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PREFACE 

 

    The second half of the 20th century witnessed impressive technological 
advances triggered by the arms and space races between the Soviet Union 
and the United States. This rivalry stimulated significant progress in 
physical and chemical sciences, which required the improvement of 
traditional analytical methods and the creation of high-speed, highly 
effective instrumental techniques. Analog electronic devices were replaced 
by digital computerized tools managing large quantities of information, 
which, in turn, gave impetus to the emergence of a new discipline - 
chemometrics. 
    Chemometrics uses statistical and mathematical methods for processing 
data obtained by analytical instruments to extract maximum useful 
information. The first stage of this process, named preprocessing, usually 
includes data denoising, decomposition of complex numerical objects 
(vectors and matrices) into independent components, and background 
elimination.  
    One of the first chemometrics applications was the differentiation of 
analytical signals in electrochemical analysis, spectroscopy, and 
chromatography. In parallel, physicists developed the theory and 
technology of modulation spectroscopy, which has numerous mutual 
features with the derivative method. Spectroscopy stimulated the 
implementation of the modulation technique in analytical instrumentation. 
    Derivative Spectroscopy (DS) originated in the 1950s with the 
development of the electronic differentiators and optical modulation 
devices. Later, digital differentiation has become a priority. The most 
attractive features of the DS are: 
1. Artificial improvement of the resolution of the analytical instruments. 
2. Appearance of peaks and zero points suitable for analysis in the 
presence of interferences 
3. Suppression of background. 
    The main advantage of the modulation technique is a significant 
improvement of the analytical sensitivity due to the remarkable noise 
reduction. 
    Numerous researches in the field of the DS were summarized in our 
short monograph, published in 1988 in Russian [1]. This study included 
theory, techniques, and analytical applications of the derivative methods. It 
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x                                                            Preface 

was intended for a broad audience of students and professionals in physics, 
chemistry, and signal processing. After a few years, G. Talsky published a 
new book that provided analysts with useful introductions to the subject 
[2]. For the last three decades, the DS has continued to develop, mainly, in 
the field of the digital differentiation and its combination with other 
processing procedures. 
    The derivative technique was briefly reviewed by the leaders in 
chemometrics [3-6].  
    Summing up the results of more than half a century of research in the 
field of DS, we decided to prepare a new monograph that includes all 
fundamental problems of this method.  
    The present study is an attempt to give a detailed explanation of the 
reached theoretical and numerical results. The goal (similar to our 
previous book [7]), was to avoid the blind faith of readers in the reliability 
of the conclusions and recommendations. 
    Theoretical discussions on this issue are illustrated by various examples 
supplied by a simple program code on MATLAB, which can be easily 
modified by non-professional users. The readers who may wish to study 
the problem further can validate numerical data, given in the book, using 
computer calculations. Thus, they will be able to understand the details of 
the algorithm and, if necessary, modify computer programs. 
 
References 
1. Dubrovkin, J., Belikov, V. Derivative spectrometry: Theory, 
Technology, and Application. Rostov: Rostov University. 1988. [Russian]. 
2. Talsky .G. Derivative spectrophotometry: low and high order. VCH. 
1994. 
3. Workman Jr., J. J., Mobley, P. R., Kowalski, B. R., Bro, R. (1996). 
Review of Chemometrics Applied to Spectroscopy: 1985-95, Part 1. 
Applied Spectroscopy Reviews, 31, 73-124. 
4. Mobley, P. R., Kowalski, B. R., Workman Jr., J. J., Bro, R. (1996). 
Review of Chemometrics Applied to Spectroscopy: 1985-95, Part 2. 
Applied Spectroscopy Reviews, 31, 347-368. 
5. Mark, H., Workman, Jr. Chemometrics in Spectroscopy, ELSEVIER. 
2007. 
6. Brereton, R. G. Applied Chemometrics for Scientists. Wiley. 2007. 
7. Dubrovkin, J. Mathematical processing of spectral data in analytical 
chemistry: A guide to error analysis. Cambridge Scholars Publishing. 
2018. 
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 ABOUT THE STRUCTURE OF THE BOOK 

 

    The book is organized into five parts. In the first part, mathematical 
derivatives of analytical signals are discussed together with the resolution 
enhancement and information aspects of derivative spectroscopy. The 
second part is dedicated to analog and numerical differentiation 
(difference method, Savitzky-Golay filters, Fourier transform, spline, and 
wavelet processing). The subjects of the two chapters are modulation 
spectroscopy based on optical monochromators and lasers. In Parts III and 
IV, derivative qualitative and quantitative analyses, illustrated by 
numerous examples, are discussed. The final bibliography part briefly 
describes hundreds of applications of the derivative spectroscopic and 
non-spectroscopic methods in the industrial and research laboratories. 
    We sincerely apologize to all those researchers whose outstanding 
works are not cited because the book does not have enough free space to 
include a complete bibliography. The project "Derivative Spectroscopy" 
(https://www. researchgate.net/profile/Joseph_Dubrovkin) provides a 
bibliographical supplement, which will be updated as new information 
becomes available. 
    The author wants to give each chapter status of an article whose reading 
is independent of other sections. This material presentation allows readers 
to avoid cramming a previous text before moving on to another topic. 
MATLAB-based examples, which are focused on the subject matter, 
illustrate each chapter. 
    The book closes with appendices, which include supplementary 
materials necessary to facilitate the readers' ability to understand the 
theoretical problems, which are discussed in the main text more deeply. 
For example, a brief introduction to the mathematical method such as 
Fourier transform, spline approximation, and Tikhonov regularization is 
given. Technical features of the analog RC devices are discussed. The 
laser diodes working principles are reviewed. One appendix summarizes, 
in brief, the main principles and instrumentation of optical spectrometry. 
However, for clarity, some details of the issue are given in the main text.  
    Reading requires the knowledge of the secondary school courses on 
differential calculus, linear algebra, and statistics. To perform the 
exercises, readers must have programming skills for beginners in 
MATLAB. 
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xii                                     About the Structure of the Book 

    Appendix SW includes some supplementary programs needed for the 
exercise. Also, the project "Derivative Spectroscopy" (https://www. 
researchgate.net/profile/Joseph_Dubrovkin) provides open-source 
MATLAB files.  
    A significant part of the book is based on the original research carried 
out by the author. 
    For simplicity, the captions of figures, tables, exercises, and expressions 
have the following structure: "part.Chapter-current number." 
    The author would be very grateful for the criticisms, comments, and 
proposals about this book, which he hopes to consider in his future work. 
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DSC-Differential Scanning 
Calorimetry  
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Modulator 

 

EPR- Electron Paramagnetic 
Resonance 
EXAFS- Extended X-Ray 
Absorption Fine Structure  
FAAS-Flame AAS 
FD- Fractional Derivative 
FM-Frequency Modulation 
FT-Fourier Transform 
FTIR-Fourier Transform Infrared 
Spectroscopy 
FWHM-Full Peak Width at Half- 
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GDH-Generalized Discrete 
Harmonics 
GFAAS- Graphite Furnace AAS 
GFT- Generalized Fourier 
Transform 
HA-Harmonic Analysis 
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AAS  
IFT-Inverse FT 
IM-Intensity Modulation 
ICP-OES- Inductively Coupled 
Plasma Optical Emission 
Spectroscopy 
IT- Information Theory  
LC/MS- Liquid-Chromatography- 
Mass Spectrometry  
IR- Infrared 
LF-Laser Fluorimetry 
LIBS-Laser‐Induced Breakdown 
Spectroscopy 
LMS-Laser Modulation 
Spectroscopy  
LTCM- Linear Transform 
Coordinates Methods 
MDSC- Modulation DSC 
MPI -Multiphoton Ionization  
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INTRODUCTION 

 
 
 
   According to Danzer [1], analytical signal (AS) in analytical chemistry 
is a response of the measurement system (analytical instrument) to the 
object under study [1]. Usually, the system's output is a linear or 
nonlinear mixture of the responses to different analytes, including noise 
and background. 
   In terms of signal processing theory, AS "refers to either a continuous 
or discrete measurement sequence which consists of a pure or undistorted 
signal corrupted by noise" [2]. In spectroscopy, this measurement 
sequence is usually a function of the frequency or wavelength. These 
arguments are, in turn, also time functions. In chromatography, the x-axis 
(abscissa) of the AS is often time. AS processing is carried out in the time 
scale of coordinate x (the time domain) or the transformed x-scale, e.g., 
using the Fourier transform (FT) (the frequency domain). In the last case, 
the y-coordinates of the AS are the intensity of the Fourier harmonics. 
Each harmonic is a linear combination of the AS ordinates. 
   The y-axis of the AS may be the derivatives of the AS relative to the x-
argument. Therefore, signal processing in the time domain involves the 
extraction of useful information from the transformed y-coordinate 
system. This method, e.g., derivative spectroscopy or chromatography, is 
one of the Linear Transform Coordinates Methods (LTCM) [3]. 
   Before studying the properties of the derivative methods, let us 
consider the shapes of the AS components and characteristics of the 
measurement noise. For simplicity, the AS structural elements, which 
have a bell-shaped form (symmetrical and asymmetrical), are named 
peaks. 
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CHAPTER ONE 

SYMMETRICAL PEAK SHAPES IN 

SPECTROSCOPY AND CHROMATOGRAPHY 

 

 
 
   In spectroscopy [4] and chromatography [5], a conventional model 
of AS is a sum of elementary peaks and a baseline. The peaks have 
symmetrical (Gaussian, Lorentzian, and Voigt) and asymmetrical [6-7] 
bell-shaped forms. These shapes are due to the impact of physical and 
instrumental factors. The last effects are essential in chromatography. 
Some asymmetrical peak shapes and their derivatives are considered 
in the next chapter. 
   Spectral lines have "a natural width" due to the expansion of energy 
levels according to the Heisenberg uncertainty principle [8]. However, 
this width is negligible. The following effects cause the lines to become 
broader: the Zeeman Effect, thermal Doppler broadening, collisional, 
broadening, and velocity broadening [8]. 
   A significant contribution to the spectral contour formation is made by 
the thermal motion and interactions between the particles of the object 
under study. The first factor causes Doppler broadening due to changes in 
the frequency of the radiation emitted or absorbed by the moving 
particles.  
   The instrumental distortions include: 
� The limited maximum delay time in the interferogram, which is 
obtained using Fourier-transform infrared spectrometers, and the 
non-zero width of the instrumental function of monochromators. 
� Inter- and/or intra-atomic and molecular interactions in the samples 
under study (e.g., Stark broadening in dense plasma [9]; spin-spin 
interactions in NMR spectroscopy [10]; and inter- and intra-
molecular associations in IR spectroscopy of liquids [11]). 
 

   Doppler broadening forms the Gaussian contour [8] (Fig. 1.1-1): ��(�) = �� exp{−4��2[(� − ��)/�]	},                                       (1.1 − 1)   
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where � is the abscissa argument with a dimension (e.g., a 

wavenumber); �� is the value of the peak maximum whose position is ��; and � is the full peak width on the half-maximum (FWHM). The 
frequently used peak model in chromatography is the Gaussian type.  
   Interactions between particles form the Lorentzian (or Cauchy) contour 

[8] (Fig. 1.1-1): �
(�) = �� {1/[1 + 4[(� − ��)/�]	}.                                         (1.1 − 2) 

   In physics, the functions ��(�) and �
(�) are usually normalized to the 
unit area: �� ∫ ��(�)��� � = 1.  

Since ∫ ��(�)��� � = ��√� �/2√��2  [12], �� = 2���2/� /(���). �
 ∫ �
(�)��� � = 1.  

Since ∫ �
(�)��� � = ��� �/2 [12], �
 = (2/�)/(���). 

   Each spectrum measured by a spectral instrument is disturbed by this 

device. From a mathematical point of view, the measured (��(�)) 

spectrum is the convolution of the undistorted ("true") spectrum (��) with 

the instrumental function (�) [13]: ��(�) = ∫ �(� + ��)��(��)����� + �(�),                                    (1.1 − 3) 

where �(�) is the additive noise of the measurements. 

   Formally, the generalized function (��) (which includes instrumental 

factors) also considers the physical-chemical interactions caused by the 

distortions of the spectrum under study. According to [14], the 
undisturbed spectrum equals the measured one corrected by its weighted 

derivatives:  ��(�) = ��(�) + ∑ (��/��)���(�)/������ ,                            (1.1 − 4) 

where constants �� are defined by ��, � = √−1. 

   Shapes of the spectral peaks, measured in practice, often differ from the 
"pure" functions (Eqs. (1.1-1, 1.1-2)) due to the combined impact of 
broadening factors and instrumental distortions. Therefore, the peaks are 
approximated by the Voigt profile, which is the convolution of Gaussian 

and Lorentzian shapes: ��(�) = ∫ ��(��)�
(� − ��)����� .                                                    (1.1 − 5)  
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The precise approximation of the Voigt FWHM with an accuracy of 

0.02% [15]: �� = 0.5346�
 +  �0.2166�
	 + ��	.                                             (1.1 − 6)  

   There were some attempts to obtain non-integral analytical expressions 
of the Voigt function. However, these expressions are cumbersome; for 
example, the pseudo-Voigt normalized profile [16], and its improved 
version [17]. Approximation of Voigt function combined two 
expressions, one of which was an asymptotic [18]. Software products 
used many rough but simplified combinations of Gaussian and 
Lorentzian profiles (e.g., [19]). 
   The Voigt function and its derivatives were represented by series in 
Hermite polynomials [20]. 
   Fig. 1.1-1 shows the intermediate position of the Voigt peak between 
the Lorentzian and Gaussian profiles. 
 

 
Figure 1.1-1. Lorentz, Gauss, and Voigt peaks (dashed, dotted, and 

solid curves, respectively). �� = 1, ! = (� − ��)/�, � = 1. 
 

Exercise 1.1-1 
The readers are invited to study the following: 

1. The dependence of the Voigt peak width on the ratio �
 /��, using 
the program VoigtTest.m (Appendix Software SW1). 
2. The rough approximation of Voigt peak: �
 ∗ ��. For this purpose, 
the program VoigtTest.m. must be slightly modified. 

 
   For the convenience of mathematical operations, Eqs. (1.1-1) and (1.1-
2) are replaced by their Fourier transforms (FT) (Appendix A): �#�($) = ����%√� /2√��2 & '!$(− $	 16��2⁄ ),                           (1.1 − 7)  
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�#
($) = ���
(� /2)'!$ (−|$| ⁄ 2),                                                  (1.1 − 8)  

where $ = -�, and - is the angular (Fourier) frequency. 

It is assumed that �� = 0. If �� ≠ 0, then the FT is modified: �(� − ��)  → �#(-) exp(−�-��).                                                      (1.1 − 9)  
   The FT of the Voigt peak is the product of the FT-convolution 

components normalized to the maximum intensity or area: �#� = �#� ∗ �#
.                                                                                         (1.1 − 10)  
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CHAPTER TWO 

MATHEMATICAL DERIVATIVES OF TYPICAL 

PEAKS 

 

 

 

   Analysts usually perform modelling experiments using numerical data 
to study peculiarities of the qualitative and quantitative analysis based on 
the derivative methods. For example, the �-order derivative of a 
composition of the overlapping symmetrical Gaussian, Lorentzian, or 
Voigt peaks simulated a real analytical signal in spectroscopy. In 
chromatography, the asymmetrical shapes are usually used. Often the 
model is corrupted by random noise. These data obtained by the digital 
differentiation are disturbed by processing errors depending on the 
differentiation method, sampling interval, and noise. Therefore, only 
approximate information is extracted from the derivatives. Moreover, the 
resolution of the derivative peaks essentially depends on the accuracy of 
the differentiation. 
   To estimate the properties of the derivative methods accurately, first of 
all, we intend to carry out theoretical studies using analytical expressions 
of the mathematical derivatives of the typical peak shapes, both 
symmetrical and asymmetrical. Often, the roots and the extrema of the 
derivatives peaks are established analytically. However, generally, this 
accurate information is readily extracted numerically. 
   Despite the apparent simplicity, analytical differentiation of 
mathematical functions, describing model peaks, requires a smart 
algebraic technique. 
   Theoretical studies also use analytical expressions of the mathematical 
derivatives, e.g., for estimating the resolution limit.  
 

Symmetrical peaks 
 

   Let us obtain accurate analytical expressions of the mathematical 
derivatives of the Gaussian (Eq. (1.1-1)) and Lorentzian (Eq. (1.1-2)) 
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peaks. In the first case, we use the physicists' Hermite polynomials [1, 2]: <�(>) = (−1)� '!$(>	) ?@?A@ '!$(−>	).                                          (1.2 − 1)  

<�(>) = �! C (��)D�!(��	�)! (2>)��	�.                                            (1.2 − 2)[@E]
���   

For example, <�(>) = 1,  <�(>) = 2>,  <	(>) = 4>	 − 2,  <F(>) = 8>F − 12>,                                                                               (1.2 − 3)  <G(>) = 16>G − 48>	 + 12,  <H(>) = 32>H − 160>F + 120>,  <I(>) = 64>I − 480>G + 720>	 − 120,  <J(>) = 128>J − 1344>H + 3360>F − 1680>. 

 
Table 1.2-1. Zeros of Hermite polynomials [2] 

Order 

1 2 3 4 5 6 

0 ±0.7071 
0 ±1.22474 

±0.52464 ±1.65068 

0 ±0.95857 ±2.02018 

±0.43607 ±1.33584 ±2.35060 

 
From Eqs. (1.2-1) and (1.1-1) we have �� ?@?A@ exp(−>	) = ?@?A@ ��(>) = (−1)�<�(>)��(>),                    (1.2 − 4)  

where > = 2√��2(� − ��)/�. 
The derivative over �: ?@?K@ ��(�) = (2√��2/�)� ?@?A@ ��(>).                                                  (1.2 − 5) 

Instead of cumbersome direct sequential differentiation of the Lorentz 
shape, we first transform Eq. (1.1-2), �
(>) = 0.5��[1 (1 + �>)⁄ + 1 (1 − �>)⁄ ],                                      (1.2 − 6)  

where � = √−1. 

The �LM-order derivative of Eq. (1.2-6) is �
(�)(>) = ��(−1)�(�! 2⁄ )[�� N�⁄ + (−�)� N	⁄ ] = ��(−�)�(�! 2⁄ ){[(−1)�N� + N	] (1 + >	)�O�⁄ },                              (1.2 − 7)  

where N� = (1 + �>)�O� , N	 = (1 − �>)�O�.  
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Using the binomial formula [3], we transform the nominator of Eq. (1.2-

7) (omitting ��): (�! 2⁄ ) P Q�O�R�O�R�� �RO�>R[(−1)RO� + 1],                                       (1.2 − 8)  

where Q�O�R = (� + 1)! [S! (� + 1 − S)!]⁄ . 

The term 

 
   Taking Eq. (1.2-9) into account, we have from Eq. (1.2-8): 

 
The roots of Eqs. (1.2-10) are readily obtained analytically except � = 6. 
The derivatives of Lorentzian peaks over �: ?@?K@ �
(�) = (2/�)� ?@?A@ �
(>).                                                          (1.2 − 11) 

   Figure 1.2-1 represents the plots of the Gaussian and Lorentzian peaks 
and their derivatives up to the sixth order. Zero points of the derivatives ∆�U �⁄ = (� − �U)/� (Table 1.2-2) are the roots of Eqs. (1.2-3) and (1.2-

10). They were obtained analytically and numerically. 

   The intensity of the �LM-order derivative (Eqs. (1.2-5) and (1.2-11)) �(�)~���.                                                                                              (1.2 − 12)  
So, the differentiation redistributes intensities in favor of narrow peaks. 
   It follows from Eqs. (1.2-3), (1.2-5), (1.2-10), and (1.2-11) that in the 

central point > = 0 of the even-order derivatives, ��(�)(0) = (−4��2)� 	⁄ �!/(� 2⁄ )!  �
(�)(0) = (−4)� 	⁄ �!                                                                          (1.2 − 13)  

 EBSCOhost - printed on 2/12/2023 11:12 PM via . All use subject to https://www.ebsco.com/terms-of-use



10                                             Part I Chapter Two 
 

 
 

for the Gaussian and Lorentzian peaks, respectively. 

The extrema ∆�V �⁄ = (� − �V)/� and �V(�)�� ��W  (Table 1.2-2) were 

evaluated numerically. 
   In further calculations, we use the following ratios estimated for the 3rd-

, 5th-, and 7th-order derivatives in the extrema >V� of the 1st-order 

derivatives of the Gaussian and Lorentzian peaks: ��(�)(>V�) ��(�)(>V�)W = 11.09, 184.56, 3413.4;  �
(�)(>V�) �
(�)(>V�)W = 18.00, 0, 136.08 x 10F.                         (1.2 − 14)  

 
Exercise 1.2-1 
   Readers are invited to do the following: 
� Obtain the final formulas for the derivatives of the Gaussians and 
Lorentzians. 
� Answer the following questions using Figure 1.2-1 and Table 1.2-2: 

a) What are the orders of the derivative curves which resemble the 
original peak? 
b) What information can you extract from zero and the extrema points?  
c) What can you tell about the properties of the central components of 
the even-order derivatives and additional side structures called 
satellites? 
d) Estimate the narrowing of the central peaks of the even-order 
derivatives. 
e) Estimate the form parameter [4]: the intensity ratios of the central 
peaks to the satellites of the even-order derivatives. 

 
   To estimate the signal-to-noise ratio of derivatives, we need the 
amplitude sweep, that is, the maximum distance between the extrema 

points %�V(�)&: ∆X(�) = YXZ\^(�) Y + YXZ_�(�) Y,                                                                 (1.2 − 15)  

where `V(�) = �V(�)��/��. 
From Table 1.2-2, we have ∆X�(�) = 2 x 1.4283 = 2.8566;  ∆X�(	) = 5.5452 + 2.4746 = 8.0198;  ∆X�(G) = 92.2470 + 57.0353 = 149.2823.                                   (1.2 − 16)  ∆X
(�) = 2 x 1.2990 ≈ 2.6;  ∆X
(	) = 8 + 2 = 10;  
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 ∆X
(G) = 384 + 162 = 546. 

   Let us use the Fourier transform (Appendix A) to estimate the integral 
intensity of the derivatives: �#(�)(-) = c �(�)(�)��� exp(−�-�) �,                                          (1.2 − 17)  

where - is the angular (Fourier) frequency, � = √−1. 

Since �#(�)(-) = (�-)��#(-), �#(�)(0) = 0 if � > 0. 

So, we have from Eq. (1.2-17): �#(�)(0) = c �(�)(�)��� � = 0.                                                         (1.2 − 18)  

That is, the integral intensity of the derivative curves is zero. Therefore, 
the areas under their positive and negative peaks are equal. 
   The value of the area under the unipolar derivative peaks was a measure 
of the analyte amount in the quantitative analysis (Chapter 4.1). 
 

Asymmetrical peaks 
 
   There are a lot of mathematical models of asymmetrical peaks usually 
used in chromatography [5]. As examples, consider the polynomial 
modified Gaussian (PMG) and Lorentzian (Dobosz) functions. 
   The PMG function and its derivatives: �fZ� = '!$%− >	 gA	W &.                                                                     (1.2 − 19)  �fZ�(�) = Q�>�fZ�,                                                                                 (1.2 − 20)                           �fZ�(	) = Q�h(1 − 3i>)�fZ� gA⁄ + >�fZ�(�) j = Q	�fZ�k,              (1.2 − 21)  �fZ�(F) = Q	h%�fZ�(�) − 6i�fZ� gA⁄ &k − �fZ�%4> + 6i	>gA&j, (1.2 − 22)  

where > = 2√��2(� − ��) �⁄ ; Q� = −2 gAF;⁄ Q	 = −2 gAI;⁄   gA is = 1 + i>;  i the asymmetry parameter; k = gAF − 3i>gA	 − 2>	. 

 
Exercise 1.2-2 
   Readers are invited to validate that Eqs. (1.2-19)-(1.2-22) describe the 
Gaussian peak and its derivatives if i = 0. 
 
   Analytical expressions of the derivatives, with an order higher than 3, 
are more cumbersome. Appendix B1 describes sequential high-order 
differentiation of the PMG peak. 
Figure 1.2-2 shows that the right asymmetrical tail of the high-order 
derivatives of slightly skewed PMG peak (i = 0.05) is strongly distorted 
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compared to the symmetrical wing of corresponding Gaussian shape 
derivatives. Table 1.2-3 summarizes the quantitative parameters of the 
PMG shape derivatives. Numerical errors caused small discrepancies 
between zeros and the extrema positions in the derivatives of � + 1- and �-order, respectively.  
 

 
Figure 1.2-1. Plots of the normalized derivatives.  
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Table 1.2-2. Parameters of the derivatives 

l 

Peak 
Gaussian Lorentzian ∆mno  

∆mqo  
rq(l)olrs  Yt(l)Y∗

 
∆mno  

∆mqo  
rq(l)olrs  Yt(l)Y∗

 

1 0 ±0.425 ±1.428 - 0 ±0.289 ±1.299  

2 ±0.425 
0 ±0.736 

-5.545 
2.475 

2.241 ±0.289 
0 ±0.500 

-8 
2 

4 

3 
0 ±0.736 

±0.315 
 ±0.992 

±18.0 
 ±4.90 

- 
0 ±0.5009 

±0.163 
 ±0.689 

±37.349 
 ±3.368 

 

4 

 ±0.315 ±0.991 
 

0 
 ±0.576 
 ±1.213 

92.3 
 

-57.0 
 

10.7 

 
 

1.617 
 

8.603 

 ±0.163 ±0.688 
 

0 
 ±0.289 
 ±0.867 

384 
 

-162 
 
6 

 
 

2.37 
 

64 

5 
0 ±0.576 ±1.213 

±0.262 
 ±0.802 
 ±1.412 
 
 

±418.7 
 ±182.6 
 ±25.5 
 
 

- 

 
0 ±0.289 ±0.867 
 

±0.114 
 ±0.399 
 ±1.038 

±3214.7 
 ±685.7 
 ±11.4 
 

- 

6 
±0.262 ±0.802 ±1.412 

0 
 ±0.490 
 ±1.005 
 ±1.593 

-2557.6 
 

1812.4 
 

-599.1 
 

65.2 
 
 

 
 

1.411 
 

4.269 
39.23 

 
 
 

 ±0.114 ±0.399 ±1.038 
 

0 
 ±0.207 
 ±0.500 
 ±1.207 
 
 

-46080 
 

24459 
 

-2880 
 

21 
 
 

 
 

1. 88 
 

16.0 
 

2194 
 
 

* The form parameter u(�) = v�V(�)v�\^ /�V(�)
. 

 
It follows from Table 1.2-3 that: 
1. The shift of the central minimum of the 2nd-order derivatives is 

approximately – i. Let us show that this result follows from Eq. (1.2-22). 

Since, near the minimum (>V) > and i> are close to zero, gA ≅ 1, �fZ�(�) ≅ −2>, �fZ� ≅ 1; for i ≪ 1, i	> ≅ 0, i>	 ≅ 0. By zeroing Eq. 

(1.2-22), we have 
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�fZ�(F) ≅ 4[(> + 3i)(1 − 3i>) + 2>] ≅ 4> + 12i + 8> = 0.   (1.2 − 23)  

So, >V ≈ −i.  
2. The shift of the central peak of the 4th-order derivatives is roughly two 
times larger than that of the 2nd-order derivative.  
3. The left- and the right-side form parameters (the absolute ratios of the 
satellite intensity to the intensity of the central peak in the 2nd-order  
derivatives) are unequal.  
 

 
Figure 1.2-2. PMG peak and its derivatives. Numbers near curves designate 

 the differentiation order. i = 0.05. �fZ�(F)
 and �fZ�(G)

 are multiplied by 0.1. 

 
    Asymmetrical Lorentzian (Dobosz) function: �z = '!$%−i(1 − �����>)&�
 = Q'!$%�A& ∗ �A(�),                  (1.2 − 24)  

where i ≠ 0;  �
 = 1 (1 + >	)⁄ ;  Q = exp(−i) / i;  �A = i�����>; �A(�) = i�
 . �z(�) = Q'!$%�A& �%�A(�)&	 + �A(	)� = Q'!$%�A&NA,                   (1.2 − 25)  �A(	) = −2i>�
	, NA = i[(i − 2>)]�
	,  �z(	) = �zNA + Q'!$%�A&NA(�),                                                          (1.2 − 26)  NA(�) = i(6>	 − 4i> − 2)�
F.  
   Analytical expressions of the �LM-order derivatives, for � > 2, are more 
cumbersome. Appendix B1 describes sequential high-order 
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differentiation of the PMG. Tables 1.2-3 and 1.2-4 summarize the 
quantitative parameters of the Dobosz shape derivatives. 
   It follows from Table 1.2-4 that the Dobosz peak maximum is shifted 
by i/2 . This result is obtained by zeroing the term NA (Eq. (1.2-25)). The 
shift of the PMG peak is zero. The central peaks of the Dobosz shape 2nd- 
and the 4th-order derivatives are shifted approximately by i/3 and i/4, 
respectively (Table 1.2-4). Therefore, we suppose that impact of the 
asymmetry on the uncertainty in determining maximum of the 
polynomial modified Lorentzian asymmetrical peaks is significantly 
smaller than those of the asymmetrical Gaussians. 
   The form parameters of the 2nd-order derivatives of the PMG and 
Dobosz peaks (Table 1.2-5) are highly-sensitive to the asymmetry 
parameter i. If i increases, then the right-side satellite significantly 
decreases compared to the one on the left-side. 
 

 
Figure 1.2-3. Dobosz peak and its derivatives. Numbers near curves designate the 

differentiation order. i = 0.3. �fZ�(	) , �fZ�(F)
 and �fZ�(G)

 are multiplied by 0.5, 0.2 and 

0.05, respectively. 

 
 
Exercise 1.2-3 
   Readers are invited to study the dependencies of the positions and 
amplitudes of the extrema values of the PMG and Dobosz peak 
derivatives on the asymmetry parameter using Tables 1.2-3 and 1.2-4. 
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Table 1.2-3. Parameters of the PMG derivatives 

l 
� 

0 0.05 0.10 0.15 0.20 

0 
�q 0 0 0 0 0 rq(s) 1 1 1 1 1 

1 

�n 0 0 0 0 0 �q -0.7070 
0. 7070 

-0.7060 
0.7060 

-0.7020 
0.7020 

-0.6960 
0.6950 

-0.6890 
0.6850 

rq(�) 0.8578 
-0.8578 

0.9206 
-0.7992 

0.9877 
-0.7449 

1.0593 
-0.6947 

1.1352 
-0.6483 

2 

�n -0.7071 
0.7071 

-0.7058 
0.7058 

-0.7021 
0.7016 

-0.6963 
0.6947 

-0.6886 
0.6850 

�q 
-1.2250 

0 
1.2250 

-1.1970 
-0.0500 
1.2460 

-1.16050 
-0.0980 
1.2610 

-1.1290 
-0.1430 
1.2670 

-1.0920 
-0.1830 
1.2650 

rq(�) 0.8925 
-2.000 
0.8925 

1.0741 
-2.0150 
0.7444 

1.2948 
-2.0601 
0.6247 

1.5604 
-2.1355 
0.5287 

1.8774 
-2.2417 
0.4522 

3 

�n 
-1.2247 

0 
 1.2247 

-1.1969 
-0.0497 
1.2465 

-1.1645 
-0.0977 
1.2608 

-1.1290 
-0.1426 
1.2670 

-1.0917 
-0.1834 
1.2649 

�q 

-1.6510 -
0.5250 
0.5200 
1.6510 

-1.5860 
-0.5810 
0.4590 
1.7070 

-1.5200 
-0.6300 
0.3900 
1.7500 

-1.4450 
-0.6600 
0.3150 
1.7820 

-1.3750 
-0.6840 
0.2430 
1.7960 

rq(�) 
3.9036 
-1.0604 
3.9036 
-1.0604 

1.4811 
-4.4086 
3.5780 
-0.7670 

2.0772 
-5.1318 
3.4025 
-0.5643 

2.9113 
-6.1250 
3.3562 
-0.4250 

4.0609 
-7.505 
3.4256 
-0.3293 

4 

�n 

-1.6507 
-0.5246 
0.5246 
1.6507 

-1.5858 
-0.5809 
0.4593 
1.7071 

-1.5162 
-0.6263 
0.3882 
1.7515 

-1.4450 
-0.6603 
0.3149 
1.7816 

-1.3747 
-0.6836 
0.2429 
1.7962 

�q 

-2.0200 
 -0.9600 
0.9600 
2.0200 

-1.9130 
-1.0030 
-0.0990 
0.8950 
2.1180 

-1.8020 
-1.0270 
-0.1910 
0.8160 
2.2010 

-1.6940 
-1.0350 
-0.2720 
0.7300 
2.2620 

-1.5910 
-1.0300 
-0.3400 
0.6310 
2.2990 

rq(�) 
1.3949 -
7.4195 

12.0000 -
7.4195 
1.3949 

2.3284 
-9.6904 
12.4240 
-6.0209 
0.8518 

3.9120 
-13.2583 
13.7447 
-5.2177 
0.5375 

6.5513 
-18.7555 
16.1121 
-4.8363 
0.3548 

10.86068 
-27.1010 
19.7894 
-4.7749 
0.2470 >U, >V and �V(�)

 are the roots, extrema and their values, respectively. 
 

 EBSCOhost - printed on 2/12/2023 11:12 PM via . All use subject to https://www.ebsco.com/terms-of-use



Mathematical Derivatives of Typical Peaks                        17 

 

Table 1.2-4. Parameters of Dobosz derivatives 

l 
� 

0 0.1 0.2 0.3 0.4 

0 
�q 0 0.0500 0.1000 0.1500 0.2000 rq(s) 1 0.9071 0.8269 0.7576 0.6975 

1 

�n 0 0.0500 0.1000 0.1500 0.2000 �q -0.5770 
 0.5770 

-0.5280 
0.6280 

-0.4800 
0.6800 

-0.4340 
0.7340 

-0.3890 
0.7890 

rq(�) 0.6495 
-0.6495 

-0.6093 
0.5690 

-0.5736 
0.5004 

-0.5419 
0.4419 

-0.5136 
0.3918 

2 

�n -0.5774 
0.5774 

-0.5281 
0.6281 

-0.4802 
0.6802 

-0.4338 
0.7338 

-0.3888 
0.7888 

�q 
-1 
0 
1 

-0.9430 
0.0330 
1.0590 

-0.8880 
0.0670 
1.1210 

-0.8350 
0.1000 
1.1850 

-0.7850 
0.1330 
1.2520 

rq(�) 0.5000  
-2.0000 
0.5000 

0.4866 
-1.8127 
0.4219 

0.4748 
-1.6484 
0.3571 

0.4644 
-1.5039 
0.3033 

0.4552 
-1.3766 
0.2585 

3 

�n 
-1 
0 
1 

-0.9428 
0.0333 
1.0595 

-0.8879 
0.0666 
1.1213 

-0.8352 
0.0999 
1.1853 

-0.7847 
0.1330 
1.2516 

�q 

-1.3760 
-0.3250 
0.3250 
1.3760 

-1.3090 
-0.2940 
0.3560 
1.4470 

-1.2450 
-0.2630 
0.3880 
1.5200 

-1.1840 
-0.2330 
0.4210 
1.5960 

-1.1260 
-0.2030 
0.4530 
1.6750 

rq(�) 
0.4210 
-4.6686 
4.6686 
-0.4210 

0.4254 
-4.3541 
4.1106 
-0.3418 

0.4307 
-4.0726 
3.6305 
-0.2782 

0.4367 
-3.8199 
3.2165 
-0.2272 

0.4432 
-3.5924 
2.8588 
-0.1861 

4 

�n 

-1.3764 
-0.3249 
0.3249 
1.3764 

-1.3093 
-0.2938 
0.3565 
1.4465 

-1.2451 
-0.2630 
0.3884 
1.5197 

-1.1839 
-0.2328 
0.4207 
1.5960 

-1.1256 
-0.2030 
0.4534 
1.6752 

�q 

-1.7320 
-0.5770 

0 
0.5770 
1.7320 

-1.6540 
-0.5450 
0.0260 
0.6100 
1.8140 

-1.5800 
-0.5140 
0.0510 
0.6440 
1.8990 

-1.5090 
-0.4830 
0.0770 
0.6780 
1.9880 

-1.4420 
-0.4530 
0.1020 
0.7120 
2.0810 

rq(�) 
0.3750 

-10.1250 
24.0000 
-10.1250 
0.3750 

0.3937 
-9.7008 
21.7478 
- 8.6753 
0.2929 

0.4137 
- 9.3177 
19.7646 
-7.4541 
0.2293 

0.4350 
-8.9704 
18.0140 
- 6.4239 
0.1800 

0.4575 
-8.6546 
16.4651 
-5.5530 
0.1417 >U, >V and �V(�)

 are the roots, extrema and their values, respectively. 
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Table 1.2-5. Form parameters of the second-order derivatives 
Peak 

PMG Dobosz � 
0 0.05 0.10 0.15 0.20 0 0.10 0.20 0.30 0.40 

0.446 0.533 0.628 0.731 0.838 0.250 0.268 0.288 0.309 0.331 
0.446 0.369 0.303 0.248 0.202 0.250 0.233 0.217 0.202 0.188 

Left- and right-side parameters are in the upper and low rows, respectively. 
 

Fractional derivatives 
 

   Fractional derivatives (FD) are the derivatives of non-integer orders [6]. 

The semi-differential analysis of irreversible voltammetric peaks was a 

pioneer FD method in analytical chemistry [7, 8]. There is a small study 
in which FDs were used in spectroscopy [9-17]. Possibly, this fact is 
explained by the lack of analytical formulas for estimating the FDs of 

typical peak shapes. Moreover, most of the studies [10, 12-15] involved 
the theoretical determination of the parameters of the overlapped 
Gaussian, Lorentzian, and Tsallis functions. The Tsallis statistical 

distribution (N(�, !, �) is based on nonextensive (Tsallis) entropy [18]. 

The authors of the article [10] defined this distribution as N(�, !, �)~{[1 + (� − 1) (3 − �)⁄ ][(! − !�)	 �	⁄ ]}�/(���),       (1.2 − 27)  

where � is the standard deviation. According to the original study [18], if � →  1, then N(�, !, �) is the Gaussian distribution. If � =  2, then Eq. 
(1.2-27) is equivalent to the Lorentzian distribution. The function N(�, !, �) as a peak shape has occasional applications in analytical 

spectroscopy [10, 13]. 
   Different integral and finite-difference formulas of FDs [6] probably 
look scary for non-professional mathematicians. One of the definitions of 

the �LM-order FD (� > 0) [9] is based on the Riemann-Liouville integral: 

 
FD is readily calculated using inverse FT [19] (see Appendix A1): 
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�(�)[�(!)] = (1/2�) � (�-)��#(-)�
�� exp(�-!) -.                   (1.2 − 29) 

The theoretical proof is given in the thesis [11].  
   We estimated Eq. (1.2-29) numerically using the Fast FT (Appendix 
Software SW2, function fractDeriv.m). The authors of the study [19] 
developed the fractional derivative differentiator. 
   The integer Savitzky-Golay (SG) differentiation (Chapter 2.3) was 

extended to the fractional case [16, 21]. Matrix � (Eq. (2.3-8)) was 

defined in the asymmetric interval [1, 2� + 1] instead of the symmetric 

one [−�, �]. Matrix � = (���)����was changed to ��� . The �LM 

element of the vector � was estimated using the generalized derivative of 

the �� [21]: _ = ��(�,�)[��] = Q�,�[Г(��) Г(�� − �)⁄ ]��O�,                           (1.2 − 30)  

where � = 0, 1, . . , 2�;  2� is the polynomial power; �,   are real constants, Q�,� = (  + 1)���, �� = ¡ (  + 1)⁄ + 1, ¢ = (1 − �) (  + 1) − 1. 

   The FDs were also calculated using the Haar wavelets [22]. 
   Buslov [23] modified the integrand of Eq. (1.2.29); he used the absolute 
value of the factor: |(�-)�| = -� . If � = 2, then only the sign of a new 
derivative is changed. However, for � = 1 and 3, the modified derivatives 
look like those, obtained for � = 2 and 4, respectively, but they are wider.  
   The FD of a constant depends on the calculation method [Private 
communication. https://www.researchgate.net/profile/Anastasia_ 
Gladkina]. E.g., the Riemann-Liouville derivative of a constant is not 
zero, however, in the Caputo method-zero [20]. The Liouville-Caputo and 
FD-FT derivatives are equivalent [20]. The FT of the constant is 
proportional to the delta function, which is zero everywhere except at the 
origin [1]. Therefore, from Eq. (1.2-29), we have �(�)[£¤�¥�]=0. The 
FDs of the constant, estimated by the SG method (FD-SG), are also zeros. 
We checked these results numerically. 
   The FD-FTs of the linear and quadratic functions are not applicable 
since the high oscillations occur because of the jump discontinuity from 
zero at the endpoint (the Gibbs phenomenon) (Appendix A2). The FD-SG 
of these functions are constants and linearly increasing (Fig. 2.1-4, panels 
a and b, respectively), according to the 2nd-order differentiation rules, but 
they depend on  . 
   Figure 1.2-5 compares the FD-FTs and FD-SGs of the Gaussian peaks. 
The parameters of Eq. (1.2-30) are � = 2 (Eq. (1.2-29));   was chosen so 
that the FD-SG and FD-FT curves were close. The figure shows the 
difference between the curves. Also, parameter   does not directly reflect 
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the fractional order (�) of the FD-FTs. Therefore, below we will only 
study the FT fractional derivatives.  

  
Figure 1.2-4. The FD-SGs of the linear (> = !) (a) and quadratic (> = !	) (b) 
functions (curves 1). � = 2.  =0 (zero (a) and horizontal lines near zero (b)).  = 
0.1, 0.2,…, 0.7 (squares, circles, stars, pentagons, hexagons, triangles and pluses, 

respectively).  
 
   FDs have similar properties of the linearity as the integer-order 
derivatives [20]. 
   Also, FD is the product of the integer �-order derivative and the 

fractional derivative of the order � − �:  �(�) = �(�)�(���).                                                                               (1.2 − 31)   
 Figure 1.2-6 demonstrates the normalized FD curves: ��¦U�(�) = �(�) h��\^(�) − ��_�(�) j.                                                            (1.2 − 32)W    

The denominator of Eq. (1.2-32) is the amplitude sweep, that is, it is the 

maximum distance between the extrema points (compare with Eq. (1.2-
15)). The normalization allows better visualization of the curves since the 

impacts of the maximum peak intensity (��) and the width (we suppose 

that ~��� (Eq. (1.2-12)) are eliminated.  
   The FDs of the noisy peak were smoothed in the Fourier domain by 
slightly modified filter: 1/(1 + ��	L-	L) (Chapter 2.4).  
 Figure 1.2-6c shows that the smoothed FDs suffer from substantial form 
distortions. These factors must be considered when determining the initial 
peak parameters using FDs (Chapter 3.3-3). 
   Analysis of the FDs plots (Fig. 1.2-6) shows that the ratio of the left 
maximum to the right minimum, which characterizes curve asymmetry, 
decreases from a value more than 1(for � = 0.6 and 0.8) to 1 (for � = 1, 
the symmetrical curve) and further continues to fall while the FDs 
approach the 2nd-order derivative (� = 2). If � > 1, then the second 
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(right) maximum appears, which may be called "a satellite" similar to the 
2nd- order derivative.  
 

  
Figure 1.2-5. SG and FT normalized fractional derivatives of the Gaussian peak 
(� = 200) (continuous and dotted lines, respectively). � = 2, [�,  ]= (a) [1.9, 

 -0.0085], (b) [1.8, -0.017], (c)[1.5, -0.05], and (d)[1.2, -0.15]. 
 
   The authors of the study [10] established the linear dependence: (!� − !�\^) �⁄ = �(1 − �),                                                              (1.2 − 33)  

where � = �/%2√��2& and �/2 are the standard deviations for the 

Gaussian and Lorentzian distributions (peaks), respectively. However, 
according to our findings, this dependence is only linear for the Gaussian 
peak. For the Lorentzian shape, the linearity is rough (Fig. 1.2-7, a). The 

slopes (Eq. (1.2-33)) are � ≈ 0.200 and 0.171 for the Gaussian and 
Lorentzian peaks, respectively. These values are not similar to those 
estimated in the paper [10] because of different FD calculation methods. 
   We obtained the following linear dependencies of the FD maxima (Fig. 

2.1-7, b) and minima (Fig. 2.1-7, c):  ��§��\^(�) (�/1000)�¨ = ��\^� + ��\^,                                         (1.2 − 34)   ��§Y��_�(�) Y(�/1000)�¨ = ��_�� + ��_�,                                         (1.2 − 35)  

where ��\^ , ��\^, ��_�, and ��_� are given in Table 1.2-6.  
   The terms ��\^(�)  and ��_�(�)  are functions of � and �. The factor (�/1000)� almost eliminates the dependence on the width (~���). The 
coefficients in Eqs. (1.2-34) and (1.2-35) hardly change when � 
decreases from 1000 to 250 (Table 1.2-6). The scaling factor 1000 
underlines the small variations along the y-axis.  
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Figure 1.2-6. Fractional derivatives of the Gaussian (a) and Lorentzian (b) peaks 
(!�\^ = 5000, � = 1000) (curve 1). � = 0.6, 0.8, … ,2 in accordance with the 
arrow. (c) Superposition of the noise-free and noisy (the signal-to-noise ratio is 
50)- plots “b” smoothed by the FT filter (� = 2 ∗ 10�H, � = 2). � = 1.1 and 1.8 
(solid and dashed lines, respectively). The dotted lines correspond to the noisy-

free data.  
 

   For the non-normalized FDs of the Gaussian and Lorentzian peaks, the 
absolute value of the minimum/maximum ratio depends on the 
differentiation order linearly and non-linearly, respectively (Fig. 1.2-8). 
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These dependencies are the FT form parameters since they are 
independent of the peak width.  

 

 
Figure 1.2-7. Dependencies of the FD zero-crossing points (a) and normalized 
maxima (b) and minima (c) values on the differentiation order for the Gaussian 

(squares) and Lorentzian (circles) peaks. 
 

Table 1.2-6. Constants in Eqs. (1.2-34) and (1.2-35) 

Parameters 
Peak 

Gaussian Lorentzian 
w=1000 w=250 w=1000 w=250 ª«ª¬ -6.3841 -6.3909 -6.4913 -6.5016 «ª¬ -0.1603 -0.1499 -0.1515 -0.1360 ª«®l -5.4418 -5.4318 -4.9340 -4.9149 «®l -1.1556 -1.1713 -1.7765 -1.8070 

 

 
Figure 1.2-8. Dependencies of the absolute value of the minimum/ maximum 
ratio on the differentiation order for the non-normalized FDs of the Gaussian 

(squares) and Lorentzian (circles) peaks. 
 

   The positions of the extrema points in the 2nd-order derivatives allow us 
to acquire useful information about the parameters of the overlapped 

peaks, especially their maxima (Chapter 3.3). In this connection, we 
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estimated the following relative shifts of the FD extrema for the 

derivatives of the orders � =1.6, 1.7,…, 2.4 (Table 1.2-7): ¯^D°@(�) = ²!�_�(�) − !�\^³ �,W                                                               (1.2 − 36)  ∆´`^Dµ¶·¸(�) = §�!�_�(�) − !�\^(�) (¹N)� − �!�_�(	) − !�\^(	) (¹N)�¨ �⁄ ,             (1.2 − 37)  

where ´` is the relative distance between the FD minimum and 

maximum, ¹N stands for left (L) or right (R) satellite. The table data 
weakly depend on the peak width.  
   Table 1.2-7 shows that only the relative distance between the FD 
minimum and the left satellite weakly depends on the variation of the 
derivative order near 2. This fact is the most noticeable for Lorentzians. 

The relative shift of the central negative FD peak (¯^D°@(�) ) is 
approximately the linear function of the derivative order (Fig. 1.2-9). This 
behavior is similar to that of the zero-crossing points (!�) (Eq. (1.2-33)) 
(Fig. 1.2-7, a). However, the accurate measurements of !� are error-prone 
due to the non-zero slope of the derivatives in the vicinity of the zero-
crossing points, and the impact of the unsuppressed background. The 
positions of well-resolved FD minima are measured with small errors 
(Chapter 3.3). These positions are proportional to the peak widths. For the 
well-resolved doublet, when the first peak is three times narrower than 
the second one (Fig. 1.2-10), ∆!	/∆!� ≈3. The corresponding shifts of 
the zero-points are also proportional to the peak widths (Eq. (1.2-33).  
   The ratio of the peak widths in a spectrum may be estimated using the 

slope of the dependencies ∆!(�):  �	 ��⁄ = [∆!	(�)](�) [∆!�(�)](�)⁄ .                                                 (1.2 − 38)  

However, noise in spectra and peaks overlap may significantly worsen the 
accuracy of this estimation (Chapter 3.3). 

 
Figure 1.2-9. The relative shifts of the FD minima positions 
For the Gaussian (squares) and Lorentzian (circles) peaks. 
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Table 1.2-7. Relative shifts of the FD extrema  
Pe

ak
 

Sh
ift

s º 

1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 

G
au

ss
ia

n 

» ¬ «®l(º)
 

15.1 11.1 7.3 3.6 0 -3.5 -6.9 -10.2 -13.5 

∆¼½ ¬
«ª¬

¾
( º)

, 
% 3.5 2.5 1.6 0.7 0 -0.8 -1.5 -2.1 -2.8 

∆¼½ ¬
«ª¬

¼
( º)

, 
% -8.5 -5.9 -3.6 -1.7 0 1.6 3.0 4.2 5.3 

L
or

en
tz

ia
n 

» ¬ «®l(º)
 

8.8 6.4 4.4 2.0 0 -2.0 -3.8 -5.6 -7.2 

∆¼½ ¬
«ª¬

¾
( º)

, 
% 0.6 0.4 0.2 0 0 -0.2 0 0 0.4 

∆¼½ ¬
«ª¬

¼
( º)

, 
% -27.6 -17.4 -10.0 -4.4 0 3.6 6.4 8.8 10.8 

w=1000.  

 
Figure 1.2-10. The shifts of the minima and  zero-points (circles) in the FD (the 
order 1.8 and 2.2, solid and dotted lines, respectively) of the Gaussian doublet. 

The first peak is 3 times narrower than the second one.  
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X-scale transformations 
 

   The IR spectra are usually recorded as a function of energy 
(wavenumbers, [£���]), while the UV-VIS spectra are recorded linearly 
with respect to wavelength ([nm]). The transformation of the wavelength 
to the wavenumber-scale may distort the peak shapes. 
   Antonov pointed out that “it is not crucial for conventional spectral 
analysis, such as absorption maxima estimation, molar absorptivity 
calculation, investigation of defined chemical reactions and equilibria, 
etc. At the same time, computational band decomposition is a 
mathematical procedure that crucially depends on the x scale on which 
the spectrum is presented.” [24]. 
   The linearity of the spectrum relative to its abscissa influences the 
differentiation algorithm [25-32]. Antonov et al. demonstrated that the 
broad peaks recorded linearly in the wavelength (λ) scale become 
asymmetric for the wavenumber’s abscissa (ν) since � [��] = S (À[£���])⁄ ,                                                                    (1.2 − 39)  

where S = 10J. Therefore, the derivatives of these peaks are distorted.  
   Let us consider the nature of this problem in the first order of 

approximation. Suppose that we have two Gaussian peaks (Chapter 1.1)  

defined in ν and � scales, respectively: �Á(ν) = '!$(−!Á	),                                                                              (1.2 − 40)  �K(�) = '!$(−!K	),                                                                             (1.2 − 41)  

where !Ã = Ä∆À/�Ã; Ä=2√��2; ∆ν = À − À�; !K = Ä∆�/�K; ∆ � = �−��.  

The argument !Ã, transformed into the λ scale, according to Eq. (1.2-39), 

is  !Ã(λ) = −Ä∆� (����Ã)⁄ = − Ä∆� [��	�Ã(1 + ∆ � ��⁄ )]⁄ ,        (1.2 − 42)  
where �� = S/À�. 

If ∆ � �� ≪ 1⁄ , then !Ã(λ) ≈ !K and �K = ��	�.  

Finally, from Eqs. (1.2-40) and (1.2-42), we have for ∆ � �� ≪ 1⁄ : �Á(λ) = '!${− Ä	(∆�)	 [��G�Á	(1 + ∆ � ��⁄ )	]⁄ } ≈  '!${− Ä	(∆�)	 [��G�Á	]⁄ ∗ [1 − 2∆ � ��⁄ ]} =  �K'!${− Ä	(∆�)F [���K	]⁄ }.                                                              (1.2 − 43)  

Exercise 1.2-4 
   Readers are invited to derive equation �Æ(ν) symmetric to Eq. (1.2-43). 
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   The exponential factor of Eq. (1.2-43) causes the asymmetry of the 
Gaussian peak (Fig. 1.2-11). The asymmetry of the broad peaks 
increases. The 2nd-order derivatives of these peaks reflect this effect (Fig. 
1.2-12b). 
   Figure 1.2-13 demonstrates that the �K(�) → �Æ(ν) transformation of 
the four equal Gaussian peaks shifted along the wavelength axis (a), 
produces four Gaussian curves which widths are different (b). Therefore, 
the four derivatives ��K(�)/�� of the peaks in Figure 1.2-13a are 
similar, but the corresponding derivatives ��Á(ν)/ν� (Fig. 1.2-13b) are 
different. 
   Numeric differentiation of the peaks, whose widths are different (Fig. 
1.2-13b), have technical problems since the equidistant points of the 
wavelength scale are non-linearly transformed to the wavenumbers (Eq. 
(1.2-39)). The straightforward solution was obtained using the 
differential calculus [25]. 
   Given spectrum �K(�_), defined at equidistant points (� = 1,2, … , Ç). 

The 1st and the 2nd-order derivatives of �K(�_) over ν are �K(�_)/ν = [�K �⁄ ][�/ν] = −�K� S ν	 = −�K� �	 S⁄⁄ .    (1.2 − 44)  	�K(�_)/ν	 = (−�K� �	 S⁄ )� = −�K��[�/ν][�	 S⁄ ] + 2�K��F S	⁄ =  �K�� �G S	 +⁄ 2�K��F S	⁄ .                                                                       (1.2 − 45)  

Figure 1.2-12b represents 	�K(�_)/ν	. The derivatives �K� and �K�� over � (Eq. (1.2-45)) were estimated numerically using Savitzky-Goley filters 

(Chapter 2.3). 
   The equation of the 4th-order derivative was given in the article [27].  
 

 EBSCOhost - printed on 2/12/2023 11:12 PM via . All use subject to https://www.ebsco.com/terms-of-use



28                                             Part I Chapter Two 
 

 
 

 
Figure 1.2-11. The x-scale transformations of the Gaussian peaks: �Á(ν) → �Á(λ) (� → �) and �K(�) → �Æ(ν) (£ → ) À� = 20,000£���, 

 �Ã = 500, 1500, 2500£���, �� = 500, �K = 12.5, 37.5, 62.5. Dotted curves 
 take the exponential factors, that cause the asymmetry into account. 
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Figure 1.2-12. The x-scale transformation of the Gaussian peaks: �K(�) → �Æ(ν). 

(a) ( �� = 500, �K = 12.5, 37.5, 62.5 ). Dotted curves take the exponential 
factors, that cause the asymmetry into account. 

(b) The 2nd-order derivatives of “a”. 
 

 
 

 
Figure 1.2-13. The �K(�) → �Æ(ν) transformations of the Gaussian 

 peaks. �K = 25. Dotted curves take the exponential factors,  
that cause the asymmetry into account.
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CHAPTER THREE 

ANALYSIS OF NOISE IN SPECTRAL 

MEASUREMENTS* 

 
 
 
   Measurements of any physical value are influenced by random and 
systematic errors. Systematic errors may arise from incorrect 
measurements (a typical example is the improper preparation of the blank 
cuvette in the spectrophotometer) and from the imperfection of the 
instrument (e.g., spurious reflection and radiation). Often, systematic 
errors can be decreased until they are negligible by improving the 
apparatus and the measurement process (e.g., by correct calibration). 
However, random errors cannot be eliminated in principle; they only can 
be decreased by improving the measurement procedure (e.g., by an 
expansion of the measurement scale) and by the analog or numerical 
processing of obtained results (e.g., by smoothing). It is important to 
emphasize that reducing the random errors can cause unpredictable, 
significant distortions of the actual value of the quantity to be measured 
(systematic errors).  
   Random errors vary randomly with time. They are due both to the 
errors in the analog-to-digital conversion of the measured value and to 
the impact of different external factors on the measurement process (e.g., 
a variation of the sample temperature, vibrations). In spectroscopy, the 
sources of the random errors are the random noises arising in different 
parts of the spectrometer, mainly, in the radiation detector. The origins of 
these noises are very different and can be approximately described in 
every case by the particular mathematical model based on probability 
theory. The following classification was given in a series of articles 
which were summarized by Mark and Workman [1]. 
 
 
___________________________________________________________ 
*Major parts of this chapter were taken from the following book: Dubrovkin, J. 
Mathematical Processing of Spectral Data in Analytical Chemistry: A Guide to 
Error Analysis. Cambridge Scholars Publishing. 2018.  
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The sources of noise 
 

Detector-dependent noise 
   The thermal noise (IR, NIR spectrometers) is the noise in the thermal 
detectors. This noise does not depend on the intensity of the electromagnetic 
radiation that falls on the sensor. In the time domain, this noise has a 
Gaussian (normal) intensity distribution. (We hope that readers remember 
this from their university courses in probability and statistics). This noise 
is often called "white noise" because it has the constant power density of 
the Fourier spectrum (Appendix A1) in the vast range (Fig. 1.3-1). Noise 
power is proportional to the width of an interval of Fourier frequencies 
(bandwidth) of the recording device. For more details on noise, see 
Appendix C.  
 

 

Figure 1.3-1. White and pink noises in the time (a, b) and the Fourier (c, d) 
domain. The noise has a zero mean value; the standard deviation is one. 

 
   For numerical experiments, analytical signals are usually simulated by 
the composition of the peaks of known shapes. This model includes a 
noise generated by a computer program. For example, in the MATLAB 
package, the function “randn” generates pseudo- normal noise with zero 
mean and unit standard deviations. Numerical experiments show that 
these noise parameters are only accurate if the noise array contains 
hundreds of points. Figure 1.3-2 demonstrates that, the noise parameters 
are different in short intervals. Moreover, the noise is well approximated 
by a parabola, and not by a zero line as expected. Therefore, the research 
may observe a false structure in the analytical signal under processing. 
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However, the mean noisy data obtained in a large number of repetitions, 
lack this flaw. We will discuss this issue below. 
   The standard deviation of the absorbance (È) measurements distorted 
by a low-intensity thermal noise [2]: ��VU� = {S�/�� (10)}√1 + 100É,                                                      (1.3 − 1) 

where S� is the constant indicating precision of the spectrophotometer.  

 
 

 
Figure 1.3-2. Normal noise, generated by MATLAB function “randn” with zero 
mean and unit standard deviation (solid line), was approximated by a parabola 

(dotted line). The estimated means and the standard deviations from the top to the 
bottom subplots: [0.3168, 0.6111; 0.0649, 1.1256; -0.3137, 1.1218; 0.1367 

1.0445; 0.4027 0.6751].  
 
   Plot [��VU�/È](È) (Fig. 1.3-3) shows that the absorbance region 0.2-
1.2 is the most suitable for spectroscopic measurements since the relative 
standard deviation is approximately constant in this range. 
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Figure 1.3-3. Eq. (1.3-1). S� = 0.01. 

 
 
   The shot-noise (UV-VIS, X-ray, and gamma-ray spectrometry) in the 
photon-counting detectors has a Poisson intensity distribution in the time 
domain. Its intensity increases with the square root of the signal. This 
noise is also white. 
 The standard deviation of the absorbance, which is distorted by a low-
intensity short-noise, is  �ÊM¦L = {S	/(�� (10))}√1 + 10É,                                                       (1.3 − 2)  

where S	 is a constant similar to S� in Eq. (1.3-1). 
 
Exercise 1.3-1 
   The readers are invited to represent the noise data obtained by their 
laboratory instruments, like in Figure 1.3-4.  

 

Figure 1.3-4. Noise measured on Bruker Optics 2501S spectrograph 
 by D. V. Ushakou (Pomeranian University in Slupsk, Poland) and 

 the noise power spectrum (panels a and b, respectively). 
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   Variations in energy, which are incident on the detector due to the 
vibrations of the source, and the changing geometry of the radiation, 
cause the flicker (pink) noise (1/�-noise). The noise intensity is 
proportional to the signal energy. The noise power spectrum depends on 
the frequency: ��� , where � ≃ 1 (Fig. 1.3-1) (Appendix C). If the noise 
is small, then the standard deviation of absorbance �Ì is approximately 
constant. 
 
 
Detector-independent noise 
   The noise sources include the mechanical vibrations of the optical 
instruments and different kinds of instabilities: 
� The variation of the pathlength in the absorption spectroscopy is due to 

the changes in the sample position [2].  
� The variability of the sample properties that cannot be measured. 
However, these properties influence the measurement property (e.g., the 
changing of light reflectance in the transmittance measurements, the 
inhomogeneous of the sample, and the artefacts of the blood motion in 
the blood analysis using Functional NIR Spectroscopy (Optical 
Topography) [3, 4]).  
� Random drifts of optical and electronic devices (the flicker noise) 

caused by slow changes of their parameters due to the temperature 
variations and other factors. 

 
   The mathematical analysis of these sources can only be performed in 
particular cases using appropriate assumptions that simplify the solution 
of the problem.  
 

Computer modelling of correlated noise 
 

   Let us consider the noise intensity distribution in the time domain [5]. 

As was pointed out above, the Gaussian (normal) and Poisson noise 
distributions are usually used to model noise in spectroscopic 
measurements. In the time domain, noise is characterized mathematically 

by the error covariance matrix ÍÎÏ, in which a diagonal element  QÐÑ__ = �_  	                                                                                                (1.3 − 3)  

represents the noise variance (dispersion) in the �LM point. If no two 
points of the noise in the time domain are correlated with each other, the 

non-diagonal elements QÐÑ_Ò = 0. If all variances �_ 	 (Eq. (1.3-3)) are the 
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same, the noise is called homoscedastic, otherwise it is heteroscedastic. 

The heteroscedastic noise source, in particular, is a randomly varying 
baseline (background) [6, 7], due to both instrumental and physical-
chemical factors. Total baseline compensation is practically impossible. 
Suppose that the baseline is approximated by the 2nd-order polynomial, 

whose coefficients are random numbers. This baseline is added to some 

spectrum. The procedure is repeated Ó times. Then the intensity of the �LM 
spectrum in the point i is  >_L = >_ + �_ + ��L + ��L� + �	L�	 ,                                                   (1.3 − 4)  

where >_ is the undistorted value; �_ is the normal noise with zero mean 

and dispersion �A	; ��L  are the constant coefficients (� = 0, 1, and 2), 

which change randomly for each spectrum. The estimation of the 
covariance matrix element is [8] QÐÑ(>R, >Ô) = [1/(Ó − 1)] ∑ (>RL −  >ÕR)UL�� (>ÔL −  >ÕÔ),              (1.3 − 5)  

where the bar is the average symbol. According to Eq. (1.3-4):  
 >Õ_ = >_ +  �Õ� + (��)ÕÕÕÕÕÕ� + (�	)ÕÕÕÕÕÕ�	.                                                         (1.3 − 6) 

Substituting Eqs. (1.3-4) and (1.3-6) into Eq. (1.3-5), we have QÐÑ(>R, >Ô) = �A	ÖRÔ  + g¹(>R, >Ô),                                                   (1.3 − 7)  

where g¹(>R, >Ô) = [1/(Ó − 1)] ∑ k(S)UL�� k(�);  
 k(¡) = ¯\×Ø + ¯\ÙØ¡ + ¯\EØ¡	; 
 ÖRÔ =  Ú1, S = �0, S ≠ �Û is the Kronecker symbol; ¯\ÜØ = ��L − �Õ� . 

   Suppose that ¯\ÜØ is a normal random variable with a zero mean and 

covariance matrix �\Ü	 Ý (Ý is the identity matrix). Then, by neglecting the 

small contributions to the sum of the cross members for sufficiently large Ó, we obtain from Eq. (1.3-7):  QÐÑ(>R, >Ô) = �A	ÖRÔ + �\×	 + �\Ù	 S� + �\E	 S	�	 .                            (1.3 − 8)  
   Correlations between analytical points may also be due to the pre-
processing, e.g., digital smoothing [6]. Since a digital filter is usually 
much shorter than a spectrum, the covariance matrix will be sparse 
(populated primarily with zeros) and, therefore, singular. If the matrix is 

near to singular, then a correctly computed inverse is impossible. 
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CHAPTER FOUR 

RESOLUTION LIMIT IN DERIVATIVE 

SPECTROSCOPY 

 
 
 
   One of the central concepts of optics and spectroscopy is the resolution 
limit of optical instruments, whose estimation involves specific criteria 
[1-10]. The most common of these is the historically first suggested 
diffraction-related Rayleigh criterion [4], and the mathematical Sparrow 
criterion [5]. With the advent of computer technology, more elaborate 
mathematical criteria have been developed to estimate the resolution 
limit: the relative depth of the dip in the center of a symmetrical doublet 
[6], the absolute value of the minimum in the Fourier transform of this 
doublet [7], and the information measure of the distinctiveness between 
two spectra [8]. However, the comparative studies of the above methods 
were only conducted for symmetrical doublets [9]. Further, the resolution 
of asymmetrical doublets was also studied [10, 11].  
   In the recent article [12], the 2nd-order derivatives of symmetrical 
peaks, which were modelled by a sum of Lorentzian and Gaussian 
functions, were obtained by the SG method. The resolution enhancement 
was empirically studied in the wide range of the SG filter parameters, 
sampling interval, and the relative combinations of the Lorentzian and 
Gaussian components in the peak profile. The practical recommendations 
[12] are not new. They were summarized many years ago [13].  
 Below, we discuss the resolution problem of the derivatives of the 
doublets consisting of the symmetrical and asymmetrical peaks, whose 
intensities and widths are varied. 
 

Resolution limit of doublets 
 

   Consider the following doublet:  `(>) = �(> + >�) +  ´�((> − >�)/Ó),                                            (1.4 − 1)  

where �(>) is the doublet peak; > = Ä� �; ⁄ Ä is the shape parameter; Ä = 2√��2 and 2 for the Gaussian and Lorentzian shapes, respectively; 
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 � = −�, −� + 1, … ,0, … , � − 1, �; � is the FWHM; >� =βδ/2;  ¯ =∆/� is the relative separation of the doublet components; ∆ = 2�� is the 

absolute separation; ±�� is the positions of the doublet peaks; ´ and Ó are 
the relative intensity and the relative width of the second doublet peak, 
respectively.  
   We studied pairs of symmetrical and asymmetrical peak shapes: 
Gaussian-PMG and Lorentzian–Dobosz (Chapter 1.2). The asymmetry 
coefficients were normalized to the constant value of the asymmetry 
parameter [14]. 
  

Resolution criteria 
Sparrow criterion 
   According to the Sparrow (SP) resolution limit (¯Êf) [2, 5], the doublet 
consisting of equal symmetrical peaks (Fig. 1.4-1, panel a) is resolved 
when the 1st- and the 2nd-order derivatives in the center of the doublet 
(Eq. (1.4-1)) are equal to zero (Fig. 1.4-1, panel b): `(�)(0) = `(	)(0) = 0.                                                                         (1.4 − 2)  
The mathematical expressions for the derivatives of the typical peak 
shapes can be found in Chapter 1.2. 
 

 
Figure 1.4-1. (a) Gaussian doublets, their components, and the 1st- and the 2nd- 
order derivatives (solid, dotted, dash-dotted and dashed curves respectively). ´ = Ó = 1. >� = 0.7071 (resolution limit). (b) Absolute value of FT of the 
symmetrical Gaussian (>� = 1) and Lorentzian (solid and dotted curves, 
respectively), and asymmetrical Gaussian (>� = 1, ´ = 2, Ó = 0.5) (dashed 
curves) doublets. È�¥(¥̃	) (Eq. (1.4-8)) is normalized to the unit maximum. 
 
 
Exercise 1.4-1 
   We ask the readers to estimate the SP resolution limit: 
1. For symmetrical doublets using the roots given in Table 1.2.2.  
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2. By generating the 1st- and the 2nd-order derivatives of the doublet with 
predefined peak shapes and parameters: ∆, ´, Ó, and i (using formulas of 
Chapter 1.2 or MATLAB programs). The conditions, represented by Eq. 
(1.4-4), may be visually satisfied by varying the doublet separation ∆ ( 
Fig. 1.4-1, b). 
 
   The SP criterion does not take the impact of the noise on the central 
hollow of the symmetrical doublet into account. Suppose that the doublet 
is distorted by the normal noise with zero mean and the standard 

deviation �. Then the minimum hollow that can be detected with the 

probability 90% is equal to the width of the 90% noise confidence 

interval [−1.65 , 1.65 ] ∗ � [6]. The relative hollow: ß�_� = 3.30�/��\^ ≥ 3.30 Ö⁄ ,                                                          (1.4 − 3)  

where Ö = ��\^/� is the signal-to-noise ratio. 
   If Ö → ∞, then ß�_� → 0, that is, the SP criterion is valid. Figure 1.4-2 
shows that the minimum hollow increases significantly if the noise 
increases. Smoothing of the noisy doublets reduces the noise, but the 
doublet peaks broaden. A trade-off between these factors, in principle, 
may decrease the resolution limit. The use of the even-order derivatives 
further reduces the minimally distinguishable doublet separation. 
 

 
Figure 1.4-2. Dependencies of the relative hollow ß�_� on the relative  
 separation (¯) for the Lorentzian (1) and Gaussian (2) doublet peaks 
and their 2nd-order derivatives (solid and dashed lines, respectively).  
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   The dependence of the SP resolution limit (¯) on the signal-to-noise 
ratio (Ö) of doublets and their 2nd-order derivatives (Table 1.4-1) shows 
that ¯(Ö) is the decreasing function. This result follows from Eq. (1.4-3). 
When Ö increases, then the minimum relative hollow decreases. 
Therefore, the peaks shift to each other, thus reducing ¯.  

 
Table 1.4-1. The SP resolution limit 

 âs 
Doublet The 2nd-order derivative 

Gauss Lorentz Gauss Lorentz » â » â » â » â 
10 1.2433 10.1 1.1966 11.5 0.7208 20.7 0.4083 23.3 
20 1.0895 20.9 0.9334 24.7 0.6902 42.3 0.3801 48.7 
50 0.9844 54.4 0.7714 65.9 0.6660 109.3 0.3579 127.9 

100 0.9388 111.9 0.7048 136.8 0.6548 223.0 0.3477 261.9 
200 0.9094 229.2 0.6617 281.2 0.6472 452.1 0.3407 532.3 
1000 0.8704 1185 0.6051 1466 0.6374 2357 0.3316 2750 
2000 0.8589 2400 0.5854 2979 0.6350 4691 0.3294 5553 Ö� is the signal-to-noise ratio of a single peak. 

 
   In the asymmetrical case, the SP criterion (Fig. 1.4-3) has a new form: `(�)(ã�) = `(	)(ã�) = 0.                                                                     (1.4 − 4)  
 
 

 
Figure 1.4-3. Resolution of the asymmetrical PMG doublet (´ = 1,  Ó = 0.5, i� = i	 = 0.1142, ¯A = 0.9089, ã� = −0.384  

(arrow)) (solid curve) and its 1st- and 2nd-order derivatives.  
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Information measure 
   The information measure to distinguish between spectra ¥� and ¥	 is [8] 

 (¥�, ¥	) = (1 2�⁄ ) � |(¥̃� − ¥̃	)|	 ä(-)⁄ -,O�
��                             (1.4 − 5) 

where the tilde character is the symbol of the Fourier transform (FT), ä is 

the spectral noise power (Appendix C), and - is the angular frequency. 
The probability that two spectra can be distinguished from one another is 

 å( ) = 0.5 + k²�  8⁄ ³,                                                                     (1.4 − 6) 

where k(�) = �(1/2� c '�LE/	�� � is the cumulative distribution 

function of the standard normal distribution. å( ) = 90, 95 and 99% for   ≈ 13.1, 21.8 and 43.4, respectively.  
   The FT of the Gaussian doublet with coinciding maxima:  ¥̃� = �#� +  �#	,                                                                                           (1.4 − 7)  

and with maxima separated by ¯: ¥̃	 = �#� '!$(−�$¯/2) + �#	 '!$(�$¯/2),                                         (1.4 − 8)  

where � = √−1 and $ = -�. 
   According to Eqs. (1.1-6) and (1.1-7),  

 �#� = Q�ç($),                                                                                        (1.4 − 9) �#	 = Q�´Óç(Ó$),                                                                                (1.4 − 10)  

where Q = √�/Ä� and �/Ä
 ; ç($) = exp (−$	/4Ä�	) and '!$ (−|$|/Ä
) for Gaussians and Lorentzians, respectively. For these peaks, ç($) is 

a real function, while for asymmetrical peaks, it is a complex function.  

   The information measure   was estimated for the Gaussian and 
Lorentzian peaks in the general case in Appendix D. Here, we only 

consider a particular case of symmetrical doublets, when ´ = Ó = 1, that 

is, �#� = �#	.  ¥̃� = 2�#�, ¥̃	 = 2�#� cos($¯/2).                                                        (1.4 − 11)  
From Eqs. (1.4-5), (1.4-9) and (1.4-11), we have  (¥�, ¥	) = (2 �⁄ ) � Y�#�Y	[1 − cos($¯/2)]	 ä(-)W -.O�

��        (1.4 − 12)  

The theoretical power of the white noise with the variance �	 is ä(-) =��	/-� (Appendix C). Physically, if |-| > -� , then the integrand of Eq. 

(1.4-5) approaches zero; therefore, the integrals in the boundaries ±∞ 

and ±-�  are equals.  
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   Finally, we have the following for the Gaussian and Lorentzian 

doublets, respectively (Appendix D):  � = N� $�Ö	[3 − 4'!$(¯	��2/2) + '!$(¯	2��2)],                  (1.4 − 13)   
 = N
$�Ö	[3 − 4/(1 + ¯	/4) + 1 (1 + ¯	)⁄ ],                         (1.4 − 14)  

where N� = 1/√2���2;  N
 = 0.5;  $� = �-�;  Ö = ��/� is the signal-to-

noise ratio; �� is the peak amplitude. 
    For the strongly overlapping doublets (¯ < 0.5):   = ì�$�Ö	¯G,                                                                                      (1.4 − 15)  
where ì�=0.3453 and 0.3750 for the Gaussian and Lorentzian doublets, 
respectively. 
    It follows from Eq. (1.4-15) that the signal-to-noise ratio, required to 
identify the internal doublet structure with the probability no less 95%, is  Ö ≥ ìí %¯	�$�&⁄ ,                                                                                (1.4 − 16)  

where ìí=7.95 and 7.62 for the Gaussian and Lorentzian doublets, 

respectively. 
   Consider the following example: ¯ = 0.5; � = 1; $� = -� = 1/i = 10, where i = 0.01s is the time 
constant of the spectrometer. Then, from Eq. (1.4-16) we have Ö�_� ≈ 3. 
 
Exercise 1.4-2 
   We offer the readers to estimate the information measure for the 
strongly overlapped doublets (similar to Eq. (1.4-15)) when ´ and Ó are 
not units. 
 
Petrash criterion 
   The Petrash resolution criterion (PT) [7] is based on Michelson studies 
in the interferometry [15]. 
   According to the PT, the resolution measure equals to the amplitude of 

the second lobe in the modulus of the FT of the doublet. If ´ = 1, Ó = 1, 
then this measure, obtained from Eq. (1.4-8), is  ¥̃î($�\^, ¯) = 2Q�ç($�\^)£¤¥(¯$�\^/2),                                (1.4 − 17)  

where $�\^  is the point located next to the global maximum at $ = 0 ( 

Fig. 1.4-1b). $�\^  lays between two zero points of £¤¥(¯$/2) in the 

interval [1, 3 ] ∗ � ¯⁄ . The maximum values were estimated numerically. 
   The PT criterion may show infinite resolution since it does not take a 
noise that influences the second lobe intensity into account. To study this 
issue, we performed a numerical experiment. The Gaussian doublet 
(´ = Ó = � = 1, ¯ = 0.5) was distorted by the normal noise with zero 
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mean and standard deviation �. The FTs of the noise-free and noisy 
doublets were obtained using the fast algorithm (FFT) (Fig. 1.4-4, panel a 
and b, respectively). Since the doublet was defined in the wide interval of 
abscissa [-100, 100], the discrete FT was very close to the continuous FT.  
   The signal-to-noise ratio in the maximum of the second lobe (�#
Z), 
normalized to the maximum of the central lobe (Fig. 1.4-4 a), is Öï¦ðU = �#
Z �ï¦ðU⁄ ~ �#
Z �√ℎ⁄ = Ö�#
Z √ℎ⁄ ,                              (1.4 − 18)                           

where �ï¦ðUis the standard deviation of the noise in the Fourier domain 

estimated in the high frequency FT region (Fig. 1.4-4 b), and ℎ is the 
sampling interval.  

   For a given ℎ, � was adjusted to Öï¦ðU ≈ 3, similar to the SP criterion. 
The corresponding values of the maximum signal-to-noise ratio of the 
doublet were approximately 12.5, 40, 125, and 400 for ℎ =  10�H,10�G, 10�F, and 10�	, respectively. 
   Since, as a rule [13], ℎ i⁄ < 10, the signal-to-noise ratio, estimated by 
the PT criterion using one point in the Fourier spectrum, is more 
significant than the corresponding value required by the information 
measure. This measure uses all the information contained in the doublet. 
   Generally, the PT resolution measure, obtained from the modulus of 

Eq. (1.4-8), is  |¥̃î($, ¯)| = Q�√ò,                                                                            (1.4 − 19)  

where ò = ç	($) + ´	Ó	ç	(Ó$) + 2´Óç($)ç(Ó$)£¤¥(¯$). 

 
Figure 1.4-4. FFT of the noise-free (a) and noisy (b) Gaussian 

 doublets (´ = Ó = � = 1, ¯ = 0.5). The arrow points to the lobe. 
 (b) ℎ =  10�H, � = 0.08, �#
Z = 0.0022, �ï¦ðU =0.0073.  

 
   Figure 1.4-1 (d) represents the plots of the normalized values |¥̃î($, ¯)|/|¥̃î(0, ¯)| versus p (Eq. (1.4-19)). The plots show that the first 
and the second lobes of the FT of the asymmetrical doublet, consisting of 
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the unequal width peak (Ó = 0.5) and amplitudes (´ = 2), strongly 
overlap. However, the separation of the doublet peaks (¯ =2) is larger 
than the Sparrow limit (¯Êf = 1.149). For asymmetrical doublets, it is 
impossible to measure the second lobe amplitude directly. Therefore, the 
PT resolution criterion appears to be of no practical use.  
 

  
Information measure (continued) 
   For the asymmetrical Gaussian, Lorentzian, and Voigt doublets, 
analytical calculations appeared to be very complicated; therefore,   was 
estimated numerically. 
   To compare the information resolution limits (¯_�Ì) of the different 

doublets under similar conditions (i.e., the same information measure), 

we estimated ¯_�Ì for specific doublets from the equation 

  %¯_�Ì, ´, Ó& =  (¯Êf, ´ = 1, Ó = 1).                                             (1.4 − 20) 

   The solution of Eq. (1.4-20) is only of theoretical interest. The 
numerical results are discussed below.  
   Consider two anti-symmetrical doublets composed of equal-width 
components (Ó = 1) with relative intensities of the second doublet peak: ´� = 2 and ´	 = 1 ´�⁄ = 0.5 (Fig. 1.4-5, panel a, plots I and II, 
respectively). The second doublet was obtained by dividing the first 
doublet's intensities by 2 (plot III) and inverting. According to Eq. (1.4-
14), the informational measures   (Eq. (1.4-5)) calculated for these 
doublets must be the same. This condition is satisfied for ´ > 1 and any Ó if �(¯, ´, Ó) (Eq. (1.4-14)) is divided by ´	. Then, for Ó = 1, doublets I 
and II coincide. However, in the general case (Ó ≠ 1); after division and 
inverting, two anti-symmetrical doublets having ´ < 1 and ´ > 1, do not 
coincide (Fig. 1.4-5, panel b, plot III) and, therefore, the   values are also 
different.  
   We compared the resolution limits of doublets belonging to the group, 
which consisted of the same peak shapes but which are different in the 
peak parameters, using the Sparrow and the information criteria 
separately. 

 
Results and Discussion 

 
Doublets consisting of equal-width components (n = �) 
   Tables 1.4-1and 1.4-2 show that 
1. Peaks with relative peak intensities ´ and 1/´ have the same 
Sparrow resolution limit ( ¯Êf).  
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2. In all cases, ¯Êf has minimum value (the resolution is maximum) if ´ = 1 increases. The information resolution limit  ¯_�Ì of the Gaussian 
doublets (i = 0) slightly decreases while ´ increases (Fig. 1.4-6). In the 
case of the Lorentzian peaks (i = 0), the dependence ¯_�Ì(´) has a 
convex form. For more detailed information, we refer readers to the 
book [11]. 
3.  Asymmetry of the Gaussians and Dobosz peaks may improve or 
worsen the resolution. 

 
 

Table 1.4-1. The Sparrow resolution limit  
for PMG and Dobosz doublets 

¼ n 
Doublets 

PMG Dobosz � 
  0 0.0519 0.1142 0 0.2 0.5 

0.5 
0.5 1.0610  0.8904 0.8539 0.7932  0.8892 1.0153 
1.0 1.8580 1.8769 1.8434 1.8613 1.8137 1.7287 
2.0 2.2984 2.4423 2.5895 2.8200 2.7457 2.6410 

1.0 
0.5 1.0432  0.9933 0.9029 1.0998  1.1609 1.2517 
1.0 1.4142 1.5263 1.5300 1.1540 1.3404 1.4864 
2.0 2.0865  2.1660 2.2146 2.1996 2.0760 1.8854 

2.0 
0.5 1.1492  1.0745 0.9871 1.4100 1.4487 1.5092 
1.0 1.8580 1.8084 1.7238 1.8613 1.9038 1.9610 
2.0 2.1210 2.5756 2.6959 1.7290  2.1355 2.3194 

 

 
Figure 1.4-6 [10]. The information resolution limit for 

 the Gaussian (triangles) and Lorentzian (diamonds) peaks. 
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Doublets consisting of unequal-width components 
   The minima of the dependencies of the information resolution limit on ´ %¯_�Ì�_�(´)& are located at ´ = 1 (Fig. 1.4-6). In contrast to this, the 

dependencies  ¯Êf(´) reach their minima, ¯Êf�_� (corresponding to the 
best resolution), when ´ ≈ Ó (Ó = 1 ÷ 0.5 and i = 0) (Fig. 1.4-6). 
However, if Ó = 0.3, then, for the Gaussian doublet, the minimum value ¯Êf�_� = 0.3277 is located in the neighbourhood of ´ = 0.19 (Fig. 1.4-8, 
panel b). We found that the doublet shoulder shifts from the left to the 
middle and then to the right position, when the function ¯Êf(´) passes 
the point of its minimum (¯Êf�_�) (Fig. 1.4-9). Plot a of this figure shows 
that the transition to the left wing causes a steep increase of the 
dependence ¯Êf(´) when Ó < 1. This effect is very noticeable if r = 0.3 
(Fig. 1.4-9, plots c and d).  
   Consider two pairs of the overlapping peaks: [weak, narrow; strong, 
broad] (Fig. 1.4-8, plots a and b) and [weak, broad; strong, narrow] (Fig. 
1.4-9, plot d). The Sparrow resolution limit of the first pair is less than 
that of the second. However, this is not always the case (Fig. 1.4-9, plot 
c). The data presented in Figure 1.4-3 show that the information criterion 
is ¯_�Ì(´) < ¯_�Ì(1/´) if ´ > 1 and Ó ≠ 1. We explain the observed 
result as follows. The weak, narrow peak is immersed in a broad contour 
(Fig. 1.4-8, plot b), in contrast to the weak, broad peak, whose left wing 
becomes resolved (Fig. 1.4-9, plot d). Since the information measure 
takes this wing into account, the resolution is better in the last case.  
   The dependencies ¯Êf�_�(Ó) and ¯_�Ì�_�(Ó) are decreasing functions. The 
central part of the dependence ¯Ô_�(´) has a V-form. The wings of the 
dependence  ¯Êf(´) are increasing functions, while the wings of the 
dependence ¯_�Ì(´) reach maximum values and then slowly decrease. 
The evenness of the function ¯_�Ì(´), relative to the point ´ = 1, is 
impaired when Ó < 1. The Voigt profiles (Fig. 1.4-10) represent complex 
combinations of the dependencies ¯_�Ì(´) for the Gaussian and 
Lorentzian peaks. As a rule, a small asymmetry of the Gaussians 
increases the ¯Êfvalues, but small anomalies are observed if ´ ≤ 0.3. For 
the Lorentzians, dependence ¯Êf(i) is a decreasing function in the 
range of ´ = 5 − 0.7. For ´ ≤ 0.7, the shoulder is shifted from the left to 
the middle and then to the right position (Fig. 1.4-11). Therefore, the 
behaviour of the function ¯Êf(i) becomes irregular. For the Gaussians, 
the dependence ¯_�Ì(i) is an increasing function, while for the 
Lorentzian peaks, it usually decreases. 
   In conclusion, we note that the Sparrow criterion is useful to visually 
evaluate the resolution limits of overlapping peaks. The main drawbacks 
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of this criterion are the non-smooth character of the dependence  ¯Êf(´) for unequal-widths doublet components, and a possible non-
unique solution (Fig. 1.4-12). The plots show that the SP criterion is valid 
for the left and the right shoulders.  
 

 
Figure 1.4-7 [10]. The informational resolution limit for the asymmetrical 

Gaussian (i = 0 (��), 0.0519 (��), and 0.1142 (£�)) and Lorentzian (i = 0 (�	), 0.2 (�	), and 0.5 (£	)) doublets. Ó = 1, 0.9, … , 0.3 (from top to bottom). 
 

 
Table 1.4-2 [10]. The information resolution limit 

 for symmetrical peaks 

R 
Gaussians Lorentzians 

r=0.3 r=0.5 r=0.3 r=0.5 

0.2 0.9036 0.9148 0.5187 0.5403 

5 0.7228 0.7448 0.3121 0.3961 

0.5 0.8209 0.8443 0.4798 0.5357 

2 0.6879 0.7404 0.3322 0.4313 
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Figure 1.4-8 [10]. The SP resolution limits for the Gaussian (⁕) and  
 Lorentzian (●) doublets: (a) Ó = 1, i = {0, 0.5, 0.3}; (b) Ó = 0.5, i = {0, 519,1142} x10�G ;(c) Ó = 0.5, i = {0, 0.2, 0.5}. Each  

 i-triple is represented by solid, dotted and dash-dotted curves. 
 

 
 

Figure 1.4-9 [10]. Gaussian doublets. Ó = 0.3. (a) ´ = 0.3, Ê̄f = 0.3632; 
 (b) ´ = 0.19, Ê̄f = 0.3277; (c) ´ = 0.18, Ê̄f = 0.8733; (d) ´ = 5, Ê̄f =0.4975. 
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Figure 1.4-10 [10]. Dependencies of the informational resolution limit 

 for the Voigt doublets. �� = �
 = 0.5. For the curves from top to bottom: Ó = 1, 0.9, . . . , 0.3. 
 

 
Figure 1.4-11 [10]. Anomalous behaviour of the SP resolution 

limit for the asymmetrical Lorentzian doublets. 
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Figure 1.4-12. Gauss doublets, their components and the 1st- and the 2nd-order 

derivatives (solid, dotted, dash-dotted and dashed curves, respectively).  ´ = Ó = 2. The SP criterion is valid for ∆A= 2.121 (a) and 1.810 (b). 

 
Resolution limit of the even-order derivatives of doublets 

 
   The SP resolution limits of the 2nd- and 4th-order derivatives of the 

symmetrical doublets are estimated similarly to Eq. (1.4-2)):  `(F)(0) = `(G)(0) = 0,                                                                     (1.4 − 21)  `(H)(0) = `(I)(0) = 0.                                                                      (1.4 − 22)  

The minimum relative separations in the 2nd- and 4th-order derivatives 

(Table 1.2-2) for the Gaussian and Lorentzian peaks are, respectively: ¯�_� = ∆/� = 0.6302, 0.5238, and 0.3250, 0.2282.                (1.4 − 23)  
 
Exercise 1.4-3 
   We ask the readers to do following: 
1. To estimate the SP resolution limit (Eq. (1.4-23)) using the roots given 
in Table 1.2.2. 
2. To show that the 2nd- and 4th-order derivatives improve the maximum 
resolution by factors 1.3475, 1.7766 and 16212, 2.5302 for the Gaussian 
and Lorentzian peaks, respectively. 
   Table 1.4-4 shows the resolution limit of the 2nd-order derivatives of the 
doublets composed of the asymmetric peaks with equal widths and 
intensities (´ = 1, Ó = 1). The limit depends on the asymmetry 
coefficient i, but differently for the PMG and Dobosz peaks. Generally, 
resolution studies using the SP criterion in the derivatives of the 
asymmetric doublets are difficult due to the redistribution of intensities in 
favor of narrow peaks. It follows from the inverse dependence of the 
intensity of the derivative peak on its width in a power equal to the 
derivative order. 
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Narrowing the even-order derivatives' central peak is accompanied by the 
appearance of additional petals (Chapter 1.2). The petals of adjacent 
peaks may overlap, thereby producing a false structure and/or 
demonstrating "super-resolution". 
 

Table 1.4-4. Resolution limit of the 2nd-order of the doublets 
 (¼ = �, n = �) composed of the asymmetric peaks 

Peak � »� õs 

PMG 
0 1.049296 0 

0.0519 1.10691 -0.4415 

0.1142 1.04358 -0.6204 

Dobosz 
0 0.64984 0 

0.2 0.71268 -0.0860 

0.5 0.75657 -0.0546 

 
   In the simplest cases, the SP resolution limit of the asymmetrical 
doublets indicates the traces of the resolved weak maxima in the 2nd-
order derivatives. These maxima, which are strongly shifted from their 
accurate locations, may be false peaks (Fig. 1.4-13) (see Chapter 3.2). 
 

 
Figure 1.4-13. The SP resolution limits for the negative 2nd-order derivative of 
the PMG asymmetric doublets (solid line). RL and RR stand for the left and right-
side cases, respectively. The 2nd-order derivative doublet components, the 3rd- and 
the 4th-order derivatives are designated by dotted, dash-dotted, and dashed lines, 
respectively. Asterisks point out the traces of weak maxima. Curve intensities are 
adjusted to improve visibility. ´, Ó, ∆A, i�, i	 = {[2, 1, 0.9636, 0.1142, 0.1142], 
[2, 0.5, 0.2887, 0.1142, 0], and {[1, 2, 0.8890, 0.1142, 0.1142]} for panel a-c, 
respectively. 
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   The modified SP resolution criterion, which is based on the minimum 
relative hollow ß�_� = (��\^ − ��_�)/��\^ in the doublet derivative 
center, takes the noise into account (Eq. (1.4-3)).  

 
  
 
 
 
 
   The dependencies of ß�_� on the relative separation (¯) for the 2nd- 
order derivatives of the symmetrical Lorentzian and Gaussian doublets 
(Fig. 1.4-2) and Table 1.4-1 show that if ¯ → ¯�_�, then the signal-to-
noise ratio becomes more than 1000. 
   The information measure   (Eq. (1.4-5)) is invariant to the 
differentiation since the nominator and denominator of the integrand are 
multiplied by the same Fourier operator.  
   The PT criterion demonstrates that the 2nd-order differentiation 
improves resolution (Fig. 1.4-15). Multiplication of the FT spectra by the 
differentiation operator $	 significantly intensifies the lobe. However, the 
noise also dramatically increases in the derivatives. Therefore, as for the 
SP criterion (Fig. 1.4-2), the resolution improvement, due to the 
differentiation, may only be achieved at the cost of reducing the signal-
to-noise ratio in derivatives.  
 
 
 
 
 
 
 
 
 

Figure 1.4-14. The hollow in the center  
of the negative 2nd-order derivative 
of a doublet.  

Figure 1.4-15. Normalized FT of the 
Gaussian doublet (¯ = 0.8, � = 1) and 
 its 2nd-order derivative (solid and  
dashed curves, respectively). 
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Conclusion 
 

   The Sparrow criterion is useful for the resolution limit estimation of the 
even-order derivatives of symmetrical doublets. However, in 
asymmetrical cases, there are some technical problems in terms of the 
accurate resolution limit identification.  
   The information criterion is useful to evaluate the probability of the 
distinctiveness between the Fourier transforms of two overlapping 
spectra. The advantage of this criterion is the smoothness of the 
dependence ¯_�Ì(´). Here, similar to the use of the Sparrow criterion, 
increasing the signal-to-noise ratio can improve the distinctiveness. We 
see future perspectives in analytical applications of the information 
criterion for determining the reliability of the spectral curve 
deconvolution.  
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CHAPTER FIVE 

INFORMATION CONTENT OF THE DERIVATIVE 

SPECTRUM 

 
 
 
   Using information theory (IT) in analytical chemistry and, notably, in 
analytical spectrometry allowed researchers to reveal new peculiarities of 
the objects under study [1]. A sample of the object may be characterized 
by some unknown quantity of intrinsic analytical information (�_�LU) [2] 
(Fig. 1.5-1). The analytical instrument extracts from �_�LU only a small 
part �_�öLU contained in the analytical signal (AS). Finally, the information 
content of output data �?\L\ ≤ �_�öLU due to data processing. 
  

 
Figure 1.5-1. Information flow in analytical system (adapted from [2]). 

 
   Two right rectangles (Fig. 1.5-1) represent the information flow of the 
derivative spectrometry methods. Unfortunately, in some publications, 
the success of the derivative spectrometry methods is associated, in a 
veiled form, with gains achieved by the differentiation. However, 
according to the general principles of information theory, any linear 
transformation cannot increase the data information content [3]. The 
theoretical study [4] discussed this problem in spectroscopy. 
   We will use the Savitzky-Golay (SG) digital differentiation filters to 
demonstrate the information changes occurring in derivatives. This less 
formal method does not require specific knowledge in spectroscopy 
instrumentation [4].  
   According to information theory, the maximum information content of 
a given spectrum depends on the maximum number of the possible 
combinations of the independent data points, which can be measured [5]. 
This number is  
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Çø¦�ù = %ÇA&ú¶,                                                                                    (1.5 − 1)  

where ÇA and Ç^ are the numbers of sampling intervals along > and ! 

axis of the spectra, respectively. ÇA is an increasing function of the 

signal-to-noise ratio. Ç^ increases if the spectral resolution becomes 
higher.  

   Since the information is additive [3], the logarithm of Çø¦�ù must be 
used. The base of the logarithm defines the information units. These units 
are not essential since we will study the ratio of the logarithms below.  
   The maximum information content of a spectrum [5] is ��\^(�) = Ç∆(�)��%1 + Ö(�)&,                                                                     (1.5 − 2)  

where Ç∆(�) = (�	 − ��)/∆�(�) is the number of distinguishable spectral 

intervals in the range �	 − ��; Ö(�) is the signal-to-noise ratio.  

 Suppose that ∆�(�) is the resolution limit of the symmetrical doublet 

composed of the narrowest peaks %��_�(�) &, measured by the spectral 

instrument. Therefore, 
 ∆�(�) = ��_�(�) ¯í(×)(�)  ,                                                                                (1.5 − 3) 

where ¯í(×)(�)  = %∆�(�)/��_�(�) &í(×) is the function of the relative resolution 

limit of the signal-to-noise ratio.  
   The maximum information content of the 2nd-order derivative of a 
spectrum is ��\^(	) = Ç∆(	)��%1 + Ö(	)&,                                                                     (1.5 − 4)  

where Ç∆(	) = (�	 − ��)/∆�(	) ; ∆�(	) is the resolution limit of the 2nd- 

order derivatives of the symmetrical doublet, whose peaks have a width 

of ��_�(	) ;  ∆�(	) = ��_�(	) ¯í(E)(	)  ,                                                                                 (1.5 − 5)  

where ¯í(E)(	)  = %∆�(	)/��_�(	) &í(E). 
   Functions ¯í(×)(�)  and ¯í(E)(	)  are estimated using the dependences of the 

minimum relative hollow (ß�_� = 3.30 Ö⁄ ) on the relative separation 
(¯ = 2∆�/�) for the doublets and their derivatives (Chapter 1.4).  
 Consider the ratio of the information contents of the spectrum and its 
2nd-order derivative, using Eqs. (1.5-2)-(1.5-5): 
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The factors are ℛK < 1, ℛü > 1. However, ℛí  may be larger or smaller 

than 1.These factors depend on the accuracy of the numerical 
differentiation. Therefore, we estimated Eq. (1.5-5) numerically using the 
SG differentiation.  
   Suppose that the narrowest peak (�(!)) measured by the instrument is 

the Gaussian with a unit width and intensity (��_�(�) = 1, ��\^ = 1). The 
absolute value of the width is not principal since the readers can imagine 
that the range of the peak abscissa is large enough to decrease the relative 
width to the small value that you need. We calculated the full width 

(��_�(	) ) at the half amplitude (��\^/2) between the central part and the 
satellite of the 2nd-order SG derivative of the peak. The polynomial power 
was 2. Table 1.5-1 represents the widths (�) of the SG digital filters. 
Since the central peak is very steep, a small sampling interval guarantees 
a high calculation accuracy for the width. 
   The standard deviation of the noise in the derivatives is �(	) = �(�) P ý�	����� ,                                                                      (1.5 − 7) 

where ý� is the normalized coefficient of the SG filter. 

Table 1.4-1 gives the parameters Ö(�) and ¯í(×)(�) . 

   The 2nd-order SG derivative of the Gaussian doublet �(� + ∆�) +�(� − ∆�) was obtained using the practical sampling interval (ℎ =10�	). The peak separation (2∆�) was varied to satisfy the resolution 
criterion (Eq. (1.4-3)). The hollow (<ø) in the doublet center is <ø ≅ 3.3�(	).                                                                                           (1.5 − 8)  
The signal-to-noise ratio is Ö(	) = ��\^ �(	)⁄ .                                                                                   (1.5 − 9)  
   Figure 1.5-2 demonstrates some of the derivatives’ plots. The central 
hollow (<ø) and the maximum amplitude (��\^) decrease while the filter 
broadens (� increases). The standard deviation �(	) decreases because of 
smoothing. The combine effect of these changes improves the signal-to-
noise ratio Ö(	) (Eq. (1.5-9)) (Table 1.5-1).  
   The table’s data shows that 
1. The following factors increase the ratio of the information (ℛ_�Ì =��\^(�) ��\^(	)W ), contained in the spectrum and its derivative: better accuracy 
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of differentiation (less the filter width or the sampling interval for � = £¤�¥�), and worse derivatives’ signal-to-noise ratio (lesser 
smoothing). 

   Since for each column of the table ��\^(�) = £¤�¥�, ��\^(	)
 decreases. That 

is, the loss of information is the price that need to be paid to increase the 
resolution in the derivatives.  
2. The relative loss of the information due to the differentiation decreases 
if the signal-to-noise ratio in the spectrum (Ö�) increases; we suppose that � and ℎ are constants. The information loss is especially noticeable when � = 10.  
 

 
Figure 1-5.2. Negative 2nd-order derivative of the Gaussian doublets. The 

parameters correspond to the column Ö� = 50, ℎ = 0.02 of Table 1.5-1. � = 10, 
20, and 30 (solid, dotted, and dashed lines, respectively). 

 
 

   In conclusion, in this chapter, we have addressed the question of the 
information content of spectra and its 2nd-order derivatives from a 
mathematical point of view. This question should not be confused with 
the issue of the amount of independent information present in spectra (or 
their derivatives) for the prediction of the chemical properties of the 
compounds under study (e.g., [6]).  
   The information content of the analytical signal should not also be 
confused with the amount of information extracted from the signal in 
qualitative and quantitative analysis.  
   According to Eckschlager and Danzer [1], the quantity of the 
information, obtained by the analytical procedure, equals � = ��h(£	 − £�)/%�ø√2�'&j − 0.5(¯ø �ø⁄ )	,                               (1.5 − 10)  
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where £	 − £� is a priory range of the analyte concentrations; and ¯ø and �ø are their systematic and random errors. 
   In Chapters 3.2 and 4.4, we show that differentiation may increase this 
information. From an informational point of view, signal processing is 
similar to gold mining. The amount of ore minerals decreases due to the 
processing, but the useful product yield increases. 
 

 
Table 1.5-1. Parameters of Eq. (1.5-6). Case study: the 2nd-order 

 SG derivatives of the Gaussian doublets 

Parameters 

m 

âs 50 100 200 â(s) 54.4 111.9 229.2 »â(s)(s)  0.9844 0.9388 0.9094 

10 

þ®lÿ 8.8620 3.9299 7.0332 3.4887 5.5734 3.1793 â(�) 3.3 8.2 4.6 16.2 8.5 33.1 »(�) 1.2023 0.8110 0.9078 0.7486 0.7957 0.7171 

20 

þ®lÿ 3.3860 2.1689 3.0943 2.1807 2.8858 2.1854 â(�) 10.9 38.5 21.9 79.0 44.8 161.6 »(�) 0.7794 0.7419 0.7299 0.7201 0.6999 0.7058 

30 

þ®lÿ 2.3376 1.8842 2.3046 1.9703 2.2762 2.0329 â(�) 28.1 85.2 57.6 174.0 118.0 354.2 »(�) 0.7326 0.7812 0.7066 0.7669 0.6898 0.7573 

The SG filter power is 2. The sampling interval ℎ = 0.01 
and 0.02 in the left and the right columns, respectively. 
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DERIVATIVE SPECTROSCOPY TECHNIQUES  
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INTRODUCTION 

 
 
 
   The design of differentiators for analytical instruments as, for any 
technical devices, is not a simple task since the signal-to-noise ratio in 
derivatives significantly worsens because of the increase of the higher 
Fourier frequencies (Appendix A). Also, sometimes the measurement 
process of the output signals is slow. Therefore, one problem is the 
differentiation of the slowly varying signals which derivatives over time 
have low intensity. In this case, cumbersome electronic amplifiers or 
digital devices are required. 
   There are two principal groups of mathematical differentiation methods 
used in spectroscopy that differ in the kind of the signal used in the 
processing technique. In the first group, analog or discrete devices 
differentiate the output signal of the electronic unit of the spectrometer. 
In the second group, the optical module carries out the differentiation. 
This so-called modulation spectroscopy is a useful tool in physics. 
Analysts use numerical differentiation performed by computerized 
devices.  
   The Fourier Transform (FT) (Appendix A) is a standard method for 
studying differentiation procedures.  
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CHAPTER ONE 

ANALOG DIFFERENTIATION  

 
 
 
   Analog electronic systems transform a continuously varying input 
signal, which is represented by a voltage (or current) in accurate 
proportion, to the output signal, which is also continuous in time. Their 
working principle is modelling the dependence between the signals by 
some function required for signal processing, e.g., a derivative over time. 
The main electronic elements of analog devices are capacitors and 
resistors. 
   At an early stage of development of the derivative spectrometry 
(1960s), electro-mechanical analog differentiators were developed [1]. 
These instruments only generated 1st-order derivatives. Their technical 
specifications were low.  
   Analog differentiators are no longer used for analytical applications. 
Therefore, we will only provide a brief description of these devices, 
including a historical excursion. 
   Figure 2.1-1 shows the simplest passive differentiation RC circuits. 
Readers familiar with the basic electricity course will quickly understand 
the following simple formulas. Others may omit mathematical 
expressions and only pay attention to the final result. 
   Consider the 1st-order differentiator (Fig. 2.1-1). The current is the 

derivative of the electric charge (�) on the capacitor Q over time: � = � �⁄ = Q �� �.                                                                      (2.1 − 1)⁄   
According to Kirchhoff low the output voltage �¦ðL = �_� −�� .                                                                                    (2.1 − 2) 
According to Ohm's law, using Eq. (2.1-1), we obtain �¦ðL = ´� = i �� �⁄ ,                                                                        (2.1 − 3)  

where i = ´Q is the time constant of the circuit. 

Substituting ��  from Eq. (2.1-2) into Eq. (2.1-3), we have �¦ðL = i �_� �⁄ − i �¦ðL �⁄ .                                                       (2.1 − 4)  

If i is small enough so that i �¦ðL �⁄ ≪ �¦ðL  , then 

 EBSCOhost - printed on 2/12/2023 11:12 PM via . All use subject to https://www.ebsco.com/terms-of-use



62                                              Part II Chapter One 
 

 
 

�¦ðL ≈ i �_� �⁄ .                                                                                 (2.1 − 5)  

So, the output signal is proportional to the derivative of the input signal. 
   The solution for the Eq. (2.1-4) readily demonstrates the inertial 
distortions of 1st-order RC derivatives. For example, for the Gaussian 

input �_� = '!$ [−(� − ��)	] (Appendix E1):    �¦ðL = −2'!$ (�/i) ∫ (� − ��)'!$ (−(� − ��)	 + �/i)�L� .          (2.1 − 6)  

Since this integral has no solution in the elemental functions, we used 
numerical integration. 
   Figure 2.1-2 shows that with an increase of the time constant, the 1st-
order derivative is shifted towards more time, and its shape is distorted.  
 A combination of two RC circuits, which separated by a buffer 
(amplifier) (Fig. 2.1-1b), performs the 2nd-order differentiation. In the 
smoothing (integration) RC circuit, the resistor, and the capacitor swap 
their places (Fig. 2.1-1c).  
 

 
Figure 2.1-1. RC circuits. The 1st-(a, d) and 2nd -order (b) differentiators, and 
integrator (c). The buffer (b) and  operational (d) amplifiers are designated by   

triangles. Operators set the parameters of the capacitors and resistors. 
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   It is common to study electronical devices in the Fourier domain using 
the Fourier Transform (FT). So, the module of the frequency 
characteristic of the RC differentiator (Fig. 2.1-1a) is as follows: Yä(�)(-)Y = ! √1 + !	⁄ ,                                                                      (2.1 − 7)   
where ! = i-, - is the angular (Fourier) frequency. 
For the 2nd-order RC differentiator (Fig. 2.1-1b):  Yä(	)(-)Y = �� !	 (1 + !	)⁄ ,                                                             (2.1 − 8)      
where �� is the amplifier gain. 
If ! ≪ 1, then the RC differentiators produce the quasi-ideal �LM-order 
derivatives: Yä(�)(-)Y ≅ !�.                                                                                      (2.1 − 9)                           
(For simplicity, �� = 1). 

 

 
Figure 2.1-2. Inertial distortions of the 1st-order ´Q derivatives of the 

 Gaussian: '!$ [(� − 2)	] (i = 0, 0.05, 0.1, 0.2, and 0.5 from the upper to  
the bottom curves, respectively). The curves are multiplied by 1/i, i ≠ 0. 

 

   The signal-to-noise ratio of the �LM-order RC derivative of a single 

peak, the full width of which at the half maximum (FWHM) is �, is [1] Ö(�)~√2� + 1(i/�)Ö(�),                                                                   (2.1 − 10)  

where Ö(�) is the signal-to-noise ratio of the peak. 

   To decrease the inertial distortions, i �⁄ ≪ 1. Therefore, for the inertial 
distortions and noise in derivatives to be small, you need to increase Ö(�). 
   We studied the inertial distortions of the 2nd-order RC differentiator 
combined with the RC integrator circuit (2.1-1c) of the Gaussian peak 

[1]. In this case (Appendix E2), neglecting !	 ≪ 1 and using the 
exponential form of a complex number [2], we have 
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where � = √−1; !ö = iö-; iö is the time constant of the smoothing 

circuit; !ø¦�ù = (2i + iö)-;  �! = '!$[−� ∗ ���� (!ø¦�ù)]. 
   According to Eq. (1.1-9), factor �! means shifts of the derivatives 

towards more time. If 2i + iö is small (!ø¦�ù ≪ 1), then the factor 

approximately equals '!$[−�(2i + iö)-]. That is, the shift is 2i + iö. 

Also, this complex term causes the asymmetry of the derivatives [3].  
   We estimated [1] the integral, which describes the 2nd-order derivative 
of the Gaussian peak (Appendix A1) to be  ��(	)(�) = (1 2�⁄ ) c ä(	)(�-)�#���� (-) exp(�-�) -,                (2.1 − 12)  

where �#� is the FT of the Gaussian peak (Eq. ( 1.1-7)). It was shown that, 

when the time constant 2i + iö is increased, the central peak broadens, 
and the satellites are deformed: the first grows in the direction of the 

time-scanning and becomes narrower, while the second decreases and 

expands. 
   If the time constant 2i + iö increases, then the resolution of the RC 
derivative peaks decreases [1]. The conditions, i/iö ≈ 0.1 and (2i +iö)/� ≈ 0.1, are appropriate for suitable signal-to-noise ratio and 
resolution. 
   If ! ≪ 1 and !ö ≪ 1, then from Eq. (2.1-11) we have ä(	)(�-)~!	 − !	!V	 +⋯ ,                                                               (2.1 − 13)  

where !V = �2i	 + iö	 -.  
   The term !	!V	, which is proportional to -G, means a small contribution 

of the 4th-order derivative into the output signal. Subsequent members 

correspond to the higher order derivatives. However, if the input signal �_�  is proportional to the analyte concentration, then this proportion is 
valid for all terms of Eq. (2.1-13) and, therefore, for the differentiator 

output: that is, the RC derivatives are suitable for quantitative analysis. 
   Also, one must take into account that (�)�¦ðL ��⁄ = ¡�(�)�¦ðL ��⁄ ,                                                 (2.1 − 14)  

where ¡ = � �⁄  is the scanning speed of the instrument. Therefore, to 

obtain intensive output, high scanning speed is required. But the time
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constants must be reduced to keep the inertial distortions at the same 

level. In conclusion, the question is raised: "Is high accuracy of 
differentiation needed for quantitation estimation in analytical 
spectroscopy?" For example, the active circuit (Fig. 2.1-1d) significantly 
improves the accuracy at the cost of deterioration of the signal-to-noise 

ratio. Our experience showed that the answer is "No," but differentiation 
devices must have good reproducibility of the output signal. Also, the 
time scanning of the spectral instrument must be stable. 
   RC differentiators were widely used in the 1960 - 1970s for analytical 
researches. We resolved strongly overlapping IR bands of the complexes 
of salts with acetonitrile molecules in 1965 using a home-made 
attachment to the single-beam IR spectrometer [1]. 
   Later, a quantitative analysis of industrial products was carried out by 
this device (Chapter 4.2): determination of amount of epoxy resin in 
chloroparaffins and analysis of the ternary mixtures of dichlorophenols, 
control on the content of the 2.4-dichlorophenol in herbicides, of the 
phenol and chlorinated phenoxyacetic acids in wastewater.  
 Now analytical instruments perform numerical differentiation; their 
essential advantage over RC devices is the lack of inertial distortions.  
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CHAPTER TWO 

DIGITAL DIFFERENTIATION:  
FINITE DIFFERENCES  

 
 
 
   Digital processing of analytical signals, including differentiation, is a 
standard method used in qualitative and quantitative analyses. The 
discrete derivatives of spectra are usually obtained by the finite 
difference method, polynomial Savitzky-Golay filters, the spline method, 
and Fourier Transform (FT). To understand the intricacies of these 
techniques, readers need a sound mathematical background. The author 
has tried to provide a simple explanation. The appendices will also 
explain some additional minor details. 
   According to the definition of the derivative [1], �(�)(�_) = limK→�(∆� ∆�⁄ ) =  limM→�{[�(�_ + ℎ/2) − �(�_ − ℎ/2)]/ℎ},                                      (2.2 − 1)  

where ℎ = ∆� is the sampling interval. 

   So, if ℎ is small, then the increment ∆� is approximately proportional 
to the 1st-order derivative �(�)(�_). Similarly, the 2nd-, 3rd-, and 4th-order 
derivatives, which are obtained by the central differences method, are [2] 
 � Equations (2.2-2) - (2.2-4): �(�)(�_)ℎ� ≅ ∆�� 

2   �(�_ − ℎ) − 2�(�_) + �(�_ + ℎ) 

3 �(�_ − 1.5ℎ) + 3�(�_ − 0.5ℎ) − 3�(�_ + 0.5ℎ) + �(�_ + 1.5ℎ) 

4 �(�_ − 2ℎ) − 4�(�_ − ℎ) + 6�(�_) − 4�(�_ + ℎ) + �(�_ + 2ℎ)  
  
   Figure 2.2-1 illustrates the calculation for the coefficients of the central 
differences. The terms of the 1st-order operator of the central difference 
 [-1, 0, 1] are multiplied by -1, 0, and 1. The second and the third 

products are shifted to the right side by ℎ/2 and ℎ, respectively. The sum 
is the coefficients of the 2nd-order operator.  
 
Exercise 2.2-1 
   Readers are invited to check the calculation of the coefficients of the 
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3rd-order operator’s coefficients (Eq. (2.2-4)).  
 

 
Figure 2.2-1. Calculation of the central 

 differences’ coefficients. 
 

   General equation of the �LM-order operator of the central differences 
[2]: ∆��R = C (−1)� ²��³ �RO����

��� ,                                                      (2.2 − 5)  

where � = 2,3, … , S = Ú±0.5, ±1.5, …  �¤Ó � ¤0, ±1, ±2, …  �¤Ó � '¡'� , 	�$
 = �!$! (� − $)! . 
   Using Eq. (1.2-15), we obtain the maximum signal-to-noise ratio of the �LM-order derivative of a single peak disturbed by white noise with a 

standard deviation �: Ö�\^(�) = �V(�) �(�)⁄ = X(�)��<� %���?& = X(�)Ö�<� ��?WW ,    (2.2 − 6)  

where �(�) = ���?/ℎ�; �? = P ý�	�O���� , ý\ is the coefficient of the �LM-order operator (Eq. (2.2-5)); < = ℎ/� is the relative sampling 
interval; � is the full peak width at half maximum (FWHM); and Ö� = ��/� is the signal-to-noise ratio of the peak. �? = 2, 6, 20, and 70 
for � = 1, 2, 3, and 4, respectively.  

   In reality, the signal-to-noise ratio is less than Ö�\^(�)
 due to the 

disturbance of the derivatives. 
   The frequency characteristic of the �LM-order operator (Eq. (2.2-5)) 

equals the �LM-power of the characteristic of the 1st-order operator (digital 
filter) (Fig. 2.2-1):
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ä(�)(�!) = Ú1ℎ �− '!$ 	− �!2 
+ '!$ 	�!2 
�Û� = �2�ℎ ¥�� ²!2³�� , (2.2 − 7) 

where = √−1; ! = -ℎ; - is the angular (Fourier) frequency. 
 Compare the frequency characteristics of the 2nd-order RC differentiator 

(Eq. (2.1-8)) and the operator, given by Eq. (2.2-7), for ! << 1: ä�(	)(-)~-	(1 − i	-	) and ä¦�U(	) (-)~-	(1 − ℎ	-	 12⁄ ).        (2.2 − 8)     

The second terms in the parentheses define the systematic errors of the 

differentiators. If ℎ ≈ i¡, where ¡ is the scanning speed, then the 
numerical differentiation is more accurate than analog.  
   According to Eq. (2.2-6), the only way to improve the signal-to-noise 
ratio of derivative (for Ö� = £¤�¥�), is to increase interval <. However, 
the distortions will also increase and the resolution will be poorer.  
 Similar to the RC method, the combination of differentiation with 
smoothing may improve the signal-to-noise ratio. The most 
straightforward smoothing procedures are the moving average and 
averaging of data intervals. 
 In the first case, the digital filter ��_ = (1/Ç) P �_O�,                                                                     (2.2 − 9)�����   

where � = � + 1, � + 2, … ,� − �; � is the number of data points; Ç = 2� + 1. 
Using the formula of the sum of cosines [4] and simple trigonometry, we 

obtain the frequency characteristic of the filter (Eq. (2.2-9)): 

 

In the Digital Signal Processing (DSP), Eq. (2.2-10) is the FT of the 
rectangular pulse [5]. 

   If ! ≪ 1, then using the first two terms of the Taylor series, we have:  

ä��\(!) ≈ Ç!2 − (Ç!)F48Ç 	!2 − !F48
 ≈ 1 − �(� + 1)6!	 .                                  (2.2 − 11) 

   A combination of Eq. (2.2-8) and the moving average filter gives a new 

differentiation filter, which has the width Çℎ. For example, Ç = 5: 
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   In the next point: �ø¦�ù(�) (�_O�) = (�RO	 − �RO�)/ℎ = (�ROG − �R��)/5ℎ.              (2.2 − 13)  

 If the moving average is absent, then the derivative in the first point is 
equal to Eq. (2.2-12): �(�)(�_) = (�ROF − �R�	)/5ℎ.                                                          (2.2 − 14)  

But the next point is shifted by 5ℎ:  �(�)(�_OH) = (�RO� − �ROF)/5ℎ.                                                      (2.2 − 15)  
Figure 2.2-2 illustrates the difference between the two filters. 

 
Figure 2.2-2. Diagram of the calculations of the 1st-order derivative 

 in combination with and without the moving average. 
 
   Consider the combination of the smoothing filter with the 2nd-order 
differentiation (Eq. (2.2-2)). For example, Ç = 5:   1      1      1      1       1  
+     −2 − 2 − 2 − 2 − 2  
                  1      1      1       1       1  
     1  − 1      0      0      0   − 1      1  
 
This filter is readily obtained from Eqs. (2.2-12) and (2.2-13). 
   The noise coefficient of such a filter is �ø¦�ù?_Ì = (1 + 1 + 1 + 1)/Ç	 = 4/Ç	.                                    (2.2 − 16) 
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   The combination of Eq. (2.2-8) and the multi-pass moving average 
filter, repeated Ó times, has the frequency characteristic for ! << 1:  äø¦�ù(	) (-) = ä¦�U(	) (-)[ä��\(!)]U~  -	(1 − {[2Ó�(� + 1) + 1]/12} !	).                                            (2.2 − 17)  

   Eq. (2.2-13) shows that, in the first approximation, the systematic error 

of the combined filter depends on gø¦�ù(	) (Ó) = [2Ó�(� + 1) + 1] 12⁄ .                                              (2.2 − 18)   

   If Ó = Ç then the noise coefficient (Appendix F, Eq. (F1-4)): �ø¦�ù�U?_Ì = 6/ÇG.                                                                            (2.2 − 19)  

   Let ÇU�� and ÇU�ú be the widths of the two filters, which have equal 

systematic errors. Then from Eq. (2.2-18), we obtain 2�U��(�U�� + 1) + 1 = 2ÇU�ú�U�ú(�U�ú + 1) + 1. If Ç	 >> 1, 

then ÇU��	 = ÇU�úF . So,  ÇU�ú = �ÇU��	� .                                                                                    (2.2 − 20)  

   By substituting Eq. (2.2-20) into Eq. (2.2-19), we have �ø¦�ù�U?_Ì = 6/ ²ÇU��	 �ÇU��	� ³ < �ø¦�ù?_Ì = 4/ÇU��	               (2.2 − 21)  

since Ç > 2. For example, for ÇU�� = 9 the combination filter decreases 

white noise by the factor ��ø¦�ù�U?_Ì ≈ 2, but the systematic error does 

not change. 
   The term (Eq. (2.2-11)) 

 È�� = [�(� + 1)/6]!	 = [(Ç	 − 1)/24]-	ℎ	                       (2.2 − 22)  

defines the systematic error of the moving average. Since −-	 is the 
Fourier operator of the 2nd-order differentiation, the 1st-order 
approximation of the smoothed signal in the time domain is ���(�) ≈ �(�) − �(	)(�).                                                                 (2.2 − 23)  
For example, in the maximum of the Gaussian peak from (Eqs. (1.2-5), 

(2.2-22), and (2.2-23), we have the following systematic error: ∆���(��) = �(��) − ���(��) = 8��2<	[(Ç	 − 1) 24⁄ ].         (2.2 − 24)  

   In the averaging of data intervals (the sequential groups of Ç points): �Õ_ = P �_O�/Ç,                                                                          (2.2 − 25)�����   

where � = � + Ç�, � = 0, 1, …  
   To estimate the systematic errors of the averaging of data intervals, we  
need to calculate its frequency characteristic. However, the frequency 
properties of the method depend on �. Earlier, the properties were studied 
for � = £¤�¥� [3] using harmonic analysis [6]. Here, we estimate the 
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systematic errors in the maximum of the Gaussian peak directly (Fig. 2.2-
3). 
 If < = ℎ �⁄ ≪ 1, then near the Gaussian peak maximum (> = 0): �(>) = exp(−>	) ≅ 1 − >	 = 1 − ��	,                                       (2.2 − 26)  

where > = 2√��2!;  ! = <�;  � = 4��2<	;  � = 0, ±1, ±2, … , ±�. 

The accurate mean is �Õ(0) = 0.9348. The approximate value is �Õ\��U(0) = 1 − 2� C �	Ç�
_�� = 1 − 8��2<	 �Ç	 − 124 � .             (2.2 − 27) 

Figure 2.2-3 confirms these calculations. 
 

 
Figure 2.2-3. Estimation of the systematic error in the maximum  

of the Gaussian peak (� = 1, Ç = 11, ℎ = 0.05). 
 

   The second term of Eq. (2.2-27), which defines the systematic error of 
the averaging of data intervals, is equals to the systematic error of the 
moving average (Eq. (2.2-24)). This conclusion is intuitively clear. 
   The 1st-order differentiation, combined with the averaging of data 
intervals, produces the derivatives with the sampling interval ℎ 
(Fig. 2.2-2), but the signal-to-noise ratio increases because of the 
averaging. 
   In spectroscopic literature, the averaging of data intervals, combined 
with differentiation, is known as a Norris-Williams derivation [7, 8]. 
   We proved theoretically that the moving average filter is optimal for 
constant and linear signals (Chapter 2.5). In other cases, polynomial 
Savitzky-Golay (SG) smoothing filters are more effective. Similarly, the 
difference method is inferior to polynomial SG differentiation since the 
first involves the linear approximation of the input data. This 
approximation does not allow a more flexible selection of the digital SG 
filters’ optimal parameters by varying their length and the power. 
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CHAPTER THREE 

DIGITAL DIFFERENTIATION: 
SAVITZKY-GOLAY FILTERS 

 
 
 

Introduction 
   Savitzky-Golay filters (SGF) have been the most popular digital filters 
used in chemometrics since the publication of a famous article in 1964 
[1]. The journal Analytical Chemistry published some articles [2-6], 
concerning the technical details of SGF. During the last six decades, there 
have been numerous theoretical and experimental studies of these filters, 
which have been carried out by experts in analytical chemistry and signal 
processing. These studies are available in online resources. 
 
Remark-1 
   In our opinion, the following translation from Russian to English could 
compete with the Savitzky-Golay paper and with the subsequent articles 
concerned with this issue [Grabar, L. P. (1967). Numerical differentiation 
by means of Chebyshev polynomials orthonormalized on a system of 
equidistant points. USSR Comput. Math. Math. Physics, 7, 215-220]. 
 
Remark-2 
   Curious readers can find simple methods for the SGF calculation in 
some particular cases described in the remarkable book by Cornelius 
Lanczos [7]. The author brilliantly illustrated the least-squares methods 
with practical calculations that non-professional readers can quickly 
reproduce. This book also showed the historical development of different 
applications of numerical analysis. 
 
Remark-3 
   Many articles, written in Russian [9-11], escaped the attention of the 
English-speaking reader. This chapter represents modified old findings 
(sometimes reinvented in English publications). We have provided 
simple mathematical details, which are usually avoided so that the 
readers are forced to blindly believe in the correctness of the given 
mathematics.  
To facilitate reading, the formulas from previous chapters will be 
repeated.
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Models 
   The models in the signal (time) domain (ν) (e.g., time, wavelength) are 

the Gaussian %���(ν)& and Lorentzian %�
�(ν)& peaks with a unit 

maximum intensity, 

 ���(ν) = '!$ Ú−4��2 �Á�ÁDü �	Û,                                                        (2.3 − 1) �
�(ν) = 1/{1 + 4[ν − ν� �⁄ ]	},                                                      (2.3 − 2)  

where ν� is the maximum of the peak position; � is the full peak width 
at the half maximum (FWHM).  
   Integral Fourier transforms (FT) of these peaks in the frequency domain 

(-): �#��(-) = ∫ ���(ν) '!$(−�-ν)��� ν =  (� 2⁄ )��/��2 '!$(− (-�)	 16��2⁄ ),                                             (2.3 − 3)  �#
�(-) = (�� 2⁄ ) '!$(−0.5|-�|),                                                  (2.3 − 4)  

where � = √−1. 
   It is common to perform signal processing and analysis in the 

frequency domain using Fourier operators (ℱ (-)), which represent 
mathematical procedures in this domain [7]. 

 The peak restored from the FT using Inverse FT (IFT) is ���U(ν) = (1 2�⁄ ) ∫ �#�(-)ℱ (-) exp (�-ν)��� -.                        (2.3 − 5)  

 
SGF Calculations  
   Let ý�(�,	L,�) be a normalized coefficient of the �LM-order 

differentiation SGF (if � = 0, then it is a smoothing filter) [1]: ý�(�,	L,�) = �ý��, ý��O�, … , ý�, ý�, … , ý� �.                             (2.3 − 6)  Ç = 2� + 1 is the width of the SGF. The filter is applied to the evenly 

sampled data with a sampling interval (step) ℎ: ν_(� = 1, 2, … , �). The Ç 

data points are approximated by the polynomial of the power 2� ≥ �: å¤��,	L(�) = P �_�_,	L_��                                                                      (2.3 − 7)  

where the constants �_ are estimated using the least-squares fitting of the 
polynomial to the data points. 
 
Remark-4 
 The SGF was motivated by the Weierstrass approximation theorem [12].
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According to this theorem, “every continuous function defined in a closed 
interval can be uniformly approximated, as closely as desired, by a 
polynomial function.” 
 
   In the central point � = 0, the �LM-order derivative of the polynomial 

(Eq. (2.3-7)) (� ≤ 2�): å¤��,	L(�) (0) = �! ��,                                                                                (2.3 − 8)  

where �� = P N�O�,������ ��(ν_O�), N�O�,� is the element of the matrix � = (���)����; superscripts −1 and N stand for the matrix 

transposition and inversion, respectively, 

� = ��
(−�)� … (−�)R … (−�)	L⋮ … ⋮ … ⋮1 … 0 … 0⋮ … ⋮ … ⋮�� … �R … �	L

�� . 
   If the input signal (for example, a peak (Eqs. (2.3-1) and (2.3-2))) has 
passed through the SGF, then the filter output is the derivative of the 
peak: �?Ì(�)(ν_) = ℎ�� ∑ ý�(�,	L,�)��(ν_O�),                                       (2.3 − 9)�����   

where � = � + 1, � + 2, … , � − �; ý�(�,	L,�) = �! N�O�,�.                                                                         (2.3 − 10) 

   For � = 0, 2, 4, …, the FSG coefficients are symmetrical relative to the 

central point � = 0. For the odd �, they are asymmetrical, and ý� = 0. 
 Eq. (2.3-10) shows that the standard SGF does not process the first 
(�ù = 1,2, … , �) and the last (�V = � − � + 1, � − � + 2, . . , �) (total 
2�) points. To overcome this drawback, the data may be extended by 
adding a copy of the reverse vector �ù at the beginning, and the �V at the 
end. Another way to do this is using the same polynomial. However, in 
both cases, the accuracy of the differentiation reduces. For more details, 
see [4, 5]. 
   The SG method's remarkable property is the independence of the filter 
coefficients of the processed data [7]: that is, the SGF coefficients may be 
calculated and tabulated in advance before processing [1, 2]. This fact 
explains the widespread use of SGF in analytical chemistry in the early 
years of non-computerized measurement techniques.  
   In their original paper, Savitzky and Golay estimated the filter 
coefficients using Eq. (2.3-8), similar to the Matlab function, sgolay.m. 
This is the most straightforward code of the SGF generation. 
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function W = savitzkyGolayModif(m, power, n) 
x=- m∶ m; 
N=2*m+1; 
x=x(:); 
X=ones(N,1); 
for k=1:2t 
 X=[X, x.^k]; 
end 
matrixW = (X'*X)\X'; 
W=matrixW(n+1,:)*factorial(n); 
end 
 
  The main drawback of this direct method is the inversion (���)�� . If 
matrix � has a large condition number (a collinearity problem [7]), then 
the inversion may cause unpredictable numerical errors. This 
phenomenon is observed for a large �. For example, 
savitzkyGolayModif (100, 6,0) 
Warning: Matrix is close to singular or badly scaled. Results may be 
inaccurate. RCOND = 2.557404e-24  
 
Remark 5 
   The cumbersome mathematical expressions of the smoothing and 
differentiation SGF coefficients [1-3] avoid the inversion problem. 
However, they correspond to the limited number of differentiation orders 
and polynomial powers.  
 
   To simplify the SGF synthesis, we performed the orthogonal transform 

of the variables in Eq. (2.3-7) [11]: å¤��,	L(�) = ∑ ¢_u_(�),	L_��                                                              (2.3 − 11)  

where ¢_ is a constant; u_(�) is the �LM-order orthogonal polynomial 

defined on the interval � ∈ [−�, �]. 
The polynomials obey an orthogonality relation over the range [−�, �]:  ∑ u_(�)uÒ(�) = 0,�����                                                                    (2.3 − 12)  

where � ≠ �. 
   The recursive formula for the fast calculation of the polynomials is as 

follows: u�(�) = 1; u�(�) = �. If � ≥ 2, then  u_O�(�) = �u_(�) − �_u_��(�),                                                     (2.3 − 13) 
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where � = 0, 1, … , 2�; �_ = �	(Ç	 − �	)/[4(4�	 − 1)]. 
For example, 

k uR(�) 

2 �	 − ��  

3 �F − � ∑ �_	_��   

4 �G − �	 ∑ �_F_�� + ���F  

5 �H − �F ∑ �_G_�� + �(���F + �G ∑ �_	_�� )  

6 �I − �G ∑ �_H_�� + �	(���F + �G ∑ �_	_�� + �H ∑ �_F_�� ) − ���F�H  
The last terms are u	L��(0) = 0,  u	L(0) = (−1)L ∏ �	R��.LR��                                                             (2.3 − 14)  
   The odd-degree polynomials are asymmetrical, the even-degree 
polynomials are symmetrical relative to the central point � = 0.  
   From the differentiation of Eq. (2.3-13) we have 

 u_(�) = ∑ u_(R)_R�� (0)�R/S!                                                           (2.3 − 15)  

u_(R)(0) =
⎩⎪⎨
⎪⎧0,! S > �;� = 2$, S = 2� − 1;� = 2$ − 1, S = 2�;$, � = 0, 1, 2, … , �;S!, S = �;

                                             (2.3 − 16)  

Therefore,  u	�O�(�) = ∑ u	�O�(	RO�)�R�� (0)�	RO� (2S + 1)!W   u	�(�) = ∑ u	�(	R)�R�� (0)�	R (2S)!                                               (2.3 − 17)W   u	���(�) = ∑ u	���(	R��)�R�� (0)�	R�� (2S − 1)!W   

By substituting Eqs. (2.3-17) into Eq. (2.3-13), we obtain the �LM-order 

derivative over � at � = 0: u_(�)(0) = �u_��(���)(0) − �_��u_�	(�) (0).                                           (2.3 − 18)  

Readers can check Eq. (2.3 −18) using the above expressions for the 
polynomials (Eq. (2.3-13)). 

   From Eqs. (2.3-8) and (2.3-11) we have å¤��,	L(�) (0) = ∑ ¢_u_(�)(0).	L_��                                                           (2.3 − 19)  

The modified matrix � (Eq. (2.3-8)):
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� = ��
u�(−�) … uR(−�) … u	L(−�)⋮ … ⋮ … ⋮u�(0) … uR(0) … u	L(0)⋮ … ⋮ … ⋮u�(�) … uR(�) … u	L(�) �

�  .                        (2.3 − 20)  

The calculation of the term N�O�,� does not require the matrix inversion:  N�O�,� = u_(�) �"_⁄ ,                                                                            (2.3 − 21)     

  
So, ¢_ is evaluated using Eq. (2.3-21). Substituting Eq. (2.3-21) into Eq. 
(2.3-19), we obtain the SGF coefficients:  ý�(�,	L,�) = å¤��,	L(�) (0) = ∑ (u_(�) �"_⁄ )u_(�)(0).	L_��                  (2.3 − 22)  

The SGF coefficients can be calculated recursively from Eq. (2.3 −22), 
taking Eq. (2.3-16) into account: 

 
 
Remark 6 
In the middle of the 1980s, we generated SGFs on programmable micro-
calculators using the above methods. Personal computers were not yet 
available for regular users in Russia.  
   The SGF coefficients were calculated using Gram [6] and Legendre 
[13] polynomials. 
 
   The obtained mathematical expressions for the SGF coefficients are 
beneficial when determining the optimal parameters of these filters. 
 
Frequency properties of the SGF  
   The frequency properties of the SGF were studied using Harmonic (or 
Fourier) Analysis (HA) [7] (Appendix A). The HA originated in the 
middle 18th century in the solution to the string oscillation problem. 
Mathematicians use HA to represent periodical and non-periodical 
functions as a sum of harmonics (Fourier Transform-FT). Fourier 
spectrum is the transformation of AS into a set of harmonics. The 
amplitudes of these harmonics depend on their frequencies. In the
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beginning, the Fourier spectrum of the analytical signal contains the most 
informative intensive low-frequency harmonics. However, the high-
frequency harmonics reflect the negative impact of noise on the AS. The 
signal-to-noise ratio may be significantly improved by an appropriate 
choice of the frequency characteristic of the filter, while the useful signal 
will only be slightly distorted. 
   In Digital Signal Processing, the HA is one of the most effective tools 
to study analogous and digital devices' properties. The frequency 
characteristic of the device (e.g., digital or analogous filter) is the 
dependence of its response to the input harmonic signal (sinusoidal or, in 
general, complex exponent) on the signal frequency.  
   It is common to describe instrumental distortions of the input signals in 
its native (time) scale (domain) by the convolution of the signal with the 
instrumental function (e.g., the function of a spectrometer). Analysis of 
instrumental distortions becomes significantly simpler using HA in the 
so-called Fourier domain since multiplication replaces the cumbersome 
convolution procedure. The HA's great success was achieved because of 
the Fast FT invention, which revolutionized HA. The SGF convolutes the 
input data with the filter coefficients. The filter frequency characteristic 
allows us to understand the filter’s properties using simple mathematics. 
   Let us study the frequency characteristic of the SGF (Eq. (2.3-9)) using 

the input signal in the form of the complex exponent. Substituting the 

power series of the exponent '!$(>) = ∑ >R/S!�R��  [7] into Eq. (2.3-9), 

we have ä(�)(�-) = ℎ�� ∑ ý�(�,	L,�) '!$(−��-ℎ)����� =  ∑ (−�-)R�R�� ℎR���R,�,	L(�) /S!,                                                           (2.3 − 24)  

where �R,�,	L(�) = ∑ �Rý�(�,	L,�)�����  is the SLM-moment of the SGF 

impulse characteristic.  
   To determine the cases, when the moments are zeros, we take the 
symmetry (asymmetry) of the FSG coefficients relative to the central 
point � = 0 for the even and the odd �, respectively, into account. In the 
last case, ý� = 0. So, for the even �, the odd-order moments are zero. 

For the odd �, the even-order moments are zero. �R,�,	L(�) = 0, if S ≠ � <2�. 
   Finally, according to [9-11] 
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�R,�,	L(�) =
⎩⎪⎨
⎪⎧0,

⎩⎪⎨
⎪⎧ S < �;S = 2�, � = 0, 2, … , 2� − 2; S = 2� − 1, � = 1, 3, … ,2� − 3;S = 2$ + 1, � = 2�;S = 2$, � = 2� + 1, $, � = 0, 1, …S!, S = �.

                    (2.3 − 25)  

   Readers can calculate the moments using the Matlab function:  
 
function Mom = momentsSGFun(power, m, n, k) 
 rngAlpha=-m: m; 
 W = savitzkyGolayModif(m, power ,n); 
 Mom=sum(W.*rngAlpha.^k); 
end 
 
Smoothing SGF 
   The coefficients ý� of the smoothing SGF are symmetrical relative to 

the central point � = 0. Therefore, substituting the Euler formula '!$(−��-ℎ) = cos(�-ℎ) − �¥��(�-ℎ) into Eq. (2.3-24), we have ä(�)(!) = ý�(�Ù,	LÙ,�) + 2 ∑ ý�(�Ù,	LÙ,�)���� cos(�!),                (2.3 − 26)  

where ! = -ℎ; subscript 1 stands for the parameters of the smoothing 

SGF. By using the power series: cos(>) = P (−1)R>	R/(2S)!�R�� , and 

the properties of the moments: Y�R,�Ù,	LÙ(�) Y = Ú 0, S < 2��S!, S = 2��, for ! ≪ 1 we 

obtained [8-11] ä(�)(!) ≅ 1 − È�Ù,	L�!	LÙO	,                                                           (2.3 − 27)  

where È�Ù,	L� = Y�	O	LÙ,�Ù,	LÙ(�) Y (2 + 2��)!W = Q�Ù,	L� Ç�	LÙO	; Q�Ù,	L� is 

a function of the filter parameters . Q�Ù,	LÙ → Q 	LÙ, if �� → ∞ (Fig. 2.3-

1, Table 2.3-2).  

 We found precise approximations (e.g., Fig.2.3-2): �	O	LÙ,�Ù,	LÙ(�) Ç	LÙO�⁄ ≅ ¥� ∗ Ç + ��£,                                            (2.3 − 28)  
where the slope (¥�) and the intercept (��£) are {−0.5369, 0.2051} ∗10�	, {0.3407, −0.4452} ∗ 10�F, and {−0.2160, 0.6431} ∗ 10�G, for 2�� = 2, 4, and 6, respectively. In the following example, we demonstrate 

two analytical estimations of Q	, using the direct SGF formula and Eq. 
(2.3-22).  �G,�Ù,	(�) = P ý��G����� , where ý� = [3(3�	 + 3� − 1) − 15�	] [(2� + 3)(2� + 1)(2� − 1)]⁄ . 
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The sums: P �G��� = 2�(�G 5⁄ + �F 2⁄ + �	 2⁄ − 1 30⁄ ); P �I��� = 2�(�I 7⁄ + �H 2⁄ + �G 2⁄ − �	 6⁄ − 1 42⁄ ). 

If � → ∞, then P �G��� = 2�H 5⁄ ; P �I��� = 2�J 5⁄ ; Q	 = |2�H 5 ∗  9�	⁄ − 15 ∗ 2 �J 7⁄ | {8�F ∗ 4! ∗ (2�)G}⁄ = 2.2321 ∗10�G.  
Using Eq. (2.3-22), we have �G,�Ù,	(�) = ∑ �G ∑ (u_(�) �"_⁄ )u_(�)(0).	_�����   

Finally,  u�(�) = 1; u�(�) = 0; u	(�) = �	 − ��; �� = Ç	/12; �"� = Ç; �"	 = ÇH/180. 

If � → ∞, then Q	 =��¥ (2�H 5 ∗ [1 2�⁄ + (1 2�)⁄ ∗ 180 144⁄ ] −⁄   2 �J 7⁄ ∗ 180 (12 ∗ (2�)F)⁄ [4! ∗ (2�)G]⁄ ) = 2.2321 ∗ 10�G.  
 

 
 
 
 

Remark 7 
Generally, if � → ∞, then ∑ ����� = 2��O� (� + 1)⁄ . 
 
   The main drawback of the 1th-order approximation (Eq. (2.3-27)) is the 

sharp reduction to the negative values when ! increases. We modified 
this equation by introducing the denominator in the second term and by 

an appropriate choice of the power in Eq. (2.3-28). This method is partly 
similar to the use of Tikhonov regularization [14]. For example, Figure 
2.3-3 demonstrates the best approximation: ä(�)(!) ≅ 1 − Q�Ù,I (Ç�!)J.I	/(1 + Q�Ù,I (Ç�!)J.I	).              (2.3 − 29)  

Figure 2.3-1. The dependence 
 Q�Ù,I(��) (Eq. (2.3-27)). 
 

Figure 2.3-2. Approximation of 
the 8th-order moment of the 
smoothing SGF (dotted line). 
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   The second term of Eq. (2.3-27) approximates the systematic error of 

the smoothing [8-11]. 
   Figure 2.3-3 demonstrates how the smoothing filter decreases the high-
frequency Fourier region but conserves the informative low-frequency 
part (! << 1). In this region, the amplitudes of the filter characteristic 
are close to the unit.  
   Eq. (2.3-29) describes the smoothly fading filter, which damped the 
wavy part of the SGF filter (Fig.2.3-3). Unfortunately, similar to the 
SGF, this filter cannot be built in the time domain. It can only be used in 
the frequency domain. Below, we study the impact of this filter on the 
signal in the time domain using the inverse FT. 
 

 
Figure 2.3-3. The normalized FT of the Gaussian (�/ℎ = 40) (Eq. (2.3-3))  
and the frequency characteristic of the smoothing SGF (Eq. (2.3-24)) 
 (�� = 40, 2�� = 6 ) (dashed and solid curves, respectively). The dash-dotted  
and dotted curves represent Eqs. (2.3-27) and (2.3-29), respectively. 
 
 Differentiation SGF 
 Consider Eq. (2.3-24): 

 
Since ��,�,	L(�) = 0, �R,�,	L(R) = S! , and the odd and the even-odd moments 

are zeros for the even and the odd-order differentiation SGFs, 
respectively, we have
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  ä(�)(�-) =  −�- + �-F ℎ	�F,�,	L(�) 3! − �-H ℎG�H,�,	L(�) 5!⁄ + ⋯ =    W   −(�-)§1 − -	 ℎ	�F,�,	L(�) 3! − -G ℎG�H,�,	L(�) 5!⁄ +⋯   W ¨;   ä(	)(�-) =  -	 �	,�,	L(	) 2⁄ + -G ℎ	�G,�,	L(	) 4!⁄ + -I ℎG�I,�,	L(	) 6!⁄ +⋯ =  -	§1 + -	 ℎ	�G,�,	L(	) 4!⁄ + -G ℎG�I,�,	L(	) 6!⁄ +⋯ ¨,                   (2.3 − 31)  

and so on. 
Let us transform two above equations:  ä(�)(!) ≅ ä_?(�)§1 − !	�F,�,	L(�) 3! − !G�H,�,	L(�) 5!⁄ +⋯   W ¨;      (2.3 − 32)  ä(	)(!) ≅ ä_?(	)§1 + !	�G,�,	L(	) 4!⁄ + !G�I,�,	L(	) 6!⁄ +⋯ ¨,         (2.3 − 33)  

where ! =  -ℎ; ä_?(�) = (�-)� is the Fourier operator of the precise 

differentiation.  
   The terms in the braces play the role of smoothing filters. They reduce 
the amplitude of the precise differentiator frequency characteristic, which 
increases significantly in the high-frequency region. Therefore, the high-
frequency noise distorts the input signal. 
   Figure 2.3-4 represents the amplitude-frequency responses of the 2nd-
order differentiation FSG and the precise differentiator. If ! << 1, then 
the FSG performs the precise differentiation. When ! increases, the 
amplitude of the FSG characteristic decreases: that is, the filter begins the 
smoothing process. Mathematically, this process is explained by 
introducing the smoothing component into the differentiation FSG. 

   According to Eq. (2.3-25), the first moments in braces �R,�,	L(�) ≠ 0, if S = � + 2�. Therefore, if ! << 1, then, similar to Eqs. (2.3-32)-(2.3-
33), we obtain the two-term approximation of Eq. (2.3-29):  ä(�)(!) ≅ ä_?(�)§1 − g�,	L(�) !	L¨,                                                         (2.3 − 34)   

where g�,	L(�) = Y��O	L,�,	L(�) Y (� + 2�)!W = Q�,	L(�) Ç	L;                               (2.3 − 35)   Q�,	L(�)  is a function of the filter parameter �. Q�,	L(�) → Q	L(�), if � → ∞ 

(Table 2.3-2). 

 
 Remark 8 
According to [15], vQ	LÙ(�)v = {(2�� + 1)(2�� + 1)! (2��)!} {2(	LÙO�)(2�� + 2)(4�� + 3)! (��)!	⁄ }.  
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Digital processing of the single peak in the signal domain (ν)  
   Suppose that the SGF is applied to the single peak (e.g., Gaussian (Eq. 

 (2.3-1)) and Lorentzian (Eq. (2.3-2))), which FT is ��(-). Then, the 

output signal in the time domain is the inverse FT (ℱ) of the FT data: �?Ì(�)(ν) = ℱ���(-)ä(�)(�-)�.                                                          (2.3 − 36)  

 

 
 
 
 
 
 

By substituting Eq. (2.3-29) into Eq. (2.3-36), and, taking the fact that (�-)R is the Fourier operator of the SLM-order differentiation into 

account, we have �?Ì(�)(ν) = P (−1)R�R�� ℎR���R,�,	L(�) ��(R)(ν)/S! .                          (2.3 − 37)  

   For further study, we transform Eq. (2.3 −36), using Eq. (2.3-37) and 

the expressions of the peak derivatives at the peak maximum ν� (Chapter 

1.2) [11]. For example, if � = 2� = 2, then: �?Ì(	)
(ν�)= ��(	)(ν�)§1 − %Y�G,�,	(	) Y 4!⁄ &<	Y´(G) ´(	)⁄ Y + ⋯ ¨, (2.3 − 38) 

where < = ℎ/� is the relative sampling interval; � is the FWHM; ´(	�) = ��(	�)(ν�)�	�. For the Gaussian and Lorentzian peaks, ´�(	�) =(−4��2)�(2$)!/$! and ´
(	�) = (−4)�(2$)!, respectively (Chapter 1.2). 

   At the extremum of the first derivative νV� (for 2� = 2): �?Ì(�)
(νV�)= ��(�)(νV�)§1 − %Y�F,�,	(�) Y 3!⁄ &<	Y´(F) ´(�)⁄ Y + ⋯ ¨, (2.3 − 39) 

where ´(	���) = ��(	���)(νV�)�	���. The ratios Y´(�) ´(�)⁄ Y are given in

Figure 2.3-4. The frequency  
characteristic of the ideal and SGF 
 2nd-order differentiation (dashed 
 and solid curves, respectively). 
 � = 2, 2� = 4, ℎ = 1. 

Figure 2.3-5. The dependence 

 Q�,G(	) (�) (Eq. (2.3-35)). 
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 Table 2.3-1. 

Table 2.3-1. The ratios Y¼(l) ¼(�)⁄ Y 
Peak 

l 
3 5 7 9 

Gaussian 11.09 184.5 3410 276.1 x 10F  
Lorentzian 18 0 136.1 x 10F  638.4 x 10H  

  

Since < << 1, then the two terms are a good approximation of Eqs. (2.3-
38) and (2.3-39). The second terms in the braces of these equations 
define the relative systematic errors (bias) of the SGF differentiation, 

observed at the extrema of the 2nd- and 1st-order derivatives, respectively:  #ö = %Y��O	L,�,	L(�) Y (� + 2�)!W &<	LY´(	LO�) ´(�)⁄ Y.                       (2.3 − 40)  

   Since for the Lorentzian peak ´(H) = 0 (Table 2.3-1), we take 2� = 6 

and #ö = %Y�J,�,I(�) Y 7!⁄ &<IY´(J) ´(�)⁄ Y.                                                    (2.3 − 41)  

   Suppose that the �LM-order differentiation is performed using � 

repetitions of the (��)LM-order differentiation SGF, built on the 

polynomial of the power 2�. That is, � = ���. In this case, Eq. (2.3- 40) 

is multiplied by �. 

   If the smoothing SGF, built on the polynomial of the power 2��, is 

repeated Ó times then #öö� = Ó ²v�	O	LÙ,�Ù,EØÙ(�) v (2 + 2��)!W ³ <	LÙO	Y´(	O	LÙ)Y.             (2.3 − 42)  

   The systematic error of the combined smoothing and differentiation 
SGFs: #öø¦�ù = #öö� + #ö.                                                                                (2.3 − 43)   

   As was stated above, parameters È�Ù,	LÙ (Eq. (2.3-27)) and g�,	L(�)  (Eq. 

(2.3-35)) define the systematic signal distortions in the frequency 
domain. For further study, we transform Eqs. (2.3-35) and (2.3-42) (for Ó = 1) using Eq. (2.3-27): #ö = å�,	L(�) (Ç<)	L,                                                                                (2.3 − 44)  #öö� = å�Ù,	L�(Ç�<)	LÙO	,                                                                 (2.3 − 45)  

where å�,	L(�) = Q�,	L(�) Y´(	LO�) ´(�)⁄ Y and å�Ù,	LÙ = Q�Ù,	LÙY´(	O	LÙ)Y. 
Table 2.3-2 represents the asymptotic values of these constants.  
   Suppose that the systematic errors are low. Then, the relative random 
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error in the extremum point of the SG derivative of the single peak, 

distorted by the white noise, is #U = √�/%Ö�ℛ(�)<�&,                                                                        (2.3 − 46)  

where � = P ý�	�����  is the SGF white noise factor; Ö� is the signal-to-

noise ratio of the peak, and ℛ(�) = Y��\^(�) − ��_�(�) Y��  (the peak has the 

unit amplitude); ℛ(�) = 2.9 and 2.6; ℛ(	) = 8 and 10; ℛ(G) = 150 and 

546 for the Gaussian and Lorentzian peaks, respectively.  
We found that ��,	L(�) = %��,	L(�) &	/Ç	�O�,                                                                    (2.3 − 47)  

where ��,	L(�) → �	L(�)
 when � → ∞ (Table 2.3-2). 

   Figure 2.3-6 represents some dependencies ��Ù,	LÙ(�) (��) for the 

smoothing FSGs. They quickly approach to the limits ��Ù(�)
. 

 
Remark 9 
According to [13]: Y�	L(�)Y = {2(2� + 1)2�!/(2	LO�/(�!)	)}.  
 
   We could not obtain the general analytical expression for the combined 
filters' noise factor due to the correlations between their components. 
Therefore, only some essential particular cases were numerically studied. 
Instead of Ó repeated convolutions of the filter in the time domain, the 
frequency characteristic of the filter was raised to the power Ó. The noise 
factor was estimated in the Fourier domain. 
 

 
Figure 2.3-6. The dependences ��Ù,	LÙ(�) (��) for the smoothing FSG.
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   For example, if the smoothing SGF was repeated Ó times, then �ö�(Ó) = ��Ù,	L�ö� Ó�	/(GL�OF).                                                           (2.3 − 48)  

   If the 1st-order differentiation SGF was repeated � times, then �(�) = %��,	L(�) &\D,EØ(@) ,                                                                            (2.3 − 49)  

where ��,	L(�) = �$D,EØ. If � >> 1, then u�,	L = u	L = 0.78, 0.73, and 

0.67 for 2� = 2, 4, and 6, respectively. 
   In what follows, we estimate the optimal widths of SGF, when � >>1. In this case, the SGF characteristic constants of the broad filters do not 
approximately depend on the filter width. The criterion of the optimal 
filter is the minimum of the relative error or the bias-variance tradeoff. 
That is, Ç¦�L = �Ó%��� �# = �#ö	 + #U	�(Ç).                                             (2.3 − 50)  
 
Analysis of the smoothing SGF 
   By substituting Eqs. (2.3-45)-(2.3-47) into Eq. (2.3-50), we have for � >> 1: 

# = �#ö	 + #U	 = &%å	L�(�)(Ç�<)	LÙO	&	 + %�	L(�)&	/(Ç�Ö�	) .         (2.3 − 51)   

Eq. (2.3-51) has the minimum value, if Ç�,¦�L = Ö��	/LE<�(LE��)/LEì	LÙ(�),                                                        (2.3 − 52)  

where �	 = 4�� + 5, ì	LÙ(�) = §%�	LÙ(�) å	LÙ(�)W &	/(�2 − 1)¨�/LE
. 

The Ç�,¦�L, estimated by Eq. (2.3-52), must be odd value in practice.  
   It follows from Eq. (2.3-52) that, for � >> 1, the optimal width of the 
smoothing SGF, expressed as a part of the FWHM, is '¦�L(�) (<, Ö�, 2��) = Ç�,¦�L< = %√</Ö�&	/LE ì	LÙ(�) .                          (2.3 − 53) 

  
Remark 10 
   Recently, Iranian [15] and Indian [16] researchers have obtained more 
precise analytical expressions of Ç�,¦�L. The functional dependencies Ç�,¦�L on the noise dispersion were similar to Eq. (2.3-52). It was shown 
that calculating the optimal window length requires knowledge of the 
signal [15]. The authors proposed an algorithm to solve this problem. 
Also, they briefly discussed numerous theoretical SGF studies.  
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To validate Eq. (2.3-52), we used the models (Eqs. (2.3-1) and (2.3-2)), 

distorted by normal noise. The numerical experiment was repeated 10H 

times. The mean value (�Õ�(0)) and the standard deviation (#U) of the 
peak maximum were calculated. The total error (Eq. (2.3-51)) was #�ð� = 100�#ö	 + #U	 , where #ö =1 − �Õ�(0), was estimated.  

 
Table 2.3-2. Characteristic SGF constants 

n 2t Í�((l) Gaussian Lorentzian )�((l) ��((l) *�(�(l) ��((l) *�(�(l) 

0 

2 2.232x10�G 0.021 2.049 0.085 1.502 1.500 

4 4.732x10�J 1.21x10�F 2.557 0.0218 1.639 1.875 

6 5.357x10��� 5.318x10�H 2.965 5.529x10�F 1.717 2.188 

1 

2 0.025 0.28 1.453 0.45 1.309 3.464 

4 
1.24x10�G 

0.023 2.2158 0.128 1.654 8.660 9.39x�s�+ 
(Lorentz) 

6 2.53x10�J 8.64x10�G 2.9113 0.035 1.803 15.156 

8 2.79x10��� 7.65x10�H 3.084 0.018 1.756 22.736 

2 

2 1.786x10�	 0.2971 1.757 0.857 1.321 26.833 

4 7.891x10�H 0.0364 2.3455 0.455 1.537 93.921 

6 1.517x10�J 2.716x10�F 2.7977 0.196 1.648 211.34 

8 1.611x10��� 1.439x10�G 3.1793 0.075 1.716 387.49 

4 

4 5.463x10�H 0.0588 2.1251 1.468 1.250 5040.4 

6 1.964x10�J 0.0106 2.5015 1.901 1.349 27,726 

8 3.000x10��� 9.828x10�G 4.1012 1.533 2.054 90x10H  

 

   Figure 2.3-7a demonstrates an example of the dependencies of the 

systematic, random, and total errors on the SGF width (Ç�). According to 

the well-known facts, the dependencies #ö(Ç�) and #U(Ç�) are increasing 

and decreasing functions, respectively; the plot #�ð�(Ç�) has an explicit 

minimum.  

   Table 2.3-3 shows that the values Ç�,�_�, which were obtained by the 

numerical experiments, and estimated by the two-term approximation 

(Eq. (2.3-52)), differ significantly, if the signal-to-noise ratio Ö� is small, 

and the FSG has a large polynomial order 2��.
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   To overcome this drawback, we used a more precise approximation 

(Eq. (2.3-29)) of the frequency characteristic. Then the output signal was 

the inverse FT (ℱ) of the time domain data: �ö�(�)(ν) = ℱ���(-)/(1 + ò%!, Ç�, 2��,∆2��&�,                             (2.3 − 54)  

where ò%!, Ç�, 2��,∆2��& = Q	LÙ(Ç�!)	LÙO∆	LÙ.  
We supposed that Ç� is very large.  
   The systematic error in the peak maximum was #ö = ��(0) − �ö�(�)(0) =  ℱ���(-)ò%!, Ç�, 2��,∆2��&/(1 + ò%!, Ç�, 2��,∆2��&�.              (2.3 − 55)  

   Figure 2.3-7b demonstrates the high precision of this method. 

Unfortunately, the estimation of the systematic error #ö (Eq. (2.3-55)) 

requires increment ∆2�� to be determined the and the FT to be performed 
numerically. Generally, an analytical solution is impossible. Using the 

frequency characteristics of the FSG, we only eliminated the first 
drawback. The advantage of this method is that the multiple repetitions of 
the smoothing process are not needed as in the numerical estimations 
(Fig. 2.3-7a). 
 

Table 2.3-3. Optimal width (,�,-.() of the smoothing SGF 

(� 
H 
X 

100 

âs 

10 

√/âs  50 
√/âs  100 

√/âs  200 
√/âs  

0«®l1«  
>2%  0«®l1«  

<2%  0«®l1«  
>2%  0«®l1«  

<2% 

1 2 
40/39 

141x 10�G 

28/27 

28x 10�G 

24/23 

141x 10�H 

21/21 

71x 10�H 

29/31 20/21 17/17 15/15 

2 2 
66/69 52/51 47/45 42/39 

43/53 32/35 30/31 27/25 

3 

2 
90/103 74/79 69/71 63/63 

52/73 43/51 40/45 37/39 

5 
38/43 224x 10�G 

31/31 45x 10�G 

29/27 22x 10�G 

27/25 11x 10�G 22/33 18/21 17/19 15/17 Ç�,¦�L must be odd. Data for the Gaussian and Lorentzian peaks are given in the 
upper and the lower rows, respectively. The optimal widths, obtained 
numerically, are given after the slash.  
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Further, the minimum smoothing error will be estimated using the precise 
approximation (Eq. (2.3-28)) by the necessary selection of the coefficient Q	LÙ and the power 2�� + ∆2��. 
By substituting Eq. (2.3-52) of the two-terms approximation into Eq. 

(2.3 −51), we have #�_�ö� = �	L�(�) %√</Ö�&2,                                                                       (2.3 − 56)  

where �	L�(�) = %å	L�(�)&�/(GLÙOH)�4�� + 5 �%�	L(�)&	/(4�� + 4)�2/	
 (Table 2.3-

4); 3 = (4�� + 4) (4�� + 5)⁄ . 
 

 
Figure 2.3-7. Estimation of the smoothing errors: (a) numerically (2�� = 6, < = 0.02, √</Ö� = 10). Ç�,�_� = 105. ���{#�ð�} = 2.225%. (b) using precise 
and approximated the frequency characteristic (Eq. (2.3-54), ∆2�� = 1.69), ���{#�ð�} = 2.219% and 2.217%, respectively. 

 
Table 2.3-4 includes the maximum values of </Ö� for the smoothing 

polynomial of some degree, which gives #�_�ö� ≤ 2% (Eq. (2.3-56)). 

   Inequalities #�_�ö� >2% or #�_�ö� <2% (Table 2.3-3) were obtained by 

comparing the values √</Ö�, given in Table 2.3-3, with the 

corresponding values in Table 2.3-4. Table data show that the 

dependence of #�_�ö�  on the polynomial degree 2��is weak. #�_�ö� < 2 −3%, if 2�� = 6 and 4 for the Gaussians and Lorentzians, respectively. 
 

Multiple smoothing 
 Using Eq. (2.3-48), we have 

#(Ó) = &%Óå	L�(�)(Ç�<)	LÙO	&	 + %�LÙ(�)&	/(Ç�Ö�	Ó	 (GLÙOF)⁄ ) .      (2.3 − 57)   Ç�,¦�L(Ó) = Ç�,¦�LÓ�	2 (GLÙOF)⁄ .                                                        (2.3 − 58) 
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  #�_�ö� (Ó) = #�_�ö� Ó�4 ,                                                                             (2.3 − 59)  where � = 1/[(4�� + 3)(4�� + 5)]. So, #�_�ö� (Ó) is a very slowly 

decreasing function. This fact is clear because the multiple smoothing 
performed by the broad SGFs, not only strongly suppresses noise but also 
strongly distorts the input signal. In practice, the multiple smoothing 

carried out by the short SGFs has advantages over single filtering. 
 

Table 2.3-4. Parameters of Eqs. (2.3-56) and (2.3-63) 

n 2t 
5�((l) max √//âs for smoothing: 0«®l ≤0.02 

and for differentiation 0«®l ≤0.05 
Gaussian Lorentzian Gaussian Lorentzian 

0 
2 1.111 1.298 0.0109 0.0091 
4 1.222 1.529 0.116 0.0091 
6 1.309 1.721 0.0118 0.0088 

1 

2 0.9025 1.1773 0.0063 0.0040 
4 1.0616 1.8356 0.0150 0.0071 
6 1.1763 2.6913 0.0193 0.0069 
8 1.5771 4.0952 0.0166 0.0053 

2 

2 1.2301 2.0070 7.1 x10�G 2.5 x10�G 
4 1.7763 4.0887 0.0030 7.8 x10�G 
6 2.4016 7.2188 0.0041 8.7 x10�G 
8 3.0787 11.5135 0.0045 7.9 x10�G 

4 
4 1.6477 4.9285 5.9 x10�G 5.8 x10�H 
6 3.9484 17.4779 4.8 x10�G 3.5 x10�H 
8 131.0907 809.0107 4.6 x10�I 2.7 x10�J 

  
Differentiation SGF 
   Similar to Eq. (2.3-51), the relative total error for � >> 1 is # = �#ö	 + #U	 =  &%å	L(�)&	(Ç<)GL + %�	L(�)/`(�)&	%√</Ö�&	/(Ç<)	�O�,             (2.3 − 60)  

where å	L(�) = Q	L(�)Y´(	LO�)/´(�)Y; `(�)=Y∆�V^LU(�) ��/��Y is the distance 

between the extrema of the derivatives of the models (Eqs. (2.3-1) and 

(2.3-2)). `(�) ≈ [2.86, 2.6]; `(	) ≈ [8.02, 10]; `(G) ≈ [149.2, 546] for 

the Gaussians and Lorentzians, respectively. 
   Similar to Eq. (2.3-52), the optimal filter width is Ç¦�L = §[(2� + 1)/(4�<ù��)]h�	LÙ(�)/%Ö�å	LÙ(�)`(�)&j	¨�/ù ,         (2.3 − 61)  

where � = 4� + 2� + 1. 
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   It follows from Eq. (2.3-61), that for � >> 1, the relative optimal 

width of the differentiation SGF, expressed as a part of the peak FWHM:  '¦�L(�)(<, Ö�, 2�) = Ç¦�L< = Ç¦�Lℎ �⁄ = %√</Ö�&	/ù ì	L(�),        (2.3 − 62)  

where ì	L(�) = §[(2� + 1)/(4�)]h�	LÙ(�)/%å	L(�)`(�)&j	¨�/ù. 
Substituting Eq. (2.3-62) into Eq. (2.3-60), we obtain the minimum error: #�_�(�) = �	L(�)%√</Ö�&GL/ù,                                                                   (2.3 − 63)  

where �	L(�) = &%å	L(�)&	%ì	L(�)&GL + %�	L(�)/`(�)&	/%ì	L(�)&	�O�
. 

   Table 2.3-5 contains the theoretical values of the optimal widths of 
some differentiation SGFs, obtained according to Eq. (2.3-61). The 
optimal widths were evaluated by numerical experiments, similar to those 
involved in studying of the smoothing filters. Table 2.3-5 represents 
some Ç¦�L values for the 2nd-order differentiation filters. These optimal 
values are larger than the theoretically-obtained corresponding data. 
   Maximum values √</Ö� were estimated for the smoothing and 
differentiation SGFs, provided #�_� ≤0.02 and #�_� ≤0.05, respectively 
(Table 2.3- 4). They were compared with corresponding values given in 
Table 2.3-5. The comparison shows that the widths, designated in Table 
2.3-5 by stars, correspond to the total relative smoothing errors in the 
peak maximum: #�_� ≤2%, and the total relative errors of the 
differentiation in the extrema, #�_� ≤5%.  
   Table 2.3-5 demonstrates that, for the 2nd-order derivative, the total 
error decreases if the polynomial power increases from 2 to 4. However, 
the filter is significantly broadened.  
   For the rest of the data, the total minimum errors of the 1st- and the 2nd-
order derivatives may be more than 10%. However, for the 4th-order 
derivatives, the errors are substantial. The use of high-order derivatives 
requires a tiny sampling interval (very wide filters) and/or a high signal-
to-noise ratio of the raw data. The drawback of broad filters is the non-
accurate processing of the extreme left and right points of the data 
vectors. 
 
Multiple differentiation 
   Suppose that the 1st-order differentiation SGF is repeated � times. 
Then, using Eqs. (2.3-44), (2.3-47) and (2.3-49), for Ç ≫ 1, we have 

#(�) = 7²�å	L(�)(Ç<)	L³	 + ²�	L(�)³	\EØ(@) �Ö�(`(�)<�)	ÇF\EØ(@)�8 .         ( 2.3 − 64)  
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The width of the optimal filter: Ç¦�L(�) = 9�3�	L(�)%�	L(�)&	\EØ(@)� / �4�%Ö�`(�)�å	L(�)&	<GLO	��:ø  ,     (2.3 − 65)  

where £ = 1/(4� + 3�	L(�)). 
   The optimal relative width of the differentiation SGF, expressed as a 
part of the peak FWHM, is '¦�L(�)(<, Ö�, 2�) = Ç¦�L(�)< = ²<�.H\EØ(@)��/Ö�³	ø  ã	L(�),                   (2.3 − 66)   

where ã	L(�) = 9�3�	L(�)%�	L(�)&	\EØ(@)�/ �4�%`(�)�å	L(�)&	�:ø
. 

By substituting Eq. (2.3 −66) into Eq. (2.3 −64), we have #�_�(�) = �	L(�) ²<�.H\EØ(@)�� ÖW �³GL ²GLOF\EØ(@)³W ,                          (2.3 − 67)  

where �	L(�) = 7��å	L(�)%ã	L(�)&GL�	 + ��	L(�)/;`(�)%ã	L(�)&�.H\EØ(@)<�	 . 
For � = 1, Eq. (2.3-67) is similar to Eq. (2.3-63). 
   As an example, Table 2.3-6 contains the optimal width and minimum 
total relative error of the 2nd-order differentiation obtained by the self-
convolution of the 1st-order differentiation SGF. These values were 
compared with those estimated by the single filter (2� = 2) (Table 2.3-7). 
The optimal width of the combined filter is two times the 1st-order 
differentiation filter width. The convolution decreases the total error due 
to the significant broadening of the combined filter. However, for 2� = 4 
and 6, the convolution increases the errors. 
 
Remark 11 
   We recommend the tutorial [17] to well-prepared readers. The book 
[18] details the error analysis in some applications of derivative spectra. 
The SGF have near-optimal smoothing properties for white and pink 
noises [19] (Chapter 2.5). 
 
   Numerical differentiation of unequally spaced experimental chemical 
data was firstly performed using the movable strip technique [20], which 
was similar to the Lanczos method [7]. Later, Antonov et al. developed 
polynomial smoothing and the differential filters of the irregularly distant 
points [21, 22]. Sampling with varying intervals occurs when the linear 
wavelength scale is transformed into the wavenumbers' non-linear range 
(Chapter 1.2).  
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   These step-by-step filters (SBSF) are built on the moving polynomial, 
which approximates data segments consisting of consecutive points. The 
coefficients of the SBSFs are not constants since the sampling interval of 
the x-axis is a non-linear. An essential disadvantage of the SBSFs is 
considerable matrix calculations. It is impossible to tabulate the filter 
coefficients and obtain their analytical expressions as they have done for 
the SG method.
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Table 2.3-6. The optimal width and minimum total relative 
error of the 2nd-order differentiation obtained by the 
self-convolution of the 1st-order differentiation SGF 

2t /, % 
Parameters 

âs 
50 100 200 

G L G L G L 

2 

0.5 
,-.((�)  52 44 44 38 38 33 0«®l(�), % 5.4 4.8 4.0 3.5 2.9 2.6 

1 
,-.((�)  28 24 24 21 21 18 0«®l(�), % 6.4 5.7 4.7 4.2 3.5 3.1 

4 

0.5 
,-.((�)  143 106 129 96 116 86 0«®l(�), % 17.7 9.0 11.6 5.9 7.5 3.8 

1 
,-.((�)  76 56 68 50 61 45 0«®l(�), % 21.8 11.1 14.2 7.3 9.3 4.7 

6 

0. 
5 

,-.((�)  260 163 239 150 220 138 0«®l(�), % >100 41 >100 25 >100 15.3 

1 
,-.((�)  114 84 123 77 114 71 0«®l(�), % >100 50.0 >100 30.5 >100 18.6 

G and L stand for the Gaussian and Lorentzian peaks, respectively. 

 
 

Table 2.3-7. The optimal widths and minimum total relative errors of 
the 2nd-order differentiation obtained by the self-convolution (SConv) 

of the 1st-order differentiation SGFs and the single filter (Sng)  

/, % 
SGF Parameters 

âs 

50 100 200 

G L G L G L 

0.5 

SC
on v ,-.(  105 89 89 77 77 67 0«®l,% 5.4 4.8 4.0 3.5 2.9 2.6 

Sn
g ,-.(  82 61 70 53 60 45 0«®l,% 6.7 10.9 4.9 8.0 3.6 5.9 

1 

SC
on v ,-.(  115 99 99 87 87 75 0«®l,% 6.4 5.7 4.7 4.2 3.5 3.1 

Sn
g 

 ,-.(  44 33 38 28 32 24 0«®l,% 7.8 12.7 5.7 9.3 4.2 6.8 

G and L stand for the Gaussian and Lorentzian peaks, respectively.
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CHAPTER FOUR 

SMOOTHING AND DIFFERENTIATION USING 

THE FAST FOURIER TRANSFORM 
 
 
 

   This chapter intends to demonstrate simple methods of smoothing and 
differentiation of noisy spectra using the Fast Fourier Transform (FFT). 
FFT reduces the complexity of computing the discrete FT of Ç- point 
vector from Ð(Ç	) to Ð(Ç�¤%Ç). Curious readers, we refer to the 
entertaining story of this remarkable algorithm [1], indicating that "nil 
sub sole novum". 
   The Fourier differentiation methods are discussed and illustrated by 
numerous examples in the textbook: therefore, we have only 
demonstrated the FFT regularized differentiation and suggest that our 
readers complete the exercise. 
   Smoothing of noisy data using Fourier Transform (FT) has a long 
history: from Lanczos’ empirical algorithms [2] to Tikhonov’s 
mathematically rigorous regularization methods [3], which are 
continuously developing (e.g., [4]). In spectroscopy, there are pioneering 
studies of FT processing, which involve smoothing and differentiation [5, 
6]. However, the FT smoothing is not widespread in analytical 
spectroscopy since it was supplanted by the Savitzky-Golay (SG) 
polynomial filters [7].  
   In recent decades, interest in the problem of the optimal smoothing of 
analytical signals and, particularly, spectra, has disappeared. Obtaining 
smoothed spectra has become a routine for modern spectral instruments. 
However, the reliability of the peak parameters, which are measured in 
smoothed spectra, as a rule, is not questioned. This fact contradicts the 
importance of the error analysis in analytical spectrometry [8].  
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Theory 
 

    Let � (�) be a noisy spectrum, where � = {��, �	, … , �ú} is a grid of 
equally-spaced points. Our goal is to find a smooth function �ö�(�_) that 
approximates � (�_) appropriately.  
   According to the penalized linear regression approach [9]: ��ö� = �Ó%���ï=D {‖� − �ö�‖		 + ?‖X�ö�‖		},                               (2.4 − 1)  

where || ||	 stands for the Euclidean norm; ? is the smoothing 

(regularization) parameter; X is the penalty matrix. By varying ?, one can 

control the trade - off between smoothness of the signal ��ö� and 

goodness of fit. The solution of Eq. (2.4-1) in the time domain is obtained 
using the least-squares method [9]. 
   Another possible regularized solution of the smoothing procedures in 
the Fourier domain (Eq. (2.4-2)) is based on the discrete Inverse Fourier 

transform (IFT) (MATLAB function FourieSmooth in Appendix SW2): �ö�(�_) = Ó'��%��N��"(-R) [1 + �(-R)]	⁄ �&,                              (2.4 − 2) 

where real denotes the real FT part; �"(-) is the FT of the � (�); - is the 

angular (Fourier frequency); �(-) = �-	� is the stabilizer; � is the 

regularization parameter. This simplest analytical expression of the 
stabilizer was taken from a broad class of functions [3]. The 

regularization parameter � plays the same role as ? in Eq. (2.4-1). 
   It is well-known that there are numerous sets of regularized solutions 
similar to Eq. (2.4-2) [3]. To select the “best” variant, one must establish 
its criterion, select the “best” form of the stabilizer, and estimate the 
optimal regularization parameter. In the lack of a priori information, this 
task is impossible. 
   Suppose that the deterministic, true spectrum (��(�)) and the random 
noise (� (�)) are known. Also, � (�) and ��(�) are uncorrelated 
statistically. Then, the optimal solution, which minimizes the Euclidian 
distance between the true and the smoothed spectrum, is obtained using 
the FTs of ��  and � [3].  
   Another method uses the spectroscopic criteria, such as the minimum 
relative errors of the peak intensities or their areas. In this case, the 
estimation of the optimal regularization parameter has no technical 
problems. 
   If accurate data for ��(�)) and � (�) are unknown, then one can only 
use some a priori assumption about these functions [3]. 
   An empirical method includes: 
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a. Modelling possible spectral elements, e.g., doublets of known shapes 
(Gaussian, Lorentzian), distorted by known noise (normal, pink).  
b. Estimation of the “best” solution using a spectroscopic criterion. 
c. Estimation of the approximate solution using some empirical 
criterion. 
d. If the difference between solutions obtained by “b” and “c” is 
acceptable, then the empirical criterion may be used in practice. 

    Various numerical methods for estimation of the quasi-optimal 
regularization parameters were suggested and compared during the last 
decades. Among them, the most popular is the �-curve method [10]. 
 In the �-curve method, the dependence of the Euclidian norms ¹ =§@��ö�@	¨ (�) versus � = §@��ö� − �@	¨ (�) is plotted in the log-log 

scale. ¹ and � are similar to the members of Eq. (2.4-1) if X=1. The 
optimal value of the regularization parameter � corresponds to the 
“corner” of the �-curve. The corner is the point with an extremum 
curvature. If the range of the � values is small, then the log-scale is 
unnecessary. According to the differential calculus, the curvature is Q( �) = [¹���� − ¹����] [(¹�)	 + (��)	]F 	⁄⁄ ,                                 (2.4 − 3)  
where all derivatives are calculated relative to �. 
Unfortunately, a numerical estimation of this point may be disturbed by 
noisy data. 
   Here, we introduce a new empirical method developed by numerical 
experiments.  
   It seems reasonable to assume that the analytical signal (AS) (a 
spectrum) is an ergodic process. Its statistical properties can be deduced 

from a single, sufficiently long, random sample of this signal. In this 
case, the following functional (Eq. (2.4-4)) (which resembles the 

Tikhonov functional �(�) for the first-order kernel (Appendix G) [3]), 

has a minimum over �. 3(�, $) = ∑ ��(-R)�"(-R) [1 + �(-R)]⁄ �	,                                (2.4 − 4)R   

where -R = [1: �'�1, −�'�1 + 1: 1: 0];, �'� = 2�'�1 is the signal length 
(see MATLAB function FourieSmooth in Appendix SW2). 
   We suppose that the quasi-optimal value �¦�L = �Ó%���{3(�, $)}. 

   The Fourier spectrum (Fig. 2.4-1) of the noise-free symmetrical doublet 
(Fig. 2.4-2a) shows that the low-frequency Fourier harmonics concentrate 
on the most useful information [2]. Therefore, the cut-off for the high-
frequency components by the FT filter may significantly reduce the 
noise, while the useful signal is only slightly disturbed. However, this 
conclusion is right if the noise power is uniformly distributed over all 
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angular frequencies similar to the white normal noise (Fig. 2.4-3). The 
low-frequency harmonics of the pink noise distort the signal more 
strongly than the high-frequency components (Fig. 2.4-3). 
 

 

 
Figure 2.4-1. The real (a) and imaginary (b) FT components of the symmetrical 
Gaussian doublet (Fig.2.4-2a).The FT filter (dotted line) is multiplied by 100 (a).  
  
 
 

 
Figure 2.4-2. Gaussian doublets. 
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Figure 2.4-3. Absolute value of the FT spectrum of the normal and 

 pink noise (solid and dotted curves, respectively). � = 0.02.  
 

 
Numerical experiment 

Models 
1. Gaussian doublets with dimensionless parameters (Fig. 2.4-1): �? = È� '!$ �−S 	! + !��� 
	�+ È	 '!$ �−S 	! − !��	 
	�+ � , (2.4 − 5) 

where S = 4��2; � is the normal or pink noise with mean zero and 
standard deviation � = 0.02, ! = [−3: 0.02: 3]. The pink noise was 
generated by the program in [11].  
a. Symmetrical doublet: È� = È	 = 1; �� = �	 = 1; !� = 0.52. If the 
noise is absent, then the peak amplitudes are È�� = È	� = 1.0599; and 
the peak positions are !��� = −0.44, !�	� = 0.44.  
b. Asymmetrical doublet: È� = 1, È	 = 0.5; �� = 1, �	 = 2; !� = 0.80. 
If the noise is absent, then the peak amplitudes È�� = 1.0881, È	� =0.5008; and the peak positions !��� = −0.76, !�	� = 0.78.  
2. Absorption UV spectrum of anthracene [12, 13] (see below).  

 
Criteria 
1. The minimum total relative error of the peak intensities is �ÓÓ($, �) = �´'��ÓÓ�	 + ´'��ÓÓ		,                                                  (2.4 − 6)  
where ´'��ÓÓ_	 = [∆_	 + Ö_	]/È_�	  is the squared relative error; � = 1,2; ∆_= È_� − ÈA_� is the systematic error of the peak amplitude (the 
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difference between the true value and the average of the mean value); Ö_ = ¥�(È_�) is the random error (the standard deviation).  
2. The minimum of the L-curve curvature (Eq. (2.4-3), Fig. 2.4-4). Since 
the ranges of the ! and > arguments are small, then the log-log scale is 
unnecessary.  
3. The minimum of the functional 3(�, $) (Eq. (2.4-4), Fig. 2.4-5). In an 
abnormal case (Fig. 2.4-5c), the minimum of 3(�, $) was not observed. 
Therefore, the maximum position of the 1st-order derivative over � was 
estimated. 
   All experiments were repeated 10G times. The noise was regenerated in 
each repetition, and the program provided the condition for the resolved 
doublet. This condition is needed for estimating the total error (Eq. (2.4-
6)). 
   In the first group of the experiments, for a given $ (Eq. (2.4-2)), the 
functions �ÓÓ(�), L-curves and their curvatures (Q(�)), and the 
functionals (3(�)), which were obtained in each repetition, were 
averaged (e.g., Figs. 2.4-4 and 2.4-5). The above criteria were applied to 
the mean data. So, �¦�L  was estimated according to each criterion, and 
then the �ÓÓ(�¦�L) was calculated (Tables 2.4-1 and 2.4-2). 
 

 
Figure 2.4-4. The L-curve (a) and its curvature (b) � = 3.18 x 10�B 

 corresponds to the minimum curvature. Mean data of 10G repetitions; 
 the doublet was resolved in each repetition. $ = 4. � = 0.02.  
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Figure 2.4-5. Functional (Eq. (2.4-4)) for the symmetrical Gaussian doublet (Fig. 

2.4-2a). (c) Abnormal case. The derivative of the functional over � (dotted 
curve). Mean data of 10G repetitions in each of them, the doublet was 

resolved. Normal (a) and pink (b, c) noise. � = 0.02. $ = 4 (a, b) and 1(c).  
 

   In the second group, we studied the uncertainties in determining peak 
positions and amplitudes in the FFT- smoothed doublet spectra using the 
L-curve method. The numerical experiment included the following steps: 
1. Calculation of the L-curves and their curvature Q(�), for a given $  
(Eq. (2.4-2)), in each repetition. 
2. Estimating the optimal regularization parameter (�¦�L) at the point 
corresponding to the L-curve curvature minimum. 
3. Calculation of the peak positions (!�� and !�	) and the total relative 
error (�ÓÓ) for the optimal smoothed doublet. 
4. Estimating the average values and standard deviations of the peak 
positions and the errors over all of the repetitions (Tables 2.4-3 and 2.4-
4). 
   In both groups, the uncertainties in determining peak positions and 
intensities are due only to the smoothing. Peak overlapping also causes 
significant uncertainties that have been carefully studied [8].  

 

Results and Discussion 
 

   Analysis of the data, obtained for the models 1a and 1b, shows the 
following:  
1. If the stabilizer order $ increases, then the optimal value of the 
regularization parameter �¦�L  decreases, and the minimum total error 
reduces. However, a large $ ≥ 4 causes saturation. That is, there was no 
gain in accuracy.  
2. The errors, due to the pink noise, are more than two times larger than 
those of the normal noise. This result is following the above conclusions.  
3. The errors obtained using the functional and L-curve methods do not 
differ significantly from those obtained by the spectroscopic criterion 
(Eq. (2.4-6)). That is, these methods may be successfully used in practice.  
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   Table 2.4-3 includes the errors when determining the relative peak 

positions in the FFT smoothed doublets using the L-curve method. The 

table data includes the mean peak shifts from their correct positions (!��) 

when noise is absent: ∆!C�/ℎÕÕÕÕÕÕÕÕ = %!C�ÕÕÕ ± !��&/ℎ, and the standard 

deviations �(!C�)/ℎ = ¥�(!C�)/ℎ. !�� ≠ !� due to the peak overlapping. 
   From these data, we conclude that, for the symmetrical doublet (model 
1a), the impact of the FFT smoothing on the measurement errors of the 
peak positions is small. For $ ≥ 3, the 95% significant interval is less 
than 2ℎ, which corresponds to 4% of the peak width. This conclusion is 
also valid for the first, narrow peak of the asymmetrical doublet (model 
1b). However, the 95% relative uncertainties in determining the position 
of the broad, weak second peak may be up to 30-50% of its width. 
   The relative uncertainties (due to the smoothing) in determining the 
peak intensities of the asymmetrical doublet, corrupted by the pink noise, 
are no more than 3-5% with a significance level of 95% (Table 2.4-4). 
 

Table 2.4-1. Data for the model 1a 

p 

Criterion 

Spectroscopic  
(Eq. (2.4-6)) 

Functional 
 (Eq. (2.4-3)) 

¾-curve  
(Eq. (2.4-4)) 

D-.(� 5nnD-.(�, 
% 

D-.(� 5nnD-.(�, 
% 

D-.(� 5nnD-.(�, 
% 

1 
4.50x10�G 0.9318 6.10x10�G 1.0071 4.65x10�G 0.9374 

5.20x10�G 1.8755 3.27x10�G* 1.4399 3.76x10�G 1.8954 

2 
1.13x10�H 0.7421 9.10x10�I 0.7666 8.11x10�I 0.7545 

1.80x10�H 1.7179 1.88x10�I 1.900 1.08x10�H 1.7510 

3 
2.40x10�J 0.6783 1.45x10�J 0.6895 1.62x10�J 0.6796 

4.05x10�J 1.6530 5.00x10�� 1.7874 2.55x10�J 1.6895 

4 
4.90x10�B 0.6384 2.40x10�B 0.6617 3.18x10�B 0.6517 

8.40x10�B 1.6409 1.03x10�B 1.7305 5.47x10�B 1.6333 

5 
9.60x10��� 0.6191 3.90x10��� 0.6362 6.10x10��� 0.6330 

1.62x10��� 1.6188 2.02x10��� 1.7112 1.09x10��� 1.6124 

6 
1.80x10��	 0.6149 5.87x10��F 0.6379 1.08x10��	 0.6213 

3.10x10��	 1.6063 2.40x10��	 1.6812 2.14x10��	 1.6136 

Upper and lower rows represent data for normal and pink noises, respectively. 
* obtained using the minimum of the 1st-order derivative. �¦�L� = �Ó%���{�ÓÓ($, �)} , �¦�L	 = �Ó%���{3(�, $)}, �¦�LF =�Ó%���{Q(�, $)}. 
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Table2.4- 2. Data for the model 1b 

p 

Criterion 

Spectroscopic  
(Eq. (2.4-6)) 

Functional 
 (Eq. (2.4-3)) 

¾-curve  
(Eq. (2.4-4)) 

D-.(� 5nnD-.(�, 
% 

D-.(� 5nnD-.(�, 
% 

D-.(� 5nnD-.(�, 
% 

1 
7.70x10�G 1.8381 6.57x10�G 1.8809 4.97x10�G 2.006 

1.00x10�F 3.4318 3.44x10�G* 3.9007 4.06x10�G 3.8111 

2 
1.76x10�H 1.2138 1.20x10�H 1.2108 9.48x10�I 1.2762 

2.98x10�H 2.8316 2.80x10�I 3.3640 1.42x10�H 2.9539 

3 
4.90x10�J 1.0702 2.29x10�J 1.0551 2.36x10�J 1.0999 

8.48x10�J 2.6488 8.60x10�� 2.9314 4.31x10�J 2.6752 

4 
1.14x10�� 1.0075 3.99x10�B 1.0023 5.52x10�B 1.0200 

2.08x10�� 2.6044 1.45x10�B 2.8040 1.10x10�� 2.6011 

5 
2.40x10��� 0.9776 6.53x10��� 0.9633 1.13x10��� 0.9968 

4.40x10��� 2.5221 3.42x10��� 2.7168 2.45x10��� 2.5625 

6 
4.80x10��	 0.9630 9.49x10��F 0.9720 2.13x10��	 0.9732 

9.20x10��	 2.5121 5.50x10��F 2.6713 5.45x10��	 2.5124 

Upper and lower rows represent data for normal and pink noises, respectively. 
* obtained using the minimum of the 1st-order derivative. �¦�L� = �Ó%���{�ÓÓ($, �)} , �¦�L	 = �Ó%���{3(�, $)}, �¦�LF =�Ó%���{Q(�, $)}. 

 
 
Comparison of FFT and SG smoothing 
   The model 1a, which was disturbed by the normal noise (� = 0.02), 
was smoothed by FFT ($ = 4) and SG filters (the polynomial power is 
two). The number of repetitions was 10G. As we supposed [14], the 
comparison of the measurement uncertainties, which appeared because of 
the FFT and SG-smoothing, does not show a significant difference 
between these methods (Table 2.4-5).  
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Table 2.4-3. Estimation errors of the peak positions using 
 the L-curve method 

p 

Model 1a Model 1b 

Normal noise Pink noise Normal noise Pink noise 

 ∆¬EsÕÕÕÕÕF  
G(∆¬Es)F    ∆¬EsÕÕÕÕÕF  

G(∆¬Es)F    ∆¬EsÕÕÕÕÕF  
G(∆¬Es)F    ∆¬EsÕÕÕÕÕF  

G(∆¬Es)F   

1 
-0.08 1.79 0 2.24 -0.17 1.33 -0.15 1.64 

0.06 1.80 0.01 2.23 -10.7 18.1 -11.0 18.5 

2 
-0.21 0.87 -0.14 1.22 -0.19 0.66 -0.16 0.82 

0.21 0.87 0.13 1.22 -13.7 19.4 -14.6 19.8 

3 
-0.26 0.70 -0.19 0.99 -0.21 0.59 -0.16 0.70 

0.26 0.70 0.19 0.99 -12.8 19.0 -14.3 19.5 

4 
-0.28 0.65 -0.25 0.93 -0.23 0.57 -0.17 0.65 

0.28 0.66 0.26 0.91 -12.0 18.6 -13.9 19.4 

5 
-0.31 0.63 -0.25 0.87 -0.23 0.56 -0.16 0.64 

0.30 0.63 0.24 0.87 -11.5 18.4 -14.3 19.4 

6 
-0.32 0.62 -0.27 0.85 -0.25 0.57 -0.16 0.62 

0.32 0.62 0.27 0.85 -11.8 18.6 -13.8 19.1 

Upper and lower rows represent ∆!C�/ℎÕÕÕÕÕÕÕÕ = %!C��ÕÕÕÕ ± !���&/ℎ, and �(!C�)/ℎ =¥�(!C�)/ℎ for the first and the second peak, respectively. 10G repetitions. 
 
 
 

Smoothing of the anthracene absorption spectrum 
 

   The anthracene absorption spectrum, which was taken from the open 
database PhotochemCAD 3 [12, 13], was smoothed using the functional 
(Eq. (2.4-4), $ = 2, � = 6 x 10�B) (Fig. 2.4-6). The relative absolute 
difference between the smoothed and non-smoothed spectra was less than 
5% (Fig. 2.4-6). The mean and the standard deviation of the difference 
were −4.43 x 10�B and 0.0020, respectively. Therefore, we consider this 
difference to be a quasi-noise in the anthracene spectrum. The Fourier 
spectrum of this noise shows that the noise is not white (Fig. 2.4-7). The 
harmonic amplitudes are an increasing function of the frequency. 
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Table 2.4-4. Estimation errors of the peak amplitudes using 
 the L-curve method 

p 

Model 1a Model 1b 

Normal noise Pink noise Normal noise Pink noise 

∆HIÕÕÕÕH�, % 

G(∆HI), 
% 

∆HIÕÕÕÕH� , % 

G(∆HI), 
% 

∆HIÕÕÕÕH� , % 

G(∆HI), 
% 

∆HIÕÕÕÕH� , % 

G(∆HI), 
% 

1 
-0.11 0.65 0.11 1.35 -0.41 0.65 0.26 1.33 

-0.11 0.65 0.11 1.33 1.50 1.08 2.76 2.23 

2 
-0.070 0.54 -0.12 1.22 -0.17 0.51 -0.28 1.21 

-0.076 0.54 -0.12 1.24 0.76 0.91 1.76 2.06 

3 
-0.039 0.49 -0.088 1.19 -0.11 0.47 -0.23 1.17 

-0.043 0.49 -0.072 1.19 0.56 0.83 1.44 1.97 

4 
-0.023 0.47 -0.046 1.19 -0.07 0.45 -0.22 1.13 

-0.029 0.47 -0.060 1.17 0.50 0.81 1.38 1.99 

5 
-0.020 0.45 -0.097 1.18 -0.05 0.43 -0.22 1.13 

-0.012 0.46 -0.072 1.17 0.46 0.80 1.28 1.95 

6 
-0.007 0.45 -0.080 1.15 0.08 1.17 -0.20 1.12 

-0.017 0.45 -0.091 1.15 1.48 2.06 1.30 1.95 

Upper and lower rows represent ∆ÈAÕÕÕÕ/È� = ²ÈA̅− È�³ /È� and �(ÈA)/È� =¥�(ÈA)/È� for the first and the second peak, respectively. 10G repetitions. 
 

   The smoothed (the quasi-noise-free (QNF)) anthracene spectrum was 
disturbed by normal noise ((� = 0.05), and further smoothed (Fig. 2.4-8). 
The normalization parameters' values, which were obtained by the 
functional and L-curve methods, are close to each other. Therefore, the 
smoothed spectra are similar. Therefore, the smoothed spectra are 
similar. 
   The smoothed spectra demonstrated small processing distortions of the 
spectral curve. 
   We estimated the confidence intervals of the peak position and the 
intensities of the FFT-smoothed QNF anthracene spectrum disturbed by 
normal noise (Table 2.4-6). This numerical experiment was similar to 
that of the doublet models. The FWHMs of the peaks are roughly(35 − 40) ℎ. The maximum relative uncertainties in determining peak 
positions and peak intensities, using the smoothed spectrum, were 
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approximately 15-16% of the peak width, and about 8% of the weak peak 
intensity.  
   The original anthracene spectrum contains low pseudo-random noise 
with � = 0.002. Therefore, the table data, obtained for � = 0.01, are 
useful for estimating the upper boundaries of the QNF anthracene 
spectrum's measurement uncertainties. So, we suppose that the absolute 
values of the peak positions' estimation errors are less than 2ℎ, and those 
of the intensities are smaller than 2%.  
 

Table 2.4-5. FFT and SG smoothing of the model 1a 

Peak 
FTT SG ∆¬Es F⁄  G(∆¬Es) F⁄  5nn, % ∆¬Es F⁄  G(∆¬Es) F⁄  5nn, % 

Left -0.28 0.32 
0.66 

0.32 0.87 
1.41 

Right 0.66 0.87 -0.32 0.88 
  

 
Figure 2.4-6. The quasi noise-free Anthracene spectrum (a) and the “noise” (b). 

 

 
Figure 2.4-7. FFT of the “noise” (Fig. 2.4-6b). 
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Figure 2.4-8. Spectra of anthracene: noise-free and noisy (thick and thin solid 

curves, respectively) (� = 0.05) and smoothed (dotted curve) using the functional 
and L-curve methods (a, b and c, d panels, respectively). The arrows point to the 

optimal values of the regularization parameters. 
 

Exercise 2.4-1 
   Readers are invited to study the FTT smoothing of the Gaussian peak 
corrupted by normal noise with mean zero and standard deviation �. 
(Appendix SW2).  
   In some cases, the minimum of the functional 3(�, $) is not observed. 
1. How do the filter’s parameters (2$ and �) depend on � ? 
2.  Does the width of the peak and the length of its wings affect the 
smoothing results? 
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Table 2.4-6. The relative 95% confidence intervals (CI) of the 
estimated peak positions and intensities of the FFT-smoothed 

Anthracene spectrum using the L-curve method 

Peak, 
nm 

G 

0.01 0.02 0.05 ÍÝ.-1F  
ÍÝª«.),

% 
ÍÝ.-1F  

ÍÝª«.),
% 

ÍÝ.-1F  
ÍÝª«.),

% 

376 [-1.60, 
0.025] 

[-2.02, 
-0.47] 

[-1.51, 
-0.39] 

[-2.59 
-0.07] 

[-2.30, 
-0.06] 

[-4.31, 
1.65] 

356 
[-0.028, 
0.028] 

[-1.19, 
0.40] 

[-0.32, 
0.37] 

[-1.96, 
0.68] 

[-0.87, 
1.25] 

[-3.89, 
 1.99] 

339 
[-1.23, 
0.62] 

[-1.14, 
0.78] 

[-1.36, 
0.68] 

[-2.01, 
1.51] 

[-2.09, 
1.43] 

[-4.39, 
 3.93] 

323 [-0.69, 
2.30] 

[-1.88, 
1.55] 

[-1.36, 
3.08] 

[-3.24, 
3.20] 

[-5.75, 
3.69] 

[-6.49, 
 8.19] 

p=4. 10G repetitions. 
 
 

 FFT regularized differentiation 
   The FFT regularized �LM-order derivative is estimated by Eq.(2.4-2), 
which was modified by introducing the Fourier operator of the 

differentiation (Appendix G):  �(�)(�_) = Ó'��%��N�(�-R)��"(-R) [1 + �(-R)]	⁄ �&,                (2.4 − 7)  
where � = √−1. 
   We simplified the accurate Tikhonov regularized solution (Appendix 
G, Eq. (G-3)); the stabilizer �(-R) only included the maximum power of 
the frequency. 
   The quasi-optimal value of the regularization parameters was estimated 
by the functional 3(�, �, $) = C �(�-R)��(-R)�"(-R) [1 + �(-R)]⁄ �	,           (2.4 − 8)R   

similar to Eq. (2.4-4). However, the power was increased. 
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Figure 2.4-9. The functional (a) used for the quasi-optimal differentiation (b2) of 

the Gaussian peak (b1). � = 200, � = 0.05, 2$ = 8. 
 

Exercise 2.4-2 
   Readers are invited to study the 1st- and 2nd-order FTT differentiation of 
the Gaussian peak corrupted by the normal noise with mean zero and 
standard deviation σ. (Appendix SW2).  
   In some cases, the minimum of the functional 3 (�, �, $) is not 
observed. 
1. How do the filters parameters (2$ and �) depend on � ?  
2. How do the filters parameters depend on the differentiation order ?  
3. Does the width of the peak and the length of its wings affect the 
differentiation results? 
 
Concluding remarks 
   Suppose one has a noisy spectrum. This FFT- smoothed spectrum can 
be taken as a model for modelling experiments similar to those performed 
for Anthracene studies. This approach allows the estimation of the 
confidence intervals of the uncertainties when determining peak positions 
and intensities using smoothed spectra. The standard deviation of the 
noise may be calculated empirically from the noisy spectrum. 
 However, we prefer to decompose a noisy spectrum to its elementary 
components and estimate all of the peak parameters [8]. Despite some 
technical problems, such as the initial peak parameters estimation, this 
method eliminates all disturbances caused by smoothing and peak 
overlapping to a large extent. The confidence intervals of the peak 
parameters, which were obtained by decomposition, establish the ranges 
of possible accurate parameters. 
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CHAPTER FIVE 

A HYPOTHETICALLY OPTIMAL NON-
RECURSIVE SMOOTHING FILTER  

 
 
 

   This chapter is a slightly modified open access article [1]. We 
developed a hypothetically optimal non-recursive digital smoothing filter, 
which minimizes the sum of the squared norms of the residuals and the 
smoothed noise. It has been proven that (1) the optimal smoothing filter 
of constant and linear signals is the moving average filter; (2) Savitzky- 
Goley and Fourier filters have near-optimal smoothing properties for 
white and pink noises. 

 
Introduction 

 
   The most popular smoothing filters used in analytical applications are 
the Savitzky-Golay polynomial filters (SG) [2]. These least-squares 
filters, which are well-known in mathematics, have a very long history [3, 
4]. The computation of the SG filters was optimized [5-8], and their 
filtering properties were studied [5, 9-11]. The polynomial smoothing 
filters were also improved by Tikhonov (ridge) regularization [12-14] (the 
old version was named as "A method of graduation based on probability" 
[3] or "penalized least squares"). Chebyshev filters based on the minimax 
criterion were used in spectroscopy [15, 16]. The classical Finite Impulse 
Response (FIR) filters [17, 18] and adaptive techniques [19, 20] were 
taken from Digital Signal Processing [21]. 
   In parallel, spline [22], Fourier [23-25], and wavelet smoothing [26, 27] 
methods were intensively applied to the analytical measurements. The 
matrix method, which is based on singular value decomposition, was 
suggested by [28, 29]. The "exotic" Kahrunen-Loève Transform was used 
by [30]. In a more sophisticated method [31], the noise data structure was 
taken into account for the implementation of the smoothing procedure.
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   Smoothing is an essential part of the pre-processing in the multivariate 
calibration [32]. The possible pitfalls of applying this procedure [33] are 
theoretically related to the smoothing in statistics [34]. 
 There is no perfect smoothing method applicable to all numerical data 
since the quality of the processing depends on the form of the noisy 
signal, the type of noise, and the signal-to-noise ratio. Efficient smoothing 
is an ill-posed inverse problem [35], which requires additional 
information about the signal and the noise for choosing the quasi-optimal 
parameters of the smoothing procedure, e.g., the polynomial power and 
the length of polynomial filters [6], the regularization parameter for the 
penalized least squares [14] and Fourier smoothing [24], and the cut-off 
frequency of the FIR filters [20], etc. However, the parameters that define 
the smoothing quality are based on some criterion (a global minimum of 
the objective function [36]). Generally, the objective function is defined 
as the weighted sum of the goodness-of-fit measure and the "roughness" 
of the smoothed signals [13-15]. The least-squares goodness-of-fit 
measure is equal to the squared Euclidean norm of the discrepancies 
between the measured and the smoothed signal. The weighting factor is 
the regularization parameter. In the partial case of the SG filter, the norm 
is defined on the piece of data which is equal in length to the filter length, 
and the regularization parameter is zero [2]. 
   Choosing the quasi-optimal parameters of smoothing algorithms was 
comprehensively discussed and illustrated by numerous examples. 
However, the analysis of the published materials clearly shows that, 
usually, the visual quality of the smoothed noisy signals has been 
considered as "the best proof" of the smoothing quality of the numerical 
algorithm (e.g., [29]).  
   Suppose that the quasi-optimal parameters of a given digital smoothing 
method, applied to a given noisy signal, have been well established. Then 
the following question arises: "How close is the smoothing quality to the 
theoretically best quality obtained by a hypothetically perfect method of 
smoothing?" This chapter will now provide an answer to the question. 
 

Theory 
 

   Let the measured analytical signal be r� = r + K,                                                                                             (2.5 − 1)  

where the components of the vector r : �_;  � = 1,2, … ,� are obtained by 

sampling the uniform grid where step ℎ of the !-axis; K = {�_} ise normal 
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noise (independent on r ) with a mean of zero; the vector K components 

(�_) are uncorrelated and have the same standard deviation �. 
 Suppose that r� is smoothed by the linear symmetrical non-recursive 
digital filter. The vector of the filter coefficients o = ��Ò� , � = 1,2, … ; Ç = 2� + 1, and �R = �ú�RO�, S = 1,2, … , �. 
Our goal is to find the optimal set of Ç coefficients �Ò, which minimize 

the object function: ¢ = ‖rUV? − r�L‖	,                                                                           (2.5 − 2)  

where || || is the Euclidean norm; rUV? is defined in the range: (� +1, � + 2, … ,� − �); 
 L = �

� �� 0 ⋯ 0�	 �� ⋯ ⋮⋮ �	 ⋯ 0�ú ⋮ ⋯ ��0 �ú ⋯ �	⋮ ⋮ ⋯ ⋮0 0 ⋯ �ú
�
�. 

   By substituting Eq. (2.5-1) into Eq. (2.5-2) and ignoring the term 2(rUV? − rL)�KL, whose average value is negligible compared to 

other terms, we have ¢ = ‖rUV? − rL‖	 + ‖KL‖	.                                                           (2.5 − 3)  

   Since the average value �M�NÕÕÕÕÕ = Ú�	, � = �0, � ≠ � ,  ‖KL‖	 = OPo�oOP� = (� − Ç + 1)�	‖o‖	,                              (2.5 − 4)    

where OP = � �� �	 ⋯ �ú�	 �F ⋯ �úO�⋮ ⋮ ⋮ ⋮�
�úO� �
�úO	 ⋯ �

�. 

   In what follows, we suppose that in the last and the first � points �_ <<  �.  

   The column vector of the derivatives of ¢ over the coefficients �Ò: Qü� = −2Oï�(rUV? − rL)� + 2(� − Ç + 1)�	o�Ý,                    (2.5 − 5)  

where matrix Oï has the structure of the matrix OP ; Ý is the identity 

matrix (Ç x Ç). 
   Since all elements of the 2nd-order derivative vector Qü��  are positive, the 
zeroes of the Qü�  correspond to the minimum of the objective function 
over the filter coefficients. 
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   By substituting rL = Oïo� into Eq. (2.5-5), which represents the 

zero vectors in the minimum of the objective function, we have (Oï�Oï + (� − Ç + 1)�	Ý)o� = Oï�rUV?� .                                      (2.5 − 6)  

   If � = 0, then the trivial solution of Eq. (2.5-6):  

 �_ = §1, � = � + 10, � ≠ � + 1 has no practical interest. 

   Generally, the solution to Eq. (2.5-6) is o� = (Oï�Oï + (� − Ç + 1)�	Ý)��Oï�rUV?� .                               (2.5 − 7)  

   Matrix Oï�Oï is badly conditioned. Matrix (� − Ç + 1)�	Ý is the 
regularization term in the matrix inverse. 

   Eq. (2.5-7) shows that the coefficients of the optimal filter are the 

convolution of the true analytical signal with the matrix kernel (Oï�Oï +(� − Ç + 1)�	Ý)��Oï�. The kernel depends on the analytical signal and 

on the dispersion of the noise. The convolution is performed in the 

boundaries of the filter width.  
   Eq. (2.5-7) was analytically solved only in some particular cases. 
For �_ = 1 (� = 1, . . ,�), we used the elegant inversion procedure 

suggested by J. Falta [37]:  (Oï�Oï (� − Ç + 1)⁄ + �	Ý)�� =  

1 [�	(Ç + �	)]⁄ �Ç − 1 + �	 −1 ⋯ −1−1 Ç − 1 + �	 ⋯ −1⋮ ⋮ ⋮ ⋮−1 −1 ⋯ Ç − 1 + �	
�.  

Substituting the last equation into Eq. (2.5-7), we have o = 1 (Ç + �	)|1, 1, ⋯ 1|⁄ .                                                  (2.5 − 8)  

   Usually �	 is negligible compared to Ç; therefore, the filter (Eq. (2.5-
8)) is the moving average. 
 J. Domsta obtained the analytical expression of the inverse matrix (Eq. 
(2.5-7)) in the linear case �_ =  �� + ℎ� [37] (see Appendix H). 
 
 

Computer modelling 
 

   The model was the symmetrical Gaussian doublet (Fig. 2.5-1) corrupted 
by noise: r� = '!$[−4��2(¬ + )	] + '!$[−4��2(¬ − )	],                   (2.5 − 9)  
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where the components of vector ¬ were taken uniformly in the range [-6, 

6] with step 0.01;  = 0.47 is half of the separation of the peaks. To 
completely eliminate the effect of the loss of the start and the endpoints 

while digital smoothing, the object function ¢ (Eq. (2.5-3)) was estimated 

in the range [-1.5, 1.5]. The length of the reduced range was �UV? =301 

points. At the edges of this interval, the doublet’s intensity was less than 
0.2% of its maximum value. So, the doublet wings plunged into the noise 

with the standard deviation � =0.005, 0.01, 0.02 and 0.05. 

   The signal was smoothed in the Fourier domain:  

 r�ö�  =  Ó'��{��N[�N(r�) ∗  ����'Ó(-)]},                              (2.5 − 10) 

where Ó'�� is a real part of Fourier transform (�N); ��N is the inverse �N; ����'Ó(-)  =  1/ (1 +  �-I); � is the regularization parameter; - is the 

angular frequency. 
   Pink noise was generated by the Matlab program [38]. The same noisy 
signal was separately smoothed by the SG, optimal, and Fourier filters. 
Processing with new regenerated noise was repeated 20 times. For each 

smoothing method, the average error # = �¢/�UV? and its standard 
deviation (�R) were estimated. Due to the same noise component, the 
errors obtained by these methods were strongly correlated. Therefore, the 
three �R values were very close to each other. The radius of the 95% 
confidence interval of # (∆#) was calculated using the maximum �R. The 
error dependencies (#(�)) for the SG and optimal filters, and #(�) for 
the Fourier method were estimated.  
 

 
Figure 2.5-1. The Gaussian doublet 
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Figure 2.5-2. The error dependencies for the optimal, SG (power=6) and FT 

smoothing filters (solid, dotted, and dash-dotted curves, respectively. � = 0.01. 
 
 

Results and Discussion 
 
   The data, given in Figure 2.5-2 and Table 2.5-1 allows us to draw the 
following conclusion: 
1. If the SG filter’s power increases, then the error #�_�  reduces, but the 
filter width (�¦�L) increases [6]. 
2. For the optimal filter, #�_�¦�L ≤ #�_� . This inequality is valid for other 

filters, including the non-recursive ones [13, 15, 16]. We found that this 
inequality is valid for a large set of simulated and real noisy spectra. 
3. For the pink noise, #�_��_�R  is significantly larger than that for the 

white noise #�_�üM_LV.  
4. The error #�_�¦�L  is approximately proportional to the standard 

deviation of the noise �. 
5. If the optimal filter's width increases, its frequency characteristic 
becomes closer to the rectangle (Fig. 2.5-3), whose Fourier transform 
(the impulse characteristic of the filter) is ¥��£(!) = ¥��(!)/!. 
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Table 2.5-1. Optimal parameters of the smoothing filters 
 using for denoising the Gaussian doublet 

Noise 
G 

x �s� 
 

Filter  
SG 

Optimal Fourier �( 
2 4 6 

white 

 0«®l, x �s� 
5 12 10 9. 0 8. s 10. 0 
10 22 19 18 16 19. 0 
20 42 39 37 34 38 
50 85 80 77 70 79 

 «-.( D-.( x �sS 
5 22 43 68 292 2.6 
10 24 49 74 302 4.8 
20 30 55 82 290 9.5 
50 38 67 96 287 28 

pink 

 0«®l, x �s� 
5 33 31 31 31 31 
10 62 61 60 57 61 
20 133 130 129 129 130 
50 306 292 291 291 292 
 «-.( D-.( x �sS 
5 26 49 76 325 5.8 
10 30 55 82 262 11 
20 38 65 94 160 25 
50 46 79 110 141 40 

  

 
 

Figure 2.5-3. Frequency characteristics of the “best” smoothing filters: optimal 
(� = 302), SG (power=6, � = 74), and FT (� = 5x10�B ): (solid dotted, and 

dash-dotted curves, respectively). � = 0.01. 
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Conclusion 
 

   Numerical data, obtained by computer modelling, showed that the SG 
and Fourier filters have near-optimal smoothing properties. However, the 
optimal parameters of these filters (in the chapter’s context) depend on 
the "pure" unknown measurement signal (free of noise) and the noise 
properties.  
   Generally speaking, since the solution to the optimal smoothing 
problem contains so many unknowns, it requires the correct initial 
conditions for further discussion: the optimal smoothing criteria, the 
signal which must be smoothed, and the noise characteristics.  
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CHAPTER SIX 

SMOOTHING AND DIFFERENTIATION USING A 

REGULARIZED CONTINUOUS FOURIER 

TRANSFORM  

 
 
 
   In this chapter, we continue the theoretical estimating of the pseudo-
optimal parameters the differentiation and smoothing. However, the 
calculations are performed using a regularized continuous Fourier 
transform (CFT). The error data, obtained by CFT, are compared with the 
estimations performed using the Savitzky-Goley (SG) filters (Chapter 
2.3) and the discrete FT (DFT) (Chapter 1.4). 
   Let us consider the Gaussian and the Lorentzian model peaks with unit 

maximum intensities: ���(ν) = exp[−4��2(ν �⁄ )	],                                                            (2.6 − 1)  �
�(ν) = 1 [1 + 4(ν �⁄ )	]⁄ .                                                                (2.6 − 2)  
 The integral FTs of these peaks in the frequency domain are �#��(!) = �Q���(!),                                                                              (2.6 − 3)  �#
�(!) = �Q
�
(!),                                                                               (2.6 − 4)  

where Q� = ��/��2 2⁄ ; �� = '!$(− !	 16��2⁄ );  ! = -�;  - is Fourier 

(angular) frequency; �
 = '!$(−0.5|!|) ; Q
 = �/2. 
   Suppose that a noise corrupts the peaks. Then, the dispersion of the �LM-order derivative (for smoothing � = 0) is [1] ��	 = (1 2�⁄ ) ∫ �(-)¹(-) [1 + ��(-)]	⁄��� -,                          (2.6 − 5) 

where, �(-) = �(-)�(−-);  �(-) = (�-)�  is the operator of the 

precise differentiation; � = √−1; ¹(-) is a spectral noise power; � is the 

regularization parameter; and �(-) = -	� is the stabilizer (Appendix 
G).  

   For the white noise with dispersion �	 
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 ¹(-) = �	i,                                                                                             (2.6 − 6)   

where i = �/-� is the time constant of the spectral instrument; -�  is the 
maximum Fourier frequency of the instrument’s bandwidth. Therefore, 

the integration limits in Eq. (2.6-5) are [−-�, -�]. By substituting 
Eq.(2.6-6) into Eq.(2.6-5), we have ��	 = (�	 -�⁄ ) ∫ -	� [1 + �-	�]	⁄T×� -.                                       (2.6 − 7)  

   The systematic error of the �LM-order derivative of the model peak, 

which Fourier transform is �#(-) is ∆Ã= (1 2�⁄ ) ∫ {�#U(-) − �#U(-) [1 + ��(-)]⁄ }exp (−�-À)-T×�T× =  −(� 2�⁄ ) ∫ {�#U(-) �(-) [1 + ��(-)]⁄ } exp(−�-À) -T×�T× ,    (2.6 − 8)  

where �#U(-) = �#(-)�(-). 
   The total error is ∆L¦L\Ô(�) (À, �, $) = &��	 + ∆Ã 	.                                                               (2.6 − 9)  

 
Smoothing filters 
   We numerically estimated the ���§∆L¦L\Ô(�) (À, �, $)¨ over � and $ in the 

peak maxima (À = 0). By substituting Eqs. (2.6-6)-(2.6-8) into Eq. (2.6-
9), we have 

 
   Since the peak maximum is the unit, the relative total error is #L¦L\Ô(�) = ∆L¦L\Ô(�) (0, �, $).                                                                       (2.6 − 11)   

By substituting a dimensionless variable ! = �- into Eq. (19) and using 
Eqs. (2.6-10) and (2.6-11), we finally obtain  

 
To compare the total errors, estimated by Eq. (2.6-12), with the errors of 
the optimal SG smoothing filters, we took the upper limit of the integral 
(Eq. (2.6-12)) with !� equal to the maximum value corresponding to the 
discrete SG filters: !� = �� ℎ⁄ = � <⁄ .                                                                            (2.6 − 13)  
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Results and discussion 
   Tables 2.6-1 and 2.6-2 include some optimal parameters of the Fourier 
smoothing of the Gaussian and Lorentzian peaks. These data, illustrated 
by Figures 2.6-1-2.6-6, allowed us to draw the following conclusions. 
1. The errors estimated for the Lorentzian model are more significant 
than those for the Gaussian. This conclusion is due to the slowly damping 
tail of the Fourier spectrum of the Lorentzian curve compared to the 
quickly fading Fourier spectrum of the Gaussian (Eqs. (2.6-3) and (2.6-
4)).  
2. Figure 2.6-3 demonstrates very weak parabolic dependences #(�) 

(� = 1/Ö�), which are very close to the linear plots. 
3. #~1/(1 + $	) (Fig. 2.6-4). If $ increases, then the Fourier filter 1 (1 + ?!	�)⁄  (Eq. (2.6-11)) approaches the rectangle window (Fig.2.6-

2). Therefore, when $ is significant, further increasing of $ has a small 
impact on the error. 

4. There is the following precise approximation:  #�_�(�) (<) ��ø¦�öL, í×�ø¦�öL = �ö(�)%√< Ö�W & + �_(�).                                    (2.6 − 14)  

   Appendix I includes Table 2.6-3 and 2.6-4, which contain the slope �ö(�)
 and the intercept �_(�)

. 

   Eq. (2.6-14) shows that the slope of the dependence #�_�(�) (<) similar to 

that of the SG method (Chapter 2. 3) [2]: #�_�(�) = �	L�(�) %√</Ö�&(GLÙOG) (GLÙOH)⁄ .                                                (2.6 − 15)  

However, the intercept appears.  
5. By minimizing Eq. (2.6-12), we obtained the following dependences of 

the optimal regularization parameter ?¦�L(�) : ?¦�L(�) = %−�ö(�)&í×,V$ + %−�_(�)&í×,V .                                               (2.6 − 16)  �¤%%?¦�L(�) & = %�ö(�)&�,Vlog (�) + %−�_(�)&�,V .                                   (2.6 − 17)  �¤% ²?¦�L(�)³ = ²−�ø(�)³� %√< Ö�W &	 + ²�ö(�)³� √< Ö�W + ²−�_(�)³� .   (2.6 − 18)  
Tables 2.6-5- 2.6-10 (Appendix I) represent all constants. 
   The errors obtained using the discrete and integral FT are not very 
different from each other (e.g., Tables 2.6-1 and 2.6-2, Ö� = 100). 
6. Only for the large power p of the Fourier stabilizer, the errors, obtained 
by Fourier smoothing, are less than those obtained by the SG filters. 
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Table 2.6-1. The optimal parameters of the Fourier smoothing of the 
Gaussian peak 

p Parameters 
âs 

10 20 50 100 200 

2 
0«®l(s) , % 2.4531 1.3305 0.5910 

0.3195 
(0.2800)* 
(0.3215)** 

0.1726 

W-.((s)  1.00x10�G 
5.16x10�H 

2.20x10�H 
1.18x 10�H 

6.30x10�I 

3 
0«®l(s) , % 2.2401 1.1892 0.5129 

0.2710 
(0.2624)* 
(0.2753)** 

0.1431 

W-.((s)  3.23x10�I 
1.53x10�I 

6.03x10�J 
3.076x 10�J 

1.59x10�J 

4 
0«®l(s) , % 2.1628 1.1369 0.4836 

0.2527 
(0.2533)* 
(0.2571)** 

0.1319 

W 9.30x10�� 
4.00x10�� 

1.43x10�� 
6.90x 10�B 

3.45x10�B 

5 
0«®l(s) , % 2.1284 1.1131 0.4700 

0.2441 
(0.2479)* 
(0.2476)** 

0.1266 

W-.((s)  2.50x10�B 
9.60x10��� 

3.07x10��� 
1.39x 10��� 

6.55x10��� 

6 
0«®l(s) , % 2.1112 1.009 0.4629 

0.2396 
(0.2445)* 
(0.2430)** 

0.1238 

W-.((s)  6.50x10��� 
2.18x10��� 

6.11x10��	 
2.55x 10��	 

1.13x10��	 < = 0.02, * SG filter, ** Discrete FT 
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Table 2.6-2. The optimal parameters of the Fourier smoothing of the 
Lorentzian peak 

p Parameters 
âs 

10 20 50 100 200 

2 
0«®l(s) , %, 2.7932 1.5297 0.6853 

0.3720 
(0.3406)* 
(0.3715)** 

0.2015 

W-.((s)  3.83x10�H 

1.78x10�H 
7.00x10�I 

3.55x 10�I 
1.85x10�I 

3 
0«®l(s) , % 2.6373 1.4217 0.6227 

0.3319 
(0.3280)* 
(0.3310)** 

0.1764 

W-.((s)  
5.37x10�J 

2.04x10�J 
6.4510�� 2.90x 10�� 1.36x10�� 

4 
0«®l(s) , % 2.5905 1.3879 0.6026 

0.3189 
(0.3221)* 
(0.3187)** 

0.1681 
 

W-.((s)  
6.80x10�B 2.04x10�B 5.03x10��� 

1.93x 10��� 
7.94x 10��� 

5 
0«®l(s) , % 2.5738 1.3749 0.5945 

0.3135 
(0.3190)* 
(0.3126)** 

0.1647 

W-.((s)  
8.00x10��� 

1.90x10��� 
3.60x10��	 

1.20x 10��	 
4.10x10��F 

6 
0«®l(s) , % 2.5679 1.3695 0.5908 

0.3110 
(0.3170)* 
(0.3139)** 

0.1631 

W-.((s)  
9.30x10��F 

1.71x10��F 
2.42x10��G 

6.50x 10��H 
1.95x10��H < = 0.02, * SG filter, ** Discrete FT 
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Figure 2.6-1. The error dependencies #�_�(�)

 (�) for the Fourier smoothing  
of the Gaussian (a) and Lorentzian (b) peaks. < = 0.02. 

 
 
 
 
 

 
Figure 2.6-2. The error dependencies #�_�(�)

 (1/ (1+$	)) for the Fourier smoothing  
of the Gaussian (a) and Lorentzian (b) peaks. � =0.1, 0.05, 0.02, 0.01, 0.005  
from the top to the bottom dotted curves. The SG data refer to the solid curve. 

 (see Tables 2.6-1 and 2.6-2). < = 0.02. Ö� = 100.  
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Figure 2.6-3. The error dependencies #�_�(�)

 (√</Ö�) for the Fourier 
 smoothing of the Gaussian (a) and Lorentzian (b) peaks.   $ = 2 −  6 from the top to the bottom curves. Ö� = 100. 

 
 

 
Figure 2.6-4. The dependencies ?¦�L(�)

 ($) for the Fourier smoothing of the 

Gaussian (a) and Lorentzian (b) peaks. Ö� = 10, 20, 50, 100, and 200  
from the top to the bottom curves. < = 0.05.  

 

 

 
Figure 2.6-5. The dependencies ?¦�L(�)

 (�) for the Fourier smoothing of the 

Gaussian (a) and Lorentzian (b) peaks.$ = 2: 6 from the top to the bottom 
 curves. < = 0.05.  
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Figure 2.6-6. The dependencies ?¦�L(�)

 (√</Ö�) for the Fourier smoothing of the 

Gaussian (a) and Lorentzian (b) peaks. $ = 2: 6 from the top to the bottom 
curves. 

 
 
 

Differentiation filters 
   We numerically estimated the ���§∆L¦L\Ô(�) (À, �, $)¨ over � and $ in the 

extrema points (À = 0) for the 2nd-order derivatives (� = 2) of the 
Gaussian and Lorentzian peaks. 
   By substituting the operator of the 2nd-order differention (−-	) into 
Eq. (2.6-10), we have 

 
By transforming the variable - to the dimensionless variable -�, similar 
to Eq. (2.6-12), we obtain 

 
The total error relative to the absolute value of the derivative peak 

intensity in À = 0 measured from the zero-line is #L¦L\Ô(	) = ∆L¦L\Ô(	) (0, �, $) %`(	) �	⁄ &W ,                                               (2.6 − 21)  

where `(	) = 5.545�	 and 8�	 for the Gaussian and Lorentzian peaks, 

respectively. 
   Finally, we have 
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Results and discussion 
   Tables 2.6-11 and 2.6-12 include some of the optimal parameters of the 
Fourier differentiation of the Gaussian and Lorentzian peaks, 
respectively. These data, illustrated by Figures 2.6-7-2.6.12, allowed us 
to conclude the following: 
1. The errors estimated for the Lorentzian model are more significant 
than those for the Gaussian. This conclusion is due to the slowly damping 
tail of the Fourier spectrum of the Lorentzian peak compared to the 
quickly fading Fourier spectrum of the Gaussian peak (Eqs. (2.6 −3) and 
(2.6-4)).  
2. Figure 2.6-7 demonstrates the linear dependences #(√�) (� = 1/Ö�).  

3. #~1/(1 + $F) (Fig. 2.6-8). The power of $ became larger than the one 
taken for the smoothing (Fig. 2.6-2). 

4. If $ increases, then the Fourier filter 1 (1 + ?!	�)⁄  (Eq. (2.6-20)) 
approaches the rectangle window. Therefore, when $ is sufficiently large, 

further increasing $ has a small impact on the error. 
5. There is the following precise approximation:  #�_�(	) (<) ��ø¦�öL, í×�ø¦�öL = �ö(	)%√< Ö�W & + �_(	),                                      (2.6 − 23)  

where the slope �ö(	)
 and the intercept �_(	)

 are given in Tables 2.6-13 and 
2.6-14 (Appendix I).  

 Eq. (2.6-23) shows that the slope of the dependence #�_�(	) (<) is similar 
to Eq. (2.6-15), but the intercept appears.  
6. The following dependences of the optimal regularization parameter ?¦�L(�)  are obtained by minimizing Eq. (2.6-22): ?¦�L(	) = %−�ö(	)&í×,V$ + %−�_(	)&í×,V .                                               (2.6 − 24)  �¤%%?¦�L(	) & = %�ö(	)&�,Vlog (�) + %−�_(	)&�,V .                                   (2.6 − 25)  �¤% ²?¦�L(	)³ = ²−�ø(	)³� %√< Ö�W &	 + ²�ö(	)³� √< Ö�W + ²−�_(	)³� .   (2.6 − 26)  

All constants are given in Tables 2.6-(15-20) (Appendix I). 
7. The errors obtained by Fourier differentiation, become less than those 
obtained by the SG filters but only for the large Fourier stabilizer’s 
orders, (Tables 2.6-11 and 2.6-12). 
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Table 2.6-11. The optimal parameters of the Fourier differentiation 
of the Gaussian peak 

p Parameters 
âs 

10 20 50 100 200 

2 
0«®l(�) , % 12.7597 8.6380 5.0754 

3.3657  
(2.945)* 

2.2207 

W-.((�)  2.530x10�G 
1.518x10�G 

8.020x10�H 
5.046x 10�H 

3.212x10�H 

3 
0«®l(�) , % 8.9024 5.6735 3.0749 

1.9171 
 (2.046)* 

1.1887 

W-.((�)  4.593x10�I 
2.280x10�I 

1.160x10�I 
6.700x 10�J 

3.950x10�J 

4 
0«®l(�) , % 7.6669 4.7370 2.4597 

1.4825  
(1.676)* 

0.8877 

W-.((�)  9.5800x10�� 4.640x10�� 1.924x10�� 
1.030x 10�� 

5.700x10�B 

5 
0«®l(�) , % 7.1242 4.3247 2.1906 

1.2942  
(1.484)* 

0.7588 

W-.((�)  2.040x10�B 
8.850x10��� 

3.200x10��� 
1.610x 10��� 

8.300x10��� 

6 
0«®l(�) , % 6.8468 4.1124 2.0513 

1.1969  
(1.372)* 

 
0.6926 

W-.((�)  4.366x10��� 
1.680x10��� 

5.410x10��	 
2.470x 10��	 

1.186x10��	 < = 0.01, * SG filter. 
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Table 2.6-12. The optimal parameters of the Fourier differentiation  
of the Lorentzian peak 

p Parameters 
âs 

10 20 50 100 200 

2 
0«®l(�) , % 21.0348 14.9831 9.3045 

6.3799 
(5.643)* 4.3242 

W-.((�)  7.156x10�H 
3.870x10�H 

1.825x10�H 
1.072x 10�H 

6.450x10�I 

3 
0«®l(�) , % 16.8271 11.4627 6.6952 

4.3752 
(4.538)* 2.8220 

W-.((�)  5.100x10�J 
2.266x10�J 

8.520x10�� 
4.303x 10�� 

2.261x10�� 

4 
0«®l(�) , % 15.5862 10.4155 5.9214 

3.7864 
(4.098)* 2.3870 

W-.((�)  4.160x10�B 
1.500x10�B 

4.400x10��� 
1.910x 10��� 

8.700x10��� 

5 
0«®l(�) , % 15.1006 

 
9.9939 

 
5.6041 

 
3.5436 

(3.868)* 
2.2078 

 

W-.((�)  3.500x10��� 
1.020x10��� 

2.300x10��	 
8.600x 10��F 

3.400x10��F 

6 
0«®l(�) , % 14.8886 9.8004 5.4533 

3.4264 
(3.741)* 2.1204 

W-.((�)  3.000x10��F 
7.000x10��G 

1.200x10��G 
3.800x 10��H 

1.280x10��H < = 0.01, * SG filter. 
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Figure 2.6-7. The errors of the 2nd-order Fourier differentiation of the Gaussian 

(a) and Lorentzian (b) peaks. $ = 2: 6 from the top to the bottom lines. < = 0.01. 
 
 

 
Figure 2.6-8. The errors of the 2nd-order Fourier differentiation of the Gaussian 
(a) and Lorentzian (b) peaks. � =0.1, 0.05, 0.02, 0.01, 0.005 from the top to the 
bottom lines. < = 0.01. Ö� = 100. The SG data are represented by the solid line.  

 
 

 
Figure 2.6-9. The errors of the 2nd-order Fourier differentiation of the Gaussian 

(a) and Lorentzian (b) peaks. $ = 2: 6 from the top to the bottom lines.  
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Figure 2.6-10. Dependencies of the optimal regularization parameter on $ for the 

2nd-order Fourier differentiation of the Gaussian (a) and Lorentzian (b) peaks. 
 Ö� = 10, 20, 50, 100, and 200 from the top to the bottom lines. < = 0.02. 

 
 

 
Figure 2.6-11. Dependencies of the optimal regularization parameter on � for the 

2nd-order Fourier differentiation of the Gaussian (a) and Lorentzian (b) peaks. $ = 2: 6 from the top to the bottom lines. < = 0.02. 
 

 
Figure 2.6-12. Dependencies of the optimal regularization parameter on √</Ö� 
for the 2nd-order Fourier differentiation of the Gaussian (a) and Lorentzian (b) 

peaks. $ = 2: 6 from the top to the bottom lines.  
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Conclusion 
 

   In Chapter 2.5, we described a hypothetically optimal non-recursive 
digital smoothing filter, which minimizes the total error (the sum of the 
squared norms of the residuals, between accurate and smoothed signals, 
and of the smoothed noise). It has been proven theoretically that the 
optimal smoothing filter of constant and linear signals is the moving 
average filter. It was found that the SG and Fourier filters have near-
optimal smoothing properties for white and pink noises. 
   The present chapter showed that the total errors of smoothing and the 
2nd -order differentiation of the Gaussian and Lorentzian peaks, disturbed 
by the white noise, could slightly decrease using processing in the 
Fourier domain. However, in all cases, prior information about the peak’s 
shape and width is needed. It is impossible to optimally process such 
data, as we do not have the exact information in advance! One can 
practically obtain a set of smoothed curves and their derivatives, as well 
as perform measurements of the parameters needed for analytical 
purposes. Only ranges of these parameters are reliable to some extent. 
This result is similar to the decomposition of the overlapping peaks [1].  
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CHAPTER SEVEN 

SMOOTHING WITH SPLINES 

 
 
 

   Among the numerical procedures employed by analysts for smoothing 
and differentiation, the spline method is rarely used in practice [1-3]. The 
mathematical details and some applications of this method in 
spectroscopy are briefly discussed in Appendix A3. Here, we consider 
only some peculiarities of the method inherent to the processing of the 
analytical signals. 
   In the spline approximation, uniformly sampled data are "sewed" by 
piece-wised continuous polynomials. Some conditions of the continuity 
of the smoothed curve and its derivatives must be satisfied in the 
conjunctions (nodes).  
   The spline method's significant problems are the nodes selection, their 
distribution, and the polynomial spline's power. The quasi-optimal node 
selection criterion is the minimum mean square error of the spline fitting 
to the accurate data (or to the derivative). This selection is possible for 
the single peak of the known shape. However, for overlapped peaks that 
differ in intensities and widths, the optimization problem seems 
cumbersome. Usually, the nodes are condensed in the segment of the 
maximum peak curvatures (e.g., in the peak maxima, which are of the 
most interest). Therefore, the random errors increase. 
   Let us study the filtering properties of the cubic spline smoothing for 
the uniform nodes’ distribution. Consider the frequency characteristic of 
this spline [3]: ä(-) = 2ℎ-	 	¥���� 
	 � 1 − £¤¥2�u + 2 £¤¥2� + 2Ä£¤¥4�� ,                       (2.7 − 1) 

where - is the angular frequency; ℎ is the sampling interval; � = -ℎ 2⁄ ; u = 2ℎ 3⁄ + 6Ä;   = ℎ/6 + 4Ä; Ä = �$/ℎ	; � is the regularization 

parameter; $ is the constant weighting factor (Appendix A, Eq. (A-3.6)). 

If $ = 1, then Eq. (2.7-1) is readily transformed to  ä(-) = 3 	¥���� 
G � 13 − 2¥��	� + ?¥��G�� ,                                     (2.7 − 2) 
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where ? = 48�/ℎF. 
   The low-frequency harmonics (! = -ℎ ≪ 1 ) contain most of the 
useful information (Appendix A2):  äÊ�Ô(-) ≅ 1 [1 + (�/ℎF)!G]⁄ .                                                           (2.7 − 3)  

The frequency characteristic of the smoothing Fourier filter 

corresponding to Eq. (2.7-3) (Chapter 2.4), is  äï¦ðU(-) = 1 [1 + �ï-G] =⁄ 1 [1 + (�ï/ℎG)!G]⁄ .                      (2.7 − 4)  

If � = �ï/ℎ, then Eqs. (2.7-3) and (2.7-4) become equal. So, the cubic 
smoothing spline's filtering properties at low frequencies are similar to 
those of the smoothing Fourier filter ($ = 2). Figure 2.7-1 proves this 
conclusion. 
 

 
Figure 2.7-1. The relative difference of the frequency characteristics: 

 häï¦ðU(-) − äÊ�Ô(-)j/äÊ�Ô(-). < = 0.02; �ï = 10�H. 
 

 From the mathematical point of view, the nodes distribution with a 
constant interval is the simplest. However, this distribution produces false 
ripples similar to the SG differentiation [1]. 
 

Numerical experiment 
Models 
   Three Gaussian doublets with dimensionless parameters (Fig. 2.7-2): �? = È� '!${−Ä[(! + !�) ��⁄ ]	} + È	 '!${−Ä[(! − !�) �	⁄ ]	} + �, (2.7 − 5)  

where Ä = 4��2; ! = [−4: 0.02: 4]; � is the normal noise with mean zero 

and the standard deviation is � = 0.02.  
a. Symmetrical doublet: È� = È	 = 1; �� = �	 = 1; !� = 0.52. If the 
noise is absent, then the peak amplitudes È�� = È	� = 1.0599; and the 
peak positions !��� = −0.44, !�	� = 0.44.  
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b. Asymmetrical doublet: È� = 1, È	 = 0.5; �� = 1, �	 = 2; !� = 0.80. 
If the noise is absent, then the peak amplitudes È�� = 1.0881, È	� =0.5008; the peak positions !��� = −0.76, !�	� = 0.78.  
c.  

 
Figure 2.7-2. Gaussian model doublets. 

 
   Figure 2.7-3 represents the diagram of the experiment. For a given 
noisy doublet (Eq. (2.7-5)), the experiment involved the following steps 
in the program studySmoothSplines.m (Appendix SW-4):  

1. Doublet generation (gaussDoublet.m). 
2. Generation of the random breaks (knots) ( randBreaksGen.m). 
3. Fitting spline to the data (open source Matlab code: splinefit.m [4]). 
4. Checking of the doublet resolution (existence of the minimum 
between the peak maxima). 
5. Error estimation.  

   We estimated the mean total relative error of the 10G measurements of 

the peak intensities: ¯ = �¯�	 + ¯�	 ,                                                                                       (2.7 − 6)  
where the squared relative error ¯_	 = [∆_	 + �_	]/È_�	 ; � = 1,2; ∆_=È_� − ÈA_� is the systematic error of the peak amplitude (a difference 

between the true value and the mean value); �_ = ¥�(È_�) is the random 
error (the standard deviation).  

 Table 2.7-1 includes the mean peak shifts from their accurate positions 

(!��) (when noise is absent): ∆!C�/ℎÕÕÕÕÕÕÕÕ = %!C�ÕÕÕ − !��&/ℎ and the standard 

deviation �(!C�)/ℎ = ¥�(!C�)/ℎ. !�� ≠ !� due to the peak overlapping. 
   Table 2.7-2 represents the mean total relative errors (Eq. (2.7-6)) 
obtained for the asymmetrical doublet (model b). 
  
Exercise 2.7-1 
   Readers are invited to calculate the following parameters: ∆!C�/ℎÕÕÕÕÕÕÕÕ and �(!C�)/ℎ for model b, and compare their values with those given in Table 
2.7-1.  
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Figure 2.7-3. Diagram of the experiment. 
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Table 2.7-1. Symmetrical Gauss doublet (model a). Error data 

Spline 
order Parameter 

Number pieces 

20 30 40 50 60 70 80 90 

4 

»,% 1.88 0.75 0.42 0.28 0.28 0.47 0.55 0.44 ∆¬Es�/F 
-1.5 -0.9 -1.5 -1.4 -1.3 -2.1 -2.9 -2.0 

1.1 0.6 0.5 0.5 0.4 0.4 0.3 0.1 ∆¬Es�/F 
0.89 0.0 -0.3 - -1.4 -1.1 -1.7 -3.0 

1.0 0.6 0.5 0.4 0.7 0.3 0.5 0.2 

5 

»,% 0.81 0.48 0.62 0.28 0.19 0.23 0.53 0.85 ∆¬Es�/F 
-0.1 -1.0 -1.5 -1.2 -1.7 -3.0 -2.0 -3.0 

0.8 0.2 0.5 0.4 0.5 0.1 0.1 0.1 ∆¬Es�/F 
-0.2 0.3 0.02 -0.9 -1.0 -1.3 -2.4 -2.7 
0.9 0.5 0.2 0.4 0.5 0.4 0.7 0.5 

6 

»,% 1.00 0.71 0.51 0.22 0.19 0.37 0.33 1.02 ∆¬Es�/F 
-1.2 -1.0 -1.3 -1.0 -2.0 -2.0 -2.5 -

0.5 0.1 0.5 0.1 0.2 0.2 0.5 0.03 ∆¬Es�/F 
0.5 0.01 -0.2 -0.5 -1.2 -1.0 -1.9 -1.7 

0.5 0.1 0.4 0.5 0.4 0.1 0.3 1.3 

7 

»,% 0.48 0.48 0.55 0.24 0.16 0.14 0.73 0.65 ∆¬Es�/F 
-0.4 -1.0 -1.9 - -1.7 -2.5 -2.1 -2.9 

0.5 0.0 0.3 0.04 0.4 0.5 0.3 0.3 ∆¬Es�/F 
0.2 0.1 0.0 - -1.2 -1.1 -1.1 -3.0 

0.5 0.3 0.0 0.1 0.4 0.2 0.4 0.1 

8 

»,% 0.68 0.72 0.65 0.21 0.16 0.37 0.32 1.02 ∆¬Es�/F 
-1.0 -1.0 -1.0 -1.0 -1.0 -2.1 -2.0 -2.0 

0.2 0.02 0.1 0.02 0.1 0.3 0.2 0.06 ∆¬Es�/F 
0.2 0.0 -0.0 -0.9 -2.0 -1.0 -2.0 -1.6 

0.4 0.0 0.1 0.3 0.1 0.1 0.1 0.7 

The mean and the standard deviations of the ∆!C�_/ℎ are in the upper and lower 
rows, respectively. 

 
   Tabular data allow us to draw the following conclusions: 
1. The mean total relative error (¯) (Eq. (2.7-6)) of the peak intensities 
measurements in a given doublet smoothed by the spline method depends 
on the spline order (�) and the number of the pieces (Ç�). The functions ¯úX�ø¦�öL(�) and ¯L�ø¦�öL%Ç�& have minima (see bold, underlined 

numbers).  
2. The errors for the asymmetrical doublet are more significant than those 
for the symmetrical one. 
3. The uncertainties in determining the peak intensities increase, when 
the doublet is corrupted by the pink noise, compared to the distortions, 
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that caused by the white noise. This result is in full concordance with that 
obtained in the previous chapters. 
4. The absolute errors when determining the peak positions are usually 
less than two-three sampling intervals.  
 

Table 2.7-2. Asymmetrical Gauss doublet (model b). 
The mean total relative errors 

Spline 
order 

Number pieces 

20 30 40 50 60 70 80 90 

4 
1.06 0.62 0.66 0.89 1.22 1.67 1.91 1.90 
1.77 1.46 1.80 1.80 2.19 2.68 3.13 3.18 

5 
0.94 0.55 0.80 1.56 1.28 2.22 2.36 2.53 

1.02 1.63 2.37 2.51 3.15 3.54 3.41 2.78 

6 
0.84 0.59 0.65 0.91 1.05 1.56 2.26 1.73 

1.09 1.58 1.82 1.80 2.66 2.94 3.46 3.68 

7 
1.02 0.54 0.78 1.43 1.06 1.76 2.26 2.46 

0.92 1.41 2.28 2.11 3.13 3.94 3.30 2.69 

8 
0.94 0.60 0.71 1.19 1.28 1.90 2.38 1.88 

0.96 1.68 2.00 1.95 2.22 2.91 3.54 3.64 

9 
1.06 0.52 0.77 1.66 0.91 1.57 2.32 2.24 

0.89 1.20 1.90 2.34 3.21 4.03 3.31 3.08 

The data, obtained for the white and pink noises, are in the upper and lower rows, 
respectively. 

 
Exercise 2.7-2 
   Readers are invited to plot the noisy doublets smoothed by the spline 
and Fourier methods (program plotSplineSmoothedDoublet.m, Appendix 
SW-4). For a given doublet, you can change: (a) the standard deviation of 
the noise, the spline order, and the breaks; (b) the power and the 
regularization parameter of the Fourier smoothing. 

1. Pay attention to the fact that the fitting errors �ÓÓ��� = @�? − �?(ö�)@ 
of the spline and Fourier smoothing are different in each program run. 
Why? What is your conclusion about the reliability of a single numerical 
experiment? 
2. Try to choose the Fourier filter parameters so, that the fitting errors of 
the spline and Fourier smoothing are close to each other. 
3. How do the spline parameters affect the smoothed doublet? 
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CHAPTER EIGHT 

DIFFERENTIATION USING WAVELETS 

 
 
 
   Signals produced by analytical instruments are, in essence, random. 
Therefore, their description by deterministic mathematical expressions is 
only an appropriate approximate mathematical model. Random signals 
contain stationary and nonstationary parts. The first part's statistical 
properties do not change with time, while those of the second one do. For 
example, the mathematical expectation (mean) of the stationary process 
does not depend on time. The covariation function of this process only 
depends on the time intervals.  
   The wavelet transform (WT) was invented to analyze time series 
(processes) which have a nonstationary Fourier spectrum [1]. The power 
of Fourier harmonics is time-dependent. The main problem of the Fourier 
Transform (FT) analysis of such processes was that, in the time domain, a 
signal does not provide any spectral information. However, Fourier 
harmonics include no data about their time localization. Also, the Fourier 
decomposition of the discontinuous functions that have singular points is 
poor due to the Gibbs phenomenon (Appendix A). In this case, the reason 
is the same: Fourier coefficients do not indicate the location of these 
points. 
   The short-time windowed FT, which was based on a moving segment, 
was an inaccurate and inefficient time-frequency localization method. J. 
Morlet made the revolutionary step of introducing a different window 
basis function, a wavelet, for analyzing various frequency bands [1]. 
Further, the wavelet transform has been dramatically improved and has 
been successfully applied in signal processing. 
   From 1989, WT was mainly employed in analytical chemistry for 
denoising and data compression in flow injection analysis; high-
performance liquid chromatography; UF-VIS, IR, mass and NMR 
spectrometry; and voltammetry [2-10]. Chinese scientists have made a 
significant contribution to the development and application of this 
method [2-6]. 
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Theory 
 

   The WT principle is the decomposition of a signal �(�) into a set of 
wavelet basis functions (3(�)) ). It is assumed that the signal is square-
integrable. That is, the integral of its squared module is finite.  
 The continuous WT (CWT) [3] is ý2{�} = Q c �(�)3\,ù∗ (�)�,                                                          (2.8 − 1)���   

where 3\,ù(�) = %1 √¥⁄ &3[(� − )/¥]; ¥ and  are the scale and the 

dilation parameters, respectively; the asterisk designates complex 

conjugation. The normalizing constant Q must satisfy the admissibility 

condition:∫ |3(-)|	��� |-|-⁄ < ∞), where - is the Fourier frequency. 

   A demonstrative example of a family of continuous wavelets is the set 
of the 1st-to 5th-order derivatives of the Gaussian function (Chapter 1.2) 
[5]: ℱ�(�)(!) = (−1)�O� ?@?^@ℱ�(�)(!) = �(�)(!)ℱ�(�)(!),                     (2.8 − 2)  

where �(�)(!)= −!, (1 − !	), (3! − !F) , (6!	 − !G − 3), and (10!F −15! − !H) for � = 1 −5, respectively; ℱ�(�)(!) = exp (− !	 2⁄ ).  

The normalizing coefficient of ℱ�(�)(!) is 1/�2�(� − 1)! . The 2nd-order 

derivative is named the Mexican hat wavelet [11].  

   Figure 2.8-1 shows the real part of the Morlet wavelet [11]: 3(�) = Q exp(�-��) exp(− �	 2⁄ )                                                   (2.8 − 3)  

and its FT [11], 3(-�) = Q<(-)'!$[−(¥- − -�)	 2⁄ ],                                           (2.8 − 4)  

where � = �/¥; Q = 1/�G ; -� = ¥-; -�  is the dimensionless frequency 

(-�=6 satisfies the admissibility condition); 

 <(-) = § 1, - > 00, - ≤ 0. 

   Similar to the discrete FT (Appendix A), there is a discrete variant of 
the CWT, which is called the discrete WT (DWT), in which the wavelets 
(Eq. (2.8-1)) are discretely sampled [12]. 
   The mathematical tools used for the DWT are challenging to 
understand for non-professionals. For example, Mallat constructed 
wavelet functions using a multiresolution signal decomposition based on 
orthogonal projections [13]. Wavelets are often generated in the Fourier 
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domain. Mathematically, their Fourier representation is more 
straightforward than the one in the time domain. 

 
Figure 2.8-1. The Morlet wavelet (Eq. (2.8-3)) (a) and its FT components (b). ¥=0.01, 0.02,…, 0.05 from the left to the right curves. FT was plotted using 

software [11]. 
 
   The convergence of the WT decomposition of a function �(�) depends 

on the number ($) of the vanishing (zero) moments of the wavelet 

function 3(�). That is, for 0 ≤ S < $: ∫ �R��� 3(�)� = 0.                                                                                 (2.8 − 5)  

   Eq. (2.8-5) shows that 3(�) is orthogonal to the ($ − 1)LM-order 
polynomial. In other words, the convolution of the polynomial of the 

maximum degree $ − 1 with 3(�) is zero. The Gaussian wavelets ℱ�(�)(!) (Eq. 2.8-2) satisfy the condition defined by Eq. (2.8-5).  

   This property of ℱ�(�)
 is similar to that of the coefficients of the 

Savitzky-Golay ($ − 1)LM-order differentiation filter (SGF) (Chapter 

2.3). The SGF coefficients are the derivatives of the orthogonal 
polynomial in the middle point of the segment used for approximation. 

Analogously, the wavelet function with � vanishing moments is the �LM- 

order derivative of a smoothing function ¢(�) [5]: 3(�) = (−1)� �¢(�) ��⁄ .                                                                (2.8 − 6) 
The Gaussian derivatives (Eq. (2.8-2)) are examples of such functions. 
   According to Eq. (2.8-1), the WT of the function �(�) is its convolution 

with the wavelet function 3(�). The convolution (designated by the 
asterisk) has the following properties [5]: 
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�{!(�) ∗ >(�)} ��⁄ = �!(�) ��⁄ ∗ >(�) = >(�) ∗ �>(�) ��⁄ . 

Therefore, from Eq. (2.8-6), we have ý2{�} = � ∗3 = � ∗ �� �¢(�)�� = �� �{� ∗ ¢(�)}�� .                 (2.8 − 7) 

 So, the WT of a function �, performed by a wavelet with � vanishing 
moments, is the estimation of the �LM-order derivative of this function 
smoothed by ¢(�). 
   The more apparent integral form of Eq. (2.8-7) is the folding of the 
function � and the derivative of the wavelet 3\,ù(�) [9]: ý2 Ú��(�)�� Û = (−1)� � �(�) ��� �3\,ù∗ (�)��.                         (2.8 − 8)�

��  

   Eq. (2.8-8) justifies the fine structure analysis method of the signal �(�) using the wavelet derivatives [9]. 
   Following the classic approach [9], the matrix notation of the �LM-order 
derivative of the function � is r(�) = ½�r,                                                                                             (2.8 − 9)  
where ½� is the �LM-order derivative operator. 

   By multiplying both sides of Eq. (2.8-9) on the $LM-order derivative 

wavelet matrix L2X, we obtain  L2Xr(�) = L2X½�r = L2XY@r.                                                  (2.8 − 10)  

The least-square approximation of r(�):  rI(�) = ²L2X� L2X³��L2X� L2XY@r.                                              (2.8 − 11)  

The term L2XY@r , which coincides with Eq. (2.8-6), was used to study 

the resolution enhancement in WT spectrometry [9]. 

   The CWT Gaussian wavelet derivative of the Gaussian peak in the time 
domain is readily estimated by the inverse FT of the CWT derivative 
obtained in the frequency domain:  ���(�)(!) = (1/2�) c ��(-)3�(�)(-)��� '!$(�-!) -,                 (2.8 − 12)  

where ��(-)~�'!$(−$	/16��2) is the FT of the Gaussian peak; $ = -�; 3�(�)(-)~ − $ö'!$ (−$ö	/2); $ö = -¥.  

   By substituting ��(-) and 3�(�)
 into Eq. (2.8-12), we have ���(�)(!)~(¥/?) c $Z��� '!$(−$Z	/16��2)'!$(�-!) -,             (2.8 − 13)  

where ? = �1 + 8��2(¥/�)	; $Z = ?�- = �Z-.  
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So, ���(�)(!) is the CWT derivative of the broaden Gaussian peak with 

width of �Z = ��1 + 8��2(¥/�)	 ≅ �[1 + 4��2(¥ �⁄ )	],                     (2.8 − 14)   

if ¥ �⁄ ≪ 1. 
   Figure 2.8-2 shows that if the derivative curve broadens, its intensity 
decreases, while the scaling factor (¥) increases. If ¥ ≤ 0.2, then the plot 

is close to the precise derivative �f(�)
.  

 

 
Figure 2.8-2. (a) The precise and CWT Gauss derivatives of the Gaussian peak (� = 2) (dashed and solid curves, respectively). (b) The deviations from the 

precise derivative. Scale ¥ = 0.2, 0,4, … ,1.0 in the arrow's direction. All plots are 
normalized to the absolute value of the area under curves.  

 
   The choice of a wavelet, which is appropriated to analyze a given 
process, is of the most significant importance [9]. The shape of the user-
defined regularized wavelet must be adaptive to the structure of the data.  
 Interested readers can find in-depth descriptions of different wavelet 
basis functions (families) and WT methods in [3, 12]. The regularization 
procedures improved the approximation using wavelets [14, 15]. 
However, this issue is beyond the scope of this textbook, which is mainly 
dedicated to a chemical audience. 
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Numerical experiment 
 

   The models (Table 2.8-1) were disturbed by the white, blue, pink, and 
red noise with a zero mean and standard deviation of 0.02. The noise was 
generated using MATLAB software [16]. We performed the 1st-order 
differentiation using the SG method, the DWT (according to the 
algorithm and MATLAB program [16], based on the Haar wavelet), and 
the CWT based on the Gaussian 1st-order derivative wavelet. Obtained 
data included a large set of derivatives calculated 10G times, each time 
with a new regenerated noise. 
 

 
 
   Two criteria were adopted to compare these differentiation procedures 
(CWT, DWT, and SG). The first one was the minimum total error: ξ?_Ì = &�?_Ì	 + ∆?_Ì	 ,                                                                           (2.8 − 15) 

where �?_Ì	  is the variance of ���(�)
; ∆?_Ì	 = � ���(�)(!) − ���(�)ÕÕÕÕÕ(!)�	 !^E

^Ù  is 

the squared systematic error; ��(�)
 and ���(�) were normalized to the 

 EBSCOhost - printed on 2/12/2023 11:12 PM via . All use subject to https://www.ebsco.com/terms-of-use



    Differentiation Using Wavelets                                  145 
 

absolute value of the area under the curve. The simple integration of the 
precise derivative showed that this value equals two. The 1st-order 
derivative must be negligible out of the integration interval [!�, !	]. The 
bar stands for the mean data obtained in the repetitions. 
   As an example, Figure 2.8-3 represents the plots ξ�\�(¥), ��\�	 (¥) and ∆�\�(¥), which were obtained for the noisy Gaussian peak (��). These 
plots confirm the well-known fact that the minimum of the total error is 
achieved by the trade-off between systematic and random errors. 
However, surprisingly, there are minima of the systematic errors 
observed in the ranges of the significant random distortions. These 
minima are useful for the optimization of the differentiation procedure if 
the random noise is very small.  
   Figures 2.8-4-2.8-6 and Table 2.8-2 illustrate some of the results 
obtained by the numerical experiments. We conclude that 
1. The total errors of the SG and the CWT differentiation are close to 
each other. Let us explain this fact theoretically. It follows from Eqs. 

(2.8-1) and (2.8-2) that the CWT derivative, which was estimated using 
the Gauss wavelet, is ��(!�)~ ∫ �(!)[(! − !�) ¥⁄ ]'!${−[(! − !�) ¥⁄ ]	}!.            (2.8 − 16)���   

Eq. (2.8-16) is approximately equals to the sum calculated in the range [−!Ô_�: ℎ: !Ô_�], where ℎ is the sampling interval: ��(!�)~ℎ P �(!)[(! − !�) ¥⁄ ]'!${−[(! − !�) ¥⁄ ]	}.   (2.8 − 17)^]°D^��^]°D   

   Suppose that in the narrow interval [−!� + !�, !� + !�], symmetrical 

around a point !�, (! − !�) ¥⁄ ≪ 1. Then 

 ��(!�)~ℎ ∑ �(!)^×O^Ù^��^×O^Ù (! − !�) ¥⁄ .                                          (2.8 − 18)  

Using corresponding the !-scale indexes, we have ��(��)~ℎ ∑ �(�)ý__×O_Ù_��_×O_Ù ,                                                                (2.8 − 19)  

where the constant coefficient ý_ = (� − ��)ℎ ¥⁄  varies in the range [−!�/¥, !�/¥].  
   The weights ý_ of the convolution (Eq. (2.8-27)) resemble the 
coefficients of the 1st-order differentiation SGF built on the 2nd-degree 
polynomial (Chapter 2.3):  ý_Ê� = [− � �⁄ , � �⁄ ],                                                                   (2.8 − 20)  

where = (2� + 1)(� + 1)�/3 . 
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Figure 2.8-3. Systematic, random, and total errors (dashed, dotted, and solid 
lines, respectively) of the CWT Gauss differentiation of the Gaussian peak 

disturbed by the white, pink, blue, and red noises (� = 0.02). (a-d, respectively). 
For these panels, �10G ∗ ���%ξ?_Ì&, ¥¦�L� = {30, 0.26; 55, 0.32;  15, 0.20;  48, 0.26}. 

 

   Data obtained for the Gaussian peak disturbed by the normal noise 
(Table 2.8-2) show that the optimal value of the scale factor (¥¦�L) 
weakly depends on the sampling interval ℎ. It is clear, since the range [−!�/¥, !�/¥] is only determined by the precision of the linear 
approximation and does not depend on ℎ. Insignificant changes of ¥¦�L  
are due to the influence of the sampling interval on the accuracy of the 
numerical procedures.  
 
2. The difference between the precise and the CWT derivatives of the 
Gaussian peak is less than that of the Lorentzian peak (Fig. 2.8-4, Table 
2.8-2)). The SG method demonstrates a similar behavior.  
3. As a rule, the DWT differentiation has the most significant total errors.  
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Table 2.8-2. The minimum total errors (x�s�) of the 1st-order 
 differentiation 

Model Noise 
Processing 

CWT SG DWT 

Gaussian 
peak 

white 

30 (0.26) 30 (26) 32 

22 (0.25)* 22 (36)* 25* 

18 (0.24)** 17 (47)** 27** 

pink 55 (0.32) 53 (32) 55 

blue 15 ( 0.20) 17 ( 20) 26 

red 48 (0.28) 47 (26) 48 

Lorentzian 
peak 

white 41 (0.22) 40 (22) 47 

pink 70 (0.28) 68 (28) 69 

blue 21 (0.16) 24 (18) 43 

red 59 (0.24) 58 (22) 62 

Gaussian, 
Lorentzian and 

Sigmoid 
Functions*** 

white 20 (0.18) 20 (42) 27 

pink 41 (0.22) 40 (56) 61 

blue 8.8 (0.12) 10 (30) 11 

red 35 (0.18) 34 (46) 38 

Triangle 
peak 

white 128 (0.14) 132 (12) 168 

pink 152 (0.16) 155 (14) 173 

blue 104 (0.090) 113 (9) 168 

red 122 (0.080) 124 (8) 171 

The number in parentheses are the optimal parameters ¥ and � for the CWT and 
SG (2� = 2) methods, respectively. The DWT level is 6. ℎ = 0.0156, (*) 0.0104, 

(**) 0.0078 and (***) 0.0064. The maximum signal-to-noise ratio is 50. 
 

4. Both pink and red noise has a power spectrum, which dominates at low 
Fourier frequencies and causes the most significant error. However, blue 
noise, whose the power spectrum increases at high frequencies, is 
suppressed by the smoothing multipliers of the differentiation filters. 
Therefore, in this case, the total errors are minimal. 
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Figure 2.8-4. The Gaussian (a) and Lorentzian (c) peaks disturbed by the normal 

noise and their 1st-order derivatives (panels b and d, respectively): precise and 
estimated by the SG filter and the CWT ( dashed, dotted, and solid curves, 

respectively). Processing parameters are given in Table 2.8-2. 
 

5. The derivative of the triangle function (Fig. 2.8-5, panels b and d) 
significantly differs from the precise curve. The smoothed derivative is 
obtained by the DWT method (panel d) but at the cost of increasing 
systematic errors. 
6. All figures demonstrate weak ripples in the WT derivatives. The 
regularized wavelet derivatives also showed such artifacts [15].  
 

   Our numerical experiments showed that, in the framework of the 
standard models, which are used in analytical spectrometry, wavelet 
differentiation has no advantage over the SG method. 
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Figure 2.8-5. The triangle peak disturbed by the normal noise (a), and its 1st-

order CWT and DWT derivatives (solid curves in panels b and b, respectively). 
The precise and SG derivatives are shown by dashed and dotted curves, 

respectively. Processing parameters are given in Table 2.8-2 
 

 
Figure 2.8-6. (a) The Gaussian, Lorentzian, and sigmoid peaks disturbed by the 

normal noise (from the left to the right) (Eq. (2.8-15)); (b) Their 1st-order 
derivatives: precise and estimated by the SG filter and CWT ( dashed, dotted, and 

solid curves, respectively). Processing parameters are given in Table 2.8-2. 
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Exercise 2.8-1. 
   Readers are invited to study the 1st-order derivatives of the models 
(Table 2.8-1) obtained by the CWT, DWT, SG, and FT methods 
(plotD1WTSGFT.m, Appendix SW-5). By varying the parameters of the 
differentiation procedures, you can trace how the shape of the curves and 
the noise change, as well as how they correspond to the exact derivative. 
Which method do you prefer? 
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CHAPTER NINE 

OPTICAL DIFFERENTIATION: SLIT 

MONOCHROMATORS 

 
 
 

   Optical differentiation is directly performed in the optical part of the 
spectral instrument, usually in monochromators. If the light source is a 
laser, then differentiation may be carried out by the wavelength or 
frequency modulation of the laser beam. In the multiplex spectrometers 
based on coding (e.g., [1]), a special mask may, in principle, be used for 
differentiation. 
   Dual-wavelength techniques and the wavelength modulation in the slit 
monochromators were the most popular instrumental methods of the 
optical differentiation in 1960-80s [2]. In the dual-wavelength optical 
differentiation (DWOD) device, the difference between the two signals, 
having close wavelengths �_ and �_O�, is measured: ∆È_O� = È(�_O�) − È(�_),                                                                    (2.9 − 1)  
where � = 1, 2, … 
   So, DWOD is similar to the finite-difference numerical procedure 
(Chapter 2.2). The DWOD monochromator includes two coaxial grids 
shifted by a small angle. The beams, which are diffracted by these grids, 
are alternately directed on the detector. However, the optical densities È(�_) must be generated before subtraction (Eq. (2.9-1)).  
   DWOD should not be confused with the routine dual-wavelength 
quantitative analysis, which is widely used in analytical spectrometry 
(e.g., [3]). In the last method, only two, not close wavelengths, serve as 
analytical points. 
   The disadvantage of DWOD is that it produces only the 1st-order 
derivative. 
 

The theory of the optical modulation 
 
   Optical modulation (wavelength (WM) and frequency (FM)) is a kind 
of modulation spectroscopy (MS). MS allows researchers to increase the 
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sensitivity of the analysis and reduce (wholly or partly) the impact of the 

interference signals. Generally speaking, the light emitted or absorbed by 
a sample is modulated by periodical distortions of the sample state or the 
light beam. For example, in the first case, the pressure, the electric, or 
magnetic fields are changed. Since these changes are often not possible in 

practice, the light distortions (WM or FM) are the standard methods of 
MS. Figure 2.9-1 illustrates the modulation principle in a simple way. 
The signal (e.g., the light intensity) is modulated by changing the spectral 
abscissa argument: À� = À − Àø = ∆À£¤¥-��,                                                                    (2.9 − 2)   

where Àø = À in the lack of modulation; ∆À and -� are the amplitude 

and the angular frequency of the modulation, respectively. 
   Suppose that the amplitude ∆À is so small that the spectral curve may 
be considered to be linear in the interval [�, �]. In this case, the amplitude 
of the spectrum, which is modulated by frequency -�, is proportional to 
the slope of the curve È(À) at the point Àø; that is, to the 1st-order 
derivative È(�)(Àø).  
 

 
Figure 2.9-1. The modulation principle.  

  
    Let us consider a general approach to generating the function’s 
derivatives via the arbitrary modulation of argument À (Fig. 2.9-2) [4]. 
   Taking Eq. (2.9-2) into account, we have the Taylor series near À� = 0: È(À) = P È(�)(À�)���� ((∆À)� �!⁄ )£¤¥�-�� =  
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 P È(�)(À�)���� ((∆À)� �!⁄ )[('!$(-��) + '!$(−�-��)) 2⁄ ]� =  P ì(�) ∑ Q�R'!$[�(� − 2S)-��]�R������ ,                                         (2.9 − 3)  

where � = √−1; ì(�) = È(�)(À�) (∆À/2)� �!⁄ ; Q�R = �!/[(� − S)! S!]. 
The system multiplies È(À�) by the reference signals and filters the result 

in the range h– � -�⁄ , � -�⁄ j. Therefore, the output is 

 
 

 
 

Figure 2.9-2. Diagram of the modulation device [4]. 
 ^ is the multiplier. ¾�r is the low-pass filter.  

 
    The reference functions Ó_(�), which are represented by the infinite 
Fourier series, were selected so that �_ = ì(_). To simplify the solution, È(À�) was approximated by the polynomial with power 2�. For example, 
Table 2.9-1 represents Ó_(�) for 2� = 8 [4]. 
   According to Eq. (2.9-4) and Table 2.9-1, the terms Ó__�(�) compensate 
the impact of the derivatives with an order greater than eight. This 
conclusion is only valid if the modulation amplitude is small enough to 
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guarantee a statistical validity of the curve approximation by the 8th-order 
polynomial. 
   For the white noise of the input signal, the mean squared error of the �LM-order derivative [4] is ��	(�)ÕÕÕÕÕÕÕ~ P Ó�R		LR�� .                                                                                  (2.9 − 5)  

Therefore, if the polynomial order increases, then the noise in the 
derivatives also increases. 
 

 
 

   Consider Eq. (2.9-3) in a more detailed form: È(À) = È(À�) + È(�)(À�)∆À£¤¥-�� +  È(	)(À�)[(∆À)	 4⁄ ](1 + £¤¥2-� �) +  È(F)(À�)[(∆À)F 24⁄ ](3£¤¥-�� + £¤¥3-��) +⋯                          (2.9 − 6)  

   In the conventional method, the �LM-order optical derivative is obtained 

using the lock-in amplifier (Appendix J). The harmonic £¤¥�-�� and the 

reference signal Ó�(�) = £¤¥�-�� are multiplied and low-pass filtered.  
   In the general approach [4], a combination of different harmonics was 
used. However, in the conventional method, the modulation amplitude ∆À 
must be small enough to suppress the impact of the derivatives of the 
order more than �. For example, in Eq. (2.9-6) the factor of the 1st-order 
harmonic £¤¥-��{È(�)(À�)∆À + È(F)(À�) (∆À)F 8⁄ + ⋯ } contains the 3rd 
- and higher-order derivatives. Therefore, the signal-to-noise ratio of the 
conventional method is less than that of the general approach [4].  
   An advanced theoretical description of FM and WM spectroscopy [5] 
oriented toward physic, is cumbersome for chemical analysts. Therefore, 
we tried to simplify the explanation using our old textbook [2].  
   In a more general case, than that described by Eq. (2.9-2), the 
sinusoidal modulated optical field intensity [5] is 
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 �(�) = ��'!$(�-�) = ��'!$(�-��) P `�(∆À)����� '!$(��-��),         (2.9 − 7)   

where - = -�� + ∆À¥��-��; -�  is the carrier frequency; `� is the �LM-
order Bessel function, which characterizes the Fourier components of the 
modulated signal.  
   In typical WM spectroscopy, the amplitude ∆À is large. Therefore, 
many sidebands at -� ± �-�, which are stronger than the carrier, are 
observed. In FM spectroscopy, the amplitude ∆À is so small that there is 
only one set of sidebands at -� ± -�. The higher-order components are 
negligible. 
   The authors of the theoretical analysis [5] assumed that the field (Eq. 

(2.9-7)) was absorbed by a sample characterized by a complex 

transmission function N(-�). The transmitted optical field was �(�) = ��'!$(�-��) P N(-�)`�(∆À)����� '!$(��-��).           (2.9 − 8)  

The algebraic expressions of intensity Y�TD(�)Y	
 were obtained for the 

WM and FM spectroscopy. 
   In the partial case of the derivative WM spectrometer [6], the authors 

found the Fourier transform (FT) of the modulated signal: Èa(-�) = Èa(�)(-�)ä#Z (uZ)ò%ub , -�&,                                              (2.9 − 9)    

where ò%ub , -�& = `�%ub& + 2 ∑ kR�R�� , kR = `	R%ub&£¤¥ (2S-��) − �`	R��%ub&¥�� ((2S − 1)-��);  uZ = -�¥; ub = -�∆À; -� is the Fourier frequency, whose units are 

reversible to those of À; Èa(�)(-�) and ä#Z(uZ) are the FT of the source 

signal and the instrumental function of the monochromator (which width 

is ¥), respectively. 

   The term kR (Eq. (2.9-9)) is the detailed form of the sum in Eq. (2.9-7). 
For the triangle instrumental function, ä#Z(uZ) = [¥��(uZ )/(uZ)]	.                                                          (2.9 − 10)  

   Eq. (2.9-9) shows that the amplitude of the �LM- harmonic depends on 

the term `�%ub&, which defines the filtering properties of the optical 

differentiator. If ub ≪ 1, then [7] 2`�%ub& = 2 C (��)cR!(RO�)!
�
R�� ²$d	 ³RO� ≈ e(�)ub� Ú1 − $dEG(�O�)Û,    (2.9 − 11)  

where e(�) = 1/(�! 2���). 
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   Suppose that the relative systematic error of the �LM-order 

differentiation is not higher than 10%. In other words, the second term of 
Eq. (2.9-11) is less than 0.1. Then ub = -�∆À ≤ 0.63√� + 1.                                                                (2.9 − 12)  

 Let the range of uZ  be limited by the first zero of the instrumental 

function (Eq. (2.9-10)):  uZ = -�¥ ≤ �.                                                                                    (2.9 − 13)  

Then from Eqs. (2.9-12) and (2.9-13), we have the maximum modulation 
amplitude: 

 ∆À ≤ 0.2¥√� + 1.                                                                               (2.9 − 14) 

If the line width � >> ¥, then approximately  ∆À ≤ 0.2QÔ�√� + 1,                                                                           (2.9 − 15)        

where the coefficient QÔ depends on the line shape. 

   For the relative low light power variation, the �LM- harmonic output 

(coefficient) of the lock-in amplifier is [8]  <�(Àø)~ ∫ N(Àø + ∆À£¤¥-��)£¤¥(�-��)�.f/TD�f/TD                    (2.9 − 16)  

   Dyroff [9] used the ideal laser-based model, which did not change its 

output intensity during tuning. The FT of Eq. (2.9-16) (the frequency 
response) for the model is <"�(S)~e(�)(∆À)�N# (�)(S) `�(2�∆ÀS) (�∆ÀS)�⁄ .                       (2.9 − 17)    

The properties of the harmonic spectra (Eq. (2.9-17)) were studied. Two 

properties were similar to those of the �LM-order derivative: the zero 

mean value and orthogonality to polynomials of degree lower than � (for 
the Savitzky-Goley algorithm). The author showed that the transmission 
spectrum equals the zeroth-harmonic corrected with higher harmonic 
spectra:  

 N(À) =  <�(À) − <	(À) + <G(À)+ . . . + (−1)�<	�(À) +  … (2.9 − 18) 
Eq. (2.9-18) is a partial case of the general expression, which describes 
all the instrumental distortions of spectral devices [2]. 
   Since real lasers demonstrate nonlinear behavior with respect to the 
laser current, the light intensity modulation overtones appear. Therefore, 
the nonlinear model was developed [8].  
   Dissertation [8] cited known approaches to the solution of Eq. (2.9-16). 
   A new method [8] based on the approximation of the transmission by a 
piecewise polynomial was suggested. In principle, this method is similar 
to a general approach to generating derivatives (Fig. 2.9-2) [4]. However, 
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the domains (time and Fourier), and mathematics were different.  
   In order to perform a detailed study of the filtering properties, we 
considered a general diagram of the two-beam optical differentiator (Fig. 
2.9-3). This device includes a common monochromator with WM 
equipment.  
   In the single-beam mode, the input slit of the monochromator is 
illuminated by the radiation  �� = ���(1 + �) + ��,                                                                          (2.9 − 19)  
where ��� is a deterministic term; �� is a noise produced by background 
emission or absorption; and � is a fluctuating multiplier, which has one-
sided power spectral density, ¹å�(-) = �� + �� -⁄ ,                                                                       (2.9 − 20) 

where �� and �� are the white and the flicker noise constants, 

respectively. 
 

 
Figure 2.9-3. Diagram of the optical differentiator. LS is the light 
 source, S-sample, M-monochromator, and EB-electronic block. 

 
   We suppose that the range of ν is small, therefore, the noise does not 
depend on ν.  
   The spectral density of ��is ¹åP(-) = �P + �P -⁄ ,                                                                        (2.9 − 21) 
where �P is due to the drifts of the sample and transmittance of the 
atmosphere, and other factors independent of ���. 
   The combined effect of �, ��, and the electronic block (EB), adjusted to 

the EB input, is expressed by the spectral density, ¹åj�(-) = È + g -⁄ ,                                                                        (2.9 − 22) 

where È = ¢	%��Z���	ÕÕÕÕ + �PZ& + �?¢���ÕÕÕÕ + �j� and g = ¢	%��Z���	ÕÕÕÕ + �PZ& + �?¢���ÕÕÕÕ + �j� are the white and flicker noise 
constants, respectively; ¢ is the transmittance of the monochromator; 
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subscripts � and  designate the impacts of the monochromator and the 
light detector, respectively; ���ÕÕÕÕ is the mean light intensity at the detector 
in the range Àø ± ∆À. 
   The central frequency of the lock-in amplifier is �-�, and the time 
constant of EB is i ≫ i? ≤ �/�-�, where i? is the time constant of the 
detector.  
   Let Ä be the transfer factor of EB. Then the noise power of the �LM-
order derivative at the EB output  ��	ÕÕÕÕ = (Ä	 �⁄ ) ∫ ¹åj�(-)- =f/k�   (Ä	 �⁄ ) ∫ {È + g (- + �-�)⁄ }-f/k� =  Ä	{È i⁄ + (g �⁄ )�� (1 + � �-�i⁄ )} ≈  (Ä	 i⁄ )(È +  g �-�⁄ ),                                                                        (2.9 − 23)  

since �-� ≫ �/i, and �� (1 + � �-�i⁄ ) ≈ � �-�i⁄ .  

   The signal of the �LM-order derivative is equal to the FT of Eq. (2.9-9) 

[6]. 
   If the condition expressed by Eq. (2.9-14) is satisfied, then [2]:  È��(�)(Àø) ≈ e(�)(∆À)����(�)(Àø),                                                          (2.9 − 24)  

where e(�) is defined in Eq. (2.9-11); ���(�)(Àø) is the �LM-order derivative 

of the source signal convoluted by the instrumental function. 
   Taking the transfer factor of EB (Ä) into account, we obtain the signal-
to-noise ratio from Eqs. (2.9-23) and (2.9-24): Ö�(�) = È��(�)(Àø) &��	ÕÕÕÕW = e(�)(∆À)����(�)(Àø)3�¦_öV,                     (2.9 − 25) 

where 3�¦_öV = 7 iÈ +  g �-�⁄ = 9 �i/È, �¤Ó �ℎ' �ℎ��' �¤�¥'.> ��/g, �¤Ó �ℎ' ���£S'Ó �¤�¥'.    
   Eq. (2.9-25) shows that the signal-to-noise ratio may be improved if the 
modulation amplitude increases, but the conditions, expressed by Eqs. 
(2.9-14) and (2.9-15), are satisfied. In the single-point measurement (non-
scanning mode), the increase of the EB time constant may significantly 
suppress the white noise. However, the measurement time also increases. 
This mode is impossible for RC differentiation. However, the non-
scanning numerical differentiation of data segments, obtained by the 
diode-array spectrometer, can compete with the optical differentiation in 
the presence of the white noise. 
   Rough estimates [2] showed that in the scanning mode, the relationship 

between the signal-to-noise ratios is Ö�(�) Ö�(�)W ~�(È +  g -ö?⁄ ) (È +  g -�⁄ )⁄ ,                                  (2.9 − 26)  
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where -ö?  is the frequency of the synchronous detection in a scanning 
spectrometer. It follows from Eq. (2.9-23), that for the white noise, the 
signal-to-noise ratios of the RC and optical differentiation are 
approximately equal. For the flicker noise, the optical method is preferred 
over the RC differentiator if the modulation frequency -� ≫ -ö?. 
   C. Dyroff [9] discussed the shapes of the 2nd-order optical derivatives 
of the Gaussian and Lorentzian peaks. Interested readers can find a lot of 
the literature sources concerning this issue in this study. 
   Consider the double-beam optical differentiator (Fig. 2.9-3) [2]. In this 

device, the radiation, transmitted by the samples ¹� and ¹	, alternatively 

with interval ∆�, illuminates the input slit of the monochromator. The 

monochromator’s output noise is the mean squared difference of the 
noise of the light intensities in the following two channels: ∆�	ÕÕÕÕÕ = [¯��(�) − ¯�	(� + ∆�)]	ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕ =     ¯��	(�)ÕÕÕÕÕÕÕ + ¯�		(� + ∆�)ÕÕÕÕÕÕÕÕÕÕÕÕÕ − 2¯��(�)¯�	(� + ∆�)ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕ.                                (2.9 − 27)                          

If the noise is a stationary random process then, according to the Wiener-
Khinchin theorem:  ¯��	n = (1 �⁄ ) ∫ ¹å�f k⁄� (-)-, �		n = (1 �⁄ ) ∫ ¹å	f k⁄� (-)-, ¯��(�)¯�	(� + ∆�)ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕ = (1 �⁄ ) ∫ ¹å�	f k⁄� (-)£¤¥(-∆�)-,           (2.9 − 28) 

where ¹å�, ¹å	 , and ¹å�	 are the spectral power densities of the noises ¯��, ¯�	, and their joint density, respectively. If ¹å�	 = ��	 + ��	/-, 
then the covariance term in Eq. (2.9-28) has the same structure as Eq. 

(2.9-22), since |£¤¥(-∆�)| ≤ 1. Therefore, taking the linearity of the 

spectrometer into account, the impacts of each SPs are independent. So, 
similar to Eq. (2.9-26), we have  Ö�(�) Ö�(�)W ~�(È� +  g� -ö?⁄ ) (È� + g� -�⁄ )⁄ ,                           (2.9 − 29)  

where each term È� and g�  is related to the sum of ¹å�, ¹å	, and ¹å�	 . 
   According to Eqs. (2.9-26) and (2.9-28), the conclusions that were 
drawn for the single and double-beam modes, are identical. Experimental 
data [10] showed that the signal-to-noise ratios of the RC and optical 
differentiation were equal for the white noise.  
 

Optical modulation technique in slit monochromators 
 
   The central unit of the optical differentiator is the modulation device. 
Direct modulation was performed in the radiation source [11] (Chapter 
2.10, Laser modulation spectroscopy). In pioneering studies, the 
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wavelength modulation was carried out by low-frequency (10-15Hz) 
vibrations of the monochromator’s dispersing elements (prism or 
diffraction grating) [12, 10]. This technical solution has many drawbacks, 
such as a low modulation frequency due to the large inertia of the 
vibration element, and instability caused by possible distortions of optical 
calibration and adjusting. Modulation based on the vibrating 
monochromator slit suffers from the same problems. 
   To eliminate the above problems, an oscillating plane-parallel plate 
(refractor plate) (Fig. 2.9-4) was mounted behind the entrance slit of the 
monochromator [13-15]. The modulation frequency was 145 Hz. 
   The plate, whose width is � and the refractive index is �, displaces the 
beam by ∆= �¥��(� − Ä)/£¤¥Ä = �¥���(1 − 1 �⁄ ) ≅ ��(� − 1) �⁄    (2.9 − 30)  
for a small �. 
   Unfortunately, the modulation amplitude which was produced by the 
plate is not constant since the dispersion of the monochromator and the 
refractive index depend on the wavelength. Also, the transmittance of the 
plate depends on the spectral range. Therefore, a set of plates must be 
used. 
   Usually, the plate modulator was driven by a sinusoidal waveform. 
However, the rectangle (stepped) modulation doubled the signal-to-noise 
ratio of the 2nd-order harmonic for the furnace background shot-noise 
[16]. Stepped WM was successfully used for background suppression in 
atomic emission analysis by the independent selection analytical points 
on each side of the spectral line [17]. Technically, the stepped modulator 
is a simple device for low frequencies up to 17 Hz [17].  
 

 
Figure 2.9-4. Beam displacement in the plane-parallel plate. 
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   A rotating quartz mechanical chopper was used to simplify the stepped 
modulator and to increase its frequency (up to 160 Hz) (Fig. 2.9-5, panel 
a) [18]. The disk consisted of four quadrants of different thicknesses: � = 2.5, 2.5, 1, and 4mm for 1-4 parts, respectively. According to Eq. 
(2.9-30), the beam displacement ∆~∆� (Fig. 2.9-5, panel b) produces the 
rectangle modulation. However, the rectangle shape is rounded off when 
the finite width beam passes boundaries between sectors. To narrow the 
beam, the modulator was placed near the entrance slit. Also, the 
reflections from the boundaries must be eliminated [18]. 
   The rotating chopper allowed researchers to increase the modulation 
amplitude compared to the oscillating plate. This property was most 
notable for the background correction of the continuum excitation source 
in atomic fluorescence spectrometry when the measurements were 
performed at the left and the right side from the analyte wavelength [19]. 
 

 
Figure 2.9-5. (a) The four-quadrant quartz chopper. (b) The modulation  
waveform. u is the rotation angle. Numbers near the wave stand for �. 

 
   Different modulation units were built in Russia in the 1970-80s [2]. 
Unfortunately, the literature sources of these devices are not available to 
the English readers. For example, two static plates, shifted around the 
vertical axis by a small angle relative to each other (Fig. 2.9-6, panel a) or 
two achromatic prisms (panel b), were used instead of the oscillating 
plate. The light beams were alternately directed to the wavelength 
shifting elements by the splitters. The prisms, rotating with frequency 
150 Hz, displaced the spectrum by 0.25 and 0.75 nm. Their combination 
produced the following modulation amplitudes: 0.25, 0.50, 0.75, and 1.00 
nm. The differentiation photometer "KAMA", which was built in 1974, 
used the oscillating interference filter. The wavelength in the maximum 
filter transmission [20] is �� ≈ ���B�×��	 − ¥��	(90� − ¢) �⁄ ,                                          (2.9 − 31)     
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where ¢ is the incident angle; and � is the refractive index of the filter. 

The angle oscillations produced the WM. 
 

 
Figure 2.9-6. Wavelength shifting elements: static plates (a) and prisms (b). 

 
 
   The plate was undergoing small-amplitude oscillations excited by the 
electrostriction device (built on material that changes its shape under the 
application of an electric field) [13]. The galvanometer system produced 
the high-frequency modulation (1000 Hz) [21]. 
   In some differentiation devices, the detector was a vidicon (Fig. 2.9-7) 
[22, 23]. Vidicon is mounted on the place of the exit slit of the 
monochromator. A light beam hits the vidicon target, which is a matrix 
(e.g., 1000 x 1000) of the silicon diodes. The electron gun, which consists 
of the cathode and two grids (control and accelerator), emits an electron 
beam. The electron optics includes focusing and alignment coils. The 
collimating mesh focuses the beam in a perpendicular direction to the 
target. The deflection coil scans the beam over the target diodes vertically 
and horizontally with high (50-100 kHz) and low (200 Hz) frequencies. 
During the scanning, diode charge neutrality, which was distorted by the 
light, is restored. A computer processes the charge current. WM is 
performed by the superposition of a high-frequency low-amplitude 
electrical wave (some kHz) on the horizontal scanning signal.  
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Figure 2.9-7. The vidicon modulation device. 

   If the modulation and the vertical scan frequencies are equal, then the 
modulation and the vertical sweep cycles will also be identical. It is 
similar to the mechanical modulation when a "narrow line is swept back 
and forth across the exit slit of a monochromator" [22]. 
   The vidicon-based spectrometer generated the 1st-order derivative in the 
visible region over two intervals: 40 and 400 nm scanned during 100 ms 
[23]. The atomic emission and molecular absorption in the gas and 
liquids were studied.  
   One of the main disadvantages of the single-beam modulation 
technique is the existence of the blank sample channel's modulated 
signal. This conclusion was explained by modulating the radiation 
source's spectral distributions, the transmission of the optical system, and 
the detector’s sensitivity [24]. To overcome this drawback, double-beam 
devices with two identical detectors [24, 25] or with a single sensor were 
used. The second method is preferable since selecting similar detectors is 
a very cumbersome task. The authors of the study [26] formulated 
requirements for designing the optical part of the wide-range WM 
spectrometer:  
1. High-resolution monochromator. 
2. Only using reflection mirrors with a constant reflection index. 
3. Minimal incident angles on both the mirrors and the detector to 
decrease image distortions. 
4. Symmetrical optical set-up with minimum components. 
5. Focusing the two beams on the same area of the single sensor.  
   It was stated [26] that most of the optical differentiators, which were 
developed in the 1960-70s, had many disadvantages. This study 
described the modulation spectrometer, which measured the logarithmic 
derivative of the reflectivity of one sample. The 2nd-order derivative was 
estimated for two samples, which differ by a small amount in the 
parameter under study A slight composition variation of the ternary 
semiconductor alloy was detected. 
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   A modulation device was based on the symmetrical monochromator 
(Fig. 2.9-8). Interested readers may satisfy the requirement '3' "in the 
mind's eye" by moving the grating and mirrors. The diffracted beam, 
which is modulated by the oscillating mirror (Mod, f=122Hz)), passes 
through the slit. Then, the beam is focused on the chopper (Ch) by the 
spherical mirror ¹�. The transmitter chopper divided the beam into two 
parts in the vertical plane. The spherical mirror ¹	 alternatively 
illuminates two objects (Ð�  and Ð	) that reflect the radiation. The 
spherical mirror ¹F directs these objects to the detector. 
   This device contains only three mirrors mutual to both channels, in 
addition to the monochromator. The transmitter chopper is the design’s 
main advantage. But the channel intensities are not equal since different 
parts of the radiation source produce the beams. The electronic block 
must compensate for this drawback. The detected signal is amplified (1) 
and switched with frequency 8.4 Hz synchronously with the chopper. The 

differential amplifier (3) of the servomechanism (Sm) compares the 

direct voltage component (�?ø) with the reference signal (��). The Sm 
uses a large dynamic photocoupler, which is a combination of the diode 

and the photoresistor. The difference �?ø − �� is amplified and applied 

to the electro-luminescence diode (ED). The diode illuminates the 
photoresistor (PR), which is in the feedback circuit of amplifier 2. 
Therefore, the amplifier gain is  � = �� �?ø⁄ = £¤�¥�.                                                                        (2.9 − 32)  
The output signal of the amplifier 2 is �¦ðL = ��\ø,                                                                                        (2.9 − 33)  

where �\ø  is the alternating component.  
The narrow-band differential amplifier, tuned to the modulation 

frequency, extracts the difference between two channels: 

 �?_Ì = �¦ðL(1) −  �¦ðL(2).                                                              (2.9 − 34) 

   If the modulation amplitude is small, then the amplitude of the 
harmonic (with the modulation frequency 122 Hz) is proportional to the 
derivative. So, �?ø(�) ≈ �_(À)´_(À),                                                                           (2.9 − 35)   �_ ≈ �� �?ø(�)⁄ = �� [�_(À)´_(À)]⁄ ,                                              (2.9 − 36)  �\ø(�) ≈ [�_(À) ´_ À⁄ + ´_(À) �_ À⁄ ]∆À,                                (2.9 − 37)  

where � = 1 and 2 for the first and the second channel; �_(À) and ´_(À) 

are the radiation intensities incident on and reflected by the sample Ð_, 
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respectively. By substituting Eq. (2.9-37) into Eq. (2.9-34), and using 

Eqs.( 2.9-35) and (2.9-36) , we have �?_Ì = �_�?_Ì =  {��/[��(À)´�(À)]�\ø(1)} − {��/[�	(À)´	(À)]�\ø(2)} ≅  ��∆À Ú� 1´�(À) ´�À − 1´	(À) ´	À �+ � 1��(À) ��À − 1�	(À) �	À �Û.   (2.9 − 38) 

   If the channels are identical, due to the special tuning, then the second 
term in the curly brackets is zero. Finally, we obtain �?_Ì = ��(∆´� ´�⁄ − ∆´	 ´	⁄ ),                                                       (2.9 − 39)       

where ∆´_ = ∆À(´_ À)⁄  is the differential of ´_ corresponding to the 

increment ∆À.  
 

  
Figure 2.9-8. Setup of the double-beam modulation device (adapted from [26]): 
RS-radiation source, G-grating, Mod-modulator, Ch-light chopper, D-detector, 
EB-electronic block, Sw-switch, Sm-servomechanism, PR-photoresistor, ED- 

electroluminescent diode, and ��- reference voltage. 
 

   Some elements of the device [26] were modified [27]. The feedback 
circuits, which were controlled by the photomultiplier tube's high voltage 
source, replaced the servomechanism (Sm). The conjunction with a 
sample-and-hold element provided a reflectivity measurement free of the 
intensive characteristic lines inherent to the arc lamp [27]. A high-speed 
chopper significantly increased the signal-to-noise ratio of the output 
data. 
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   A motor-driven saw-tooth diaphragm, which was mounted before the 
entrance slit, compensated for the reference channel’s alternating 
component [28].  
   A particular electronic block eliminated the dark current and the noises 
caused by the electrical power source [29]. This procedure was 
performed during the switching of the optical channels. 
   Since the modulation spectrometer simultaneously produces 
wavelength and amplitude modulations, the accurate frequency and phase 
proportions between these processes should be set [2, cross ref]. Also, for 
the �LM-order differentiation, the electronic block must generate the 
modulation (-�¦?), the chopper (-øM), and combinations (�-�¦? ±-øM) frequencies. The last frequency was the reference in the 
synchronous detector. The relation -�¦? -øM⁄ ≥ 10 provided a high 
signal-to-noise ratio. The tuning fork generator allowed researchers to 
satisfy the above requirements [2, cross ref]. The instability of -�¦?=1250 Hz was less than 10�G %.  
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CHAPTER TEN 

LASER MODULATION SPECTROSCOPY 

 
 
 

   Laser devices significantly expanded the technical opportunities of 
spectroscopy experiments due to their numerous advantages. Laser 
analyzers are powerful diagnostic tools widely used for the analytical 
control of technological processes.  
   More than 30 years ago, Prof. Zare [1] underlined the perspectives of 
laser analytical applications using multiphoton ionization (MPI) and laser 
fluorimetry (LF). In MPI, an atom or molecule absorbs more than one 
photon to cause the ejection of an electron. Resonant enhanced 
multiphoton ionization (REMPI) allows the following:  
1. Elemental analysis and isotope ratio measurements. 
2. High sensitive surface analysis. 
3. Counting the individual atoms of nearly every element, one by one, in 
a gas sample or flow. 
 LF was used for measure the following: 
1. Atomic constituents. 
2. Velocity distributions and relative populations of excited state and fine 
structure levels of atoms sputtered from surface samples. 
 LF diagnostics were performed to check the quality of plasma devices 
and estimate the wall integrity of confined plasma sources. LF trace 
analysis of complex organic mixtures allowed researchers to detect a 
single molecule.  
   Raman spectroscopy [4] and IR absorption gas analysis widely use 
lasers [5]. 
   Let us note some essential advantages of lasers [1-3]. First of all, they 
displace high-quality, expensive monochromators due to the narrow 
spectral width of the emitted radiation in the mid-IR (2-20  �) (tunable 
diode lasers) and UV- VIS region (0.4-1.2  �) (due lasers). Frequency-
doubled lasers produce continuous UV laser emissions (200-400 nm). 
Secondly, researchers can analyze weak and strongly absorbing samples 
due to the high intensity of laser emission. Thirdly, high coherent beam 
directivity (the degree to which the laser emission is concentrated in a 
single direction) allows researchers to study remote objects and micro-
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samples. Finally, ultra-short powerful laser impulses significantly reduce 
the time required for analysis. 
   A reader unfamiliar with laser diodes' operational principles can 
familiarize himself with the simplified tutorial on this problem in 
Appendix K.  
   The wavelength or/and frequency modulation of emitted radiation 
significantly improved the efficiency of laser spectrometry. In 
semiconducting lasers, the injection current is modulated. In due lasers 
the modulation is performed by changing the resonator's length. 
 

Theory 
 

   This paragraph is mainly based on article [6]. 
   In the laser wavelength modulation (WM) spectroscopy, the modulated 
light emitted by a laser is slowly scanned through an analyte's absorption 
line. The injection current modulation in diode lasers produces a 
combined frequency (FM) and intensity modulation (IM) of the emitted 
beam with a phase difference between FM and IM. 
   A principal difference between the WM and FM techniques is the 
relationship between the modulation frequency (À�) and the width of the 
absorption line (� = �ý<�). In the FM, À� ≫ � is equal to several 
gigahertzes at atmospheric pressure, and the modulation amplitude ∆À ≪ �. Contrary, in the WM, À� is generally between some kilohertz 
and some tens of kilohertz and À� ≪ �.  
   The optical power (intensity) of the radiation, which was incident on 
the sample, measured in the center of the absorption line, is ��(!) = ��($�! + 1),                                                                         (2.10 − 1)  

where ! = (À − À�)/� is the normalized frequency; $(À) is the laser 
power. 
   According to the Beer-Lambert law, the light transmitted through the 

sample is N�(!) = ��'!$[−�(!)] ≅ ��[1 − �(!)],                                        (2.10 − 2)  

where the absorbance of the sample �(!) ≪ 1. 
   In the pure FM [6], ! = !� − �£¤¥(-� + 3),                                                                  (2.10 − 3)  
where � = ∆À/� is the modulation index; the phase 3 = 0. 
   The output signal was represented as the infinite sum of harmonics, ¹(!) = N�(!� − �£¤¥-�) = P ¥�(!)£¤¥�-����� ,                     (2.10 − 4)  
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where ¥�(!) was defined similar to Eq. (2.9-8) using the Lorentzian line 
shape.  
   For example, ¥	(!) = �� �(0)k(!) �	⁄ ,                                                                (2.10 − 5)  

where k(!) = �−4 + %√2/Ó&h(Ó + 1 − !	)√Ó + o + 2|!|√Ó − oj�. o = 1 − !	 + �	; Ó = √o	 + 4!	.  
   Reid and Labrie [7] obtained an expression similar to Eq. (2.10-5). 
They discussed the properties of the 2nd-order harmonic and showed that 
its experimental and theoretical shapes profiles were close to each other.  
   Figure 2.10-1 shows that for � = 0.1 the central part of the normalized 
2nd -order harmonic has a minimum width. If � increases, then the 
harmonic broadens. The shape is constant for a small �. This case is 
referred to as derivative spectrometry characterized by a good resolution 
of the overlapping lines. However, for such an �, the signal-to-noise 
ratios are low. � = 2.2 was found to be the optimal value [6, 7]. 
 

 
Figure 2.10-1. The normalized second harmonic (Eq. (2.10-5)).  

The numbers near the curves are m.  
  
   For the combined IM–FM [6], ��(!) = ��($p�!�+$T��£¤¥-� + 1),                                          (2.10 − 6)  

where $p and $T  are the coefficients related to the low-frequency ramp 

(scanning the laser line through the absorption line) and the modulation 

frequency. For pure FM, $p = $T = 0. 
Eq. (2.10-4) is modified: 
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 ¹qZ�ïZ(!) = P ¥��(!)£¤¥�-����� − P ¥��(!) sin�-����� , (2.10 − 7)  

where ¥�� and ¥�� are related to the in-phase (with the current 

modulation) and quadrature terms, respectively.  
   For example,  

 
   For the pure FM, $T = $p = 0; �p = 1; therefore, 

 ¹	�(!) =  ¥	(!)£¤¥23, ¹	�(!) =  ¥	(!)¥��23.                          (2.10 − 9) 

Eq. (2.10-8) demonstrates that, for the small modulation amplitude, the 
combined IM-FM 2nd-order harmonic is not proportional to the 

corresponding derivative due to the impact of ¥�(!) and ¥F(!). 
    The theoretical model was found to be a good approximation of 
experimental data [6]. 
   Di Rosa and Reiten [8] developed a new model [6]. They obtained very 
cumbersome formulas for the Voigt line shape without restrictions on the 
strength of absorption, the line-shape variables, or the FM parameters. 
   In nonlinear optical spectroscopy, the transmission of a weakly 
modulated beam, passed through a saturable-absorbing sample, is usually 
measured [9]. An intense pumping saturates the sample. The in-phase and 
in-quadrature components of the IM signal, which are measured by the 
square-law detector, are separated by the lock-in amplifier (Appendix J). 
The authors [9] studied IM spectra for ruby, alexandrite, and fluorescein 
in boric acid glass. 
   Conventional light sources of the high-resolution absorption 
spectrometers are characterized by thermal noise, which is independent 
of the light intensity [10]. However, in laser spectrometers, the source 
radiation is corrupted mainly by the flicker (shot) low-frequency noise, 
which is dependent on the light power incident on the detector [10, 11].  
   The author of the study [11] pointed out that the noise in the multipass 
cell laser devices is dependent on the number of reflections in a cell. 
They estimated the optimum absorption path length for the FM and WM 
diode laser absorption. It was shown that the multipass cell FM 
absorption spectrometers could improve the signal-to-noise ratio only by 
one order of magnitude. 
   High-order harmonics are usually detected using the lock-in amplifier. 
A mathematical theory of another method, which was based on the 
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Fourier analysis of the digitized light signal [12], was developed by Mei 
and Svanberg [13].  
 
 

Techniques and applications of modulation laser 
spectroscopy 

 
FM spectroscopy using the auxiliary sample modulation [14] 
   This is the most direct form of the laser FM spectroscopy in which an 
electro-optic phase modulator (EOM) adds radio frequency (RF) 
sidebands to a continuous wave laser (Fig. 2.10-2). The phase EOM 
controls the phase of light using an electrical signal, which modifies the 
refractive index of a nonlinear crystal in proportion to the strength of the 
electrical field produced by this signal [15]. This method is different from 
the light modulation performed by the absorbing sample disturbance 
(Chapter 2.9) (e.,g., the photochemical modulation). A brief description 
of this technique, which is used in transient spectroscopy, was reviewed 
by Gregory and North [14]. 

 

 
Figure 2.10-2. Block diagram of the auxiliary sample modulation device. EOM, 
electro-optic phase modulator; D, photo-detector (diode); BF, band-pass filter; A, 

amplifier; RF, radio frequency generator; PS, phase shifter; and LPF, low-pass 
filter (adapted from [14]). 

 
   In the experimental setup (Fig. 2.10-2), a double-balanced mixer 
performs the phase-sensitive detection of the photocurrent varying at the 
modulation frequency. A lowpass filter narrows the effective bandwidth 
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of the detection system. The laser sweeps across an absorption line, 
which is scanned by recording the changing of the mixer’s direct current 
output. 
   A transient sample's pulse excitation was used for kinetics and 
dynamics studies on the submicrosecond time scale. The transient 
waveforms of demodulated FM signals were processed on a sequence of 
fixed laser frequencies. 
   The disadvantage of the direct method is wavelength-dependent 
background signals. However, some improvements were made [14]. 
 
 Weak absorption detection using a quantum-cascade laser [16] 
   One of the disadvantages of the semiconductor lasers is mode hopping 
(switching from one longitudinal mode to another), which occurs because 
their output spectrum depends strongly on case temperature and injection 
current. Quantum-cascade lasers (QCL), operated at room temperature, 
overcome this drawback. The QCL with a distributed feedback 
architecture (DFB) has no tuning gaps. 
   Figure 2.10-3 illustrates the detection of the 10% Ç	O-90% Ç	 mixture 
using the QC DFB laser. The ramp causes a weak temperature 
modulation of the laser. The sinusoidal current adds high-frequency (1.8 
kHz) temperature modulation, which result in the WM. The derivative 
line shape of the 10% Ç	O-90% Ç	 mixture was observed. The study 
[16] demonstrated excellent sensitivity of the WM-based QC DFB laser 
gas detection. 
 

 
Figure 2.10-3. Experimental setup.(adapted from [16]). 
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Gas detection with continuous wave Optical Parametric Oscillator [17]  
   The authors of this study developed rapid detection, at the ppbv level 
sensitivity of gases, e.g., ethane, methane, and hydrogen cyanide. They 
used a fiber-amplified Distributed Bragg Reflector (DBR) diode laser to 
pump a continuous wave, singly resonant Optical Parametric Oscillator 
(OPO) (Appendix K) (Fig. 2.10-3). The input signal was modulated with 
25 kHz modulation frequency on top of the 2 MHz applied to the DBR to 
improve the sensitivity. A lock-in amplifier demodulated the signal 
detected at the 1st-, 2nd-, and 4th-order harmonics. 
 

 
Figure 2.10-4. Simplified experimental setup (adapted from [17, 18]).  

 
   In the FM mode [18], the modulation was applied to the laser via the 
bias-tee unit (a diplexer that implements frequency-domain 
multiplexing). A double-balanced mixer demodulated the FM signal. 
 Readers, interested in an in-depth study of technique and some WM and 
FM spectroscopy applications, are directed to the reviews, oriented on 
laser specialists [14,19]. 
 
FM Fourier Transform spectroscopy [20] 
   The FM broad-band spectroscopy associates the advantages of the FM 
and high-resolution FT methods. The experimental pilot setup (Fig. 2.10-
5) includes a fiber-coupled distributed feedback laser diode, whose 
current of which was modulated by a low-frequency ramp generator. The 
interferometer output light is phase-modulated by the electro-optical 
modulator (EOM). The InGaAs photodetector signal, which was mixed 
with the reference signal, was processed by the dual-phase lock-in 
amplifier (LIA). The LIA allowed detecting in-phase and in-quadrature 
components corresponding to the absorption and dispersion 
interferograms. The FT of these interferograms gave the final spectra. 
   The study in [21] showed that the FT modulation technique has distinct 
advantages compared with the traditional lock-in amplifiers technique: 
simple experimental setup, repidly available information on all the 
required harmonics, and high speed of data processing using FFT 
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algorithm. A differential interpolation eliminated a systematic error (bias) 
of a signal parameters estimation using the Fourier coefficients 
interpolation method. 
 
 

 
 

Figure 2.10-5. Experimental setup: EOM, electro-optic phase modulator; 
 LIA, lock-in amplifier (adapted from [20]). 
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CHAPTER ONE

PEAK DETECTION

Among spectral peak parameters, the most important is the peak 
position, which is widely employed in theoretical and applied 
spectroscopy [3]. For example, identifying unknown elements and 
chemical compounds is usually performed by comparing the 
experimentally measured peak positions with those found in the 
databases. The peak maxima shifts are indicative of intra- and 
intermolecular interactions and changes in the external parameters (e.g., 
temperature). In this connection, the evaluation of the uncertainty of the 
peak maximum is of exceptional importance. 

One should regard the existence of two types of errors that arise when 
solving this problem. The computational procedure [4] and instrumental 
factors [5] involve the first type of errors. Other errors are due to the 
component spectra's overlapping, which may cause apparent shifts [6]. 
The first type of errors can be easily eliminated by simple mathematical 
processing [4, 5] and careful recalibration of the spectrometer. In contrast 
to this, the resolution of overlapping peaks is a complicated task. 
Therefore, from a practical point of view, it seems reasonable to evaluate 
the upper limits of the apparent shifts and decide whether sophisticated 
computer methods should be further used in this particular case. 

The peak must be detected before taking any measurements of the peak 
parameters. Statistical methods for detecting peaks involve testing the 
null hypothesis ("some samples of analytical signal (AS) belong to the 
peak") against the alternative hypothesis ("this is a noise sample") [7]. 
For this purpose, a baseline-free AS was processed by a digital filter. The 
result (the weighted sum of the AS values) was compared with a 
threshold. The drawback of this method is the broadening of the AS. 
Another one-point algorithm matched the 1st-order derivative of AS with 
some threshold. This algorithm does not require the correction of the 
constant baseline. However, since smoothing of the noisy AS is needed, 
the resolution of overlapping peaks decreases. Peak detection in the 2nd-
order derivatives has some advantages due to removing the linear 
baseline and the resolution enhancement [7].
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Zhang et al. [8] reviewed the peak detection algorithms used in Liquid-
Chromatography-Mass Spectrometry (LC/MS) for protein identification 
and quantification. The LC elution profile of these objects demonstrated a 
structured asymmetrical shape that has some local maxima. Software 
packages for LC/MS analysis performed peak recognition using 
polynomial approximation and the wavelet transform. Peak shapes were 
Gaussians and the exponentially modified Gaussians.  
   The number of peaks in spectra and characteristic points of a spectral 
contour (maxima, shoulders, and inflection points) can be automatically 
estimated using the mathematical rules obtained by applying the 
derivatives in the investigation of functions [9] (Table 3.1-1, Fig. 3.1-1). 
Inflection points are not typical for elementary components (peaks) in 
spectra and chromatograms [10]. 
   Unfortunately, the above rules do not take the noise present in spectra 
into account. Differentiation, especially of the high-orders, significantly 
increases this noise. A linear approximation of a small sign-changing 
curve segment around the zero point decreases the uncertainty when 
determining a position in which a transition over zero occurs. 
 

Table 3.1-1. Using the derivatives in investigation of functions 

r(�) r(�) r(�) 
+ → − - Maximum 

− → + + Minimum 

+ + → − Left shoulder* 
(inflection point**) 

- − → + Right shoulder* 
(inflection point**) 

Arrows point to the change of the sign. 
* unresolved peaks; ** a single function. 

 
   The following conditions of the peak maximum (��) involve high-
order derivatives [11]: �(	)(!�) < −#	;   �(F)(!�) = 0 ;  �(G)(!�) > #G,                        (3.1 − 1)  

where #� = ?���; ?� is defined by the confidence level �; and �� is the 

standard deviation of the �LM-order derivative. The drawback of the 
criteria defined by Eq. (3.1-1) is the use of the noisy 3rd- and 4th-order 
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derivatives. Also, the peak detection may be erroneous due to the false 

structure present in the derivatives.  
 

 
Figure 3.1-1. Identification of the characteristic points of contour (a)  

using the 1st-(b) and 2nd-order (c) derivatives. ShL and ShR stand 
 for the left and right shoulders, respectively. 

 
 
   The false structure has random and systematic origins. In the first case, 
the structure occurs because of insufficient smoothing (noise peaks). In 
the second case, systematic instrumental factors, such as the Gibbs 
phenomenon (Appendix A), may produce false ripples. Also, these peaks 
are due to the shape features of the even-order derivative curves, 
including satellites. The following examples have an false structure (the 
illusion of the "super-resolution") (Fig. 3.1-2):  
1. Overlapping of the central parts of the 2nd-order derivatives of the 
peaks; the maxima are close to each other but the widths are different, 
which produces two false peaks at the left and the right sides (panel A).  
2. Overlapping of the satellites of the well-resolved 2nd- and 4th-order 
derivatives creates an incorrect central peak (panels B-D). The position of 
this peak does not depend on the doublet separation, but the intensity 
does. If the separation increases, then the top is split (panels C and D).  
3. Weak positive satellites in the 4th-order derivatives look like real 
peaks. Their positions relative to the intensive central part do not depend 
on the doublet separation.  
   Figure 3.1-3 shows the Lorentz triplet and doublet (panels a and b, 
respectively): �LU = �� + �	 + �F,    �?ù = �� + �F,                                                 (3.1 − 2)  
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where �� = 1/[1 + 4(! − 4.6)	]  + ��, �	 = 0.1/[1 + 4(! − 5.4)	] +�	, and �F = 0.7/[1 + 4(! − 6.2)	] + �F; �_ is the normal noise with 

zero mean and the standard deviation � = 10�F. The 4th-order derivatives 

were obtained by the SG filter (2� = 4, � = 50). 
   The figure demonstrates that the false middle peak observed in the 4th-

order derivative of the doublet (panel B) overlaps with the true derivative 
peak of the central triplet (panel A). So, the final decision of the middle 
peak's origin requires additional information, which can be obtained from 
the 2nd-order derivative (Fig. 3.1-4). However, for the accurate detection 
of an incorrect structure, one must perform a least-squares decomposition 

of the poorly-resolved contour into individual elementary peaks [12]. 
 

 
Figure 3.1-2. Incorrect structure (arrows) in the derivative spectra. (A) Sum (c = 
a+b) of the 2nd-order derivatives (equal peak positions, but different widths). (B) 
The well-resolved symmetrical doublet of the 2nd-(B) and 4th-order derivatives of 

(C) the Gaussian and (D) Lorentzian peaks: the relative peak separation: 
2.00:0.30:2.90 (C) and 1.4:0.4:2.4 (D). 

 
The informational content criterion of derivatives involved the expansion 
of the measured spectrum in the Taylor series (Eq. (1.1-4)) [13]. 
According to this criterion, the even-order derivatives (taken with the 
sign(−1)L) added to the spectrum increase the intensity of its true 
structure components. However, the problem of choosing the empirical 
weights of the derivatives remains unsolved. 
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   Recently, combining bad-resolved chromatographic peaks with their 
1st- and 2nd-order derivatives allowed resolution enhancement [14]. This 
well-known variant of the deconvolution methods suffers from some 
drawbacks [15]. More mathematically rigorous results may be obtained 
using the least-squares decomposition procedures [12]. 
  

 
Figure 3.1-3. The origin of the middle peak in the 4th-order derivative of the 
Lorentzian triplet (a) (false + true peaks) and doublet (b) (false peak). The 

multiplet’s components are plotted by the dotted curves. 
 

   The form parameter (u(�), Table 1.2-2) may give a hint of the internal 

structure of the even-order derivatives of the unresolved doublet. For 

example, Figure 3.1-5a shows the noisy Lorentzian peak (�
(!) ) and the 

unresolved doublet %�
z(!)&: �
(!) = 1 [1 + 4(! − 5)	]⁄ + ��;  �
z = 1 [1 + 4(! − 4.85)	]⁄ + 0.5 [1 + 4(! − 5.15)	]+�	⁄ ,    (3.1 − 3)  

where �_ is the normal noise with zero mean and the standard deviation � = 0.01. The negative 2nd-order derivatives of the peak and the doublet 

(normalized to the maximum intensity) are very similar. Still, the doublet 

form parameters, left uÔVÌL(	) ≈0.40 and right uU_�ML(	) ≈0.37, are different, 

unlike both of the equal parameters of the single peak u(	) ≈ 0.40. 
Unfortunately, this method only applies to the doublet wholly isolated 

from other structural components.  
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Figure 3.1-4. Identification of the possible false structure in the 4th-order 
derivative of the Lorentzian triplet (Fig. 3.1-3) using negative 2nd-order 

derivatives. The arrow points to the slight distortions of the valley between the 
central peaks. 

 
 

 
Figure 3.1-5. (a) Lorentzian peak and unresolved doublet; (b) their negative 

2nd-order derivatives (solid and dotted curves, respectively) (Eq. (3.1-3)). 
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CHAPTER TWO 

ERRORS OF THE PEAK MAXIMUM 

IDENTIFICATION IN THE 2ND-ORDER 

DERIVATIVE 

 
  
 
   The most-common estimation of the peak maximum positions in 
spectra is by using their even-order derivatives. There are two main 
reasons for this: the central (the most intensive) part of the derivatives has 
a shape that looks like the spectrum and it is noticeably narrower 
(Chapter 1.2). However, the satellites introduce shape distortions, and the 
signal-to-noise ratio (S/N) in derivatives decreases compared to the 
original spectra. The 2nd-order derivatives provide a compromise: a good 
resolving of overlapped peaks, a small decrease of the S/N relative to the 
higher-order derivatives, and only two satellites. 
   Let us consider the estimation of the peak positions, using the 
derivatives, from an informational-theoretical perspective [1]. Suppose 
that the maximum of a poor-resolved peak is located in the region [ ��, �	] of a spectrum. Since this region is narrow, the probability density 

function of λ is uniform. Suppose that the random measurement errors of 
λ have a normal distribution with zero mean and the standard deviation �Æ. Then the information quantity, which was acquired during the 
estimation of the peak position in the spectrum (Chapter 1.5), is  �(�) = ��h(�	 − ��)/%�Æ/√2�'&j − 0.5gK	,                                      (3.2 − 1)      

where gK = K̄/�Æ; K̄ is the systematic error of the λ determination. 
   In the derivative spectrum �(�) = ��h(�	 − ��)/%�K?/√2�'&j − 0.5gK?	 ,                                  (3.2 − 2)      

where subscript  stands for derivative. 

From Eqs. (3.2-1) and (3.2-2) we have the following information change: ∆� = �(�) − �(�) = ��(�Æ �Æt⁄ ) − 0.5(gK?	 − gK	).                           (3.2 − 3)  
We found the random errors �Æ and �Æt in the maxima of the Gaussian 
and Lorentzian peaks: 

 EBSCOhost - printed on 2/12/2023 11:12 PM via . All use subject to https://www.ebsco.com/terms-of-use



Errors of the Peak Maximum Identification in the 2nd-Order Derivative   183 

�� = exp[−4��2(� − 5)	] and �
 = 1/[1 + 4(� − 5)	],  
(� = [0.01: 0.01: 10]), distorted by the normal noise with zero mean and 
the standard deviation �Æ =0.01. The accurate maximum positions in the 
noisy peaks and their 2nd-order SG derivatives were calculated by the 
quadratic approximation of the data in the range [4.9:0.01:5.1] near ��\^ = 5. The SG filter parameters were: 2� = 2, � = 30, 40, and 50. 
The standard deviations �Æ and �Æt were estimated from 10H repetitions. 
The ratio �Æ/�Æt =[0.94, 1.42, 3.36] and [1.08, 1.66, 2.08] for the 
Gaussian and Lorentzian peaks, respectively.  
    So, for the smoothed derivative (� is large), �Æ �Æt⁄ > 1. Therefore, 

the first term of Eq. (3.2-3) is positive. The second term is proportional to [(�Æ �Æt⁄ )( K̄? K̄⁄ )]	 − 1. Due to the resolution improvement in the 

derivative, the ratio is ´î = K̄? K̄⁄ < 1 for the poor-resolved peak, but ´î depends on the smoothing factor [2]. We conclude that information 
gains when determining the overlapped peaks maxima's locations, using 

derivative spectra, can be achieved through the trade-off between noise 
suppression and resolution enhancement. Further, we will estimate the 
peak location uncertainties in the 2nd-order derivatives [2].  
 
Models 
   Consider the doublet, which is defined as the function of a 
dimensionless argument, `(!) = �(∆Ô) +  ´�(∆�̂),                                                                   (3.2 − 4)  

where ∆Ô= ! + !�; ∆�̂= (! − !�)/Ó; ! = Ä� �; ⁄ Ä is the peak shape 

parameter; � = −�, −� + 1, … ,0, … , � − 1, �; � = �ý<�; !� =Ä¯/2; ¯ = ∆/� is the relative separation of the doublet components; ∆ = 2�� is the absolute separation; ±�� are the peak maxima; ´ and Ó are 
the relative intensity and the relative width of the second peak, 

respectively. 
   The 2nd-order derivatives of the doublet (Eq. (3.2-4), composed of the 

Gaussian %�� = exp (−!	), Ä� = 2√��2& and Lorentzian (�
 = 1/(1 +!	), Ä
 = 2), functions, are  `���(!) = 2N�(∆Ô)��(∆Ô) + ì ∗ N�(∆�̂)��(∆�̂),                            (3.2 − 5)  `
��(!) = 2N
 (∆Ô)�
(∆Ô) + ì ∗ N
 (∆�̂)�
(∆�̂),                              (3.2 − 6)  

where N�(�) = 2�	 − 1;    ì = 2´/Ó	; N
 (�) = (3�	 − 1) (1 + �	)⁄ . 
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Relative shift 
   The relative shift of the peak position (Ö) is usually measured relative to 

the peak width. However, the widths of overlapping peaks can be 

evaluated very approximately [3]. Therefore, we chose to calculate Ö as a 
proportion of the doublet separation, which can be readily measured 

visually. In this case, for the �LM-peak of the resolved doublet, Ö_ = (!�_−(−1)_!� ) 2⁄ !�),                                                                (3.2 − 7)  

where !�_ is the zero point of the derivatives of Eqs. (3.2-5) and (3.2-6):  `���(!�_) = 0.                                                                                          (3.2 − 8)  
The `���(!) changes sign when it passes through point !�_ of the well-
resolved peak.  
   At and below the resolution limit of the 2nd-order derivative of the 
symmetrical doublet (´ = 1, Ó = 1), the condition, defined by Eq. (3.2-8) 
is valid in the central point ! = 0. This point may be considered as an 
apparent position of the peak maxima. Therefore, the absolute value of 
the relative shift of the point !� from the zero point, |Ö| = !�/(2!�) =0.5, does not depend on the doublet components’ separation.  
   Since the analytical solution of Eq. (3.2-8) is too complicated, we 
solved this equation numerically.  
   The shifts of a non-ideal derivative peak also depend on the parameters 
of the differentiation procedure [3]. Smoothing of noisy spectra causes 
the broadening of the derivative spectra. Therefore, the resolution 
decreases, and the shifts will be different from those obtained for perfect 
derivatives. These effects are only significant if the separation is near the 
resolution limit, where the displacements are substantial [3]. In such 
poorly-resolved derivatives, precise peak identification leads to erroneous 
results.  

 
Results of Computer Modelling and Discussion 

 
Equal-width peaks (n = �) 
   Figure 3.2-1 represents the dependencies of the relative shifts of the 2nd-

order derivative peaks on the parameter !� for the Gaussian and 

Lorentzian doublets %Ö(!�)&. On the strength of symmetry, Ö�(U��)(´, !�) = −Ö	(U��)(1 ´⁄ , !�).                                                     (3.2 − 9)  

   The plots of the shift dependencies for the first component of the 

Gaussian (Ö��(U��)(´, !�), ´ = 1 3⁄ ÷ 1) and Lorentzian (Ö�
(U��)(´, !�), 
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 ´ = 0.2 ÷ 1) doublets pass through the intersection points, 0.612 and 

0.500, respectively. 
   According to the symmetry rule (Eq. (3.2-9)), the plots related to the 
second peak also pass through these intersection points. The plots are cut 
off at the resolution limit, for the rest of the values ´, and do not reach 
the intersection points. The shifts are zero at the intersection points, 
where the 2nd-order derivative minima coincide with the satellite maxima 
of the interfering component (Fig. 3.2-2). The sign of the slope of the 
interfering peak changes when the curve passes the intersection point. 
The shifts’ signs are opposite on the left and the right from this point. 
   On the right of the intersection point, the shift values for the Lorentzian 
derivatives are smaller than those for the Gaussian derivatives. On the 
left, the Gaussian peaks are not resolved, except for ´ = 1. 
   Although the more intense second component (larger ´ values) causes 
more significant shifts of the first component, its shifts decrease. Thus, if ´� > ´	, then YÖ�(U��)(´�, !�)Y > YÖ�(U��)(´	, !�)YYÖ	(U��)(´�, !�)Y < YÖ	(U��)(´	, !�)Y .                                                 (3.2 − 10)  

   A high-degree polynomial well approximates the shifts' dependencies 

on the doublet components’ separation relative to the variable È = 1/!� 	 : Ö_(´, !�) = P ��_H��� (´)È�, � = 1, 2.                                          (3.2 − 11)  

   Figure 3.2-3 represents the dependencies of the polynomial coefficients 
on the relative intensity of the second doublet peak %��	(´)& (Eq. (3.2-

11)). The plots for the Gaussian and Lorentzian peaks (��	� (´) and ��	
 (´)) demonstrate different patterns.  
   For the large ´ values, the shifts increase inversely proportional to the 
two highest degrees of !� (Eq. (3.2-11)), namely, 10 and 8 for the 
Lorentzian, and 8 and 4 for the Gaussian doublets. Fortunately, for these ´ values, the absolute shifts of the Lorentzian peaks are small, but not in 
the case of the Gaussians, where the steep slopes of function Ö_(!�) may 
cause noticeable sensitivity of the peak maxima to the noise. 
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Figure 3.2-1 [2]. The relative shifts of the 2nd-order derivatives 
 of the Gaussian (a, b) and Lorentzian (c, d) doublets, consisting 
of equal-width peaks. The numbers near the curves are ´ values. 

 
  

 

 
Figure 3.2-2 [2]. The zero-shift points in the 2nd-order 

derivatives of the Gaussian (a) and Lorentzian (b) doublets. 
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Figure 3.2-3 [2]. The polynomial coefficients (for the second component) 

of the 1st - (a) and the 2nd-order (b) derivatives of the Gaussian doublet 
peaks: �H (circles) and �G (squares); �F (circles) and �	 (squares); �� 

(circles) and �� (squares) (solid, dotted, and dashed curves, respectively). 
 

 
Figure 3.2-3 [2] (continued). The same data for the Lorentzian 

peaks.  
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Unequal-width peaks (n ≠ �) 
   The shifts of the second peak, which is broader than the first one %Ö	(U_�)&, are substantial, especially for the Gaussian doublets (Figs. 3.2-4 

and 3.2-5). Ö	(U_�)
 significantly increases with the increase of Ó (Figs. 3.2-

8 - 3.2-14, ´ = const) because the intensity of the 2nd-order derivative 
spectrum is inversely proportional to the squared peak width [3]. The 
shift of the second peak is only less than 0.1, if its intensity is large 
enough (´ ≥ 2), and the doublet components are well separated (Table 
3.2-2). The shifts of the first peak are an increasing function of intensity ´. If the second peak is narrower than the first peak (Ó < 1), then the 
negative shifts of the first peak become very large, since the intensity of 
the 2nd-order derivative increases (Figs. 3.2-6 and 3.2-7).  
   The plots, which correspond to the second component of the Gaussian ²Ö	�(Uv�)(´, !�)³ and Lorentzian ²Ö	
(Uv�)(´, !�)³ doublets, pass through 

the intersection points (0.612 and 0.500, respectively) (Figs. 3.2-6 and 
3.2-7, panels c and d). Figure 3.2-2 shows that the shifts are zeros at these 
points, where the narrow 2nd-order derivative peaks coincide with the 
satellite maxima. If Ó > 1, then the broad derivative peaks are shifted to 
the region outside the satellite, and thus no intersection points can appear.  
   For ´ = const, if Ó grows from 1/3 to 1, then, for the Gaussian 
doublets, the absolute values of the first peak’ negative shifts increase 
(Figs. 3.2-8 - 3.2-14, panels a). A further broadening of the second peak 
(Ó = 2) results in decreasing the shift and changing its sign to positive. 
For the Lorentzian doublets, the signs and the ordinates of the Ö�
(�ø¦�öL)(Ó, !�) plots (Figs. 3.2-8 - 3.2-14, panels b) vary in a 
complicated manner depending on the location of the intersection points. 
   In the 2nd-order derivative, the overlapping of the second peak with the 
satellite of the first peak may generate a “super-resolution” pattern even 
at a very low separation of the doublet components (Fig. 3.2-15, a). Near 

this separation (!�(�_�)
), the shifts of the weak second peak increase very 

quickly and may be more than ten times as large as the !�(�_�) for the 
Gaussian shapes (Fig. 3.2-5, a). The symmetrical false "resolved" peak 
(denoted by an arrow on the left of Fig. 3.2-15, a) indicates that the right-
hand component is wrong. 
   The positions of the real and the false peaks are the same, only if !� = 1 (Fig. 3.2-15, panel b). This “super-resolution” gives rise to 
significant errors in analysis.  
   Acceptable relative shifts (Ö < 0.1) for Ó > 1 and Ó < 1 for the first 
and the second peaks, respectively, are sometimes observed for smaller 

 EBSCOhost - printed on 2/12/2023 11:12 PM via . All use subject to https://www.ebsco.com/terms-of-use



    Errors of the Peak Maximum Identification in the 2nd-Order Derivative   189 
 

separations (¯) of the Gaussian doublets than those of the Lorentzian ones 
(marked in bold in the Table 3.2-2). In other words, for a given separation 
value, the peak of the narrow, intense 2nd-order derivative of the Gaussian 
doublet may be less shifted from its actual position than that of the 
Lorentzian doublet. These different shifts are accounted for by different 
slopes of the interfering derivatives of the Gaussian and Lorentzian peaks.  
  

 
Figure 3.2-4 [2]. The relative shift of the first and the second peaks (solid and 
dotted curves, respectively) of the 2nd-order derivatives of the Gaussian(a, b) 

and Lorentzian (c, d) doublets. Ó = 2. The numbers near the curves are ´. 
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Figure 3.2-5 [2]. The relative shift of the first and the second peaks (solid 

 and dotted curves, respectively) of the 2nd-order derivatives of the Gaussian 
 (a, b) and Lorentzian (c, d) doublets. Ó = 3. The numbers near the curves are R. 

 
   We conclude that the correctness of the peak locations measured in the 
2nd-order derivative spectrum should be checked, in each particular case, 
by computer modelling the overlapping peaks. The shifts, connected with 
the changes of the physicochemical parameters of the sample under study, 
must be differentiated from apparent shifts, which may be caused by 
changes of the peak’s shape, width, and degree of overlapping. For this 
reason, correlating the peak shifts in the 2nd-order derivative spectrum 
with physicochemical parameters may lead to erroneous conclusions. 
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Figure 3.2-6 [2]. The relative shifts of the 1st and the 2nd peaks (solid and dotted 

curves, respectively) of the 2nd-order derivatives of the Gaussian (a, b) and 
Lorentzian (c, d) doublets. Ó = 1/3. The numbers near the curves are ´. 

 
Figure 3.2-7 [2]. The relative shifts of the 1st and the 2nd peaks (solid and dotted 

curves, respectively) of the 2nd-order derivatives of the Gaussian (a, b) and 
Lorentzian (c, d) doublets. Ó = 0.5. The numbers near the curves are ´. 
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Figure 3.2-8 [2]. The relative shift of the equal-intensity (´ = 1) Gaussian 
and Lorentzian peaks (panels a and b, respectively). The bold dotted lines 

separate the data between the first and the second doublet peaks. 
 

 
Figure 3.2-9 [2]. The relative shifts of the Gaussian (a) and Lorentzian  

(b) peaks. ´ = 2. The plots of the first peak are shifted down by 50% (a)  
and 20% (b) The bold dotted lines separate data between doublet peaks. 

  

 
Figure 3.2-10 [2]. The relative shifts of the Gaussian (a) and Lorentzian 
 (b) peaks. ´ = 3. The plots of the first peak are shifted down by 20%. 

 The bold dotted lines separate data between doublet peaks. 
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Figure 3.2-11 [2]. The relative shifts of the Gaussian (a) and Lorentzian 
(b) peaks. ´ = 5. The plots of the first peak are shifted down by 20%. 

The bold dotted lines separate the data between the doublet peaks. 
 

 
Figure 3.2-12 [2]. The relative shifts of the Gaussian (a) and Lorentzian 

 (b) peaks. ´ = 3. .The plots of the first peak are shifted down by 50% (a) 
and 20% (b).The bold dotted lines separate the data between the doublet peaks. 

 
 

 
Figure 3.2-13 [2]. The relative shifts of the Gaussian (a) and Lorentzian 

(b) peaks. ´ = 1/3. The plots of the first peak are shifted down by 50% (a) 
and 20% (b).The bold dotted lines separate the data between the doublet peaks. 
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Figure 3.2-14 [2]. The relative shifts of the Gaussian (a) and (b) Lorentzian 

 peaks. ´ = 0.5. The plots of the first peak are shifted down by 50% (a) 
 and 20% (b).The bold dotted lines separate the data between the doublet peaks. 

 
 
 

 
Figure 3.2-15 [2]. False (designated by arrows) and accurate peaks 
in the 2nd-order derivatives of the Gaussian doublets. ´ = 5, Ó = 3. !� = 0.1 (a) and 1 (b). The dotted curves represent the doublet components. 
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Table 3.2-2 [2]. Minimum relative separation values 
 where relative shifts do not exceed 0.1 n ¼  

1/ 3 0.5 1 2 3 

G L G L G L G L G L 

0.2 
0.46 0.30 0.56 0.24 0.80 0.50 0.68 0.82 0.40 1.1 

0.20 0.16 0.56 0.27 >1 0.50 >1 >1 >1 >1.2 

1/3 
0.48 0.34 0.61 0.25 0.74 0.48 0.62 0.66 0.30 0.84 

0.22 0.14 0.38 0.25 >1 0.48 >1 >1 >1 >1.2 

0.5 
0.50 0.37 0.64 0.26 0.74 0.44 0.50 0.52 0.20 0.72 

0.20 0.14 0.18 0.26 0.74 0.44 >1 >1 >1 >1.2 

1 
0.53 0.43 0.69 0.44 0.68 0.39 0.34 0.48 0.18 0.48 

0.20 0.20 0.17 0.25 0.68 0.39 >1 0.88 >1 >1.2 

2 
0.55 0.50 0.73 0.53 0.74 0.44 0.40 0.52 0.12 0.30 

0.20 0.26 0.24 0.28 0.74 0.44 >1 0.52 >1 1.1 

3 
0.56 0.54 0.76 0.58 >1 0.48 0.75 0.50 0.10 0.42 

0.20 0.30 0.28 0.36 0.74 0.48 >1 0.50 >1 1.0 

5 
0.58 0.59 0.79 0.65 >1 0.50 >1 0.54 0.10 0.48 
0.20 0.40 0.40 0.48 0.82 0.50 >1 0.48 >1 0.88 

The relative separations of the first and second components (upper and lower 
rows) of the Gaussian (G) and Lorentzian (L) doublets. The values in bold 

correspond to ¯
 > ¯� . 
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CHAPTER THREE 

DETERMINATION OF THE PEAK INTENSITIES 

AND WIDTHS IN THE 2ND-ORDER DERIVATIVE  

 
 

 Peak intensity measurements 
  
   From the previous chapter, one can see that mathematical methods of 
estimating of the resolved peak positions in spectra and their even-order 
derivative spectra are similar. Generally speaking, the direct evaluation of 
the peak intensities using derivatives is cumbersome since they are 
inversely proportional to the peak width in terms of a power that is equal 
to the differentiation order (Chapter 1.2). The measurements of the 
poorly-resolved peak widths suffer from significant errors [1]. Therefore, 
the precise correction of the derivative peak intensity for the width is 
impossible. Also, four satellites in the 4th-order derivative produce false 
negative and positive peaks, which distort intensities of the true spectra 
components. 
   Based on the above, we studied uncertainties only when determining 
the relative peak intensities of the 2nd-order derivatives of the Gaussian 
and Lorentzian doublets consisting of the equal peak width: 

 `(!) = �(∆Ô) +  ´�(∆�̂),                                                                  (3.3 − 1)  

where ∆Ô= ! − !ø + !�; ∆�̂= ! − !ø − !�; ! = Ä� �; ⁄ Ä is the peak 

shape parameter; � = 1: 1000; � = 100 is the FWHM; !ø = �øÄ/� is the 

central point; �ø = 500; !� =βδ/2;  ¯ = ∆/� is the relative separation of 

the doublet components; ∆ is the absolute separation; !ø ± !� are the 

doublet peaks positions; and ´ is the relative intensity of the second peak. 
The SG derivative filter parameters were: 2� = 2, � = 2 and 30 (precise 
and smoothed derivatives, respectively). 

   Figure 3.3-1 illustrates the zero-line (´�Ô = �	/��) and baseline %´ùÔ = (�	 + ∆�)/(�� + ∆	)& measurements of the relative intensity. 
Figures 3.3-2 and 3.3-3 represent dependences of the relative errors 
(Ö�V\ö) on the
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relative separation (¯) for the Gaussian and Lorentzian doublet 

components using ´�Ô and ´ùÔ data. Ö�V\ö = ´�V\ö ´⁄ − 1.                                                                          (3.3 − 2)  

   The dependences Ö�V\ö(¯) allowed us to draw the following 

conlclusions: 
1. For the zero-line measurements, the relative errors are negative. For 
the baseline measurements, the errors change the sign from negative to 
positive at some point ¯ö, while the separation increases. Near ¯ö, |ÖùÔ(¯)| ≪ |Ö�Ô(¯)|.  
2. For the large separations, our experiments showed that the false 
structure elements in the derivatives should not be confused with true 
peaks when calculating the value of ´�V\ö. 
3. If ´ increases, then Ö�V\ö decreases. 
4. In all cases, the smoothing (� = 30) increases the errors. 
5. For small doublet separations, the relative errors may be tens of 
percent.  
 

 
Figure 3.3-1. Measurements of the relative intensity of the 2nd  
doublet peak in the negative 2nd-order derivative from the zero 
 line: ´�Ô = �	/�� and the baselines:´ùÔ = (�	 + ∆�)/(�� + ∆	). 

 
 

Peak width measurements 
 

Direct method  
   The peak width (�) is estimated by the measuring of the width of its 
2nd-order derivative on the two horizontal levels (a-b and c-d) of the 
central part (Fig. 3.3-4). 
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Figure 3.3-2. The relative measurement errors of the relative intensity of 

the second doublet peak in the 2nd-order derivative of the Gaussian doublets 
using the zero-line (a) and the baseline (b) methods. The width 

 of the SG filter � = 2 and 30 (solid and dashed lines, respectively). 
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Figure 3.3-3. The relative measurement errors of the relative intensity of 

the second doublet peak in the 2nd-order derivative of the Lorentzian 
doublets using the zero-line and baseline methods (top and bottom panels, 
respectively). The width of the SG filter � = 2 and 30 (solid and dashed 

lines, respectively). 
 
 

   Given the Gaussian peak, defined in the dimensionless abscissa scale ! = �^�/� (Eq. (3.3-1)): ��(!) = '!$ (−!	),                                                                                (3.3 − 3)  

where �^ = 2√��2 is the peak FWHM in the ! scale (it is the peak shape 

parameter Ä). 
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Figure 3.3-4. The width measurements in the negative 2nd-order 

 derivative peak on the two horizontal levels (a-b and c-d) of  
the central part. The units of the figure parameters are �	/��. 

 
   The 2nd-order derivative of Eq. (3.3-3) with respect to !, is ��(	)(!) = (4!	 − 2)��(!).                                                                  (3.3 − 4)  

   According to Table 1.2-2 and Eqs. (1.2-15)-(1.2-16), the characteristic 

parameters of Eq. (3.3-4) (Fig. 3.3-4), measured in the units of �	/��, are ∆X�(	) = 8.0198, XZ\^(	) = 2.4746.                                                      (3.3 − 5) 

In the �-scale, used for a numerical calculation, these values must be 

divided by Ä	. According to Figure 3.3-4, for �� = 1, the heights of the 

levels “ab” and “cd” are (0.5X�(	) − XZ\^(	) )/Ä	 = 0.5537 and %0.75X�(	) − XZ\^(	) & Ä	W = 1.2769, relative to the zero-line.  

   The relationships between the Gaussian peak width and the widths, 
measured in its 2nd-order derivative are: �� = �\ù�\ù = �ø?�ø?,                                                                      (3.3 − 6)  
where �\ù = 1,4928, �ø? = 2.2681. 
   There was similar data for the Lorentzian peak: �
(!) = 1/ (1 + !	),                                                                              (3.3 − 7)  

where ! = �^�/�; �^ = 2. �
(	)(!) = (6!	 − 2)/ (1 + !	)F.                                                        (3.3 − 8) ∆X
(	) = 10;  XZ\^(	) = 2.                                                                       (3.3 − 9) 

The levels “ab” and “cd” are on the heights (0.5X�(	) − XZ\^(	) )/2	 = 0.75 

and %0.75X�(	) − XZ\^(	) & 2	⁄ = 1.375, relative to the zero-line.  
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   The relationships between the Lorentzian peak width and the widths 
measured in its 2nd-order derivative are �
 = �\ù�\ù = �ø?�ø?,                                                                    (3.3 − 10)  

where �\ù = 2.6226, �ø? = 4.0733. 

   The drawbacks of the width measurements (Fig. 3.3-4) are: 

1. Significant dependence of the coefficients �\ù and �ø? on the peak 
shape (Eqs. (3.3-6) and (3.3-10)). 
2. Peak shape distortions due to the smoothing of the derivative spectra 
and overlapping with adjacent peaks. 
 The broadening of the 2nd-order differentiation SG filter increases the 
derivatives’ width and decreases the coefficients �\ù and �ø? (Table 3.3-
1). This effect is the most pronounced for the Lorentzian peak.  
 

Table 3.3-1. Impact of the width of the SG filter  
on the coefficients xª and xy� 

Peak 

« 

2 100 200 o¬«  xª xy� 
o¬«  xª xy� 

o¬«  xª xy� 

Gauss 833 1.495 2.268 16.6 1.486 2.257 8.3 1.468 2.237 

Lorentz 1000 2.625 4.082 20.0 2.558 3.984 10.0 2.398 3.690 

 
   However, the primary factor of the uncertainties in determining peak 
width using derivatives is the overlapping with the adjacent peaks. We 
calculated the relative errors of the width estimation of the first doublet 
peak disturbed by the second one. The measurements were performed 
only on the left side of the component under study, thus partly 
eliminating the overlapping (Fig. 3.3-5). The results (Fig. 3.3-6) 
demonstrate that the absolute values of the errors may be more than 70% 
and 15% for the Gaussian and Lorentzian shapes, respectively. However, 
if a peak is disturbed from both sides (left and right), the errors may be 
unpredictable significant. Therefore, this measurement procedure has a 
very limiting application. 
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Figure 3.3-5. Width measurements of the first doublet peak 

 using the 2nd -order derivative (dotted line) at the levels “ab” 
 and “cd”'. Solid lines represent doublet peaks. 

 
Use of the 2nd -order derivatives of the logarithm of a spectral 
curve 
   For the width measurements, we used the 2nd-order derivatives of the 

logarithm of the peak intensity: ý(�) = 	 ln�(�) �	.⁄                                                                      (3.3 − 11)  

For the Gaussian and Lorentzian peaks, from Eqs. (3.3-3) and (3.3-7) we 
have ý� = − 8��2 �	⁄ ,                                                                               (3.3 − 12)  ý
 (�) = −(8 �	⁄ )[(1 − 4�/�	)/(1 + 4�/�	)].                          (3.3 − 13)  

In the peak maximum: ý
(0) = − 8 �	⁄ . 
From Eqs. (3.3-11) - (3.3-13) we obtain, in the peak maximum: � = Q�|	 �� �(�) �	⁄ |,                                                                   (3.3 − 14)  

where Q = 2.3548 and 2.8284 for the Gaussians and Lorentzians, 
respectively.  
   The critical advantage of this method is that the constant Q weakly 
dependents on the peak shape. Also, the peak intensity has no direct 
impact on the calculations, except for an indirect influence of the signal-
to-noise ratio. However, the differentiation does not suppress interfering 
signals (e., g., a constant baseline) since the logarithmic function is not 
additive (logarithm of a sum is not equal to the sum of logarithms). 
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Figure 3.3-6. The width measurements of the first Gaussian (a) and 

Lorentzian (b) doublet peaks using the 2nd-order derivative at 
 the levels “ab” (asterisks) and “cd” (circles).  

 
 

   Figure 3.3-7 illustrates the measurements at the maximum of the left 
satellite (point “a”) and at the minimum (point “b”) of the 2nd-order 
derivatives of the Gaussian and Lorentzian doublets: `� = '!$(−!	) + ´'!$[−(! − ∆!)	],                                         (3.3 − 15)  `
 = 1/(1 + !	) + ´/[1 + (! − ∆!)	],                                        (3.3 − 16)  

where ! = (Ä/�)[−2: 0.001: 2]; Ä� = 2√��2; Ä
 = 2; ∆! = (Ä/�)¯; ¯ 

is the relative doublet separation; � = 1; ´ is the relative intensity of the 

 EBSCOhost - printed on 2/12/2023 11:12 PM via . All use subject to https://www.ebsco.com/terms-of-use



204                                          Part III Chapter Three 
 

 

 
 

second peak. ´ =[0.1, 0.2, 0.5, 0.8, 1.0]; ¯ =[0.7:0.1:1.2] and 
[0.6:0.1:1.2] for the Gaussian and Lorentzian doublets, respectively. As 

an example, the dotted lines (Fig. 3.3-7) represent the case: ´=0.5 and ¯=1. The SG differentiation filter parameters are: 2� = 2 and � = 20.  

   The solid curves (Fig. 3.3-7) represent the 2nd-order derivative of the 

logarithmic functions (Eq. (3.3-11)): ý��.H,î(!) = 	 ln`(!) �	.⁄                                                         (3.3 − 17) 

   If the doublet separation ¯ increases, then, following Eqs. (3.3-12) and 

(3.3-13), ý�(�) and ý�(�)  → 8��2, and ý
 (�)  → 8. The difference 

between the curves at the point “a” is significantly less than that at the 

point “b”. That is, the dependence of the separation on the measure ý(�) 
is small. Figure 3.3-8a proves this conclusion for the Gaussian doublet. 
The relative errors of the width measurements at the point “a” is less than 

5% compared to the 50% for the measurements at the point 'b”. However, 
the worse signal-to-noise ratio at the point “a” may increase the errors.  
   For the Lorentzian peaks, ý
 (�)=0 (Fig. 3.3-7a). In principle, the 
measurements may be performed to the left of the satellite maximum 
(e.g., in the maximum of the 3rd-order derivative); but the intensity of ý
  
in this region is small. 
   The major disadvantage of the width estimation based on Eq. (3.3-14) is 
the influence of the peak overlapping and distortions due to the 
background. The side regions of a peak, free of these effects exist in rare 
practical cases. Therefore, Eq. (3.3-14) is only useful for extracting 
approximate data about the peak’s width.  
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Figure 3.3-7. The width measurements of the 1st Gaussian (a) and 
Lorentzian (b) doublet peaks using the 2nd-order derivative of the 

logarithmic functions (Eq. (3.3-14, solid curves) at the maximum of 
the left satellite (point “a”), and at the minimum (point “b”) of the 

derivatives (dotted line). The arrows point at an increase of ¯ = 0.7:0.1:1.2 (a) and 0.6:0.1:1.2 (b). ´ = 0.5, � = 20. 
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Figure 3.3-8. The width measurements of the 1st Gaussian and Lorentzian 

(top and bottom panels, respectively) doublet peaks using the 2nd-order 
derivative of the logarithmic functions (Eq. (3.3-14)). The asterisks and 

circles correspond to the measurements performed at the points “a”  
and “b”, respectively. The numbers near the curves stand for ´.  

 
 Use of the fractional derivatives 
   We estimated uncertainty in determining the ratio of the peak widths of 
the Gaussian and Lorentzian doublets using the fraction derivatives (FD) 

(� =1.6:0.1:2.4) (Eq. (1.2-36)):  `(!) = �(∆Ô) +  ´�(∆�̂),                                                               (3.3 − 18)  

where ∆Ô= ! − !ø + !�; ∆�̂= (! − !ø − !�)/Ó; ! = Ä� �; ⁄ Ä is the 

peak shape parameter; � = 1: 10000; �� = 500 and �
 = 200 are the 

FWHMs (to eliminate the Gibbs phenomenon (Appendix A), �
 < ��); !ø = �øÄ/�; �ø = 4000; !� =βδ/2;  ¯ = ∆/� is the relative separation of 

the doublet components; ∆ is the absolute separation; �ø ± �� are the 

doublet peaks positions ; ´ and Ó are the relative intensity and the relative 
width of the second peak. 
   Figure 3.3-9 shows that the absolute errors in determining the ratio of 
the peak widths for the Lorentzian doublets are less than for the 
Gaussians. If the doublet separation increases, then the errors increase 
from negative to the positive values for ´ = 0.5 − 1.0. 
   We explain this increase, as follows. For small separations, the errors 
are due to the overlap of central parts of the derivatives’ components 
(Fig. 3.3-10a). For large ¯, the overlap of the central part of the first 
peak’s derivative with the satellite of the second peak (Fig. 3.3-10c) is 
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the essential factor of the errors. Only for ¯ = 4, when the overlap is 
small, the relative error decreases to 2.2%.  
 

Figure 3.3-9. The peak widths ratio (Ó = 3) measurements for the Gaussian and 
Lorentzian doublets (solid and dotted lines, respectively) using the fraction 

derivatives (Eq. (1.2-36)). The numbers near the curves stand for ´. 
 

 
Figure 3.3-10. The 2nd-order derivatives of the Gaussian doublet and doublet 

components (Eq. (3.3-18)) (solid, dashed, and dotted curves, respectively). 
 ´ = 1, ¯ =1, 2 and 4 (panels a-c, respectively).  

 
Dependences of the zero-crossing and extreme values of the FDs of the 
Lorentzian peak on the differentiation order were approximated by 
parabolas (Fig.1.2-7) [2]: 
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å�(�) = £	�	 + £�� + £�,                                                                   (3.3 − 19)   åV(�) = 	�	 + �� + �.                                                                 (3.3 − 20)  
   We found that the linear approximation of the ��åV(�) (Eq. (1.2-32)) 
for the first satellite is more precise than Eq. (3.3-20): ��åV(�) = ��� + ��.                                                                              (3.3 − 21)  
   The left zero-points of the first three derivatives of the Lorentzian peak 
are readily obtained from Eq. (1.2-10): >�(�) = 0; >�(	) = �1/3; >�(F) = 1,                                                    (3.3 − 22)  

where > = 2(� − ��)/�. Therefore, å�(1) = ��;  å�(2) = �� − � %2√3&⁄ ;  å�(3) = �� − � 2⁄ .     (3.3 − 23)  

Substituting å�(1) and  å�(2) into Eq. (3.3-19), we have two estimators: �A� = £	 + £� + £�,                                                                                (3.3 − 24)  �E = −2√3(3£	 + £�).                                                                         (3.3 − 25)  
 
Exercise 3.3-1 
   Readers are invited to calculate the estimator, similar to Eqs. (3.3-24) 
and (3.3-25) and based on the zero points  å�(2) and å�(3). 
 
   The left extrema of the first three derivatives of the Lorentzian peak are 
(Table 1.2-2 (Chapter 1.2)):  åV(1) = 1.2990��/�;  åV(2) = 2��/�	;  åV(3) = 3.3677��/�F.        (3.3 − 26)  

Substituting the pairs [åV(1),  åV(2)] and [åV(2),  åV(3)] into Eq. (3.3-20), 

one can obtain two different sets of estimators for �E  and ��� [2]. Readers 

who love tedious algebra can do this. For example, in the first case: �E = 1.539 ∗ Çz� `'�⁄ ,                                                                   (3.3 − 27)  ��� = 1.1852 ∗ Çz�	 `'�,                                                               (3.3 − 28)⁄   
where Çz� = 	 + � + �;  `'� = 4	 + 2� + �.  
 For the logarithmic approximation (Eq. (3.3-21)), using ��åV(1) and ��åV(2) (Eq. (3.3-26)), we have �E = (��/�ü)'!$(−��),                                                                    (3.3 − 29)  ��� = %��/��	&'!$(�	),                                                                    (3.3 − 30)   
where �� = åV(2)�	 ��⁄ = 2; �ü = åV(1)� ��⁄ = 1.2990.   
   Computerized studies showed amazingly accurate results, which were 
obtained by the decomposition of some simulated sets of overlapping 
Lorentzian peaks [2] and experimental Laser-Induced Breakdown spectra 
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[3]. In the last case, the authors performed background correction and 
data denoising. 
  Prof M. Kh. Salakhov’ team (Russia) [4] first suggested this FD-based 
method, which was successfully developed by Japan researchers [2, 3]. 
   To illustrate the potential possibilities of the method, we estimated 
uncertainties in determining the positions and widths (by Eq.(3.3-24) and 
(3.3-25)) of the Lorentzian peaks distorted by the interfering peaks of the 
same shape. Eq. (3.3-18) is slightly changed so that the first peak is 
identical to the following model [2]: `(!) = �(! − !ø) +  ´�{(! − !ø − 2¯)/Ó} + �,                        (3.3 − 31)  
where � is the normal noise with zero mean and standard deviation � = 0.01 (the maximum signal-to-noise ratio is 100). 
   Figures 3.3-11 and 3.3-12 show dependences of the relative errors in 
the determining of the peak positions and widths, and corresponding 
standard deviations, on the doublet separation (¯) for noise-free and noisy 
data, respectively. The plots of Figure 3.3-12 (panels signed by a and b 
with indexes 1-3) are the mean values of 1000 repetitions. The denoising 
of the derivatives was performed in the Fourier domain (Chapter 2.4). 
The smoothing filter's parameters were: � = 2; � = 3 ∗ 10��, 10��, and 8 ∗ 10�B for Ó = 1, 0.5, and 2, respectively. These parameters were 
chosen empirically based on a trade-off between the mean errors and the 
standard deviations. 
   The Lorentz peak shape manifests itself as the constant 2√3 in Eq. (3.3-
25). Therefore, small shape distortions, such as smoothing, that change 
this constant, may cause significant systematic errors of the peak width 
measurements. 
   As opposed to this parameter, the expression of the peak’s maximum 
data, which was obtained by the least-squares regression (Eq. (3.3-24)), 

does not directly depend on the peak’s shape, just like >�(�) = 0 (Eq. (3.3-
22)).  
   Figure 3.3-13 (panel a) demonstrates shifts of the zero-points (��) in the 

2nd-order derivatives of the Lorentzian peak smoothed by the FFT 

method. The dependence of these shifts on the smoothing parameter � 
allowed us to modify Eq. (3.3-25) by introducing the correcting 

coefficient �� = � %2√3|�� − ��|&⁄ : 
 �E = −��h2√3(3£	 + £�)j.                                                              (3.3 − 32)  

The linear dependence (Fig. 3.3-13, panel b), calculated in the range [5, 50] ∗ 10�B, is  

 �� = −0.0878 ∗ �� � − 0.8820.                                                     (3.3 − 33) 
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   The following conclusions can be drawn from the graphical data: 
1. The errors increase while ´ increases and ¯ decreases. 
2. The errors reduce while the relative peak width (Ó) changes from 1 to 
0.5 or 2. 
3. The accuracy of the peak’s maximum estimation is better than that of 
the peak width. 
4. The smoothing increases both types of errors (compare Figs.3.3-11 and 
3.3-12). However, all dependencies Öü(¯) rise from zero-line by more 
than 30% due to the distortion of the Lorentzian peak shape. The above 
numerical experiment explained this result. 
5. The plots (Fig. 3.3-14) which were corrected according to Eqs. (3.3-32) 
and (3.3-33), exclude systematic shifts observed in Figure 3.3-12.  
   Figure 3.3-15 shows the dependences of the relative errors in the 
determining of the peak maxima and widths on the doublet separation for 
the noisy model (Eq. (3.3-31)). The curves were plotted using Eqs. (3.3-
29) and (3.3-30). We modified these equations, taking the fact that the 
constants �ü and �� are functions of the smoothing parameter � into 
account Two sets of the discrete values �ü(�_) = åV(1) ∗ � ��⁄  and ��(�_) = åV(2) ∗ �	  ��⁄  were obtained by numerical estimations of the 
peak maxima åV(1)[�_] and åV(2)[�_] in the 1st- and 2nd-order Fourier 
derivatives, respectively. Then �ü(�_) and ��(�_) were well 
approximated by the 3rd-order polynomials used in Eqs. (3.3-29) and 
(3.3-30).  
   Let us briefly consider some studies in which information about the 
approximated peak parameters was extracted from the derivatives. 
   The models were the Gaussian, Lorentzian, and Student peaks, and a 
combination of the first and second peak shapes [5, 6]. The peaks' 
maximum intensities and widths were approximately estimated using 
cumbersome expressions included the 2nd- and 4th-order derivatives.  
   The low signal-to-noise ratio of the 4th-order derivatives and four 
satellites are the major disadvantages of this method. One of the 
pioneering computer programs, which is based on the 2nd-order 
derivative, refined the widths of the Gaussian peaks in the decomposition 
procedure [7]. A software package based on high-order differentiation 
was designed to reconstruct the parameters of the unresolved doublets 
consisting of the Gaussian, Lorentzian, and Voigt peaks [8]. The 
calculated profiles of the atomic spectral lines well coincided with the 
experimental ones. 
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Conclusion 
 
   Based on the literature data and our experience, this chapter showed 
that the derivatives of the poorly-resolved spectral contours allow the 
extraction useful information about peak parameters using many smart 
algorithms. However, each algorithm suffers from specific drawbacks, 
including the negative impact of noise and background, and errors occur 
because of unknown correct peak shapes. Attempts to develop a 
"panacea" to the problem of overlapping peaks is doomed to failure. Only 
a combination of the rigorous mathematical methods of decomposing 
unresolved spectra based on spectral curves modelling and the derivative 
techniques for estimating the approximated initial peak parameters allows 
an analyst to obtain realistic preliminary data. However, without physical-
chemical data justification, the mathematically-obtained results may be 
erroneous. 

 EBSCOhost - printed on 2/12/2023 11:12 PM via . All use subject to https://www.ebsco.com/terms-of-use



212                                          Part III Chapter Three 
 

 

 
 

 
Figure 3.3-11. Errors in determining positions (a) and widths (b) the noise-free 

Lorentzian peaks distorted by the interfering peaks of the same shape. Subscripts 
1-3 correspond to Ó = 1, 0.5, 2, respectively. ´ =0.1, 0.2, 0.5, 1, 2 from the lower 

to upper curves.  
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Figure 3.3-12. The mean errors and standard deviations found in determining the 

positions (a, c) and widths (b, d) of the noisy Lorentzian peaks distorted by the 
peaks of the same shape. Subscripts 1-3 correspond to Ó = 1, 0.5, 2; � = [3, 1,  
 0.8] ∗ 10��, respectively. ´ =0.1, 0.2, 0.5, 1, 2 from the lower to upper curves.  
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Figure 3.3-13. (a) The 2nd-order FFT derivatives of the Lorentzian peak (2� = 4). 

The arrow points to � = (5: 5: 50) ∗ 10�B. (b) Dependence ��(�� �).  
 

   
Figure 3.3-14. It is the Figure 3.3-12, whose panels b and d are corrected 

 by Eqs. (3.3-32) and (3.3-33).  
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Figure 3.3-15. The mean errors and standard deviations in determining maxima 
 (a, c) and widths (b, d) of the noisy Lorentzian peaks distorted by the peaks of 

the same shape. Subscripts 1-3 correspond to Ó = 1, 0.5, 2; � = [3, 1, 0.8] ∗10��, respectively. ´ =0.1, 0.2, 0.5, 1, 2 from the lower to upper curves.  
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CHAPTER FOUR 

DETERMINATION OF DOUBLET 

PARAMETERS USING THE EMPIRICAL 

COEFFICIENTS OF THE 2ND-ORDER 

DERIVATIVE 

 
 
   According to the previous chapters, the parameters of the poorly-
resolved overlapping peaks, which were estimated using their derivatives, 
suffer from significant errors. Therefore, generally speaking, these 
estimates, being approximated values of the peak parameters, may be 
useful as initial data for the decomposition of spectra into elementary 
components. Let us consider this problem in more detail. 
   Usually, the decomposition is performed by searching for the 

parameters (åÓ�) that corresponded to the minimum Euclidian distance 

(the objective function) between a measured spectrum (��ö) and the 

model (��¦?) [1]: 

 åÓ� = ÈÓ%���§�∑ [��ö(�) − ��¦?(�, åÓ�)]	ú_�� ¨.                    (3.4 − 1)  

For an in-depth look into the problem, we recommend a book [2]. 
   Introducing computerized tools in the 1960-70s allowed analysts to 
perform extensive use of the decomposition procedures: e.g., the authors 
of the pioneering study in analytical spectroscopy in [3] compared errors 
when determining peak parameters using different numerical algorithms. 
Now, there are many commercial software products designed for 
decomposition [1]. 
   The main problem of minimizing the objective function (Eq. (3.4-1)) is 
that it may have multiple local minima in the interval. In other words, 
many sets of parameters that best fit to the model are possible. Finding all 
the sets is a cumbersome mathematical task [4]. Another widely used 
method requires guesses (initial values) of possible peak parameters. 
However, a searching algorithm may converge to different sets due to 
small changes in the guesses. From all data, one must select parameters 
that are most appropriate to the spectrum under decomposition. The 
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correct choice of initial model parameters may help to solve this 
challenging problem [1]. 
   To illustrate some difficulties when choosing these parameters, 
consider the multiplet's normalized form consisting of peaks with a 

similar shape (�): �z��(!) = ∑ ´L�(∆^L)�L�� ,                                                                 (3.4 − 2)  

where ∆^L= ! − !ø + !�L; ! = Ä� �L; ⁄ � = 1,2, … Ç; Ä is the peak shape 

parameter; �L = �ÓL  is the peak width; � is the width-scale parameter; !ø = �øÄ/�L  is the reference (central) point; !�L =β��L/�L;  ¯L = ∆LÄ/�L  

is the relative shift of the peak from the �ø; ∆L is the absolute shift; !ø − !�L is the peak position ; ´L is the normalized peak intensity. The 

pair {�ø, �} and the set of $ triples {¯L, ´L, ÓL } define the multiplet with 
symmetrical peaks. 
   Figure 3.4-1 demonstrates triplet and quartet spectra and their negative 
2nd- order derivatives. Combining analysis of the well-resolved peaks and 
their derivatives allows us to estimate the initial peak parameters for 
further decomposition. However, the origin of the weak hump marked 
with arrows is doubtful. The hump (panel b) and its combinations with 
correct peaks (panels a and c) are false peaks.  
 
Exercise 3.4-1 
  Readers are invited to inspect some triplets and quartets, plotted by the 
program plotQuartets.m, and to try to guess the number of the peaks and 
their parameters visually. Pay attention to the possibility of a false 
structure in the 2nd-order derivative. 
 
   Figure 3.4-2 illustrates two possible ways of initial parameters 
estimation. The left side of the diagram describes the traditional method 
in which the parameters are extracted from the spectrum using some 
preprocessing algorithm combined with the iterative procedure of the 
decomposition. If the results are unsatisfactory, then the parameters, 
which were obtained in a given step, are corrected, and the process 
continues to fit the model to the experimental data properly. Also, the 
model (peaks’ number and their shapes) may be changed. 
   Prior information about the sample, which spectrum is to be studied, 
helps clarify the parameters' values. This information includes the 
theoretically-obtained spectral data. 
   In another approach suggested in the 1980s [5] (the right side of Fig. 
3.4-2), we searched for the unknown parameters of the spectral segment 
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(doublet) in the database containing a broad set of the parameters that 
occur in practice. For this goal, we generated the 2nd- order SG 
derivatives of 600 pairs of the Gaussian and Lorentzian doublets by 
varying the peak parameters in broad ranges: `(!) = �[Ä(� + ��)/�] + ´�[Ä(� − ��)/Ó�],                               (3.4 − 3)  

where �� = ¯�/2; ¯ is the relative peak separation. Other parameters are 
defined in Eq. (3.4-2).  
   The empirical coding coefficients of derivatives were: � = ∆Õ �n�⁄ , Ä = �n	 �n�⁄ ,? = �	̅ ��̅⁄ ≤ 1.                                           (3.4 − 4)  

   Figure 3.4-3 defines parameters of the negative 2nd-order derivative 

used for the calculation of these coefficients for the poorly- (a) and well-
resolved Gaussian doublets (b). The last panel shows the false peak. The 

coefficients, �, Ä and ?, correspond the relative separation, width, and 

intensity of the doublet peaks, respectively. The triples {�, Ä,?} were 

mapped to the triples of the doublet parameters {¯, ´, Ó}. The sets of both 
triples were saved in the database. The use of the coefficients (Eq. (3.4-

4)), instead of the full derivative spectra, allowed the significant 
compresion of the data. 
   The computer program scanned the database and searched for the triple {�, Ä, ?} closest to that estimated for the doublet under study. The 
database was small because of the insufficient calculation power of the 
Russian minicomputer available in our laboratory. Therefore, we used 
this method only to estimate relative values {¯, ´, Ó}. Also, unique initial 
parameters were not obtained in all cases.  
   To overcome these drawbacks, we took the multiplet model (Eq. (3.4-
2)) instead of the old one (Eq. (3.4-4)): `(!) = ´��(∆^�) +  ´	�(∆^	),                                                          (3.4 − 5)  

where ∆^�= (! − !ø + Ä¯)/Ó�; ∆^	= (! − !ø − Ä¯)/Ó	;  Ó� = ��/�; Ó	 = �	/�; ¯ = ∆ �⁄ ; ∆ is the peak shifts from the central point �ø .  

The coefficients Ä and ? (Eq. (3.4-4)) were also split into two pairs: Ä� = �n� (�n� + �n	)⁄ ; Ä	 = �n	 (�n� + �n	)⁄ ; ?� = ��̅ (��̅ + �	̅)⁄ ;    ?	 = �	̅ (��̅ + �	̅)⁄ .                                                                                  (3.4 − 6)    

It follows from Eqs. (3.4-4) and (3.4-6) that Ä = Ä	/Ä� and ? = ?	/?�.  

   The quintet {�, Ä�, Ä	, ?�, ?	} does not depend on the ! and > scales. 

However, a large sampling interval of the !-axis and smoothing of the 
noisy data disturb the data. 
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Figure 3.4-1. The Gaussian triplets (a, b), quartet (c), and their negative 2nd- 

order derivatives (upper and lower panels, respectively). The dotted curves are 
the multiplet’s components. The arrows point to "doubtful" peaks. 

 EBSCOhost - printed on 2/12/2023 11:12 PM via . All use subject to https://www.ebsco.com/terms-of-use



220                                             Part III Chapter Four 
 

 
 

 
Figure 3.4-2. Diagram of the spectral segment decomposition. DB stands for a 

database. 
 

 
 Figure 3.4-3. Estimation of the empirical coefficients (Eq. (3.4-4)) for poor (a) 
and well-resolved 2nd-order derivatives of the Gauss doublets (b). For simplicity, 

the derivatives have a negative sign. The last panel shows the false peak. 
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Relationships between {�, Ä�, Ä	, ?�, ?	} and the doublet parameters {�, ´�, ´	, Ó�, Ó	, ¯} cannot be theoretically calculated. As an example, 
Figure 3.4-4 shows dependences �(¯) obtained numerically. There is 
only one way to build a two-column lookup table with the following 
rows: {�, ´�, ´	, Ó�, Ó	, ¯}, {�, Ä�, Ä	,?�, ?	}. The second row depends on �. Since Ä� +  Ä	 = 1 and ?� + ?	 = 1, only one term of these pairs must 
be saved. Another is calculated. However, below we show why both 
coefficients are needed.  

 
Figure 3.4-4. Dependence �(¯) for the 2nd-order derivative 

 of the Gaussian doublet. ´� = ´	 = 1, Ó� = Ó	 = [0.1, 0.5, 1]  
from upper to lower curves, respectively.  

  
   The algorithm of the estimation of the initial parameters consists of the 
following steps (Fig. 3.4-5): 
1. Loading the database file (DB), the doublet under analysis, and the 
parameter ¢�\^. ¢�\^ is the applicable relative discrepancy between the 
coefficients QR= {�, Ä�, Ä	,?�,?	} and those found in DB %QR,z�&, that is,  

 YQR QR,z�⁄ − 1Y ≤ ¢�\^.                                                                       (3.4 − 7)  
The same relative errors of the terms Ä�, Ä	  and ?�,?	  only occur if they 

equal to 0.5. E.g., suppose that Ä�,z� − Ä� = #, then YÄ� Ä�,z�⁄ − 1Y = Y%Ä�,z� − #&/Ä�,z� − 1Y = |#|/Ä�,z� .               (3.4 − 8) Y(1 − Ä�) ∆Ä�,z�⁄ − 1Y = Y%∆Ä�,z� + #&/∆Ä�,z� − 1Y = |#| ∆Ä�,z�⁄ ,    (3.4 − 9) 

where ∆Ä�,z� = 1 − Ä�,z�. 

Eqs. (3.4-8) and (3.4-9) are equal, if Ä�,z� = 0.5. 

2. Searching for the sets {�, Ä�, Ä	,?�,?	} that are satisfied Eq. (3.4-7), 

and mapping the doublet parameters {�, ´�, ´	, Ó�, Ó	, ¯} to these sets. 
The rows of the matrix ^�\U\� contain these parameters. 
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3. Calculating the model doublets ��¦?  (Eq. (3.4-5)), which 
corresponded to matrix ^�\U\� . The width � has the most significant 
impact on the accuracy of the solution. Therefore, for each row of the 
matrix ^�\U\� , this parameter is varied in the range given by DB. The 
set of the approximately best-fit models of initial parameters are found 
using Eq. (3.4-1). From these models, one selects the set (named �Ä?-
best-fit doublet parameters), which has the minimum fitting error. 
owever, a number of the competing models may be used as candidates for 
the initial parameters in the least-squares (LS) fitting. 
   The choice of relative discrepancy ¢�\^ (Eq. (3.4 − 7)) is critical. If ¢�\^ decreases, then the size of the matrix ^�\U\� decreases, and the 
program running time significantly reduces. However, the condition, 
defined by Eq. (3.4 − 7), must be satisfied. Therefore, a compromise is 
needed.  
   As an example, we built DB, combined 6,293,700 sets of the doublet 
parameters {�, ´�, ´	, Ó�, Ó	,¯}, which varied in the following ranges:  {20: 5: 200;  0.1: 0.1: 1; 0.1: 0.1: 1; 0.2: 0.1: 1; 0.2: 0.1: 1;  0.3: 0.05: 1.3}.  
   To reduce the dimension and the size of DB, data do not include a 

scaling factor along >-axis. For the scaling, the best initial parameters ´�and ´	, found in DB, were multiplied by the factor  �ö = ��!(`^) /��! (`VöL),                                                              (3.4 − 10)  

where `^ and `VöL are doublets; the first is under study, and the second is 

built, using the �Ä?-best-fit parameters. 

   The parameters of the SG 2nd-order derivative filters were: 2� = 2, � = �/2 = {10: 2: 100}. The smoothing, with a factor that was constant 
for basic widths �, took the possible noise in the spectra into account. 
However, if � was small, then the peaks with small relative widths Ó, 
might be oversmoothed. The �� < 2� and �	 < 2� cases were 
eliminated from the calculations. Therefore, the number of combinations 
decreased to 5,501,202. The Matlab program running time on the laptop 
(Intel(R) Core (TM) i7-4700HQ CPU @ 2.40 GB, RAM 16.0 GB) was 
approximately 143s. 
   Figure 3.4-6 illustrates the decomposition process of the three Gaussian 
doublets. The �Ä?-best-fit coefficients served as the initial parameters for 
the LS-fitting. For this goal, we used the nlinfit Matlab function. Table 
3.4-1 includes the precise doublet parameters and their estimates obtained 
by the �Ä? method and the LS-fitting.  
   The laptop running time of the Matlab program (Fig.3.4-5), which 
included DB loading, searching, and LS-fitting, was less than 3-5s.  
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Figure 3.4-5. Doublet parameters estimation. 

 
   From these data, we conclude the following: 
1. Parameters estimated by the �Ä?-method are in good accordance with 
their precise values. The exception for the width �	  of the model 3 is 
given in bold in Table 3.4-1. 
2. In some cases, the 95% confidence intervals of the LS-estimates (given 
in bold in Table 3.4-1) do not include the doublet parameters' precise 
value. However, the figures demonstrate visually similar curves of the 
best-fitting models and doublets. 
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Figure 3.4-6. Decomposition of the doublets (Table 3.4-1). In the first section of 
each panel, solid, dotted, and dashed curves designate the model, its components, 

and the doublet calculated using �Ä?-best-fit parameters. The second section 
represents the 2nd-order derivatives of the model and the �Ä?-best-fit doublet 

(solid and dotted lines, respectively). The last section illustrates the LS-best-fit 
decomposition. The curve designation is similar to the first section. 

 
   To illustrate this phenomenon, we repeated calculations 1000 times for 
the model 1 distorted by the newly generated noise. Statistically invalid 
results were observed in 934, 893, and 967 cases for the standard 
deviation of the normal noise � =0.01, 0.005, and 0.001, respectively. 
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   These findings proved the well-known fact that searching of the best-
fitting regression models is not a trivial task [1]. Blind use of commercial 
software, which has been designed to decompose of overlapping peaks, 
may give unpredictable results. Some research has demonstrated forests 
of peaks found in unresolved contours without any statistical data.  
 Finally, we conclude that even the most straightforward doublet 
decomposition requires special attention.  
 
 
Table 3.4.-1. Data obtained by decomposition of the model Gaussian 

doublets 

Model Type of 
parameters 

Parameters ∆ ¼� o� ¼� o� 

» =0.32 ¼� =0.62 n� =0.67 ¼� =0.29 n� =0.54 

Precise 32.0 0.62 67.0 0.29 54.0 

Estimated 
by D{W-method 

31.5 0.62 70.0 0.25 63.0 

Estimated 
by 

LS-fitting 

32.1± 
0.16 

0.52± 
0.10 

66.1± 
0.54 

0.24± 
0.047 

53.4± 
0.99 

» =0.47 ¼� =0.78 n� =0.57 ¼� =0.32 n� =0.44 

Precise 47.0 0.78 57.0 0.32 44.0 

Estimated 
by D{W-method 

44.8 0.79 64.0 0.32 57.6 

Estimated 
by 

LS-fitting 

46.9± 
0.12 

0.75± 
0.30 

56.6± 
0.26 

0.30± 
0.12 

44.0± 
0.69 

» =0.47 ¼� =0.99 n� =0.92 ¼� =0.11 n� =0.34 

Precise 47.0 0.99 92.0 0.11 34.0 

Estimated 
by D{W-method 

46.0 1.00 92.0 0.14 73.6 

Estimated 
by 

LS-fitting 

46.8± 
0.18 

1.25± 
0.44 

90.8± 
0.43 

0.14± 
0.050 

36.2± 
2.3 

 
The LS-estimates are the 95% confidence intervals. 
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INTRODUCTION  

 
 
 
   Derivative-based quantitative analysis is similar to the conventional 
method since the differentiation is the linear mathematical operation. If 
the analyte's pure analytical signal is proportional to the amount 
(concentration) of the analyte in the sample, then the derivatives of the 
signal, obtained by precise linear methods, will have this property. 
However, in practice, the assumption of linearity may be violated. Also, 
as in conventional procedures, one must consider the background 
(including random noise) and interfering signals that disturb the accurate 
instrumental response to an analyte. Denoising the derivative spectrum is 
one of the essential problems since the differentiation significantly 
decreases the signal-to-noise ratio. 
   In the first chapter, we will consider the intensity measurements in the 
derivative spectra and the relationships between the intensity and the 
analyte concentration for different differentiation methods. The following 
chapters' subjects are the selectivity, sensitivity, and informational 
concepts of quantitative derivative spectrometry. 
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CHAPTER ONE 

INTENSITY MEASUREMENTS: RELATIONSHIPS 

BETWEEN ANALYTE CONCENTRATION AND 

INTENSITY  

 
 
 
   The intensity of the derivatives of the analytical signals is usually 
measured from a base- and zero-lines (Fig. 4.1-1, panels (a, b) and (c-g), 
respectively [1, 2]). Consider the more detailed classification of these 
baseline and zero-line methods [2].  
   The main advantage of the first group of methods is that the 
measurements from a horizontal baseline do not depend on the constant 
shifts along the y-axis. Therefore, the linear backgrounds do not disturb 
the analytical signal in the 1st- and the 2nd-order derivatives, but only the 
parabolic in the last case. The non-horizontal baseline corrects the 
residual linear background in the 1st-order derivative. 
   The errors of the background approximation by the non-horizontal 
baseline decrease in the derivative spectrum. It follows from the fact that 
the approximation interval narrows due to the narrowing of the derivative 
peaks, thus, improving the background correction. New extremal points 
appear in the derivatives. Drawing of the baselines between these points 
reduces the uncertainties of the baseline endpoints locations along the x-
axis.  
   In the null-measurement methods, the analytical points of the analyte 
(!�) are the points of the intersection of the interfering curves with the !-
axis (panels c, d). Unfortunately, the extrema positions in the derivatives 
and the points !� match each other in rare cases. Therefore, the 
measurements at the steep branches of the peak may be subject to 
significant errors due to the random shifts along the !-axis. The authors 
of one of the pioneering studies in derivative spectrometry [3] adjusted 
the extremal and the null-points by varying the monochromator slit’s 
width. The authors of the study [4] estimated both the dependence of the 
distance between these points on the slit width and the optimal width for 
a given peak separation. The null-point was shifted to the extremum of 
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the analytical derivative peak by varying the modulation amplitude of the 
optical differentiator and the slit width. We achieved the 
same results by changing the RC differentiator parameters [2]. 
   Panel d simulates a hypothetic case in which extrema of the derivative 
coincide with two null-points located on the two sides of the interfering 
peak. Since the slopes of these sides have opposite signs, the shifts of the 
abscissa are partly compensated. Therefore, the concentration measure, 
which equals the >-distance between extrema, becomes less sensitive to 
the ! scale’s drifts.  
   The absolute value of the ratio Y��(�)/�	(�)Y (panel f) in the poor-
resolved 1st-order derivative spectra, was the concentration measure of 
the analyte in the binary mixture [5].  
   Figure 4.1-2a demonstrates the interesting example of the unresolved 
1st-order derivative of the Gaussian doublet consisted of strongly 
overlapped peaks: `(�) = ´�'!$9 −Ä �� − �ø + ∆�� �	:+ ´	'!$ 9 −Ä �� − �ø − ∆�	 �	: , (4.1 − 1) 

where ´ and � are the peak intensity and width, respectively; Ä = 4��2; ∆ is the peak shift from the central point �ø . 
   The extrema of the derivatives of the doublet components have 

opposite signs at the point �ø=250. The total intensity is ��(�) = ��	(�) −���(�), where the second subscript stands for the component number. The 

right minimum �	(�) ≅ �		(�). Therefore, since ��	(�) = Y�		(�)Y , the ratio is 
(Fig. 4.1-2b) v��(�)/�	(�)v = v²��	(�) − ���(�)³ /�		(�)v = 1 − ���(�) �		(�)W = 1 − S´�,           (4.1 − 2)  

where S = �	/(´	��) is the slope. 

   If the intensity ´� linearly depends on the amount of the first 

component in the binary mixture, then the ratio Y��(�)/�	(�)Y may be used 

in the quantitative analysis.  
   Unfortunately, the above pattern (Fig. 4.1-2a) is rare in practice. 
Usually, the appropriate analytical points do not coincide with the 
extrema. Therefore, the shifts along the x-axis cause additional errors 
similar to those of the null-method. 
   The pioneering study in [6] used areas under peaks in the 1st- and 2nd-
order derivatives for quantitative purposes. Later, Kalmanovskyi [7] 
received a patent for the chromatographic analysis based on this method. 
He constructed a new RC differentiator, which generated the unipolar 
signal (absolute value of the derivatives). 
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Figure 4.1-1 (adapted from [2]). Intensity measurements in the  

derivative spectra: from a baseline (a, b), in the zero points of the 

 interfering components (c-e), by the ratio ��(�)/�	(�)
(f), and 

 at the points of a weak distortion of the analyte signal (g).  
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Exercise 4.1-1. 
   Readers are invited to check the validity of Eq. (4.1-2) using Figure 
4.1-2b. 
 

 
 Figure 4.1-2. (a) The 1st-order derivative spectra of the symmetrical Gaussian 

 doublet and its components (solid and dotted curves, respectively (´� = 1.4,�� = 50). (b) Dependence of the ratio v��(�)/�	(�)v of ´�. �� = 50: 25: 150  

from the lower to the upper lines. In both panels: ´	 = 3, �	 = 50, ¯ = 0.4. 
 
   For example, consider two overlapping Gaussian peaks and their 2nd- 
order derivatives (Fig. 4.1-3), representing a model chromatogram of a 
binary mixture. Eq. (1.2-18) showed that the areas under the positive and 
negative branches of any order derivatives are equals. Therefore, the 
central peak and satellite of the 2nd-order derivative include 50% and 
25% of the whole area, respectively. The areas of the darkened humps in 
the left and right sides of the panel b are free of the overlapping.  
   These areas are accurate measures of 75% and 25% of the amounts of 
the first and second mixture components, respectively. The 
corresponding darkened segments of the peaks also do not approximately 
overlap. However, while the humps endpoints in the derivative 
chromatogram are zeros, the end- and start-points of the first and second 
segments, respectively, lie on the peaks' steep slopes. Small shifts of 
these points cause significant errors in the quantitative analysis. Figure 
4.1-3 represents the patterns, which are typical for nearly entirely 
resolved peaks. For these peaks, reducing the area significantly increases 
the uncertainties in the analysis [8]. The correction method [7] improves 
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accuracy. However, in the case of a substantial overlap, this method is 
not applicable.  
 

 
Figure 4.1-3. The area measurements in the Gaussian doublet (a),  

and the unipolar 2nd-order derivatives (b). Dashed and solid  
curves stand for the doublet and its components, respectively. 

 
   Currently, chromatographists are trying to resolve the overlapped peaks 
by the least-squares decomposition method. 
   The errors in the quantitative derivative spectrometry depend on the 
degree of the peak overlap, the method of measuring the intensity of the 
analytical signal, and the noise. These errors are related to the 
uncertainties in determining the analytical data in derivatives (Chapter 
3.3). In this chapter, we estimated the relative systematic errors for the 
zero- and baseline measurement methods of the relative intensity of the 
second doublet peak in the 2nd-order derivative of the Gaussian and 
Lorentzian doublets.  
   In the first piece of research on this issue [1], O'Haver simulated 
quantitative analysis using the Gaussian doublet and its 1st- and 2nd-orders 
derivatives. He showed that, 
1. Null and baseline measurements of the intensity in the 2nd-order 
derivatives demonstrate minimum errors in determining the concentration 
ratio of the binary mixture components. 
2. Systematic errors of the baseline methods are minimal if the analytical 
peak is narrower than the interfering one. The null-method is the best in 
two cases: (a) equal-width components; and (b) constant parameters of 
the interfering peak. 
3. The measurements using the 2nd-order derivatives are, as a rule, better 
than in 1st-order derivatives.  
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4. Differentiation has an advantage over unprocessed data only in the 
case of poor-resolved peaks. 
 Since the differentiation significantly reduces the signal-to-noise ratio, 
the noise must be removed to a large extent by smoothing (denoising). 
Therefore, one obtains distorted derivative peaks. They broaden, and the 
spectral resolution decreases. While intense smoothing hampers the 
structure analysis of spectra, the estimation of the mixture concentrations 
may successfully involve inaccurate derivatives distorted by the 
denoising [2]. However, the parameters of the differentiators must be 
unchanged in all studies of the quantitative analysis.  
   One of the significant advantages of �LM-order derivative spectrometry 
is the suppression of the polynomial background, which degree � < �. In 
this case, the differentiation may reduce the quantitative analysis' 
systematic errors that appear in the presence of an uncorrected 
background. 
   We showed that (a) the background correction by the differentiation is 
a partial case of algebraic correction; and (b) from a signal processing 
view, the latter method is better than the derivative technique for the 
background suppression [9]. The algebraic correction involves the 
polynomial approximation of the background. The polynomial 
coefficients and unknown mixture concentrations are variables of a 
system of equations. The solution of this system suffers from many 
errors. Therefore, background correction is now performed in the 
chemometrics framework, but it requires multidimensional data [10].  
   Due to Chapter 2.1, the output voltage of the differentiator is 
proportional to the concentration of the analyte; the analytical signal of 
which is not disturbed by interfering mixture components. This 
conclusion is valid for inaccurate derivatives of the absorbance or any 
quantity related linearly to the concentration. The above is also valid for 
linear numerical differentiation.  
   Consider the following expression of absorbance: È = −�¤%��N = �¤%���� − �¤%���,                                                     (4.1 − 3)  

where N = �/�� is the transmittance of the sample; � and �� are the 
radiation intensities received and transmitted by this sample. 

   If the first term (Eq. (4.1-3)) is approximately constant, then the �LM-

order derivative of the output signal of the single-beam spectrometer will 
be as follows: È(�) ≅ −(�¤%���)(�).                                                                             (4.1 − 4)  

If È ≪ 1, then �/�� = 10�É~(1 − È). We stated above that ��(�) = 0, 

therefore, 
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 �(�)~ − È(�)                                                                                             (4.1 − 5)  

This method was used for the analysis of weak-absorbing objects, e.g., 
gases. 
   Suppose that the Beer-Lambert law is valid: È = #K�£,                                                                                                   (4.1 − 6)   

where #K is the absorptivity of the sample; � is the abscissa of the 

spectrum (e.g., the wavelength); � is the optical path length; c is the 

analyte concentration. Then, from Eq. (4.1-3) we have 1� �� = 1��
��� − �£S #K� ,                                                                       (4.1 − 7) 

where S = ��10. 

For the derivative of Eq. (4.1-7) 

 
By substituting Eq. (4.1-7) in the first brackets of Eq. (4.1-8) and taking 

the fact that in the peak maximum #K �⁄ =0 into account, we obtain 1� 	��	 = 1��
	���	 − �£S 	#K�	 .                                                                 (4.1 − 9) 

Exercise 4.1-2. 
   Readers are invited to obtain the expressions of the higher-order 
derivatives, which contain quadratic terms of concentration. 
 
   Eqs. (4.1-7) and (4.1-9) describe the derivatives obtained by optical 
modulation differentiators (Chapter 2.9). In some cases, it is not easy to 
use these devices for quantitative analysis: e.g., the 2nd-order derivative is 
only proportional to the analyte concentration in the peak maximum. 
Therefore, baseline measurements are impossible.  
 
Quantitative laser analysis of the gas mixtures using frequency 
modulation technique  
   Before studying this section, we recommend revisiting the materials 
provided in Chapter 2.10.  
   In the lack of saturation, the power of the monochromatic laser 
radiation, at frequency ν, passed through the uniform absorption layer of 
the width � [11]:  
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å(À) = �å�(À)'!$[�(À)�] = P ℱRcos (S-��)�R�� ,                  (4.1 − 10)  

where � is the loss factor independent of absorbance; å�(À) stands for the 
power of the incident radiation and for the �LM line of �LM mixture 
component (Eq.(4.1-6)):  �(À) = P #_,Ò(À)£_;                                                                        (4.1 − 11)_,Ò     ℱR is the amplitude of the Fourier transform; -� is the modulation 
frequency. 
 Dependence å(À){£_} is nonlinear. Therefore, the estimation of the 
concentration, using the calibration method, is a cumbersome task. The 
linearization makes it possible to simplify the problem only if �(À)� ≪1.  
   The quantitative analysis of gas mixture used combinations of signal 
harmonics, which were obtained by small modulation amplitudes 
(compared to peak widths) [11]: È� = ℱ�/ℱ� = � ∑ ´_Ò(�)£_;                                                              (4.1 − 12)_,Ò   È	 = 4ℱ	 ℱ�⁄ − È�	 = � ∑ ´_Ò(	)£_,                                                  (4.1 − 13)_,Ò   

where the coefficients ´_Ò(�) and ´_Ò(	), obtained for the Lorentzian shape, 

are complicated functions of the peak intensity, width, and modulation 

amplitude. Their estimation involved a cumbersome calibration.  
   Equations, similar to Eqs. (4.1-12) and (4.1-13), obtained for the Voigt 
line shape, included amplitudes of the zero-, 2nd-, and 4th-order Fourier 
harmonics [12].  
   C. Weitkamp [13] performed the calibration using a single analytical 
line. The short reference cell contained the high-concentrated gas under 
analysis. The following equations describe the estimation of the unknown 
concentration of the sample gas (£ö). 
   Suppose that �� is a constant and the analytical line shape is the 
Gaussian. Then, from Eqs. (4.1.3) and (4.1-6), we have the following in 

the line center: ��\^ ��⁄ = '!$(−£�#�) = %��\^ − �?_�& ��\^⁄ ,                       (4.1 − 14)  

where ��\^ is the maximum intensity in the line center; �?_� is the dip in 

this point caused by the saturation. From Eqs. (4.1-9) and (4.1-14), we 

obtain the ratio of the 2nd-order derivatives, generated in the sample (s) 

and reference (r) channels:  ¹ö(	) ¹U(	)W = �ö£ö�ö'!$(−£ö�ö#�) �U£U�U'!$(−£U�U#�)⁄ ,            (4.1 − 15)  
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where �ö and �U are constants estimated in the regions free of the 

analytical line. Eq. (4.1-14) defines #�. The unknown concentration £ö 
was estimated from Eq. (4.1-15) [13].  
   J. A. Mucha [14, 15] used the standard addition technique for 
quantitative trace gas analysis. He measured the modulation-broadened 
Gaussian linewidths and absorptivities in the 2nd-order derivative spectra 
of the infrared transitions of the water vapor. The use of effective 
absorptivities allowed for the correction of the nonlinear correlation 
between derivative data and absorber concentration. 
   The research team in [16] developed the calibration-free method 

applicable to the absorbance less than 5.0%. In this case, the first-order 

Taylor series well approximates the exponential term of Eq. (4.1-10): '!$[�(À)�] ≈ 1 − ��(À) = 1 − � P <Rcos (S-��)�R�� ,           (4.1 − 16)  

where <� = (1/2�) ∫ �(À)uf�f ; <R = (1/�) ∫ �(À)£¤¥(Su)uf�f  (S = 1, 2, 3, … ) according to the 

Fourier transform properties (Appendix A).  
   By comparing Eq. (4.1-10) and Eq. (4.1-16), we obtain the zero and the SLM-order signal harmonics:  È�~1 − �<�; ÈR~ − �<R, S = 1, 2, 3, …                                       (4.1 − 17)  
   The 2nd-order Taylor series reduced the approximation errors for the 
absorbance of more than 5.0% [16]. This method significantly improved 
the accuracy when determining the ammonia's mole fractions.  
 
Multicomponent derivative spectroscopy. General approach 
   We showed that the quantitative derivative of spectrometry is a 
particular case of standard spectrochemical analysis [17]. In this context, 
a question arises: "Does the derivative spectrometry improve accuracy 
(trueness) and precision of the analytical procedures?" Assume that, 
 (1) The random measurement errors of experimental spectra are 
unbiased (that is, the errors have zero mathematical expectation (mean)). 
(2) The pure component spectra of the mixture, whose exact composition 
is known, are linearly independent. 
   Then, according to the general principles of statistics [18], no linear 
transform (e.g., differentiation) of the experimental data can decrease the 
dispersion of the unbiased estimates of the amounts (concentrations) of 
the mixture components. This statement is also valid in the case of the 
linearly dependent components when the least squares estimates are 
obtained using the overdetermined system of the linear equations.  
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   However, the biased estimation can decrease the total error consisted of 
random and systematic components. The trade-off between these 
components is the optimization principle, which is widely used in signal 
processing. 
   For simplicity, consider the molecular absorption spectra of the additive �-component mixture. For this mixture, the unknown concentrations (£R) 
are found from the solution of the system of linear equations (similar to 
Eq. (4.1-11)): �_ = P #_,R£R,                                                                                 (4.1 − 18)�R��   

where � ∈ [0,�] is the serial number of the analytical point; the 

absorption pathlength is taken to be unity. 
   The total number of the analytical points is � + 1 ≥ �. However, the 
system is usually overdetermined, that is, � ≫ �. Solutions for 
overdetermined systems are given in monograph [18]. 
   Suppose that the spectrum contains the normal noise with zero mean 

and variance �	. The orthogonal polynomial expansion of #R(�) on the 

interval [1,�] gives (similar to the Savitzky-Goley (SG) method, Chapter 

2.3): #_,R = P ¢�,Ru�(�),                                                                      (4.1 − 19)
���   

where ¢�,R=���� P #_,Ru�(�)
_��  are the coefficients of the polynomial u� ; �� = P u�	(�)
_�� .  

   Let us perform the following operations: 
1. Substituting Eq. (4.1-19) into Eq. (4.1-18). 
2. Multiplying both sides of the new equality by u_(�). 
3. Summing the result in the interval [1,�]. 
Finally, taking the orthogonality of the polynomials into account, we 
have ���� P �_u�(�)
_�� = P ¢�,R£R,                                                 (4.1 − 20)�R��    

where � ∈ [0,�]. 
   According to Chapter 2.3, the left-hand side of Eq. (4.1-20) resembles 

the �LM-order derivative �U(�) at the point Ó ∈ [0,�]. If � = 2Ç, Ó = Ç, 

and the sampling interval ℎ = £¤�¥�, this term represents the SG 

differentiation filter (the full width is 2Ç + 1). This filter only generates 

the derivative in the central point Ó. However, the derivatives in the rest 
points are not accurate; they are pseudo-derivatives.  
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   The following numerical experiment illustrates the quantitative analysis 
of a binary mixture based on the orthogonal transformation method 
(OTM). The component concentrations are £� = 0.1, £	 = 0.9.  
   The model spectrum is the Gaussian doublet: `(�) = £���(�) + £	�	(�) + �,                                                          (4.1 − 21)  

where � = 1: 25; ��(�) = 1.5'!${ −Ä[(� − ��\^�)/6]	}; Ä = 4��2;  ��\^� = 12 − ∆; �	(�) = '!${ −Ä[(� − ��\^	)/�	]	}; ��\^	 = 12 + ∆; � is the normal noise with zero mean and the variance �	 = 10�G.Table 

4.1-1 represents the numerical values of ∆ and �	 . 
   In the standard method, the mixture concentrations are estimated from 

the matrix equation: v#�� #�	#	� #		v ∗ v£�£	v = |`(��\^�)`(��\^	)| ,                                                       (4.1 − 22)  

where #_,R = �R(��\^_). 

The solution to Eq. (4.1-22) is £̂� = '�1/'�, £̂	 = '�2 '�⁄ ,                                                    (4.1 − 23) 

where the determinants, '�1 = `(��\^�)#		 − `(��\^	)#�	; '�2= #��`(��\^	) − #	�`(��\^�); and '� = #��#		 − #�	#	� ≠ 0. 

   In the OTM, the mixture concentrations are estimated from the matrix 

equation: ~ �Õ� �Õ	Y���\^(	) Y Y�	�\^(	) Y~ ∗ v£�£	v = ~ ǹY`�\^(	) Y~ ,                                            (4.1 − 24)  

where the bar under the variables stands for the mean value, which is the 

zero-order coefficient ¢�,R in Eq. (4.1-19). The 1st-order coefficient ( ¢�,R) 

equals the negligible value of the 1st-order derivative in the middle point 

12. Therefore, we used ¢	,R=Y�R,�\^(	) Y. 
   According to Eq. (4.1-20), the full width of the 2nd-order SG 

differentiation filter is equal to the spectral segment (25 points). So, the 

derivative plot shows only a single point-peak in the central point (Fig. 
4.1- 4, b).  
   The solution of Eq. (4.1-24) is similar to that of Eq. (4.1-22).  
   The mean relative errors of the binary mixture analysis and their 
standard deviations (Table 4.1-1) were estimated from 10,000 
independent repetitions of the numerical experiment. Table data show 
that the narrowing of the second peak (Fig. 4.1- 4, c) or increasing the 
doublet peaks separation (panels d and e) reduce uncertainties in 
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determining concentrations by the standard method. The OTM has better 
metrological characteristics in the case of a substantial peak overlap (in 
bold in the Table).  
  
Exercise 4.1-3. 
   Readers are invited to estimate the errors in determining the mixture 
concentrations by varying the model parameters, including the total 
number of analytical points (Eq. (4.1-21)), in a wide range. 
  

Table 4.1-1. Relative errors of the binary mixture analysis 

Parameters »y�, % »y�, % ∆ o� spectrum OTM spectrum OTM 
1 18 0.0±��.S 0.0±�s. s 0.0±�.+ 0.0±s.+S 
1 10 -0.2±26.1 -0.5±43.8 -0.0±4.0 0.1±4.7 
2 18 0.3±11.8 -0.1±12.3 -0.0±1.6 0.0±0.92 
3 18 -0.0 ± 8.6 -0.1±17.4 0.0±1.2 0.0±0.1.2 

The mean values ± standard deviations. 
 

 
Figure 4.1-4. (a, c-e) The Gaussian doublet and its components (solid and dotted 

 lines, respectively). {∆, �	} = {1, 18;  1, 10;  2,18, 3, 18} for panels a, c-e, 
respectively. (b) The negative 2nd-order derivative of “a” at point � = 12. 

 
   The mathematical �LM-order derivative of Eq. (4.1-18) at the point �: �_(�) = C #_,R(�)£R.                                                                           (4.1 − 25)�

R��   
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   For sufficiently small ℎ , the solution of Eq. (4.1-24) is close to that of 
Eq. (4.1-25). The segment width in the abscissa scale ([0,�] ∗ ℎ) must be 
small. The difference between the derivatives, obtained by analogous or 
optical devices, and the accurate values (Eq. (4.1-25)) depends on the 
differentiator's accuracy. The linear transformation, represented by Eq. 
(4.1-19), is a partial case of the Linear Transform Coordinates Methods 
(LTCM) or the Generalized Fourier Transform (series) (GFT) [19]. So, 
the GFT (in particular, the orthogonal polynomial transforms) of the 
standard system of linear equations (Eq. (4.1-18)) is used for quantitative 
multicomponent analysis [20].  
   The inverse transform from Eq. (4.1-25) to Eq. (4.1-24) and, finally, to 
Eq. (4.1-18) is readily performed. 
   It is common to only solve one of the � equations of the system, 
represented by Eq. (4.1-25). Usually, this equation only involves the 
analyte signal in the single point, �. The impact of the other mixture 
components at this point must be negligible. However, this simple single-
point derivative analysis suffers from serious errors (see discussion 
below).  
   The use of the pseudo-derivatives (Eq. (4.1-20)) of the noisy spectra is 
usually limited by 2nd-order differentiation. 4th-order differentiation 
requires a very high signal-to-noise ratio in the spectrum. In the best case, 
this method only applies to the quantitative analysis of a maximum of 3-5 
component mixture. 
   Suppose that we have systems of linear equations (Eqs. (4.1-20) and 
(4.1-25)) whose number of unknown concentrations (�) equals the 
number of analytical points (� + 1). Then, rejecting % equations, allows 
us to find concentrations of � − % mixture components using only a 
single analytical point in each equation. However, the systematic errors 
increase if the signals of these % components disturb the measurements. 
Now, suppose that the number of equations in the overdetermined 
systems is reduced, but � + 1 − % ≥ �. In this case, the variances of the 
concentration increase according to the general principles of the least 
squares method [18].  
   The dimension of the systems (Eqs. (4.1-20) and (4.1-25)) may also 
decrease because of the fast convergence of the orthogonal polynomial 
series (Eq. (4.1-19)). That is, for some � < � − 1, the coefficients are ¢�O�,R ≪ ¢�,R. Therefore, the corresponding terms may be neglected.  
   Let us consider the general case of the multicomponent analysis using 
the derivatives. 
   For a given �, Eq. (4.1-26), written in the matrix form, represents the 

full-rank model: 

 EBSCOhost - printed on 2/12/2023 11:12 PM via . All use subject to https://www.ebsco.com/terms-of-use



242                                             Part IV Chapter One 
 

 
 

r(�) = 5(�) ∗ Í + K(�),                                                                       (4.1 − 26)  

where r(�) = ��
��(�)�	(�)⋮�
(�)�� ; 5(�) = ��

#��(�) #�	(�) ⋯ #��(�)#	�(�) #		(�) ⋯ #	�(�)⋮ ⋮ ⋮ ⋮#
�(�) #
	(�) ⋯ #
�(�)�� ;  Í = � £�£	⋮£�
� ;  

K(�) = ��
��(�)�	(�)⋮�
(�)��.  

   In statistics, r(�) and 5(�) are named the vectors of the response 
variables and the regression matrix [18]. It is supposed, that the elements 
of the regression matrix are a priori known with negligible errors. K(�) is 
the vector of the measurement errors of r(�). The mean of K(�) is zero, 
and the variance is �	Ý, where Ý is the identity matrix (� x �). The 
number of analytical points must not be less than the number of mixture 
components (� ≥ �). The rank of matrix 5(�) equals �. In other words, 
all rows and/or columns of this matrix are linearly independent.  
   The least squares estimate of the vector of unknown concentration is ÍI = §%5(�)&�5(�)¨�� %5(�)&�r(�),                                                   (4.1 − 27)  
where superscripts T and -1 denote the matrix transpose and inverse, 
respectively.  
   Above, we supposed that the derivatives measured in different 
analytical points are uncorrelated. To satisfy this condition, the time 
interval between the points is ∆� ≥ (3 ÷ 5)i�,                                                                                   (4.1 − 28)  
where i� is the time constant of the measurement system, including the 
differentiator. 
   The analytical points lying inside the width of the digital differentiator 
filter are correlated.  
   The model represented by Eq. (4.1-26) has two significant drawbacks. 
First of all, the spectra of pure chemical mixture components needed for 
estimation of the matrix ½ may be unavailable, or some constituents are 
unknown. Also, differentiation significantly reduces the signal-to-noise 
ratio.  
   Chemometrics took a revolutionary step toward improving the 
metrological characteristics of multicomponent analysis by introducing 
multivariate calibration [21]. However, this method requires large 
analytical datasets obtained from the multicomponent samples, whose 
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qualitative and quantitative compositions are identified by auxiliary 
analytical techniques (e.g., chromatography). Unidentified small 
impurities impair analysis accuracy by producing a weak background. 
Chemometricians widely used 1st-order derivatives to suppress the 
constant background (e.g., [22]). 
   Mathematics and software for the multivariate calibration are not 
evident for analysts, who are non-professionals in statistics and signal 
processing. Therefore, traditional single-point derivative-based 
spectrometry measurements are widespread in routine analysis, especially 
in pharmaceutical laboratories (Chapter 5.1). Researchers obtain the 
derivative ratio spectra to increase the number of analytical points 
undistorted by the interfering components. Unfortunately, this method 
suffers from many drawbacks [23]. 
   An in-depth informational analysis of the quantitative derivative 
spectrometry, based on the theoretical concepts of sensitivity and 
selectivity, will be given in Chapters 4.3 and 4.4. 
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CHAPTER TWO 

APPLICATIONS OF QUANTITATIVE 

DERIVATIVE SPECTROMETRY 
IN THE INDUSTRIAL LABORATORY 

 
 
 
   The previous chapter showed that, although the quantitative derivative 
analysis is quasi-optimal, it allows researchers to significantly simplify 
calculations by the following measurements: 
1. The null-points (Fig. 4.1-1, c-e). 
2. The points of the weak interfering signals in the 1st-order derivative, 
and at the maximum of the 2nd-order derivative satellite (Fig. 4.1-1, g). 
3. The presence of a low-order polynomial background. 
   The measurements in the derivatives' extrema reduce the random errors 
caused by the instability of the abscissa position of the analytical point 
lying on the steep branch of the peak.  
   The above cases are realized in typical analytical spectrometry 
situations. The example is a single component determination in the 
presence of unknown impurities which disturb the analytical signal. Since 
there are no data about the composition and the spectrum of the 
impurities, one can only approximate the interfering signal using a 
polynomial background. Some samples, such as technical raw materials, 
intermediate products, and wastewater, contain suspended mechanical 
particles that cause an additional background. It is common to 
approximate this background by a straight line, which is absent in the 2nd-
order derivative. The 1st-order differentiation transforms the line to the 
constant signal, which is compensated for by the horizontal baseline. 
   The second important task is a single component determination in a 
mixture where interfering components have close spectra. In this case, 
the columns of the regression matrix for � = 0 (Eq. (4.1-26)) become 
nearly dependent (the collinearity problem [1]). Therefore, the solution of 
Eq. (4.1-26) suffers from small experimental errors [1].  
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   The differentiation may simplify the solution since the interfering 
components' spectra have close null-points and regions of weak signal.  
   We will illustrate these theoretical considerations using the analytical 
methods developed in 1970s in the central industrial laboratory of 
chemical trust in Russia. The principles of quantitative derivative 
spectroscopy, which were developed in these works almost half a century 
ago, have not lost their relevance. They are widely used in chemical and 
pharmaceutical laboratories. Also, we recommend this material to be 
used in a tutorial for courses in analytical spectrometry. The chemical-
technological details of these analytical methods are beyond the realms 
of our interest. 
   All derivative spectra were obtained by the RC differentiation 
attachment to the spectrophotometer SPECORD UV VIS (Chapter 2.1). 
The special home-made device allowed us to set precise wavelength 
marks on the derivative plots. Now, each industrial spectrophotometer 
does not require such smart tricks. 
 
 Determination of epoxy resin in chloroparaffins 
   Epoxy resin serves as the stabilizing additive in the manufacturing of 
chloroparaffins. The amount of resin determines the thermal properties of 
the paraffins. However, the epoxy resin's precise dozing was impossible 
due to the high calibration errors of the chemical reactors and the mixing 
of different resin samples. Also, the analytical control of the resin 
concentration is crucial since it is an expensive product. 
   The nonlinear background in the chloroparaffins spectra depends on the 
qualitative and quantitative composition of the sample (Fig. 4.2-1, a). 
This background cannot be compensated using the differential 
spectrophotometric analysis since the non-stabilized chloroparaffin is 
decomposed. The baseline method (dashed lines) gave erroneous results. 
In the 1st-order derivative (Fig. 4.2-1, b), the order of the polynomial 
background decreases. The segment, which is approximated by the linear 
baseline, becomes significantly narrower than in the spectra (Fig. 4.2-1, 
a). Therefore, the differentiation eliminates, to a large extent, the impact 
of the background on the epoxy resin analysis at the point, which is 
approximately, 34700 £���. Table 4.-2-1 shows the accuracy of the 
analysis. 
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Table 4.2-1. 

Analysis of Epoxy resin in chloroparaffins 
Epoxy resin in chloroparaffins, % Relative  

error, % Chemical analysis Derivative method 

0.51 0.49 -3.9 

0.96 0.98 2.1 

1.46 1.48 1.4 

2.00 1.97 -1.5 

2.50 2.52 0.8 

3.01 3.00 -0.3 

 
 Determination of 2.5-dichlorophenol in a mixture with 2.4- and 3.4-
dichclorophenols 
   The spectrophotometric determination of 2.5-dichlorophenol in a 
mixture with 2.4- and 3.4-dichclorophenols requires the simultaneous 
analysis of all mixture components. Since the last two compounds have 
similar spectra (Fig. 4.2-2, a), the collinearity problem arises (Chapter 
4.2-1). 
   We developed a simple single-point determination of 2.5-
dichlorophenol in this mixture using the 1st-order derivative [3]. In the 
maximum of the derivative of the 2.5-dichlorophenol spectrum 
(approximately 34300 £���), the interfering signal of 2.5-dichlorophenol 
is compensated for by the horizontal baseline. The baseline begins at the 

Figure 4.2-1 (adapted from [2]). 
Chloroparaffins.  Spectra (a)  and 
their derivatives (b). Additions of 
epoxy  resin: 1 - 2.00%, 2 - 1.99%. 

Figure 4.2-2 (adapted from [3]).  
Dichlorophenols (1-2.5, 2-3.4, 3-
2.4). Spectra (a) and their 
derivatives (b). 
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point 32750 £���, where the impact of the 2.5-dichlorophenol is 
negligible. The derivative of 3.4-dichclorophenol, the contents of which 
less than 20% in the mixture, slightly disturbs the baseline position. 
   Table 4.2-2 shows that the absolute relative errors in determining the 
amounts of 2.5-dichlorophenol in the model mixtures are less than 8.0%.  
   In 1983 we quantified all three dichlorophenols in the mixture using the 
Walsh transform [4].  
 
Determination of impurities of 2.4-dichlorophenol in butapon  
   Butapon (butyl ether of 2,4-dichlorophenoxyacetic acid (2,4-D)) [5] is 
an herbicide. The technical product is 50-60% solution of the butapon in 
higher alcohols, which contains small impurities: less than 2% 2.4-D and 
0.5-2% 2.4-diclorophenol (2.4-DCP). From an ecological point of view, 
quantitative control of 2.4-DCP pollutants in the herbicide is essential. 
Chemical analysis of 2.4-DCP by steam distillation of phenol is 
cumbersome. 
 

Table 4.2-2. 
Analysis of 2-5 dichlorophenol in the model mixtures  

Content, % Relative  
error, % Accurate Found 

5.0 4.8 -4.0 

10.0 9.2 -8.0 

25.0 25.0 0.0 

50.0 51.2 2.4 

75.0 73.9 -1.5 

85.0 83.9 -1.3 

 
 Spectra of pure butapon and its mixture with 2.4-DCP (Fig. 4.2-3, curves 
1, 3, and 4) show that butapon absorbance becomes negligible in the 
wavenumber region that starts from 31500£��� and continues to the 
right-hand side. However, the spectrum of the industrial product 
demonstrates a strong background (curve 5). To eliminate the impact of 
this background, the analytical signal of 2.4-DCP was measured from the 
horizontal baseline in the 2nd-order derivative (curve 7). The 
measurement from a baseline in the 1st-order derivative (curve 6) is not 
applicable due to the disturbance caused by the butapon.  
   The relative differences between the amounts of 2.4-DCP, obtained by 
the spectrophotometric and chemical methods, were less than 15-20%. 
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This accuracy was satisfied with the requirements of the impurities 
control in herbicides.  
 
Determination of chlorinated phenoxyacetic acids in wastewater  
   Orto- and para-chlorophenoxyacetic acids (oCPA and pCPA,  
respectively) are non-core products of herbicide manufacturing. From an 
ecological point of view, quantitative control of these acids in the 
wastewater of the herbicide manufacturing plant is essential.  
   Figure 4.2-4 demonstrates the baseline measurements of the analytical 
signals of the acids in the 1st-order derivatives. The horizontal baseline 
goes through the null-point (ÀF) of the pCPA. The line suppresses the 
signal of the oCPA at point À�. 
   The concentrations of the products are as follows: £���� = 0.70È(�)(À�); £���� = 1.56hÈ(�)(À	) − 0.15È(�)(À�)j.            (4.2 − 1)  

The second term in the brackets takes into account the impact of the 
pCPA at point À	 . 
  

 
(a) Figure 4.2-3 (adapted from [6]). Butapon spectra (curves 1, 3-5). (2) 
The 1st-order derivative of (1). 2.4-DCP additions of 2% (3) and 1% (4). 
Industrial product (5).The 1st-(6) and 2nd –order (7) derivatives of the 2.4-
DCP spectra. The curves 3-5 are vertically shifted so that the right tails 
coincide. 
(b) Figure 4.2-4 (adapted from [2]). Wastewater spectrum (1) and its 
derivative (2). Spectra and their derivatives of oCPA (3) and pCPA (4). 
(c) Figure 4.2-5 (adapted from [2]). Spectra and their derivatives of phenol 
(1) and 22DPP (2). 
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   The accuracy of the determination of the chlorinated phenoxyacetic 
acids in the model mixtures (Table 4.2-3) has demonstrated the potential 
features of the method for wastewater control.  
 
Determination of phenol in wastewater  
   The wastewater from the 2.2-Diphenylpropane (DPP) manufacturing 
plant contains phenol, DFP (less than 15-20% of all impurities due to the 
poor solubility in water), and small amounts of non-core products. 
Chemical analysis of wastewater is cumbersome. The spectrophotometric 
determination of phenol at the analytical wavelength of 270nm 
(37000£���), which was developed in the 1960s, had a low sensitivity. 
 

Table 4.2-3. Amount of the chlorinated phenoxyacetic 
 acids in the model mixtures, mg¾�� 

Accurate Found 

oCPA pCPA oCPA Relative 
error, % pCPA Relative 

error, % 

0.0 100.0 0.0 - 99.8 -0.2 

10.0 90.0 9.8 -2.0 90.3 -0.8 

20.0 80.0 18.2 -9.0 81.1 1.4 

50.0 50.0 48.0 -4.0 50.7 1.4 

80.0 20.0 80.0 0.0 20.7 3.5 

90.0 10.0 90.5 0.5 9.5 -5.0 

100.0 0.0 101.0 1.0 0.3 - 

 
   To improve sensitivity, we used the 1st-order derivative of the short-
wave phenol band (maximum 42500£���), whose extinction is six times 
larger than that of the band at 270nm (Fig. 2.4-5). The null-points’ 
positions in the DPP spectrum (À��  and À�	) and the extrema in the 
phenol derivative spectra are close to each other. Therefore, due to the 
small impurities of DFP, the phenol's analytical signal is the length of the 

straight-line segment between two extrema È�(�) − Èö(�) instead of the 

interval È�(�) − È�(�). This measurement has a low sensitivity to the small 
shifts along the abscissa scale.  
   The relative errors of the phenol determination were estimated using 
the standard additives of phenol to the wastewater free of this compound 
(Table 4.2-4). The errors increase significantly for low phenol 
concentrations due to the more substantial impact of the null-point shifts. 
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Exercise 4.2-1  
   List the typical analytical tasks solved by the methods described in this 
chapter. 
 
 

Table 4.2-4. Analysis of phenol in waste water  

Content, mg¾�� Relative  
error, % Added Found 

0.40 0.31 -22.5 

 0.80 0.83 3.7 

2.00 2.07 3.5 

4.00 4.03 0.8 

6.00 5.95 -0.8 
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CHAPTER THREE 

THE SELECTIVITY OF QUANTITATIVE 

DERIVATIVE SPECTROMETRY 

 
 

   The definition of the term “selectivity” and its meaning in analytical 
chemistry has been the subject of numerous discussions [1]. One must 
distinguish between analytical methods and instrumental selectivity in, 
for example, a sensor system. 
 The IUPAC Recommendations state the following[2]: 

"Selectivity refers to the extent to which the method can be used to 
determine particular analytes in mixtures or matrices without 
interferences from other components of similar behavior." 

   Let us represent the analytical signal of the �-component additive 
mixture by the system of linear equations (similar to Eq. (4.1-18) but the 

pure signal of the $LM-component is outside the summation symbol): �_ = ∑ �_R�R�� = �_� + ∑ �_R =R�� #_,�£� + ∑ #_,R£RR�� ,               (4.3 − 1)  

where � ∈ [1,�] is the serial number of the analytical point; #_,R is the 

constant coefficient (e.g., the extinction in absorption spectrometry); and £R is the amount (concentration) of the SLM-component. The absorption 

pathlength is unity. 
   Eq. (4.3-1) shows that signals of different mixture components in the 
same point � may overlap since a set of the coefficients #Ô,R includes more 
than a single non-zero value. The term "sensitivity" is a measure of the 
overlap.  
   Danzer's definition of sensitivity in analytical chemistry [3] is as 

follows: the sensitivity of the determination of an analyte È (index $ in 

Eq. (4.3-1)) at point � = �É is the derivative ¹ÉÉ = �É !É⁄ = #L�,�,                                                                        (4.3 − 2)  

where �É and !É are the analytical signal and analyte amount or 

concentration, respectively. The sensitivity equals the slope of the linear 
calibration plot [3].  
   The partial sensitivity ¹É�  reflects the impact of component È on the 
analytical signal of component g at the analytical point � = �� :  
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¹É� = �L(È → g) £É⁄ .                                                                      (4.3 − 3)  

   By substituting Eq. (4.3-1) into Eq. (4.3-3), we obtain ¹É� = #L�,� ,                                                                                              (4.3 − 4)   

where $ and � are indexes of the mixture components È and g, 
respectively. 

The selectivity of the determination of the analyte g in the presence of 

the interfering component È is the ratio [3]: ¹�É� = #L�,� #L�,� .⁄                                                                                 (4.3 − 5)  

If #L�,� → 0 (no interference), then ¹�É� → ∞.  

   The quantification of a compound selectivity relative to all others 

involves the concept of the Net Analyte Signal (NAS) [4-8]. NAS is the 

projection of the vector of the analyte signal (rÉ ) orthogonal to the 

background (rùR�), disturbing rÉ [9]:  (rÉ)�ùR� = rÉ − rùR�rÉ�rùR� @rùR�@	W ,                                          (4.3 − 6)     

where T is the symbol of transpose; || || is the symbol for the Euclidian 
norm.  
   The interested reader can readily find a rigorous mathematical 
description of the orthogonalization (Eq. (4.3-6)) in the well-known book 
[10]. 
   Consider the general case of the linear multicomponent system 
represented in the matrix form (see Eq. (4.1-26)):  r�_^ = 5 ∗ Í + K,                                                                                  (4.3 − 7)  
where 5 and Í are the regression and concentration matrices, 

respectively; and K is a vector of measurement errors of r�_^.  

   Let 5?_öL be the matrix, whose columns are the components that distort 

the spectrum of the analyte. Then, according to the orthogonal projection 
theory [10], we have  (rÉ)�?_öL = {Ý − 5?_öL(5?_öL� 5?_öL)��5?_öL� }rÉ,                                 (4.3 − 8)     

where Ý is the identity matrix; the superscript -1 denotes matrix inverse. 

Opposite to component (rÉ)�ùR� (Eq. (4.3-6)), which is only orthogonal 

to the single background vector, the component (rÉ)�?_öL is orthogonal to 

each column vector of the matrix 5?_öL.  

   The NAS-based figures of merit: 
(a) The sensitivity vector (for the unit concentration): �É = ‖(rÉ)�‖.                                                                                         (4.3 − 9)  
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(b) The selectivity: ¹�É = ‖(rÉ)�‖ ‖rÉ‖⁄ .                                                                       (4.3 − 10)  
   The sensitivity vector (Eq. (4.3-9)) is the generalization of the single-
point partial sensitivity (Eq. (4.3-4)), which involves only pair 
interactions of the mixture components.  
   The selectivity (Eq. (4.3-10)) is the dimensionless measure of the 
portion of the mixture component analytical signal, which is not lost due 
to spectral overlap. ¹�É ∈ [0,1]. These boundaries correspond to full and 
zero overlap, respectively. 
   All of the above definitions are valid for the derivative spectra. 
   The relative systematic error when determining the analyte g in the 

presence of the interfering component È in analytical point � is reciprocal 
to the selectivity (Eq. (4.3-5)):  ¯�É = 1/¹�É� = #L,� #L,�⁄ .                                                                (4.3 − 11)  

If #L,� → 0 (no interference), then ¯�É → 0. 

   This error was studied by numerical modelling using Gauss doublet and 
its 1st- and 2nd-order derivatives (see details in Chapter 4.1). Theoretical 
estimations are given in the research [11].  
 
Numerical experiment 
   The following numerical experiment illustrates the concepts of 

sensitivity and selectivity. The model is the Gaussian quartet: 

 ��(�) = ∑ ��RGR�� '!$ §−Äh%� − �Z,R& �R⁄ j	¨,                           (4.3 − 12) 

where � = [1,100];  Ä = 4��2; ���R, �Z,R, �R� ={1.0, 29, 10; 1.5, 43, 15; 

0.8, 57, 12; 1.2, 64, 5} are the triples of the SLM peak intensity, maximum 
position, and width. 
 The parameters of the 2nd-order SG differentiation filter are 2� =  2 and � = 2.  
   Figure 4.3-1 represents the quartet, its components, their 2nd-order 
derivatives, and two orthogonal projections of the first peak on the 

background %(r�)�ùR�& (Eq. (4.3-6)) and all components of the 

disturbance matrix %(rR)�?_öL& (Eq. (4.3-8)). The background is the total 
spectrum of the second, third, and fourth components. The columns of 
the disturbance matrix are all component-spectra. 
   The analytical points in the mixture spectrum are the peak maxima. In 
the 2nd-order derivative, the null-points are taken for the first and the third 
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components (Fig. 4.3-1c). In the last case, these points are close to the 
extrema of the derivatives. 

 
Figure 4.3-1. The Gaussian quartet (a, b, solid curves) and its components: pure  
 and orthogonal to the disturbance matrix (dotted curves in panels a and b, 

respectively). (b) The 1st component spectrum ((r�)�ùR� ) orthogonal to the 
background (rùR�) (thin curve). (c) The normalized negative 2nd-order derivative 
of the quartet and its components (solid and dotted curves, respectively). The 
arrows point at the analytical points. 
 
   Eq. (4.3-2) and Eq. (4.3-4) represent the diagonal and non-diagonal 

elements of the sensitivity matrix (�-matrix) [3] estimated using the 

quartet components: 

x = �1.000 0.134 0.000 0.0000.004 1.500 0.018 0.0000.000 0.134 0.800 0.0050.000 0.007 0.311 1.200� .                                          (4.3 − 13)  

   The analytical points are the peak maxima (which are indicated by the 
arrows in Fig. 4.3-1, a).  
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   Matrix x includes the quantitative data, which characterize the visual 
pattern of the overlapped peaks (Fig. 4.3-1, a). The first row shows that 
only the second component significantly interferes with the accurate 
determination of the first one. The distortions at the analytical point of the 
second component are small (the second row). However, the third and the 
fourth rows demonstrate noticeable perturbations in the analytical signals.  
   To eliminate the peak overlapping partly, the matrix x½ involves 2nd-
order derivatives (Fig. 4.3-1, c). The null-points for the first and the third 
components are used instead of the peak maxima. 

x½ = 0.1 ∗ �0.229 0.011 0.000 0.0000.027 −0.360 0.048 0.0000.000 −0.030 0.124 0.0000.000 0.017 0.099 −2.097� .                      (4.3 − 14)  

Only the sensitivity of the first component determination increases 
because of the differentiation. In the case of the second and the third 

components, the derivative data worsen the sensitivity.  
   Eq. (4.3-5) defines the elements of the selectivity matrices, which 
were calculated from Eqs. (4.3-13) and (4.3-14): 

�5¾ = � 1 7.5 ∗ ∗344 1 82 ∗∗ 6.0 1 153∗ 183 3.9 1 �,                                                     (4.3 − 15)  

 

�5¾½ = � 1 20.8 ∗ ∗−13.5 1 −7.5 ∗502 −4,2 1 ∗∗ −125 21.3 1� ,                                            (4.3 − 16)  

where the asterisk denotes a huge value. 
 
Exercise 4.3-1. 
   Readers are invited to prove the above conclusions, which were drawn 
from x-matrices, using selectivity matrices (Eqs. (4.3-15) and (4.3-16)). 
 
   The NAS-based figures of merit, including the sensitivity (Eqs. (4.3-9)) 

and selectivity (Eq. (4.3-10)) of the zero and 2nd-order derivative 
spectrometric analysis, are  ¹R = [2.6957    4.8047    2.1582    2.1473],                                  (4.3 − 17)  ¹R(	) = [0.1171    0.0875    0.0653    0.3504],                               (4.3 − 18)  ¹�R = [0.9826, 0.9533, 0.8976, 0.9224],                                      (4.3 − 19)  
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¹�R(	) = [0.9352, 0.8325, 0.8433, 0.9529],                                   (4.3 − 20)  

where S = 1 ÷ 4.  
Sensitivities ¹R and ¹R(	) take the mutual effect of the interfering 
components on a given component into account. 
   Eqs. (4.3-17) and (4.3-18) show that the zero and the 2nd-order 
derivative analyses of the second and fourth components in the presence 
of the disturbing components yield the best sensitivities, respectively. ¹�� 

is the best selectivity of the zero-order analysis (Eq. (4.3-19)). ¹�G(	) is the 
maximum value in the derivative method (Eq. (4.3-20)).  
 
Exercise 4.3-2. 
   Readers are invited to estimate the figures of merit using various sets of 
quartet parameters. We recommend studying the strong overlapped peaks 
to compare the zero-order and derivative analysis. The Matlab program is 
orthogProj.m (Appendix SW7). 
 
   The above numerical example has demonstrated that the selectivity may 
increase due to the improved resolution in the derivative spectra and the 
null-point measurements. However, maximum selectivity of analysis does 
not mean that it is the best. This figure of merit does not consider the 
systematic errors that occur because of the unstable positions of the 
analytical points and the random distortions of the analytical signals.  
   We conclude that choosing the differentiation order, analytical points, 
and the intensity measurement method is a complicated task. The success 
of its solution depends on the experimenter’s experience and intuition. 
Computer modelling may also help to solve the problem. 
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CHAPTER FOUR 

INFORMATIONAL ASPECTS OF THE 
QUANTITATIVE DERIVATIVE SPECTROMETRY 

 
 
 

   Let us compare the quantitative zero-order and derivative spectrometry 
from an informational-theoretical point of view [1]. To achieve this goal, 
suppose that the probability density function of the analyte concentration 
is uniform. In simple terms, the possibilities that any unknown 

concentration appears in some range [£�, £	] are equal. Also, suppose that 

the random measurement errors of the concentration have a normal 

distribution with zero mean and standard deviation �ø. Then, the quantity 
of the information that was obtained by an analytical procedure, 
performed using the zero-order spectrum, equals  �(�) = ��h(£	 − £�)/%�ø√2�'&j − 0.5gø	,                                         (4.4 − 1)  

where gø = ¯ø �ø⁄ ; ¯ø is the systematic error when determining 

concentration.  

   Similar to Eq. (4.4-1), for the �LM-order derivative method, we have �(�) = ��h(£	 − £�)/%�ø?√2�'&j − 0.5(¯ø? �ø?⁄ )	,                       (4.4 − 2)  

where subscript  stands for derivative. 

   It follows from Eqs. (4.4-1) and (4.4-2) that the information change is ∆� = �(�) − �(�) = ��(�� �ø?⁄ ) − 0.5(gø?	 − gø	).                           (4.4 − 3) 
   The theoretical estimations of ∆� were based on numerous simplified 
suggestions relative to real analytical practice [2, 3]. It was shown that 
the information obtained because of the differentiation is only achieved if 

the systematic errors, which are significantly larger than random(gø ≫1), are substantially suppressed in the derivative analytical signal. 
   To make this statement more transparent and understandable, we 
estimated ∆� in the following numerical experiment. The goal was to 
demonstrate that, despite the poor selectivity and sensitivity of the 2nd- 
order derivative-based procedure, the differentiation may extract useful 
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information from the quantitative analysis of the mixture with strongly 
overlapped component spectra. 
   The mixture spectrum is (Fig. 4.4-1a) r�_^ = y ∗ 5+ röAöL + K,                                                                    (4.4 − 4)  
where y = [0.7, 0.1, 0.8, 0.1];  
5 = �5�(�)5	(�)5F(�)5G(�)� ; 5R(�) is the vector, whose elements are the Gaussians, 

similar to the components of Eq. (4.3-12), but the parameters were 

changed: �R(�) = ��R'!$ §−Äh%� − �Z,R& �R⁄ j	¨,                                          (4.4 − 5)  

where � = [1,100]; Ä = 4��2; ���R, �Z,R, �R� ={10, 32, 14; 1.5, 44, 11; 

1.2, 62, 16} are the SLM peak intensity, maximum position, and width; �öAöL(�) = 0.02'!${−Ä[(� − 62) 50⁄ ]	} simulated the unidentified 

component, introducing the systematic errors; K is the normally 
distributed random vector with zero mean and the standard deviation �P = 0.01.  

   Eq. (4.4-4) has the following form at the four analytical points [32, 44, 
56, 62] (the arrows in Fig. 4.4-1): 

 
   In the 2nd-order derivative mode: r�_^(	) = y ∗ 5(	) + r1AöL(	) + K(	).                                                          (4.4 − 7) 
The parameters of the SG derivative filter: 2� = 2 and � = 17.  
   The solution to Eq. (4.4-6): yC^ = (r�_^ + röAöL)5\�\Ô�� ,                                                                   (4.4 − 8)  

where the superscript -1 denotes the inverse of the matrix 5\�\Ô.  
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   The solution to Eq. (4.4-7) is similar to Eq. (4.4-6). These equations 
may also be solved using Cramer's rules based on the determinants [4]. 
   The random and the systematic errors in determining the mixture 
concentrations (Table 4.4-1) were obtained from 1000 repetitions each 
time with regenerated noise. 
   The random errors were estimated from the well-known equation [18]: GVöL = �P�@5\�\Ô�� (32)@,@5\�\Ô�� (44)@,@5\�\Ô�� (56)@,@5\�\Ô�� (62)@�,   (4.4 − 9)  

where || || denotes the Euclidian norm.  
   Table 4.4-1 shows that the errors (GVöL) estimated theoretically for the 
zero-order analysis match the random errors obtained numerically. The 
discrepancies between these errors, which were observed for the 
derivative method, are due to the correlations between the analytical 
points introduced by the SG filter.  
   The total error is ' = √¯	 + �	.                                                                                      (4.4 − 10)  
   The vector of the information gain obtained because of the derivative-
based analysis is (Eq. (4.4-3)) ∆Ý = [ 0.6288, 0.5506, 0.5933, 0.6921].                                     (4.4 − 11)  
The positive components of ∆Ý reflect the decreasing of the total errors 'ø?  compared to 'ø  (Table 4.4-1). 
 

 
Figure 4.4-1. (a) The spectrum, its Gaussian components (solid and dotted 

curves, respectively), and (b) negative 2nd-order derivatives. The arrows 
 indicate the analytical points. 
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   The following figures of merit were obtained for the four analytical 
points located at the peak maxima (pointed by the arrows in Fig. 4.4-1) 
(For more details, see Chapter 4.3). 
   The sensitivity matrices (�-matrices) (the subscript D denotes the 
derivative analysis): 

x = � 1.0000 0.0553 0.0000 0.0001 0.1304 1.5000 0.0148 0.03590.0003 0.0553 0.8000 0.81260.0000 0.0009 0.2949 1.2000� .                            (4.4 − 12)  

 

x½ = 0.01 ∗ �−0.69 0.35 0.05 0.060.18 −0.97 0.19 0.420.16 0.35 −0.49 −0.480.02 0.55 −0.29 −0.83�.                       (4.4 − 13)  

 
 

Table 4.4-1. Errors of multicomponent analysis  

Parameter Mixture component 
1 2 3 4 »y 0.0070 0.0086 0.0096 0.0135 

Gy* 
0.0098 0.0067 0.0208 0.0120 

0.0101 0.0068 0.0201 0.0118 qy 0.0121 0.0109 0.0229 0.0181 »y� 0.0019 0.0051 0.0046 0.0064 

Gy� * 
0.0066 0.0056 0.0119 0.0084 

0.0080 0.0076 0.0138 0.0099 qy�  0.0069 0.0076 0.0128 0.0106 

* The second row represents the errors obtained by Eq. (4.4-8). 
 
 
The selectivity matrices:  

�5¾ = � 1 18.07 ∗ ∗11.50 1 101.61 41.77∗ 14.45 1 0.98∗ ∗ 4.07 1 � ,                                   (4.4 − 14)  

where the asterisks denote huge values; 
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�5¾½ = � 1 −2.00 −13.07 −12.21−5.25 1 −5.07 −2.29−3.08 −1.42 1 1.02−33.45 −1.50 2.89 1 � .                        (4.4 − 15)  

The sensitivity and selectivity data (Eqs. (4.4-12)-(4.4-15)) contain no 
information which allows us to give preference to any of the two 

analytical methods.  
   The Net Analyte Signal (NAS) - based figures of merit: the sensitivity 
(Eqs. (4.3-9)) and selectivity (Eq. (4.3-10)) of the zero the 2nd-order 

derivative spectrometric analyses (S = 1 ÷ 4) are represented by the 

following equations. The subscript “errComp” denotes the 
orthogonalization to the matrix, which consists of the mixture 

components (5) and the unidentified spectrum röAöL  (Eq. (4.4-4)). 

Additional orthogonalization step to röAöL  decreases the sensitivity and 

the selectivity (compare pairs with and without the subscript “errComp”).  ¹R =  [3.1133, 4.0802, 1.5144, 2.9032].                                       (4.4 − 16)  ¹R,VUU�¦�� = [2.9118, 3.3860, 1.5125, 2.0184].                          (4.4 − 17)  ¹R(	) = 0.1 ∗ [ 0.186, 0.239 , 0.146, 0.209 ].                              (4.4 − 18)   ¹R,VUU�¦��(	) = 0.1 ∗ [ 0.182,   0.224,   0.146,   0.169 ].                 (4.4 − 19)  ¹�R = [0.9591,   0.9453,   0.6900,   0.6972 ].                              (4.4 − 20) ¹�R,VUU�¦�� = [ 0.8970,   0.7845, 0.6891, 0.4847 ].                (4.4 − 21)   ¹�R(	) = [0.7524, 0.6243, 0.7365, 0.6694 ].                             (4.4 − 22)  ¹�R,VUU�¦��(	) =  [ 0.7355, 0.5857, 0.7364, 0.5408 ].                    (4.4 − 23)  

   Eqs. (4.4-20)-(4.4-23) show that the 2nd-order differentiation decreases 
the selectivity of the mixture analysis. Corresponding figures of merit 
were obtained using full-range orthogonalization. Theoretically, the NAS 

- based multicomponent analysis of the mixture, whose exact 
composition is known, must have the same metrological characteristics as 
the standard method [18]. However, the differentiation is a non-optimal 
transform, but orthogonalization is the optimal one. Therefore, the full-

range derivative data decrease the selectivity of the mixture analysis and, 
consequently, its accuracy and precision.  
   In the above numerical example, the analysis was only performed in 
four analytical points. The derivative method allowed us to decrease the 
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errors when determining mixture concentrations and to increase the 
amount of the information extracted from the analysis. 
 However, shifts of the first and the second analytical points �Z,� =32 →24, �Z,	 = 44 → 47, which have been performed to reduce 
systematic errors, eliminate the advantages of the derivative spectrometry 
(Table 4.4-2) since the random components dramatically increase. The 
information gain becomes negative:  ∆Ý = −[ 2.4271, 2.0115, 1.8904, 0.7099].                                    (4.4 − 24)  
 
 
Exercise 4.4-1. 
   Readers are invited to repeat the above numerical experiments by 
changing the model’s parameters: the differentiation order, the width 
(�), and the polynomial power (2�) of the SG filter (Appendix SW8). 
What conclusions can you draw? 
 

Table 4.4-2. Errors of the multicomponent analysis in the 
shifted first and second analytical points  

Parameter Mixture component 
1 2 3 4 »y 0.0093 0.0103 0.0083 0.0145 

Gy* 
0.0242 0.0081 0.0194 0.0112 

 0.0247 0.0083 0.0202  0.0118 qy 0.0259  0.0131  0.0211  0.0183 »y� -0.0032  0.0031  0.0025  0.0057 

Gy� * 
0.2950  0.1355  0.1410  0.0520 

0.3710  0.1721  0.1744  0.0680 qy�  0.2950  0.1355  0.1410  0.0523 

* The second row represents the errors obtained by Eq. (4.4-9). 
 
   In conclusion, we have underlined the importance of the information 
measure (Eq. (4.4-3)) for estimating the efficiency of the signal 
processing method used in quantitative analysis. The advantage of the 
information gain over selectivity is that it considers random and 
systematic errors together.  

 EBSCOhost - printed on 2/12/2023 11:12 PM via . All use subject to https://www.ebsco.com/terms-of-use



 

PART V: 

DIFFERENTIATION OF ANALYTICAL 
SIGNALS: INDUSTRIAL AND SCIENTIFIC 

APPLICATIONS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 EBSCOhost - printed on 2/12/2023 11:12 PM via . All use subject to https://www.ebsco.com/terms-of-use



 

INTRODUCTION  

 
 

 
  The industrial and scientific applications of derivative-based analytical 
methods have been the subject of numerous studies reviewed in books [1-
4] and articles (e.g., [5-12]). It is not easy to find a field of analytical 
chemistry where these methods would not find a practical use. Chapter 
4.2 illustrated the use of derivative spectrophotometry for technological 
control in a Russian industrial laboratory. This final part is the first to 
describe the whole picture for the analytical signal processing employing 
mathematical differentiation. 
   We sincerely apologize to all those researchers whose outstanding 
works are not cited because the book does not have enough free space to 
include a complete bibliography.  
   In the following chapters, we demonstrate potential opportunities for 
derivative methods to solve typical instrumental problems in analytical 
practice: 

1. Detection of the characteristic points of analytical signals. 
Identification of the peaks and determination of their parameters in 
poorly-resolved contours. 
2. Resolution and contrast enhancement.  
3. Background suppression. 

   Due to this preprocessing, qualitative and quantitative analyses are 
simplified. For example, it becomes possible to estimate the analyte 
amount at the analytical points free from the influence of interfering 
mixture components.  
   Despite the significant commonality among the derivative 
spectroscopic methods, used in different optical ranges and fields (e.g., 
due to the similar peak shapes), they are significantly different. They 
depend on the specific instrumental features; properties of the random 
and systematic errors and their impact on experimental data; and, finally, 
on the analytical problems solved by the derivative spectrometry. 
   These issues are the subject of the next chapter. 
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 CHAPTER ONE 

THE DERIVATIVE TECHNIQUE IN DIFFERENT 

TYPES OF SPECTROSCOPY: TECHNICAL 

FEATURES AND ADVANTAGES 

 

 
 

Atomic spectroscopy 
 

   Optical atomic spectroscopy is a powerful technique for determining 
the elemental composition of a sample by analyzing its emission or 
absorption electromagnetic spectrum. Today, analysts widely use the 
following methods: Flame Atomic Emission and Absorption 
Spectroscopy, Graphite Furnace Atomic Absorption Spectroscopy, Laser‐
Induced Breakdown Spectroscopy, and Inductively Coupled Plasma 
Optical Emission Spectroscopy [1, 2].  
 
Atomic emission spectroscopy 
   Figure 5.1-1 shows simplified diagrams of the atomic emission 
spectrometers.  
   In the flame designs (panel a), the nebulized sample, which had been 
premixed with the fuel and oxidant, is introduced in the burner. The 
atomization and excitation occur in the flame. In another device (panel 
b), a xenon arc is the continuum excitation source. To prevent the rapid 
cooling of the atomized analyte species about the graphite rod atomizer, 
the atomizer is enclosed in flame.  
   In Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-
OES) (panel c), the nebulized sample is entrained in the argon flow. The 
radiofrequency coil creates an oscillating magnetic field, which 
stimulates the inelastic collisions between the neutral argon atoms and 
the charged particles. So, a high-temperature plasma of about 7000 K is 
generated. To overcome the disadvantages of the pneumatic nebulization 
in ICP-OES, the graphite furnace is used as an electrothermal atomizer 
(panel d). This device has outstanding characteristics compared with 
conventional nebulization, e.g., low transport losses [1]. Also, it 
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decreases non-spectroscopic or spectroscopic interferences from the 
matrix.  
 

 
Figure 5.1-1. Diagrams of the atomic emission spectrometers: (a, b) flame 
devices; (b) electrothermal vaporization and continuum-source excitation 

(adapted from T. F. Wynn’s Thesis, Florida University, 1980); (c) ICP-OE 
spectrometer; and (d) ICP-OE spectrometer with electrothermal vaporization. 

 
   The disadvantage of the non-flame atomizer (Fig. 5.1-1, b) is a strong 
background emission. Also, the reproducibility of the furnace emission 
declines over time. Since the background radiation has a broad 
continuous spectrum, which is linear at narrow intervals, it disappears in 
the 2nd - harmonic (derivative) of the frequency modulated signal. The 
use of wavelength modulation (WM) improved detection limits in some 
cases by several orders of magnitude and increased the applicability of 
ICP-OES for the sample analysis [2]. 
   A gas flow may contain small amounts of water vapor and other 
hydrogen compounds. At a high furnace temperature, the spectrum of 
these impurities, which consist of Q	, Q<, and other bands, is observed as 
a fine background structure. Null-point analysis eliminated the impact of 
this structure [2]. 
   Atomic analysis of some elements requires high atomization and 
excitation temperatures which significantly increase the detector flicker 
noise. The modulation devices reduced this noise; therefore, the detection 
limits decreased [2]. 
   The modulation suppressed the continuous background caused by the 
alkali metal ions recombination appeared when the temperature flame 
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(nitric oxide-acetylene) was high [3]. Usually, before each measurement, 
the combustion mode must be controlled. Modulation eliminated this 
procedure [3]. A high-resolving monochromator was not needed. 
   Eliminating the continuous background and the CaOH bands decreased 
the detection limits of the alkali and alkaline earth elements of 1-2 orders 
of magnitude in complex systems [4]. However, in pure aqueous 
solutions, the results were limited to those obtained by other methods.  
   The advantage of the modulation technique was a significant decrease 
of the sample volume (less than 1����), since only the maximum of the 
2nd -order derivative was measured [4]. There was no need to measure the 
total analytical line for background correction. However, the inertia of 
the electronic unit limited a further decrease of the sample volume. 
   The 2nd-order WM minimized spectral interferences in matrices in 
Flow-Injection-ICP-AES [5]. 
   In optical emission spectrometry, the emitted radiation from the analyte 
zone of the ICP is viewed in two basic configurations (radial and axial), 
which have different performance characteristics. The analytical 
performance of a long torch for axially viewed horizontal ICP-OES (or 
ICP-AES, where “A” denotes “Atomic”) was examined using a high-
resolution echelle spectrometer with the 2nd-order harmonic WM [6]. 
Compared to conventional torch measurement, net emission intensities of 
24 elements (having spectral lines between 210 and 770 nm) increased by 
20∼40%, and background intensities of water blanks decreased by 30-
50%. 
   The author of the study [7] found that the resonance line at 670.784 nm 
provided the greatest isotopic splitting between 6Li and 7Li. The 1st-order 
numerical derivative of the resonance line quantified the 6Li and 7Li 
contents. 
 
 Atomic fluorescence spectroscopy  
   Atomic fluorescence spectrometry (AFS) is a high sensitivity analytical 
method. The instrumental base of AFS is similar to that of the atomic 
emission spectrometers. However, AFS requires very efficient 
atomization since the matrix molecules can quench fluorescence.  
   The WM reduced the flicker noise of the analyte emission, and that, 
which was caused by the interfering radiation that was incident on the 
detector, and the scattering by evaporating particles [1, 2]. 
   Laser excitation sources significantly increased the sensitivity of AFS. 
Theoretically, the detection limits may be impressively small. However, 
the atomizer produces a strong background (the black body radiation and 
molecular emission by thermal excitation). The use of the powerful lasers 
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for decreasing the detection limits causes light scattering from atomic and 
molecular species. The laser radiation frequency modulation minimized 
the impact of the scattering and laser fluctuation on the measurements 
[3]. 
   The study on pulsed-laser-excited AFS demonstrated that the 
“wavelength modulation corrected, effectively and quantitatively, for 
flame background, blackbody emission from a graphite furnace, and 
scatter of laser radiation off aluminum chloride matrix particles in both 
the furnace and the flame” [4].  
 
Laser‐induced Breakdown Spectroscopy 
   Laser‐Induced Breakdown Spectroscopy (LIBS) is an elemental 
analysis based on laser‐generated plasma [1]. Powerful pulses from a 
laser atomizer, when focused on a sample, produce a high-temperature 
micro-plasma of a small amount of material. The plasma formation only 
begins when the laser achieves a certain threshold for optical breakdown 
(a spark causes the medium to electrically conduct). The excited atoms in 
the plasma emit a light, whose spectrum provides the “fingerprints” of 
the elements in the sample.  
   We found only three studies based on derivative LIBS data. The partial 
least square method was applied to the 1st-order derivative of the LIB-
spectra [2, 3]. The differentiation SG filters performed the background 
correction [4]. 
 
Atomic absorption spectrophotometry 
   A simplified diagram of the atomic absorption spectrometer (Fig 5.1-2) 
explains its operating principles. In order to analyze a sample for its 
atomic constituents, it is atomized (transformed to the cloud of free 
metallic ions) by flame (b), or graphite furnace devices (c). The light 
emitted by the radiation source is absorbed by the cloud. Analytical 
information is extracted from the absorption spectrum. 
   Like the hollow cathode lamp, the linear spectrum radiation source 
contains a cathode made of the element to be determined. In multi-
elemental analysis, a lamp that is appropriate to the element being 
measured, must be selected. 
   The source of the continuum radiation is a high-pressure xenon short-
arc lamp. 
   The interested reader may find all technical details in the professional 
literature [1, 2]. 
   The continuous spectra radiation source in Atomic Absorption 
Spectrophotometry (AAS) has numerous advantages over the discrete 
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Figure 5.1-2. Diagram of the atomic absorption spectrometer (a).  

Flame (b) and graphite furnace (c) atomizers. 
 

 spectra source [2]:  
1. Ease of user controls (it is unnecessary to change the source). 
2. Low cost. 
3. It is possible to measure the intense lines, which are the most 
suitable for analysis in the atomic spectra of metals.  
4. Simultaneous multi-element analysis.  

However, the sensitivity decreases approximately by 1-2 orders of the 
magnitude because the analytical signal becomes weak despite the large 
absorption pathlength.  
   The detector's photocurrent noise includes a strong flicker component 
that occurs because of the instability of the background absorption and 
emission of the flame. This component significantly increases for the 
intense radiation. The pioneering studies [3-5] have experimentally 
demonstrated that the WM effectively suppresses the low-frequency 
flicker noise, the Rayleigh scattering on small particles (non-vaporizing 
in the flame), and the molecular absorption end emission occurring 
within the burned gas. 
   The calibration curves were linear over more than 3 orders of 
magnitude in concentration for Ag, Ca, Cd, Cr, Cu, Fe, Mg, and Ni [4].  
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   The simultaneous multi-element AAS analysis used an air acetylene 
flame as an atomization unit. Three radiation sources (hollow cathode 
lamps) were modulated in the frequency range 300-700 Hz. [6]. The 2nd- 
order harmonic of the modulated AAS signal was free from background 
interferences. The elements, Mn, Cd, Pb, Cu, Ni, Cr, and Zn, were 
determined simultaneously (three at a time) in sewage sludge, estuarine 
sediment, and phosphate rock with good feasibility.  
   A group of Chinese scientists contributed to developing of the 
derivative AAS based on the electronic unit [7-15]. This unit included an 
operational amplifier differentiator circuit connected with the RC-
smoothing circuit (Chapter 2.1).  
   The signal models and their derivatives in a cold vapor AAS (CVAAS) 
and hydride generation AAS were represented. Detailed analytical data 
were tabulated [15]. The CVAAS requires no vaporization step because 
the sample is a volatile heavy metal, such as mercury, which is a vapor at 
room temperature. A method, which was developed to determine total 
mercury by CVAAS with derivative signal processing, was applied to the 
determination of total mercury content in cosmetic samples with a 
recovery range of 92–102% [7]. Differentiation suppressed a strong 
background signal.  
   Sun et al. [10] developed the derivative Atom-Trapping Flame AAS 
(ATF-AAS) [10]. ATF-AAS “involves the generation of volatile species, 
usually hydrides, trapping these species on the surface of an atom trap 
held at an optimized temperature and, finally, re- volatilizing the analyte 
species by rapid heating of the trap and transporting them in a carrier gas 
to a heated quartz tube, as commonly used with hydride generation AAS 
systems” [16]. 
   The derivative ATF-AAS was applied to the determination of lead in 
water and liqueur samples with a recovery range of 94-108% and a 
relative standard deviation of 3.5-5.6%. The detection limit and 
sensitivity were 2 and 3 orders of magnitude higher than those of 
conventional FAAS [10]. 
   Direct determination of trace cadmium using the derivative ATF-AAS 
improved the detection limit and sensitivity by 1 and 2 orders of 
magnitude, respectively, compared to conventional FAAS [8]. The 
method was applied to the determinations of cadmium in water samples. 
The recovery range and the relative standard deviation were 91 ∼ 111% 
and 4.7 ∼ 5.6%, respectively. 
   Differentiation improved the sensitivity of chromium (III) 
determination by more than 14 times compared to conventional flow-
injection FAAS [9]. 
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   Hydride-generation AAS (HGAAS) involves converting the vaporized 
metal samples, such as As, Sb, and Se into volatile hydrides [17]. The 
derivative HGAAS was applied to the determination of traces of lead in 
water [11]. The detection limit and sensitivity of the proposed method 
were 26 and 8.8 times better than conventional HGAAS. The recovery 
range was 92.5-103%. 
   The derivative HGAAS was applied to the determination of tellurium in 
urine [12]. The characteristic concentration and the detection limit for 
tellurium were, respectively, 52 and 26 times better than conventional 
HGAAS. The determination of tellurium in urine samples from a small 
population of healthy individuals showed a recovery range of 89-98%. 
   The study of atomic spectral lines using nanocells, with widths equal to 
the laser radiation wavelength, allowed the observation of super-fine 
structure which, for example, appeared in the magnetic field [18]. The 
2nd-order derivative processing of the absorption spectra of alkali-metal 
atomic vapor nanocells recovered narrow homogeneous spectral features 
from a broad inhomogeneous overlapped profile. The authors studied the 
following issues: the measurements of hyperfine splitting and atomic 
transition probabilities, atom-surface interactions, the determination of 
isotopic abundance, and the magnetic-field-induced modification of 
atomic transition frequency and probability [19]. 
 

Molecular spectroscopy 
 

Infrared absorption spectrophotometry  
   Derivative IR spectroscopy (DIR) was at its peak in the 1970-1980s [1]. 
Numerous instrumental electronic and numerical differentiation methods 
for resolution enhancement were developed and successfully used for 
analytical applications. The similarity of the visual patterns observed in 
the spectra and their better-resolved even-order derivatives was the 
primary factor of DIR popularity for identifying the peak maxima. This 
peak parameter is one of the essential characteristics of spectra. Also, 
thermal IR detectors are the source of the white noise in spectra, and their 
denoising is relatively straightforward using analog and digital smoothing 
(Part II). The wide distribution of IR spectrometers in scientific and 
industrial physical, chemical, biochemical, and pharmaceutical 
laboratories encouraged the use of DIR in analytical applications. 
 Quantitative DIR was not very popular, since the conventional IR 
spectrum, which usually consists of many bands, often allowed the 
selection of analytical peaks free of strong interferences. The linear 
equations used in the multicomponent analysis took these interferences 
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into account. The previous chapter pointed out some drawbacks of 
derivative spectroscopy. However, new smart preprocessing algorithms, 
which partly solved these problems, did not displace the derivative 
technique [2]. The emergence of computerized spectral devices, which 
were supplied with powerful mathematical software, transformed DIR 
into a routine analytical method. 
   Tutorial [3] represents an example of the baseline correction using the 
2nd-order SG derivative of NIR soil data. 
   The derivative method proved useful for determining the initial peak 
parameters (guesses) in the least square fitting of a priori given spectral 
model to the experimental data. For example, the IR spectra of the glass 
surface of hydrolyzed silica optical fibers were decomposed into 
elementary peaks [4]. The guesses for the model’s parameters were 
estimated using the 2nd- and the 4th-order derivatives.  
   Two studies [5, 6] demonstrated the medical applications of derivative 
NIR spectroscopy. 1st-order derivative FTIR spectroscopy allowed 
quantitatively analyzing atorvastatin, rosuvastatin, and simvastatin in 
their binary mixtures with ezetimibe [7]. 
   The 1st-order derivative FT-IR spectra were used for the direct 
determination of ethanol in alcoholic beverages, from beers to spirit 
samples [8], and quantification of binary mixtures of the anti-
hyperlipidemic statin drugs and ezetimibe [9]. 
   The 2nd-order derivative FT-IR spectra enhanced the separation of 
overlapped peaks in the analysis of the spatial distribution of main tissue 
components of articular cartilage (collagen and proteoglycans) [10]. 
   Analysis of the 2nd-order derivative FT-IR discriminated between the 
cooked-up samples of perilla oils with soybean oils and/or corn oils 
added at concentrations of ≥ 5 vol % [11]. 
  
 UF-VIS absorption spectrophotometry  
   Contrary to IR spectroscopy, the absorption bands of significant 
organic and inorganic compounds in the UF-VIS region are wide and 
poorly structured. Differentiation of these bands narrows the spectrum, 
thus revealing its fine structure elements. It is possible to identify the 
chemical composition of the sample, detect spectral patterns of intra- and 
intermolecular interactions, and other information. 
   Quantitative analytical derivative spectrometry has demonstrated its 
advantages over conventional methods due to background suppression, 
thereby extending the limits of the applicability of the baseline correction 
procedure and the appearance of the zero absorption intervals of the 
interfering components. 
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   From an instrumental perspective, the differentiation of UF-VIS spectra 
is a relatively simple technical task due to the high signal-to-noise ratio. 
However, the flicker, as well as the white, noise must be reduced. 
Usually, signal processing is performed using numerical differentiation. 
Modulation devices are most common in the spectral gas analysis. 
   Modulation Far UF spectrometry used a high-intense source for the 
stable polarized radiation-synchrotron [1]. A magnetic field accelerates a 
particle beam in this device and travels around a fixed, closed-loop path. 
The synchrotron emission has a continuous spectrum with no 
superimposed structure. The high intensity is needed for measuring tiny 
changes of the radiation (about 10�� photons). However, synchrotrons 
are expensive and require high-vacuum equipment.  
   Higher-order derivatives of UV Vis absorption spectra of amorphous 
thin films of barium strontium titanate, which had been deposited by RF 
magnetron sputtering on SiO2 at different substrate temperatures, were 
obtained [2]. The critical points, which were related to the optical 
interband transitions at various regions in the Brillouin zone, were 
identified. 
   A similarity index algorithm, in conjunction with the 4th-order 
absorbance spectra, provided discrimination among microscopic algae 
(unicellular species-photosynthetic eukaryotic organisms) [3]. 
   The 1st-4th-order derivatives UF-VIS absorption spectra allowed 
turbidity correction in chemical oxygen demand measurements [4]. 
 In the last few decades, the derivative spectrophotometric analysis of 
food additives [5] and drugs in pharmaceutical formulations has become 
a routine procedure. There have been hundreds of articles about this 
published in journals of analytical chemistry and pharmaceuticals (see 
reviews [6-8] and some later works [9-65]). 
   The temperature derivative spectroscopy was used to measure the 
decay kinetics of oxy-ferrous complexes in cytochromes P450 [66]. 
 The partial least square regression on the 1st-order derivative spectra of 
dyes gave better optimization of the calibration matrices with respect to 
the original data [67]. 
 
Laser Modulation Spectroscopy 
   One of the first reviews, dedicated to the analytical applications of 
lasers [1], pointed out their remarkable properties: (1) high spectral and 
spatial power density; (2) tunable output with variable bandwidth in a 
vast frequency region; and (3) continuous or pulse output.  
  The first property may result in decreasing the detection limit in 
fluorescence analysis, which sensitivity depends on the source power. 
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   Also, the excited states' saturation becomes possible (e.g., laser-excited 
atomic fluorescence spectroscopy-AFS). The tunable output uses the 
laser as a radiation excitation of several transitions. Very short pulses can 
be employed in the measurements of the excited-state lifetimes. 
   Laser Modulation Spectroscopy (LMS) has opened up new possibilities 
for the physical and chemical research due to the modulation technique 
(Chapter 2.10) (reviews [2-5]). LMS is the most suitable for determining 
small molecules where the spectra consisted of relatively simple intense 
peaks [6]. Careful selection of the analytical peaks and their narrowing 
by reducing the pressure eliminated interfering signals. The strong 
background and IR laser fluctuations were significantly suppressed 
because of the use of the 2nd-order harmonics of the modulated light. If 
the modulation frequency is enough high (hundredths Hz), then the low-
frequency (flicker) noise is efficiently reduced. In the non-scanning mode 
(single-point measurement), the time interval of the signal collection and 
averaging may be made as large as possible (if there is no drift). 
Therefore, white noise is significantly suppressed.  
   Table 5.1-1 illustrates some applications of the modulation-based laser 
measurements.  
 

Table 5.1-1. Modulation-based laser measurements 
A long-wavelength vertical-cavity surface-emitting laser with an extended 
tuning range was used to detect benzene vapor at atmospheric pressure. The 
2nd-order WM harmonic’s response was measured as a function of the 
modulation index. 

[7] 

Stable carbon isotopes of CO2 were measured using WMS with a distributed 
feedback laser diode in the 2-μm wavelength range. The limit of detection was 
16±1 parts per billion by volume at the most substantial absorption peak. The 3-
min response and high precision of this measurement allowed for precise 
continuous measurements of stable carbon isotopes in ambient CO2. 

[8] 

A calibration-free WMS was used for real-time, in situ detection of nitric oxide 
in particulate-laden combustion-exhaust gases up to temperatures of 700 K. The 
2nd - harmonic, normalized to the first one, demonstrated better noise immunity 
for non-absorption transmission, than wavelength-scanned direct absorption. A 
0.3 ppm×m detection limit was estimated using the R15.5 transition near 1927 
cm−1 with 1 s averaging.  

[9] 

Propane’ concentration was measured by 3.37 μm GaInAsSb/AlGaInAsSb 
DFB laser. WM enhanced a sharp feature in the broad propane spectrum by 
around 3370.4 nm. A minimum detectable concentration of 30 ppb×m (a 
response time of 0.5 s.) was the sensitivity improvement by order of magnitude.  

[10] 

Measurement of Ð	  pressure with an uncertainty of ±1.3% of the full scale (760 
Torr) was performed. 

[11] 

 NO concentrations in the few ppb range in diluted exhaust-gas bag samples, 
which were collected in the vehicle certification process, were detected. 

[12] 

Optimal sensitive detection of optical absorption by species with structured 
spectra at elevated pressures was demonstrated. 

[13] 
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Table 5.1-1 (continued). Modulation-based laser measurements 
Atmospheric nitrous oxide (N2O), methane (CH4), and water vapor (H2O) were 
simultaneously detected by the continuous wave quantum cascade laser-based 
absorption sensor system. The 2nd-order WM harmonic achieved minimum 
detection limits of 1.7 ppb for N2O, 8.5 ppb for CH4, and 11 ppm for H2O with 
a 2 s integration time for individual gas detection. 

[14] 

Concentrations of CH4 and CO in ambient air were measured simultaneously 
by an extended-wavelength (2.33 μm) multi-mode diode laser. The use of the 
2nd-order WM harmonic improved the detection sensitivity of the system. The 
system's detection limits were about 81 ppbv and 31 ppbv for CH4 and CO, 
respectively. 

[15] 

The performance of highly sensitive trace gas detection was improved using 
scanning baseline suppression and increasing resistance to external factors 
(temperature and humidity). The best measurement accuracy of the system in 
trace water vapor detection was one part per million by volume for an optical 
path length of 10 cm. 

[16] 

Ethylene in combustion exhaust from a portable power generator was detected 
using a distributed feedback interband cascade laser (3.3 μm). The 2nd-
harmonic WM achieved detection limit equals to 96 parts per billion by 
volume at a signal-to-noise ratio of 2 under 3 kPa of pressure.  

[17] 

The overlapping spectra of the gas mixture (4% QÐ and 6% QÐ	) were 
separated using the least square method. The model was a weighting sum of 

the 1st-, 2nd-, and 3rd-order derivatives of the Lorentzian function. The linear 
correlation coefficients of the relationship between QÐ and QÐ	  concentrations 
and amplitudes of the separated second harmonics were more than 0.997. 

[18] 

Acetylene concentrations were detected in the range of 1-400 parts per million 
by volume using the absorption NIR line at 1530.36 nm. System sensitivity, 
detection precision, and limit were markedly improved because of the self-
calibration method, which has better detecting performance than the 
conventional WM spectroscopy. 

[19] 

Carbon monoxide (CO) sensing in high-pressure, fuel-rich combustion gasses 
was associated with the internal conditions of hydrocarbon-fueled liquid 
bipropellant rockets. A scanned WM technique was utilized to infer species 
concentration from CO absorption and mitigate the influence of non-
absorption transmission losses and noise associated with the combustor 
environment. 

[20] 

 ÇÐ, and Ç<F in the urban area were simultaneously monitoring. The sub-ppb 
detection limit was achieved for all gasses with an average time of about 100 s. 

[21] 

A CO sensor, based on the 2nd-order WM spectroscopy, was applied to SF6 
decomposition analysis in an electric power system. A nonlinear least-squares 
fitting allowed using all 2f spectrum. A measurement precision of 
approximately 40 ppb was achieved with a data update rate of 0.6 s.  

[22] 

A cesium vapor was analyzed by band-resolved WM spectroscopy using large 
modulation indices. This study has insights for the measurement of 
cooperative emission effects in a bulk atomic ensemble. 

[23] 

A calibration-free method, WM - direct absorption spectroscopy (WM-DAS), 
combines the advantages of measuring absolute absorbance profile from 
calibration-free DAS with enhanced noise rejection and high sensitivity of 
WMS. WM-DAS is a perspective method for the high-precision measurement 
of spectral line parameters and gas information with weak absorptions.  

[24] 
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Table 5.1-1 (continued). Modulation-based laser measurements 
FM spectra of CH4 transitions around 3070 cm−1 were measured. The 
concentration-time profiles of HCl at 2925.90 cm−1 allowed studying the 
reaction Cl + CH4, following the 193 nm excimer laser photolysis of oxalyl 
chloride. OH radicals were generated by UV photolysis of H2O2, and its 
transients were recorded. The detection limit is about a factor of 4 above the 
shot-noise limit.  

[25] 

The first harmonic-phase-angle WMS (that is immune to the laser intensity 
and the demodulation phase) was used for measuring the absorption line of 
CO2 around 6362.5 cm−1. This method has great potential for WMS analysis in 
strong turbulence or high-pressure environments. 

[26] 

Hydroxyl radical (OH) is a critical intermediate reactive species during 
combustion processes relevant to power production, transportation, and 
manufacturing. An industrial WM laser absorption spectroscopy OH sensor 
was capable of in situ, quantitative detection of OH down to mole fraction 
values of 10−5 over a 75-cm pathlength. The concentration of OH radical 
above a catalytic combustor was measured under different operating 
conditions.  

[27] 

A breath acetone intensity-normalized 2nd-order harmonic WM-sensor was 
paired with a multi-pass optical gas cell to attain signals related to differential 
absorbance of acetone, water vapor, and methane. A spectral fitting routine 
corrected the acetone signal for interfering absorption. A detection limit (2�) 
of approximately 0.11 ppm acetone was achieved. Acetone was detected with 
very high levels of exhaled methane (up to 40 ppm). The sensor was 
insensitive to methanol and ethanol in normal human breath. It was used to 
track ketosis during several subjects’ regimented ketogenic diet. 

[28] 

A multi-species detection method was developed using a single quartz crystal 
tuning fork (QCTF), based on a photoelectric detector and dual-frequency 
WM. The light intensity measurements utilized the piezoelectric effect and 
resonant effect of the QCTF (instead of semiconductor detectors and lock-in 
amplifier). The FFT-decomposition of overlapping peaks was performed.  

[29] 

Acetylene was detected in a novel multi-pass cell by the WMS. The 2nd-order 
harmonic was normalized to the distance between its two minima. The 
proposed sensing system is suitable for trace gas sensing in a weight-limited 
unmanned aerial vehicle and an exhalation diagnosis for smoking test. 

[30] 

Low (1 kHz) and high (100 MHz) modulated frequency WMS, and two-tone 
FMS (390±5 MHz) were compared by estimating the minimum detectable 
absorption measured by AlGaAs diode laser tuned on a third-overtone methane 
transition at 886 nm.  

[31] 

The dependence of photoacoustic spectra on experimental parameters was 
investigated. WM provided the superior signal-to-noise ratio compared to the 
AM and eliminated background drifts and fluctuations. 

[32] 

The effects of pressure and modulation broadening for simultaneous AM and 
high-order WM spectra were studied. 

[33] 

The higher-order harmonic WMS increased the sensitivity while monitoring 
concentration fluctuations of gaseous species. There were regions where the 
commonly used the 2nd-order derivative showed a negligible variation of signal 
magnitude with concentration fluctuations, whereas a higher harmonic 
demonstrated a much improved signal. The measurements of WMS of lines in 
the oxygen A band were presented. 

[34] 
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Table 5.1-1 (continued). Modulation-based laser measurements 
The dependence of the amplitude of phase-sensitive harmonic WM signals the 
optical depth, temperature, pressure of the sample gas, and the modulation 
amplitude was investigated theoretically using the Lorentzian and Gaussian 
lines. The 2nd-order harmonic, which was normalized by the direct current 
signal, restored the unsaturated signal. 

[35] 

FM-enhanced remote sensing was considered to be a general method for 
monitoring atmospheric trace gases at ambient levels. 

[36] 

Quantitative analysis algorithms using the 2nd-order harmonic spectra for 
arbitrary combinations of line width and modulation depth were validated by 
measurements on CO lines.  

[37] 

Atomic absorption in an argon discharge was studied by WMS with a 
frequency-doubled KNbO3 diode laser. Minimum 3σ-detectable absorbances 
of 7.7×10-5 and 1.9×10-4 were estimated for 2f- and 4f-harmonic detection with 
a time constant of 0.1 s. The concentrations of argon were in the range of 
3×108 to 1.2×1011 cm-3. 

[38] 

Thermal tuning and modulation of a 1556-nm distributed feedback fibre laser 
by the resistive heating of a thin silver film chemically deposited on the fiber 
were tested by recording part of the ν1+ν3 combination band spectrum of 
13C2H2 by scanning of the fiber laser. 

[39] 

Cavity-enhanced absorption spectroscopy and WMS were combined to 
measure the integrated output of unlocked cavities. The absorption of excited 
carbon atoms in microwave-induced plasma was measured with detection 
limits equivalent to optical depths below 10-6. 

[40] 

Multiplexed fiber-coupled diode lasers are used to probe second-harmonic line 
shapes of NIR water absorption features to infer temperatures in gases 
containing water vapor, such as combustion flows. An optimal selection of the 
modulation indices simplified data interpretation over extended temperature 
ranges and minimized the need for calibration when performing 2f ratio 
thermometry.  

[41] 

The coupling of the RF signal to the quantum cascade laser through the 
cryostat was studied using low-pressure N2O and CH4 gases. Enhancement of 
factor six was measured with respect to the direct absorption method. 

[42] 

Adaptive SVD was used to eliminate the optical interference fringes due to 
unwanted etalons, which introduce systematic baseline changes in diode laser 
spectroscopic trace gas measurements. The acetylene detection limit was 20 
ppb (1σ) over the one-week measurement. 

[43] 

A new mid-IR laser spectrometer was applied to high-precision measurements 
of isotopic ratios of nitrous oxide molecules at ppm concentrations. 

[44] 

Ammonia was detected by the WM cavity-enhanced IR tunable diode laser 
absorption spectrometer. The spectral resolution and sensitivity were sufficient 
to measure ammonia isotopomers (14NH3, 

15NH3) in planetary atmospheres.  
[45] 

An instrument, which was based on an improved off-axis alignment of 
integrated cavity output spectroscopy (OA-ICOS) in conjunction with a WM 
technique, was developed using a DFB NIR diode laser. The minimum 
detectable absorption was approx. 3.6 ppmv using the second harmonic. OA-
ICOS-WM technique in NIR improved the detection sensitivity by a factor of 
14 compared to that obtained with OA-ICOS. Measurements for the CO2 
mixing ratios in ambient air have been performed. 

[46] 
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Table 5.1-1 (continued). Modulation-based laser measurements 
For a constant laser modulation current, the WM amplitude was determined by 
the analysis of the distance between the two zero crossings of the measured 
2nd-order harmonic spectrum of gas absorption. A frequency analyzer (instead 
of a LIA) provided a higher bandwidth and allowed a very precise detection of 
the zero crossings due to the logarithmic output. 

[47] 

A convolution Fourier-domain-based model for the WMS harmonic and 
harmonic signals with arbitrary transmission function was given. A recursion 
formula and a mean value property for nth harmonic spectra have been found. 

[48] 

Temperature measurements in water vapor, based upon WM and two-line 
thermometry, were performed by the tunable diode laser absorption 
spectroscopy utilizing a standard tunable distributed feedback diode laser 
working in the telecom C-band.  

[49] 

A new sensor based on the tunable WM diode-laser absorption of CO2 near 
2.7 μm was used for the sensitive and accurate measurement of the 
temperature behind the reflected shock waves in a shock-tube. The sensor was 
also used in reactive shock-tube experiments of n-heptane oxidation. Seeding 
of relatively inert CO2 in the initial fuel-oxidizer mixture enabled 
measurements of the pre-ignition temperature profiles.  

[50] 

Difference frequency, which was generated within a 5% MgO doped PPLN 
crystal by coupling approx.735 nm radiation from a tunable external cavity 
diode laser with high powered 532 nm radiation from both Nd:YVO3 and 
Nd:YAG lasers, was combined with the WMS and cavity-enhanced absorption 
spectroscopy. Rotationally resolved transitions in the combination bands of 
NH3 and CO2 in the 1.9 μm region were investigated. 

[51] 

Proportional, shot and thermal noise effects and their reduction in the WMS 
and the direct absorption diode laser AS were studied. 

[52] 

Multi-mode absorption spectroscopy (MUMAS) has been combined with the 
WMS, and cavity-enhanced absorption spectroscopy (CEAS), to record 
multiple molecular transitions using a single laser and a single detector. 
Enhancement of the signal-to-noise ratio demonstrated an increased detection 
sensitivity for the MUMAS-based gas-sensing. 

[53] 

Absorption features of the oxygen A-band transitions in the optically thick 
regime, using the high order harmonics of WMS, were studied. The absorption 
saturation resulted in suppression of the line-center lobes of the harmonic 
signals depending on the optical pathlength and the modulation index.  

[54] 

A WMS absorption sensor, utilizing a quantum cascade laser, was used for CO 
detection at 4.6 μm. The detection limit at a room-temperature was 0.03 ppm 
per meter of absorption path length at a 1-kHz detection bandwidth (an order-
of-magnitude increased sensitivity compared to scanned-wavelength direct 
absorption).  

[55] 

A fiber-amplified Distributed Bragg Reflector diode laser was used to pump a 
continuous wave singly resonant Optical Parametric Oscillator combined with 
WMS. The system’s sensitivity was 0.8 ppbv for ethane for the absorption 
peak at 2996.9 cm−1 recorded in 1.3 sec.  

[56] 

WMS was performed in the oxygen A-band at different harmonics for 
different modulation indices and optical pathlengths. The Lorentzian and Voigt 
models were used to study the relationship between the higher harmonics' 
structure and the lineshape. The optical path length saturation in WMS served 
as a diagnostic to the lineshape. 

[57] 
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Table 5.1-1 (continued). Modulation-based laser measurements 
Acetylene at atmospheric pressure and the room temperature was detected 
using quartz-enhanced photoacoustic spectroscopy based on the wavelength 
modulated fiber-coupled distributed feedback diode laser. A minimum 
detectable limit (1σ) of 2 ppmv was achieved.  

[58] 

The sensitivity enhancement was attained by combining WM and the 
integrated cavity output spectroscopy (ICOS). WM appreciably improved the 
SNR of an ultrasensitive ICOS system, if the cavity transmission is so low that 
the detector noise is not negligible. The performance of ICOS and WM-ICOS 
was compared in a high sensitivity ambient-air methane detection experiment. 

[59] 

Two multi-harmonic detection methods for WMS systems-the simultaneous 
curve fitting of harmonic spectra and the reconstruction of the transmission 
from harmonic coefficients-were considered. Multi-harmonic detection was 
better than the single-harmonic method.  

[60] 

The use of integrating spheres as multipass gas cells combined with the 2nd-
order harmonic WMS was studied. The gas lineshape was distorted at high 
concentrations because of the exponential pathlength distribution of the sphere, 
which introduced nonlinearity. 

[61] 

A real-time, in situ, water vapor sensor, based on the 2nd-order harmonic-WM 
tunable diode laser, continuously monitored water vapor in the synthesis gas of 
an engineering-scale high-pressure coal gasifier. The 1f-normalized, WMS-2f 
signal was insensitive to non-absorption transmission losses (e.g., beam 
steering and light scattering by the particulate in the synthesis gas). The sensor 
demonstrated a detection limit of approx. 800 ppm (25 Hz bandwidth) at 
conditions with more than 99.99 % non-absorption transmission losses.  

[62] 

The water vapor concentration (25-1048 ppmv) was measured with the 
sensitivity 52 ppbv for a 10-cm optical path length using the dual-beam WMS. 
The impact of the laser power variation and the residual AM was eliminated 
by photocurrent normalization through a balanced ratiometric detector.  

[63] 

Apodized 2f/1f WMS calibration-free method was validated experimentally by 
the trace detection of carbon monoxide using an air-broadened transition line 
in the first overtone band in the NIR region around 2.33 μm. 

[64] 

The line width under high absorption was measured using the ratios of the 2nd- 
and 4th-order harmonics at the line center. The transitions of CO2 and H2O 
were selected to measure the line width, gas pressure, and concentration. 

[65] 

A two-color tunable diode laser sensor for measurements of temperature and 
H2O in an ethylene-fueled model scramjet combustor was developed. A 
calibration-free scanned-WMS spectral-fitting method was used to infer the 
integrated absorbance of each transition without a priori knowledge of the 
absorption line’s shape. 

[66] 

A tunable WM diode laser sensor for measurements of the temperature and 
H2O in high-pressure and -temperature gases was developed. The sensor was 
validated in a shock tube at temperatures and pressures ranging from 1,000 to 
2,700 K and 8 to 50 bar. 

[67] 

A photoacoustic spectroscopy system based on the distributed feedback WM 
laser diode allowed the highly sensitive detection of ammonia.  

[68] 

The flame flatness of a flat-flame burner was validated using a resolution-
doubled one-dimensional WMS tomography. The distributions of temperature 
and H2O mole fraction in an axisymmetric premixed flame were 
simultaneously reconstructed, thus validating the flame’s flatness. 

[69] 
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Table 5.1-1 (continued). Modulation-based laser measurements 
The FM efficiency was more than four times larger than that of conventional 
NIR distributed feedback lasers; it decreased monotonically with increasing 
the modulation frequency.  

[70] 

A H2O-temperature sensor, based on scanned calibration-free WMS, was 
applied to real-time in situ measurements and temperature time histories (0.25-
s time resolution) in the hot gases 2–11 mm above biomass pellets during 
atmospheric combustion in the reactor. Temperatures between 1,200-1,600 K 
and H2O concentrations up to 40 % were detected above the biofuels. 

[71] 

An apodized 2f/1f WM-based optical polymeric fiber sensor was used for the 
sensitive detection of CO2 gas in the NIR region (1.57 μm). A minimum 
detectable absorption of approx. 0.9 × 10−4 was achieved. 

[72] 

Laser heterodyne technology was combined with linear FM technology to 
measure the thickness of plate glass. The maximum relative measurement error 
was 0.01 %. 

[73] 

The 1st- and 2nd-order harmonics were used to measure the absolute 
absorbance, and then obtain gas pressure and concentration.  

[74] 

A calibration-free wavelength-scanned current-WM quantum cascade laser 
(QCL) was used for gas concentration detections. The CH4 concentration was 
estimated by fitting a simulation spectrum, based on spectral line parameters, 
to the background-subtracted 1f-normalized 2f signal. 

[75] 

A frequency-modulated-continuous-wave laser detection system, based on the 
four-quadrant photodetector and, using the cross-power-spectral-density 
algorithm demonstrated a better signal-to-noise ratio for the target echo to 
smoke interference.  

[76] 

Review. Laser spectroscopy for breath analysis. [77] 
A non-absorbing interference occurs in shock tubes because of significant 
beam-steering noise and imperfect optical alignment, which was rejected using 
WMS. 

[78] 

The WM system, which is based on the fast modulating the injection current of 
the Fabry–Perot-type green diode laser and which is equipped with a Littrow 
grating to increase the laser-mode power density, significantly simplified the 
data processing for the extraction of small mercury absorption signals from a 
large and complex light background. 

[79] 

New wavelength-modulation spectroscopy with 1f-phase detection (WMS-θ1f) 
was analyzed, and the optimal operating regimes were established. A WMS-
θ1f sensor for measuring temperature and H2O mole fraction in the exhaust of 
a CH4/air flat-flame burner was developed. 

[80] 

A robust breath acetone sensor was based on the detection of the 2nd-order 
harmonic WM laser absorption of multiple species near 8.2 μm. The signals 
were related to differential absorbance of acetone, water vapor, and methane. 
The sensor was tested in exhaled breath samples with varying amounts of 
interfering species (e.g., methane up to 40 ppm). The sensor was used to track 
ketosis during a regimented ketogenic diet of several subjects, which 
demonstrated regular non-intrusive monitoring of breath acetone over a 
clinically-relevant range (0.4–74 ppm) and sensitivity to dietary changes. 

[81] 

A customized long fiber ring etalon improved the accuracy and time response 
rate of the WM measurements. The dynamic wavelengths and phases of a 
distributed feedback diode laser were measured. The data for the application of 
quantitative and high-repetition WMS technique in combustion diagnostics 
were provided. 

[82] 
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Raman spectroscopy 
   Differentiation suppressed the fluorescence background of the laser 
radiation and the sample luminescence observed in Raman spectra (RS) 
(RS also stands for Raman spectroscopy) [1, 2]. 
   The intensity of the radiation incident on the detector is �z = �(Àj , À) + �
(Àj , À),                                                               (5.1 − 1)  

where �(Àj , À) and �
(Àj , À) are the intensities of the Raman 

scattering and luminescence, respectively; Àj , À  are the frequencies of 

the excited and scattered light, respectively; �
(Àj , À) = �(À)�(Àj); �(À) and �(Àj) are the luminescence and scattering components.  

   The following equations were obtained from Eq. (5.1-1) in the absence 
of the resonance effects [1]: �� �Àj⁄ = −�� �À⁄ + 4� À⁄ .                                                     (5.1 − 2)  ��
 �Àj =⁄ �(À) �� �Àj⁄ .                                                                  (5.1 − 3)  

In the local minimum of �(Àj), �� �Àj⁄ ≈ 0, and the term ��
 �Àj⁄ ≪�� �Àj⁄  . The term 4� À⁄  (Eq. (5.1-2)) was estimated numerically.  

   The derivative of �z, which is relative to the excitation frequency, is 
equal to the negative derivative of the Raman scattering over the 
frequency of the scattered light: ��z �Àj⁄ = −�� �À⁄ .                                                                        (5.1 − 4)  
   Coherent Anti-Stokes RS (CARS) involves the nonlinear mixing of 
three different wavelengths of a pump, Stokes, and probe beams. Anti-
Stokes line intensities are orders of magnitude stronger than those of 
spontaneous Raman emission. The latter is resonantly enhanced when the 
frequency difference between the pump and the Stokes beams coincides 
with Raman resonance frequency. Solid-state (pump) and tunable dye 
lasers are used in the CARS. 
   A measured coherent optical signal at the anti-Stokes frequency is a 
cubic nonlinear susceptibility, which consisted of a non-resonant 

(background) %��U(F)& and resonant %�U(F)& components [3]: 

 �(F)(À� − À	) = ��U(F) + �U(F),                                                               (5.1 − 5) 

where À� − À	  is proportional to the combinational resonant frequency; À�  and À	  are the frequencies of the solid state and tunable dye lasers. 

   Active Raman spectroscopy analysis is impossible for a weak resonant 

(e.g., in spectra of impurities) ��U(F) ≫ �U(F). Since ��U(F) À	W = 0, the 

frequency modulation of the tunable laser suppresses ��U(F), and the 
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background appears because of the luminescence and spurious optical 

effects.  
   The study of the surface layer of substances by stimulated Raman 
spectroscopy produced a strong thermal background, which may be up to 10G times larger than the analyte signal [4, 5]. The luminescence of the 
laser-excited hydroxyl groups, lying on the surface layer was a strong 
background source, making it challenging to measure the RS of the 
samples absorbed or lying on the oxide surface [6]. In both cases, the 
frequency modulation technique reduced the background by a factor of 
104-105, thereby permitting researchers to measure the vibrational spectra 
of the monolayers [5, 6]. The system achieved ultrahigh sensitivity, 
which was only limited by the shot noise [5].  
   The study [7] suggested taking the difference of two spectra, obtained 
with slightly shifted excitation frequencies, to eliminate fluorescence. 
This method, which is called Shifted Excitation Raman Difference 
Spectroscopy (SERDS), is similar to the two-wavelength difference 
method (Chapter 2.9). Since the shift of the excitation frequency is small, 
the measured signal is close to the 1st-order derivative over the Raman 
shift.  
   SERDS has some advantages over the WM technique [7]: (1) changing 
the wavelength of the excitation laser did not require special equipment; 
(2) the signal-to-noise ratio was limited by the shot noise of the 
fluorescence background due to multichannel detection. 
   The meat, fat, connective tissue, and bone from pork and beef were 
objects of the biological studies using SERDS [8]. Diode lasers emitted 
an excitation light at 783nm, 671nm, and 488nm. The spectral shifts were 
about 10 £���. 
   SERDS was improved using an auxiliary tunable diode laser to excite 
the Raman spectra, and the WM technique [9-24]. 
   Suppose that the Raman spectrum ¹Ò(À_) is measured Ç times (� =1, 2, … , Ç) in the discrete wavelength intervals À_. In WM mode [75], ¹Ò%À_, ∆ÀÒ & =  ¹ï%À_ + ∆ÀÒ& + ¹%À_ + ∆ÀÒ& = ¹ï(À_) + ¹%À_ + ∆ÀÒ&, (5.1 − 6)  

where subscripts � and ´ stand for the fluorescence and Raman 

emission; ∆ÀÒ  is the shift of the Raman excitation laser. According to 

Kasha’s rule [12], for a small ∆ÀÒ , the fluorescence component does not 

depend on the shift, while the Raman spectrum does.  
   The Raman signal was estimated mathematically from the matrix, 
whose elements were the spectra ¹Ò %À_, ∆ÀÒ & measured for various ∆ÀÒ . 
The Principal Component Analysis (PCA) gave a remarkable noise-free 
1st-order derivative better than SERDS. To simplify the mathematical 
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processing, a recurrent reconstruction algorithm was developed [13]. 
However, it required the existence of a spectral region free of any Raman 
bands. 
   Table 5.1-2 summarizes some applications of the SERDS. 
 
Luminescence spectroscopy 
   Luminescence spectroscopy is the collective name of molecular 
fluorescence, phosphorescence, and chemiluminescence spectroscopy. 
The intensity of the emitted radiation relates directly to the source power 
(e.g., laser). High-powered lasers, emitted at the proper wavelength of 
radiation to excite a sample, are good radiation sources for high 
sensitivity measurements. However, the interference may appear because 
of background fluorescence from the solvents, light scattered by turbid 
solutions, Rayleigh and/or Raman scatter, and instrumental problems 
(e.g., emission from the optical components, stray light passing through 
the optics). These interferences are sources of systematic errors in 
analysis. 

Table 5.1-2. Applications of SERDS 
Analysis of biological objects. [14] 
Identification of ethanol in rum using pairs of high-power laser diodes with a 
fixed-wavelength separation. 

[15] 

The two-wavelengths excitation. The PCA classification of meat species (beef, 
pork, chicken, and turkey) separated them into four distinct groups for both 
wavelengths. The variables were the myoglobin content and gradual 
differences of protein Raman band intensities and positions. 

[16] 

The auto-fluorescence of the sample and the fiber's fluorescence background 
were suppressed in a reasonable acquisition time of the 30s using the pure 
signal's PCA reconstruction. The samples were bovine bone tissues and 
adipose tissue derived from chicken, pork, beef, and lamb. 

[17] 

Raman microscope-based human sells analysis. Experimental optimization of 
the acquisition parameters. 

[18] 

Non-invasive monitoring of the cultivation of phototrophic microorganisms 
producing complex molecules of pharmaceutical relevance in a bioreactor. The 
use of Partial Linear and Nonlinear Support Vector Regressions. 

[19] 

Pharmaceutical applications. [20] 
The quantitative analysis of trace amounts of methanol in red wines. [21] 
Classification of the Raman spectra of healthy and bladder cancer cells. [22] 
Comparison of reconstruction algorithms. Analysis of tissues of pigs and from 
the oral cavity of humans, and a model solution of dye dissolved in ethanol. 

[23] 

Two-fold improvement in signal-to-background-noise-ratio was achieved 
because of the rapid SERDS operation in the kilohertz range. 

[24] 

 
   The first study on derivative luminescence spectrometry [1] showed 
that RC differentiation significantly reduced the systematic errors but at 
the expense of a slightly weaker signal-to-noise ratio. Many analytical 
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examples are in the book chapter [2]. Broad overlapped peaks are severe 
limitations of room-temperature phosphorescence and fluorescence 
multicomponent quantitative analyses of organic compounds, adsorbed 
on solid surfaces. The 1st- and 2nd-order derivatives allowed improving 
the resolution [3, 4]. 
   Synchronous fluorescence spectroscopy (SFS) [5] combined two 
conventional modes of fluorescence measurements: (1) scanning the 
excitation radiation while the detected emission wavelength is a constant; 
(2) detecting of the emission radiation in a wide range at the constant 
wavelength excitation. So, SF spectra are obtained by scanning both the 
excitation and emission monochromators simultaneously. SFS 
demonstrated spectral simplification, bandwidth narrowing, and reduced 
scattering interference [6]. The derivative SFS (DSFS) gave remarkable 
results in the multicomponent analysis [6] (see, also Table 5.1-3). 
 

Table 5.1-3. Applications of the Derivative FS 
Quantitative residue determination of pesticides in crops. The derivative 
amplitudes were measured graphically using the interference-free character of 
the isodifferential points in the calibration curves. 

[7] 

Eleven polycyclic aromatic hydrocarbons (PAH) were detected in the technical 

mixture of a solution of eighteen PAHs in hexane by the 2nd-order DSFS using 
eight different wavelength shifts. 

[8] 

Quinine determination in tonic waters. [9] 
The identification of polyaromatic hydrocarbons in petroleum fractions using 
the 2nd-order DSFS. 

[10] 

The identification of individual dimethyl naphthalenes that have very closely 
lying electronic transitions using the 2nd-order DSFS. 

[11] 

The studies of the peculiarities of the 2nd-order derivative fluorescence spectra 
(SDFS) of tryptophan in proteins. The turbidity observed in whole membrane 
extracts was eliminated by using DSFS. 

[12] 

Studies of the peculiarities of the DSFS of indole compounds. [13] 
Simultaneous determination of naproxen and diflunisal in pharmaceuticals and 
human serum samples using the 1st-order DSFS. 

[14] 

Simultaneous determination of chlorzoxazone and ibuprofen in drugs and 
human plasma using the null-point measurements in the 2nd-order DSFS.  

[15] 

Analysis of duloxetine hydrochloride and vardenafil by the DSFS. [16] 
Simultaneous determination of tadalafil and dapoxetine HCl in binary mixtures 
using null-point measurements in the 1st-order SG DSFS.  

[17] 

The 1st-order derivative emission spectrofluorometric determination of the 
supramolecular complex of valsartan and sacubitril in tablets. 

[18] 

The stability of dapoxetine hydrochloride was studied in the presence of its 
acidic degradation products and drugs Vardenafil and Tadalafil using DSFS. 

[19] 

Simultaneous determination of binary mixtures of ibuprofen (IBF) and 
phenylephrine hydrochloride (PHE) in pure powder, synthetic mixture, and 

tablets using null-point 1st- and 2nd-order derivative spectrofluorimetry. The 
direct analysis of IBU and PHE in spiked human plasma was satisfactory.  

[20] 
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Table 5.1-3 (continued). Applications of the Derivative FS 

Determination of dissolved phenanthrene and its metabolites in aqueous 
solution by the DSFS. 

[21] 

Determination of trimebutine and its degradation product (eudesmic acid) 
using the 1st-order derivative fluorimetry.  

[22] 

Detection of cefadrine and cefadroxil in water samples by the DSFS. [23] 
Simultaneous determination of simeprevir and ledipasvir by the DSFS. [24] 
Determination of amlodipine and celecoxib in pharmaceuticals and human 
plasma by the DSFS. 

[25] 

 
Photoacoustic spectroscopy 
   In photoacoustic spectroscopy (PAS) (Fig. 5.1-3), the light pulses 
generate the acoustic waves in a cell where the sample is held. Two 
microphones pick up the acoustic waves and transform them into 
electrical signals. In the conventional PAS device, the light pulses have 
the same wavelength. Figure 5.1-3 shows the modulation spectrometer, 
which combines the periodic interruption of the radiation incident on the 
sample by the chopper with the wavelength shift to produce the 
derivative output signal [1] (for technical details see Chapter 2.9).  
 

  
Figure 5.1-3. Diagram of the photoacoustic modulation spectrometer. M, 
monochromator; MK, microphone; LIA, Lock-in amplifier (Appendix J). 

 
   The amplitude of the PAS signals depends on the sample's ability to 
absorb the light [2]. Since PAS is unaffected by scattering, it can be used 
to analyze fine powders, crystalline, and biological samples. However, 
there are losses due to reflection at the sample surface during sample 
excitation, and the thermal wave reflected in the sample. The modulated 
light excitation of a sample induces several additional responses that can 
be used to analyze the sample.  
   To generate a noticeable photoacoustic effect, the radiation must be 
intensive. Therefore, a wide monochromator bandwidth is needed. 
However, the resolution decreases. There is no such problem with the 
laser source. Despite the zero-background nature of PAS, in both cases 
the cell window and broadband absorption from gas constituents other 
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than the target species produce background. WM allowed reducing 
resolution and suppressing the background [3]. The principal difference 
between the WM spectroscopy and WM-PAS is the type of the energy 
measured by detector: transmitted and absorbed by the sample, in the first 
and second cases, respectively. The theoretical model of WM-PAS 
showed that the 1st-order harmonic is offset-free contrary to the WMS 
[4]. This property is due to the zero-background nature of PAS.  
   The approximate 1st- and 2nd-order derivatives of the photoacoustic 
spectrum of Pr(Gly)3Cl3·3 H2O and PrCl3·6 H2O were estimated using 
continuous wavelet transform [5]. 
   The use of the 2nd-order harmonic of modulated NIR diode lasers 
increased the ammonia detection's sensitivity by more than ten times [6]. 
   The sensitivity of gas detection was increased by a factor of 35 due to 
the high-frequency WM [7].  
   The derivative PA spectra, which was obtained by the optical 
differentiation, allowed the detection of unnoticeable peaks in the PA 
spectrum of carbon [8]. 
 A multipoint gas sensing WM-based photoacoustic system detected the 
water vapor at 1368.597 nm with a minimum detection limit: 479-630 
ppb depending on the vapor concentration [9].  
   The PAS-based carbon monoxide (CO) gas sensor achieved a minimum 
CO detection limit of 9.8 ppm using the 2nd-order harmonics of the WM 
signal to reduce the background [10]. 
  
Remote Sensing Data and Applications 
   The introduction to the course “Remote Sensing Data and 
Applications” of Harvard University states [1] that 
 “The growing concern about human impact on the environment has led 
to the development of new observation and analysis tools to tackle and 
monitor types, magnitudes, and rates of environmental changes. Timely 
observations by Earth observation (EO) satellite systems and improved 
mapping and analysis tools are enabling a better understanding of the 
ecological interactions that underlie our Earth systems, which is critical 
for developing sustainable solutions.” 
   Remote hyperspectral sensors on-board various satellite and aircraft 
platforms allow the collection of a huge amount of hyperspectral data 
together with a geographical information system. The extraction of 
required information from these spatial databases brings new challenges 
for analysts. Multi-spectral scanning systems with high spatial resolution 
record the reflectance of the Earth’s surface in the range 400-2500 nm 
[2].  
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   Table 5.1-4 includes some applications of remote sensing (RSE) and 
remote hyperspectral sensing (RHS) for environment control. 
 
 

Table 5.1-4. Applications of Remote Sensing Spectroscopy 
Technique 

A reduction of the soil background reflectance in the RSE of vegetation and 
the resolution of the complex spectra of several target species within 
individual pixels in RSE were demonstrated. The derivative spectral indices 
for monitoring chlorosis in vegetation showed their advantage over the near-
infrared / red reflectance ratio data. 

[3] 

RES data were used to estimate the suspended sediment concentration (SSC) 
in water. The correlation between the derivative spectral reflectance and SSC 
in seawater was substantially more significant than that of the spectral 
reflectance data and SSC. 

[4] 

Reflectance bands spectra (252) represented the dominant botanical and 
substrate classes within Prentiss Bay, Horseshoe Bay, and Lake Huron which 
were transformed into relative percent reflectance. These resampled spectra 

emulated the band configurations of the airborne, hyperspectral imagery. 2nd-
order derivative analysis of the transformed spectra allowed the selection of 8 
visible–NIR wavelength bands that were the most botanically explanative for 
the differentiation of coastal wetland vegetation. A reduction of the band 
number without significant information loss made it possible to utilize small 
pixels to differentiate the botanical communities. 

[5] 

In was shown that the derivative vegetation indices were preferred over the 
simple reflectance-based ones. The chlorophyll-related derivative index D 
725/D 702 was suitable for most satellite-based sensors. The index is not 
sensitive to soil reflectance and can be used to test open crops. The presence of 
blank reflectance is also unnecessary. 

[6] 

Derivative-based analysis of high-resolution, spectrally continuous RSE data 
was performed using several smoothing and derivative computation 
algorithms. 

[7] 

A model system, which consisted of carbonate sediments with variable 
concentrations of microbial pigments, was analyzed by RHS derivative 
reflectance spectroscopy. The major sediment pigments, chlorophyll A and 
fucoxanthin were identified and showed a quantitative correlation with 
sediment pigment concentrations. 

[8] 

Ratios of the magnitude of the derivatives 725 to that at 702 nm enabled the 
identification of plant stress caused by gas leakage. The technique was able to 
identify stress responses to long-term leaks in all the crops tested but only to 
short-term leaks in grass.  

[9] 

Hyperspectral data were processed by high-order SG derivatives. 
Hyperspectral signatures for cotton, sicklepod, and bare soil were obtained. 

[10] 

Phytoplankton pigment assemblages were identified using the 2nd-order 
derivative RHS reflectance in simulation-based experiments. Resolution 
enhancement was demonstrated. 

[11] 

The retrievals of three particular phytoplankton functional types (diatoms, 
coccolithophores, and cyanobacteria) were performed using absorption and 
reflection spectra derivatives. 

[12] 
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CHAPTER TWO 

DERIVATIVE RECORDING OF ANALYTICAL 

SIGNALS EXCLUDING OPTICAL 

SPECTROSCOPY 
 
 

  
   This final chapter includes mainly bibliographic data concerting some 
applications of the derivative method in instrumental analysis, excluding 
optical spectroscopy. Although these data may be outside of the book's 
main focus, it will be useful for readers to familiarize themselves with 
these applications to get an overall picture of derivative analytical 
techniques. The first review on this issue [1] was published in 1988. 
 
 Electrochemical analytical methods 
   Electrochemical analytical methods are divided into: potentiometry, 
including the constant-current chronopotentiometry; coulometry; and 
voltammetry, including polarography [2]. 
   Potentiometry methods measure the solution’s potential between the 
indicator and reference electrodes (an electrochemical cell) under static 
conditions. The relationship between the analyte concentration and the 
potential is studied. Potentiometric titration is similar to direct titration, 
but no indicator is needed. 
   Coulometry involves the measurements of the amount of substance 
deposited on an electrode due to an electrochemical reaction. 
   In voltammetry, a potential (constant, varying, or a combination) is 
applied to an electrode’s surface. The resulting current is measured. 
   The derivative method was first put into practice in electrochemical 
analysis [3 and references therein]. The 1st-order derivative was obtained 
by a simple RC circuit (Chapter 2.1). 
   A fractional derivative of the voltammogram is called “neopolarogram” 
[4 and reference therein]. 
   Signal shapes and their derivatives are given in Appendix M. 
   Table 5.2-1 summarizes the application of the derivative technique in 
electrochemical analysis. 
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Table 5.2-1. Derivative electrochemical analytical methods 
The study of analytical characteristics of 1st-, 2nd-, and 3rd-order derivative 
measurements. The 1st-order derivative increased the sensitivity more than an 
order of magnitude and suppressed the impact of the interfering electroactive 
species 

[5] 

Derivative voltammetry, in conjunction with anodic stripping analysis at the 
hanging mercury drop electrode, demonstrated a significant enhancement in 
sensitivity. This method was less sensitive to the interferences. 

[6] 

The derivative measurements when studying rapid reactions demonstrated 
their advantages. The rate constant was estimated in a single sweep 
experiment using the peak value of the 1st-order derivative current.  

[7] 

The modulated polarographic and voltammetric techniques in natural water 
chemistry demonstrated the high sensitivity to very low concentrations of 
electroactive components and their chemical form. 

[8] 

The 1st- and 2nd-order derivative curves of cellulose acetate membrane 
electrophoretograms of human serum protein revealed multicomponent 
presence in each globulin fraction. 

[9] 

An automated slope analyzer for measuring the 1st- and 2nd order time 
derivatives of the probe response was developed. 

[10] 

Pseudo-derivative polarograms (PDP) produced better signal-to-noise ratios, 
and, therefore, lower detection limits than differential pulse polarography. 
The low sensitivity of the PDP to the influences of homogeneous chemical 
kinetics allowed this method to be used for metal speciation studies. 

[11] 

Derivative linear sweep (DLSVA) and derivative cyclic voltabsorptometry 
(DCVA) are the optical analogs of linear sweep and cyclic 
voltabsorptometry. In these methods, the absorbance of the electrode reaction 
product is differentiated relative to the linear scan potential. 

[12] 

Derivative hydrodynamic-modulation voltammetry was developed to 
improve the resolution in highly sensitive mixture analyses using solid 
electrodes. The voltammetric current-potential waves were transformed into 
peak-shaped curves, which are more convenient for further data processing. 
Single and multiple peak systems were evaluated at the micromolar 
concentration level using stopped-rotation and stopped-flow voltammetry. 
The test compounds were dopamine, ascorbic acid, NADH, homovanillic 
acid, and chlorpromazine. 

[13] 

The peak-shaped voltammograms arising from the derivative and differential 
normal pulse voltammetry were compared for reversible and heterogeneous 
charge transfer control systems for varying kinetic and experimental 
parameters. 

[14] 

A microprocessor-based voltammetric and polarographic analyzer was 
developed for peak differentiation. The analyzer was used for the 
determination of UO2+2 ions by the adsorbed cathodic stripping voltammetry 
and in vivo analysis of dopamine traces on a carbon fiber microelectrode. 

[15] 

The derivative of the absorbance of the reaction product (at a particular 
wavelength) relative to the time was obtained during a slow potential scan at 
an optically transparent thin layer electrode. The differentiation was useful 
for the background-free optical signal when dealing with the systems 
characterized by high faradaic/capacitive background and/or multiple 
products. 

[16] 
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Table 5.2-1 (continued). Derivative electrochemical analytical 
methods 

The fractional 0.5-order differentiation performed the extraction of the single 
peaks from the complex linear sweep and cyclic voltammograms; replacing 
of all undesired peaks by baselines obtained using the least-squares curve-
fitting; and restoring a single-peak voltammogram by the fractional 0.5-order 
integration.  

[17] 

The theory for the DLSVA and DCVA of the long-path-length 
spectroelectrochemical (SEC) cell for the single reversible electrode reaction 
was suggested. The results showed that the DLSVA and DCVA of the long-
path-length SEC cell are more sensitive (by several decades or more) than 
those of the optically-transparent electrode. 

[18] 

The derivative current-potential curves were used for the studies of 
heterogeneous electron-transfer reactions. Various peak asymmetry 
parameters were evaluated. The heterogeneous kinetic parameters were 
determined by fitting the theoretical derivative equation to the experimental 
data. 

[19] 

The estimated semi-integer-order derivative and semi-integral curves of 
theoretical cyclic voltammograms were found to agree with semi-
differentiation and semi-integral electroanalysis theory. 

[20] 

Analytical expressions deduced for derivative voltammetry and differential 
pulse voltammetry, as well as corresponding to EC, CE, and catalytic 
mechanisms at spherical electrodes, established criteria to discriminate 
between last three mechanisms. (The abbreviations E and C represent 
an electron transfer and a chemical reaction, respectively). 

[21] 

Overlapping peaks in capillary electrophoresis of eleven benzoic acids were 
resolved by differentiation of the spectrophotometric detector’s signal. 
Compared with standard detection, the derivative mode demonstrated slightly 
lower reproducibility, comparable sensitivity, better separation, and baseline 
suppression.  

[22] 

The electrochemical reactions under conditions of linear semi-infinite 
diffusion with an irreversible electron transfer process were simulated. 

[23] 

Theoretical expressions for the 1st-, 2nd-, and 3rd-order derivatives of 
voltammetric curves were analytically derived and analyzed for reversible, 
quasi-reversible, and irreversible processes under spherical diffusion. 

[24] 
 

The instantaneous corrosion rate and corrosion mechanism were studied 
using the electrochemical frequency modulation (EFM). In EFM, the 
corrosion parameters were measured using the Fourier harmonics and their 
combinations. This method demonstrated high sensitivity and accuracy. 

[25] 

The 2nd-order derivative linear sweep voltammetry was used for the 
ultrasensitive determination of 4-nitrophenol based on acetylene black paste 
and graphene hybrid electrode. Numerous applications of this method were 
cited for the enhancement of sensitivity and specificity in the quantitative 
analysis. 

[26] 

The 1st- and 2nd-order derivatives of the cyclic voltammograms were used to 
determine the standard electrochemical potentials from the curves that exhibit 
chemical irreversibility. The voltammogram’s reversibility was estimated. 

[27] 
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Chromatography 
   Chromatography is a separation method. The separation is based on 
differential partitioning between the mobile (which carries a sample) and 
stationary (through which the sample passes) phases. The method's 
principal problem is selecting the appropriate phases and experimental 
parameters that allow full separation of the mixture component. A lot of 
effort and experience is required to solve this problem. Therefore, in the 
case of partial mixture separation, a mathematical resolution 
enhancement may be useful, e.g., differentiation of chromatograms over 
time.  
   In the pioneer study [1], the 1st-order time derivative of the effluent 
transmission curve from the column chromatogram was obtained by the 
RC circuit. This article was published eight years later than the first 
reports on derivative spectroscopy. Despite the primitive technique, the 
conclusions drawn by Tracey [1] are still relevant: 

“The position of peaks can be more accurately determined [in 
derivatives] over a very wide concentration range. This increased 
accuracy may be particularly useful in determining small differences in 
elution volume between a standard preparation of known behavior and 
a series of unknowns […] In the purification of complex mixtures it 
gives more immediate evidence of multiplicity of components.”  

   Table 5.2-2 summarizes, in chronological order, some analytical 
applications of the Derivative Chromatography made in 1967-2019.  
  

Table 5.2-2. Derivative Chromatography 
Type and 
Reference Description 

Gas 
[2] 

The time concentration derivative signal was measured by two thermal 
conductivity cells separated by a dead space auxiliary column. 

Ion 
exchange 

[3] 

The measurement of the difference in the electrical conductances at the 
inlet and outlet of a dead space column produced the elution curve 
derivative. The derivative method was tested in an experiment using 
cupric ion eluted with ethylene diamine hydrochloride. 

Liquid, 
[4] 

Analysis of a mixture of aromatic hydrocarbons. 

Liquid, 
[5] 

The null-point analysis of a mixture of phenylalanine and tryptophan 
using the 1st-order SG derivative. 

Molecular 
sieve, [6] 

Electronic differentiation resolved the shoulders and inflections of a 
single broad peak, which characterizes these chromatograms.  

Gas, [7] 
Analysis of trace components (hydrocarbons), eluting on the tail of a 

broad solvent peak, using the 1st- and the 2nd-order derivatives. 

HP liquid, 
[8] 

Analysis of a mixture of porphyrin esters (in nanogram quantities) in the 
culture medium of the chick embryo liver cell. The desired sensitivity 
was obtained by using a second derivative-fluorometric detection system. 
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Table 5.2-2 (continued). Derivative Chromatography 
Type and 
Reference Description 

Thin-
layer, [9] 

The trace analysis and detailed studies of unresolved compounds were 
significantly simplified in pharmaceutical research due to the coupling 
photodensitometry with a derivative recording device.  

Gas, [10] Analysis of hydrocarbon mixtures using RC differentiation. 

HP thin-
layer,  
[11] 

The use of a spectrophotodensitometer signal differentiated by an 
electronic device allowed the analysis of small amounts of a component 
masked by major peaks. The study of some conservants used in 
pharmaceutical formulations was performed. 

HP thin-
layer,[12] 

Similar to the previous section, but using the 4th-order derivatives. Study 
of a commercial colorant and a syrup formulation. 

HP thin-
layer,  
[13] 

The resolution of overlapping model systems, noscapine and palavering, 
and the red pigments, R112 and R3, was improved using a 2nd-order 
derivative. 

[14] 
All 

The determination of chromatographic peak purity: (1) at the specific 
wavelength, where the major compound has a zero derivative; (2) by 
screening derivative curves for possible overlapping impurities (mapping 
technique). 

[15] 
All 

The 2nd-order derivatives of some Gaussian doublets were studied to 
establish the integration limits of chromatographic peaks.  

All 
[16] 

The 2nd-order derivatives of some model doublets were studied to 
establish the limiting properties of quantitative derivative analysis.  

All 
[17] 

Peaks were detected using a combination of the derivatives of different 
orders.  

HP Liquid 
[18] 

Mixtures of piperonyl butoxide, neopynamine, and fenitrothion 
characterized by overlapped peaks in liquid chromatography were 
quantified by derivative spectra obtained by a diode-array 
spectrophotometer around the maxima signal of the chromatographic 
peak.  

All 
[19] 

The multivariate PCR model's application gave better accuracy in 
quantifying partially overlapped UV peaks of enantiomers than the 1st- 
and 2nd -order differentiation. 

Gas-MS 
[20] 

The 1st-3rd-order derivative gas chromatography interfaced to the isotope 
ratio mass spectrometry was used to analyze the mixtures of 
2,3,3′,4,4′,5,5′-heptachloro-1′-methyl-1,2′-bipyrrole (Q1) and 2,2′,4,5,5′-
pentachlorobiphenyl (PCB 101). Differentiation enabled the 
identification of the interference of Q1 with PCB 101 even when both 
peaks fully co-eluted. The derivative method was used to study the peak 
purity of 2, 2′,3,4,4′-pentabromodiphenyl ether (BDE 85) in technical 
pentabromo diphenyl ether (DE-71). 

Gas-MS 
[21] 

The 1st-order derivatives of chromatograms of mixtures of 
benzo(b)fluoranthene and benzo(k)fluoranthene (for the m/z 252 ion) 
resolved the overlapped peaks of these two compounds with the identical 
mass spectra. This method made it possible to use the 250 and 248 ions 
to confirm the identity of these analytes. 

LC-MS 
[22] 

Noisy chromatographic peaks for the analysis of impurities in 
pharmaceutical products were detected using the 2nd-order digital 
differentiator filter automatically adapted to the data. 
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Table 5.2-2 (continued). Derivative Chromatography 
Type and 
Reference Description 

Gas, 
Liquid,[23] 

Peaks were identified using the 1st- and 2nd-order derivatives of the one-
dimensional chromatograms. The retention times were estimated.  

All 
[24] 

The boundaries of chromatographic peaks were identified using the 2nd- 
order derivative. 

All [25] Automatic processing in clinical and toxicology laboratories. 

HP Liquid 
 [26] 

The 1st-order derivative of UV spectra allowed the quantification of the 
plasticizers [bis (2-ethylhexyl) adipate and di-isononylphtalate], which 
co-eluated with other components [di(2-ethylhexyl) phthalate and 
dioctyl terephthalate, respectively]. 

HP Liquid 
[27] 

The resolution enhancement used combinations of derivatives for 
symmetrical and asymmetrical peak models.  

 
 X-ray spectroscopy 
   X-ray spectroscopy (XS) methods detect photons that have wavelengths 
in the X-ray region. The main branches of the XS are X-ray Absorption 
(XAS), Emission (XES), and Diffuse Scattering (XDS) Spectroscopy. 
The wavelengths of the X-rays, which were emitted or absorbed during 
electronic transitions between atomic energy levels, are characteristics of 
the elements. The XAS is used to determine the local structure around the 
absorbing atom (bond distance, coordination number, and chemical 
identity of the elements). The X-ray absorption near-edge structure 
(XANES) provides information about the oxidation state of an excited 
atom and its coordination symmetry. Extended X-Ray Absorption Fine 
Structure (EXAFS) is used to determine the chemical state of practically 
important species, which occur in very low abundance or concentrations. 
   The fine lines of the XES give data on the density of filled states. The 
XES allows the oxidation and total spin state of the emitting atom to be 
studied. In the XDS, photons that be elastically scattered, contain 
information about the structural dynamics in materials. 
 Differentiation and modulation techniques are used in the XS for 
resolution enhancement and background suppression. 
 
 Photoelectron spectroscopy 
   X-ray photoelectron spectrum (XPS) is a dependence of the electron 
binding energy on the number of electrons that escape from the tiny 
surface layer (up to 10 nm) of the sample, which is irradiated with an X-
ray beam. The XPS consists of bell-shaped peaks that are sometimes 
poor-resolved (e.g., due to the small chemical shifts). Therefore, 
recording derivatives improves resolution.  
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   In some cases, peaks of Auger Electron Spectra (AES) are observed in 
the XPS but not the XPS peaks in the AES. AES methods are more 
sensitive to the chemical environment than those of the XPS. In the AE 
spectrometer, an electron beam, focused onto a sample, stimulates the 
electron emission. The AE data are obtained in the derivative mode. 
However, quantitative derivative analysis must consider that the 
intensities in derivatives depend on the peak shape, which may differ in 
various matrices [1].  
   The book [2] includes numerous applications of the derivative 
photoelectron spectroscopy.  
 

Table 5.2-3. X-ray spectroscopy 
The digitized DC induced in a detector was measured, and the data placed on 
paper tape was numerically differentiated. Computer differentiated spectra 
were close to those obtained by the modulation technique. 

[1] 

A new method of the quantitative analysis of demodulated EXAFS spectra 
resolved small changes in the sample’s structure, with greatly enhanced 
precision. This method revealed the formation of ruthenium oxide species 
upon partial oxidation of a Ru metal particle, which cannot be detected in a 
standard EXAFS experiment. 

[2] 

The X-ray absorption fine structure at the copper K-edge in a mixture 
containing cuprous oxide and cupric oxide was studied using four methods 
(including differentiation). 

[3,4] 

The 2nd-order derivative (obtained by a spline method) of an X-Ray 
diffraction pattern was used as fingerprints of the Tibetan medicine snow 
lotus herb. 

[5] 

The sensitivity of extended X-ray absorption fine structure spectroscopy for 
minute structural changes was enhanced by combining the modulated 
excitation approach and phase-sensitive analysis. 

[6] 

Resolution enhancement and background suppression using the 2nd-order 
derivative.  

[7] 

 
Miscellaneous  
Electron Paramagnetic Resonance  
   The 1st-order differentiation of the absorption spectrum is the most 
common way to record Electron Paramagnetic Resonance (EPR) (or 
Electron Spin Resonance spectra [1, 2]). The modulation technique 
allows for reducing noise. The 1st-order derivative of the continuous-
wave EPR spectrum of 1, 1-diphenyl-2-picrylhydrazyl powder was 
obtained by the frequency (1.6 MHz) modulation [3]. Measuring the 1st-
order derivative relative to the microwave frequency helps to investigate 
the electron-spin-related phenomena in ecological and biological objects 
[1]. 
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Nuclear Magnetic Resonance  
   The 1st-order derivative of the Nuclear Magnetic Resonance (NMR) 
spectra is usually obtained by the magnetic field modulation with a linear 
variation of the strength of the static magnetic field. The phase-sensitive 
detection improves the signal-to-noise ratio [4]. 
   The continuous autodyne spectrometer, supplied by the modulation 
unit, generated the 1st-order derivatives of the broad peaks of the proton 
magnetic spectra of moisture and methane-rich coals [5]. The necessary 
information was extracted from the derivatives.  
   The 1st-order derivatives of the NMR spectra of ⁷Li and ⁶Li nuclei in a 
LiTaO3 single crystal sample of congruent composition allowed the 
referencing of weak sidelines of ⁷Li nuclei to cation sublattice defects [6]. 
 

Table 5.2-4. Photoelectron and Auger spectroscopy 
The 2nd-order derivative of the photoelectron energy distribution from 
cesiated Cu revealed structure that was not detectable in the energy 
distribution itself. 

[3] 

Differentiation revealed significant features of gold valence band spectra. [4] 
The combination of the even-order derivatives of poorly resolved curves was 
used for the nonlinear least-squares curve fitting. 

[5] 

The peak detection with peak/background ratio was down to 0.01. [6] 
The quantitative surface analysis of metals (Ag, Cd, In, and Sn), indium-tin 
alloys and films (indium, tin oxides, and indium-tin oxide) was performed 
using AES. 

[1] 

The study of O (1s) and C (1s) derivative spectra obtained from carbon fiber. [7] 
The C (electron shell transitions KLL) spectra from natural diamond, 
graphite, and single‐crystal β‐SiC were investigated using the 1st-order 
derivative X‐Ray Excited AES (XAES). Enhanced fine structure XAES 
provided a fingerprint of the carbon bonding state. 

[8] 

The peaks were identified using a combined method, which included 2nd-
order derivatives. 

[9] 

The ¥$	/¥$F ratio was estimated from the 1st-order derivative of the Auger C 
(KLL) spectrum of carbon films (from diamond to graphite). 

[10] 

 
Mossbauer spectroscopy 
   Mossbauer spectroscopy is based on the Mossbauer Effect. This effect 
consists of the emission and absorption of nuclear gamma rays, produced 
by a source of ? radiation, in solids. 
   The source moves back and forth to generate a Doppler effect, that is, a 
wave frequency is changed if the wave detector is moving relative to the 
source. The absorption Mossbauer spectrum is a function of 
transmittance versus velocity.  
   A modulation procedure similar to that used in EPR spectrometers was 
applied to the 57Fe-γ rays absorption spectrum of metallic iron [7]. 
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   The precision analysis of hyperfine splittings of the very high 
resolution 93.3 KeV Mossbauer resonance in 67Zn was carried out by a 
frequency modulation Mossbauer spectrometer [8].  
   Mossbauer radiation was frequency modulated by passing through a 
vibrating resonance medium, which was induced by pulsed laser 
excitation. The ratio of the 4th- and 2nd-order Fourier harmonics of the 
modulated radiation was found to be very sensitive to the amplitude of 
nuclear vibrations [9].  
 
Gamma-ray spectroscopy 
   Peaks of the gamma-ray spectra were identified using 1st- and the 2nd- 

order derivatives [10, 11]. 
   The resolution of the ?-ray spectra obtained by the scintillation (NaI 
(TI)) detectors was improved using the weighted sum of the signal and its 
2nd- and 4th-order derivatives [12].  
 
Differential scanning calorimetry  
   Differential scanning calorimetry (DSC) involves measuring the heat 
flow of the sample versus temperature. In the power-compensating DSC, 
sample and reference cells are heated with separate heaters. Usually, the 
temperature of both cells is linearly varied as a function of time. The 
separate sensors measure the cell temperatures, and the differential power 
signal is recorded. 
   DSC has some drawbacks [13]: (1) complex transitions are not properly 
analyzed since only the sum of all the thermal events in the sample is 
measured; (2) baseline drift; and (3) a compromise between sensitivity 
and resolution is needed. 
   The modulation DSC (MDSC) technique eliminated these drawbacks. 
In MDSC, a sinusoidal modulation was overlaid on the conventional 
linear temperature regime [13-15].  
   The 1st- and 2nd-order derivatives of the thermograms of lipid samples 
were used to define extrema and the start points of thermal events [16]. 
 
Mass Spectrometry 
   Overlapped peaks are detected by examining the 2nd-order derivative of 
the raw native electrospray-ionization mass spectra from large protein 
complexes [17]. 
   The summing of the spectrum with its weighting 2nd-order derivative 
enhanced the resolution of overlapping peaks using an adaptive algorithm 
[18]. The relationship between the sharpening ratio and weighting factor 
was established.  
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APPENDIX A 
 

ANALYTICAL SIGNAL PROCESSING USING 

FOURIER TRANSFORM AND SPLINES 
 
 
 

A1. Continuous Fourier transform 
 

   Given an integrable function �(�): � |�(�)|�
�� � < ∞.                                                                                 (È1 − 1) 

Function �(�) is represented by the Fourier integral (transform-FT) [1]: �(�) = (1/2�) � �#(-)exp (�-�)�
�� -,                                             (È1 − 2) 

where �#(-) is FT of �(�): �#(-) = � �(�)exp (−�-�)�
�� �,                                                         (È1 − 3) - is the angular frequency (argument in the frequency domain) with an 

inverse dimension of � (argument in the time domain); � = √−1. 
   Interested readers can find a simple derivation of the FTs of the 
Gaussian and Lorentzian functions [2]. 
   The integral convolution in the time domain (e.g., Eq. (1.1-3)) ��(�) = � �(� + ��)��(��)���

��                                                          (È1 − 4) 

is the product in the Fourier domain: �#�- = �a(-)�#�(-).                                                                                 (È1 − 5)  
   Suppose that the analytical signal (AS) is a stationary random process. 
In simple terms, stationarity refers to time invariance of some statistics of 
a random process, e.g., mean or autocorrelation. In other words, these 
characteristics do not depend on the shifts in the time domain [3]. 
Consider only a wide-sense-stationary random process [3]. The 
autocorrelation function of this process is a mean �(∆�) = �(�)�(� + ∆�)ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕ.                                                                     (È1 − 6)  
The dispersion is �	 = �(0).                                                                                                (È1 − 7)  
According to the Wiener–Khinchin theorem, the autocorrelation function  
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is the power spectrum of the process: ý(-) = � �(∆�)exp (−�-∆�)�
�� ∆�.                                              (È1 − 8) 

According to Eq. (A1-2), �(∆�) = (1/2�) � ý(-)exp (�-∆�)�
�� -.                                     (È1 − 9) 

   Suppose that AS passes through a linear device, which frequency 
characteristic (generally, a function of the complex argument �- ), is the 
ratio of the output and input signals: ä(�-) = ¹¦ðL�ðL(�-) ¹_��ðL(�-)⁄ .                                                   (È1 − 10)  
Then, the power spectrum of the output signal is ý¦ðL (-) = |ä(�-)|	ý_��ðL(-).                                                       (È1 − 11)  

By substituting Eqs. (A1-9) and (A1-11) into Eq. (A1-7), we have �¦ðL�ðL	 = (1/2�) � |ä(�-)|	ý_��ðL(-)�
�� -.                             (È1 − 12) 

   The frequency characteristic of the ideal �LM-order differentiator is ä(�)(�-) = (�-)�.                                                                                (È1 − 13)  

According to Eq. (A1-13), the differentiator increases the higher Fourier 
frequencies and decreases the lower ones. This effect is the most 

significant for the high-order derivatives. 
   The FT of the AS, which contains normal noise, concentrates useful 
information in the low-frequency harmonics, while the high-frequency 
components mainly represent the noise. Therefore, the high-order 
derivatives are strongly disturbed by the noise. We readily explain this 
conclusion by substituting Eq. (A1-13) into Eq. (A1-12): �¦ðL�ðL	 (�) = (1/2�) � -	�ý_��ðL(-)�

�� -.                                (È1 − 14) 

If ý_��ðL(-)T→�~-�� (� ≤ 2�), then the integral may diverge: �¦ðL�ðL	 (�) → ∞. For the convergence, the stabilizing factor is introduced 
into the integrand [4]. 
   Another way is clipping in the Fourier spectrum using a maximum 
Fourier frequency (-�\^) (Appendix A2). 
 

A2. Discrete Fourier Transform 
 

    The chapter "Harmonic analysis" in a practical guide, written by C.  
Lanczos [5], is an accessible introduction to the numerical processing in 
the Fourier domain, which is performed using the Fourier series.  
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    Suppose that �(!) is a one-dimensional continuous periodic function 
with a period N = 2�. If �(!) satisfies Dirichlet conditions (discontinuity 
points of the first kind only, and the finite number of local extrema at the 
interval [�, � + N]), then �(!) is represented at the range [−�, �] by the 
Fourier series: 

�(!) = ��2 + C �R£¤¥S!�
R�� + �R¥��S!,                                               (È2 − 1) 

where �R = (1/�) ∫ �(!)£¤¥S!!f�f ; �R = (1/�) ∫ �(!)¥��S!!f�f . 

Eq. (A2-1) is valid in all points where �(!) is continuous. At 

discontinuity point !�, �(!) is equal to the half-sum of its left and right 

limits at !�: �(!) = (�(!� − 0) + �(!� + 0))/2.                                                  (È2 − 2)  
   Consider the finite-dimensional analog of Eq. (A2-1), which is named 
the Discrete FT (DFT). 

   Suppose, that the one-dimensional analytical signal r is defined at the � + 1 equidistant points of the abscissa axis (e.g., wavelength) in the 

range [!�, !
]; the sampling interval ℎ = (!
 − !�) �⁄ . Then, �� = �(!�), �� = �(!�), … , �
 = �(!
).                                           (È2 − 3) 

It is common to say that the function r is defined in the time domain. 
   From a mathematical point of view, the spectrum can be formally 
extended to the region of negative arguments (!��, … , !�
) in an even or 
odd way. Below, we will consider the latter case: �(−!) = −�(!).                                                                                     (È2 − 4)  
   Also, suppose that � is the periodic function with the period [−!
, !
] 
(Fig. A2-1). Let us approximate this function by a series of complex 
exponents ("harmonics"): ��(!) = C £Rexp (�S�!/�)�

R��� ,                                                       (È2 − 5) 

where � ≤ �;  � = √−1; £R = (1/2�) C �(!�)

���
 exp(−�S��/�).                                   (È2 − 6) 

The first and the last terms of the sum in Eq. (A2-6) have the weights 0.5. 
The coefficients £R, which are known as complex Fourier harmonics, 
represent the Fourier spectrum (transform) of the function r. In other 
words, r is defined in the frequency domain. 
   If � = �, then the values obtained by Eq. (A2-5) are ��(!�) =  �(!�). 
Eq. (A2-6) is the sum of the real and the imaginary parts according to 
Euler's formula: 
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£R = �R − ��R,                                                                                         (È2 − 7)  

where �R = (1 2�⁄ ) P �(!�)
���
 cos(S�� �⁄ ) ;  �R = (1/2�) P �(!�)
���
 ¥��(S��/�).  
 
 

 
Figure A2-1. Representation of the non-periodic function as the periodic 

function. 
 
   If �(!) is the odd function (Eq. (A2-4)), then ��(!) = P �Rsin (S�!/�)���R�� ,                                                            (È2 − 8)  

where �R = (1/�) P �(!�)
����� ¥��(S��/�). 

The coefficients £R and their real and imaginary parts are readily obtained 
by the MATLAB function, fft.m, using the fast algorithm named "The 
Fast Fourier Transform". 
   The power density Fourier spectrum (or for short, the power spectrum) 

is å(S) = (�R	 + �R	)/�	.                                                                            (È2 − 9) 
   FT has some essential drawbacks: signal periodicity assumption and the 

Gibbs phenomenon [1]. The last fact is due to the jump discontinuity of 

function r in its "junction points" (Eq. (A2-2) (circles in Fig. A2-1). This 
discontinuity causes the weak convergence of the Fourier series.    
Therefore, the restored signal obtained by the inverse FT (IFT) contains 
oscillations. The same distortions are inherent in the Fourier-smoothed 
data for the truncated Fourier series (the high-frequency harmonics are 

rejected, � ≪ � in Eq. (A2-5)). To improve convergence, it is necessary 

that �� = �
. To meet this condition, the linear trend (a baseline, BL) 

(Eq. (A2-10)) is subtracted from function �. g� = � + �!,                                                                                         (È2 − 10)  
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where � = ��; � = (�
 − ��)/!
. This method is most suitable for high-

order derivative spectroscopy since the derivatives of the order � ≥ 2 
suppress the trend. 
   While studying the non-stationary processes, new smart transform 
algorithms were suggested to overcome the drawbacks of FT [6]. 
   In the main text, we will study the filtering properties of the digital 
filters using DFT. 
   Panels a and b (Fig. A2-2) show the absolute DFT spectra of the 
derivatives of the Gaussian and Lorentzian peaks, respectively. Generally 
speaking, graphical data demonstrates that the spectra broaden while 
increasing the order of the derivatives. The impact of factor -� on the 
DFT-derivative spectra explains this result. The DFT of the Lorentzian is 
significantly broader than that of the Gaussian. Approximately eight FT 
harmonics are needed to represent the Gaussian data (Fig. A2-2a). This 
number must be more than three times larger for the Lorentzian curves 
(Fig. A2 - 2b). 
 

A3. Splines 
 

   The (2� + 1)LM-order degree polynomial spline of degree 2� consists of 
the Ç + 1 piecewise continuous polynomials jointed at the Ç points are 
known as knots or nodes. The spline continuity at the nodes must be up to 
the (2� − 1)LM-order derivatives. For example, consider the interpolation 
cubic spline [7].  
   Suppose that a function �(�) is defined at Ç knots �_ given in the 
interval [�\,  �ù]: �\ = �� < �	 <. . . < �ú�� < �ú = �ù.                                              (È3 − 1)  �ú(�) is named the cubic spline (Fig. A3-1) with knots (Eq. (A3-1)) if the 
following conditions are valid: 
1. In each interval [�_, �_O�] �ú_(�) = P �_R(� − �_)R,                                                               (È3 − 2)FR��  

where �_R=const. 
2. The continuity in the interval [�\,  �ù] means that the functions �ú,_�� 

and �ú,_  and their derivatives must be equal at each adjacent point �_ (Fig. 

A3-1): that is, �ú,_��(�) (�_) = �ú,_(�)(�_),                                                                             (È3 − 3)  

where � = 0, 1, and 2.  
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Figure A2-2. The relative intensities of the absolute DFT of the Gaussian (a) and 
Lorentzian (b) peaks, and corresponding �LM-order derivatives. The numbers near 

the curves are the � values. 
 
The 1st- and 2nd-order derivatives of Eq. (A3-2) are �ú� (�) = �_� + 2�_	(� − �_) + 3�_F(� − �_)	;                                 (È3 − 4)  �ú��(�) = 2�_	 + 6�_F(� − �_).                                                              (È3 − 5)  

   The spline at the endpoints (�\ and �ù) is also calculated under 
particular conditions. 
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Figure A3-1. Cubic spline. (adapted from [7]). 

 
   Tutorial [7] gives a detailed mathematical description of the spline 
approximation.  
   The B-spline basis (B is short for basis spline) defines a set of knots and 
their coordinates. A random B-spline has an arbitrary number of knots 
and their random coordinates. A cardinal B-spline has a constant 
separation between knots. A linear combination of B-splines constricts all 
possible spline functions.  
   In the general case, selecting the spline parameters and the number of 
knots is a cumbersome mathematical problem [8], which is out of the 
remit of this book. Instead, we will focus on some remarks concerning 
spectroscopy problems [9]. 
   To decrease the spline dimension and increase the signal-to-noise ratio 
of the smoothed data, the number of knots must be minimal. One of the 
knot’s selection criteria requires the maximum smoothness of the spline. 
Mathematically this statement is equivalent to the minimizing of 
the maximum value over all of the pieces of the spline: ��!_ §∆�_R@�ú(R)(�_,_O�)@¨,                                                                  (È3 − 6) 

where ∆�_ = �_O� − �_; �_,_O� = [�_O�, �_). Since �ú(R) = 0 for the spline 

of the order S, the SLM-order derivative must be independently calculated, 
e.g., using the SG method. 
   Another minimax solution follows from the following function: [1/(Ç + 1)] C Y�ú(R)(�_,_O�)Y�/R.                                                 (È3 − 7)K�

K�Kµ   

   Gans and Gill [9] also suggested the empirical function similar to Eq. 
(A3-7). 
   Since the interpolation spline is disturbed by the measurement noise, 
the regularized smoothing spline is often useful in practice. 
   According to the regularization principle, the smoothing spline �ú,�(�) 
minimizes the functional [4] 3%�ú,�& = C $_��h�(�_) − �ú,�(�_)j	ú

_�� + � ∑ Y�ú,��� ( �_)Y	.ú_�� (È3 − 8)  
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The first term of 3%�ú,�& is the squared Euclidean norm of the 
discrepancy between measured and smoothed values. The weighting 
factors $_ are proportional to the noise dispersion. For normal noise, the 
first member is optimal. The second term of 3%�ú,�& defines the degree 
of the smoothing. We will discuss the estimation of the regularization 
parameter � in Chapter 2.6 and Appendix G. 
   Antonov [10] transformed the uniformly spaced spectra's coordinates, 
which were defined in the wavelength domain, to the uniform 
wavenumber scale by the spline interpolation. Furthermore, he applied 
the 4th-order differentiation SG filter. The spline interpolation restored the 
original wavelength scale. 
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APPENDIX B 
 

DIFFERENTIATION OF THE PMG AND DOBOSZ 

FUNCTIONS 
 

 
 

B1. The PMG function 
 �fZ�(>) = '!$  (−>	/(1 + i>)	),                                                    (g1 − 1)  

where i is the asymmetry parameter. 
The form that is more suitable for differentiation: �fZ�(!) = exp(È´ä),                                                                          (g1 − 2)  

where È´ä = −�	;  � = >/(1 + i>) = (1 − g)/i; g = 1/(1 + i>). 
The 1st-order derivative: �fZ�(�) = �fZ�È´ä(�).                                                                               (g1 − 3)  

For further differentiation (� ≥ 2), we use the general Leibniz rule: �fZ�(�) = P Q���R���R�� �fZ�(��R��)È´ä(RO�),                                             (g1 − 4)  

where Q�R = �!/[(� − S)! S!]. 
 

Function Equation Number 

�fZ�(	)
 �fZ�(�) È´ä (�) + �fZ�È´ä(	) g1 − 5 

�fZ�(F)
 �fZ�(	) È´ä (�) + 2�fZ�(�) È´ä(	) + �fZ�È´ä (F) g1 − 6 

�fZ�(G)
 �fZ�(F) È´ä (�) + 3�fZ�(	) È´ä(	) + 3�fZ�(�) È´ä(F) + �fZ�È´ä(G) g1 − 7 

È´ä(�) −2��(�)  g1 − 8 

È´ä(	) −2 �%�(�)&	 + ��(	)�  g1 − 9 

È´ä(F) −2h3�(�)�(	) + ��(F)j  g1 − 10 

È´ä(G) −2 �3%�(	)&	 + 4�(�)�(F) + ��(G)�  g1 − 11 
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The �LM-order derivatives of � and g are: �(�) = − g(�) i⁄ ;                                                                                 (g1 − 12)  g(�) = −(−i)��! (1 + i>)�O�⁄ .                                                      (g1 − 13)  
We use these equations in the MATLAB function pmgDerivative.m 
(Appendix SW9). 
 

B2. The Dobosz function 
 

   The Dobosz function in the form more suitable for differentiation: �z = '!$%−i(1 − �����>)&/(1 + >	) = ´A(�)�A(�),                      (g2 − 1)  

where ´A(�) = Q'!$%�A&; Q = '!$(−i) / i; �A = i�����>; �A(�) =i/(1 + >	) = i�
(�); �
(�) = 1/(1 + >	) is the Lorentzian function. 

   Similar to Appendix B1, we use the general Leibniz rule for 
differentiation. 

 

Function Equation Number 

�z(�)
 ´A(�)�A(�) + ´A(�)�A(	)

 g2 − 2 

�z(	)
 ´A(	)�A(�) + 2´A(�)�A(	) + ´A(�)�A(F)

 g2 − 3 

�z(F)
 ´A(F)�A(�) + 3´A(	)�A(	) + 3´A(�)�A(F) + ´A(�)�A(G)

  g2 − 4 

�z(G)
 ´A(G)�A(�) + 4´A(F)�A(	) + 6´A(	)�A(F) + 4´A(�)�A(G) + ´A(�)�A(H)

  g2 − 5 

´A(�)
 ´A(�)�A(�)

  g2 − 6 

´A(	)
 ´A(�)�A(�) + ´A(�)�A(	)

  g2 − 7 

´A(F)
 ´A(	)�A(�) + 2´A(�)�A(	) + ´A(�)�A(F)

  g2 − 8 

´A(G)
 ´A(F)�A(�) + 3´A(	)�A(	) + 3´A(�)�A(F) + ´A(�)�A(G)

  g2 − 9 

 

   Using derivatives of the Lorentzian (Chapter 1.2), we obtain  �A(�) = i�
(���).                                                                                     (g2 − 10)  

We use these equations in the MATLAB function difDobosz.m 

(Appendix SW9).
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APPENDIX C 
 

NOISE 
 
 
 

   It is generally accepted to classify noises according to their frequency 
domain properties, using the power spectral density (PSD) [1]. The PSD 
of a signal !(�) is ¹^^(-) = lim�→� 5{|!�(-)|	},                                                              (Q − 1)  

where 5 stands for the mathematical expectation (mean); - is the angular 

(Fourier) frequency; !�(-) = %1/√N& ∫ !(�) exp(−�-�) ���  is the 

amplitude spectral density (the integral is the truncated Fourier transform 

of !(�) in the interval [0, N] ); � = √−1. 
   It is assumed in practical applications that the white noise's PSD is 
constant in some frequency range. White normal (Gaussian) noise has a 
normal distribution in the time domain with a zero mean.  
   The PSD of the colored noise depends on the Fourier frequency [1, 2]: 

 ¹^^(-)~|-|�,                                                                                            (Q − 2) 

where � = −1, −2, and 1 for pink, red, and blue noise, respectively.  

   If � ≤ −1, then the noise is non-stationary [1, 2].  
   Figure C-1 illustrates Eq. (C-2). The MATLAB operator 
(abs(fft(noise)) transformes the colored noise, which is generated by 
software [2], into the frequency domain.  
 
References 
1. Stoica P., Moses, R. Spectral analysis of signals. Prentice Hall, New 
Jersey. 2005. 
2. Zhivomirov, H. (2018). A method for colored noise generation. 
Romanian Journal of Acoustics and Vibration, 15, 14-19.  
 

 EBSCOhost - printed on 2/12/2023 11:12 PM via . All use subject to https://www.ebsco.com/terms-of-use



308                                             Appendix C 
 

 
 

 
Figure C-1. The absolute Fourier spectra of white, pink, red,  

and blue noise, from the top to the bottom panels, respectively.  
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APPENDIX D 
 

ESTIMATION OF THE INFORMATION MEASURE 

OF THE RESOLUTION 
 
 
 

Gaussian doublet 
   Consider the symmetrical doublet (Eq. (1.4-1)). The information 

measure to distinguish between the doublet components (Eq. (1.4-5)) is   = (2 �⁄ ) ∫ Y�#�Y	[1 − cos($¯/2)]	 ä(-)W -.O���                         (`1 − 1)  

For white noise, ä(-) = ��	/-�. Using the FT of the Gaussian peak �#� = Q����'!$ (−$	/4Ä�	), we have 
   = (2$�Ö	/�	)Q�	 ∫ ò [1 − cos($¯/2)]	$,O���                          (`1 − 2)  

where $� = �-�; Q� = √� Ä�⁄ ;  ò = '!$(− $	 2Ä�	⁄ ); Ä� = 2√��2;  Ö = ��/� is the signal-to-noise ratio; �� is the peak amplitude. 

The integrand of Eq. (D1-2) is a trinomial: ò[1 − cos($¯ 2⁄ )]	 = ò[1 − 2 cos($¯ 2⁄ ) + £¤¥	($¯ 2⁄ )] =  0.5ò[3 − 4 cos($¯ 2⁄ ) + cos($¯)].                                                   (`1 − 3)  

By substituting Ä�  into Eq. (D1-3) and using the integration formulas [1], 

we obtain the integrals of the trinomial: 1.5 ∫ ò$��� = 3√2���2.                                                                     (`1 − 4)  −2 ∫ òcos($¯ 2⁄ ) $��� = −4√2���2 exp(− ¯	��2 2⁄ ).            (`1 − 5)  0.5 ∫ ò��� cos($¯) $ = 2√2���2 exp(−¯	2��2).                       (`1 − 6)   
Finally,   = (2$�Ö	 �	⁄ )Q�	k =  $�Ö	N�[3 − 4 '!$(− ¯	��2 2⁄ ) + '!$(−¯	2��2)],                       (`1 − 7)  

where N� = 1/√2���2; k = 3√2���2 − 4√2���2 '!$(− ¯	��2 2⁄ ) + √2���2 exp(−¯	2��2).  
    For the strongly overlapped doublet (¯ ≪ 1), using the quadratic 
approximation of the exponent [2]: '!$(!) ≈ 1 − ! + !	/2, from 
Eq. (D1-7), we have   ≅ N� $�Ö	[−2(¯	��2 2⁄ )	 + 0.5(¯	2��2)	] = ��$�Ö	¯G,       (`1 − 8)  
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where �� = 1.5(��2)	/√2���2=0.3453. 

 
General solution for the asymmetrical doublet 
   The integrand of Eq. (1.4-5) is |(¥̃� − ¥̃	)|	 = (Q��($))	k	 =  2(Q��($))	[È − g£¤¥($¯/2) + Q£¤¥($¯)],                                 (`1 − 9)  

where k = |(1 + Q) − '!$(− �$¯ 2⁄ ) − Q'!$ (�$¯/2)|; È = 1 + Q +Q	, g = (1 + Q)	, Q = ´Ó.  
We perform integration similar to Eqs. (D1-4)-(D1-6):    = $�Ö	N�[È − g exp(− ¯	��2 2⁄ ) + Q exp(−¯	2��2)].        (`1 − 10)  
 
Lorentzian doublet 
   For the white noise ä(-) = ��	/-� and �#� = Q
���'!$ (−|$|/2), 
similar to the previous section (but in the new integration limits), from 

Eq. (1.4-1) we have   = 0.5$�Ö	 ∫ '!$(−$) [3 − 4 cos($¯ 2⁄ ) + cos($¯)]$.O��  (`1 − 11)  

Using the integration formulas [1], we obtain 3 ∫ '!$(−$) $�� = 3.                                                                        (`1 − 12)  −4 ∫ '!$(−$) cos($¯ 2⁄ ) $�� = −4/(1 + ¯	/4).                     (`1 − 13)  ∫ '!$(−$)�� cos($¯) $ = 1 (1 + ¯	)⁄ .                                        (`1 − 14)  

Finally,   = 0.5$�Ö	[3 − 4/(1 + ¯	/4) + 1 (1 + ¯	)⁄ ].                          (`1 − 15)  

   For the strongly overlapped doublet (¯ < 0.5), using the quadratic 
approximation [2]: 1/(1 + !	) ≈ 1 − !	 + !G, we have from Eq. (D1-
15) we have   ≅ 0.375$�ÖG.                                                                                     (`1 − 16)  

 
General solution for the asymmetrical doublet 
   Similar to the general solution for Gaussian doublet, we have   = 0.5$�Ö	 ∫ '!$(−$) [È − g cos($¯ 2⁄ ) + Q cos($¯)]$.O��            (`1 − 17)  

Similar to Eqs. (D1-12)-(D1-14), after integration we obtain   = 0.5$�Ö	[È − g/(1 + ¯	/4) + Q (1 + ¯	)⁄ ].                        (`1 − 18)  
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APPENDIX E 
 

RC CIRCUITS 
 
 

 
E1. Solution of Eq. (2.1-4) 

 
Let �¦ðL� + (1 i⁄ )�¦ðL = �_�� ,                                                                     (�1 − 1)   

 where �_�� = −2(� − ��)'!$ [−(� − ��)	]. 
 Let �¦ðL = z(�)¡(�),                                                                                    (�1 − 2) 

then from Eq. (E1-1) we have ¡(z� + z i⁄ ) + z¡� = �_�� .                                                                    (�1 − 3)  

Suppose that z� + z i⁄ = 0,  

then z = '!$(− � i⁄ ).                                                                            (�1 − 4) 

By substituting Eq. (E1-4) into (E1-3), we have ¡� = '!$(� i⁄ )�_�� .                                                                                 (�1 − 5)  
Finally, from Eqs. (E1-2), (E1-4), (E1-1), and integral of Eq. (E1-5), we 
obtain  �¦ðL = −2 '!$(− � i⁄ ) ∫ (� − ��) '!$(−(� − ��)	 + � i⁄ ) �L� .   (�1 − 6)  

Eq. (E1-6) was integrated numerically. 
 

E2. Frequency characteristic of a linear electronic device 
 

   In the linear electronic devices (e.g., RC circuits), there is a linear 

relationship between the output (�¦ðL) and input (�_�) signals (Fig. 2.1-
1). The mathematical expression of the device frequency characteristic is ä($) = �¦ðL($) �_�($)⁄ ,                                                                      (�2 − 1)  

where $ = �-; � = √−1; - is the angular (Fourier) frequency. 
   Let us calculate the frequency characteristics of the differentiator and 
integrator RC-circuits (Fig. 2.1-1, a and c, respectively), using complex 
impedances (Laplace-domain circuit analysis).  
   In the first case, according to Ohm's law, we have 
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ä(�)($) = �� �́��% �́ + Q�& = i�$1 + i�$ = È(�) '!$(�u),                         (�2 − 2) 

where ��, �́ , and Q� = 1/$Q are the complex impedances of the current, 

active, and the capacitor resistance, respectively; i�  is the time constant; È(�) = i	-	/(1 + i	-	), and u = ���� (1/i-) are the amplitude and 

the phase angle of the exponential form of a complex number, 
respectively.  
   For the integration circuit (Fig. 2.1-1 b), ä(�)($) = ��Q���% �́ + Q�& = 11 + i�$ = È(�) '!$(�u),                         (�2 − 3) 

where È(�) = 1/(1 + i	-	); u = ����(i-). 
   Eqs. (E2-2) and (E2-3) show that the RC circuits disturb the input 
signal phase due to the exponential terms. These terms introduce inertial 

distortions, which depend on the angular frequency. If the frequency - 

increases, then the amplitude È(�) (Eq. (E2-2)) increases approaching 

one, but È(�) (Eq. (E2-3)) decreases to zero. So, the differentiation and 

integration give more weight to the higher and lower Fourier harmonics, 

respectively. 
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APPENDIX F 
 

COMBINATION OF THE TRIANGLE MULTI-
PASS MOVING AVERAGE FILTER WITH THE 

2ND-ORDER DIFFERENTIATOR  
 

 
   The multi-pass filter, which was obtained by the self-convolution of the Ç points moving average filter, repeated Ó = Ç times, has a triangle form 
[1]. For example, for Ó = Ç = 5: 
 

 
 

   Generally, for Ó = Ç, the width of the multi-pass filter is 2Ó − 1. The 
normalization factor is ����� = ∑ ý�	U����� = ∑ ý� +U��� ∑ ý� =U�����   {Ó(1 + Ó) + (Ó − 1)[1 + (Ó − 1)]}/2 = Ó	.                                       (� − 1)  

The noise coefficient: ����� = %1/�����	 & ∑ ý�	 =	U�����   (1/ÓG){(1 + 2	 +⋯+ Ó	) + (1 + 2	 + ⋯+ (Ó − 1)	)} =  (1 ÓG⁄ )(1 6⁄ ){Ó(Ó + 1)(2Ó + 1) + (Ó − 1)Ó(2Ó − 1)} =  (1 3⁄ )(2Ó	 + 1)/ÓF ≈ 0.67/Ó.                                                               (� − 2)  
   Consider the 2nd-order differentiator based on the central differences 
method (Eq. (2.2-2)) applied to the data smoothed by the triangle filter. 
For example, Ó = Ç = 5:  
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The normalization factor: �ø¦�ù?_Ì = ����� = Ó	.                                                                       (� − 3)  
The noise coefficient: �ø¦�ù�U?_Ì = (1 + 2	 + 1)/�ø¦�ù?_Ì	 = 6/ÓG.                                  (� − 4)  
 
References 
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 APPENDIX G 
 

TIKHONOV REGULARIZATION 
 
   Suppose that we want to approximate the �LM-order derivative (z) of 

some function (�), measured experimentally, by a smooth function %(�):  z(�) ≈ %(�)(�),                                                                                          (ä − 1)  

where � = {��, �	, . . , �ú}.  

E.g., in the SG method, % is a polynomial. However, the polynomial 
parameters are not unique. 
   There are many possible solutions to the approximation (Eq. (G-1)), 
which belongs to the ill-posed problems.  
   Tikhonov regularization involves the well-known fact that 

differentiation is the inverse operation of computing an integral. 

According to [1], the derivative z is estimated from the integral equation 
(convolution): ∫ �(� − i)L� z(i)i = �(�),                                                                    (ä − 2)  

where �(� − i) = (� − i)���/(� − 1)! is the kernel.  

   Consider a simple example when �(�) = �F is a noise-free function. � = 3. �(� − i) = (� − i)	/2. z(i) = �(F) = 6. 3 ∫ (� − i)	L� i = 3[�F − �F + �F/3] = �(�). 

   If �(�) is contaminated by noise, the approximated function �A(�) =∫ �(� − i)L� zC(i)i is obtained by substituting the solution zC(i) into Eq. 

(G-2). 
   The regularized solution of Eq. (G-2) in the Fourier domain has an 
elegant form [1]:  

z��(i) = 12�� �"(−-)�a(-)exp (−�-�)Y�"(-)Y	 + ��(-) -�
�� ,                                   (ä − 3) 

where tilde is the FT symbol; �"(-) = (�-)�; � =  √−1; - is the angular 

frequency; � is the regularization parameter; �(-) = P �R-	R�R��  is the 

stabilizer, generally, �R > 0. 
   The solution (Eq. (G-3)) minimizes the functional [1]: 
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ò� = � ²�A(�) − �(�)³	�
�� � + � � �(-)|z��(-)|	�

�� -.            (ä4 − 4) 

   The authors of the articles [2, 3] obtained derivative spectra in different 
regions using Tikhonov regularization in the time domain. They 
estimated the regularization parameter by the cross-validation method. It 
is not easy to give significant preference to the regularization in 
comparison with other methods. However, some particular cases 
described in the literature reveal the advantages of regularized 
differentiation. The remarkable review [4], which is dedicated to the 
regularization problem in numerical differentiation, will be useful for 
interested readers. 
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2. Yeow, Y. L., Leong Y. K. (2005). A general computation method for 
converting normal spectra into derivative spectra. Applied Spectroscopy, 
59, 584 - 592. 
3. Yeow, Y. L., Azali, S., Ow, S., Y., et al. (2005). Evaluating the third 
and fourth derivatives of spectral data. Talanta, 68, 156-164. 
4. Tinguan, X. Regularization of numerical differentiation: methods and 
applications. http://sourcedb.igg.cas.cn/cn/zjrck/200907/ 
W020100801406250190094.pdf 
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 APPENDIX H 
 

ESTIMATION OF THE OPTIMAL FILTER FOR A 

LINEAR SIGNAL 
 
 

 

Given matrix OÌ = � �� �	 ⋯ �ú�	 �F ⋯ �úO�⋮ ⋮ ⋮ ⋮�
� �
�O� ⋯ �

�, where �_ =  �� + ℎ�, 

�ú = � − Ç + 1.  
For simplicity, consider the case ℎ = 1. 

According to the definition suggested by J. Domsta [1], ^ = OÌ�OÌ + �Ý, where � = �ú�	;  Ý is the identity matrix. OÌ�OÌ = (�� + �Ï)(�� + �Ï)� + £	���,  
where � = ���Ç�ú; �� =  S� + �� − 1; S� = (1 + Ç) 2⁄ ; �� = (1 + �ú) 2⁄ ;  � = ℎ��	�ú; £ = ℎ�Ç`	 ; 
�	 = �R��R,�R = �12⋮Ç�− S��ú;  �ú = �11⋮1� ;  £ = ℎ�`	Ç  ;  `	 = �Ò��Ò ,�Ò =
� 12⋮�ú

� − S��
�;  � = �ú/√Ç;  Ï = �R/��	.  

Inverse matrix [1]: ^�� = (1/�)(Ý −��� − ÏÏ�) + Î� + Î	−ÎF,  
where Î� = ´�(1,1)���; Î	 = ´�(1,2)(�Ï� + Ï��) + ´�(2,2)Ý; ÎF = ´�(2,2)(Ý − ÏÏ�);  ¼� = ��/'���,�� = ��	 + � −��−�� �	 + �	 + ��. 
Although the factor 1/� is enormous, the terms Î_ cannot be neglected.  

   According to (Eq. 2.5-7), o� = (1/�)(Ý − ��� − ÏÏ� + Î� + Î	−ÎF)�,                             (< − 1)  
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where � = Oï�rUV?� . 

   In what follows, we will prove that all components of the vector o� are 
constants. 
   Being normalized to the unit sum, the components of o� give the 
coefficients of the moving average filter. Therefore, the values of these 
constants are not important. 
   The �th component of the vector �: N_ = ∑ [S + (� − 1)][S + (Ç − 1)/2]
�R�� = N� + (� − 1)∆N, 

where N� = (�ú/2)(�ú + 1)[(2�ú + 1)/3 + (Ç − 1)/2], ∆N = (�ú/2)(�ú + Ç). 
   Consider impact of the terms (Ý −��� − ÏÏ� + Î� + Î	−ÎF) (Eq. 

(H-1)) on the vector o�. Since all components of the matrix ��� are 

constants (1/Ç), all components of the vector ���� are also constants. 

This result is valid for the term Î��. 

   The �th component of the vector õ =  (Ý − ÏÏ�)�: ã_ =  N_ − {[� − (Ç + 1)/2]/�	} ∑ [� − (Ç + 1)/2]úÒ�� [N� + (� − 1)∆N]=  N_ − [� − (Ç + 1)/2]∆N(Ç/12)(Ç	 − 1)/�	 = N� − [(Ç + 3)/2]∆N 

does depend on �. This result is valid for the vector ÎF�. 

   The vector * = Î	� = 

 ´�(1,2)(�Ï� + Ï�� + Ý)� + [´�(2,2) − ´�(1,2)]Ý� = *� + *	, 

where *� = ´�(1,2)(�Ï� + Ï�� + Ý)�; *	 = [´�(2,2) − ´�(1,2)]Ý�. 

   Since all rows of both matrices 

 �Ï� = %1/�Ç�	&!�1 2 ⋯ Ç1 2 ⋯ Ç⋮ ⋮ ⋮ ⋮1 2 ⋯ Ç� − S� �1 1 ⋯ 11 1 ⋯ 1⋮ ⋮ ⋮ ⋮1 1 ⋯ 1��, 
and Ï�� = (�Ï�)� are identical, vector *� also contains identical 
components. Since N_ does not depend on �, vector *	 also contains 
identical components. So, we conclude that the moving average filter is 
optimal for the linear signal.  
 
Reference 
1. https://www.researchgate.net/post/How_can_one_analytically_ 
inverse_the_sum_of _the_singular_and_diagonal_matrices/1 [accessed 
July 1, 2020] 
 
 

 EBSCOhost - printed on 2/12/2023 11:12 PM via . All use subject to https://www.ebsco.com/terms-of-use



 

APPENDIX I 
 

TABLES TO CHAPTER 2.6 
 

 
 

Table 2.6-3. Parameters51(s) and 5®(s) (Eq. (2.6-14)) 
 for the Gaussian peak 

p âs 
10 20 50 100 200 

2 152.493 166.318 185.021 200.309 216.504 
0.2727 0.1412 0.0624 0.0334 0.0180 

3 
144.071 153.788 166.514 176.297 186.434 
0.1853 0.0932 0.0385 0.0199 0.0103 

4 141.197 149.366 159.688 167.348 174.849 
0.1511 0.0737 0.0292 0.0147 0.0076 

5 140.033 147.451 156.626 163.213 169.573 
0.1344 0.0641 0.0246 0.0122 0.0061 

6 139.518 146.510 155.014 161.088 166.957 
0.1253 0.0590 0.0222 0.0107 0.0052 

 
 
 

Table 2.6-4. Similar to Table 2.6-3 but for the Lorentzian peak 

p âs 
10 20 50 100 200 

2 170.313 188.364 212.748 231.915 251.955 
0.3527 0.1816 0.0769 0.0405 0.0215 

3 164.908 179.765 198.953 213.286 227.618 
0.2784 0.1376 0.0549 0.0277 0.0141 

4 163.553 177.305 194.660 207.398 219.715 
0.2526 0.1223 0.0475 0.0233 0.0116 

5 163.250 176.487 193.058 205.079 216.586 
0.2410 0.1155 0.0441 0.0214 0.0105 

6 163.280 176.265 192.377 203.912 215.182 
0.2351 0.1120 0.0425 0.0206 0.0099 
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Table 2.6-5. Parameters x1(s) and x®(s) (Eq. (2.6-16))  
for the Gaussian peak 

H âs 

10 20 50 100 200 

0.005 
3.6724 3.7560 3.8380 3.8870 3.9237 

2.4327 2.8956 3.5536 4.0709 4.6087 

0.01 
3.6222  3.7176  3.8105 3.8637  3.9062  

2.2111 2.6590 3.2974 3.8064 4.3366 

0.02 
3.5657  3.6728  3.7776  3.8386  3.8863  

1.9989 2.4307 3.0564 3.5511 4.0691 

0.05 
3.4813  3.6055  3.7295  3.8005  3.8562  

1.7136 2.1382 2.7377 3.2179 3.7238 

 
 

Table 2.6-6. Similar to Table 2.6-5 but for the Lorentzian peak 

H âs 
10 20 50 100 200 

0.005 4.6198  4.8174  5.0363  5.1757  5.2957  
1.6065 1.9074 2.3391 2.6916 3.0656 

0.01 4.5087  4.7226  4.9585  5.1094  5.2391  
1.4620 1.7535 2.1717 2.5092 2.8719 

0.02 4.3879  4.6198  4.8748  5.0364  5.1753  
1.3227 1.6069 2.0111 2.3387 2.6910 

0.05 4.2119  4.4713  4.7550  4.9327  5.0868  
1.1416 1.4148 1.8014 2.1179 2.4540 

 
 
 

Table 2.6-7. Parameters ¾1(s) and ¾®(s) (Eq. (2.6-17))  
for the Gaussian peak 

H . 
2 3 4 5 6 

0.005 0.9088  0.9712  1.0458  1.1365  1.2443  
7.7888 11.1764 14.6629 18.2004 21.7553 

0.01 0.9149  0.9855  1.0683  1.1722  1.2927  
7.4478 10.7804 14.2050 17.6605 21.1267 

0.02 0.9224  1.0038  1.0989  1.2137  1.3500  
7.1007 10.3634 13.7121 17.0843 20.4453 

0.05 0.9394  1.0346  1.1492  1.2852  1.4376  
6.6051 9.7752 12.9967 16.2323 19.4662 
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Table 2.6-8. Similar to Table 2.6-7 but for the Lorentzian peak 

H . 
2 3 4 5 6 

0.005 0.9676  1.1429  1.3626  1.6060  1.8634  
8.7362 12.8297 16.9528 21.0907 25.2408 

0.01 0.9871  1.1810  1.4180  1.6798  1.9556  
8.3203 12.2787 16.2558 20.2379 24.2230 

0.02 1.0099  1.2248  1.4816  1.7586  2.0560  
7.8852 11.6912 15.5091 19.3346 23.1388 

0.05 1.0483  1.2931  1.5789  1.8894  2.2081  
7.2632 10.8494 14.4283 17.9959 21.5740 

 
 

 
Table 2.6-9. Parameters ^y(s),^1(s) and ^®(s) (Eq. (2.6-18)) 

for the Gaussian peak 

p 
âs 

10 20 50 100 200 
x�s� x�s� x�s� x�s� x�s� 

2 
2.5410 1.0267 6.4798 2.5615 1.0285 
0.1478 0.02916 0.07232 0.01428 0.002852 
0.01078 0.001141 0.001224 0.0001285 0.00001347 

3 
2.8280 1.11354 6.7192 2.6819 1.0657 
0.1663 0.03192 0.07627 0.01505 0.002977 
0.01442 0.001508 0.001593 0.0001658 0.00001722 

4 
3.0332 1.1853 6.9841 2.8652 1.1011 
0.1840 0.03480 0.08096 0.01614 0.003100 
0.01818 0.001889 0.001978 0.0002049 0.000021118 

5 
3.3735 1.2818 7.5820 3.0477 1.1462 
0.2074 0.038354 0.08836 0.01725 0.003262 
0.02205 0.002283 0.002379 0.0002452 0.00002517 

6 
3.8948 1.4195 8.26155 3.1349 1.2068 
0.2373 0.04279 0.09703 0.01821 0.003471 
0.02602 0.002685 0.002789 0.0002863 0.00002935 
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Table 2.6-10. Similar to Table 2.6-9 but for the Lorentzian peak 

p 
âs 

10 20 50 100 200 
x�s� x�s� x�s� x�s� x�s� 

2 
2.8773 1.09678 0.6659  2.626 1.0374  
0.1698 0.03195 0.007601 0.01483 0.002911 
0.01199 0.001264 0.0001348 0.0001411 0.00001473 

3 
3.5072  1.3174 0.7644  2.934  1.1391  
0.2117 0.03901 0.008914 0.01694 0.003255 
0.01672 0.001749 0.0001846 0.0001915 0.00001983 

4 
4.2585 1.5417  0.8810 3.4233  1.2818  
0.2600 0.04670 0.01049 0.01994 0.003724 
0.02162 0.002253 0.0002367 0.0002449 0.00002524 

5 
4.9706  1.8529 1.06370  3.9768 1.5175 
0.3086 0.05602 0.01254 0.02325 0.004368 
0.02660 0.002770 0.0002903 0.0002996 0.00003084 

6 
5.9899  2.1662  1.2170 4.4842 1.6810 
0.3672 0.06564 0.01449 0.02659 0.004942 
0.03168 0.003294 0.0003446 0.0003552 0.00003651 

 

Table 2.6-13. Parameters 51(�) and 5®(�) (Eq. (2.6-23)) 
 for the Gaussian peak 

p âs 
10 20 50 100 200 

2 736.546  1177. 525  2697. 114  5181.672  10157.931  
5. 1668 2. 8661 2.1509 1.8331 1.6657 

3 513.400  770. 663  1712.4  3235.063  6278.474  
3. 3557 1.7304 1.24 1.0281 0.9163 

4 309. 087 427.916  912.315  1683.5449  3221.3509  
1. 8989 0. 8894 0.6011 0.4784 0.4149 

5 208.011  270.1091  557.418  1009.6982  1909.926  
1.2312 0. 5388 0.3481 0.2685 0. 2784 

6 
138.499  168.951  337.125  598.8394  1118. 898  
0.8004 0. 3272 0.2022 0.1510 0. 1254 
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Table 2.6-14. Similar to Table 2.6-13 but for the Lorentzian peak 

p âs 
10 20 50 100 200 

2 1053. 877 1896.415 4596.787 9105.817 18173.978 
10.0929 7.0222 6.0948 5.7071 5.5185 

3 793.127 1361.208 3236.783 6351.825 12611.754 
6.7723 4.4458 3.7526 3.4617 3.3186 

4 520.139 838.274 1941.162 3759.009 74086.606 
3.9356 2.3873 1.9381 1.7506 1.6577 

5 367.823 564.984 1281.278 2454.815 4809.231 
2.5896 1.4771 1.1623 1.0322 0.9676 

6 255.348 373.588 829.023 1570.710 3057.799 
1.6964 0.9085 0.6918 0.6034 0.5597 

 
 
 

Table 2.6-15. Parameters x1(�) and x®(�) (Eq. (2.6-24)) 
 for the Gaussian peak 

H âs 
10 20 50 100 200 

0.0025 3.9979  4.0942  4.2006  4.2690  4.3316  
0.8579 1.1480 1.5535 1.8725 2.1947 

0.005 3.9436  4.0464  4.1604  4.2363  4.3014  
0.7175 1.0055 1.4031 1.7090 2.0316 

0.01 3.8864  3.9972  4.1219  4.1999  4.2697  
0.5741 0.8596 1.2463 1.5561 1.8705 

0.02 3.8240  3.9435  4.0762  4.1616  4.2358  
0.4331 0.7178 1.1012 1.4017 1.7118 

 
 

Table 2.6-16. Similar to Table 2.6-15 but for the Lorentzian peak 

H âs 
10 20 50 100 200 

0.0025 5.0272  5.2110  5.4341  5.5786  5.7133  
0.1661 0.3689 0.6188 0.8303 1.0414 

0.005 
4.9262  5.1216  5.3493  5.5078  5.6507  
0.0679 0.2686 0.5337 0.7255 0.9285 

0.01 4.8167  5.0270  5.2805  5.4341  5.5786  
-0.0183 0.1674 0.3952 0.6173 0.8303 

0.02 
4.6994  4.9248  5.1863  5.3550  5.5094  
-0.1038 0.0741 0.3140 0.5175 0.7211 
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Table 2.6-17. Parameters ¾1(�) and ¾®(�) (Eq. (2.6-25)) 
 for the Gaussian peak 

H . 
2 3 4 5 6 

0.0025 0.6664  0.7845  0.8908  0.9987  1.1144  
7.2724 11.1238 14.8693 18.5979 22.3065 

0.005 0.6759  0.7999  0.9132  1.0317  1.1568  
7.0030 10.7888 14.4678 18.1135 21.7478 

0.01 
0.6883  0.8182  0.9413  1.0680  1.2023  
6.7181 10.4373 14.0391 17.6135 21.1626 

0.02 0.7029  0.8388  0.9722  1.1095  1.2543  
6.4196 10.0703 13.5871 17.0717 20.5351 

 
Table 2.6-18. Similar to Table 2.6-17 but for the Lorentzian peak 

H . 
2 3 4 5 6 

0.0025 
0.7606  0.9734  1.1971  1.4289  1.6793  
8.4377 13.1050 17.6283 22.1047 26.5195 

0.005 0.7807  1.0046  1.2413  1.4994  1.7420  
8.0934 12.6423 17.0340 21.3340 25.6825 

0.01 0.8027  1.0395  1.2903  1.5470  1.8220  
7.7334 12.1529 16.4081 20.6208 24.7697 

0.02 0.8278  1.0779  1.3441   1.6243  1.9057  
7.3547 11.6378 15.7430 19.7716 23.7978 

 
Table 2.6-19. Parameters ^y(�),^1(�) and ^®(�)(Eq. (2.6-26)) 

 for the Gaussian peak 

p 
âs 

10 20 50 100 200 
x�s� x�s� x�s� x�s� x�s� 

2 
2.6041 1.0109 0.6064 2.3884 0.9434 
0.1274 0.02448 0.005849 0.01147 0.002258 

0.009560 0.001002 0.0001060 0.00011035 0.00001147 

3 
3.1556 1.2026 0.7251 2.7766 1.0862  
0.1544 0.02916 0.006964 0.01338 0.002617  
0.01384 0.0014364 0.0001505 0.0001555 0.00001604 

4 
3.6729 1.3765 0.8048 3.1132 1.2079  
0.1806 0.03365 0.007819 0.01500 0.002908  
0.01798 0.001857 0.0001933 0.0001988 0.00002043 

5 
4.2314 1.5706  0.8765 3.4403 1.3191  
0.2088 0.03845 0.008643 0.01668 0.003191 
0.02211 0.002277 0.0002359 0.0002422 0.00002480 

6 
4.7710 1.7837 1.0038  3.7319 1.4420 
0.2364 0.04373 0.009811  0.01826 0.003498 
0.02624 0.002700 0.0002791 0.0002856 0.00002921 
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Table 2.6-20. Similar to Table 2.6-19 but for the Lorentzian peak 

p 
âs 

10 20 50 100 200 
x�s� x�s� x�s� x�s� x�s� 

2 
3.1382 1.1803 0.6898  2.6532  1.02468 
0.1535 0.02878 0.006695 0.01282  0.002469 
0.01109 0.001160 0.0001225 0.0001272 0.00001318 

3 
4.0921 1.5262 0.8792  3.3251  1.2701 
0.2014 0.03739 0.008572  0.01617  0.003079 
0.01651 0.001718 0.0001800 0.0001858 0.00001914 

4 
5.1340 1.8857  1.07325  4.0308  1.5298  
0.2534 0.04642  0.01051  0.01969  0.003720  
0.02185 0.002265 0.0002365 0.0002435 0.00002503 

5 
6.1715  2.2649 1.1988  4.7163  1.8368  
0.3058  0.05597 0.01206 0.02313  0.004453 
0.02715 0.0028130 0.0002924 0.0003011 0.00003095 

6 
7.2000  2.6098  1.4396  5.5431  2.1173  
0.3586  0.06462 0.01428  0.02718  0.005144  
0.03246 0.003355 0.0003492 0.0003593 0.00003687 
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APPENDIX J 
 

LOCK-IN AMPLIFIER 
 

  
   We will provide a simplified explanation of the operational principles 
of the lock-in amplifier (LIA) (Fig. J-1). The interested reader is directed 
to the monograph [1].  

 
Figure J-1. The lock-in amplifier. 

 M is a multiplier; LPF is the low-pass filter. 
 
   Suppose that the input signal is a sum of the sinusoids (harmonics), �ö_��\Ô = ∑ ÑR¥��(-R� + uR)úR�� , and the reference signal is �UVÌ = ÑUVÌ%-UVÌ� + uUVÌ&. Then the output signal of the multiplier (M):  �Z = �ö_��\Ô�UVÌ = ∑ ÑR¥��(-R� + uR)úR�� ÑUVÌ¥��%-UVÌ� + uUVÌ&= 0.5ÑUVÌ�∑ ÑR〈£¤¥%h-R − -UVÌj� + uR − uUVÌ& − £¤¥%h-R +úR��-UVÌj� + uR + uUVÌ&〉�.  
   The output signal of the multiplier �Z is passed through a low pass 

filter (LPF), which removed all harmonics with the frequencies -R −-UVÌ  and -R + -UVÌ . However, if -UVÌ = -R, then a direct current signal �Z = 0.5ÑUVÌÑR£¤¥%uR − uUVÌ& is proportional to the amplitude ÑR. By 

adjusting the phase of the reference signal to the phase of the SLM-

harmonic, �Z has its maximum value 0.5ÑUVÌÑR . 

References 
1. Kloos, G. (2018). Applications of Lock-in Amplifiers in Optics. 
https://spie.org/Publications/Book/2307758?SSO=1 
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APPENDIX K 
 

LASER DIODES 
 

 
   We believe that our readers have already received basic knowledge of 
semiconductors from high school courses. However, in order to 
understand the principles of modulation laser spectroscopy, a deep 
penetration into laser theory is not required. Interested readers are 
directed to the references. 
   Light-emitting diodes emit spontaneous optical radiation that originates 
because of the electron-hole recombination (annihilation of positively 
charged holes and negatively charged electrons). However, exciting 
photons of some resonant frequency may cause forced recombination by 
creating new photons. In this case, the diode produces the stimulated 
emission, where the photons have a phase, frequency, polarization, and 
direction identical to the exciting photons.  
   The central part of the laser diode is a very thin plate (optical 
waveguide), which is the p-n junction (Fig. K-1). Parallel mirror sides of 
the plate are the optical resonator (Fabry-Perot interferometer). 
Repeatedly reflected spontaneous emission photons cause forced 
recombination. A laser begins to emit if the intensity of the stimulated 
emission is stronger than the resonator's light absorption. 

 
Figure K-1. Simplified diagram of the laser diode: 

 longitudinal (a) and transverse (b) modes. 
 
   The directions of the spontaneous and stimulated emissions may be the 
same (Fig. K-1a) and perpendicular (Fig. K-1b). In the first case, the 
stimulated emission, which is called longitudinal mode, is parallel to the 
plate. In the second case, the laser diode generates light in a transverse 
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mode. In both cases, multi-modes are possible: that is, there are many 
standing waves in the resonator with different wavelengths and different 
wave vector directions that satisfy the resonance condition. The number 
of modes depends on the plate’s thickness. If the thickness is comparable 
to the emission wavelength, only the single-mode exists. 
   The laser's oscillation bands exist in many longitudinal modes if the 
longitudinal mode spacing is relatively narrow. To improve the 
longitudinal mode selection, the distributed Bragg reflection and 
distributed feedback lasers are standard diode lasers used in the near-
infrared spectral region [2].  
   Many researchers have tried to improve the performance of mid-
infrared lasers or develop new type lasers for higher sensitivity (e.g., a 
diode laser with the external cavity, interband, and quantum cascade 
lasers) [2]. The optical properties of the simple laser diodes (Fig. K-1) 
were significantly improved by introducing semiconductor double 
heterostructures: 
 "including Quantum Wells, Wires, and Dots […] It can be said, that if 
the possibility to control the type of conductivity of a semiconductor 
material by doping with various impurities and the idea to inject non-
equilibrium charge carriers were the seeds from which semiconductor 
electronics developed, heterostructures could make the solution of a 
considerably more general problem possible, that of controlling the 
fundamental parameters inside the semiconductor crystals and device: 
namely band gaps, effective masses of the charge carriers and the 
mobilities, refractive indices, electrons energy spectrum, and so forth"[3]. 
   The double heterostructure (DHS) lasers are "sandwiches", which 
include gallium arsenide (GaAs) and gallium aluminum arsenide 
(GaAlAs) (Fig. K-2). The inner layer (GaAs) is between two outer layers 
(claddings) (GaAlAs). Two junctions GaAlAs-GaAs form DHS. In DHS 
laser, the thin regions contain the majority of the electron-hole pairs, 
which can contribute to amplification. Also, light reflection occurs in 
these regions.  
   Blue-emitting gallium nitride semiconductor lasers emit short 
wavelengths - near 400 nm, which is half that of GaAs lasers (Fig. K-3) 
[4]. 
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Figure K-2 (adapted from [3]). Schematic structure of the DHS laser. 

 

 
Figure K-3 (adapted from [4]). Schematic structure of the edge-emitting blue 

multiple quantum well diode laser. “cl” and “b” stand for “cladding” and 
“barrier”, respectively. 

 

   The semiconductor quantum cascade laser (QSL) usually emits mid-
infrared light. The QSL involves the inter-sub-band transitions of the 
semiconductor structure (Fig. K-4). A cascade includes many quantum 
wells in a series. In each period of the structure, the electron undergoes 
the laser transition in a quantum well, and stimulated emission occurs. 
Then it performs non-radiative transition to the next quantum well. Due 
to this process, QSL has a high optical output. QSL is capable of 
operating at room temperature. 
   A distributed feedback lasers sharpen the output of conventional Fabry-
Perot lasers, which emit a "comp" of wavelengths. Technically, a 
corrugated (crankle) structure is added above the active layer of the laser. 
Particular structure refractive index and the spacing of the crankles 
reflect only a specific wavelength beam.  
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Figure K-4 (adapted from [5]). Schematic structure  

of the semiconductor quantum cascade laser. 
 
   An optical parametric oscillator (OPO) is a light source, similar to a 
laser. In OPO, the optical gain is due to the parametric amplification in a 
nonlinear crystal. OPO allows emitting wavelengths (e.g., in the mid-
infrared, far-infrared, or terahertz spectral region) that are difficult 
(maybe impossible) to obtain from any laser. A singly resonant OPO has 
a resonator that is only resonant at singe frequency. 
 
Reference 
1. Sands, D. Diode Lasers. CRC Press. 2004. 
2. Wang, F., Jia, S., Wang, Y., Tang, Z. (2019). Recent developments in 
modulation spectroscopy for methane detection based on tunable diode 
laser. Applied Science, 9, 2816. https://www.mdpi.com/2076-3417/9/14/ 
2816/pdf 
3. Alferov, Z. (2001). The Double Heterostructure: The Concept and its 
Applications in Physics, Electronics, and Technology (Nobel Lecture). 
CHEMPHYSCHEM, 2, 500 – 513. https://onlinelibrary.wiley.com/doi/ 
epdf/10.1002/1439-7641%2820010917%292%3A8/9%3C500%3A%3 
AAID-CPHC500%3E3.0.CO%3B2-X 
4.  Johnson, N. M., Nurmikko, A. V., DenBaars, S. P. (2000). Blue diode 
lasers. Physics Today, 31-36. https://www.researchgate.net/ 
publication/243390759_Blue_Diode_Lasers 
5. Paschotta, R. Quantum Cascade Lasers. RP Photonics Encyclopedia. 
https://www.rp-photonics.com/quantum_cascade_lasers.html 
6. Paschotta, R. Optical Parametric Oscillators. RP Photonics 
Encyclopedia. https://www.rp-photonics.com/optical_parametric_ 
oscillators.html 
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APPENDIX L 
 

SIGNAL SHAPES AND THEIR DERIVATIVES IN 

ELECTROCHEMICAL ANALYSIS 
 
 

 
   A part of this appendix is the author’s translation of a modified section 
of article [1] from Russian into English. All technical details can be 
found in electrochemical textbooks. 
 
Reversible electrode transfer (Nernstian) processes in constant current 
and normal impulse polarography based on the dropping mercury 
electrode  
 The current  � = �Ô [1 + '!$(!)],                                            ⁄                                    (� − 1)  

where �Ô = � when ! = Q�(� − ��) → −∞; Q� is a constant; � is the 

potential; �� is the half-wave potential, that is, � = �Ô/2 if � = ��. 

The derivatives: � �⁄ ~ '!$(!) [(1 + '!$(!))]	~1/[£ℎ(!/2)]	⁄ ,                        (� − 2)  

where £ℎ(>) = 0.5['!$(>) + '!$ (−>)] is the hyperbolic cosine.  	� �	⁄ ~ '!$(!)['!$(!) − 1] [(1 + '!$(!))]F⁄ .                        (� − 3) 

 
Figure L-1. Plots of Eqs. (L-1 - L-3). Q� = 50. 
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   Study [2] published equations of the signal shape and its 1st- and 2nd- 
order derivatives for the non-Nernstian system with a slower electron 
transfer. These very bulky formulas are only interesting from a 
theoretical point of view.  
   An equation, similar to Eq. (L-2), described the fractional 0.5-order 
derivative �.H� ��.H⁄  of the reversible processes [3]. 
 
Sinusoidal alternating current polarography for reversible processes  
   This method involves sinusoidal current modulation (Eq. (L-1)). All 
current harmonics were estimated using a cumbersome integral equation. 
If the modulation amplitude is small, then Eq. (L-2) defines the 1st-order 
derivative.  
 
Linear scan voltammetry with a spherical electrode[4] � = Q	(!) + QFk(!),                                                                               (� − 4)  
where Q	 and QF depend on the radius and electrode area, and 
concentration of the oxidizer, diffusion coefficient; χ(!) and k(!) are 
cumbersome expressions. 
   The first term is different for reversible and irreversible processes. For 
the plane stationary electrode, the second term is zero [5].  
   The derivatives of Eq. (L-4), given in the tables in [4], demonstrated no 
significant narrowing. 
 
 Chronopotentiometry  
   For the reversible processes: � − ��~ ��(�i/� − 1),                                                                           (� − 5)  

where i is the transition time. 

If i/� = 4, � = ��. 
   Differentiation of the theoretical chronopotentiograms (Eq. (L-5)) has 
no advantage due to the shape transformations (Fig. L-2). 
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Figure L-2. (a) Plots of Eq. (L-5) and (b, c) their  

SG-derivatives. i = 20. 
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APPENDIX M 

SPECTROSCOPY 

 
 
 

Optical spectroscopy 
 

   This section will familiarize readers with the primary optical 
spectroscopy concepts in a very brief, concise form. Very often, 
analytical chemists with extensive practical experience in the 
spectrometric analysis have forgotten the theory of the methods that they 
studied at university. We hope that this discussion will revive their 
memory and facilitate understanding of the main text. Interested readers 
are also referred to the fundamental book [1], popular review [2], and 
references therein. 
 
A bit of theory 
   Optical spectroscopy is a branch of the natural sciences studying the 
interaction of light and matter. The light that is absorbed, emitted, or 
reflected by sample contents information about its physical-chemical 
properties, including qualitative and quantitative composition, and 
interactions between components. 
   Here, light is defined, in a broad sense, as the electromagnetic waves 
whose properties depend on the frequency range (Fig. M-1).  
   The frequency: À = ¡ �⁄ ,                                                                                                   (� − 1) 
where ¡ is the light velocity in the sample, and � is the wavelength. Its 
units are micrometers ( m=10�Im) or nanometers (nm=10�Bm).  
   In the IR-region, a variable “wavenumber” À� = 1 ⁄ �, measured in 
reciprocal centimeters [£���] is in common use. 
   Optical spectroscopy received its name due to the use of classical optics 
elements (lenses and mirrors) in the spectral instrument. It covers the 
near UV, VIS, and IR regions. The last portion of the electromagnetic 
spectrum includes the near- (NIR), mid-, and far-infrared (FIR), named 
for their relation to the VIS (Table M-1). The last column of this table 
requires an explanation for a non-professional reader. 
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   According to the quantum theory, any anomic or molecular systems are 
only stable in some stationary states related to a discrete or continuous 
system energy set. The ground state is the lowest energy level with 
minimum energy; the upper levels correspond to the excited states (Fig. 
M-2). 
 

 
Figure M-1. The electromagnetic spectrum (adapted from [1]): UV, ultraviolet;  

VIS, visible; IR, infrared; THz, terahertz; MW, microwaves; FM, frequency 
 Modulation; AM, amplitude modulation; and RW-radio waves. 

 
Table M-1. Characteristics of optical spectroscopy 

Range Interval Object of study 
UV, VIS 780-2500 nm Electronic transitions 

NIR 14000–4000 £��� 
Molecular overtone and combination 

vibrations 

Mid-IR 4000–400 £��� 
Fundamental vibrations and associated 

rotational-vibrational structure 
FIR 400–10 £��� Rotational spectroscopy 

  
 

 
Figure M-2. Transitions between energy states which 
 cause absorption, emission, and fluorescence spectra. 

 
   Light radiation absorbed by a sample may cause transitions from a 
lower energy state (including the ground state) to a high energy state of 
atoms or molecules (Fig. M-2a). The absorption spectrum of a chemical 
element or a chemical compound is the spectrum of the frequencies of 
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this absorbance radiation. The emission spectrum is the spectrum of 
frequencies of the radiation emitted because of the transition from a high 
energy state to a lower energy state (Fig. M-2b). 
   The frequency of the radiation, absorbed or emitted because of the 
transition between the energy states �M_�M and �Ô¦üVU, is À = ∆� ℎ⁄ ,                                                                                                 (� − 2)   
where ∆� = �M_�M − �Ô¦üVU; ℎ is the Planck constant. 
   However, in addition to the "pure" frequencies (Eq. (M-2)), multiples 
of À (overtones) and combination frequencies may be observed due, for 
example, to intramolecular interactions. 
   Unfortunately, a spectrum is not "a comb with infinitely narrow teeth", 
which is located at their transition frequency (Eq. (M-2)) and has a 
specific intensity. Practically, infinitely narrow lines broaden because of 
physical and instrumental factors. These factors are discussed in Chapter 
1.1 and the next section. 
   The single line has a bell-shaped profile described by the Gaussian, 
Lorentzian, or Voigt mathematical functions. 
   Figure M-3 shows the overlapped finite widths peaks of the benzene 
UV-VIS electronic absorption spectrum in the gas phase.  
 
 

 
Figure M-3. Benzene gas phase UV-VIS electronic absorption spectrum [3]. 

 

   Some substances that have absorbed electromagnetic radiation may 
emit light that has a longer wavelength than the absorbed radiation due to 
the non-radiative transitions (Fig. M-2c). This phenomenon is named 
fluorescence. In non-radiative transitions, excess energy is dissipated, 
e.g., by heating the sample. 
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   The origin of atomic spectra is electronic transitions. Molecular spectra 
are substantially different since the movement of the molecular particles 
is very complicated. The whole pattern includes the electrons' 
movements, nuclear vibrations, and molecule rotation, which produce 
electronic, vibrational, and rotational spectra, respectively. However, 
there are complex interactions between different types of movements. 
 
The optical spectroscopy technique 
   Optical spectra are measured by spectrometers. In a broad sense, an 
optical spectrometer separates the mixture of the light's spectral 
components according to the length of their waves and measures some 
parameters of the components. As the simplest example, imagine the 
spatial decomposition of white light into the rainbow colors in the sky 
and estimating their intensity by eye. 
   Let us consider block-diagrams of absorption spectrometers (Fig. M-4, 
panels a and b). In the single-beam mode (panel a), the radiation emitted 
by the radiation source is interrupted by a low-frequency chopper (��). 
Then the beam passes through the sample, which absorbs the incident 
light. Therefore, the light intensity after the sample � < ��. We also 
suppose that the source radiation has a continuous frequency spectrum 
according to the spectrometer type (Table M-1). 
   The absorbance process may cause energy transitions that produce a 
spectrum of frequencies for this absorbance radiation. The frequency 
component must be detected to record the absorption spectrum. For this 
goal, the monochromator decomposes the light, which is passed through 
the sample into a set of consecutive frequencies (or wavelength).  
   Figure M-5 shows the block diagram of a grating monochromator with 
mirrors. The light image of the input rectangle narrow slit is directed by 
the collimator mirror on the diffraction grating. An excellent property of 
the grating is that its blazed (ruled) surface reflects off the light at 
different angles corresponding to different frequencies (wavelengths). 
Therefore, the camera mirror projects a set of the input slit images with 
different wavelengths at the plane of the narrow output slit. A small 
angular rotation of the grating allows illuminating the output slit with 
sequential images with the central wavelengths ��ø, �	ø, … , �úø (Fig. M-
6a). This process is named "scanning of spectra". The light intensity 
distribution over the wavelength in each image has a bell-shaped profile 
(Fig. M-6b) since the monochromator mixes beams with close 
wavelengths. In other words, it has a finite resolution. Also, the images 
are overlapped (Fig. M-6a). So, the monochromator disturbs the true 
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spectrum of the radiation source. Mathematically, this distortion is 
expressed by the instrumental function of the monochromator. 
 

 
Figure M-4. Figure M-4. Block-diagrams of the single (a), double-beam (c) 

absorption, and fluorescence (c) spectrometers: RS, radiation source; Cp, 
chopper; M, monochromator; D, detector; EB, electronic block; and ES, 

excitation source. 
 

   To decrease instrumental distortion, one can narrow the slits. However, 
in this case, the light intensity decreases, and the impact of the noise on 
spectral data increases.  
   Laser radiation sources emit monochromatic beams. Therefore, 
monochromators are not needed (see Chapter 2.10).  
   The electronic block (EB) includes a lock-in amplifier (Appendix J).  
   The main disadvantage of the single-beam spectrometer is the problem 

of the estimation of the sample absorbance: È = −�¤%N = �¤%(� ��⁄ ),                                                                      (� − 3)  

where N = � ��⁄  is the transmittance, and �� and � are the light intensities 
incident on the sample and passed through it, respectively. 
   The estimation of È (Eq. (M-3)) requires two separate measurements: 
of � and �� (the empty channel) or, generally, of the reference signal �U 
produced by the reference (blank) cell using for comparison. The double-
beam spectrometer (Fig. M-4b) eliminates this drawback by introducing 
the two-channel scheme.  
   The radiation source alternately illuminates the sample and the 
reference cells using the beam switch. Correspondingly, each channel's 
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light intensity is measured, and the absorbance is calculated in the 
electronic block. A synchronizer controls this process.  
   The fluorescence spectrum is usually measured at the right angle 
relative to the direction of the excitation radiation (Fig. M-4c). This 
geometry avoids the impact of the transmitted excitation light on the 
detector. 
  

 
Figure M-5. Diagram of a grating monochromator with mirrors. The scale of the 
elements does not correspond to a real device. The grating does not reflect beams 

but, instead, diffracts them.  
 

   The electronic block of spectrometers includes a high gain low noise 
amplifier, a low-pass filter, and a computer unit. From a spectroscopic 
point of view, the most important parameter of this block is the time 
constant. It defines the inertial distortions of a spectrum similar to those 
of the integration RC circuit (Appendix E). 
   The radiation sources and detectors of absorption optical spectrometers 
depend on their wavelength range (Table M-2).  

 

 
Figure M-6. (a) Overlapped images of the input slit. (b) The light  
intensity distribution over the wavelength of the input slit image.  
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Table M-2. Elements of absorption optical spectrometers 

Range Radiation 
source Detector 

UV, 
VIS 

Tungsten filament  
 (300-2500 nm) 

Deuterium arc lamp 
 (190-400 nm) 

Xenon arc lamp  
(160-2000 nm) 

Light emitting diodes (VIS) 

Photomultiplier tube 
Photodiode arrays* 

 Charge-coupled device (CCD)* 

NIR 
Quartz halogen light bulbs 

Light emitting diodes 
Lasers 

Silicon-based CCD* 
InGaAs detectors 

Mid-
IR 

 Hot inert solids (1500-
2000K) (Globar) 

Bolometers**  
Photovoltaic*** 

FIR 
Globar 

High-pressure mercury lamp 

Golay cell (optoacoustic detector)**** 
Pyroelectric bolometer 

Liquid helium cooled bolometers 

 
* A group of these types of detectors, combined into one or two-dimensional 
arrays, is used in non-scanning monochromators. 
** The thermal bolometer measures radiation via heating a material with a 
temperature-dependent electrical resistance. The pyroelectric bolometer contains 
a crystal material, which generates a voltage when its temperature is changed.  
*** The photovoltaic detector is a semiconductor on which p-n junction 
photoelectric current appears upon illumination. 
**** The Golay cell includes a gas-filled cell with an IR absorbing material and a 
flexible membrane. Light reflected off the membrane is detected by a photodiode. 
The absorbed light heats the gas, which expands and deforms the membrane. The 
membrane deformation changes the signal on the photodiode. 
 
Fourier Transform IR spectrometers 
   Fourier transforms IR (FTIR) spectroscopy is based on the Fourier 
transform (FT) of the time-domain interferogram into the IR spectrum, 
which is similar to that recorded by the single-beam spectrometer. The 
essential part of a Fourier spectrometer is a Michelson interferometer 
(Fig. M-7). The beam splitter splits the radiation passed through a sample 
into two halves (�� and �	). A moving mirror changes the path length 
difference () between the beams. Therefore, two light waves (with 
frequency � and wavelength �) incident on the detector: �� = ��� cos(2���) ,�	 = �	�cos(2��� + u),                               (� − 4)  

have a phase difference u = 2�/�.  
   The intensities: �� = ��	ÕÕÕÕ = ���	 [cos(2���)]	ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕ = ���	 2⁄ ; �	 = �		ÕÕÕÕ = �	�	 2⁄ ,           (� − 5)   

where bar designates the mean value. 
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Figure M-7. Simplified diagram of the Fourier spectrometer based 

on the Michelson interferometer: RS, radiation source; MR, mirror; 
SP, beam splitter; D, detector; EB, electronic block. 

 
   The light waves interfere with each other producing a combination, 

which depends on the angle u (Fig. M-8). The result is �z = (�� + �	)	ÕÕÕÕÕÕÕÕÕÕÕÕÕÕ = �� + �	 + 2����	� cos(2���) cos(2��� + u)ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕ= �� + �	 + ����	� hcos(4���) + cos(u)ÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕÕj = �� + �	 + 2����	£¤¥(2�/�).                                                              (� − 6)   

If �� = �	 = �/2, then �z = �[1 + £¤¥(2�/�)].                                                                      (� − 7)  
   Since the light beam is a superposition of different wavelengths, the 
detector's output signal is obtained by integration over the wavelength 

interval [ ��, �	]: ¹¦ðL�ðL(∆) = ∫ �K[1 + £¤¥(2� �⁄ )]ℱKKEKÙ �,                                   (� − 8)  

where ℱK = ¹K/�K is the detector’s sensitivity.  
   The curve ¹¦ðL�ðL(∆) is called "interferogram". It is the Fourier cosine 

transform the function �KℱK (Appendix A). The inverse FT of the 

interferogram allows estimating the spectrum �K. 
   We will now provide some technical details without a rigorous 
mathematical explanation. 
  Suppose that the monochromatic beam with the wavenumber À��  passes 

through the FTIR spectrometer. In this case, �K (Eq. (M-8)) is the delta 
impulse. Then, the inverse FT of the output signal, called "the 
instrumental function", of the spectrometer is ��(!) = ¥��(!�\^)/!,                                                                        (� − 9)  
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where ! = �(À� −  À��);  [−�\^  , �\^ ] is the path length difference 

interval.  

 
Figure M-8. The interference. �� = cos(2���) ; �	 = cos(2���) + u) ; 

 u = 0, �/2, and � (solid, dashed, and dotted curves, respectively).  
 

   Two spectral lines are resolved if the maximum of the second line 
coincides with the zero of the first line (Fig. M-8). Therefore, from Eq. 
(M-9) we have 
 �\^∆! = � or ∆À� = 1/�\^. Since ∆À�/À� = ∆�/�, ∆À� = ∆�/�	. 
Finally, we obtain ∆� = �	 �\^⁄ .                                                                                     (� − 10)  
   The side petals of the instrumental function (Fig. M-9) are due to the 
Gibbs phenomenon (Appendix A). Apodization ("removing the foot") is a 
technique that allows decreasing these unwanted pulses.  
   FTIR spectrometry has many advantages over the direct method: 
1. It avoids power losses at a monochromator’s input slit. 
2. The Fellgett advantage: significant improvement of the signal-to-noise 
ratio if the thermal detector noise is dominant over the shot noise. This 
improvement increases spectral resolution. 
3. FTIR is simpler to implement because the required spatial resolution is 
lower than in the visible and ultraviolet region. 
   An in-depth study of the FTIR technique requires professional 
knowledge in physics and mathematics. Therefore, interested readers are 
referred to monograph [5]. 
 
Atomic absorption spectrometers 
   A simplified diagram of the atomic absorption spectrometer (AAS) is, 
in principle, a single-beam device (Fig. M-4a) [6]. The radiation source 
(e.g., hollow cathode and electrodeless discharge lamps) has a continuous 
or discrete spectrum in the VIS-IR region. The sample is the atomization 
system, which generates atomic vapor from the solution. In flame AAS 
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(FAAS), the atomization is performed by a flame. Graphite furnace 
atomic absorption spectrometry (GFAAS) uses electrothermal 
atomization. GFAAS is a high sensitivity method, but an effective 
background correction is needed as opposed to FAAS. 
 

 
Figure M-9. Resolution limit of FTIR. Solid and dashed 

 lines represent ��(!) and ��(! − �). �\^ = 1. 
 
   The background correction methods are a two-line deuterium lamp, 
Zeeman correction, a pulsed lamp, and wavelength modulation (Chapters 
2.9 and 2.10). 
   For the technical details and applications of AAS, see review [6].  
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APPENDIX SW 
 

MATLAB PROGRAMS 
 
 
 

   This section includes some files which can be readily modified by 
beginners in MATLAB programming. The project "Derivative 
Spectroscopy" (https://www.researchgate.net/profile/Joseph_Dubrovkin) 
provides additional open-source software.  
 
SW1. For Exercise 1.1-1 
   The readers are invited to study: The dependence of the Voigt peak 
width on the ratio �
/��, using the % program VoigtTest.m. For the 
rough approximation of Voigt peak: �
 ∗ �� the program VoigtTest.m. 
must be slightly modified. 
 
%VoigtTest.m  
% © Copyright by Joseph Dubrovkin 
 
% Generation of Voigt profile in the range 1:h:limit 
limit=401; 
 
%Amplitude 
A=1; 
%In the centre 
imax=(limit-1)/2; 
%For good wings the peak width wV <=100 
wV=100; 
%The widths of the Lorentzian and Gaussian components 
wL=30; 
wG=sqrt((wV-wL)*(wV-0.0692*wL)); 
 
coef=[1,imax,wL,wG];  
 
%For interpolation 
%stepNew can be less or more than one 
stepNew=1; 
y=1:stepNew:limit; 
F=VoigtNew(coef, y, limit); 
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x=(y-imax)/wV; 
plot(x,F,'-k','LineWidth',2) 
xlabel('x') 
ylabel('Intensity') 
axis([-2,2,0, 1]) 
 
wGp=100; 
Fg = gauss(A, y, imax, wGp); 
hold on 
plot(x,Fg,':k','LineWidth',2) 
hold on 
Fl = lorentz(A, y, imax, wGp); 
plot(x, Fl,'--k','LineWidth',2) 
 
function Fg = gauss(ampl, x, imax, width) 
 %x-range 
 arg=(x-imax).*(x-imax)/width/width; 
 Fg=ampl*exp(-4*log(2)*arg); 
end 
 
function Fl = lorentz(ampl, x, imax, width) 
 %x-range 
 arg=(x-imax).*(x-imax)/width/width; 
 Fl=ampl*1./(1+4*arg); 
end 
 
function F = VoigtNew(coef, Ynew, limit) 
% © Copyright by Joseph Dubrovkin 
% Generation of Voigt profile in the range 1:limit 
%coef include the peak parameters 
% we suppose that the peak width <= 100 for good wings 
% Ynew - new range for interpolation 
 
h=2;% For integration 
 
%Peak parameters 
A=coef(1); 
imax=coef(2); 
wL=coef(3); 
wG=coef(4); 
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mnL=2/(wL*h); 
mnG=2*sqrt(log(2))/(wG*h); 
 
rangeI=1:h:h*limit; 
rangeJ=-2*limit:2*h:2*limit; 
 
F=zeros(1,length(rangeI)); 
 
c=1; 
for i=rangeI %1:2:401*2 
 s=0; 
for j=rangeJ %-2*401:2*2:2*401 
 y=mnG*(j-imax); 
 x=mnL*(i-j-imax); 
 s=s +exp(-y*y)/(1+x*x); 
end  
  
 F(c)=s;  
 c=c+1; 
end 
 
F=A*F/max(F); 
%Interpolation 
rngY=1:length(F); 
F=interp1(rngY, F, Ynew);  
end 
 
 
SW2. FFT smoothing and differentiation 
 
%% function fractDeriv 
% © Copyright by Joseph Dubrovkin 
%% x=1:range; 
%% y is data to be processed 
%% im=range/2 is the middle point 
%% vectorOrder is an array of the derivative orders  
%% flagNorm=1 Normalization for plots 
 
function [matrix_derivatives, FFT] =… 
fractDeriv(y, vectorOrder, x, flagNorm ,alpha, power) 
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if nargin==4 
 alpha=0; 
 power=0;  
end  
 
range=length(x); 
im=(range)/2; 
 
Kdif=2*pi/range; 
 
matrix_derivatives=ones(length(vectorOrder),range); 
 
FFT=fft(y); 
 
freq=[0:im-1 0 -im+1:-1]; 
len=length(freq); 
  
mn=(1i*freq)*Kdif; 
 
fourier_filterSmooth=ones(1,len); 
 
c=1; 
for t=vectorOrder 
if t==0 
 al=alpha;  
 else 
 al=alpha*t^power;  
end  
if nargin==6 
 fourier_filterSmooth=1./(ones(1,len)+al*freq.^power); 
end  
 
fourier_filter=fourier_filterSmooth.*(mn.^t); 
Fourie_D=real(ifft( FFT.*fourier_filter)); 
 
%%Normalization 
if flagNorm==1 
 Fourie_D=Fourie_D/(max(Fourie_D)-min(Fourie_D)); 
end 
if flagNorm==2 
 Fourie_D=Fourie_D/(max(abs(Fourie_D))); 
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end 
matrix_derivatives(c,:)=Fourie_D; 
c=c+1; 
end  
end 
 
 
Chapter 2.4 
% © Copyright by Joseph Dubrovkin 
% This function performs FFT smoothing and differentiation. 
% FourieSmooth is the smoothed (or derivative) vector. 
% vector is input data 
% alpha is the regularization parameter  
% power is the smoothing filter order  
% n is the differentiation order 
% the smoothing is performed for the number of the arguments is three.  
 
function FourieSmooth = FourSmoothFun(vector, alpha, power, n) 
%Copyright by Joseph Dubrovkin 
len=length(vector); 
if mod(len,2)==1 
 len=len+1; 
end 
len1=len/2; 
freq=[1:len1,-len1+1:1:0]; 
FFT=fft(vector); 
M=alpha*freq.^power; 
den=(ones(1,len)+M); 
 
if nargin==3  
 fourier_filter=1./den.^2; 
end 
if nargin==4  
 difOp=(1i*freq).^n; 
 fourier_filter=difOp./den.^2; 
end 
 
fourier_filter=fourier_filter(1:len-1); 
FFTsolut=FFT.*fourier_filter; 
FourieSmooth=real(ifft(FFTsolut)); 
end 
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SW3.  
Exercise 2.4-1 
The readers are invited to study the FTT smoothing of the Gaussian peak 
corrupted by the normal noise with the mean zero and the standard 
deviation �. Remark. In some case, the minimum of the functional 3(�, $) is not observed. 
 
% studySmoothFunct.m  
% © Copyright by Joseph Dubrovkin 
 
range=1000; 
step=1; 
ampl=1; 
width=200; 
[x, y] = gaussPeak(range, step, ampl, width); 
  
sigma=0.02; 
NOISE=sigma*randn(1,length(x)); 
yn=y +NOISE; 
  
power=4; 
  
rngAlpha=1e-6:1e-6:1e-3; 
vectorFunct=ones(1,length(rngAlpha)); 
  
c=1; 
for alpha=rngAlpha 
 vectorFunct(c)=FourFunctional(yn, alpha, power); 
 c=c+1; 
end 
  
[val, ind]=min(vectorFunct); 
  
subplot(2,1,1) 
plot(rngAlpha,vectorFunct,'-k','LineWidth',1) 
  
alphaOpt=rngAlpha(ind); 
  
ynSm = FourSmoothFun(yn, alphaOpt, power); 
  
subplot(2,1,2) 

 EBSCOhost - printed on 2/12/2023 11:12 PM via . All use subject to https://www.ebsco.com/terms-of-use



 MATLAB programs                                            351 
  

plot(x,yn,'-k','LineWidth',1) 
hold on 
plot(x,ynSm,'-k','LineWidth',2) 
  
function [x, y]= gaussPeak( range, step, ampl ,width ) 
 width2=width*width; 
 ic=range/2; 
 x=-ic :step: ic; 
 y=ampl*exp(-4*log(2)*x.*x/width2); 
end 
 
Exercise 2.4-2 
The readers are invited to study the FTT 1st and 2nd differentiation of the 
Gaussian peak corrupted by the normal noise with the mean zero and the 
standard deviation σ. Remark. In some case, the minimum of the 
functional 3 (�, �, $) is not observed. 
 
% studyDifFunct.m  
% © Copyright by Joseph Dubrovkin 
 
range=1000; 
step=1; 
ampl=1; 
width=200; 
[x, y] = gaussPeak(range, step, ampl, width); 
 
sigma=0.05; 
NOISE=sigma*randn(1,length(x)); 
yn=y+ NOISE; 
power=8; 
rngAlpha=1e-6:1e-6:1e-3; 
vectorFunct=ones(1,length(rngAlpha)); 
 
n=2; 
c=1; 
for alpha=rngAlpha 
 vectorFunct(c)=FourFunctional(yn, alpha, power, n); 
 c=c+1; 
end 
 
[val, ind]=min(vectorFunct); 
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subplot(2,1,1) 
plot(rngAlpha,vectorFunct,'-k','LineWidth',1) 
xlabel('\alpha') 
ylabel('Functional') 
alphaOpt=rngAlpha(ind); 
 
ynSm = FourSmoothFun(yn, alphaOpt, power, n); 
 
subplot(2,1,2) 
plot(x,yn,'-k','LineWidth',1) 
hold on 
plot(x,ynSm,'-k','LineWidth',2) 
xlabel('x') 
ylabel('Intensity') 
hold on 
plot(x, zeros(1,length(x)),'-k','LineWidth',1) 
 
 
% © Copyright by Joseph Dubrovkin 
%% For three arguments (Eq. (2.4-4)) 
%% For four arguments (Eq. (2.4-8))  
function functional = FourFunctional (vector, alpha, power, n) 
  
len=length(vector); 
  
if mod(len,2)==1 
 len=len+1; 
end 
len1=len/2; 
 
freq=[1:len1,-len1+1:1:0]; 
 
FFT=fft(vector); 
 
M=alpha*freq.^power; 
 
den=(ones(1,len)+M); 
if nargin==3  
 fourier_filter=M./den.^2; 
end 
if nargin==4  
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 difOp=(1i*freq).^n; 
 fourier_filter=difOp.*M./den.^2; 
end 
  
fourier_filter=fourier_filter(1:len-1); 
integr=FFT.*fourier_filter; 
functional=sum(real(integr)); 
end 
 
SW4. For Chapter 2.7 
 
%% studySmoothSplines.m 
% © Copyright by Joseph Dubrovkin 
 
% The source of splinefit.m  
%Lundgren, J. SPLINEFIT version 1.0.0 (238 KB).  
% https://ww2.mathworks.cn/matlabcentral/ fileexchange/ 
% 71225-splinefit?focused=888438cd-bc77-4e1d-8c1a- 
% bd6e763f4113&tab=function 
 
h=0.02; 
st=4; 
fin=4; 
x=-st: h: fin; 
L=length(x); 
flagModel='b'; 
flagNoise='pink'; %%'white'; 
 
%{ 
For the pink noise:  
https://www.mathworks.com/matlabcentral/mlc-downloads/downloads/ 
submissions/42919/versions/11/previews/pinknoise.m/index.html 
%} 
switch flagModel 
 
case 'a' 
A1=1; 
A2=1;  
w1=1; 
w2=1; 
deltaX=0.52; 
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peakAmpl=1.0599; 
peakAmp2=1.0599; 
x0T1=-0.44; 
x0T2=0.44; 
%% for searching the center 
limC=15; 
case 'b' 
A1=1; 
A2=0.5;  
w1=1; 
w2=2; 
deltaX=0.80; 
peakAmpl=1.0881; 
peakAmp2=0.5008; 
x0T1=-0.76; 
x0T2=0.78; 
%% for searching the center 
limC=15; 
  
end  
 
Fg=gaussDoublet(x,A1,w1, A2,w2, deltaX); 
sigma=0.02; 
 
switch flagNoise 
case 'white'  
noise=sigma*randn(1,L); 
case 'pink' 
noise=sigma*pinknoise(L);  
end 
 
shift=deltaX/h; 
if mod(L,2)==0 
 centr=L/2; 
else  
 centr=(L-1)/2; 
end 
 
rngCentre=centr-shift/2:centr+shift/2; 
rngLeft=centr:-1:1; 
rngRight=centr: L; 
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numbExperim=1e4; 
 
%measured values 
x01pos=ones(1,numbExperim); 
x02pos=x01pos; 
Ampl1=x01pos; 
Ampl2=x01pos; 
 
rngNumbPieces=20:10:90; 
rngSplineOrder=4:9; 
lenRngNumbP=length(rngNumbPieces); 
lenRngSplOrd=length(rngSplineOrder); 
 
%% Output Data 
errGen=ones(lenRngSplOrd, lenRngNumbP); 
meanX01=errGen; 
stdX01=errGen; 
meanX02=errGen; 
stdX02=errGen;  
 
Fg1=Fg+ noise; 
cc=1; 
for splineOrder=rngSplineOrder 
kk=1; 
for numbPieces=rngNumbPieces 
 
splineOrder_=splineOrder 
numbPieces_=numbPieces 
 
tt=1; 
%Counter "no min" 
hh=1; 
 
while tt<=numbExperim  
 
randBreaks1= randBreaksGen(x, splineOrder, numbPieces);  
pp = splinefit(x, Fg1, randBreaks1, splineOrder); 
ySm = ppval(pp, x); 
 
%Centre 
[valC, indC]=min(ySm(rngCentre)); 
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posC=x(centr-shift/2+indC-1); 
 
%There is MIN in the center  
 
if abs(posC)<limC*h 
 %Left peak 
 [valL, indL]=max(ySm(rngLeft)); 
 %Right peak 
 [valR, indR]=max(ySm(rngRight)); 
 
 posL=x(centr-indL+1); 
 posR=x(centr+indR-1); 
 
 x01pos(tt)=posL; 
 x02pos(tt)=posR; 
 
 Ampl1(tt)=valL; 
 Ampl2(tt)=valR; 
 
 tt=tt+1; 
 
else 
 disp('NO MIN IN THE CENTRE') 
end %%if abs(posC)<limC*h 
 
end %% tt<=numbExperim  
 
systErr1=1-mean(Ampl1)/peakAmpl; 
systErr2=1-mean(Ampl2)/peakAmp2; 
 
errGen(cc, kk)=100*sqrt(systErr1^2+systErr2^2+… 
(std(Ampl1)/peakAmpl)^2+std((Ampl2)/peakAmpl)^2);  
 
meanX01(cc, kk)=(mean(x01pos)-x0T1)/h; 
stdX01(cc, kk)=std(x01pos)/h; 
meanX02(cc, kk)=(mean(x02pos)-x0T2)/h; 
stdX02(cc, kk)=std(x02pos)/h; 
 kk=kk+1;  
end 
cc=cc+1; 
end 
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errGen_=errGen 
meanX01_=meanX01 
stdX01=stdX01 
meanX02_=meanX02 
stdX02=stdX02 
 
% © Copyright by Joseph Dubrovkin 
function D= gaussDoublet(x,A1,w1, A2,w2, x0) 
D=A1*exp(-4*log(2)*(x+x0).*(x+x0)/w1^2)+… 
A2*exp(-4*log(2)*(x-x0).*(x-x0)/w2^2); 
end 
 
% Generation of Random Knots 
function randBreaks = randBreaksGen(x, splineOrder, numbPieces) 
L=length(x); 
h=x(2)-x(1); 
if x(1) < x(L) 
 % Interpolate breaks linearly from x-data 
 dx = diff(x); 
 ibreaks = linspace(1, L, numbPieces+1); 
 [~,ibin] = histc(ibreaks,[0,2:L-1,L+1]);  
 breaks = x(ibin) + dx(ibin).*(ibreaks-ibin); 
else 
 breaks = x(1) + linspace(0,1,p+1); 
end 
 
 randBreaks=breaks; 
 H=breaks(2)-breaks(1); 
 delta=splineOrder*h; 
 %Remove warnings 
 randBreaks(2) = breaks(1) + H*rand; 
 randBreaks(1)= (x(1)+0.02*randBreaks(2))/1.01; 
 
 for ii=2:numbPieces-1 
 randBreaks(ii+1) = breaks(ii) + H*rand; 
 
c=1; 
while randBreaks(ii+1) - breaks(ii)<=delta &&… 
randBreaks(ii+1) - randBreaks(ii)<=delta 
 
randBreaks(ii+1) = breaks(ii) + H*rand; 
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c=c+1; 
if c>1000 
 break 
end  
end 
end  
randBreaks(numbPieces)= (x(L)+0.02*randBreaks(numbPieces-1))/1.01; 
end 
 
% © Copyright by Joseph Dubrovkin 
 plotSplineSmoothedDoublet.m 
 
h=0.02; 
st=4; 
fin=4; 
x=-st: h: fin; 
L=length(x); 
 
deltaX=0.8; 
w1=1; 
w2=2; 
A1=1; 
A2=0.5; 
Fg=gaussDoublet(x,A1,w1, A2,w2, deltaX); 
sigma=0.05; 
noise=sigma*randn(1,L); 
Fg1=Fg+noise; 
 
%Set breaks 
breakOpt=x([ 1, 90, 120:20:320, 400, L]); 
splineOrder=4; 
pp = splinefit(x,Fg1,breakOpt,splineOrder); 
ySm = ppval(pp, x); 
 
% The fitting error 
fitErrSline=norm(Fg-ySm) 
 
%Fourier smoothing 
alpha=6e-5; 
Fgf = FourSmoothFun(Fg1,alpha,splineOrder); 
 

 EBSCOhost - printed on 2/12/2023 11:12 PM via . All use subject to https://www.ebsco.com/terms-of-use



 MATLAB programs                                            359 
  

%The fitting error 
fitErrFour=norm(Fg-Fgf) 
 
plot(x,Fg1,'-k','LineWidth',1) 
hold on 
plot(x,ySm,'-k','LineWidth',1) 
hold on 
plot(x,Fgf,':k','LineWidth',2) 
 
SW5. For Chapter 2.8 
ForFig2_8_2.m  
% © Copyright by Joseph Dubrovkin 
 
%%CWT derivative of the Gaussian peak 
numbPoint=1024*2; 
%%D1PR - accurate first-order derivative 
len=32; 
st=len/numbPoint; 
x=1:st:len;  
dx=x(2)-x(1); 
mn=2*sqrt(log(2)); 
a1=1.0; t1=len/2; w1=len/16; 
arg1=mn*(x-t1)/w1; 
y=a1*exp(-arg1.^2); 
D1PR=-(2*mn/w1)*arg1.*y;  
D1PR=D1PR/sum(abs(D1PR)); 
 
rngX=700:1300; 
rngS=0.2:0.2:1;  
  
for s=rngS  
D1wt = CWTgaussD1(x, dx, y, s); 
D1wt=D1wt/sum(abs(D1wt)); 
 
subplot(2,1,1) 
plot(x(rngX),D1wt(rngX),'-k','LineWidth',2) 
ylabel('F^{(1)}') 
hold on 
plot(x(rngX),zeros(1,length(rngX)),'-k','LineWidth',1) 
hold on 
plot(x(rngX),D1PR(rngX),'--k','LineWidth',2) 
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hold on 
 
subplot(2,1,2) 
plot(x(rngX),D1PR(rngX)-D1wt(rngX),'-k','LineWidth',2) 
xlabel('x') 
ylabel('F^{(1)}_{PR}-F^{(1)}_{CWT}') 
hold on 
plot(x(rngX),zeros(1,length(rngX)),'-k','LineWidth',1) 
hold on 
end  
  
function WavL = CWTgaussD1(x, dx, y, s) 
% © Copyright by Joseph Dubrovkin 
%x is abscissa 
% dx is the sampling interval  
% s is the scaling factor 
 
len=length(x); 
WavL=zeros(1,len); 
 
c=1; 
for a=x 
 WL=WLGD1(x,a,s); 
 WavL(c)=sum(y.*WL); 
 c=c+1; 
end  
WavL=dx*WavL; 
end  
 
% © Copyright by Joseph Dubrovkin 
function WL=WLGD1(rngI, a, s) 
%Gauss D1 wavelet 
% rngI is abscissa 
% a is dilation  
% s is the scaling factor 
 
z=(rngI-a)/s; 
z2=z.*z; 
 
%Normalization 
MN=sqrt(1/s); 
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WL=MN*(1/s)*2*z.*exp(-z2); 
end 
 
%%For Exercise 2.8-1 
%% plotD1WTSGFT.m 
% © Copyright by Joseph Dubrovkin 
%% Plots of the first-order derivatives obtained 
%% by CWT, DWT, SG and FT methods 
%% Models: 
%% 'G1'-single Gaussian peak (width=w) 
%%'L1'-single Lorentzian peak (width=w) 
%'T1'-triangle (width=w) 
%'C'-three function 
 
model='C'; 
switch model 
case 'C' 
numbPoint=1024*5; 
case {'G1', 'L1','T1'} 
numbPoint=1024*2; 
end  
  
%y-noise-free signal, D1PR-the precise first-order derivative  
%x-abscissa, dx-sampling interval 
  
[x,dx,y,D1PR] = inputDataWaveletModels(numbPoint, model); 
 
switch model 
case 'C' 
b1=find(x==1); 
e1=find(x==30); 
case {'G1', 'T1'} 
b1=find(x==12); 
e1=find(x==20); 
case 'L1' 
b1=find(x==11); 
e1=find(x==21); 
end 
 
newRng=b1:e1; 
 %%Normalization of precise derivative 
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D1PR=D1PR(newRng)/sum(abs(D1PR(newRng)));  
%standard noise deviation  
stdN=0.02; 
%For SG differentiation filter 
m=12; 
%Scaling factor for CWT based on the first-order derivative of Gauss  
s=0.18; 
FourSmooth=0; 
 
flagNoise='w'; %% w- white, 'p'-pink, 'b'=blue, 'r'-red 
flagWT=1; %% 1-DWT, 2-CWT  
 
len=length(y); 
switch flagNoise 
case 'w' 
noise=stdN*randn(1,len); 
case 'p' 
noise=stdN*pinknoise(len); 
case 'b'  
noise=stdN*bluenoise(len); 
case 'r'  
noise=stdN*rednoise(len); 
end 
 
y1=y+ noise; 
 
 
power=2; 
n=1; 
D1SG=derivativeSG( m, power, n, y1 ,1); 
 
%Normalization 
D1SG=D1SG(newRng)/sum(abs(D1SG(newRng))); 
 
switch flagWT 
case 2  
D1wt = CWTgaussD1(x,dx,y1,s); 
case 1 
level=6;  
D1wt=derivative_dwt(y1,'haar',level,dx,1); 
end  
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%Normalization 
D1wt=D1wt(newRng)/sum(abs(D1wt(newRng))); 
 
figure 
subplot(2,1,1) 
plot(x(newRng),y1(newRng),'-k'); 
 
switch model 
case 'C' 
axis([1,30,-0.2, 1.2]) 
case {'G1', 'T1'} 
axis([12,20,-0.2, 1.2]) 
case 'L1' 
axis([11,21,-0.2, 1.2]) 
end  
 
strTitle='Model-'; 
strTitle=strcat(strTitle, model); 
strTitle=strcat(strTitle,' Noisy-'); 
strTitle=strcat(strTitle, flagNoise); 
strTitle=strcat(strTitle,' data'); 
 
title(strTitle); 
 
if FourSmooth 
 alpha=1e-6; 
 power=4; 
 D1FS = FourSmoothFun(y1,alpha,power,1); 
 D1FS=D1FS(newRng)/sum(abs(D1FS(newRng))); 
end  
 
subplot(2,1,2) 
plot(x(newRng),D1wt,'-k','LineWidth',1) 
xlabel('x') 
hold on 
if FourSmooth 
 plot(x(newRng),D1FS,':k','LineWidth',2) 
else  
 plot(x(newRng),D1SG,':k','LineWidth',1) 
end 
hold on 
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plot(x(newRng),zeros(1,length(newRng)),'-k','LineWidth',1) 
 
switch model 
case 'C' 
axis([1,30,-1.5e-3, 1.5e-3]) 
 
case {'G1', 'T1'} 
axis([12,20,-0.006, 0.006]) 
 
case 'L1' 
axis([11,21,-0.006, 0.006]) 
 
end  
hold on 
plot(x(newRng),D1PR,'--k','LineWidth',1); 
 
if FourSmooth 
if flagWT==1 
 title('differentiation DWT (-) FS (...) D1PR (--)'); 
end  
if flagWT==2 
 title('differentiation CWT (-) FS (...) D1PR (--)'); 
end 
else 
if flagWT==1 
 title('differentiation DWT (-) SG (...) D1PR (--)'); 
end  
if flagWT==2 
 title('differentiation CWT (-) SG (...) D1PR (--)'); 
end 
end  
 
 
% © Copyright by Joseph Dubrovkin 
function FourieSmooth = FourSmoothFun(vector, alpha, power, n) 
% n is the differentiation order  
len=length(vector); 
  
if mod(len,2)==1 
 len=len+1; 
end 
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len1=len/2; 
freq=[1:len1,-len1+1:1:0]; 
 
FFT=fft(vector); 
M=alpha*freq.^power; 
den=(ones(1,len)+M); 
 
if nargin==3  
 fourier_filter=1./den.^2; 
end 
if nargin==4  
 difOp=(1i*freq).^n; 
 fourier_filter=difOp./den.^2; 
end 
 
fourier_filter=fourier_filter(1:len-1); 
FFTsolut=FFT.*fourier_filter; 
FourieSmooth=real(ifft(FFTsolut)); 
end 
 
% © Copyright by Joseph Dubrovkin 
function [x,dx,y,D1PR] = inputDataWaveletModels(numbPoint, model) 
%%D1PR - precise first-order derivative 
len=32; 
st=len/numbPoint; 
x=1:st:len;  
dx=x(2)-x(1); 
switch model 
case 'G1'  
 mn=2*sqrt(log(2)); 
 a1=1.0; t1=len/2; w1=len/16; 
 arg1=mn*(x-t1)/w1; 
 y=a1*exp(-arg1.^2); 
 D1PR=-(2*mn/w1)*arg1.*y; 
case 'L1'  
 mn=2; 
 a1=1.0; t1=len/2; w1=len/16; 
 arg1=mn*(x-t1)/w1; 
 den=1+arg1.*arg1; 
 y=a1./den; 
 D1PR=-(2*mn/w1)*arg1./(den.^2);  
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case 'T1'  
 a1=1.0; t1=len/2; w1=len/16; 
 x1=t1-w1; 
 x2=t1+w1; 
 y=zeros(1,length(x)); 
 D1PR=y; 
 rngX1=0:st:w1; 
 beg1=find(x1==x); 
 fin1=find(t1==x); 
 y(beg1:fin1)=(1/w1)*rngX1; 
 D1PR(beg1:fin1)=w1*ones(1,length(beg1:fin1)); 
 fin2=find(x2==x); 
 y(fin1:fin2)=(-1/w1)*rngX1+1; 
 D1PR(fin1:fin2)=-w1*ones(1,length(fin1:fin2)); 
 y=a1*y; 
case 'C' 
 mn=2*sqrt(log(2)); 
 a1=1.0; 
 t1=5;  
 w1=1.3; 
 arg1=mn*(x-t1)/w1; 
 y1=a1*exp(-arg1.^2); 
 Dy1=-(2*mn/w1)*arg1.*y1; 
 a2=1.0; t2=15.0; w2=1.3; 
 arg2=2*(x-t2)/w2; 
 den=1+arg2.^2; 
 y2=a2./den; 
 Dy2=-(4*a2/w2)*arg2./den.^2; 
 a3=1.0; t3=25; 
 arg3=3*(x-t3); 
 den1=1+exp(-arg3); 
 y3=a3./den1; 
 Dy3=3*a3*exp(-arg3)./den1.^2; 
 y=y1+y2+y3; 
 D1PR=Dy1+Dy2+Dy3; 
end  
end 
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SW6. For Chapter 3.4 
 Exercise 3.4-1 Readers are invited to inspect some triplets and quartets 
plotted by the program plotQuartets.m and try to visually guess the 
number of the peaks and their parameters. Pay attention to the possibility 
of the false structure in the 2nd-order derivative.  
%%plotQuartets.m  
% © Copyright by Joseph Dubrovkin 
 
range=1000; 
x=1:range; 
zeroLine=zeros(1,range); 
ic=range/2; 
flagPeak=1; %Gauss 
stdNoise=0; 
n=2; 
m=2; 
power=2; 
W = savitzkyGolayModif(m, power,n); 
 
w=100; 
I10=1; 
I20=1; 
I30=1; 
I40=1; 
 
%doubletParam=[relShift1, relShift2,relShift2, R1, R2, R3, R4, 
%% r1, r2, r3, r4]; 
 
for panel=['a', 'b', 'c']  
switch panel 
case 'a' 
 relParam=[ 0.85, 0.65, 1,... %%RelShift 
 1, 0.8, 1, 0,... %%Intensities 
 1, 0.9, 0.8, 1];%%Widths  
 rngX=250:700; 
case 'b' 
 relParam=[1.7, 0.5, 1,...%%RelShift 
 2, 1, 0.5, 0,...%%Intensities 
 1, 0.5, 0.5, 1];%%Widths  
 rngX=150:650; 
case 'c' 
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 relParam=[ 1.7, 0.5, -0.5,... 
 2, 1, 0.5, 0.1,... 
 1, 0.5, 0.5, 1];  
 rngX=150:650; 
end  
 
relShift1=relParam(1); 
relShift2=relParam(2); 
relShift3=relParam(3); 
R1=relParam(4); 
R2=relParam(5); 
R3=relParam(6); 
R4=relParam(7); 
r1=relParam(8); 
r2=relParam(9); 
r3=relParam(10); 
r4=relParam(11); 
 
delta1=relShift1*w; 
delta2=relShift2*w; 
delta3=relShift3*w; 
I1=R1*I10; 
I2=R2*I20; 
I3=R3*I30; 
I4=R4*I40; 
w1=r1*w; 
w2=r2*w; 
w3=r3*w; 
w4=r4*w; 
 
[d2, nrm, qvrt,y01N, y02N,y03N,y04N] =... 
quartetD2(flagPeak, range, ic, I1, I2,I3,I4, delta1,delta2,delta3, w1, 
w2,w3, w4, m, W,stdNoise); 
 
subplot(2,1,1) 
plot(x(rngX),qvrt(rngX),'-k','LineWidth',2) 
ylabel('F^{(0)}') 
hold on 
plot(x(rngX),y01N(rngX),':k','LineWidth',2) 
hold on 
plot(x(rngX),y02N(rngX),':k','LineWidth',2) 
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hold on 
plot(x(rngX),y03N(rngX),':k','LineWidth',2) 
hold on 
plot(x(rngX),y04N(rngX),':k','LineWidth',2) 
hold off 
subplot(2,1,2) 
plot(x(rngX),-d2(rngX),'-k','LineWidth',2) 
xlabel('x') 
ylabel('-F^{(2)}') 
hold on 
plot(x(rngX),zeroLine(rngX),'-k','LineWidth',1) 
hold off 
pause  
end  
 
function W = savitzkyGolayModif(m, power, n) 
x=-m: m; 
N=2*m+1; 
x=x(:); 
A=ones(N,1); 
for k=1:power 
 A=[A x.^k]; 
end 
matrixW = (A'*A)\A'; 
W=matrixW(n+1,:)*factorial(n); 
end 
  
SW7. For Chapter 4.3 
For Exercise 4.3-2 
The readers are invited to estimates the figures of merit using various sets 
of the quartet parameters. We recommend studying the strong overlapped 
peaks to compare the zero-order and derivative analysis 
 
%% orthogProg.m  
% © Copyright by Joseph Dubrovkin 
%%Doublet parameters 
range=100; 
ic=range/2; 
delta=7; 
step=1; 
ampl1=1; 
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ampl2=1.5; 
ampl3=0.8; 
ampl4=1.2; 
 
imax1=ic-3*delta; 
imax2=ic-delta; 
imax3=ic+ delta; 
imax4=ic+2*delta; 
 
Imax=[imax1 ,imax2,imax3 ,imax4]; 
 
width1=10; 
width2=15; 
width3=12; 
width4=5; 
 
[x,y1] = gaussCurve( range,step,ampl1,imax1,width1); 
[x,y2] = gaussCurve( range,step,ampl2,imax2,width2); 
[x,y3] = gaussCurve( range,step,ampl3,imax3,width3); 
[x,y4] = gaussCurve( range,step,ampl4,imax4,width4); 
 
%The second-order derivative 
m=2; 
d1=derivativeSG( m, 2, 2, y1 ,1); 
d2=derivativeSG( m, 2, 2, y2 ,1); 
d3=derivativeSG( m, 2, 2, y3 ,1); 
d4=derivativeSG( m, 2, 2, y4 ,1); 
 
 
X=[y1; y2; y3; y4]'; 
XD=[d1; d2; d3;d4]'; 
 
y=y1+y2+y3+y4; 
yD=d1+d2+d3+d4; 
yF=y2+y3+y4; 
nrm=norm(yF); 
nrm2=nrm*nrm; 
%%comp1_ort=comp1-%%comp2*(comp1')*comp2/norm(comp2)/ 
%%norm(compt2); 
y1ort=y1-yF*(y1')*yF./nrm2; 
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[Sen,SEL1,SEL2,SEL3,SEL4,SenNAS,SEL1NAS,SEL2NAS,SEL3NAS,
SEL4NAS,y1ortM1,y1ortM2,y1ortM3,y1ortM4]... 
= senSelEstim(y1,y2,y3,y4,Imax); 
 
%% Matrix orthogonal projections 
XortM=[y1ortM1,y1ortM2,y1ortM3,y1ortM4]; 
 
%% The second-order derivative 
 
%Analytical points 
Ianal=[21, imax2, 49, imax4]; 
[SenD,SEL1D,SEL2D,SEL3D,SEL4D] =... 
senSelEstim(d1,d2,d3,d4,Ianal); 
 
newRng=15:75; 
subplot(3,1,1) 
plot(x(newRng), X(newRng,:), ':k','LineWidth',2) 
axis([15,75,0,1.6]) 
hold on 
plot(x(newRng), y(newRng), '-k','LineWidth',2) 
  
subplot(3,1,2) 
plot(x(newRng), y(newRng),'-k','LineWidth',2) 
axis([15,75,-0.5,1.6]) 
hold on 
plot(x(newRng), XortM(newRng,:),':k','LineWidth',2) 
hold on 
plot(x(newRng), y1ort(newRng),'-k','LineWidth',1) 
hold on 
plot(x(newRng), yF(newRng),'--k','LineWidth',2) 
hold on 
plot(x(newRng), zeros(1,length(x(newRng))),'-k','LineWidth',1) 
 
subplot(3,1,3) 
XD(:,1:3)=XD(:,1:3).*10; 
plot(x(newRng),-2*XD(newRng,:),':k','LineWidth',2) 
axis([15,75,-0.6,2]) 
hold on 
plot(x(newRng),-0.5*yD(newRng)/max(yD(newRng))+1,… 
'-k','LineWidth',2) 
hold on 
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plot(x(newRng),ones(1,length(x(newRng))),'-k','LineWidth',1) 
 
%%%% Sensitivity %%%%%%%%%% 
Sen_=Sen 
%%-1.999--> >1000 
%%SELECTIVITY 
SEL1_=SEL1 
SEL2_=SEL2 
SEL3_=SEL3 
SEL4_=SEL4 
%%%% Sensitivity NAS  
SenNAS_=SenNAS 
 
%%SELECTIVITY NAS 
 
SELNAS=[SEL1NAS,SEL2NAS,SEL3NAS,SEL4NAS]' 
 
%%% The second-order derivative  
%%%% Sensitivity  
SenD_=SenD 
 
%%SELECTIVITY 
%%-1.999--> >1000 
SEL1D_=SEL1D 
SEL2D_=SEL2D 
SEL3D_=SEL3D 
SEL4D_=SEL4D 
%%%% Sensitivity NAS %%%%%%%%%% 
%%% a,b,c,d,e - auxiliary variables 
[a,b,c,d,e,SenNASD,SEL1NASD,SEL2NASD,SEL3NASD,SEL4NASD] 
= senSelEstim(d1,d2,d3,d4,Imax); 
SenNASD_=SenNASD 
 
%%SELECTIVITY NAS-differentiation 
SELNASD=[SEL1NASD,SEL2NASD,SEL3NASD,SEL4NASD]' 
 
SW8. For Chapter 4.4 
For Exercise 4.4-1 
The readers are invited to repeat the above numerical experiments by 
changing the model parameters the differentiation order, the width, and 
the polynomial power of the SG filter  
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%%informQuantAnal1.m  
% © Copyright by Joseph Dubrovkin 
%% SG-filter parameters 
m=17; 
order=2; 
power=2; 
 
[X, XD, Imax, W, range, x, errComp] = QuartetA(m, order, power); 
Imax=Imax+[-8 3 0 0]; 
 
%%Analytical data in D0 
Xanal=X(:,Imax); 
Ianal=Imax; 
%%Analytical data in D2 
XderAnal=XD(:,Ianal); 
 
%Sensitivity & Selectivity 
%Spectrum 
[Sen, SEL, SenNAS, SELNAS]=... 
senSelEstim1(X, Imax, errComp); 
 
%Derivative 
errCompD=derivativeSG( m, power, order, errComp ,1); 
[SenD, SELD, SenNASD, SELNASD]=... 
senSelEstim1(XD, Imax, errCompD); 
 
Sen 
SenD 
SEL 
SELD 
SenNAS 
SenNASD 
SELNAS 
SELNASD 
 
concentr=[0.7, 0.1, 0.8, 0.1]; 
%% Mixture spectrum with the interfering component which produces 
%% systematic errors 
Ypr=concentr*X+ errComp; 
stdNoise=0.01; 
numbRep =1e3; 
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errC=ones(numbRep,4); 
errCD=errC; 
 
function [X, XD, Imax, W, range, x, errComp] = QuartetA(m, order, 
power) 
range=100; 
ic=range/2; 
delta=6; 
step=1; 
ampl1=1; 
ampl2=1.5; 
ampl3=0.8; 
ampl4=1.2; 
imax1=ic-3*delta; 
imax2=ic-delta; 
imax3=ic+ delta; 
imax4=ic+2*delta; 
Imax=[imax1 ,imax2,imax3 ,imax4]; 
width1=14; 
width2=11; 
width3=10; 
width4=16; 
[x,y1] = gaussCurve( range,step,ampl1,imax1,width1); 
[x,y2] = gaussCurve( range,step,ampl2,imax2,width2); 
[x,y3] = gaussCurve( range,step,ampl3,imax3,width3); 
[x,y4] = gaussCurve( range,step,ampl4,imax4,width4); 
 
%The error component 
ampl5=0.02; 
imax5=ic+2*delta; 
width5=50; 
[x, errComp]=gaussCurve(range,step,ampl5,imax5,width5); 
 
% n-order derivative  
d1=derivativeSG( m, power, order, y1 ,1); 
d2=derivativeSG( m, power, order, y2 ,1); 
d3=derivativeSG( m, power, order, y3 ,1); 
[d4, W]=derivativeSG( m, power, order, y4 ,1); 
 
X=[y1; y2; y3; y4]; 
XD=[d1; d2; d3;d4]; 
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end 
 
function [x, y ] = gaussCurve( range, step, ampl, imax, width ) 
c=1; 
y=1:step:range; 
%x=y; 
for i=1:step:range 
 y(c)=gauss(ampl, i, imax, width); 
 c=c+1; 
end 
x=1:c-1; 
end 
 
function [der2,W] = derivativeSG( m, power, n, vector, flagSGsym) 
  
%%flagSGsym=1 symSG, [-m, m], =0, asymSG [1,N] 
%power=2t 
%n=dif order 
%m - half-length of the filter 
lenVector=length(vector); 
der2=zeros(lenVector,1); 
if flagSGsym==1 
 W = savitzkyGolayModif(m, power, n); 
end 
if flagSGsym==0 
 W = savitzkyGolayModifAsym(m, power, n); 
end 
 
for i=1+m:lenVector-m 
 der2(i)=(vector(i-m: i+ m)*W'); 
end 
der2=der2'; 
end 
 
function W = savitzkyGolayModifAsym(m, power, n) 
%x=1:N instead of [-m, m] 
N=2*m+1; 
x=1:N; 
x=x(:); 
A=ones(N,1); 
for k=1:power 
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 A=[A x.^k]; 
end 
matrixW = (A'*A)\A'; 
W=matrixW(n+1,:)*factorial(n); 
end 
 
function Cest = cramer(Yanal, Xanal) 
det0=det(Xanal); 
det1=det([Yanal; Xanal(2:4,:)]); 
c1=det1/det0; 
det2=det([Xanal(1,:);Yanal; Xanal(3:4,:)]); 
c2=det2/det0; 
det3=det([Xanal(1:2,:);Yanal; Xanal(4,:)]); 
c3=det3/det0; 
det4=det([Xanal(1:3,:);Yanal]); 
c4=det4/det0; 
Cest=[c1,c2,c3,c4]; 
end 
 
SW9 For Appendix B 
% © Copyright by Joseph Dubrovkin 
function [pmg, pmg1, pmg2, pmg3, pmg4] = pmgDerivative(x, tau, r) 
%For arguments (y-deltaY/2)/r 
if nargin==2 
 r=1; 
end  
 
[pmg, B, z] = PMG(x, tau); 
%Derivatives of Z 
dZ = difZ(tau, B); 
%Derivatives of ARG 
ARG1=-2*z.*dZ(1,:)/r; 
ARG2=-2*(dZ(1,:).^2+z.*dZ(2,:))/r^2; 
ARG3=-2*(3*dZ(1,:).*dZ(2,:)+z.*dZ(3,:))/r^3; 
ARG4=-2*(3*dZ(2,:).^2+4*dZ(1,:).*dZ(3,:)+z.*dZ(4,:))/r^4; 
 
function [pmg, B, z] = PMG(x, tau) 
if tau==0 
 B=1; 
 z=x; 
else  
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 B=1./(1+tau*x); 
 z=(1-B)/tau; 
end  
z2=z.*z; 
pmg=exp(-z2); 
end 
  
function arrZ = difZ(tau, B) 
len=length(B); 
%Derivatives of z 
arrZ=zeros(4,len); 
fac=1; 
for ii=1:4 
 fac=fac*ii;  
 arrZ(ii,:)=-((-1)^ii)*fac*tau^(ii-1)*B.^(ii+1); 
end 
end 
  
% © Copyright by Joseph Dubrovkin 
function [Fd, Fdd] = difDobosz(y, tau, r) 
%For arguments (y-deltaY/2)/r 
if nargin==2 
 r=1; 
end  
len=length(y); 
[Fl, Fld] = difLorentz(y, r); 
 
if tau==0  
 [Fd, Fdd] = difLorentz(y, r); 
else  
 C=exp(-tau)/tau;  
 Ky=tau*atan(y); 
 %derivatives 
 Kyd=zeros(5,len); 
 Kyd(1,:)=tau*Fl;  
for ii=2:5 
 Kyd(ii,:)=tau*Fld(ii-1,:);  
end 
 
Ryd=zeros(4,len); 
Ry=C*exp(Ky); 
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Ryd(1,:)=(1/r)*Ry.*Kyd(1,:); 
Ryd(2,:)=(1/r)*(Ryd(1,:).*Kyd(1,:)+Ry.*Kyd(2,:)); 
Ryd(3,:)=(1/r)*(Ryd(2,:).*Kyd(1,:)+2*Ryd(1,:).*Kyd(2,:)+… 
Ry.*Kyd(3,:)); 
Ryd(4,:)=(1/r)*(Ryd(3,:).*Kyd(1,:)+3*Ryd(2,:).*Kyd(2,:)+… 
3*Ryd(1,:).*Kyd(3,:)+Ry.*Kyd(4,:)); 
 
Fd=C*tau*exp(Ky).*Fl; 
 
Fdd=zeros(4,len); 
Fdd(1,:)=Ryd(1,:).*Kyd(1,:)+Ry.*Kyd(2,:); 
Fdd(2,:)=(Ryd(2,:).*Kyd(1,:)+2*Ryd(1,:).*Kyd(2,:)+… 
Ry.*Kyd(3,:)); 
Fdd(3,:)=Ryd(3,:).*Kyd(1,:)+3*Ryd(2,:).*Kyd(2,:)+… 
3*Ryd(1,:).*Kyd(3,:)+Ry.*Kyd(4,:); 
Fdd(4,:)=Ryd(4,:).*Kyd(1,:)+4*Ryd(3,:).*Kyd(2,:)+… 
6*Ryd(2,:).*Kyd(3,:)+4*Ryd(1,:).*Kyd(4,:)+Ry.*Kyd(5,:); 
end 
end 
 
function [Fl, Fld] = difLorentz(y, r) 
%% 1-6th order Lorentz derivatives Fld 
len=length(y); 
%For arguments (y-deltaY/2)/r 
if nargin==1 
 r=1; 
end  
 
y2=y.*y; 
 
den=1+y2; 
Fl=1./den; 
 
y3=y2.*y; 
y4=y2.*y2; 
y5=y4.*y; 
y6=y3.*y3; 
 
nom=zeros(6,len); 
Fld=nom; 
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nom(1,:)=-2*y;  
nom(2,:)=6*y2-2;  
nom(3,:)=-24*y3+24*y;   
nom(4,:)=24*(5*y4-10*y2+1);  
nom(5,:)=120*(-6*y5+20*y3-6*y);  
nom(6,:)=720*(7*y6-35*y4+21*y2-1);  
 
for ii=1:6 
 mn=r^ii;  
 Fld(ii,:)=nom(ii,:)./((den.^(ii+1))*mn); 
end 
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Analysis 
 null-point, 266, 291 
 qualitative, quantitative, 7, 56, 
 66, 264 
Approximation 
 spline (see Splines) 
 wavelet (See Wavelets) 
Asymmetrical 
 doublet, 36, 42, 43, 50, 100, 103, 
 135, 137, 306 
 peak (see Dobosz, PMG)  
 Atomic (see Spectroscopy) 
Auger (see Spectroscopy) 
 
Background 
 correction (suppression), 160, 
 161, 209, 228, 234, 264-294, 
 344  
Baseline (see Background) 
 correction (suppression), 270, 
 273, 275, 290 
Beer's law,168, 235  
Bias (see Systematic errors)  
 
Calorimetry, 296 
Chromatography, 2-4, 13, 177, 
 243, 291 
Chopper, 161, 164-166, 285, 
 338, 339 
Detector, 30, 31, 33, 151, 157, 
158, 162-166, 170, 171, 173, 267, 
271, 276-296, 335-339 
noise, 31, 34, 266, 269 
 

Difference method, 66 
Differentiator 
 analog, 61-65, 88 
 digital, 68, 242, 292, 314 
 optical, 155-157, 159, 163, 229, 235 
Distribution 
 Gaussian, 18, 31, 34 
 Lorentzian, 18, 21 
 Poisson, 33, 34 
 Tsallis, 18 
Dobosz (see Peak Shapes) 
Doublet 
 asymmetrical, 42, 43, 100, 102, 135, 
137, 306 
 symmetrical, 36-38, 40, 49-51, 54,  
 98, 100, 102, 134, 179, 184, 309 
Dual-wavelength (see 
Spectrometer) 
 
Electrochemical [analysis], 288- 
 292, 333  
Empirical coefficients, 216, 220 
Electronic Paramagnetic 
Resonance (see Spectroscopy) 
Errors 
 random, 30, 57, 133, 145, 182, 244,  
 259 
 systematic, 209, 233, 234, 241, 256- 
 259, 261, 263, 283  
 
Fourier Transform, 5, 10, 62,73, 
 88, 115, 116. 119-132,155, 236, 
 238, 297 
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 generalized, 241 
Fractional derivative, 18-26, 
 206-211, 288 
Frequency characteristic, 62, 
 68-71, 78, 81, 82,85, 88, 89, 116, 
 133, 134, 298, 312 
 
Gamma-ray (see 
 Spectroscopy) 
Gaussian (see Peak Shapes) 
 
Hermite polynomials, 5, 7, 8 
Haar (see Wavelets) 
 
Information Content, 51-57  
Infra-Red (see Spectroscopy) 
Interferometer, 173, 328, 341, 
 342  
 
Laser, 156, 268, 273-283, 286, 
296, 326-331, 339, 341  
 Modulation Spectroscopy, 167- 
 174 
Least Squares, 111, 112, 237,  
 241, 242 
Lock-In Amplifier,154, 158, 
 170, 173, 174, 276, 285, 327, 
 339  
Lorentzian (see Peak Shapes) 
 
Mass spectrometry, 177, 292, 
 296 
Mossbauer (see Spectroscopy) 
Modulation 
 frequency, 162, 168, 235, 268, 
 281, 282, 290, 295  

 sample, 171 
 wavelength, 151, 160, 163, 266, 
 269, 275, 281, 286, 344 
 (see Laser modulation spectroscopy) 
Multicomponent 
 analysis, 241, 242, 260-262,  
 272, 284 
 derivative spectroscopy, 237- 243 
 
Noise, 30-35, 307-309 
 correlated, 34, 35 
Net Analyte Signal, 252, 261 
Null-point, 228, 229, 244, 245, 248, 
 249, 253, 255, 284 
 analysis (see Analysis) 
 measurement, 256, 284 
 
Optical (see Spectroscopy) 
 
Qualitative (see Analysis) 
Quantitative (see Analysis) 
Quartet, 217, 219, 253, 254, 256 
 
Peak 
 area, 6, 11, 97, 145, 229, 232, 233 
 detection, 176-181, 295 
 intensity, 20, 43, 97, 100, 103, 107, 
 126, 135, 137, 196, 197, 202, 236 
 width, 3, 5, 23, 24, 103, 107, 184,  
 188, 201-214, 240 
Peak shapes,  
 asymmetrical  
 Dobosz, PMG, 13-18, 37, 44, 49,  
 50, 305, 306 
 symmetrical  
 Gaussian, Lorentzian, 3-6 
 Voigt, 3-6, 43, 45, 48, 170, 210, 
 236, 337 
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Petrash (see Resolution 
 criterion, Limit) 
Photoacoustic (see 
 Spectroscopy) 
Photoelectron(see 
 Spectroscopy)  
PMG (see Peak Shapes) 
PCA, 282, 283 
 
Radiation Source, 159, 163- 
 165, 257-270, 283. 338-343 
Raman (see Spectroscopy) 
RC circuits (see 
Differentiator, analog) 
 integration, 309  
Refractor plate, 160-162 
Regularization, 81, 96, 98, 102, 
 108, 109, 111, 112, 114, 115, 
 119-132, 134, 143, 304, 316, 
 317  
Remote Sensing, 286, 287 
Resolution criterion (limit), 
 37-52, 55  
 informational, 40, 43, 46, 48 
 Petrash, 41 
 Sparrow, 36, 37, 43-45, 51, 52 
 
Savitzky-Golay (see Filters) 
Selectivity, 251-256, 260-262 
Sensitivity, 151, 163, 172, 173,  
 186, 249, 251-261, 267, 269- 
 271, 273-276, 282, 283, 286, 
 289-291, 294, 296, 329, 342, 
 344 
Slit Monochromator, 151-166 
Smoothing (see Filters) 
 

Sparrow (see Resolution 
 criterion, limit) 
Spectrometer 
 double-beam, 163, 165, 339 
 dual-wavelength, 151 
 single-beam, 234, 338, 339, 340, 
 343 
 multiplex, 151 
Spectroscopy 
(Spectrophotometry) 
 Atomic Absorption, 268, 269, 339 
 graphite furnace, 265, 267, 269, 
 340 
 Atomic Emission, 265-267 
 Auger, 291 
 Electron Paramagnetic 
 Resonance, 290 
 Fourier Transform, 172, 341-343 
 Gamma-ray, 292  
 Inductively Coupled Plasma, 265 
 Infrared Absorption, 271, 272 
 Laser‐Induced Breakdown, 268 
 Laser modulation (see Laser 
 Modulation spectroscopy) 
 Luminescence, 282-284 
 Mossbauer, 295 
 Nuclear Magnetic Resonance, 294 
 Optical, 335-344 
 Photoacoustic, 285, 286 
 Photoelectron, 293 
 Raman, 285-287 
 Coherent Anti-Stokes, 281 
 UF-VIS absorption, 272, 273 
 X-ray, 293 
Splines, 111, 133-138, 294,  
 300-304  
 
Tikhonov (see Regularization) 
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Transform 
 Fourier, 2, 5, 10, 36, 62, 73, 78, 
 88, 94-110, 119-132, 293-297 
 linear, 2, 53, 237, 241 
Triplet, 178-181, 217, 219 
Tsallis (see Distribution) 
 
Uncertainties (see Errors) 
 
Vidicon, 162, 163 
Voigt (see Peak Shapes) 
 
Wavelets 
 Haar, 19, 144 
 Morlet, 139-141 
 Gaussian, 141, 142, 144 
 
X-ray(see Spectroscopy)  
 
Zero-crossing, 23, 24, 209 
Zero-point, 24, 26, 209, 210 
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