale and 
retail trade, and wood and products of wood and cork.

9.B4  Executive Pay Measures Used in Tables 9.3, 9.4, and 9.5 and Figures 
9.19 and 9.20

Data on executive pay refer to total executive compensation (including 
salary, bonuses, and other annual rewards), except for results reported in col-
umn (4) of table 9.5 that refer to executives’ salary only. Table 9.A1 describes 
the estimating sample used in regressions presented in table 9.5. More detail 
is provided in Bas, Paunov, and Rodriguez- Montemayor (2017).

Table 9.A1 Characteristics of the estimating sample for regression results of table 9.5

  
Number of 

observations  
Percentage 

share

Number of executives 7,812
Number of firms 1,106
Sector of activity 
Oil and gas extraction 3,008 7.1%
Chemicals and allied products 4,151 9.8%
Petroleum refining and related industries 114 0.3%
Industrial and commercial machinery and computer equipment 930 2.2%
Electronic, other electrical equipment and components 6,150 14.5%
Measuring, photographic, medical, optical goods, and clocks 3,297 7.8%
Furniture and fixtures 73 0.2%
Industry 17,723 41.8%
Communications 955 2.3%
Electric, gas, and sanitary services 2,111 5.0%
Food stores, eating and drinking places, miscellaneous retail 757 1.8%
Depository institutions 5,115 12.1%
Insurance carriers 3,382 8.0%
Holding and other investment offices 3,194 7.5%
Business services 9,170 21.6%

Services 24,684 58.2%

Time period
1992–95 3,478 8.2%
1996–99 5,315 12.5%
2000–2003 6,154 14.5%
2004–7 10,226 24.1%
2008–11 11,809 27.8%
2012–13  5,425  12.8%
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10.1  Introduction

The long- run decline in the income share of labor in GDP since the 1980s 
is one of the most debated macroeconomic trends in recent years. Various 
studies have documented that the trend is widely shared across industries 
and countries. While it has been particularly strong in the United States, it 
has also been observed for other advanced countries and, perhaps surpris-
ingly, also for various emerging and poor countries.1 Recent research zooms 
in on potential drivers. Barkai (2017) and Karabarbounis and Neiman 
(2018) document a large increase in so- called factorless income in the United 

1. See Elsby, Hobijn, and Şahin 2013; Karabarbounis and Neiman 2014; Rognlie 2015; 
Barkai 2017, and Dao et al. 2017.
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States: a residual that remains after subtracting payments to labor and cost 
of capital from GDP. Karabarbounis and Neiman (2018) argue that it can 
be alternatively interpreted as economic profits arising from firms’ pricing 
power, as income that accrues to forms of capital that are unmeasured in cur-
rent national accounts statistics, or as a wedge between imputed rental rates 
for assets and the rate that firms perceive when making the investment. They 
argue that it is likely a combination of the three, concluding that the latter is 
most promising in explaining long- term trends in US GDP income shares.

So far, the discussion on factor incomes has been about shares in GDP 
of single countries. This chapter argues for the need for a multicountry 
approach in better understanding the drivers of  increasing “factorless 
income.” In today’s world, goods are typically produced and distributed in 
intricate networks with multiple stages of production and extensive shipping 
of intermediate goods, services, and information. We refer to this as global 
value chain (GVC) production.2 So- called factoryless goods producers like 
Apple provide an iconic example: they sell and organize the production of 
manufacturing goods without being engaged in the actual fabrication pro-
cess (Bernard and Fort 2015; Fontagné and Harrison 2017). They capture 
a major part of the value as compensation for provision of software and 
designs, market knowledge, intellectual property, systems integration, and 
cost management, as well as a strong brand name. These assets are key in the 
coordination of the GVC and in the creation of value. Yet we have no way 
to directly infer the income that accrues to these “intangibles” due to their 
nonphysical nature such that their use cannot be attributed to a geographic 
location. In contrast, tangible assets (such as machinery) and labor have a 
physical presence, and their use is recorded in the national account statistics 
of the countries where they are located. A further complication is the fact 
that GVC production opens up the possibility for profit- shifting of multina-
tional enterprises across countries.3 More generally, increased cross- border 
sharing of intangibles is undermining the very notion of country- level fac-
tor incomes and GDP. This problem of income attribution is not new and 
has been discussed in the context of the system of national accounts for 
quite some time. The 26 percent jump in Irish GDP in 2015 also brought 
this “statistical problem” to public light and scrutiny.4 Guvenen et al. (2017) 
find that US multinationals have increasingly shifted income from intellec-

2. See UNECE (2015) for examples of various types of global production arrangements.
3. Through profit shifting, including transfer pricing and other tax strategies, transnational 

companies can allocate the largest share of their profits to subsidiaries (Dischinger, Knoll, and 
Riedel 2014). A firm might not be fully free to do so, as it is bound by cost- pricing rules. Yet, 
in practice, profit shifting is abundant, involving complex IP arrangements, and this practice 
is not restricted to affiliated firms only; see Neubig and Wunsch- Vincent (2017). Tørsløv, Wier, 
and Zucman (2018) estimate that close to 40 percent of multinational profits are shifted to tax 
havens globally each year.

4. See Halpin (2016). UNECE (2015) and Landefeld (2015) report on the discussions in 
(inter)national statistical organizations.
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tual property rights to foreign jurisdictions with lower taxes, suggesting an 
understatement of the labor share decline in US GDP.

The presence of GVC production suggests that there is a need to comple-
ment conventional factor income studies (at the country- industry level) by 
study of global value chains (that cross borders). Factor income analysis in 
GVCs will not be affected by the attribution problem and offers a unique 
opportunity to track the payments to intangible assets. This chapter is the 
first to provide such a study at the macroeconomic level.5 To fix ideas, con-
sider a firm selling shoes using local labor L and tangible capital K. This 
requires two activities: fabrication and marketing. Both activities require 
firm- specific knowledge B (e.g., market intelligence on consumers’ prefer-
ences for particular types of shoes). Next suppose the fabrication stage is 
offshored to country 2. In this case the (vertically integrated) production 
function is Y = F(K1, L1, K2, L2, B). To infer payments to B, we calculate 
residual profits in the chain as the sales of a good minus the payments to 
tangible factor inputs needed in any stage of production:

rB = pY – ΣnwnLn – ΣnrnKn,

with wn the wage rate and rn the rental rate of tangible capital used in coun-
try n. pY is the output value of the final good. rB is measured as the residual 
after subtracting the sum of payments to labor L and to tangibles K across 
all countries involved in production. We will refer to this residual as payment 
for intangible assets in the GVC.

It should be noted that, given the residual approach, we measure the 
combined income to all intangible assets used in a chain and do not attempt 
to measure the stock of intangibles and their rates of return separately. In 
their seminal work, Corrado, Hulten, and Sichel (2005, 2009) showed how 
stock estimates for certain types of intangibles that are currently not treated 
as investment in the national accounts (such as market research, advertising, 
training, and organizational capital) could be derived. This requires data on 
intangibles’ investments as well as additional information on their deprecia-
tion rates and asset prices. Corrado et al. (2013) provide an updated analysis 
expanding measurement to a large set of countries. Yet the industry detail 
currently provided is too aggregate for our purposes. At this stage we there-
fore remain agnostic about the type of intangibles, their separate stocks, 
and returns. This is left for future research. Our main aim is to establish the 
overall importance of payments to intangibles compared to tangible assets 
and labor.

5. Studying factor incomes in GVCs has a much longer history in case study research going 
back at least to Gereffi (1994); see Kaplinsky (2000) for an overview. Studies in that tradition are 
typically more qualitative and analyze how interactions between buyers and sellers in the chain 
are governed and coordinated. In a seminal case study, Dedrick, Kraemer, and Linden (2010) 
apply the residual income approach to the value of an Apple iPod, using technical “teardown” 
reports to trace inputs. They find that Apple retains up to half  of the iPod value.
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The rest of the chapter is organized as follows. In section 10.2, we outline 
our GVC accounting methodology. The main measurement challenge is the 
fact that GVCs are not directly observable in the data and need to be inferred 
from information on the linkages between the various stages of  produc-
tion. We will build upon the approach to measuring value added in global 
production networks as introduced by Los, Timmer, and de Vries (2015). 
They showed how one can derive the value- added contributions of country- 
industries in a given GVC. This allows for a decomposition of the ex- factory 
value of a final product into the value added in each stage of production. 
We use information from so- called global input- output tables that contain 
(value) data on intermediate products that flow across industries as well 
as across countries. These are published in the World Input- Output Data-
base (WIOD; see Timmer et al. 2015). This is combined with information 
on factor incomes in each stage, as discussed in section 10.3. We collected 
additional information from national accounts statistics on industry- level 
wages and investment in tangible assets in a wide set of countries. We built 
capital stocks using the perpetual inventory method and imputed the income 
payments to tangible capital by multiplying with a standard Hall- Jorgenson 
type of rental rate. Crucially, we use an ex- ante rate of return such that a 
residual remains.

Throughout the chapter, we will study factor income distribution in the 
global production of  manufacturing goods. Worldwide consumption of 
manufactured goods (at purchasers’ prices) makes up about a quarter of 
world GDP (in 2000). This includes value that is added in manufacturing 
industries as well as nonmanufacturing, such as in transport, communica-
tion, finance, and other business services, and also raw materials production. 
These indirect contributions will be explicitly accounted for by using infor-
mation on input- output linkages across sectors. Section 10.4 provides main 
results on trends in factor incomes in GVCs over the period 2000–14 (the 
beginning and end points of the analysis are dictated by data availability in 
the WIOD 2016 release). Our main finding is that the share of intangibles in 
the value of final goods has increased, in particular in the period 2000–2007. 
Its share is generally (much) higher than the tangible capital income share. 
This is found at the aggregate as well as for more detailed manufacturing 
product groups. Nevertheless, there is clear heterogeneity in the pace of 
the increase. For some nondurable products, such as textiles or food, the 
intangible share in GVCs increased only marginally. In contrast, the share 
increased rapidly in durable goods’ GVCs, such as machinery and electronic 
equipment products. We provide suggestive evidence that this variation is 
linked to variation in the speed of international production fragmentation. 
Taking the results together, one could consider the 2000s as an exceptional 
period in which global manufacturing firms benefited from reduced labor 
costs through offshoring while capitalizing on existing firm- specific intan-
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gibles, such as brand names, at little marginal cost. Section 10.5 provides a 
discussion of the robustness of the main results, concluding that the cur-
rent system of national accounts is likely to still miss out on a large range 
of intangible assets, confirming Corrado, Hulten, and Sichel (2005). Sec-
tion 10.6 offers concluding remarks. The measurement framework puts high 
demand on the data, and our results should thus be seen as indicative only. 
This study is explorative and mainly aimed at stimulating further thinking 
about the interrelatedness of factor incomes across industries and countries.

10.2  Accounting for Factor Incomes in Global Value Chains: Method

In this section, we outline our empirical method to slice up incomes in 
GVCs. The basic aim is to decompose the value of a final good into world-
wide factor incomes. By representing the global economy in an input- output 
account in the tradition of Leontief, we can use his famous insight to map 
consumption value of products to value added in industries.6 We first outline 
our basic accounting framework and intuition (section 10.2.1). Next, we 
outline how we trace value added in production stages of the GVC, building 
upon the method of Los, Timmer, and de Vries (2015; section 10.2.2). We 
extend this approach by including the distribution stage (section 10.2.3). 
This stage is ignored in all previous input- output based studies. Yet by over-
looking distribution, one might miss out on up to half  of incomes generated 
in GVCs. This is particularly the case for nondurable goods, where retailers 
capture a major part of the value in delivery from producer to consumer, as 
shown in section 10.4. This way we are also much more likely to fully capture 
intangible income in the production of goods, particularly in the case of 
factory- less goods producers (FGPs). In the current US statistical system 
FGPs might be classified in wholesaling, and their output is recorded as a 
wholesale margin rather than as manufacturing sales. See also contributions 
in Fontagné and Harrison (2017) on this topic.

10.2.1  Preliminary Notation and Intuition

We illustrate our empirical approach in figure 10.1. We distinguish three 
sets of activities in a global value chain. These are activities in

•  the distribution of the final product from factory to consumer (D). This 
includes transportation, warehousing and retailing activities.

6. This approach of mapping final demand to value added is also used in related settings 
by Johnson and Noguera (2012), Valentinyi and Herrendorf (2008), and Herrendorf, Roger-
son, and Valentinyi (2013). It should be noted that this type of analysis does not depend on, 
or presume, the production process being linear (“chain”). It is equally valid in any network 
configuration that can be described by individual stages of production that are linked through 
trade. To stick with commonly used terms, we refer to all fragmented production processes as 
“chains,” despite the linear connotation of this term.
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•  the final stage of factory production (F). This can be thought of as a 
low- value- added activity such as assembly, packaging, or testing but 
might also involve high- value- added activities such as placing an engine 
in a car body.

•  all other stages of production (O). This might include the manufactur-
ing of  parts and components as well as business services (e.g., legal 
advice, finance, or consulting) and raw material production (e.g., mining 
and agriculture).

The sum of value added across the production stages makes up the value 
of the product at basic (ex- factory) prices. When one adds the value added 
in the distribution stage plus (net) taxes payed by the final consumer, one 
arrives at the value of a final product at purchasers’ prices (see first pillar 
in figure 10.1). Subsequently, we decompose the value added in each stage 
into income payments to labor and tangible and intangible assets (second 
pillar in figure 10.1). Income to labor and tangible assets can be tracked in 
the data, and we define income to intangible assets residually.

The three activity sets (D, F, and O) are mutually exclusive and together 
cover all activities that contribute to the value of the final product. More 
formally, let p be the consumer (purchaser’s) price of a good (adjusted for 
net product taxes), Y the quantity consumed, and Vx value added in stage x. 
Then we can state the following accounting identity:

(1) pY VD + VF +VO.

In each activity, factor inputs are being used, and we will distinguish between 
labor (L), tangible capital (K), and intangible capital (B) inputs. Using this 
notation, we can write the production function of the final good as

Fig. 10.1 Decomposition of factor incomes in global value chains
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(2) Y = f (BD ,KD,LD; BF ,KF,LF ; BO ,KO,LO)

DISTRIBUTION FINAL STAGES OTHER STAGES.

The corresponding cost equation is given by multiplying the factor quanti-
ties with their respective prices:

(3) pY =
x F,O,D

(rxB Bx) +
x F,O,D

(rxK Kx) +
x F,O,D

(wxLx)

INTAN CAPITAL TAN CAPITAL LABOR

,

with w the wage rate and r the rental price for capital. This is our basic 
decomposition of the output value of a final product into three elements: 
the income to intangible capital, to tangible capital, and to labor. Some of 
these variables are observable in the data, while others need to be imputed.

In brief, Vx, wxLx, and Kx can be observed for each stage, rxK will be imputed 
based on an ex- ante rate of return, and rxBBx will be derived residually in 
each stage as Vx rxKKx wxLx (see section 10.3 for more explanation). Our 
main variable of interest will be the income share of intangibles in the GVC:

(4) x F,O,D(rxBBx)

pY
,

to be compared with similarly derived shares for tangible capital and labor. 
The three shares add to one by construction.

10.2.2  Factor Incomes in Production Stages

Stages in GVCs can be inferred from information on the linkages between 
the various stages of production. A GVC is defined for a country- industry 
where the final stage of production is taking place—for example, the GVC 
of cars finalized in the German transport equipment manufacturing indus-
try. We use information from so- called global input- output tables that con-
tain (value) data on intermediate products that flow across industries as 
well as across countries. An example is the delivery of inputs from the steel 
industry in China to the automobile industry in Japan. More formally, our 
decomposition method builds upon the approach outlined in Los, Timmer, 
and de Vries (2015). It is a multicountry extension of the method suggested 
by Leontief  (1936).

Leontief started from the fundamental input- output identity, which states 
that all products produced must be either consumed or used as intermedi-
ate input in production. This is written as q = Aq + c, in which q denotes a 
vector of industry- level gross outputs and c is a vector with final consump-
tion levels for the outputs of each of the industries. Both vectors contain 
SN elements, in which N stands for the number of countries and S for the 
number of industries in each country. A denotes the SNxSN matrix with 
input coefficients that describe how many intermediates are needed from any 
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country- industry to produce a unit of output. The identity can be rewrit-
ten as q = (I – A)–1c, in which I represents an identity matrix. The matrix 
(I – A)–1 is famously known as the Leontief  inverse. It can be used to derive 
output that is generated in all stages of the production process of one unit 
of a specific final product. To see this, let z be an SN column vector with a 
one for the element representing, say, iPhones assembled in China, and all 
other elements are zero. Then Az is the vector of intermediate inputs, both 
Chinese and foreign, that are assembled, such as the hard- disk drive, battery, 
and processors. But these intermediates need to be produced as well, and 
A2z indicates the intermediate inputs needed to produce Az. This continues 
until the mining and drilling of basic materials such as metal ore, sand, and 
oil required to start the production process. Summing up across all stages, 
one derives the gross output levels for all SN country- industries generated in 
the production of iPhones by (I – A)–1z, since the summation over all rounds 
converges to this expression.7

To find the value added by a particular factor—for example, labor—we 
additionally need wages paid per unit of output represented in an SNxSN 
diagonal matrix H. The elements in this matrix are country-  and industry- 
specific: one element contains the wages paid per dollar of output in the 
Chinese electronics industry, for example. To find the income of all labor that 
is directly and indirectly involved in the production of z, we multiply H by 
the total gross output value in all stages of production given above such that

(5) L = H(I – A)–1z.

A typical element in the SN vector L indicates the wages of labor employed 
in country i and industry j in the production of z. A similar procedure can be 
followed to find the incomes of tangible and intangible capital with a suitable 
chosen requirement matrix (see next section on data). Following the logic of 
Leontief’s insight, the sum over incomes by all factors in all countries that 
are involved in the production of this good will equal the output value of 
that product at basic prices. Thus we have measures for production stages F 
and O in decomposition equation (3).

10.2.3  Factor Incomes in the Distribution Stage

The Leontief  method can be applied to decompose value added in vari-
ous stages of production. It remains silent on the value added in distribution 
of  the final product to the consumer, however. This is due to the nature of 
the data used: the distribution sector is represented in input- output tables 
as a so- called margin industry. This means that the goods bought by the 
distribution sectors (to be resold) are not treated as intermediate inputs. 
The gross output of  the distribution sector is measured in terms of  the 

7. This is under empirically mild conditions. See Miller and Blair (2009) for a good starting 
point on input- output analysis.
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“margin”—that is, the value of goods sold minus the acquisition value of 
those goods. Accordingly, we define the value added in the distribution stage 
by a margin- to- sales ratio (m) such that

(6) VD ≡ m( pY ).

We use the factor shares in the wholesale and retailing industries to derive 
the factor requirements in the distribution stage.

10.3  Data Sources

For our empirical analysis, we use three types of data: world input- output 
tables, information on distribution margins, and data on factor incomes of 
industries. The input- output tables and data on labor compensation and 
value added are derived from the WIOD 2016 release and have been exten-
sively described in Timmer et al. (2015). Important to note here is that the 
WIOD contains data on 56 industries (of which 19 are manufacturing) in 43 
countries and a rest- of- the- world region such that all value added in GVCs 
is accounted for. In this section, we provide more information on two new 
pieces of empirical information that are needed additionally: the income 
shares of tangible (and intangible) capital and data on distribution margins.

10.3.1  Capital Income Shares at the Country- Industry Level

Gross value added (V ) and labor compensation (wL) can be derived from 
national accounts statistics (with appropriate adjustment for the income of 
the self- employed), and this information is taken from the WIOD. As in 
Karabarbounis and Neiman (2018), we impute the income to tangible assets 
and derive intangible income as the residual for each industry i as

(7) riBBi VAi wiLi riKKi .

Tangible asset income for industry i is derived through multiplying tan-
gible capital stock Ki with an (ex- ante) rental price ri

K. According to neo-
classical theory, the rental price (user cost) of capital consists of four ele-
ments: depreciation, capital taxes (net of subsidies), (expected) capital gains, 
and a (net) nominal rate of return (Hall and Jorgenson 1967). For want of 
data, we abstain from capital taxes in our empirical analysis. The rental price 
is then given by

(8) ri
K = i

K + i
K( ) pi

I,

with the depreciation rate i
K, the real (net) rate of return i

K and the tan-
gible investment price pi

I. The rate of return is ex ante such that a residual 
remains in (7), which is the income for intangible capital. The rate of return 
reflects the opportunity cost of capital in the market. We set it to 4 percent 
for all tangible assets, following long- standing practice (at least before the 
financial crisis in 2007). We show in additional robustness analysis that using 
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time- varying rates based on government bond yields, or another alternative 
instead, will have no significant impact on our main results (reported in 
section 10.5).

Our definition of tangible capital assets follows the tangible asset bound-
ary in the System of National Accounts (SNA) 2008, including buildings, 
machinery, transport equipment, information technology assets, communi-
cation technology assets, and other tangible assets. Country- industry tan-
gible asset stocks are derived from the EU KLEMS database December 
2016 release (Jäger 2016) for Australia, Japan, and the United States and 12 
major European countries (Austria, Czech Republic, Denmark, Finland, 
France, Germany, Italy, the Netherlands, Slovenia, Spain, Sweden, and the 
United Kingdom). For the other countries, we only have stocks by industry 
but not by asset type. These countries are mostly reporting under the rules 
of  SNA93, which means that the industry- level asset stocks may include 
some intangible assets—most notably software. They typically constitute 
a small share, though, as most countries still reporting in SNA93 are poor. 
Geometric depreciation rates for detailed asset types are taken from EU 
KLEMS. These rates take into account the differences in the composition 
of capital assets both across countries and industries as well as over time. 
We carefully distinguish between various data environments across coun-
tries. The appendix in Chen et al. (2017) provides elaborate discussion on a 
country- by- country basis.

10.3.2  Value Added in Distribution Stage

To measure the value that is added in the distribution stage, we need 
to have information on the margin- to- sales ratios for final manufacturing 
goods (m). We derive this from the ratio of output valued at basic and at 
purchaser’s prices. The purchaser’s price consists of  the basic price plus 
trade and transport margins in the handling of the product and any (net) 
product taxes. Put otherwise, the margin is the difference between the price 
paid by the consumer and the price received by the producer. Margins are 
calculated from information on final expenditures at purchaser’s and basic 
prices as given in national supply and use tables. This data can be found 
for most countries in the WIOD (under the heading of national supply- use 
tables). For China, Japan, and the US, only data at producer prices is given 
in the WIOD, however. We complemented this with data from detailed retail 
and wholesale sector censuses. We adjust purchaser’s prices for (net) taxes 
on the products, as these are paid for by the consumer to the government 
and do not constitute payment for factor inputs in any stage of production.

10.4  Main Results

In this section, we will present our main findings on the factor income 
shares in global value chains of  manufactured goods. As background, it 
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is useful to note that consumption of manufactured goods (at purchasers’ 
prices) makes up about 27.9 percent of world GDP (in 2000, derived from 
the WIOD). This high number might be surprising given that gross value 
added in the manufacturing sectors, aggregated across all countries in the 
world, is only 18.4 percent of  world GDP. This is because consumption 
value of manufactured goods also includes value added from primary goods 
and services sectors (including distribution).8 We will map the consumption 
value of  final manufactured goods into income generated for labor and 
capital in all countries that contributed to production and distribution of 
these goods. We will do this for 19 detailed manufacturing product groups 
and also present aggregate results.

The production processes of goods have been fragmenting across bor-
ders with major impetuses from the North American Free Trade Agreement 
(NAFTA) in the early 1990s and China’s accession to the World Trade Orga-
nization (WTO) in 2001. Previous work on manufactured goods, reported 
in Timmer et al. (2014), found that the share of labor income in final output 
was declining over the period from 1995 to 2007. Surprisingly, this was the 
case not only in those stages carried out in advanced countries but also in 
stages carried out in less- advanced regions. The former was expected given 
that offshored stages are typically labor intensive, but the latter finding was 
not. This highlighted the increased importance of  capital in production, 
as its income share increased in virtually all GVCs. Timmer et al. (2014) 
hypothesized that this was related to the increased importance of  intan-
gibles. With our new data, we are in the position to test this hypothesis, dis-
tinguishing between tangible and intangible incomes. We can also investigate 
trends in the period after 2007.

10.4.1  Finding 1: Declining Share of Labor Income in GVCs

The GVC decomposition results, aggregated across all manufacturing 
goods, are given in table 10.1. It shows the income shares for labor and tan-
gible and intangible capital as defined in equation (4). Figure 10.2 charts the 
cumulative changes in factor income shares with the year 2000 as base. We 
find a strongly increasing capital share and a concomitantly declining trend 
in the share of labor. The labor share dropped from 56.4 percent in 2000 to 
51.8 percent in 2007. This resonates well with previous findings (Timmer 
et al. 2014).9 It stabilized afterward: in 2014, the share was 51.2 percent. 
We conclude that the declining trend in labor share did not continue after 

8. And not all manufacturing value added ends up in final manufacturing goods (e.g., when 
used in production of final services). See Herrendorf, Rogerson, and Valentinyi (2013) for results 
from a similar exercise mapping consumption to sectoral value added for the US economy.

9. The 2014 study used a previous version of the WIOD (the 2013 release) and did not include 
distribution activities but only production stages (F and O)—that is, it decomposed output 
at basic prices. Our extension to output at purchaser’s prices did not appear to have a major 
impact on factor income distribution.
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Table 10.1 Factor income shares in GVCs of manufacturing goods (%- share)

Labor Tangible capital Intangible capital

  Share (%)  Change  Share (%)  Change  Share (%)  Change

2000 56.4 15.8 27.8
2001 56.2 −0.2 16.1 0.3 27.7 −0.1
2002 55.1 −1.1 16.2 0.1 28.7 1.0
2003 54.6 −0.5 16.3 0.1 29.1 0.4
2004 53.5 −1.1 16.3 0.0 30.2 1.1
2005 52.7 −0.8 16.2 −0.1 31.2 1.0
2006 52.1 −0.6 16.1 −0.1 31.8 0.6
2007 51.8 −0.3 16.3 0.2 31.9 0.1
2008 51.8 0.0 16.8 0.5 31.4 −0.5
2009 52.2 0.4 17.6 0.8 30.2 −1.2
2010 50.5 −1.7 17.8 0.2 31.7 1.5
2011 50.6 0.1 17.6 −0.2 31.8 0.1
2012 51.0 0.4 17.7 0.1 31.3 −0.5
2013 51.1 0.1 17.8 0.1 31.1 −0.2
2014 51.2  0.1  18.1  0.3  30.7  −0.4

Notes: Share of factor income in worldwide output of final manufacturing products valued at 
purchaser’s prices, before product tax (in percentages). Labor income includes all costs of 
employing labor, including self- employed income. Tangible capital income includes gross re-
turns to tangible assets based on a 4 per cent real (net) rate of return. Intangible capital income 
is calculated as a residual (gross value added minus labor and tangible capital income). Own 
calculations based on the WIOD 2016, extended with data on tangible capital stocks and dis-
tribution margins as described section 10.3.

Fig. 10.2 Cumulative percentage point change in factor income shares (2000 base)
Note: See table 10.1.
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2007 but also did not reverse. This is suggesting that the decline was not a 
temporary phase in some kind of business- cycle pattern.

10.4.2  Finding 2: Increasing Share of Intangible Income Share up to 
2007 but Not After

A novel finding of this study is that the increasing share of capital after 
2000 is mainly due to increasing incomes to intangibles. The income share 
of tangible capital grew only slowly, from 15.8 percent in 2000 to 16.3 per-
cent in 2007. The low volatility of the tangible share is partly by virtue of 
its measurement: it is based on a stock estimate multiplied by an ex- ante 
rental rate, and both variables move only slowly over time. The decline in 
the labor share was thus mainly mirrored by an increase in the intangible 
share, which is measured as a residual after subtracting labor and tangible 
capital incomes. Its share jumped from 27.8 percent in 2000 to 31.9 percent 
in 2007. This increase was not sustained, however, and even reversed in 2011, 
declining to 30.7 percent in 2014.

10.4.3  Finding 3: Income Share of Intangible Assets in GVCs Is (Much) 
Higher Than That of Tangible Assets

Another interesting, and perhaps most surprising, finding is the high 
income share of intangibles relative to tangible assets. For all manufactur-
ing goods combined, intangible income was 27.8 percent of  final output 
value in 2000 relative to only 15.8 percent for tangible assets, so about 1.8 
times as high (table 10.1).10 The ratio reached a peak in 2007 at 2.0 and 
gradually declined again to 1.7 in 2014. Similarly high ratios are found for 
more detailed product groups. In table 10.2, we provide an overview of the 
factor income shares in 2014 for 12 major manufacturing product groups.

Factor income shares are informative on the factor intensity of  pro-
duction. Traditionally, products are classified as labor or capital intensive 
depending on the factor intensity of production in the parent industry. With 
production fragmentation, this classification is less straightforward as factor 
intensities of all contributing industries need to be considered. The intan-
gible income share is shown to be more than double the tangible share for 
pharmaceuticals, chemical products, and oil- refining products (see last col-
umn in table 10.2). The high ratio for petroleum products is likely related to 
the importance of brand names, tightly controlled distribution systems, and 
restricted resource access generating supranormal profits that end up in our 

10. In related research, Karabarbounis and Neiman (2018) find what they call the “factor-
less” income share to be 15 percent of value added in the 2000s in the US private business 
sector. This is the share that is not attributable to labor or measured capital stocks, using the 
asset boundary of the SNA 2008 (thus including IPP). Factorless income is found to be larger 
than measured capital income. In a different exercise, Bhandari and McGrattan (2018) also 
find a high ratio of intangible to total assets: their estimate of what they call “sweat equity” 
(firm- specific intangibles) is close to the estimate of marketable fixed assets used in production 
by private businesses.
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residual intangible measure. Pharmaceuticals are known to be highly R&D 
and patent intensive, which is reflected in the high intangible to tangible 
income ratio. Perhaps more surprising is the finding that the ratio is also 
high for textiles and apparel and “other” manufacturing products, which 
includes, among others, furniture and toys. These products are mainly pro-
duced in extensive international supply networks, and value- added genera-
tion relies on chain orchestration as well as strong marketing and branding 
of the products. The ratio between intangible and tangible incomes is lower, 
but still well above one, for electrical equipment (not including electronics), 
nonelectrical machinery, and other transport equipment. Their production 
is characterized by large tangible investments with high minimum efficient 
scales. The ratio is lowest for metal industries that are characterized by heavy 
reliance on tangible assets in the form of large- scale smelters and metal 
processing plants. The ranking of product groups is rather stable of time 
(not shown).

What type of intangible assets might be responsible for the large income 
share found in GVCs? One might suspect that intellectual property plays a 
major role. In the 2008 System of National Accounts (SNA08), investment 
in intellectual property products (IPP) is tracked. This includes computer 
software and databases, research and development, mineral exploration, and 
artistic originals. Thus we can carry out a simple back- of- the- envelope exer-
cise to impute the income accruing to IPP, using information on IPP capital 
stocks (from national accounts statistics, as reported in EU KLEMS), and 
proxy the rental price by the IPP depreciation rate (taken as 30 percent) plus 

Table 10.2 Factor income shares in GVCs (%- share), major product groups, 2014

Final product group name  
ISIC rev. 4 

code  
Labor 
share  

Tangible 
capital share  

Intangible 
capital share  

Ratio of 
intangible 
to tangible

Petroleum products 19 37.9 20.0 42.1 2.1
Chemical products 20 44.9 17.5 37.5 2.1
Pharmaceuticals 21 48.8 16.5 34.7 2.1
Food products 10t12 52.6 16.4 31.0 1.9
Furniture and other 31t32 53.7 16.3 30.1 1.8
Textiles and apparel 13t15 52.4 17.7 29.9 1.7
Electronic products 26 50.0 18.6 31.3 1.7
Motor vehicles 29 51.3 19.0 29.7 1.6
Electrical equipment 27 50.6 20.0 29.5 1.5
Nonelec. machinery 28 53.9 18.8 27.2 1.4
Other transport equipment 30 55.2 18.5 26.3 1.4
Fabricated metal products 25 55.2 20.8 24.0 1.2

All manufacturing products   51.2  18.1  30.7  1.7

Notes: See table 10.1. Twelve major manufacturing product groups, ranked by ratio of intangible to 
tangible income share (last column).
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a real (net) rate of return of 4 percent, as we did for tangible assets.11 Doing 
so, we find that the income share to IPP in manufacturing GVCs would 
amount to 2.4 percent in 2000, hovering between 2.2 and 2.7 percent during 
the period 2000–2014. It thus can explain only a minor part of the intangible 
income share that stood at 27.8 percent in 2000. We conclude that there must 
be a major set of intangible assets that is still outside the asset boundary 
currently covered in the SNA08. This reinforces the findings of Corrado, 
Hulten, and Sichel (2005, 2009) and Corrado et al. (2013). They provide esti-
mates for market research, advertising, training, and organizational capital 
that are currently not treated as investment in the national accounts. Yet the 
industry detail currently provided is too aggregate to be used for analysis of 
GVCs of manufacturing products. “Aggregate manufacturing” is the lowest 
level of industry detail for which data are given.12 This is a fruitful avenue 
for future research.

10.4.4  Finding 4: Increase in Intangible Income Is Driven by 
International Production Fragmentation

In table 10.3 we provide an overview of the changes in intangible income 
shares for 12 manufacturing product groups. They are ranked according 
to the change over the 2000–2014 period. There is clear heterogeneity. For 
some products, such as pharmaceuticals, textiles, and food, the intangible 

11. Not all countries have implemented the SNA08, however (most notably China, India, and 
Japan), so we are not able to carry out a full exercise, but it seems plausible that the majority 
of IPP is in Europe and the United States.

12. See http:// www .intaninvest .net/ for a database covering a large set of countries.

Table 10.3 Income shares for intangible capital in global value chains (percent of final output)

Final product  
group name  

ISIC rev. 4 
code  2000  2007  2014  

Change 
2000–2007  

Change 
2007–2014  

Change 
2000–2014

Elec. machinery 27 24.3 31.6 29.5 7.3 −2.1 5.1
Chemicals 20 32.4 36.5 37.5 4.1 1.0 5.1
Vehicles 29 24.8 29.9 29.7 5.1 −0.2 5.0
Metal products 25 19.3 25.6 24.0 6.3 −1.6 4.7
Nonelec. mach. 28 23.3 30.1 27.2 6.8 −2.8 4.0
Electronics 26 28.2 33.8 31.3 5.6 −2.4 3.2
Other transport eq. 30 23.4 29.4 26.3 6.0 −3.1 2.9
Furn. and other 31t32 28.0 30.5 30.1 2.5 −0.4 2.1
Oil products 19 40.5 47.0 42.1 6.5 −4.9 1.6
Food 10t12 29.8 31.1 31.0 1.3 −0.1 1.2
Textiles 13t15 28.7 31.1 29.9 2.4 −1.2 1.2
Pharmaceuticals 21 34.8 37.7 34.7 3.0 −3.1 −0.1

All products    27.8  31.9  30.7  4.1  −1.2  2.9

Notes: Share of intangibles in the final output value of manufacturing products (%). Product groups 
ranked by change during 2000−2014 (last column).
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share barely increased over the whole period 2000–2014. An initial increase 
up to 2008 was almost nullified in the period after. In contrast, the share 
increased over 2000–2014 by 4.0 percentage points or more in electrical 
machinery, chemicals, vehicles, metal products, and nonelectrical machinery. 
For some of these product groups, the intangible income shares increased 
strongly until 2008, followed by a moderate decline afterward. Yet the share 
continued to increase in the production of chemicals and barely declined in 
the production of vehicles.

The variation in intangible income shares across products invites further 
investigation into possible drivers. One possible hypothesis centers around 
the speed of international production fragmentation. The period from the 
mid- 1990s until 2008 is characterized by a strong process of fragmentation 
across borders, sped up by the opening up of  China and its joining the 
WTO in 2001. Yet the impact varied across product groups (Timmer et al. 
2016). International fragmentation was, for example, high in the produc-
tion of electronics (including computers), electrical machinery, and metal 
products in the 2000s. But production of textiles and furniture was already 
quite fragmented before 2000. Other products are arguably less susceptible 
to international fragmentation trends, such as food manufacturing (which 
has strong domestic supply links for intermediate inputs) and pharmaceuti-
cals manufacturing. To test this hypothesis more formally, we combine our 
estimates of  intangible income shares with information on international 
fragmentation of production processes. Timmer et al. (2016) provide a new 
measure that tracks all imports made along the production chain and argue 
that this is a good indicator for international production fragmentation. 
In figure 10.3 we plot the change in this indicator for our 19 manufactur-
ing product groups against the change in the share of intangible income in 
those GVCs from table 10.3 for the period 2000–2008. We find that there is 
a clear positive correlation (0.52), which fits our conjecture. Yet unexplained 
variation is still high, and further investigation into the drivers of intangible 
income shares is warranted.

10.4.5  Finding 5: Increasing Importance of Intangibles in Upstream 
Production Stages

So far, we have reported on income for factors aggregated over all stages 
and remained agnostic about the division across stages. Yet our methodol-
ogy allows one to also track in which stage of the GVC the returns to intan-
gibles are recorded using a straightforward disaggregation of equation (4) 
by stage: distribution stage, final stage of production, and other upstream 
stages of production. Results are reported in table 10.4. We find that in 2014 
about one quarter of the intangibles income is accounted for in the distri-
bution stage. One quarter is accounted for in the final production stage and 
about half  in other upstream production stages. There is a clear shift away 
from intangible income recorded in the final production stage (minus 4.2 
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percentage points over the period 2000–2014) to the other production stages 
(plus 5.5 percentage points). This shift mainly occurred before the crisis of 
2008. This finding is consistent with a story of offshoring of final production 
stages (such as assembly, testing, and packaging) from advanced to low- wage 
economies such that the incomes in this stage decline rapidly compared to 
the other stages that remained.

Interestingly, the aggregate trend is not shared across all product groups, 
which might be related to the type of  governance in the chain. Gereffi 
(1999) proposes a distinction between what he refers to as buyer- driven and 
producer- driven GVCs. GVCs are governed by so- called lead firms that have 
a large share of control over the activities that take place in the chain. The 
lead firm in a buyer- driven chain is typically a large retail chain or a branded 
merchandiser and often has little or no goods- production capacity. The lead 
firm in a producer- driven chain is a manufacturer that derives bargaining 
power from superior technological and production know- how.13 We find that 
for buyer- driven GVCs like textiles, furniture, toys, and other manufactur-
ing, the returns to intangibles are mostly realized in the distribution stage 
(up to 50 percent; see table 10.4). In contrast, in producer- driven GVCs like 
vehicles, fabricated metal, and other transport equipment, intangible returns 
are mostly realized in the upstream production stages (up to 60 percent). All 

13. Most GVCs are governed in complex ways and combine elements of both governance 
modes. Governance modes are not necessarily product- group specific. An electronic gadget 
can be produced in a chain driven by an international retailer (e.g., in the case of a generic 
nonbranded product) or in a producer- driven chain (e.g., in the case of a high- end branded 
product).

Fig. 10.3 Intangible income shares and international production fragmentation
Notes: Fragmentation index from Timmer et al. (2016) based on all imports made along the 
production chain (2008 as ratio of 2000 level). Intangible income share in 2008 as ratio of level 
in 2000. Observations for 19 manufacturing product groups. Observations for textiles (tex), 
electrical machinery (elec), electronics and computers (comp), and fabricated metal products 
(fab met) are indicated.
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products share the trend of a declining share of the final production stage in 
intangible income, with the notable exception of vehicle production.

10.4.6  Interpretation

So far, we have interpreted the residual income share in GVCs of goods 
as payments to intangible assets. Other interpretations are possible. For 
example, Barkai (2017) suggests that the increase in the residual in US GDP 
is related to a decline in competition.14 In our view, competition and the 
buildup of intangible assets are interrelated. More specifically, we prefer to 
think of the global market for manufacturing goods in the following way. 
Final goods are supplied by large firms that organize production in verti-
cally integrated processes spanning across borders. The market structure for 
final goods is monopolistic competition: each firm supplies a differentiated 
good and is able to charge a price higher than average costs.15 A firm derives 
monopoly power from investment in intangible assets that are specific to 
the firm. Conceptually, they differ from other factor inputs because, by and 

14. Karabarbounis and Neiman (2018) contend that the residual, which they dub “factorless 
income,” also contains a possible wedge between imputed rental rates for assets and the rate that 
firms perceive when making the investment. In the robustness section that follows, we show that 
this wedge needs to be extremely large in order to explain away the residual.

15. Romalis (2004) provides a many- country version of a Heckscher- Ohlin model with a 
continuum of (final) goods produced under monopolistic competition and with transport costs. 
Mark ups might of course also be the result of a natural monopoly or government regulation. 
This situation is less likely to be relevant for manufacturing goods that are heavily traded 
worldwide (with the exception of petroleum products).

Table 10.4 Share of stages in intangible capital income (in %)

Distribution stage Final production stage
Other (upstream) 
production stages

Final product  
group name  Code  2000  2014  Change  2000  2014  Change  2000  2014  Change

Furn. and oth. 31t32 48.3 50.0 1.7 23.1 18.8 −4.3 28.7 31.3 2.6
Textiles 13t15 44.1 50.6 6.5 21.6 14.9 −6.7 34.3 34.5 0.2
Food 10t12 30.6 29.8 −0.8 36.9 30.1 −6.7 32.5 40.1 7.6
Chemicals 20 25.8 23.5 −2.2 35.7 35.9 0.3 38.6 40.5 2.0
Nonel. mach. 28 25.2 23.6 −1.6 26.3 24.4 −1.9 48.5 52.0 3.5
Metal 25 23.2 17.4 −5.7 20.7 20.4 −0.3 56.1 62.1 6.0
Vehicles 29 22.7 16.3 −6.5 26.4 29.3 2.9 50.9 54.4 3.5
Pharma 21 22.1 19.9 −2.1 48.6 46.1 −2.5 29.3 34.0 4.7
Elec. mach. 27 19.7 23.3 3.6 28.1 21.8 −6.3 52.2 54.9 2.7
Oth. trans. 30 17.7 15.2 −2.6 30.5 24.8 −5.7 51.7 60.0 8.3
Electronics 26 17.6 20.7 3.0 38.6 34.9 −3.6 43.8 44.4 0.6
Oil 19 16.8 12.7 −4.1 26.0 20.9 −5.2 57.2 66.5 9.3

All products    28.3  27.0  −1.3  30.8  26.6  −4.2  40.9  46.4  5.5

Notes: Intangible capital income in each stage of GVC, as share in total income for intangibles across all 
stages, see table 10.1 for sources.
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large, companies cannot freely order or hire them in markets. Instead, these 
assets are produced, and used, in- house: they are not reported in balance 
sheets and not tracked as investment in national accounts statistics. Viewed 
this way, intangible capital is the firm- specific “yeast” that creates value 
from hired labor and purchased assets. The residual that remains can thus 
be interpreted as income to own- account intangibles.

The “yeast” perspective on residual income has old antecedents harking 
back at least to Prescott and Visscher (1980). See Cummins (2005) for further 
analysis on firm- level data. It is also related to the concept of sweat equity, 
defined as the time that business owners spend in building up firm- specific 
intangibles; see Bhandari and McGrattan (2018) for recent work. They 
emphasize the importance of organizational capital that is typically built 
at own- account and not (adequately) picked up as investment in national 
account statistics. In the appendix, we show through a capitalization- of- 
intangibles exercise as in Corrado, Hulten, and Sichel (2005) that residual 
income in a GVC is equal to the income for own- account intangibles when 
(part of the) workers are assumed to build up firm- specific capital. Under 
a “steady- state” assumption such that the creation of intangibles in each 
period is equal to depreciation, the intangible income is shown to be a net 
measure. So in terms of disposable incomes (Bridgman 2018; Rognlie 2015), 
intangible earnings might be even larger relative to tangible earnings, as 
the latter is inclusive of depreciation. Yet this is only under the steady- state 
assumption, which cannot be verified through direct observation.

Taking our findings together, we argue that the 2000s was a unique period 
in the global economy where supranormal returns to tangibles were (tem-
porarily) captured based on firm- specific intangible assets that went largely 
unrecorded in national account statistics. Our results support a story in 
which global manufacturing firms benefitted from increased opportunities 
for offshoring. Changes in the global economic environment in the early 
2000s—in particular China’s accession to the WTO and developments in 
information and communications technology (ICT)—made it profitable to 
develop extensive global production and distribution networks. Multina-
tional firms built up firm- specific coordination systems, benefitting from 
increased opportunities for offshoring of labor- intensive activities to low- 
wage locations. The income accruing to labor in the GVC declined due to 
wage cost savings. This matches our finding that incomes in final production 
stages (such as assembly, testing, and packaging) declined rapidly compared 
to upstream production stages. If  the production requirements (and prices) 
for tangible capital remain unaltered, the share of intangibles must go up 
by virtue of its definition as a residual.16 In addition, the growth in purchas-
ing power in the global economy (such as growing consumer demand in 

16. This is true only under the assumption that factor substitution possibilities between labor 
and capital are limited. See Reijnders, Timmer, and Ye (2016) for an econometric analysis of 
factor substitution and technical change in global value chains. They find wage elasticities to 
be well below one.
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China) might have benefitted incumbent multinational firms that were able 
to capitalize on existing intangibles such as brand names and distribution 
systems at little marginal cost. Apparently, this process was interrupted by 
the financial crisis in 2007, likely related to subsequent heightened uncer-
tainty on future global demand.

10.5  Discussion of Robustness of Main Findings

How robust are our main findings presented in section 10.4? Gross value 
added and the income payments to labor are recorded in the national accounts. 
The payments to tangible assets are imputed based on asset stocks and a 
rental price that includes a chosen rate of return. The higher this rate is set, 
the higher the tangible income will be and the lower the intangible income, 
which is measured residually. Setting the real (net) rate of return to tangible 
assets is not straightforward: from theory it depends on the opportunity cost 
of capital in the market as well as the expected inflation. It was set at 4 percent 
in our analysis so far, but alternative choices can be defended as well.

To have an idea about the sensitivity of results, one might ask what rate of 
return to tangibles would exhaust all nonlabor income such that no residual 
remains. The physical- capital- to- output ratio was about 1.3 (that is, the 
value of the tangible asset stock relative to final output) in 2000. It follows 
that the real (net) rate of return to physical capital needs to be as high as 
25 percent to exhaust final output, clearly well outside the boundary of 
plausible rates. For example, Barkai (2017, figure 1) shows that debt costs in 
the United States, set to the yield on Moody’s AAA bond portfolio, declined 
from about 7 percent in 2000 to 5 percent in 2014. He calculated expected 
capital inflation as a three- year moving average of realized capital inflation 
and found it to oscillate around 2 percent. This suggests a small but steady 
decline in the real rate of return from 5 percent to 3 percent over our period 
of analysis (2000–2014). Rognlie (2015) took the ten- year Treasury bond 
yield, subtracting the lagged five- year rate of change of the GDP deflator 
as a proxy for inflation expectations. This real rate was about 4 percent in 
2000, gradually declining to just above 0 percent in 2014. These alternative 
estimates are relatively close to our chosen 4 percent, so our findings on 
relative levels of tangible and intangible income appear robust. Moreover, 
the findings of a declining rate of return over the period considered suggests 
that, if  anything, we are underestimating the importance of intangibles in 
later years. For example, using a 0 percent real rate of  return instead of 
4 percent would indicate that in 2014 the tangible income share was only 
about 12 percent and the intangible share more than 36 percent: a ratio of 3 
rather than barely 2 as we reported. These results suggest that using plausible 
time- varying instead of a constant real (net) rate of return to tangible assets 
is strengthening our conclusions on the increased importance of intangibles 
in manufacturing GVCs.
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Yet one might argue that we nevertheless overestimate intangible incomes, 
as we are using gross value- added statistics that are measured according to 
the SNA08. Gross value added is defined in the SNA as the value of output 
less the value of intermediate consumption. In the SNA08, expenditures 
on IPP are treated as capital formation, not intermediate consumption.17 
This increases the value added but not the tangible capital stock. Thus if  
we take value- added statistics recorded in SNA08, gross value added might 
be overestimated for our purposes, and so will our intangible income mea-
sure through its residual nature.18 To have an upper- limit estimation of the 
bias, we assume that all IPP is bought in the market and recorded at cost.19 
Costs of IPP can be proxied by multiplying IPP stocks with the sum of the 
IPP depreciation rate (taken as 30 percent) plus a real (net) rate of return of 
4 percent (as we did before). Doing so, we find that value added (and hence 
intangible income) in the GVC is overestimated within a range of 2.2 to 
2.7 percent during the period 2000–2014. This shows that our main results 
on the relative levels and growth rates of intangible income are robust to 
this data issue.

A potentially more serious issue is the asset boundary of tangible capital. 
We follow the convention of the SNA08 and include fixed assets (such as 
machinery, equipment, and buildings) but not land and inventories. Yet both 
land and inventories tie up capital, and their use entails an opportunity cost. 
Estimating stocks of inventory and land is fraught with difficulties, however. 
The SNA tracks changes in inventories but not necessarily their value. Land 
is even more problematic, as land improvement expenditures do fall within 
the SNA asset boundary—in particular when they are tied with (improved) 
buildings or infrastructure. The US Bureau of Labor Statistics tries to take 
into account these assets when constructing their multifactor productivity 
statistics along the lines of Jorgenson (1995). They find for the manufactur-
ing sector that capital compensation for inventories and land adds about 
a quarter to the income of the tangible assets covered in the SNA. This 
can go up to 65 percent in retail and even 100 percent in the wholesaling 
sector due to the important role of inventories in these sectors.20 Yet these 
numbers are based on calculations that use an ex- post rate of return, which 

17. IPP covers R&D, computer software and databases, mineral exploration, and entertain-
ment and artistic originals. See Koh, Santaeulalia- Llopis, and Zheng (2016) for more informa-
tion on treatment of IPP by the US Bureau of Economic Analysis (BEA).

18. For countries that still publish national accounts according to SNA93, these imputations 
will be only small, including an imputation for own- account software at best. More discussion 
of this overestimation can be found in Chen et al. (2017).

19. This is clearly an extreme assumption, as a major part of IPP is own- account and not 
purchased. In the United States, the share of purchased is about two- third and own- account 
is about one- third, while it is 50- 50 in the United Kingdom (from additional info in national 
account statistics).

20. The data are taken from Bureau of Labor Statistics, Office of Productivity and Technol-
ogy, Division of Major Sector Productivity, published on line March 21, 2018, at http:// www 
.bls .gov /mfp/.
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exhausts value added, rather than an ex- ante rate as required. As such, the 
reported incomes also contain all income by assets that are not covered 
in the analysis. Corrado, Hulten, and Sichel (2005) argued forcefully that 
many intangibles are still outside the SNA asset boundary, echoed in our 
finding of a large residual income. In that case, the ex- post rate of return will  
be overestimated and likewise the rental price of  land and inventories—
more so because their depreciation rates are zero by nature. We conclude 
that the capital compensation numbers for income to land and inventories 
as in the Bureau of Labor Statistics data are not suitable for our purposes. 
This does highlight, however, that more information on these asset types—in 
particular, on their stocks—is desirable.

A particular caveat is needed for our findings on intangible incomes in 
each stage (finding 5). For a proper interpretation of the results, one should 
realize that what is measured here is the stage where the intangible income 
is recorded. This does not necessarily imply that the income is also captured 
by the firms that operate in that stage. For example, compare a situation in 
which Apple charges the iPhone assembler for its intellectual property with 
a situation in which it does not. The ex- factory price of the iPhone would 
be higher in the former case and the measured return to the intangibles con-
sequently lower in the distribution stage. But the measured return to intan-
gibles would be higher in one of the earlier stages of production, as it would 
include a payment for use of Apple’s intangibles. The division of intangible 
incomes across stages is thus sensitive to accounting practices by lead firms, 
as discussed in the introduction. Results that are based on aggregating across 
all stages (which underlie findings 1 to 4) are not sensitive to these shifts.

As a final remark, it should be clear that the validity of all the findings 
relies heavily on the quality of the database used. Data can, and needs to, 
be improved in many dimensions. For example, the WIOD is a prototype 
database developed mainly to provide proof of concept, and it is up to the 
statistical community to bring international input- output tables into the 
realm of official statistics. For example, one currently has to rely on the 
assumption that all firms in a country- industry have a similar production 
structure, because firm- level data matching national input- output tables 
are largely lacking. If  different types of firms—in particular, exporters and 
nonexporters—have different production technologies and input sourcing 
structures (i.e., exporters import larger shares of inputs), more detailed data 
might reveal an (unknown) bias in the results presented here.21 From the per-
spective of measuring intangibles’ returns, one of the biggest challenges is in 
the concept and measurement of trade in services (Houseman and Mandel 
2015). Fortunately, there are important developments in the international 

21. The development work done by the Organisation for Economic Co- operation and Devel-
opment (OECD) is certainly a step in the right direction; see http:// oe .cd /tiva for more infor-
mation.
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statistical community. Recently, the United Nations Economic Commis-
sion for Europe (UNECE) published its Guide to Measuring Global Produc-
tion (UNECE 2015). Building on this are new initiatives, most notably the 
initiative toward a System of Extended International and Global Accounts 
(SEIGA). In the short run, this would involve mixing existing establishment 
and enterprise data (in extended supply and use tables) as well as expanding 
survey information on value- added chains and firm characteristics. In the 
longer term, this would entail common business registers across countries, 
increased data reconciliation and linking, and new data collections on value 
chains beyond counterparty transactions (Landefeld 2015).

10.6  Concluding Remarks

Recent studies document a decline in the share of labor and a simulta-
neous increase in the share of  residual (“factorless”) income in national 
GDP. We argue that study of factor incomes in GVCs is needed to better 
understand this residual. This is the first chapter to do so. We show how to 
measure income of all tangible factor inputs (capital and labor) in a GVC. 
We define intangible capital income residually by subtracting the payments 
for tangible factors (capital and labor) from the value of the final product. 
Importantly, these factors are identified in all stages of production (final and 
upstream stages) as well as in the distribution stage. This is important, as a 
large share of value might be added in the delivery of the good to the final 
consumer rather than in the production stages.

We focus on GVCs of manufactured goods and find a declining labor 
income share over the period 2000–2014 and a concomitant increase in the 
capital income share. Our main finding is that this increase in capital income 
in GVCs is mostly due to the increase in income for intangible rather than 
tangible assets. This is found at the aggregate as well as for more detailed 
manufacturing product groups. Yet we also find clear heterogeneity: for some 
nondurable products, the intangible share increased only slightly, contract-
ing later on. In contrast, the share increased rapidly in durable goods (such 
as machinery and equipment products). We provide suggestive evidence that 
this variation is positively linked to variation in the speed of international 
production fragmentation. Taken together, our results suggest that the 2000s 
should be seen as an exceptional period in the global economy during which 
multinational firms benefitted from reduced labor costs through offshoring 
while capitalizing on existing firm- specific intangibles, such as brand names, 
at little marginal cost.

We discussed robustness of these results to issues like missing informa-
tion on land and inventories, value added imputations for some intangibles 
in the SNA08, and choice for (ex- ante) rate of return to tangible assets. We 
argued that the level of intangible income might be overestimated, but the 
trend over time is likely to be underestimated, if  anything. In any case, there 
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is a robust large residual income in GVCs that can be attributed neither to 
tangible assets nor to the wider asset class considered in the SNA08 (which 
includes intellectual property products). We reinforce the claim made by 
Corrado, Hulten, and Sichel (2005) that national account statistics are miss-
ing out on a sizeable set of intangible assets. Our conjecture is that most 
of these are own- account. To bring this hypothesis to the data, one would 
need information on investment in assets that are (or can be) purchased 
in the market, to be distinguished from “own- account” investment that is 
firm specific. Unfortunately, investment statistics from the national accounts 
typically do not separate own- account and market- mediated investment 
flows, although company balance sheets might provide information (Peters 
and Taylor 2017). Hopefully this type of information will be systematically 
collected and separately reported in future national account statistics. We 
also emphasized that the measurement framework puts high demand on the 
data, and our results should thus be seen as indicative rather than definitive.

The main aim of this study was to stimulate further thinking about the 
interrelatedness of  factor incomes across industries and countries. We 
showed that it mattered in an accounting sense, as the use of intangibles is 
blurring the attribution of incomes to particular geographical locations and 
industries in national accounts statistics. In addition, it invites further inves-
tigation of the role of governance in global value chains. Gereffi (1994, 1999) 
highlighted the crucial role of multinational lead firms in the generation and 
division of value in the chain. In particular, the importance of internation-
ally operating retailers highlights the need to consider the distribution stage 
alongside production stages that are the traditional confines of empirical 
GVC studies based on input- output tables. Further research is also needed 
to identify various types of intangibles and their investment flows, prices, 
and depreciation rates in macrowork following Corrado, Hulten, and Sichel 
(2005, 2009) and Corrado et al. (2013) as well as firm- level research, such 
as in Peters and Taylor (2017). At the minimum, we hope to have convinced 
the reader that a deeper understanding of  global value chains is needed 
before our measurement systems will adequately capture the importance of 
intangibles, and their incomes, in today’s global economy.

Appendix

Linking “Factorless” Income to Intangible Assets:  
An Accounting Model

In this appendix, we will outline a simple accounting model that points to a 
straightforward interpretation of the factorless (residual) income measure 
in GVCs as reported on in the main text. We will show how, under steady- 
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state conditions, this residual can be interpreted as net income payment to 
intangible assets. We analyze the case in which the intangible is produced 
by the firm for own account (i.e., in house). To do so, we follow the capital 
accounting approach to intangibles as pioneered in Corrado, Hulten, and 
Sichel (2005).

To fix ideas, we use the example of a multinational firm that sells goods 
but does not produce them. This firm imports a good—say, shoes—from an 
affiliate and sells them (at a premium) under its brand name. The firm only 
employs marketing staff that work on branding. We model the production 
function of this firm as Y(LB,S), with Y sales of shoes, LB number of work-
ers, and S imports of shoes. Let p denote prices, with superscripts indicating 
the output or input to which it refers.22 Gross profit of the firm in the distri-
bution stage, πB, is then given by

(A1) πB = pYY – wBLB – pSS.

πB can be observed in the data, yet how should it be interpreted? The brand 
name is created with a view of generating profits over a longer time period 
and hence should be considered as a capital input as argued by Corrado, 
Hulten, and Sichel (2005). In their capitalization approach, the firm is 
using an intangible asset input—namely, the intangible capital stock B (for 
“brand”). This stock is generated by the usual accumulation of investments,

(A2) Bt+1 = (1 B)Bt + It
B,

where δB is its depreciation rate and It
B the investment flow. The firm is 

producing the brand using its own workers (producing for own account in 
the jargon of the System of National Accounts). Viewed this way, nominal 
output of the firm should now also include the value of the assets created—
namely, pBIB with pB as the investment price. Factor input costs go up as well: 
by rBB with rB as its user cost, as the brand stock is used. As in the main text, 
we simplify and write the user cost as

(A3) rB = (ρB + δB)pB,

where ρB is the (net) real rate of  return to intangible capital. This rate is 
pinned down by the requirement that the sum of all factor incomes exhausts 
output, as we now have included all factors of production. Put otherwise, ρB 
is determined using an ex- post endogenous rate of return such that

(A4) pYY + pBIB = wBLB + rBB + pSS.

It is obvious, but important, to see that the measured returns to intan-
gibles depend crucially on the price the firm is paying for the imported shoes. 
Suppose the shoes are produced by an affiliated firm, opening up the possi-

22. We only use the time subscript in cases where its omission might generate confusion. 
Otherwise, it will be suppressed for expositional simplicity.

 EBSCOhost - printed on 2/8/2023 7:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



398    Wen Chen, Bart Los, and Marcel P. Timmer

bility for profit shifting. In that case, returns to intangibles cannot be identi-
fied by studying the last stage only. The solution is to consider the profits in 
the two stages together.

To see this, we also model the fabrication stage (F) of shoes. Assume shoes 
are fabricated with labor (LF) and tangible capital (KF)—say, machines. We 
can then write

(A5) πF = pSS – wFLF – rFKF,

where πF is the residual profit measure after subtracting the cost of tangible 
inputs from gross output in the fabrication stage. The particular division 
of the profits in the selling and fabrication stages will depend on the price 
of the shoes, which is an endogenous variable to be set by the lead firm for 
accounting purposes. However, the overall profit in the chain, (πR + πF ) is 
independent of this choice. It equals sales minus the cost of tangible inputs 
in the integrated production process. Combining (A5) and (A1), we derive

(A6) (πB + πF) = pYY – (wBLB + wFLF) – rFKF.

Equation (A6) shows how (πB + πF) can be measured in the data. The method 
to do so is outlined in the main text. How can we interpret it? Using (A4) 
and (A5), we have

(A7) (πB + πF) = rBB – pBIB.

The left- hand side is observable in the data, but none of the right- hand 
side variables are. In practice, many alternative combinations of rB, B, pB, 
and IB are possible that satisfy the accounting restrictions set by the observ-
able data. To simplify, let us consider two extreme cases. First, suppose a 
start- up firm produced the intangible but is not producing and selling shoes 
yet. In that case, wBLB = pBIB and rBB = 0. Alternatively, when the firm stops 
to produce its intangible but continues selling, it can be said to “exhaust” its 
brand name. In that case, (πB + πF) = rBB as pBIB = 0. An intermediate situa-
tion is when the firm is in a steady state such that in each period depreciation 
of the intangible is equal to new investment:

(A8) δBpBB = pBIB.

Substituting (A8) in (A7) and using (A3), we find that in this case,

(A9) (πB + πF) = ρBpBB.

Under a steady- state assumption, the observable profit in the GVC is mea-
suring the returns to intangible assets, net of depreciation. It is thus a net 
income measure.

A number of characteristics of this measure need to be noted. First, ρB is 
an ex- post rate of return. It is calculated to exhaust output minus tangible 
costs such that all value added is allocated to factors of production. This 
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ex- post rate contains a “normal” rate of return to capital, , which is the 
opportunity cost of the invested capital. This rate is by definition similar to 
the rate for tangible capital assets. Any returns above this can be referred 
to as “supranormal” such that the rate of return for intangibles can be split 
into normal returns and supranormal returns: B = ( B ) + . There are 
many reasons why the rate of return to intangibles might be different from 
the rate of return to tangible capital. Beyond the standard business risk, it 
may include additional compensation for its unusual risk profile (Hanson, 
Heaton, and Li 2005). Second, for simplicity, we abstained from tax and 
capital gain considerations in the discussion above as in our empirical work 
reported on in the main text. This is not to say that they are unimport-
ant; they are simply unknown, and further work is needed in this direction. 
Third, equation (A9) shows that intangible income measured by (πB + πF ) 
can increase because of an increase in its rate of return, ρB, or because of 
an increase in the nominal stock, pBB. Without quantifying the stock, we 
are not able to distinguish between the two. More generally, the firm might 
not be in a “steady state,” driving a wedge between depreciation and new 
investment. This wedge will also be absorbed in (πB + πF). Without further 
information on intangible depreciation, prices, and quantities (δB, IB, and 
pB), we will not be able to separate changes in stocks and in rates of return. 
Corrado, Hulten, and Sichel (2005, 2009) and Corrado et al. (2013) provide 
stock estimates for intangible assets that are currently not treated as invest-
ment in the national accounts. This is a fruitful avenue for future research.
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“Moore’s law” in the semiconductor manufacturing industry is used to 
describe the predictable historical evolution of a single manufacturing tech-
nology platform (“silicon CMOS”) that has been continuously reducing the 
costs of fabricating electronic circuits since the mid- 1960s.1 Some features 
of its future evolution were first correctly predicted by Gordon E. Moore 
(then at Fairchild Semiconductor) in 1965, and Moore’s law became an 
industry synonym for continuous, periodic reduction in both size and cost 
for electronic circuit elements.

Technological innovation for this manufacturing platform was coor-
dinated and synchronized across a variety of different engineering fields, 

1. Complementary metal oxide semiconductor (CMOS) is the most widely used “flavor” of 
semiconductor technology used to manufacture an integrated circuit (IC).
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including materials, optical systems, ultraclean precision manufacturing, 
factory automation, electronic circuit design and simulation, and improved 
computer software for computational modeling in all of these fields. It was 
a self- reinforcing dynamical process, since the largest market for the semi-
conductor manufacturing industry’s products has always been the computer 
industry.2 Cheaper computing hardware meant cheaper modeling and engi-
neering to further reduce the costs of the semiconductors manufactured for 
use in future computers. New public- private institutions and organizations 
were developed to coordinate the simultaneous arrival of the very heteroge-
neous technological building blocks required for this increasingly complex 
semiconductor manufacturing technology platform.

The result was an industrial dynamic that, since the mid- 1960s, had effec-
tively worked as a “virtual shrinking machine” for electronic circuits. On a 
regular basis, new “technology nodes” delivered 30 percent reductions in the 
size of the smallest dimension (“critical feature size,” F) that could be reliably 
manufactured on a silicon wafer. This implied a 50 percent reduction in the 
area occupied by the smallest manufacturable electronic circuit feature (F2) 
and a doubling in density—the number of circuit elements (e.g., transistors) 
per area of silicon in a chip.

Section 11.1 of  this chapter develops some stylized economic facts, 
reviewing why this progression in manufacturing technology delivered a 
20 to 30 percent annual decline in the cost of manufacturing a transistor, 
on average, as long as it continued. It constructs a simple economic frame-
work that explains how improvements in manufacturing technology, which 
resulted in feature size reductions, created manufacturing cost reductions 
for all types of electronic circuits.

Section 11.2 reviews other economically significant benefits (in addi-
tion to increased density and lower cost per circuit element) that would be 
associated with smaller feature sizes. Some of those characteristics would 
be expected to have significant economic value, and historical trends for 
these characteristics are reviewed. Chip speed, in particular, would have 
major impacts on computer performance. Econometric analysis of software 
benchmark data provided in this section of the chapter shows that rates of 
performance improvement in microprocessors fell off dramatically in the 
new millennium, a retreat from very high rates of increase measured in the 
late 1990s. Lower manufacturing costs alone pose no special challenges for 
price and innovation measurement, but these other benefits do, and they 
motivate quality adjustment methods when semiconductor product prices 
are measured.

Section 11.3 analyzes empirical evidence of  recent changes to the his-

2. This defines the computer industry expansively, to include the computer systems embed-
ded in the smart electronic systems and mobile devices whose sales have grown most rapidly 
in recent decades.
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torical Moore’s law trajectory and finds corroborating evidence for a slow-
down of Moore’s law in prices for the highest- volume products: memory 
chips, custom chip designs outsourced to dedicated contract manufacturers 
(foundries), and Intel microprocessors. In this section, in addition to review-
ing price indexes available in the public literature, I construct a new, high- 
frequency hedonic price index for Intel desktop microprocessors utilizing 
very detailed chip characteristics. I use a variety of data sources, including 
both Intel list prices and retail processor transaction prices. My results are 
consistent with the other public data I review and support the notion of a 
marked slowdown in Moore’s law–driven price declines over the last decade.

Section 11.4 reviews evidence to the contrary, which relates primarily to 
Intel microprocessors. It analyzes Intel’s own publicly released information 
on the topic, discusses economic reasons why Intel microprocessor prices 
might behave differently from prices for other types of semiconductor chips, 
and reviews other published studies, one of which came to the opposite con-
clusion: that quality- adjusted price decline for Intel processors continued at 
unchanged high rates in recent years. After investigating a variety of forms 
of evidence in detail, I conclude that the finding of an unchanged rate of 
price decline for Intel microprocessors is most likely an artifact of omitted 
variables in the estimated econometric model.

Section 11.5 dives into Intel microprocessors in even greater depth and 
tests the computer architecture textbook view of how a small set of specific 
chip characteristics affects performance of  microprocessors in executing 
programs. I outline a simple structural model of microprocessor computing 
performance and then estimate that model empirically. Simple econometric 
models, using only a small set of explanatory chip characteristics, explain 
99 percent of variance across processor models in performance on differ-
ent, commonly used CPU performance benchmarks. However, the impact 
of different chip characteristics on performance varies quite dramatically 
across benchmarks.

The economic implication is that these characteristics, which determine 
benchmark scores, should clearly be included in any hedonic price equation. 
Most of  these chip characteristics would also be expected to affect chip 
production cost and therefore have an independent rationale for inclusion 
in a hedonic price equation. It may seem reasonable to assume that a scalar, 
fixed- weight average of different benchmark scores for a chip perfectly cap-
tures the impact of changing chip characteristics on computer performance 
and therefore on user demand (though this is a very strong assumption 
given substantial heterogeneity and change over time in the mix of computer 
applications relevant to different computer market segments). But even if  
it were true that some fixed weighted average of benchmark scores was a 
perfect measure of changes in chip performance relevant to demand shifts, 
inclusion of this variable would not eliminate the need to also include cost- 
shifting product characteristics as additional controls in a hedonic model 
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of market equilibrium chip prices. This argument is actually illustrated by a 
simulation created to depict the impact of perfect collinearity among chip 
characteristics on hedonic price coefficients in section 11.3.

A sixth and final section of  the chapter points to some economically 
important conclusions that can be drawn from this evidence. Available 
empirical evidence, on balance, suggests that Moore’s law–related historical 
declines in chip manufacturing cost have clearly been greatly attenuated over 
the last decade, resulting in much more slowly declining quality- adjusted 
chip prices. If  we accept earlier economic research showing a strong link 
between technological innovation in semiconductors and IT and produc-
tivity growth across the broader economy, then a slowdown in semicon-
ductor manufacturing innovation, inducing slower quality- adjusted price 
declines for both chips and IT utilizing those chips, will affect measures of 
productivity growth in industrialized economies. Finally, the winding down 
of Moore’s law means that much of the continuing hardware cost decline 
driving ever more intensive use of IT across the economy over the last 50 
years will no longer hold and that computing costs—including energy use 
per computation, the principal variable cost—will decline much more slowly 
in the future than was true in the past. Improvement in software, rather than 
dramatically cheapening hardware, may well emerge as the main focus for 
IT innovation over the next 50 years.

11.1  Stylized Facts about Semiconductor Manufacturing Innovation

In 1965, five years after the integrated circuit’s invention, Gordon E. 
Moore (who would shortly move on to cofound Intel) predicted that the 
number of transistors (circuit elements) on a single chip would double every 
year.3 Later modifications of that early prediction—Moore’s law—became 
shorthand for semiconductor manufacturing innovation.

Moore’s prediction requires other assumptions in order to create eco-
nomically meaningful connections to the information age’s key economic 
variable: the cost (or price) of electronic functionality on a chip (embodied 
in the 20th century’s supreme electronic invention, the transistor).4 Chip 
fabrication requires coordinating multiple technologies, combined in very 
complex manufacturing processes.

The pacing technology has been the photolithographic process used to 
pattern chips. From the 1970s through the mid-1990s, a new “technology 
node”—a new generation of photolithographic and related equipment and 
materials required for successful use—was introduced roughly every three 
years or so. Starting in the mid- 1970s, this three- year cycle coincided with the 
time interval between introductions of next- generation DRAM computer 

3. G. Moore (1965).
4. Jorgenson (2001); Flamm (2003, 2004); Aizcorbe, Flamm, and Khurshid (2007).
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memory chips, storing four times the bits in the previous- generation chip.5 
This observed 18- month “doubling period” became a new de facto “revised” 
Moore’s law.6

The close early fit of DRAM product development cycles with leading- 
edge chip manufacturing technology introductions was no coincidence. 
DRAMs at that time were the highest- volume standardized commodity chip 
product manufactured, and a rapidly expanding computer market drove 
leading- edge chip manufacturing technology development. Moore’s predic-
tion morphed into an informal—and later, formal—technology coordina-
tion mechanism (the International Technology Roadmap for Semiconduc-
tors, or ITRS) for the entire global semiconductor industry—equipment 
and material producers, chip makers, and their customers.

Relationships between Moore’s law and fabrication cost7 trends for inte-
grated circuits can be described by the following identity, giving cost per 
circuit element (e.g., transistor):

(1) 
$

element
=

$processing cost
area “yielded” good silicon chips

silicon wafer area
chip

elements
chip

.

Moore’s original “law” described only the denominator—a prediction 
that elements per chip would quadruple every two years. Back in 1965, 
Moore hadn’t originally anticipated rapid future advances in technology 
nodes. Acknowledging that an integrated circuit (IC) containing 65,000 ele-
ments was implied by 1975, Moore wrote, “I believe that such a large cir-
cuit can be built on a single wafer. With the dimensional tolerances already 
being employed . . . 65,000 components need occupy only about one- fourth 
a square inch.”8

Rewriting this more concisely without relying on Moore’s prediction 
about numbers of  elements per chip (therefore eliminating the need for 
assumptions about chip size) yields

(2) 
$

element
= $processing cost

area “yielded” silicon
silicon area

element
,

5. DRAM (dynamic random access memory) was invented in 1968 by Robert Dennard at 
IBM and first commercialized by Moore’s newly founded company, Intel, in 1970. DRAM 
chips are the most common type of IC used for “main” memory storage in modern computer 
systems and, until the early 21st century, were the type of IC semiconductor chip produced in 
the highest production volume. DRAMs are a type of “volatile” memory chip—information 
stored on the chip in binary (0,1) form disappears when electrical power is turned off.

6. A decade later, Moore himself  revised his prediction to a doubling every two years.  
G. Moore (1975), 11–13.

7. Analysis of  fabrication costs, which account for most of  chip costs, ignores assembly, 
packaging, and testing.

8. G. Moore (1965). The largest wafer sizes in use then were comparable in diameter to a 
modern minipizza appetizer.
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which depends directly on the defining characteristic of a new technology 
node, the smallest patternable feature size, as reflected in chip area per tran-
sistor. This “Moore’s law” variant came into use in the semiconductor indus-
try as a way of analyzing the economic impact of new technology nodes. 
New technology nodes increased the density of transistors fabricated in a 
given area of silicon in a readily predictable way. Time between new nodes—
and a new node’s impact on wafer- processing costs—jointly determined 
decline rates in transistor fabrication cost.

Through 1995, new technology nodes were introduced at roughly three- 
year intervals. Each new node reduced the smallest planar dimension (“criti-
cal feature size,” F) in circuit elements by 30 percent, implying 50 percent 
smaller silicon areas (F2) per circuit element.

Completing the economic story, the cost per silicon wafer area pro-
cessed, averaged over long periods, increased only slowly.9 At new tech-
nology nodes, processing cost per silicon wafer area indeed increased. But 
episodically, larger wafer sizes were introduced, sharply reducing processing 
costs per area. The net effect was nearly constant long- run costs with only 
slight increases. Figure 11.1, presented in 2005 by Intel’s chief  manufactur-
ing technologist, shows new wafer sizes “resetting” wafer- processing costs. 
Significantly, larger diameter wafer sizes (450mm) were expected at the 22 
nanometer (nm) node. However, 450mm wafers were not introduced as Intel 
adopted 22nm technology in 2012 and had not been introduced by 2020, and 
even future introduction now seems highly uncertain. The most recent wafer 

9. Over 1983–98, wafer- processing cost/cm2 silicon increased 5.5 percent annually. Cun-
ningham et al. (2000), 5. This estimate relates to total silicon area processed (including defec-
tive chips). Since defect- free chips’ share of total processed area increased historically (chip 
fabrication yields increased), wafer- processing cost per good silicon area rose even more slowly, 
approximating constancy.

Fig. 11.1 Wafer size conversions offset Intel’s increased wafer-processing cost
Source: Holt (2005).
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size “reset,” adoption of 300mm diameter wafers, occurred at the 130nm 
technology node, around 2002.

Using these stylized trends—wafer-processing cost per area of  silicon 
roughly constant and silicon area per circuit element halved, with new tech-
nology nodes introduced every three years—equation (2) above predicts that 
every three years, the cost of producing a transistor would fall by 50 percent, 
a 21 percent compound annual decline rate.

In reality, leading- edge computer chips—like DRAM memory (the pri-
mary product originally produced at Intel after Moore and others founded 
that company, which immediately became the largest- volume product in 
the semiconductor industry and the primary product driving Intel’s initial 
growth)—dropped in price substantially faster than 20 percent pre- 1985. 
The steeper decline rate in part reflected further increases in density due 
to circuit design improvements (e.g., reduction in memory cell footprint),10 
3D interconnect layers enabling tighter packing of circuit elements,11 and 
gradual introduction of 3D into physical designs of transistors and other 
circuit elements.12 In addition, operating characteristics of a given circuit 
design—in particular, switching speed and power requirements—improved 
with new manufacturing technology and made additional contributions to 
quality- adjusted price. Finally, smaller and cheaper transistors made it eco-
nomical to add ever greater electronic functionality to chips, and more and 
more of a complete electronic system was progressively integrated onto a 
single chip, which greatly improved system reliability.13

In the mid- 1990s, the semiconductor manufacturing industry arrived at 
a significant technological inflection point.14 New technology nodes began 

10. Flamm (2010), figure 2, documents a 62 percent decline in minimum memory bit cell 
footprint between 1995 and 2004.

11. Anticipated by Moore back in 1965: “no space wasted for interconnection . . . using 
multilayer metallization patterns separated by dielectric films.” G. Moore (1965).

12. Recent examples of 3D transistor structures include RCAT (recessed cell array transis-
tor) and FinFET (fin field effect transistor) structures; 3D capacitor designs have been used in 
DRAM since the late 1990s.

13. Electrical interconnections between components have historically been the most frequent 
point of failure in electronic systems.

14. Industry road maps originally dated this transition to two- year node rollouts to 1995; 
post- 2004 road maps revised that date to 1998. Aizcorbe, Oliner, and Sichel (2008) have per-
suasively argued that the turning point was closer to the mid- 1990s than late in the decade.

The mid- 1990s were also a technological inflection point for Intel’s manufacturing capa-
bilities. Intel had exited the DRAM business in 1985, which previously had been driving its 
leading- edge manufacturing technology development, and refocused its R&D on logic circuit 
design (Burgelman 1994, 32–46). As a consequence, by the late 1980s, Intel manufacturing 
capability was trailing well behind the leading edge of the manufacturing technology it had 
once pioneered.

In order to catch up, Intel began adopting new nodes every two years, even as the rest of the 
industry continued at the historical three- year pace. Comparing launch dates for Intel proces-
sors at new technology nodes with initial use of those nodes by DRAM makers, Intel was two 
years behind in 1989 (at 1000nm); three years behind in 1991 (800nm); and one year behind in 
1995 (350nm). Intel caught up with the DRAM makers in 1997, at 250nm, and remained on a 
roughly two- year cycle through 2014. Author’s calculations based on Intel (2008), IC Knowl-
edge (2004), and http:// ark .intel .com.
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arriving at two- year intervals, replacing three- year cycles. (Intel’s perception 
of this trend, as of 2005, is documented in figure 11.2.) The origins of this 
change lie in the early 1990s, when the US SEMATECH R&D consortium 
sponsored a road map coordination mechanism in pursuit of an accelera-
tion in the introduction of new manufacturing technology, intended to ben-
efit the competitiveness of US chip producers. By the mid- 1990s, with the 
increasing reliance of semiconductor manufacturing on a global industrial 
supply chain, the American national road map evolved into the Interna-
tional Technology Roadmap for Semiconductors (ITRS).15 Explicitly coor-
dinating the simultaneous development of the many complex technologies 
required to enable a new manufacturing technology node every two years 
apparently succeeded in raising the tempo of semiconductor manufacturing 
innovation for over a decade.16

Using equation (2) but adopting shorter two- year cycles for new technol-
ogy nodes implies rates of annual decline in transistor costs accelerating to 
almost 30 percent. In short, if  the historic pattern of 2-  to 3- year technology 
node introductions, combined with a long- run trend of wafer- processing 
costs increasing very slowly, were to have continued indefinitely, a minimum 
floor of perhaps a 20 to 30 percent annual decline in quality- adjusted costs 
for manufacturing electronic circuits would be predicted due solely to these 
“Moore’s law” fabrication cost reductions. On average, over long periods, 
the denser, “shrunken” version of the same chip design fabricated a year 

15. Flamm (2009); Spencer and Seidel (2004).
16. The last (incomplete) official road map prepared by ITRS was released in 2012. Intel and 

others reportedly withdrew from ITRS around this time.

Fig. 11.2 Feature size scaling as observed by Intel in 2005
Source: Holt (2005).
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earlier would be expected to cost 20 to 30 percent less to manufacture purely 
because of the improved manufacturing technology.

It now appears that this two- year cycle for technology nodes definitively 
ended in 2014 with deployment of the 14nm node. The most historically 
prominent adopter of leading- edge chip manufacturing technology, Intel, 
currently projects a delayed introduction of its next 10nm processor prod-
ucts to no earlier than late 2019.17 This means that the time between intro-
ductions of new technology nodes now is approaching five years for Intel, a 
dramatic change from its two- year cadence through 2014.18

At Intel, the post- 1995 two- year technology development cycle had been 
explicitly incorporated into marketing efforts and was dubbed the Intel 
“tick- tock” development model in 2007.19 Every two years, there would be 
a new technology node introduced (“tick”), with the existing microproces-
sor computer architecture ported to the new node (effectively, “die shrinks” 
using the new process), followed by an improved architecture fabricated with 
the same technology the following year (“tock”). The death of the “tick- 
tock” model was officially acknowledged by Intel in its 2016 annual report.20

Intel publicly disclosed a version of equation (2) to its shareholders in 
2015, purged of sensitive cost numbers by indexing all variables to equal 
one at the 130nm technology node—the technology node at which the tran-
sition to a larger wafer size occurred.21 The 2015 Intel decomposition of 
manufacturing cost per transistor, using equation (2), is shown as figure 
11.3 and in table 11.1. Generally, Intel’s average silicon area per transis-
tor did not decline by the predicted 50 percent between technology nodes, 
primarily because of the increasing complexity of interconnections in pro-
cessor designs.22 If  accurate, these numbers indicate that the average chip 
area per transistor shrank by 38 percent at each new node from 130nm 
through 22nm.23 Nor did Intel’s wafer- processing costs stay constant over 
the post- 130nm period as a whole, since the adoption of 450mm wafers, and 
the subsequent cost reset, never happened at 22nm as had been predicted 
back in 2005. However, as long as the average area per transistor declined at 

17. See Moammer (2017).
18. Intel chip manufacturing competitor TMC was said in early 2017 to be manufactur-

ing a “10nm” node in volume for Apple (see Merritt 2017), but it is widely believed in the 
industry that its current technology is physically equivalent to a half- node advancement over 
the previous- generation Intel technology node. See https:// www .semiwiki .com /forum /f293 /
intel -  tsmc -  samsung -  10nm -  update -  8565 .html; Pirzada (2016); Rogoway (2018); Cutress and 
Shilov (2018).

19. See Intel (2017).
20. Intel (2016), 14.
21. Intel actually produced microprocessors in volume on both 200mm (8″) and 300mm (12″) 

wafers using its 130nm manufacturing process technology. See Natrajan et al. (2002), 16–17.
22. See Flamm (2017), 34, for a more detailed explanation.
23. Absolute constancy in reported decline rates for average area per transistor over five gen-

erations of new Intel manufacturing technology is puzzling, suggesting long- run trend- based 
estimates rather than actual averages computed from empirical manufacturing data.
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faster rates than processing costs per area increased, transistor costs would 
continue to decline. Intel’s cost- per- transistor estimates are revisited below.

How would reductions in production cost translate into price declines? 
One very simple way to think about it would be in terms of a “pass- through 
rate,” defined as dP/dC (incremental change in price per incremental change 
in production cost). The pass- through rate for an industry- wide decline in 
marginal cost is equal to 1 in a perfectly competitive industry with constant 
returns to scale but can exceed or fall short of  1 in imperfectly competi-
tive industries. Assuming the perfectly competitive case as a benchmark for 
long- run pass- through in “relatively competitive” semiconductor product 

Fig. 11.3 Intel 2015 version of equation (2)
Source: Holt (2015).

Table 11.1 Decomposing Intel transistor cost declines into wafer cost and transistor size changes

Year Intel 
1st shipped 
product at 
new tech 
node

Compound annual percentage change

 

Tech 
node 
(nm)  

Wafer 
processing 

cost ($/mm2) ×

Silicon 
area (mm2 
/transistor) =

$ cost/
transistor  

Wafer 
processing 

cost ($/mm2)  

Silicon 
area (mm2/ 
transistor)  

$ Cost/
transistor

2002 130 1 1 1
2004 90 1.09 0.62 0.68 5% −21% −18%
2006 65 1.24 0.38 0.47 7% −21% −16%
2008 45 1.43 0.24 0.34 7% −21% −15%
2010 32 1.64 0.15 0.24 7% −21% −16%
2012 22 1.93 0.09 0.18 8% −21% −14%
2014  14  2.49  0.04  0.11  14%  −31%  −22%

Source: Holt (2015), slide 6, graph digitized using WebPlotDigitizer. Year node introduced from ark .intel .com.
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markets, this would then imply an expectation of 20 percent to 30 percent 
annual declines in price due solely to Moore’s law.

Historically, most semiconductor chip production ultimately seems to 
have migrated to more advanced technology nodes.24 Other kinds of inno-
vations in semiconductor manufacturing, or innovations in the design and 
functionality going into electronic circuits, might be expected to stimulate 
even greater rates of quality- adjusted price declines. Thus the 20 percent to 
30 percent annual decline in manufacturing cost associated with Moore’s 
law could be interpreted as a floor on the quality- adjusted price declines in 
the most competitive segments of the semiconductor market.

11.2  Other Benefits from “Moore’s Law” Manufacturing Innovation

Impressive declines in transistor manufacturing cost accompanying 
denser chips with smaller feature sizes at more advanced technology nodes 
measure only a part of the economic benefits of the Moore’s law innova-
tion dynamic. With smaller transistor sizes also came faster switching times 
and lower power requirements.25 The complementary benefits of speed and 
power improvements were highly significant for chip consumers (like com-
puter makers) and their customers.

This was particularly true for chip makers manufacturing microproces-
sors. Existing computer architectures running at faster speeds run existing 
software faster and enable more data processing in any given time. Until 
2004, computer processor clock rates increased rapidly, as did performance 
of computers incorporating these faster microprocessors. Figure 11.4 shows 
clock rates for Intel desktop microprocessors in computers tested on industry 
standard benchmark programs over the last 20 years as well as benchmark 
scores for these computers. As clock rates increased, so did performance.26 
Cheaper processors were also faster, stimulating increased demand for new 
computers in offices, homes, and workplaces.

The logarithmic scale used in figure 11.4 obscures a fairly dramatic slow-
down in improvement in CPU performance after the millennium. Table 11.2 
shows compound annual growth rates in performance over time of Intel desk-

24. At SEMATECH, the US semiconductor industry consortium (with which the author 
worked as a consultant in the first decade of the 2000s), the planning rule of thumb was that 
a fab would be a candidate for an upgrade to a new technology node no more than twice over 
its lifetime and then would be shut down as uneconomic.

25. The underlying theory (“Dennard scaling”) suggested that a 30 percent reduction in 
transistor length and a 50 percent reduction in transistor area would be accompanied by a 
30 percent reduction in delay (40 percent increase in clock frequency) and a 50 percent reduc-
tion in power. Esmaeilzadeh et al. (2013), 95.

26. For given software and computer architecture, time required for programs to execute 
is inversely proportional to processor clock rate, assuming data transfer does not constrain 
performance. Lower rates of performance improvement after 2004, as processor clock rates 
plateaued, were obvious to computer designers. See Fuller and Millett (2011), chap. 2; Hen-
nessey and Patterson (2012), chap. 1.
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Fig. 11.4 Processor clock rate and performance for Intel desktop processors run-
ning SPEC CPU benchmarks, by first availability date of tested hardware
Source: Author’s analysis of  SPEC submissions, SPEC .org. Performance scores for 1995, 
2000, and 2006 SPEC benchmarks have different values for same processor, and different 
vintage benchmark scores are not directly comparable. “minhdate” is date on which first 
SPEC benchmark for computer system with that processor is run. “log_SPECyyxx” is log of 
median SPEC year yy benchmark xx score, by processor model. SPEC06xx results include 
separate scores with compiler autoparallelization turned on (autop) and off (noautop) for 
same model, when reported.
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top processors on standard CPU benchmark software (the Standard Perfor-
mance Evaluation Corporation [SPEC] benchmarks; see appendix 11.A1).

Three different versions of  the SPEC CPU test suite were released—
one around 1995, one in 2000, and the most recent in 2006. Each suite 
contains a selection of “integer” application tests (e.g., programming and 
code processing, artificial intelligence, discrete- event simulation and opti-
mization, gene sequence search, video compression) and a set of “floating 
point” math- intensive application tests (e.g., solution of systems modeling 
problems in physics, fluid dynamics, chemistry, and biology; finite element 
analysis; linear programming; ray tracing, weather prediction; speech rec-
ognition). These test suites are designed to test single- process (programming 
task) performance on a CPU.27

27. The overall benchmark score is calculated as a geometric mean of scores on the individual 
programs within the benchmark.

Table 11.2 Annual growth in processor performance improvement over different time 
periods and benchmarks

Coeff. Robust
 SPEC CPU benchmark CAGR  SE  

1995m5–2000m3
int95 .583 .018
fp95 .640 .023
int95_rate .624 .027
fp95_rate .723 .033

2000m11–2004m11
int2000 .330 .017
fp2000 .343 .024
int2000_rate .470 .051
fp2000_rate .399 .035

2005m2–2007m1
int2000 .322 .016
fp2000 .337 .022
int2000_rate .465 .048
fp2000_rate .399 .033

2005m6–2012m11
int2006 .171 .007
fp2006 .247 .008
int2006_rate .247 .013
fp2006_rate .254 .010

2013m1–2016m5
int2006 .169 .006
fp2006 .241 .007
int2006_rate .242 .012

 fp2006_rate  .248  .009  

Source: Author analysis of  SPEC benchmark performance of Intel desktop processors.
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In addition, so- called rate versions of these test suites, which run multiple 
versions of the single- process benchmarks simultaneously on a single CPU, 
are available. The “rate” benchmarks are intended to show how the CPU 
would perform as a server running multiple independent jobs or, alterna-
tively, running an “embarrassingly parallel” programming problem—a task 
that could be divided up into multiple software processes not requiring any 
communication or coordination between processes.28

Changes in trends over time in the SPEC benchmark performance scores 
for Intel desktop processors are quite dramatic.29 Over the 1995–2000 
period, integer computing performance increased by about 58 percent annu-
ally and floating point performance by 64 percent. The suite was revised in 
2000, and from the end of 2000 through 2004, both integer and floating- 
point performance improvement rates were almost halved, to an increase of 
about 33 percent to 34 percent per year.30 Finally, over the most recent time 
period, after the 2006 revision of the SPEC benchmarks, from 2005 through 
2016, annual performance gains were reduced substantially again, to rates of 
17 percent (integer) and 25 percent (floating point) annual improvement.31

11.3  An End to Moore’s Law?

Unfortunately, the golden age of  more rapidly cheapening transistors 
(which were also faster and drew less power) that began in the late 1990s 
did not survive unchallenged past the new millennium.

2004: The End of Faster. The first casualty was the “faster thrown in 
for free,” along with smaller, cheaper, and greener. Around 2003–4, higher 
clock rates stalled (see figure 11.4), as disproportionately greater power was 
required to run processors reliably at ever higher frequencies. With tinier 
transistors drawing higher power in denser chips, dissipating heat gener-
ated by higher power density became impossible without expensive cooling 
systems. (The highest processor speed shipped by Intel until very recently 
was 4 GHz; IBM’s fastest z-series mainframe CPU, with advanced cooling, 
hit 5.5 GHz in 2012, but subsequent CPUs ran at lower frequencies.32) Intel 
and others abandoned architectures reliant on frequency scaling to achieve 

28. Unfortunately, there is no SPEC rule about how many instances of the single benchmark 
programs should be run for the rate benchmarks on a multicore CPU. It could be as many 
as the number of  cores in the CPU or twice that number (the number of  threads that can 
be run simultaneously on a CPU with additional processor hardware supporting symmetric 
multithreading—a feature called hyperthreading by Intel) or some number of instances less 
than either of those bounds.

29. Pillai analyzed the apparent slowdown in microprocessor quality improvement (as mea-
sured by software benchmarks) from 2001 to 2008. See Pillai (2013), figure 1.

30. There was a statistically significant—but substantively insignificant—additional decline 
of under a percent per year after 2004 through 2007.

31. There was another statistically significant, but substantively insignificant, decline by a 
fraction of a percent in performance improvement rates after 2012.

32. Raley (2015), 23.
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better processor performance after 2004. Clock rates in subsequent proces-
sor architectures actually fell, and processing more instructions per clock 
tick became the focus for improved computing performance.

Two-year node introductions continued to produce smaller and cheaper 
transistors, though. Ever- cheaper transistors were utilized to create more 
CPUs—“cores”—per chip, thus processing more instructions per clock at 
lower clock frequencies. This new “multicore” strategy’s weakness was that 
application software required “parallelization” to run on multiple cores 
simultaneously, and software applications vary greatly in the extent to which 
they can be easily parallelized. Further, improving software was more costly 
than simply adopting the cheaper hardware delivered by new technology 
nodes: quality-adjusted prices for software historically have fallen much 
more slowly than quality-adjusted prices for processors.33

The difficulty and cost of parallelization of software is an economic fac-
tor limiting utilization of  cheap multicore CPUs on hard-to-parallelize 
applications.34 In addition, a fundamental result in computer architecture 
(Amdahl’s law) maintains that if  there is any part of a computation that 
cannot be parallelized, then there will be diminishing returns to adding more 
processors to the task—and in many applications, decreasing returns are 
noticeable fairly quickly. One widely used computer architecture textbook 
summarized the challenges in utilizing multicore processors: “Given the 
slow progress on parallel software in the past 30-plus years, it is likely that 
exploiting thread-level parallelism broadly will remain challenging for years 
to come.”35

2012: The End of Rapid Cost Declines? Until roughly 2012, transistor 
fabrication costs continued falling at rapid rates. At the 22/20nm technol-
ogy node, which went into volume production around 2012 (at Intel), con-
tinuing cost declines began to look uncertain. Figure 11.5 shows contract 
chip maker GlobalFoundries’ 2015 transistor manufacturing costs at recent 
technology nodes.36

Numerous fabless chip design companies, which outsource chip produc-
tion to contract manufacturing “foundries,” began to publicly complain that 
transistor manufacturing costs had actually increased at the 20/22nm node.37 

33. Economic studies of  mass- market, high- volume packaged software prices have typi-
cally found quality adjusted rates of annual price decline in the 6 percent to 20 percent range. 
See, e.g., Gandal (1994); Oliner and Sichel (1994); White et al. (2005); Copeland (2013); and 
Prudhomme and Yu (2005).

34. The opposite—software problems easily divided up across processors and run with little 
or no interprocessor communication or management required—is described in the computer 
engineering literature as “embarrassingly parallel.”

35. Hennessey and Patterson (2012), 411.
36. Like table 11.1, this figure probably does not include R&D costs.
37. Fabless chipmakers Nvidia, AMD, Qualcomm, and Broadcom all publicly complained 

about a slowdown or even halt to historical decline rates in their manufacturing costs at found-
ries. Shuler (2015), Or- Bach (2012) (2014), Hruska (2012), Lawson (2013), Qualcomm (2014), 
Jones (2014, 2015).
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(Fabless companies accounted for 25 percent of world semiconductor sales 
in 2015; foundries, which also build outsourced designs for semiconductor 
companies with fabs, had a 32 percent share of global production capacity.38) 
Charts like figure 11.6, showing increased costs at sub-28nm technology 
nodes, were frequently published between 2012 and 2016. Figure 11.6 is 
not inconsistent with figure 11.5, since figure 11.6 likely includes the fab-

38. Foundry share calculations based on Yinug (2016), Rosso (2016), IC Insights (2016). 
Charts like figure 11.6 should be viewed cautiously, as underlying assumptions about products, 
volumes, and costs are rarely spelled out in published sources.

Fig. 11.5 GlobalFoundries’ transistor manufacturing cost at recent technol-
ogy nodes
Source: McCann (2015).

Fig. 11.6 Cost per logic gate, with projection for 10nm technology node
Source: Jones (2015).
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less customer’s nonrecurring fixed costs for designing a chip and making a 
set of photolithographic masks used in fabrication, while figure 11.5—the 
foundry’s processing costs—would not.39 These fixed costs have grown expo-
nentially at recent technology nodes and create enormous economies of 
scale.40 Some foundries have publicly acknowledged that recent technology 
nodes now deliver higher density or performance at the expense of higher 
cost per transistor.41

Because of  these trends, fabless graphics chip specialists Nvidia and 
AMD actually skipped the 20/22nm technology node, waiting a high-tech 
eternity—five years—after launch of 28nm graphics processors in 2011 to 
move to a new technology node (14/16nm) for their 2016 products.

2018: “Dark Silicon” and Limits on Green? The microprocessor industry’s 
response to the end of frequency scaling was to use ever- cheaper transistors 
to build more cores on a chip. Though limited by software advances in paral-
lelizing different kinds of applications, this strategy at first seemed effective. 
More recently, continued future improvement of CPU performance on even 
easy-to-parallelize applications has been questioned.

As transistors get very small, power requirements to switch these transis-
tors are not reduced at the same rate as transistor size. The “green,” lower- 
power benefit of smaller transistors diminishes. Furthermore, as the power 
density of chips increases, heat dissipation becomes an issue. Thus the heat 
problem that blocked further frequency scaling returns in a new guise and 
prevents the increasing numbers of smaller cores squeezed into a multicore 
chip from simultaneously operating at a chip’s fastest feasible clock rate.

The fraction of  a chip’s cores that must be powered off at all times in 
order for a chip to operate within thermal limits, dubbed “dark silicon” by 
researchers modeling the problem, had been projected to grow as large as 50 
percent by 2018.42 Indeed, current PC users are already seeing their multicore 
machines “throttling” with attempts to use all cores for intensive computa-
tions at the highest clock rates, hitting thermal limits and then either falling 
back to lower clock rates or idling cores. Continued reductions in power 
requirements are still feasible but no longer are a free benefit of Moore’s 
law—they now come at the cost of reduced speed and additional on- chip 
circuitry needed to turn off power to unused portions of a processor chip.

39. Historically, a set of 10 to 30 different photomasks was typically employed in manu-
facturing a chip design. For a low-  to moderate- volume product, acquisition of a mask set is 
effectively a fixed cost.

40. Brown and Linden (2009), chap. 3. McCann (2015) cites a Gartner study showing design 
costs for an advanced system chip design rising from under $30 million at the 90nm node in 
2004, to $170 million at 32/28nm in 2010, to $270 million at the 16/14nm node in 2014.

41. Samsung’s director of foundry marketing said, “The cost per transistor has increased in 
14nm FinFETs and will continue to do so” (Lipsky 2015). “GlobalFoundries believes the 10nm 
node will be a disappointing repeat of 20nm, so it will skip directly to a 7nm FinFET node that 
offers better density and performance compared with 14nm” (Kanter 2016).

42. Esmaeilzadeh et al. (2013), 93–94.
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2021+: An End to Smaller in Conventional Silicon? Even some manufac-
turing technologists from Intel now believe that the Moore’s law cadence of 
technology nodes, with ever- smaller feature sizes in conventional silicon, 
will end sometime in the next five years. Intel’s Bill Holt put it in these terms 
recently: “Intel doesn’t yet know which new chip technology it will adopt, 
even though it will have to come into service in four or five years. He did 
point to two possible candidates: devices known as tunneling transistors 
and a technology called spintronics. Both would require big changes in how 
chips are designed and manufactured, and would likely be used alongside 
silicon transistors.”43

11.3.1  Can We See a Slowing Down of Moore’s Law Cost Declines in 
Price Statistics?

If  Moore’s law has slowed or even stopped, we would expect to see it in 
economic metrics, like prices and manufacturing costs.44

11.3.1.1  Prices

An obvious place to look is in the price statistics for computer memory 
chips, which remained the mass- volume semiconductor product par excel-
lence through the end of the 20th century. DRAMs were later superseded 
by flash memory as the technology driver for new memory manufacturing 
technology. After the millennium, new technology nodes were first adopted 
in flash memory chips before DRAMs; flash had become the highest- volume 
commodity chip by sales around 2012.45

Table 11.3 shows changes in price indexes for high- volume memory chips. 
The DRAM “composite” index is a matched- model, chain- weighted price 
index based on consulting firm Dataquest’s quarterly average global sales 
price for different density (bits per chip) DRAM components available in 
the market over the years 1974–1999.46 These data have no longer been 
available in recent years.

In the mid- 1980s, Korean producers Samsung and Hynix entered the 
DRAM business and, along with US producer Micron Technology, now 
account for the vast bulk of current DRAM sales.47 The Bank of Korea’s 
export price index (based on dollar- basis contracts) and the Bank of Korea’s 

43. Bourzac (2016).
44. A very useful bibliography of prior matched- model and hedonic studies of semiconduc-

tor prices may be found in Aizcorbe (2014), 107–8.
45. See IC Insights (2012).
46. The data prior to 1990 are the same data used in Flamm (1995), figure 5- 2. From 1990 

on, the data are taken from Aizcorbe (2002).
47. Taiwanese firms entered the DRAM market in force in the early 1990s but have since 

largely exited, as have all Japanese producers (US producer Micron acquired Japanese DRAM 
fab facilities). The last remaining European producer (Qimonda) filed for bankruptcy in early 
2009. By 2011, the top three producers (Samsung, Hynix, and Micron) accounted for between 
80 percent and 90 percent of global sales. See Competition Commission of Singapore (2013).
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producer price index (PPI, converted to a dollar basis using quarterly aver-
age exchange rates) for DRAM and flash memory chips are available.48

Finally, since 2000, the Bank of Japan has published a chain- weighted 
“MOS memory PPI” with weights that are updated annually. This index is 
likely to be predominantly a mix of DRAM and flash memory, tilting more 
toward flash in recent years. Generally, except for the period from 1985 
to 1995, when a string of  trade disputes (between the United States and 
Europe and Japanese, Korean, and Taiwanese memory chip producers) had 
significant impacts on global chip prices;49 prices for DRAMs and flash fell 
at average rates exceeding 20 percent to 30 percent annually.

It is notable that rates of decline in memory chip prices in the last five 
years generally have been half  or less of their historical decline rates over 
the previous decades. Korean price indexes (which track the majority of 
the DRAM manufactured and sold) have basically been flat for the last 
five years. US memory chip manufacturer Micron (like other flash memory 
manufacturers) is no longer planning to invest in new technology nodes 
beyond 16nm in its leading- edge flash memory production. Instead, a new 
device design built vertically (3D NAND50) using existing manufacturing 
process technology is more cost effective than the continued planar scal-
ing of components at new technology nodes described by the Moore’s law 
dynamic.51 In DRAM, the mantra that “technology- driven growth slows 
due to scaling limits” (“scaling limits” being industry jargon for a slowing or 
ending of Moore’s law manufacturing cost reductions) had become a staple 
in Micron’s investor conferences.52

Another “commodity- like” price in the semiconductor industry in recent 
years has been the cost that chip design houses face in having their chips 

48. These are not well documented but are believed to be fixed- weight Laspeyres indexes, 
with weights updated every five years, that have been spliced together (2010 is the current base 
year). The export indexes are actually measured in dollars, while the Korean won- denominated 
and Japanese yen- denominated producer price indexes have been converted to dollars at current 
exchange rates. As a practical matter, except for a brief  period during the 1980s when export 
controls related to the US- Japan Semiconductor Trade Agreement were put in place, DRAM 
prices historically and through the present have been set and quoted in dollars in a highly 
integrated global market. See Flamm (1993), 163–64, 167–68. Flamm (1995), chapter 5, ana-
lyzes empirical evidence that regional price differentials in DRAM briefly appeared and then 
disappeared when restrictive trade policies were applied and then removed in the 1980s. With 
minuscule transport costs relative to product value, zero tariff costs globally for most countries 
(under the Information Technology Agreement, concluded in 1996 and bound into the WTO), 
and a large number of active global distributor/broker arbitrageurs, the global DRAM market 
has always been the poster child for the relevance of a “law of one price.”

49. See Flamm (1995).
50. Since the early 21st century, the highest- volume semiconductor chips produced have been 

so- called flash memory chips, and in particular flash memory using Not- AND (NAND) logic 
(a type of logic circuit) to store binary data. Flash memory is a nonvolatile storage medium—
information stored on the chip is maintained after electric power is turned off.

51. Micron 2015 Winter Analyst Conference (2015).
52. Micron’s Raymond James Institutional Investor Conference (2016); Micron Analyst 

Conference (February, 2017).
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manufactured on their behalf  at so- called foundries. The outsourced manu-
facturing of semiconductors designed at “fabless” semiconductor compa-
nies at foundries accounted for about 25 percent of world semiconductor 
sales in 2015. Foundries, which also build outsourced designs for semicon-
ductor companies with fabs, held 32 percent of global production capacity 
in that year.53

A recent study of quality- adjusted fabricated wafer prices (the form in 
which manufactured chips are sold to the semiconductor design houses 
that have outsourced their production) by Byrne, Kovak, and Michaels 
(2017) portrays a slowing decline in fabricated wafer prices prior to 2012. 
(See table 11.4.) While the pattern seems consistent with a slowing down of 
Moore’s law prior to 2012, this study unfortunately ends with data from 2010 
and thus cannot be used as a check against the claims of the most vocal US 
fabless designers (see above) that the prices they pay for having their transis-
tors manufactured in foundries were no longer declining significantly at new 
technology nodes post- 2012.

Price Indexes for Intel Processors. Since their invention in the 1970s, 
microprocessor sales have grown rapidly and since the 1980s have consti-
tuted another huge market segment. Official government statistics show a 
tremendous slowdown in the rate at which microprocessor prices have been 
falling after the millennium as well as a significant attenuation in the rate 
at which prices of the desktop and laptop PCs that make use of these pro-
cessors have declined. The US Producer Price Indexes for microprocessors 
show annual (January- to- January) changes in microprocessor prices steadily 
falling from 60 percent to 70 percent peak rates during the “golden age” of 
the late 1990s and early 2000s to a low of about 1 percent annual decline for 
the year ending in January 2015. (The Bureau of Labor Statistics stopped 
reporting its PPI for microprocessors in April 2015, apparently because of 
confidentiality concerns.) A parallel fall in price declines for laptop and 
desktop computers seems also to have occurred, from peak annual decline 

53. Foundry share calculations based on Yinug (2016), Rosso (2016), and IC Insights (2016).

Table 11.4 A quality- adjusted price index for fabricated “foundry” wafers

   Annual index  % rate of change  

2004 100
2005 83.90 −16.10
2006 74.76 −10.89
2007 65.94 −11.80
2008 57.89 −12.20
2009 52.95 −8.53

 2010 48.67  −8.09  

Source: Byrne, Kovak, and Michaels (2017).
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rates of  40 percent in the late 1990s to rates mainly in the 10 percent to 
20 percent range in the last few years.

Table 11.5 shows compound annual decline rates in the PPI for micropro-
cessors (including microcontrollers) as constructed by the Bureau of Labor 
Statistics (BLS), along with similarly defined indexes for the commodity 
“microprocessors.” Annual decline rates slow from a rate near 50 percent 
in the late 1990s and the first half  decade of the new millennium, to a little 
over 10 percent in the second half  of that first decade, to about 3 percent 
annually in recent years. This too is consistent with a substantial slowing 
down in the impact of Moore’s law manufacturing technology innovation.

The Bureau of Labor Statistics had historically been somewhat opaque 
about its methodology in constructing its microprocessor price series (there 
is no published methodology describing precisely how these numbers were 
constructed).54 It is believed that these were matched- model indexes based 
on some weighted selection of products appearing on Intel list price sheets 
(the same data source I utilize below),55 but this is not entirely certain. There 
is also some evidence that the BLS may have experimented with several dif-
ferent methodologies for measuring its microprocessor price indexes over 
the 1995–2014 periods56 before ceasing publication of the index for confi-
dentiality reasons in 2015.

54. Ironically, the BLS is now much more open about the details of how it constructs the 
current (unpublished) microprocessor price index than it was about some previous (published) 
versions. See Sawyer and So (2017).

55. Based on a brief  conversation with BLS officials, Cambridge, MA, July 2014. See also 
Sawyer and So (2017).

56. The BLS website showed three different “commodity” price indexes (as opposed to its 
single microprocessor producer price index) for microprocessors over this period. The most 
recent microprocessor “commodity” price index is based in December 2007 but is only reported 
monthly from September 2009 through 2015. There are also two discontinued microprocessor 
commodity price indexes, one based in December 2004 and running through June 2005 and 
another based in December 2000 and running from 1995 through December 2004. One might 
speculate that the BLS changed its methodology for measuring microprocessor prices three 
times during this period.

Table 11.5 Annualized decline rates for microprocessors per the BLS

Microprocessors (including microcontrollers)

Commodity price Producer price

  Index (discontinued)  Index (current)  Index

1995:1−1999:4 −50.0 −50.5
1999:4−2004:4 −48.6 −49.2
1999:4−2005:1 −47.8
2005:1−2007:4 −37.7
2007:4−2011:4 −10.8 −10.8
2011:4−2015:1   −3.0  −3.0

Author’s calculation. Middle month for quarter used, except December 2007 used for 2007:4.
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As an alternative to the BLS measure, I have previously constructed alter-
native price indexes for Intel desktop microprocessors, tracing the contours 
of change over time in microprocessor prices using a unique, highly detailed 
dataset I have collected over the last two decades.57 Since the mid- 1990s, 
Intel has periodically published, or posted on the web, current list prices 
for its microprocessor product line in 1,000- unit trays. These list prices are 
available at a very disaggregated level of  detail—distinguishing between 
similar models manufactured with different packaging, for example—and 
were typically updated every four to eight weeks, though price updates have 
sometimes come at much shorter or longer intervals.58 By combining these 
detailed prices with detailed attributes of different processor models, it is 
possible to construct a very rich dataset relating processor prices to proces-
sor characteristics, over time.

This permits the construction of both “matched- model” price indexes, the 
traditional means by which government statistical agencies measure indus-
trial prices, and so- called hedonic price indexes, which relate processor prices 
to processor characteristics. It is now well understood in the price index 
literature that there is a close relationship between matched- model indexes 
and hedonic price indexes.

The Intel dataset permits measuring differences in processor character-
istics down to individual models of processors, controlling for such things 
as processor speed, clock multiplier, bus speed, differing amounts of level 1 
(L1), level 2 (L2), and level 3 (L3) cache memory, architectural changes, and 
particular new processor features and instructions. The latter have become 
particularly important recently—beginning in mid- 2004, Intel dropped 
processor clock speed as the principle characteristic used to differentiate 
processors in its marketing and introduced more complex “processor model 
number” systems that distinguish between very small and arguably minor 
differences between processors that proliferated at more recent product 
introductions.

For comparison purposes, I begin by constructing a matched- model price 
index for Intel desktop processors. Since I do not have sales or shipment 
data at the individual processor model level, I weight each observed model 
equally by taking the geometric mean of price relatives for adjoining periods 
in which the models are observed.59 A price index based on the simple geo-
metric mean of individual product price relatives (dubbed the Jevons price 
index) is chained across pairs of adjacent time periods and depicted in figure 
11.8. It has the same qualitative behavior as the official government producer 

57. See Flamm (2007).
58. My data initially (over the 1995–98 period) made use of compilations of these data col-

lected by others and posted on the web; since 1998–99, most of these data were collected and 
archived directly from the Intel website.

59. Since there occasionally were multiple price sheets issued within a single month, I have 
averaged prices by model by month. Since Intel did not issue new price sheets monthly, “adjoin-
ing time periods” means temporally adjacent observations.
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price index for microprocessors, falling at rates exceeding 60 percent in the 
late 1990s and slowing to a decline rate under 10 percent since 2009.

This geometric mean matched- model index actually falls a little more 
slowly than the official US microprocessor PPI, which may be attributable 
to the fact that the geometric mean index weights all models equally, while 
the PPI probably uses a subset of the data, with some weighting scheme for 
models drawn (and replaced periodically) from subsets of processor types. 
The PPI also uses fixed weights from some base period to weight these price 
changes, while my Jevons index chains adjoining paired comparisons of 
models and therefore implicitly allows weights given to different models over 
pairs of adjoining time periods to evolve over time.

I have also constructed a hedonic price index, using an econometric model 
that utilizes more of  the information available in my sample of  Intel list 
prices. The basic hedonic price model I estimated statistically was

(H0) lpriceit =  constant + dt + baarch_di + bp ∗ lproci + bmlmaxmhzi  

+ bwlbwi + bcolcoresi + bhhti + bcalcachei + bgint_graphi + 

btdpltdpi + b64em64ti + bsteisti + bv vti + uit,

with the following covariates for chip model i, period t:

•  dt, a time dummy indicator variable for the later period in a pair of 
adjacent time periods

•  arch_di, architecture dummy for Intel chip architecture (e.g., Haswell, 
Coppermine, Ivy Bridge)

•  lproci, log of base processor clock rate
•  lmaxmhz, log of maximum clock rate if  processor has turbo mode, = 

lproc if  not
•  lbwi, log of memory bandwidth (8 × memory bus clock rate if  older 

front- side bus architecture or max memory bandwidth if  reported in 
Intel Ark database)

•  lcoresi, log of number of physical cores on chip
•  hti, hyperthreading (additional virtual core per physical chip core) hard-

ware support, binary indicator variable
•  lcachei, log of maximum cache memory for highest level cache on pro-

cessor
•  int_graphi, binary indicator variable for integrated graphics, 1 if  on 

chip graphics
•  ltdpi, log of thermal design power (watts), rating of chip
•  em64ti, binary indicator dummy for Intel 64- bit memory architecture
•  eisti, binary indicator dummy for enhanced Intel speedstep technology 

(dynamic frequency scaling and power reduction) feature
•  vti, binary indicator dummy for hardware virtualization support, 1 if  

virtualization hardware support
•  and uit, a statistical disturbance term for chip model i, time period t
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Choice of Characteristics. Choice of characteristics was primarily based 
on a review of the computer architecture literature (discussed below). The 
most widely used textbook in that literature holds that computer instruc-
tion processing performance is based primarily on the processor architec-
ture (which determines how many software instructions can be executed 
per processor clock cycle: IPC, or instructions per clock) and the comput-
er’s clock rate. Since the mid- 2000s, desktop PC processors have further 
boosted performance by incorporating a turbo mode, increasing clock rate 
to some maximum above the chip’s baseline frequency for short periods 
of time. Frequently, software performance can also depend on its on- chip 
(cache) memory size and on the sustained speed at which a computer can 
transfer data from its off- chip, secondary memory—its maximum memory 
bandwidth. Over the last decade, additional processor units (cores) have 
been added to desktop computer processors, and if  software can be par-
allelized and run simultaneously on multiple cores, this too will improve 
performance. In addition, adding hardware support for “virtual cores,” so 
that a hardware processor core can be time- shared simultaneously by two 
instruction- processing threads, can speed things up—Intel’s version of this 
feature is called hyperthreading. Several other features—hardware support 
for virtualization and a 64- bit memory architecture—can improve computer 
performance on particular applications, particularly when desktop proces-
sors are used in servers. Basic graphics are now integrated onto many proces-
sor chips, sparing the end user the need to purchase a costly discrete graphics 
card, which should also affect demand for a processor by consumers. Finally, 
power consumption is probably the major variable cost of computing (and 
drives use of relatively expensive cooling systems needed to dissipate heat 
from high- powered processors). Low thermal design power (TDP) in desk-
top processors is considered beneficial for this reason,60 and processor mak-
ers like Intel have also developed hardware support for power- saving features 
in the chip’s micro architecture (Intel’s proprietary version—enhanced Intel 
Speedstep—is abbreviated EIST).

Note that maximum memory bandwidth, cache sizes, number of cores, 
and even TDP typically take on only a handful of  discrete values in any 
two- period estimation sample interval and are often perfectly collinear with 
binary indicators for processor architecture, 64- bit support, hardware virtu-
alization, and integrated graphics. In addition, as I show below, performance 
on different SPEC processor benchmark suites is nearly perfectly predicted 
by a linear combination of a subset of five of these processor characteristics 
(chip architecture, clock rate, number cores, hyperthreading, turbo mode).

The regression coefficients (weights) on each of  these characteristics, 
however, vary substantially by software benchmark type. Since the mix of 
software programs run on computers has evolved substantially over time 

60. In addition, low power consumption has the additional very important benefit of pro-
ducing longer battery life in a laptop computer, irrelevant for a battery- less desktop computer 
processor.
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(these changes have led SPEC to periodically revise its various benchmarks), 
using the underlying characteristics determining processor benchmark per-
formance (rather than a particular benchmark score) seems the more flexible 
way to accommodate the impact of changes over time in market demand for 
different types of software applications running on computers.

The very same characteristics that one might expect to affect processor 
demand would also be expected to affect processor cost on the supply side. 
Faster chips supporting the highest clock rates are culled from larger num-
bers of chips fabricated in batches of wafers through extensive testing (a 
process dubbed “binning” within the industry). Slower-  and faster- running 
chips are sorted into higher and lower performance bins and sold as distinct 
chip models. Processors with defects in circuitry in their memory caches 
and feature circuits also have their defective circuitry fused off electroni-
cally and are then sold as lower performance chips (with less memory and 
fewer features). Redundant circuits can be added to a chip design (at a cost, 
by increasing chip die area) to yield larger shares of chips on a wafer with 
functioning features. Every desirable feature of a processor also has some 
incremental cost incurred in order to increase the number of chips produced 
with that functioning feature—either through a bigger and therefore more 
costly chip footprint on a silicon wafer (driven by redundant circuitry needed 
to fix defects) or through the larger numbers of wafers that must be pro-
cessed in order to get the desired target numbers of chips with functional 
features and characteristics.

Computer architectures also affect processor cost, as well as performance, 
since numbers of transistors on a chip, and therefore chip manufacturing 
cost, are directly related to the chip’s architecture. In addition, since at least 
the early 2000s, Intel has marked the introduction of new manufacturing 
technology nodes by rolling out improved chip architectural designs when 
introducing the new node. So manufacturing technology nodes and chip 
architectural family will be perfectly collinear in a statistical analysis of 
Intel prices and costs.

In short, the chip characteristics in this hedonic regression would be 
expected to affect both computing performance and power consumption, 
as well as processor cost, and are relevant to both the demand and supply 
cost sides of the market. For that reason, even if  a single, perfectly accurate 
measure of  average processor computing performance (a “market aver-
age” benchmark based on the relative mix of software applications run by 
final computer end users in computing service markets at that particular 
moment in time) existed, changing in perfect lockstep with the changing mix 
of applications run by different end users,61 changes in processor character-

61. It is worth noting that the SPEC benchmarks report an unweighted geometric mean of 
performance in a variety of applications and that these fixed (equal) weights remain fixed over 
long periods of time (since 2006, as of October 2018) for the SPEC benchmark composite 
scores.
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istics would have additional impacts on price working through processor 
manufacturing cost and therefore need to be accounted for separately in the 
estimated hedonic price equation.

One potentially important pitfall in using large numbers of characteristics 
in a hedonic equation is that many of these characteristics are likely to be 
perfectly collinear with others. This is a real- world problem. For example, 
all the chips developed with a new architecture design may, at least ini-
tially, have a common size for their highest- level cache, may all have a 64- bit 
architecture, or may all have hyperthreading. Most regression software will 
drop perfectly collinear characteristics automatically, and the coefficients 
of the other covariates (the ones with which the dropped characteristics are 
perfectly collinear) will include the effects of the dropped covariates in their 
estimated values.

This can make interpretation of signs and values of hedonic characteris-
tics problematic and liable to big jumps in value (and coefficient interpreta-
tion) in different estimation periods, depending on which characteristics are 
perfectly collinear and which characteristics are dropped (often automati-
cally) by the statistical software. It also may appear at first glance to look 
like undesirable “coefficient instability.”

However, as long as the key variable of substantive interest (the last period 
time dummy variable in a regression model spanning two adjacent time peri-
ods, the coefficient of which is used to construct a hedonic price index) is not 
perfectly collinear with the other included characteristics variables, there is 
no difficulty in interpreting the coefficient of the time dummy variable. For-
tunately, it is straightforward to check that this is the case by simply running 
an auxiliary linear regression of the time dummy on all other explanatory 
covariates and verifying that it is not perfectly predicted by other regression 
covariates.

Perfect Collinearity in a Simple Hedonic Simulation. The problem of per-
fect collinearity—and its effects—is very real in my sample of Intel micro-
processors. In every single pair of adjacent time periods, multiple character-
istics are dropped as perfectly collinear by statistical software. The problems 
this can create in interpreting regression results are easily illustrated in a 
simple simulation model.

Consider a simplified, stylized processor market over two adjacent time 
periods. Suppose that half  of manufacturing capacity is used to fabricate 
a baseline processor architecture (arch_dummy = 0) and half  is dedicated 
to a different architectural alternative (arch_dummy = 1). Suppose that ini-
tially, half  of fabricated chips from both architectures can run at a clock 
rate of 1,000, and half  at 1,500. All chips manufactured run 500 faster in 
the later period (i.e., half  at 1,500, half  at 2,000; think of this as the result of 
manufacturing process improvement). Substantively, this means there will 
be a positive correlation between a binary time period indicator variable 
(first_period = 0, last_period = 1) and processor clock rates.
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Let us also suppose that the only thing all processor buyers care about is 
processing speed on a single, common software application (so we are ignor-
ing the problem of heterogeneity in demand—i.e., which benchmark to run). 
Further, let’s assume that this single measure of speed (software processing 
performance) relevant to users is perfectly determined by a simple linear 
function of three processor characteristics:

speed = clock_rate + 500*arch_dummy + 200*turbo

(where “turbo” is a binary indicator for a functioning turbo speedup feature 
that is enabled in half  of the chips produced for each architecture and clock 
combination).

Each unique combination of  architecture, clock rate, and turbo capa-
bility under these assumptions can be thought of as a distinct “processor 
model.”62 With this setup, there are 12 distinct microprocessor models (2 
processor architectures × 3 clock rates × 2 turbo values) sold over two peri-
ods. Half  the models are sold in both periods (the ones running at 1,500), 
and half  are sold only in the beginning or end periods (the models running 
at the 1,000 and 2,000 clock rates, respectively).63

Unit manufacturing cost for the chip is assumed to be given by

cost =  50 + 2 ∗ clock_rate + 2000 ∗ turbo + 500 ∗ arch_dummy – 10  

∗ end_period.

End- period manufacturing costs decline by $10 for any constant quality 
“computer model,” simulating a uniform $10 drop in manufacturing cost, 
given any set of fixed model characteristics, over time.

In the spirit of Pakes (2003), we write out an extremely simple hedonic 
price reduced- form equation:

price = 600 + 2 ∗ speed + cost + random disturbance term,

with the first two terms on the right- hand side of the equation reflecting 
the further assumption that expected markup over incremental unit cost, 
reflecting user demand, is a linear function of speed alone. After substituting 
for unit cost (which we typically cannot observe in available data), this gives 
us a “hedonic price equation” as a function only of observable processor 
characteristics:

62. I draw a sample of 10 million observations, using pseudorandom draws from indepen-
dent uniform distributions, to create a simulated population of processor “models,” uniformly 
and independently distributed over architecture, clock rate and turbo feature. Another set of 
independent, pseudorandom draws from a uniform distribution create a mean zero disturbance 
term added into the realized sales price on the left- hand side of the hedonic price equation.

63. Because clock rates increase over time, a binary indicator variable for the end period 
is positively correlated with clock rate but uncorrelated with either architecture or the turbo 
feature (which are independently and randomly assigned to wafers/chips prior to fabrication).
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(H1) price =  650 + 2 ∗ speed + 2 ∗ clock_rate + 2000 turbo  

+ 500 ∗ arch_dummy – 10 ∗ end_period  

+ random disturbance term.

The disturbance term in the simulation is drawn from a zero- mean uniform 
distribution. The assumed across- the- board $10 end- period average reduc-
tion in manufacturing cost, conditional on fixed processor characteristics, 
induces a $10 decline over time in quality- adjusted (constant characteris-
tic) mean price across all computer models (since markup by assumption 
depends only on speed, in turn a function of the other processor character-
istics we are conditioning on).

Most importantly, we cannot actually estimate (H1), because speed, archi-
tecture, frequency, and turbo characteristics, as a group, are perfectly collin-
ear with one another (since speed is a linear function of arch dummy, clock 
rate, and turbo). Since these three chip characteristics exactly determine 
speed, any three of these four variables exactly determines the value of the 
fourth. If  we were to substitute for speed as a function of its three determi-
nants and so drop it from the hedonic price equation, we get

(H2) price =  650 + 4 ∗ clock_rate + 1500 ∗ arch_dummy  

+ 2400 ∗ turbo – 10 ∗ end_period.

If  we substitute for turbo in terms of the other three variables, we get

(H3) price =  650 + 12 ∗ speed—8 ∗ clock_rate –4500 ∗ arch_dummy –10  

∗ end_period.

If  we substitute for clock_rate in terms of the other three characteristics, 
we get

(H4) price =  650 + 4 ∗ speed – 500 ∗ arch_dummy + 1600 ∗ turbo – 10  

∗ end_period.

And substituting for architecture, we get

(H5) price =  650 + 3 ∗ speed + clock_rate + 1800 ∗ turbo – 10  

∗ end_period.

Table 11.6 summarizes a simple simulation demonstrating that with a 
large simulated sample (10 million observations), a regression model with 
any of the four above specifications (H2–H5) recovers the above parameters 
correctly.64 A key point of substantial practical relevance is that all four of 

64. Appendix 11.A2 contains the short Stata program giving these simulation results.
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these estimable specifications are correct and produce exactly the same esti-
mate for the coefficient of the time dummy variable, the parameter of greatest 
substantive interest. But the coefficients of the perfectly collinear charac-
teristics need to be interpreted differently in each case as the joint effects 
of  that characteristic plus the effects of  the dropped, perfectly collinear 
characteristic. In fact, there are wild swings in coefficient values (from 12 
to 3 for speed and from 1,600 to 2,400 for turbo) and even sign (from 1,500 
to –4,500 for arch_dummy) as different candidates from the set of perfectly 
collinear variables get dropped from the estimated regression specification.

This is important because with large numbers of  characteristics in a 
hedonic regression, particularly with binary dummies, or nominally con-
tinuous covariates that in any given time frame take on only a fixed number 
of discrete values, perfect collinearity among characteristics is very com-
mon. Covariates are typically dropped from the regression automatically 
by the econometric software. If  this is happening and different subsets of 
the perfectly collinear covariates are used in two different time periods, then 
wild variation in coefficient estimates, rather than representing worrisome 
instability in (nonperfectly collinear) explanatory covariates selected and 
used in the estimated regression, should be anticipated.

A second, even more important point is that estimated coefficients for vari-
ables that are not in the set of perfectly collinear variables are not affected by 
which of the perfectly collinear variables is dropped. In this simulation, for 
example, the estimated effect of the time dummy—the variable of greatest 
substantive interest, since its coefficient would be used to estimate a hedonic 

Table 11.6 Simulation of perfectly collinear characteristics in hedonic price equation

(drop speed) (drop turbo) (drop clock) (drop arch) (speed only)
  p  p  p  p  p

time −10.22*** −10.22*** −10.22*** −10.22*** −75.24***
(0.258) (0.258) (0.258) (0.258) (0.677) 

clock_rate 4.000*** −7.999*** 1.000***
(0.000365) (0.000983) (0.000517)

architecture_dummy 1,500.0*** −4,499.8*** −500.1***
(0.183) (0.492) (0.258)

turbo dummy 2,399.9*** 1,599.9*** 1,799.9***
(0.183) (0.197) (0.197)

speed 12.00*** 4.000*** 3.000*** 4.130***
(0.000913) (0.000365) (0.000365) (0.000762) 

constant 650.0*** 650.0*** 650.0*** 650.0*** 992.5***
(0.492) (0.492) (0.492) (0.492) (1.281) 

N 10,000,000 10,000,000 10,000,000 10,000,000 10,000,000 
R2  0.980  0.980  0.980  0.980  0.808 

Notes: Standard errors in parentheses. * p < .05, ** p < .01, *** p < .001. Stata code for this simulation 
in appendix 11.A2.
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price index—does not change in value at all as the excluded perfectly col-
linear variable changes. It is likely to be relatively rare and fairly obvious 
when a time dummy variable is perfectly collinear with other covariates. In 
any event, it is easy to verify that the time dummy variable is not perfectly 
collinear with other included variables by simply running auxiliary regres-
sions of the time dummy against all other explanatory variables, both those 
included and those dropped as perfectly collinear.

Finally, there is an important specification issue illustrated by this simu-
lation. If  one uses speed as one of  the explanatory covariates, it is also 
important to include the full, nonperfectly collinear subset of relevant char-
acteristics affecting cost, even if  speed entirely captures the impact of these 
characteristics from the user demand side. Table 11.6 demonstrates that 
when only speed and time are used as explanatory variables (last column 
in the table), bias from the omitted characteristics greatly confounds the 
coefficient estimate for the time dummy variable, incorrectly magnifying the 
drop of quality- adjusted price by a factor of 7.5! I return to this point below.

A Hedonic Price Index for Intel Desktop Processors. Model (H0) above 
was run for each of 162 pairs of adjacent months in which I collected Intel’s 
desktop processor list prices.65 The first set of adjacent list prices is for Janu-
ary and February 1996. The last pair of adjacent price sheets is for June and 
July 2014.66 Overall, R2 was uniformly high and was not driven primarily by 
the inclusion of the architectural dummy variables—these were treated as 
fixed effects, and I also report a “within” R2 (after demeaning all variables 
by their group mean), which is also quite high. (See appendix tables 11.A4 
and 11.A6.)

The time dummy variables in the above regression were then exponenti-
ated and used to construct price index relatives for adjacent time period 

65. The list prices refer to per- chip prices for processors packaged in quantity 1,000 trays sold 
to original equipment manufacturers (OEMs). By adjacent month, I mean a month and the 
next month in which an updated list price was published. For example, if  Intel issued a price 
sheet in January, March, April, August, and November of a year, there would be four adjacent 
month pairs: January–March, March–April, April–August, and August–November. Roughly 
three- fourths of the monthly observation pairs were a month apart; the next most frequent 
value observed was two months; the largest time gap between adjacent price lists observed was 
four months. A hedonic model excluding TDP produced useful estimates for price relatives 
over 162 adjacent pairs of months. Results for a model with TDP are shown in the appendix 
tables based on an initial period ending in October 1998, but the problem of a large share of 
observations lacking a TDP measure does not really fade away until the pair of adjacent months 
ending in January 2000.

66. The number of processors in early years was very small and characteristics extremely 
collinear; numbers of processor prices (with TDP) in adjacent month pairs more than double 
from under 15 to over 30 in late 1999, and estimated price relatives after that date are probably 
much more reliable. See appendix table 11.A4 and 11.A6 for details on numbers of observations 
in different adjacent month samples. Entry and exit of architecture and indicator variables from 
estimation period to period have been color coded in this table. After the first nonzero obser-
vation for an indicator variable occurs, blanks indicate the variable was dropped as perfectly 
collinear. In no case was the time dummy variable perfectly collinear with other covariates; this 
was checked with auxiliary regressions.
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pairs.67 The resulting price index relatives were then used to chain link these 
period- to- period indexes into a longer chained price index, shown in appen-
dix table 11.A3.

In addition, I report the values of other coefficients in the hedonic regres-
sion in appendix tables 11.A5 and 11.A7, which show how large qualitative 
jumps in coefficient values from estimation period to period often occur as 
nonzero values for new characteristics, indicators, or architecture variables 
that enter and exit the sample, due to perfect collinearity. But there is often 
perfect collinearity even when there is no new architecture or indicator enter-
ing or exiting the sample—this may be seen in the many blank coefficient 
estimates that appear when architecture or other indicators, or even continu-
ous covariates (which often take on only a handful of discrete values in any 
single estimation period), are dropped due to perfect collinearity.

The processor architecture family variables are treated as fixed effects and 
not reported. There were anywhere from one to seven such architecture fixed 
effects, depending on the pairs of adjacent months used for estimation of 
the hedonic equation.

Note that nominal power consumption for a processor (TDP, thermal 
design power) was simply unavailable for most Intel processors released 
prior to late 1999. I therefore estimated two versions of a hedonic index: one 
with TDP as a characteristic and one without. TDP is statistically signifi-
cant when it is used, and therefore the hedonic price index including TDP is 
the preferred index from 2000 onward (the small numbers of observations 
with TDP reported prior to late 1999 make these pre- 2000 estimates less 
reliable). I have linked the post- 2000 index with TDP to the pre- 2000 index 
without TDP and show this in the final column of table 11.A1 as a composite 
“best effort” index. The TDP- inclusive and - exclusive indexes are virtually 
identical from 2000 through January 2005, departing significantly from one 
another only afterward. Prior to 2000, the earlier the time period, the more 
limited the available data and the less reliable the resulting estimate.

Figure 11.7 visualizes some of the estimation model summary statistics 
from appendix table 11.A6 for the TDP variant of the price index (which is 
also the “composite” index over the period from 2000 onward). The upper 
panel shows an overall R2 that across estimation periods averaged .96 and 
ranged from .91 to .99 from 2000 onward. “Within” R2 (explained variance 
after demeaning all variables by architecture fixed effects group means) aver-
aged .92 and ranged from .74 to .99. The lower panel, using a logarithmic 

67. One- half  of  the coefficient’s squared standard error was added to the exponentiated 
coefficient to produce an unbiased estimate of  the price relative (the exponentiated coeffi-
cient’s value). See the sources cited in Triplett (2006, 54n41) for details on the rationale for the 
correction. Sergio Correia’s reghdfe Stata command was used to estimate the hedonic regres-
sions, because it removes noninformative singleton observations for dummy variables from the 
regression, because it provides detailed reports on perfectly collinear variables, and because it 
also calculates a “within” R2—that is, an explained variance of the dependent variable after 
demeaning all variables within fixed effect groups (in this case, the processor architecture indica-
tor variables were treated as fixed effects).
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scale, shows that anywhere from one to seven processor architectures were 
being listed for sale as Intel desktop processors during two- month adjacent 
estimation periods over this time frame. The number of observations used in 
the individual hedonic regressions after 1999 ranged from 28 to 190, averag-
ing 82. The average number of processor models per architecture per month 
listed for sale during the post- 1999 period ranged from 4.7 to 24.5, indicative 
of significant historical changes to Intel’s product differentiation strategies 
in marketing desktop processors over time.

Some important substantive points are supported by figure 11.7. First, 
there is substantial variation over time in how important the processor 
design (architecture) dummy variables are in accounting for price varia-

Fig. 11.7 Summary statistics for hedonic regressions
Source: Appendix table 10.A6.
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tion. While the overall explained variation in price in these hedonic regres-
sions remained uniformly high, within relatively narrow bounds (.91 to .99) 
throughout the sample period, the role of  architectural dummies varied 
greatly over different subperiods. “Within” R2 measures how much of the 
variation in price around architecture- specific means is explained by other 
covariates. The “within” R2 coincides exactly with “overall” R2 in the special 
case of their being only one “architecture” fixed effect (i.e., a single common 
constant intercept). The difference between overall and within R2 can there-
fore be interpreted qualitatively as a measure of how important controlling 
for the multiple intercept levels (the processor architecture fixed effects) is 
in a hedonic model explaining price variation.

Figure 11.7 shows that, at times, a substantial share of overall explained 
variation (as much as a difference of .10 to .20 between overall R2 and within 
R2) was accounted for by the processor architecture effects prior to 2003 
and from late 2006 through 2012. Processor architecture effects from 2013 
onward are more modest contributors to explaining price variation, but 
not nil.

As is suggested visually by figure 11.7, within R2 (measuring the role of 
nonarchitectural characteristics in explaining price variation) has a negative 
and statistically significant correlation with the number of different desktop 
processor architectures present on Intel price sheets.68 Not surprisingly, per-
haps, it appears that processor architectural variation is more important in 
explaining price during periods when Intel marketed a larger variety of pro-
cessor architectural designs and less important in periods with less architec-
tural variation. Indeed, the two measures of R2 are virtually identical from 
2003 through 2005, the heyday of the Pentium 4 series and its “Netburst” 
design, when only one or two design families accounted for all Intel desktop 
processors listed on its price sheets (compared with four architectures in 
2002 and as many as seven architectures in late 2006).

Figure 11.8 visualizes the hedonic price indexes produced using these 
models. A dramatic slowing of declines in quality- adjusted price from 2004 
through 2006 is quite apparent, followed by a temporary resumption of a 
somewhat faster rate of decline after 2006 and then another marked slow-
down from 2010 onward.69

68. For the TDP- inclusive hedonic specification for adjacent periods ending after December 
2000, the correlation coefficient between within R- squared and number of processor archi-
tecture dummies used is –.53. I reject the hypothesis that it is equal to zero (p- value is .0000).

69. It is not coincidental that in 2004, the Pentium 4’s architecture hit its clock rate ceiling and 
power dissipation reached maximum limits compatible with inexpensive air cooling systems. 
The rollout of Intel’s next- generation response—the Conroe architecture (two cores on a single 
die at a much lower clock rate but with more instructions per clock processed)—happened 
in mid- 2006. To many industry observers, Intel appeared to be lagging behind its effectively 
duopolist rival AMD, architecturally, in the early 2000s. AMD was first to market with a 64- 
bit architecture and, later, the first single die dual core chip. (AMD had brought its Athlon X2 
processor out in 2005, a full year before Intel’s Core 2 Duo [Conroe architecture] chips.) For 
empirical evidence on AMD’s technological challenge to Intel in the early 2000s, see Nosko 
(2011), Pakes (2017), and European Commission (2009).
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The first four columns in table 11.7 compare my estimated hedonic and 
matched- model price indexes and the BLS PPIs. As expected,70 the matched- 
model geometric mean (Jevons) index price declines are mostly very close 
to the hedonic indexes but generally decline more slowly than those mea-
sured by the hedonic price index based on the same dataset. My estimates 
over comparable earlier time periods are quite similar to the matched- model 
indexes of Aizcorbe, Corrado, and Doms (2003) and to the US producer 
price indexes. Prior to 2004, my Jevons matched- model (geometric mean) 
index and the PPI move quite closely, while my hedonic indexes show a mod-
estly higher rate of decline, as expected. The hedonic price indexes based on 
Intel list prices with and without TDP are virtually identical over the period 
beginning in 2000 through the beginning of 2005.

From 2004 through 2006, both my Jevons and hedonic price indexes 
decline much more slowly than the PPIs, while from 2006 through 2009, my 
Jevons and hedonic indexes fall at rates a little faster than the PPI. From 
2009 to 2010, the Jevons and hedonic bracket the PPI. Finally, from 2010 

70. Since if  there were no entering or exiting processor models (all sampled processor models 
were observed in both time periods) and all hedonic coefficients were the same in the two adja-
cent periods (assumed by the time dummy method), the time dummy hedonic price index would 
be equal to the Jevons price index. See De Haan (2010), equation (23), and Triplett (2006), 55.

Fig. 11.8 Matched- model and hedonic price indexes for Intel desktop processors, 
January 2005 = 100
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through 2014, my hedonic indexes fall more slowly than the PPI, but all 
decline rates are in the low single digits. These are not the only hedonic price 
indexes for Intel processors available over this time span, and below I discuss 
alternative estimates that others have constructed.

Using almost the exact same hedonic regression model,71 I also estimated 
a hedonic index using weekly data on retail internet pricing for desktop 
processor models that I had collected over the same time span. The data 
came from a now- defunct website (sharkyextreme .com) that published the 
minimum weekly price quoted by a selection of national US internet retail-
ers over the period from the end of 2001 through the end of 2010. Similarly,  
I calculated a Jevons index based only on matched models in adjacent peri-
ods. These prices are a relatively limited subset of the much larger set of list 
prices for all Intel desktop processors and presumably are more representa-
tive of lower- end models most popular in the retail marketplace. Generally, 
the pattern over time is similar (steepest declines over 2001–4 and 2006–9 
and slower declines over 2004–6 and 2009–10).

One interesting observation that emerges from these results is that except 
for the period from 2006 through the end of 2007, all the Intel list price 
indexes, including both hedonic and geometric mean matched- model 
(Jevons) indexes, move together in a fairly tight formation. This can be 
seen by comparing the original index (with January 2005 = 100) to rebased 
indexes with January 2010 = 100. (See figure 11.9.) This is consistent with 
2006–7 being a highly atypical period, with many more older, exiting mod-
els (from now obsolete Pentium 4–branded architecture families) and new 

71. With one additional characteristic—a binary “OEM” indicator variable, indicating 
whether the product sold by the retailer came in a “boxed” retail package with heatsink and 
fan or it came in “OEM” packaging without a fan, heat sink, and retail box. Monthly aver-
age prices were calculated from published weekly reports. The published weekly price was the 
reported minimum in a sample of larger internet component retailers.

Table 11.7 Annualized compound rates of change in microprocessor price indexes

Intel OEM list 
prices

Jevons 
matched model  

Intel retail BLS

  
Hedonic 
w/TDP  

Hedonic 
w/o TDP  Hedonic  

Jevons 
matched model  

Microproc 
PPI

1998m9−2001m12 −71.5% −66.2% −64.0% −56.8%
2001m12−2004m4 −49.6% −49.6% −48.9% −40.2% −35.5% −47.1%
2004m4−2006m1 −9.6% −10.1% −10.7% −4.6% −11.1% −25.2%
2006m1−2009m1 −35.4% −40.3% −31.5% −19.9% −24.2% −29.0%
2009m1−2010m11 −13.3% −13.5% −6.2% −15.9% −11.3% −10.7%
2010m11−2014m7 −3.5%  −2.9%  −2.3%      −4.2%

Source: Author’s dataset and calculations, except Microprocessor PPI, from BLS. See appendix table 
11.A3.
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Fig. 11.9 Jevons (geometric mean) and hedonic price indexes with alternative  
base periods
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entering models (from its new Core 2 Duo–branded architecture families) 
than has generally been the case for Intel historically, before or after this 
period. The change in Intel’s product design strategies from 2006 through 
2007, in responding to AMD’s earlier technological challenge, has been com-
mented upon by researchers72 and appears to have had impacts that are 
visible in these price indexes.

Although there are substantial differences in the magnitude of declines 
across different time periods and data sources, all the various price indexes 
I have constructed concur in showing substantially higher rates of decline 
in desktop microprocessor price prior to 2004, a stop- and- start pattern after 
2004, and a dramatically lower rate of decline after 2010.

Taken at face value, this creates a puzzle. Even if  the rate of innovation 
had slowed in particular for microprocessors, if  the underlying innovation 
in semiconductor manufacturing technology had continued at the late 1990s 
pace (i.e., a new technology node every two years and roughly constant 
wafer- processing costs in the long run), then manufacturing costs would 
continue to decline at a 30 percent annual rate, and the recent rates of decline 
in processor price just measured fall well short of that mark. Either the rate 
of  innovation in semiconductor manufacturing must also have declined, 
or the declining manufacturing costs are no longer being passed along to 
consumers to the same extent, or both. The semiconductor industry and 
engineering consensus seems to be that the pace of innovation derived from 
continuing feature- size scaling in semiconductor manufacturing has slowed 
markedly. I next examine what other direct evidence is available.

11.3.1.2  Costs

Evidence on Manufacturing Costs. Microprocessors are a semiconductor 
product sold in truly large volumes. The overwhelmingly dominant player 
in this market, Intel, released a slide in a presentation to its stockholders 
in 2012 that supports the narrative of a slowing down in Moore’s law cost 
declines (table 11.8). The figures from Intel’s 2012 Investor Meeting seem 
to show accelerating cost declines in the late 1990s and rapid declines near 
a 30 percent annual rate around the millennium, followed by substantially 
slower declines in cost per transistor after the 45nm technology node (intro-
duced at the end of 2007). As discussed previously, the transition to use of 

72. “Note that in June 2006 there was intense competition for high performance chips with 
AMD selling the highest priced product at just over $1000. Seven chips sold at prices between 
$1000 and $600, and another five between $600 and $400. July 2006 saw the introduction of 
the Core 2 Duo and Fig. 2 shows that by October 2006; (i) AMD no longer markets any high 
performance chips (their highest price chip in October is just over two hundred dollars), and 
(ii) there are no chips offered between $1000 and $600 dollars and only two between $600 and 
$400 dollars. Shortly thereafter Intel replaces the non- Core 2 Duo chips with Core 2 Duo’s.

“Nosko goes on to explain how the returns from the research that went into the Core 2 Duo 
came primarily from the markups Intel was able to earn as a result of emptying out the space of 
middle priced chips and dominating the high priced end of the spectrum.” From Pakes (2017), 
251–54; see also Nosko (2011), 8–9.
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a larger wafer size after the 130nm technology node was accompanied by 
a particularly large reduction in transistor cost at the next node, using the 
larger- size wafers.

11.3.1.3  Other Economic Evidence

Depreciation Rates for Semiconductor R&D. Another innovation metric 
in semiconductors is the depreciation rate for corporate investments in semi-
conductor R&D. As the rate of innovation increases (decreases), the stock 
of knowledge created by R&D should be depreciating more rapidly (less 
rapidly). One recent economic study estimates R&D depreciation rates in a 
number of high- tech sectors, including semiconductors. The authors con-
clude that “the depreciation rate of the semiconductor industry shows a clear 
declining trend after 2000 in both datasets, albeit imprecisely measured.”73 
This is consistent with a slowing rate of innovation.

Semiconductor Fab Lives. Faster (slower) technological change in semi-
conductor manufacturing should presumably shorten (lengthen) fab life-
times. There are no recent studies of economic depreciation rates for semi-
conductor plants and equipment, but the anecdotal evidence on the 200mm 
fab capacity “reawakening” (detailed below) strongly suggests that fab lives 
have increased, consistent with a slowing rate of innovation in semiconduc-
tor manufacturing.

In August 2018, GlobalFoundries (one of four remaining firms that had 
committed to the development of leading- edge logic manufacturing pro-

73. Li and Hall (2015), 13.

Table 11.8 Annualized decline rates for Intel transistor manufacturing cost, 2012

Transistor cost index, 
90nm = 100

Percent transistor cost 
decline rate between 

nodes
Compound annual 

decline rate
Otellini 2012 Otellini 2012 Otellini 2012

Wafer size Wafer size Wafer size

Intro date  Tech node  200mm  300mm  200mm  300mm  200mm  300mm

1995q2 350 1,575.35
1997q3 250 1,033.14 −34.4 −17.1
1999q2 180 616.10 −40.4 −22.8
2001q1 130 311.09 −49.5 −32.3
2004q1 90 100.00 −67.9 −31.5
2006q1 65 48.87 −51.1 −30.1
2007q4 45 27.54 −43.6 −27.9
2010q1 32 17.69 −35.8 −17.9
2012q2  22    11.23    −36.5    −18.3

Source: Otellini (2012), digitized using WebPlotDigitizer. Intro dates: 130nm and up from http:// www 
.intel .com /pressroom /kits /quickreffam .htm. < 130nm from ark .intel .com.
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cess technology) announced that it was abandoning its effort to move to 
its next targeted technology node (7nm) and would stick instead with its 
current- generation technology: “‘The lion’s share of our customers . . . have 
no plans for’ 7nm chips. Industry- wide demand for the 14/16 node was half  
the volume of 28nm, and 7nm demand may be half  the level of the 14/16nm 
node, Caulfield said. ‘When we look out to 2022, two- thirds of the foundry 
market will be in nodes at 12nm and above, so it’s not like we are conceding 
a big part of this market,’ he added.”74 This left only three remaining semi-
conductor manufacturing firms (Samsung, Intel, and TSMC) developing 
sub- 10nm manufacturing technology going forward into 2019.

A slowing pace of innovation in semiconductor manufacturing was even 
undeniable at Intel. Intel had introduced its 14nm technology node back in 
2014 but ran into difficulties bringing its next- generation 10nm technology 
to market. In August 2018, Intel acknowledged that it was now delaying 
volume manufacturing of 10nm technology products until late 2019, over 
five years after its last technology node (i.e., almost triple its previous two- 
year “tick- tock” cadence between new technology nodes) and almost three 
years after its initial projection (see table 11.9 below).75

Personal Computer Replacement Cycles. One reason for businesses and 
consumers replacing computers more frequently (less frequently) is if  the 
rate of  innovation in key components in computers, like microproces-
sors, increases (decreases), so performance improvements associated with 
replacement are more (less) economically compelling. While published stud-
ies of PC replacement cycles are scarce, Intel monitors replacement cycles 
for PCs, a major market for its desktop processors. In 2016, Intel CEO Brian 
Krzanich noted that PC replacement cycles had extended from four years, 
the previous average, to five or six years, the current average.76 This, again, 
is consistent with a slower rate of innovation.

11.4  Is Moore’s Law Still Alive? Intel’s Perspective in Microprocessors

The most significant evidence against any current slowdown in semicon-
ductor manufacturing cost reduction from Moore’s law had come from Intel. 
Fairly recent Intel statements about its manufacturing costs had been the 
primary factual evidence within the semiconductor manufacturing commu-
nity countering the proposition that Moore’s law is ending. Unfortunately, 
Intel had not been consistent in the data it had presented publicly on this 
issue. Since late 2017, Intel appears to have refrained from releasing any new 
public information on its manufacturing costs.

The problem with Intel’s previous statements is illustrated by figure 11.10 

74. Merritt (2018); see also S. Moore (2018).
75. Rogoway (2018); see also Cutress and Shilov (2018).
76. Krzanich (2016).
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and table 11.9, which contrast two exhibits on manufacturing costs per tran-
sistor that Intel had presented at its annual investor meetings—one in 2012 
(by then- CEO Paul Otellini) and one in 2015 (by its top manufacturing 
executive, Bill Holt; see figure 11.2). Some version of the bottom pane in 
figure 11.10 had been the primary factual evidence in Intel’s assertions that 
Moore’s law continues at its historical pace. The graphics in figure 11.10 have 
been digitized77 and recorded in table 11.9, then rebased to 100 at the 90nm 

77. Using http:// arohatgi .info /WebPlotDigitizer/.

Fig. 11.10 Intel transistor manufacturing costs, 2012 vs. 2015 versions
Source: Otellini (2012); Holt (2015); Intel.
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technology node. Compound annual decline rates have been calculated in 
this table using quarterly introduction dates for the first processors manu-
factured by Intel at that technology node.

The figures presented by Intel to shareholders in 2012 seem to show rapid 
declines in the 30 percent range around the millennium, then substantially 
slower declines in cost per transistor after the 45nm technology node (i.e., 
after 2007). In contrast, a more recent presentation by Intel in 2015 restates 
the more distant history to show very much slower declines in cost per tran-
sistor at earlier technology nodes. Intel has a stock disclaimer that numbers it 
presents are subject to revision, but in this case the revisions to the historical 
record are quite dramatic.

The 2015 graphic substantially revises what in the semiconductor industry 
would be considered the distant historical past (i.e., five technology nodes 
back from the 22nm node that was in production at the time the earlier 2012 
presentation was given). Intel’s most recent version of its history now shows 
transistor costs declining at 12 percent to 18 percent annual rates after the 
millennium rather than the 30 percent annual declines it showed to its inves-
tors in 2012. Its transistor cost decline rate accelerates, rather than slowing 
further, at the most recent couple of technology nodes.

It now seems likely that one important reason for Intel’s restatement of its 
historical cost declines in 2015 was a definitional change in technical infor-
mation made public by Intel. Instead of reporting transistor density (tran-
sistors per die area) based on actual die area and the number of transistors 
processed on an actual microprocessor die (which allows one to calculate 
an actual average of transistors fabricated per die area), Intel apparently 
began using an entirely theoretical measure of area per designed transistor 
that appears not to take into account the increasingly relaxed (from design 
rules) layout of  transistors in actual die designs, imposed in part by the 
need to allow for additional area between transistors needed to fabricate 
increasingly complex interconnections.78 (For die designs released prior to 
2010, Intel had previously disclosed both actual die size and the number of 
transistors processed on the die for many of its chip models.)

Most interestingly, assume Intel’s 2015 forecast of 10nm transistor manu-
facturing costs was correct and simply postpone its use in shipped proces-
sors from 2017 by an additional two years (2019 was the actual ship date 
for Intel’s first commercial 10nm processors). This delay slows the annual 
decline rate for its transistor manufacturing costs from 21 percent to 9.7 per-

78. See Flamm (2017, 34) for a brief  explanation of this issue. Intel’s latest redefinition of its 
publicly disclosed “transistor density metric” is entirely theoretical: .6 × (transistors in a NAND 
logic cell / area of a NAND logic gate) + .4 × (transistors in a complex scan logic flip- flop cell /  
area of complex scan logic flip- flop cell) = # transistors/mm2. Such a definition does not allow 
for the practical effects of relaxation (from theoretical design rules) in actual cell layout needed, 
for example, to accommodate metal interconnections between logic cells. On Intel’s new transis-
tor density definition, see Bohr (2017).
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cent and implies a marked attenuation of Moore’s law–driven cost declines, 
consistent with the other evidence discussed previously.

11.4.1  An Intel Exception?

Interpreting the recent economic history of Moore’s law, how can Intel’s 
description of  accelerating declines in manufacturing cost per transistor 
(as recently as September 201779) be consistent with reports from other chip 
manufacturers, and their customers, of stagnating cost declines or even cost 
increases? Increasingly important scale economies provide one plausible and 
coherent explanation.

Scale economies at the company level are obvious. The cost of a produc-
tion scale semiconductor fab has increased dramatically at recent technology 
nodes, and only the very largest chip IDMs (integrated device manufac-
turers) can depend on their internal demand to justify a fab investment. 
Intel made this case quite accurately at its 2012 Investor Meeting, predicting 
that only Samsung, TSMC, and itself  would have the production volumes 
required to economically justify investment in leading- edge fab technol-
ogy for logic chips by 2016.80 (Intel overlooked GlobalFoundries, which, by 
acquiring IBM’s semiconductor business in 2015, substantially increased its 
scale.)81 Both TSMC and GlobalFoundries are “pure” foundries and achieve 
their volumes entirely by aggregating the demands of external chip design 
customers.

Many US- based semiconductor companies have exited chip manufac-
turing (e.g., AMD, IBM) or stopped investing in leading- edge fabrication 
while continuing to operate older fabs (Texas Instruments pioneered this 
so- called fab- lite strategy). Other “pure play” US foundries (e.g., TowerJazz, 
On Semiconductor) operate mature foundry fabs that remain cost effective 
for lower volume chips. Long- established American chip companies, such 
as Motorola, National Semiconductor, and Freescale, disappeared in the 
course of mergers or acquisitions that continue to reshape the industry.

This consolidation in leading- edge IC fabrication is global. In Europe, 
there are no manufacturers currently investing in leading- edge technology.82 
In Asia, there are arguably only Toshiba in Japan, Samsung and Hynix in 
Korea, and foundry TSMC in Taiwan. Firm- level scale economies explain 

79. See Smith (2017), slide 6, “Is Moore’s Law Dead? No!” Interestingly, since September 
2017, Intel has not—to the best of my knowledge—published a claim that its manufacturing 
cost per transistor continues to decline at rates exceeding previous historical decline rates or is 
even falling at new technology nodes.

80. Krzanich (2012), slide 19.
81. What constitutes leading- edge technology in memory chips is somewhat more nebulous, 

and several large memory specialist IDMs (Hynix, Toshiba, Micron) might also arguably be 
categorized as being near the leading edge. Global Foundries has since announced that it is 
dropping out of future development of new manufacturing technology nodes.

82. The last remaining leading- edge chipmaker headquartered in Europe, ST Microelectron-
ics, announced in 2015 that it will be relying on foundries for future advance manufacturing 
needs.
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why fewer firms can afford leading- edge fabs but can’t explain why Intel’s 
cost per transistor would have declined much faster than that at other pro-
ducers still investing in leading- edge fabs, particularly the foundries. It’s 
possible that Intel has unique, proprietary technological advantages. A more 
mundane explanation is that product- level scale economies drive these dif-
ferences.

In particular, there has been an exponential increase in the costs of the 
ever more- complex photomasks needed to pattern wafers using lithography 
tools—a set of masks cost $450,000 to $700,000 back in 2001, at 130nm, 
compared with a wafer production cost of $2,500 to $4,000 per wafer.83 At 
14nm (updating wafer- production costs using Intel costs in table 11.9 implies 
150 percent increases), wafer production cost would be $6,225 to $9,960. By 
contrast, costs for a mask set at 14nm are estimated to run from $10 million 
to $18 million, a 22-  to 40- fold multiple of 130nm mask costs!27 Lithography 
cost models suggest that with 5,000 wafers exposed per photomask set (a 
relatively high- volume product at recent technology nodes), mask costs per 
unit of output will exceed both average equipment capital cost and average 
depreciation cost. With smaller production runs for a product, photomask 
costs become the overwhelmingly dominant element of silicon wafer–pro-
cessing cost at leading- edge technology nodes.84

Intel, with the largest production runs in the industry (perhaps 300 to 400 
million processors in 201485), has huge volumes of wafers to amortize the 
cost of its masks and is certainly benefitting from significant economies of 
scale. A single Intel processor design (and mask set) is the basis for scores 
of different processor models sold to computer makers. Processor features, 
on- board memory sizes, processor speeds, and numbers of  functioning 
cores can be enabled or disabled in the final stages of  chip manufacture, 
and manufacturing process parameters can even be altered to shift the mix 
of functioning parts in desired ways.86

For Intel, this creates average manufacturing costs per chip that are vastly 
smaller than costs for fabless competitors running much smaller product vol-
umes using the same technology node at foundries. Foundries recoup those 
much higher per- unit mask costs through one- time charges or through high 
finished wafer prices charged to its fabless designer- customers. The customer 

83. Both 130nm mask and wafer cost estimates were presented by an engineer in Intel’s 
in- house Mask Operation unit (Yang 2001). Mask set cost estimates at 14nm are taken from 
Black (2013), slide 6.

84. Lattard (2014), slide 6.
85. Based on the fact that Intel publicly revealed that it had shipped 100 million processors 

a quarter, a record- setting event, in the third quarter of 2014. Intel (2014), 1.
86. When chips are tested after manufacture, the speed, power consumption, and functioning 

memory and feature characteristics are used to “bin” the processor into one of many different 
part numbers. As process yields improve over time with experience, new part numbers with 
faster speeds or lower power consumption are introduced. VanWagoner (2014) is a concise 
discussion by a former Intel manufacturing engineer of how a large variety of processor models 
are manufactured from a single unique processor design.
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directly bears the much higher design costs per unit if  the latest technology 
node is chosen for the product.

Exponentially growing design and mask costs at leading- edge nodes now 
make older technology nodes economically attractive for lower- volume 
products. Higher variable wafer- processing costs per transistor at older 
nodes are more than offset by much lower fixed design and photomask costs.

Such scale- driven cost disadvantages are increasingly pushing low- volume 
chip production to older chip- making technology running in depreciated 
fabs. This is reshaping the economics of  chip production, extending the 
economic lives of aging fabs. Older 200mm wafer fab capacity is now grow-
ing rapidly, forecast to expand almost 20 percent by 2020!87

Historically, this is unprecedented. The additional 200mm capacity com-
ing into service cannot use more- advanced process technologies designed for 
300mm wafer- processing equipment. Much lower fixed design and photo-
mask costs with older technology are the primary factor making it economi-
cally attractive to fabricate low- volume products. As inexpensive computing 
penetrates into everyday appliances, “Internet of Things” chip designers are 
generating low- volume foundry orders for chip designs tailored to market 
niches, filling these old fabs with chip orders that don’t require the greatest 
possible density.

Is Intel an exceptional case in the semiconductor industry? Is its portrait 
of recently accelerating manufacturing cost declines reflected in the actual 
behavior of its product prices? The problem is, Intel does not disclose data 
on its product pricing to either the public or government statistical agen-
cies, so analysis of what an economist would call a quality- adjusted price 
is quite difficult.

Alternative Hedonic Price Indexes for Microprocessors. Apart from Intel’s 
pre- 2018 declarations of  optimism, a second piece of  evidence arguing 
against a slowdown in Moore’s law is a study by Byrne, Oliner, and Sichel 
(2018), which also utilizes the same list price data from Intel (that I used) in 
making its argument. Using only the first four quarters of prices for recently 
introduced models, they run an annual time dummy hedonic price model 
over adjoining pairs of years and find quality- adjusted prices declining at 
the same rate in 2000–4 as in 2009–13, at about a 42 percent annual rate of 
decline, and an even more impressive 46 percent decline over 2004–9.88 This 
is higher than any of the rates shown for 2004–9 and very much higher than 
the decline rates post- 2009 in table 11.7.

The key differences between my hedonic price indexes and the Byrne, 
Oliner, and Sichel (2018) hedonic price indexes are that (1) Byrne, Oliner, 
and Sichel use only a subset of the desktop processors for which their chosen 
software benchmark scores are available (vs. all desktop processors listed on 

87. Dieseldorff (2016).
88. Ibid. Byrne, Oliner, and Sichel (2018) use only the first four quarterly average prices 

for individual processors and a single explanatory characteristic—performance on a software 
benchmark—in their hedonic regression.
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Intel’s current price sheets); (2) Byrne, Oliner, and Sichel include quarterly 
average list prices for individual processors only during the first four quar-
ters after their introduction onto the market (vs. using all available monthly 
average list prices); and (3) Byrne, Oliner, and Sichel use only a single pro-
cessor characteristic (geometric mean of benchmark software performance 
scores89) in their hedonic model (vs. using a much larger set of processor char-
acteristics that I argue is likely to be relevant to both demand and unit cost).

Sample Selection: SPEC Benchmark vs. No SPEC Available. Byrne, Oliner, 
and Sichel (2018) acknowledge that there are some differences between chips 
that have benchmark (SPEC) scores available and chips without (SPEC 
scores are primarily used to compare processor performance in servers and 
technical computing workstations, which generally use higher- end proces-
sors than the consumer market).90 They report that a matched- model price 
index using only the SPEC chips generally falls faster than an index using 
the non- SPEC chips in all time periods. They also report that their matched- 
model indexes produce a qualitative pattern in price declines over time that 
is very similar to what is shown in table 11.7 for all Intel desktop processors. 
Thus these results suggest that the restriction of the price sample to higher- 
performance processors with SPEC scores may bias estimates of quality- 
adjusted price declines toward higher rates of price decline but is not respon-
sible for the very different qualitative behavior over time (relatively constant 
vs. dramatic reductions in rates of decline after 2004).

First Four Quarters Only vs. All Prices. Byrne, Oliner, and Sichel (2018) 
observe that individual Intel processor list prices very rarely change over 
time on price sheets after 2011, in contrast to the prior decade. They identify 
two scenarios they believe may explain this. In one scenario, “Intel offers 
progressively larger [but unobserved] discounts to selected purchasers as 
models age,”91 producing a measurement error for older processors but not 
recently introduced models. This would complicate estimation of hedonic 
price indexes using list price data. “The introduction period index would be 
unbiased even if  there are unobserved discounts at the time of introduction 
provided that these discounts do not vary systematically over time or across 
models,”92 while an index using all periods would presumably be biased.

Alternatively, they argue that even if  the posted list prices are actual trans-
actional prices, the older chips must be getting progressively more expensive 
in quality- adjusted terms if  their nominal prices do not change, so rela-
tive demand for these models must be falling: “By focusing on prices [only] 

89. They take the geometric mean of processor performance on industry consortium SPEC’s 
benchmark scores on single program integer and floating- point software test suites. Their pro-
cedure for splicing the two or three distinct sets of benchmarks used over their sample period 
(SPEC2000 and SPEC2006, and possibly SPEC95) over their 2000–2013 sample period is not 
explicitly described. See figure 11.4 above for evidence that both levels and slopes of  these 
benchmarks change over time when they are compared.

90. Byrne, Oliner, and Sichel (2018), table 2.
91. Byrne, Oliner, and Sichel (2018), 690.
92. Ibid.
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at the beginning of each model’s life cycle, a regression that applies equal 
weights to all observations avoids over- weighting models whose quantities 
have dropped off.”93 These arguments are used to justify using only prices 
observed during the first four quarters after a model’s introduction, discard-
ing the majority of their sample of Intel list prices.

However, in a recent study, Sawyer and So (2017) replicate the substance 
of the Byrne, Oliner, and Sichel (2018) results over the period after 2009 in a 
sample utilizing only “early” (first four quarters after introduction) Intel list 
prices.94 However, when processor characteristics are added to SPEC scores 
as explanatory covariates, Sawyer and So show that standard statistical tests 
decisively reject the exclusion of processor characteristics from a hedonic price 
equation that also includes SPEC scores.95 When these other processor charac-
teristics are not excluded, estimates of recent decline rates for quality- adjusted 
processor prices over time are dramatically smaller than those estimated by 
Byrne, Oliner, and Sichel.96 We can reasonably conclude that it is the restric-
tion of hedonic characteristics to benchmark scores only, and not the restric-
tion to early prices, that is producing the pattern of unremittingly high price 
declines found in Byrne, Oliner, and Sichel over the post- 2004 time period.

Sawyer and So (2017) also note that Intel processors are typically sold in 
their largest volumes only after the first four quarters in which they are avail-
able for sale.97 Intel’s own economic expert made this point in its antitrust 
case before the European Commission, noting that processor production 
begins with a “ramp- up” phase that “begins with low volumes and typically 
lasts three to five quarters.”98 Therefore, using price data for a processor 
only during the first four quarters following its introduction likely would 
place relatively high weights on products actually being sold in relatively 
low volumes compared to other products.

It seems reasonable to suggest that this may be a real- world example of 
omitted variable bias, akin to that created in the last column of the perfect 
collinearity simulation in table 11.6. However, Byrne, Oliner, and Sichel 
(2018) articulate some real concerns about use of Intel list price data to mea-
sure processor pricing trends. They note “a sharp change over the course of 
the 2000s in the life- cycle properties of Intel’s posted prices . . . In the early 
period prices fell steeply over a model’s life cycle. However, by 2011–2012, 
price paths are flat or nearly so, with only a few instances of sizable price 
declines.”99 These observations are spot on.

Figure 11.11 shows the fraction of incumbent (i.e., omitting newly intro-

93. Ibid.
94. Sawyer and So (2017), 8.
95. Ibid., 11.
96. Ibid., 10.
97. Ibid., 14–15.
98. European Commission (2009), 326.
99. Byrne, Oliner, and Sichel (2018), 687.
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duced products) desktop processor prices that changed from one list price 
sheet to the next one issued, from 1998 through mid- 2014. Through mid- 
2014, it is evident that Intel’s propensity to alter list prices on existing pro-
cessors diminished over time, though it never entirely stopped adjusting list 
prices on its existing product line through mid- 2014. In 2008 and 2009, for 
example, there were price sheets on which anywhere from 35 percent to 40 
percent of already introduced desktop processor prices changed from the 
previous sheet.100 Since 2014, however, existing processor prices rarely if  ever 
change from one price sheet to the next.

Indeed, if  one had to choose a date based on this chart for a climacteric in 
Intel pricing practices, 2010—the year after its antitrust cases were settled—
would seem a promising choice. That year also apparently coincides with 
the beginning of a determined campaign by Intel to raise its profit margins, 
an effort that seems to have had some success (aided at that point by a 
greatly diminished competitive threat from its historical rival, AMD; see 
figure 11.12). Raising its average sales prices (ASP) was a key element of 
this strategy. (See figure 11.13.)

In earlier versions of their research, Byrne, Oliner, and Sichel (2018) focused 
on the evident change in Intel pricing strategies during the first decade of 

100. Byrne, Oliner, and Sichel (2018), figure 4, show a similar set of patterns over time in the 
share of Intel desktop processors with a list price decline within four quarters of introduction.

Fig. 11.11 Fraction of Intel desktop processor prices changing from one price list 
to the next
Source: Author’s tabulation from Intel list price dataset.
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the 2000s as the motivation for restricting their Intel prices to “early” initial 
processor prices.101 Their hypothesis, that Intel may have changed its pricing 
strategy during the first decade of the new millennium, actually seems quite 
plausible given that the European Commission launched a major antitrust 
case against Intel over its processor price discounting practices during the 
2002–6 period, culminating in a preliminary decision against Intel in 2007 
and a final decision in 2009.102 A related private US antitrust case by AMD 
was filed and then settled in 2009.

The Byrne, Oliner, and Sichel (2018) scenario of  “progressively larger 
discounts to selected purchasers as models age” is difficult to test, since no 

101. In the earlier 2017 Federal Reserve working paper version of their study, BOS speculated 
that “it is possible that Intel actually changed its life- cycle pricing strategy to extract more 
revenue from older models, with the posted prices reflecting this change.” Byrne, Oliner, and 
Sichel (2017), 8.

102. See European Commission (2009). The same antitrust concerns also resulted in govern-
ment antitrust actions in Japan and Korea and by the US Federal Trade Commission. Acting 
on an appeal by Intel, the European Court of Justice sent the EU case back to a lower court for 
further consideration in 2017, so this seems destined to be litigated for years to come.

Fig. 11.12 Intel’s post- 2010 gross margin elevation objective
Source: Smith (2015).

Fig. 11.13 Intel’s 2015 explanation to its shareholders for success in maintaining 
high profit margins
Source: Smith (2015).
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data on Intel transaction prices for its wholesale sales to large buyers are 
publicly available. We do know that evidence produced in the EU antitrust 
investigation seems to show that even the newest chips sold to large original 
equipment manufacturer (OEM) customers were heavily discounted from 
list prices prior to 2006, at times with conditional exclusivity rebates that 
were not publicly reported by Intel or its customers.103

However, there is one public source of Intel transactional price data that 
is real and observed and does not require any assumptions about unob-
served behavior. Retail prices in the electronics industry are linked to whole-
sale prices, directly and indirectly. Most directly, the very largest retailers 
can purchase boxed processors directly from Intel or, like smaller retailers, 
from distributors. (Approximately 20 percent of Intel processors in recent 
years, by volume, were sold directly as boxed processors, primarily to small 
computer makers and electronic retailers.104) Computer OEMs, electron-
ics system manufacturers, and electronic parts distributors who purchase 
processors directly from Intel can resell excess inventories to other distribu-
tors, resellers, and retailers, and these actually show up on the retail market 
labeled as “OEM package” (vs. “Retail Box” packaging).

Both boxed and OEM- packaged processors are sold by retailers, dis-
tributors, and brokers with a price that is advertised publicly and is directly 
observable in the marketplace. (The retail data used in constructing my 
matched- model price index include both OEM and retail- packaged chips 
sold by internet retailers.) The retail data used in table 11.7 also seem to 
clearly point to a deceleration in microprocessor price declines after 2004.

It seems reasonable to presume that retail transaction prices (which are 
observable in the market), at least in the long run, should have some stable 
stochastic relationship to wholesale producer transactional prices. Indeed, 
at least one previous study found such linkages between OEM contract 
transactional prices and retail prices for high- volume chips sold in the semi-
conductor industry.105

There are market- driven economic reasons behind this linkage. Both 

103. See European Commission (2009). See also SEC v. Dell Inc. et al. Complaint (US 
Securities and Exchange Commission 2010), which asserts that unreported exclusivity rebates 
given by Intel to Dell had climbed to about three- fourths of Dell’s operating income by 2006.

104. “Although it sells microprocessors directly to the largest computer manufacturers, such 
as Dell, Hewlett Packard, and Lenovo, its Channel Supply Demand Operations (CSDO) orga-
nization is responsible for satisfying the branded boxed CPU demands of Intel’s vast customer 
network of distributors, resellers, dealers, and local integrators. Intel’s boxed processor ship-
ment volume represents approximately 20 percent of its total CPU shipments . . . Processors 
ship from CW1 to one of four CW2 ‘boxing’ sites, which kit the processors with cooling solu-
tions (e.g., fan, heat sink) and place them in retail boxes and distribution containers. Such 
boxing sites are typically subcontracted companies that ship the boxed products to nearby 
Intel CW3 finished- goods warehouses where they are used to fulfill customer orders. Channel 
customers range in size and need; they are mostly low- volume computer manufacturers and 
electronics retailers” (Wieland et al. 2012).

105. See Flamm (1993) for a study documenting linkages between retail prices and OEM 
contract prices for DRAM memory chips.
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semiconductor manufacturers and their OEM customers sell their excess 
inventories of chips to brokers and distributors during industry downturns, 
pushing small buyer spot prices down in distributor and retail sales channels 
as excess OEM inventories of chips are absorbed in those sales channels. In 
tight markets, conversely, when semiconductor manufacturers are capacity 
constrained, wholesale contract prices to large OEMs rise. To meet surg-
ing demand, OEMs may even try to purchase additional volumes of chips, 
beyond the volumes negotiated in contracts with chip manufacturers, in 
retail and distribution markets. As both large OEMs and smaller buyers 
compete fiercely over the remaining unallocated output, upward pressure 
on retail and distributor prices is felt. In short, both direct and indirect 
linkages between small buyer (retail and distributor) markets and large 
buyer (contracts with OEMs) markets, as well as arbitrage across distribu-
tion channels, would lead an economist to expect to observe a structural 
relationship between observed retail processor prices and unobserved large 
OEM wholesale prices.

In a still earlier version of their research, Byrne, Oliner, and Sichel (2015) 
had speculated that the change in Intel pricing behavior (resulting in a sys-
tematic change in the relationship between Intel list prices and unobserved 
OEM contract prices) may have occurred after 2006.106 This is actually an 
interesting and plausible choice of dates for a change in Intel pricing behav-
ior, since it coincides approximately with the end of the exclusivity rebates 
that had been the subject of the government and private antitrust actions 
mentioned earlier. There is also a significant drop in the maximum frac-
tion of Intel list prices changing between adjacent price sheets evident after 
2006 visible in figure 11.11 (the last occasions on which 60 percent of prices 
for existing processors were changed at the end of 2006 and early 2007). If  
there was a structural shift in Intel pricing practices that caused list prices to 
diverge more sharply from actual transactional prices after 2006, we might 
then also expect to see a change in the relationship between movements in 
observed transactional prices in the retail market and Intel list prices after 
2006. This is testable using observational data.

I explored the possibility that there was some detectable change in the 
relationship between Intel list (posted wholesale) prices and observed retail 
prices after 2006 by constructing a panel of monthly observations on average 
retail price and posted list price covering 163 distinct Intel desktop processor 
models sold by internet retailers over the years 2000 through 2010.107 I allow 
for model fixed effects (which permits a particular low- end Celeron model, 
for example, to be related to Intel list price with a different retail margin 

106. “By 2006, this pattern had completely changed; the posted price of a specific model 
tended to remain constant, even after a new, higher performance model became available at a 
similar price” (Byrne, Oliner, and Sichel 2016, 9).

107. This is the same sharkyextreme .com data I previously used to construct Jevons and 
hedonic retail price indexes.
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than a high- end Core i7 model). The model that I estimated specified the 
log of retail price as

ln(Rit) =  ai + b ln(Iit) + c Ageit + d OEM + e After2006 + f  After2006  

× ln(Iit) + g After2006 × Ageit + uit,

with Rit as an observation on average retail price for model i in month t; 
Iit as the average posted Intel list price in a month in which list price had 
been posted at least once; Ageit as the number of elapsed months since the 
month the model’s price had been first posted on a published Intel price 
sheet; After2006 as a binary indicator variable with value of 1 in 2006 and 
thereafter and 0 before; OEM as a binary indicator for whether the product 
sold was the retail boxed version or the bare chip in OEM packaging; and 
uit as a random disturbance term. If  post- 2006 transaction prices reflect 
age discounts from Intel list prices that pre- 2006 prices did not, we would 
expect to find a statistically significant shift coefficient on the interaction of 
After2006 with Age.

Table 11.10 shows the results of estimating this model.108 The After2006 
shift variable and all of its interactions, including interactions with proces-
sor model Age, are close to zero and statistically insignificant individually 

108. Robust standard errors clustered on processor models are shown in figure 11.8.

Table 11.10 Fixed effects model of log retail price for Intel desktop processors

(Full model) (Constrained model)
  lp_ret  lp_ret

Log Intel Tray Price 0.763*** 0.768***
(15.37) (17.93) 

OEM dummy −0.0497*** −0.0496***
(−6.70) (−6.77) 

Age −0.00676*** −0.00582***
(−3.70) (−4.91) 

After2006 dummy 0.0204 
(0.13) 

After2006 × age 0.00162 
(0.83) 

After2006 × log Intel Tray Price −0.0108 
(−0.39) 

Constant 1.347*** 1.303***
(4.87) (5.55) 

N 1,580 1,580 
R2 0.987 0.987 
Adj. R2  0.986  0.986 

Notes: t statistics in parentheses. * p <.05, ** p < .01, *** p <.001.
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and jointly.109 The relatively flatter trajectories over time for Intel list prices 
after 2006 are mirrored in the behavior of flatter retail price trajectories for 
the same chips.

Therefore, based on the only evidence on actual transaction prices that 
is publicly available—that is, advertised retail prices from internet- based 
vendors—there is no evidence of some structural change occurring after 
2006 in the relationship between observed Intel list prices and observed retail 
market prices. Of course, this does not directly prove that there was no change 
in the relationship between Intel list prices and (unobserved) discounted 
OEM contract prices for processors, but it certainly weighs against it.

Figure 11.11 and our earlier discussion suggests that 2010–11 is another 
candidate time period in which to search for a shift in Intel pricing practices. 
Unfortunately, the retail data analyzed in table 11.10 do not extend past 
this date.

SPEC scores vs. chip characteristics. As previously remarked, Sawyer and 
So (2017) have shown that the Byrne, Oliner, and Sichel (2018) results show-
ing no slowdown in quality- adjusted Intel processor price declines since 2000 
are not the result of using only “early” Intel list prices but instead are driven 
primarily by use of SPEC benchmark scores as the sole characteristic in a 
hedonic model in lieu of a more extensive set of chip characteristics.

The use of SPEC scores instead of actual chip characteristics is based on the 
argument that direct performance measures are easier to get right than relevant 
chip characteristics. But this argument overlooks three fundamental reasons 
why chip characteristics should still be included in a hedonic price equation.

First, there is a computer architecture literature that tells us that bench-
mark scores of a CPU on any given task should be well explained by a small 
set of chip characteristics, including numbers of cores and threads, com-
puter architectural design, chip clock rate, and on- chip memory cache sizes. 
This literature actually identifies the chip characteristics that are relevant 
and even uses them to model computer CPU performance out of sample.110 
As I next show, scores on various SPEC processor benchmarks are almost 
perfectly predicted by a linear function of the small set of chip characteris-
tics that the computer design literature predicts are its determinants.

Second, economics tells us that the characteristics that belong in a hedonic 
price equation are there because they are relevant to user demand and that 
they have an additional effect on price if  they alter supplier marginal cost.111 

109. The Wald F(3,162) test statistic for the joint hypothesis that all After2006 terms were 
zero was .8 and the p- value .49.

110. Hennessey and Patterson (2003), in the third edition of their classic computer architec-
ture textbook (59–60) do exactly this to compare the Pentium III with a Pentium 4 operating 
at the same clock rate.

111. Pakes (2003, 1581, equation 3) notes that the hedonic price function can be interpreted 
as the sum of the expected marginal cost, conditional on characteristics, and expected markup 
(derived from the demand function), conditional on characteristics. The key point is that the 
product characteristics are arguments in the separate cost and demand function terms in the 
hedonic price equation.
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At best, software benchmark scores might correctly serve as a perfect sum-
mary measure of quality perceived by users on the demand side. But there is 
no reason, technological or economic, why a measure of chip performance 
relevant to demand should also perfectly capture the separate effects of 
underlying characteristics that determine performance on chip cost. Omit-
ting variation in processor characteristics that affects chip cost will induce 
omitted variable bias in the hedonic coefficient estimates if  the omitted char-
acteristics’ effects on cost are correlated (but not perfectly collinear) with the 
included benchmark scores.

That is, assume for the sake of argument that the mix of user demands 
for various types of  computer applications was fixed over time and that 
processor performance on this fixed- weight mix of computer applications 
was correctly captured in some SPEC benchmark. Even with the heroic 
assumption that this aggregated benchmark correctly captured everything 
relevant to chip quality on the demand side (and it is clear it does not112), 
there is no plausible technological or economic reason why variations across 
chip models in marginal production costs related to chip characteristics that 
determine benchmark scores should be perfectly mirrored by variation in 
SPEC benchmark scores.

Indeed, the computer architecture literature teaches us that a variety of 
chip characteristics can affect performance and that, therefore, the same 
SPEC score can potentially be produced with diverse, nonunique com-
binations of  numbers of  cores, threads, cache memory, clock frequency, 
and so on. In fact, if  we look at actual SPEC scores, multiple distinct chip 
models can produce approximately the same score. But variation in each 
of these chips’ characteristics—cores, threads, on- chip memory, and clock 
frequencies—may have very different impacts on production cost for the 
processor compared with impact on SPEC scores.

Third, if  benchmark scores are determined by chip characteristics, using 
chip characteristics directly in the hedonic equation—instead of, or in 
addition, to a single benchmark score—effectively allows coefficients in the 
hedonic equation to change to mirror changes in the average mix of tasks 
run by computer users over time. Use of a single benchmark or fixed- weight 
index of benchmarks effectively assumes the mix of tasks relevant to perfor-
mance for users is fixed over time.113

112. Since power draw minimization, graphics, and hardware virtualization capabilities 
clearly are desirable to large subsets of computer users yet will have no direct impact on SPEC 
scores if  missing or disabled in a processor.

113. That is, assume we have two benchmarks, b1 and b2, and two processor characteristics, 
c1 and c2. Assume b1 = a1 c1 + a2 c2, while b2 = e1 c1 + e2 c2. Assume users in the aggregate 
run b1 applications 50 percent of the time and b2 applications the other 50 percent. Then we 
can represent performance on the “average market workload” with a performance index that 
looks like .5 b1 + .5 b2, or equivalently, .5 (a1 c1 + a2 c2) + .5 (e1 c1 + e2 c2) = [.5 (a1+e1)] c1 
+ [.5 (a2 + e2)] c2. That is, the benchmark index is equal to a simple linear function of the two 
characteristics. Now if  the weights of b1 and b2 change to 25 percent and 75 percent on the 
new “market workload,” workload performance will be incorrectly captured by the original 
performance index (50 percent weights) even if  scaled by some arbitrary constant. However, 
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For all these reasons, use of the SPEC score as the sole characteristic in 
a hedonic price equation is not a highly plausible economic assumption. In 
addition, because SPEC scores are only available for the subset of Intel desk-
top processors used by OEMs in servers, the use of SPEC scores in a desktop 
processor hedonic price regression will considerably reduce sample size com-
pared with statistical models using chip characteristics but not SPEC scores. 
In the Intel list price data, the number of Intel desktop processors with SPEC 
scores available for analysis is a fraction of all Intel desktop processors with 
list prices available in any time period. When using other publicly available 
retail or distributor desktop processor price data, an even larger fraction of 
the available data may not have SPEC scores available.114

To support this point, I next demonstrate that SPEC processor bench-
mark scores are almost perfectly predicted by a small number of underlying 
chip characteristics and provide little or no additional information. In mak-
ing this claim, I note that I make use of a set of processor microarchitec-
ture dummy variables in the set of chip characteristics used. Neither Saw-
yer and So nor Byrne, Oliner, and Sichel (2018) use processor architecture 
dummy variables (which I have shown make an important contribution to 
the explanatory power of a hedonic price model) in the set of characteristics 
they employ when estimating a chip characteristic–based hedonic model. 
It is quite possible that adding a software benchmark score to a set of chip 
characteristics that excludes the architectural dummies has the effect of 
capturing much of the effect of these dummy variables in the hedonic price 
model.

The role of different chip characteristics on different SPEC benchmarks, 
however, varies greatly across different types of SPEC benchmarks, which 
argues for direct use of the underlying characteristics in a hedonic equa-
tion. It is an argument for letting the data decide what the correct weights 
on processor characteristics in a hedonic price equation are rather than 
adopting the implicit weights embedded within a time- invariant weighted 
average benchmark score.

11.5  Chip Characteristics and Computer Performance: Building Blocks 
for a Hedonic Analysis

By forcing us to focus on the relationship between performance of micro-
processors on representative software benchmarks—which all agree should 

performance on “market workload” is still correctly captured by a linear function of the two 
underlying chip characteristics (though the coefficients of the characteristics in this function 
change). The specification that is linear in the underlying characteristics is simply more flexible 
in representing shifts in demand.

114. This is because the selection of  processors commonly sold to consumers for use in 
desktop PCs may include relatively fewer desktop processors used in servers (the ones that 
would have SPEC scores available).
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be an important determinant of chip demand—and chip characteristics, 
Byrne, Oliner, and Sichel (2018) have done us a great service in providing 
focus for a discussion of  what chip characteristics should be used when 
estimating a hedonic price equation for microprocessors.

The theoretical computer architecture literature makes use of a proces-
sor performance equation to predict processor performance. Effectively, this 
relationship models the execution time a computer processing unit takes to 
perform some given software benchmark program (i.e., a given sequence of 
programming instructions) as the product of two parameters: average clock 
ticks per instruction and the seconds per clock tick in the processor’s clock.115 
Since a processor performance benchmark score is proportional to the 
inverse of time required to run a benchmark program on a particular com-
puter processor, we can invert the processor performance equation and then 
have

Performance ~ IPC × clock rate,

where IPC is processed instructions per clock tick, clock rate is measured 
in ticks per second, and the performance index basically compares bench-
mark instructions executed per unit time across processors. Indeed, given a 
particular computer architecture, computer engineers simply scale measured 
performance linearly by clock rate in order to model the approximate impact 
of raising clock rate on processor performance.116

IPC will depend on both the design (architecture) of the computer proces-
sor and the particular mix of instructions being executed in the benchmark 
software. The specified clock rate of a processor model is typically fixed after 
testing, at the end of the chip fabrication process.117 “Binning” during testing 
of finished chips creates different speed grade bins, which are subsequently 
sold as different processor models to computer manufacturers and other 
consumers. The effective, yielded mix of nondefective, more- valuable fast 
processors and less- valuable slow processors on a fabricated wafer contain-
ing hundreds or thousands of these processors is a determinant of processor 
manufacturing costs.

Speed is not the only chip processor characteristic affected by random 
fabrication process variation. There may also be random manufacturing 
variation affecting the voltage needed to run the chip properly, varying from 
die to die on the same wafer. Chips that require less power to perform cor-

115. See Hennessey and Patterson (2012), section 1.9, 48–52.
116. Hennessey and Patterson (2003), in the third edition of their classic computer architec-

ture textbook (59–60), do exactly this to compare Pentium III performance with a Pentium 4 
operating at the same clock rate.

117. Random variation in a highly complex semiconductor manufacturing process leads to 
a distribution of functional chips by the maximum clock rate at which they can successfully 
execute some test suite. A “fast” processor can operate at a higher- than- average clock frequency, 
while a “slow” processor can only operate correctly at a slower- than- average clock rate.
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rectly may be identified through testing and sold as low- power models of 
the processor.118

Microprocessor chips generally have on- chip caches of fast local memory 
that can also affect the execution time for given software. The portion of on- 
chip cache memory that is defect- free and therefore usable by the chip can 
also vary with the incidence of manufacturing defects during the fabrication 
process, and testing then leads to additional binning of finished chips by 
usable, functional cache memory.

Similarly, particular sections of  chip circuitry associated with some 
advanced features of the chip may not be fully functional due to random 
processing defects. In order to maximize revenue from all usable products 
yielded from a finished silicon wafer, a complex system of testing “bins” 
based on speed, memory, power requirements, and working feature func-
tionality is used to define distinct processor models sold as different chips to 
final consumers. Indeed, chips are generally designed with some redundant 
circuitry and electrical “fusing” options intended to maximize saleable prod-
uct, and revenues, from a processed wafer with dies that may not be perfect. 
A dozen processor models may be derived from a single, artfully designed 
die manufactured in the thousands on a single wafer.119

At Intel, microprocessor designs are identified with a “microarchitecture,” 
which historically is associated with a publicly available codename. (For 
example, the processor microarchitecture launched by Intel in October 2017 
was given the codename “Coffee Lake.”120) Prior to 2010, Intel also made 
public information on its processors’ die sizes and the number of transistors 
on the die processed in its manufacture. Based on this information (which is no 
longer publicly released), it appears that the many dozens of microprocessor 
models for each of its microarchitectures were based on somewhere between 
one and three basic die designs.121 That is, the dozens of different processor 
models corresponding to a single microarchitecture product family were man-
ufactured from just one to three basic chip designs fabricated on silicon wafers.

118. And processing of the wafer can be optimized to produce relatively more chips requir-
ing less power.

119. The design of a chip will segment the circuitry into functional blocks that can be dis-
abled electronically (e.g., with programmable “fuses”) during the manufacture and testing 
process. Some redundant circuitry is typically made part of the design, to maximize yield of 
usable parts after test. A more capable chip can generally be made less capable by disabling 
portions of its circuitry at the final stages of manufacture. This may be done deliberately by 
manufacturers to create additional supplies of lower- end chips when customer demand for 
lower- end parts exceeds the portion of output physically binned into low- end chip models on 
the basis of test results.

120. Cranz (2017). 
121. Prior to 2010, Intel publicly released the exact die area and number of “processing tran-

sistors” used in manufacturing most of its microprocessor models. All processors with exactly 
the same microarchitecture, die area, and numbers of processing transistors can be assumed 
to be derived from a single die design. Analysis of this data shows anywhere from one to three 
unique microarchitecture / die size / processing transistor combinations were being used to 
produce many dozens of processor models.
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It is straightforward to analyze the relationship between SPEC scores 
and microprocessor characteristics. Table 11.10 shows the results from esti-
mating a linear regression model explaining log SPEC scores with a set of 
explanatory variables suggested by the computer engineering literature: a 
full set of microarchitecture dummy variables (since IPC is going to depend 
on computer microarchitecture), log of  the base processor clock rate, a 
dummy variable indicating a “turbo” feature is enabled on the chip (the 
highest clock rate achievable by a single core on the chip will differ from the 
base processor clock rate if  this feature is available), log of on- chip memory 
cache size,122 log of  the number of  physical processor cores on the chip, 
and a dummy variable indicating that multithreaded “virtual” logical cores 
are available on a chip.123 In addition, a binary indicator variable for use 
of “autoparallelization” in compiling the SPEC benchmark software code 
is included, since that can enable a speedup on multicore processors or on 
processors with multithreading.124

A simple log linear regression model that explains SPEC benchmark per-
formance as a function of six processor characteristics (and a full set of 
29 to 31 dummy variables for different Intel x86 processor microarchitec-
tures) accounts for a remarkable 97 percent to 98 percent of the variation 
in SPEC2006 benchmark scores for thousands of computer models using 
Intel x86 processors over the 2005–17 period (table 11.11). Note that this 
regression utilizes all Intel x86 desktop, server, and mobile processors in the 
SPEC2006 database and, further, that it is estimated using every different 
individual computer making use of an included processor as the underlying 
set of observations used in estimating the model.

That is, variation in chipsets, motherboards, configured memory, and 
other components in the computer systems from different manufacturers 
making use of any particular chip model, which is reflected in the residual, 
accounted for no more than 2 percent to 4 percent of observed variation 
in SPEC scores. This analysis utilizes individual tested computer system 
data—that is, on average there are four to five different computer systems 
using a specific processor model.

We can alternatively calculate a median or mean score across all computer 
systems utilizing each processor chip model to more closely resemble the 
Byrne, Oliner, and Sichel (2018) procedure for deriving a single SPEC score 
for each chip model. Using that as the basis for our SPEC2006 performance 

122. Actually, I am using the size of the “last level cache,” since microprocessors can have a 
hierarchy of successively larger (and slower) caches onboard.

123. Hyperthreading is Intel’s name for multithreading capability, additional circuitry added 
to the processor that creates two logical (or “virtual”) processors that can access every physical 
core. One logical processor can begin processing the next instruction while the other logical 
processor is actually executing an instruction in a core, thus allowing a form of chip- level 
parallelism that can speed up performance when a computer program spawns multiple threads.

124. Indeed, after a short number of months at the beginning of the SPEC2006 suite in 
2006, almost all the single- process SPEC benchmark scores have autoparallelization turned on.
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regression model, we get an even higher R2, of about .99125 (table 11.12). It is 
clear that computer architecture dummies and five processor characteristics 
together essentially perfectly predict SPEC benchmark scores.

Two points are significant. First, the coefficients of (weights assigned to) 
different processor characteristics in determining SPEC scores are very dif-
ferent for different SPEC benchmarks. The clear implication is that different 
processor characteristics can have very different effects on performance for 
different types of  workloads. A flexible hedonic price model, reflecting a 
changing distribution of chip consumers across distinct types of workloads, 
would best let the empirical data decide the weights users place on particu-
lar characteristics rather than aggregating the characteristics into a single 
benchmark score with the time- invariant weights implicitly used to perform 
the aggregation into a performance metric.

125. I drop all chips shown as underclocked or overclocked by computer system maker (hav-
ing reported clock rate more than 10Mz slower or faster than the Intel- specified base clock 
rate) and ignore autoparallelization in calculating medians or means in table 11.12. Table 11.12 
reports results using logs of medians; using logs of means would give almost identical results.

Table 11.11 Log of SPEC 2006 benchmark as function of processor characteristics

Six characteristics model

Dependent variable is log of  SPECf06  SPECi06  SPECfr06  SPECir06

Log base processor speed 0.196*** 0.115** 0.383*** 0.429***
 (0.0401) (0.0396) (0.0590) (0.0746) 
Log cache memory size 0.0965** 0.0861*** 0.140** 0.109***
 (0.0283) (0.0232) (0.0442) (0.0208) 
Log number physical cores 0.157*** 0.0385 0.642*** 0.826***
 (0.0284) (0.0285) (0.0357) (0.0249) 
Hyperthreading dummy 0.0644** 0.0318** 0.132*** 0.201***
 (0.0179) (0.0111) (0.0169) (0.0130) 
Log max speed w/turbo 0.514*** 0.722*** 0.101 0.328***
 (0.0651) (0.0560) (0.103) (0.0747) 
Autoparallelization dummy 0.0649* 0.00310 0.0107 −0.0134 
 (0.0262) (0.0534) (0.0211) (0.0362) 

Microarchitecture dummies Y Y Y Y
Observations 1,160 1,190 2,207 2,417
R2 0.966 0.960 0.982 0.974 
N_clusters 31 31 29 30
R2 within  0.687  0.697  0.896  0.893 

Cluster robust standard errors in parentheses, clustered on Intel microarchitecture.
* p < .05, ** p < .01, *** p < .001
Log base processor speed is processor base clock rate
Log of max speed is log of maximum clock rate if  turbo mode available
Log cache memory is log of amount of last level cache memory on processor chip
Autoparallelization dummy =1 if  feature enabled in compiler when SPEC software was com-
piled
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Second, these characteristics also will affect cost. Every distinct Intel 
microarchitecture is manufactured using a single fabrication technology 
node, so in addition to representing the processor’s design architecture, the 
microarchitecture dummies also capture variation in microprocessor manu-
facturing cost that is induced by variation in chip microarchitectures and 
manufacturing technology. As previously described, different quality grades 
(measured by processor clock rates, amounts of on- chip cache memory, and 
chip features) produced by testing and binning are also associated with cost 
differences. Coefficients on these characteristics in a hedonic reduced- form 
price equation should be regarded as reflecting both demand and cost effects.

Finally, in addition to the chip characteristics determining SPEC perfor-
mance, there is a small set of additional chip characteristics that we would 
certainly want to include in a hedonic price equation for microprocessors. 
Power dissipated by a chip determines whether expensive cooling solutions 
are required, shifting demand for that processor; power requirements are 
also important (for battery life) in mobile applications. Electricity use, the 
principle variable cost of computing, will vary with power consumed. Fur-
ther, power dissipation varies with random manufacturing process varia-
tions, so the power rating of a chip is also going to be related to chip cost. 
Whether or not a graphics processor is integrated into the microprocessor 

Table 11.12 Log of median SPEC 2006 benchmark as function of processor 
characteristics

Five characteristics model

Dependent variable is log of 
median computer system score 
for particular processor model  SPECf06  SPECi06  SPECfr06  SPECir06

Log base processor speed 0.279*** 0.156*** 0.507*** 0.460***
(0.0347) (0.0338) (0.0767) (0.0565) 

Log cache memory size 0.0783** 0.0575** 0.155** 0.122***
(0.0259) (0.0194) (0.0531) (0.0184) 

Log number physical cores 0.190*** 0.0697* 0.644*** 0.810***
(0.0254) (0.0274) (0.0513) (0.0167) 

Hyperthreading dummy 0.0721*** 0.0371*** 0.134*** 0.211***
(0.0133) (0.00727) (0.0132) (0.00788) 

Log max speed w/turbo 0.421*** 0.677*** −0.0109 0.286***
(0.0716) (0.0526) (0.105) (0.0575) 

Microarchitecture dummies Y Y Y Y 
Observations 331 340 449 454 
R2 0.988 0.985 0.990 0.994 
N_clusters 30 30 28 28 
R2_within  0.843  0.853  0.941  0.975

Notes: Cluster robust standard errors in parentheses, clustered on Intel microarchitecture.
* p < .05, ** p < .01, *** p < .001
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will also affect both demand and cost for that chip. Support for hardware 
virtualization will have no practical effect on processor performance on 
SPEC benchmarks but is a valuable feature for business customers wishing 
to increase server efficiency by running numerous “virtual machines” on 
their servers simultaneously.

In conclusion, we should remember that SPEC scores are maintained by 
organizations that sell servers, processors used in servers, and the largest 
server customers, so a SPEC- selected sample will be skewed toward the mod-
els of chips that perform best as server processors. The SPEC performance 
regressions in tables 11.11 and 11.12 would then seem to tell us that desktop 
and server performance should be modeled separately, with different weights 
placed on different chip characteristics.

This suggests a natural segmentation of microprocessors for purposes 
of price measurement. A desktop segment oriented toward single software 
program application performance, a mobile (laptop and tablet) segment 
tilted toward both performance and low power, and a server segment with 
a greater emphasis on performance on embarrassingly parallel workloads 
(servers running a mix of  uncoordinated applications with performance 
more like the SPEC “rate” benchmarks). In terms of finding public data 
useful in estimating a hedonic price equation, retail/distribution prices will 
be most readily observable and useful in estimating desktop microproces-
sor prices. Retail data will be much more limited and less useful for mobile 
processors and even more limited, and therefore least useful, for hedonic 
measurement of server processor prices.

The absence of a reliable source of producer transactional data for micro-
processors, for use in government price indexes, is a serious and increasingly 
formidable barrier to measuring prices and innovation correctly in the semi-
conductor industry.

11.6  Conclusion

There is considerable evidence that semiconductor manufacturing innova-
tion has historically been responsible for perhaps a 20 percent to 30 percent 
annual decline in the cost of manufacturing transistors on a chip. One would 
expect that this predictable cost decline would be transformed into a similar 
price decline in a competitive industry, at least in the long run, and therefore 
that a decline of this magnitude would serve as a floor on the long- run tra-
jectory of semiconductor prices for high- volume semiconductor products. 
Innovations in the architecture and designs being manufactured on the chip, 
new kinds of chip designs, and superior performance characteristics of exist-
ing designs fabricated using more- advanced fabrication technology would 
be additional factors explaining even higher long run rates of  decline in 
quality- adjusted semiconductor prices.
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Historically, most high- volume semiconductor applications ultimately 
migrated to more- advanced manufacturing technology nodes, pulled there 
by the simple economics of continuing declines in cost using more- advanced 
fabrication technology. This migration pressure now seems to have lessened, 
in part the result of rapidly escalating fixed costs that must be sunk into the 
design of new chips using the most- advanced manufacturing technology 
and in part due to an apparent slackening in the rate of cost decline at the 
technological frontier of semiconductor manufacturing.

The available empirical evidence, on balance, suggests that Moore’s law–
related historical declines in chip manufacturing cost have clearly been atten-
uated over the last decade. For chips where market price data are collected, 
decline rates in chip prices over time seem to have greatly diminished. The 
evidence for exceptionality in Intel microprocessor price declines is shaky, 
indicative primarily of the increasingly poor quality of publicly available 
processor price data, changing Intel policies on public release of meaningful 
list prices for its older processors, and likely, omitted variables in hedonic 
price models using Intel list price data.

A substantial economic literature has connected faster innovation in semi-
conductor manufacturing to rapidly improving price performance for semi-
conductors, to larger price declines for information technology, to increased 
uptake of IT across the economy, and to higher rates of labor productivity 
growth. If  correct, this implies that a slowdown in semiconductor manufac-
turing innovation and attenuation of price declines in both chips and IT may 
play an important role in current stagnation in labor productivity growth.

Finally, it is now almost an article of faith in high- tech industry that an 
expanding cloud of computing and machine intelligence is in the process of 
transforming our economy and society. Much of this faith is built on projec-
tion into the future based on past experience with increasingly powerful and 
pervasive computing capabilities that both cost less and use less energy year 
after year. The winding down of Moore’s law means that the technological 
scaling that drove these historical declines and implicitly underlies the most 
optimistic assumptions about the spread of ubiquitous computing in the 
future may no longer hold. Both cost and energy use now seem more likely 
to increase in lockstep with the scale of  cloud computing in the future. 
Unless there are continuing, significant improvements in software technol-
ogy, computing costs—and energy use per computation—are unlikely to 
decline, or even stay constant as computing capacity increases, as was true 
in the past. Investments in entirely new technologies will be needed, as will a 
renaissance of creativity and innovation in software. Software, the neglected 
sibling living in the shadow cast by Moore’s law—and dramatically cheapen-
ing hardware—for the last 50 years, must increasingly shoulder the burden 
of delivering comparable economic benefits from continuing technological 
innovation in information technology.
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12.1  Introduction

Capturing the impact of innovations in consumer content delivery in con-
ventional well- being measures—for example, GDP—presents significant 
challenges. It also seemingly requires a new approach because the manifesta-
tion of these innovations in consumer welfare (e.g., time spent consuming 
high- quality content via networked IT devices) does not involve a market 
transaction at the time of  consumption, which is where price collectors/
estimators look to pick up new goods as they appear. Figure 12.1 shows that 
innovations in consumer content delivery have been very rapid since the turn 
of this century, suggesting their impacts may be missed in existing GDP; 
indeed, they are clustered in the mid- 2000s when the slowdown in trend GDP 
growth emerged. Is it possible that the substitution of uncounted, so- called 
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free goods for purchased counterparts is a culprit in this much- discussed 
slowdown?

This chapter adapts a not- so- new approach—capitalization of consumer 
digital goods—to address this question, but the standard approach is aug-
mented by an accounting for how IT devices and subscription network 
access services are used and consumed.1 To understand why a use- adjusted 
version of an “old” approach is both (a) needed and (b) up to the task of 
capturing 21st- century innovations, consider first that it is consumer- owned 
devices with advanced processing technology—computers, powerful smart-
phones, smart TVs, and video game consoles—that enable the consumption 
of high- quality content in many homes (and elsewhere), and these services 
currently are uncounted in national accounts (though their paid- for pre-
decessors often were). Consider next that the spread of broadband since 
2000 and the rise of social media since 2004 suggest that the use of services 
that enable the delivery of content to consumers has risen dramatically (see 
figure 12.2). The rise in use of network services implies greater consumption 
volume (for a given number of subscriptions) because subscription costs do 
not fully depend on use rates. All told, we translate the problem of captur-
ing the innovations shown in figure 12.1—including what Brynjolfsson and 
Saunders (2009) call “free goods”—into a quest for comprehensive measure-
ment of (a) consumer services derived from IT device use and (b) consumer 
network service volumes in constant- quality terms; (a) involves an imputa-
tion to GDP for the missing services and (b) involves creating a new price 
index for the paid- for services.

Because consumers’ IT capital use is inextricably tied to households’ 
utilization of  public broadband, wireless, and cable networks (including 
their take- up of over- the- top [OTT] media and personal cloud services), 
its imputation must be linked to paid- for services. In other words, home 
services and paid- for services exhibit demand complementarity,2 and a joint 
analysis of  these two types of consumer digital services is required. This 
aspect of the approach to capitalization of consumer digital capital is novel 
with this chapter. A related literature addresses the measurement of “free 
goods” using alternative methods and very different frameworks (Naka-
mura, Samuels, and Soloveichik 2016; Nakamura, Soloveichik, and Samuels 
2018; Brynjolfsson, Collis, and Eggers 2019; Brynjolfsson et al. 2020). We 
compare our findings to these works later in this chapter.

The road map of this chapter is as follows. Section 12.2 sets out our frame-
work for thinking about how the standard framework for capitalizing con-
sumer digital goods needs to be adjusted to take into account the dramatic 

1. The standard approach refers to the productivity literature that capitalizes consumer 
durables, originally due to Christensen and Jorgenson (1969, 1973); see also Jorgenson and 
Landefeld (2006). The US national accounts do not capitalize consumer durables in head-
line GDP.

2. Thanks to Shane Greenstein for suggesting this interpretation.
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increase in household digital asset use shown in figure 12.2. Then we review 
the relationship between device use rates and the volume of services that 
deliver content over networks, which forms the basis for the quality- adjusted 
price index for network access services developed in this chapter. Section 
12.4 summarizes our empirical findings in terms of impacts on real GDP 
and consumer surplus. Section 12.5 concludes.

Our new estimates imply that accounting for innovations in consumer 
content delivery matters: the innovations boost consumer surplus by nearly 
$1,920 (2017 dollars) per connected user per year for the full period of 
this study (1987 to 2017) and contribute 0.6 percentage point to US real 
GDP growth during the last 10 (2007 to 2017). All told, our more complete 
accounting of innovations is (conservatively) estimated to have moderated 
the post- 2007 US real GDP growth slowdown by 0.3 percentage point per 
year. Because some of this GDP kick comes from an imputation (akin to 
the imputation for services from owner- occupied housing), the measured 
slowdown in business productivity growth is shaved by somewhat less, about 
0.2 percentage point per year.

12.2  Framework: Demand Complementarity

Digital device services and network access services work together to 
deliver consumer content. This section illustrates how their demand com-
plementarity can be exploited to capture and account for quality change in 
consumer digital services.

12.2.1  Definitions

Because consumer digital services reflect both households’ use of digital 
devices and households’ take- up of network access services, the value of 
total consumer digital (T) services, PSTST, is expressed as the sum of two 
components:

(1) PSTST = PST
HST

H + PST
BST

B.

The components are nonmarket (or “home”) and market (or “paid- for”) 
services, respectively, where superscripts on the component digital services 
volume indexes (the Ss) denote location of the capital used to deliver each 
type service—that is, business sector (B) or household sector (H ).

Home services, PST
HST

H, are generated via households’ use of IT goods pur-
posed for accessing digital networks.3 Paid- for services, PST

BST
B, are derived 

from subscriptions to networks—for example, payments for internet access, 
cellular access, and so on. Where are the seemingly “free” services provided 
by Google, Facebook, and other apps? Our answer is that they are embod-

3. IT goods used without network access produce uncounted services as well, such as personal 
computers used to work on local files. This use is outside the scope of our analysis.
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ied in both nonmarket and market services in this framework. The demand 
for consumer IT capital is a derived demand induced by the availability 
of  search engines, social networks, and so forth that push users to pur-
chase higher quality equipment for, for example, streaming YouTube and 
Netflix videos. The intensity of use of network access services is increased 
because the “free” services require that data—pictures, videos, and search 
results—need to be delivered from the cloud for configuration and display 
by browsers and/or apps on the home device. It is tempting to associate the 
capture of “free goods” as solved by the imputation for home services that 
we propose in this chapter, but the derived demand dynamic underscores 
that it is equally important to use quality- adjusted price statistics for the 
purchased parts of  content- delivery systems, as improvements in quality 
are also seemingly “free.”

Quality change is reflected in the price indexes of both components of 
equation (1). It stems from (a) the quality of the equipment used to access 
content via networks (e.g., the storage capacity of  smartphones), (b) the 
quality of network services (e.g., download and upload speeds of broad-
band service, channel variety in video service), and (c) the use intensity of 
the combined content delivery system (i.e., the equipment plus the access 
service). After controlling for the quality of systems (equipment- cum- access 
services) at the time of their purchase, the change in system use intensity 
reflects changes in the system’s performance—that is, change in the marginal 
product of its combined net capital stocks (just as ex- post private capital 
income reflects changes in the return to capital). Not much of (b) and none 
of (c) is in existing GDP, and while (a) is included to a significant degree, we 
improve its capture in this chapter.

Network use intensity reflects how consumers use their IT devices and is 
revealed by the take- up of paid- for network access services. Denoting net-
work use intensity by λ and letting N be the number of users on the network 
(i.e., consumer accounts from the perspective of the service provider), then 
average network use intensity is defined as

(2) = ST
B

N
,

where ST
B is the volume of paid- for access services consumed, per equation 

(1). λ and N are most easily understood from a producer perspective—that 
is, λ is an intensive per- customer use margin and N is an extensive margin 
whose increases reflect customer growth—for example, for broadband pro-
viders, the number of “customers” N is households with broadband sub-
scriptions. For cellular service providers, N is individuals with cellular phone 
subscriptions.4

4. Although households have other modes of network service (e.g., cable, OTT) and all such 
services are considered in our empirical analysis, for simplicity, the discussion in this section 
considers N as the number of subscriptions to a single service—that is, connected households.
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There are other, largely demographically driven dimensions of use—for 
example, the number of users per household and the age of users, as this 
feeds into hours of use per connection. Note that per equation (2), these 
distinctions in margins of use are implicit in λ to the extent they are not 
counted in N.

12.2.2  Home Services

Our starting point is the Christensen and Jorgenson (1969, 1973) frame-
work, based on Jorgenson (1963), for imputing service flows from capital-
ized consumer durables. Letting KT

H denote the net stock of digital goods 
held by consumers and PKT

H the per- period rental price for use of a unit of 
those stocks, then the value of their capital services PKT

HKT
H in the standard 

formulation would be given by

(3) PKT
HKT

H = ( + T
H)PIT

HKT
H,

where  is an ex- ante real household discount rate, T
H is a depreciation rate 

for household IT stocks, and PIT
H is a quality- adjusted asset price index for 

new investments in those stocks.
Nominal home services for consumer digital goods, the PST

HST
H term in 

equation (1), does not correspond to equation (3) because (3) is essentially 
a capacity flow; that is, (3) does not reflect actual consumption.5 Demand 
complementarity suggests that incorporating the “connected” IT use 
dynamic implied by figure 12.2 is necessary to capture the actual consump-
tion of digital content over networks in PST

HST
H.

The IT device use dynamic is specific to each device type, which implies we 
need to define a use rate ψa for each asset type a—for example, for computers, 
mobile phones, TVs, and so on. We thus have the following:

(4) a = Deva

D*( ),
where Deva is the number of hours per day the device type a is used to con-
nect to networks and D* is the potential number of hours per day any device 
can be used.

We can then define an “effective” stock of network access equipment and 
software, KT

eH, that accounts for how the use of  a given stock of network 
access equipment and software expands, in which case the value of nonmar-
ket consumer digital services in equation (1) is given by

(5a) PST
HST

H = PKT
HKT

eH

5. Private- industry capital income is generally understood to include a utilization effect 
when the rate of return is calculated on an ex- post basis as in Jorgenson and Griliches (1967). 
When consumer durables are capitalized, service flows are imputed using an ex- ante return as 
in (3), and therefore a utilization effect is not “automatically” present. See Hulten (2009) for 
a discussion.
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(5b) = PKT
HKT

H,

where ψ reflects the appropriately weighted aggregate of the individual ψas. 
A related issue is that some consumer digital capital goods are not used for 
the consumption of content over networks (e.g., digital cameras), suggesting 
it is necessary to identify a relevant group of IT devices—call this network 
access equipment (NAE)—for generating the relevant capital services flows. 
The relevant IT products comprising NAE stocks will be identified in mea-
surements; we thus proceed with the assumption that only NAE products 
are included in the capital measures subscripted by T.

Consider next how to measure the implicit volume of  services, whose 
value is given by (5b). Log differentiation of equations (5b) and (3), holding 
 and T

H constant, suggests that the growth of nominal free services PST
H

.
+ ST

H
.

 
is equal to PKT

H
.
+ KT

eH
.

. This in turn implies that PST
H

.
= PIT

H
.

 and that growth of 
real services ST

H
.

 equals the growth of the effective stock KT
eH
.

, or

(6a) ST
H
.

= KT
eH
.

(6b)  = KT
H

.
+ .

12.2.3  Paid- for Services

Digital access services are typically sold as subscriptions, where house-
holds pay a monthly fee for a “plan” in return for access to a range of 
services—for example, broadband, smartphone, cable TV, or subscription 
video on demand. Each plan has a fixed set of characteristics—download 
speed, upload speed, number/availability of videos or video channels, and so 
on—for the services involved. Plan heterogeneity by service type and service 
type characteristics is ignored (for now) for ease of exposition.

Producers offer digital access service plans at prices POT
B. Offer prices are 

subscription contract prices set at the outset of the period, and the average 
price each customer pays is expressed as

(7) POT
B = POT

BOT
B

N
,

where POT
BOT

B are producer revenues from consumer sales of N plans. Nomi-
nal consumer payments, PST

BST
B of equation (1), equals this producer sales rev-

enue. We assume that producers’ capacity is constrained in the short run (the 
period of the contract) and, after accounting for the usual issues regarding 
peak load planning, that producers set offer prices based on a preferred rate 
of capacity utilization determined by anticipated average customer usage, λa.

These assumptions imply that OT
B is a planned quantity of delivered ser-

vices and not necessarily equal to ST
B, the actual quantity of services con-

sumed by users—unless, of course, actual usage λ is perfectly anticipated 
(i.e., λa = λ). It follows that the offer price index POT

B does not necessarily 
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equal the consumption price index PST
B of  equation (1). Let u be an index of 

actual capacity utilization, where u = 1 denotes the situation where λa = λ. 
We then have λ = λau, in which case the relationship between real services 
consumption and real services offered and between consumption prices and 
offer prices is given by

(8) ST
B = OT

Bu.

(9) PST
B = POT

B

u
.

Equation (9) states that the consumption price index PST
B is a utilization- 

adjusted contract price.
Equations (8) and (9) are not very helpful for conventional, timely price 

measurement (as in a monthly Consumer Price Index [CPI]) because produc-
ers’ preferred utilization rate u is not readily observed. However, substitu-
tion of (8) into (9) reveals that the consumption price may be alternatively 
written as

(10) PST
B = POT

BOT
B

ST
B

,

which suggests that consumption prices for access services may be obtained 
by dividing producer revenue by a relevant, consistently defined volume 
measure—that is, ideally, ST

B VOL, where VOL is such a measure.
What might that volume measure be? We know that total consumption 

increases along with the number of users and/or hours of use, but these are 
very coarse indicators that do not capture consumption intensity or service 
quality. An ideal measure would capture consumers’ use in terms of  the 
potential performance of communication networks and where utilized per-
formance is a comprehensive measure capable of being consistently defined 
in the face of rapid technical change (e.g., Internet Protocol [IP] data traffic 
measured as optimally compressed megabytes/petabytes per year)—that is, 
that

(11) SB
T VOL = IP.

A range of  services are delivered over networks, and dataflows/IP traffic 
may not always be a relevant indicator of quality, but for internet access 
services via computers of mobile phones, IP traffic would appear to be a 
solid choice (e.g., see Abdirahman et al. 2017). For video services, quality is 
not so simple; cross- country studies have found that the quality dimension 
for video services is captured by a range of controls, including the number 
of channels (HD and standard) and availability of premium channels and 
4K display resolution (Corrado and Ukhaneva 2016, 2019; Díaz- Pinés and 
Fanfalone 2015).
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12.2.4  Use Intensity, λ

With real services captured by a performance measure, the changes in 
network and device intensity of use, , can be shown to reflect the difference 
between changes in the average price paid by users for a plan and the price 
index for access services—that is, it reflects changes in the quality of services 
consumed. To see this, log differentiate (2):

(12) = ST
B
.

N.

After adding and subtracting the nominal change in paid services, POT
BOT

B
.

, 
and combining terms, we obtain

(13) = POT
BOT

B

N

.
POT

BOT
B

ST
B

.

.

Substitution of (7) and (10) for the first and second terms yields

(14) = POT
B

.
PST

B
.

.

In equation (13), the change in use intensity  reflects the difference between 
the rate of change in a per- user price and a unit volume price or, per equation 
(14), the difference between the rate of change in the price index for access 
services and the rate of change in the average price per plan—that is, quality 
change.

Statistical agencies generate price indexes in terms of offer prices POT
B, not 

consumption prices PST
B. Consider now the relationship between  and the 

quality change in official price indexes for network access service (based on 
offer prices)—for example, quality change that might be captured using 
hedonic techniques that account for improvements in speeds and other capa-
bilities in subscription telecom service plans.6 Note first that the change in 
the offer price index, POT

B
.

, also can be decomposed into the rate of change 
in the quality of offered plans, , and the rate of change in the average price 
per plan, POT

B
.

—that is, POT
B

.
= POT

B
.

. Next, from log differentiation of (9), 
after subtracting the result from (14) and combining terms, the relationship 
between  and  is readily shown as

(15) = + u,

which says that the quality change in real network access services consump-
tion is equal to the quality change in offered plans (at offered prices) plus the 
unanticipated change in network service provider utilization.

12.2.5  Network Utilization, u

Consider now how one might measure u. We do not need to measure 
u to measure prices for consumer digital services, but knowing u helps us 

6. As done, e.g., at the BLS (see Williams 2008).
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interpret and analyze them. For example, knowing the direction of change 
in u helps us understand how little change in measured quality change in 
contract prices (v) might coexist with notable declines in consumption prices 
for network access services (PST

B); per equation (15), this situation occurs 
when there are notable increases in both household use intensity (λ) and 
network utilization (u).7

As previously indicated, private industry capital income is generally 
understood to include a utilization effect, and previous work has considered 
how to extract a measure of network capital utilization from productivity 
data for internet service providers, or ISPs (Corrado 2011; Corrado and 
Jäger 2014; see also Corrado and van Ark 2016). The basic idea in these 
works is that when an ex- ante approach is used to determine an industry’s 
return, a utilization factor can be calculated so as to exhaust observed capi-
tal income, provided that the industry’s aggregate net stock of capital is not 
particularly sensitive to composition differences in asset use—that is, it acts 
more or less as a single capital good (Berndt and Fuss 1986; Hulten 1986). 
This is arguably the case for network services providers in the United States, 
whose capital stock is a physical network whose parts largely operate as a 
single good. Employing this assumption, Corrado (2011) found a substan-
tial difference between the US ISP industry’s ex- post calculated nominal rate 
of return and the market interest rates typically used in ex- ante productivity 
analysis; the difference was able to be interpreted as network utilization.

The network services–providing industry’s ex- post gross return is defined as

(16) ISP = (rISP + ISP ISP),

where rISP is an ex- post nominal net return determined residually (e.g., as 
in Jorgenson and Griliches 1967) given depreciation δISP and revaluation 
of the industry’s capital stock πISP. Now define the industry’s ex- ante gross 
return as

(17) ISP = ( )r + ISP ISP ,

where r  is an ex- ante nominal rate of  interest. Let uISP be the industry’s 
capital utilization rate. As shown in appendix section 12.A1, this utilization 
rate is given by

(18) uISP =
ISP

ISP
,

which suggests that the underlying relationship between the ex- post and 
ex- ante net rate of return—that is, r versus r—for an industry or sector is 
an indicator of its capital utilization.8

7. On the other hand, quality- adjusted contract prices are likely mismeasured when there is 
little change in u in the face of increases in household use intensity.

8. In models that introduce imperfect competition in an otherwise standard neoclassical 
growth framework (e.g., Rotemberg and Woodford 1995), utilization is absorbed in a more 
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12.2.6  Summary

To summarize, changes in the quantities and prices of consumer digital 
services as set out in equation (1) are as follows:

(19a) ST
H
.

= KT
H

.
+

(19b) PST
H

.
= PT

IH
.

(19c) ST
B
.

= Vol
.

(19d) PST
B

.
= PT

OB
.

.

where λ and ψ were defined above and PT
I H is a quality- adjusted asset price 

index for network access equipment.

12.3  Measurement

This section summarizes how the prices and quantities of the previous 
section are measured and presents some key results. We begin with the new 
network access services price index, describing how this index may be built 
using alternative volume measures. We then present results for  and for our 
calculations of utilization from the business side, u. A second subsection sets 
out how our consumer digital capital stocks, their connectivity use rates, and 
digital capital services are obtained.

12.3.1  Access Prices, Household Use Intensity, and Network Utilization

We calculate a price index for four types of IT services provided to house-
holds by the business sector (cable, internet, mobile, and video streaming 
services) by dividing nominal spending for each service type ( j) by a measure 
that reflects the quality- adjusted time spent using the service—that is, an 
appropriate VOL for each j. The quality- adjusted price indexes by service 
type are aggregated to create an overall access price index that, when used 
to deflate total spending on access services, captures real access services 
consumption.

For exposition and analysis, we consider price indexes constructed using 
four alternative measures of quantity: the number of households subscribed 
to the service, the number of individual users, time spent on the service, and 
time spent adjusted for quality (our ultimate measure). The four alternative 
price and volume concepts will be indexed by k. Thus four alternative price 
indexes for each service type are calculated by dividing revenue for the ser-
vice type by the four alternative volume measures, yielding prices paid per 
household (k = H), per individual (k = I), per unit of time (k = D), and per 
unit of constant- quality time (k = Q)—that is, we have PH

ST
B
, PI

ST
B
, PD

ST
B
, and 

general inefficiency wedge capturing, among other things, the ability of firms to maintain a 
price markup.
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PQ
ST

B
 for each service type j. (Note: D is the notation used for time—i.e., as 

in hours per day).
The alternative price indexes are calculated as follows: Let (POT

BOT
B)j be 

payments for service type j within total payments POT
BOT

B. The price change 
for price index concept k covering all J types of services is then

(20) lnPk
ST

B
=

j=1

J

wj ln
POT

BOT
B

VOLk j

where k = H,I,D,Q,

wj is a Divisia payments share for digital access service type j, and VOLk, j is 
service type j’s volume measure corresponding to price index concept k. In 
terms of the framework set out in section 12.2, we thus have the following:

(21) lnPST
B = lnPQ

ST
B

(22) = ( lnPQ
ST

B
lnPH

ST
B
).

Note that the suite of  indexes constructed along margins of  use enables 
changes in the quality- adjusted price index to be decomposed into contribu-
tions from I, T, and Q—that is, into contributions from growth in individuals 
per household using the service, time spent on the service per individual user, 
and the quality of an hour of use of the service, respectively. Appendix sec-
tion 12.A2 documents the data sources for each price concept for each access 
service price index, including reporting the time series for prices by access 
service type and aggregate prices for each alternative measure of volume. 
Note that the contract price POT

B, the price observed by the consumer, is not 
needed for the calculations (or analysis) in this chapter.9

The aggregate quality- adjusted price index for access service correspond-
ing to equation (21), shown as the dashed line in figure 12.3, falls 12.4 percent 
per year over the full period of this study. Household use intensity,  per 
equation (22) and the solid line in the figure, increases 13.9 percent at an 
annual rate. Figure 12.3 also shows a price index for network access services 
constructed using components of the Bureau of Economic Analysis (BEA) 
personal consumption expenditures (PCE) price index and our per house-
hold price index (i.e., the average price per household, PH

ST
B
). Note first that 

our new access services price index (the gray line) falls much faster than the 
implicit price index in existing GDP (the black line); the growth implications 
of  this finding will be reviewed in the next section of  this chapter. Note 

9. Depending on the contract arrangement, the price observed by the consumer may cor-
respond to any of  the four price concepts we consider. For example, if  a consumer pays a 
cable company a fixed amount to keep the household connected each onth, POT

B equals PH
ST

B
. 

If  a consumer pays an internet provider a fixed amount to have unlimited access each month, 
POT

B equals PI
ST

B
. If  the consumer has a prepaid plan for a certain number of hours of talk time 

on a feature phone, POT
B equals PD

ST
B
. And if  the consumer has a contract for smartphone use 

based on data traffic consumed, POT
B equals PX

0 . This information is not needed to construct 
our price indexes, even though these details are required for official prices based on contract 
arrangements.
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second that changes in the BEA price index hovers about changes in our 
per- household price from about 2000 on; if  the BEA index accurately rep-
resents changes in contract prices, the result implies that there is very little 
quality change in measured offer prices from 2000 to 2017—that is,  has 
shown essentially no change since 2000.

Results for the overall price index by subperiods are plotted in panel (a) of 
figure 12.4; spending shares for its subcomponents by type are shown in 
panel (b) of the figure. As may be seen, the decline in the quality- adjusted 
network access price index accelerates over time, first as internet service 
accounts for a rising share of spending (1997 to 2007) and then as smart-
phone access becomes more important (2007 to 2017).

The trends in the aggregate network access price index also reflect large 
differences in the contributions by access mode, shown in figure 12.5. Con-
tributions to the overall volume price change by each intensity margin (i.e., 
volume measure) show the following. First, there is little difference between 
changes in per- individual- user prices relative to per- household prices; as a 
result, only the contribution of changes in the price per household shows 
in figure 12.4. Second, quality change contributes significantly to the over-
all decline in network access prices in most subperiods. Third, consumers’ 
increase in time connected provides a substantial additional kick from 1997 
to 2012; time connected is especially important in driving price change for 
mobile and subscription video- on- demand (SVOD) services.

Finally, given that both usage trends and technological change are major 
drivers of the drops in our network access price index, we calculate values 
for producer network utilization u in light of the fact that figure 12.3 sug-

Fig. 12.3 Network access services price change and use intensity
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gested there was very little (measured) quality change in official access prices 
since 2000. As previously discussed,  will reflect trends in consumer usage 
as well as technological improvements in content delivery systems measured 
on the basis of contract prices. Our calculation of u is detailed in appendix 
section 12.A1, and figure 12.6 shows the result, which covers the period from 
2000 to 2016. While the utilization measure bounces about year by year, it 
rises more than 4.5 percent per year, on balance. This pattern is interesting 
for several reasons, but before we offer our interpretation, note that the mea-
sure in figure 12.6 pertains to the entire telecommunications and broadcast-
ing industry—that is, it includes commercial and enterprise customers and 
thus does not solely reflect the interaction between the demand and supply 
of consumer content delivery services as defined in this chapter. That said, 
per equation (15), the rather sharp rise in u supports our decomposition 
showing that a significant fraction of the large divergence between  and  

Fig. 12.4 Network access services price index
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after 2000 reflects increases in use rates. In terms of the model of section 
12.2, λ consistently exceeded λe and lowered the effective price paid by each 
consumer (holding per- plan quality constant).10

10. Seen from another perspective, the rise in u reflects strengthening industry profitability 
and pricing power. On a per- household basis, changes in households’ average prices actually 
decelerated (or fell) after 2002 relative to earlier experience (see again figure 12.4), suggesting 
that the rise in relative profitability reflected a prolonged positive demand shock—that is, 
consistent with a situation in which λ consistently exceeded λe.

Fig. 12.5 Price decompositions by mode of network access
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12.3.2  Digital Net Stocks, Capital Services, and Asset Prices

In this section, we set out our measures of consumer digital services based 
on “connected” IT capital stocks. Table 12.1, column (1), lists the 14 prod-
uct classes of durable goods considered to be consumer durable digital (or 
IT) goods. This list ranges from TVs, to computers and software, to cell 
phones.11 Consumer spending for most of these products may be developed 

11. Game consoles, which have embodied massive innovation in the period of this study, are 
not included for lack of data.

Fig. 12.5 (cont.)
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from underlying detail in the US National Income and Product Accounts 
(NIPAs); indeed, the first 12 product classes shown in the table directly cor-
respond to categories of digital goods reported in the annual PCE bridge 
table.12 For the analysis in this chapter, estimates of  the retail value of 
consumer cell phone purchases are developed from industry sources; see 

12. BEA’s annual PCE bridge table begins in 1998 and does not extend through the most 
recent NIPA year. Nine categories of PCE spending on digital goods are reported on NIPA 
table 2.4.5U, however, and these data are used to develop the more detailed, bridge table–based 
series from 1970 to 1997 and for the year 2017.

Fig. 12.6 Implied network utilization

Table 12.1 PCE durable digital goods

 
Product class 

(1)  
Depreciation groupa 

(2)  

NAE groupb 

(3)

1. Televisions A Y 
2. Cameras B N 
3. Other photographic equipment A N 
4. Other video equipment A N 
5. Audio equipment A N 
6. Recording media A N 
7. Computers B Y 
8. Data storage equipment B Y 
9. Monitors B Y 

10. Computer peripherals B Y 
11. Miscellaneous office equipment A N 
12. Software and accessories B Y 
13. Cell phones B Y 
14. Other telephone and communications equipment A  N 

aA = nine- year service life, B = five- year service life.
bNAE = network access equipment.
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appendix section 12.A3 for further details on how this series and the other 
telephone equipment series are estimated.

In terms of service lives, the products are grouped into two categories: 
those with a nine- year service life (A) and those with a five- year service 
life (B). These groupings are indicated in column (2) of the table and are 
a (slight) simplification of  the service life categories used by the BEA in 
their fixed asset accounts.13 To compute net stocks, we follow the BEA and 
Hulten and Wykoff (1981a, b) and use a declining- balance rate of 1.65 for 
these goods, which implies geometric rates of depreciation of 0.1833 and 
0.3300 for groups A and B, respectively. An end- of- year (EOY) net stock of 
each product class a in table 12.1 is calculated using the perpetual inventory 
method with geometric depreciation, again following the BEA (see page 
M- 7 in US Department of Commerce, Bureau of Economic Analysis 2003):

(23) Ka,EOY
H = Ia,t

H 1 a
H

2( ) + (1 a
H)Ka,EOY 1

H ,

where Ia,t
H is annual real investment for each asset class a in year t.

The analysis of demand complementary of payments for digital access 
services with the use of device stocks pertains to NAE stocks only—that is, 
it pertains to only the equipment used for cable TV, subscription video, and 
internet or mobile network access. Column (3) of the table is an indicator 
of whether the asset class a is included in these stocks—that is, whether the 
equipment is included in KT

H and requires an estimate of its use intensity 
ψ𝑎 = 𝐷𝐷𝑣𝑎/𝐷* per equation (4). These equipment- use intensities allow us 
to identify the stock of IT capital that yields unpriced services PST

HST
H per 

equation (5b).
There are three types of  equipment that require estimates of  their use 

intensity: televisions, computers, and cell phones. Our estimates begin with 
our time- based estimates of average household time spent using each access 
service, panel (a) of figure 12.7. We then measure the share of households 
with at least one of each device and the number of devices in use conditional 
on the household having such a device (panels b and c). The total number 
of hours households spend on each device is calculated from these elements, 
which also requires allocating time spent on accessing each digital service to 
the capital used for the access. The result expressed as the share of the day 
each device type is in use (ψa) is shown in panel (d). Additional details and 
data sources for this calculation are spelled out in appendix section 12.A4.

To calculate PST
HST

H, we proceed as follows: The nominal value of  the 
capacity flow of services from each consumer digital asset is calculated via 
equation (3) with the gross ex- ante rental rate formed using the 10- year 
constant- maturity government bond rate, the relevant depreciation rate as 

13. Compared to BEA’s methods, the major simplification we make is to use geometric 
depreciation for computers.
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described above, and actual price change for each asset type.14 Then we 
(a) sum over all asset types to obtain an estimate of consumer capital services 
based on total digital goods stocks and (b) sum over the asset types included 
in network access equipment to obtain the subcomponent for services from 
total NAE stocks. Finally, we (c) adjust the capacity of  NAE services for the 
extensive margin (i.e., we apply our estimates of ψa) to obtain actual capital 
services generated via households’ use of IT goods purposed for accessing 
digital networks—that is, capital services from the effective NAE stocks. The 
results of (a), (b), and (c) are shown in figure 12.8, plotted relative to GDP 
adjusted to include them.

Our estimate of  home- generated digital services relative to GDP, the 
dashed- dotted line in figure 12.8, rises steadily over the 30 years shown in the 
figure, reflecting both the increase in relative importance of NAE stocks in 

14. In the implementation of (3), midperiod stocks computed from EOY stocks are used.

Fig. 12.7 Time- based equipment use intensity
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all digital stocks (the dashed line versus the thin solid line) and the increased 
portion of NAE stocks connected to networks (the dashed- dotted versus 
dashed lines) that reflects the increase in ψ. The ratio of PST

HST
H relative to 

GDP stood at 1.04 percent of GDP in 2017, up from 0.48 percent 10 years 
earlier. This trajectory is roughly similar to estimates of free services pre-
pared using a very different approach (the black dots in the figure).15

The real investment used to develop net stock estimates via equation (23) 
is calculated by deflating nominal spending on each product class using asset 
price indexes based on the sources documented in the appendix. These prices 
are research indexes largely adapted from prior work (Byrne and Corrado 
2015a, 2015b, 2017a, 2017b; Byrne 2015). In new moves, we incorporate 

15. Nakamura, Soloveichik, and Samuels (2018) estimate the costs of producing both profes-
sionally created and user- generated consumer content. The black open dots in the figure are 
their estimates for the digital component of their professionally created free content plus their 
estimate of the value of user- generated free content.

Fig. 12.7 (cont.)
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two quality- adjusted price indexes from Statistics Japan and exploit work 
by Copeland (2013) on consumer game software in combination with results 
from the BLS producer price index for game software. Our price index for the 
14 consumer digital goods listed in table 12.1 falls 11.7 percent per year from 
2007 to 2017, 2.6 percentage points faster than its official counterpart (based 
on published PCE prices); see appendix section 12.A3 for further details.

The implicit deflator for consumer digital assets depends on the weight-
ing of the components in the effective NAE aggregate. Figure 12.9 shows 
the annual price for total NAE stocks versus effective NAE stocks. As may 
be seen, the weighting of the underlying components produces very similar 
results for effective NAE stocks versus a simple aggregate of those stocks. 
Our price index for home services, PST

H, is the Jorgensonian rental price index 
for effective NAE stocks (the solid line in the figure), which is driven by the 
appropriately weighted asset price (the dotted line). The effective NAE rental 
price fell 12.5 percent per year over the full period of our study and dropped 
17.2 percent from 2007 to 2017.

12.3.3  Summary

Our new estimates of digital services consumption consist of two com-
ponents: a paid- for network access services component and an imputed 
connected IT capital services component. The price index for network 
access services was reviewed in section 12.3.1. To obtain real spending, we 
deflate nominal figures from the national accounts published by Bureau of 
Economic Analysis, incorporating some additional detail as explained in 
appendix section 12.A2.

The imputed component was reviewed in section 12.3.2. The new nominal 
spending measure was developed as a capital services flow derived from the 

Fig. 12.8 Consumer digital capital services, nominal estimates from 1987 to 2017
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effective NAE stocks shown in figure 12.8. The price deflator is then the 
corresponding rental price, displayed in figure 12.9.

12.4  Results and Implications

This section reports the new real digital services consumption measures 
and discusses their implications for real GDP and consumer surplus.

12.4.1  GDP

Our results for GDP are summarized in table 12.2. These results are calcu-
lated under the conservative assumption that overall real GDP is unaffected 
by differences in the PCE IT goods investment price indexes developed in 
this chapter and official prices used in GDP because these goods are primar-
ily imported (whether for “effective” investment or all IT goods spending); 
recall too that we are unable to include the rapid quality change in game 
consoles in our price indexes.

The key takeaways from table 12.2 are, first, as shown on line 2, column (1), 
real services from use of connected digital systems grow very strongly, averag-
ing 26.2 percent per year for the full period of the study. Second, our new results 
for real access services (line 4) are also very strong; as shown in column (5), real 
growth averaged nearly 34 percent per year during the Great Recession and its 
immediate aftermath (i.e., from 2007 to 2012). Third, this chapter’s approach 
to accounting for innovation in consumer digital services shows that it is pos-
sible to “see” digitalization in GDP. If our methods were to be incorporated 
in the national accounts of the United States, the contribution of consumer 
digital services (both components) to real GDP growth would average 0.57 
percentage points from 2007 to 2017 (line 7, column 4), and annual real GDP 
growth would be 0.46 percentage points per year higher (line 7a, column 4).

Fig. 12.9 Consumer digital asset prices, annual price change from 1988 to 2017
Source: Elaboration of price indexes developed for this chapter.
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The GDP impacts shown in table 12.2 are substantial. As reported and 
analyzed elsewhere (Byrne and Corrado 2020), the inclusion of our price 
index for paid- for digital access services in the national accounts consumer/
PCE price measures also are substantial.

With regard to changes in the trend rate of real GDP growth, the impact 
of using our framework for measuring consumer digital services boosts the 
rate of real GDP growth from 2007 to 2017 relative to 10 years earlier (1997 
to 2007) by 0.29 percentage point (line 7a, column 4 less column 3)—a 
notable acceleration. Both the GDP boundary expansion (adding imputed 
real digital capital services) and the adoption of  a quality- adjusted con-
sumption price index for network access services contribute to this accel-
eration, with about 60 percent stemming from the net contribution of the 
new access services price index (0.16 percentage point). The latter contribu-
tion also boosts business productivity growth; as with services from owner- 
occupied housing, the imputation for self- generated digital capital services 
is not factored into conventional measures of productivity change.

12.4.2  Consumer Surplus

The consumer surplus stemming from innovations in consumer content 
delivery can be calculated using an index number approach if  the quality- 
adjusted price indexes used in the analysis fully capture the benefits of the 

Table 12.2 Changes in consumer digital services, 1987 to 2017

 1987  
to 2017

1987  
to 1997

1997  
to 2007

2007  
to 2017

2007  
to 2012

2012  
to 2017

Percent change, annual rate  (1)  (2)  (3)  (4)  (5)  (6)

Capital services: 
1. Nominal 11.9 10.9 13.6 11.2 10.5 11.9 
2. Real 26.2 18.1 29.5 31.2 33.7 28.8 

Access services:
3. Nominal 11.5 15.1 13.3 6.2 7.7 4.7 
4. Real 26.2 18.1 29.5 31.2 33.7 28.8 

Memos:
Effective NAE investment:

5. Nominal 12.2 10.5 15.6 10.5 11.2 9.8 
6. Real 27.9 19.4 37.8 32.4 35.6 29.3 

Contribution to GDP a,b

7. Consumer digital services 0.33 0.09 0.30 0.57 0.57 0.59 
7a. Net of existing 0.25 0.05 0.17 0.46 0.38 0.54 
8. Capital services 0.09 0.02 0.06 0.17 0.15 0.19 
9. Access servicesb 0.24 0.07 0.24 0.40 0.40 0.40 
9a. Net of existing  0.16  0.03  0.11  0.29  0.23  0.34 

aPercentage points. 
bGDP contributions are calculated assuming that differences between PCE digital goods in-
vestments and their price indexes and their official counterparts have no impact on existing 
GDP because they are largely imported.
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changes in question. Assuming our price indexes are up to the task, we 
compute consumer surplus as the macroeconomic gain from the relevant 
continuing commodities following Diewert and Fox (2017) as

(24) .5( ST
H ST

H) + .5( ST
B ST

B) + .5( IT
eH IT

eH),

where Δ is a long difference and the s are changes in the relative prices—
that is,

(25) ST
H = PST

H

PPCE
, ST

B = PST
B

PPCE
and IT

eH = PIT
eH

PPCE
,

where PPCE is the overall price index for consumer spending.
In the textbook exposition of consumer surplus, the price drop from the 

Hicksian reservation price to the transaction price of the new good or service 
is the welfare gain stemming from the innovation in question. To capture 
this gain, benefits of an innovation can be quantified by estimating demand 
elasticities or parameters of  utility functions—for example, as in Petrin 
(2002) or Greenwood and Kopecky (2013). Many individual innovations are 
relevant to this study, however, and eschewing a parametric approach and 
estimating consumer surplus using long differences applied to our annual 
quality- adjusted price (and quantity) indexes via (24) should well approxi-
mate the relevant gain. Recall that these indexes are built from annual and 
quarterly information (prices, revenues, characteristics) on detailed compo-
nents of each product/service. They are designed to incorporate the serial 
innovations we wish to capture despite the fact that, strictly speaking, Hick-
sian reservation prices for each innovation are not estimated. But even for 
significant innovations, such as the iPhone relative to the smartphones that 
preceded it, the omission of an initial reservation price in the quarter before 
introduction has a negligible impact on GDP (in the introductory quarter) 
and on long differences calculated from an otherwise accurate time series of 
quality- adjusted price change. This is mainly because the revenue weight on 
the unobserved initial price drop for a new good is usually very small (half  
of the revenue in the initial period), which greatly diminishes the impact of 
the missing initial price change.16

The results of computing (24) are presented in table 12.3. Changes from 
the beginning of our sample (1987, arguably also the beginning of the inter-
net) to the beginning of social media and mobile broadband (taken as 2004) 
are assessed, as are changes from this point to 2017, the last year of our esti-
mates. As may be seen on row 1, the consumer surplus due to innovations in 

16. To see this, we continue with the iPhone example. Total iPhone revenue in the quarter of 
its introduction in 2007:Q4 was $8 million according to Apple’s financials, or $32 million at an 
annual rate. GDP was $14,452 billion in 2007. One- half  of the revenue gain from the iPhone 
in its introductory quarter at an annual rate was then 0.11 × 10−5 relative to GDP. Consider 
now, as a thought experiment, that the change from the reservation price to the actual price of 
the iPhone in the quarter of introduction was a ginormous −1,000 percent. Price change for 
GDP is essentially unaffected.
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digital content delivery from 1987 to 2004 (18 years) was nearly $900 billion 
in 2017 dollars (column 1) and $5.8 trillion over the next 14 years (column 
2). These are substantial amounts. On a per- user basis, rows 5 through 8, 
the gain hovered at or slightly below $30,000 (in 2017 dollars). While these 
numbers seem very large (implying a per- user gain in economic welfare of 
more than $2,000 per year, on average, during the latter period), they are 
in the same neighborhood as estimates of consumer surplus obtained by 
Brynjolfsson, Collis, and Eggers (2019) using massive online choice experi-
ments. The sum of their median willingness- to- pay estimates for the items 
included in their surveys (search engines, email, maps, video, e- commerce, 
social media, messaging, and music) was $32,232 in 2017 (Brynjolfsson, 
Collis, and Eggers 2019, table 7, sum of items in column 2).

We compare our long difference estimates with the single- point- in- time 
survey results of Brynjolfsson, Collis, and Eggers (2019) based on a conjec-
ture that respondents in their massive online experiments are thinking about 
what they would have to pay to “return” to life before social media, smart-
phones, and mobile broadband. Brynjolfsson, Collis, and Eggers (2019) also 
report median willingness- to- pay estimates for a survey conducted in 2016, 
and these values sum to $26,150, expressed in 2017 dollars.17 Using (24) with 
a long difference from 2004 to 2016 (i.e., dropping the last year and dividing 
by a slightly lower number for the average number of users) yields an estimate 
of the consumer surplus of $24,676 per user—again in the same ballpark.

17. The simple sum of their figures is $25,697.

Table 12.3 Consumer surplus from innovations in content delivery systems

  1987 to 2004 2004 to 2017
    (1)  (2)  

Surplus, in billions of 2017 dollars 
1. Digital goods and services, total 892 5,841 
2. Capital investment 262 1,287 
3. Capital services 311 2,301 
4. Access services 319 2,254

Surplus, in thousands of $ per usera

5. Digital goods and services, total 27,320 30,294
6. Capital investment 8,031 6,672 
7. Capital services 9,510 11,933 
8. Access services 9,779 11,689 

Annual surplus per user
9. Digital goods and services, total 1,607 2,330 

10. Capital investment 472 513 
11. Capital services 559 918 

 12.Access services  575  889  

Notes: All figures are in 2017 dollars.
aThe per- user figure is obtained by dividing the results on rows 1 to 4 by the average number 
of connected users during the period indicated.
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12.5  Conclusion

The household is an important locus of the digital revolution and one 
of its most visible since smartphones and social media became widespread. 
Entertainment, communication, and work from home have been super-
charged by advances in hardware, software, and communication. Hard-
ware innovation has proceeded at an especially blistering pace as the major 
household platforms—smartphones, tablets, televisions, gaming consoles, 
and all the apps that run on them—have become extraordinarily powerful 
(and cheap) and as datacenter innovation (i.e., the cloud) has charged ahead 
in the background. And faster communication speeds—both wireline and 
wireless—have been essential; for example, nearly one- third of all IP traffic 
in 2016 was accounted for by Netflix alone, a usage volume not possible one 
or two years earlier.

The highly visible innovations in consumer content delivery raise the ques-
tion of whether existing national accounts are missing consequential growth 
in output and income associated with content delivered to consumers via their 
use of digital platforms. The changing production border for digital content 
delivery suggests that GDP (as well as other macroeconomic measures, such 
as PCE prices) needs to account for the substitution away from market- based 
digital services consumption. How and whether to address distortion to the 
production boundary created by the substitution between market and house-
hold activity is an old issue in national accounting, an issue that is often 
dismissed as second- order except for the case of owner- occupied housing.

We believe the digitization of consumer content delivery presents a first- 
order distortion to the production boundary of national accounts—and 
that an imputation for the omitted services from connected IT capital needs 
to be made to avoid imparting a bias to GDP. The case for imputing services 
from owner- occupied housing is based on the size of the omitted services 
and the importance of accounting for them in international comparisons. 
The case for imputing services from connected IT capital is based on the 
astonishingly fast relative growth of the omitted services in both real and 
nominal terms. As shown in the analysis of  the contribution of business 
IT goods and services to real GDP growth set out in Byrne and Corrado 
(2017b), even as the extensive aspects (e.g., hours per day) driving consumer 
digital services growth run their course, access services and services from 
connected IT capital will continue to provide an extra kick to real GDP 
growth due to their declining relative price.

All told, we estimate that consumer welfare due to growth in digital con-
tent consumption has been enhanced to the tune of $2,330 per connected 
user per year from 2004 to 2017 (2017 dollars). And when the demand com-
plementarity framework set out in this chapter is incorporated into existing 
GDP, we find that real consumer digital services contribute nearly .6 per-
centage points per year to US economic growth from 2007 to 2017, about 
1/4 percent per year faster than its contribution from 1997 to 2007.
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Appendixes

12.A1 Network Utilization

This appendix provides a derivation of equation (18) in the main text—
that is, we set out how to extract a measure of network capital utilization 
from productivity data and document the calculations reported in section 
12.3.1.

12.A1.1 Derivation

What follows is based on the framework set out for analyzing commu-
nication networks and network externalities in Corrado (2011), in which 
it is assumed there are no markups due to imperfect competition or other 
inefficiency wedges; see also Corrado and Jäger (2014) and Corrado and 
van Ark (2016).

In sources- of- growth accounting, the contribution of private capital is 
expressed in terms of the services it provides. Let the value of the relevant 
private stocks be denoted as PIK, where the price of each unit of capital PI 
is the investment price and the real stock K is a quantity obtained via the 
standard perpetual inventory model. In our application, the value PIK rep-
resents the replacement value of network service provider capital in terms of 
its capacity to deliver digital services (i.e., including in this application, the 
value of the “originals” for the content the provider can disseminate). The 
value PKK represents the service flow provided by that capital.

The price PK is an unobserved rental equivalence price that is related to 
the investment price by the user cost formula, PK = PI(r + δ – π), where r is 
an after- tax ex- post rate of return, δ the depreciation rate used in the per-
petual inventory calculation, π is capital gains, and T is the Hall- Jorgenson 
tax term. The rental equivalence price is simplified by defining the gross 
return Φ = (r + δ – π)T so that when capital services PKK are equated with 
observed capital income via the residual calculation of an ex- post after- tax 
rate of return r, we have

(A1) observed capital income = PIK .

When capital services are computed on the basis of  an ex- ante financial 
rate of return r , the value for capital income of network providers must be 
expressed differently. Defining the ex- ante gross return = (r + )T  
accordingly, network provider capital income is expressed as

(A2) observed capital income = PIKuISP ,

where uISP is network capital utilization and, via Berndt and Fuss (1986), 
capital utilization uISP (rather than r) exhausts capital income.

Equating expressions (A1) and (A2),

PIK = PIKuISP ,

 EBSCOhost - printed on 2/8/2023 7:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



Accounting for Innovations in Consumer Digital Services    499

and solving for uISP yields

(A3) uISP = .

This equation states that under the conditions set out in Berndt and Fuss 
(1986), the relationship between the ex- post and ex- ante gross rate of return 
for an industry or sector reflects its capital utilization.

12.A1.2 Calculations

The implied network utilization calculating according to equation (A3), 
where r in the definition of Φ is calculated following Jorgenson and Grili-
ches (1967) as the ex- post return for the combined Motion Picture, Sound 
Recording, Telecommunications, and Broadcasting industries (North 
American Industry Classification System [NAICS] 512,515,517) and where 
r  in the definition of Φ, is set to Moody’s AAA corporate bond rate.

The ex- post net return and the δ and π components of  Φ and Φ were 
calculated by the authors for the combined sector using data from BEA’s 
industry accounts (accessed October 2018). The results for u are shown in 
text figure 12.6.

12.A2 Access Service Prices and Consumption

To calculate a price index for each of the network access services pro-
vided by the business sector—cable, internet, mobile, and subscription video 
streaming—we begin with nominal spending and divide by a measure of 
aggregate time spent using the service adjusted for quality. These individual 
price indexes are aggregated to create an overall access price index used 
to deflate nominal spending on access services and produce a measure of 
consumption.

For exposition and analysis, we also consider price indexes constructed 
using four alternative measures of  quantity: the number of  households 
subscribed to the service, the number of  individual users, time spent on 
the service, and time spent adjusted for quality (our preferred measure for 
deflation). Thus four alternative indexes are calculated for each of the four 
services by dividing revenue by each of the alternative measures of quantity, 
yielding prices paid per household, per individual, per unit of time, and per 
unit of constant- quality time: PH, PI, PD, and PQ.

Data sources and calculation methods for service prices are summarized 
in table 12.A1.

12.A2.1 Nominal Spending

For nominal spending, we use figures from the national accounts pub-
lished by the Bureau of Economic Analysis, table 2.4.5U, “Personal Con-
sumption Expenditures by Type of Product.” In the cases of mobile access 
and video on demand, we developed additional detail as explained below.

 EBSCOhost - printed on 2/8/2023 7:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



T
ab

le
 1

2.
A

1 
S

ou
rc

es
 a

nd
 m

et
ho

ds
 fo

r 
ac

ce
ss

 s
er

vi
ce

 p
ri

ce
s

 
 

R
ev

en
ue

 
H

ou
se

ho
ld

s
 

U
se

rs
 

T
im

e 
un

it
s

 
Q

ua
lit

y 
un

it
s

C
ab

le
B

E
A

 N
IP

A
 ta

bl
e 

2.
4.

5U
., 

lin
e 

21
5:

 
“C

ab
le

, s
at

el
lit

e,
 a

nd
 o

th
er

 li
ve

 
te

le
vi

si
on

 s
er

vi
ce

s”

19
87

–8
8:

 S
ta

ti
st

ic
al

 A
bs

tr
ac

ts
 o

f 
th

e 
U

ni
te

d 
S

ta
te

s 
(c

it
in

g 
C

en
su

s 
of

 H
ou

s-
in

g)
.

19
89

–2
01

5:
 F

C
C

 r
ep

or
ts

, “
St

at
us

 o
f 

C
om

pe
ti

ti
on

 in
 M

ar
ke

ts
 fo

r 
th

e 
D

el
iv

-
er

y 
of

 V
id

eo
 P

ro
gr

am
m

in
g”

 (c
it

in
g 

SN
L

 K
ag

an
 r

ep
or

ts
),

 v
ar

io
us

 y
ea

rs
.

20
16

–1
7:

 E
xt

ra
po

la
te

d 
ba

se
d 

on
 r

ep
or

ts
 

fr
om

 a
va

ila
bl

e 
co

m
pa

ni
es

 (A
T

&
T,

 V
er

-
iz

on
, C

ha
rt

er
ed

, C
om

ca
st

, D
IR

E
C

T
V

, 
D

IS
H

).

19
87

–p
re

se
nt

: N
um

be
r 

of
 s

ub
sc

ri
b-

in
g 

ho
us

eh
ol

ds
 ti

m
es

 n
um

be
r 

of
 

re
si

de
nt

s 
at

 le
as

t t
w

o 
ye

ar
s 

ol
d 

pe
r 

T
V

 h
ou

se
ho

ld
 r

ep
or

te
d 

by
 

N
ie

ls
en

.

A
ve

ra
ge

 h
ou

rs
 b

y 
ag

e 
gr

ou
p 

(2
–1

1,
 

12
–1

7,
 1

8+
) r

ep
or

te
d 

by
 N

ie
ls

en
, 

w
ei

gh
te

d 
by

 p
op

ul
at

io
n 

ag
e 

di
st

ri
-

bu
ti

on
 fr

om
 U

S 
C

en
su

s.

19
87

–p
re

se
nt

: H
ou

rs
 w

ei
gh

te
d 

by
 

(n
at

ur
al

 lo
g 

of
) n

um
be

r 
of

 c
ha

n-
ne

ls
 p

er
 s

ys
te

m
 r

ep
or

te
d 

by
 F

C
C

.

In
te

rn
et

B
E

A
 N

IP
A

 ta
bl

e 
2.

4.
5U

., 
lin

e 
28

5:
 

“I
nt

er
ne

t a
cc

es
s”

B
ro

ad
ba

nd
: 

19
99

–2
01

7:
 F

C
C

 r
ep

or
t,

 “
In

te
rn

et
 A

cc
es

s 
Se

rv
ic

es
,”

 v
ar

io
us

 y
ea

rs
.

D
ia

l-
 up

:
19

87
–2

00
0:

 C
om

pa
ny

 fi
na

nc
ia

l r
ep

or
ts

 
an

d 
pr

es
s 

re
po

rt
s,

 e
xt

ra
po

la
te

d.
20

01
–9

: F
C

C
 r

ep
or

t,
 “

In
te

rn
et

 A
cc

es
s 

Se
rv

ic
es

,”
 v

ar
io

us
 y

ea
rs

.
20

10
–1

7:
 A

O
L

 r
ep

or
ts

 th
ro

ug
h 

20
14

, e
x-

tr
ap

ol
at

ed
 to

 2
01

7.
 

19
87

–9
7:

 E
xt

ra
po

la
te

d 
us

in
g 

19
98

–
20

08
 g

ro
w

th
 r

at
e

19
98

–p
re

se
nt

: P
re

va
le

nc
e 

of
 h

om
e 

in
-

te
rn

et
 u

se
 fo

r 
ad

ul
ts

 a
nd

 fo
r 

po
pu

-
la

ti
on

 y
ou

ng
er

 th
an

 1
8 

fr
om

 C
ur

-
re

nt
 P

op
ul

at
io

n 
S

ur
ve

y 
su

pp
le

-
m

en
t,

 ti
m

es
 p

op
ul

at
io

n 
by

 a
ge

 
fr

om
 U

S 
C

en
su

s.

19
87

–9
1:

 J
ud

gm
en

ta
l e

xt
ra

po
la

ti
on

 
us

in
g 

50
 p

er
ce

nt
 g

ro
w

th
 r

at
e.

19
92

–2
00

8:
 H

ou
rs

 p
er

 u
se

r 
fr

om
 S

ta
-

ti
st

ic
al

 A
bs

tr
ac

t o
f 

th
e 

U
ni

te
d 

S
ta

te
s 

(r
ep

or
ti

ng
 d

at
a 

fr
om

 V
SS

 
C

on
su

lt
in

g)
20

09
–1

0:
 L

og
- l

in
ea

r 
in

te
rp

ol
at

io
n.

20
11

–1
8:

 H
ou

rs
 p

er
 u

se
r 

re
po

rt
ed

 b
y 

N
ie

ls
en

. 

19
87

–8
9:

 E
xt

ra
po

la
ti

on
 u

si
ng

 1
99

0–
19

93
 g

ro
w

th
 r

at
e.

19
90

–9
3:

 V
ol

um
e 

ex
tr

ap
ol

at
ed

 u
si

ng
 

gl
ob

al
 fi

xe
d 

in
te

rn
et

 tr
affi

c.
19

94
–2

00
4:

 V
ol

um
e 

ex
tr

ap
ol

at
ed

 u
s-

in
g 

ov
er

al
l fi

xe
d 

in
te

rn
et

 d
at

a 
tr

affi
c 

(N
or

th
 A

m
er

ic
a)

 fr
om

 
C

is
co

.
20

05
–1

7:
 V

ol
um

e 
of

 c
on

su
m

er
 fi

xe
d 

in
te

rn
et

 d
at

a 
tr

affi
c 

(N
or

th
 

A
m

er
ic

a)
 fr

om
 C

is
co

.
F

ea
tu

re
 

P
ho

ne
B

E
A

 N
IP

A
 ta

bl
e 

2.
4.

5U
., 

lin
e 

28
1:

 
“C

el
lu

la
r 

te
le

ph
on

e 
se

rv
ic

es
” 

al
-

lo
ca

te
d 

ac
co

rd
in

g 
to

 w
ei

gh
te

d 
fe

at
ur

e/
sm

ar
tp

ho
ne

 u
se

r 
m

ix
 (A

s-
su

m
e 

sm
ar

tp
ho

ne
 c

on
tr

ac
ts

 a
re

 4
 

ti
m

es
 a

s 
ex

pe
ns

iv
e 

as
 fe

at
ur

e 
ph

on
e 

co
nt

ra
ct

s.
)

U
S 

ho
us

eh
ol

ds
 ti

m
es

 in
di

vi
du

al
 fe

at
ur

e 
ph

on
e 

pe
ne

tr
at

io
n 

sh
ar

e.
19

87
–2

00
4:

 S
ta

ti
st

ic
al

 A
bs

tr
ac

ts
 o

f 
th

e 
U

ni
te

d 
S

ta
te

s 
(c

it
in

g 
C

on
-

su
m

er
 T

el
ec

om
 I

nd
us

tr
y 

A
ss

oc
ia

-
ti

on
).

20
05

–1
8:

 S
ha

re
 o

f 
ad

ul
ts

 w
ho

 o
w

n 
ce

ll 
ph

on
e 

le
ss

 s
ha

re
 w

ho
 o

w
n 

sm
ar

tp
ho

ne
 (P

ew
 R

es
ea

rc
h 

C
en

-
te

r)
 ti

m
es

 p
op

ul
at

io
n 

gr
ea

te
r 

th
an

 
15

 y
ea

rs
 o

ld
 (U

S 
C

en
su

s)
.

19
87

–1
99

2:
 E

xt
ra

po
la

te
d 

us
in

g 
19

93
–9

8 
gr

ow
th

 r
at

e.
19

93
–2

01
4:

 T
al

k 
ti

m
e 

pe
r 

su
bs

cr
ib

er
 

fr
om

 F
C

C
 r

ep
or

ts
, v

ar
io

us
 y

ea
rs

 
(c

it
in

g 
C

T
IA

),
 s

m
oo

th
ed

.
20

15
–1

7:
 A

ve
ra

ge
 ta

lk
 ti

m
e,

 2
01

0–
14

.

H
ou

rs
 o

f 
ta

lk
 ti

m
e 

(n
o 

qu
al

it
y 

ch
an

ge
).

 EBSCOhost - printed on 2/8/2023 7:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



Sm
ar

t-
ph

on
e

B
E

A
 N

IP
A

 ta
bl

e 
2.

4.
5U

., 
lin

e 
28

1:
 

“C
el

lu
la

r 
te

le
ph

on
e 

se
rv

ic
es

” 
al

-
lo

ca
te

d 
ac

co
rd

in
g 

to
 w

ei
gh

te
d 

fe
at

ur
e/

sm
ar

tp
ho

ne
 u

se
r 

m
ix

. 
(A

ss
um

e 
sm

ar
tp

ho
ne

 c
on

tr
ac

ts
 

ar
e 

4 
ti

m
es

 a
s 

ex
pe

ns
iv

e 
as

 fe
at

ur
e 

ph
on

e 
co

nt
ra

ct
s.

)

U
S 

ho
us

eh
ol

ds
 ti

m
es

 in
di

vi
du

al
 s

m
ar

t-
ph

on
e 

pe
ne

tr
at

io
n 

sh
ar

e.
20

05
–1

8:
 S

ha
re

 o
f 

ad
ul

ts
 w

ho
 o

w
n 

sm
ar

tp
ho

ne
 (P

ew
 R

es
ea

rc
h 

C
en

-
te

r)
 ti

m
es

 p
op

ul
at

io
n 

gr
ea

te
r 

th
an

 
15

 y
ea

rs
 o

ld
 (U

S 
C

en
su

s)
.

20
05

–1
0:

 E
xt

ra
po

la
te

d 
us

in
g 

5 
pe

r-
ce

nt
 g

ro
w

th
 r

at
e.

20
11

–1
7:

 A
ve

ra
ge

 ti
m

e 
sp

en
t o

n 
sm

ar
tp

ho
ne

 fr
om

 p
re

ss
 r

ep
or

ts
 

(c
it

in
g 

eM
ar

ke
te

r)
, s

m
oo

th
ed

.

C
is

co
- r

ep
or

te
d 

m
ob

ile
 I

P
 tr

affi
c.

N
et

fli
x

20
07

–2
01

1:
 R

ev
en

ue
 p

er
 m

em
be

r 
ex

tr
ap

ol
at

ed
 b

ac
kw

ar
d 

us
in

g 
20

12
–2

01
3 

gr
ow

th
 r

at
e 

ti
m

es
 r

e-
po

rt
ed

 p
ay

in
g 

m
em

be
rs

 (m
em

-
be

rs
 r

ep
or

te
d 

fo
r 

20
09

–2
01

1,
 e

x-
tr

ap
ol

at
ed

 fo
r 

20
07

–2
00

8)
.

20
12

–1
7:

 C
om

pa
ny

 a
nn

ua
l r

ep
or

ts
.

C
om

pa
ny

 r
ep

or
ts

 s
up

pl
em

en
te

d 
by

 p
re

ss
 

re
po

rt
s 

an
d 

ex
tr

ap
ol

at
ed

.
N

um
be

r 
of

 h
ou

se
ho

ld
s 

ti
m

es
 a

ve
ra

ge
 

ho
us

eh
ol

d 
si

ze
 r

ep
or

te
d 

in
 p

op
ul

a-
ti

on
 c

en
su

s.

D
at

a 
us

e 
di

vi
de

d 
by

 d
at

a 
ra

te
 p

er
 

ti
m

e 
un

it
 u

si
ng

 N
or

th
 A

m
er

ic
an

 
fix

ed
 in

te
rn

et
 p

ro
to

co
l t

ra
ffi

c 
re

-
po

rt
ed

 in
 C

is
co

 V
N

I 
F

or
ec

as
t,

 
va

ri
ou

s 
ye

ar
s 

ti
m

es
 s

ha
re

 o
f 

tr
affi

c 
fo

r 
ea

ch
 p

ro
vi

de
r 

re
po

rt
ed

 b
y 

Sa
nd

vi
ne

, t
im

es
 a

ve
ra

ge
 d

at
a 

ra
te

 
ba

se
d 

on
 H

D
/S

D
 s

ha
re

s 
de

ri
ve

d 
fr

om
 C

is
co

 V
N

I 
F

or
ec

as
t.

R
aw

 v
ie

w
in

g 
ho

ur
s 

m
ul

ti
pl

ie
d 

by
 

hi
gh

- d
efi

ni
ti

on
 v

id
eo

 s
ha

re
, 

sc
al

ed
 b

y 
(n

at
ur

al
 lo

g 
of

) n
um

be
r 

of
 ti

tl
es

 a
va

ila
bl

e 
by

 s
er

vi
ce

 
sc

al
ed

 a
s 

on
e 

m
ov

ie
 =

 tw
o 

T
V

 e
p-

is
od

es
, o

ne
 T

V
 s

ea
so

n 
=

 1
5 

T
V

 
ep

is
od

es
. (

F
C

C
 r

ep
or

ts
, n

ew
s 

so
ur

ce
s.

)

A
m

az
on

(I
nt

ro
du

ce
d 

in
 2

01
1)

20
11

–1
7:

 S
ta

nd
ar

d 
su

bs
cr

ip
ti

on
 

pr
ic

e 
(p

re
ss

 r
ep

or
ts

) t
im

es
 n

um
-

be
r 

of
 v

ie
w

er
s 

(e
M

ar
ke

te
r)

 ti
m

es
 

0.
4 

(e
M

ar
ke

te
r 

as
su

m
es

 2
.5

 v
ie

w
-

er
s 

pe
r 

su
bs

cr
ip

ti
on

).

C
om

pa
ny

 r
ep

or
ts

 s
up

pl
em

en
te

d 
by

 p
re

ss
 

re
po

rt
s 

an
d 

ex
tr

ap
ol

at
ed

.
N

um
be

r 
of

 h
ou

se
ho

ld
s 

ti
m

es
 a

ve
ra

ge
 

ho
us

eh
ol

d 
si

ze
 r

ep
or

te
d 

in
 p

op
ul

a-
ti

on
 c

en
su

s.

D
at

a 
us

e 
di

vi
de

d 
by

 d
at

a 
ra

te
 p

er
 

ti
m

e 
un

it
 u

si
ng

 N
or

th
 A

m
er

ic
an

 
fix

ed
 in

te
rn

et
 p

ro
to

co
l t

ra
ffi

c 
re

-
po

rt
ed

 in
 C

is
co

 V
N

I 
F

or
ec

as
t,

 
va

ri
ou

s 
ye

ar
s 

ti
m

es
 s

ha
re

 o
f 

tr
affi

c 
fo

r 
ea

ch
 p

ro
vi

de
r 

re
po

rt
ed

 b
y 

Sa
nd

vi
ne

, t
im

es
 a

ve
ra

ge
 d

at
a 

ra
te

 
ba

se
d 

on
 H

D
/S

D
 s

ha
re

s 
de

ri
ve

d 
fr

om
 C

is
co

 V
N

I 
F

or
ec

as
t.

R
aw

 v
ie

w
in

g 
ho

ur
s 

m
ul

ti
pl

ie
d 

by
 

hi
gh

- d
efi

ni
ti

on
 v

id
eo

 s
ha

re
, 

sc
al

ed
 b

y 
(n

at
ur

al
 lo

g 
of

) n
um

be
r 

of
 ti

tl
es

 a
va

ila
bl

e 
by

 s
er

vi
ce

 
sc

al
ed

 a
s 

on
e 

m
ov

ie
 =

 tw
o 

T
V

 e
p-

is
od

es
, o

ne
 T

V
 s

ea
so

n 
=

 1
5 

T
V

 
ep

is
od

es
. (

F
C

C
 r

ep
or

ts
, n

ew
s 

so
ur

ce
s.

)

H
ul

u
(I

nt
ro

du
ce

d 
in

 2
01

0)
.

N
um

be
r 

of
 s

ub
sc

ri
be

rs
 (2

01
2–

17
 

fr
om

 p
re

ss
 r

ep
or

ts
, e

xt
ra

po
la

te
d 

to
 2

01
0)

 ti
m

es
 s

ta
nd

ar
d 

su
bs

cr
ip

-
ti

on
 p

ri
ce

.

C
om

pa
ny

 r
ep

or
ts

 s
up

pl
em

en
te

d 
by

 p
re

ss
 

re
po

rt
s 

an
d 

ex
tr

ap
ol

at
ed

.
N

um
be

r 
of

 h
ou

se
ho

ld
s 

ti
m

es
 a

ve
ra

ge
 

ho
us

eh
ol

d 
si

ze
 r

ep
or

te
d 

in
 p

op
ul

a-
ti

on
 c

en
su

s.

D
at

a 
us

e 
di

vi
de

d 
by

 d
at

a 
ra

te
 p

er
 

ti
m

e 
un

it
 u

si
ng

 N
or

th
 A

m
er

ic
an

 
fix

ed
 in

te
rn

et
 p

ro
to

co
l t

ra
ffi

c 
re

-
po

rt
ed

 in
 C

is
co

 V
N

I 
F

or
ec

as
t,

 
va

ri
ou

s 
ye

ar
s 

ti
m

es
 s

ha
re

 o
f 

tr
affi

c 
fo

r 
ea

ch
 p

ro
vi

de
r 

re
po

rt
ed

 b
y 

Sa
nd

vi
ne

, t
im

es
 a

ve
ra

ge
 d

at
a 

ra
te

 
ba

se
d 

on
 H

D
/S

D
 s

ha
re

s 
de

ri
ve

d 
fr

om
 C

is
co

 V
N

I 
F

or
ec

as
t.

R
aw

 v
ie

w
in

g 
ho

ur
s 

m
ul

ti
pl

ie
d 

by
 

hi
gh

- d
efi

ni
ti

on
 v

id
eo

 s
ha

re
, 

sc
al

ed
 b

y 
(n

at
ur

al
 lo

g 
of

) n
um

be
r 

of
 ti

tl
es

 a
va

ila
bl

e 
by

 s
er

vi
ce

 
sc

al
ed

 a
s 

on
e 

m
ov

ie
 =

 tw
o 

T
V

 e
p-

is
od

es
, o

ne
 T

V
 s

ea
so

n 
=

 1
5 

T
V

 
ep

is
od

es
. (

F
C

C
 r

ep
or

ts
, n

ew
s 

so
ur

ce
s.

)

 EBSCOhost - printed on 2/8/2023 7:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



502    David Byrne and Carol Corrado

Cable. Spending is taken from table line 215, “Cable, satellite, and other 
live television services.” We use “cable” as shorthand for spending in this 
category, which includes spending on the services of multichannel video pro-
gramming distributors (MVPDs) of all kinds, including (in addition to cable 
television) programming provided via telecommunications service provider, 
direct broadcast satellite, home satellite dish, wireless cable, master antenna, 
and open video systems.

Internet. Spending is taken from table line 285, “Internet access.” Spend-
ing on internet services includes access via “dial- up” service and access via 
broadband, whether obtained through a telecommunications service pro-
vider, a cable system, or a satellite system. We extrapolate a spending figure 
for 1987 using the growth rate of internet households.

Mobile. Spending is taken from table line 281, “Cellular telephone ser-
vices.” Mobile services spending includes access to broadband via smart-
phone as well as access to conventional features such as voice and text using 
a smartphone or feature phone. We split nominal access spending between 
smartphone service and feature phone service, for which we construct 
distinct quantity measures, using the number of subscribers of each type 
(derived as explained below) and a judgmental assumption that the price 
paid for a smartphone contract is four times the price paid for a feature 
phone contract. (At the time of writing, a casual review of prices on the 
worldwide web showed basic plans with no data were $10–15 per month and 
common smartphone plans were $40–60 per month.)

Video. Total video spending is taken from table line 220, “Video stream-
ing and rental.”18 We focus on SVOD, which we use as an indicator for the 
broader category, due to data limitations.19 In particular, we construct esti-
mates of revenue for the three most prominent SVOD providers—Netflix, 
Amazon Prime, and Hulu—based on company financial reports and press 
reports. Netflix reports revenue per subscription beginning in 2012, which we 
extrapolate back to 2007 using the modest 2012–13 growth rate. Revenue per 
subscription for Amazon Prime and Hulu are assumed to be their standard 
charges ($7.99 per month for Hulu and $79 per year for Amazon Prime 
through 2013 and $99 per year afterward). These figures are multiplied by 
the number of households for each service estimated as described below.

12.A2.2 Households

Cable. Periodic reports from the Federal Communications Commission 
(FCC), “Status of Competition in Markets for the Delivery of Video Pro-
gramming,” provide household subscription figures for 1990 to 2015, citing 

18. BEA also provides revenue for “Audio streaming and radio services (including satellite 
radio).” We did not develop a price index for this category.

19. In addition to SVOD, video streaming and rental as defined in the NIPAs encompasses 
one- off video on demand, such as sports events, and rental of  DVDs, for which we do not 
have data.
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reports by consulting firm SNL Kagan. Earlier years were collected from 
Statistical Abstracts of the United States, which reports figures from Census 
of Housing. Figures for 2016 and 2017 were extrapolated using available 
reports from cable, telecom, and satellite service companies (Chartered, 
Comcast, AT&T, Verizon, DIRECTV, and DISH).

Internet. Periodic reports from the FCC, “Internet Access Services: Sta-
tus,” provide household figures for broadband access for 1999–2016 and 
dial- up access for 2001–9. Prior to 1999, we assume all access was via dial- up 
service. Dial- up service figures for years not covered by FCC reports were 
available from financial reports and press reports for America Online, Com-
puserve, Prodigy, Microsoft Network, AT&T Worldnet, and Genie. The 
company series were judgmentally extrapolated to the year of introduction 
for each service. Dial- up subscribers from 2010 onward were extrapolated 
using figures from America Online (AOL) through 2014 and the 2011–14 
rate of AOL subscription decline for 2015–17.

Mobile. We do not have data on the number of households with cell phone 
service. We assume the share of households with service equals the share of 
individuals in the adult population with service.

Video. Netflix reports the number of paying members beginning in 2009, 
which we extrapolate back to 2007 using the 2009–10 growth rate. Hulu 
and Amazon Prime subscribers are collected from press reports, which typi-
cally cite estimates from eMarketer. Because eMarketer figures estimate the 
number of active users using an assumption of 2.5 users per subscribing 
household, we multiply these reported user figures by 0.4 to estimate the 
number of households, assuming one subscription per household.

12.A2.3 Individuals

Cable. We scale cable household figures using the number of residents at 
least two years of age per TV household reported by Nielsen for 1985, 1990, 
1995, 2000, 2005, and 2010, interpolated and extrapolated.

Internet. In 1998, 2000, 2001, 2003, 2007, 2009–13, 2015, and 2017, the 
Current Population Survey supplemental survey on computer and internet 
use provided estimates of the share of people living in a household with an 
internet connection and the share of individuals going online at home. We 
use this information to construct a time series for the share of people who 
use the internet at home for 1998–2017 for adults and children separately. We 
extrapolate these shares back to 1987 using the growth rate for 1998–2009. 
These shares are applied to the average composition by age of US house-
holds to derive the total number of home internet users by year.

Mobile. The number of cell phone users (smartphone and feature phone 
collectively) is taken from Consumer Telecommunications Industry Asso-
ciation (CTIA) estimates as reported in Statistical Abstracts of the United 
States for 1987–2004. Estimates for 2005–17 are from population shares 
reported by the Pew Research Center (Pew) times the US population. Pew 
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also provides separate estimates for smartphone users, which are subtracted 
from total cell phone users to get (solely) feature phone users.

Video. For each SVOD service, the number of users is estimated by mul-
tiplying the number of households by the average household size reported 
by the US Census for the year. That is, we assume all household members 
make use of the service.

12.A2.4 Time Use

Cable The Nielsen Corporation (Nielsen) provides time spent per day on 
live and time- shifted television by age group (2–11 years old, 12–17 years 
old, at least 18 years old) beginning in 1992, which we extrapolate to 1987 
using the value for 1992. We weight these figures by the US Census–reported 
share of the population at least 2 years old for each age group to get an aver-
age number of hours per day for residents of households with cable access, 
which we multiply by total users to get total hours.

Internet. Hours spent using the internet for 1992–2008 were taken from 
Statistical Abstracts of the United States, various years, reporting estimates 
published by Veronis, Suhler, Stevenson (VSS). For 2011–17, Nielsen reports 
of time spent accessing the internet on a computer were used. Estimates for 
2009–10 were interpolated, and for 1987–91 a growth rate of 50 percent per 
year was assumed, yielding a trivial level for 1987 in order to match a report 
from VSS that hours were negligible prior to 1987.

Mobile. Our measure of time use for feature phones is talk time. Min-
utes of  talking is calculated as a three- year centered moving average of 
estimates taken from FCC reports, citing CTIA surveys for 1993–2014 
and extrapolated. For smartphones, we use a three- year centered moving 
average of estimates from eMarketer available for 2011–17 of average time 
spent per day with smartphones for US adults, which we extrapolate back to  
2005.

Video. To calculate hours spent on each SVOD service, we first estimate 
the data used in streaming using the share of internet traffic for each ser-
vice reported by Sandvine, Inc. multiplied by the quantity of fixed internet 
traffic for the North American consumer market reported by Cisco’s Visual 
Networking Index (VNI) reports. Sandvine reports are available annually 
from 2010 to 2014 and for 2016; the shares for 2014 are linearly interpolated, 
and the share for each service for 2017 is set equal to its 2016 value. Then we 
divide by the number of bytes required to stream an hour of video to get the 
number of hours. The estimate of bytes per hour used is a weighted average 
of  the number of  bytes used for standard- definition and high- definition 
video streaming, where the share is estimated using VNI reports. In par-
ticular, VNI provides a high- definition share for SVOD of 0.59 for 2014. 
This estimate is extrapolated to 2010 using the growth reported in VNI for 
the high- definition share of global managed IP video- on- demand traffic. 
The share is extrapolated further back to 2007 using a 5 percent growth rate 
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and forward to 2017 using the VNI forecast published in 2014, the last VNI 
vintage where Cisco provided data on the subject.

12.A2.5 Quality- Adjusted Hours

Cable. To account for the increase in quality associated with the program-
ming choices available to viewers, we scale hours by the average number 
of channels per cable system reported by the FCC. We use a natural log 
transformation, assuming, for example, that the additional quality obtained 
going from 100 to 200 channels equals the increase in quality obtained going 
from 10 to 20 channels.

Internet. Our indicator for quality of internet service is the VNI estimate 
of IP traffic for consumer fixed internet use for North America. We use North 
American traffic in the absence of information on the US share, essentially 
assuming that the US share of North American traffic is unchanged over 
time. Direct measures of the indicator are available for 2005–16, along with 
a forecast for 2017 from the latest VNI reports, various years. We extrapolate 
back to 1994 using overall fixed internet traffic estimates for North America 
and back to 1990 using global fixed internet traffic from VNI reports. For 
1987–89, we use the 1990–93 growth rate.

Mobile. We assume the quality of talk time is unchanged over time, so 
no quality adjustment is necessary for feature phones. For smartphones, we 
use the volume (petabytes) of consumer mobile IP traffic per month for the 
North American market reported by VNI for 2005–17, extrapolated to 2002 
using the average growth rate for 2005–8.

Video. Our quality- adjusted series is raw hours of viewing time scaled by 
a library quality indicator and multiplied by high- definition video share. 
Our indicator for the quality of SVOD service is the natural log of the size 
of the video library for each service measured in the number of equivalent 
feature films available for streaming. FCC reports in 2013 and 2016 provide 
data on the number of films and the number of TV seasons available on each 
service. Estimates from the press were found for 2010 and 2018. Netflix press 
releases provide data for 2007 and 2008. Missing years are interpolated. We 
reweight TV seasons using the judgmental assumption that two episodes of 
a television show are equivalent to one feature film and TV seasons have 15 
episodes. The high- definition share adjustment employed to calculate hours 
of viewing time above is reversed to produce the quality- adjusted hours indi-
cator, implying that the quality of high- definition viewing is 1.67 times the 
quality of standard- definition viewing, corresponding to the ratio of data 
transmission required for each type, 5 megabits per second and 3 megabits 
per second, respectively.

12.A2.5.1 Price Indexes

Table 12.A2 shows the quality- adjusted price index for each access ser-
vice and price indexes for each concept of quantity. Our aggregate quality- 
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508    David Byrne and Carol Corrado

adjusted price index for access service, shown in the right- most column, 
falls 12.4 percent per year, on average, over the full period of this study. The 
price index decline accelerates over time, first as internet service accounts 
for a rising share of spending in the 1997–2007 period and then as mobile 
and video on demand access become more important in the 2007–17 period. 
(Decomposition of growth in the final index into contributions from each 
margin is discussed in the chapter.)

12.A3 Consumer IT Durable Prices and (Household) Investment

Data sources and methods used for constructing nominal consumer 
durable spending and price indexes used for deflation are summarized in 
table 12.A3.

12.A3.1 Nominal Spending

Nominal spending estimates were based on detailed personal consump-
tion expenditures reported by the BEA. In particular, detailed annual- 
frequency estimates of spending by product type were allocated to the more 
detailed categories used in the chapter based on the 2007 input- output tables. 
(The quinquennial “benchmark” input- output table from 2007 provides not 
only detailed product spending information but also commodity codes cor-
responding to the primary products of the industries of the North Ameri-
can Industry Classification System [NAICS].) For example, the annual- 
frequency estimates of PCE detailed spending include a category for “video, 
audio, photographic, and information processing equipment” with further 
detail provided for eight commodity codes, including “computer and elec-
tronic products.” The 2007 input- output table provides the six- digit industry 
of origin of the products within this category, allowing one to distinguish 
among personal computers, computer monitors, televisions, and so forth.

In the case of cellular phones and digital cameras, outside sources were 
used. Although these categories can be derived using the method described, 
their share of expenditure has changed rapidly since 2007, rendering the 
allocation process inaccurate. Expenditures on other products that share the 
relevant higher- level categories are offset proportionally to accommodate 
the rising spending on cell phones and the rise and subsequent rapid fall in 
spending on digital cameras.

Cell Phones. We use an estimate of cellular phone spending in the US 
consumer market provided by IDC, Inc., rather than estimates reported 
in the NIPA PCE detail tables for several reasons. Cellular phone equip-
ment spending is not reported separately, appearing instead as part of  a 
broader category, “telephone and related communication equipment.” And 
as noted in Aizcorbe, Byrne, and Sichel (2019), this broader NIPA spending 
line does not account for the substantial portion of the relevant acquisi-
tion of consumer stocks of cell phones that takes place in conjunction with 
the purchase of cellular phone services. In contrast, the estimates for IDC 
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impute a value for cell phones acquired as part of a service contract using 
the price a consumer would pay for the phone if  acquired without a contract 
commitment. The IDC estimates thus provide a consistent estimate of the 
retail value of all phones acquired over time, which serves the purpose of 
measuring the household capital stock. As shown in figure 12.A1, the IDC 
estimate of consumer cell phone expenditures is substantially higher than 
the NIPA estimate for the category containing cell phones. To corroborate 
the IDC estimate, we constructed an alternative estimate using US sales at 
wholesale prices provided by Gartner through 2007, extrapolated by cell 
phone imports, which dominate the US market reported by the International 
Trade Commission, and inflated by 50 percent, a rough estimate of the retail 
margin in the cell phone market. This coarse indicator, shown by the dashed 
line, is quite close to the IDC estimate.

Digital Cameras. Unit sales of digital cameras for the Americas market 
provided by the Camera and Digital Products Association are scaled by an 
average price series constructed by interpolating between estimates reported 
in the press (falling from roughly $4,000 in 1987 to roughly $200 in 2007 
and remaining stable since then). A US share of total Americas spending is 
constructed using the relevant line from the benchmark input- output tables 
for 2007 for consumer spending on digital cameras, which yields a share of 
approximately 48 percent, which we assume is constant in our period of study.

12.A3.2 Price Indexes

For equipment prices, we use either official estimates or substitutes drawn 
from the authors’ research and, in some cases, other national statistical agen-
cies. Aggregate prices for three broad categories are shown in table 12.A4: 
audiovisual equipment (televisions, digital cameras, photographic equip-

Fig. 12.A1 Estimates of US consumer cell phone spending
Source: IDC Inc. (retail); authors’ calculations (wholesale, retail alternative); Bureau of Eco-
nomic Analysis (PCE category).
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ment excluding digital cameras, other video equipment, audio equipment, 
and recording media), information- processing equipment (personal com-
puters, data storage equipment, monitors, and peripherals), and commu-
nications equipment (cellular phones and telephone equipment excluding 
cellular phones).

Televisions. We use the BEA PCE deflator for televisions, which corre-
sponds to the Bureau of Labor Statistics (BLS) CPI for televisions.

Table 12.A4 Price indexes for ICT durable equipment categories

Year  
Audio-visual  
equipment  

Information processing  
equipment  

Communications  
equipment

1987 100.00 100.00 100.00 
1988 94.22 82.49 89.59 
1989 89.16 70.55 79.71 
1990 85.96 62.40 69.95 
1991 84.09 49.99 53.31 
1992 82.26 37.52 45.58 
1993 79.57 27.80 38.36 
1994 76.29 22.48 31.04 
1995 71.91 17.07 28.61 
1996 67.83 12.52 23.10 
1997 64.14 8.62 19.07 
1998 61.25 6.04 15.26 
1999 58.38 4.08 11.83 
2000 55.54 3.40 10.51 
2001 52.69 2.91 8.00 
2002 48.43 2.53 6.43 
2003 44.48 2.12 5.30 
2004 40.84 1.80 4.57 
2005 36.71 1.42 3.97 
2006 32.29 1.06 3.37 
2007 27.34 0.82 2.92 
2008 23.88 0.62 2.51 
2009 19.66 0.48 2.16 
2010 16.26 0.41 1.85 
2011 13.96 0.34 1.68 
2012 12.03 0.30 1.45 
2013 10.54 0.25 1.25 
2014 9.20 0.22 0.95 
2015 8.25 0.19 0.78 
2016 7.36 0.16 0.63 
2017 6.72 0.14 0.54 

Growth rate
1987−2017 −9.0% −21.8% −17.4%
1987−97 −4.4% −24.5% −16.6%
1997−2007 −8.5% −23.6% −18.8%
2007−17  −14.0%  −17.4%  −16.9%

Source: Authors’ calculations.
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Digital Cameras. We use the CPI for cameras from Statistics Japan.
Photographic Equipment excluding Digital Cameras. We use the BEA PCE 

deflator for photographic equipment, which corresponds to the BLS CPI 
for photographic equipment.

Other Video Equipment. We use the CPI for video cameras from Statis-
tics Japan, available from 1990 forward, extrapolated backward using the 
Japanese CPI for cameras.

Audio Equipment. We use the BEA PCE deflator for audio equipment, 
which corresponds to the BLS CPI for audio equipment.

Recording Media. We use the BEA PCE deflator for recording media, 
which corresponds to the BLS CPI for video discs and other media.

Personal Computers. We use the price index from Byrne and Corrado 
(2017a) for personal computers through 2014, extrapolated by the BEA PCE 
price for computers and peripherals augmented by the average difference 
between the growth rate of the BEA price index and the growth rate of the 
Byrne- Corrado price index for the 2009–14 period.

Data Storage Equipment. We use the price index published by the Federal 
Reserve Board for computer storage equipment, which extends the price 
index developed in Byrne (2015).

Monitors. We use the BEA PCE deflator for televisions, which corre-
sponds to the BLS CPI for televisions.

Computer Peripherals. We use the price index from Byrne and Corrado 
(2017a) for peripherals through 2014, extrapolated by the BEA PCE price 
for computers and peripherals augmented by the average difference between 
the growth rate of the BEA price index and the growth rate of the Byrne- 
Corrado price index for the 2009–14 period.

Other Information- Processing Equipment. We use the BEA PCE defla-
tor for calculators, typewriters, and other information- processing equip-
ment.

Software and Accessories. We use the price index for prepackaged software 
from Byrne and Corrado (2017a) for nongame PCE software, extrapolated 
for 2015–17 using the five- year average growth rate. For gaming PCE soft-
ware, we use the BLS producer price index (PPI) for game software publish-
ing, available for 1998–2009 and 2014–17, adjusted for the average differ-
ence between the PPI and Copeland (2013) over the 1998–2004 period. The 
2010–13 period is interpolated using the average growth rate in our index for 
the 2005–29 period. For the 1987–1997 period, we use the BEA PCE price 
index for computer software and accessories.

Cell Phones. We use the Byrne and Corrado (2015a) price index for cell 
phones for the 1987–2010 period and the Aizcorbe, Byrne, and Sichel (2019) 
index for 2010–17.

Telephone Equipment excluding Cellular Phones. We use the Byrne and 
Corrado (2017a) price index for telephones for the 1987–2014 period as 
extended and published by the Federal Reserve Board through 2017.
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12.A4 IT Equipment Use Intensity

We construct measures of use intensity for each type of capital employed 
to connect to the access services discussed in the chapter. These include per-
sonal computers and related capital (monitors, software, and data storage 
equipment), televisions, and cell phones. These use- intensity measures allow 
us to identify the effect on IT capital services from users spending a greater 
share of their time on digital access services and consequently the imprint 
that free and purchased services have on consumption.

Mechanically, constructing use intensity for a particular type of  capi-
tal requires allocating time spent on accessing each digital service to the 
capital used for the access. For example, use intensity for personal computers 
is proportional to the share of household time spent accessing fixed internet 
services plus the portion of time spent using SVOD when viewing program-
ming through the computer. Likewise, television use intensity is affected by 
cable access and by a portion of SVOD viewing time as well. Using the ratio 
of aggregate time spent on each access service to the number of each type of 
capital held by households, we construct intensity measures as the share of 
the working day a given PC, TV, or cell phone is in use.

The sources for the elements in our calculation of ψ are as follows.
Service Adoption. The adoption of access services by household is derived 

from the household figures calculated in the previous section and was shown 
in figure 12.7a. Subscription video on demand penetration has also risen 
briskly since appearing in 2007. The share of households with at least one 
of the major services reached 60 percent in 2017. Time spent on each service 
is allocated by device as discussed below.

Computers. Estimates of households with a personal computer are pro-
vided by the US Census Bureau for 1984, 1989, and 1993 and roughly annu-
ally from 1989 forward in collaboration with the supplemental survey pub-
lished by the Current Population Survey. The number of PCs per household 
is based on periodic reports from the Residential Electricity Consumption 
Survey published by the Energy Information Agency. As was shown by the 
black line in figure 12.7b, internet access among computer households was 
roughly 20 percent as of 1990 and was over 90 percent by 2007. The num-
ber of PCs per computer- holding households nearly doubled (figure 12.7c). 
Dividing the total number of  hours on the computer by the number of 
devices, we find that the share of the working day the average PC was in use 
for accessing the internet or SVOD rose from 18 percent in 1987 to roughly 
29 percent in 2017 (figure 12.7d).20

Televisions. Estimates of households with a television are provided by Sta-
tistical Abstracts of the United States, citing figures from Census of Housing. 

20. Note that time spent using the computer for other purposes, which averaged about 2.5 
hours per day, is not included in this figure.
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As was shown by the dashed lines in figure 12.7, nearly all households had a 
television at the beginning of our period of study, and this share remained 
above 90 percent as of 2017. The number of televisions per household is 
based on periodic reports from the Residential Electricity Consumption Sur-
vey published by the Energy Information Agency. Televisions per TV- using 
household moved up from roughly 2 to roughly 2.5 by 2005 and has eased 
down a touch since then. Dividing the total number of hours by the number 
of TVs in use yields a share of the day that peaked in 2013 at roughly a third 
and has moved down noticeably since then. The use intensity of PCs and 
TVs was roughly equal in 2017.

Cell Phones. Mobile phones (whether feature phones or smartphones) 
are assumed to be present whenever individuals have service, so the issue 
of adoption of the service conditional on the presence of the equipment 
does not arise. However, figure 12.7 showed that mobile phone adoption 
rose rapidly from 2007 to 2015 and advanced more slowly since then; cell 
phone adoption overall has stabilized at 90 percent. As noted above, we use 
individual adoption rates as proxies for the household adoption rate in the 
case of  cell phones. The share of  households with mobile phone service 
rose rapidly from essentially zero at the beginning of our period of study 
to over 90 percent as of 2013 and was stable through 2017. The number of 
hours of use shot up with the advent of widespread smartphone use, and 
the share of the working day phones are in use shot up as well and stood at 
18 percent as of 2018.
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13.1  Introduction

A transformation is underway that is revolutionizing the way computing 
services are provided to businesses, households, and the government. This 
new way of accessing computing services, typically referred to as “the cloud” 
or “cloud computing,” represents the latest transition to a new computing 
platform—one in which computing is done on a network of off- site com-
puting resources accessed through the internet.1 As this chapter shows, the 
changes are extraordinary and likely will have important consequences for 
the structure of the economy, productivity growth, and economic measure-
ment.

Yet because the advent of these services is relatively recent and because 
they largely are intermediate business inputs rather than final demand, their 

1. The notion of technological change in computing as a platform shift was introduced by 
Bresnahan and Greenstein (1999), who analyzed the disruptive effects of the introduction of 
PC/client- server platform on the computer industry.
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imprint on the economy is difficult to identify in official statistics. Byrne and 
Corrado (2017b) assessed the macroeconomic impact of the shift to cloud 
computing and concluded that the productivity- enhancing impacts of the 
shift to cloud computing were not yet particularly evident in macroeconomic 
data—even after taking major steps to improve the measurement of infor-
mation and communications technology (ICT) asset prices (Byrne and Cor-
rado 2017a) whose prices should be indicative of cloud services prices.2

This chapter, building on Byrne and Corrado’s work, develops measures 
to quantify the service prices and quantities and the capital investment rel-
evant for tracking the US cloud services industry—the Ps, Qs, and Ks of 
the title. Our basic finding is that prices for cloud services have fallen rapidly 
and that the use of the cloud has grown tremendously, as has investment in 
the related infrastructure of IT equipment and software.3

For our analysis of prices, we assembled a unique dataset with quarterly 
data on prices and characteristics for cloud services offered by the largest 
provider, Amazon Web Services (AWS), since the first quarter of 2009, when 
AWS began posting prices on the internet. The data cover AWS’s basic com-
pute, database, and storage products.4

For AWS’s compute product, prices fell at an average rate of  about 7 
percent during 2009–16. Price declines were slower before 2014 and more 
rapid starting in the beginning of 2014. Interestingly, 2014 is the year when 
Microsoft and Google began posting prices for their cloud offerings on the 
internet. We suspect that AWS’s large price declines were, in part, a response 
to that change in the competitive environment. For AWS’s database product, 
prices fell at an average rate of more than 11 percent during 2010–16. Here 
too, prices fell relatively modestly until the beginning of 2014, after which 
they fell at an average rate of more than 22 percent through the end of 2016. 
AWS’s storage product followed a similar pattern, with prices falling at an 
average annual rate of  about 17 percent during 2009–16 and even faster 
declines starting in 2014. These price declines are quite rapid and highlight 
how rapid advances in digital products are showing through to prices of 
digital services.

The extremely rapid growth of capital expenditures by large providers 
of cloud services that we document raises a measurement puzzle. Why has 
investment in IT equipment in the National Income and Product Accounts 
(NIPAs) been so weak if  large and important firms are rapidly expand-

2. Other first- order macroeconomic impacts of the shift to cloud computing include (1) a 
weakening in the demand for IT equipment for a given volume of ICT services, (2) a lowering 
of the cost of supplying a given volume of ICT services (e.g., power consumption costs), and 
(3) an increase in the productivity of software development.

3. After this chapter was written, Coyle and Nguyen (2018) developed a price index for AWS’s 
compute product for the United Kingdom. Their paper also documents the rapid growth of 
cloud computing.

4. We also collected data for Microsoft’s and Google’s basic compute, storage, and database 
services. We intend to develop price indexes for those in future work.

 EBSCOhost - printed on 2/8/2023 7:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



The Rise of Cloud Computing: Minding Your Ps, Qs, and Ks    521

ing their capital expenditures for this equipment? In part, this tension 
could reflect, as noted in Byrne and Corrado (2017b), higher utilization of 
this equipment at cloud providers than at individual businesses that had 
deployed this equipment previously. That higher utilization would imply 
less demand for IT equipment for a given demand for computing services. 
But there is another possibility: cloud providers appear to be designing and 
assembling IT equipment (on an own- account basis) that is not fully counted 
as IT investment in the NIPAs. We believe that this own- account investment 
should be included in the figures for business investment in IT, and we pres-
ent some back- of- the- envelope numbers suggesting that this own- account 
investment is large. Our calculation suggests that if  this own- account invest-
ment were included in business IT investment, then the growth rate of nomi-
nal investment in IT equipment during 2007–15 would have averaged a little 
more than 2 percentage points higher, and real GDP average annual growth 
would have been a touch higher as well.5

The chapter is organized as follows. Section 13.2 defines cloud computing 
and provides nomenclature for describing different cloud service products. 
This section also discusses the key technologies underlying cloud infrastruc-
ture. Section 13.3 describes our new price indexes for cloud computing ser-
vices, including the data, methodology, and results. Section 13.4 uses several 
different metrics to demonstrate the exceptionally rapid growth of cloud 
computing and the associated infrastructure. We also highlight the puzzle 
described above concerning IT capital investment. Section 13.5 concludes.

13.2  What Is Cloud Computing?

Because cloud computing is so new and has not been studied extensively 
by economists, we begin with some basic definitions and nomenclature. In 
particular, we start with the definition developed by the National Institute 
of Standards and Technology (NIST) and generally affirmed in the litera-
ture (e.g., Kushida, Murray, and Zysman 2011), then discuss the range of 
cloud services available, and finally turn to a brief review of key technologies 
underlying the development of cloud computing.

13.2.1  The NIST Definition of Cloud Computing

A definition of cloud computing was created by NIST in November 2009 
and, after consultations with many industry and government experts and 
stakeholders, published in final form in September 2011 (Mell and Grance 
2011). Their definition remains relevant and makes more concrete and com-
plete the brief definition given above. After noting that cloud computing is an 
evolving paradigm, NIST states, “Cloud computing is a model for enabling 

5. The level of nominal GDP in 2015 would have been $117 billion higher if  our estimate of 
own- account investment in IT equipment were included.
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ubiquitous, convenient, on- demand network access to a shared pool of con-
figurable computing resources that can be rapidly provisioned and released 
with minimal management effort of service provider interaction.”

NIST describes the following types of clouds:

•  private cloud (a cloud infrastructure provisioned for a single organi-
zation or specific community of organizations; it may exist on or off 
premises)6

•  public cloud (a cloud infrastructure provisioned for open use by the 
public; it exists on the premises of the cloud provider)

•  hybrid cloud (a combination of the above bound together by standard-
ized or proprietary technology that enables data and application por-
tability)

Finally, NIST provides a concise description of the infrastructure that 
underlies the cloud as “the collection of hardware and software that enables 
the five essential characteristics of cloud computing. The cloud infrastruc-
ture can be viewed as containing both a physical layer and an abstraction 
layer. The physical layer consists of the hardware resources that are neces-
sary to support the cloud services being provided, and typically includes 
server, storage and network components. The abstraction layer consists of 
the software deployed across the physical layer, which manifests the essential 
cloud characteristics. Conceptually the abstraction layer sits above the physi-
cal layer” (italics added; Mell and Grance 2011, 2).

13.2.2  Cloud Products

The NIST cloud computing definition also includes a description of 
service models, or service offerings. In measurement nomenclature, these 
services correspond to “product types” or product classes. These product 
classes include

• infrastructure as a service (IaaS),
• platform as a service (PaaS), and 
• software as a service (SaaS),

with each described more fully in the box. As discussed below and in the 
box, we would add “serverless” or function as a service (FaaS) to NIST’s list.

This collection of product types often is referred to as the cloud “stack,” 
and the earlier point about a layer of abstraction lying across the physical 
layer becomes important for understanding the relationship among these 
products. As one moves up the stack from IaaS to PaaS and so on, the level 
of abstraction increases in the sense that the final user can abstract from 
(or ignore) more and more of the underlying infrastructure. As highlighted 
by the italicized sentences in the box, for IaaS, the user still needs to think 

6. The NIST “community cloud” deployment model is grouped with the “private cloud” 
model for ease of exposition.
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about operating systems, storage, and other computing resources. For PaaS, 
the final user needs to think only about the deployed application and can 
abstract from (or largely ignore) other aspects of the infrastructure.

Since the NIST definition was published, the industry has introduced a 
new layer of abstraction, called “serverless” or FaaS. At this level of abstrac-
tion, the final user only needs to think about functions or code that are to 
be performed, and the cloud services provider manages all other aspects of 
the infrastructure. Serverless can be regarded as sitting above PaaS in the 
NIST stack (as in the box), although it may also be regarded as a refined 
PaaS service.

Definitions of Cloud Service Products

IaaS (infrastructure as a service): Provides computer processing, 
storage, networks, and other fundamental computing resources, 
where the consumer can deploy and run arbitrary software, 
including operating systems as well as applications. The consumer 
manages or controls some aspects of the underlying cloud infra-
structure (such as operating systems, storage, and select network 
components) and deployed applications.

PaaS (platform as a service): Provides ability to deploy consumer-
created applications created using programming languages, librar-
ies, services, and tools. The consumer neither manages nor controls 
the underlying cloud infrastructure but has control over the deployed 
applications.

Serverless, also known as FaaS (function as a service): Provides the 
capability of deploying functions (code) on a cloud infrastructure 
on a metered basis—only charging the user when the function is 
operating. The consumer (who would be a software developer) nei-
ther manages nor controls the underlying cloud infrastructure and, 
in contrast to PaaS, does not control the computing program. An 
API (application program interface) gateway controls all aspects 
of execution.

SaaS (software as a service): Provides the capability of running pro-
viders’ applications on a cloud infrastructure. The applications are 
accessible from various client devices through either a thin-client 
interface (e.g., web browser) or a program interface. The consumer 
neither manages nor controls the underlying cloud infrastructure, 
including network, servers, operating systems, storage, or even indi-
vidual application capabilities, apart from limited user-specific 
application configuration settings.

Sources: Authors’ update of NIST service models. See also Mell and Grance 
(2011), Cohen (2017), and Avram (2016).
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As a final point about nomenclature for cloud service products, we con-
nect this discussion to the state of computing precloud by noting the role of 
traditional data centers. By using a data center, the final user could abstract 
from the physical hosting environment, a lower level of abstraction than in 
any of the cloud services described in the box. The growth of cloud com-
puting thus has its roots, at least in part, in the competitive advantage the 
cloud offers customers in terms of cost, flexibility, and scalability. At the 
same time, the growth and popularity of the technology also reflects how 
the layers of abstraction in its products (especially the distinction between 
PaaS and SaaS) serve distinct classes of customers. With abundant comput-
ing resources, value in the stack moves up toward applications and platform, 
and the lower infrastructure layers become commoditized (Kushida, Mur-
ray, and Zysman 2015).

Recent developments in the cloud that facilitate the work of  software 
developers could be particularly significant and could, in time, have impor-
tant macroeconomic consequences. As cloud vendors adapt technologies 
that enable them to develop products “higher up the stack” and offer services 
with greater abstractions, the work of software development is simplified. 
Thus although all classes of  customers benefit from the move to greater 
abstraction in the technologies deployed, the benefits enjoyed by software 
product developers are especially significant (Cohen 2017). As a specific 
example, the movement to serverless services with Amazon’s 2014 release 
of the Lambda computing platform has enabled developers to focus only 
on code and its rapid deployment. This has lowered costs of new software 
product development among providers of software products for final sale 
(via SaaS or regular licensing) as well as for applications developed for use 
within a developer’s own firm (or custom- developed for use within a given 
firm).7

Thus far, we have barely discussed SaaS. In the usual nomenclature, SaaS 
products sit on the top of the stack. However, we believe that SaaS is best 
understood as a category of  software product services (albeit complex) 
rather than cloud services per se. SaaS products are usually supplied with 
transactional metering—that is, not as a collection of elastically provisioned 
services per the NIST definition. Thus SaaS products may thus be equally 
regarded as software products sold via an online subscription business 
model—a business model whose use has grown in the digital economy.89 

7. Managed services featured at Amazon’s 2017 developers conference, for example, included 
tools for business to leverage sophisticated deep- learning models and data without having to 
deal with complex infrastructure issues (Murray 2017).

8. For further discussion of the role of business models in services provision, see OECD 
(2014), chapter 4, “The Digital Economy, New Business Models and Key Features.”

9. As reported by Rackspace, a leading IaaS provider, “In recent years there has been a move 
by traditional software vendors to market solutions as Cloud Computing which are generally 
accepted to not fall within the definition of true Cloud Computing.” Rackspace goes on to 
describe SaaS as “software delivered over the web,” which is precisely our point. Technically, 
some SaaS products satisfy the NIST definition of cloud—for example, the Salesforce Cus-
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Accordingly, the prices and quantities we study as cloud computing in the 
remainder of this chapter exclude SaaS products.

13.2.3  Cloud Technologies

The cloud platform relies on a suite of technologies—mainly virtualiza-
tion, grid computing, and microservices architectures—but also everything 
that makes high- speed broadband possible. Arguably, IT history is at the 
point where the tagline Sun Microsystems coined in the early 1990s, “The 
Network Is the Computer,” is finally right.10 The network is no longer a mere 
bridge between autonomous nodes on independent missions and prone to 
choke points (as in provision of transport). The continuous increase in net-
work capacity and a near disappearance of limitations that could choke traf-
fic in an earlier era (hardline security policies, storage performance issues, 
last- mile WAN hindrances) are the foundation of this latest platform shift 
in computing.

Behind a virtual machine host on a network of  today, computing 
resources—storage, memory, networking, and CPUs—are physically dis-
tributed and managed via processing queues. Long before enterprises began 
moving onto the cloud, mainframes and servers were virtualized, and an 
essential element of computing focused on the function of processing queues. 
With cloud computing, some resource queue end- points are moved offsite, 
and more than ever, computing resource acquisition and allocation becomes 
the central task of cloud providers. One can be far more technical about the 
transformation of computing as it has undergone virtualization and moved 
to a cloud platform, but it is hard to be more prosaic than the old Sun tagline.

Cloud vendors have made increasing use of virtualization and grid com-
puting to elastically supply information- processing services since the advent 
of the millennium, with the growth in capacity especially rapid since 2006, 
when Amazon Web Services opened its doors. The virtualization technology 
that is the primary enabler of cloud computing has been in commercial use 
since the 1970s via IBM mainframes. Modern IBM mainframes (circa the 
System/390 introduced in 1990 and renamed zSeries in 2000) are exception-
ally adept at handling large, diverse, and varying workloads and remain in 
use today, though they have lost much force in the large datacenter market 
with the rise in cloud computing (Byrne and Corrado 2017b). Grid comput-
ing is applying the resources of many computers in a network to a single 
problem at the same time; the technology was first used in 1989 to link 
supercomputers and thereafter grew and evolved along with the internet 
(De Roure et al. 2003).

“Containers” are another new cloud technology. Containers—a scalable 

tomer Relationship Management (CRM) product—but many others, including other CRM 
products, do not. See https:// support .rackspace .com /white -  paper /understanding -  the -  cloud 
-  computing -  stack -  saas -  paas -  iaas/ accessed February 25, 2017.

10. The Sun Microsystems tagline is attributed to John Gage (Reiss 1996). The discussion in 
this paragraph draws from Hubbard (2014).
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form of virtualization technology—allow users to run and deploy applica-
tions without launching a new virtual machine for each application, increas-
ing the speed of software application development, deployment, and scal-
ability. In terms of enterprise applications outside of  Silicon Valley, it is 
still early in the application of containers. Indeed, the technology generally 
was not widely understood outside cloud vendors until the release of open 
source LINUX formats (Docker 1.0) in March 2013. Docker transformed 
container technology to a product for enterprise use. The consultancy IDC 
estimated that in 2014, only 1 percent of enterprise applications were run-
ning on containers that could readily be scaled, but reportedly growth in 
Docker adoption has been very rapid since then.11

One final point of history connects this discussion to the earlier use of 
commercial time- sharing services. These services were an important part of 
the computing environment in its earliest days. There was a period of frantic 
growth (1955–65), after which the industry flourished for another 20 years 
due to a competitive advantage that “arose from the nonlinear relationship 
between total operating costs and performance—the larger the time- sharing 
system, the lower the per- user cost” (Campbell- Kelly and Garcia- Swartz 
2008, 27). Commercial time- sharing services underwent a complete indus-
trial boom- to- bust cycle— like typewriters and punched- card machines—
after the advent of the PC.12

13.3  Prices of Cloud Computing Services

Outside of sporadic media reports and research by some private consul-
tants, relatively little is known about the prices of cloud computing services. 
This chapter develops new price indexes for three basic products provided 
by one of the leading providers of cloud services.

13.3.1  Data

We collected prices on a quarterly basis from AWS, the earliest and larg-
est provider. We collected prices from when AWS began posting prices on 
the internet, with the earliest prices from 2009. To collect historical prices, 
we used the Internet Archive (also known as the Wayback Machine) to pull 
posted prices from web pages as they appeared in prior periods. We col-
lected prices for a compute product (renting virtual machines), a selection 
of database products that offer SQL as well as other database software, and 
a range of disk storage products.

11. See DataDog (2015). See also Elliot and Perry (2018).
12. According to Campbell- Kelly and Garcia- Swartz (2008), the market for time- sharing 

existed because it was the only means at that time of providing a personal computing experi-
ence at a reasonable cost. They also present econometric evidence showing that the growth of 
time- sharing services in its heyday slowed down the growth of mainframe computer shipments; 
see their online appendix.
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Of course, the services for which we gathered prices are just a subset of the 
wide array of services available, and they are at the lower end of the “stack” 
of cloud products described above. In particular, we place the compute and 
storage products in the IaaS category, and we place the database products 
in PaaS. That said, these compute, database, and storage services are key 
foundational elements on which many of the services that are higher in the 
stack are based. Accordingly, we believe that the compute, database, and 
storage products considered in this chapter provide a very useful and broadly 
representative sample of available cloud services.

AWS has been the market leader and has posted prices on the internet 
since 2009. Microsoft began posting prices in early 2014, and Google began 
posting prices in late 2014. We believe that AWS is broadly representative 
of the market, though future work on prices of other providers is needed 
to confirm that.

We note one important limitation of our data. We obtained data on prices 
and product characteristics but not on quantities because cloud service pro-
viders do not make product- level sales information readily available. We also 
were unable to obtain private data on quantities.

13.3.2  Amazon Web Services (AWS)

AWS offers an amazing array of products. One common feature across 
all products is that customers choose among regions—that is, where the 
servers are located on which they are running applications and storing data. 
Currently, AWS offers four regions in the United States, including Virginia, 
California, Oregon, and Ohio. (Amazon also offers many regions outside the 
United States.) For this chapter, we collected prices for Virginia, California, 
and Oregon. (The Ohio region was only introduced in October 2016.) For 
an AWS customer, choosing a region that is geographically closer reduces 
latency, and some customers will store data in multiple regions for redun-
dancy. Prices differ across regions, with prices in California generally higher 
than those in Virginia or Oregon. In general, the differences in prices across 
regions are in levels, while changes in prices tend to be very similar across 
regions.

Compute Product (EC2—Elastic Compute Cloud). Using this product 
amounts to renting a virtual machine (PC or server) from AWS, and this 
product is priced in terms of dollars per hour. In cloud computing nomen-
clature, the use of a virtual machine is known as an “instance,” and AWS 
offers instances in a wide range of configurations. During the span of our 
data from 2009 to 2016, AWS offered 55 different configurations of virtual 
machines. Each configuration has specified characteristics in terms of the 
power of the processor, the amount of RAM, and the amount of disk space 
allocated. In addition, customers can choose between Linux and Windows 
operating systems. For every available configuration, we collected prices as 
well as characteristics, and we have a total of 4,079 observations for EC2 
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prices. The characteristics are important, and we will use them to construct 
hedonic price indexes.

AWS offers several different pricing schemes for instances. For EC2, we 
collected data for only “on- demand” instances, which can be purchased at 
any time with no commitment. AWS also offers “reserved” instances, for 
which a customer pays in advance for a set volume of instances whether or 
not the instances are used. Prices of reserved instances are lower than those 
of on- demand instances. In addition, AWS runs a spot market for instances. 
Customers can bid for instances at a price of the customers’ choosing. The 
customer will receive the instances if  they are available but will not receive 
them if  some other customer offered to pay a higher price for available 
instances. Prices of spot instances also tend to be below those of on- demand 
instances. Finally, AWS offers quantity discounts to heavier users.

Tracking prices for all of these different types of instances was beyond 
the scope of this chapter. For the purpose of constructing price indexes, a 
key question is whether the price trends for on- demand instances differ in 
systematic ways from those of other types of instances. Our sense is that 
prices within these different pricing schemes tend to move together, but that 
remains an open question. That said, we suspect that individual customers 
experience price declines that are more rapid for a time than are the trends we 
estimate. In particular, as customers gain experience with AWS and migrate 
more applications to the cloud, we suspect that they increasingly shift toward 
reserved instances and avail themselves of  quantity discounts. This shift 
toward lower- priced instances generates faster price declines during the shift 
than we estimate from tracking prices of on- demand instances. Of course, 
once a customer has finished the shift toward lower- priced instance types, 
the trend in prices experienced by that customer likely would be in line with 
the price trends that we estimate.

Our raw data for EC2 prices are plotted in figure 13.1. This figure plots 
AWS’s posted prices for each instance type for the full time it is in the market, 
with a different line style capturing each different instance type. In the figure, 
we show separate plots for each region and operating system pair, with each 
column of graphs covering a region and each row covering an operating 
system. The graphs, plotted with a log scale, indicate that prices tend to fol-
low downward step functions, with longish periods of no price change. It 
also is evident that AWS revamped its offering of instance types around the 
beginning of 2014, dropping most extant instance types and introducing new 
ones. Of course the graphs reflect no controls for characteristics or quality 
of the instances, and as shown below, it turns out that this revamping was 
associated with a large drop in quality- adjusted prices.

Database Product (RDS—Relational Database Service). Using this 
product amounts to renting database software along with a virtual machine 
(called an instance class) to run the software. It is priced in terms of dollars 
per hour. AWS offers several different database engines, including MySQL, 
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Fig. 13.1 Amazon EC2 posted prices by instance for each region and for Linux  
and Windows
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SQL, SQL Standard, SQL Express, SQL Web, SQL Enterprise, PostgreSQL, 
Oracle, Aurora, and MariaDB. Some of these are open source, while others 
are proprietary and require a license. For those requiring a license, AWS 
offers instances for which customers use their own license as well as instances 
for which AWS provides the license (for a higher price). AWS also offers sev-
eral different instance classes with differences in the CPU power of the vir-
tual machine, the amount of RAM, network performance, and whether the 
instance class is optimized for input- output to storage. For every available 
configuration, we collected prices as well as characteristics for on- demand 
instances. (AWS also offers reserved instances for its database product.) In 
total, we have 5,340 observations on RDS prices.

Our raw data for a selection of RDS prices are plotted in figure 13.2. This 
figure plots AWS’s posted prices for each RDS instance type for the MySQL 
database software for the Virginia, California, and Oregon regions. Because 
of the multiplicity of types of database software, it is not feasible to plot all 

Fig. 13.2 Amazon RDS posted prices by instance for MySQL in the Virginia, Cal-
ifornia, and Oregon regions
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our data in a single figure. That said, the data in this figure are broadly rep-
resentative of those for other regions and database software. The graphs are 
plotted with a log scale and show the same overall pattern as the EC2 price 
plots. Prices tend to follow downward step functions, with longish periods of 
no price change. As with EC2, AWS revamped its offerings around the begin-
ning of 2014, dropping most extant instance types and introducing new ones.

Storage Product (S3—Simple Storage Solution). Using this product 
amounts to renting hard disk space. It is priced in terms of dollars per tera-
byte (TB) per month.13 The pricing scheme for S3 builds in volume discounts 
directly with pricing tiers. For example, customers pay one price for the first 
TB used, a lower price for the next 49 TB used, a still lower price for the next 
50 TB used, and so on.14 AWS also offers three different types of storage: 
“standard” allows immediate access to stored data; “infrequent” access is 
for longer- term storage, and data can be retrieved only with a delay; and 
“glacier” storage has an even longer delay for retrieval. As with other AWS 
products, customers can choose among regions. We collected prices for all 
pricing tiers, all three types of  storage, and the Virginia, California, and 
Oregon regions. In total, we have 445 observations on S3 prices.

Our raw data for S3 prices are plotted in figure 13.3. This figure plots 
AWS’s posted prices for each price tier for the full time it is in the market for 
each region and type of storage pair. (Each different price tier is represented 
by a different line style.) In the figure, each column is for a region, and each 
row is for a different type of storage (standard, infrequent, and glacier).

13.3.3  Results

The new quality- adjusted price indexes presented here for EC2 (compute) 
and RDS (database) are based on adjacent- quarter regressions. For S3 (stor-
age), quality does not change appreciably because the product is just a TB 
of storage, so we rely on matched- model indexes.

To explain our rationale for using adjacent- quarter regressions, we first 
describe a dummy- variable hedonic specification:15

(1) ln(Pi,t) = +
k

kXk,i,t + tDi,t + i,t,

where Pi,t is the price of product i in period t, Xk,i,t is the value of character-
istic k for that product in period t (measured in logs or levels, as appropri-
ate), Di,t is a time dummy variable (fixed effect) that equals 1 if  the price i is 
observed in period t and 0 otherwise, and εi,t is an error term.

A potential shortcoming of equation (1), highlighted by Pakes (2003) and 

13. A terabyte of data is 1,014 gigabytes. The prefix tera is from the Greek word for monster.
14. The pricing tiers have changed over time. For example, early on, prices dropped after the 

first TB of data, while now pricing does not drop until after the first 50 TB of data. This change 
reflects the ongoing decline in the price of storage.

15. The language used here to describe adjacent- quarter regressions draws heavily from 
Byrne, Oliner, and Sichel (2018).
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Fig. 13.3 Amazon S3 posted prices by price tier for each region and storage type
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Fig. 13.3 (cont.)
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Fig. 13.3 (cont.)
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Erickson and Pakes (2011), is that the coefficients on the characteristic are 
constrained to remain constant over the full sample period. Byrne, Oliner, 
and Sichel’s (2018) study on microprocessors used adjacent- year regression; 
here, we follow their setup but use adjacent- quarter regressions.

To make things precise, we describe our adjacent- quarter procedure for 
EC2; the procedure for RDS is parallel. For EC2, we estimate the following 
regression for each two- quarter overlapping period:

(2) ln(Pi,t) = +
k

kXk,i,t + D2t + i,t,

where Pi,t is the price of EC2 instance of type i in quarter t and Xk,i,t is the kth 
characteristic of instance i in quarter t. The dummy variable D2t equals 1 if  
the price observation is for the second quarter of the two- quarter overlap-
ping period and 0 otherwise.

To construct a price index from these sequences of regressions, we spliced 
together the percent changes implied by the estimated coefficients on the 
D2t variables. All the reported results are bias adjusted to account for the 
transformation from log prices to a nonlog price index.16

Because we do not have quantity data, the adjacent- quarter regressions 
are unweighted so that each observation receives an equal weight in the 
regression. This approach is an unfortunate limitation of not having quan-
tity data.

EC2. For the adjacent- quarter regressions for EC2, the following char-
acteristics entered as natural logs: ECU (AWS’s designation of the power 
of the processor), Mem (the amount of memory in GB), and Storage (the 
amount of disk storage in GB).17 The regressions also include the following 
fixed effects: storSSD (= 1 if  the disk storage is solid state), pltfrm (= 1 if  the 
processor is 64 bit; = 0 if  the processor is 32 bit), System (= 1 if  the system 
is Linux; = 0 for Windows), inO (= 1 if  the price is for the Oregon region), 
and inC (= 1 if  the price is for the California region).

Results of these regressions are summarized in table 13.1. Because of the 
number of adjacent- quarter regressions, the table summarizes the regression 
results, showing the minimum, maximum, and median values of coefficient 
estimates across the regressions.18 In addition, of the 31 adjacent- quarter 

16. Because the exponential function is nonlinear, the translation from the natural log of 
prices to price levels requires an adjustment in order to be unbiased. We apply the standard 
adjustment based on the estimated variance of the coefficient δ, as described in van Dalen and 
Bode (2004).

17. In later periods, AWS began charging separately for disk storage for some instances. For 
these observations, Storage is set equal to zero.

18. As is evident in the table (as well as in our adjacent- quarter estimates for other cloud ser-
vices), some parameters exhibit considerable variation across the adjacent- quarter regressions. 
Running adjacent- year regressions likely would damp this variation. We chose not to consider 
adjacent- year regressions for two reasons. First, because prices of these services change infre-
quently and by large amounts and because new products are introduced infrequently, we wanted 
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regressions, the table shows the fraction of the estimates for each coefficient 
that are significant at the 5 and 10 percent significance levels.

The coefficient on the dummy variable capturing quality- adjusted price 
change, D2, has a median value of zero, reflecting that prices are not chang-
ing in most quarters. The coefficient for the variable for processor power, 
ECU, generally is positive and highly significant, as prices are higher for 
instances providing more processor power. The same pattern holds for the 
memory variable, Mem. The variable for disk storage is almost always sig-
nificant, though its sign often is negative. Among the fixed effects, solid- state 
disk storage, StorSSD, has relatively little effect on prices, while instances 
running with Linux, the System variable, are priced at a hefty discount to 
instances running with Windows (for which AWS would be paying a license 
fee). The coefficient on the fixed effect distinguishing between 32-  and 64- 
bit processors (pltfrm) is quite variable across regressions and significant in 
about a third of the regressions. Prices in the Oregon region, captured by 
the inO variable, are little different from those in Virginia, while prices in 
the California region, the inC variable, typically are more than 10 percent 
higher than prices in Virginia.

Table 13.2 reports the price indexes generated by these regressions as well 
as the number of observations and adjusted- R2 for each adjacent- quarter 

to be able to isolate these periods of change. Second, our quarterly frequency coincides with 
that in the National Accounts.

Table 13.1 Amazon EC2 adjacent- quarter regressions, 2009:Q2–2016:Q4 (summary 
of coefficient estimates across all adjacent- quarter regressions)

  Minimum  Maximum  Median  
Fraction 

significant at 5%  
Fraction 

significant at 10%

D2 −0.329 0.031 0.0 2/31 2/31
ECU −0.114 0.604 0.212 28/31 29/31
Mem −0.739 0.85 0.630 31/31 31/31
Storage −0.66 0.199 −0.067 30/31 31/31
StorSSD −0.049 0.017 0.0 0/31 10/31
System −0.444 0 −0.341 29/31 29/31
pltfrm −0.477 2.103 0.0 10/31 10/31
inO −0.025 0.038 0.0 0/31 0/31
inC 0.0 0.146 0.127 23/31 24/31
Constant −5.939  −0.926  −4.616  31/31  31/31

Notes: D2 is the dummy variable for the second quarter of the adjacent- quarter regression. 
ECU, Mem, and Storage are in natural logs. ECU measures processor power, Mem is the 
amount of RAM, and Storage is the amount of disk storage. Other variables enter as fixed 
effects. StorSSD = 1 if  solid state storage, System = 1 if  operating system is Linux, pltfrm = 1 
if  the processor is 64 bit, inO = 1 if  the region is Oregon, and inC = 1 if  the region is California. 
The omitted categories are the Windows operating system in the Virginia region with magnetic 
hard drive disk storage and a 32- bit processor.
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regression.19 The adjusted- R2s are quite high, indicating that the right- hand- 
side variables are capturing most of the sources of variation in prices. The 
price index is shown in the first column, and percent changes at quarterly 

19. The price trends for EC2 are similar to those reported by Zhang (2016).

Table 13.2 Amazon EC2 (compute product) price index

  
Price 
index  

Percent change 
(quarterly rate)  

Number of 
observations  

Adjusted 
R2

2009: 1 100.00
2009: 2 100.00 0.0 20 0.996
2009: 3 100.00 0.0 20 0.996
2009: 4 95.29 −4.7 38 0.91
2010: 1 95.29 0.0 56 0.927
2010: 2 95.29 0.0 60 0.926
2010: 3 91.27 −4.2 69 0.955
2010: 4 91.77 0.5 75 0.968
2011: 1 91.77 0.0 76 0.969
2011: 2 91.77 0.0 76 0.969
2011: 3 91.77 0.0 76 0.969
2011: 4 84.92 −7.5 98 0.967
2012: 1 87.71 3.3 126 0.961
2012: 2 88.68 1.1 132 0.96
2012: 3 88.68 0.0 132 0.963
2012: 4 88.68 0.0 132 0.963
2013: 1 82.37 −7.1 156 0.953
2013: 2 77.98 −5.3 182 0.949
2013: 3 77.98 0.0 184 0.974
2013: 4 77.95 0.0 242 0.974
2014: 1 56.15 −28.0 370 0.944
2014: 2 56.15 0.0 440 0.956
2014: 3 56.15 0.0 440 0.956
2014: 4 56.15 0.0 440 0.956
2015: 1 56.15 0.0 440 0.956
2015: 2 56.15 0.0 440 0.956
2015: 3 56.15 0.0 440 0.956
2015: 4 56.15 0.0 440 0.956
2016: 1 48.84 −13.0 518 0.938
2016: 2 48.84 0.0 596 0.936
2016: 3 48.72 −0.2 596 0.936
2016: 4 48.72 0.0 298 0.936

Memo: Avg. at annual rate
2009:1−2016:4 −6.9
2009:1−2013:4 −5.1
2014:1−2016:4  −10.5     

Notes: Based on adjacent- quarter hedonic regression as described in the text. All estimates are 
bias adjusted to account for the translation from log price to a price index. The last two columns 
show the number of observations and adjusted R2s from each of the adjacent- quarter regressions.
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rates are reported in the second column. These figures highlight that prices 
do not change in most quarters. Price declines are large in some quarters, 
with the biggest drop in the first quarter of 2014, when AWS revamped its 
offerings of  EC2 instances. Although not evident in the plots of  posted 
prices in figure 13.1, the newly offered instances provided much higher qual-
ity at prices that were, on their face, roughly comparable to the posted prices 
of the old offerings of instances. Accordingly, the hedonic regressions iden-
tify a very large quality- adjusted price decline in that period.

All told, quality- adjusted prices for EC2 instances fall at an average annual 
rate of about 7 percent over the full sample. Interestingly, prices fell at an 
annual average rate of about 5 percent from the beginning of 2009 to the 
end of 2013. Then, in early 2014, just as Microsoft had entered the market 
to a sufficient degree that they were posting their cloud prices on the internet 
(and shortly before Google started doing the same), AWS began cutting 
prices more rapidly. That started with the big price drop in early 2014, and 
over the period from the start of 2014 to the end of 2016, EC2 prices fell at 
an average annual rate of 10.5 percent.

RDS. For the adjacent- quarter regressions for RDS, the following char-
acteristics entered as natural logs: Vcpu (AWS’s designation of the power 
of the processor) and Memory (the amount of memory in GB). The regres-
sions also include the variable IOPerformance, which is a qualitative variable 
indicating whether the network performance is low, moderate, high, or very 
high. In addition, the regressions include the following fixed effects: Provi-
sioned IOPS optimized (= 1 if  instance is optimized for input to and output 
from storage), inO (= 1 if  the price is for the Oregon region), and inC (= 1 if  
the price is for the California region), a set of fixed effects for each type of 
database software offered (the omitted category is SQL Standard).

Results of these regressions are summarized in table 13.3. As for the EC2 
results, the table summarizes the regression results, showing the minimum, 
maximum, and median values of coefficient estimates across the regressions. 
In addition, of the 25 adjacent- quarter regressions, the table shows the frac-
tion of the estimates for each coefficient that are significant at the 5 percent 
and 10 percent significance levels.

The coefficient on the dummy variable capturing quality- adjusted price 
change, D2, has a median value of zero, reflecting that prices are not chang-
ing in most quarters. The coefficient for the variable for processor power, 
Vcpu, generally is positive and relatively significant, as prices are higher for 
instances providing more processor power. The same pattern holds for the 
memory variable, Memory. The variable IOPerformance also is always posi-
tive and almost always significant. Among the fixed effects, the variable Pro-
visioned IOPS optimized (indicating optimization of storage input/output) is 
always positive and significant. Just as for EC2, prices in the Oregon region, 
captured by the inO variable, are little different from those in Virginia, while 
prices in the California region, the inC variable, typically are more than 10 
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percent higher than prices in Virginia. Among the fixed effects for different 
database software, most are priced at significant discounts relative to SQL 
Standard. Oracle is the big exception; if  AWS provides the license, Oracle is 
priced significantly above SQL Standard.

Table 13.4 reports the price indexes generated by these regressions. The 
adjusted R2s are quite high, indicating again that the right- hand- side vari-
ables are capturing most of  the sources of  variation in prices. The price 
index is shown in the first column, and percent changes at quarterly rates 
are reported in the second column. As for EC2, these figures highlight that 
prices do not change in most quarters. Price declines are large in some quar-
ters, with the biggest drop at the beginning of 2014, when AWS revamped 
its offerings.

All told, quality- adjusted prices for RDS instances fall at an average 
annual rate of more than 11 percent over the full sample. Over subperiods, 
the pattern is the same as that for EC2 prices. Prices fell at an annual average 
rate of about 3 percent from the beginning of 2009 to the end of 2013. Then, 
in early 2014, just as Microsoft had entered the market to a sufficient degree 
that they were posting their cloud prices on the internet, AWS began cutting 
prices more rapidly. That started with the big price drop in early 2014, and 
over the period from the start of 2014 to the end of 2016, RDS prices fell at 
an average annual rate of more than 22 percent.

Table 13.3 Amazon RDS adjacent- quarter regressions, 2010:Q3−2016:Q4 
(summary of coefficient estimates across all adjacent- quarter regressions)

  Minimum  Maximum  Median  

Fraction 
significant 

at 5%  

Fraction 
significant 

at 10%

D2 −0.53 0.01 0.00 5/25 5/25
Vcpu −0.15 0.22 0.03 16/25 16/25
Memory 0.57 0.74 0.69 25/25 25/25
IOPerformance 0.04 0.35 0.25 24/25 24/25
Provisioned IOPS optimized 0.07 0.22 0.13 25/25 25/25
inC 0.09 0.12 0.11 25/25 25/25
inO −0.01 0.01 0.00 0/25 0/25
Aurora −1.31 0.00 0.00 5/25 5/25
MySQL −1.44 0.00 −1.00 18/25 18/25
Oracle (own license) −1.43 0.00 −1.00 17/25 17/25
Oracle (AWS provided license) 0.00 0.76 0.37 21/25 21/25
PostgreSQL −1.38 0.00 0.00 12/25 12/25
SQL (own license) −1.02 0.00 −0.67 18/25 18/25
SQL express −1.37 0.00 −0.96 18/25 18/25
SQL web −0.66 0.00 −0.60 18/25 18/25
MariaDB −1.44 0.00 0.00 4/25 4/25
Constant  −3.10  −1.99  −2.87  25/25  25/25

Notes: No observations for 2015:Q4 were available in the web archive.
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S3. As noted, quality does not change appreciably over time for S3, the 
AWS storage product. Accordingly, we construct matched- model indexes 
by tracking price changes over time for each price tier. Table 13.5 reports 
the resulting price indexes for each price tier. As for EC2 and RDS, these 
figures indicate that prices do not change in most quarters. Price declines 
are large in some quarters, with the biggest drop at the beginning of 2014, 
as AWS appeared to be responding to a competitive threat from Microsoft 
(and Google later in the year).

The bottom three lines of the table provide summary figures that are an 

Table 13.4 Amazon RDS (database product) price index, 2010:Q2−2016:Q4

  
Price  
index  

Percent change  
(quarterly rate)  

Number of  
observations  

Adjusted  
R2

2010: 2 100.00  
2010: 3 100.00 0.0% 22 0.999
2010: 4 93.73 −6.3% 24 0.997
2011: 1 93.73 0.0% 24 1
2011: 2 93.73 0.0% 44 0.999
2011: 3 93.73 0.0% 64 0.999
2011: 4 93.73 0.0% 64 0.999
2012: 1 93.73 0.0% 64 0.999
2012: 2 93.73 0.0% 133 0.971
2012: 3 93.73 0.0% 202 0.967
2012: 4 93.73 0.0% 202 0.967
2013: 1 87.25 −6.9% 242 0.971
2013: 2 87.19 −0.1% 282 0.976
2013: 3 87.19 0.0% 282 0.976
2013: 4 87.19 0.0% 308 0.978
2014: 1 82.29 −5.6% 420 0.977
2014: 2 48.30 −41.3% 601 0.975
2014: 3 48.30 0.0% 696 0.981
2014: 4 48.30 0.0% 696 0.981
2015: 1 48.30 0.0% 696 0.981
2015: 2 48.30 0.0% 696 0.981
2015: 3 48.55 0.5% 712 0.981
2015: 4 48.55 0.0%
2016: 1 38.38 −20.9% 1,183 0.983
2016: 2 38.20 −0.5% 1,218 0.985
2016: 3 38.20 0.0% 702 0.984
2016: 4 38.20 0.0% 606 0.983
Memo: Avg. at annual rate
2010:2−2016:4 −11.6
2010:2−2013:4 −3.3
2014:1−2016:4  −22.6     

Notes: Based on adjacent- quarter hedonic regression as described in the text. All estimates are 
bias adjusted to account for the translation from log price to a price index. The last two col-
umns show the number of observations and adjusted R2s from the adjacent- quarter regres-
sions. No observations are available for 2015:Q4; we assumed no price change in that quarter.

 EBSCOhost - printed on 2/8/2023 7:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



Table 13.5 Amazon S3 (storage product) price indexes, standard storage, Virginia 
(percent change, quarterly rate)

Terabyte (TB) range

  s ≤ 1  
1 < s 
≤ 50  

50 < s 
≤ 100  

100 < s 
≤ 500  

500 < s 
≤ 1K  

1K < x 
≤ 5K  ≥ 5K

2009: 2 0.0 0.0 0.0 0.0 
2009: 3 0.0 0.0 0.0 0.0 
2009: 4 0.0 0.0 0.0 0.0 
2010: 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
2010: 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
2010: 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
2010: 4 −6.7 0.0 −21.4 −15.4 −9.5 0.0 0.0 
2011: 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
2011: 2 0.0 −16.7 0.0 0.0 0.0 0.0 0.0 
2011: 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
2011: 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
2012: 1 −10.7 −12.0 −13.6 −13.6 −5.3 0.0 0.0 
2012: 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
2012: 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
2012: 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
2013: 1 −24.0 −27.3 −26.3 −26.3 −27.8 −25.0 0.0 
2013: 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
2013: 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
2013: 4 −10.5 −6.2 −14.3 −14.3 −15.4 −15.0 −21.8 
2014: 1 −64.7 −6.7 −51.7 −51.7 −48.2 −45.1 −36.0 
2014: 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
2014: 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
2014: 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
2015: 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
2015: 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
2015: 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
2015: 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
2016: 1 −23.3 −22.0 −24.1 −24.1 −26.3 −25.0 −23.6 
2016: 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
2016: 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
2016: 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Memo: Avg. at annual 

rate
 2009:1−2016:4 −18.1 −18.7 −19.5 −18.8 −18.9 −15.7 −11.6 
 2009:1−2013:4 −10.9 −13.1 −15.9 −14.7 −14.5 −10.0 −5.5
 2014:1−2016:4 −29.3 −27.6 −25.3 −25.3 −24.8 −23.4 −19.9
 2009:1−2016:4 Average 

across all price tiers −17.3
 2009:1−2013:4 Average 

across all price tiers −12.1
 2014:1−2016:4 Average 

across all price tiers  −25.1             

Notes: Based on matched- model indexes for each price tier. AWS offered different sets of  price 
tiers in different periods, so not all tiers have entries for every period.
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unweighted average of price change across all the price tiers. All told, prices 
for S3 storage fall at an average annual rate of more than 17 percent over the 
full sample. Over subperiods, the pattern is the same as that for EC2 prices. 
Prices fell at an annual average rate of about 12 percent from the beginning 
of 2009 to the end of 2013. Then, in early 2014, just as Microsoft had entered 
the market to a sufficient degree that they were posting their cloud prices on 
the internet, AWS began cutting prices more rapidly. That started with the 
big price drop in early 2014, and over the period from the start of 2014 to 
the end of 2016, S3 prices fell at an average annual rate of about 25 percent.

13.4  How Big Is the Cloud?

Official revenue data for the cloud services industry and its main products 
according to nomenclature used in this chapter are not available. Nonethe-
less, a natural starting point is the Bureau of Economic Analysis (BEA) data 
on the closest intermediate- use category in the input- output account, 514 
(Data Processing, Internet Publishing, and Other Information Services). 
This category includes data for North American Industry Classification 
System (NAICS) industry 518200 (Data Processing, Hosting, and Related 
Services), which subsumes much of the relevant core cloud services activ-
ity but includes other information services as well.20 These data suggest the 
intensity of business use of purchased cloud services has been rising steadily 
(figure 13.4a). Because this category of spending is very coarse, it does not 
highlight the dynamism and explosive growth of cloud services, however. 
For example, the latest Census revenue data for Data Processing, Hosting, 
and Related Services (NAICS 518200) grew 8 percent and 10 percent in 2015 
and 2016, respectively. While these rates of change are rapid relative to the 
overall economy, according to Amazon’s company reports, AWS revenues 
grew 70 percent and 55 percent, respectively, in these calendar years.21

Using a broader definition of  the cloud, Cisco Systems estimates that 
since emerging in the mid- 2000s, the cloud model has rapidly dominated the 
data center market. Cloud data centers currently account for 90 percent of 
data center traffic and have accounted for essentially all growth since 2010 
(figure 13.5). Indeed, traffic at cloud data centers rose at a 62 percent average 
annual rate between 2010 and 2016. This concept of cloud data centers, how-
ever, also does not correspond directly to the purchased services discussed 
in the previous paragraph for at least three reasons. First, it includes traffic 

20. The structure of NAPCS (North American Product Classification System), introduced 
in 2017, usefully distinguishes among website hosting, data storage services, and so forth but 
does not distinguish between services provided by traditional data centers and those provided 
by cloud vendors. See the industry description at “North American Industry Classification 
System,” US Census Bureau, https:// www .census .gov /eos /www /naics /index .html, and the 
NAPCS structure at “North American Product Classification System,” US Census Bureau, 
https:// www .census .gov /eos /www /napcs/, both accessed March 5, 2017.

21. Data referred to in this paragraph were accessed September 10, 2018.
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related to the massive core centers used for “free services”—for example, 
Google’s centers for its Gmail service. Second, Cisco’s measure of  cloud 
activity includes traffic at dedicated centers designed but not owned by IT 
services companies (e.g., IBM Cloud Services). Payments for these services 
likely are included in the NAICS 541512 (Computer and Network Design 
Services) industry. Revenues in this industry have grown especially rapidly 
relative to GDP (figure 13.4b).

Third, the Cisco measures reflect the rise of the “edge” cloud, which has 

Fig. 13.4b Intermediate uses of computer and network design services, 1987  
to 2015

Fig. 13.4a Intermediate uses of information services, 1987 to 2015
Note: Data processing, hosting, and other information services products, wherever produced 
(BEA IO product code 514, covering 2002 NAICS 5182, 51913).
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a restraining effect on both traffic and underlying business IT costs. A host 
of new technologies—including the Internet of Things (IoT), augmented 
and virtual reality, autonomous cars, drones, and smart cities—has led to 
an explosion in the volume of data that, given current bandwidth, cannot 
feasibly be transmitted to and from the cloud for processing in real time. 
Accordingly, this development has led businesses and governments to locate 
the processing and storage of their massive data collections locally or near 
the perimeter (i.e., near the “edge”) of internet providers networks. Without 
going into details (but see AT&T 2017), edge computing streamlines the 
flow of data, transmitting only higher- value data (e.g., data from multiple 
IoT sources) to a shared central cloud center for further processing and 
analytic use.

Concurrently, capital expenditures at hyperscale cloud service providers 
have surged in recent years, rising at an annual rate of 21 percent during 
2010 to 2015. Moreover, these expenditures now have reached roughly $50 
billion per year, similar in magnitude to capital expenditures at telecom ser-
vice providers (figure 13.6).22

Figure 13.7 shows the importance and rapid growth of the cloud from 
a different perspective: the share of the world’s most powerful computers 

22. Cisco classifies a data center operator as hyperscale if  they have revenue of $1 billion in 
Iaas/Paas, $2 billion in SaaS, $4B from internet/search/social networking, or $8 billion from 
e- commerce / payment processing. Figure 13.6 includes the companies meeting this definition 
that provide cloud services.

Fig. 13.5 Global data traffic by datacenter type, historical and projected,  
ratio scale
Source: Cisco Global Cloud Index, Forecast and Methodology, 2015–20 and earlier editions.
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operated by IT service firms leapt from under 10 percent in 2006 to more 
than 40 percent in 2009 and has persisted at that level since.23

And tying back to the discussion of virtualization, IT consultancies com-

23. The IT services category is necessarily broader than cloud services because the descrip-
tions of individual supercomputing sites vary in specificity. That being said, some sites are 
identified as Microsoft Azure and AWS.

Fig. 13.6 US company capital expenditure Selected IT service providers
Source: Authors’ tabulation of company financial filings.
Note: Included cloud service providers meet Cisco definition of hyperscale. Included telecom-
munications service providers are AT&T, Verizon, Sprint, T- Mobile US, Century Link, and 
related companies.

Fig. 13.7 Industrial supercomputer capacity by sector
Source: Top500 .com, authors’ calculations.
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mented in 2008 that server virtualization had become the “killer app” for 
the business datacenter. Subsequently, IDC estimated that the number of 
virtual machines (VMs) per server in the United States—an indicator of the 
application workload of an enterprise server—advanced nearly 12 percent 
per year from 2007 to 2013 (Byrne and Corrado 2017b).

13.4.1  Where Has All This Investment Gone?

How well does this financial data align with official measures? Mapping 
company reports to official industry statistics is challenging. Companies 
providing cloud services provide a host of other IT services as well. Con-
sequently, their establishments undoubtedly are classified to a variety of 
industries, most notably the industries in NAICS subsectors 511 (Publish-
ing Industries, except Internet [includes Software]), 513 (Broadcasting and 
Telecommunications), and 519 (Other Information Services).

In light of this wave of investment by cloud service providers, the continu-
ing shift away from IT equipment in business fixed investment in equipment 
and intangibles may be seen as puzzling. Figure 13.8 plots NIPA nominal IT 
investment and the capital expenditures figure for cloud service providers from 
figure 13.6 as shares of GDP. As shown, these two series tracked fairly closely 
from the mid- 1990s through about 2009 as IT investment tailed off as a share 
of GDP. But after 2009, these series diverged sharply as capital expenditures 
surged while the series for NIPA IT investment remained sluggish. One pos-
sible explanation is the higher utilization that follows as firms outsource IT 
functions to the cloud. Such an increase in utilization could translate into  

Fig. 13.8 Capital expenditure, selected US IT service providers and NIPA nominal 
IT equipment investment
Source: Bureau of Economic Analysis. Authors’ tabulation of company financial reports.
Note: IT equipment investment includes communications equipment, computers, and periph-
erals. Included cloud service providers meet Cisco definition of hyperscale. Included telecom-
munications service providers include AT&T, Verizon, Sprint, T- Mobile US, Century Link, 
and related companies.
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weaker investment in the short run. Indeed, IDC Inc. reports that the nomi-
nal value of sales of servers to US firms fell at an annual average rate of 11 
percent from 2004 to 2016, and the decline has accelerated since 2008.

That being said, we also consider another possibility: that cloud services 
firms have been building their own IT equipment, at least in part.24 If  so, then 
a portion of the capital expenditures reported above may be for components 
that have gone into IT equipment built on an own- account basis rather than 
for already- assembled IT equipment. Google, for example, is reported to 
have built both computing and network equipment from purchased compo-
nents.25 Consistent with this possibility, the “use tables” published by the US 
Bureau of Economic Analysis indicate that the output of the Computer and 
Electronics Manufacturing sector (NAICS 334) used by IT services sectors 
is substantial—$58.6 billion in 2015.26 At the same time, the “make tables” 
indicate that these electronic intermediates are not made into final electron-
ics sold by the IT services sector. This suggests that these components are 
used for own- account production of IT equipment used within the firms.

If  this story is correct, this own- account investment should be (but we 
believe likely is not) counted in the NIPAs as business investment in IT 
equipment, albeit own- account investment. How much might this own- 
account investment add up to? For the sake of argument, we assume that 
the omitted investment value of the own- account production of final elec-
tronics is equal to the value of the electronic intermediates used.27 With this 
valuation, the story for business investment in IT equipment changes mark-
edly. As seen in figure 13.9, nominal IT equipment and software investment, 
including our estimate of  own- account investment, would be $58 billion 
higher in 2015 than in the official estimates, amounting to 0.32 percent of 
GDP. For nominal investment in IT equipment, adding this own- account 
investment would boost the average annual growth rate during 2007–15 by 
roughly 2 percentage points compared with official estimates. For nominal 
GDP growth, including this own- account investment would add three basis 
points per year to the growth rate during this period.

13.5  Conclusion

We find that cloud computing has exploded. By available measures, the 
quantity of cloud activity has grown extremely rapidly, as has associated 

24. A parallel presentation of own- account investment by cloud service providers appears 
in Byrne, Corrado, and Sichel (2017).

25. See Wired (2015).
26. We treat BEA categories 511, 512, 514, and 5415 as IT services. This group includes 

industry 518210 mentioned above (in category 514) as well as software publishing, telecom 
services, and computer design services.

27. We believe this assumption is conservative; although the details of data center server 
inputs are not available, Gartner Inc. reports that the market value of personal computers is 
roughly four times the value of electronic inputs.
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capital investment. At the same time, prices of  basic cloud services have 
fallen rapidly since 2009, based on a unique dataset we assembled. How-
ever, because cloud is so new and so much of it is intermediate input, it is 
challenging to track in the statistical system, and the available data do not 
distinguish between cloud- based and traditional services, whether services 
are purchased or produced internally or generated at the “edge.” We high-
light one area where real GDP may be understated by a noticeable amount 
as a result of changes in the economy related to the rise of cloud computing.
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14.1  Introduction

The Bureau of Economic Analysis (BEA) strives to ensure that the price 
indexes used to construct inflation- adjusted measures in the National 
Income and Product Accounts (NIPAs) and industry economic accounts 
(IEAs) accurately capture improvements in quality. The accuracy of BEA’s 
featured measures, including inflation- adjusted (i.e., “real”) GDP, consumer 
spending, and business investment, depends on this important goal. More-
over, it is often the high- profile, innovative goods and services that reflect 
rapidly changing technologies and notable improvements in quality that 
garner significant attention from the research community, further highlight-
ing the need for accurate measures. These innovative goods and services are 
often the subject of important economic studies, including understanding 
their role in explaining changes in multifactor productivity (MFP).1

1. Traditionally, the focus has been on ICT equipment, including Byrne and Corrado (2015), 
Byrne and Corrado (2017a), Byrne and Corrado (2017b), and Byrne, Oliner and Sichel (2017). 
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BEA has traditionally placed a high value on collaboratively developing 
and implementing quality- adjusted prices for innovative products, including 
information and communications technology (ICT) goods and services. This 
commitment began in the mid- 1980s, when BEA first introduced quality- 
adjusted price indexes for computers and peripheral equipment that had 
been developed jointly by BEA and IBM. Quality- adjusted prices for semi-
conductors were developed and implemented by BEA in the 1990s, followed 
by the introduction of hedonic, quality- adjusted prices for photocopying 
equipment developed by BEA in the early 2000s. Also in the early 2000s, 
BEA began devoting considerable resources to improving the price indexes 
for purchased custom software and software developed in- house.

With an aim toward facilitating and encouraging further price research, 
this chapter first provides a historical perspective and an analysis of BEA’s 
ICT prices, including an overview of the sources and methods used to con-
struct BEA’s quality- adjusted prices. In the second part of the chapter, we 
discuss current work and future plans for continuing to ensure the accuracy 
of BEA’s price indexes and corresponding inflation- adjusted measures. The 
appendix provides an update that assesses recent progress in price mea-
surement as reflected in BEA’s 15th comprehensive update of the NIPAs, 
released July 27, 2018.

14.2  Historical Overview of BEA’s ICT Prices

BEA first introduced quality- adjusted price indexes for computers and 
peripheral equipment into the NIPAs with its eighth comprehensive update, 
released in December 1985. BEA worked with IBM in a joint effort to 
develop quality- adjusted price indexes for five types of computing equip-
ment—computer processors, disk drives, printers, displays (terminals), and 
tape drives.2 Hedonic methods were used to estimate coefficients (prices) for 
various characteristics (speed, memory, etc.). Composite price indexes were 
then constructed using both reported model prices and, for models not sold 
in the base year, model prices imputed from the characteristics’ coefficients. 
The estimates of the computer deflators covered the period 1972–84, and 
the indexes were extended back to 1969 using information from other stud-
ies of computer prices. Prior to 1969, the deflator was held constant at the 
1969 level.

During the 1987 NIPA annual update, a price index for personal com-
puters (PCs) was introduced beginning with 1983. The PC price index was 
a chained matched- model price index based on IBM PC’s, judgmentally 

Another important area is software: see, for example, Abel, Berndt, and White (2003) on Micro-
soft’s PC software products and Copeland (2013) on prepackaged software. Others have studied 
the associated services: Greenstein and McDevitt’s (2012) work on broadband services, and 
Byrne, Corrado and Sichel’s (2018) work on cloud computing services.

2. See Cartwright (1986), Cole et al. (1986), and Triplett (1986).

 EBSCOhost - printed on 2/8/2023 7:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



BEA Deflators for Information & Communications Tech. Goods & Services    555

adjusted by BEA to take into account quality changes associated with the 
introduction of new models and to take into account models of other manu-
facturers.3

In 1991, the Bureau of Labor Statistics (BLS) began publishing quality- 
adjusted producer price indexes (PPIs) for computers. Soon after, BLS began 
publishing PPIs for peripheral equipment. As these PPIs became available, 
they replaced BEA’s judgmental indicators and extrapolators for the quar-
terly NIPA computer price indexes. Eventually, PPIs also replaced BEA’s 
annual quality- adjusted computer price indexes.4

In December 1991, BEA released its ninth comprehensive update of the 
NIPAs, and as part of it, several improvements in the price indexes for com-
puters were incorporated. Among the most important of  these improve-
ments was the preparation of a separate price index for imports, which was 
used in the deflation of  imported computers in private fixed investment 
and in imports of goods. The new index used import weights to combine 
separate indexes for imported mainframes, imported personal computers, 
imported printers, and domestic and imported direct access storage devices 
(DASD) and display terminals. The import price index for PCs was a Paas-
che chain- type matched- model price index, using prices and quantities from 
trade sources. The import price indexes for mainframes and printers were 
derived from existing BEA databases that were separated into imported and 
domestically produced models. The regression equations were modified to 
include a dummy variable, which took the value of 1 for imported models 
and the value of 0 for domestically produced models. Another significant 
improvement introduced during this revision was to develop separate regres-
sion equations and price indexes for four types of printers: serial impact, 
serial nonimpact, line- fully- formed, and page. In addition, the computer 
price indexes were extended back to 1959 based on indexes developed in 
several independent studies.5

In January 1996, BEA released its 10th comprehensive update of  the 
NIPAs. With this release, BEA introduced quality- adjusted price indexes 
for memory and for microprocessor metal- oxide semiconductor integrated 
circuits (chips) beginning with 1981. The new quality- adjusted semicon-
ductor price indexes were constructed by BEA using different methodolo-
gies for memory chips and for microprocessor chips. The price index for 
memory chips was quality adjusted using the price per bit of data storage 
capacity and the type of memory chip. Seven types of memory chips were 
weighted together to produce a summary price index for memory chips. The 

3. See Cartwright and Smith (1988) and US Department of Commerce, Bureau of Economic 
Analysis (1987).

4. The PPIs for computers and peripheral equipment were typically superior to BEA’s price 
indexes because they were available at a much greater frequency, reflected larger samples, and 
reflected more precise hedonic functions.

5. See Triplett (1989).
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price index for microprocessor chips was quality adjusted using a “matched- 
model” approach. Most of the data used consisted of observed prices from 
major US manufacturers that BEA purchased from International Dataquest 
Corporation. Some price data were estimated using hedonic regressions that 
link chip prices to various performance characteristics.6

Also with this release, BEA replaced its previously featured fixed- weighted 
Laspeyres price measure with a Fisher chain- type price index. This resulted 
in a significant improvement by minimizing substitution bias not only in 
aggregate computer price indexes but also in aggregate quantity and price 
measures, such as gross domestic product and gross domestic purchases.7 
In accordance with the change in the featured measure, Fisher chain- type 
price indexes for detailed computer price indexes replaced traditional fixed- 
weighted measures wherever possible.

In October 1999, BEA released its 11th comprehensive update of  the 
NIPAs. With this release, BEA modified the hedonic function used to impute 
laser printer prices and adopted the Fisher chain- type formula for estimating 
detailed printer price indexes. Moreover, a key feature of this update was 
the recognition of business and government expenditures for software as 
fixed investments. A major requirement of recognizing these expenditures 
as final demand included the need to develop quality- adjusted price indexes 
for prepackaged, custom, and “own- account” software.8 Price indexes were 
developed for all three components, beginning with 1959, and reflected sev-
eral different approaches, including hedonic modeling.9

In December 2003, BEA released its 12th comprehensive update of the 
NIPAs, and with this release, BEA introduced a new quality- adjusted price 
index for photocopying equipment. The new price began with 1992 and 
used a biennial hedonic regression model in which the natural logarithm 
of the price of a model of photocopying equipment was regressed on the 
following independent variables: the natural logarithm of the multicopy 
speed; quality- characteristic dummy variables for color, capability, multi-
functionality, and capacity; and a time dummy variable that takes on the 
value 1 if  the ith photocopy model was sold in the second year of the biennial 
regression datasets.10

With the 2003 update, BEA also incorporated an improved price index for 
investment in own- account and custom software. Previously, the price index 
for own- account and custom software was a pure input- cost index calculated 
from a weighted average of compensation rates for computer programmers 

6. See Grimm (1998).
7. See Landefeld and Parker (1995).
8. Own- account software consists of in- house expenditures for new or significantly enhanced 

software created by business enterprises or government units for their own use.
9. See Parker and Grimm (2000).
10. See Moylan and Robinson (2003).

 EBSCOhost - printed on 2/8/2023 7:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



BEA Deflators for Information & Communications Tech. Goods & Services    557

and systems analysts and the costs of intermediate inputs associated with 
their work; it assumed no changes in productivity. The improved price index 
was constructed as a weighted average of  the percentage changes in the 
input- cost index (75 percent weight) and the BLS PPI for “prepackaged 
software applications sold separately” (25 percent weight), which did reflect 
changes in productivity.

Finally, also as part of the 2003 comprehensive update, BEA fully incor-
porated a Federal Reserve Board (FRB) price index for local area network 
equipment that more accurately captured quality improvements than the 
existing BEA price index. The improved FRB price was first adopted in 
the 2001 NIPA annual update and was incorporated back to 1992 with this 
update.11

In both the 13th and 14th comprehensive updates of the NIPAs—released 
in July 2009 and July 2013, respectively—little attention was focused on 
developing improved price indexes for ICT goods and services.12 Looking 
forward and beginning with the 15th comprehensive update of the NIPAs 
to be released in July 2018, BEA is committed to reinvigorating its efforts to 
continually seek ways to explicitly improve prices for the types of innovative 
products that embrace rapidly changing technologies and drive economic 
growth.

14.3  Current Work and Future Plans

There is a renewed effort within BEA to more actively engage in the devel-
opment and incorporation of improved price indexes for ICT goods and 
services, with an aim toward better measuring and accounting for innova-
tion in national accounts statistics. As noted in a recent Journal of Economic 
Perspectives article, BEA has embarked on several initiatives with statisti-
cal agency partners as well as academic researchers to leverage alternative 
data sources to improve the measurement of high- tech goods and services 
prices.13 As BEA prepares for its forthcoming comprehensive update of the 
national accounts, including both the NIPAs and the industry economic 
accounts (IEAs), there are three areas of focus with respect to improving 
price indexes: (1) software, (2) electromedical equipment, and (3) com-
munications equipment (including cell phones). Each of  these products 
experiences rapid rates of innovation and is associated with state- of- the- art 
technologies that present challenges when using standard matched- model 
techniques to construct quality- adjusted price indexes. In the remainder of 

11. See Moulton, Seskin, and Sullivan (2001).
12. While price research related to ICT products waned a bit over this period, it is important 

to note that BEA continued to conduct important price research in other areas, including health 
care and research and development.

13. See Groshen et al. (2017).
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this section, we will discuss plans and preliminary findings for each of these 
three ICT products, followed by a discussion of where BEA plans to focus 
next on price index improvement.

14.3.1  Software

Private fixed investment in software was over $350 billion in 2016 and 
accounts for about 15 percent of all private nonresidential fixed investment. 
BEA recognizes three types of software, and each presents its own unique 
set of measurement challenges: (1) prepackaged, (2) custom, and (3) own- 
account.

As part of the 2017 annual NIPA update, BEA improved the price index 
used to deflate fixed investment in prepackaged software, beginning with 
the first quarter of 2014.14 The improved price index replaced the BLS PPI 
for “application software publishing” with the broader PPI for “software 
publishing, except games.” The PPI for “software publishing, except games” 
captures movements in the prices of  systems software publishing, which 
accounts for a large share of  total investment spending on prepackaged 
software, as well as in the prices of application software publishing.15 As 
part of the 2018 comprehensive update, BEA will incorporate this improved 
price index prior to 2014.

Constructing accurate, quality- adjusted price indexes for both custom 
and own- account software inherently presents challenges due to the very 
nature of these one- off products. The challenges are further compounded 
for pricing own- account software because there are no market transactions 
associated with this type of  in- house production. Currently, both price 
indexes reflect a weighted average of the BEA prepackaged software price 
index and a BEA input- cost index that is based on BLS data on wage rates 
for computer programmers and systems analysts and on intermediate input 
costs associated with the production of software. BEA is actively pursuing 
data purchases and alternative methodologies that can be used to develop 
improved prices for these hard- to- measure products. Among them is a data-
base that tracks prices, functionality, and quality of software projects. Here, 
the functionality is measured using an industry- accepted metric referred 
to as “function points,” which can be used to compute a functional size 
measurement of a given software application. The database has over 8,000 
observations spanning the years 2006–13. BEA is exploring several different 
techniques, including hedonic modeling, to estimate quality- adjusted prices 
for custom and own- account software using these data. Heterogeneity in 
price per function point across the database suggests that function points 
are not necessarily homogenous and that more does not necessarily mean 

14. See McCulla, Khosa, and Ramey (2017).
15. This limitation in the producer price index for “application software publishing” and 

resultant bias in national accounts statistics was first raised by Byrne and Corrado (2017b).
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better. As part of this research, hedonic modeling is used to control for a 
variety of factors, including client size, client industry, computing platform, 
maturity of the firm, project type, and project size. Preliminary results indi-
cate average rates of decline in the price index range from about 10 percent 
to 25 percent compared with the current price index, which shows an aver-
age rate of increase of about 1 percent over that same period. The notable 
range in average annual price declines and volatile behavior of the alternative 
prices speak to the challenge of estimating accurate price indexes for these 
products. Figure 14.1 presents the published BEA price index, a price- per- 
function point price index, and a price index derived using hedonic methods 
with control variables described above. The figure illustrates overall price 
trends as well as the volatile nature of these data.

The goal of  this ongoing research is to develop an output- based price 
index or to discover new information that will better inform our current 
methodology. For example, we are also studying the possibility of introduc-
ing an explicit productivity adjustment to the input- cost index. The database 
described above also includes variables that track hours to complete each 
of the software projects, and these data may provide valuable insights to 
productivity trends for custom software development.

14.3.2  Electromedical Equipment

Private fixed investment in electromedical equipment was over $40 bil-
lion in 2016 and includes magnetic resonance imaging equipment, ultra-
sound scanning devices, and CT- scan machinery. These types of medical 
equipment embody rapid rates of product innovation, much like comput-
ers and semiconductors, that can present challenges when using standard 
matched- model techniques. BEA has completed some preliminary research 

Fig. 14.1 Custom and own- account software price indexes
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for selected imaging equipment using data from ECRI, a nonprofit organiza-
tion that collects data on hospital purchases of equipment. The ECRI data-
base is rich and includes prices and attributes for all types of electromedical 
machinery. Preliminary results from this research suggest average annual 
rates of decline for selected electromedical equipment are about 10 percent.

14.3.3  Communications Equipment

In the 2010 NIPA annual update, BEA expanded its use of  quality- 
adjusted price indexes from the FRB industrial production index program to 
deflate business purchases of three types of communication equipment: tele-
phone switching equipment, carrier line equipment, and wireless networking 
equipment. (A fourth FRB price index was already being used to deflate data 
networking equipment.) Looking forward to the 2018 NIPA comprehen-
sive update, including the 2012 Benchmark Input- Output accounts, BEA 
plans to better align its detailed communication equipment products with 
more current classifications that are consistent with the FRB’s detailed price 
indexes. Moreover, BEA is currently collaborating with the FRB with an 
aim toward taking over the preparation of selected FRB communication 
equipment prices.

BEA is also conducting research on ways to improve its price index for 
smartphones. In collaboration with others, including researchers from the 
FRB, BEA completed a pilot study of iPhone prices for the years 2015–16. 
The pilot used data purchased from JD Power, and BEA has expanded 
the purchase to include historical data beginning with 2004. Smartphones 
clearly embody rapid rates of product innovation and are strong candidates 
for additional price research. Figure 14.2 illustrates the rapid rate of product 
innovation for selected smartphones since 2008.

14.3.4  What’s Next?

As noted at the beginning of this section, there is a renewed effort within 
BEA to continually engage in the evaluation and development of improved 
price indexes, especially those for ICT goods and services. In addition to 
ongoing research for the aforementioned products, BEA is actively identify-
ing priority sectors for exploratory research into the adequacy of current 
price measures. Several different criteria have guided BEA price research 
priorities, including the availability of data, the size of the sector, the likeli-
hood of bias, and the extent of existing external research that would make 
BEA’s work duplicative. Several products meet these criteria for BEA’s near- 
term price research, including both wired and wireless telecommunications 
services, additional medical equipment (nonimaging), medical supplies (e.g., 
stents), cloud computing, and ride- sharing platform services.

An alternative approach BEA considers when setting its price research 
agenda is to target goods and services produced and used by “advanced” 
industries. The identification of “advanced” industries is somewhat subjec-
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tive; however, there are metrics that are common across a number of studies. 
For example, a 2015 Brookings report examines an industry’s R&D spend-
ing per worker as well as the share of workers in an industry whose occupa-
tions require a high degree of STEM (science, technology, engineering, and 
math) knowledge.16

While the definition of  “advanced” industries may not be precise, the 
basic idea of  focusing research on industries with relatively high R&D 
spending and STEM knowledge is to hone in on those industries that are 
more likely than others to be engaged in the production and/or usage of 
hard- to- measure, rapidly changing goods and services. It is important to 
emphasize that these industries need not solely be the producers of such 
goods and services to receive BEA attention but could also be users of such 
goods and services. This is an important qualification because a growing 
share of sophisticated goods and services is being imported and used by US 
industries, and the prices for these goods and services impact measured real 
imports and measured real value added at the industry level.17

The advent of smartphones and the rapidly changing technologies that 
underlie their production and usage illustrate this challenge. For example, 
the underlying research and development embodied in the iPhone is largely 
produced domestically, whereas the actual manufacturing of  the iPhone 
occurs outside of the United States. As noted previously, BEA is conduct-
ing research on ways to improve its price index for smartphones, and any 
improvement in the price index for smartphones would necessarily be 
reflected in all relevant components of GDP, including fixed investment, per-
sonal consumption, and imports of goods. Under this alternative approach 
targeting “advanced” industries, additional attention may also be given to 
developing improved price indexes for the private fixed investment in the 
research and development devoted to the production of that smartphone. 
Finally, focusing on “advanced” industries identifies private- sector produc-
tion of high- tech equipment that is purchased not only by the private sector 
but also by the government, including military aircraft, weapons, instru-
ments, and communications equipment.

14.4  Conclusion

BEA has a rich history of developing quality- adjusted price indexes for 
various types of information and communications technology goods and 
services. Most, if  not all, of  these products embody the innovative spirit 
with which we strive to accurately measure in BEA’s national accounts sta-
tistics. These products often present significant measurement challenges 

16. See Muro et al. (2015).
17. See Samuels et al. (2015) for a discussion of how imports and import prices affect esti-

mates of industry growth and productivity.
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when using traditional approaches, especially when they are required to be 
produced at high frequencies. As Groshen et al. (2007) note, “The task of 
calculating price indexes and output in the 21st century, and doing so in a 
way that provide timely monthly data within budget constraints, is not for 
the rigid or the fainthearted.”

BEA will continue to tackle these types of challenging products using a 
variety of source data and methods, including hedonic modeling, matched- 
model, and fixed- effect regressions. The required source data are often not 
sufficiently available at high monthly frequencies and instead may only be 
available annually. In these cases, BEA will first construct “best” annual 
price indexes and then force the higher- frequency monthly price indexes to 
conform with that “best” annual price index. While we recognize that this is 
not always feasible for all statistical programs, we believe these alternative 
approaches should be more widely considered.

Appendix

Results from the 2018 Comprehensive Update

On July 27, 2018, the BEA released the initial results of the 15th compre-
hensive update of the NIPA. The incorporation of improved price measures 
for ICT goods and services was an important feature of this comprehensive 
update, and in this appendix, we present those results and assess overall 
progress toward incorporating improved ICT deflators into BEA’s national 
accounts statistics.

14.A1 Software

The BEA price index for prepackaged software was improved to reflect 
the use of a more appropriate PPI. This improvement was first introduced 
in the 2017 annual NIPA update beginning with 2014, and with this compre-
hensive update, that improvement has been carried back to 2007.18 Over the 
period 2007–17, the revised BEA prepackaged software price index shows 
an average annual rate of decline of 3.6 percent compared with a decline of 
2.6 percent in the previously published material. Figure 14.3 presents the 
revised and previously published price indexes for private fixed investment 
in prepackaged software.

The revised BEA price indexes for custom and own- account software 
reflect, for the first time, an explicit adjustment to account for changes in 
productivity to the input- cost index component. These price indexes con-

18. See McCulla, Khosa, and Ramey (2017).
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tinue to be estimated using a weighted average of  the BEA prepackaged 
software price index and a BEA input- cost index that is based on BLS data 
on wage rates for computer programmers and systems analysts and on 
intermediate- input costs associated with the production of software. While 
the prepackaged software price reflects actual market prices and therefore 
captures changes in productivity, the input- cost index did not, and therefore 
BEA implemented an explicit productivity adjustment beginning with 1997. 
The adjustment reflects estimates for MFP for private nonfarm business 
published by the BLS as well as research conducted by BEA using reports 
from academic, commercial, and public sources. For 1997–2006, the trends 
in the BLS MFP for private nonfarm business were largely consistent with 
the trends derived by BEA using private data that included information 
on prices, functionality, size, and hours required to complete a given cus-
tom software project. Over this period, the productivity adjustment to the 
BEA input- cost index is about 1.5 percentage points per year. For 2007 
forward, productivity trends for the creation of custom software derived 
by BEA showed slightly larger gains than the published BLS MFP for non-
farm private business. Deviations in trend between these two independent 
measures are neither surprising nor problematic because they are measur-
ing different things. The productivity adjustment applied by BEA over this 
period reflects a judgmental combination of these two measures and was, on 
average, 0.8 percentage point. A combination of the internal BEA- derived 
custom- software productivity measure and the broader BLS MFP mea-
sure was chosen, reflecting the imprecise and conservative nature of  this 
adjustment. Figure 14.4 presents the major components of the BEA input- 
cost index as well as the input- cost index with and without the productivity 
adjustment. The figure illustrates the overall effect of the adjustment as well 
as the fact that the adjustment is not applied to the components; rather, it is 

Fig. 14.3 Price indexes for private fixed investment in prepackaged software
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only applied to the aggregate input- cost index. Over the period 1997–2017, 
the revised BEA custom and own- account software price indexes show an 
average annual rate of decline of 0.1 percent compared with an increase of 
1.0 percent in the previously published material. Figure 14.5 presents the 
revised and previously published price indexes for private fixed investment 
in custom and own- account software.

Fig. 14.4 BEA input- cost indexes for custom and own- account software

Fig. 14.5 Price indexes for private fixed investment in custom and own- account 
software
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Although a significant amount of BEA resources were invested in develop-
ing a new, output- based price index for custom and own- account software, 
BEA was unable to produce a reliably stable price measure. While the avail-
able data included thousands of observations and dozens of valuable soft-
ware characteristics, the resultant indexes were simply too volatile to trust. 
Dozens of models were tested, including pooled, biennial, and fixed- effects 
regressions. Some of these models yielded promising statistical results; how-
ever, more research and more data are required in order to develop accurate 
price indexes required for BEA’s national accounts statistics.

14.A2 Electromedical Equipment

BEA introduced newly developed annual estimates of quality- adjusted 
price indexes for selected components of electromedical equipment, includ-
ing magnetic resonance imaging equipment, ultrasound scanning devices, 
and CT- scan machinery. These types of medical equipment embody rapid 
rates of product innovation that can present challenges when using standard 
matched- model techniques. The new annual price indexes were developed 
using data from ECRI that included information on purchases of medical 
equipment by health care providers and were constructed using a (weighted) 
fixed- effects regressions model that yielded similar results to those derived 
using a matched- model approach. The estimated prices from the fixed- 
effects regressions were chosen over those from the matched model because 
the fixed- effect regressions were able to better handle some of the volatile 
transaction- level data and, as a result, were a bit smoother.19

These new price indexes better account for changes in product quality 
than the previously used price indexes, which were based on monthly PPIs 
and monthly international price indexes (IPIs). The improved price indexes 
were incorporated beginning with 2002 and are used to deflate annual 
private fixed investment and exports and imports of electromedical equip-
ment. The previously used PPIs and IPIs will be used in conjunction with the 
newly developed annual indexes to estimate the higher- frequency quarterly 
prices. Over the period 2002–17, the revised BEA price index for private 
fixed investment in electromedical equipment decreases 4.7 percent at an 
average annual rate; the previously published price index decreased 0.4 per-
cent. Figure 14.6 presents revised and previously published price indexes for 
private fixed investment in electromedical equipment.

14.A3 Communication Equipment

BEA price indexes for communication equipment were updated, reflect-
ing the incorporation of the revised and newly available FRB communica-

19. Ana Aizcorbe, a senior researcher with BEA, developed these new and improved electro-
medical equipment price indexes. Additional details regarding these indexes will be published 
separately at a later date.
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tion equipment price index.20 In addition to the traditional communica-
tion equipment price indexes BEA uses from the FRB, a newly developed 
price index for smartphones was incorporated for the first time beginning 
with 2002. This newly available price index will be used to deflate consumer 
spending, private fixed investment, and imports of  cellular phones. Pre-
viously, cellular phones were not separately deflated in any of these final 
demand categories and instead were deflated as part of aggregated series 
that included cellular telephones. These aggregated series were deflated using 
FRB prices, PPIs, IPIs, and consumer price indexes (CPIs) that implicitly 
included cellular phones. Beginning with January 2018, BLS introduced 
explicit quality adjustments for smartphones using hedonic modeling meth-
ods. Although a separate category for smartphones is not published as part 
of BLS’s CPI program, these quality- adjusted prices for smartphones are 
reflected in the published CPI for “telephone hardware, calculators and 
other consumer information items.” Within this category, cellular phones 
account for approximately half of the sample.21 BEA plans to carefully study 
this improved CPI with an aim toward better understanding the underlying 
changes in the prices for smartphones.

In addition to incorporating revised and newly available FRB price 
indexes, the detailed commodity structure that underlies private fixed invest-
ment in communication equipment was updated to reflect benchmarking to 
BEA’s 2012 Supply- Use tables, which in turn are based on newly incorpo-
rated detailed data from the 2012 Economic Census. Table 14.1 shows the 

20. For details, see “Quality- Adjusted Price Indexes for Communications Equipment,” June 
1, 2018, Federal Reserve Board’s Industrial Production and Capacity Utilization- G.17, https:// 
www .federalreserve .gov /releases /g17 /commequip _price _indexes .htm.

21. For more information, see the Consumer Price Index factsheet for telephone hardware, 
calculators, and other consumer information items on the BLS website (https:// www .bls .gov 
 /cpi /factsheets /telephone -  hardware .htm).

Fig. 14.6 Price indexes for private fixed investment in electromedical equipment
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detailed commodity structure, including the nominal values that underlie 
the inflation- adjusted measures. Table 14.1 also presents descriptions of the 
detailed price indexes used to deflate communication equipment, including 
how the newly introduced smartphone price index was incorporated. Overall, 
private fixed investment in communication equipment was revised to $16.3 
billion from $104.8 billion (table 14.1, line 1). The leading contributor to the 
upward revision was both imported and domestically produced “communica-
tion equipment ex. broadcast” (table 14.1, lines 13 and 40, respectively). Over 
the period 2002–15, the composite price index, including the new smartphone 
price index, used to deflate this category declines at an average annual rate of 
about 16 percent; the previously published corresponding price declined at an 
average annual rate of about 9 percent. Over the period 2002–17, the revised 
BEA price index for private fixed investment in communication equipment 
decreases 8.6 percent at an average annual rate; the previously published price 
index decreased 4.9 percent. Figure 14.7 presents revised and previously pub-
lished price indexes for private fixed investment in communications equip-
ment as well as the component “communication equipment ex. broadcast.”

References

Abel, Jaison R., Ernst R. Berndt, and Alan G. White. 2003. “Price Indexes for Micro-
soft’s Personal Computer Software Products.” NBER Working Paper No. 9966. 
Cambridge, MA: National Bureau of Economic Research.

Fig. 14.7 Price indexes for private fixed investment in communications equipment

 EBSCOhost - printed on 2/8/2023 7:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



BEA Deflators for Information & Communications Tech. Goods & Services    571

Byrne, David M., and Carol A. Corrado. 2015. “Prices for Communications Equip-
ment: Rewriting the Record.” Finance and Economics Discussion Series 2015- 069. 
Washington, DC: Board of Governors of the Federal Reserve System.

Byrne, David M., and Carol A. Corrado. 2017a. “Accounting for Innovation in Con-
sumer Digital Services: Impacts on GDP and Consumer Welfare.” Paper presented 
at the NBER/CRIW conference Measuring and Accounting for Innovation in the 
21st Century, Washington, DC, March 10–11.

Byrne, David M., and Carol A. Corrado. 2017b. “ICT Prices and ICT Services: What 
Do They Tell Us about Productivity and Technology?” Finance and Economics 
Discussion Series 2017- 015. Washington, DC: Board of Governors of the Federal 
Reserve System. https:// doi .org /10 .17016 /FEDS .2017 .015.

Byrne, David M., Carol A. Corrado, and Daniel E. Sichel. 2018. “The Rise of Cloud 
Computing: Minding Your Ps, Qs and Ks.” NBER Working Paper No. 25188. 
Cambridge, MA: National Bureau of Economic Research.

Byrne, David M., Stephen D. Oliner, and Daniel E. Sichel. 2017. “How Fast Are 
Semiconductor Prices Falling?” FEDS working paper 2017- 005, January.

Cartwright, D. W. 1986. “Improved Deflation of Purchases of Computers.” Survey 
of Current Business, March, 7–9.

Cartwright, D. W., and Scott D. Smith. 1988. “Deflators for Purchases of Computers 
in GNP: Revised and Extended Estimates, 1983–88.” Survey of Current Business, 
November, 22–23.

Cole, R., Y. C. Chen, J. Barquin- Stolleman, E. Dulberger, N. Helvacian, and J. H. 
Hodge. 1986. “Quality- Adjusted Price Indexes for Computer Processors and 
Selected Peripheral Equipment.” Survey of Current Business, January, 41–50.

Copeland, Adam. 2013. “Seasonality, Consumer Heterogeneity and Price Indexes: 
The Case of Prepackaged Software.” Journal of Productivity Analysis 39 (1): 47–59.

Greenstein, Shane, and Ryan McDevitt. 2012. “Measuring the Broadband Bonus 
in 20 OECD Countries.” OECD Digital Economy Papers No. 197, April. Paris: 
OECD.

Grimm, Bruce T. 1998. “Price Indexes for Selected Semiconductors, 1974–96.” Sur-
vey of Current Business, February, 8–24.

Groshen, Erica L., Brian C. Moyer, Ana M. Aizcorbe, Ralph Bradley, and David M. 
Friedman. 2017. “How Government Statistics Adjust for Potential Biases from 
Quality Change and New Goods in an Age of Digital Technologies: A View from 
the Trenches.” Journal of Economic Perspectives 31 (2): 187–210.

Landefeld, J. S., and Robert P. Parker. 1995. “Preview of the Comprehensive Revi-
sion of the National Income and Product Accounts: BEA’s New Featured Mea-
sures of Output and Prices.” Survey of Current Business, July, 31–38.

McCulla, Stephanie H., Vijay Khosa, and Kelly Ramey. 2017. “The 2017 Annual 
Update of the National Income and Product Accounts.” Survey of Current Busi-
ness, August, 1–32.

Moulton, Brent R., Eugene P. Seskin, and David F. Sullivan. 2001. “Annual Revi-
sion of the National Income and Product Accounts Annual Estimates.” Survey of 
Current Business, August, 7–32.

Moylan, Carol E., and Brooks B. Robinson. 2003. “Preview of the 2003 Comprehen-
sive Revision of the National Income and Product Accounts: Statistical Changes.” 
Survey of Current Business, September, 17–32.

Muro, Mark, Jonathan Rothwell, Scott Andes, Kenan Fikri, and Siddharth Kulkarni. 
2015. “America’s Advanced Industries: What They Are, Where They Are, and 
Why They Matter.” Brookings Report, February. https:// www .brookings .edu /wp 
-  content /uploads /2015 /02 /AdvancedIndustry _FinalFeb2lores -  1 .pdf.

Parker, Robert P., and Bruce T. Grimm. 2000. “Recognition of Business and Govern-
ment Expenditures for Software as Investment: Methodology and Quantitative 

 EBSCOhost - printed on 2/8/2023 7:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



572    Erich H. Strassner and David B. Wasshausen

Impacts, 1959–98.” BEA paper, May. https:// www .bea .gov /system /files /papers /
P2000 -  2 .pdf.

Samuels, Jon D., Thomas F. Howells III, Matthew Russell, and Erich H. Strassner. 
2015. “Import Allocation across Industries, Import Prices across Countries, and 
Estimates of  Industry Growth and Productivity.” In Measuring Globalization: 
Better Trade Statistics for Better Policy. Vol. 1, Biases to Price, Output, and Pro-
ductivity Statistics from Trade, edited by Susan N. Houseman and Michael Man-
del, 251–92. Kalamazoo, MI: W. E. Upjohn Institute for Employment Research. 
https:// doi .org /10 .17848 /9780880994903 .vol1ch8.

Triplett, J. E. 1986. “Economic Interpretation of Hedonic Models.” Survey of Cur-
rent Business, January, 36–40.

Triplett, J. E. 1989. “Price and Technological Change in a Capital Good: A Survey 
of Research on Computers.” In Technology and Capital Formation, edited by D. W. 
Jorgenson and R. Landau, 127–213. Cambridge, MA: MIT Press.

US Department of  Commerce, Bureau of  Economic Analysis. 1987. “The U.S. 
National Income and Product Accounts: Revised Estimates.” Survey of Current 
Business, July, 15.

Yadav, S. 2014. “Apple iPhone 5S, 5C Still High in Demand Post iPhone 6 Launch.” 
DazeInfoBriefs, October 7, 2014. https:// dazeinfo .com /2014 /10 /07 /apple -  inc -  aapl 
-  iphone -  5s -  5c -  price -  offers -  deals -  iphone -  6 -  market -  us -  uk/.

 EBSCOhost - printed on 2/8/2023 7:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



573

Katharine G. Abraham
Department of Economics and Joint 

Program in Survey Methodology
University of Maryland
1218 LeFrak Hall
College Park, MD 20742

David Byrne
Federal Reserve Board
20th and Constitution Avenue, NW
Washington, DC 20551

Wen Chen
Institute of New Structural Economics
Peking University
Peking University Science Park 203
Haidian District
Beijing, China 100080

Wesley M. Cohen
The Fuqua School of Business
Duke University
Box 90120
Durham, NC 27708- 0120

Carol Corrado
The Conference Board
845 Third Avenue
New York, NY 10022- 6679

Emin M. Dinlersoz
Center for Economic Studies
US Census Bureau
4600 Silver Hill Road
Washington, DC 20233

Kenneth Flamm
Lyndon B. Johnson School of Public 

Affairs
SRH 3.227, P.O. Box Y
University of Texas
Austin, TX 78713- 8925

Lucia Foster
Center for Economic Studies
US Census Bureau
4600 Silver Hill Road
Washington, DC 20233- 6300

Nathan Goldschlag
Center for Economic Studies
US Census Bureau
4600 Silver Hill Road
Washington, DC 20233- 6300

Cheryl Grim
Center for Economic Studies
US Census Bureau
4600 Silver Hill Road
Washington, DC 20233- 6300

Contributors

 EBSCOhost - printed on 2/8/2023 7:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



574    Contributors

Dominique Guellec
Observatoire des Sciences et 

Techniques
2, rue Albert Einstein
75013 Paris France

John C. Haltiwanger
Department of Economics
University of Maryland
College Park, MD 20742

Jonathan Haskel
Imperial College Business School
Tanaka Building, Room 296
London SW7 2AZ United Kingdom

Charles Hulten
Department of Economics
University of Maryland
Room 3114, Tydings Hall
College Park, MD 20742

Ron Jarmin
US Census Bureau
4600 Silver Hill Road
Washington, DC 20233

Julia Lane
Wagner School of Public Service and 

CUSP
New York University
295 Lafayette Street
New York, NY 10012- 9604

You- Na Lee
Lee Kuan Yew School of Public Policy
National University of Singapore
469C Bukit Timah Road
Singapore 259772

Bart Los
Faculty of Economics and Business
Groningen Growth and Development 

Centre
University of Groningen
9700 AV Groningen, The Netherlands

Javier Miranda
Economy- Wide Statistics Division
US Census Bureau 
4600 Silver Hill Road
Washington, DC 20233

Pierre Mohnen
UNU- MERIT
Maastricht University
P.O. Box 616
6200 MD Maastricht, The Netherlands

Amanda Myers
US Patent and Trademark Office
600 Dulany Street
Alexandria, VA 22314

Leonard I. Nakamura
Economic Research
Federal Reserve Bank of Philadelphia
10 Independence Mall
Philadelphia, PA 19106- 1574

Michael Polder
CBS/Statistics Netherlands
P.O. Box 24500
2490 HA The Hague, The Netherlands

Kristin Sandusky
Center for Economic Studies
US Census Bureau
4600 Silver Hill Road
Washington, DC 20233

Daniel Sichel
Department of Economics
Wellesley College
106 Central Street
Wellesley, MA 02481

James R. Spletzer
Center for Economic Studies
US Census Bureau
4600 Silver Hill Road
Washington, DC 20233

Erich H. Strassner
Bureau of Economic Analysis
4600 Silver Hill Road
Washington, DC 20233

Marcel P. Timmer
Faculty of Economics and Business
Groningen Growth and Development 

Centre
University of Groningen
9700 AV Groningen, The Netherlands

 EBSCOhost - printed on 2/8/2023 7:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



Contributors    575

George van Leeuwen
CBS/Statistics Netherlands
P.O. Box 24500
2490 HA The Hague, The Netherlands

John P. Walsh
School of Public Policy
Georgia Institute of Technology
685 Cherry Street
Atlanta, GA 30332- 0345

David B. Wasshausen
Bureau of Economic Analysis
4600 Silver Hill Road
Washington, DC 20233

Zoltan Wolf
Westat
1600 Research Boulevard
Rockville, MD 20850

Nikolas Zolas
Center for Economic Studies
US Census Bureau
4600 Silver Hill Road
Washington, DC 20233 

 
 

 EBSCOhost - printed on 2/8/2023 7:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



 EBSCOhost - printed on 2/8/2023 7:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



577

Author Index

Note: Page numbers followed by “f” or “t” refer to figures or tables, respectively.

Abel, J. R., 42, 554n1
Aboal, D., 302
Abowd, J. M., 233, 234, 241
Abraham, K. G., 257, 259, 273, 282, 283, 

289
Abramovitz, M., 38
Abrigo, M. R. M., 129n19
Acemoglu, D., 104, 123, 124, 125, 229, 232, 

344
Adner, R., 148
Aghion, P., 328, 343, 360
Aguiar, L., 49
Aizcorbe, A., 406n4, 409n14, 420n44, 

420n46, 437, 508, 513
Akcigit, U., 231
Allcott, H., 50
Alvarez- Cuadrado, F., 346n4
Amaya, A., 283
Anderson, M., 33n9
Andersson, F., 35
Andrews, D., 105, 105n4
Aoshima, Y., 149
Arora, A., 61, 62, 65, 144, 145, 151, 152n6, 

155n13, 155t, 172, 173n23, 173t, 174, 178, 
190

Athey, S., 303, 306
Atkinson, A. B., 344
Audretsch, D. B., 229, 231
Autor, D., 327, 344, 351, 360
Awano, G., 127

Baba, Y., 150
Baily, M. N., 105n2
Baird, M. D., 280
Bakija, J., 271, 353
Bania, N., 231
Barkai, S., 344, 351, 373, 373n1, 390, 392
Barker, K., 257
Baroncelli, E., 187, 188
Bartelsman, E. J., 105n2, 108, 302, 304, 316
Barth, E., 233
Bas, M., 341f, 345, 346f, 347f, 348f, 354, 

354f, 355f, 356, 358f, 359, 366
Bassanini, A., 351
Behar, C. T., 299
Behrens, D. M., 62n2, 77, 141
Bei, X., 190
Bell, A., 70
Bell, M. A., 126n18
Bender, S., 229, 231
Bernard, A. B., 374
Berndt, E. R., 39, 42, 52, 481, 498, 554n1
Bhandari, A., 385n10, 391
Biagi, F., 301
Bils, M., 42, 46
Black, R., 447n83
Black, S. E., 232, 301
Blair, P. D., 380n7
Block, J., 189
Bloom, N., 107, 107nf6, 129, 229, 231, 233
Bode, B., 537n16

 EBSCOhost - printed on 2/8/2023 7:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



578    Author Index

Bohr, M., 445n78
Bonnet, O., 351
Bosworth, B. P., 39, 39n11
Bosworth, D., 188
Bourzac, K., 420n43
Bowen, H. K., 150
Bracha, A., 282, 286
Branstetter, L., 332
Bresnahan, T. F., 148, 300, 301, 519n1
Bridgman, B., 351, 391
Brown, C., 419n40
Brown, J. D., 128, 288
Brown, L., 122
Brynjolfsson, E., 11, 49, 50, 299, 300, 301, 

334, 334f, 340, 340f, 473, 496
Burke, M. A., 282, 286
Byrne, D. M., 3n3, 11n5, 12, 42, 46, 105, 

105n4, 423, 448, 448n88, 449, 449n90, 
449n91, 449n92, 450, 450n93, 450n99, 
451, 451n100, 452, 452n101, 454, 
454n106, 456, 458, 459, 461, 491, 494, 
497, 508, 513, 520, 521, 525, 533n15, 537, 
548, 549n24, 553n1, 554n1, 558n15

Cabral, L., 219n34
Campbell, D., 105n2
Campbell- Kelly, M., 526, 526n12
Cappellari, L., 307, 317
Card, D., 357
Carlaw, K. I., 299
Caroli, E., 301
Cartwright, D. W., 554n2, 555n3
Castaldi, C., 189
Cerquera, D., 302
Chen, W., 301, 382, 393n18
Chen, Y., 49
Chetty, R., 359
Christensen, K., 257
Christensen, L. R., 473n1, 477
Clark, K. B., 152
Cohany, S. R., 279
Cohen, R. B., 523, 524
Cohen, W. M., 61, 62, 65, 142, 143n2, 144, 

145, 152, 153, 155t, 158, 172, 173n23, 
173t, 174, 177, 177n28, 177n29, 177n30, 
178, 190

Cole, R., 554n2
Collis, A., 50, 473, 496
Cooper, R. W., 108
Copeland, A., 417n33, 492, 554n1
Corrado, C. A., 3n3, 4, 12, 24, 24n4, 35, 36t, 

40, 40n13, 42, 127, 128, 232, 301, 303, 
325, 331, 331f, 347, 351, 375, 377, 387, 
391, 396, 397, 399, 437, 479, 481, 491, 494, 
497, 498, 513, 520, 521, 525, 548, 549n24, 
553n1, 554n1, 558n15

Coyle, D., 20n1, 520n3
Cranz, A., 460n120
Crépon, B., 179, 301, 303
Crespi, G., 301
Criscuolo, C., 105, 105n4, 301
Cummins, J. G., 391
Cunningham, C., 122, 408n9
Cutler, D. M., 39, 52
Cutress, I., 411n18, 442n75

Dahlin, K. B., 62n2, 77, 141
Dao, M., 373n1
Dauda, S., 52
David, P., 148, 151
Davis, J., 233
Davis, S. J., 105n3, 196n18
Decker, R., 105, 105n3, 106, 106n5, 110, 

110n9, 111, 111n10, 112n11, 113n12, 
114n13, 118, 120, 120n14, 201n24, 229, 
343

Dedrick, J., 375n5
De Haan, J., 437n70
de Jong, J. P. J., 61, 64, 64n3, 64n4, 70, 

72n16
De Loecker, J., 344, 360
De Man, A.- P., 189
Deming, W. E., 62
De Rassenfosse, G., 144
De Roure, D., 525
de Vries, G. J., 376, 377, 379
Dey, M., 286
Díaz- Pinés, A., 479
Dieseldorff, C., 448n87, 448n88
Diewert, W. E., 4
Dinlersoz, E., 128, 218n33
Dischinger, M., 374n3
Dolfen, P., 49
Doms, M., 437
Doraszelski, U., 300
Dorn, D., 327, 344
Draca, M., 301
Dreisigmeyer, D., 71
Drev, M., 332
Dube, A., 259
Duguet, E., 179, 301, 303
Dunn, A., 52

 EBSCOhost - printed on 2/8/2023 7:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



Author Index    579

Dunne, T., 105n3
Duranton, G., 232
Dynan, K., 3n3

Earle, J. S., 128, 288
Eberts, R. W., 231
Economides, N., 190n9, 218n33
Eeckhout, J., 344, 360
Eggers, F., 50, 473, 496
Elliot, S., 526n11
Elsby, M. W., 346, 351, 373n1
Engelstätter, B., 302
Erickson, T., 537
Ericson, R., 107
Esmaeilzadeh, H. E., 413n25, 419n42

Fairlie, R. W., 82
Fanfalone, A. G., 479
Farooqui, S., 302
Farrell, D., 289
Faurel, L., 341
Fernald, J. G., 46, 105n4
Fink, C., 187, 188
Flamm, K., 406n4, 409n10, 410n15, 411n22, 

420n46, 422n48, 422n49, 425n57, 445n78, 
453n105

Fleming, L., 147n5, 232
Flikkema, M., 189
Flowers, S., 61, 64, 64n4, 70, 72n16
Fogarty, M. S., 231
Fogel, R. W., 52
Fontagné, L., 374, 377
Forbes, K., 335, 343
Forman, C. C., 302
Fort, T., 259, 374
Foster, L., 3n2, 105n2, 108, 120n14, 122, 

124, 125, 126, 127, 128, 212n32, 259, 
287n19

Franke, N., 64
Freeman, R. B., 233
Fuller, S., 413n26
Furman, J., 326, 337, 337f
Fuss, M. A., 481, 498

Gabaix, X., 354
Gal, P. N., 105, 105n4
Gambardella, A., 151
Gandal, N., 417n33
Garcia- Swartz, D. D., 526, 526n12
Gereffi, G., 375n5, 389, 396
Gerstein, M., 122

Gertler, M. S., 232
Giuri, P., 145
Glaeser, E. L., 229, 231, 232
Goedhart, M., 337f
Goldschlag, N., 123, 200n23, 234
Goldschmidt, D., 259, 359
Gonzales- Brambila, C., 231
Goodridge, P., 127
Goolsbee, A., 49
Goos, M., 344
Gordon, R. J., 33, 105, 299
Gort, M., 7, 104, 105, 106, 109, 110, 112, 

114, 116, 117, 118, 119, 121, 123, 125
Gourio, F., 184n2, 218n33
Graham, S. J. H., 67, 67n5, 93, 123, 124, 

185, 188n6, 193, 194, 195, 195n17, 
212n31, 225n43, 238

Grance, T., 521, 522
Greenhalgh, C., 187, 187n5, 188, 189
Greenstein, S., 46, 519, 554n1
Greenwood, J., 495
Greig, F., 289
Griliches, Z., 4, 20, 39, 105n2, 122, 123, 128, 

144, 300, 477n5
Grim, C., 122, 128, 212n32
Grimm, B. T, 556n6, 556n9
Groshen, E. L., 41, 43, 45, 46, 51, 557n13
Groves, R. M., 282
Gu, F., 4
Guvenen, F., 374
Guzman, J., 231

Hall, A., 52
Hall, B., 301, 303, 316, 327, 352, 441n73
Hall, B. H., 71, 78, 144, 300, 301, 351
Hall, J., 289
Halpin, P., 374n4
Haltiwanger, J., 3n2, 105n2, 105n3, 108, 

108n7, 110, 111, 111n10, 112n11, 115f, 
120n14, 127, 128, 195, 196n18, 233, 234, 
259

Hammond, L. A., 272
Hamoudi, A., 289
Hanson, L. P., 399
Harris, S. D., 259
Harrison, A., 374, 377
Hart, M., 229, 231
Haskel, J., 4, 127, 301, 327, 343, 344, 356
Hathaway, I., 112n11
Hausman, J., 42, 232
Hausman, N., 231

 EBSCOhost - printed on 2/8/2023 7:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



580    Author Index

Hayakawa, K., 129n20
Heath, D., 190
Heaton, J. C., 399
Hecker, D. E., 110, 234
Heining, J., 357
Henderson, R. M., 152
Hennessey, J., 413n26, 417n35, 456n110, 

459n115, 459n116
Herrendorf, B., 377n6, 383n8
Hill, P., 26n5
Hipple, S. F., 272
Hitt, L. M., 300, 301
Ho, M. S., 299
Hobijn, B., 346, 351, 373n1
Hollander, S., 143
Holt, B., 410f
Hopenhayn, H., 107, 108
Hortacsu, A., 219n34
Hottman, C. J., 108
Houseman, S. N., 260, 282, 286
Hruska, J., 417n37
Hsieh, C.- T., 108, 108n7, 109n8, 128
Hu, Y., 49
Hubbard, P., 525n10
Hulten, C. R., 4, 20, 21n2, 23, 24, 24n4, 

29n7, 34n10, 35, 36t, 40, 40n13, 52, 53, 54, 
105n2, 127, 128, 232, 301, 303, 325, 331, 
331f, 347, 375, 377, 387, 391, 396, 397, 
399, 477n5, 481, 489

Hurst, E. G., 108, 124, 126, 258
Hyatt, H. R., 260

Ichniowski, C., 233

Jackson, E., 259, 293
Jaffe, A. B., 71, 144
Jäger, K., 481, 498
Jarmin, R. S., 105n3, 110, 196n18
Jaumandreu, J., 300
Javorcik, B. S., 187, 188
Jenkins, S. P., 307, 317
Jensen, M. B., 151
Jensen, P. H., 188
Jeon, G. Y., 49
Johnson, R., 377n6
Jona- Lasinio, C., 301
Jones, B. F., 73
Jones, C. I., 359
Jones, H., 417
Jorgenson, D. W., 4, 299, 393, 406n4, 473n1, 

477

Jovanovic, B., 104n1, 107, 109n8, 299, 314
Juda, A., 232
Jung, T., 144, 177

Kalton, G., 153n9, 154
Kanter, D., 419n41
Kantor, S., 232
Kaplan, E., 259, 360
Kaplan, S., 356
Kaplinsky, R., 375n5
Karabarbounis, L., 346n4, 348, 351, 373, 

373n1, 374, 381, 385n10, 390n14
Katz, L. F., 258, 270, 280, 281n15, 286, 327, 

359
Kehrig, M., 129
Keilbach, M. C., 229, 231
Kerr, S. P., 231
Kerr, W. R., 127, 229, 231, 232
Khosa, V., 558n14, 563n18
Khurshid, A., 406n4
Kim, J., 73, 359
Kim, K., 147
Kim, Y. M., 49
King, I. I. I. C., 232
Klein, G. J., 302
Kleis, L., 302
Klenow, P. J., 42, 49, 108, 108n7, 109n8, 128
Klepper, S., 7, 104, 105, 106, 109, 110, 112, 

114, 116, 117, 118, 119, 121, 123, 125, 158
Klette, T., 104n1
Klevorick, A. K., 145
Kline, P., 357
Knoll, B., 374n3
Koh, D., 348
Koh, Y., 149
Koller, T., 337f
Kopecky, K. A., 495
Kornai, J., 344
Kortum, S., 104n1
Koustas, D., 289
Kovak, B., 423
Kraemer, K. L., 375n5
Kretschmer, T., 302, 303, 306
Krizan, C. J., 3n2, 120n14, 259
Krueger, A. B., 258, 259, 270, 280, 281n15, 

286, 289, 327, 359
Krzanich, B., 442n76, 446n880
Kubota, T., 149
Kulick, R., 108, 108n7
Kushida, K. E., 521, 524
Kwon, N., 332

 EBSCOhost - printed on 2/8/2023 7:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



Author Index    581

Lafontaine, F., 232
Lancaster, K. J., 6, 20, 26
Landefeld, J. S., 374n4, 395, 473n1, 556n7
Landes, W., 184n1, 184n2, 190n9, 218n33
Landier, A., 354
Lane, J. I., 230, 232, 233, 234, 235
Lattard, L., 447n84
Lawson, S., 417n37
Lazear, E. P., 229, 231, 233
Leberstein, S., 275
Lee, K. M., 288
Lee, Y.- N., 143, 144, 174, 175n24, 177
Lehmann, E. E., 229, 231
Lenihan, H., 229, 231
Lentz, R., 104n1
Leontief, W., 379
Lerner, J., 352
Lev, B., 4
Levin, R. C., 143n2, 144, 145, 153
Levinthal, D. A., 152
Lewbel, A., 304
Li, G.- C., 144
Li, N., 399
Li, W. C., 351, 441n73
Liebman, J., 327, 352
Linden, G., 375n5, 419n40
Lipsey, R., 299
Lipsky, J., 419n41
Lobo, J., 147n5
Lombarkdi, B., 287
Longland, M., 188
Looney, A., 259, 293
Los, B., 376, 377, 379
Lotti, F., 301, 303
Love, I., 129n19
Lowe, R. A., 231
Lucas, R. E., Jr., 107, 108
Lüthje, C., 63
Lynch, L. M., 232, 301

Mace, C., 190
Mairesse, J., 179, 300, 301, 303, 316
Manfredi, T., 351
Manning, A., 344
Mansfield, E., 143
Manyika, J., 282n17
Marschke, G., 73
Marshall, A., 149
Marx, M., 232
McAfee, A., 299
McCann, D., 419n40

McCulla, S. H., 558n14, 563n18
McDevitt, R., 46, 554n1
McGee, M., 281
McGowan, J. J., 49
McGrattan, E. R., 385n10, 391
McGuirk, H., 229, 231
Melitz, M., 108, 111, 119
Mell, P., 521, 522
Merritt, R., 442n74
Merton, R. K., 149
Michaels, G., 344, 423
Milgrom, P., 303
Miller, R. E., 380n7
Millet, L., 413n26
Millot, V., 188
Miranda, J., 82, 105n3, 110, 112n11, 123, 

200n23, 234
Miravete, E., 302, 303, 304, 306
Mishel, L., 353
Moammer, K., 411n17
Mohnen, P., 300, 301, 304, 316
Moore, G., 406n3, 407n6, 407n8
Moore, S., 442n74
Mortensen, D. T., 104n1
Moses, K. E., 41
Moulton, B. R., 3n3, 41, 557n11
Moyland, C. E., 556n10
Mueller, H., 333, 357
Muro, M., 562n16
Murphy, K. M., 52, 352
Murray, J., 521, 524

Nagaoka, S., 144, 145, 174, 175n24
Nakamura, L., 20, 21n2, 29n7, 50, 54, 331, 

473, 491n15
Nanda, R., 127
Natraj, A., 344
Natrajan, S., 411n21
Neiman, B., 346n4, 348, 351, 373, 373n1, 

374, 381, 385n10, 390n14
Nelson, R. R., 144, 145, 153
Neubig, T. S., 374n3
Nevo, A., 46
Nguyen, D., 520n3
Niebel, T., 301
No, Y., 174, 175n24
Noguera, G., 377n6
Noll, R. G., 49
Nordhaus, W. D., 25
Norman, P., 124, 125, 126, 287n19
Nosko, C., 436n69, 440n72

 EBSCOhost - printed on 2/8/2023 7:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



582    Author Index

Oliner, S., 11n5, 105, 409n14, 417n33, 448, 
448n88, 449, 449n90, 449n91, 449n92, 
450, 450n99, 451, 451n100, 452, 
452n101, 454, 454n106, 456, 458, 459, 
461, 533n15, 537, 549n24, 553n1

Ono, Y., 287
Or- Bach, Z., 417n37
Orszag, P., 326, 337, 337f
Ouimet, P., 333, 357

Pakes, A., 107, 436n69, 440n72, 456n111, 537
Parker, R. P., 556n7, 556n9
Patinkin, D., 22n3
Patterson, D., 413n26, 417n35, 456n110, 

459n115, 459n116
Paunov, C., 339, 341f, 345, 346f, 347f, 348f, 

354, 354f, 355f, 356, 358f, 359, 366
Pavitt, K., 123
Peck, M. J., 49
Pernías, J., 302, 303, 304, 306
Perrin, A., 33n9
Perry, R., 526n11
Peters, R. H., 396
Petrin, A., 105n2, 495
Peytcheva, E., 282
Pieri, F., 301
Piketty, T., 323, 324, 345, 346f, 347f, 358f
Pillai, U., 416n29
Pirzada, U., 411n18
Plewes, T., 122
Polanec, S., 119, 136
Polder, M., 301, 302
Polderr, 303
Polivka, A. E., 264, 279, 286
Pollard, M., 280
Ponzetto, G. A. M., 229, 231, 232
Poschke, M., 346n4
Posner, R., 184n1, 184n2, 190n9, 218n33
Prennushi, G., 233
Prescott, E. C., 391
Prudhomme, M., 417n33
Puga, D., 232
Pugsley, B., 108, 124, 126, 258

Quan, T. W., 49

Raley, T., 416n32
Ramey, K., 558n14, 563n18
Ramey, V. A., 52, 53
Ramnath, S., 259, 293
Rauh, J., 356, 360

Redding, S. J., 49, 108
Regev, H., 105n2
Reijnders, L. S. M., 391n16
Reinsdorf, M. B., 46, 105n4
Reiss, S., 525n10
Reiter, J., 105n2
Restrepo, P., 344
Restuccia, D., 108
Rhodes- Kropf, M., 127
Riedel, N., 374n3
Riley, R., 301
Roach, M., 142
Robb, A., 127
Roberts, J., 303
Roberts, M. J., 105n3
Robinson, B. B., 556n10
Robles, B., 281
Rodriguez- Montemayor, E., 341f, 345, 346f, 

347f, 348f, 354, 354f, 355f, 356, 358f, 359, 
366

Roehrig, C., 54n22
Rogers, M., 188, 189
Rogerson, R., 107, 108, 377n6, 383n8
Rognlie, M., 373n1, 391, 392
Rogoway, M., 411n18, 442n75
Rollo, V., 339
Romalis, J., 390n15
Romer, P. M., 232
Rosen, S., 325, 334, 351
Rosenberg, J., 19, 48
Rosenberg, N., 148, 151
Rosso, D., 418n38, 423n53
Rotemberg, J. J., 481n8
Rothwell, P. M., 52
Rousseau, P. L., 299, 314
Rudanko, L., 184n2, 218n33
Rybalka, M., 301, 303

Saam, M., 301
Sabadish, N., 353
Sadun, R., 301
Saez, E., 323, 324, 345, 346f, 347f, 358f
Şahin, A., 346, 351, 373n1
Samuels, J., 50, 473, 491n15, 562n17
Samuelson, L., 105n3
Sandner, P., 188, 189
Santaeulàlia- Llopis, R., 348
Saunders, A, 11, 300, 473
Sauvagnat, J., 355
Sawyer, S., 424n54, 424n55, 450,  

450nn94–97

 EBSCOhost - printed on 2/8/2023 7:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



Author Index    583

Scarpetta, S., 108
Schautschick, P., 187, 187n5
Schmidt, E., 19, 48
Schmieder, J. F., 259, 359
Schuh, S., 105n3
Schumpeter, J., 140, 325
Seidel, T., 410n15
Serrano, C. J., 62n1
Seskin, E. P., 557n11
Shah, S., 63, 64
Shane, S., 147n5
Shapiro, M. D., 41
Shaw, K. L., 229, 231, 232, 233
Sheiner, L., 3n3
Shilov, A., 411n18, 442n75
Shuler, K., 417n37
Sichel, D. E., 3n3, 4, 7n4, 11n5, 24,  

39n11, 40, 48, 105, 105n4, 127, 128,  
232, 301, 303, 325, 331, 347, 375, 377,  
387, 391, 396, 397, 399, 409n14, 417n33, 
448, 448n88, 449, 449nn90–92, 450, 
450n93, 450n99, 451, 451n100, 452, 
452n101, 454, 454n106, 456, 458, 459, 
461, 508, 513, 533n15, 537, 549n24, 
553n1, 554n1

Simintzi, E., 333, 357
Singh, J., 232
Slemrod, J., 271, 272
Smith, M. D., 49
Smith, S., 446n79
Smith, S. D., 555n3
So, A., 424n54, 424n55, 450
Soloveichik, R., 50, 473, 491n15
Solow, R. M., 21
Song, J., 327, 357
Spear, S., 150
Spencer, W., 410n15
Spiezia, V., 302
Spletzer, J. R., 263n1
Stern, S., 231, 303, 306
Stiroh, K. J., 299, 301
Strumsky, D., 147n5
Sullivan, D. F., 557n11
Svensson, R., 144
Syverson, C., 3n2, 46, 49, 104, 105, 108, 

108n7, 127, 128, 231, 300n1

Tacsir, E., 302
Tadelis, S., 219n35
Tambe, P., 231
Taylor, L. A., 396

Taylor, S. K., 259
Teece, D. J., 148, 150
Thompson, P., 143
Timmer, M. P., 376, 377, 379, 381, 383, 388, 

389f, 391n16
Topel, R. H., 52
Tørsløv, T. R., 374n3
Train, K., 307, 317
Trajtenberg, M., 71, 78, 144, 148
Triplett, J. E., 39, 39n11, 434n67, 437n70, 

554n2, 555n5
Turner, J. L., 46

Ukhaneva, O., 479

Vahter, P., 301
Valentinyi, A., 377n6, 383n8
van Ark, B., 481, 498
van Dalen, J., 537n16
van Leeuwen, G., 302, 304
Van Long, N., 346n4
Van Reenen, J., 301, 344
Van Wagoner, J., 447n86
van Zeebroeck, N., 302
Varian, H., 30, 49, 50, 330, 333
Vecchi, M., 301
Venturini, F., 301
Visscher, M., 391
von Hippel, E., 7n4, 48, 61, 63, 64, 64n4, 70, 

72n16, 150, 151

Waldfogel, J., 49
Wallis, G., 127
Walsh, J. P., 61, 62, 65, 143, 144, 145, 150, 

153, 155t, 172, 173n23, 173t, 174, 175n24, 
177, 178

Webster, E., 188
Weinstein, D. E., 49, 108
Wessels, D., 337f
Westlake, S., 4, 327, 344
Whalley, A., 232
White, A. G., 42, 554n1
White, A. J., 417n33
White, T. K., 105n2
Wier, L. S., 374n3
Wilcox, D. W., 41
Williams, B., 480n6
Williams, J. W., 46
Williams, K., 49
Woodford, M., 481n8
Wulf, J., 352

 EBSCOhost - printed on 2/8/2023 7:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



584    Author Index

Wunsch- Vincent, S., 374n3
Wykoff, F. C., 489

Yang, C., 447n83
Ye, X., 391n16
Yinug, F., 418n38, 423n53
Yoon, J., 147
Yorukoglu, M., 218n33
Yu, K., 417n33

Zhang, L., 539n19
Zheng, Y., 348
Zimmerman, M. M., 150
Zolas, N., 122, 212n32, 232
Zucman, G., 323, 324, 345, 346f, 347f, 358f, 

374n3
Zysman, J., 521, 524

 EBSCOhost - printed on 2/8/2023 7:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



585

Note: Page numbers followed by “f” or “t” refer to figures or tables, respectively.

Abramovitz, Moses, 2–3
access services prices, 499–503; indexes, 

505–8, 506–7t; sources and methods for, 
500–501t

accounting, innovation and, 10
administrative data: capturing, for work 

arrangements, 265–67; household innova-
tions and, 62; reconciling, with household 
survey data, 272–78

Amazon Web Services (AWS), 527–33

Bureau of Economic Analysis (BEA), 12, 
553–54; current work of, 557–58; cur-
rent work of–communications equip-
ment, 560, 566–70; current work of–
electromedical equipment, 559–60, 566; 
current work of–software, 558–59, 
563–66; future work of, 560–62. See 
also information and communications 
technology (ICT)

Bureau of Labor Statistics (BLS), 555; mea-
surement program, 42–45

business entry, 103
Business R&D and Innovation Survey 

(BRDIS), 140
Business Register (BR; US Census Bureau), 

195, 230

capital, intangible, measurement problems 
of, 40

capital formation, 23–24
capitalization of consumer digital goods 

approach, 473
Census Bureau surveys, 3
chip processor characteristics, 459–60
cloud computing, 12, 519–21; definitions 

of products of, 523; National Institute of 
Standards and Technology (NIST) defini-
tion, 521–22; prices, 526–44; products of, 
522–25; size of, 544–49

cloud technologies, 525–26
communications equipment: BEA’s current 

work and, 556–70, 560; price indexes for 
private fixed investment in, 570t; private 
fixed investment in, 568–69t

communications technology, consumer 
choices and, 6

competition, market, innovation and, 
170–72

complexity, innovation and, 150
computer architectures, 428
Conference on Research in Income and 

Wealth (CRIW), 1–2; papers delivered 
in, 5–12

consumer choices: communications tech-
nology and, 6; GDP measurement and, 
20–21

consumer content delivery, 475; GDP 
impacts of innovations in, 11–12; time 
line, 471–73, 472f

Subject Index

 EBSCOhost - printed on 2/8/2023 7:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



586    Subject Index

consumer digital capital use, 473–75, 474f
consumer durable spending, sources and 

methods for, 509–10t
Consumer Price Index (CPI), 43–45
consumer welfare, improvement in, 20
consumption benefits, direct, GDP and, 

25–27
consumption technology, 20–21; expanded 

GDP and, 27–30, 28f; GDP and, 26f, 27f
Contingent Worker Supplement (CWS), 

279–81
Coyle, Diane, 6
CPI (Consumer Price Index), 43–45
creative destruction, 104–5; digital innova-

tion and, 325–26; impacts of digital inno-
vation on, 339–43; lower entry barriers 
and, 327–28; lower entry costs for digital 
innovation and, 339–43

CRIW (Conference on Research in Income 
and Wealth), 1–2; papers delivered in, 
5–12

CWS (Contingent Worker Supplement), 
279–81

“dark silicon,” 419
data centers, 524
demand complementarity, framework 

for, 475–82; definitions, 475–77; home 
services, 477–78; measurement, 482–93; 
network utilization, 480–81, 498–99; 
paid- for- services, 478–79; results and 
implications, 493–96; use intensity, 480

demographics, patent data and, 97–99
Dennard, Robert, 407n5
digital capital use, consumer, 473–75, 474f
digital device services, 475
digital economy, returns to capital and, 

344–46
digital goods, rapid uptake of, 33–34
digital innovation: creative destruction and, 

325–26; defined, 323–24; effects of, on 
income distribution, 343–44; evolution of 
top incomes and, 324–25; global trends 
in income distribution and, 328–29; 
impacts of, on innovation, market entry, 
and creative destruction, 339–43; impacts 
of, on market structures and income dis-
tribution, 324f; income distribution and, 
10; lower entry costs for, and creative 
destruction, 339–43; measuring GDP 
and, 19–21; rents and, 335–39; research 
agenda, 360–61; risks and, 340–41. See 

also innovation; semiconductor manufac-
turing innovation

digital nonrivalry (DNR), 324–25; growing 
importance of, 330–32; implications of, 
for market concentration in global mar-
kets, 333–35; market concentration on 
global markets and, 333–35

digital revolution, GDP and, 6
distance. See implementation gaps, innova-

tion and
distribution of income. See income distri-

bution
DNR. See digital nonrivalry (DNR)
DRAM (dynamic random access memory), 

407, 407n5

education, 52–53
electromedical equipment, BEA’s current 

work and, 559–60, 566
Enterprising and Informal Work Activities 

(EIWA), 281–82
entrepreneurial firms, 229. See also start- ups
entry costs, for digital innovations, and cre-

ative destruction, 339–43
executive compensation, rise of, 351–56; 

compensation of, 351–56
expanded gross domestic product (EGDP), 

21; consumption technology and, 27–30, 
28f; estimation of, 32–35; future for mea-
surement of, 53–55

experience, worker, and firm growth, 232–33

FaaS (function as a service), defined, 523
factor income distribution, 376
factorless income, 373–74
financial accounting, innovation and, 10
firm growth: university research training 

and, 232; workers with experience and, 
232–33

function as a service (FaaS), 523

GDI (gross domestic income), circular flow 
of, 21–23, 23f

germ theory, 33
gig economy, 9; alternative information 

sources on nonemployee work, 286–90; 
background, 257–61; historical data, 
267–72; improving household measures 
of nonemployee work, 278–86; reconcil-
ing household survey and administrative 
estimates of, 272–78; typology of work 
arrangements in, 261–67

 EBSCOhost - printed on 2/8/2023 7:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



Subject Index    587

global input- output tables, 376
global value chain (GVC) production, 373–

75; factor income analysis of, 375; func-
tion, 10–11; residual approach to, 375

global value chains (GVCs): data sources for 
methodology, 381–82; empirical method-
ology for accounting in, 377–81; results, 
382–92; robustness of findings, 392–95

gross domestic income (GDI), circular flow 
of, 21–23, 22f

gross domestic product (GDP): adequacy 
of procedures to measure, in twenty- first 
century, 19–21; circular flow of, 21–23, 
22f; consumer choice and measurement 
of, 20–21; consumption technology and, 
27–30; definition of, 4–5; diagrammatic 
exposition of innovation and, 24–25, 25f; 
digital revolution and, 6; direct consump-
tion benefits and, 25–27; expanded mea-
sure of (EGDP), 6

growth accounting, critique of, 37–40
GVC. See global value chain (GVC) produc-

tion

health care, 51; innovation in, 51–52
home services, 477–78
household innovations: background, 63–65; 

characteristics of patenting firms and, 
79–84; citation counts for, 74–77; data, 
65–68; generality index of, 78–79; impact 
of, 73–74; inventor demographics and, 
68–70; radical patents for, 77–78; team 
size and, 72–73; technology classes and, 
70–72; transition to employer status, 84; 
use of administrative data for examining, 
62; value of, 85–87

household innovations, patented: data 
sources for analyzing, 65–68; impacts 
of, 73–79; inventor demographics and, 
68–70, 69t; studies of, 63–65; technology 
classes and, 70–72, 71t, 72t, 73t; types of 
business associated with, 79–87

household inventors, 62–63
households, private, as sources of innova-

tion, 61–62
household survey data: capturing, for work 

arrangements, 265–67; improving, of 
nonemployee work, 278–86; reconciling, 
with administrative data, 272–78

Hulten, Charles, 6
human capital, 229–30; analysis, 244–51; 

baseline results of, for start- up outcomes, 

246–51; formalization of model for, 
244–45; framework for study, 233–88; 
literature linking survival and growth of 
start- ups to, 231–32; measures of, 230; 
measures used for examining, 234–35. See 
also start- ups

hyperthreading, 428

IaaS (infrastructure as a service), defined, 
522, 523

ICT. See information and communications 
technology (ICT)

ILBD (Integrated Longitudinal Business 
Database), 91–92, 196–97

imitability, innovation and, 150–51
impacts, of quality household innovations, 

73–79
implementation gaps, innovation and, 

148–49; new attribute- based suggestions 
for, 176–77

import price indexes, for PCs, 555
income, factorless, 373–74
income distribution: digital innovation 

and, 10; effects of digital innovation and, 
343–44; global trends in digital innova-
tion and, 328–29; impacts of digital 
innovation on, 324f; rents from digital 
innovation and, 327

income inequalities, 323
Industrial Revolution, 32–33
industry economic accounts (IEAs), 553
information: current treatment of, in statisti-

cal system, 47–48; nature and value of, 
46–47

information and communications technol-
ogy (ICT), 9–10, 12, 299–300, 554; data 
used for model, 308–11; estimation results 
of model, 311–16; further research for, 
316–17; literature on, 300–302; model 
for, 302–8; overview of prices of, 554–57; 
R&D and, 300–301. See also Bureau of 
Economic Analysis (BEA)

infrastructure as a service (IaaS), 523
innovation, 25f; complexity and, 150; cur-

rent approaches to measurement of, 143–
45; data survey design, 152–54; defined, 2, 
140; descriptive design, 155–59; develop-
ing indirect indicator for recent, introduc-
tion to, 103–7; diagrammatic exposition 
of, and GDP, 24–25; direct measures of, 
122–25; effects of, on market structures, 
325; estimates of, on consumption side 

 EBSCOhost - printed on 2/8/2023 7:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



588    Subject Index

of economy, 40–46; estimation of, 32–35; 
features of, 146–51; illustrating utility 
of measuring characteristics of, 167–74; 
imitability and, 150–51; impacts of digital 
innovation on, 339–43; implementation 
gaps and, 148–49; indirect approach to, 
104; intangible capital and, 127–28; link-
ing entry and, 125–27; market competi-
tion and, 170–72; measure interpretation, 
161–67; measurement challenges, 121–22; 
measuring, 2–3; measuring and tracking, 
7–8; multidimensional perspective of, 
145–46; private households as sources of, 
61–62; process, 140–41, 141f; replicabil-
ity, 150–51; start- ups and, 231; “sticky” 
knowledge and, 150–51; suggestions for 
new attribute- based measures of, 174–79; 
technological significance of, 146–47; 
total factor productivity approach, 2–4; 
trademarks and, 186; uniqueness and, 
149–50; utility and, 147–48. See also digi-
tal innovation; household innovations; 
semiconductor manufacturing innovation

innovation measures, suggestions for new 
attribute- based, 174–79

innovation process, 140–41, 141f
innovation surveys. See surveys, innovation
instructions per clock (IPC) tick, 459
intangible capital, innovation and, 127–1128
Integrated Longitudinal Business Database 

(ILBD), 91–92, 196–97
Intel, perspective of Moore’s law of, 442–58
intellectual property, market capitalization 

and, 4
internet: measurement literature on contri-

bution to welfare of, 48–51
invention: defined, 140; outside sources of, 

and innovation- level indicators of value, 
172–74

inventor demographics, patented household 
innovations and, 68–70, 69t, 71t, 72t

inventors. See household inventors

knowledge, “sticky,” 150–51
knowledge assets, 8
knowledge- intensive markets, rents and, 

335–39

labor: compensation, 356–59; declining re-
turn to, 346–51; from digital innova-
tion and income distribution, 327

Lister, Joseph, 33
Longitudinal Business Database, Integrated 

(ILBD), 91–92
Longitudinal Business Database (LBD), 7, 

8, 109–12, 195–97, 230
Longitudinal Employer Household Dynam-

ics (LEHD) data set, 8
LPR (measures of labor productivity), 

107–9

Maddison, Angus, 32
market capitalization, intellectual property 

and, 4
market entry, impacts of digital innovation 

on, 339–43
market structures: effects of innovation on, 

325; impacts of digital innovation on, 
324f

maximum memory bandwidth, 427
measurement, literature and internet’s con-

tribution to welfare, 48–51
medical revolution, 33
MFP (multifactor productivity), 553
Moore, Gordon E., 403
Moore’s law, 11, 403–6; clock rates and, 

416–17; “dark silicon,” limits on green 
and, 419; depreciation rates semiconduc-
tor R&D and, 441; end of faster speeds 
and, 416–17; end of rapid cost declines 
and, 417–19; end to smaller and, 420; 
Intel’s perspective of, 442–58; manufac-
turing costs and, 440–41; personal com-
puter replacement cycles and, 442; prices 
and, 420–40; semiconductor fab lifetimes 
and, 441–42; semiconductor manufactur-
ing innovation facts and, 406–13; transis-
tors and, 417. See also semiconductor 
manufacturing innovation

multifactor productivity (MFP), 553

Nakamura, Leonard L., 6
National Income and Product Accounts 

(NIPAs), 1, 553, 555–56
National Institute of Standards and Tech-

nology (NIST), definition of cloud com-
puting, 521–22

network access services, 475
network utilization, 480–81, 498–99
nonemployee work arrangements: alterna-

tive sources of information on, 286–90; 
historical data on, 267–72. See also gig 
economy

innovation (continued )

 EBSCOhost - printed on 2/8/2023 7:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



Subject Index    589

Oslo Manual, 2, 2n1, 3, 139
output growth, sources of, 35–37
output saving innovation: information and 

product quality change as sources of, 
30–31

PaaS (platform as a service), defined, 522–
23, 523

paid- for services, 478–79
parallelization of software, 417
patent data: demographics and, 97–99; inno-

vative process and, 144–45
patents: firm- assigned, 67–68; household 

innovation, 65–68
PCs. See personal computers (PCs)
perfect collinearity, 428
personal computers (PCs): import price 

indexes for, 555; price index for, 554–55; 
producer price indexes (PPIs) for, 555

platform as a service (PaaS), 523
price measures, obtaining, 3
prices, quality adjusted, measures of, 11
processor architecture, 427
processor performance equation, 459
producer price index (PPIs), for PCs, 555
productivity dispersion, 103; conceptual/

measurement challenges for, 121–31; 
empirical evidence, 112–21; high vs. low 
frequency dispersion, 128–31; sources of 
measured, review of, 107–9

productivity distribution, 105
productivity growth, 103, 112–21; concep-

tual/measurement challenges for, 121–31
product quality change, estimates of, 41–42

quality change, 31–32; product, estimates 
of, 41–42

quality measurement, bias in, 45–46
Quality of Worklife (QWL) supplement, 279

Rand- Princeton Contingent Work Survey 
(RPCWS), 280–81

R&D expenditures, innovative process and, 
143–44

rents: digital innovation and, 335–39; from 
digital innovation and income distribu-
tion, 327; in global knowledge- intensive 
markets, 335–39

replicability: innovation and, 150–51; new 
attribute- based suggestions for, 177–78

residential income, “yeast” perspective on, 
391

resource cost, 26–27
returns to capital, 337; digital economy and, 

344–46
returns to labor, declining, 346–51
risks, digital innovation and, 340–41
RPCWS (Rand- Princeton Contingent Work 

Survey), 280–81

SaaS (software as a service), defined, 523, 
524–25

schooling industry, 52–53
semiconductor manufacturing innovation: 

benefits from, 413–516; Moore’s law and, 
406–13. See also digital innovation; inno-
vation; Moore’s law

serverless, defined, 523
service sector, economic measurement and, 

29
single manufacturing technology platform, 

403
64- bit architecture, 427
social mobility opportunities, 359–60
software, BEA’s current work and, 558–59, 

563–66
software as a service (SaaS), 523
Startup Firm History File, 23–33, 230
start- ups, 229; basic facts about, 238–42; 

datasets on, 230; facts about human 
capital composition of, 242–44; frame-
work for examining, 233; identifying/
classifying, 233–34; innovations and, 231; 
outcomes for, 237–38, 242–44. See also 
human capital

start- up worker history file, 235–37, 236f
“sticky” knowledge, 150–51
Survey of Household Economics and Deci-

sionmaking (SHED), 282
surveys, innovation, 145; descriptive statis-

tics, 155–59, 155t, 156t, 157t; design, 153–
54; measure construction for, 159–61; 
measure interpretation for, 161–67

TDP (thermal design power), 427, 434
team size, patented household innovations 

and, 66f, 72–73
technological significance, innovation, 

146–47; new attribute- based suggestions 
for, 174–76

technology classes, patented household 
innovations and, 70–72, 100t

TFPQ (measures of technical efficiency), 
107–9

 EBSCOhost - printed on 2/8/2023 7:59 PM via . All use subject to https://www.ebsco.com/terms-of-use



590    Subject Index

TFPR (revenue measures of total factor 
productivity), 107–9

thermal design power (TDP), 427, 434
time cost, analysis of value and, 49
total factor productivity (TFP), 2–3; resid-

ual, as measure of ignorance, 38
Toyota Production System, 150
Trademark Case Files Dataset (TCFD), 

8, 185, 193, 196–97; data construction, 
219–26

trademarking, 8
trademarks: analysis of, 197–99; construct-

ing new dataset for, 185; data used for 
study, 192–97; empirical analysis of, 
184–85; firm characteristics filing for, 
200–205; firm growth and, 206–12; firm 
innovation and, 186; firm intensity and, 
205–6; innovation activity and, 212–17; 
literature on, 186–90; obstacle to empiri-
cal analysis of, 184–85; prior literature, 
186–90; success of  firms and, 185–86; 
theory and, 183–84, 190–92; trends in fil-
ings for, 199–200

uniqueness: innovation and, 149–50; repli-
cability vs., 177–78

United States, income inequalities in, 323

United States Patent and Trademark Office 
(USPTO), 185. See also Trademark Case 
Files Dataset (TCFD)

USPTO patent data, 88–91
utility: augmenting, 21; innovation and, 

147–48

value: innovation- level indicators of, and 
outside sources of invention, 172–74; 
time cost and analysis of, 49

value added, measuring, 3–4
virtualization, 427
von Hippel, Eric, 7

welfare: increases in, 33; measurement liter-
ature and internet’s contribution to, 
48–51

“winner- take- all” dynamics, 325–27
work arrangements, in gig economy: cap-

turing, in household and administrative 
data, 265–67; characteristics of, 261–65; 
historical data on nonemployee, 267–72; 
typology, 261–67

“yeast” perspective, on residential income, 
391

zero prices, 49–50

 EBSCOhost - printed on 2/8/2023 7:59 PM via . All use subject to https://www.ebsco.com/terms-of-use


	Contents
	Prefatory Note
	Introduction | Carol Corrado, Jonathan Haskel, Javier Miranda, and Daniel Sichel
	I. Expanding Current Measurement Frameworks
	1. Expanded GDP for Welfare Measurement in the Twenty-First Century | Charles Hulten and Leonard I. Nakamura
	2. Measuring the Impact of Household Innovation Using Administrative Data | Javier Miranda and Nikolas Zolas
	3. Innovation, Productivity Dispersion, and Productivity Growth | Lucia Foster, Cheryl Grim, John C. Haltiwanger, and Zoltan Wolf

	II. New Approaches and Data
	4. How Innovative Are Innovations? A Multidimensional, Survey-Based Approach | Wesley M. Cohen, You-Na Lee, and John P. Walsh
	5. An Anatomy of US Firms Seeking Trademark Registration | Emin M. Dinlersoz, Nathan Goldschlag, Amanda Myers, and Nikolas Zolas
	6. Research Experience as Human Capital in New Business Outcomes | Nathan Goldschlag, Ron Jarmin, Julia Lane, and Nikolas Zolas

	III. Changing Structure of the Economy
	7. Measuring the Gig Economy: Current Knowledge and Open Issues | Katharine G. Abraham, John C. Haltiwanger, Kristin Sandusky, and James R. Spletzer
	8. Information and Communications Technology, R&D, and Organizational Innovation: Exploring Complementarities in Investment and Production | Pierre Mohnen, Michael Polder, and George van Leeuwen
	9. Digital Innovation and the Distribution of Income | Dominique Guellec

	IV. Improving Current Measurement Frameworks
	10. Factor Incomes in Global Value Chains: The Role of Intangibles | Wen Chen, Bart Los, and Marcel P. Timmer
	11. Measuring Moore’s Law: Evidence from Price, Cost, and Quality Indexes | Kenneth Flamm
	12. Accounting for Innovations in Consumer Digital Services: IT Still Matters | David Byrne and Carol Corrado
	13. The Rise of Cloud Computing: Minding Your Ps, Qs, and Ks | David Byrne, Carol Corrado, and Daniel Sichel
	14. BEA Deflators for Information and Communications Technology Goods and Services: Historical Analysis and Future Plans | Erich H. Strassner and David B. Wasshausen

	Contributors
	Author Index
	Subject Index



