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Introduction
We discuss recent results in the one- and in two-interval theory of Sturm–Liouville
problems. The one-interval theory is covered in Chapters 1–7, the two-interval theory
in Chapters 8–10. The extension of the 2-interval theory to finitely many intervals is
routine. A list of notations is given in Appendix A, and open problems are given in
Appendix B.

The Prũfer transformation is a powerful tool, theoretically and computationally,
for studying the eigenvalues and eigenfunctions of self-adjoint Sturm–Liouville prob-
lems with separated boundary conditions. In 2012, Bailey and Zettl [13] developed an
algorithm based on the Prũfer transformation, which can be used to compute the
eigenvalues of self-adjoint Sturm–Liouville problems with coupled boundary condi-
tions using “families” of problems with separated conditions. This is discussed at the
end of Chapter 1.

Problems with periodic coefficients are discussed in Chapter 2. This chapter was
motivated, to someextend, bynumerousdiscussionswith ShangYuanRen, the author
of the book Electronic States in Crystals of Finite Size, Quantum Confinement of Bloch
Waves, Springer Tracts in Modern Physics, 2005, second edition, volume 270, 2017.

It also uses some of the methods used by M. S. P. Eastham in his well-known book
The Spectral Theory of Periodic Differential Equations, Scottish Academic Press, Edin-
burgh and London, 1973, but with the following major differences:
(1) We use quasi-derivatives (py󸀠) instead of the classical derivative y󸀠; in particular,

for the periodic boundary conditions, we have

y(a) = y(b), (py󸀠)(a) = (py󸀠)(b)
instead of

y(a) = y(b), y󸀠(a) = y󸀠(b).
(2) We do not assume that p is differentiable nor that q and w are piecewise continu-

ous and that w is bounded away from 0.
(3) We do assume that p is positive. This seems to be an oversight by Eastham. If p has

positive and negative values, each on a set of positive Lebesgue measure (such
as a subinterval, but it need not be a subinterval), then the eigenvalues are un-
bounded above and below. So there is no unique ordering of the eigenvalues, and
consequently λn is not well defined.

(4) The quasi-derivative (py󸀠) is continuous on the interval [a, b], whereas the classi-
cal derivative y󸀠(t)may not exist for all t in [a, b].

(5) We use the interval (0,π), instead of (0, 1), to parameterize the complex self-
adjoint boundary conditions. This provides a simple visualization of the “move-
ment” of the eigenvalues λn(γ) on the unit circle of the complex plane relative to
the points 0 and π, which correspond to the periodic and semiperiodic eigenval-
ues.

https://doi.org/10.1515/9783110719000-201
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VI | Introduction

(6) We use a notation that makes it easier to “keep track” of the dependence of the
eigenvalues on the many parameters a, b, k, n, π, θ, etc. of the problem. This de-
pendence sometimes requires a very delicate analysis.

It iswell known that forh-periodic coefficients, the eigenvalues of complex self-adjoint
boundary conditions on the base interval (a, a + h) are related to the periodic eigen-
values on the larger intervals (a, a + hk), k = 1, 2, 3, 4, . . . For fixed a, h, let λn(γ), λPn (k),
and λSn(k) denote the complex, periodic, and semiperiodic eigenvalues on the inter-
vals (a, a + hk), k = 1, 2, 3, 4, . . .. In 2017, 2018 Yuan, Sun, and Zettl [107, 108] found
a similar relationship for the semiperiodic boundary conditions and – for both cases
– found a one-to-one correspondence between the eigenvalues of the complex self-
adjoint boundary conditions on the base interval J = (a, a + h) and the periodic and
semiperiodic boundary conditions on the larger intervals. The complex boundary con-
ditions on J can be parameterized by γ ∈ (0,π).

Let P(k) = ⋃∞n=0λPn (k), S(k) = ⋃∞n=0λSn(k), and Γ(γ) = ⋃∞n=0λn(γ) denote the pe-
riodic, semiperiodic, and complex eigenvalues. The sets of periodic and semiperi-
odic eigenvalues P(k) and S(k) are countable; the set of complex eigenvalues Γ(γ),
γ ∈ (0,π), is not countable. Given λPn (k) for any n = 1, 2, 3, . . . for which γ and whichm
is λPn (k) = λm(γ)? This question and a similar question for semiperiodic eigenvalues is
answered in Chapter 2.

Chapters 3 and 4 discuss various extensions of the classical Sturm–Liouville the-
ory, including the Atkinson extension. In his classical book, Atkinson [4] hints at the
existence of self-adjoint regular Sturm–Liouville problems with finite spectrum. This
was confirmed in 2001 by Kong, Wu, and Zettl [65]. These authors later showed that
Sturm–Liouville problems of “Atkinson type” are equivalent to matrix problems.

Chapter 5 discusses the inverse theory for problems with finite spectrum devel-
oped by Kong and Zettl [69] in 2012. This finite spectrum inverse theory applies to
problems with both the leading coefficient p and the potential function q and weight
function w in contrast to the infinite spectrum inverse theory, where p and w are as-
sumed to be the constant function 1.

The eigenvalues below the essential spectrum of singular problems developed by
Zhang, Sun, and Zettl [114] are discussed in Chapter 6. For operators that are bounded
below we can now claim to understand the continuous dependence of the eigenval-
ues of self-adjoint Sturm–Liouville problems on the boundary conditions. Chapter 7
discusses results on lambda-dependent boundary conditions, also found by these au-
thors.

Recently, there has been a lot of interest in the literature of self-adjoint Sturm–
Liouville problems with discontinuous boundary conditions specified at regular in-
terior points of the underlying interval. Such conditions are known by various names
including transmission conditions [1, 2, 82, 87, 88, 98], interface conditions [61, 76, 92,
109], discontinuous conditions [51, 91, 81],multipoint conditions [55, 76, 36, 112], point
interactions (in the physics literature) [42, 21, 23, 35], conditions on trees, graphs, or
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Introduction | VII

networks [90, 87, 88], etc. For an informative survey of such problems arising in appli-
cations, including an extensive bibliography and historical notes, see Pokornyi and-
Borovskikh [87] and Prokornyi and Pryadiev [88]. These problems are not covered by
the classical Sturm–Liouville theory since, in this theory, solutions and their quasi-
derivatives are continuous at all interior points of the underlying interval J = (a, b).
In particular, this applies to all eigenfunctions. These two-interval problems are intro-
duced in Chapter 8. Chapter 9 develops the Neuberger construction of the two-interval
Green’s function.

Chapter 10 is based on the 2011 paper by Littlejohn and Zettl [74]. It discusses
the Legendre equation and its self-adjoint operators on the intervals (−∞, −1), (−1, 1),
(1,∞), and (−∞,∞) in detail. Most of the results discussed here can be inferred from
known results scattered widely in the literature; others require some additional work.
Some are new in this paper, for example, the construction of a regular Legendre equa-
tion on the interval (−1, 1), which is equivalent to the classical singular Legendre equa-
tion on the same interval. It is remarkable thatwe can find somenew results about this
well-studied classical equation and its associated operators.

Appendix A is a list of notations used.
Appendix B discusses some open problems. These problems are “open” as far as

the author knows at the time of this writing and are stated in random order. Somemay
be intractable, some accessible but challenging, and others routine.

The world of Mathematics is full of wonders and of mysteries, at least as much so as the physical
world. Without Mathematics (M) there would be no Science (S), without Science there would be
no Engineering (E), and without Science and Engineering there would be no modern Technol-
ogy (T). STEM should be spelled MSET.

Mathematics exists in all Galaxies and in all Universes.
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1 Classical regular self-adjoint problems

1.1 Introduction

In this chapter, we discuss properties of the eigenvalues of classical regular self-
adjoint Sturm–Liouville problems. Such a problem consists of the equation

My = −(py󸀠)󸀠 + qy = λwy, λ ∈ ℂ, on J = (a, b), −∞ ≤ a < b ≤ ∞, (1.1)

with coefficients satisfying

1/p, q,w ∈ L1(J, ℝ), p > 0, w > 0 a. e. on J, (1.2)

and boundary conditions

AY(a) + BY(b) = 0, Y = [ y
(py󸀠) ] (1.3)

satisfying

A,B ∈ M2(ℂ), AEA∗ = BEB∗, rank(A : B) = 2, E = [ 0 −1
1 0
] . (1.4)

HereM2(ℂ) denotes the 2 × 2 matrices with complex entries. Recall the system formu-
lation of equation (1.1):

Y 󸀠 = (P − λW)Y (1.5)

with

P = [ 0 1/p
q 0

] , W = [ 0 0
w 0
] . (1.6)

From (1.2) it follows that

Y(a) = [ y(a)
(py󸀠)(a) ] , Y(b) = [ y(b)

(py󸀠)(b) ]
exist as finite limits so that the boundary conditions (1.3) are well defined.

Definition 1.1.1. Let Φ(t, u,P,w, λ) be the primary fundamental matrix of (1.5) and re-
call that

Φ󸀠(t) = [P(t) − λW(t)]Φ(t), Φ(u, u, λ) = I , a ≤ u, t ≤ b, λ ∈ ℂ. (1.7)

Define the characteristic function δ by

δ(λ) = δ(a, b,A,B,P,w, λ) = det[A + BΦ(b, a,P,w, λ)], λ ∈ ℂ. (1.8)

Definition 1.1.2. This function δ is the characteristic function of problem (1.1)–(1.4).

https://doi.org/10.1515/9783110719000-001
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4 | 1 Classical regular self-adjoint problems

Lemma 1.1.1. Let (1.1) to (1.4) hold, and let δ(λ) be defined by (1.8). Then δ(λ) is an entire
function of λ ∈ ℂ, and its zeros are precisely the eigenvalues of problem (1.1)–(1.4).

Proof. The fact that δ(λ) is an entire function of λ is well known. A direct computation
shows that its zeros are precisely the eigenvalues of the problem.

It is convenient to classify the self-adjoint boundary conditions into twomutually
exclusive classes, separated and coupled.

Lemma 1.1.2 (Separated boundary conditions). Let (1.1)–(1.4) hold. Fix P,W , J and as-
sume that

A = [ A1 A2
0 0

] , B = [ 0 0
B1 B2

] .

Then δ(λ) = −A2B1ϕ11(b, a, λ) − A2B2ϕ21(b, a, λ) + A1B1ϕ12(b, a, λ) + A1B2ϕ22(b, a, λ)
for λ ∈ ℂ.

Proof. This follows from the definition of δ and a direct computation.

The characterization of the eigenvalues as zeros of δ(λ) reduces to a simpler and
more informative form when the boundary conditions are coupled. This reduction is
given by the next lemma.

Lemma 1.1.3 (Coupled self-adjoint boundary conditions). Let (1.1)–(1.4) hold. Let Φ =
(ϕij) be the primary fundamental matrix of system (1.5). Fix P,W , J and assume that

B = −I , A = eiγK, −π < γ ≤ π, K ∈ SL2(ℝ), (1.9)

that is, K is a real 2 × 2matrix with determinant 1. Let K = (kij) and define

D(λ,K) = k11ϕ22(b, a, λ) − k12ϕ21(b, a, λ) − k21ϕ12(b, a, λ) + k22ϕ11(b, a, λ) (1.10)

for λ ∈ ℂ. Note that D(λ,K) does not depend on γ. Then
(1) The real number λ is an eigenvalue of (1.1)–(1.4) if and only if

D(λ,K) = 2 cos γ, −π < γ ≤ π. (1.11)

(2) If λ is an eigenvalue for A = eiγK,B = −I, 0 < γ < π, with eigenfunction u, then λ is
also an eigenvalue for A = e−iγK,B = −I, but with eigenfunction u.

Proof. Since Φ is a primary fundamental matrix, we have detΦ(b, a, λ) = 1. We abbre-
viate (ϕij(b, a, λ)) to ϕij. Noting that detK = 1, we get

δ(λ) = det(eiγK −Φ) =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

eiγk11 − ϕ11 eiγk12 − ϕ12
eiγk21 − ϕ21 eiγk22 − ϕ22

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 1 + e2iγ − eiγD(λ).
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1.2 Self-adjoint operators in Hilbert space | 5

Hence δ(λ) = 0 if and only if (1.11) holds. Part (2) follows from (1.11) and by taking
conjugates of equation (1.1).

Remark 1.1.1. Throughout Chapters 1 and 2, we assume that (1.1)–(1.4) hold and use
the notations (1.5)–(1.11).

1.2 Self-adjoint operators in Hilbert space

In this section, we survey self-adjoint operator realizations of equation (1.1) in the
Hilbert space L2(J,w) determined by two-point boundary conditions and their spec-
trum {λn : n ∈ ℕ0}. The dependence of the eigenvalues of regular self-adjoint Sturm–
Liouville problems (SLP) on all parameters of the problem, the coefficients, the end-
points of the domain interval J, and the boundary conditions, is nowwell understood
due to some surprisingly recent results given the long history and voluminous liter-
ature of Sturm–Liouville problems dating back at least to the seminal 1836 paper of
Sturm and Liouville.

Notation 1.2.1. M2(ℂ) denotes the 2 × 2 matrices over the complex numbers ℂ, and
L1(J, ℝ) denotes the real-valued Lebesgue-integrable functions on the entire interval J.
We also use the notation M2(ℝ) for the real 2 × 2 matrices and Lloc(J, ℝ) for the real-
valued functions integrable on all compact subintervals of J. ℝ and ℂ denote the real
and complex numbers, respectively,ℕ = {1, 2, 3, . . .},ℕ0 = {0, 1, 2, 3, . . .}.

Lemma 1.2.1. Let λ ∈ ℂ. Let 1/p, q,w ∈ L1(J, ℝ). Then the appropriate one-sided limits

lim
t→a y(t), lim

t→a(py󸀠)(t), lim
t→b y(t), lim

t→b(py󸀠)(t), (1.12)

exist and are finite for each solution y and its quasi-derivative (py󸀠). Furthermore, every
initial value problem has a unique solution y defined on the entire interval J, and both y
and (py󸀠) are continuous at each t, a ≤ t ≤ b.
Proof. See Everitt and Race [34] and [113].

Remark 1.2.1. Note that each endpoint of J can be finite or infinite. In much of the lit-
erature an infinite endpoint is automatically classified as singular in contrast to here.
From the basic existence–uniqueness theorem (see Theorem 1.2.1 in [113]) it follows
that each solution y and its quasi-derivative (py󸀠) are continuous for all t ∈ J and, by
Lemma 1.2.1, can be continuously extended to the (finite or infinite) endpoints a, b.
Also note that, under condition (1.13), y󸀠(t) may not exist for some t ∈ J. This is the
main reason for using the quasi-derivative (py󸀠) as one function. Note the parenthe-
ses around py󸀠 since (py󸀠)(t) not always can be separated into p(t)y󸀠(t). The existence
of the limits (1.12) shows that the boundary condition (1.3) is well defined. Although
(1.3) and (1.4) consist of two independent conditions, we refer to the pair (1.3)–(1.4) as
one self-adjoint boundary condition.
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6 | 1 Classical regular self-adjoint problems

Remark 1.2.2. Why only “two-point” boundary conditions of the form (1.3)? Rather
than three-point conditions or integral conditions or others? The answers can be seen
from the next theorem.

Definition 1.2.1. Let H = L2(J,w) and define

Dmax = {f ∈ H :
1
w
Mf ∈ H},

Smaxf = Mf (f ∈ Dmax). (1.13)

Theorem 1.2.1. Let Dmax be defined by (1.13). Then Dmax is dense in H. Let Smin = S∗max
and denote its domain by Dmin . Then Smin ⊂ Smax. Define the operator S from H to H by
Sy = 1

wMy for all y ∈ H satisfying the two-point boundary conditions (1.3)–(1.4). Then S
satisfies

Smin ⊂ S = S
∗ ⊂ Smax. (1.14)

Furthermore, if S satisfies (1.14) and is generated by two-point boundary conditions (1.3),
these conditions satisfy (1.4).

Proof. This is well known; see [113].
It is clear fromTheorem 1.2.1 that – for a fixed equation (1.1) – the operators S satis-

fying (1.14) differ from each other only by their domains. In the rest of this chapter, we
survey how the eigenvalues of each operator S change when the coefficients and the
boundary conditions, including the endpoints, change. This is now, due to some sur-
prisingly recent results, well understood. In Section 1.7, we survey inequalities among
eigenvalues of different boundary conditions.

1.3 Canonical forms of self-adjoint boundary conditions
The self-adjoint boundary condition (1.3)–(1.4) is homogeneous and thus clearly in-
variant under left multiplication by a nonsingular matrix. This is a serious obstacle
to studying the continuous dependence of the eigenvalues on the boundary condi-
tion and for their numerical computation. In preparation for the investigation of how
eigenvalues change when the boundary condition is changed, in this section, we dis-
cuss canonical forms of self-adjoint boundary conditions.

At first glance, it may seem that the self-adjoint boundary conditions (1.3)–(1.4)
always connect the endpoints a, b with each other. This is not the case: they can be
divided into three mutually exclusive classes: separated, real coupled, and complex
coupled. The three classes are:
(1) Separated self-adjoint BCs. These are

A1y(a) + A2(py
󸀠)(a) = 0, A1,A2 ∈ ℝ, (A1,A2) ̸= (0,0), (1.15)

B1y(b) + B2(py
󸀠)(b) = 0, B1,B2 ∈ ℝ, (B1,B2) ̸= (0,0). (1.16)
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1.3 Canonical forms of self-adjoint boundary conditions | 7

These separated conditions can be parameterized as follows:

cos αy(a) − sin α(py󸀠)(a) = 0, 0 ≤ α < π, (1.17)
cos βy(b) − sin β(py󸀠)(b) = 0, 0 < β ≤ π, (1.18)

by choosing α ∈ [0,π) such that

tan α = −A2
A1

if A1 ̸= 0, and α = π/2 if A1 = 0, (1.19)

and similarly, by choosing β ∈ (0,π] such that

tan β = −B2
B1
, if B1 ̸= 0, and β = π/2 if B1 = 0. (1.20)

Note the different normalization in (1.20) for β from that used for α in (1.19). This is
for convenience in using the Prüfer transformation, which is widely used for the
theoretical studies of eigenvalues and their eigenfunctions and for the numerical
computation of these. For example, the FORTRANcode SLEIGN2 [10, 13, 12, 9] uses
this normalization. This code canbedownloaded free from the internet and comes
with a user-friendly interface.

(2) All real coupled self-adjoint BCs. These can be formulated as follows:

Y(b) = KY(a), Y = [ y
(py󸀠) ] , (1.21)

where K ∈ SL2(ℝ), that is, K satisfies

K = [ k11 k12
k21 k22

] , kij ∈ ℝ, detK = 1. (1.22)

(3) All complex coupled self-adjoint BCs. These are:

Y(b) = eiγKY(a), Y = [ y
(py󸀠) ] , (1.23)

where K satisfies (1.22), and −π < γ < 0 or 0 < γ < π.

Lemma 1.3.1. Given a boundary condition (1.3)–(1.4), it is equivalent to exactly one of
the separated, real coupled, or complex coupled boundary conditions defined above,
and each of these conditions can be written in the form (1.3)–(1.4).

Proof. See [113].

Notation 1.3.1. Given the canonical forms of the boundary conditions, we use the fol-
lowing notation for the eigenvalues:

λn(a, b, α, β, p, q,w), λn(a, b,K, p, q,w), λn(a, b, γ,K, p, q,w), n ∈ ℕ0. (1.24)
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8 | 1 Classical regular self-adjoint problems

To study the dependence of the eigenvalues for a fixed equation, we abbreviate this nota-
tion to λn(α, β), λn(K), λn(γ,K); to study the eigenvalues for a fixed boundary condition,
the notation is abbreviated to λn(p, q,w). Since the eigenvalues depend not on p, but
rather on 1/p, we should use 1/p in (1.24), but since the use of p is so well established
in the literature, we continue to use (1.24). Note that this notation covers all self-adjoint
boundary conditions. Since each of these has a unique representation as a separated,
real coupled, or complex coupled condition, we can study how the eigenvalues change
when the boundary condition changes. The existence of eigenvalues is discussed in the
next section.

Remark 1.3.1. This unique representation of the boundary conditions as separated,
real coupled, or complex coupled is of fundamental importance for the study of the
theoretical properties of the eigenvalues as functions of theboundary conditions (e. g.,
continuity) as well as for their numerical computation. Although the characterization
(1.3)–(1.4) of the self-adjoint boundary conditions extends naturally to equations of
general order n > 2,

AY(a) + BY(b) = 0

with solution vector Y , where A,B satisfy

A,B ∈ Mn(ℂ), AEA∗ = BEB∗, rank(A : B) = n,

and all entries of E are zeros except those on the counter diagonal that alternate be-
tween −1 and +1, there is no comparable canonical representation of the self-adjoint
boundary conditions for n > 2. Recently, for n = 4, Wang, Sun, and Zettl [101] have
shown that there are three classes of self-adjoint boundary conditions, separated, cou-
pled, and mixed, and found canonical forms for each class. The separated and cou-
pled canonical forms for n = 4 are more complicated than the corresponding ones for
n = 2.

Remark 1.3.2. In this remark, we comment on what happens when the normalization
conditions α ∈ [0,π) and β ∈ (0,π] are violated. For fixed β ∈ (0,π], as α→ 0−, λn(α, β)
has an infinite jump discontinuity when n = 0 and a finite jump discontinuity when
n ∈ ℕ. Similarly, for fixed α ∈ [0,π), as β → π+, λn(α, β) has an infinite jump discon-
tinuity when n = 0 and a finite jump discontinuity when n ∈ ℕ. In each case where
λn(α, β) has a jump discontinuity the eigenvalue can be embedded in a “continuous
eigenvalue branch”, which is defined by two indices n and n + 1; in other words, the
eigencurves from the left and right of the point where the jump occurs “match up”
continuously when one of the indices n is changed to n+ 1. Furthermore, the resulting
matched eigencurve determined by two consecutive indices is not only continuous but
also differentiable everywhere including at the matched point.
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1.4 Existence of eigenvalues

Given a self-adjoint realization S of equation (1.12) inH, what is its spectrum σ(S)? This
is the question we discuss in this section.

Theorem 1.4.1. Let S satisfy (1.14). Then the spectrum of S is bounded below and dis-
crete. Furthermore:
(1) There are an infinite but countable number of eigenvalues with no finite accumula-

tion point.
(2) The eigenvalues can be ordered to satisfy

−∞ < λ0 ≤ λ1 ≤ λ2 ≤ ⋅ ⋅ ⋅ ; λn → +∞ as n→∞. (1.25)

Each eigenvalue may be simple or double, but there cannot be two consecutive
equalities in (1.25) since, for any value of λ, equation (1.12) has exactly two linearly
independent solutions. Note that λn is well defined for each n ∈ ℕ0 but there is
some arbitrariness in the indexing of the eigenfunctions corresponding to a double
eigenvalue since every nontrivial solution of the equation for such an eigenvalue is
an eigenfunction. Let σ(S) = {λn : n ∈ ℕ0}, where the eigenvalues are ordered to
satisfy (1.25).

(3) If the boundary condition is separated, then strict inequality holds everywhere in
(1.25). Furthermore, if un is an eigenfunction of λn, then un is unique up to constant
multiples and has exactly n zeros in the open interval J = (a, b) for each n ∈ ℕ0.

(4) Let S be determined by a real coupled boundary condition matrix K, and let un be
a real-valued eigenfunction of λn(K). Then the number of zeros of un in the open
interval J is 0 or 1 if n = 0 and n − 1, n, or n + 1 if n ≥ 1.

(5) Let S be determined by a complex coupled boundary condition (K, γ), and let σ(S) =
{λn : n ∈ ℕ0}. Then all eigenvalues are simple, and strict inequality holds every-
where in (1.25). Moreover, if un is an eigenfunction of λn, then the number of zeros of
Re un on [a, b) is 0 or 1 if n = 0 and n − 1, n, or n + 1 if n ≥ 1. The same conclusion
holds for Im un. Moreover, un has no zero in [a, b], n ∈ ℕ0.

(6) For any self-adjoint boundary condition, separated, real coupled, or complex cou-
pled, we have the following asymptotic formula:

λn
n2
→ c = π2(

b

∫
a

√
w
p
)
−2

as n→∞. (1.26)

Proof. See [113].

Remark 1.4.1. Note that Theorem 1.4.1 justifies notation (1.24). Thus for each S satisfy-
ing (1.14), we have that the spectrum σ(S) of S is given by
(1) σ(S) = {λn(α, β), n ∈ ℕ0} if the boundary condition of S is separated and deter-

mined by the parameters α, β;
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10 | 1 Classical regular self-adjoint problems

(2) σ(S) = {λn(K), n ∈ ℕ0} if the boundary condition of S is real coupledwith coupling
constant K;

(3) σ(S) = {λn(γ,K), n ∈ ℕ0} if the boundary condition of S is complex coupled with
coupling constants K, γ.

Remark 1.4.2. Canonical forms of the boundary conditions make it possible to intro-
duce the notation of Remark 1.4.1. This notation identifies λn uniquely and makes
it possible to study the dependence of the eigenvalues on the boundary conditions
and on the coefficients as well as inequalities among eigenvalues of different bound-
ary conditions. As mentioned before, no comparable canonical representation of all
self-adjoint boundary conditions is known for higher-order ordinary differential equa-
tions. There are some recent results by Hao et al. [48, 46], but these are much more
complicated and thusmoredifficult touse for the studyof thedependenceof the eigen-
values on the problem. This is a major open problem for n > 2.

The next result shows what happens to the eigenvalues when the interval shrinks
to one endpoint. This study was motivated by a problem in fuel cell dynamics [8].

Theorem 1.4.2. Let c ∈ (a, b), and let {λn(c, α, β); n ∈ ℕ0}, α ∈ [0,π), β ∈ (0,π], denote
the eigenvalues on the interval (a, c) with all other parameters fixed. Then:
(1)

λn(c, α, β) → +∞ as c → a+, n ∈ ℕ. (1.27)

(2) If α < β, then

λ0(c, α, β) → +∞ as c → a+. (1.28)

(3) If α > β, then

λ0(c, α, β) → +∞ as c → a+. (1.29)

(4) λn(c, α, β)may have a finite limit as c → a+ if and only if α = β and n = 0.
(5) Similar results hold at the endpoint b.

Proof. See the paper by Kong, Wu, and Zettl [66].

Remark 1.4.3. Kong, Wu, and Zettl [66], under certain conditions on the coefficients,
found the finite limits of λ0(c, α, α) as c → a+ and showed that these finite limits do
not always exist. They may be ±∞, or they may not exist.
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1.5 Continuity of eigenvalues

In this section, we survey the continuity of the eigenvalues as functions of each pa-
rameter of the problem. Recall notation (1.24) for the eigenvalues:

λn(a, b, α, β, p, q,w), λn(a, b,K, p, q,w), λn(a, b, γ,K, p, q,w), n ∈ ℕ0.

When we study the dependence on one parameter x with the others fixed, we ab-
breviate the notation to λn(x); thus λn(q) indicates thatwe are studying λn as a function
of q ∈ L1(J, ℝ) with all other parameters of the problem fixed, λn(a) indicates that we
are studying λn as a function of the left endpoint with all other parameters fixed, and
so on.

The eigenvalues are continuous functions of each of 1
p , q,w, a, b;, in general, they

are not continuous functions of the boundary conditions. The continuity on the coef-
ficients 1

p , q,w is with respect to the L1(J, ℝ) norm, the continuity on K is with respect
to any matrix norm, and the continuity with respect to a, b, α, β, γ is in the reals ℝ.
It is shown in [60] (see also [113]) that even though, in general, λn is not a continu-
ous function of the boundary conditions for fixed n, it can always be embedded in a
“continuous branch” of eigenvalues by varying the index n. For separated boundary
conditions, there is a jumpdiscontinuitywhen either y(a) = 0 or y(b) = 0. The coupled
boundary conditions at which the eigenvalues are not continuous are characterized in
[113], and it is shown that all discontinuities are finite or infinite jumps.We call the set
of boundary conditions at which the eigenvalues have discontinuities “the jump set”
since all discontinuities are of the jump type.

We start with the continuous dependence on the coefficients and endpoints.

Theorem 1.5.1 (Kong, Wu, and Zettl). Let n ∈ ℕ0. Then:
(1) λn(1/p) is a continuous function of 1/p ∈ L1(J, ℝ);
(2) λn(q) is a continuous function of q ∈ L1(J, ℝ);
(3) λn(w) is a continuous function of w ∈ L1(J, ℝ);
(4) λn(a) is a continuous function of a; and
(5) λn(b) is a continuous function of b.

Proof. See Section 2 of Kong, Wu, and Zettl [60].

Next, we characterize the boundary conditions at which λn is not continuous, and
we call this set the “jump” set since all discontinuities are of jump type.

Definition 1.5.1 (Jump set of boundary conditions). The “jump set of boundary condi-
tions” 𝕁 is the union of
(1) the (real and complex) coupled conditions

Y(b) = eiγKY(a), Y = [ y
(py󸀠) ] , −π < γ ≤ π, (1.30)

where the 2 × 2 matrix K = (kij) ∈ SL(2, ℝ) satisfies k12 = 0, and
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12 | 1 Classical regular self-adjoint problems

(2) the separated boundary conditions

A1y(a) + A2(py
󸀠)(a) = 0, A1,A2 ∈ ℝ, (A1,A2) ̸= (0,0), (1.31)

B1y(b) + B2(py
󸀠)(b) = 0, B1,B2 ∈ ℝ, (B1,B2) ̸= (0,0),

satisfyingA2B2 = 0.Note that these are precisely the conditionswhere either α = 0
or β = π or both α = 0 and β = π.

Theorem 1.5.2. Let n ∈ ℕ0. Let 𝕁 be given by Definition 1.5.1. Then:
(1) If the boundary condition is not on the jump set 𝕁, then λn is a continuous function

of the boundary condition.
(2) If n ∈ ℕ, k12 = 0, and λn = λn−1, then λn is continuous at K.
(3) The lowest eigenvalue λ0 has an infinite jump discontinuity at each separated or

(real or complex) coupled boundary condition in 𝕁.
(4) Let n ∈ ℕ. If the boundary condition is in 𝕁 and λn is simple, then λn has a finite

jump discontinuity at this boundary condition.

Proof. See Section 3 in [60].

For the important particular case of separated boundary conditions in canonical
form, there is a stronger result:

Lemma 1.5.1. For any n ∈ ℕ0, λn(α, β) is jointly continuous on [0, α) × (0,π] and strictly
decreasing in α for each fixed β and strictly increasing in β for each fixed α.

Proof. See [60].

The next theoremgivesmore detailed information about separated boundary con-
ditions not in canonical form, in particular, for the separated jump boundary condi-
tions.

Theorem 1.5.3 (Everitt, Möller, and Zettl). Fix a, b, p, q,w and consider conditions
(1.31).
– Fix B1,B2 and let A1 = 1. Consider λn = λn(A2) as a function of A2 ∈ ℝ. Then for

each n ∈ ℕ0, λn(A2) is continuous at A2 for A2 > 0 and A2 < 0 but has a jump
discontinuity at A2 = 0. More precisely, we have:
(1) λn(A2) → λn(0) as A2 → 0−, n ∈ ℕ0.
(2) λ0(A2) → −∞ as A2 → 0+.
(3) λn+1(A2) → λn(0) as A2 → 0+.

– Fix A1,A2 and let B1 = 1. Consider λn = λn(B2) as a function of B2 ∈ ℝ. Then for each
n ∈ ℕ0, λn(B2) is continuous at B2 for B2 > 0 andB2 < 0 but has a jumpdiscontinuity
at B2 = 0. More precisely, we have:
(1) λn(B2) → λn(0) as B2 → 0+, n ∈ ℕ0.
(2) λ0(B2) → −∞ as B2 → 0−.
(3) λn+1(B2) → λn(0) as B2 → 0−.
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Proof. See Everitt, Möller, and Zettl [32, 33].

Remark 1.5.1. Note that λ0(A2) has an infinite jump discontinuity at A2 = 0, but for
all n ≥ 1, λn(A2) has a finite jump discontinuity at A2 = 0, and λn(A2) is left but not
right continuous at 0. Similarly, λ0(B2) has an infinite jump discontinuity at B2 = 0,
but for all n ≥ 1, λn(B2) has a finite jump discontinuity at B2 = 0, and λn(B2) is right
but not left continuous at 0. In all cases, λn(0) is embedded in a continuous branch
of eigenvalues as A2 or B2 passes through zero, but this branch is not given by a fixed
index n; to preserve the continuity, the index “jumps” from n to n+1 asA2 or B2 passes
through zero from the appropriate direction.

Remark 1.5.2. This forced “index jumping” to stay on a continuous branch of eigen-
values plays an important role in some of the algorithms and their numerical imple-
mentationsused in the codeSLEIGN2 [10] for thenumerical approximationof the spec-
trum of regular and singular Sturm–Liouville problems.

Remark 1.5.3. This “index jumping” phenomenon to stay on a “continuous eigen-
value branch” is quite general: It applies to all simple eigenvalues for all boundary
conditions on the jump set 𝕁, separated, real coupled, or complex coupled. For de-
tails, the reader is referred to [113], Theorems 3.39, 3.73, and 3.76, and Propositions 3.71
and 3.72 in [60].

Remark 1.5.4. Kong and Zettl [68] have shown that each continuous eigenvalue
branch is in fact differentiable everywhere including the point A2 = 0 (or B2 = 0)
where the index jumps. This also follows from Möller and Zettl [79].

Remark 1.5.5. It is remarkable that if the boundary condition is in 𝕁 and λn is simple,
then it can be embedded in a continuous eigenvalue branch, and this branch is differ-
entiable. Möller and Zettl [79] extended this result to abstract operators in a Banach
space.

1.6 Differentiability of eigenvalues

Now that as the continuities of λn have been characterized, it is natural to investigate
the differentiability of λn as a function of the parameters of the problem. We embark
upon this next. Here for each n ∈ ℕ0, un denotes a normalized eigenfunction of λn. For
all cases except where γ ≠ 0, we choose un to be real valued.

Theorem 1.6.1 (Kong and Zettl). Let (1.1)–(1.4) hold, and let n ∈ ℕ0.
(1) Assume that p, q,w are continuous at a and p(a) ̸= 0. Then λn(a) is differentiable

at a, and

λ󸀠n(a) = 1
p(a)
󵄨󵄨󵄨󵄨pu
󸀠
n
󵄨󵄨󵄨󵄨
2(a) − |un|

2(a)[q(a) − λn(a)w(a)]. (1.32)
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(2) Assume that p, q,w are continuous at b and p(b) ̸= 0. Then λn(b) is differentiable
at b, and

λ󸀠n(b) = − 1
p(b)
󵄨󵄨󵄨󵄨pu
󸀠
n
󵄨󵄨󵄨󵄨
2(b) + |un|

2(b)[q(b) − λn(b)w(b)]. (1.33)

(3) Let −π < γ < 0 or 0 < γ < π. Then λn(γ) is differentiable at γ, and

λ󸀠n(γ) = −2 Im[un(b)(pu󸀠n)(b)], (1.34)

where Im[z] denotes the imaginary part of z.
(4) Let α ∈ (0,π). Then λn(α) is differentiable, and its derivative is given by

λ󸀠n(α) = −u2(a) − (pu󸀠)2(a). (1.35)

(5) Let β ∈ (0,π). Then λn(β) is differentiable, and its derivative is given by

λ󸀠n(β) = u2(b) + (pu󸀠)2(b). (1.36)

Proof. See [68].

Next, we survey the differentiability of the eigenvalues with respect to the remain-
ing parameters: 1

p , q,w, and K.

Theorem 1.6.2 (Kong and Zettl). Let (1.1)–(1.4) hold, and let n ∈ ℕ0.
(1) Assume that λn(q) is a simple eigenvalue with real-valued normalized eigenfunction

un(⋅, q). Then λn(⋅, q) is differentiable in L1(J, ℝ), and its Fréchet derivative is given
by

λ󸀠n(q)h = b

∫
a

󵄨󵄨󵄨󵄨un(⋅, q)
󵄨󵄨󵄨󵄨
2h, h ∈ L1(J, ℝ). (1.37)

(2) Assume that λn(1/p) is a simple eigenvalue with real-valued normalized eigenfunc-
tion un(⋅,

1
p ). Then λn(⋅, 1/p) is differentiable in L

1(J, ℝ), and its Fréchet derivative is
given by

λ󸀠n(1/p)h = − b

∫
a

󵄨󵄨󵄨󵄨u
[1]
n (⋅, 1/p)

󵄨󵄨󵄨󵄨
2h, h ∈ L1(J, ℝ). (1.38)

(3) Assume that λn(w) is a simple eigenvaluewith real-valued normalized eigenfunction
un(⋅,w). Then λn(⋅,w) is differentiable in L1(J, ℝ), and its Fréchet derivative is given
by

λ󸀠n(w)h = −λn(w) b∫
a

󵄨󵄨󵄨󵄨un(⋅,w)
󵄨󵄨󵄨󵄨
2h, h ∈ L1(J, ℝ). (1.39)
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(4) Assume that λn(K) is a simple eigenvalue with real-valued normalized eigenfunc-
tion un(⋅,K). Then λn(⋅,K) is differentiable, and its Fréchet derivative is given by the
bounded linear transformation defined by

λ󸀠n(K)H = [pun󸀠(b), −un(b)]HK−1 [ un(b)
(pu󸀠n)(b) ] , H ∈ M2,2(ℂ). (1.40)

Proof. See [68]; also, see [79] for (4).

1.7 Eigenvalue inequalities

In this section,wedescribe how, for a fixed equation, the eigenvalues changewhen the
boundary conditions change. Since the Dirichlet and Neumann boundary conditions
play a special role, we introduce the notation

λDn = λn(0,π), λNn = λn(π/2,π/2), n ∈ ℕ0. (1.41)

Theorem 1.7.1. Let λDn be defined by (1.41). Then for all (A,B) satisfying the self-adjoint
boundary conditions (1.4), we have:
(1)

λn(A,B) ≤ λ
D
n , n ∈ ℕ0. (1.42)

Equality can hold in (1.42) for non-Dirichlet eigenvalues; see Theorem 1.7.2 and Re-
mark 1.7.1.

(2) For all (A,B) satisfying (1.4), we have

λDn ≤ λn+2(A,B), n ∈ ℕ0. (1.43)

(3) The range of λ0(A,B) is (−∞, λD0 ].
(4) The range of λ1(A,B) is (−∞, λD0 ].
(5) The range of λn(A,B) is (λDn−2, λDn ] for n ≥ 2.

Moreover, (3), (4), and (5) still hold when A,B are restricted to be real.

Proof. See [113].

Equality can occur in (1.42). The next result characterizes all such cases of equality
for n = 0.

Theorem 1.7.2. Let (1.1)–(1.4) hold, let λDn be defined by (1.41), and letΦ(t, λ) = (ϕij(t, λ))
be the primary fundamental matrix of the system representation of equation (1.12).
Then

λ0(A,B) = λ
D
0
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if and only if the boundary condition is the Dirichlet condition or the boundary condition
matrices A,B are given by

A = [
ϕ11(b, λD0 ) 0

ϕ21(b, λD0 ) ϕ22(b, λD0 )
] , B = [ −1 0

−d −1
] with d ≤ 0. (1.44)

In canonical form, these conditions are given by the coupling matrix

K = [
ϕ11(b, λD0 ) 0

dϕ11(b, λD0 ) + ϕ21(b, λD0 ) ϕ22(b, λD0 )
] , d ≤ 0. (1.45)

Proof. See Corollary 4.5 in Haertzen, Kong, Wu, and Zettl [45].

Remark 1.7.1. Wemake a number of observations about Theorem 1.7.1.
(1) λ0(α, β) = λD0 if and only if α = 0 and β = π. In other words, for no separated

boundary condition other than the Dirichlet condition does equality hold in (1.42)
when n = 0.

(2) For no complex coupled boundary condition does equality hold in (1.42) when
n = 0.

(3) For n = 0, equality holds in (1.42) for some coupled real boundary conditions. All
these are characterized in Theorem 1.7.1, and all these lie on the jump set 𝕁. (Recall
that this is the set of boundary conditions on which all eigenvalues λn have jump
discontinuities as functions of the boundary conditions.)

(4) Friedrichs Extension. Among all self-adjoint realizations of the Sturm–Liouville
equation (1.12) with p > 0, w > 0, that is, among all operators S satisfying
(1.14), there is a special one (“eine ausgezeichnete”) often singled out in applied
mathematics and mathematical physics, which is called the Friedrichs extension
in honor of K. O. Friedrichs, who constructed it without any direct reference to
a boundary condition. One of its basic properties is that it preserves the lower
bound of the minimal operator Smin associated with equation (1.12) in the Hilbert
space L2(J,w); however, it is not characterized by this property, that is, there may
be other self-adjoint extensions of the minimal operator that preserve its lower
bound. This lower bound is λD0 . Thus Theorem 1.7.1 gives examples of operators S
that have the same lower bound as Smin and are not the Friedrichs extensions of
Smin and characterizes all these.

(5) It is interesting to note that all operators S that have the same lower bound as
Smin are determined by boundary conditions that lie on the jump set 𝕁, and all,
except for the Dirichlet condition, are determined by real coupled boundary con-
ditions.

Next, we investigatemore closely how the eigenvalues changewhen the boundary
conditions change.
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According to a well-known classical result (see [27] and [24] for the case of smooth
coefficients and [105] for the general case), we have the following inequalities for
K = I, the identity matrix:

λN0 ≤ λ0(I) < λ0(e
iγI) < λ0(−I) ≤ {λ

D
0 , λ

N
1 }

≤ λ1(−I) < λ1(e
iγI) < λ1(I) ≤ {λ

D
1 , λ

N
2 }

≤ λ2(I) < λ2(e
iγI) < λ2(−I) ≤ {λ

D
2 , λ

N
3 }

≤ λ3(−I) < λ3(e
iγI) < λ3(I) ≤ {λ

D
3 , λ

N
4 } ≤ ⋅ ⋅ ⋅ , (1.46)

where γ ∈ (−π,π) and γ ̸= 0. In (1.46) the notation {λDn , λ
N
n+1} means either of λDn and

λNn+1, and there is no comparison made between these two. These inequalities are well
known in Flochet theory.

Eastham, Kong, Wu, and Zettl [26] extended these inequalities to general K ∈
SL(2, ℝ). A key feature of this extension is the identification of separated boundary
conditions, which play the role of the Dirichlet and Neumann conditions. These are
given next.

For K ∈ SL2(ℝ), K = [
k11 k12
k21 k22
], denote by μn = μn(K) and νn = νn(K), n ∈ ℕ0, the

eigenvalues of the separated boundary conditions

y(a) = 0, k22y(b) − k12y
[1](b) = 0; (1.47)

y[1](a) = 0, k21y(b) − k11y
[1](b) = 0; (1.48)

respectively. For convenience, we let y[1] = (py󸀠), the quasi-derivative of y. Note that
(k22, k12) ̸= (0,0) ̸= (k21, k11) since detK = 1. Therefore each of these is a self-adjoint
separated boundary condition with a countably infinite number of only real eigenval-
ues.

Theorem 1.7.3. Let (1.1)–(1.4) hold. Let μn and νn, n ∈ ℕ0, be the eigenvalues for (1.47)
and (1.48), respectively. Then we have:

– Suppose that k12 < 0 and k11 ≤ 0. Then
(1) λ0(K) is simple;
(2) λ0(K) < λ0(−K); and
(3) the following inequalities hold for −π < γ < 0 and 0 < γ < π:

−∞ < λ0(K) < λ0(γ,K) < λ0(−K) ≤ {μ0, ν0}

≤ λ1(−K) < λ1(γ,K) < λ1(K) ≤ {μ1, ν1}

≤ λ2(K) < λ2(γ,K) < λ2(−K) ≤ {μ2, ν2}

≤ λ3(−K) < λ3(γ,K) < λ3(−K) ≤ {μ3, ν3} ≤ ⋅ ⋅ ⋅ . (1.49)
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– Suppose that k12 ≤ 0 and k11 > 0. Then
(1) λ0(K) is simple;
(2) λ0(K) < λ0(−K); and
(3) the following inequalities hold for −π < γ < 0 and 0 < γ < π:

ν0 ≤ λ0(K) < λ0(γ,K) < λ0(−K) ≤ {μ0, ν1}

< λ1(−K) < λ1(γ,K) < λ1(K) ≤ {μ1, ν2}

≤ λ2(K) < λ2(γ,K) < λ2(−K) ≤ {μ2, ν3}

≤ λ3(−K) < λ3(γ,K) < λ3(K) ≤ {μ3, ν4} ≤ ⋅ ⋅ ⋅ . (1.50)

– Furthermore, for 0 < α < β < π, we have

λ0(β,K) < λ0(α,K) < λ1(α,K) < λ1(β,K) < λ2(β,K) < λ2(α,K)

< λ3(α,K) < λ3(β,K) < ⋅ ⋅ ⋅ .

– If neither of the above cases holds for K, then one of them must hold for −K. The
notation {μn, νm} is used to indicate either υn or νm, but no comparison is made
between μn and νm.

Proof. For a diagonal matrix K, these inequalities were established by Weidmann
[105]. The general result is proven by Eastham, Kong, Wu, and Zettl [26].

Next, we mention some interesting consequences of Theorem 1.7.3.

Remark 1.7.2. For separatedboundary conditions, the Prüfer transformation is a pow-
erful tool for proving the existence of eigenvalues, studying their properties and com-
puting themnumerically. There is no comparable tool for coupled conditions. For cou-
pled conditions, the standard existence proof for the eigenvalues is based on operator
theory in a Hilbert space; the Green’s function is constructed and used as a kernel in
the definition of an integral operator whose eigenvalues are those of the problem or
their reciprocals; see Coddington and Levinson [24] or Weidmann [105].

A proof based on Theorem 1.7.3 is given in [26] and goes as follows: Starting with
the eigenvalues μn and νn, n ∈ ℕ0, of the separated boundary conditions (1.47)–(1.48),
the proof of Theorem 4.8.1 in [26] (although this is not explicitly pointed out there) in
fact shows that there is exactly one eigenvalue of the coupled condition determined by
K in the interval (−∞, μ0], and it is λ0(γ,K); there is exactly one eigenvalue in the inter-
val [μ0, μ1], and it is λ1(γ,K); there is exactly one eigenvalue in the interval [μn, μn+1],
and it is λn+1(γ,K) for n ∈ ℕ0. This not only proves the existence of the eigenvalues of
K but can be used to construct an algorithm to compute them. Such an algorithm is
used by SLEIGN2; see [10]; see also [11, 12]. This seems to be the first existence proof
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for coupled eigenvalues that does not use self-adjoint operators in a Hilbert space and
thus can be considered as the first “elementary” existence proof.

Remark 1.7.3. By Theorem 1.7.3, for any K ∈ SL(2, ℝ), either λ0(K) or λ0(−K) is sim-
ple. This extends the classical result that the lowest periodic eigenvalue is simple to
the general case of arbitrary coupled self-adjoint boundary conditions. Here “simple”
refers to both the algebraic and geometric multiplicities, since these are equal.

Theorem 1.7.4. Let (1.1)–(1.4) hold. Let μn and νn, n ∈ ℕ0, be the eigenvalues for (1.47)
and (1.48), respectively.
(1) An eigenvalue λn(K) is double if and only if there exist k,m ∈ ℕ0 such that

λn(K) = μk = νm.

(2) Given eigenvalues λn(K) and λn+1(K) of K, distinct or not, there exist eigenvalues
υk , νm of the separated boundary conditions (1.47) and (1.48) such that

λn(K) ≤ {μk , νm} ≤ λn+1(K).
Proof. See Theorem 4.3 and Corollary 4.2 in Kong, Wu, and Zettl [60].

1.8 Monotonicity and multiplicity of eigenvalues

In this section, we fix a boundary condition and study how the eigenvalues change
when a coefficient changes monotonically and discuss their multiplicity.

Theorem 1.8.1. Let (1.1)–(1.4) hold, and let n ∈ ℕ0. Assume that −∞ < a < b < ∞.
(1) Fix p,w. Suppose Q ∈ L1((a, b), ℝ) and assume that Q ≥ q a. e. on [a, b].

Then λn(Q) ≥ λn(q). If Q > q on a subset of [a, b] having positive Lebesgue measure,
then λn(Q) > λn(q).

(2) Fix q,w. Suppose 1/P ∈ L1((a, b), ℝ) and 0 < P ≤ p a. e. on [a, b].
Then λn(1/P) ≥ λn(1/p); if 1/P < 1/p on a subset of [a, b] having positive Lebesgue
measure, then λn(1/P) < λn(1/p).

(3) Fix p, q. Suppose W ∈ L1((a, b), ℝ) and W ≥ w > 0 a. e. on [a, b].
Then λn(W) ≥ λn(w) if λn(W) < 0 and λn(w) < 0; but λn(W) ≤ λn(w) if λn(W) > 0
and λn(w) > 0. Furthermore, if strict inequality holds in the hypothesis on a set of
positive Lebesgue measure, then strict inequality holds in the conclusion.

Proof. Wegive the proof for (1); the proofs of (2) and (3) are similar. Define the function
f : ℝ → ℝ by

f (t) = λn(s(t)), s(t) = q + t(Q − q), t ∈ [0, 1].
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Then s(t) ∈ L1((a, b), ℝ) for each t ∈ [0, 1]. From the chain rule in a Banach space
and formula (1.37) for λ󸀠n(q) we have

f 󸀠(t) = λ󸀠n((s(t))s󸀠(t) = b

∫
a

󵄨󵄨󵄨󵄨u
2(r, s(t))󵄨󵄨󵄨󵄨(Q(r) − q(r)) dr ≥ 0, t ∈ [0, 1].

Hence f is nondecreasing on [0, 1], and f (1) = λn(Q) ≥ λn(q) = f (0). The strict
inequality part of the theorem also follows from this argument.

The next theorem shows that the algebraic and geometric multiplicities of the
eigenvalues of classical regular self-adjoint SLP are the same. Recall that the geomet-
ricmultiplicity of an eigenvalue is the dimension of its eigenspace, that is, the number
of linearly independent eigenfunctions of this eigenvalue. The algebraic multiplicity
of an eigenvalue is the order of its zero as a root of the characteristic function

δ(λ) = δ(a, b,A,B,P,w, λ) = det[A + BΦ(b, a,P,w, λ)], λ ∈ ℂ.

Theorem 1.8.2. The algebraic and geometric multiplicities of the eigenvalues of regular
self-adjoint Sturm–Liouville problems (1.1)–(1.4) are the same.

Proof. For coupled boundary conditions, this is given in [26]. The separated case is
proven in Theorem 4.12 of [60].

From here on we speak only of the multiplicity of an eigenvalue.

Theorem 1.8.3. Let (1.1)–(1.4) hold. Fix all components except q, and fix n ∈ ℕ0. Let

S1 = {q ∈ L
1(J, ℝ) : λn(q) is simple};

S2 = {q ∈ L
1(J, ℝ) : λn(q) is double}.

Then S1 is an open set in L1(J, ℝ), and S2 is closed and nowhere dense in L1(J, ℝ).
The same results hold when q is replaced by either 1/p or w.

Proof. This follows from Theorem 4.3 of [68] and the continuous dependence of λn on
1/p, q, and w established in [60].

1.9 The Prüfer transformation and separated boundary conditions

In this section, we briefly describe the well-known Prüfer transformation and its re-
lationship to separated boundary conditions. An elementary proof of the existence of
eigenvalues and their theoretical and numerical properties can be based on this trans-
formation.

To discuss the relation between the Sturm–Liouville equation and the equations
arising from the Prüfer transformation, we consider the equations

− (py󸀠)󸀠 + qy = λwy on J, (1.51)
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θ󸀠 = p−1 cos2 θ + (λw − q) sin2 θ on J, (1.52)

ρ󸀠 = [(p−1 + q − λw) sin θ cos θ]ρ on J, (1.53)

where

1/p, q,w ∈ L1(J, ℝ), λ ∈ ℝ, p > 0 a. e. on J = [a, b], −∞ < a < b < ∞. (1.54)

Theorem 1.9.1. Let (1.51)–(1.54) hold.
(1) Then every initial value problem for equation (1.52) has a unique real-valued solu-

tion, and this solution is defined on J.
(2) Suppose θ and ρ be solutions of (1.52) and (1.53), respectively. Then y = ρ sin θ is a

solution of (1.51) on J, and (py󸀠) = ρ cos θ.
(3) Suppose y is a nontrivial solution of (1.51). Then there exist a solution θ of (1.52)

and a solution ρ of (1.51) satisfying ρ(t) ̸= 0 for t ∈ J such that y = ρ sin θ and
(py󸀠) = ρ cos θ.

Proof. This is well known and classical.

Consider the SLP consisting of the equation

− (py󸀠)󸀠 + qy = λwy, on (a, b), −∞ < a < b < ∞, (1.55)

together with separated boundary conditions

A1y(a) + A2(py
󸀠)(a) = 0, (A1,A2) ̸= (0,0), A1,A2 ∈ ℝ, (1.56)

B1y(b) + B2(py
󸀠)(b) = 0, (B1,B2) ̸= (0,0), B1,B2 ∈ ℝ, (1.57)

and coefficients satisfying

p, q,w : (a, b) → ℝ, 1/p, q,w ∈ L(a, b), p > 0, w > 0 a. e. on (a, b). (1.58)

Theorem 1.9.2. Let (1.55)–(1.58) hold. Then:
(1) All eigenvalues are real and simple.
(2) There are an infinite but countable number of eigenvalues {λn : n ∈ ℕ0}; they are

bounded below and can be ordered to satisfy the inequalities

−∞ < λ0 < λ1 < λ2 < λ3 < ⋅ ⋅ ⋅ ,

and λn →∞ as n→∞.
(3) If un = un(⋅, λn) is an eigenfunction of λn, then un has exactly n zeros in the open

interval (a, b).
(4) Choose α ∈ [0,π) such that

tan α = −A2
A1

if A1 ̸= 0, and α = π/2 if A1 = 0;
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similarly, choose β ∈ (0,π] such that

tan β = −B2
B1
, if B1 ̸= 0, and β = π/2 if B1 = 0.

Then each eigenvalue λn is the unique solution λ = λn of the equation

θ(b, λ) = β + nπ, n ∈ ℕ0, (1.59)

where θ is the solution of (1.52) determined by the initial condition θ(a, λ) = α for
each λ ∈ ℝ.

(5) The sequence of eigenfunctions {un = un(⋅, λn) : n ∈ ℕ0} can be normalized to be an
orthonormal sequence in the Hilbert space H = L2(J,w), that is,

b

∫
a

unumw = {
0 if n ̸= m,
1 if n = m.

Furthermore, the orthonormal sequence {un = un(⋅, λn) : n ∈ ℕ0} is complete in H,
that is, for any f ∈ H, we have

f =
∞
∑
0
cnun, cn =

b

∫
a

funw.

Here the left equality means that the partial sums of the series on the right side of
the equation converge to f in the norm of H.

Proof. This is well known. Although the proof given by Coddington and Levinson [24]
has stronger hypotheses, it can readily be adapted to the given hypotheses.

The characterization (1.59) of Theorem 1.9.2 is established under the hypotheses
p > 0 and w > 0. These assumptions on p and w guarantee that the spectrum is
bounded below and (1.59) holds for each λn, n ∈ ℕ0. This characterization of λn is in-
teresting from theoretical and numerical perspectives. It can be used to numerically
compute each eigenvalue independently of all other eigenvalues; this is done in the
code SLEIGN2. Theoretically, it can be used to study the dependence of λn on the prob-
lem. Also, it follows directly from (1.52) that each eigenfunction of λn has exactly n
zeros in the open interval J. When p changes sign, the spectrum is unbounded above
and below. Does (1.59) hold in this case for all positive and negative eigenvalues? The
next theorem gives an affirmative answer to this question.We state this theorem in full
even though part of it is repetitive.

Theorem 1.9.3 (Binding and Volkmer). Consider the SLP consisting of the equation

−(py󸀠)󸀠 + qy = λwy on J = (a, b),
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together with separated boundary conditions

A1y(a) + A2(py
󸀠)(a) = 0, (A1,A2) ̸= (0,0), A1,A2 ∈ ℝ,

B1y(b) + B2(py
󸀠)(b) = 0, (B1,B2) ̸= (0,0), B1,B2 ∈ ℝ,

and coefficients satisfying

1/p, q,w ∈ L(J, ℝ), w > 0 a. e. on J = (a, b), −∞ < a < b < ∞.

Assume that p changes sign on J. Then this SLPhas only real and simple eigenvalues,
there are an infinite but countable number of them, and they are unbounded below and
above and can be indexed and ordered to satisfy

⋅ ⋅ ⋅ < λ−3 < λ−2 < λ−1 < λ0 < λ1 < λ2 < λ3 < ⋅ ⋅ ⋅ . (1.60)

Let θ be defined as before. Then for each integer n ∈ ℤ = (. . . , −2, −1,0, 1, 2, 3, . . . }, there
is exactly one eigenvalue λn, which is the unique solution of the equation

θ(b, λn) = nπ + β. (1.61)

There are no other eigenvalues. Here β is defined as in equation (1.59).

Proof. See Binding and Volkmer [15] and the next remark.

Remark 1.9.1. The fact that all eigenvalues are real and that there are an infinite but
countable number of them follows from the “standard” Hilbert space proof – using
the Hilbert space L2(J,w) – and the self-adjoint operator realization of this SLP; see
[24]. Möller [78] showed that these eigenvalues are unbounded above and below. By
the characterization of the eigenvalues as zeros of the characteristic function (see
[113]) the eigenvalues are isolated with no finite accumulation point. The simplicity
of the eigenvalues is clear from the separated boundary conditions. The indexing of
the eigenvalues so that (1.60) holds is not unique, in fact, rather arbitrary. It can be
made more definite as follows: If λ = 0 is an eigenvalue, then denote it by λ0 and let
λ1 denote the smallest positive eigenvalue. The latter exists: Let

λ1 = inf{λn : λn > 0},

then λ1 is an eigenvalue by the continuity of the characteristic function δ(λ) and is
positive since λ = 0 is isolated. Similarly, λ2 = inf{λn > λ1} is an eigenvalue greater
than λ1, and so on. The same argument can be used when λ = 0 is not an eigenvalue.
This is the indexing scheme used by the code SLEIGN2 for the numerical computation
of the eigenvalues in the singular limit-circle oscillatory case. As already mentioned,
it is rather arbitrary: we can replace λ = 0 in this scheme by any real λ and use it for a
“pivot”.
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In sharp contrast the characterization of the eigenvalues in terms of the Prüfer an-
gle θ given by equation (1.61) is definite and explicit. It is interesting from theoretical
and numerical perspectives. For instance, if we compute an eigenvalue as a root of
the characteristic equation δ(λ) = 0, then the following question arises: Which eigen-
value is it? Characterization (1.61) gives a definite answer to this question for this class
of SLPs. In general, indexing the eigenvalues in some definite and explicit manner
is a difficult open problem for nonclassical problems, even in the case where the co-
efficients are real-valued and the boundary conditions are self-adjoint, for example,
when both p and w change sign. The Binding–Volkmer characterization (1.61) is an
important result for problems where p changes sign.

1.10 A Prüfer characterization for real coupled conditions

In the previous section, we saw that the Prüfer transformation is a powerful tool for
studying properties of eigenvalues and eigenfunctions; for example, to prove that the
nth eigenfunction has exactly n zeros in the open domain interval (a, b). In 1966, Bai-
ley [7] showed that the Prüfer transformation can be used to compute the eigenval-
ues for separated conditions very effectively and efficiently. The nth eigenvalue can be
computed without any prior knowledge of the previous or subsequent eigenvalues for
any n.

The code SLEIGN2 [10] computes eigenvalues for separated and real or complex
coupled self-adjoint boundary conditions. The algorithmused by SLEIGN2 is based on
the inequalities discussed in Section 1.7. These inequalities locate the coupled eigen-
values uniquely between two separated ones. The Prüfer transformation is then used
to compute the separated eigenvalues followed by a search mechanism to compute
the coupled eigenvalue within the bounds given by the separated ones.

Bailey and Zettl [13] developed an algorithm to characterize and compute the
eigenvalues of general real coupled boundary conditions

Y(b) = KY(a), Y = [ y
(py󸀠) ] ,

where K ∈ SL2(ℝ), that is, K is real, and detK = 1. They constructed a one-parameter
family of separated conditions and proved that the extrema of this family were eigen-
values for K or −K and all eigenvalues for K and −K can be obtained in this way. Given
the index n, for any eigenvalue ofK, they determined an appropriate separated bound-
ary condition and determinedwhich eigenvalue of this separated conditionwas equal
to the coupled eigenvalue with this index n.

Thus the Prüfer characterization for separated boundary conditions discussed in
the previous section can be used to study the eigenvalues of any real coupled condi-
tion. If λn is a simple eigenvalue forK, then the number of its zeros in the open domain
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interval is determined exactly by this characterization. Furthermore, this characteri-
zation can be used to compute the eigenvalues for any K ∈ SL2(ℝ) using any code that
works for separated conditions.

In stark contrast to this close relation between the eigenvalues λn(K) and λn(α, β),
no eigenvalue of the constructed family of separated conditions determined by K or
−K is an eigenvalue λn(K, γ) for any γ ̸= 0.

As mentioned before, for each K ∈ SL2(ℝ), all eigenvalues for K and −K can be
found from the eigenvalues of a related family of separated conditions constructed
from K. Next, we define this separated family and present an algorithm.

Definition 1.10.1 (α-family of K). Let K = (kij) ∈ SL2(ℝ). For each α ∈ [0,π), consider
the separated boundary conditions

y(a) cos α − (py󸀠)(a) sin α = 0,
y(b)(k21 sin α + k22 cos α) − (py

󸀠)(b)(k11 sin α + k12 cos α) = 0. (1.62)

Define α∗ ∈ [0,π) by
α∗ = {tan(−k12/k11) if k11 ̸= 0,

π/2 if k11 = 0.
(1.63)

Note that α∗ = 0 when k12 = 0 since k11 ̸= 0 in this case.
Remark 1.10.1. Note that condition (1.62) for −K is equivalent to (1.62) for K. Since K ∈
SL2(ℝ), (ki1, ki2) ̸= (0,0) ̸= (k1i, k2i), i = 1, 2, and (1.62) is a self-adjoint boundary condi-
tion for each α ∈ [0,π). When α = 0, (1.62) reduces to y(a) = 0 = y(b)k22 − (py󸀠)(b)k12;
when α = π/2, (1.62) is equivalent with (py󸀠)(a) = 0 = y(b)k21 − (py󸀠)(b)k11. When
α = π/2 and k11 = 0, (1.62) becomes (py󸀠)(a) = 0 = y(b).
Definition 1.10.2. Let K = (kij) ∈ SL2(ℝ). For each α ∈ [0,π), let

{μn(α) : n ∈ ℕ0} (1.64)

denote the eigenvalues of (1.62).

These eigenvalues {μn(α) : n ∈ ℕ0} determine all eigenvalues for K and for −K for
each K ∈ SL2(ℝ). The next theorem defines the continuous eigenvalue curves whose
maxima and minima are the eigenvalues for K and −K.

Theorem 1.10.1. Let K = (kij) ∈ SL2(ℝ).
(1) Suppose k12 ̸= 0 and α∗ is defined by (1.63). Then α∗ ∈ (0,π). For each n ∈ ℕ0,

define the eigencurves Rn and Ln as follows:

Rn(α) = μn(α), α∗ ≤ α < π; (1.65)
Ln(α) = μn(α), 0 ≤ α < α∗. (1.66)

Then Rn(α) is continuous on [α∗,π), and Ln(α) is continuous on [0, α∗).
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(2) Suppose k12 = 0. Define Rn by

Rn(α) = μn(α), 0 ≤ α < π. (1.67)

Then Rn(α) is continuous on [0,π). (There is no Ln in this case.)

Proof. This follows from Lemma 1.5.1.

The selection process for the eigenvalues for K and −K is given by the following
algorithm.

Algorithm 1. Let K ∈ SL2(ℝ).
– If λn(K) = λn+1(K) for some n ∈ ℕ, then μn(α) = λn(K) for all α ∈ [0,π).

(1) Assume k12 = 0 and k11 > 0. Then λ0(K) is simple, and
a:

λ0(K) = maxR0(α), 0 ≤ α < π. (1.68)

b: If n is even, then

λn(K) = maxRn(α), 0 ≤ α < π. (1.69)

c: If n is odd, then

λn(K) = minRn+1(α), 0 ≤ α < π. (1.70)

(2) Assume k12 = 0 and k11 < 0. (Note that if k12 = 0, then k11 ̸= 0 since det(K) = 1.)
Then
a:

λ0(K) = minR1(α), 0 ≤ α < π.

b: If n is even, then

λn(K) = minRn+1(α), 0 ≤ α < π.

c: If n is odd, then

λn(K) = maxRn(α), 0 ≤ α < π.

(3) Assume k12 < 0. Then
a:

λ0(K) = maxR0(α), α∗ ≤ α < π.
b: If n is even, then

λn(K) = maxRn(α), α∗ ≤ α < π.
c: If n is odd, then

λn(K) = min Ln(α), 0 ≤ α < α∗.
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(4) Assume k12 > 0. Then
a:

λ0(K) = min L0(α), 0 ≤ α < α∗.
b: If n is even, then

λn(K) = min Ln(α), 0 ≤ α < α∗.
c: If n is odd, then

λn(K) = maxRn(α), α∗ ≤ α < π.
Proof. See below.

Except for the case where k12 < 0 and n = 0, the inequalities given in Section 1.7
locate each eigenvalue λn(K), n ∈ ℕ0, uniquely between two consecutive eigenvalues
of the separated boundary conditions. The next corollary fills this gap.

Corollary 1.10.1. Assume that k12 > 0. Then for any α ∈ [α∗,π), we have that
λ0(K) ≤ μ0(α).

In particular, for any ε > 0, μ0(α) − ε is a lower bound of λ0(K).

Proof. This follows from part 3(a) of the Algorithm.

1.11 Another family of separated boundary conditions

In this section we study another family of separated boundary conditions generated
by a coupling matrix K. This family and its relation to the α-family constructed in the
previous section is used in the proof of Algorithm 1 and, we believe, is of independent
interest. But we first recall the characterization of the eigenvalues by means of the
characteristic function.

For any λ ∈ ℂ, define two linearly independent solutions φ(x, λ) and ψ(x, λ) of the
differential equation (1.1) by the initial conditions

φ(a, λ) = 0, (pφ󸀠)(a, λ) = 1, (1.71)
ψ(a, λ) = 1, (pψ󸀠)(a, λ) = 0.

Then any solution y(x, λ) of equation (1.1) can be expressed in the form

y(x, λ) = y(a, λ)ψ(x, λ) + (py󸀠)(a, λ)φ(x, λ), (1.72)
(py󸀠)(x, λ) = y(a, λ)(pψ󸀠)(x, λ) + (py󸀠)(a, λ)(pφ󸀠)(x, λ)
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for all x ∈ [a, b] and λ ∈ ℂ. In particular, we have

y(b, λ) = y(a, λ)ψ(b, λ) + (py󸀠)(a, λ)φ(b, λ), (1.73)
(py󸀠)(b, λ) = y(a, λ)(pψ󸀠)(b, λ) + (py󸀠)(a, λ)(pφ󸀠)(b, λ),

and two basic results follow.

Theorem 1.11.1. Let λ ∈ ℂ. The differential equation (1.1) has a nontrivial solution sat-
isfying the separated boundary conditions (1.15)–(1.16) if and only if

δ(λ) := −A1B2(pφ
󸀠)(b, λ) + A2B1ψ(b, λ) + A2B2(pψ󸀠)(b, λ) − A1B1φ(b, λ) = 0. (1.74)

Proof. Simply substitute (1.73) into (1.1) to get two equations in y(a, λ) and (py󸀠)(a, λ),
which must be consistent. This condition is (1.74).

Theorem 1.11.2. Let K ∈ SL2(ℝ), λ ∈ ℂ, −π < γ ≤ π. The differential equation (1.1) has
a nontrivial solution satisfying the coupled boundary conditions (1.9) if and only if

D(λ) = k11(pφ
󸀠)(b, λ) − k21φ(b, λ) + k22ψ(b, λ) − k12(pψ󸀠)(b, λ) = 2 cos γ. (1.75)

Proof. Proceed as in the proof of Theorem 1.11.1 using the coupled boundary condi-
tions (1.9); see [113] for details.

Nowwe define a family of separated boundary conditions in terms of r ∈ ℝ∪{±∞}
as follows: Given K ∈ SL2(ℝ), for each r ∈ ℝ, consider the boundary conditions

y(a) − r(py󸀠)(a) = 0, (1.76)
(k21r + k22)y(b) − (k11r + k12)(py

󸀠)(b) = 0,
and also the condition

(py󸀠)(a) = 0 = k21y(b) − k11(py󸀠)(b) = 0. (1.77)

Condition (1.77) corresponds to r = ±∞; its eigenvalues are denoted by νn =
λn(±∞), n ∈ ℕ0. Here it is important to keep in mind that conditions (1.76) for all r ∈ ℝ
and condition (1.77) together form one family of separated conditions generated by K;
we refer to this family as the r-family of K. Next, we study this family.

Notation 1.11.1. Let σ(r) = {λn(r), n ∈ ℕ0} denote the eigenvalues of the r-family with
νn = λn(±∞) corresponding to r ±∞.

The next lemma discusses the continuity properties of the eigenvalues of the
r-family.

Lemma 1.11.1. For a fixed n ∈ ℕ0, the eigenvalue function λn(r) is a continuous function
of r ∈ ℝ except in the following three cases:
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(1) as r → 0−.
(2) when k12 = 0 and r = 0 (note that r22 ̸= 0 in this case).
(3) when k11 ̸= 0 and r = −k12/k11.

Proof. This follows from the continuity theorem.

Next, for each K = (kij) ∈ SL2(ℝ), we construct a family of separated boundary
conditions associated with K. Let r ∈ ℝ ∪ {±∞}, let

R = rk11 + k12
rk21 + k22

, (1.78)

and note that:
(1) Not both of k11, k12 or k21, k22 can be 0 since det(K) = 1.
(2) If k12 = 0, then k11 ̸= 0 and R = 0 if and only if r = 0.
(3) If k21 ̸= 0 and r = −k22/k21, then R is undefined.
(4) If k21 = 0, then k22 ̸= 0, and R is well defined for all r ∈ ℝ.

The next theorem relates the eigenvalues of K and −K with those of the r-family of K.

Theorem 1.11.3. Let K ∈ SL2(ℝ), and let D(λ) be defined by (1.75). If λ is an eigenvalue
of any member of the r-family of K, then D2(λ) − 4 ≥ 0, that is, D(λ) ≥ 2 or D(λ) ≤ −2.

Proof. Wefirst prove the casewhere r ∈ ℝ. If λ is such an eigenvalue, then its boundary
conditions are of the form (1.15)–(1.16) with

A1 = 1, A2 = −r, B1 = 1, B2 = −R. (1.79)

Substituting into (1.78) gives a quadratic equation in r,

Ar2 + Br + C = 0, (1.80)

where

A = k21ψ(b, λ) − k11(pψ
󸀠)(b, λ), (1.81)

B = k21φ(b, λ) + k22ψ(b, λ) − k11(pψ
󸀠)(b, λ) − k12(pφ󸀠)(b, λ),

C = k22φ(b, λ) − k12(pφ
󸀠)(b, λ).

Since λ is an eigenvalue for some fixed number r, the left-hand side of (1.80) must
vanish. Hence

4A2{(r + B
2A
)
2
−
B2 − 4AC

4A2
} = 0,

or

4A2(r + B
2A
)
2
= B2 − 4AC.
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A direct computation shows that B2 − 4AC = D2(λ) − 4. Therefore

4A2(r + B
2A
)
2
= D2(λ) − 4.

Since r, A,B,C are real, it follows that

D2(λ) ≥ 4 and D(λ) ≥ 2 or D(λ) ≤ −2. (1.82)

This concludes the proof for r ∈ ℝ.
For r = ±∞, themember of the r-family is (1.77), whose eigenvalues are νn, n ∈ ℕ0.

The conclusion (1.82) for νn,n ∈ ℕ0, was established in [113] pp. 80–84. This concludes
the proof.

Although the next result is a corollary of Theorem 1.11.2 and other known results,
we state it here as a theorem because we think it is surprising and provides a stark
contrast with Algorithm 1.

Theorem 1.11.4. Let K ∈ SL2(ℝ). Let σ(r) for r ∈ ℝ ∪ {±∞}, and let σ(K, γ) for γ ∈
(−π,0) ∪ (0,π) be defined as before. Then no eigenvalue of any member of any r-family
is an eigenvalue in σ(K, γ) for any γ ∈ (−π,0) ∪ (0,π). More explicitly,

σ(r) ∩ σ(K, γ) = 0 (1.83)

for all r ∈ ℝ ∪ {±∞} and γ ∈ (−π,0) ∪ (0,π).

Proof. If λ is an eigenvalue in σ(K, γ) for any γ ∈ (−π,0) ∪ (0,π), then |D(λ)| < 2 by
(1.82), and the conclusion follows from Theorem 1.11.2.

Theorem 1.11.5. Let K ∈ SL2(ℝ). If λ󸀠n(r0) = 0 for some n ∈ ℕ0 and some r0 ∈ ℝ ∪ {±∞},
then λn(r0) is an eigenvalue of either K or −K.

Proof. Suppose λ = λn(r) satisfies equation (1.75). Each term of this equation is a func-
tion of r, so we differentiate the left-hand side of the equation with respect to r and
obtain

2Ar + B + {r2 𝜕A
𝜕λ
+ r 𝜕B
𝜕λ
+ C 𝜕C
𝜕λ
}
dλ
dr
= 0 at λ = λn(r). (1.84)

By assumption, λ󸀠n(r0) = 0. Hence (1.84) reduces to
2Ar0 + B = 0 at λn(r0). (1.85)

This equation yields B2 − 4AC = 0, and this implies that D2(λ) − 4 = 0, which means
that λ is an eigenvalue for either K or −K.

Remark 1.11.1. In other words, Theorem 1.11.3 says that the eigenvalues for K and −K
are the extrema of the continuous eigencurves Ln(α) and Rn(α) defined before. For any
K and n, the algorithm explicitly states which extremum is equal to λn(K).

 EBSCOhost - printed on 2/10/2023 3:33 PM via . All use subject to https://www.ebsco.com/terms-of-use



1.12 Proof of the algorithm | 31

Next, we study the relation of the α- and r-families with each other.
Let r ∈ ℝ ∪ {±∞} be determined by

tan(α) = r, α ∈ [0,π), (1.86)

where r = ±∞ when α = π/2.
Let R be given by (1.86). Now define β = β(α) = β(α(r)) by

tan(β) = R, β ∈ (0,π] (1.87)

and observe that
(1) β = π/2 when k21 ̸= 0 and r = −k22/k12;
(2) β = π if and only if k12 = 0 and r = 0, and
(3) by (1.87) β = π/2 corresponds to R = ±∞.

By definition, α = π/2 corresponds to r = ±∞.
In each of these three cases, there is an infinite jump discontinuity when n = 0

and a finite jump discontinuity when n > 0.

1.12 Proof of the algorithm

The proof is basically obtained by combining Theorems 1.11.3 and 1.11.4 with the
known inequalities given in Section 1.7.

Proof of Algorithm 1. First, consider the particular case k12 = 0. Then α∗ = 0. If k11 > 0,
then by the inequalities theorem, the interval [λn−1(K), λn(K)] for even n contains νn =
υn(π/2), and the function υn(α) is continuous at α = π/2. By Theorem 1.4.2, υn(α) can-
not move outside the interval [λn−1(K), λn(K)] as α varies continuously away from α =
π/2 since υn(α) > λn(K) or υn(α) < λn−1(K) would contradict D2(υn(α)) − 4 ≥ 0. There-
fore λn−1(K) ≤ υn(α) ≤ λn(K) for all α ∈ [0,π). If λn−1(K) = λn(K), then υn(α) = λn(K) for
all α ∈ [0,π).

If λn−1(K) < λn(K), then the continuous function υn(α) has a maximum and a
minimum in the compact interval [λn−1(K), λn(K)] as α varies in [0,π). If the maxi-
mum is not λn(K), then it occurs in the interior of this interval, and by Theorem 1.4.2
λn(K) = max{υn(α) : α ∈ [0,π)}. Similarly, λn−1(K) = min{υn(α) : α ∈ [0,π)}. The proof
for k12 = 0 and k11 < 0 is similar.

If k12 ̸= 0, then 0 < α∗. In this case the proof is also similar to the above proof but
with one important difference: The interval [0,π) in the above argument is replaced
by two intervals [0, α∗) and [α∗,π). This is due to the fact that the function υn(α) has
a jump discontinuity at α∗ – see part (1) of Theorem 1.2.1 for a discussion of jump
discontinuities of eigencurves for separated boundary conditions. This discontinuity
is due to the fact that tan(β) = 0 when α = α∗, and hence (recall the normalization
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for β in (1.5)) β = π when α = α∗. See part (1) of Theorem 1.2.1 for a discussion of
jump discontinuities. Although this discussion is for the case where β is fixed as α
varies, it extends readily to our situation where β is a continuous function of α. In
fact, the results mentioned in part (1) of Theorem 1.2.1 have far reaching extensions;
see Sections 3.4, 3.5, and 3.6 in [113].

Remark 1.12.1. Note that the intersections of the function D(λ) with the horizontal
lines at +2 and −2, which are the eigenvalues for K and −K, correspond precisely with
the local extrema of the continuous eigencurvesRn(α) and Ln(α) of the related α-family
in an appropriate α interval. See the graph of a typical characteristic function D(λ) on
page 92 in [113].

The eigenvalues corresponding to each index n lie along two distinct continuous
curves, one on [0, α∗) and the other on [α∗,π).

When the parameter γ = 0 (or π), then D(λ) = 2 if and only if λ is an eigenvalue
for the problem with coupled boundary conditions defined by a matrix K; D(λ) = −2
when λ is an eigenvalue of the problems defined by −K. Thus to compute eigenval-
ues of such coupled boundary condition problems, we simply compute the values of
functions φ(x, λ) and ψ(x, λ) at x = b, evaluate D(λ), and search for values of λ for
which D(λ) = 2. But then we have to determine the index n. For this, the upper and
lower bounds obtained from Theorem 1.2.1 (see Remark 1.2.1) can be used. See [13] for
examples of computed eigenvalues of coupled boundary conditions computed with
SLEIGN2 and this algorithm.

1.13 Comments

Most of the material covered in Sections 1–9 can be found in the book [113]. Sections
10, 11, and 12 describe an algorithm developed by Bailey and Zettl [13] in 2012, which
can be used with SLEIGN2 to compute the eigenvalues of regular and singular Sturm–
Liouville problemswith real coupled self-adjoint boundary conditions. This algorithm
is based on using the Prüfer transformation on families of separated boundary condi-
tions.

In 1978, Bailey introduced the code SLEIGN to compute the eigenvalues of Sturm–
Liouville problems with regular self-adjoint separated boundary conditions and for a
singular problem selected by the code. This singular problem is usually, but not al-
ways, the Friedrichs extension. In 1991, Bailey, Everitt, and Zettl [6] introduced the
code SLEIGN2 based on new algorithms. SLEIGN2, when used together with appro-
priate theoretical results, can also provide some information about the spectrum of
some singular problems, for example, the starting point of the essential spectrum,
the number and numerical value of eigenvalues below the essential spectrum, and
an approximation of the first few spectral bands and gaps; see the paper [10] of these
authors for examples and additional information.
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The SLEIGN2 “package” and a number of related papers can be downloaded from
the Web at

http://www.math.niu.edu/~zettl/SL2

This package contains a user-friendly interface consisting of six FORTRAN files,
two tex files, and three pdf files. All these files can be downloaded by clicking on the
given links.

Also see [10] for a comparison of SLEIGN2, which uses the Prüfer transformation,
and the Fulton–Pruess code SLEDGE [40], which is based on approximating the coef-
ficients. Both codes are used in [10] on some examples to compute eigenvalues, and
the results are compared.

 EBSCOhost - printed on 2/10/2023 3:33 PM via . All use subject to https://www.ebsco.com/terms-of-use



 EBSCOhost - printed on 2/10/2023 3:33 PM via . All use subject to https://www.ebsco.com/terms-of-use



2 Periodic coefficients

2.1 Eigenvalues of periodic, semiperiodic, and complex boundary
conditions

Consider the equation

− (py󸀠)󸀠 + qy = λwy, λ ∈ ℂ, (2.1)

with coefficients satisfying

1/p, q,w ∈ Lloc(ℝ,ℝ), p > 0, w > 0 a. e. on ℝ. (2.2)

The coefficients are h-periodic if for some h ∈ ℝ, 0 < h < ∞,

p(t + h) = p(t), q(t + h) = q(t), w(t + h) = w(t), t ∈ ℝ; (2.3)

the complex boundary conditions on the interval [a, a + h] for any given a ∈ ℝ are
defined by

y(a + h) = eiγy(a),

(py󸀠)(a + h) = eiγ(py󸀠)(a), 0 < γ < π; (2.4)

and the periodic and semiperiodic boundary conditions on each of the k intervals
[a, a + kh], k ∈ ℕ, are defined by

y(a + kh) = y(a),
(py󸀠)(a + kh) = (py󸀠)(a), (2.5)

and

y(a + kh) = −y(a),
(py󸀠)(a + kh) = −(py󸀠)(a). (2.6)

Remark 2.1.1. Note that condition (2.2) implies that the coefficients satisfy

1/p, q,w ∈ L1(J, ℝ), p > 0, w > 0 a. e. on J (2.7)

for any interval J = [a, a + kh], a ∈ ℝ, k ∈ ℕ. Thus all these problems are regular
classical self-adjoint boundary value problems. So the results of Chapter 1 apply to
each of these problems.

Remark 2.1.2. Also note that we do not assume that h is the smallest positive number
for which (2.3) holds.

https://doi.org/10.1515/9783110719000-002
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Each of these boundary value problems has a discrete spectrum consisting of a
countable number of real eigenvalues {λn : n ∈ ℕ0}, which are bounded below and
unbounded above and can be ordered to satisfy

−∞ < λ0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ ⋅ ⋅ ⋅ . (2.8)

Furthermore, for the complex boundary condition (2.4), all inequalities are strict,
that is, each eigenvalue has multiplicity 1; for the periodic and semiperiodic condi-
tions (2.5) and (2.6) – with k = 1 – the eigenvalues may have multiplicity 1 or 2 with
the exception of the lowest periodic eigenvalue, which has multiplicity 1. Here multi-
plicity can be interpreted as either the geometric or algebraic multiplicity since these
are the same.

For these and other basic results, definitions, and notation about Sturm–Liouville
problems used further, we refer the reader to Chapter 1 or [113].

Notation 2.1.1. We denote the complex, periodic, and semiperiodic eigenvalues by
λn(γ), λPn (k), and λ

S
n(k), respectively, for n ∈ ℕ0, k ∈ ℕ, and γ ∈ (0,π). Note that each

eigenvalue λn is uniquely defined, although there may be some ambiguity for its eigen-
functions in case of multiplicity 2 for the periodic and semiperiodic cases. We also use
the notations λPn (1) = λ

P
n = λ

P
n (0), λ

S
n(1) = λ

S
n = λ

S
n(π), n ∈ ℕ0, since the periodic eigen-

values correspond to the endpoint 0, and the semiperiodic eigenvalues correspond to
the endpoint π of the interval (0,π) in a natural sense as we will see further. Also, λDn (k)
and λNn (k) denote the Dirichlet and Neumann eigenvalues; these play a special role for
eigenvalue inequalities for different boundary conditions.

For each k > 2, we identify which values of γ generate the periodic eigenvalues
λPn (k) and which ones generate the semiperiodic eigenvalues λSn(k). The case where
k = 2 is special in the sense that no value of γ generates these eigenvalues.

Remark 2.1.3. For smooth coefficients, periodic boundary conditions of the form

y(a) = y(b), y󸀠(a) = y󸀠(b)
and semiperiodic conditions of the form

y(a) = −y(b), y󸀠(a) = −y󸀠(b),
as well as different parameterizations of γ and relation between the eigenvalues λn(γ)
and λPn (k) are investigated in the well-known book by Eastham [27]. Although we are
influenced by some of the methods used in [27], there are a number of significant dif-
ferences in our approach:
(1) We assume neither that p is differentiable nor that q and w are piecewise contin-

uous and that w is bounded away from 0.
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(2) We do assume that p is positive. This seems to be an oversight in [27]. If p has
positive and negative values, both on sets of positive Lebesgue measure (such as
subintervals), then the eigenvalues are unbounded above and below [78]. So there
is no unique ordering (2.8) of the eigenvalues. This ordering is critical for the re-
sults below and in [27].

(3) We believe that definitions (2.5) and (2.6) for periodic and semiperiodic bound-
ary conditions aremore natural than those used in [27]. Under condition (2.2), the
quasi-derivative y[1] = (py󸀠) is continuous on [a, b], whereas the classical deriva-
tive y󸀠 may not be continuous on [a, b] andmay not exist at all points of this inter-
val. See [113] for further elaborations of this point.

(4) We use the interval (0,π) to parameterize the complex boundary conditions (2.4),
which generate the eigenvalues {λPn (k), λ

S
n(k) : n ∈ ℕ0, k > 2}. We believe that this

is more natural, simpler, and more transparent than the interval [−1, 1] used in
[27]. In particular, it provides a simple visualization of the points on the unit circle
in the complex plane that generate these eigenvalues and naturally associates
the “boundary” point 0 and π with the periodic and semiperiodic eigenvalues,
respectively.

2.2 General eigenvalue inequalities

For convenienceof the reader,we revieweigenvalue inequalities for equation (2.1)with
coefficients satisfying

1/p, q,w ∈ L1(J, ℝ), p > 0, w > 0 a. e. on J, (2.1)

on an interval J = [a, b], −∞ < a < b < ∞.

Remark 2.2.1. Note that in this section we do not assume that the coefficients are pe-
riodic. We will apply the results from this section to the intervals [a, a + kh] for k ∈ ℕ
in the next sections.

Definition 2.2.1. For a ∈ ℝ and λ ∈ ℂ, determine solutions u = u(⋅, a, λ), v = v(a, ⋅, λ)
of equation (2.1) with initial conditions

u(a, λ) = 1 = v[1](a, λ), v(a, λ) = 0 = u[1](a, λ), (2.2)

and let

D(λ) = u(b, λ) + v[1](b, λ), λ ∈ ℝ. (2.3)

Note that u and v are linearly independent solutions on J. Since a is fixed, wemay
abbreviate the notation to u(t, λ), v(t, λ) and occasionally to just u(t), v(t) or even u, v
when λ is fixed. The function D(λ) is known as the discriminant or the characteristic
function. It plays a major role in the study of the eigenvalues of the boundary value
problems studied further.
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Theorem 2.2.1. Let (2.1) hold. Then
(1) The number λ = λn(γ) for some n ∈ ℕ0 and some γ ∈ (0,π) if and only if

D(λ) = 2 cos γ, −π < γ < π. (2.4)

In this case,

−2 < D(λ) < 2.

(2) Let 0 < γ < π. Then λn(γ) is simple, and λn(γ) = λn(−γ), n ∈ ℕ0. If un is an
eigenfunction of λn(γ), then it is unique up to constant multiples, and its complex
conjugate un is an eigenfunction of λn(−γ), n ∈ ℕ0.

(3) λ = λPn for some n ∈ ℕ0 if and only if

D(λ) = 2.

(4) λ = λSn for some n ∈ ℕ0 if and only if

D(λ) = −2.

(5) We have the following inequalities for 0 < γ < π:

λN0 ≤ λ
P
0 < λ0(γ) < λ

S
0 ≤ {λ

D
0 , λ

N
1 }

≤ λS1 < λ1(γ) < λ
P
1 ≤ {λ

D
1 , λ

N
2 }

≤ λP2 < λ2(γ) < λ
S
2 ≤ {λ

D
2 , λ

N
3 }

≤ λS3 < λ3(γ) < λ
P
3 ≤ {λ

D
3 , λ

N
4 } ≤ ⋅ ⋅ ⋅ .

Here the notation {λDn , λ
N
n+1}means either of λDn and λNn+1, and there is no comparison

made between these two.
(6) λn ≤ λDn ≤ λn+2, n ∈ ℕ0, where λn is the nth eigenvalue for any self-adjoint boundary

condition on [a, b]; there is no lower bound for λ0 and λ1 as functions of the self-
adjoint boundary conditions.

(7) λP0 is simple, and each of the other eigenvalues λPn , n ∈ ℕ, and λSn, n ∈ ℕ0, may
be simple or double. If λP2n+1 is simple, then λP2n+2 is also simple. If there is a double
periodic eigenvalue, then the first double periodic eigenvalue is preceded by an
odd number of simple periodic eigenvalues.

(8) For λ = λDn or λ = λ
N
n , n ∈ ℕ0, we have

D2(λ) ≥ 4.

(9) For 0 < α < β < π, we have

λ0(β) < λ0(α) < λ1(α) < λ1(β) < λ2(β) < λ2(α)
< λ3(α) < λ3(β) < ⋅ ⋅ ⋅ .
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(10) Suppose λ ∈ {λPn : n ∈ ℕ0} ∪ {λ
S
n : n ∈ ℕ0}. Then λ is a double eigenvalue if and

only if λ = λDn = λ
N
m for some n and m.

(11) D(λ) is strictly decreasing in the intervals (λP2n, λ
S
2n), n ∈ ℕ0, and strictly increasing

in the intervals (λS2n+1, λP2n+1), n ∈ ℕ.
(12) D󸀠(λ) ̸= 0 for λ ∈ (0,π).
Proof. This is a particular case of the eigenvalue inequalities for general regular self-
adjoint boundary conditions; see 4.8, pp. 91–95 in [113].

2.3 Structure of solutions

In this section, we assume that the coefficients of equation (2.1) are periodic, that is,
(2.1), (2.2), and (2.3) hold. Solutions of equations with periodic coefficients have spe-
cial properties. These are studied and summarized here.

It is well known [34] that the local integrability condition (2.2) is necessary and
sufficient for each initial value problem of equation (2.1) to have a unique solution y
defined on ℝ, and y and y[1] are continuous on ℝ. (Recall that, in general, y󸀠 is not
continuous on ℝ.)

Recall that the scalar equation (2.1) is equivalent to the first-order system

Y 󸀠 = PY , Y = [ y
(py󸀠) ] , (2.1)

where

P = [ 0 1/p
q − λw 0

] . (2.2)

Let

Y(t, λ) = [ u(t, λ) v(t, λ)
u[1](t, λ) v[1](t, λ) ] , t ∈ ℝ, λ ∈ ℂ. (2.3)

The next theorem shows that both Y(t, λ) and Y(t + h, λ) are fundamental matrix
solutions of (2.2), determines how they are related, and establishes the corresponding
properties of the solutions of the scalar equation (2.1).

Theorem 2.3.1. Fix a ∈ ℝ and λ ∈ ℂ. Let Y(a) = I, the identity matrix. Then:
(1) Y(t, λ) is a fundamental matrix solution of (2.1).
(2) Y(t + h, λ) is also a fundamental matrix solution of (2.1).
(3) Y(t + h, λ) = Y(t, λ)A(λ), t ∈ ℝ, λ ∈ ℂ,

where

A(λ) = [
u(a + h, λ) v(a + h), λ)
u[1](a + h, λ) v[1](a + h), λ) ] (2.4)

and detA(λ) = 1.
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(4) For some complex number ρ ̸= 0, there exists a nontrivial solution y of (2.1) such
that

y(t + h, λ) = ρ(λ)y(t, λ),

y[1](t + h, λ) = ρ(λ)y{1](t, λ), t ∈ ℝ, (2.5)

if and only if ρ is an eigenvalue of A(λ).
(5) The eigenvalues ρ1(λ) and ρ2(λ) of A(λ) are roots of the quadratic equation

ρ(λ)2 − traceA(λ)ρ(λ) + 1 = 0 (2.6)

and satisfy

ρ1(λ)ρ2(λ) = 1, λ ∈ ℂ. (2.7)

(6) Each ρj has a representation

ρj = e
mjh (2.8)

for some mj ∈ ℂ, j = 1, 2. The real part of mj is unique, and the imaginary part of mj
is not unique.

Proof. Let Z(t, λ) = Y(t + h, λ) and note that Z is a matrix solution of (2.1):

Z󸀠(t, λ) = Y 󸀠(t + h, λ) = P(t + h, λ)Y(t + h, λ) = P(t, λ)Z(t, λ).
Since traceP = 0, it follows from Abel’s theorem that

detY(t, λ) = detY(a, λ) = 1 = detY(t + h, λ) = detA(γ).

Hence both Y(t +h, λ) and Y(t, λ) are fundamental matrix solutions of (2.1), proving (1)
and (2). Therefore by a basic result of linear ordinary differential equations we have

Y(t + h, λ) = Y(t, λ)A(λ), t ∈ ℝ, (2.9)

where A(λ) is a nonsingular matrix independent of t, and (2.4) follows by evaluating
(2.9) at a, establishing (3). To prove (4), note that detA(λ) = 1 by (1) and (2). Hence, if
ρ is an eigenvalue of A(λ), then ρ ̸= 0, and there is a nonzero constant vector C such
that

[A − ρI]C = 0;

therefore from (2.9) we get

Y(t + h, λ)[A − ρI]C = Y(t, λ)[A − ρI]C,
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and (2.5) follows, proving (4). (Here we omit λ in the notation for simplicity of exposi-
tion, but ρ depends on λ.) From (2.4) we get

det(A − ρI) = ρ2 − (traceA)ρ + detA = ρ2 − (traceA)ρ + 1 = 0.

Now (2.7) follows from the fact that the product of the roots of a quadratic equation of
the form x2 + bx + c = 0 is equal to c, completing the proof of (5).

To get the representation (2.8) in part (6), we recall that ρ ̸= 0. Let ρ = reiθ with
r > 0, and let r = ex. Then take mh = x + iθ. Note that the real part of m is unique
but the imaginary part of m is not unique. For ρ > 0, take θ = 0 and note that the
representationρ = emh is unique. Forρ < 0, takeρ = emh+iπ = e(m+iπ/h)h. This completes
the proof of Theorem 2.3.1.

The eigenvalues ρ1(λ) and ρ2(λ) of the matrix A(λ) strongly influence the structure
of the solutions of equation (2.1) on ℝ. We study this influence next.

Lemma 2.3.1. Assume that y is a nontrivial solution of equation (2.1) satisfying (2.5)with
ρ = emh, m ∈ ℂ. Then there exists an h-periodic function g of (2.1) such that

y(t) = emtg(t), t ∈ ℝ.

Proof. Define g(t) = e−mty(t). Then
g(t + h) = e−m(t+h)y(t + h) = e−mte−mhρy(t) = e−mte−mhemhy(t) = e−mty(t) = g(t),

and therefore y(t) = emtg(t), t ∈ ℝ.

Theorem 2.3.2. Let ρ1(λ) and ρ2(λ) be the eigenvalues of the matrix A(λ) with repre-
sentations given by ρj = emjh, j = 1, 2, where m1 and m2 are complex constants, not
necessarily distinct. Then:
a: If ρ1(λ) ̸= ρ2(λ), then there are two linearly independent solutions y1 and y2 of equa-

tion (2.1) such that

y1(t) = e
m1tg1(t), y2(t) = e

m2tg2(t), t ∈ ℝ,

where g1 and g2 are h-periodic.
b: If ρ1(λ) = ρ2(λ) = ρ = emh, then there is a solution y1 of equation (2.1) such that

y1(t) = e
mtg1(t),

where g1 is h-periodic.
Let y2 be a solution such that y1 and y2 are linearly independent, and let y(t) =
cy1(t) + dy2(t). Then there are two subcases:
(1) c = 0. In this case,

y2(t) = e
mtg2(t),

where g2 is also h-periodic.
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(2) c ̸= 0. There are two linearly independent solutions y1 and y2 of equation (2.1)
such that

y1(t) = e
mtg1(t), y2(t) = e

mt[t g1(t) + g2(t)], t ∈ ℝ,

where g1 and g2 are h-periodic functions.

Proof. Case (a) and case (b), part (1), are immediate corollaries of Lemma2.3.1. For case
(b), part (2), recall that the WronskianW(y1, y2) of two linearly independent solutions
is a nonzero constant and observe that by a direct computation we have

W(y1, y2)(t + h) = ρdW(y1, y2)(t),

and therefore d = ρ by (2.7). Hence y(t) = cy1(t) + ρy2(t).
Let

k1(t) = e
−mty1(t), k2(t) = e

−mty2(t) − c
ρh

t g1(t).

Then g1 is h-periodic by Theorem 3.2.1, and so is g2:

g2(t + h) = e
−m(t+h)y2(t + h) − c

ρh
(t + h)g1(t)

= e−mte−mh[cy1(t) + ρy2(t)] − c
ρh
(t + h)g1(t)

= e−mte−mhcy1(t) + e−mty2(t) − c
ρh
(t + h)g1(t)

= e−mty2(t) − c
ρh

tg1(t) = g2(t).

Now part (2) follows, and the proof is complete.

2.4 Eigenvalues on one interval

In this section, we assume that (2.1), (2.2), and (2.3) hold. Let

D(λ) = u(b, λ) + v[1](b, λ), λ ∈ ℝ, b = a + h, (2.1)

where u, v are defined by (2.2), and note that D(λ) = traceA(λ) for A(λ) given by (2.4).
The next theorem is basically a corollary of Theorems 2.3.1 and 2.3.2 and Lem-

ma 2.3.1. It will be used further to get information about the eigenvalues for the peri-
odic, semiperiodic, and complex boundary conditions on the interval [a, a + h].

Theorem 2.4.1. We have
A: Suppose D(λ) > 2. By Theorem (2.2) the eigenvalues ρ1 and ρ2 of A(λ) are distinct

and positive but not equal to 1. Let m be the unique positive number such that

ρ1 = e
mh, ρ2 = e

−mh.
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Then two linearly independent solutions of (2.1) have the form

y1(t) = e
mtg1(t), y2(t) = e

−mtg2(t), t ∈ ℝ,

where g1(t) and g2(t) are h-periodic.
B: Suppose D(λ) < −2. This is similar to case A except that ρ1(λ) and ρ2(λ) are now

negative but not equal to −1. Let m be the unique positive number such that

ρ1 = e
(m+iπ/h)h, ρ2 = e

−(m+iπ/h)h.
Then two linearly independent solutions of (2.1) have the form

y1(t) = e
(m+iπ/h)tg1(t), y2(t) = e

−(m+iπ/h)tg2(t), t ∈ ℝ,

where m > 0, and g1(t) and g2(t) are h-periodic.
C: Suppose −2 < D(λ) < 2. Then ρ1(λ) and ρ2(λ) are nonreal and distinct. By (2.8) there

is a real number γ with 0 < γ < π such that eiγ = ρ1 and e−iγ = ρ2. Choose m such
that γ = mh. Then we have

ρ1 = e
imh, ρ2 = e

−imh, 0 < γ = mh < π,

and from Lemma 2.3.1 it follows that

y1(t) = e
imtg1(t), y2(t) = e

−imtg2(t),
where g1(t) and g2(t) are h-periodic linearly independent solutions of (2.1) on ℝ.

D: Suppose D(λ) = 2. Then ρ1(λ) = ρ2(λ) = 1, and λ is a periodic eigenvalue on the
interval [a, a+h]. Conversely, if λ is a periodic eigenvalue on [a, a+h], then D(λ) = 2.
The eigenvalue λ may have multiplicity 1 or 2.

E: Suppose D(λ) = −2. In this case, ρ1(λ) = ρ2(λ) = −1, and λ is a semiperiodic eigen-
value on the interval [a, a + h], and, conversely, if λ is a semiperiodic eigenvalue on
[a + h], then D(λ) = −2. The eigenvalue λ may have multiplicity 1 or 2.

Proof. All theses cases follow from Theorems 2.3.1 and 2.3.2, Lemma 2.3.1, and the
quadratic equation (2.6). D and E follow from general Theorem 2.2.1.

Corollary 2.4.1. Since ρ(λ) is an eigenvalue of A(λ), the rank of A(λ) − ρI is either 1 or 0.
(1) If rank[A(λ) − ρ(λ)I] = 1, then there is exactly one linearly independent solution y of

(2.1) satisfying (2.5).
(2) If rank[A(λ) − ρ(λ)I] = 0, then there are exactly two linearly independent solution y

of (2.1) satisfying (2.5).
(3) Assume that ρ1(λ) = ρ2(λ) = 1. Then λ is real and is an eigenvalue on the interval
[a, a + h] of the periodic boundary condition

y(a + h) = y(a),
y[1](a + h) = y[1](a).
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It has multiplicity 2 if and only if rank[A(λ) − I] = 0. Since rank[At(λ) − I] =
rank[A(λ) − I] and this holds if and only if

[
u(a + h, λ) v(a + h), λ)

u[1](a + h, λ) v[1](a + h), λ) ] = [ 1 0
0 1
] ,

in this case, both u and v are eigenfunctions of λ on the interval [a, a + h].
(4) Assume that ρ1(λ) = ρ2(λ) = −1. Then λ is real and is an eigenvalue on the interval
[a, a + h] of the semiperiodic boundary condition

y(a + h) = −y(a),

y[1](a + h) = −y[1](a).
It has multiplicity 2 if and only if rank[A(λ) − I] = 0. Since rank[At(λ) − I] =
rank[A(λ) − I] and this holds if and only if

[
u(a + h, λ) v(a + h), λ))

u[1](a + h, λ) v[1](a + h), λ) ] = [ 1 0
0 1
] ,

in this case, both u and v are eigenfunctions of λ on the interval [a, a + h].

Proof. This follows from Theorem 2.3.1 and its proof.

2.5 Eigenvalues on different intervals

In this section, for each k > 2, we find explicitly a value of γ ∈ (0,π) such that the
eigenvalues λn(γ) from the interval [a, a+h] are also periodic eigenvalues on the inter-
val [a, a + kh] and a corresponding result for the semiperiodic eigenvalues. For k = 2,
every periodic eigenvalue on [a, a+ 2h] is either a periodic or semiperiodic eigenvalue
on [a, a+ h]. Recall the notation λn(γ), λPn (k), and λ

S
n(k) for the eigenvalues of the com-

plex, periodic, and semiperiodic, boundary conditions.
Key to this analysis is a simple but important observation, which we make with

the next remark.

Remark 2.5.1. Hypothesis (2.2) that the coefficients p, q,w are h-periodic does not as-
sume that h is the smallest positive number for which p, q,w are h-periodic. Also note
that if p, q,w are h-periodic, then they are also hk-periodic for each k ∈ ℕ. There-
fore the results of Sections 2.3 and 2.4 hold when the interval [a, a + h] is replaced by
[a, a+kh] for any k ∈ ℕ and, correspondingly, h by kh. Note that if y is an eigenfunction
of an eigenvalue for a periodic boundary condition on any interval [a, a + kh], then y
can be extended to a periodic solution of equation (2.1) onℝ, and, conversely, if y is a
kh-periodic solution onℝ, then y is a periodic eigenvalue on [a, a+kh]. Wewill use the
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same notation y for an eigenfunction on [a, a + kh] of a periodic boundary condition
and for its periodic extension to ℝ. This should not be confusing since it is clear from
the context.

To illustrate how the results of Sections 2.3 and 2.4 apply to the kh-periodic case,
we state the kh version of Theorem 3.2.1.

Lemma 2.5.1. Let (2.1), (2.2), and (2.3) hold, and let k ∈ ℕ. Then p, q,w are kh-periodic.
Define

Dk(λ) = u(a + kh, λ) + v
[1](a + kh, λ), λ ∈ ℝ. (2.1)

Assume that y is a nontrivial solution of equation (2.1) satisfying (2.5) with ρ = emkh,
m ∈ ℂ. Then there exists a kh-periodic function g of (2.1) such that

y(t) = emtg(t), t ∈ ℝ.

Proof. Replace h by kh in the proof of Lemma 2.3.1.

Note that when the underlying interval is [a, a + kh], k ∈ ℕ, then to restrict γ to
the interval (0,π), we must have 0 < γ = mkh < π rather than 0 < γ = mh < π.

Next, to find the values of γ ∈ (0,π) such that every eigenvalue λn(γ) is a periodic
eigenvalue on the interval [a, a + kh], we use Theorem 2.4.1 to construct the periodic
eigenfunctions for this interval, and similarly for the semiperiodic case. This is done
by (i) eliminating casesA and B and then by using C to construct the appropriate solu-
tions and D and E to show that the constructed solutions are periodic or semiperiodic
and that all periodic and semiperiodic solutions can be obtained this way.

We start with the elimination of cases A and B.

Lemma 2.5.2. Let k ∈ ℕ, and let (2.2) hold. If Dk(λ) > 2 or Dk(λ) < −2, then all solutions
of equation (2.1) are unbounded on ℝ and therefore cannot be eigenfunctions for the
periodic or semiperiodic boundary conditions.

Proof. Any periodic or semiperiodic eigenfunction can be extended to a periodic or
semiperiodic function on ℝ and is therefore bounded. If Dk(λ) > 2 or Dk(λ) < −2, then
the solutions of (2.1) are not bounded by A and B of Theorem 2.4.1.

In the construction of periodic and semiperiodic solutions for the intervals [a, a+
kh] the roots of unity play an important role. There are many different representations
of these, so next we present the representations used in the proofs below.

Lemma 2.5.3. For each integer k ∈ ℕ, there are exactly k complex roots of the number 1:
For k = 1, there is only one root, namely, 1. For k = 2, there are two roots, −1 and 1. For
k > 2, the k roots

ei2lπ/k , l = 0, 1, . . . , k − 1,

can be represented by
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(1) k = 2s, s > 1,

1, −1, ei2πl/k , e−i2πl/k , l = 1, . . . , s − 1,

(2) k = 2s + 1, s > 0,

ei2πl/k , e−i2πl/k , l = 1, . . . , s.

Similarly, for each integer k ∈ ℕ, there are exactly k complex roots of the number −1:

ei(2l+1)π)/k , l = 0, 1, . . . , k − 1,

which can be represented by
(1) k = 2s, s ≥ 1,

i, −i, ei(2l+1)π/k , e−i(2l+1)π/k , l = 0, . . . , s − 1,

(2) k = 2s + 1, s ≥ 1,

ei(2l+1)π/k , e−i(2l+1)π/k , l = 0, . . . , s − 1.

Proof. This is well known. These representations can be derived from the standard
one using Euler’s formula eix = cos(x) + i sin(x) and properties of the sin and cos
functions.

For γ ∈ (0,π), since λn(γ) = λn(−γ), the eigenvalues λn(γ) can be visualized as
being determined by γ in the upper open half-circle in the complex plane and also
in the lower open half-circle with the exception of the two “boundary points” γ = 0
and γ = π. These two points correspond to the periodic and semiperiodic eigenvalues,
respectively. The next theorem makes this statement precise.

Theorem 2.5.1. Let (2.2) hold, let J = [a, a+h], and let D(λ) be defined by (2.1)with k = 1.
Then for γ ∈ (0,π),

lim
γ→0 λ2n(γ) = λP2n and lim

γ→π λ2n+1(γ) = λS2n+1, n ∈ ℕ0. (2.2)

The limits are the appropriate one-sided limits given the restriction γ ∈ (0,π).

Proof. This is well known; see [113] p. 92.

Theorem 2.5.1 helps us to visualize the “movements” of the eigenvalues λn(γ) =
λn(−γ) toward the limits in (2.2); see the graph on p. 92 of [113].

The next theorem determines exactly which of the eigenvalues λn(γ) from the in-
terval [a, a + h] are also periodic eigenvalues on the intervals [a, a + kh] for k ∈ ℕ.
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Theorem 2.5.2. Let (2.2) and (2.3) hold, let k ∈ ℕ, and let D(λ) be defined by (2.1) with
b = a + h. Then equation (2.1) has a nontrivial solution with period kh onℝ if and only if

D(λ) = 2 cos(2lπ/k)

for some integer l ∈ ℤ.
Furthermore,

(1) If k = 2s, s > 1, γ = 2lπ/2s, l = 1, . . . , s − 1, and λ = λn(γ) for some n ∈ ℕ0, then
λ is a periodic eigenvalue with multiplicity 2 on the interval [a, a + kh], and every
eigenfunction of λ can be extended to a periodic solution on ℝ.

(2) If k = 2s + 1, s ≥ 1, γ = 2lπ
2s+1 , l = 1, . . . , s − 1, and λ = λn(γ) for some n ∈ ℕ0, then

λ is a periodic eigenvalue with multiplicity 2 on the interval [a, a + kh], and every
eigenfunction of λ can be extended to a periodic solution on ℝ.

The word “multiplicity” here can be taken as either the geometric or the algebraic mul-
tiplicity, where the algebraic multiplicity is defined as the order of λ as a zero of the
function D(λ).

Proof. Note that any periodic eigenfunction on [a, a+kh] for any k ∈ ℕwhen extended
to ℝ is bounded. Hence parts A and B of Theorem 2.4.1 do not apply, and we need to
consider only −2 ≤ D(λ) = 2 cos γ ≤ 2.

Suppose −2 < D(λ) = 2 cos γ < 2. Then case C of Theorem 2.4.1 applies: ρ1(λ) and
ρ2(λ) are nonreal and distinct, and there is a real number γ satisfying 0 < γ < π such
that eiγ = ρ1(λ), e−iγ = ρ2(λ). Choose m such that γ = mh with m real and not 0. Then
we have

ρ1 = e
imh, ρ2 = e

−imh, 0 < γ = mh < π,

and

y1(t) = e
imtg1(t), y2(t) = e

−imtg2(t),
where g1(t) and g2(t) are linearly independent h-periodic solutions of (2.1) on ℝ. Note
that for any k ∈ ℕ, g1(t) and g2(t) are hk-periodic, and for 0 < γ = mhk < πy = cy1 +dy2
with constants c, d, not both 0, we have

y(t + kh) − y(t)

= ceimk(t+h)g1(t + h) + de−imkt+h)g2(t + h) − ceimktg1(t) − de−imktg2(t)
= c[eimkh − 1]eimtkg1(t) + d[e

−imkh − 1]e−imktg2(t), t ∈ ℝ.

Note that eimkh = 1 if and only if e−imkh = 1. Hence y1 and y2 and therefore y are
kh-periodic if and only if eimh is a kth root of 1, and this is true if and only if

mkh = l(2π)

for some l ∈ ℤ.
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For k = 1, eix has one and only one root when x = l(2π). In particular, this holds
with l = 1 (or l = 0).

For k = 2, there are exactly two roots of 1: eix when x = 0 and x = π. Note that
neither root is in the range (0,π) but both are boundary points of this open interval.
Therefore none of λ satisfying −2 < D(λ) < 2 is a periodic eigenvalue on the interval
[a, a + 2h], and case C is eliminated. Therefore only cases D and E remain, and λ is
either a periodic eigenvalue on [a, a + h] or a semiperiodic eigenvalue on [a, a + h].

These two cases k = 1 and k = 2 are “special” in the sense that for neither case,
there is a value of λ ∈ ℝwith −2 < D(λ) < 2 such that λ is also a periodic eigenvalue on
[a, a + h] or on [a, a + 2h].

Next, we show that for k > 2, there is at least one λ in the range (0,π) such that λ
is a periodic eigenvalue on the interval [a, a + kh].

Choosem and l such that

mkh = 2lπ and 0 < 2l
k
< 1.

Then 0 < γ = mh < π. Such a choice form and l is always possible when k > 2.
It follows that:

(1) If k = 2s, s > 1, then λ ∈ {λn(γ) : n ∈ ℕ0, γ ∈ (0,π)} is a periodic eigenvalue on
[a, a + kh] if and only if γ = 2lπ/2s, l = 1, . . . , s − 1, and it has multiplicity 2.

(2) If k = 2s + 1, s ≥ 1, then λ ∈ {λn(γ) : n ∈ ℕ0, γ ∈ (0,π)} is a periodic eigenvalue on
[a, a + kh] if and only if γ = 2πl

2s+1 , l = 1, . . . , s, and it has multiplicity 2.
(3) Furthermore, for both cases, each λ has multiplicity 2 since both eigenfunctions

g1 and g2 are kh-periodic.

If λ is a periodic eigenvalue on [a, a + kh] for some k ∈ ℕ, then its extension to ℝ
is a kh-periodic solution of equation (2.1). Conversely, if λ is a kh-periodic solution of
equation (2.1), then λ is an eigenfunction on the interval [a, a + kh] for any a ∈ ℝ. This
completes the proof.

Now we list some examples to illustrate Theorem 2.5.1.

Example 2.5.1. For each k ∈ ℕ, there are exactly kkth roots of unity, that is, complex
roots of the number 1. These have different representations as shown by Lemma 2.5.1.
For k = 1, there is one and only one root, namely, 1; for k = 2, there are exactly two
roots, 1 and −1. These can also be represented by ei2π = 1 and eiπ = −1. For k > 2, it is
convenient to use the representation given in the previous lemma:
k = 3: 1, ei2π/3, e−iπ/3 are representations of the three distinct roots of 1. Note that γ =

2π/3 satisfies 0 < γ < π and γ = −2π/3 satisfies −π < γ < 0. Recall that
D(λ) = 2 cos(γ) = 2 cos(−γ), so λ is an eigenvalue for γ and (the same λ) is also
an eigenvalue for −γ, but the eigenfunctions are complex conjugates of each
other; see part C.
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k = 4: 1, −1, ei2π/4, e−i2π/4 are the four distinct roots of 1. Note that γ = 2π/4 ∈ (0,π)
and γ = −2π/4 ∈ (−π,0).

k = 5: 1, ei2π/5, ei4π/5, e−i2π/5, e−i4π/5 are the five distinct roots of 1. Note that γ = 2π/5
and γ = 4π/5 are both in (0,π) and γ = −2π/5 and γ = −4π/5 are both in (−π,0).

k = 6: 1, −1, ei2π/6, ei4π/6, e−i2π/6, e−i4π/6 are the six distinct roots of 1. Note that 2π/6,
4π/6 ∈ (0,π) and −2π/6, −4π/6 ∈ (0,π).

k = 7: 1, ei2π/7, ei4π/7, ei6π/7, e−i2π/7, e−i4π/7, e−i6π/7 are the seven distinct roots of 1. Note
that γ = 2π/7, γ = 4π/7, and γ = 6π/7 are in (0,π) and their negatives are in
(−π,0).

k = 8: 1, −1, ei2π/8, ei4π/8, ei6π/8, e−i2π/8, e−i4π/8, e−i6π/8 are the 8 distinct roots of 1. Note
that 2π/8, 4π/8, 4π/8 ∈ (0,π) and −2π/8, −4π/8, −6π/8 ∈ (−π,0).

Remark 2.5.2. As mentioned in the proof of Theorem 2.5.2, the cases k = 1 and k = 2
are “special”. Here λP0 on the interval [a, a + h] is simple, and each of the other eigen-
values for both intervals [a, a+h] and [a, a+2h]may be simple or double. Determining
explicitly which eigenvalue is simple on [a, a + h] and which one is double is an open
problem, not only for periodic coefficients, but also for general self-adjoint Sturm–
Liouville problems. See Corollary 2.4.1 for necessary and sufficient conditions in terms
of u[1] and v at the endpoint a + h. (See [113] for a more detailed statement of this and
many other open problems for the Sturm–Liouville equation (2.1).

Next, we investigate the relation between the eigenvalues of the complex bound-
ary conditions parameterized by γ ∈ (0,π) and the semiperiodic eigenvalues on the
intervals [a, a + kh], k ∈ ℕ. This is similar to the case of periodic eigenvalues studied
above, but there is a difference here for k even or odd, and the special case k = 2 in
the periodic case is different in the semiperiodic case.

Theorem 2.5.3. Let (2.2) and (2.3), hold, let k ∈ ℕ = {1, 2, 3, . . . }, and let D(λ) be defined
by (2.1) with b = a + h. Then equation (2.1) has a nontrivial solution with semiperiod kh
on ℝ if and only if

D(λ) = 2 cos((2l + 1)π/k)

for some integer l ∈ ℤ.
Furthermore,

(1) If k = 2s, s ≥ 1, then λ ∈ {λn(γ) : n ∈ ℕ0, γ ∈ (0,π)} is a semiperiodic eigenvalue on
[a, a + kh] if and only if γ = (2l + 1)π/2s, l = 1, . . . , s, and λ has multiplicity 2.

(2) If k = 2s + 1, s ≥ 1, then λ ∈ {λn(γ) : n ∈ ℕ0, γ ∈ (0,π)} is a semiperiodic eigenvalue
on [a, a + kh] if and only if γ = (2l+1)π2s+1 , l = 1, . . . , s, and λ has multiplicity 2 if s > 1.

Proof. As in the proof of the periodic case, we only need to consider the case −2 <
D(λ) < 2. Here ρ1(λ) and ρ2(λ) are nonreal and distinct, and there is a real number γ
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satisfying 0 < γ < π such that eiγ = ρ1(λ) and e−iγ = ρ2(λ). Choosem such that γ = mh
withm real and not 0. Then we have

ρ1 = e
imh, ρ2 = e

−imh, 0 < γ = mh < π,

and

y1(t) = e
imtg1(t), y2(t) = e

−imtg2(t),
where g1(t) and g2(t) are h-periodic and linearly independent solutions of (2.1) on ℝ.
Let λ = λn(γ) and 0 < γ = mh < π. Let y = cy1 + dy2 for constants c and d, not both 0.
Proceeding as in Theorem 2.5.2, we obtain

y(t + kh) + y(t)

= ceim(t+kh)g1(t + kh) + de−im(t+kh)g2(t + kh) + ceimtg1(t) + de−imtg2(t)
= c[eimkh + 1]eimtg1(t) + d[e

−imkh + 1]e−imtg2(t), t ∈ ℝ.

Note that eimkh = −1 if and only if e−imkh = −1. Hence y1 and y2 are kh-semi-periodic,
and y is kh-semiperiodic, if and only if eimh is a k-th root of −1 and this is true if and
only if

mkh = (2l + 1)π

for some l ∈ ℤ.
For k = 1, −1 has one and only one root, which can be taken as π since eiπ = −1. For

k = 2, the two distinct roots can be taken as π (l = 1) and −π (l = −1). Note that neither
one is in (0,π), and therefore for none of γ ∈ (0,π) is a semi-periodic eigenvalue on
the interval [a, a + 2h].

For k = 3, the three roots of ei3x = −1 can be represented by x = π
3 , x = π, and

x = −π. Note that only one of these roots is in (0,π). For l = 1 (when γ = π), λ is
a semiperiodic eigenvalue on [a, a + 3h]. Hence if λ is a semiperiodic eigenvalue on
[a, a + 3h], then λ is a semiperiodic eigenvalue on [a, a + h].

Next, we show that for any k > 2, there is at least one λ in the range (0,π) that is a
semiperiodic eigenvalue on the interval [a, a + kh].

Choosem and l such that

mkh = (2l + 1)π and 0 < 2l + 1
k
< 1.

Then 0 < γ = mh < π. Such a choice form and l is always possible when k > 1.
Proceeding as in Theorem 2.5.2, we find that for both k = 2s, s > 1, and k = 2s + 1,

s ≥ 1, s of the k roots of −1,

ei(2(l+1)π)/k , l = 0, 1, . . . , k − 1,
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have the representation

ei(2l+1)π/k , l = 0, 1, 2, . . . , s − 1.

Since γ = mh, it follows that eimkh = eikγ = −1 if and only if

γ = (2l + 1)π/k, l = 0, 1, 2, . . . , s − 1.

This completes the proof.

2.6 Eigenvalues of periodic, semiperiodic, and complex boundary
conditions

For k ∈ ℕ, n ∈ ℕ0, γ ∈ (0,π), and any fixed a ∈ ℝ, we introduce the notations

P(k) =
∞
⋃
n=0 λPn (k), S(k) =

∞
⋃
n=0 λSn(k), Γ(γ) =

∞
⋃
n=0 λn(γ), (2.1)

where λPn (k) and λSn(k) are the periodic and semiperiodic eigenvalues on the interval
[a, a + kh], respectively, and λn(γ) are the γ eigenvalues on [a, a + h].

From Section 2.5, if the coefficients of equation (2.1) are periodic with period h,
0 < h < ∞, then we have that

P(k) ∪ S(k) ⊂ Γ(γ). (2.2)

In other words, every periodic and semiperiodic eigenvalue from every k interval
for k = 1, 2, 3, . . . is also an eigenvalue of a complex self-adjoint boundary condition
on the interval [a, a + h] determined by some γ ∈ (0,π).

Given λPn (k), n ∈ ℕ0, k ∈ ℕ, for whichm and which γ is

λPn (k) = λm(γ)?

And, given λSn(k), n ∈ ℕ0, k ∈ ℕ, for whichm and which γ is

λSn(k) = λm(γ)?

We answer each of these two questions in two steps. First, we find γ, and then we
construct an algorithm to determinem. This algorithm constructs a one-to-one corre-
spondence between the eigenvalues of the countable set P(k) ∪ S(k) (since the union
of countable sets is countable) and the subset of the uncountable set Γ(γ) consisting
of the eigenvalues that correspond to the set P(k) ∪ S(k).

Next, we summarize and restate the parts of the theorems of Section 2.5, which
are further used for simplicity of exposition. First, for the periodic case given by The-
orem 2.5.2, we have the following:

 EBSCOhost - printed on 2/10/2023 3:33 PM via . All use subject to https://www.ebsco.com/terms-of-use



52 | 2 Periodic coefficients

Theorem 2.6.1. For k = 2s, s ≥ 1, and for k = 2s + 1, s ≥ 0, we have

P(k) =
s
⋃
l=0 Γ(2lπk ). (2.3)

Furthermore, if k > 2, then every eigenvalue in S(k) has multiplicity 2.
For k = 1, we have P(1) = Γ(0) = {λPn (1) = λ

P
n : n ∈ ℕ0}.

Proof. This follows from Theorem 2.5.2.

The case k = 2 is “special” in the sense that there is no γ in the open interval (0,π)
that generates a periodic eigenvalue in the k = 2 interval. For every k > 2, there is at
least one such γ. It is clear that if λ is a periodic eigenvalue for k = 1, then it is also a
periodic eigenvalue for k = 2. Also, if λ is a semiperiodic eigenvalue for k = 1, then λ is
a periodic eigenvalue for k = 2. The next corollary shows that the converse is true: If λ
is a periodic eigenvalue for k = 2, then it is either a periodic or semiperiodic eigenvalue
for k = 1.

Corollary 2.6.1. Let the hypotheses and notation of Theorem 2.5.2 hold. Then

P(2) = Γ(0) ∪ Γ(π) = P(1) ∪ S(1).

Proof. This follows directly from Theorem 2.5.2.

The next theorem reviews the semiperiodic case given by Theorem 2.5.3.

Theorem 2.6.2. For k = 2s, s ≥ 1, and for k = 2s + 1, s ≥ 0, we have

S(k) =
s
⋃
l=0 Γ((2l + 1)πk

). (2.4)

Furthermore, if k > 2, then every eigenvalue in P(k) has multiplicity 2.
In particular, for k = 1, we have S(1) = Γ(π) = {λSn(1) = λ

S
n : n ∈ ℕ0}.

Proof. This follows directly from Theorem 2.5.3.

2.7 Eigenvalue equalities from different intervals

It is clear that λP0(k) stays constant as k changes, but how do the other eigenvalues
change? More specifically:

Given an eigenvalue λ in P(k) for some k > 1, by Theorem 2.5.2 λ is also an
eigenvalue in Γ(γ).Which one?

Given an eigenvalue λ in S(k) for some k > 1, by Theorem 2.5.3 λ is also an
eigenvalue in Γ(γ).Which one?

These questions are answered in this and the next section.
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For each k = 1, 2, 3, . . . , Theorem 2.6.1 determines the values of γ ∈ (0,π) that
determine all the periodic eigenvalues on the k interval [a, a + kh]. Similarly, Theo-
rem 2.6.2 determines all semiperiodic eigenvalues on these intervals. The set⋃∞k=1P(k)
is a countable union of countable sets and is therefore countable, whereas the set
Γ(γ) = {⋃∞n=0λn(γ) : γ ∈ (0,π)} is not countable, so there cannot be one-to-one cor-
respondence between these two sets, and similarly for⋃∞k=1S(k) and Γ(γ).

Recall that the eigenvalues of these sets can be ordered to satisfy

−∞ < λP0(k) ≤ λ
P
1 (k) ≤ λ

P
2 (k) ≤ λ

P
3 (k) ≤ ⋅ ⋅ ⋅ (2.1)

−∞ < λS0(k) ≤ λ
S
1 (k) ≤ λ

S
2 (k) ≤ λ

S
3 (k) ≤ ⋅ ⋅ ⋅ (2.2)

−∞ < λ0(γ) < λ1(γ) < λ2(γ) < λ3(γ) < ⋅ ⋅ ⋅ , (2.3)

and this ordering identifies each eigenvalue λPn (k), λ
S
n(k), λn(γ) uniquely. (Although the

eigenfunctions of the periodic and semiperiodic eigenvalues are not unique if their
multiplicity is 2.)

This is the “natural” ordering that defines λn uniquely when the eigenvalues are
bounded below. In [27] the assumption that p is positive seems to be omitted. Möller
[78] has shown that if p is positive and negative, each on a set of positive Lebesgue
measure, then the eigenvalues are unbounded above and below. In this case, λn is not
well defined.

Using Theorem 2.5.2 and the general Theorem 2.2.1, we will find a different or-
dering and construct a one-to-one correspondence between these two orderings. We
will illustrate this new correspondence with some examples for both periodic and
semiperiodic cases.

We start with a remark.

Remark 2.7.1. AlthoughwehavedefinedΓ(γ)only for γ in theopen interval (0,π), The-
orem 2.5.2 shows that the “boundary sets” Γ(0) and Γ(π) represent the periodic eigen-
values and semiperiodic eigenvalues on the interval [a, a+h], respectively. However, it
is important to keep inmind that the eigenvalueswhen γ ∈ (0,π) are all simple but the
eigenvalues in Γ(0) and Γ(π)may be simple or double, except for λP0 , which is always
simple. It follows from Theorem 2.5.2 that Γ(0) = Γ(2lπ) and that Γ(π) = Γ((2l + 1)π) for
any l ∈ ℤ.

In the next two theorems, we review the known inequalities between the eigen-
values of

P(k) =
∞
⋃
n=0 λPn (k), S(k) =

∞
⋃
n=0 λSn(k), and Γ(γ) = ∪∞n=0λn(γ).

Theorem 2.7.1. Let (2.1)–(2.5) hold. Fix k > 2. Let P(k), S(k), Γ(γ) be defined as before,
and let

P(1) = {λPn (1) : n ∈ ℕ0} = Γ(0) = {λn(0) : n ∈ ℕ0},
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S(1) = {λSn(1) : n ∈ ℕ0} = Γ(π) = {λn(π) : n ∈ ℕ0}.

Then:
(1) If k = 2s, s > 1, we have

λP0(0) = λ0(0) < λ0(2π/k) < λ0(4π/k) < ⋅ ⋅ ⋅ < λ0(2(s − 1)π)/k) < λ0(π)
≤ λ1(π) < λ1(2(s − 1)π/k) < λ1(2(s − 2)π/k) < ⋅ ⋅ ⋅ < λ1(2π/k) < λ1(0)
≤ λ2(0) < λ2(2π/k) < λ2(4π/k) < ⋅ ⋅ ⋅ < λ2(2(s − 1)π/k) < λ2(π)
≤ λ3(π) < λ3(2(s − 1)π/k) < λ3(2(s − 2)π/k) ⋅ ⋅ ⋅ < λ3(2π/k) < λ3(0)
≤ λ4(0) < λ4(2π/k) < ⋅ ⋅ ⋅ .

Therefore

λP0(k) = λ
P
0 ,

λPs (k) = λ0(2sπ/k) = λ
S
0,

λPs+1(k) = λ1(2sπ/k) = λS1 ,
λPs+2(k) = λ1((2s − 2)π/k),
. . .

(2) If k = 2s + 1, s > 1, we have

λP0 = λ0(0) < λ0(2π/k) < λ0(4π/k) < λ0(6π/k) ⋅ ⋅ ⋅ < λ0(2sπ/k)
< λ1(2sπ/k) < λ1(2(s − 1)π/k) < ⋅ ⋅ ⋅ < λ1(2π/k) < λ1(0)
≤ λ2(0) < λ2((2π/k) < λ2(4π/k) < ⋅ ⋅ ⋅ < λ2(2sπ/k)
< λ3(2sπ/k) < λ3(2(s − 1)π/k) < ⋅ ⋅ ⋅ < λ3(2π/k) < λ3(0)
≤ λ4(0) < λ4(2π/k) . . . . (2.4)

Therefore

λP0(k) = λ
P
0 ,

λPs (k) = λ0(2sπ/k),

λPs+1(k) = λ1(2sπ/k),
λPs+2(k) = λ1((2s − 2)π/k),
. . . (2.5)

Proof. These inequalities follow from Theorems 2.2.1, 2.5.1, 2.5.2, and 2.5.3. The fact
that λ0(γ) is decreasing, λ1(γ) is increasing, λ2(γ) decreasing, λ3(γ) increasing, . . . for
γ ∈ (0,π) is reflected in the pattern for the alternating rows in (2.4) and (2.5). This
pattern is clearly seen in the examples below. See the papers by Yuan, Sun, and Zettl
[107, 108] for more detail.
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Theorem 2.7.2. Let (2.1)–(2.5) hold. Then:
(1) If k = 2s, s > 1, we have

λ0(π/k) < λ0(3π/k) < ⋅ ⋅ ⋅ < λ0((2s − 1)π/k)
< λ1((2s − 1)π/k) < λ1((2s − 3)π/k) < ⋅ ⋅ ⋅ < λ1(π/k)
< λ2(π/k) < ⋅ ⋅ ⋅ < λ2(3π/k) < ⋅ ⋅ ⋅ < λ3((2s − 1)π/k)
< λ3((2s − 1)π/k) < λ3((2s − 3)π/k) < ⋅ ⋅ ⋅ < λ3(π/k)
< λ4(π/k) < ⋅ ⋅ ⋅ < λ4(3π/k) < ⋅ ⋅ ⋅ < λ4((2s − 1)π/k) . . . . (2.6)

Therefore

λS0(k) = λ0(π/k),

λSs−1(k) = λ0((2s − 1)π/k),
λs(k) = λ1((2s − 1)π/k),

λSs+1(k) = λ1((2s − 3)π/k),
. . . (2.7)

(2) If k = 2s + 1, s > 1, then

λ0(π/k) < λ0(3π/k) < ⋅ ⋅ ⋅ < λ0((2s + 1)π/k) = λ
S
0

≤ λS1 = λ1(π) < λ1((2s − 1)π/k) < ⋅ ⋅ ⋅ < λ1(π/k)

< λ2(π/k) < λ2(3π/k) < ⋅ ⋅ ⋅ < λ2((2s + 1)π/k) = λ
S
2

≤ λS3 = λ3(π) < λ3((2s − 1)π/k) < ⋅ ⋅ ⋅ < λ3(π/k)
< ⋅ ⋅ ⋅ . (2.8)

Therefore

λS0(k) = λ0(π/k),

λSs (k) = λ
S
0,

λSs+1(k) = λS1 ,
λSs+2(k) = λ1((2s − 1)π/k),
. . . (2.9)

Proof. These inequalities follow from Theorems 2.2.1, 2.5.1, 2.5.2, and 2.5.3. The fact
λ0(γ) is decreasing, λ1(γ) is increasing, λ2(γ) decreasing, λ3(γ) increasing, . . . for γ ∈
(0,π) is reflected in the pattern for the alternating rows in (2.4) and (2.5). This pattern
is clearly seen in the examples below. See the papers by Yuan, Sun, and Zettl [107, 108]
for more detail.
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Now we list some examples to illustrate Theorem 2.3.1 and clarify its proof. We
start with the periodic case for k = 2. This case is special and does not illustrate the
general pattern because it does not involve γ.

As k gets large, the eigenvalues λPn (k) and λ
S
n(k) approach λ

P
0(1) = λ

P
0 from the right.

More precisely, we have the following:

Theorem 2.7.3. Let (2.1)–(2.5) hold. For any n ∈ ℕ, we have

lim
k→∞ λPn (k) = λP0 and lim

k→∞ λSn(k) = λP0 . (2.10)

Proof. Letn ∈ ℕ. For k = 2(n+1) = 2s, fromTheorem2.5.2weget that λPn (k) = λ0(2sπ/k),
and therefore

lim
k→∞ λPn (k) = λP0 .

For k = 2n + 1 = 2s + 1, we get from Theorem (2.5.2) that λPn (k) = λ0(2sπ/k), and
(2.10) follows. Since λPn (k) > λ

P
0 for k even or odd, the limit in (2.10) is from the right.

The proof of limk→∞ λSn(k) = λP0 is similar, and the limit is also from the right.

It is well known that equation (2.1) is oscillatory on ℝ when λ > λP0 and nonoscil-
latory when λ ≤ λP0 . In the next theorem, we give an elementary proof of this under
our general hypotheses (2.2).

Theorem 2.7.4. Let (2.1)–(2.5) hold. Then equation (2.1) is oscillatory onℝ when λ > λP0
and nonoscillatory when λ ≤ λP0 .

Proof. Suppose that λ = λP0 and u is an eigenfunction of λ. Then by Theorem 8 in [107]
u has no zero in the closed interval [a, a+h]. Hence the extension of u toℝ has no zero
onℝ. By the Sturm comparison theorem equation (2.1) is nonoscillatory for λ ≤ λP0 . Let
λ > λP0 . By Theorems 2.7.1 and 2.7.3 λP0 < λ

P
n (k) < λ for all sufficiently large n and k. Since

λPn (k) has zeros in the interval [a, kh], its extension toℝ has infinitely many zeros, that
is, it is oscillatory.

2.8 Construction of the one-to-one correspondence

The next two theorems give an explicit one-to-one correspondence between the peri-
odic and semiperiodic eigenvalues on the k interval, k > 1, and the corresponding γ
eigenvalues from the interval k = 1.

Theorem 2.8.1. Let (2.1)–(2.5) hold, and let the eigenvalues λPn (k) be ordered according
to (2.1). Then:
– If k = 2s, s ∈ ℕ, then

(1) for even m, we have

λPms+n(k) = λ(2(n −m)π/k), n = m,m + 1, . . . ,m + s.
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(2) for odd m, we have

λPms+n(k) = λ(2(m + s − n)π/k), n = m,m + 1, . . . ,m + s.

– If k = 2s + 1, s > 0, then
(1) for even m, we have

λPms+n(k) = λ(2(n −m)π/k), n = m,m + 1, . . . ,m + s.

(2) for odd m, we have

λPms+n(k) = λ(2(m + s − n)π/k), n = m,m + 1, . . . ,m + s.

Proof. Suppose k = 2s, s ∈ ℕ. From (2.6) and the natural ordering it follows that

λP0 = λ
P
0 , λP1 (k) = λ0(2π/k), . . . , λ

P
s−1(k) = λ0(2(s − 1)π)/k), λPs (k) = λ

S
0,

λPs+1(k) = λS1 , λPs+2(k) = λ1(2(s − 1)π/k), . . . , λP2s(k) = λ1(2π/k), λP2s+1(k) = λP1 ,
λP2s+2(k) = λP2 , λP2s+3(k) = λ2(2π/k), . . . , λP3s+1(k) = λ2(2(s − 1)π/k), λP3s+2(k) = λS2 ,
λP3s+3(k) = λS3 , λPs+4(k) = λ3(2(s − 1)π/k), . . . , λP4s+2(k) = λ3(2π/k), λP4s+3(k) = λP3 ,

and so on.
Note that for λPms+n(k), the values of γ increase (0, 2π/k, . . . , 2(s − 1)π/k, 2sπ/k =

π) as the index n goes from m to m + s when m is even and decrease (2sπ/k = π,
2(s − 1)π/k, . . . , 2π/k, 0) whenm is odd.

Suppose k = 2s + 1, s > 0. From (2.7) and the natural ordering it follows that

λP0(k) = λ
P
0 , λP1 (k) = λ0(2π/k) . . . λ

P
s−1(k) = λ0(2(s − 1)π/k), λPs (k) = λ0(2sπ/k),

λPs+1(k) = λ1(2sπ/k), λPs+2(k) = λ1(2(s − 1)π/k) . . . λP2s(k) = λ1(2π/k), λP2s+1(k) = λP1 ,
λP2s+2(k) = λP2 , λP2s+3(k) = λ2(2π/k) . . . λP3s+1(k) = λ2(2(s − 1)π/k), λP3s+2(k) = λ2(2sπ/k),
λP3s+3(k) = λ3(2sπ/k), λP3s+4(k) = λ3(2(s − 1)π/k) . . . λP4s+2(k) = λ3(2π/k), λP4s+3(k) = λP3 ,
and so on.

Note that for λPms+n(k), the values of γ increase (0, 2π/k, . . . , 2(s − 1)π/k, 2sπ/
k = π) as the index n goes from m to m + s when m is even and decrease (2sπ/k = π,
2(s − 1)π/k, . . . , 2π/k, 0) whenm is odd.

Theorem 2.8.2. Let (2.1)–(2.5) hold, and let the eigenvalues λSn(k) be ordered according
to (2.2). Then:
– If k = 2s, s > 1, then

(1) for even m, we have

λSms+n(k) = λ((2n + 1)π/k), n = 0, 1, . . . , s − 1.
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(2) for odd m, we have

λSms+n(k) = λ(2(s − 1 − n)π/k), n = 0, 1, . . . , s − 1.

– If k = 2s + 1, s > 0, then
(1) for even m and n ∈ [m,m + s], we have

λSms+n(k) = λ(2(n −m)π + 1)/k), n = m,m + 1, . . . ,m + s.

(2) for odd m and n ∈ [m,m + s], we have

λSms+n(k) = λ((2(m + s − n) + 1)π/k), n = m,m + 1, . . . ,m + s.

Proof. For clarity, we use the notation discussed before. Suppose k = 2s, s ∈ ℕ. From
the ordering of λSn(k) and the natural ordering of λn(γ) it follows that

λS0(k) = λ0(π/k), . . . λ
S
s−2(k) = λ0((2s − 3)π/k), λSs−1(k) = λ0((2s − 1)π/k),

λSs (k) = λ1((2s − 1)π/k), . . . λ
S
2s−2(k) = λ1(3π/k), λS2s−1(k) = λ1(π/k),

λS2s(k) = λ2(π/k) . . . λ
S
3s−2(k) = λ2((2s − 3)π/k), λS3s−1(k) = λ2((2s − 1)π/k),

λS3s(k) = λ3((2s − 1)π/k), . . . λ
S
4s−2(k) = λ3(3π/k), λS4s−1(k) = λ3(π/k),

and so on.
Note that for λSms+n(k), the values of γ increase (π/k, . . . , (2s − 1)π/k) as the index n

goes from 0 to s − 1 whenm is even and decrease ((2s − 1)π/k, . . . ,π/k) whenm is odd.
Suppose k = 2s + 1, s > 0. From the ordering of λSn(k) and the natural ordering of

λn(γ) it follows that

λS0(k) = λ0(π/k), . . . λ
S
s−1(k) = λ0((2s − 1)π/k), λSs (k) = λ0((2s + 1)π/k) = λ

S
0,

λSs+1(k) = λS1 , λSs+2(k) = λ1((2s − 1)π/k) . . . λS2s(k) = λ1(3π/k), λS2s+1(k) = λ1(π/k),
λS2s+2(k) = λ2(π/k), . . . λS3s+1(k) = λ2((2s − 1)π/k), λS3s+2(k) = λ2((2s + 1)π/k) = λS2 ,
λS3s+3(k) = λS3 , λS3s+4(k) = λ3((2s − 1)π/k) . . . λS4s+2(k) = λ3(3π/k), λS4s+3(k) = λ3(π/k),

and so on.
Note that for λSms+n(k), the values of γ increase (π/k, . . . , (2s − 1)π/k) as the index n

goes fromm tom + swhenm is even and decrease ((2s + 1)π/k = π, . . . ,π/k) whenm is
odd.

Next, we show that the set of all periodic eigenvalues from all the intervals [a, a +
k], k = 1, 2, 3, . . . , is dense in the uncountable set of all eigenvalues from interval k = 1
and γ ∈ (0,π].

Definition 2.8.1. Define the sets E and Γ as follows:

E = {λPn (k) : n ∈ ℕ0, k ∈ ℕ},
Γ = {λn(γ) : n ∈ ℕ0, γ ∈ (0,π]}.

 EBSCOhost - printed on 2/10/2023 3:33 PM via . All use subject to https://www.ebsco.com/terms-of-use



2.9 Examples of the one-to-one correspondence | 59

Remark 2.8.1. Note that the set E is countable since it is the countable union of count-
able sets; and the set Γ is not countable since the interval (0,π] is not countable.

Theorem 2.8.3. The closure of the set E is Γ, that is,

E = Γ.

Proof. If eiγ is a kth root of 1, k = 1, 2, 3, . . . , then λn(γ, I) is a periodic eigenvalue for
the interval [a, a + kh]. It is well known that the set of all kth roots of 1 for all k ∈ ℕ
that lie in the interval (0,π) is dense in this interval. The conclusion follows from the
characterization of the eigenvalues

D(λ) = u(a + h, λ) + v[1](a + h, λ) = 2 cos γ,
the continuity of D(λ) as a function of λ ∈ ℝ, and the continuous dependence of each
λn(γ, I) as a function of γ ∈ (0,π] by Theorem 2.5.1. (Since λn(−γ, I) = λn(γ, I)we do not
need to consider the interval (−π,0).)

2.9 Examples of the one-to-one correspondence

In this section, we give some examples. First, for the cases k = 2, 3, 4 and then for
some higher-order cases. There are some key differences between even and odd k.
For the periodic even-order case, any periodic eigenvalue for k = 1 is also a periodic
eigenvalue for k > 1. Also, a semiperiodic eigenvalue for k = 1 is a periodic eigenvalue
for even k. A more subtle difference is the effect of the inequalities of Theorem 2.7.1
on the one-to-one correspondence. This has to do with the alternating increasing and
decreasing values of γ for the even- and odd-order cases. These will be illustrated in
our examples.

Example 2.9.1. k = 2. Asmentioned before, the case k = 2 is special. By Corollary 2.6.1
P(2) = P(1) ∪ S(1) = Γ(0) ∪ Γ(π). From this and from (9) of Theorem 2.2.1 we get

λP0 < λ
S
0 ≤ λ

S
1 < λ

P
1 ≤ λ

P
2 < λ

S
2 ≤ λ

S
3 < λ

P
3 ≤ λ

P
4 < ⋅ ⋅ ⋅ .

Hence the one-to-one correspondence is

λP0(2) = λ
P
0(1) = λ

P
0 , λP1 (2) = λ

S
0, λP2 (2) = λ

S
1 , λP3 (2) = λ

P
1 , λP4 (2) = λ

P
2 , . . . .

Example 2.9.2. k = 3. This case is similar to Example 2.9.1. In this case, γ = 2π/3
generates the additional eigenvalues rather than the semiperiodic ones, which can be
identified with γ = π. Thus we have

λP0 < λ0(2π/3) < λ
P
1 ≤ λ

P
2 < λ2(2π/3) < λ

P
3 ≤ λ

P
4 < λ4(2π/3) < ⋅ ⋅ ⋅ .
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Hence the one-to-one correspondence is

λP0(2) = λ
P
0(1) = λ

P
0 , λP1 (2) = λ0(2π/3), λP2 (2) = λ

P
2 , λP3 (2) = λ3(2π/3),

λP4 (2) = λ
P
4 , . . . .

Example 2.9.3. k = 2s, s = 4. This and the next example illustrate the fact that the
values of γ increase (π/k, . . . , (2s− 1)π/k) as the index n goes fromm tom+ swhenm is
even and decrease ((2s+ 1)π)/k = π, . . . ,π/k)whenm is odd. By Theorem 2.6.1 we have

λP0(0) = λ0(0) < λ0(2π/8) < λ0(4π/8) < λ0(6π/8) < λ0(π)
≤ λ1(π) < λ1(6π/8) < λ1(4π/8) < λ1(2π/8) < λ1(0)
≤ λ2(0) < λ2(2π/8) < λ2(4π/8) < λ2(6π/8) < λ2(π)
≤ λ3(π) < λ3(6π/8) < λ3(4π/8) < λ3(2π/8) < λ3(0)
≤ λ4(0) < λ4(2π/8) < ⋅ ⋅ ⋅ .

Thus we have:
(1) m = 0:

λP0(8) = λ
P
0 , λP1 (8) = λ0(2π/8), λP2 (8) = λ0(4π/8), λP3 (8) = λ0(6π/8),

λP4 (8) = λ0(8π/8) = λ
S
0;

(2) m = 1:

λP5 (8) = λ
S
1 , λP6 (8) = λ1(6π/8), λP7 (8) = λ1(4π/k), λP8 (8) = λ1(2π/8),

λP9 (8) = λ1(0) = λ
P
1 ;

(3) m = 2:

λP10(8) = λ
P
2 , λP11(8) = λ2(2π/8), λP12(8) = λ2(4π/8), λP13(8) = λ2(6π/8),

λP14(8) = λ2(π) = λ
S
2 ;

(4) m = 3:

λP15(8) = λ
S
3 , λP16(8) = λ3(6π/8), λP17(8) = λ3(4π/8), λP18(8) = λ3(2π/8),

λP19(8) = λ
P
3 .

Example 2.9.4. k = 2s + 1, s = 4. By Theorem 2.6.1 we have

λP0 < λ0(2π/9) < λ0(4π/9) < λ0(6π/9) < λ0(8π/9)

< λS1 = λ1(π) < λ1((2s − 1)π/9) < ⋅ ⋅ ⋅ < λ1(π/9)

< λ2(π/9) < λ2(3π/9) < ⋅ ⋅ ⋅ < λ2((2s + 1)π/9) = λ
S
2
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≤ λS3 = λ3(π) < λ3((2s − 1)π/9) < ⋅ ⋅ ⋅ < λ3(π/9)
< ⋅ ⋅ ⋅ .

Thus we have:
(1) m = 0:

λP0(9) = λ
P
0 , λP1 (9) = λ0(π/9), λP2 (9) = λ0(3π/9), λP3 (9) = λ0(5π/9),

λP4 (9) = λ0(7π/9);

(2) m = 1:

λP5 (9) = λ1(7π/9), λP6 (9) = λ1(5π/9), λP7 (9) = λ1(3π/9),

λP8 (9) = λ1(π/9) < λ
P
9 (9) = λ

P
1 ;

(3) m = 2:

λP10(9) = λ
P
2 , λP11(9) = λ2(π/9), λP12(9) = λ2(3π/9), λP13(9) = λ2(5π/9),

λP14(9) = λ2(7π/9);

(4) m = 3:

λP15(9) = λ3(7π/9), λP16(9) = λ3(5π/9), λP17(9) = λ3(3π/9),

λP18(9) = λ3(π/9) < λ
P
19(9) = λ

P
3 .

The next examples illustrate the semiperiodic case. For S(2) = Γ( π2 ), the one-to-
one correspondence is just the identity, so we start with S(3).

Example 2.9.5. k = 3. For S(3) = S(1) ∪ Γ( π3 ) = Γ(π) ∪ Γ(
π
3 ), from Theorem 2.6.2 we get

the inequalities:

λ0(π/3) < λ0(π) = λ
S
0 ≤ λ

S
1 = λ1(π) < λ1(π/3) < λ2(π/3) < λ2(π) = λ

S
2

≤ λS3 = λ3(π) < λ3(π/3) < λ4(π/3) < λ4(π) = λ
S
4 ≤ λ

S
5 < ⋅ ⋅ ⋅ .

Hence λS0(3) = λ0(π/3), λ
S
1 (3) = λ

S
0, λ

S
2 (3) = λ

S
1 , λ

S
4(3) = λ2(π/3), . . . .

Example 2.9.6. k = 2s, s = 4. By Theorem 2.6.2 we know that

S(8) = Γ(π/8) ∪ Γ(3π/8) ∪ Γ(5π/8) ∪ Γ(7π/8),

and we have the inequalities

λ0(π/8) < λ0(3π/8) < λ0(5π/8) < λ0(7π/8)
< λ1(7π/8) < λ1(5π/8) < λ1(3π/8) < λ1(π/8)
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< λ2(π/8) < λ2(3π/8) < λ2(5π/8) < λ2(7π/8)
< λ3(7π/8) < λ3(5π/8) < λ3(3π/8) < λ3(π/8)
< λ4(π/8) < λ4(3π/8) < λ4(5π/8) < λ4(7π/8) < ⋅ ⋅ ⋅ .

From these inequalities and Theorem 2.7.1 we have:
(1) m = 0:

λS0(k) = λ0(π/k), λS1 (k) = λ0(3π/k), λS2 (k) = λ0(5π/k), λS3 (k) = λ0(7π/k);

(2) m = 1:

λS4(k) = λ1(7π/k), λS5 (k) = λ1(5π/k), λS6(k) = λ1(3π/k), λS7 (k) = λ0(π/k);

(3) m = 2:

λS8(k) = λ2(π/k), λS9(k) = λ2(3π/k), λS10(k) = λ2(5π/k), λS11(k) = λ2(7π/k);

(4) m = 3:

λS12(k) = λ3(7π/k), λS13(k) = λ3(5π/k), λS14(k) = λ3(3π/k), λS15(k) = λ3(π/k).

Example 2.9.7. k = 2s + 1, s = 4. From Theorem 2.6.2 we have

S(9) = S(1)∪Γ(π
9
)∪Γ(3π

9
)∪Γ(5π

9
)∪Γ(7π

9
) = Γ(π)∪Γ(π

9
)∪Γ(3π

9
)∪Γ(5π

9
)∪Γ(7π

9
).

This yields the inequalities

λ0(π/9) < λ0(3π/9) < λ0(5π/9) < λ0(7π/9) < λ0(9π/9) = λ0(π) ≤ λ1(π)
< λ1(7π/9) < λ1(5π/9) < λ1(3π/9) < λ1(1π/9)
< λ2(1π/9) < λ2(3π/9) < λ2(5π/9) < λ2(7π/9) < λ2(π) ≤ λ3(π)
< λ3(7π/9) < λ3(5π/9) < λ3(3π/9) < λ3(1π/9)
< λ4(1π/9) < λ4(3π/9) < λ4(5π/9) < λ4(7π/9) < λ4(π) ≤ λ5(π) < ⋅ ⋅ ⋅ .

From these inequalities and Theorem 2.7.2 we have:
(1) m = 0:

λS0(9) = λ0(π/9), λS1 (9) = λ0(3π/9), λS2 (9) = λ0(5π/9), λS3 (9) = λ0(7π/9);

λS4(9) = λ
S
0;

(2) m = 1:

λS5 (9) = λ
S
1 , λS6(9) = λ1(7π/9), λS7 (9) = λ1(5π/9), λS8(9) = λ1(3π/9),

λS9(9) = λ1(π/9);
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(3) m = 2:

λS10(9) = λ2(π/9), λS11(9) = λ2(3π/9), λS12(9) = λ2(5π/9), λS13(9) = λ2(7π/9),

λS14(9) = λ
S
2 ;

(4) m = 3:

λS15(9) = λ
S
3 , λS16(9) = λ3(7π/9), λS17(9) = λ3(5π/9), λS18(9) = λ3(3π/9),

λS19(9) = λ3(π/9).

2.10 Spectrum of the minimal operator

In this section, we comment on the spectrum of the half-line minimal operator
Smin(0,∞) with 0 a regular endpoint and the boundary condition y(0) = 0 and on
the whole-line operator Smin(−∞,∞), which is self-adjoint (without any boundary
condition) and has no proper self-adjoint extension. From part (4) of Theorem 2.3.1 it
follows that both operators have no eigenvalues.

Hence their spectrum consists entirely [113] of the essential spectrum,which is the
same for both operators:

σe(Smin(0,∞)) = σe(Smin(−∞,∞)) =
∞
⋃
n=0 Jn,

where

J0 = [λ
P
0 , λ

S
0], J1 = [λ

S
1 , λ

P
1 ], J2 = [λ

P
2 , λ

S
2 ], J3 = [λ

S
3 , λ

P
3 ], J4 = [λ

P
4 , λ

S
4], . . .

with λPn and λSn denoting the periodic and semiperiodic eigenvalues on the interval
J = [0, h], respectively.

In particular, the starting point σ0 of the essential spectrum is given by σ0 =
inf σe(Smin) = λP0 . The gaps of the spectrum consist of the open intervals (λS0, λ

S
1 ),

(λP1 , λ
P
2 ), (λ

S
2 , λ

S
3 ), (λ

P
3 , λ

P
4 ), . . . . If λ

S
0 is a double eigenvalue, then the “first gap is miss-

ing”; if λP1 is a double eigenvalue, then the “second gap is missing”; and so on. Recall
that λP0 is always simple. (The open interval (−∞, λP0) is also considered a gap by some
authors.) If all gaps are missing, then σe(S) = [λP0 ,∞). There may be no gaps, a finite
number of gaps, or an infinite number of gaps. The compact intervals Jn are called the
spectral bands.

There is a large literature on L1 perturbations of the coefficients and the eigenval-
ues they generate. These may be below or above σ0. Each gap may contain a finite or
infinite number of eigenvalues of S. If there are infinitely many eigenvalues in a gap,
then they can converge only at an endpoint of the gap.

Brown, McCormack, and Zettl [20, 19] introduce a new method for proving the
existence of eigenvalues below and above the essential spectrum of L1 perturbations
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of periodic Sturm–Liouville problemsand illustrate thismethod for the following class
of problems:

−y󸀠󸀠 + qy = λy, q(t) = sin t, t ∈ J = (0,∞), y(0) = 0,

with L1(J, ℝ) perturbations given by

q(t) = c sin(t + 1
1 + t2
), t ∈ J, c > 0.

They find such eigenvalues for a number of values of the positive constant c. These
problems were motivated by applications.

This method has three primary ingredients: functional analysis, interval analy-
sis, and interval arithmetic. The method not only establishes the existence of these
eigenvalues but also computes provably correct bounds for their values.

In Chapter 6, we study properties of eigenvalues below σ0 for general Sturm–
Liouville problems, that is, without assuming that the coefficients are periodic. The
eigenfunctions of eigenvalues above σ0 are oscillatory. We do not study boundary
conditions that generate eigenvalues above λP0 ; little seems to be known about such
boundary conditions other than their existence.

Remark 2.10.1. The eigenvalues λPn (k) and λ
S
n(k), which determine the spectral bands

and gaps, can be computed with the Bailey–Everitt–Zettl Fortran code SLEIGN2 [10],
which can be downloaded for free and comes with a user-friendly interface. Using
the one-to-one correspondence given by Theorems 2.5.2 and 2.5.3, any periodic and
semiperiodic eigenvalues λPn (k) and λ

S
n(k) for any k > 2 can be computed by computing

the corresponding eigenvalue λm(γ).

2.11 Comments

As mentioned in Introduction of the book, this chapter was motivated by numerous
discussionswithShangYuanRen, the author of thebookElectronic States inCrystals of
Finite Size, QuantumConfinement of BlochWaves, Springer Tracts inModern Physics,
2005, second edition, volume 270, 2017.

I am indebted to Shang Yuan Ren for sharing his insight in the application of
Sturm–Liouville theorywith periodic coefficients to the study of the theory of the elec-
tronic states of crystals.

Also, this chapterwas influenced by someof themethods used byM. S. P. Eastham
in his book The Spectral Theory of Periodic Differential Equations, Scottish Academic
Press, Edinburgh and London, 1973, but with the following major differences:
(1) We use quasi-derivatives (py󸀠) instead of the classical derivative y󸀠; in particular,

for the periodic boundary conditions, we have

y(a) = y(b), (py󸀠)(a) = (py󸀠)(b)
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instead of

y(a) = y(b), y󸀠(a) = y󸀠(b).
(2) We do not assume that p is differentiable nor that q and w are piecewise continu-

ous and that w is bounded away from 0.
(3) We do assume that p is positive. This seems to be an oversight by Eastham. If p has

positive and negative values, each on a set of positive Lebesgue measure (such as
a subinterval), then the eigenvalues are unbounded above and below. So there is
no unique ordering of the eigenvalues, and λn is not well defined.

(4) The quasi-derivative (py󸀠) is continuous on the interval [a, b], whereas the classi-
cal derivative y󸀠(t)may not exist for all t in [a, b].

(5) We use the interval (0,π), instead of (0, 1), to parameterize the complex self-
adjoint boundary conditions. This provides a simple visualization of the “move-
ment” of the eigenvalues λn(γ) on the unit circle of the complex plane relative to
the points 0 and π, which correspond to the periodic and semiperiodic eigenval-
ues.

(6) We use a notation that makes it easier to “keep track” of the dependence of the
eigenvalues on themany parameters a, b, k, n, π, θ, and so on of the problem. This
dependence sometimes requires a very delicate analysis.
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3 Extensions of the classical problem

3.1 Introduction

In this chapter, we study the equation

My = −(py󸀠)󸀠 + qy = λwy, λ ∈ ℂ, on J = (a, b), −∞ ≤ a < b ≤ ∞, (3.1)

with self-adjoint boundary conditions

AY(a) + BY(b) = 0, Y = [ y
(py󸀠) ] , AEA∗ = BEB∗, rank(A : B) = 2, (3.2)

E = [ 0 −1
1 0
] , (3.3)

but with coefficients satisfying only the condition

r = 1/p, q,w ∈ L1(J, ℝ). (3.4)

We will introduce additional conditions on r and w when needed.
In hiswell-knownbook, Atkinson [4]weakened the conditions r = 1

p > 0,w > 0 on
J to r ≥ 0,w ≥ 0. At first glance, this may seem to be aminor extension, but, as we will
see, it leads to some surprising results including Sturm–Liouville problems,which are
equivalent to finite-dimensional matrix problems. This establishes a new and surpris-
ing connection between Sturm–Liouville and matrix theories. Each of these fields is
well established with a voluminous literature dating back at least to the early 1800s;
moreover, with this new connection, some results from each field seem to yield new
results in the other field. See [59, 65, 70, 97] for some examples.

Other extensions are obtained by allowing p and w to change sign. The sign
changes of p have to be “mild” because of the assumption r = 1/p ∈ L1(J, ℝ), but forw,
it can be quite general. (There is no sign restriction on q in (1.2).)

Remark 3.1.1. It is remarkable that conditions (1.2) on the coefficients can be extended
significantly while retaining most of the major results discussed before, but, as far as
the author knows, there are no significant – or even minor – extensions of the self-
adjoint boundary conditions (1.3), (1.4) that preserve the above properties of the eigen-
values. More specifically, given matrices (A,B) satisfying (3.3), which is the same as
(1.4), we do not know any theorem that guarantees many of the discussed properties
of the eigenvalues when one entry of either A or B is changed by a small amount such
that the changed matrices do not satisfy (1.4).

Remark 3.1.2. Note that there is no sign restriction on any of the coefficients r, q,w in
(3.4). Also, each of r, q,w is allowed to be identically zero in subintervals of J. (Also in
the entire interval J, but this is a pathological case, which we do not discuss here.) If

https://doi.org/10.1515/9783110719000-003
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r is identically zero on a subinterval I of J, then there exist solutions y that are zero
on I but whose quasi-derivatives (py󸀠) are nonzero constants on I. A maximal such
interval of zeros is counted as a single zero in the results on the number of zeros of
eigenfunctions.

Definition 3.1.1. By a trivial solution of equation (3.1) on a subinterval I of J we mean
a solution y that is identically zero on I and whose quasi-derivative (py󸀠) is also iden-
tically zero on I.

Definition 3.1.2. A real-valued function f on an interval I is said to change sign on I if
it assumes positive values on a set of positive Lebesguemeasure and assumes negative
values on a set of positive Lebesgue measure.

Remark 3.1.3. By (3.3) the boundary condition (3.4) is well defined for bounded and
unbounded intervals J.

3.2 The leading coefficient changes sign

For convenience of the reader, in the next theorem, we review the basic properties of
eigenvalues.

Theorem 3.2.1. Let (3.1), (3.3), and (3.4) hold and assume that

w > 0 a. e. on J. (3.5)

Then:
(1) All eigenvalues are real and isolated with no finite accumulation point, and their

number infinite but countable.
(2) If p changes sign on J, then the eigenvalues are unbounded below and above and

can be ordered to satisfy

⋅ ⋅ ⋅ ≤ λ−2 ≤ λ−1 ≤ λ0 ≤ λ1 ≤ λ2 ≤ λ3 ⋅ ⋅ ⋅ (3.6)

with λn → +∞ and λ−n → −∞ as n → ∞. Each eigenvalue may be geometrically
simple or double, but there cannot be two consecutive equalities in (3.5), since for
each λ, equation (3.1) has exactly two linearly independent solutions. Note that λ0
can be any of the eigenvalues in this indexing scheme.

(3) If p changes sign and the boundary conditions are separated, then there is strict
inequality everywhere in (3.6).

(4) If p changes sign on J and p+(t) = max(p(t),0), p−(t) = max(−p(t),0), then the
asymptotic form of the eigenvalues is given by

λn
n2
→ c = π2(

b

∫
a

√
w
p+)−2 as n→∞. λn

n2
→ c = π2(

b

∫
a

√
w
p−)−2 as n→ −∞.

(3.7)
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Proof. For part (1), we note that the “standard” Hilbert space proof as given, for exam-
ple, in Coddington and Levinson [24] does not use the positivity assumption on p. Al-
though stronger assumptions of the coefficients are used in [24], the proof given there
extends readily to accommodate our assumptions. The positivity ofw is used to apply
the Hilbert space method in L2(J,w). This proof also applies to unbounded intervals.
When p is positive, part (2) follows from the characterization of the eigenvalues as ze-
ros of an entire characteristic function; see [113]. Although the existence proof for the
eigenvalues “works” when p > 0, the eigenvalues are not bounded below when p > 0
andw > 0, and the beautiful oscillation properties of the eigenfunctions in general do
not hold when p changes sign.

Möller [78] proved that the spectrum is not bounded below when p is negative on
a set of positive Lebesgue measure even when this set contains no interval. Similarly,
the spectrum is not bounded above when p is positive on a set of positive Lebesgue
measure even when this set contains no interval.

The asymptotic formulas (3.7) are due to Atkinson and Mingarelli [5].

3.3 Complex coefficients

In this section, we discuss regular Sturm–Liouville problems (SLPs) with complex co-
efficients and general, not necessarily self-adjoint, two-point boundary conditions.
The main tool for this study is the theory of analytic functions of a complex variable.

A regular two-point SLP consists of the equation

− (py󸀠)󸀠 + qy = λwy on J = (a, b), −∞ ≤ a < b ≤ ∞, (3.8)

where

r = 1/p, q,w ∈ L(J, ℂ), λ ∈ ℂ, (3.9)

together with boundary conditions

AY(a) + BY(b) = 0, Y = [ y
(py󸀠) ] , A,B ∈ M2(ℂ). (3.10)

HereM2(ℂ) denotes the 2×2 matrices with complex entries. From Section 1.6 we know
that Y(a) and Y(b) exist as finite limits (for finite or infinite a, b), so that (3.10) is well
defined. Let

P = [ 0 1/p
q 0

] , W = [ 0 0
w 0
] .

Then, as shown in Chapter 1, the scalar equation (3.5) is equivalent to the first-order
system

Y 󸀠 = (P − λW)Y = [ 0 1/p
q − λw 0

]Y , Y = [ y
(py󸀠) ] .
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LetΦ(⋅, u,P,w, λ) be the primary fundamental matrix of (3.8) and recall that

Φ󸀠 = (P − λW)Φ on J, Φ(u, u, λ) = I , a ≤ u ≤ b, λ ∈ ℂ. (3.11)

Define the characteristic function Δ by

Δ(λ) = Δ(a, b,A,B,P,w, λ) = det[A + BΦ(b, a,P,w, λ)], λ ∈ ℂ. (3.12)

We will further show that its zeros are precisely the eigenvalues of the problem.

Definition 3.3.1. By a trivial solution of equation (3.8) on some interval I we mean a
solution y that is identically zero on I and whose quasi-derivative z = (py󸀠) is also
identically zero on I. (I may be a subinterval of J, or it may be the whole interval J.)
Note that, under general hypotheses (3.9), a solution y may be identically zero on I
but its quasi-derivative (py󸀠) is not necessarily zero on I.
Definition 3.3.2. Let (3.9) hold. A complex number λ is called an eigenvalue of the
boundary value problem consisting of (3.8), (3.9) if equation (3.8) has a nontrivial so-
lutionon J satisfyingboundary conditions (3.9). Sucha solution is called an eigenfunc-
tion of λ. The theorems of this section give far reaching extensions of Theorem 1.25 for
classical problems.

Definition 3.3.3. Any multiple of an eigenfunction is also an eigenfunction. If there
are two linearly independent eigenfunctions for the same λ, then we say that λ has ge-
ometric multiplicity two. If there is only one linearly independent eigenfunction of λ,
then we say that λ is a simple eigenvalue or that λ has geometric multiplicity one.
Since for each λ ∈ ℂ equation (3.8) has exactly two linearly independent solutions,
each eigenvalue λ has geometric multiplicity either one or two. The theorems of this
section give far reaching extensions of Theorem 1.25 for classical problems.

Remark 3.3.1. Condition (3.9) does not restrict the coefficients to be real valued, and
if they are real valued, then it does not restrict the sign of any of the coefficients r, q,w.
Also, each of r, q,w is allowed to be identically zero on one ormore subintervals of J. If
r is identically zero on a subinterval I, then all solutions y are constant on I. Note that
if this constant is zero for some solution y, then its quasi-derivative z = py󸀠 may be a
nonzero constant on I. Similarly, if both q andw are identically zero on a subinterval I,
then py󸀠 is constant on I for any solution y. This constantmay be nonzero evenwhen y
is identically zero on I. These statements can be clearly seen and are best interpreted
from the system formulation of equation (3.8):

y󸀠 = rz, z󸀠 = (q − λw)y on J, z = (py󸀠), r = 1
p
. (3.13)

An interval of zeros of a nontrivial solution y is counted as a single zero in the results
on the numbers of zeros of solutions, in particular, of eigenfunctions.
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Remark 3.3.2. Recall fromSection 2.3 that condition (3.9) implies that y and (py󸀠) exist
as finite limits at each (finite or infinite) endpoint a, b. Hence the boundary condition
(3.10) is well defined.

Lemma 3.3.1. Let (3.8), (3.9), and (3.10) hold. Then the characteristic function Δ is well
defined and is an entire function of λ for fixed (a, b,A,B,P,w).

Proof. It follows from Theorem 1.5.2 that for fixed λ,P,w, the primary fundamental
matrixΦ(b, a, λ,P,w) exists and is continuous at a and b. The entire dependence on λ
follows from Theorem 2.5.3.

Lemma 3.3.2. Let (3.9) hold. Then:
(1) A complex number λ is an eigenvalue of the BVP (3.8), (3.10) if and only if Δ(λ) = 0.
(2) The geometric multiplicity of an eigenvalue λ is equal to the number of linearly in-

dependent vector solutions C = Y(a) of the linear algebra system

[A + BΦ(b, a, λ)]C = 0. (3.14)

Proof. Suppose Δ(λ) = 0. Then (3.14) has a nontrivial vector solution for C. Solve the
IVP

Y 󸀠 = (P − λW)Y on J, Y(a) = C.

Then

Y(b) = Φ(b, a, λ)Y(a) and [A + BΦ(b, a, λ)]Y(a) = 0.

From this it follows that the top component of Y , say, y, is an eigenfunction of the BVP
(3.8), (3.10); this means λ is an eigenvalue of this BVP. Conversely, if λ is an eigenvalue
and y is an eigenvector of λ, then Y = [ y(py󸀠) ] satisfies Y(b) = Φ(b, a, λ)Y(a), and conse-
quently [A +BΦ(b, a, λ)]Y(a) = 0. Since Y(a) = 0 would imply that y is the trivial solu-
tion in contradiction to it being an eigenfunction,we have that det[A+BΦ(b, a, λ)] = 0.
If the algebraic equation has two linearly independent solutions for C, say C1,C2, then
solve the IVP with initial conditions Y(a) = C1,Y(a) = C2 to obtain solutions Y1, Y2.
Then Y1,Y2 are linearly independent vector solutions of the differential system, and
their top components y1, y2 are linearly independent solutions of the scalar equation.
Conversely, if y1, y2 are linearly dependent solutions of the scalar differential equation,
we can reverse the previous steps to obtain two linearly independent vector solutions
of the algebraic system.

The next result shows that any given complex number is an eigenvalue of geomet-
ric multiplicity two for precisely one boundary condition.

Lemma 3.3.3. Let (3.8)–(3.10) hold with B = −I. A number λ ∈ ℂ is an eigenvalue of
geometric multiplicity two if and only if

A = Φ(b, a, λ).
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Proof. This follows from Lemma 3.3.2 and its proof.

Lemma 3.3.4. For the boundary problems (3.8)–(3.10), exactly one of the following four
cases holds:
(1) There are no eigenvalues in ℂ.
(2) Every complex number is an eigenvalue.
(3) There are exactly n eigenvalues in ℂ for some n ∈ ℕ.
(4) There are an infinite but countable number of eigenvalues in ℂ, and these have no

finite accumulation point in ℂ.

Proof. This follows directly from Lemmas 3.3.1 and 3.3.2 and the well-known fact that
the zeros of an entire function are isolated and therefore have no accumulation point
in the finite complex plane ℂ.

Remark 3.3.3. Every self-adjoint regular SLP (see Chapter 4 for a definition of self-
adjoint regular problems) with positive weight function w falls into category 4 of
Lemma 3.3.4. Section 3.3 contains simple examples illustrating cases 1 and 2. Are
there examples for case 3? Such examples are constructed in Chapter 4.

It is convenient to classify the self-adjoint boundary conditions into twomutually
exclusive classes, separated and coupled. Note that since the boundary conditions
are homogeneous, multiplication by a nonzero constant or left multiplication by a
nonsingular matrix leads to equivalent boundary conditions.

Lemma 3.3.5 (Separated boundary conditions). Let (3.8)–(3.10) hold. Fix P,W , J and
assume that

A = [ A1 A2
0 0

] , B = [ 0 0
B1 B2

] .

Then

Δ(λ) = −A2B1ϕ11(b, a, λ) − A2B2ϕ21(b, a, λ) + A1B1ϕ12(b, a, λ) + A1B2ϕ22(b, a, λ)

for λ ∈ ℂ.

Proof. This follows from the definition of Δ and a direct computation.

The characterization of the eigenvalues as zeros of an entire function reduces to
a simpler and more informative form when the boundary conditions are self-adjoint
and coupled. This reduction is given by the next lemma.

Lemma 3.3.6 (Coupled self-adjoint boundary conditions). Let (3.8)–(3.10) hold, and
let Φ = (ϕij) be the primary fundamental matrix of the corresponding system. Fix P,W , J
and assume that

B = −I , A = eiγK, −π < γ ≤ π, K ∈ SL2(ℝ),
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that is, K is a real 2 × 2matrix with determinant 1. Let K = (kij) and define

D(λ,K) = k11ϕ22(b, a, λ) − k12ϕ21(b, a, λ) − k21ϕ12(b, a, λ) + k22ϕ11(b, a, λ)

for λ ∈ ℂ. Note that D(λ,K) does not depend on γ. Then
(1) The complex number λ is an eigenvalue of BVP (3.8)–(3.10) if and only if

D(λ,K) = 2 cos γ, −π < γ ≤ π.

(2) If p, q,w are real valued and λ is an eigenvalue for A = eiγK,B = −I, 0 < γ < π,
with eigenfunction u, then λ is also an eigenvalue for A = e−iγK,B = −I, but with
eigenfunction u.

Proof. Note that detΦ(b, a, λ) = 1. We abbreviate ϕij(b, a, λ) to ϕij. From the definition
of Δ(λ) and D(λ), noting that detK = 1, we get

Δ(λ) = det(eiγK −Φ) =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

eiγk11 − ϕ11 eiγk12 − ϕ12
eiγk21 − ϕ21 eiγk22 − ϕ22

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 1 + e2iγ − eiγD(λ).

Hence Δ(λ) = 0 if and only if D(λ,K) = 2 cos γ. Part (2) follows similarly by reversing
the steps and taking conjugates of equation (3.5).

Remark 3.3.4. Although thematricesA,Bdetermine self-adjoint boundary conditions
(these are the canonical form of all coupled self-adjoint BC; see Chapters 4 and 10),
no conditions other than (3.9) are assumed on p, q,w in Lemma 3.3.6, part (1). In par-
ticular, no symmetry (formal self-adjointness) or definiteness assumption is made on
equation (3.8). Thus the characterization of the eigenvalues applies not only to so-
called left-definite, right-definite, and indefinite Sturm–Liouville problems, but the
coefficients p, q and the weight function w can be complex valued. Furthermore, one
or more of 1/p, q,w can be identically zero on one or more subintervals of J.

3.4 The weight function changes sign

When the weight function w changes sign, there may be nonreal eigenvalues. In this
section,wegive abrief overviewof the so-called left-definite problems. These areprob-
lems with a weight function that changes sign but with all real eigenvalues. Here we
consider the same equation (3.1) with the same boundary conditions (3.3) but with
coefficients satisfying

r = 1/p, q,w ∈ L1(J, ℝ), p > 0, |w| > 0 on J, (3.15)

and w changing sign on J. Here we use the index set

{. . . , −3, −2, −1, −0,0, 1, 2, 3, . . . } (3.16)
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to order the eigenvalues and the equation

My = −(py󸀠)󸀠 + qy = λ|w|y, λ ∈ ℂ, on J = (a, b), −∞ ≤ a < b ≤ ∞, (3.17)

as a comparison equation.

Theorem 3.4.1. Let (3.1)–(3.4) hold. Assume that w changes sign on J and that
λ0(|w|) > 0. Then all eigenvalues are real, and there are a countably infinite number
of negative eigenvalues and a countably infinite number of positive eigenvalues. The
eigenvalues are not bounded below and are not bounded above, and they have no finite
accumulation point. Also:
(1) λ = 0 is not an eigenvalue.
(2) If the boundary conditions are separated, then the eigenvalues can be ordered to

satisfy

⋅ ⋅ ⋅ < λ−3 < λ−2 < λ−1 < λ−0 < 0 < λ0 < λ1 < λ2 < λ3 < ⋅ ⋅ ⋅ , (3.18)

and every λn has exactly |n| zeros in the open interval J.
(3) If the boundary conditions are real coupled, then the eigenvalues can be ordered to

satisfy

⋅ ⋅ ⋅ < λ−3 ≤ λ−2 ≤ λ−1 ≤ λ−0 < 0 < λ0 ≤ λ1 ≤ λ2 ≤ λ3 < ⋅ ⋅ ⋅ .
(4) If the boundary condition is complex coupled, then the eigenvalues can be ordered

to satisfy (3.18).
(5) In all three cases the following asymptotic formula holds:

λ±n
n2
→ c = ±π2(

b

∫
a

√
w±
p
)
−2

as n→∞, (3.19)

where w+ and w− denote the positive and negative parts of w.
3.5 Nonnegative leading coefficient and weight function

To avoid needless repetitions, since we are dealing with Lebesgue-integrable func-
tions, we just write f > 0 on J instead of f > 0 a. e. on J; similarly, for f ≥ 0.

The next three theorems generalize Theorem 1.25 to nonclassical problems.

Theorem 3.5.1 (Everitt, Kwong, and Zettl). Assume that

r = 1/p, q,w ∈ L1(J, ℝ), J = (a, b), −∞ ≤ a < b ≤ ∞,

r > 0, w ≥ 0 on J,
b

∫
a

w > 0. (3.20)
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Then the boundary value problem (3.20) with separated self-adjoint boundary condi-
tions has only real and simple eigenvalues, there are an infinite but countable number
of them, and they are bounded below and can be ordered to satisfy

−∞ < λ0 < λ1 < λ2 < ⋅ ⋅ ⋅ and λn → +∞ as n→∞. (3.21)

If un is an eigenfunction of λn, then un is unique up to constant multiples. Let zn
denote the number of zeros of un in the open interval (a, b) (with a maximal subinterval
of zeros counted as one zero), n ∈ ℕ0. Then

zn+1 = zn + 1, n ∈ ℕ0. (3.22)

For any integer m ≥ 0, there exists an SLP with separated boundary conditions such
that z0 = m. A sufficient but not necessary condition that z0 = 0 is that w > 0 a. e. on J.

Proof. See [29].

Remark 3.5.1. This theorem seems to be the most general result available to estab-
lish the existence of an infinite number of isolated real eigenvalues for the case where
r > 0, and w ≥ 0 on J. The integral condition on w eliminates the case where w is
identically zero on J, which would mean that λ has no effect on the boundary condi-
tions. In the next theorem the hypothesis r > 0 on J is weakened to r ≥ 0 on J, but
at the expense of considerably more restrictions on w. Note the subtle but important
difference between the hypotheses r > 0 on J and r ≥ 0 on J.

Theorem 3.5.2 (Atkinson). Assume that

r = 1/p, q,w ∈ L1(J, ℝ), J = (a, b), −∞ ≤ a < b ≤ ∞,

r ≥ 0,w ≥ 0, on J,
t

∫
a

w > 0,
b

∫
t

w > 0,
b

∫
a

r > 0 for all t ∈ J,

and w = 0 on (c, d) ⊂ J implies q = 0 on (c, d). (3.23)

Then equation (3.1) with separated self-adjoint boundary conditions has only real and
simple eigenvalues, which are bounded below and can be ordered as a finite or infinite
sequence satisfying

−∞ < λ0 < λ1 < λ2 < ⋅ ⋅ ⋅ .

If un is an eigenfunction of λn, then un is unique up to constant multiples and has
exactly n zeros in the open interval J. (Recall that under these conditions a “zero” may
be a whole subinterval.)

Proof. See Theorem 8.4.5 in [4].
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Remark 3.5.2. The phrase a “finite or infinite sequence” is a quote from Atkinson’s
book [4]. It suggests to us that Atkinson was aware that under the conditions of this
theorem there may only be a finite number of eigenvalues. But he gave no example
and made no such conjecture. Such examples were constructed by Kong, Wu, and
Zettl [65], who showed that for any positive integer n, there exist regular self-adjoint
S-L problems with exactly n eigenvalues. These seem to be the first examples of reg-
ular self-adjoint Sturm–Liouville problems with only a finite number of eigenvalues.
This theorem and the next one are stated by Atkinson [4] only for bounded intervals J.
However, Atkinson mentioned that this is only for “convenience”; in other words, the
results and their proofs extend readily to unbounded intervals J. Further comments
are given in the next remark.

Theorem 3.5.3 (Atkinson). Let the hypotheses and notation of Theorem 2.5.1 hold, and,
in addition, suppose that there exists an infinite increasing sequence {ci : i ∈ ℕ} of points
in J such that

c2i+1
∫
c2i

w > 0,
c2i+2
∫

c2i+1 r > 0. (3.24)

Then equation (3.1) with separated self-adjoint boundary conditions has only real and
simple eigenvalues. There are an infinite but countable number of them. They are
bounded below and can be ordered to satisfy

−∞ < λ0 < λ1 < λ2 < ⋅ ⋅ ⋅ , and λn → +∞ as n→∞. (3.25)

If un is an eigenfunction of λn, then un is unique up to constant multiples and has
exactly n zeros in the open interval J. (Recall that under these conditions a “zero” may
be a whole subinterval.)

Proof. See Theorem 8.4.6 in [4].

Corollary 3.5.1. Let the hypotheses and notation of Theorem 3.5.3 hold. If r = 1/p and w
are both positive on a common subinterval of J, then the conclusions hold; in particular,
there are an infinite number of eigenvalues.

Proof. Just choose distinct points ci in the common subinterval where r and w are
positive and (3.24) holds.

Remark 3.5.3. By Corollary 3.5.1, ifw and r are positive on a common subinterval of J,
then there are an infinite number of eigenvalues. This raises the question: Can there be
only a finite number of eigenvalues ifw and r are not positive on any common subinter-
val of J? Kong, Wu, and Zettl [63] showed that the answer is yes, and for each positive
integer n, there exists an SLP with exactly n eigenvalues. In Chapter 4, we will find
a matrix representation of SLP with finite spectrum and, conversely, show that cer-
tain matrix problems can be represented as Sturm–Liouville problems. These matrix
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problems have no boundary conditions since the boundary conditions are built into
the matrix. In this construction, the interval J is partitioned into subintervals such
thatw and r are, alternatively, identically zero on adjacent subintervals. In Chapter 4,
wewill also discuss analogues of the classical resultsmentioned including eigenvalue
inequalities.

Remark 3.5.4. When p > 0, w > 0 on J, and the boundary condition is separated,
each eigenfunction un of λn has exactly n zeros in the open interval J. But when p
changes sign, there is no analogous result in spite of the beautiful characterization
of the eigenvalues λn by equation (1.61). Binding and Volkmer show by theorems and
examples that the zero properties of eigenfunctions under the conditions of the previ-
ous section can be quite “strange”; for instance, eigenfunctions can have an infinite
number of zeros in the interval J.

We end this sectionwith two examples illustrating the delicate dependence of the
spectrum on the coefficients.

Example 3.5.1 (Binding and Volkmer). Let J = (0, 1), w = 1, q ∈ L1(J, ℝ), and define p
by

1
p(t)
= 2t cos(1/t) + sin(1/t), 0 < t < 1.

Consider the SLP

−(py󸀠)󸀠 + qy = λy on J

with boundary condition

y(0) = 0, B1y(1) + B2(py
󸀠)(1) = 0, B1,B2 ∈ ℝ, (B1,B2) ̸= (0,0).

Every eigenfunction has an infinite number of zeros accumulated at the left end-
point 0.

Note that this is a regular problem on J; in particular, 0 is a regular endpoint.
Hinton and Lewis [49] introduced property BD of the spectrum: the spectrum is

bounded below and discrete. The next example shows that property BD does not de-
pend continuously on the coefficient 1/p. This is just one of many illustrations of the
delicate dependence of the spectrum on the problem.

Example 3.5.2. Consider the boundary value problemwith Dirichlet boundary condi-
tions and the equation

−(pεy
󸀠)󸀠 = λy on (0, 1),

where ε ∈ [0, 1], and

pεBinding(t) = {
−1 if 0 ≤ t ≤ ε,
1 if ε < t ≤ 1.
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Then for ε = 0, the spectrum is bounded below, but for each ε > 0, the spectrum is
unbounded below. Note that 1/pε → 1/p0 in L1((0, 1), ℝ).

3.6 Comments

Many people have found extensions of the classical theory discussed in Chapter 1.
In this chapter, we focused on the extensions of Atkinson, Binding, Everitt, Hinton,
Kong, Kwong, Lewis, Möller, Volkmer, Wu, and Zettl.

In the next chapter, we will see that some of these extensions lead to the surpris-
ing result that there is a class of Sturm–Liouville boundary value problems that are
equivalent to matrix eigenvalue problems. These matrix problems have the boundary
conditions built into the matrix.
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4 Finite spectrum

4.1 Introduction

In this chapter, we explore the relation between regular self-adjoint Sturm–Liouville
problems of Atkinson type (see Section 4.2 for a definition) and matrix eigenvalue
problems of the form

DX = λWX, (4.1)

where D andW are real matrices, andW is diagonal. We use the notation D = P +Q to
remind us that the matrix D depends on the leading coefficient p and on the potential
function q. All three matrices P,Q, W also depend on the parameters α, β when the
boundary conditions are separated and on the coupling function K when the bound-
ary conditions are real coupled. Thus the Sturm–Liouville equations of Atkinson type
have equivalentmatrix representations with boundary conditions “built into” thema-
trices for both separated and real coupled boundary conditions.

Consider the equation

− (py󸀠)󸀠 + qy = λwy, λ ∈ ℂ, on J = (a, b), −∞ < a < b < ∞, (4.2)

with coefficients satisfying

r = 1/p, q,w ∈ L1(J, ℝ) (4.3)

and boundary conditions that are either separated

cos αy(a) − sin α(py󸀠)(a) = 0, 0 ≤ α < π, (4.4)
cos βy(b) − sin β(py󸀠)(b) = 0, 0 < β ≤ π,

or real coupled

Y(b) = KY(a), K ∈ SL2(ℝ), K = (kij), detK = 1. (4.5)

We do not discuss coupled complex self-adjoint boundary conditions in this chapter.
Here it is convenient to use the system representation of equation (4.2): with u = y

and v = (py󸀠), we have
u󸀠 = rv, v󸀠 = (q − λw)u on J. (4.6)

4.2 Matrix representations of Sturm–Liouville problems

Recall from Chapter 3 that condition (4.3) allows r, q,w to be identically zero on subin-
tervals of J.

Following Volkmer and Zettl [96], we associate a special class of Sturm–Liouville
problems with the name of Atkinson.

https://doi.org/10.1515/9783110719000-004
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Definition 4.2.1. A Sturm–Liouville equation (4.1) is said to be of Atkinson type if, for
some positive integer n > 2, there exists a partition of the interval J

a = a0 < b0 < a1 < b1 < ⋅ ⋅ ⋅ < an < bn = b (4.7)

such that

r = 0 on [ak , bk], k = 0, . . . , n,
ak

∫
bk−1 r > 0, k = 1, 2, . . . , n, (4.8)

and

q = 0 = w on [bk−1, ak], k = 1, . . . , n,
bk

∫
ak

w > 0, k = 0, 1, . . . n. (4.9)

Let

pk = (
ak

∫
bk−1 r)

−1
, k = 1, 2, . . . n; qk =

bk

∫
ak

q, wk =
bk

∫
ak

w, k = 0, 1, . . . n. (4.10)

Definition 4.2.2. A Sturm–Liouville problem is of Atkinson type if the equation is of
Atkinson type and the self-adjoint boundary condition is separated or real coupled,
that is, either (4.4) or (4.5) holds.

In this section, we construct matrix eigenvalue problems that have exactly the
same eigenvalues as the corresponding Sturm–Liouville problems of Atkinson type.

Remark 4.2.1. Asmentioned before, in 1964, Atkinson, in his classical book [4, Chap-
ter 8], hinted the existence of self-adjoint regular S-L problems whose spectra con-
sist entirely of finitely many eigenvalues. This was confirmed in 2001 by Kong, Wu,
and Zettl [65], who showed that for every positive integer n > 2, there exist S-L prob-
lems whose spectrum consists of exactly n eigenvalues. Surprisingly, these problems
of Atkinson type include the “generalized” Sturm–Liouville problems of Feller and
Krein [71]; see [96] and references therein.

From (4.8) and (4.9) we see that for any solution u, v of (4.6), u is constant on the
intervals [ak , bk], k = 0, . . . , n, and v is constant on [bk−1, ak], k = 1, . . . , n. Let
uk = u(t), t ∈ [ak , bk], k = 0, 1, . . . , n; vk = v(t), t ∈ [bk−1, ak], k = 1, . . . , n;

(4.11)
and set

v0 = v(a0) = v(a), vn+1 = v(bn) = v(b). (4.12)
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Lemma 4.2.1. Assume that equation (4.2) is of Atkinson type with partition (4.7)–(4.11).
Then for any solution u, v of equation (4.6), we have

pk(uk − uk−1) = vk , k = 1, 2, . . . , n, (4.13)

and

vk+1 − vk = uk(qk − λwk), k = 0, 1, . . . , n. (4.14)

Conversely, for any solution uk , k = 0, 1, . . . , n, and vk , k = 0, 1, . . . , n + 1, of system
(4.13)–(4.14), there is a unique solution u(t) and v(t) of equation (4.7) satisfying (4.11)
and (4.12).

Proof. From the first equation of (4.6), for k = 1, . . . , n, we have

uk − uk−1 = u(ak) − u(ak−1) = ak

∫
ak−1 u
󸀠 = ak

∫
ak−1 rv = vk

ak

∫
bk−1 r = vk/pk .

This establishes (4.13), and (4.14) follows similarly from the second equation of (4.6).
On the other hand, if uk, vk satisfy (4.13) and (4.14), then define u(t) and v(t) ac-

cording to (4.11) and (4.12) and extend them continuously to the whole interval J as a
solution of the equation by integrating over subintervals.

Theorem 4.2.1. Assume that equation (4.2)–(4.3) is of Atkinson type with partition
(4.7)–(4.11). Let α ∈ [0,π) and β ∈ (0,π]. Define the (n + 1) × (n + 1) tridiagonal matrix

Pαβ =
[[[[[[

[

p1 sin α + cos α −p1 sin α
−p1 p1 + p2 −p2

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
−pn−1 pn−1 + pn −pn

−pn sin β pn sin β − cos β

]]]]]]

]

(4.15)

and diagonal matrices

Qαβ = diag(q0 sin α, q1, . . . , qn−1, qn sin β), Wαβ = diag(w0 sin α,w1, . . . ,wn−1,wn sin β).
(4.16)

Then the SLP consisting of equation (4.2)–(4.3) with boundary condition (4.4) is equiva-
lent to the matrix eigenvalue problem

(Pαβ + Qαβ)U = λWαβU , (4.17)

where U = [u0, u1, . . . , un]T . Moreover, all eigenvalues are geometrically simple, and the
eigenfunction u(t) of the SLP and the corresponding eigenvector U of the matrix eigen-
value problem associated with the same eigenvalue are related by u(t) = uk , t ∈ [ak , bk],
k = 0, 1, . . . , n.
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Proof. There is a one-to-one correspondence between the solutions of system
(4.13)–(4.14) and the solutions of the following system:

p1(u1 − u0) − v0 = u0(q0 − λw0), (4.18)
pk+1(uk+1 − uk) − pk(uk − uk−1) = uk(qk − λwk), k = 1, 2, . . . , n − 1, (4.19)
vn+1 − pn(un − un−1) = un(qn − λwn). (4.20)

In fact, assume that uk , k = 0, 1, . . . , n, and vk , k = 0, 1, . . . , n + 1, is a solution of sys-
tem (4.13)–(4.14). Then (4.18)–(4.20) follow from (4.13) and (4.14). On the other hand,
let uk , k = 0, 1, . . . , n, be a solution of system (4.18)–(4.20). Then v0 and vn+1 are de-
termined by (4.18) and (4.20), respectively. Let vk , k = 1, 2, . . . , n, be defined by (4.13).
Then using (4.18) and induction on (4.19), we obtain (4.14).

Therefore by Lemma 4.2.1 any solution of equation (4.13), and hence of (4.11), is
uniquely determined by a solution of system (4.18)–(4.20). Note that from (4.11) we
have

u0 cos α = v0 sin α, un cos β = vn+1 sin β.
The equivalence follows from (4.18)–(4.20).

Corollary 4.2.1.
(i) Let α, β ∈ (0,π). Define the (n + 1) × (n + 1) symmetric tridiagonal matrix

Pαβ =
[[[[[[

[

p1 + cot α −p1
−p1 p1 + p2 −p2

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
−pn−1 pn−1 + pn −pn

−pn pn − cot β

]]]]]]

]

(4.21)

and diagonal matrices

Qαβ = diag(q0, q1, . . . , qn−1, qn), Wαβ = diag(w0,w1, . . . ,wn−1,wn). (4.22)

Then SLP (4.7), (4.11) is equivalent to the matrix eigenvalue problem

(Pαβ + Qαβ)U = λWαβU , (4.23)

where U = [u0, u1, . . . , un−1, un]T .
(ii) If α = 0 and/or β = π, then a similar statement holds withmatrices P,Q,W obtained

from thematrices (4.22)–(4.23) by deleting their first row and column if α = 0 and/or
the last row and column if β = π.

Proof. (i) In this case, we divide the first and last rows of system (4.17) by sin α and
sin β, respectively, to obtain (4.23).

(ii) If α = 0, then u0 = 0, so the first row and column of thematrices P,Q,W can be
deleted. Similarly, if β = π, then un = 0, so the last row and column can be deleted.
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Theorem 4.2.1 and its corollary show that every SLP of Atkinson type with a self-
adjoint separated boundary condition has a representation as a tridiagonal matrix
eigenvalue problem.

Next, we show that all SLPs of Atkinson type with a coupled real self-adjoint BC
also have matrix representations. In this case, the matrix P is symmetric and “almost
tridiagonal” in the sense that the entries in the upper right and lower left corners are
nonzero.

Theorem 4.2.2. Consider the boundary condition (4.5) with k12 = 0. Define the n × n
symmetric matrix, which is tridiagonal except for the (1, n) and (n, 1) entries,

P0 =
[[[[[[

[

−k11k21 + p1 + k211pn −p1 −k11pn
−p1 p1 + p2 −p2

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
−pn−2 pn−2 + pn−1 −pn−1

−k11pn −pn−1 pn−1 + pn
]]]]]]

]

(4.24)

and diagonal matrices

Q0 = diag(q0 + k
2
11qn, q1, . . . , qn−1), W0 = diag(w0 + k

2
11wn,w1, . . . ,wn−1). (4.25)

Then SLP (4.2), (4.5) is equivalent to the matrix eigenvalue problem

(P0 + Q0)U = λW0U , (4.26)

whereU = [u0, u1, . . . , un−1]T , admitting n eigenvalues according tomultiplicity, provided
that w0 + k211wn ̸= 0. Moreover, eigenfunctions u(t) of SLP (4.2), (4.5) and eigenvectors U
of thematrix eigenvalue problem (4.26) associated with the same eigenvalue are related
by u(t) = uk , t ∈ [ak , bk], k = 0, 1, . . . , n − 1, and u(t) = k11u0 when t ∈ [an, bn].

Proof. Since k12 = 0, boundary condition (4.5) is the same as

un = k11u0, vn+1 = k21u0 + k22v0, (4.27)

where k11k22 = 1. We claim that there is a one-to-one correspondence between the
solutions of system (4.13)–(4.14) with boundary condition (4.27) and the solutions of
the following system:

[−k11k21 + (p1 + q0 − λw0) + k
2
11(pn + qn − λwn)]u0 − p1u1 − k11pnun−1 = 0, (4.28)

pk+1(uk+1 − uk) − pk(uk − uk−1) = uk(qk − λwk), k = 1, 2, . . . , n − 1. (4.29)

In fact, assume that uk , k = 0, 1, . . . , n, and vk , k = 0, 1, . . . , n + 1, is a solution of system
(4.13)–(4.14), (4.27). Then (4.29) easily follows from (4.13) and (4.14). From (4.13) with
k = 1 and (4.14) with k = 0 we have

v0 = p1(u1 − u0) − u0(q0 − λw0). (4.30)
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From (4.14) and (4.15) with k = n we have

vn+1 = pn(un − un−1) + un(qn − λwn). (4.31)

Combining (4.11), (4.12), and (4.13), we obtain that

pn(k11u0 − un−1) + k11u0(qn − λwn) = k21u0 + k22[p1(u1 − u0) − u0(q0 − λw0)]. (4.32)

Note that k11k22 = 1. Then (4.32) becomes (4.28).
On the other hand, assume that uk , k = 0, 1, . . . , n, is a solution of system

(4.28)–(4.29). Then un, v0, and vn are determined by (4.27), (4.30), and (4.31), re-
spectively. Let vk , k = 1, 2, . . . , n, be defined by (4.13). Then using (4.12), by induction
on (4.13) we obtain (4.14). From (4.30)–(4.32) we see that vn+1 = k21u0 + k22v0. Hence
the boundary condition (4.27) is satisfied.

Therefore by Lemma 4.2.1 any solution of SLP (4.6), (4.5), and hence of SLP (4.2),
(4.5), is uniquely determined by a solution of system (4.28)–(4.29).

Remark 4.2.2. The particular case k12 = 0 considered in Theorem 4.2.2 includes the
“generalized” periodic-type boundary conditions

k12 = k21 = 0, k11 = c, and k22 = 1/c, c ̸= 0.

This is a periodic condition when c = 1 and a semiperiodic condition when c = −1.

Theorem 4.2.3. Consider the boundary condition (4.5) with k12 ̸= 0. Define the (n + 1) ×
(n + 1) symmetric matrix, which is tridiagonal except for the (1, n) and (n, 1) entries,

P1 =
[[[[[[

[

p1 − k11/k12 −p1 1/k12
−p1 p1 + p2 −p2

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
−pn−1 pn−1 + pn −pn

1/k12 −pn pn − k22/k12

]]]]]]

]

(4.33)

and diagonal matrices

Q1 = diag(q0, q1, . . . , qn−1, qn), W1 = diag(w0,w1, . . . ,wn−1,wn). (4.34)

Then SLP (4.2), (4.5) is equivalent to the matrix eigenvalue problem

(P1 + Q1)U = λW1U , (4.35)

where U = [u0, u1, . . . , un]T . Moreover, eigenfunctions u(t) of SLP (4.2), (4.5) and the
corresponding eigenvectors U of the matrix eigenvalue problem (4.35) associated with
the same eigenvalue are related by u(t) = uk , t ∈ [ak , bk], k = 0, 1, . . . , n.
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Proof. The boundary condition (4.5) is the same as

un = k11u0 + k12v0, vn+1 = k21u0 + k22v0.
Since k11k22 − k12k21 = 1, this can be written as

v0 = −
k11
k12

u0 +
1
k12

un, vn+1 = − 1
k12

u0 +
k22
k12

un. (4.36)

We claim that there is a one-to-one correspondence between the solutions of system
(4.13), (4.14) with boundary condition (4.18) and the solutions of the following system:

(p1 −
k11
k22
+ q0 − λw0)u0 − p1u1 +

1
k12

un = 0, (4.37)

pk+1(uk+1 − uk) − pk(uk − uk−1) = uk(qk − λwk), k = 1, 2, . . . , n − 1, (4.38)
1
k12

u0 − pnun−1 + (pn − k22k22
+ qn − λwn)un = 0. (4.39)

In fact, assume that uk , k = 0, 1, . . . , n, and vk , k = 1, 2, . . . , n, is a solution of system
(4.13)–(4.14) with boundary condition (4.36). Then (4.38) follows from (4.13)–(4.14)
easily. Reasoning as in the proof of Theorem 4.2.2, v0 and vn+1 also satisfy (4.30) and
(4.31), respectively. Hence (4.37) and (4.39) are consequences of (4.30), (4.31), and
(4.36).

On the other hand, if uk , k = 0, 1, . . . , n, is a solution of system (4.37)–(4.39), then
v0 and vn are determined by (4.30) and (4.31), respectively. Let vk , k = 1, 2, . . . , n, be
defined by (4.32). Then using (4.30) and (4.31), by induction on (4.38) we obtain (4.14).
Also, from (4.30), (4.31), (4.37), and (4.39) we see that boundary condition (4.36) is
satisfied.

Therefore by Lemma 4.2.1 any solution of SLP (4.6), (4.5), and hence of SLP (4.2),
(4.5), is uniquely determined by a solution of system (4.37)–(4.39).

Remark 4.2.3. When comparing Theorems 4.2.2 and 4.2.3, we note that the dimension
of the matrix system for the former is n and for the latter is n + 1. The reason for this
is that the condition un = k11u0 is used to express un in terms of u0, thus eliminating
the need for un in (4.35). Thus there are exactly n eigenvalues, counting multiplicity,
in Theorem 4.2.2 and exactly n + 1 in Theorem 4.2.3.

Theorems 4.2.2, 4.2.3, and 4.2.4 prove that for any fixed separated or real coupled
self-adjoint boundary condition, every Sturm–Liouville problem of Atkinson type has
a matrix representation with the same eigenvalues. The next result highlights the fact
that every suchmatrix representation is equivalent to not just one but to a whole fam-
ily of Sturm–Liouville problems of Atkinson type and one member of this family has
piecewise constant coefficients.
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Theorem 4.2.4. Let equation (4.2) be of Atkinson type, and let pk , k = 1, 2, . . . , n, and
qk ,wk , k = 0, 1, . . . , n, be given by (4.10). Define the piecewise constant functions p̄, q̄,
and w̄ on J by

p̄(t) = pk(ak − bk−1), t ∈ [bk−1, ak], k = 1, 2, . . . , n,
p̄(t) = ∞, t ∈ [ak , bk], k = 0, 1, . . . , n;
q̄(t) = qk/(bk − ak), t ∈ [ak , bk], k = 0, 1, . . . , n,
q̄(t) = 0, t ∈ [bk−1, ak], k = 1, 2, . . . , n;
w̄(t) = wk/(bk − ak), t ∈ [ak , bk], k = 0, 1, . . . , n,
w̄(t) = 0, t ∈ [bk−1, ak], k = 1, 2, . . . , n. (4.40)

Here p̄(t) = ∞ means that r = 1/ p̄ = 0. Suppose that the self-adjoint boundary condi-
tion (4.4) is either separated or real coupled. Then SLP (4.2), (4.4) has exactly the same
eigenvalues as the SLP consisting of the equation with piecewise constant coefficients

− (p̄y󸀠)󸀠 + q̄y = λw̄y on J (4.41)

and the same boundary condition (4.4).

Proof. Observe that both SLPs (4.2), (4.4) and (4.41), (4.4) determine the same

pk , k = 1, 2, . . . , n, and qk ,wk , k = 0, 1, . . . , n.

Thus by one of Theorems 4.2.1–4.2.3, depending on which boundary condition (4.4) is
involved, they are equivalent to the same matrix eigenvalue problem, and hence they
have the same eigenvalues.

By Theorem 4.2.4 we see that for a fixed boundary condition (4.4) on a given inter-
val J, there is a family of SLPs of Atkinson type that have exactly the same eigenvalues
as SLP (4.41), (4.4). Such a family is called the equivalent family of SLPs (4.41), (4.4).

Remark 4.2.4. Note that all eigenvalues of the matrix problems (4.17), (4.26), and
(4.35) are real. Moreover, under separated boundary conditions, there are exactly n+ 1
eigenvalues if α, β ∈ (0,π), exactly n eigenvalues if α = 0 or β = π, and exactly n − 1
eigenvalues if α = 0 and β = π.

4.3 Sturm–Liouville representations of matrix eigenvalue
problems

In this section, we show that matrix eigenvalue problems of the form

DX = λBX, (4.42)
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where D = (dij) is anm×m real symmetric matrix with di,i+1 ̸= 0, i = 1, . . . ,m− 1, which
is either tridiagonal or “almost tridiagonal”, and B = diag(b11, . . . , bmm) with bkk ̸= 0,
k = 1, . . . ,m, have representations as SLPs of Atkinson type. Such representations are
not unique as shown by Theorem 4.2.4. Here we characterize all Sturm–Liouville rep-
resentations of the matrix problem (4.42) using SLPs (4.21), (4.9), and their equivalent
families.

First, we consider the case of separated boundary conditions (4.4) and find a kind
of converse to Theorem 4.2.1.

Theorem 4.3.1. Let m > 2, let D be an m ×m symmetric tridiagonal matrix

D =
[[[[[[

[

d11 d12
d12 d22 d23
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

dm−1,m−2 dm−1,m−1 dm−1,m
dm−1,m dmm

]]]]]]

]

(4.43)

where dij ∈ ℝ, 1 ≤ i, j ≤ m, dj,j+1 ̸= 0, j = 1, . . . ,m − 1, and let
B = diag(b11, . . . , bmm), 0 ̸= bjj ∈ ℝ, 1 ≤ j ≤ m. (4.44)

Then, given any separated self-adjoint BC (4.4), the matrix eigenvalue problem (4.42)
has representations as SLPs of Atkinson type in the form of SLP (4.2), (4.4). Moreover,
given a fixed partition (4.7) of J, it has a unique representation in the form of SLP (4.41),
(4.4) provided that, with the notation in (4.10), one of the following holds:
(1) α, β ∈ (0,π);
(2) α = 0, β ∈ (0,π), and pn, qn,wn are fixed;
(3) α ∈ (0,π), β = π, and p1, q0,w0 and pn, qn,wn are fixed.

In each of these cases, all Sturm–Liouville representations of the matrix problem (4.42)
are given by the corresponding equivalent families (4.41), (4.4) with all possible choices
of the parameters; for example, with all possible choices of p1, q0,w0 in case α = 0 and
β ∈ (0,π).

Proof. First, consider the case where a, β ∈ (0,π). Let n = m − 1 and J = (a, b),
−∞ < a < b < ∞. Define a partition of (a, b) by (4.7). We construct piecewise con-
stant functions p̄, q̄, w̄ on [a, b] satisfying (4.3) and (4.8)–(4.9). We need to define the
values of these functions on those subintervals of [a, b]where they are not defined as
zero in (4.8)–(4.9). To do this, we let

pk = −dk,k+1, k = 1, 2, . . . , n; wk = bk+1,k+1, k = 0, 1, . . . , n;

and

q0 = d11 − p1 − cot α, qn = dn+1,n+1 − pn + cot β,
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qk = dk+1,k+1 − pk − pk+1, k = 1, 2, . . . , n − 1.

Then define p̄(t), q̄(t), and w̄(t) by (4.40). Such p̄, q̄, w̄ are piecewise constant functions
on J satisfying (4.8), (4.9), and (4.3). Equation (4.41) is of Atkinson type, and (4.10)
is satisfied with p, q,w replaced by p̄, q̄, w̄, respectively. It is easy to see that problem
(4.7) is of the same form as problem (4.31). Therefore by Corollary 4.2.1 problem (4.7) is
equivalent to the SLP (4.7), (4.11). The last part follows from Theorem (4.9). The cases
α = 0 and/or β = π can be proven similarly.

Next, we consider the coupled boundary condition (4.5) and find a kind of con-
verse to Theorems 4.2.2 and 4.2.3. Note that in both of these two theorems the matrix
corresponding to D in (4.42) is not tridiagonal but “almost tridiagonal”.

Theorem 4.3.2. Let m > 2, and let D be a symmetric matrix, which is tridiagonal except
for nonzero entries d1m = dm1,

D =
[[[[[[

[

d11 d12 d1m
d12 d22 d23
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

dm−1,m−2 dm−1,m−1 dm−1,m
d1m dm−1,m dmm

]]]]]]

]

, (4.45)

where

dij ∈ ℝ, bjj ∈ ℝ, 1 ≤ i, j ≤ m, dj,j+1 ̸= 0, j = 1, . . . ,m − 1, d1m ̸= 0; (4.46)

and let

B = diag(b11, . . . , bmm), 0 ̸= bjj ∈ ℝ, 1 ≤ j ≤ m. (4.47)

Then, given any real coupled self-adjoint boundary condition (4.5), the matrix eigen-
value problem (4.42) has representations as SLPs of Atkinson type in the form of SLP
(4.2), (4.4). Moreover, given a fixed partition (4.7) of J, it has a unique representation in
the form of SLP (4.41), (4.4), provided that, with the notation in (4.10), one of the follow-
ing holds:
(1) k12 ̸= 0;
(2) k12 = 0, and q0 and w0 are fixed.

In each of these cases, all Sturm–Liouville representations of the matrix problem (4.42)
are given by the corresponding equivalent families (4.41), (4.4) with all possible choices
of the parameters.

Proof. First, we consider the case k12 ̸= 0. Note that we can normalize the matrices D
andB such thatd1m = 1/k12 bymultiplying equation (4.42) by (k12d1m)−1. This operation
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does not change the eigenvalues of problem (4.42). Choose n = m − 1 and let a < b.
Define the partition of [a, b] by (4.7). Let

pk = −dk,k+1, k = 1, 2, . . . , n; wk = bk+1,k+1, k = 0, 1, . . . , n;

and

q0 = d11 − p1 + k11/k12, qn = dn+1,n+1 − pn + k22/k12,
qk = dk+1,k+1 − pk − pk+1, k = 1, 2, . . . , n − 1.

Then define p̄(t), q̄(t), and w̄(t) by (4.40). Similarly to the proof of Theorem 4.3.1, we
see that problem (4.35) is the same as problem (4.40). Therefore by Theorem 4.2.3 the
matrix problem (4.42) is equivalent to SLP (4.2), (4.4).

For the case k12 = 0, we choose n = m and fix q0 and w0, and then proceed simi-
larly.

4.4 The study of Jacobi and cyclic Jacobi matrix eigenvalue
problems using Sturm–Liouville theory

We study the eigenvalues of matrix problems involving Jacobi and cyclic Jacobi matri-
ces as functions of certain entries. In Sections 4.2 and 4.3,we saw that Sturm–Liouville
problems of Atkinson type have only a finite number of eigenvalues and are equiva-
lent to matrix eigenvalue problems. Due to results by numerous researchers, many of
which are of surprisingly recent origin given the long history of these problems, the
dependence of eigenvalues of self-adjoint regular SLPs on the problem is now well
understood. In this chapter, we apply some of these SLP results to matrix problems.
Although some of our results, in particular, the behavior of the eigenvalues as certain
entries of thematrices approach plus orminus infinity, seem to be new, we emphasize
the approach, whichwe believe has not been used before: obtaining results aboutma-
trix eigenvalues using methods from Sturm–Liouville theory.

For n ≥ 3 [41], let𝕄n be the set of n × n matrices over the reals. For any C ∈ 𝕄n,
we denote by σ(C) the set of eigenvalues of C. Furthermore, when n ≥ 3, we denote
by C[1] the submatrix of C obtained by removing the first row and column, by C[n] the
submatrix obtained by removing the last row and column, and by C[1,n] the submatrix
obtained by removing both the first and last rows and columns.

For any C,D ∈ 𝕄n, we say that λ is an eigenvalue of the matrix pair (C,D) if there
exists a nontrivial vector u ∈ ℝn such that (C − λD)u = 0. We denote by σ(C,D) the
set of eigenvalues of (C,D). Clearly, λ ∈ σ(C) if and only if λ ∈ σ(C, In), where In is the
identity matrix in𝕄n.
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Throughout this book, for any C,D ∈ 𝕄n, we use the following notation:

σ(C,D) = {λ1, λ2, . . . , λn},

σ(C[1],D[1]) = {λ[1]1 , λ[1]2 , . . . , λ[1]n−1},
σ(C[n],D[n]) = {λ[n]1 , λ[n]2 , . . . , λ[n]n−1},
σ(C[1,n],D[1,n]) = {λ[1,n]1 , λ

[1,n]
2 , . . . , λ

[1,n]
n−2 }. (4.48)

When C is symmetric and D is positive definite, all these eigenvalues are real. In this
case, each of the above sets of eigenvalues is arranged in nondecreasing order.

For n ≥ 2, we study the spectrum σ(P + Q,W) for the following two classes of
symmetric matrices:

(I) P,Q,W ∈ 𝕄n+1 are such that P is a Jacobi matrix of the form

P =
[[[[[[

[

p1 −p1
−p1 p1 + p2 −p2

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
−pn−1 pn−1 + pn −pn

−pn pn

]]]]]]

]

and

Q = diag(q0, q1, . . . , qn−1, qn), W = diag(w0,w1, . . . ,wn−1,wn),

where pi,wi > 0 and qi ∈ ℝ for i = 0, 1, . . . , n;
(II) P,Q,W ∈ 𝕄n+1 are such that P is a cyclic Jacobi matrix of the form

P =
[[[[[[

[

p1 −p1 pn+1
−p1 p1 + p2 −p2

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
−pn−1 pn−1 + pn −pn

pn+1 −pn pn

]]]]]]

]

and

Q = diag(q0, q1, . . . , qn−1, qn), W = diag(w0,w1, . . . ,wn−1,wn),

where pi > 0 for i = 1, . . . , n, pn+1 ̸= 0, wi > 0, and qi ∈ ℝ for i = 0, 1, . . . , n.
It is well known [41] that all eigenvalues in σ(P+Q,W) are simple when (P+Q,W)

is in class (I) and simple or double when (P + Q,W) is in class (II).

4.4.1 Main results

In this section, using notation (4.1) with C = P + Q and D = W for (P + Q,W), we state
our results for classes (I) and (II). Proofs are given in the next section.

We first consider class (I).
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Theorem 4.4.1. Let (P + Q,W) be in class (I). For fixed pi > 0 (i = 1, . . . , n), qi ∈ ℝ
(i = 1, . . . , n − 1), and wi > 0 (i = 0, . . . , n), consider λi = λi(q0, qn) as a function of
q0 and qn. Then for i = 1, . . . , n + 1, λi(q0, qn) is strictly increasing in both q0 and qn.
Furthermore, we have:
(a) For each qn ∈ ℝ,

lim
q0→−∞ λ1(q0, qn) = −∞, lim

q0→−∞ λi(q0, qn) = λ[1]i−1(qn) for i = 2, . . . , n + 1;

lim
q0→∞ λi(q0, qn) = λ[1]i (qn) for i = 1, . . . , n, lim

q0→∞ λn+1(q0, qn) = ∞.
(b) For each q0 ∈ ℝ,

lim
qn→−∞ λ1(q0, qn) = −∞, lim

qn→−∞ λi(q0, qn) = λ[n+1]i−1 (q0) for i = 2, . . . , n + 1;

lim
qn→∞ λi(q0, qn) = λ[n+1]i (q0) for i = 1, . . . , n, lim

q0→∞ λn+1(q0, qn) = ∞.
(c) In general,

lim
q0→−∞,qn→−∞ λi(q0, qn) → −∞ for i = 1, 2;

lim
q0→−∞,qn→−∞ λi(q0, qn) → λ[1,n+1]i−2 for i = 3, . . . , n + 1;

lim
q0→∞,qn→−∞ λ1(q0, qn) → −∞;

lim
q0→∞,qn→−∞ λi(q0, qn) → λ[1,n+1]i−1 for i = 2, . . . , n;

lim
q0→∞,qn→−∞ λn+1 = ∞;

lim
q0→−∞,qn→∞ λ1(q0, qn) → −∞;

lim
q0→−∞,qn→∞ λi(q0, qn) → λ[1,n+1]i−1 for i = 2, . . . , n;

lim
q0→−∞,qn→∞ λn+1 = ∞;

lim
q0→∞,qn→∞ λi(q0, qn) → λ[1,n+1]i−1 for i = 1, . . . , n − 1;

lim
q0→∞,qn→∞ λi(q0, qn) → ∞ for i = n, n + 1.

Theorem 4.4.2. For fixed pi > 0 (i = 1, . . . , n), qi ∈ ℝ (i = 1, . . . , n − 1), and wi > 0
(i = 1, . . . , n), consider λ[1]i = λ[1]i (qn) as a function of qn. Then for i = 1, . . . , n, λ[1]i (qn) is
strictly increasing in qn. Furthermore,

lim
qn→−∞ λ[1]1 (qn) = −∞, lim

qn→−∞ λ[1]i (qn) = λ[1,n+1]i−1 for i = 2, . . . , n;

lim
qn→∞ λ[1]i (qn) = λ[1,n+1]i for i = 1, . . . , n − 1, lim

qn→∞ λ[1]n (qn) = ∞.
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Theorem 4.4.3. For fixed pi > 0 (i = 1, . . . , n), qi ∈ ℝ (i = 1, . . . , n − 1), and wi > 0
(i = 0, . . . , n − 1), consider λ[n+1]i = λ[n+1]i (q0) as a function of q0. Then for i = 1, . . . , n,
λ[n+1]i (q0) is strictly increasing in q0. Furthermore, we have:

lim
q0→−∞ λ[n+1]1 (q0) = −∞, lim

q0→−∞ λ[n+1]i (q0) = λ
[1,n+1]
i−1 for i = 2, . . . , n;

lim
q0→∞ λ[n+1]i (q0) = λ

[1,n+1]
i for i = 1, . . . , n − 1, lim

q0→∞ λ[n+1]n (q0) = ∞.

The following corollaries are immediate consequences of Theorems 4.4.1, 4.4.2,
and 4.4.3 and the well-known continuous dependence of eigenvalues on the matrix
entries.

Corollary 4.4.1. In addition to the notation in Theorem 4.4.1, we letℛ(λi(q0, qn)) be the
range of λi as a function of q0 and qn, i = 1, . . . , n + 1. Then we have:
(a) for each qn ∈ ℝ,

ℛ(λ1(q0, qn)) = (−∞, λ
[1]
1 (qn)),

ℛ(λi(q0, qn)) = (λ
[1]
i−1(qn), λ[1]i (qn)) for i = 2, . . . , n,

ℛ(λn+1(q0, qn)) = (λ[1]n (qn),∞);
(b) for each q0 ∈ ℝ,

ℛ(λ1(q0, qn)) = (−∞, λ
[n+1]
1 (qn)),

ℛ(λi(q0, qn)) = (λ
[n+1]
i−1 (qn), λ[n+1]i (qn)) for i = 2, . . . , n,

ℛ(λn+1(q0, qn)) = (λ[n+1]n (qn),∞);

(c) in general,

ℛ(λi(q0, qn)) = (−∞, λ
[1,n+1]
i ) for i = 1, 2,

ℛ(λi(q0, qn)) = (λ
[1,n+1]
i−2 , λ[1,n+1]i ) for i = 3, . . . , n − 1,

ℛ(λi(q0, qn)) = (λ
[1,n+1]
i−2 ,∞) for i = n, n + 1.

Corollary 4.4.2. In addition to the notation in Theorem 4.4.1, letℛ(λ[1]i (qn)) be the range
of λ[1]i as a function of qn, i = 1, . . . , n. Then we have:

ℛ(λ[1]1 (qn)) = (−∞, λ[1,n+1]1 ),

ℛ(λ[1]i (qn)) = (λ[1,n+1]i−1 , λ[1,n+1]i ) for i = 2, . . . , n − 1,

ℛ(λ[1]n (qn)) = (λ[1,n+1]n−1 ,∞).
Corollary 4.4.3. In addition to the notation in Theorem 4.4.3, let ℛ(λ[n+1]i (q0)) be the
range of λ[n+1]i as a function of q0, i = 1, . . . , n. Then we have:

ℛ(λ[n+1]1 (q0)) = (−∞, λ
[1,n+1]
1 ),
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ℛ(λ[n+1]i (q0)) = (λ
[1,n+1]
i−1 , λ[1,n+1]i ) for i = 2, . . . , n − 1,

ℛ(λ[n+1]n (q0)) = (λ
[1,n+1]
n−1 ,∞).

Next, we consider class (II).
The next theorem is a minor extension of Theorem 4.3.8 in the book by Horn and

Johnson [50] with W = I. However, our proof is entirely different from the algebraic
approach used there.

Theorem 4.4.4. Let (P +Q,W) be in class (II). Then we have the following inequalities:

λ1 ≤ λ
[1]
1 ≤ λ2 ≤ λ

[1]
2 ≤ ⋅ ⋅ ⋅ ≤ λn ≤ λ

[1]
n ≤ λn+1.

Moreover, there are no adjacent equalities in these inequalities.

The following corollaries are immediate consequences of Theorem 4.4.2 and
Corollary 4.4.2.

Corollary 4.4.4. For fixed pi > 0 (i = 1, . . . , n), pn+1 ̸= 0, qi ∈ ℝ (i = 0, 1, . . . , n − 1), and
wi > 0 (i = 0, 1, . . . , n − 1), consider λi = λi(qn) as a function of qn. Then we have:

lim
qn→−∞ λ1(qn) = −∞ and lim

qn→∞ λn(qn) = ∞.
Corollary 4.4.5. Letℛ(λi(qn)) be the range of λi as a function of qn, i = 1, . . . , n+ 1. Then
we have:

ℛ(λi(qn)) ⊂ (−∞, λ
[1,n+1]
i ) for i = 1, 2,

ℛ(λi(qn)) ⊂ (λ
[1,n+1]
i−2 , λ[1,n+1]i ) for i = 3, . . . , n,

ℛ(λn+1(qn)) ⊂ (λ[1,n+1]n−1 ,∞).
Remark 4.4.1. In the above theorems and corollaries, all entries ofP,Q, andW remain
fixed except q0 and qn, and the eigenvalues are studied as functions of q0 and qn. We
do not expect parallel results for the other entries. This is because q0 and qn play spe-
cial roles in the corresponding Sturm–Liouville problems in the sense that they de-
pend on the boundary conditions. Mpreover, as mentioned in the introduction to this
chapter, due to some surprisingly recent results, the dependence of the eigenvalues
of regular self-adjoint Sturm–Liouville problems on the boundary conditions is now
well understood; see [113].

4.5 Comments

Kong, Möller, Wu, Volkmer, and Zettl in papers [65, 59, 96, 58] seem to be the first
authors to have found relations between self-adjoint Sturm–Liouville problems with
finite spectrum and the corresponding matrix theory.
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5 Inverse Sturm–Liouville problems with finite
spectrum

5.1 Introduction

In this chapter, we study the inverse problem. We show that given two sets of inter-
lacing real numbers, there exists a Sturm–Liouville equation of Atkinson type with
two separated boundary conditions such that the given numbers are the eigenvalues
of these two problems. Parallel results are also obtained for some, but not all, real
coupled boundary conditions.

Consider the equation

− (py󸀠)󸀠 + qy = λwy, λ ∈ ℂ, on J = (a, b), −∞ < a < b < ∞, (5.1)

with coefficients satisfying

r = 1/p, q,w ∈ L1(J, ℝ), (5.2)

and self-adjoint boundary conditions, which are either separated conditions

cos αy(a) − sin α(py󸀠)(a) = 0, 0 ≤ α < π, (5.3)
cos βy(b) − sin β(py󸀠)(b) = 0, 0 < β ≤ π,

or real coupled conditions

Y(b) = KY(a), K ∈ SL2(ℝ), K = (kij), detK = 1. (5.4)

We do not consider complex self-adjoint coupled boundary conditions in this chapter.
For some positive integer n > 2, consider a partition of the interval J

a = a0 < b0 < a1 < b1 < ⋅ ⋅ ⋅ < an < bn = b (5.5)

such that

r = 0 on [ak , bk], k = 0, . . . , n,
ak

∫
bk−1 r > 0, k = 1, 2, . . . , n, (5.6)

and

q = 0 = w on [bk−1, ak], k = 1, . . . , n,
bk

∫
ak

w > 0, k = 0, 1, . . . n. (5.7)

https://doi.org/10.1515/9783110719000-005

 EBSCOhost - printed on 2/10/2023 3:33 PM via . All use subject to https://www.ebsco.com/terms-of-use



96 | 5 Inverse Sturm–Liouville problems with finite spectrum

Let

pk = (
ak

∫
bk−1 r)

−1
, k = 1, 2, . . . n; qk =

bk

∫
ak

q, wk =
bk

∫
ak

w, k = 0, 1, . . . n. (5.8)

Define piecewise constant functions p̄, q̄, and w̄ on J by

p̄(t) = pk(ak − bk−1), t ∈ [bk−1, ak], k = 1, 2, . . . , n,
p̄(t) = ∞, t ∈ [ak , bk], k = 0, 1, . . . , n;
q̄(t) = qk/(bk − ak), t ∈ [ak , bk], k = 0, 1, . . . , n,
q̄(t) = 0, t ∈ [bk−1, ak], k = 1, 2, . . . , n;
w̄(t) = wk/(bk − ak), t ∈ [ak , bk], k = 0, 1, . . . , n,
w̄(t) = 0, t ∈ [bk−1, ak], k = 1, 2, . . . , n. (5.9)

Here p̄(t) = ∞means that r = 1/ p̄ = 0.
Then the Sturm–Liouville problem consisting of equation (5.1) with either the sep-

arated boundary conditions (5.3) or the coupled conditions (5.4) has exactly the same
eigenvalues as the SLP consisting of the equationwith piecewise constant coefficients

− (p̄y󸀠)󸀠 + q̄y = λw̄y on J (5.10)

and the same boundary condition.
Observe that for both boundary conditions, we have the same piecewise constant

coefficients:

pk , k = 1, 2, . . . , n, and qk ,wk , k = 0, 1, . . . , n.

Thus by Theorem 4.2.1 and its corollary and Theorems 4.2.2 and 4.2.3, depending on
which boundary condition is involved, each of these problems is equivalent to the
same matrix eigenvalue problem and hence has the same eigenvalues as the matrix
problem. In other words, the two Sturm–Liouville problems with coefficients p, q,w
and p̄, q̄, w̄ and the same boundary condition have the same eigenvalues because both
are equivalent to the same matrix eigenvalue problem.

Thus for a fixed boundary condition (5.3) or (5.4) on a given interval J, there is a
family of SLPs of Atkinson type that have exactly the same eigenvalues. Such a family
is called an equivalent family of SLPs of Atkinson type.

5.2 Main results

Definition 5.2.1. For a given equation of Atkinson type with coefficients satisfying
(5.7)–(5.9), σ(α, β) denotes the spectrum of the separated boundary condition (5.3),
and σ(K) denotes the spectrum of the real coupled condition (5.4).

 EBSCOhost - printed on 2/10/2023 3:33 PM via . All use subject to https://www.ebsco.com/terms-of-use



5.2 Main results | 97

Next, we state our two theorems for separated boundary conditions; proofs will
be given in Section 5.3.

Theorem 5.2.1. Suppose (5.1)–(5.9) hold. Let α, β ∈ (0,π). Suppose that {λi : i = 1, . . . , k}
and {μi : i = 1, . . . , k − 1} are two sets of real numbers satisfying the strict interlacing
relation

λ1 < μ1 < λ2 < μ2 < ⋅ ⋅ ⋅ < λk−1 < μk−1 < λk . (5.11)

Let n = k − 1. Then for any interval J = (a, b), −∞ < a < b < ∞, any partition (5.5),
and any w ∈ L(a, b) satisfying (5.7), we have:
a: There exist coefficients r, q ∈ L(J) satisfying (5.6) and (5.7) such that the associated

equivalent family (5.10) has the same spectrum

σ(α, β) = {λi : i = 1, . . . , k} and σ(0, β) = {μi : i = 1, . . . , k − 1}.

b: There exist coefficients r, q ∈ L(J) satisfying (5.6) and (5.7) such that the associated
equivalent family (5.10) has the same spectrum

σ(α, β) = {λi : i = 1, . . . , k} and σ(α,π) = {μi : i = 1, . . . , k − 1}.

Furthermore, the equivalent families in (a) and (b) are uniquely determined.

Theorem 5.2.2. Suppose (5.1)–(5.9) hold. Let α, β ∈ (0,π), and let {λi : i = 1, . . . , k} and
{μi : i = 1, . . . , k − 1} be two sets of real numbers satisfying the strict interlacing relation

λ1 < μ1 < λ2 < μ2 < ⋅ ⋅ ⋅ < λk−1 < μk−1 < λk .
Let n = k. Then for any interval J = (a, b), −∞ < a < b < ∞, any partition (5.5), and

any w ∈ L(a, b) satisfying (5.7), we have:
a: There exist coefficients r, q ∈ L(J) satisfying (5.6) and (5.7) such that the associated

equivalent family (5.10) has the spectrum

σ(0, β) = {λi : i = 1, . . . , k} and σ(0,π) = {μi : i = 1, . . . , k − 1}.

b: There exist coefficients r, q ∈ L(J) satisfying (5.6) and (5.7) such that the associated
equivalent family (5.10) has the spectrum

σ(α,π) = {λi : i = 1, . . . , k} and σ(0,π) = {μi : i = 1, . . . , k − 1}.

Furthermore, the equivalent families in (a) and (b) are uniquely determined.

Remark 5.2.1. From these theorems it follows that given any finite set of distinct real
numbers {λi : i = 1, . . . , k}, k > 3, there exists a Sturm–Liouville equation of Atkinson
typewith self-adjoint separated boundary conditionswhose spectrum is the given set.
In particular, we this holds:
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(1) For any finite set of prime numbers.
(2) For any finite set of twin primes. At the time of this writing, it is not known if there

are infinitely many pairs of twin primes. From the perspective of Sturm–Liouville
problems of Atkinson type there seems to be no obstacle to the existence of an
infinite number of pairs of twin primes. As of 28 May 2018 the largest known twin
primes are:

2996863034895 ⋅ 21290000 ± 1.

(3) The Sturm–Liouville theory, which constructs a boundary value problem whose
eigenvalues are a given set of primes or twinprimes, also generates eigenfunctions
whose zeros can be characterized by the Prüfer transformation. Does this “extra”
informationgive any clues about the locationof the “large”primes or twinprimes?

The next two theorems are for some real coupled boundary conditions with cou-
pling matrix K. Recall that for coupled boundary conditions, some eigenvalues may
have multiplicity two.

Theorem 5.2.3. Let {λi : i = 1, . . . , k} and {μi : i = 1, . . . , k−1} be two sets of real numbers
satisfying the following three conditions:
(1)

λ1 ≤ μ1 ≤ λ2 ≤ μ2 ≤ ⋅ ⋅ ⋅ ≤ λk−1 ≤ μk−1 ≤ λk ,
(2) μi ̸= μj if i ̸= j,
(3) there exists a number d > 0 such that for all j = 1, . . . , k − 1,

k
∏
i=1 |μi − λi| ≥ 2d[1 + (−1)k+1−j].

Let

n = k − 1.

Then for any interval J = (a, b), −∞ < a < b < ∞, any partition (5.5) of the interval
(a, b), and any w ∈ L(a, b) satisfying (5.9), we have:
(a) For any β ∈ (0,π), there exist K = (kij) ∈ SL2(ℝ) satisfying k12 < 0and cot β = k22/k12

and r, q ∈ L(J) satisfying (5.6) and (5.7) such that the associated equivalent family
of SLPs (5.10) has the spectrum

σ(K) = {λi : i = 1, . . . , k} and σ(0, β) = {μi : i = 1, . . . , k − 1}.

(b) For any α ∈ (0,π), there exist K = (kij) ∈ SL2(ℝ) satisfying k12 < 0 and cot α =
−k11/k12 and r, q ∈ L(J) satisfying (5.6) and (5.7) such that the associated equivalent
family of SLPs (5.10) has the spectrum

σ(K) = {λi : i = 1, . . . , k} and σ(α,π) = {μi : i = 1, . . . , k − 1}.
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Remark 5.2.2. Note that conditions (1)–(3) of this theorem imply that
(1) The multiplicities of the eigenvalues λi, i = 1, . . . , k, can be 1 or 2.
(2) The eigenvalues μi, i = 1, . . . , k − 1, are distinct.
(3) For all j = 1, 2, . . . , k − 1 if μi = λi for some i ∈ {1, . . . , k}, then jmust be even when k

is even, and jmust be odd when k is odd.

Theorem 5.2.4. Let K = (kij) ∈ SL2(ℝ) with k12 = 0 and k11 > 0, let {λi : i = 1, . . . , k} and
{μi : i = 1, . . . , k − 1} be two sets of real numbers satisfying conditions (1)–(3), and let
n = k. Then for any interval J = (a, b), −∞ < a < b < ∞ and w ∈ L(a, b) satisfying (5.9),
there exist r, q ∈ L(a, b) satisfying (5.6) and (5.7) such that the associated equivalent
family of SLPs (5.10) has the spectrum

σ(K) = {λi : i = 1, . . . , k} and σ(0,π) = {μi : i = 1, . . . , k − 1}.

Remark 5.2.3. In the conclusions of the theorems for coupled boundary conditions
the existence of inverse problems is guaranteed for all matrices K with k12 = 0 and
k11 > 0, but only for some matrices K with k12 ̸= 0. The case where k12 = 0 and k11 < 0
remains unsolved. In particular, the semiperiodic case k11 = −1 = k22 and k12 = 0 = k21
is open.

Remark 5.2.4. In all four theorems, {μi : i = 1, . . . , k − 1} are eigenvalues for a Dirich-
let boundary condition either at a or b. This shows that Dirichlet boundary conditions
play a special role in the inverse spectral theory of Sturm–Liouville problems of Atkin-
son type.

Our proofs of these theorems use inverse matrix theory for equations of the type

DX = λBX,

where D is a Jacobi or a cyclic Jacobi matrix, and B is a diagonal matrix. This theory
is given in the book by Xu [106, Chapter 2] for the case where B is the identity matrix.
We extend these theorems in [106, Chapter 2] to diagonal matrices B and prove this
extension in Section 5.3 since we do not know a reference for it.

5.3 Inverse matrix eigenvalue problems with a weight function

We develop the inverse matrix eigenvalue problems for Jacobi and cyclic Jacobi matri-
ces with a diagonal weight matrix.

Let𝕄k be the set of k × k matrices over the reals. For any C ∈ 𝕄k, we denote by
σ(C) the set of eigenvalues of C. Let C1 be the principal submatrix obtained from C by
removing its first row and column, and let C1 be the submatrix obtained from C by
removing the kth row and column.
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For any C,D ∈ 𝕄k, we say that λ∗ is an eigenvalue of the matrix pair (C,D) if there
exists a nontrivial vector u ∈ ℝk such that (C − λ∗D)u = 0. We denote by σ(C,D) the set
of eigenvalues of (C,D). Clearly, λ∗ ∈ σ(C) if and only if λ∗ ∈ σ(C, Ik), where Ik is the
identity matrix in𝕄k .

Consider symmetric matrices in𝕄k of the form

[[[[[[

[

c1 d1
d1 c2 d2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

dk−2 ck−1 dk−1
dk−1 ck

]]]]]]

]

. (5.12)

Definition 5.3.1. A matrix J ∈ 𝕄k of the form (5.12) is called a positive Jacobi matrix
if di > 0 for all i = 1, 2, . . . , k, and it is called a negative Jacobi matrix if di < 0 for all
i = 1, 2, . . . , k. We say that J is a Jacobi matrix if it is either a positive or negative Jacobi
matrix.

Now we state a lemma from the book by Xu [106, Theorem 2.3.3] on the inverse
eigenvalue problem for positive Jacobi matrices.

Lemma 5.3.1. Let {λi : i = 1, . . . , k} and {μi : i = 1, . . . , k − 1} be two sets of real numbers
satisfying the strict interlacing relation

λ1 < μ1 < λ2 < μ2 < ⋅ ⋅ ⋅ < λk−1 < μk−1 < λk . (5.13)

Then there exists a unique positive Jacobi matrix J ∈ 𝕄k such that

σ(J) = {λi : i = 1, . . . , k} and σ(J1) = {μi : i = 1, . . . , k − 1}.

The next two theorems are extensions of Lemma 5.3.1.

Theorem 5.3.1. Let {λi : i = 1, . . . , k} and {μi : i = 1, . . . , k − 1} be two sets of real numbers
satisfying the strict interlacing relation (5.13). Let W = diag(w1, . . . ,wk) be a diagonal
matrix with wi > 0 for i = 1, . . . , k. Then there exists a unique positive Jacobi matrix
M ∈ 𝕄k such that

σ(M,W) = {λi : i = 1, . . . , k} and σ(M1,W1) = {μi : i = 1, . . . , k − 1}. (5.14)

Proof. By Lemma 5.3.1 there exists a unique positive Jacobi matrix J ∈ 𝕄k such that

σ(J) = {λi : i = 1, . . . , k} and σ(J1) = {μi : i = 1, . . . , k − 1}.

Hence for each λ = λi, i = 1, . . . , k, there exists a nontrivial u ∈ ℝk such that
(J − λIk)u = 0. Let R = √W := diag(√w1, . . . , √wk), and let u = Rũ. Multiplying the
above equation by R we get

(RJR − λR2)ũ = 0, that is, (M − λW)ũ = 0,
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whereM = RJR. Clearly, λ ∈ σ(M,W), andM is also a positive Jacobi matrix. Similarly,
for each μ = μi, i = 1, . . . , k − 1, there exists a nontrivial v ∈ ℝk−1 such that (J1 −
λIk−1)v = 0. We let v = R1ṽ. Then multiplying the above equation by R1, we obtain
(R1J1R1 − μR21)ṽ = 0. We note that M1 = R1J1R1 and W1 = R21 . This shows that μ ∈
σ(M1,W1). Thus

σ(J) ⊂ σ(M,W) and σ(J1) ⊂ σ(M1,W1).

By reversing the steps in this argument we see that

σ(J) ⊃ σ(M,W) and σ(J1) ⊃ σ(M1,W1).

Therefore

σ(J) = σ(M,W) and σ(J1) = σ(M1,W1).

To show the uniqueness, letM be any positive Jacobi matrix satisfying (5.14). Then

σ(R−1MR−1) = {λi : i = 1, . . . , k} and σ(R−11 M1R
−1
1 ) = {μi : i = 1, . . . , k − 1}.

Note that R−1MR−1 is a positive Jacobi matrix and (R−1MR−1)1 = R−11 M1R−11 . By Lem-
ma 5.3.1R−1MR−1, and henceM, is uniquely determined. This completes the proof.

Theorem 5.3.2. Let {λi : i = 1, . . . , k} and {μi : i = 1, . . . , k−1} be two sets of real numbers
satisfying the strict interlacing property (5.13). Let W = diag(w1, . . . ,wk) be a diagonal
matrix with wi > 0 for i = 1, . . . , k. Then there exists a unique negative Jacobi matrix
M ∈ 𝕄k such that

σ(M,W) = {λi : i = 1, . . . , k} and σ(M1,W1) = {μi : i = 1, . . . , k − 1}.

Proof. Let ξi = −λk+1−i, i = 1, . . . , k + 1, and νi = −μk−i, i = 1, . . . , k − 1. Then
ξ1 < η1 < ξ2 < η2 < ⋅ ⋅ ⋅ < ξk−1 < ηk−1 < ξk .

By Theorem 5.3.1 there exists a unique positive Jacobi matrixM ∈ 𝕄k such that

σ(M,W) = {ξi : i = 1, . . . , k} and σ(M1,W1) = {ηi : i = 1, . . . , k − 1}.

It follows that

σ(−M,W) = {−ξi : i = 1, . . . , k} = {λi : i = 1, . . . , k}

and

σ(−M1,W1) = {−ηi : i = 1, . . . , k − 1} = {μi : i = 1, . . . , k − 1}.

Note thatM is a negative Jacobi matrix and (−M)1 = −M1. The proof is complete.
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Corollary 5.3.1. Theorems 5.3.1 and 5.3.2 hold when M1 and W1 are replaced by M1 and
W 1, respectively.

Proof. Let M̃ = GMG and W̃ = GWG with G = [
1⋅⋅⋅

1
]. Then the ith row of M̃ is the

same as the (k − i)th row of M, and the same holds for the columns. Hence M̃1 = M1.
Similarly, W̃1 = W 1. Therefore the conclusion follows from Theorems 5.3.1 and 5.3.2
withM andW replaced by M̃ and W̃ , respectively.

Corollary 5.3.2. Theorems 5.3.1 and 5.3.2 hold when wi > 0 is replaced by wi < 0 for
i = 1, . . . , k.

Proof. Let {λi : i = 1, . . . , k} and {μi : i = 1, . . . , k − 1} be two sets of real numbers
satisfying the strict interlacing relation (5.13). By Theorem 5.3.1 there exists a unique
positive Jacobi matrixM ∈ 𝕄k such that

σ(M, −W) = {−λi : i = 1, . . . , k} and σ(M1,W1) = {−μi : i = 1, . . . , k − 1}.

Hence

σ(M,W) = {λi : i = 1, . . . , k} and σ(M1,W1) = {μi : i = 1, . . . , k − 1}.

This shows that Theorem 5.3.1 holds when wi > 0 is replaced by wi < 0 for i = 1, . . . , k.
The same argument applies to Theorem 5.3.2.

Next, consider symmetric matrices in𝕄k of the form

[[[[[[

[

c1 d1 dk
d1 c2 d2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

dk−2 ck−1 dk−1
dk dk−1 ck

]]]]]]

]

. (5.15)

Definition 5.3.2. Amatrix J ∈ 𝕄k of the form of (5.15) is called a positive cyclic Jacobi
matrix if di > 0 for all i = 1, 2, . . . , k − 1, and it is called a negative cyclic Jacobi matrix
if di < 0 for all i = 1, 2, . . . , k − 1. We say that J is a cyclic Jacobi matrix if it is either a
positive or negative cyclic Jacobi matrix. (In the literature, cyclic Jacobi matrices are
sometimes called periodic Jacobi matrices.)

Now we state another lemma from Xu [106, Theorem 2.8.3] on the inverse eigen-
value problem for positive cyclic Jacobimatrices. Note that the uniqueness is not guar-
anteed by this lemma; see [106, p. 78].

Lemma 5.3.2. Let {λi : i = 1, . . . , k} and {μi : i = 1, . . . , k − 1} be two sets of real numbers
satisfying the conditions
(1) λ1 ≤ μ1 ≤ λ2 ≤ μ2 ≤ ⋅ ⋅ ⋅ ≤ λk−1 ≤ μk−1 ≤ λk;
(2) μi ̸= μj if i ̸= j, and
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(3) there exists a d > 0 such that for all j = 1, . . . , k − 1,

k
∏
i=1 |μi − λi| ≥ 2d[1 + (−1)k+1−j].

Then there exists a positive cyclic Jacobi matrix J of the form of (5.15) such that d =
∏ki=1 di > 0 and

σ(J) = {λi : i = 1, . . . , k} and σ(J1) = {μi : i = 1, . . . , k − 1}.

The following theoremsare extensions of Lemma5.3.2. Since theproofs are similar
to those of Theorems 5.2.1 and 5.2.2; we omit the details.

Theorem 5.3.3. Let {λi : i = 1, . . . , k} and {μi : i = 1, . . . , k− 1} be two sets of real numbers
satisfying conditions (1)–(3) of Lemma 5.3.2. Let W = diag(w1, . . . ,wk) be a diagonal
matrix with wi > 0 for i = 1, . . . , k. Then for any d > 0 satisfying (3) of Lemma 5.3.2, there
exists a positive cyclic Jacobi matrix N of the form (5.15) such that∏ki=1 di = d and

σ(N ,W) = {λi : i = 1, . . . , k} and σ(N1,W1) = {μi : i = 1, . . . , k − 1}.

Theorem 5.3.4. Let {λi : i = 1, . . . , k} and {μi : i = 1, . . . , k−1} be two sets of real numbers
satisfying conditions (1)–(3) of Lemma 5.3.2. Let W = diag(w1, . . . ,wk) be a diagonal
matrix with wi > 0 for i = 1, . . . , k. Then for any d > 0 satisfying (3) of Lemma 5.3.2, there
exists a negative cyclic Jacobi matrix N of the form (5.15) such that∏ki=1 di = d and

σ(N ,W) = {λi : i = 1, . . . , k} and σ(N1,W1) = {μi : i = 1, . . . , k − 1}.

With the same arguments as in the previous corollaries, we have the following:

Corollary 5.3.3.
a: The conclusions of Theorems 5.3.1 and 5.3.2 hold when M1 and W1 are replaced by

M1 and W 1, respectively.
b: The conclusions of Theorems 5.3.4 and 5.3.4 hold when wi > 0 is replaced by wi < 0

for i = 1, . . . , k.

5.4 Proofs of the main results

To prove Theorems 5.2.1 and 5.2.2, we use Theorems 5.3.1 and 5.3.2 for the extended in-
verse Jacobimatrix problems andTheorem4.2.1with its corollary. This theoremand its
corollary show that every Sturm–Liouville problem of Atkinson type with separated
self-adjoint boundary conditions has a representation as a matrix eigenvalue prob-
lem. For clarity of exposition, we state the four matrix representations corresponding
to α, β ∈ (0,π); α = 0, β ∈ (0,π); α ∈ (0,π), β = 0; and α = 0, β = π as Propo-
sitions 1–4 using the hypotheses and notation of Section 5.1. Recall that α = 0 de-
termines the Dirichlet boundary condition at the endpoint a and β = π determines
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the Dirichlet boundary condition at the endpoint b. In the inverse spectral theory of
Sturm–Liouville problems of Atkinson type the Dirichlet boundary conditions at one
or both endpoints play a special role. Each Dirichlet condition at an endpoint reduces
the number of eigenvalues by one.

Proposition 5.4.1. Let α, β ∈ (0,π). Define the (n + 1) × (n + 1) Jacobi matrix

Pαβ =
[[[[[[

[

p1 + cot α −p1
−p1 p1 + p2 −p2

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
−pn−1 pn−1 + pn −pn

−pn pn − cot β

]]]]]]

]

(5.16)

and diagonal matrices

Qαβ = diag(q0, q1, . . . , qn−1, qn), Wαβ = diag(w0,w1, . . . ,wn−1,wn).

Then the spectrum σ(α, β) and the spectrum σ(Pαβ + Qαβ,Wαβ) of the matrix pair (Pαβ +
Qαβ,Wαβ) are the same.

Proposition 5.4.2. Let α = 0 and β ∈ (0,π). Define the n × n Jacobi matrix

P0β =
[[[[[[

[

p1 + p2 −p2
−p2 p2 + p3 −p3

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
−pn−1 pn−1 + pn −pn

−pn pn − cot β

]]]]]]

]

(5.17)

and diagonal matrices

Q0β = diag(q1, . . . , qn−1, qn), W0β = diag(w1, . . . ,wn−1,wn).

Then the spectrum σ(0, β) and the spectrum σ(P0β + Q0β,W0β) of the matrix pair (P0β +
Q0β,W0β) are the same.

Proposition 5.4.3. Let α ∈ (0,π) and β = π. Define the n × n Jacobi matrix

Pαπ =
[[[[[[

[

p1 + cot α −p1
−p1 p1 + p2 −p2

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
−pn−2 pn−2 + pn−1 −pn−1

−pn−1 pn−1 + pn
]]]]]]

]

(5.18)

and diagonal matrices

Qαπ = diag(q0, q1, . . . , qn−1), Wαπ = diag(w0,w1, . . . ,wn−1).
Then the spectrum σ(α,π) and the spectrum σ(Pαπ +Qαπ ,Wαπ) of the matrix pair (Pαπ +
Qαπ ,Wαπ) are the same.
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Proposition 5.4.4. Let α = 0 and β = π. Define the (n − 1) × (n − 1) Jacobi matrix

P0π =
[[[[[[

[

p1 + p2 −p2
−p2 p2 + p3 −p3

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
−pn−2 pn−2 + pn−1 −pn−1

−pn−1 pn−1 + pn
]]]]]]

]

(5.19)

and diagonal matrices

Q0π = diag(q1, q2, ⋅ ⋅ ⋅ , qn−1), W0π = diag(w1,w2, . . . ,wn−1).
Then the spectrum σ(0,π) and the spectrum σ(P0π +Q0π ,W0π) of the matrix pair (P0π +
Q0π ,W0π) are the same.

Remark 5.4.1. Note that for these four propositions, we have

(Pαβ + Qαβ)1 = P0β + Q0β, (Pαβ + Qαβ)
1 = Pαπ + Qαπ

and

(P0β + Q0β)
1 = P0π + Q0π , (Pαπ + Qαπ)1 = P0π + Q0π .

Proof of Theorem 5.2.1. (a) For a given partition (5.5) of (a, b), define

wi =
bi

∫
ai

w, i = 0, 1, . . . n, and Wαβ = diag(w0,w1, . . . ,wn).

By (5.7) wi > 0, i = 0, 1, . . . , n. Since k = n + 1, by Theorem 5.3.2 there exists a unique
negative Jacobi matrixM ∈ 𝕄n+1 of the form (5.12) such that

σ(M,W) = {λi : i = 1, . . . , n + 1} and σ(M1,W1) = {μi : i = 1, . . . , n}.

Let

pi = di, i = 1, . . . , n; qi = ci+1 − pi − pi+1, i = 1, . . . , n − 1,
q0 = c1 − p1 − cot α, qn = cn+1 − pn − cot β,

and define Pαβ,Qαβ,P0β, andQ0β as before. Note that pi > 0, i = 1, . . . , n. It is easy to see
thatM = Pαβ+Qαβ andM1 = P0β+Q0β. With the above notation, we have (Wαβ)1 = W0β.
Therefore

σ(Pαβ + Qαβ,Wαβ) = {λi : i = 1, . . . , n + 1}

and

σ(P0β + Q0β,W0β) = {μi : i = 1, . . . , n}.
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From Propositions 5.4.1 and 5.4.2 it follows that

σ(α, β) = {λi : i = 1, . . . , n + 1} and σ(0, β) = {μi : i = 1, . . . , n}.

Observe that the choice of pi, i = 1, . . . , n, and qi, i = 0, . . . , n, is unique and all r, q ∈
L(a, b) by this choice form an equivalent family of SLPs. This completes the proof.

(b) The proof is similar using Corollary 5.3.1 and Propositions 5.4.1 and 5.4.3. We
omit the details.

Also, the proof of Theorem 5.2.2 is similar to that of Theorem 5.2.1 using Theo-
rem 5.3.2, Corollary 5.3.1, and Propositions 5.4.2, 5.4.3, and 5.4.3. We omit the details.

To prove Propositions 5.4.3 and 5.4.4, we use, in addition to Theorems 5.3.3
and 5.3.4 for the inverse Jacobi matrix problems, Theorems 4.2.3 and 4.2.4 on the
equivalence between Sturm–Liouville problems of Atkinson type and matrix eigen-
value problems. For clarity of exposition, we state these propositions here.

Proposition 5.4.5. Consider the real coupled boundary condition (5.4)with k12 ̸= 0. De-
fine the (n + 1) × (n + 1) cyclic Jacobi matrix

PI =
[[[[[[

[

p1 − k11/k12 −p1 1/k12
−p1 p1 + p2 −p2

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
−pn−1 pn−1 + pn −pn

1/k12 −pn pn − k22/k12

]]]]]]

]

(5.20)

and diagonal matrices

QI = diag(q0, q1, . . . , qn−1, qn), WI = diag(w0,w1, . . . ,wn−1,wn).

Then the spectrum σ(K) and the spectrum σ(PI +QI ,WI ) of the matrix pair (PI +QI ,WI )
are the same.

Proposition 5.4.6. Consider the real coupled boundary condition (5.4) with k12 = 0.
Define the n × n cyclic Jacobi matrix

PΘ =
[[[[[[

[

−k11k21 + p1 + k211pn −p1 −k11pn
−p1 p1 + p2 −p2

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
−pn−2 pn−2 + pn−1 −pn−1

−k11pn −pn−1 pn−1 + pn
]]]]]]

]

(5.21)

and diagonal matrices

QΘ = diag(q0 + k
2
11qn, q1, . . . , qn−1), WΘ = diag(w0 + k

2
11wn,w1, . . . ,wn−1).

Then the spectrumσ(K)and the spectrumσ(PΘ+QΘ,WΘ) of thematrix pair (PΘ+QΘ,WΘ)
are the same.

 EBSCOhost - printed on 2/10/2023 3:33 PM via . All use subject to https://www.ebsco.com/terms-of-use



5.5 Comments on the inverse theories for finite and infinite spectra | 107

Proof of Theorem 4.2.3. (a) For a given partition (5.5) of (a, b), define

wi =
bi

∫
ai

w, i = 0, 1, . . . n, and WI = diag(w0,w1, . . . ,wn).

By (5.7), wi > 0, i = 0, 1, . . . , n. Since k = n + 1, by Theorem 4.2.4 there exists a negative
cyclic Jacobi matrix N ∈ 𝕄n+1 in the form (4.44) such that

σ(N ,W) = {λi : i = 1, . . . , n + 1} and σ(N1,W1) = {μi : i = 1, . . . , n}.

Let pi = −di, i = 1, . . . , n. Then pi > 0, i = 1, . . . , n. Let k12 = 1/dn+1. Then k12 < 0. For
β ∈ (0,π), choose K ∈ SL2(ℝ) such that cot β = k22/k12 k12 = 1/dn+1. Thus K defines a
coupled boundary condition (5.4). Let

qi = ci+1 − pi − pi+1, i = 1, . . . , n − 1,
q0 = c1 − p1 + k11/k12, qn = cn+1 − pn + k22/k12.

Define PI ,QI ,P0β, andQ0β as before and note thatN = PI +QI andN1 = P0β +Q0β. With
the above notation, we also have (WI )1 = W0β. Therefore

σ(PI + QI ,WI ) = {λi : i = 1, . . . , n + 1}

and

σ(P0β + Q0β,W0β) = {μi : i = 1, . . . , n}.

By Propositions 5.4.5 and 5.4.2 we have that

σ(K) = {λi : i = 1, . . . , n + 1} and σ(0, β) = {μi : i = 1, . . . , n}.

This completes the proof.
(b) The proof is similar using Corollary 5.3.3(a) and Propositions 5.4.6 and 5.4.3.

We omit the details.

The proof of Theorem 4.2.4 is similar to that of Theorem 4.2.3 using Theorem 5.3.4,
Corollary 5.3.1, andPropositions 5.4.6 and5.4.4.Weonlyneed tonote that the condition
k11 > 0 is needed to guarantee that pn > 0 in the matrix PΘ. We omit the details.

5.5 Comments on the inverse theories for finite and infinite
spectra

This chapter is based on the paper by Kong and Zettl [69]; see this paper for additional
details.
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Sturm–Liouville problems of Atkinson type are clearly a very special subclass of
all regular self-adjoint Sturm–Liouville problems. However, Volkmer [97] has shown,
using the Radon–Nikodym theorem, that problems of Atkinson type include those
studied by Feller [38] and Krein [72] in connection with their works on frequencies
of vibrating strings and diffusion operators.

Most of the literature on inverse problems is restricted to the case where both the
leading coefficient p and the weight function w are identically 1 on the whole interval
(a, b) and the boundary conditions are separated. It is clear that the fact that 1/p, q,w
are identically zero on certain subintervals of (a, b) plays a fundamental role for all
our theorems in Chapter 5.

Many authors prove a result for the case where p = 1 = w and claim their result
holds when all three coefficients p, q,w with p > 0 and w > 0 are present because this
more general equation can be transformed to an equation with p = 1 = w. This claim
can be highly misleading as is illustrated in [113] with the well-known Molchanov cri-
terion for the discreteness of the spectrum; see pages 213–214. How do the conditions
on the potential function q transform back to the original equation with all three co-
efficients p, q,w present? The Molchanov criterion has been extended by Müller and
Pfeiffer [80] and Kwong and Zettl [73]; these extensions are far from trivial.

One of the celebrated papers on inverse Sturm–Liouville problems is the paper of
Borg [17], who showed that when p and w are identically 1, the spectra of two given
separated boundary conditions determine the potential q uniquely.

Next, we comment on some differences between the results on inverse theory for
finite spectrum in Chapter 5 and the classical inverse theory using Borg’s theorem as
an illustration.
(1) In Borg’s theorem [17], there is an a priori assumption that the two given sets of

infinite numbers are spectra. Theorems 5.2.1 and 5.2.2 are for two arbitrarily given
finite sets of real numbers that satisfy the interlacing property.

(2) Borg’s theorem guarantees that the Sturm–Liouville equation is uniquely deter-
mined by the two preassigned spectra, whereas Theorems 5.2.1 and 5.2.2 deter-
mine a unique family of equations. This family consists of an uncountable num-
ber of equations, but each member of this family can be represented by the same
matrix eigenvalue problem.

(3) Borg’s theorem requires that the two spectra are from two prescribed boundary
conditions, whereas for Theorems 5.2.1 and 5.2.2, one boundary condition is arbi-
trarily given, the other is related to the given one, and there is an arbitrarily cho-
sen weight function w. Then the equivalent family of Sturm–Liouville equations
is determined by these.

(4) Theorem 5.2.3 is for some real coupled boundary conditions. Not all real coupled
boundary conditions are coveredby this theorem. Theperiodic conditions are cov-
ered, but the semiperiodic case is open. All complex self-adjoint boundary condi-
tions are open.
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6.1 Introduction

In this chapter, we study the existence and properties of eigenvalues of singular prob-
lems with one limit endpoint. The case where neither endpoint is LP has been exten-
sively studied and is nowwell understood for both regular and singular endpoints due
to some surprisingly recent results [114, 111, 103, 10, 20, 19, 10, 62, 64, 67, 57, 26, 8, 56,
74, 100, 66]. See [113] for a more comprehensive list of references for basic definitions,
notations, and general information.

Here our approach is based on the paper by Zhang et al. [114]. It uses the spectral
theorem for self-adjoint operators in a Hilbert space, regular approximations of sin-
gular problems, and the relation between the number of linearly independent square-
integrable solutions for real values of the spectral parameter and the spectrum.

We start with a brief review of properties of self-adjoint operators in the weighted
Hilbert space H = L2(J,w) where w > 0 a. e. on J = (a, b), −∞ ≤ a < b ≤ ∞.

6.2 The Lagrange form and maximal and minimal domains

In this section, we start by reviewing the Lagrange form and maximal and minimal
operators. Consider the differential expressionM defined by

My = −(py󸀠)󸀠 + qy, with r = 1/p, q ∈ Lloc(J, ℝ), J = (a, b). (6.1)

The expression My is defined a. e. for functions y such that y and (py󸀠) are in
ACloc(J); we refer to this as the expression domain ofM. The maximal domain Dmax =
Dmax(M,w, J) ofM on J with weight function w ∈ Lloc(J, ℝ), w > 0 a. e., is defined by

Dmax = {y : J → ℂ : y, (py
󸀠) ∈ ACloc(J), y,w−1M y ∈ L2(J,w)}. (6.2)

For y and z in the expression domain ofM, the Lagrange sesquilinear form [⋅, ⋅] is given
by

[y, z] = y(p ̄z󸀠) − ̄z(py󸀠). (6.3)

Lemma 6.2.1. For any y and z in the expression domain of M, we have

zMy − yMz = [y, z]󸀠. (6.4)

Proof. This can be verified by a direct computation.

Lemma 6.2.2. For any y, z in the expression domain of M and α, β ∈ J, α < β, we have

β

∫
α

{zMy − yMz} = [y, z](β) − [y, z](α). (6.5)

https://doi.org/10.1515/9783110719000-006
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Proof. This is obtained by integrating (6.4).

The Lagrange form also exists at the endpoints of the underlying interval J, and
the values of this form at the endpoints are of critical importance in the characteri-
zation of self-adjoint realizations of the Sturm–Liouville equation (6.4) at a singular
endpoint.

Lemma 6.2.3. For any y, z in Dmax, both limits

[y, z](b) = lim
t→b−[y, z](t), [y, z](a) = limt→a+[y, z](t) (6.6)

exist and are finite.

Proof. Fix α ∈ J and let β → b− in (6.5). It follows from the definition of Dmax that both
integrals on the left of (6.5) have a finite limit at b. Hence the first limit in (6.6) exists
and is finite. Letting α→ a, we see that the second limit of (6.6) exists and is finite.

Definition 6.2.1 (The maximal and minimal operators). Let the maximal domain Dmax
and the expressionM be defined by (6.1) and (6.2), and let

w ∈ Lloc(J, ℝ), w > 0.

Define

Smaxf = w
−1Mf for f ∈ Dmax.

S󸀠minf = Mf , f ∈ Dmax, f has compact support in J.

Then Smax is called the maximal operator of (M,w) on J, and S󸀠min is called the prem-
inimal operator. The minimal operator Smin of (M,w) on J is defined as the closure of
S󸀠min. The preminimal operator is closable, and so Smin is well defined as given in the
next lemma.

Lemma 6.2.4. The maximal and minimal domains are dense in the Hilbert space

H = L2(J,w) = {f : J → ℂ, ∫
J

|f |2w < ∞}.

The preminimal operator is closable so that the minimal operator Smin is a closed sym-
metric densely defined operator, and the operators Smin and Smax are an adjoint pair in
the sense that

S∗min = Smax and S∗max = Smin. (6.7)

Hence any self-adjoint extension of Smin is also a self-adjoint restriction of Smax, and
conversely.
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Proof. See [84, 105].

From (6.7) it is clear that any self-adjoint extension S of the minimal operator Smin
satisfies

Smin ⊂ S = S
∗ ⊂ Smax. (6.8)

Any operator S satisfying (6.8) can be determined by two-point boundary condi-
tions specified at the endpoints a, b of the interval J. These, however, are vacuous at
an LP endpoint. To describe these conditions, it is convenient to take cases depend-
ing on the LP/LC classification of the endpoints. Here LC/LP will mean that the left
endpoint a is LC and the right endpoint b is LP.

An operator S satisfying (6.8) is called a self-adjoint extension of Smin on J, or a
self-adjoint restriction of Smax on J, or simply a self-adjoint realization of the equation
My = λwy on J, or a self-adjoint realization of (M,w) on J.

We now review the definition of the spectrum of closed densely defined linear
operators in Hilbert spaces; see the book by Weidmann [104] for more detail. Let T
be a closed (not necessarily self-adjoint) linear operator with dense domain D(T) on
the Hilbert space H. Let I denote the identity operator on H. A number λ in ℂ is an
eigenvalue of T if there exists u ∈ H, u ̸= 0, such that Tu = λu. In this case, T −λI is not
one-to-one, and the null space of T − λI is not empty; its dimension is the geometric
multiplicity of the eigenvalue λ. Each nonzero element of the null space of T − λI is
called an eigenfunction of λ.

If λ ∈ ℂ is not an eigenvalue of T, then

R(T , λ) = (T − λI)−1
is well defined and is a closed linear operator onH, but its domainmay not be all ofH.
Let

ρ(T) = {λ ∈ ℂ : T − λI is 1-1 and onto}.

The set ρ(T) is called the resolvent set of T. The spectrum σ(T) of T is defined by

σ(T) = ℂ \ ρ(T).

In other words, the spectrum of T consists of all complex numbers that are not in
the resolvent set ρ(T). Various parts of the spectrum, absolutely continuous, contin-
uous, discrete, essential, point, and singular continuous, are studied in [104]. In this
monograph, we consider only the discrete and essential spectra. The discrete spec-
trum consists of all isolated eigenvalues of finite geometricmultiplicity and is denoted
by σd(T). The rest of the spectrum is called the essential spectrum and is denoted by
σe(T). Since the eigenvalues of the differential operators are isolated, we have that for
operators T discussed here,

σe(T) = σ(T) \ σd(T).
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6.3 Summary of spectral properties

In this section, we summarize spectral properties of self-adjoint regular and singu-
lar Sturm–Liouville problems with positive weight function. We consider self-adjoint
realizations of the equation

My = −(py󸀠)󸀠 + qy = λwy on J (6.1)

with the following conditions on the coefficients:

J = (a, b), −∞ ≤ a < b ≤ ∞, 1/p, q,w ∈ Lloc(J, ℝ), w > 0, (6.2)

together with self-adjoint boundary conditions.
An eigenvalue is simple if it has exactly one linearly independent eigenfunction;

otherwise, it is double. The geometricmultiplicity of an eigenvalue is the number of its
linearly independent eigenfunctions; the algebraicmultiplicity of an eigenvalue is the
order of its root as a zero of the characteristic function defined in [113], Section 10.4.
The algebraic and geometric multiplicity of the eigenvalues of the operators S satisfy-
ing (6.8) are equal. So here we will just speak of the multiplicity of an eigenvalue.

Theorem 6.3.1. Let (6.1) and (6.2) hold. (Note that (6.2) does not assume that p > 0
on J.) Assume that Smin ⊂ S = S∗ ⊂ Smax. Then the spectrum of S is real.
(1) If p changes sign on J, then the spectrum of S is unbounded above and below. (This

holds even if there is no subinterval of J on which p is negative.)
(2) If neither endpoint is LP, then the spectrum of S is discrete. It may be bounded

below or above, but not both.
(3) If p > 0 on J and each endpoint is either regular or LCNO (limit-circle nonoscilla-

tory; see Section 6.4), then the spectrum of S is discrete and bounded below. Let
σ = σ(S) denote its spectrum. Then σ = {λn : n ∈ ℕ0} can be ordered and indexed
to satisfy

−∞ < λ0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ ⋅ ⋅ ⋅ , (6.3)

and λn → ∞ as n → ∞. Equality cannot hold for two consecutive terms since the
equation has exactly two linearly independent solutions for each λ. The algebraic
multiplicity of each eigenvalue is the same as its geometric multiplicity.

(4) If p > 0 on J, each endpoint is either regular or LCNO, and the boundary conditions
are separated, then all eigenvalues are simple, and strict inequality holds through-
out (6.3). Furthermore, if un is an eigenfunction of λn, then un has exactly n zeros
in the open interval J for any n ∈ ℕ0.

(5) If p > 0 on J, each endpoint is either regular or LCNO, and the boundary conditions
are nonreal coupled, then all eigenvalues are simple, and strict inequality holds
throughout (6.3). If un is an eigenfunction of λn, then un is complex valued and has
no zero in the closed interval [a, b]; the number of zeros of Re(un) on the half open
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interval [a, b) is 0 or 1 if n = 0 and n − 1, n, or n + 1 if n ≥ 1; the number of zeros of
Im(un) on the half open interval [a, b) is 0 or 1 if n = 0 and n − 1, n, or n + 1 if n ≥ 1.

(6) If p > 0 on J, each endpoint is either regular or LCNO, and the boundary condi-
tions are real coupled, then each eigenvalue may be simple or double. (Note that
the eigenvalues are uniquely determined by (6.3), but there is some ambiguity in
the meaning of an eigenfunction un if λn is a double eigenvalue. Since linearly in-
dependent solutions of (6.1)may not have the same number of zeros in J, the exact
number of zeros of an eigenfunction un of a double eigenvalue λn cannot be deter-
mined.) If un is a real-valued eigenfunction of λn, then the number of zeros of un on
the open interval J is 0 or 1 if n = 0 and n − 1, n, or n + 1 if n ≥ 1.

(7) If p > 0 on J and (at least) one endpoint is LCO (limit-circle oscillatory), then the
spectrum S is unbounded above and below. If λ is an eigenvalue and u is an eigen-
function of λ, then u has an infinite number of zeros in J.

(8) If p > 0 on J and (at least) one endpoint is LP, then σe(S) = σe(Smin) for every self-
adjoint realization S of equation (6.1). In particular, the essential spectrumdoes not
depend on the boundary conditions and therefore depends only on the coefficients
p, q,w (more precisely, on 1/p, q,w). The discrete spectrum σd(S) depends on the
boundary conditions. Either one of σe(S), σd(S), but not both, may be empty. Let
σ0 = inf σe(Smin). There are three possibilities for σ0:
(i) σ0 = −∞. In this case, σe may be the whole line, or it may consist of disjoint

closed intervals separated by “gaps”. The number of gaps may be finite or in-
finite. If there is an eigenvalue, then its eigenfunctions have an infinite number
of zeros in J.

(ii) σ0 = +∞. In this case the spectrum of every self-adjoint realization of (6.1)
is discrete and unbounded above. Either the spectrum of every self-adjoint re-
alization is bounded below (but there is no uniform lower bound for all self-
adjoint realizations), or the spectrum of no self-adjoint realization is bounded
below. If the spectrum is unbounded below, then every eigenfunction has an
infinite number of zeros in J. If S is a self-adjoint realization and its spectrum
σ(S) is bounded below, then σ(S) = {λn : n ∈ ℕ0}; the eigenvalues λn are all
simple and can be ordered to satisfy

−∞ < λ0 < λ1 < λ2 < ⋅ ⋅ ⋅ , (6.4)

and λn → ∞ as n → ∞. In this case, if un is an eigenfunction of λn, then un
has exactly n zeros in J.

(iii) −∞ < σ0 < ∞. In this case, σ0 is also the oscillation number of equation (6.1):
For λ < σ0, eachnontrivial solution of (6.1)has either no zero or a finite number
of zeros in J. If λ > σ0, then every solution of (6.1) has an infinite number of
zeros in J. If λ = σ0, then both cases can occur in general: (i) every solution
has an infinite number of zeros, or (ii) no nontrivial solution has an infinite
number of zeros; but if the coefficients are h-periodic, then σ0 = λP0 , the first
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periodic eigenvalue on the interval [0, h], λP0 is simple, and its eigenfunction
is oscillatory. There may be no eigenvalues below σ0, a finite number of such
eigenvalues, or an infinite number. All eigenvalues belowσ0 are simple. If there
are an infinite number of eigenvalues below σ0, they must accumulate at σ0. If
λn are the finite or infinite number of eigenvalues below σ0, ordered as in (6.4),
and un is an eigenfunction of λn, then un has exactly n zeros in J.

(9) Let J = (−∞,∞) and p > 0 on J. Assume that each of p, q,w is h-periodic
(0 < h < ∞, and h is the fundamental period). Then there is a unique self-adjoint
realization S of (6.1), S = Smin = Smax; S has no eigenvalues, and

σ(S) = σe(S) =
∞
⋃
n=0 Jn,

J0 = [λ
P
0 , λ

S
0], J1 = [λ

S
1 , λ

P
1 ], J2 = [λ

P
2 , λ

S
2 ], J3 = [λ

S
3 , λ

P
3 ], J4 = [λ

P
4 , λ

S
4], . . . .

Here λPn and λ
S
n denote the periodic and semiperiodic eigenvalues of (6.1) on the in-

terval J = [0, h], respectively. In particular, λP0 is simple, and σ0 = inf σe(Smin) = λP0 .
The gaps of the spectrum consist of the open intervals (λS0, λ

S
1 ), (λ

P
1 , λ

P
2 ), (λ

S
2 , λ

S
3 ),

(λP3 , λ
P
4 ), . . . . If λ

S
0 is a double eigenvalue, then the “first gap is missing”; if λ

P
1 is a

double eigenvalue, then the “second gap is missing”; and so on. (By Theorem 2.2.1
λP0 is simple.) (The open interval (−∞, λP0) is also considered a gap by some au-
thors.) If all gaps are missing, then σe(S) = [λP0 ,∞). There may be no gaps, a finite
number of gaps or an infinite number of gaps. The closed intervals Jn are called the
spectral bands of S.

(10) Suppose J = (a,∞), −∞ < a < ∞, and p > 0 on J. Assume that each of p, q,w
is h-periodic with fundamental interval [a, a + h]. Then the endpoint a is regular,
and∞ is LP. In this case, there are an infinite number of self-adjoint realization of
equation (6.1), each determined by a boundary condition at a:

cos(α)y(a) + sin(α)(py󸀠)(a) = 0, α ∈ [0,π);

for any α ∈ [0,π), let S(α) be this operator. Then

σ(S(α)) = σe(S(α)) =
∞
⋃
n=0 Jn,

J0 = [λ
P
0 , λ

S
0], J1 = [λ

S
1 , λ

P
1 ], J2 = [λ

P
2 , λ

S
2 ], J3 = [λ

S
3 , λ

P
3 ], J4 = [λ

P
4 , λ

S
4], . . . ,

where λPn and λ
S
n denote the periodic and semiperiodic eigenvalues of (6.1) on the

interval J = [a, a + h], respectively.

Proof. See [113] Section 2.10 and below.
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6.4 The LPNO case

For the rest of this chapter, we assume that

My = −(py󸀠)󸀠 + qy = λwy on J (6.1)

with the following conditions on the coefficients:

J = (a, b), −∞ ≤ a < b ≤ ∞, 1/p, q,w ∈ Lloc(J, ℝ), w > 0. (6.2)

In this section, we study the existence and continuity of the eigenvalues for the
casewhere one endpoint is regular or LCNOand the other is LPNO. Although the LCNO
case reduces to the regular case in a natural way, we nevertheless consider the regular
case separately in view of the wide interest in it.

Recall the following basic definitions for (6.1) with coefficients satisfying (6.2).

Definition 6.4.1. The endpoint a is:
(1) regular if, in addition to (6.2), 1

p , q,w ∈ L(a, c) for some (and hence any) c ∈ (a, b);
(2) singular if it is not regular;
(3) limit-circle (LC) if it is singular and all solutions of equation (6.1) are in L2((a, c),w)

for some c ∈ (a, b);
(4) limit-point (LP) if it is singular and not LC;
(5) oscillatory (O) if there is a nontrivial real-valued solution of equation (6.1) with an

infinite number of zeros in any right neighborhood of a.
(6) nonoscillatory (NO) if it is not oscillatory (this depends on λ);
(7) limit-circle nonoscillatory (LCNO) if it is both LC and NO;
(8) limit-point Nonoscillatory (LPNO) if it is LP and NO for every λ ∈ ℝ.

Similar definitions are made at b.

All these classifications are independent of c ∈ (a, b). The LC and LP classifica-
tions are independent of λ ∈ ℝ. If an endpoint is LC, then the O and NO classifications
at that endpoint are also independent of λ ∈ ℝ, but if an endpoint is LP, then, in gen-
eral, the O and NO classifications depend on λ as the Fourier equation −y󸀠󸀠 = λy on
(0,∞) illustrates. Thus the assumption “for every λ ∈ ℝ” in definition (8) is impor-
tant. This dependence will play an important role here. Throughout this section, we
assume that the endpoint a is regular or LCNO and the endpoint b is LP. When the
endpoint b is regular or LCNO and a is LP, similar results can be obtained.

Consider the boundary conditions

cos αy(a) − sin α(py󸀠)(a) = 0, α ∈ [0,π). (6.3)

It is well known [113] that if b is LP and a is regular, then the boundary conditions
(6.3) generate all self-adjoint realizations of equation (6.1) in the Hilbert space H =
L2(J,w). The spectrum of any such realization S consists, in general, of eigenvalues
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and essential spectrum: σ(S) = σp(S) ∪ σe(S), where σp(S) is the set of eigenvalues,
and σe(S) is the essential spectrum. Either one, but not both, of these two sets may
be empty. The essential spectrum of any self-adjoint realization does not depend on
the boundary condition, that is, on α, but the eigenvalues depend on α, and it is this
dependence we study in the next section. All eigenvalues have multiplicity 1 or 2.

Our starting point is the following:

Lemma 6.4.1. Let (6.1) and (6.2) hold. Assume that a is regular and b is LP. Then the
spectrum of every self-adjoint realization S is discrete and bounded below if and only if
the endpoint b is LPNO.

Proof. See Hinton and Lewis [49].

We can now state one of our main results.

Theorem 6.4.1. Let (6.1) and (6.2) hold and assume that the endpoint a is regular and
the endpoint b is LPNO. Then:
(1) The spectrumσ(S(α)) of any self-adjoint realization S(α) is discrete, bounded below,

and not bounded above. Let

σ(S(α)) = {λn(α) : n ∈ ℕ0}.

(2) The eigenvalues are all simple and can be ordered to satisfy

λ0(α) < λ1(α) < λ2(α) < λ3(α) < ⋅ ⋅ ⋅

(3) For any n ∈ ℕ0 and α ∈ (0,π), we have λn(α) < λn(0).
(4) For any n ∈ ℕ0 and 0 < α1 < α2 < π, we have λn(α2) < λn(α1).
(5) For any n ∈ ℕ0 and α, β ∈ [0,π), we have λn(α) < λn+1(β).
(6) For any n ∈ ℕ0, λn(α) is a continuous function of α ∈ [0,π).
(7) We have λ0(α) → −∞ as α→ π−.
(8) For any n ∈ ℕ, λn(α) → λn−1(0) as α→ π−.
Proof. This will be given in Section 6.6.

We illustrate an application of Theorem 6.4.1 with the following:

Example 6.4.1. Let S(α) denote the self-adjoint realization of the problem

− y󸀠󸀠 = λwy on (0,∞), w ∈ Lloc([0,∞), ℝ), w > 0,
cos αy(a) − sin αy󸀠(a) = 0, α ∈ [0,π).

Assume that w is monotone and satisfies∞
∫
0

√w dt < ∞, lim
t→∞ t ∞∫

t

w(s) ds = 0.
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Then the spectrum σ(S(α)) = {λn(α) : n ∈ ℕ0} is discrete and bounded below and
satisfies

lim
n→∞ n

λn(α)
1
2
=
1
π

∞
∫
0

√w dt.

Proof. The fact that the spectrum is discrete and bounded below was established by
Glazman [43]. For the case α = 0, this asymptotic formula was established by Birman
and Borzov [16] and Naimark and Solomyak [83]. Then the general case for α ∈ [0,π)
follows from Theorem 6.4.1.

Next, we give a result for normalized eigenfunctions. Here by a normalized eigen-
functionwemean a real normalized eigenfunction. In the case of limit-point nonoscil-
lation, all the eigenvalues are simple, and the real normalized eigenfunctions are
unique up to sign. We have the following:

Theorem 6.4.2. Let the hypotheses and notation of Theorem 6.4.1 hold. Let n ∈ ℕ0 and
α0 ∈ [0,π), and let un(⋅, α0) denote a normalized eigenfunction of the eigenvalue λn(α0).
Then there exists a normalized eigenfunction un(⋅, α) of λn(α) such that

un(⋅, α) → un(⋅, α0), (pu
󸀠
n)(⋅, α) → (pu

󸀠
n)(⋅, α0), α→ α0, (6.4)

both uniformly on any compact subinterval of [a, b).

Proof. This proof is similar to that of Theorem 3.2(i) in [67].

Next, we show that the eigenvalues λn(α) are differentiable functions of α and find
a formula for the derivative.

Theorem 6.4.3. Let the hypotheses and notation of Theorem 6.4.1 hold. Let n ∈ ℕ0,
and let un(⋅, α) be a normalized eigenfunction un(⋅, α) of λn(α). Then λn is continuously
differentiable with respect to α, and the derivative is given by

λ󸀠n(α) = −u2n(a, α) − (pu󸀠n)2(a, α), 0 ≤ α < π. (6.5)

Proof. See Section 6.6.

Next, we study the casewhere the endpoint a is singular and LCNO and b is LPNO.
In this case the boundary condition (6.3) does notmake sense because, in general, y(a)
and (py󸀠)(a) are not defined for solutions y of equation (6.1).

To construct all self-adjoint boundary conditions for this case, we use the La-
grange bracket [⋅, ⋅] defined by (6.3)

[y, z] = y(pz󸀠) − z(py󸀠), y, z ∈ Dmax(a, b),
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where

Dmax(a, b) = {f ∈ L
2(J,w) : f , (pf 󸀠) ∈ ACloc(a, b), 1w [−(pf 󸀠)󸀠 + qf ] ∈ L2(J,w)}, (6.6)

and note that [y, z](a) exists as a finite limit for all y, z ∈ Dmax(a, b) even though the
individual terms y, z, (py󸀠), (pz󸀠)may blow up or oscillate wildly at a.

Definition 6.4.2. Let u, v be real solutions of (6.1). Then u is called a principal solution
at the endpoint a if
(1) u(x) ̸= 0 for all x ∈ (a, c] and some c ∈ (a, b);
(2) every solution y of (6.1) that is not a multiple of u satisfies u(x)

y(x) → 0 as x → a+;
v is called a nonprincipal solution at the endpoint a if v(x) ̸= 0 for al x ∈ (a, c] and
some c ∈ (a, b) and v(x) is not a principal solution.

Definition 6.4.3. Two functions u, v are called a boundary condition basis at a if they
satisfy the following five conditions:
(1) u, v ∈ Dmax(a, b) and are real-valued on (a, b).
(2) u is a principal solution at a for some fixed λ = r0 ∈ ℝ.
(3) v is a nonprincipal solution at a for λ = r0 ∈ ℝ.
(4) [u, v](a) = 1.
(5) v > 0 on (a, b).

Remark 6.4.1. Such functions u, v in these two definitions exist [86]; see also [113],
Theorem 6.2.1. Note that u, v are solutions in a right neighborhood of a but need not be
solutions on the entire interval (a, b). The principal solution u is unique up to constant
multiples; the nonprincipal solution v is not unique.

We now define the self-adjoint boundary conditions for the LCNO/LPNO case. Let
u, v be a boundary condition basis at a and consider the boundary conditions:

cos α[y, u](a) − sin α[y, v](a) = 0, α ∈ [0,π). (6.7)

In the LCNO/LPNO case, it is known [113] that the boundary conditions (6.7) de-
termine all self-adjoint realizations S of equation (6.1) in the space L2(J,w) that satisfy
Smin ⊂ S = S∗ ⊂ Smax.

Theorem 6.4.4. Assume that the endpoint a is LCNO and the endpoint b is LPNO. Let
the hypotheses and notation of Theorem 6.4.1 hold. Then all eight parts of the conclusion
of Theorem 6.4.1 hold.

Proof. This will be given in Section 6.6.

As in the case where a is regular, the eigenvalues are differentiable functions of α.
This is the next result.
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Theorem 6.4.5. Let the hypotheses and notation of Lemma 6.2.4 hold, and let y =
yn(⋅, α) be a normalized eigenfunction of λn(α). Then λ󸀠n(α) exists and is given by

λ󸀠n(α) = −[y, u]2(a) − [y, v]2(a), 0 ≤ α < π. (6.8)

Proof. To be given in Section 6.6.

6.5 The general LP case

In this section, we investigate the case where the endpoint b is LP but not necessarily
LPNO. In this case the spectrummay be very complicated. In particular, it may be dis-
crete, consist entirely of essential spectrum, or contain both eigenvalues and essential
spectrum. Let

σ0 = inf σe.

There are three possibilities for σ0: (i) σ0 = −∞; this means that if there are any
eigenvalues, they are either in gaps of the essential spectrum σe or embedded in it;
(ii) σ0 = +∞; this means that there is no essential spectrum, so the spectrum is dis-
crete, but it may or may not be bounded below; if it is bounded below, then we are
back to the case discussed in Section 6.4; (iii)

−∞ < σ0 < ∞. (6.1)

Case (iii) is our main focus in this section.We search for answers to the questions:
Are there eigenvalues below σ0? If so, how many? There may be no eigenvalues be-
low σ0, a finite number of them, or an infinite number of them. See Chapter 14 in [113]
for examples of all three types.

Some results from Section 6.4 can be extended to eigenvalues – if they exist –
below σ0. Wewill see that the existence and number of eigenvalues below σ0 depends
on α.

Theorem 6.5.1. Let the hypotheses and notation of Theorem 6.4.1 hold. Assume that the
endpoint a is regular, the endpoint b is LP, the spectrum is bounded below, and (6.1)
holds. Denote the eigenvalues below σ0, if they exist, by λk(α), k = 0, 1, 2, 3, . . . , and
index them in increasing order:

λ0(α) < λ1(α) < λ2(α) < λ3(α) < ⋅ ⋅ ⋅ .

Then we have:
(1) There exist k ∈ ℕ0 and α0 ∈ [0,π) such that λk(α0) < σ0.
(2) If λk(α0) exists for some α0 ∈ [0,π) and k > 0, then λk(α) exists for any α ∈ [α0,π).
(3) If λk(α0) exists for some α0 ∈ [0,π) and k > 0, then λ0(α), . . . , λk−1(α) exist for all

α ∈ [0,π).
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(4) If there exist a finite number of eigenvalues below σ0 for some α ∈ [0,π), then there
exist k ∈ ℕ0 and α0 ∈ [0,π) such that there are exactly k + 1 eigenvalues below σ0
for any α ∈ (α0,π) and there are exactly k eigenvalues below σ0 for any α ∈ [0, α0].

(5) If there exist an infinite number of eigenvalues below σ0 for some α ∈ [0,π), then
λn(α) exists for any n ∈ ℕ0 and α ∈ [0,π).

Proof. To be given in Section 6.7.

Next, we give the result for the LCNO/LP case. Just as in the LCNO/LPNO case
discussed before, wewill see that also in this case, the results for a regular and a LCNO
are the same provided, of course, that the regular boundary condition is replaced by
the corresponding singular self-adjoint condition.

Theorem 6.5.2. Let (6.1), (6.2), and (6.7) hold. Assume that the endpoint a is LCNO and
the endpoint b is LP, the spectrum is bounded below, and (6.1) holds. Index the eigenval-
ues as in Theorem 6.5.1. Then all five parts of Theorem 6.5.1 hold.

Proof. This follows from Theorem 6.5.1 and the “regularization” of LCNO endpoints
used by Niessen and Zettl in [86]; see also the proof of Theorem 6.4.4.

Next, we consider some further analogues of the LPNO case.

Theorem 6.5.3. Let (6.1) and (6.2) hold. Suppose that either (i) the endpoint a is regular,
b is limit point, and theboundary condition is givenby (6.3)or (ii) the endpoint a is LCNO,
b is limit point, and the boundary condition is given by (6.7).

Assume that −∞ < σ0 < ∞, the spectrum is bounded below, and there exist a finite
number of eigenvalues λi(α) : i = 0, . . . , k, below σ0 for some α ∈ [0,π). Then:
(1) There exist k ∈ ℕ0 and α0 ∈ [0,π) such that there are exactly k + 1 eigenvalues
{λi(α) : i = 0, . . . , k, for α ∈ [α0,π)} below σ0 and there are exactly k eigenvalues
{λi(α) : i = 0, . . . , k − 1, for α ∈ [0, α0)} below σ0.

(2) For any n ∈ {0, . . . , k − 1} and α ∈ (0,π), we have λn(α) < λn(0).
(3) For any n ∈ {0, . . . , k − 1} and for 0 < α1 < α2 < π, we have λn(α2) < λn(α1). For n = k

and α0 < α1 < α2 < π, we have λn(α2) < λn(α1).
(4) For any n ∈ {0, . . . , k − 2} and α, β ∈ [0,π), we have that λn(α) < λn+1(β). For n = k − 1

and any α, β ∈ (α0,π), we have λn(α) < λn+1(β).
(5) For any n ∈ {0, . . . , k − 1}, λn(α) is continuous on α ∈ [0,π). For n = k, λn(α) is

continuous on α ∈ (α0,π).
(6) We have λ0(α) → −∞ as α→ π−.
(7) For any n ∈ {1, 2, . . . , k}, λn(α) → λn−1(0) as α→ π−.
(8) Let n ∈ {0, . . . , k − 1}. If a is regular and un(⋅, α) is a normalized eigenfunction of

λn(α), then λn is continuously differentiable with respect to α, and the derivative is
given by

λ󸀠n(α) = −u2n(a, α) − (pu󸀠n)2(a, α), 0 ≤ α < π.
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(9) Let n ∈ {0, . . . , k − 1}. If a is LCNO and yn(⋅, α) is a normalized eigenfunction of λn(α),
then λn is continuously differentiable with respect to α, and the derivative is given
by

λ󸀠n(α) = −[yn, u]2(a) − [yn, v]2(a).
Assume that there exist an infinite number of eigenvalues below σ0 for some α ∈ [0,π)
that are bounded below. (They may converge to σ0 but not to −∞.) Then the results of
Theorems 6.4.1, 6.4.3, 6.4.4, and 6.4.5 hold except for part (1) of Theorems 6.4.1 and 6.4.4.

Proof. This proof is similar to that of Theorems 6.4.1, 6.4.3, 6.4.4, and 6.4.5 and hence
omitted.

The Fourier equation illustrates some of the results of Theorems 6.4.1, 6.4.3,
and 6.4.4.

Example 6.5.1. Consider the boundary value problem

−y󸀠󸀠 = λy on (0,∞),
cos αy(0) − sin αy󸀠(0) = 0, α ∈ [0,π).

Let S(α) denote the self-adjoint realizations in L2((0,∞), 1). Then it is well known
that σe(S(α)) = [0,∞) and the spectrum is bounded below for each α ∈ [0,π).

Direct computations show that:
(1) If α ∈ [0, π2 ], then there are no eigenvalues below σ0 = 0.
(2) If α ∈ ( π2 ,π), then there exists one and only one eigenvalue

λ0(α) = − cot
2 α,

and the normalized eigenfunction of the eigenvalue λ0(α) is

y(x) = √−2 cot αecot αx .

Note that λ0(α) is continuously differentiable and decreasing for α ∈ (
π
2 ,π).

6.6 Proofs of theorems in Section 6.4

In this section, we give the proofs of Theorems 6.4.1, 6.4.3, 6.4.4, and 6.4.5. For this, we
need some definitions and lemmas.

Recall that the deficiency index d is the number of linearly independent solutions
of (6.1) with λ = i that lie in H = L2((a, b),w). It is well known that d is independent
of λ for all λ ∈ ℂ with Im λ ̸= 0 and if the endpoint a is regular or LC, then d = 1 or
d = 2, and both values are realized. The minimal deficiency case d = 1 is called the
limit-point (LP) case, and the maximal deficiency case d = 2 is called the limit-circle
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(LC) case. For real λ, let r(λ) denote the number of linearly independent solutions of
(6.1) that lie in H = L2((a, b),w). The following lemma describes a relation between
r(λ) and the spectrum.

Lemma 6.6.1. Suppose that (6.1) and (6.2) hold and assume that the endpoint a is reg-
ular. Let d denote the deficiency index of the minimal operator Smin generated by (6.1),
and let r(λ) be defined as before. Then:
(1) For every λ ∈ ℝ, we have r(λ) ≤ d.
(2) If r(λ) < d, then λ is in the essential spectrum of every self-adjoint realization.
(3) If r(λ) = d for some λ ∈ ℝ, then λ is an eigenvalue of geometric multiplicity d for

some self-adjoint realization S of (6.1).

Proof. This can be found in [47, 93].

A singular Sturm–Liouville problem with a regular endpoint a can be approxi-
mated by a sequence of regular SLPs on truncated intervals (a, br), where

a < br < b,

and the sequence {br : r ∈ ℕ} converges increasingly to b. By S and Sr we denote self-
adjoint realizations on the interval (a, b) and (a, br), respectively. To relate the opera-
tors Sr to S, we construct “induced restriction operators” {Sr} [9],which are determined
by (6.3) and

f (br) = 0.

With each of these operators {Sr} in the Hilbert space L2r ((a, br),w), we associate an
operator {S󸀠r} in the Hilbert space H = L2((a, b),w) as follows:

S󸀠r = Sr ∔ Θr ,

where Θr is the zero operator in the space

H⊥r = L2((br , b),w),
and S󸀠r is defined by

D(S󸀠r) = D(Sr) ∔ H⊥r .
Thus Sr and S󸀠r are self-adjoint operators in the Hilbert spaces Hr = L2((a, br),w) and
H = L2((a, b),w), respectively. Denote the spectrum of the operators S, Sr, and S󸀠r by
σ(S), σ(Sr), σ(S󸀠r) and their eigenvalues by λn(α), λrn(α), and λr

󸀠

n (α) for n ∈ ℕ0. On the
convergence of the induced operators {Sr} and of the spectrum, we have the following:

Lemma 6.6.2. Suppose that (6.1) and (6.2) hold and the endpoint a is regular. Let
{Sr} and {S󸀠r} be defined above. In addition, assume that the operator S has spectrum
bounded below with −∞ < σ0 ≤ +∞.
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(1) If the operator S(α) has exactly k eigenvalues λrn(α) below σ0, then

lim
r→∞ λrn(α) = λn(α), n = 0, . . . , k − 1.

(2) If the operator S(α) has an infinite number of eigenvalues λrn(α) below σ0, then

lim
r→∞ λrn(α) = λn(α), n ∈ ℕ0.

In particular, if σ0 = +∞, then the spectrum is discrete. In this case, the above limits
hold for each n ∈ ℕ0.

Proof. This is given in [9] and [31].

Remark 6.6.1. It follows from Lemmas 6.6.1 and 6.6.2 that the nth eigenvalue of prob-
lem (6.1)–(6.3) with b in the LPNO case can be approximated by the nth eigenvalue of
the inherited operators {Sr}.

For regular Sturm–Liouville operators {Sr}, we have the following lemma, which
is important in our proof.

Lemma 6.6.3. For any n ∈ ℕ0, r ∈ ℕ, and α ∈ (0,π), we have
(1) λrn(α) < λ

r
n(0);

(2) λr0(α) → −∞ as α→ π−;
(3) λrn+1(α) → λrn(0) as α→ π−;
(4) if 0 < α1 < α2 < π, then λrn(α2) < λ

r
n(α1).

Proof. See Lemma 3.32 in [60].

Next, we prove Theorem 6.4.1.

Proof. Parts (1) and (2) are direct consequences of Lemma 6.4.1. For the regular oper-
ator Sr, by Lemma 6.6.3 we have that

λrn(α) < λ
r
n(0), α ∈ (0,π).

It follows from Lemma 6.6.2(2) that

λn(α) ≤ λn(0).

Since all the eigenvalues are simple, (3) follows. The argument for (4) is similar,
since λrn(α) is a decreasing function of α ∈ [0,π) by Lemma 6.6.3(4). It follows from
Lemma 6.6.3(3) that

λrn+1(α) → λrn(0) as α→ π−.
Again by Lemma 6.6.3(4), we have λrn(α) < λ

r
n+1(β) for any α, β ∈ [0,π). Similarly to the

proof of (3), part (5) is verified.
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It follows fromLemma6.6.1 and 6.6.2(2) that LPNO implies that r(λ) = 1 for any real
number λ ∈ ℝ. From Lemma 6.6.3(3) it follows that for any λ ∈ ℝ, λ is an eigenvalue
of geometric multiplicity 1 for some self-adjoint realization S of (6.1). Thus for any real
number λ ∈ ℝ, there must exist a unique α ∈ [0,π), that is, a unique self-adjoint
boundary condition such that λ is an eigenvalue of this self-adjoint Sturm–Liouville
problem. Conversely, for any boundary condition parameter α ∈ [0,π), there must
exist an infinite but countable number of eigenvalues for SLP (6.1)–(6.3) with LPNO
endpoint b. It follows from the monotonicity of the eigenvalues λn(α) on α0 ∈ (0,π)
that there exist the limits limα→α−0 λn(α) and limα→α+0 λn(α); moreover,

lim
α→α−0 λn(α) ≥ λn(α0) ≥ lim

α→α+0 λn(α).
Assume that

M = lim
α→α−0 λn(α) > λn(α0)

and λ̃ ∈ (λn(α0),M). Then λ̃ cannot be an eigenvalue of some self-adjoint problem by
conclusions (3), (4), and (5), which is a contradiction to Lemma 6.4.1(3). Therefore

lim
α→α−0 λn(α) = λn(α0).

Similarly,

lim
α→α+0 λn(α) = λn(α0).

The continuity of λn(α) on α ∈ (0,π) is proved. The rest of (6) and the argument for (7)
and (8) are similar to this.

Next, we review a technical lemma to be used further.

Lemma 6.6.4.
(1) Dmin = {y ∈ Dmax : [y, z](b) − [y, z](a) = 0 for all z ∈ Dmax}.
(2) The endpoint b is LP if and only if [y, z](b) = 0 for all y, z ∈ Dmax.

Proof. See [84].

Next, we give a proof of Theorem 6.4.3.

Proof. Let u = un(⋅, α) be normalized eigenfunctions of λn(α). Then it follows from
Theorem 6.4.2 that there exist normalized eigenfunctions v = un(⋅, α + h) of λn(α + h)
such that v(⋅) → u(⋅), (pv󸀠)(⋅) → (pu󸀠)(⋅), h→ 0, uniformly on any compact subinterval
of [a, b). Since b is LP, it follows from Lemma 6.6.4(2) that [u, v](b) = 0.
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If α ̸= π
2 , then we have

[λn(α + h) − λn(α)]
b

∫
a

uv̄w = [u, v](a) − [u, v](b) = [u, v](a)

= [u(pv̄󸀠) − v(pū󸀠)](a)
= (tan α − tan(α + h))(pū󸀠)(a)(pv󸀠)(a).

Dividing both sides by h and taking the limit as h→ 0, we obtain

λ󸀠n(α) b∫
a

uūw = − sec2 α(pu󸀠)2(a) = −(1 + tan2 α)(pu󸀠)2(a).
From the boundary conditions (6.3) we have tan α(pu󸀠)(a) = u(a). Thus the conclusion
is obtained.

If α = π
2 , then (pu

󸀠)(a) = 0. Thus, similarly to the above computation, we have

[λn(α + h) − λn(α)]
b

∫
a

uv̄w = [u, v](a) − [u, v](b) = [u, v](a)

= [u(pv̄󸀠) − v(pū󸀠)](a)
= u(a)(pv̄󸀠)(a)
= u(a) cot(α + h)v(a).

Dividing both sides by h and taking the limit as h→ 0, we obtain

λ󸀠n(α) b∫
a

uūw = −u2(a) = −u2(a) − (pu󸀠)2(a).
This completes the proof.

Next, we prove Theorem 6.4.4.

Proof. Weuse the regularizationmethod for singular SLP; see [86, 113] formore detail.
Define

P = v2p, Q = v[−(pv󸀠)󸀠2w
and consider the equation

− (Pz󸀠)󸀠 + Qz = λWz. (6.1)

If z is a solution, then y = zv is a solution of (6.1). Since the endpoint a is LCNO and b is
LPNO, this equation is regular at a and is LPNOat b. Moreover, the boundary condition
(6.3) can be transformed into the following:

cos αz(a) − sin α(Pz󸀠)(a) = 0. (6.2)

Thus this boundary value problem and problem (6.1), (6.7) have the same eigenvalues.
The conclusion follows from Theorem 6.4.2.
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Lemma 6.6.5. Let y, z, u, v ∈ Dmax. For any c ∈ [a, b], we have

[y, z](c)[v, u](c) = [y, v](c)[ ̄z, ū](c) − [y, ū](c)[ ̄z, v](c).

Proof. See [113].

In the following, we give the proof of Theorem 6.4.5.

Proof. Let y = yn(⋅, α) denote a normalized eigenfunction of the eigenvalue λn(α). Sin-
gular initial value problems at the LC endpoint a for equation (6.1) and the initial con-
ditions

[y, u](a) = c1, [y, v](a) = c2

with constants c1, c2 can be found in [113], Chapter 8. Similarly to Theorem 6.4.2, there
exists a normalized eigenfunction ỹ = yn(⋅, α + h) of λn(α + h) such that

ỹ(⋅) → y(⋅), (pỹ󸀠)(⋅) → (py)󸀠(⋅), h→ 0,

and

[ỹ, u](⋅) → [y, u](⋅), [ỹ, v](⋅) → [y, v](⋅), h→ 0,

uniformly on any compact subinterval of [a, b).
By a direct computation we obtain that if α ̸= π

2 , then

[λn(α + h) − λn(α)]
b

∫
a

y ̄ỹw = [y, ỹ](a) − [y, ỹ](b) = [y, ỹ](a)

= [y, ỹ](a)[u, v](a)
= [y, u](a)[ỹ, v](a) − [y, v](a)[ỹ, u](a)
= (tan α − tan(α + h))[y, v](a)[ỹ, v](a).

Similarly to the proof of Theorem 6.4.3, the conclusion follows. The proof for α = π
2 is

similar.

6.7 Proofs of theorems in Section 6.5

In this section, we prove the theorems of Section 6.5. First, we introduce a technical
lemma.

Lemma 6.7.1. Assume that (6.1) and (6.2) hold. Then:
(1) dimE(λ−) = N(λ), where N(λ) is the number of zeros of the solution of equation (6.1)

on (a, b) satisfying the following initial value condition

y(a) = sin α, (py󸀠)(a) = cos α,
where E(λ) is the spectral measure of the self-adjoint Sturm–Liouville operator S;
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(2) Let S beboundedbelowwith separatedboundary conditions andσe ⊂ [σ0,∞). Then
for the eigenvalues

λ0 < λ1 < λ2 < ⋅ ⋅ ⋅ < λn ⋅ ⋅ ⋅ < σ0,

the corresponding eigenfunction yn has exactly n zeros on the interval (a, b);
(3) Let M(λ) be the minimal number of zeros of a solution of (6.1) in (a, b). Then

dimE(λ−) − 1 ≤ M(λ) ≤ dimE(λ−).
Proof. Parts (1) and (3) are direct consequences of Theorems 14.2(2) and 14.8(2) inWei-
dmann [105], respectively, and (2) follows from Theorem 14.10 in [105].

This lemma gives a relation between the oscillation of solutions of equation (6.1),
the spectral measure, and the essential spectrum.

Next, we prove Theorem 6.5.1.

Proof. (1) Assume that −∞ < σ0 < ∞. It follows from Lemma 6.4.1 that for any λ < σ0,
equation (6.1) has exactly one real linearly independent square-integrable solution
y(x). Therefore there exists a unique α ∈ [0,π) such that y(x) satisfies the self-adjoint
boundary condition (6.3) and λ is an eigenvalue of (6.1)–(6.3). Thus there exist α0 and
k and an eigenvalue λk(α0) such that λk(α0) < σ0.

(2) Let α ∈ (α0,π). If there exists λk(α0) for some k ∈ ℕ0 and α0 ∈ [0,π), then the
solution y(x, α0, λn0 (α0)) of the initial value problem

−(py󸀠)󸀠 + qy = λk(α0)wy,
y(a) = sin α0,

(py󸀠)(a) = cos α0
has exactly k zeros in the interval (a, b) by Lemma 7 in [114]. Note that

dimE(λk(α0), α0) = k + 1.

Then by Lemma 6.7.1(1), for any sufficiently small ε > 0, the solution y(x, α0,
λk(α0) + ε) of the initial value problem

−(py󸀠)󸀠 + qy = (λk(α0) + ε)wy,
y(a) = sin α0,

(py󸀠)(a) = cos α0
has at least k + 1 zeros in (a, b). Let xk+1 be the (k + 1)th zero of y(x, α0, λk(α0) + ε). Let
y(x, α, λk(α0) + ε) be the solution of the following problem:

−(py󸀠)󸀠 + qy = (λk(α0) + ε)wy,
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y(a) = sin α,
(py󸀠)(a) = cos α.

From the Prüfer transformation

y(x, α, λk(α0) + ε) = ρ(x) sin θ(x, α),
(py󸀠)(x, α, λk(α0) + ε) = ρ(x) cos θ(x, α),

and

0 ≤ θ(a, α0) = α0 < θ(a, α) = α < π

it follows that

θ(xk+1, α0) = (k + 1)π < θ(xk+1, α).
Therefore y(x, α, λk(α0) + ε) has at least k + 1 zeros in (a, xk+1) for any π > α > α0. It
follows from Lemma 6.7.1(1) that

dimE(λk(α0) + ε, α) ≥ k + 1.

Since the spectral measure E(λ) is right continuous and ε is an arbitrary small positive
number, we have

dimE(λk(α0), α) ≥ k + 1.

Thus there must exist the kth eigenvalue λk(α) for any α ∈ (α0,π).
(3) For sufficiently small ε > 0, we have that

dimE(λk(α0) + ε
−, α0) = k + 1

by the proof of (2). It follows from Lemma 6.7.1(3) that

M(λk(α0) + ε) ≥ k.

Hence y(x, α, λk(α0) + ε) has at least k zeros at (a, b) for any α ∈ [0,π), where y(x, α,
λk(α0) + ε) is the solution of the problem

−(py󸀠)󸀠 + qy = (λk(α0) + ε)wy,
y(a) = sin α,

(py󸀠)(a) = cos α.
Thus dimE(λk(α0) + ε−, α) ≥ k by Lemma 6.7.1(1), dimE(λk(α0), α) ≥ k, and (3) is veri-
fied.

(4) It follows from (1), (2), and (3) that there must exist k ∈ ℕ0 and α0 such that
there are exactly k + 1 eigenvalues below σ0 for α ∈ (α0,π) and k eigenvalues below σ0
for α ∈ [0, α0]. Part (5) follows from (2) and (3) of this theorem.
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6.8 Comments

This chapter is based on the paper by Zhang et al. [114].
The definition of regular endpoint follows that given in [113] and does not require

the endpoint to be finite in contrast to much of the older literature. A primary motiva-
tion for this definition is that condition (6.2) on the coefficients implies that at such an
endpoint every solution y and its quasi-derivative (py󸀠) have finite limits; see [113] for
details.

Remark 6.8.1. Assume that neither endpoint is LCO or LPO. (If one endpoint is LCO
or LPO, then the spectrum is unbounded above and below.) With the results given
in [113] and this chapter, it is now fair to say that the dependence of the eigenvalues
on the boundary conditions of self-adjoint Sturm–Liouville problems on any interval
J = (a, b), ≤ a < b ≤ ∞, with endpoints a, b that are regular or singular is now well
understood. This includes the eigenvalues below the essential spectrum.

For all classifications of the endpoints, R, LP, LCNO, or LCO, the Bailey–Everitt–
Zettl FORTRAN code SLEIGN2 can be used to numerically compute the eigenvalues;
see [10]. Furthermore, this code, combined with some theoretical results, can be used
to get information about the essential spectrum, for example, its starting point σ0,
some spectral bands and gaps, the number of eigenvalues below the starting point of
the essential spectrum σ0, and so on. See [110, 20, 19] for illustrations.

Also see [10] for a comparison of SLEIGN2, which uses the Prúfer transformation,
and the Fulton–Pruess [40] code SLEDGE, which is based on approximating the co-
efficients. As mentioned in Introduction of the book, both codes are used by Bailey,
Everitt, and Zettl [10] to compute eigenvalues of some examples, and the results are
compared.
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7 Spectral parameter in the boundary conditions

7.1 Introduction

In this chapter, we discuss the spectrum of singular problems with eigendependent
boundary conditions and its approximation with eigenvalues from a sequence of reg-
ular problems.

Our approach is in the spirit of Bailey, Everitt, Weidmann, and Zettl [9] using ap-
proximations based on truncating the interval, “inherited” boundary conditions, and
“reduced restriction” operators to study the approximations of the spectrum of singu-
lar problems using eigenvalues from a sequence of regular problems. This allows us
to use methods from functional analysis for both theoretical and numerical studies
of these problems, in particular, strong resolvent and norm resolvent convergence of
operators in a Hilbert space.

Bailey, Everitt, Weidmann, and Zettl [9] and Everitt, Marletta, and Zettl [31] stud-
ied the approximation of the spectrum of singular Sturm–Liouville problems (SLPs)
with eigenvalues of regular problems. This played a critical role in the development
of the code SLEIGN2 by Bailey, Everitt, and Zettl [10]. This code can be used for the
computation of the eigenvalues of regular or singular SLPs with either separated or
coupled self-adjoint boundary conditions. In the singular case, each endpoint may be
a limit point (LP) or a limit circle (LC), and in the LP case, SLEIGN2 can also be used to
detect andapproximate parts of the essential (sometimes called continuous) spectrum
[110], especially its starting point.

7.2 Construction of operators

In this section, we construct operators in a direct sum Hilbert space:

H1 = L
2(a, b,w) and H = H1 ∔ ℂ,

where ℂ is the space of complex numbers with the usual inner product for H1,

(f , g) = ∫
J

f (t)g(t)w(t) dt,

and the inner product ⟨⋅, ⋅⟩ for H given by

⟨(f , g), (u, v)⟩ = (f , g) + ρuv, ρ > 0.

Note that the space H1 can be identified with the closed subspace {(f ,0) : f ∈ H1} of
H and that this subspace has codimension 1 inH. Below, for convenience, we will use
the notation (f , u) for the elements of H.

https://doi.org/10.1515/9783110719000-007
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Let

J = (a, b), −∞ < a < b ≤ +∞

and consider

My = 1
w
[−(py󸀠)󸀠 + qy] = λy on J, (7.1)

where

p, q,w : J → ℝ, 1
p
, q,w ∈ Lloc(J), p > 0, w > 0 a. e. on J. (7.2)

For the rest of this chapter, we assume that the endpoint a is regular.
The endpoint b is arbitrary, but we state and prove our results for singular b since

the case where b is regular then follows as a particular case. No restrictions are placed
on b, which can be finite or infinite, oscillatory or nonoscillatory, a limit circle (LC) or
a limit point (LP) in H1.

For α1, α2, β1, β2 ∈ ℝ and the spectral parameter λ, we consider boundary condi-
tions at the regular endpoint a:

y(a)(α1λ + β1) = (py
󸀠)(a)(α2λ + β2), η = β1α2 − α1β2 > 0, ρ = 1/η. (7.3)

7.2.1 The classical minimal and maximal operators in H1

For clarity of exposition, we briefly recall some basic facts about self-adjoint operators
S in H1. These satisfy

Smin ⊂ S = S
∗ ⊂ Smax,

where Smin and Smax are the classicalminimal andmaximal operators (7.1) inH1. These
can be defined by

D(Smax) = {f ∈ H1 : f , (pf
󸀠) ∈ ACloc(J),Mf ∈ H1},

Smaxf = Mf , f ∈ D(Smax),

Smin = S
∗
max.

Let

Dmax = D(Smax), Dmin = D(Smin).

The domain Dmin is dense in H1, and Smin is a closed symmetric operator in H1
with equal deficiency indices d = d(Smin); since a is regular, d = 1, 2, depending on the
LC/LP classification of b.
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Recall the Lagrange form [⋅, ⋅] defined by

[f , g] = f (pg󸀠) − g(pf 󸀠), f , g ∈ Dmax,

and that

[f , g](b) = lim
t→b−[f , g](t)

exists as a finite limit.
Next, we summarize some well-known properties of the operators Smin, Smax and

their domains.

Proposition 7.2.1. Let (7.1) and (7.2) hold, and let Smin, Smax,Dmin,Dmax be defined as
before.
(1) The (one-sided) [f , g](b) exists and is finite for all f , g ∈ Dmax.
(2) Dmin = {f ∈ Dmax : [f , g](b) − [f , g](a) = 0 for all g ∈ Dmax}.
(3) The endpoint b is LP if and only if [f , g](b) = 0 for all f , g ∈ Dmax.
(4) For any c, d ∈ J and α, β, γ, δ ∈ ℂ, there exists g ∈ Dmax such that

g(c) = α, (pg󸀠)(c) = β, g(d) = γ, (pg󸀠)(d) = δ.
Also, for any α, β ∈ ℂ, there is g ∈ Dmax such that

g(a) = α, (pg󸀠)(a) = β.
(5) For any g ∈ Dmin, we have

g(a) = 0, (pg󸀠)(a) = 0.
(6) S∗min = Smax and Smin = S∗max.

7.2.2 Construction of operators in H

In this subsection, we construct two operators T1 and T0 in H generated by (7.1)–(7.3);
these can be thought of playing the roles of Smax and Smin in H1. Define the operators
T1 and T0 from H to H by

D(T1) = {(f , f1) ∈ H : f ∈ Dmax, f1 = α1f (a) − α2(pf
󸀠)(a)},

T1(f , f1) = (Smaxf , f2) : f2 = −β1f (a) + β2(pf
󸀠)(a),

D(T0) = {(f , f1) ∈ D(T1) : [f , g](b) = 0 for all (g, g1) ∈ D(T1)},
T0(f , f1) = T1(f , f1) : (f , f1) ∈ D(T0).

Theorem 7.2.1. Let T0,T1 be defined as before. Then the operator T0 is closed, densely
defined, and symmetric, and T∗0 = T1 in H.

 EBSCOhost - printed on 2/10/2023 3:33 PM via . All use subject to https://www.ebsco.com/terms-of-use



134 | 7 Spectral parameter in the boundary conditions

Proof. Since Smin is closed, the closedness of T0 follows from the fact that D(T0) =
D(Smin) ∔ N, where N is a finite-dimensional space.

Assume that U = (u, u1) ∈ H and U⊥D(T0). Let f ∈ D(Smin). Then f1 = 0 by part (5)
of Proposition 7.2.1 and F = (f , f1) ∈ D(T0). It follows from

⟨F,U⟩ =
b

∫
a

f (t)u(t)w(t) dt = 0

that u(t) = 0 almost everywhere on (a, b) and thus U = (0, u1). Assume that G =
(g, g1) ∈ D(T0). Then G⊥U, that is,

⟨G,U⟩ = ρg1u1 = 0, ρ = 1
η
.

Since g1 = α1g(a) − α2(pg󸀠)(a) can be chosen arbitrarily, it follows that u1 = 0. Hence
the operator T0 is densely defined.

Next, we show that T0 ⊂ T∗0 , and therefore T0 is symmetric. For (f , f1) ∈ D(T0) and
(g, g1) ∈ D(T1), we have

⟨T0(f , f1), (g, g1)⟩ − ⟨(f , f1),T1(g, g1)⟩
= ⟨(Smaxf , f2), (g, g1)⟩ − ⟨(f , f1), (Smaxg, g2)⟩

= ∫
J

(Mf )gw + ρf2g1 − {∫
J

(Mg)fw + ρf1g2}

= [f , g](b) − [f , g](a) + ρ{f2g1 − f1g2}. (7.4)

From the definition of f1, g1, f2, g2 we have

f2g1 − f1g2
= [−β1f (a) + β2(pf

󸀠)(a)][α1g(a) − α2(pg󸀠)(a)]
− [−β1g(a) + β2(pg

󸀠)(a)][α1f (a) − α2(pf 󸀠)(a)]
= −β1f (a)α1g(a) + β1f (a)α2(pg

󸀠)(a) + β2(pf 󸀠)(a)α1g(a)
− β2(pf

󸀠)(a)α2(pg󸀠)(a) − {[−β1g(a)α1f (a) + β1g(a)α2(pf 󸀠)(a)
+ β2(pg

󸀠)(a)α1f (a) − β2(pg󸀠)(a)α2(pf 󸀠)(a)}
= (α2β1 − β2α1)[(f (a)(pg

󸀠)(a) − (pf 󸀠)(a)g(a)]
= (α2β1 − β2α1)[f , g](a) = η[f , g](a). (7.5)

Using ρ = 1/η and substituting (7.5) into (7.4), we obtain

⟨T0(f , f1), (g, g1)⟩ − ⟨(f , f1),T0(g, g1)⟩ = [f , g](b) − [f , g](a) + [f , g](a) = 0. (7.6)

In the last step, we used the fact that [f , g](b) = 0 since (f , f1) ∈ D(T0). From (7.6) we
conclude that T0 ⊂ T∗0 and, in particular, T0 is symmetric.
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For any F ∈ D(T0) and G ∈ D(T1), from (7.6) we have that

⟨T0F,G⟩ − ⟨F,T1G⟩ = 0.

Hence G ∈ D(T∗0 ) and T1 ⊂ T∗0 . Thus to show that T1 = T∗0 , it suffices to show that
F ∈ D(T1) for any F = (f , ̃f1) ∈ D(T∗0 ). Let U = (u, u1) ∈ D(T0). Then we have

⟨T∗0F,U⟩ = b

∫
a

(T∗0 f )u(x)w(x) dx + 1η ̃f1(α1u(a) − α2(pu󸀠)(a)). (7.7)

On the other hand,

⟨T∗0F,U⟩ = ⟨F,T0U⟩ = b

∫
a

fMu(x)w(x) dx + 1
η
̃f1(−β1u(a) + β2(pu󸀠)(a)). (7.8)

Let u(a) = (pu󸀠)(a) = 0. Then (7.8) implies f ∈ Dmax and

(Smaxf , u) = (f , Sminu).

From this it follows that

f , pf 󸀠 ∈ ACloc(J), Mf ∈ H1. (7.9)

Now (7.7) minus (7.8), together with (7.9), yield

b

∫
a

[(−pf 󸀠)󸀠 + qf ]u dx − b

∫
a

[(−pu󸀠)󸀠 + qu]f dx
+
1
η
̃f1(α1u(a)α2(pu󸀠)(a))

−
1
η
̃f1(−β1u(a) + β2(pu󸀠)(a)) = 0.

Since U ∈ D(T0), we have [f , u](b) = 0. Integrating by parts, we obtain

1
η
̃f1α1u(a) − α2(pu󸀠)(a) − 1η ̃f1(−β1u(a) + β2(pu󸀠)(a)) − f (a)(pu󸀠)(a) + (pf 󸀠)(a)u(a) = 0.

(7.10)
First, assume that α1 + β1 ̸= 0 and α2 + β2 ̸= 0. Let (pu󸀠)(a) = 0, u(a) = 1. Then

̃f1 =
−η

α1 + β1
(pf 󸀠)(a). (7.11)

Let (pu󸀠)(a) = 1 and u(a) = 0. Then
̃f1 =
−η

α2 + β2
f (a). (7.12)
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It follows from (7.11) and (7.12) that

(pf 󸀠)(a)
α1 + β1

=
f (a)

α2 + β2
. (7.13)

Now (7.11), (7.12), and (7.13) yield

̃f1 =
−η

α1 + β1
(pf 󸀠)(a) = −β1α2 − α1β2

α1 + β1
(pf 󸀠)(a) = α1f (a) − α2(pf 󸀠)(a).

If α1 + β1 = 0, then by (7.10) we have (pf 󸀠)(a) = 0. Again by (7.13)
̃f1 =
−η

α2 + β2
f (a) = α1f (a) − α2(pf

󸀠)(a).
Similarly, if α2 + β2 = 0, then this equality still holds. Thus F ∈ D(T1).

Since T0 is a symmetric restriction of T1, we now study its deficiency index and
self-adjoint extensions inH. Since T∗0 = T1, any self-adjoint extension T of T0 satisfies

T0 ⊂ T ⊂ T1 = T
∗
0

and thus is a self-adjoint restriction of T1.
Recall that if all the solutions of the differential equation (7.1) are in L2((c, b),w)

for some c ∈ (a, b), then the endpoint b is a limit circle (LC). Otherwise, the endpoint
b is called a limit point (LP). This LP/LC classification is independent of c ∈ (a, b)
and λ ∈ ℂ. The next theorem relates the deficiency index of T0 in H to the deficiency
index of Smin in H1. Since H1 can be identified with a closed subspace of H having
codimension 1 in H, it is not surprising that the deficiency indices d(Smin) and d(T0)
are related by d(T0) = d(Smin) − 1. The next theorem confirms this.

Theorem 7.2.2. The deficiency index d of T0 in H is either 0 or 1. If the endpoint b is
LC in H1, then the deficiency index of T0 is 1 in H. If the endpoint b is LP in H1, then the
deficiency index d of T0 is 0 in H.

Proof. Let

d+ = dimker(T∗0 + iI) = dimker(T1 + iI)

and

d− = dimker(T∗0 − iI) = dimker(T1 − iI)

be the positive and negative deficiency indices of T0, respectively. Then we have d+ =
d−, and thus d = d+ = d− = d(T0).

Consider the equation T1(f , f1) = i(f , f1), that is,

(Mf , −β1f (a) + β2(pf
󸀠)(a)) = (if , i(α1f (a) − α2(pf 󸀠)(a)). (7.14)
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If the endpoint b is LC, then equation (7.1) has two linearly independent solutions
inH1 for each λ ∈ ℂ. Therefore thenumber of linearly independent solutions satisfying
equation (7.14) in the space H is 1. Thus the deficiency index of T0 is 1.

If the endpoint b is LP, then equation (7.1) has exactly one linearly independent
solution f inH1 for each nonreal value of λ. Therefore the number of linearly indepen-
dent solutions satisfying equation (7.14) in the spaceH is at most 1. A limit point at the
endpoint b implies that the solution f satisfies

[f , g](b) = 0, for any g ∈ Dmax

by Proposition 7.2.1. Thus f ∈ D(T0). In view of the decomposition theorem of von
Neumann, the deficiency index d of T0 is 0.

The following theorem characterizes all self-adjoint extensions of T0.

Theorem 7.2.3.
(1) Assume that b is LP. Then d = 0, and T0 is self-adjoint in H and has no proper self-

adjoint extension in H. Thus no boundary conditions are required or allowed at b to
determine self-adjoint extensions of T0 in the Hilbert space H.

(2) Assume that b is LC. Then d = 1. In this case, there exist λ0 ∈ ℝ and two linearly
independent solutions u, v of (7.1) with λ = λ0 such that

D(T) = {(f , f1) ∈ D(T1) : cos α[f , u](b) − sin α[f , v](b) = 0}, α ∈ (0,π] (7.15)

is the domain of a self-adjoint operator T in H. Conversely, given any self-adjoint
extension T satisfying T0 ⊂ T = T∗ ⊂ T1, there exists (for given u, v) α ∈ (0,π] such
that the domain of T is given by (7.15).

Proof. Part (1) is obtained from the classical deficiency index theory and the theory
of self-adjoint extension of symmetric operators in a Hilbert space; see [22]. The argu-
ment that D(T) is the domain of a self-adjoint operator T in H can be seen from [28].
Note that the self-adjoint extension theory of general ordinary differential operators
is given by the well-known Glazman–Krein–Naimark theorem [36]; see Section 9; also
see [84]. The converse part of (2) can be obtained from the Calkin description of self-
adjoint extensions of abstract symmetric operators in a Hilbert space [22]; see also
[75].

7.2.3 Inherited boundary conditions and induced restriction operators

In this subsection,wedefine inheritedboundary conditions and construct the induced
restriction operators,whichwill be used further to approximate the spectra of singular
operators with eigenvalues from sequences of these regular induced restriction oper-
ators.
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Let

Ir = (a, br), a < br < b, r ∈ ℕ, lim
r→∞ br = b,

where br is an increasing sequence of r ∈ ℕ. We are interested in approximating a
given self-adjoint realization T in the Hilbert space H with regular operators {Tr :
r ∈ ℕ} acting in the Hilbert spaces

Hr = L
2((a, br),w) ∔ ℂ.

Definition 7.2.1. Let T1 and T0 be defined as before. Let Srmax and Srmin be the maxi-
mal and minimal operators with domains Drmax and Drmin, respectively, in the space
Hr1 = L2((a, br),w). Define the operators Tr1 and Tr0 in Hr1 as follows:

D(Tr1) = {(f , f1) ∈ Hr : f ∈ Drmax, f1 = α1f (a) − α2(pf
󸀠)(a)},

Tr1(f , f1) = (Srmaxf , f2) : f2 = −β1f (a) + β2(pf
󸀠)(a),

D(Tr0) = {(f , f1) ∈ D(Tr1) : [f , g](br) = 0 for any (g, g1) ∈ D(Tr1)},
Tr0(f , f1) = Tr1(f , f1) : (f , f1) ∈ D(Tr0).

We define the induced restriction operators {Tr : r ∈ ℕ} in Hr as follows:
(1) d = 0. Choose any ψr in D(Tr1) not in D(Tr0) satisfying

[ψr ,ψr](br) = 0.

Define

D(Tr) = {F = (f , f1) ∈ D(Tr1) : [f ,ψr](br) = 0},
Tr(f , f1) = Tr1(f , f1), (f , f1) ∈ D(Tr).

(2) d = 1. Let Tr be defined by

D(Tr) = {F = (f , f1) ∈ D(Tr1) : cos α[f , u](br) − sin α[f , v](br) = 0}, α ∈ (0,π],
T(f , f1) = Tr1(f , f1), (f , f1) ∈ D(Tr),

where u, v are defined as before, and [f , g] denotes the Lagrange bracket.

Remark 7.2.1. If d = 0, then for any real λ, choose any nontrivial real-valued solution
ψ of (7.1) and let ψr be its restriction to [a, br). In this case the boundary condition
[f ,ψr](br) = 0 can be reduced to the form

f (br) cos β − (pf
󸀠)(br) sin β = 0

for some β, which may vary with r.
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Remark 7.2.2. Suppose that the endpoint b is LP and σe(S) ̸= (−∞,∞) and λ ̸∈ σe(S)
for some S, Smin ⊂ S ⊂ Smax. (Recall that σe(S) is independent of S.) Choose any non-
trivial real-valued solutionψ of (7.1) for this λ, letψr be its restriction to [a, br), andnote
that [ψr ,ψr](br) = 0; see also [99]. In fact, for the operator T, we can also choose any
nontrivial real-valued solution ψ of (7.1) for some λ ̸∈ σe(T); note that [ψr ,ψr](br) = 0.

Theorem 7.2.4. The induced restriction operators {Tr} of T are self-adjoint operators in
the Hilbert space Hr .

Proof. This can be found in [22, 39].

With each one of these operators Tr, we associate an operator T󸀠r in the Hilbert
space H as follows:

T󸀠r = Tr ∔ Or = TrPr , D(T󸀠r ) = D(Tr) ∔ H⊥r ,
where Pr is the orthogonal projection of H onto Hr, and Or is the zero operator in the
space H⊥r = L2((br , b),w). It is clear that {T󸀠r } are self-adjoint operators in the space H
with dense domains.

7.3 Spectral properties

In this section, we study spectral properties of the self-adjoint operators in H con-
structed in Theorem 7.2.3 for both cases where b is LC in H1 and b is LP in H1.

7.3.1 Assume that b is LC in H1

Let T denote a self-adjoint realization in H as constructed before.
Let φ(x, λ), ψ(x, λ) be two linearly independent solutions of equation (7.1) with

λ ∈ ℂ satisfying the initial conditions

φ(a, λ) = 1, (pφ󸀠)(a) = 0; ψ(a) = 0, (pψ󸀠)(a) = 1.
Let

Φ(x, λ) = [ [φ, u](x) [ψ, u](x)
[φ, v](x) [ψ, v](x)

] , x ∈ J.

Then we have the following:

Theorem 7.3.1. The complex number λ is an eigenvalue of SLP (7.1), (7.3), (7.15) if and
only if λ satisfies the equation

ϖ(λ) = det(A + BΦ(b, λ)) = 0, (7.16)
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where

A = [ α1λ + β1 −(α2λ + β2)
0 0

] , B = [ 0 0
cos α − sin α

] .

Proof. Assume that λ is an eigenvalue and

y(x, λ) = c1φ(x, λ) + c2ψ(x, λ)

is an eigenfunction of λ. Then y(x, λ) satisfies the two boundary conditions (7.3) and
(7.15), that is, the linear equations

(α1λ + β1)c1 − (α2λ + β2)c2 = 0

and

[ cos α − sin α ] [ [φ, u](b) [ψ, u](b)
[φ, v](b) [ψ, v](b)

] [
c1
c2
] = 0

have nonzero solutions [ c1c2 ]. Therefore (7.16) holds. Conversely, if (7.16) holds, then
these linear equations have a nontrivial solution [ c1c2 ]. Let

y(x, λ) = c1φ(x, λ) + c2ψ(x, λ).

Then y(x, λ) satisfies the boundary conditions and the differential equation, and there-
fore λ is an eigenvalue.

Note that the eigenvalues of SLP (7.1), (7.3), (7.15) coincide with the eigenvalues of
the self-adjoint operator T constructed before. In fact, the spectrum of the operator T
is discrete:

Theorem 7.3.2. Assume that T is defined by case (2) of Theorem 7.3.1. Then the operator
T has only a point spectrum, that is, σ(T) = σp(T).

Proof. Assume that λ ∈ ℝ is not an eigenvalue ofT. It suffices to show that the equation

TY = λY + G

has a solution Y ∈ D(T), where G = (g, g1) ∈ H, that is, the equations

{{
{{
{

My = λy + g,
−β1y(a) + β2(py󸀠)(a) = λ(α1y(a) − α2(py󸀠)(a)) + g1,
cos α[y, u](b) − sin α[y, v](b) = 0

(7.17)

have a unique solution y(x, λ) ∈ H1. For the differential equation in (7.17), by the
variation-of-parameters formula we have that

y(x, λ) = c1φ(x, λ) + c2ψ(x, λ) +
b

∫
a

K(x, ξ , λ)g(ξ ) dξ (7.18)
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is a solution of this equation, where c1, c2 are constants, and

K(x, ξ , λ) = { φ(x, λ)ψ(ξ , λ) − ψ(x, λ)φ(ξ , λ), a ≤ ξ ≤ x ≤ b,
0 otherwise.

Since y(x, λ) needs to satisfy the last two equalities of (7.17), by direct computation we
have

c1 =
α2λ + β2
ϖ(λ)

L, c2 =
α1λ + β1
ϖ(λ)

L,

where

L = {cos α[u,φ](b) − sin α[v,φ](b)}
b

∫
a

ψ(ξ , λ)g(ξ ) dξ

− {cos α[u,ψ](b) − sin α[v,ψ](b)}
b

∫
a

φ(ξ , λ)g(ξ ) dξ .

It follows from φ(x, λ),ψ(x, λ) ∈ L2(a, b,w) that (7.17) has a unique solution y(x, λ) ∈
H1.

7.3.2 Assume that b is LP in H1

In this case, in general, the spectrum consists of eigenvalues of essential spectrum. In
the classical case, i. e., when the boundary conditions do not depend on the eigenpa-
rameter, it is well known that the essential spectrum depends only on the coefficients,
not on the boundary conditions. The next theorem shows that this, not surprisingly,
also holds for eigenparameter-dependent boundary conditions and furthermore that,
in this case, the essential spectrum of T in H is the same as the essential spectrum of
the corresponding self-adjoint realization of (7.1) in the space H1.

Theorem 7.3.3. Let the operator T be defined as in case 1 of Theorem 7.2.3. Let the op-
erator S be given by

Sy = 1
w
[−(py󸀠)󸀠 + qy], y ∈ D(S),

D(S) = {f : f , (pf 󸀠) ∈ ACloc(J), Sf ∈ H1 = L
2(a, b,w), f (a) = 0}.

Denote the essential spectra of S and T by σe(S) and σe(T), respectively. Then

σe(S) = σe(T).
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Proof. For c ∈ (a, b), consider the operators S1 and S2:

D(S1) = {f : f , (pf
󸀠) ∈ ACloc(a, c), S1f ∈ L2(a, c,w), f (c) = 0},

S1f = Sf , f ∈ D(S1);

D(S2) = {f : f , (pf
󸀠) ∈ ACloc(c, b), S2f ∈ L2(c, b,w), f (c) = 0},

S2f = Sf , f ∈ D(S2).

Then the operators S1 and S2 are self-adjoint operators in the spaces L2(a, c,w) and
L2(c, b,w), respectively. Let S0 be the orthogonal sum of the operators S1 and S2. Then
we have

σe(S0) = σe(S1) ∪ σe(S2) = σe(S2).

Note that the self-adjoint domain of the operator S is a finite-dimensional extension
of the domain of the operator S0. It follows from σe(S) = σe(S0) that

σe(S) = σe(S0) = σe(S2).

Construct the following three operators ̃T1, ̃T2, ̃T0:

D( ̃T1) = {(f , f1) : f , (pf
󸀠) ∈ ACloc(a, c),Mf ∈ L2(a, c,w),

f1 = α1f (a) − α2(pf
󸀠)(a), f (c) = 0},

̃T1(f , f1) = (Mf , f2), f2 = −β1f (a) + β2(pf
󸀠)(a);

D( ̃T2) = {(f ,0) : f , (pf
󸀠) ∈ ACloc(c, b),Mf ∈ L2(c, b,w), f (c) = 0},

̃T2(f ,0) = (Mf ,0);

and

̃T0 = ̃T1 ∔ ̃T2.

By [22, 39] it follows that ̃T1, ̃T2, and ̃T0 are all self-adjoint. Therefore from the theory
of the direct sum of the operators [28] we have

σe(T) = σe( ̃T0) = σe( ̃T1) ∪ σe( ̃T2) = σe( ̃T2).

From σe(S2) = σe( ̃T2) it follows that σe(S) = σe(T).

7.4 Approximation of eigenvalues

In this section, we introduce some definitions about strong resolvent convergence and
norm resolvent convergence of operators. These play important roles in the study of
the approximation of the spectrum of singular operators with eigenvalues from a se-
quence of approximating regular operators. These definitions and the following lem-
mas can be found in [9, 89, 104].
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Definition 7.4.1. Let {Tr : r ∈ ℕ} and T be self-adjoint operators in theHilbert spaceH.
Then Tr is said to converge to T in the strong resolvent sense (SRC) if

(Tr − z)
−1f → (T − z)−1f , r →∞,

for all f ∈ H and z ∈ ℂ with Im z ̸= 0; Tr is said to converge to T in the norm resolvent
sense (NRC) if

󵄩󵄩󵄩󵄩(Tr − z)
−1 − (T − z)−1󵄩󵄩󵄩󵄩 → 0, r →∞.

In the following lemma we give a sufficient condition of SRC.

Lemma 7.4.1. Let H be a Hilbert space, and let {Tr : r ∈ ℕ} and T be given as before.
Suppose that there is a core C(T) of T such that for any f ∈ C(T), there exists r0 ∈ ℕ such
that f ∈ D(Tr) for any r > r0 and Trf → Tf as r → ∞ for all f ∈ C(T). Then {Tr : r ∈ ℕ}
is SRC to T in H.

On the convergence of spectrum, we have the following definitions.

Definition 7.4.2.
(1) The sequence {Tr : r ∈ ℕ} is spectral included for T if for any λ ∈ σ(T), there exists

a sequence {λr : r ∈ ℕ} with λr ∈ σ(Tr) such that limr→∞ λr = λ.
(2) The sequence {Tr : r ∈ ℕ} is spectral exact for T if it is spectral included for T and

if any limit point of a sequence {λr : r ∈ ℕ} with λr ∈ σ(Tr) belongs to σ(T).

The next lemma describes the relation between the convergence of operators and
of their spectrum.

Lemma 7.4.2.
(1) Suppose that T is a self-adjoint operator on aHilbert space H and {Tr} is a sequence

of self-adjoint operators on Hwhich is SRC to T. Then {Tr} is spectral included for T.
Let {E(Tr , λ); λ ∈ ℝ} and {E(T , λ); λ ∈ ℝ} with λ not an eigenvalue of T denote the
spectral projections of Tr and T, respectively. Then for all f ∈ H,

󵄩󵄩󵄩󵄩E(Tr , λ)f − E(T , λ)f
󵄩󵄩󵄩󵄩 → 0, r →∞.

(2) Suppose that T is a self-adjoint operator on aHilbert space H and {Tr} is a sequence
of self-adjoint operators on H that is NRC to T. Then {Tr} is spectral exact for T. Let
{E(Tr , λ); λ ∈ ℝ}and {E(T , λ); λ ∈ ℝ}with λ not an eigenvalue of T denote the spectral
projection of Tr and T, respectively. Then

󵄩󵄩󵄩󵄩E(Tr , λ) − E(T , λ)
󵄩󵄩󵄩󵄩 → 0, r →∞.

In Section 7.2, we constructed the self-adjoint operator T with the induced restric-
tion operators {Tr : r ∈ ℕ} and the corresponding induced operators {T󸀠r }. We have the
following:
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Theorem 7.4.1. Let T ,Tr ,T󸀠r be defined as in Section 7.2 and suppose {T󸀠r } is SRC to T.
Then for any λ ∈ ℝ that is not an eigenvalue of T, we have that E(Tr , λ)Pr is strongly
convergent to E(T , λ) and the sequence {Tr} is spectral included for T.

Proof. It is similar to the proof of Theorem 3.6 in [9].

7.4.1 The case where b is limit circle

First, we study the limit circle case at the endpoint b, which implies that the deficiency
index of T0 in H is d = 1. In this case the spectrum is discrete, and the approximation
of the eigenvalues of singular problems is relatively simple.

Theorem 7.4.2. Let T ,Tr ,T󸀠r be defined as above and assume that the endpoint b is limit
circle. Then:
(1) the sequence {T󸀠r } is SRC to T;
(2) for any z ∈ ℂ/ℝ, the sequence {(Tr − z)−1Pr : r ∈ ℕ} converges to {(T − z)−1} in the

Hilbert–Schmidt norm;
(3) the sequence {Tr : r ∈ ℕ} is spectral exact for T;
(4) for any λ ∈ ℝ not an eigenvalue of T, the sequence E(Tr , λ)Pr converges to E(T , λ)

not only strongly but also in norm.

Proof. (1) For fixed α, define

C(T) = {F ∈ D(T) : f = c(u cos α − v sin α)},

where f = c(u cos α − v sin α) in [b󸀠, b) for some constant c and some b󸀠 in (a, b). Then
C(T) is a core of T. This is due to the fact that

dim(D(T)/D(T0)) = 1, C(T) = D󸀠(T0) ∔ N ,
where

D󸀠(T0) = {(f , f1) ∈ D(T1) : f has compact support in [a, b)},
dimN = 1, N ∩ D󸀠(T0) = {0}.

Given F ∈ C(T), we have that F ∈ D(T󸀠r ) for all sufficiently large r and

T󸀠rF → TF in H , r →∞.

Therefore {T󸀠r } is SRC to T in H by Lemma 7.4.1.
(2) For any z ∈ ℂ/ℝ, let φ(x, z), ψ(x, z) be a fundamental set of solutions of (7.1)

with λ = z. By the proof of Theorem 7.3.1 we have that the resolvents {(T − z)−1} and
{(Tr − z)−1} have the form

(T − z)−1G = (y(x, z), α1y(a) − α2(py󸀠)(a)),
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(Tr − z)
−1G = (yr(x, z), α1yr(a) − α2(py󸀠r)(a)),

where

y(x, z) = c1φ(x, z) + c2ψ(x, z) +
b

∫
a

K(x, ξ , z)g(ξ ) dξ ,

yr(x, z) = cr,1φ(x, z) + cr,2ψ(x, z) + b

∫
a

Kr(x, ξ , z)g(ξ ) dξ ,

and K,Kr , c1, c2, cr,1, cr,2 are defined as in the proof of Theorem 7.4.2. It is clear that

Kr → K, cr,1 → c1, cr,2 → c2, yr(a) → y(a), (py󸀠r)(a) → (py󸀠)(a).
The Hilbert–Schmidt convergence follows. This easily implies the convergence of
the spectrum and the desired norm convergence of the spectral projections from
Lemma 7.4.2.

Recall that if b is oscillatory, then the spectrum of any self-adjoint realization S in
H1 and therefore also of any self-adjoint realization T in H is unbounded both above
andbelow.On the other hand, ifb is nonoscillatory, then both S andT are boundedbe-
low. The convergence properties of the eigenvalues for these two cases is very different
as shown by the next theorem.

Theorem 7.4.3. Suppose that T ,Tr ,T󸀠r are defined as in case (2) of Definition 7.4.1.
(1) Assume that the spectrum of the operator T is bounded below and denote the nth

eigenvalue of the operators Tr and T by λn(Tr) and λn(T), respectively, for all n ∈ ℕ.
Then

λn(Tr) → λn(T), r →∞.

(2) If the spectrum of the operator T is unbounded below and λn(Tr) (n ∈ ℕ) is the nth
eigenvalue of Tr , then

λn(Tr) → −∞, r →∞.

Proof. The argument for (1) is directly obtained fromTheorem 7.4.1.We nowverify case
(2).We associate a right-handDirichlet problemby appending the boundary condition
y(br) = 0. The corresponding eigenvalues are denoted by λDn (Sr), n ∈ ℕ. Then by Corol-
lary 2.3 in [14] we have

λn(Tr) ≤ λ
D
n (Sr) < λn+1(Tr), n = 0, 1, 2, . . . . (7.19)

Thus it suffices to prove that λDn (Sr) → −∞, r →∞, n = 0, 1, 2, . . . .
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Let the sets Cr be defined as follows:

Cr = {F ∈ D(T) : f has compact support in [a, br)}.

Then by the variational characterization of the eigenvalues we have

λDn (Sr) = inf
dimV=n,V⊂Cr{supF∈V (SrF, F)(F, F) }.

Since br is increasing, it is clear that Hr ⊂ Hr+1 for all r. Thus λDn (Sr+1) ≤ λDn (Sr), and
λDn (Sr) is a decreasing function of r. Therefore the limit limr→∞ λDn (Sr) exists or equals
−∞. Suppose

lim
r→∞ λDn (Sr) = c > −∞.

Choose μk ∈ σ(T) such that

μn < μn−1 < ⋅ ⋅ ⋅ < μ1 < c.
By Theorem 7.4.1(3) there exists an index sequence n(r, μk) such that λn(r,μk)(Tr) → μk .
From (7.20) we have n(r, μ1) < n for sufficiently large r. Similarly, n(r, μn−1) < ⋅ ⋅ ⋅ <
n(r, μ1) < n. Thus n(r, μn−1) is at most 1. Therefore there does not exist a sequence
n(r, μn) such that λn(r,μn)(Tr) → μn, which is a contradiction.

7.4.2 The case where b is limit point

Next, we consider the LP case for b, that is, d = 0. In this case the approximation of
the spectrum of the singular operator T by eigenvalues of the regular operators Tr is
much more complicated.

Theorem 7.4.4. Let T ,Tr ,T󸀠r be defined as in case (1) in Definition 7.4.1. Then the se-
quence {T󸀠r } is SRC to T in H, and {Tr} is spectral included for T.

Proof. Define

C(T) = {F ∈ D(T) : f has compact support in [a, b)}.

Then C(T) is a core of T. (See [77, 104] for a definition of a core of T.) By Lemma 7.4.1 the
sequence {T󸀠r } is SRC to T in H. The spectral inclusion follows from Theorem 7.4.1.

WhenT0 is boundedbelow, there is a simpler approximation of the singular eigen-
values. The following lemma plays an important role in the proof.
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Lemma 7.4.3. Let {Pr : r ∈ ℕ} be a sequence of self-adjoint projections in a Hilbert
space H, and let P be a bounded self-adjoint projection in H such that Pr is strongly
convergent to P. Assume that

dimPn ≤ dimP < ∞

for all n. Then ‖Pr − P‖ → 0, r →∞.

Proof. This is a direct consequence of Lemmas 1.23 and 1.24 in [53], Chapter 8.

Theorem 7.4.5. Let T ,Tr ,T󸀠r be defined as in case (1) of Definition 7.4.1. In addition, as-
sume that
(1) the operator T0 is bounded below in H;
(2) the induced restrictions {Tr : r ∈ ℕ} are determined by the boundary conditions

(7.3) at the regular endpoint a and

f (br) = 0. (7.20)

Then:
(1) {Tr : r ∈ ℕ} is spectral exact for T below the essential spectrum σe(T) of T, that is,

if there exist exactly k eigenvalues λ0(T), λ1(T), . . . , λk−1(T), then
λn(Tr) → λn(T), r →∞, n = 0, 1, 2, . . . , k − 1.

If there exist infinitely many eigenvalues below the essential spectrum σe(T) of T,
then we have

λn(Tr) → λn(T), r →∞, n ∈ ℕ.

In particular, in the case where the spectrum is discrete, {Tr : r ∈ ℕ} is spectral
exact for T, and the above equality still holds.

(2) For any λ below the essential spectrumσe(T)with λ not an eigenvalue of T, E(Tr , λ)Pr
converges to E(T , λ) not only strongly but also in norm.

(3) Assume that there exist exactly k eigenvalues λ0(T), λ1(T), . . . , λk−1(T) below σ0.
Then

λn(Tr) → σ0, r →∞, n = k, k + 1, k + 2, . . . ,

where σ0 = inf σe(T).

Proof. The strong convergence of E(Tr , λ)Pr to E(T , λ) follows from Theorems 7.4.1
and 7.4.2. LetQr andQ be the quadratic forms corresponding to the operators Tr and T,
respectively. Let D(Qr) and D(Q) denote the form domains of Tr and T, respectively.
Since

D(Qr) = {F ∈ D(Tr1) : f (br) = 0}, D(Q) = D(T0),
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we have Qr ⊂ Q. Thus the range of E(Tr , λ) is a maximal subspace of D(Qr) consisting
of functions F satisfying Qr(F, F) ≤ λ(F, F). Similarly, for Q, we can obtain that

dimE(Tr , λ) ≤ dimE(T , λ) < ∞

for all λ lying below σe(T). By Lemma 7.4.2 we have that E(Tr , λ)Pr converges to E(T , λ)
in norm, and thus the argument for (2) holds. By Lemma 7.4.2(2), (1) is verified.

Since the essential spectrum is closed, there exists a strictly decreasing sequence
{μk ∈ σ(T)} converging toσ0. Similarly to theproof of Theorem7.4.2,wehave that λn(Tr)
is a decreasing function of r ∈ (0,∞). Thus the limit limr→∞ λn(Tr) (n = k, k+1, k+2, . . . )
exists. Again by (1), the above limit is equal to or greater than σ0. Assume that the limit

lim
r→∞ λk+1(Tr) = c > σ0.

For those spectral points between c andσ0, it is not possible to find a sequence λn(r)(Tr)
that is convergent to these points. This is a contradiction, and the proof of (3) is com-
pleted.

7.5 Examples

In this section, we illustrate some results from Section 7.4 using the Fourier equation.
Consider

− y󸀠󸀠 = λy on [0,∞) (7.21)

with boundary condition

y󸀠(0) = −λy(0) − 6y(0). (7.22)

Note that equation (7.21) is regular at 0 and LP at∞. Let the operator T in the space
H and the operator S in the space H1 be constructed as before. It is well known that
σe(S) = [0,∞), and therefore σe(T) = [0,∞) by Theorem 7.3.3.

A direct computation shows that λ = −4 is the only eigenvalue of T below the
essential spectrum σe(T).

In this case, for 0 < br < ∞, the induced restriction operator Tr is generated by
the equation

−y󸀠󸀠 = λy on [0, br)

with boundary conditions

y󸀠(0) = −λy(0) − 6y(0), y(br) = 0.
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A direct computation shows that the first eigenvalue λr0 = λ0(Tr) of this problem satis-
fies the equality

t = 1
2
[√(
−e−2tbr − 1
−e−2tbr + 1)2 + 24 + −e−2tbr − 1−e−2tbr + 1], (7.23)

where λr0 = −t
2. Note that when limr→∞ br = ∞, then the limit limr→∞ t exists. Taking

the limits as r →∞ of the two sides of equality (7.23), we obtain

lim
r→∞ t = 2.

Thus

lim
r→∞ λr0 = −4.

This illustrates the result of Theorem 7.4.2.

7.6 Comments

This chapter is based on the papers [115, 77] by Zhang, Sun, and Zettl.
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8 Discontinuous boundary conditions

8.1 Introduction

As mentioned in the introduction of the book, recently there has been a lot of interest
in the literature of self-adjoint Sturm–Liouville problems with discontinuous bound-
ary conditions specified at regular interior points of the underlying interval. Such con-
ditions are known by various names including transmission conditions [1, 2, 82, 87,
88, 98], interface conditions [61, 76, 92, 109], discontinuous conditions [51, 91, 81],
multipoint conditions [55, 76, 36, 112], point interactions (in the physics literature)
[42, 21, 23, 35], conditions on trees, graphs, or networks [90, 87, 88], and so on. For
an informative survey of such problems arising in applications including an extensive
bibliography and historical notes, see Pokornyi and Borovskikh [87] and Prokornyi
and Pryadiev [88].

In this chapter, we study these problems for both regular and singular interior
points.

These problems are not covered by the classical Sturm–Liouville theory since, in
this theory, solutions and their quasi-derivatives are continuous at all interior points
of the underlying interval J. In particular, this applies to all eigenfunctions. Below we
will call this theory and its extensions discussed in Part I (The one-interval theory).

Motivated by applications, in particular, the paper of Boyd [18] and its references,
in 1986, Everitt and Zettl [37] introduced a framework for the rigorous study of Sturm–
Liouville problems that have a singularity in the interior of the domain interval since
the existing theory did not cover such problems. The Boyd paper, which was based on
several previous papers by atmospheric scientists, studied eddies in the atmosphere
using a mathematical model based on the SL problem

− y󸀠󸀠 + 1
x
y = λy, y(−1) = 0 = y(1), −1 < x < 1. (8.1)

Note that 0 is a singular point in the interior of the underlying interval (−1, 1) and
condition (1.2) of the one-interval theory does not hold.

The framework introduced in [37] is the direct sum of Hilbert spaces, one for each
interval (−1,0) and (0, 1). The primary goal of this study is a characterization of all
self-adjoint realizations from the two intervals. A simple way of getting self-adjoint
operators in the direct sum space is taking the direct sum of operators from the sep-
arate spaces. However, there are many self-adjoint operators in the direct sum space
that are not obtained this way. These “new” operators involve interactions between
the two intervals; see Chapter 13 of [113].

Mukhtarov and Yakubov [82] observed that the set of self-adjoint operator real-
izations developed in [37] and discussed in [113] could be further enlarged by using
different multiples of the usual inner products associated with each of the intervals.
Sun, Wang, and Zettl [101, 94] used the Mukhtarov and Yakubov modification of the

https://doi.org/10.1515/9783110719000-008
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Everitt–Zettl theory in [37] to obtain more general self-adjoint two interval boundary
conditions. In particular, it was shown in [101, 94] that for coupled self-adjoint bound-
ary conditions determined by a coupling matrix K, the condition det(K) = 1 required
in the one-interval case can be replaced by det(K) > 1. Wang and Zettl [103] extended
the Mukhtarov and Yakubov result further to det(K) ̸= 0.

We briefly review the one-interval theory in Section 8.2 and the general two-
interval theory in Section 8.3. In Section 8.4, we apply the two-interval theory to
regular and singular problems with discontinuous boundary conditions and give a
number of illustrative examples. Further examples will be given in Chapter 10 for the
Legendre equation. These Legendre examples give explicit illustrations of singular
self-adjoint discontinuous jump boundary conditions.

8.2 The one-interval theory

Spectral properties of the classical SL problems are studied by considering the sym-
metric SL equation

My = −(py󸀠)󸀠 + qy = λwy on J = (a, b), λ ∈ ℂ, −∞ ≤ a < b ≤ ∞, (8.2)

with coefficients p, q and weight function w satisfying

p−1, q,w ∈ Lloc(J, ℝ), w > 0 a. e. on J, (8.3)

where Lloc(J, ℝ) denotes the real-valued functions Lebesgue integrable on all compact
subintervals of J. For later reference, we note that there is no sign restriction on q or p
in (8.3).

For convenience, we let y[1] = (py󸀠); this is the quasi-derivative of y. Under condi-
tions (8.3), every solution y of (8.2) and its quasi-derivative y[1] are defined and con-
tinuous on J (but y󸀠(t)may not exist for some t in J).

Equation (8.2) generates minimal and maximal operators Smin and Smax in the
Hilbert space L2(J,w) and self-adjoint operators S in this space. Each of thementioned
classical problems has such an operator realization S. These operators S satisfy

Smin ⊂ S = S
∗ ⊂ Smax. (8.4)

From (8.4) it is clear that these operators S are distinguished from each other only
by their domains. These domains canbe determinedby boundary conditions specified
only at the endpoints a, b of the interval J.

Note that (8.3) holds when (a, b) is replaced by (a, c) or (c, b) for any c ∈ (a, b).
We further use the notation Dmax(a, c) and so on to indicate the dependence on the
interval (a, c).

To characterize the domains D(S) of the operators S satisfying (8.4), we start with
some definitions.
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Definition 8.2.1. The endpoint a is regular if p−1, q,w ∈ L(a, c) for some (and hence
any) c ∈ (a, b). Similarly, b is regular if p−1, q,w ∈ L(c, b) for a < c < b. If an endpoint is
not regular, then it is called singular. If a is singular, it is said to be in the limit-circle
(LC) case if all solutions of (8.2) are in theHilbert spaceH = L2((a, c),w). This is known
to hold for some λ ∈ ℂ if and only if it holds for all λ ∈ ℂ. If a is singular and not LC,
then it is said to be in the limit-point (LP) case, and similarly for the endpoint b. We
say that an operator S in the Hilbert space H = L2(J,w) is a self-adjoint realization of
equation (8.2) if and only if (8.4) holds.

Definition 8.2.2. Recall that the Lagrange form [⋅, ⋅] is defined for all y, z ∈ Dmax by

[y, z] = y(pz󸀠) − z(py󸀠). (8.5)

Definition 8.2.3. Assume that the endpoint a is either regular or LC. A real-valued
function pair (u, v) ∈ Dmax(a, c) is said to be a boundary condition basis at a if there
exists a point c ∈ (a, b) such that each of u, v is linearly independentmoduloDmin(a, c)
and normalized to satisfy [u, v](a) = 1. A similar definition is made for the endpoint b.
A simpleway to get such (u, v) at a is taking linearly independent real-valued solutions
for any real λ in some interval (a, c) and normalizing them as indicated, and similarly
for b.

The number of boundary conditions needed to characterize the operators S sat-
isfying (8.4) depends on the deficiency index d of Smin, which depends on the classi-
fication of the endpoints a, b as regular, LC, or LP. This classification depends on the
coefficients p, q,w, and this dependence is implicit and complicated. There is a vast
literature on this dependence, andmuch is known, but there still exist equations (8.2)
for which the LC/LP classification is not known; see [54]. The number d is given in
terms of the endpoint classifications by the next proposition.

Proposition 8.2.1. The deficiency index d of Smin in L2(J,w) satisfies 0 ≤ d ≤ 2, and all
three values are realized. Furthermore:
(1) If d = 0, then Smin is self-adjoint and has no proper self-adjoint extension.
(2) d = 1 if and only if one endpoint is LP and the other regular or LC.
(3) d = 2 if and only if each endpoint is either regular or LC.

Proof. See [113, 84, 104] for proofs.

We can now state the characterization of all operators S that satisfy (8.4).

Theorem 8.2.1. Let (8.2) and (8.3) hold. Then:
(1) If both endpoints are LP, then Smin is self-adjoint with no proper self-adjoint exten-

sion.
(2) Suppose that a is LP and b is LC. Assume that (u, v) is a boundary condition basis

at b. If c, d ∈ ℝ, (c, d) ̸= (0,0), and

D(S) = {y ∈ Dmax : c[y, u](b) + d[y, v](b) = 0}, (8.6)
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then the operator S with domain D(S) satisfies (8.4).
If a is LC, b is LP, and (u, v) is a boundary condition basis at a, then replace b by a
in (8.6).
If a is LP and b is regular, then (8.6) reduces to (but not necessarily with the same
c, d)

D(S) = {y ∈ Dmax : cy(b) + d(py
󸀠)(b) = 0}. (8.7)

If a is regular and b is LP, then (8.6) reduces to

D(S) = {y ∈ Dmax : cy(a) + d(py
󸀠)(a) = 0}. (8.8)

(3) Assumeeachof a andbare, independently, regular or LC, and let (ua, va)and (ub, vb)
be boundary condition bases at a and b, respectively. Suppose A,B ∈ M2(ℂ) satisfy

rank(A : B) = 2 and AEA∗ = BEB∗, E = [ 0 −1
1 0
] . (8.9)

If

D(S) = {y ∈ Dmax : A [
[y, ua](a)
[y, va](a)

] + B [ [y, ub](b)
[y, vb](b)

] = [
0
0
]} , (8.10)

then D(S) is the domain of a self-adjoint extension S satisfying (8.4). Moreover, for
fixed (ua, va) and (ub, vb), all operators S satisfying (8.4) are generated this way.
Furthermore, if a is regular, then the term multiplied by A can be replaced by

[
y(a)
(py󸀠)(a) ] . (8.11)

Similarly, if b is regular, then the term multiplied by B can be replaced by

[
y(b)
(py󸀠)(b) ] . (8.12)

Thus if both a and b are regular, then (8.10) can be reduced to the more familiar
regular self-adjoint boundary conditions

A [ y(a)
(py󸀠)(a) ] + B [ y(b)

(py󸀠)(b) ] = 0. (8.13)

It is well known that the boundary conditions (8.13) can be categorized into two
mutually exclusive classes, separated and coupled. The separated conditions have
the form (8.7) when b is regular and the same form with b is replaced by a, but not
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necessarily with the same c, d when a is regular, and these separated conditions
have the familiar canonical form

cos βy(b) − sin β(py󸀠)(b) = 0, 0 < β ≤ π, (8.14)

when b is regular and the canonical form

cos αy(a) − sin α(py󸀠)(a) = 0, 0 ≤ α < π, (8.15)

when a is regular. (The different parameterizations for α and β are customary and
used for convenience in using the Prüfer transformation and stating results, but
these different parameterizations play no role in this book.)
The coupled singular conditions (8.10) have the canonical form

Y(b) = eiγKY(a), −π < γ ≤ π, i = √−1, (8.16)

where K ∈ M2(ℝ) satisfies det(K) = 1, and

Y(a) = [ [y, ua](a)
[y, va](a)

] , Y(b) = [ [y, ub](b)
[y, vb](b)

] . (8.17)

When b is regular, Y(b) can be replaced by (8.12), and Y(a) can be replaced by (8.11)
when a is regular. So when both a and b are regular, (8.16) can be reduced to

Y(b) = [ y(b)
(py󸀠)(b) ] = eiγK [ y(a)

(py󸀠)(a) ] , −π < γ ≤ π, i = √−1, (8.18)

with K ∈ M2(ℝ), det(K) = 1.

Proof. See [113].

Remark 8.2.1. See Chapter 14 in [113] for explicit boundary conditions that determine
the problems generating the special functions associated with the names of Bessel,
Chebychev, Fourier, Jacobi, Legendre, Morse, and so on.

Remark 8.2.2. For reference below, we note that the characterization of the self-
adjoint operators S satisfying (8.4) given by Theorem 8.2.1 is unchanged if the usual
inner product

(f , g) = ∫
J

f gw (8.19)

in H = L2(J,w) is replaced by

(f , g) = h∫
J

f gw (8.20)

for any h > 0.
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Remark 8.2.3. From another perspective we can say that the characterization of the
self-adjoint operators S satisfying (8.4) given by Theorem 8.2.1 is unchanged if the
weight function w is replaced by hw where h is any positive constant. The positiv-
ity of h is important for (8.20) to be an inner product and for the weight function to
satisfy (8.3). However, we make the following interesting observation: The character-
ization given by Theorem 8.2.1 remains valid and unchanged if the weight function w
is replaced by hw where h is any positive or negative constant. In the negative case,
write the right-hand side of equation (8.2) as (−λ)(−hw)y and use the previous obser-
vation for the positive weight function (−hw). This leaves the characterization of the
self-adjoint operators given by Theorem 8.2.1 unchanged. However, the spectrum of
the operator changes, in particular, if λ is changed to −λ, and then the spectrum is
“flipped” accordingly.

Remark 8.2.4. The simple observations of the last two remarks take on added signif-
icance in the two-interval theory as we will see further. In particular, they are used to
extend the self-adjointness condition det(K) = 1 to det(K) > 0 using Remark 8.2.3 as
observed by Mukhtarov and Yakubov [82]. Using Remark 8.2.4, Wang and Zettl [103]
observed the further extension to nonsingular K.

Remark 8.2.5. From the perspective of the modern classical one-interval theory we
can say that Theorem 8.2.1 characterizes the self-adjoint two point boundary condi-
tions that determine self-adjoint SL operators in the Hilbert space L2(J,w). It follows
from (8.3) that all solutions of equation (8.2) and their quasi-derivatives are contin-
uous on the interval J = (a, b). In particular, the eigenfunctions of every self-adjoint
operator S satisfying (8.4) are continuous on J. But see the next remark.

Remark 8.2.6. However, we will see in Section 8.3 that the two-interval theory, when
specialized to adjacent intervals, producesmore self-adjoint operators in L2(J,w), and
in Section 8.4, we will see that the additional self-adjoint operators generated by the
two-interval theory when the intervals have a common endpoint generate all regu-
lar and singular self-adjoint operators determined by discontinuous boundary condi-
tions. All these operators S satisfy (8.4), but in general their eigenfunctions are not
continuous on the interval J = (a, b).

8.3 The two-interval theory

Let

J1 = (a, b), −∞ ≤ a < b ≤ ∞, J2 = (c, d), −∞ ≤ c < d ≤ ∞, (8.21)

and assume the coefficients and weight functions satisfy

p−1r , qr ,wr ∈ Lloc(Jr , ℝ), wr > 0 a. e. on Jr , r = 1, 2. (8.22)
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Note that the intervals J1 and J2 are independent; theymay be disjoint, have a common
endpoint, overlap, or be identical.

Define the differential expressionsMr by

Mry = −(pry
󸀠)󸀠 + qry on Jr , r = 1, 2, (8.23)

and consider the equations

Mry = λwry on Jr , r = 1, 2. (8.24)

Let

Hr = L
2(Jr ,wr), r = 1, 2. (8.25)

A simple way of getting self-adjoint operators S in the direct sum space

Hu = H1 ∔ H2, where Hr = L
2(Jr ,wr), r = 1, 2, (8.26)

is to take the direct sum of self-adjoint operators from H1 and H2. If these were all the
self-adjoint operator realizations from the two intervals, there would be no need for a
“2-interval” theory. As noted in [37], there are many self-adjoint operators in Hu that
are not merely the sum of self-adjoint operators from each of the separate intervals.
These “new” self-adjoint operators involve interactions between the two intervals.

We further use the notation with a subscript r to denote the rth interval. The sub-
script r is sometimes omitted when it is clear from the context.

Elements ofHu = H1+H2will be denoted in boldface: f ={f1, f2}with f1 ∈ H1, f2 ∈ H2.
The usual inner product in Hu is given by

(f, g) =(f1, g1)1 + (f2, g2)2, (8.27)

where (⋅, ⋅)r is the usual inner product in Hr:

(fr , gr)r = ∫
Jr

frgrwr , r = 1, 2. (8.28)

Mukhtarov and Yakubov [82] observed that the set of self-adjoint operator realiza-
tions developed in [37] can be further enlarged by using a different Hilbert space

H = (L2(J1,w1) ∔ L
2(J2,w2), ⟨⋅, ⋅⟩) (8.29)

with inner product

⟨f, g⟩ = h(f1, g1)1 + k(f2, g2)2, h > 0, k > 0. (8.30)
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Remark 8.3.1. Note that (8.30) is an inner product in H for any positive numbers h
and k. The elements of the Hilbert spaces H and Hu are the same; thus these spaces
differ from each other only by their inner products. As we will further see, the param-
eters h, k influence the boundary conditions that yield self-adjoint realizations in the
two-interval case. From another perspective, the Hilbert space (H , ⟨, ⟩) can be viewed
as a “usual” direct sum space Hu with summands Hr = L2(Jr ,wr) but with w1 replaced
by hw1 and w2 replaced by kw2.

Wewill further see that for coupled boundary conditions, the self-adjoint operator
realizations S, and therefore their eigenvalues, depend on h and k. In the one-interval
theory of Part I, we studied the dependence of the eigenvalues on the boundary con-
ditions and observed that this dependence is invariant with respect to the inner prod-
uct. In the Mukhtarov–Yakubov Hilbert space (H , ⟨f, g⟩) the eigenvalues for coupled
boundary conditions depend on the conditions and on the space.

The Mukhtarov–Yakubov theory was applied to get very general self-adjoint reg-
ular and singular boundary conditions by Sun, Wang, and Zettl, [94]. In particular,
they showed, as mentioned before, that the condition det(K) = 1 required in the one-
interval theory can be extended to det(K) > 1. This was further extended to det(K) ̸= 0
byWang and Zettl [102]; this means that the Mukhtarov–Yakubov theory applies to all
coupled self-adjoint boundary conditions.

Remark 8.3.2. Note that w > 0 ensures that L2(J,w) is a Hilbert space. However, if
w < 0 on J, then we can multiply the equation by −1 to obtain

−(−py󸀠)󸀠 + (−q)y = λ(−w)y on J

and observe that the one-interval theory applies to this equation since there is no sign
restriction on either p or q and −w > 0. Also, the boundary conditions are homoge-
neous and thus invariant with respect to multiplication by −1. We will further apply
these observations to one or both equations (8.23) to extend the restriction det(K) > 0
to det(K) ̸= 0. The assumption p > 0 is commonly used in the literature and in books,
but it is not needed for the characterization of the self-adjoint operators character-
ized by the equation. This fact allows us to extend theMukhtarov–Yakubov restriction
h > 0, k > 0 to any h, k ∈ ℝ, h ̸= 0 ̸= k. (However, note that, in general, the spectral
properties, the oscillatory behavior of eigenfunctions, and so on of a given self-adjoint
operator S are different when p is not positive.)

As in the one-interval case, the Lagrange sesquilinear form [⋅, ⋅] is fundamental
to the study of boundary value problems. It is defined, for y = {y1, y2}, z = {z1, z2},
y1, z1 ∈ Dmax(J1), and y2, z2 ∈ Dmax(J2), by

[y, z] = h[y1, z1]1(b) − h[y1, z1]1(a) + k[y2, z2]2(d) − k[y2, z2]2(c), (8.31)

where

[yr , zr]r = yr(prz󸀠r) − zr(pry󸀠r) = Z∗r EYr (8.32)
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and

Yr = [
yr
y[1]r ] , Zr = [

zr
z[1]r ] , y[1]r = (pry󸀠r), r = 1, 2; E = [ 0 −1

1 0
] . (8.33)

Note that the two-interval Lagrange form [y, z] “connects” all four endpointswith each
other and depends on h and k.

The two-interval maximal and minimal domains and operators are simply the di-
rect sums of the corresponding one-interval domains and operators:

Dmax(J1, J2) = Dmax(J1) ∔ Dmax(J2), Dmin(J1, J2) = Dmin(J1) ∔ Dmin(J2), (8.34)
Smax(J1, J2) = Smax(J1) ∔ Smax(J2), Smin(J1, J2) = Smin(J1) ∔ Smin(J2). (8.35)

Note that themaximal andminimal domains and operators do not depend on h and k.

Definition 8.3.1. Let the above hypotheses and notation hold. By a self-adjoint real-
ization of the two equations

−(pry
󸀠)󸀠 + qry = λwry on Jr , r = 1, 2,

in the spaceH = (L2(J1,w1) ∔L2(J2,w2), ⟨⋅, ⋅⟩)wemean an operator S fromH intoH that
satisfies

Smin(J1, J2) ⊂ S = S
∗ ⊂ Smax(J1, J2). (8.36)

From (8.36) it is clear that the two-interval self-adjoint realizations are distin-
guished from each other only by their domains. A characterization of these domains in
terms of boundary conditions is a major goal of the two-interval theory. Each operator
S satisfying (8.36) can be considered an extension of the minimal operator Smin(J1, J2)
or, equivalently, a restriction of the maximal operator Smax(J1, J2). Let d1 and d2 be the
deficiency indices on J1 and J2, respectively.

Our starting point for the two-interval theory is the following:

Lemma 8.3.1. We have
(1) S∗min(J1.J2) = S

∗
min(J1) ∔ S

∗
min(J2) = Smax(J1) ∔ Smax(J2) = Smax(J1, J2) and S∗max(J1, J2) =

S∗max(J1) ∔ S
∗
max(J2) = Smin(J1) ∔ Smin(J2) = Smin(J1, J2).

In particular, Dmax(J1, J2) = D(Smax(J1, J2)) = D(Smax(J1)) ∔ D(Smax(J2)) and
Dmin(J1, J2) = D(Smin(J1, J2)) = Dmin(J1) ∔ Dmin(J2).

(2) The minimal operator Smin(J1, J2) is a closed symmetric densely defined operator in
the Hilbert space H with deficiency index d = d1 + d2.

Proof. See Lemma 13.3.1 in [113]. Since the coefficients and weight functions are all
real, the upper and lower deficiency indices are equal, the common value is denoted
by d in the two-interval case, and by d1 and d2 for one and two intervals.
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We state the next theorem for endpoints that are either LP or LC but indicate at
the end of the theorem how the characterizations can be simplified at each regular
endpoint.

Theorem 8.3.1. Let the two-interval minimal and maximal domains be Dmin = Dmin(J1,
J2) and Dmax = Dmax(J1, J2), and let the operators Smin = Smin(J1, J2) and Smax =
Smax(J1, J2) be defined as before. Let d denote the deficiency index of Smin in H. Then
0 ≤ d ≤ 4, and all values in this range are realized. Let the Lagrange form [⋅, ⋅] be given
by (8.31). Then all self-adjoint operators S satisfying (8.36) can be characterized as
follows.

Case 1. d = 0. This case occurs if and only if all four endpoints are LP. In this case,
Smin = Smax, which is a self-adjoint operator in H with no proper self-adjoint extension.
Thus in this case, there are no boundary conditions required or allowed. Also note that
for all f = {f1, f2}, g = {g1, g2} ∈ Dmax, we have [f1, g1]1(b) = 0, [f1, g1]1(a) = 0, [f2,
g2]2(d) = 0, [f2, g2]2(c) = 0, and therefore

[f, g] = h[f1, g1]1(b) − h[f1, g1]1(a) + k[f2, g2]2(d) − k[f2, g2]2(c) = 0.

Case 2. d = 1. This case occurs if and only if exactly three endpoints are LP; the
other, say s ∈ {a, b, c, d}, is regular or LC. Let (u, v) be a boundary condition basis at s.
Then

D(S) = {y = {y1, y2} ∈ Dmax : c11[y, u](s) + c12[y, v](s) = 0,
c11, c12 ∈ ℝ, (c11, c12) ̸= (0,0)},

is a self-adjoint domain. Conversely, if D(S) is a self-adjoint domain, then there exist
c11, c12 ∈ ℝ with (c11, c12) ̸= (0,0) such that (8.36) holds.

To summarize this case, we say that all self-adjoint extensions of the minimal oper-
ator are determined by separated boundary conditions of the form (8.36) at the non-LP
endpoint s.

Case 3. d = 2. This case occurs if and only if exactly two of the four endpoints are
LP. There are two subcases.
(i) Assume that a, b are the two non-LP endpoints.
In this case, all the self-adjoint extensions S in H are given by S = S(J1) ∔ Smin(J2), where
S(J1) is an arbitrary self-adjoint extension in H1 obtained from the one-interval theory on
J1. Note that Smin(J2) is self-adjoint by the one-interval theory since both endpoints c, d
are LP and all S(J1) are obtained from the one-interval theory discussed in Part I. There
is a similar result when a, b are both LP and c, d are non-LP.

To summarize this case, we can say that all self-adjoint operators in H are obtained
simply as direct sums of the minimal operator from the interval with the two LP end-
points together with all the self-adjoint operators from the other interval, and these are
characterized by the one-interval theory of Part I.
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(ii) The twonon-LP endpoints are fromdifferent intervals. In this subcase, there are non-
trivial interactions between the two intervals that are not directly obtainable from
the one-interval theory. These depend on h and k when the boundary conditions are
coupled.

Assume that b and c are the two non-LP endpoints. Let (u1, v1) be a boundary basis at b,
and let (u2, v2) be a boundary basis at c. Suppose the matrices B,C ∈ M2(ℂ) satisfy the
following two conditions:
(1) The matrix (B : C) has full rank.
(2) For some h, k ∈ ℝ, h ̸= 0 ̸= k,

kBEB∗ − hCEC∗ = 0, E = [ 0 −1
1 0
] .

Then

D(S) = {y = {y1, y2} ∈ Dmax : BY1(b) + CY2(c) = 0},

where

Y1(b) = [
[y1, u1]1(b)
[y1, v1]1(b)

] , Y2(c) = [
[y2, u2]2(c)
[y2, v2]2(c)

]

is the domain of a self-adjoint operator S in H that satisfies (8.36), and every operator S
in H satisfying (8.36) is obtained this way.

Assume that a and d are the two non-LP endpoints. Let (u1, v1) be a boundary basis
at a, and let (u2, v2) a boundary basis at d. Suppose A,D ∈ M2(ℂ) satisfy the following
two conditions:
(1) The matrix (A : D) has full rank.
(2) For some h, k ∈ ℝ, h ̸= 0 ̸= k,

kAEA∗ − hDED∗ = 0, E = [ 0 −1
1 0
] .

Then

D(S) = {y = (y1, y2) ∈ Dmax : AY1(a) + DY2(d) = 0},

where

Y1(a) = [
[y1, u1]1(a)
[y1, v1]1(a)

] , Y2(d) = [
[y2, u2]2(d)
[y2, v2]2(d)

]

is the domain of a self-adjoint operator S in H satisfying (8.36), and every operator S in
H satisfying (8.36) is obtained this way.

Assume that a and c are the two non-LP endpoints. Let (u1, v1) be a boundary basis
at a, and let (u2, v2) be a boundary basis at c. Suppose A,C ∈ M2(ℂ) satisfy the following
two conditions:
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(1) The matrix (A : C) has full rank.
(2) For some h, k ∈ ℝ, h ̸= 0 ̸= k,

kAEA∗ + hCEC∗ = 0, E = [ 0 −1
1 0
] .

Then

D(S) = {y = (y1, y2) ∈ Dmax : AY1(a) + CY2(c) = 0},

where

Y1(a) = [
[y1, u1]1(a)
[y1, v1]1(a)

] , Y2(c) = [
[y2, u2]2(c)
[y2, v2]2(c)

]

is the domain of a self-adjoint operator S in H satisfying (8.36), and every operator S in
H satisfying (8.36) is obtained this way.

Assume that b and d are the two non-LP endpoints. Let (u1, v1) be a boundary basis
at b, and let (u2, v2) be a boundary basis at d. Suppose B,D ∈ M2(ℂ) satisfy the following
two conditions:
(1) The matrix (B : D) has full rank.
(2) For some h, k ∈ ℝ, h ̸= 0 ̸= k,

kBEB∗ + hDED∗ = 0, E = [ 0 −1
1 0
] .

Then

D(S) = {y = (y1, y2) ∈ Dmax : BY1(b) + DY2(d) = 0},

where

Y1(b) = [
[y1, u1]1(b)
[y1, v1]1(b)

] , Y2(d) = [
[y2, u2]2(d)
[y2, v2]2(d)

]

is the domain of a self-adjoint operator S in H satisfying (8.36), and every operator S in
H satisfying (8.36) is obtained this way.

Case 4. d = 3. In this case, there is exactly one LP endpoint. Assume that a is LP. Let
(u1, v1) be a boundary basis at b, let (u2, v2) be a boundary basis at c, and let (u3, v3) be
a boundary basis at d. Suppose B = (bij), C = (cij), and D = (dij) are 3 × 2matrices with
complex entries satisfying the following two conditions:
(1) The matrix (B,C,D) has full rank,
(2) For some h, k ∈ ℝ, h ̸= 0 ̸= k,

kBEB∗ − hCEC∗ + hDED∗ = 0.
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Then

D(S) = {y = (y1, y2) ∈ Dmax : BY1(b) + CY2(c) + DY3(d) = 0},

where

Y1(b) = [
[y1, u1]1(b)
[y1, v1]1(b)

] , Y2(c) = [
[y2, u2]2(c)
[y2, v2]2(c)

] , Y3(d) = [
[y2, u3]2(d)
[y2, v3]2(d)

]

is the domain of a self-adjoint operator S in H satisfying (8.36), and every operator S in
H satisfying (8.36) is obtained this way.

The cases where exactly one of b, c, d is LP are similar.
Case 5. d = 4. This is the case where there is no LP endpoint, that is, each endpoint

is either regular or LC. Let (u1, v1) be a boundary basis at a, let (u2, v2) be a boundary
basis at b, let (u3, v3) be a boundary basis at c, and let (u4, v4) be a boundary basis at d.
A linear submanifold D(S) of Dmax is the domain of a self-adjoint extension S of Smin
satisfying (8.36) if there exist 4 × 2 matrices A = (aij), B = (bij), C = (cij), and D = (dij)
with complex entries such that the 4 × 8 matrix (A,B,C,D) whose first two columns are
those of A, the second two columns are those of B, and so on satisfies the following two
conditions:
(1) The matrix (A,B,C,D) has full rank.
(2) For some h, k ∈ ℝ, h ̸= 0 ̸= k,

kAEA∗ − kBEB∗ + hCEC∗ − hDED∗ = 0, E = [ 0 −1
1 0
] ,

and D(S) is the set of y = {y1, y2} ∈ Dmax satisfying

AY1(a) + BY1(b) + CY2(c) + DY2(d) = 0, Yi = [
[yi, ui]i
[yi, vi]i

] , i = 1, 2.

Furthermore, every operator S satisfying (8.36) is obtained this way.
In each of these cases, if t ∈ {a, b, c, d} is a regular endpoint, then Yr(t) can be re-

placed by

[
yr(t)

y[1]r (t) ] , r = 1, 2.

Proof. See [94] for a proof for positive h and k and Remark 8.3.2 for the case where one
or both of h and k are negative.

Next, we give some illustrative examples for both regular and singular problems.
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8.3.1 Regular endpoints

Although, as stated in Theorem 8.3.1, the conditions at a regular endpoint can be ob-
tained from the LC conditions at that point, here we give some examples to illustrate
this in view of the wide interest in regular problems.

Example 8.3.1. Separated boundary conditions at all four regular endpoints:

A1y(a) + A2y
[1](a) = 0, A1,A2 ∈ ℝ, (A1,A2) ̸= (0,0);

B1y(b) + B2y
[1](b) = 0, B1,B2 ∈ ℝ, (B1,B2) ̸= (0,0);

C1y(c) + C2y
[1](c) = 0, C1,C2 ∈ ℝ, (C1,C2) ̸= (0,0);

D1y(d) + D2y
[1](d) = 0, D1,D2 ∈ ℝ, (D1,D2) ̸= (0,0).

Let

A =
[[[[

[

A1 A2
0 0
0 0
0 0

]]]]

]

, B =
[[[[

[

0 0
B1 B2
0 0
0 0

]]]]

]

, C =
[[[[

[

0 0
0 0
C1 C2
0 0

]]]]

]

, D =
[[[[

[

0 0
0 0
0 0
D1 D2

]]]]

]

.

In this case the 4 × 8 matrix (A,B,C,D) has full rank, and

0 = AEA∗ = BEB∗ = CEC∗ = DED∗.
Note that this case is independent of h, k.

Example 8.3.2. Separated boundary conditions at a and d and coupled conditions at
b, c:

A1y(a) + A2(py
󸀠)(a) = 0, A1,A2 ∈ ℝ, (A1,A2) ̸= (0,0);

D1y(d) + D2(py
󸀠)(d) = 0, D1,D2 ∈ ℝ, (D1,D2) ̸= (0,0)

and

Y(c) = eiγKY(b), Y = [ y
y[1] ] ,

K = (kij), kij ∈ ℝ, 1 ≤ i, j ≤ 2, detK ̸= 0, −π < γ ≤ π.

Let A,D be as in Example 8.3.1, then rank(A,D) = 2 and kAEA∗ − hDED∗ = 0 for
any h, k since 0 = AEA∗ = DED∗. Let

C =
[[[[

[

0 0
−1 0
0 −1
0 0

]]]]

]

, B = eiγ
[[[[

[

0 0
k11 k12
k21 k22
0 0

]]]]

]

, −π < γ ≤ π.
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Then a straightforward computation shows that

hCEC∗ = kBEB∗
is equivalent with

hE = k(detK)E,

which is equivalent with

h = k detK.

Since this holds for any h, k ∈ ℝ, h ̸= 0 ̸= k, it follows from Theorem 8.3.1 that
the boundary conditions of this example are self-adjoint for any K ∈ M2(ℝ) with
det(K) ̸= 0.

Remark 8.3.3. In the one-interval theory, detK = 1 is required for self-adjointness.We
find it remarkable that the one-interval condition detK = 1 extends to det(K) ̸= 0 in
the two-interval theory and that this generalization follows from two simple observa-
tions: (i) The Mukhtarov–Yakubov [82] observation that for h > 0 and k > 0, using
inner product multiples produces an interaction between the two intervals yielding
det(K) > 0, and (ii) theWang–Zettl [102] observation that the boundary value problem
is invariant under multiplication by −1 yields the further extension det(K) ̸= 0. This
is optimal in the sense that when K is singular, the boundary condition is separated,
not coupled. Let h < 0 and k > 0. Now apply Theorem 8.3.1 to the equations

M1y = −(−p1y
󸀠)󸀠 + (−q1)y = λ(−hw1)y on J1

and

M2y = −(p2y
󸀠)󸀠 + q2y = λ(kw2)y on J2

to obtain the result for any h, k ∈ ℝ, h ̸= 0 ̸= k. Note that both the equation r = 1 and
its boundary conditions are invariant under multiplication by −1. If h > 0 and k < 0,
then the proof is the same with the roles of equations r = 1 and r = 2 interchanged.

If the boundary conditions are coupled for the endpoint pair a, d and the pair b, c,
then the parameters h, k play a role in both sets of coupled boundary conditions. The
next example illustrates this point.

Example 8.3.3. Two pairs of coupled conditions, with −π < γ1, γ2 ≤ π,

Y(d) = eiγ1GY(a), G = (gij), gij ∈ ℝ, i, j = 1, 2, detG ̸= 0,

Y(c) = eiγ2KY(b), K = (kij), kij ∈ ℝ, i, j = 1, 2, detK ̸= 0, Y = [ y
y[1] ] .
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Proceeding as in the previous example, we obtain the equivalence of the conditions
for self-adjointness:

kGEG∗ = hE and kKEK∗ = hE,
k detG = h and k detK = h,

that is,

detG = detK = h
k
.

This shows that these boundary conditions are self-adjoint for any positive or negative
h, k.

See the next section for examples with discontinuous boundary conditions.

8.3.2 Singular endpoints

Here we illustrate the self-adjoint boundary conditions given by Theorem 8.3.1 when
at least one endpoint is singular. The conditions when d = 0 or 1 are the same as in
the one-interval case and are independent of h and k. In these cases the self-adjoint
extensions in the Hilbert spaceH are the same as those of the usual direct sumHilbert
space Hu. So we give examples here only for d = 2, d = 3, and d = 4.

Notation 8.3.1. In the following examples in this section and the next, (u1, v1) denotes a
boundary condition basis at a, (u2, v2) a boundary condition basis at b, (u3, v3) a bound-
ary condition basis at c, and (u4, v4) a boundary condition basis at d. Also, we use [y, ur]
as an abbreviation for [yr , ur] and [y, vr] as an abbreviation for [yr , vr], r = 1, 2, 3, 4.

Example 8.3.4. Let d = 2. Let a and d be the two non-LP endpoints. Suppose that the
boundary conditions at a and d are coupled:

[
[y, u1](a)
[y, v1](a)

] = K [ [y, u3](d)
[y, v3](d)

] ,

K = (kij), kij ∈ ℝ, i, j = 1, 2, detK ̸= 0.

Let

A = [ −1 0
0 −1

] , D = K = [ k11 k12
k21 k22

] .

Then rank(A,D) = 2. From a straightforward computation it follows that

kAEA∗ = hDED∗
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is equivalent with

k = hdetK.

By Theorem 8.3.1 we have that if h = 1 and k > 0 satisfies detK = k, then these bound-
ary conditions are self-adjoint.

Using Remark 8.3.3, this result extends to any positive or negative h, k as in the
previous examples.

Example 8.3.5. Let d = 2. Let a and c be the two non-LP endpoints. Let the boundary
conditions at a, c be given by

[
[y, u3](c)
[y, v3](c)

] = K [ [y, u1](a)
[y, v1](a)

] ,

K = (kij), kij ∈ ℝ, i, j = 1, 2, detK ̸= 0.

Let

A = K = [ k11 k12
k21 k22

] , C = [ −1 0
0 −1

] .

Then rank(A,C) = 2. By a straightforward computation we see that

kAEA∗ + hCEC∗ = 0
is equivalent with

k detK = −h.

Therefore, if k = 1, h > 0, and detK = −h, then these boundary conditions are self-
adjoint. This extends to detK = +h as in the previous examples.

Remark 8.3.4. By changing theweight functionw1 to hw1 we can generate self-adjoint
operators for any real coupling matrix K satisfying detK ̸= 0.

Example 8.3.6. Let d = 3. Let b, c, d be regular or LC endpoints. Consider separated
boundary conditions at d and coupled conditions at b, c:

A1[y, u4](d) + A2[y2, v4](d) = 0, A1,A2 ∈ ℝ, (A1,A2) ̸= (0,0);

[
[y2, u3](c)
[y2, v3](c)

] = K [ [y1, u2](b)
[y1, v2](b)

] ,

K = (kij), kij ∈ ℝ, i, j = 1, 2, detK ̸= 0.

Let

B = [[
[

k11 k12
k21 k22
0 0

]]

]

, C = [[
[

−1 0
0 −1
0 0

]]

]

, D = [[
[

0 0
0 0
A1 A2

]]

]

.
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In this case, rank(B,C,D) = 3, and DED∗ = 0. Then, in terms of Theorem 8.3.1, we
obtain the equivalence of the conditions for self-adjointness:

h = k detK.

Thus, if k = 1 and h > 0 satisfies detK = h, then these boundary conditions are self-
adjoint, and this extends to detK = −h as before.

In the following example, we still let three endpoints b, c, and d be regular or LC,
but let boundary conditions at c be separated, and let the boundary conditions at b, d
be coupled.

Example 8.3.7. Let d = 3. Let

C1[y, u3](c) + C2[y, v3](c) = 0, C1,C2 ∈ ℝ, (C1,C2) ̸= (0,0);

[
[y, u4](d)
[y, v4](d)

] = K [ [y, u2](b)
[y, v2](b)

] ,

K = (kij), kij ∈ ℝ, i, j = 1, 2, detK ̸= 0.

Let

B = [[
[

k11 k12
k21 k22
0 0

]]

]

, C = [[
[

0 0
0 0
C1 C2

]]

]

, D = [[
[

−1 0
0 −1
0 0

]]

]

.

Then rank(B,C,D) = 3, and hCEC∗ = 0 for any h since CEC∗ = 0. Proceeding as in the
previous example, we obtain the equivalence of the conditions for self-adjointness:

k detK + h = 0.

This shows that these are self-adjoint boundary conditions when k = 1, h > 0, and
detK = −h, and this extends to detK = +h as before.

Example 8.3.8. Letd = 3. Separatedboundary conditions atb and coupled conditions
at c, d:

B1[y, u2](b) + B2[y, v2](b) = 0, B1,B2 ∈ ℝ, (B1,B2) ̸= (0,0);

C [ [y, u3](c)
[y, v3](c)

] + D [ [y, u4](d)
[y, v4](d)

] = 0.

Then kBEB∗ = 0 for any k since BEB∗ = 0. In terms of Theorem 8.3.1, these bound-
ary conditions are self-adjoint if and only if rank(C,D) = 2 and

CEC∗ − DED∗ = 0.
Note that these conditions are independent of h and k and are simply the one-

interval self-adjointness conditions for each of the two intervals separately. Thus this
example just gives the two-interval self-adjointness conditions that are generated by
the direct sum of self-adjoint operators from each of the two intervals separately.
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Example 8.3.9. Let d = 4, that is, each endpoint is either regular or LC. Separated
boundary conditions at b and at d and coupled conditions at a, c:

B1[y, u2](b) + B2[y, v2](b) = 0, B1,B2 ∈ ℝ, (B1,B2) ̸= (0,0);
D1[y, u4](d) + D2[y, v4](d) = 0, D1,D2 ∈ ℝ, (D1,D2) ̸= (0,0);

[
[y, u3](c)
[y, v3](c)

] = eiγK [ [y, u1](a)
[y, v1](a)

] ,

K = (kij), kij ∈ ℝ, i, j = 1, 2, detK ̸= 0.

Let

A =
[[[[

[

0 0
k11 k12
k21 k22
0 0

]]]]

]

, B =
[[[[

[

B1 B2
0 0
0 0
0 0

]]]]

]

, C =
[[[[

[

0 0
−1 0
0 −1
0 0

]]]]

]

, D =
[[[[

[

0 0
0 0
0 0
D1 D2

]]]]

]

.

In this case, rank(A,B,C,D) = 4, and kBEB∗ +hDED∗ = 0 for any h, k since 0 = BEB∗ =
DED∗. Therefore these boundary conditions are self-adjoint if

k detK + h = 0.

If we choose k = 1 and h > 0 such that detK = −h < 0, then the boundary conditions
are self-adjoint. As before, this extends to detK ̸= 0.

For d = 4, see [113, 109, 94], and the next section for more examples.

8.4 Transmission and interface conditions

In this section we show that the particular case of the one-interval theory,

−∞ ≤ a < b = c < d ≤ +∞, J1 = (a, b), J2 = (c, d), J = (a, d), (8.37)

produces the regular transmission and interface conditions used in the cited refer-
ences andmore general regular conditions and singular analogues of all these regular
conditions.

Remark 8.4.1. When comparing the results with those of the one-interval theory from
Part I, it is important tonote that the interval (a, d) in (8.37) plays the role of the interval
(a, b) in Part I.

We start with two simple but important observations, which help illustrate how
the special case (8.37) of the two-interval theory produces regular and singular trans-
mission and interface conditions.
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Remark 8.4.2. To connect the two-interval theory discussed in Section 8.3 to the
transmission and interface conditions mentioned in the Introduction, a key observa-
tion is that the direct sumHilbert space L2(J1,w1) ∔L2(J2,w2) can be identified with the
space L2(J,w)where w = w1 on J1 and w = w2 on J2. Note that even though b = c, there
are still four endpoint classifications since the endpoint cmay have LC and LP classi-
fications on (a, c) different from those on (c, d). To emphasize this point and to relate
to the notation commonly used for regular transmission and interface conditions, we
use the notation c+ when c is a right endpoint, that is, for the interval (a, c), and c−
for c as an endpoint of the interval (c, d).

Remark 8.4.3. In this section, we show that the self-adjointness conditions for the
“interval” (c+, c−), which produce the transmission and interface conditions, are, sur-
prisingly, more general than the corresponding one-interval conditions of Part I. This
is due to the influence of the parameters h, k and the observation that the one-interval
boundary conditions are invariant with respect to multiplication by −1.

Throughout this section, we assume that (8.21) holds and note that this implies
that (8.22) holds when c is a regular endpoint for both intervals (a, c) and (c, b). In this
case the one-interval theory of Part I can be applied to the interval J = (a, d).

Remark 8.4.4. Note that c is the right endpoint of the interval J1 and the left endpoint
of the interval J2. When c is a regular endpoint for both intervals (a, c) and (c, b), the
one-interval theory can be applied to the interval J = (a, d), but this theory does not
produce any self-adjoint operator in L2(J,w)with a condition that requires a jump dis-
continuity at c, since condition (8.22) implies that all functions in themaximal domain
Dmax(a, d) and thus all solutions of (8.21) and their quasi-derivatives are continuous
at c. But, as we will see further, the two-interval theory generates self-adjoint opera-
tors in L2(J,w) with boundary conditions that specify jump discontinuities at regular
interior points and self-adjoint boundary conditions at interior singular points, which
in general have infinite jumps. Such boundary conditions may be separated or cou-
pled; in the separated case, they are generally called “transmission” conditions in the
literature; in the coupled case, they are often referred to as “interface” conditions. But
both “transmission” and “interface” conditions transmit conditions from one interval
to the other.

We start with the case where both outer endpoints are LP and the interior point c
is regular from both sides because this case highlights the jump discontinuities at c.

Corollary 8.4.1. Let (8.3) hold and assume that c is a regular endpoint for both intervals
(a, c) and (c, d) and that both outer endpoints a and d are LP. Let h, k ∈ ℝ, h ̸= 0 ̸= k.
Suppose the matrices C,D ∈ M2(ℂ) satisfy

rank(C,D) = 2, kCEC∗ = hDED∗, E = [ 0 −1
1 0
] . (8.38)
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Let

D(S) = {y ∈ Dmax(J1, J2) : CY(c
+) + DY(c−) = 0,Y = [ y

(py󸀠) ]} . (8.39)

Define the operator S in L2(J,w) by S(y) = Smax(J1, J2)y for y ∈ D(S). Then S is self-adjoint
in L2(J,w).

In (8.39),

Y = [ y
(py󸀠) ] , (8.40)

and y(c+), (py󸀠)(c+), y(c−), (py󸀠)(c−) denote the appropriate one-sided limits. Note that
these limits exist and are finite.

As in Theorem 8.3.1, the boundary conditions (8.39) can be categorized into two
mutually exclusive classes, separated and coupled. The separated conditions have the
general form

h1y(c
−) + k1(py󸀠)(c−) = 0, h1, k1 ∈ ℝ, (h1, k1) ̸= (0,0), (8.41)

h2y(c
+) + k2 (py󸀠)(c+) = 0, h2, k2 ∈ ℝ, (h2, k2) ̸= (0,0), (8.42)

and these have the canonical forms

cos αy(c−) − sin α(py󸀠)(c−) = 0, α ∈ [0,π), (8.43)
cos βy(c+) − sin β(py󸀠)(c+) = 0, β ∈ (0,π]. (8.44)

Note that these separated conditions do not depend on h and k. (We follow the
customary parameterizations for α and β even though these play no role in this book.)

The coupled conditions have the canonical form

[
y(c+)
(py󸀠)(c+) ] = eiγK [ y(c−)

(py󸀠)(c−) ] , −π < γ ≤ π, i = √−1, (8.45)

with K ∈ M2(ℝ) and det(K) ̸= 0.

Proof. Note that in this case, we can identify the direct sum space L2(J1,w1)∔L2(J2,w2)
with the space L2(J,w) where w = w1 on J1 and w = w2 on J2. For y = (y1, y2) ∈
Dmax(J1, J2), let y = y1 on J1 and y2 on J2. Then define y(c) using (8.40) and note that
y ∈ Dmax(J). The conclusion then follows from case 3, part (ii), of Theorem 8.3.1 and
Remark 8.3.2.

Remark 8.4.5. We comment on Corollary 8.4.1. Note the similarity between the condi-
tions of Corollary 8.4.1 and the regular one-interval self-adjoint boundary conditions
of Theorem 1.15. These are similar to conditions (1.15)–(1.18) and (1.23). Comparing
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Corollary 8.4.1 with the regular one-interval theory, we see that the regular separated
self-adjointness conditions on the nondegenerate interval (a, d) are the same as the
separated jump conditions on the “interval” (c+, c−). However, remarkably, the cou-
pled condition on the “interval” (c+, c−) only requires detK ̸= 0, in contrast with the
requirement that detK = 1 in the one-interval theory in Chapter 1. This is due to the
influence of the inner product parameters h, k and the observation that on each inter-
val the boundary value problem is invariant under multiplication by −1. Although we
have conditions on the narrow “interval” (c+, c−) rather than on nondegenerate inter-
val (a, d), the influence of k is felt by c− and the influence of h by c+. Note that when
K = I, the identity matrix, and γ = 0, condition (8.45) is just the continuity condition
for y and (py󸀠) at c, and therefore this case generates the one-interval minimal opera-
tor Smin(a, d), and this is the only self-adjoint operator in this case since a, d are both
LP.

Remark 8.4.6. In much of the literature the separated jump conditions (8.41)–(8.42)
and (8.43)–(8.44) are called “transmission” conditions, whereas special cases of the
coupled conditions (8.45) are called “interface” conditions. The separated conditions
are real, but note that the coupled jump conditions are nonreal when γ ̸= 0 and γ ̸= π.

Next, we give an analogue of Corollary 8.4.1 when c is LC.

Corollary 8.4.2. Assume that c is LC for both intervals (a, c) and (c, d) and that both
outer endpoints a and d are LP. Let (u1, v1) be a boundary condition bases at c for the
interval (a, c), and let (u2, v2) be a boundary condition bases at c for the interval (c, d).

Suppose the matrices C,D ∈ M2(ℂ) satisfy (8.38).
Let

D(S) = {y ∈ Dmax(J1, J2) : C [
[y, u1](c+)
[y, v1](c+) ] + D [ [y, u2](c−)[y, v2](c−) ] = 0} . (8.46)

Define the operator S in L2(J,w) by S(y) = Mmax(J1, J2)y for y ∈ D(S). Then S is self-
adjoint in L2(J,w).

Here

[y, ur](c
+), [y, vr](c+), [y, ur](c−), [y, vr](c−), r = 1, 2, (8.47)

exist as finite limits.
As in Theorem 8.3.1, the boundary conditions (8.39)–(8.42) can be categorized into

two mutually exclusive classes, separated and coupled. The separated conditions have
the general form

h1[y, u1](c
+) + k1[y, v1](c+) = 0, h1, k1 ∈ ℝ, (h1, k1) ̸= (0,0), (8.48)

h2[y, u2](c
−) + k2[y, v2](c−) = 0, h2, k2 ∈ ℝ, (h2, k2) ̸= (0,0), (8.49)
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and these have the canonical form

cos α[y, u1](c
+) − sin α[y, v1](c+) = 0, α ∈ [0,π), (8.50)

cos β[y, u2](c
−) − sin β[y, v2](c−) = 0, β ∈ (0,π]. (8.51)

The coupled conditions have the canonical form

[
[y, u2](c−)
[y, v2](c+) ] = eiγK [ [y, u1](c+)[y, v1](c+) ] , −π < γ ≤ π, i = √−1, (8.52)

with K ∈ M2(ℝ) and det(K) ̸= 0.

Proof. As in Corollary 8.4.1, we note that we can identify the direct sum space L2(J1,
w1) ∔ L2(J2,w2) with the space L2(J,w) where w = w1 on J1 and w = w2 on J2 and then
use Theorem 8.3.1.

Remark 8.4.7. Note that Corollary 8.4.2 parallels Corollary 8.4.1 with the jump condi-
tions on the Lagrange forms rather than on y and y[1]. Such a parallel result holds gen-
erally when the assumption that an endpoint is regular is replaced by the assumption
that this endpoint is LC. At an LP endpoint, there is no boundary condition. Condi-
tions (8.48)–(8.49) and (8.50)–(8.51) are the singular analogues of the regular sepa-
rated jump conditions; condition (8.52) is the singular analogue of the regular jump
condition (8.45). Thus (8.41)–(8.42) and (8.43)–(8.44) could be called singular trans-
mission conditions and (8.52) singular coupled interface conditions, but we have not
seen any of these singular jump conditions studied in the literature before the pub-
lication of [103]. Note that whereas the Lagrange brackets [y, u1], [y, v1], [y, u2](c+),
[y, v2](c+) exist and are finite at c+ and c−, the solutions y and their quasi-derivatives
(py󸀠) in general are not continuous at c; they may blow up, that is, be infinite at c+ or
c−, or they may oscillate wildly at c+ or c−.

The next corollary shows how case 5 of Theorem 8.3.1 can be used to get self-
adjoint jump conditions at an interior point c when c is LC for both intervals (a, c)
and (c, d) and each of a, d is LC. The cases where one or more of these four endpoints
are regular then follows as before in Corollary 8.4.1.

Corollary 8.4.3. Assume that c is LC for both intervals (a, c) and (c, d) and that both
outer endpoints a and d are LC. Let (u1, v1) be a boundary condition basis at a, (u2, v2)
be a boundary condition basis at c−, (u3, v3) be a boundary condition bases at c+, and
(u4, v4) be a boundary condition basis at d, respectively.

Suppose that for some h, k ∈ ℝ, h ̸= 0 ̸= k, the matrices A,B, C,D ∈ M2(ℂ) satisfy

rank(A,D) = 2, kAEA∗ = hDED∗, rank(B,C) = 2, hBEB∗ = kCEC∗, (8.53)

where E = [ 0 −11 0 ]. With Yr = [
[y,ur][y,vr] ], r = 1, 2, 3, 4, define D(S) to be the set of all y ∈

Dmax(J1, J2) satisfying

AY1(a) + DY4(d) = 0, CY3(c
+) + BY2(c−) = 0, (8.54)
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and define the operator S in L2(J,w) by S(y) = Mmax(J1, J2)y for y ∈ D(S), y = {y1, y2}.
Then S is self-adjoint in L2(J,w).

Here

[y, ur](t), [y, vr](t), for t = a, c−, c+, d; r = 1, 2, 3, 4, (8.55)

exist as finite limits.
As before, each of the two boundary conditions (8.54) can be categorized into two

mutually exclusive classes, separated and coupled, and these have the canonical forms
given there.

Proof. As before, we identify the direct sum space L2(J1,w1) ∔ L2(J2,w2)with the space
L2(J,w)where w = w1 on J1 and w = w2 on J2. For y = (y1, y2) ∈ Dmax(J1, J2), let y = y1 on
J1 and y2 on J2. Then define y(c) using (8.40) and note that y ∈ Dmax(J). Now we apply
case 5 of Theorem 8.3.1. Let

A0 = [
A
O
] , B0 = [

O
B
] , C0 = [

O
C
] , D0 = [

D
O
] , (8.56)

where O denotes the 2 × 2 zero matrix. Note that these 4 × 2 matrices satisfy the con-
ditions of case 5 of Theorem 8.3.1; the matrix (A0,B0,C0,D0) has full rank, the self-
adjointness conditions hold, and the matrices A0,B0,C0,D0 and boundary condition
reduce to (8.54).

As before, at each regular endpoint t, Yr(t) = [
[y,ur](t)[y,vr](t) ] in (8.54) can be replaced

by [ y(t)(py󸀠)(t) ], and the boundary conditions can be given in canonical form. We do this
in the next corollary for the case where c is regular for both intervals (a, c) and (c, d).
But we emphasize that this can be done for each combination of endpoints, that is,
for each Yr independent of the other three Yr .

Corollary 8.4.4. Assume that c is regular for both intervals (a, c)and (c, d)and that both
outer endpoints a and d are LC. Let (u1, v1) be a boundary condition bases at a, and let
(u4, v4) be a boundary condition bases at d. Suppose the matrices A,B, C,D ∈ M2(ℂ)
satisfy (8.53).

Define D(S) to be the set of all y ∈ Dmax(J1, J2) satisfying

AY1(a) + DY4(d) = 0, CY3(c
+) + BY2(c−) = 0, (8.57)

where

Y1(a) = [
[y, u1](a)
[y, v1](a)

] , Y2(c
−) = [ y(c−)
(py󸀠)(c−) ] ,

Y3(c
+) = [ y(c+)
(py󸀠)(c+) ] , Y4(d) = [

[y, u4](d)
[y, v4](d)

] ,
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and define the operator S in L2(J,w) by

S(y) = Smax(J1, J2)y, y ∈ D(S). (8.58)

Then S is self-adjoint in L2(J,w).
Recall that each of the two boundary conditions in (8.57) consists of separated and

coupled conditions and these have the following canonical forms:

cos α[y, u1](a) − sin α[y, v1](a) = 0, 0 ≤ α < π,
cos β[y, u4](d) − sin β[y, v4](d) = 0, 0 < β ≤ π;

Y(d) = eiγKY(a), −π < γ ≤ π, (8.59)

where Y(a), Y(d) are given in (8.58), and

cos α y(c−) − sin α(py󸀠)(c−) = 0, α ∈ [0,π),
cos β y(c+) − sin β(py󸀠)(c+) = 0, β ∈ (0,π];

[
y(c+)
(py󸀠)(c+) ] = eiγK [ y(c−)

(py󸀠)(c−) ] , −π < γ ≤ π, (8.60)

with K ∈ M2(ℝ) and det(K) ̸= 0.

Proof. This follows from Theorem 8.3.1 and Corollaries 8.4.1, 8.4.2, and 8.4.3.

Example 8.4.1. Let

A =
[[[[

[

1 0
0 0
0 0
0 0

]]]]

]

, B =
[[[[

[

0 0
1 0
0 1
0 0

]]]]

]

, C =
[[[[

[

0 0
−1 0
m −1
0 0

]]]]

]

, D =
[[[[

[

0 0
0 0
0 0
1 0

]]]]

]

. (8.61)

It is easy to check that if h = k > 0, then the self-adjointness conditions of Theo-
rem 8.3.1 are satisfied for anym ∈ ℝ. These fourmatrices yield the following boundary
conditions:

y(a) = 0 = y(d), y(b) = y(c), (py󸀠)(b) − (py󸀠)(c) = −my(c). (8.62)

Thus, if b = c, conditions (8.61) require y to be continuous at b = c but allow the
quasi-derivative to have a jump discontinuity at c. If this jump is proportional to the
value of y at c with real proportionality constant −m (m = 0 is allowed and reduces
to the continuous case), then the jump is self-adjoint. Note that the conditions at a, d
are independent of those at c, b and the conditions at a, d can be replaced by any self-
adjoint conditions at these two endpoints, that is, by

A1EA
∗
1 = D1ED

∗
1 , E = [ 0 −1

1 0
] , rank(A1,D1) = 2,
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where A1,D1 are 2 × 2 matrices, and A,D are the 4 × 2 matrices respectively obtained
by inserting two rows of zeros between the two rows of A1 and between the two rows
of D1.

Example 8.4.2. Replacing the matrix C in the previous example by

C =
[[[[

[

0 0
−1 m
0 −1
0 0

]]]]

]

,

we get a self-adjoint problem for any real m by choosing h = k > 0. When b = c,
the quasi-derivatives are continuous at b, but the solutions are discontinuous when
m ̸= 0. In this case the self-adjoint boundary conditions are:

y(a) = 0 = y(d), (py󸀠)(c+) = (py󸀠)(c−), y(c+) − y(c−) = −m(py󸀠)(c).
These two examples can be found in [109], where they were established by a com-

pletely different method using Green’s functions.

Remark 8.4.8. We remark that the above corollaries are only a few of the particular
cases of case 5 of Theorem 8.3.1 when the endpoints satisfy (8.37). There are many
more. Others can be obtained with other choices of the matrices A0,B0,C0,D0 and
with other endpoint classifications. Also, corollaries of cases 3 and 4 of Theorem 8.3.1
can be similarly obtained.

Remark 8.4.9. From the perspective of the two-interval theory and the corollaries
discussed in this section, there are many self-adjoint S-L operators in Hilbert spaces
L2(J,w) and direct sums of such spaces, which are generated by discontinuous regular
and singular, separated and coupled, boundary conditions.

Remark 8.4.10. The extension of the two-interval theory discussed before to any fi-
nite number of intervals is routine when the inner product constants corresponding
to h and k are all equal to 1; see Everitt and Zettl [36], where this is done for SL and
higher-order problems. For unequal h󸀠 and k󸀠, themultiinterval theory has to take into
account the interactions between these. An infinite interval theory is also developed
in [36], but the extension to an infinite number of intervals is not routine and requires
additional technical considerations.

Remark 8.4.11. See Everitt, Shubin, Stolz, and Zettl [35] for a discussion of self-adjoint
Sturm–Liouville problems with an infinite number of interior singularities including
an extension of the Titchmarsh–Weyl dichotomy for square-integrable solutions and
the corresponding m-coefficient. Applications to the one-dimensional Schrödinger
equation extend the earlier work of Gesztesy and Kirsch [42].
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Remark 8.4.12. From the perspective of the finite and infinite interval theories we see
that there aremany self-adjoint S-L operators in the spaces L2(J,w) and the direct sums
of these spaces with modified inner products, which are not covered by the classical
modern one-interval theory.Which of thesewill become celebrated classical operators
in applied mathematics corresponding to the Bessel, Legendre, Laguerre, Jacobi, and
other operators?

8.5 Comments

In this chapter, the two-interval theory is applied to get discontinuous boundary con-
ditions at an interior point of the underlying interval. But the general two-interval
theory of this chapter can also be applied to disjoint intervals. In that case the “dis-
continuous” boundary conditions are “jump conditions” fromone interval to another.
These jumps are finite if they occur at a point that is regular fromboth sides andmaybe
infinite otherwise. The general two-interval theory can also be applied to overlapping
intervals.
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9 The Green’s and characteristic functions

9.1 Introduction

We construct the Green’s function for two-interval regular self-adjoint and nonself-
adjoint Sturm–Liouville problems. The two intervals may be disjoint, overlap, or be
identical.

As mentioned in the Introduction to Chapter 8, Sturm–Liouville problems with
boundary conditions requiringdiscontinuous eigenfunctionsor discontinuousderiva-
tives of eigenfunctions have been studied recently by many authors. As a particular
case, our construction of theGreen’s and characteristic functions applies to suchprob-
lems. The Green’s function construction is modeled on a construction of Neuberger
[85] for the one-interval case. This construction differs from the usual one found in
textbooks and in most of the literature, in that the discontinuity of the derivative
of the Green’s function along the diagonal occurs naturally, in contrast to the usual
construction as found, for example, in Coddington and Levinson [24], where this
discontinuity is assigned a priori as part of the construction.

9.2 The characteristic function

First, we study the two-interval characteristic function for general, not necessarily
self-adjoint, boundary conditions. Let

Jr = (ar , br), −∞ < ar < br < ∞, r = 1, 2,

and assume that the coefficients and weight functions satisfy

1
pr
, qr ,wr ∈ L(Jr , ℂ), r = 1, 2. (9.1)

Define the differential expressionsMr by

Mry = −(pry
󸀠)󸀠 + qry on Jr , r = 1, 2. (9.2)

We further use the notation with a subscript r denoting the rth interval. The sub-
script r is sometimes omittedwhen it is clear from the context.We consider the second-
order scalar differential equations

− (pry
󸀠)󸀠 + qry = λwry on Jr , r = 1, 2, λ ∈ ℂ, (9.3)

together with boundary conditions

A1Y1(a1) + B1Y1(b1) + A2Y2(a2) + B2Y2(b2) = 0, Yr = [
yr
(pry󸀠r) ] , r = 1, 2. (9.4)

https://doi.org/10.1515/9783110719000-009
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Here Ar ,Br ∈ M4×2(ℂ), r = 1, 2. By (9.1) and the basic theory of linear ordinary differen-
tial equations the boundary condition (9.4) is well defined.

Next, we construct the characteristic functionwhose zeros are precisely the eigen-
values of the two-interval Sturm–Liouville problem. Let

Pr = [
0 1

pr
qr 0

] , Wr = [
0 0
wr 0
] . (9.5)

Then the scalar equation (9.2) is equivalent to the first-order system

Y 󸀠 = (Pr − λWr)Y = [
0 1

pr
qr − λwr 0

]Y , Y = [ y
pry󸀠 ] . (9.6)

Note that given any scalar solution yr of −(pry󸀠)󸀠 + qry = λwry on Jr, the vector Yr
defined by (9.6) is a solution of the system Y 󸀠 = (Pr − λWr)Y on Jr . Conversely, given
any vector solution Yr of system Y 󸀠 = (Pr − λWr)Y its top component yr is a solution of
−(pry󸀠)󸀠 + qry = λwry.

Let Φr(⋅, ur ,Pr ,wr , λ) be the primary fundamental matrix of (9.6). We have

Φ󸀠r = (Pr − λWr)Φr on Jr , Φr(ur , ur , λ) = I , ar ≤ ur ≤ br , λ ∈ ℂ, (9.7)

where I denotes the 2×2 identitymatrix.Hereweuse thenotationΦr = Φr(⋅, ur ,Pr ,wr , λ)
to indicate the dependence of the primary fundamental matrix on these quantities.
Since here Pr ,wr are fixed, we simplify the notation to Φr(⋅, ur , λ). By (9.1) Φ(br , ar , λ)
exists.

Define the characteristic function Δ by

Δ(λ) = Δ(a1, b1, a2, b2,A1,B1,A2,B2,P1,P2,w1,w2, λ)
= det[(A1 + B1Φ1(b1, a1, λ) | A2 + B2Φ2(b2, a2, λ))], λ ∈ ℂ, (9.8)

where (A1 + B1Φ1(b1, a1, λ) | A2 + B2Φ2(b2, a2, λ)) denotes the 4 × 4 complex matrix
whose first two columns are those of A1 + B1Φ1(b1, a1, λ), and the second two columns
are those of A2 + B2Φ2(b2, a2, λ).

Definition 9.2.1. By a trivial solution of equation Mry = λwry on some interval Ir we
mean a solution yr that is identical zero on Ir and whose quasi-derivative (pry󸀠r) is also
identically zero on Ir . (Ir may be a subinterval of Jr, or it may be the whole interval Jr .)
Note that under assumptions (9.1), a solution yr might be identically zero on Ir, but its
quasi-derivative (pry󸀠r)might not be identically zero on Ir .

Definition 9.2.2. By a trivial solution of the two-interval Sturm–Liouville equations
(9.1) we mean a solution y = {y1, y2} each of whose components yr is a trivial solution
of equationMry = λwry on Jr , r = 1, 2, that is, yr and (pry󸀠r) both are identically zero on
Jr , r = 1, 2.
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Definition 9.2.3. A complex number λ is called an eigenvalue of the two-interval SL
boundary value problems (BVP) if the two-interval SL equations (9.1) have a nontriv-
ial solution y satisfying the boundary conditions (9.4). Such a solution y is called an
eigenfunction of λ. Any multiple of an eigenfunction is also an eigenfunction.

The next theorem characterizes the eigenvalues of boundary value problems as
zeros of the characteristic function.

Theorem 9.2.1. A complex number λ is an eigenvalue of the boundary value problems
(9.3)–(9.4) if and only if Δ(λ) = 0.

Proof. If λ is an eigenvalue and y = {y1, y2} is an eigenfunction of λ, then there exist
Cr ∈ M2×1(ℂ), r = 1, 2, and at least one of the vectors C1 and C2 is nonzero, so that

Yr(t) = Φr(t, ar , λ)Cr . (9.9)

Note that

Φr(ar , ar , λ) = I , r = 1, 2.

Substituting (9.9) into the boundary conditions, we obtain

A1C1 + B1Φ1(b1, a1, λ)C1 + A2C2 + B2Φ2(b2, a2, λ)C2 = 0. (9.10)

Set C = [ C1C2 ]. Then (9.8) can be written as

(A1 + B1Φ1(b1, a1, λ) | A2 + B2Φ2(b2, a2, λ))C = 0. (9.11)

Since C ̸= 0 and λ is an eigenvalue of BVP by assumption, it follows that

det[(A1 + B1Φ1(b1, a1, λ) | A2 + B2Φ2(b2, a2, λ))] = 0,

that is, Δ(λ) = 0.
Conversely, suppose Δ(λ) = 0. Then (9.11) has a nontrivial vector solution C ∈

M4×1(ℂ). We use the notation C1 ∈ M2×1(ℂ) to denote the vector whose rows are the
first two rows of C, and C2 ∈ M2×1(ℂ) denotes the vector whose rows are the last two
rows of C. At least one of the vectors C1 and C2 is nontrivial. Solve the initial value
problems

Y 󸀠 = (Pr − λWr)Y on Jr , Yr(ar) = Cr , r = 1, 2.

Then

Yr(br) = Φr(br , ar , λ)Yr(ar)

and

(A1 + B1Φ1(b1, a1, λ))Y1(a1) + (A2 + B2Φ2(b2, a2, λ))Y2(a2) = 0.

Therefore we have that y = {y1, y2} is an eigenfunction of the BVP (9.3)–(9.4), where yr
is the top component of Yr, r = 1, 2. This shows that λ is an eigenvalue of this BVP.
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9.3 The Green’s function

Since, as mentioned before, our method of constructing the Green’s function – even
in the one-interval case – is not the standard one generally found in the literature and
in textbooks. We make it self-contained by presenting the basic theory used in the
construction for convenience of the reader.

Let p−1r , qr, wr satisfy (9.1), and let fr ∈ L(Jr , ℂ). We consider the two-interval inho-
mogeneous boundary value problem

− (pry
󸀠)󸀠 + qry = λwry + fr on Jr = (ar , br), r = 1, 2, λ ∈ ℂ, (9.12)

A1Y1(a1) + B1Y1(b1) + A2Y2(a2) + B2Y2(b2) = 0, Yr = [
yr
(pry󸀠r) ] , r = 1, 2. (9.13)

The boundary value problem (9.12)–(9.13) is equivalent to the system boundary
value problem

Y 󸀠 = (Pr − λWr)Y + Fr , A1Y1(a1) + B1Y1(b1) + A2Y2(a2) + B2Y2(b2) = 0, (9.14)

where Pr ,Wr are defined by (9.5), and

Fr = [
0
−fr
] . (9.15)

Let Φr = Φr(⋅, ⋅, λ) be the primary fundamental matrix of the homogeneous system

Y 󸀠 = (Pr − λWr)Y . (9.16)

Note that

Φr(t, ur , λ) = Φr(t, ar , λ)Φr(ar , ur , λ) (9.17)

for ar ≤ t, ur ≤ br .
The next theorem is a particular case of the well-known Fredholm alternative.

Theorem 9.3.1. The following statements are equivalent:
(1) when f = {f1, f2} = 0, that is, fr = 0 on Jr , r = 1, 2, the two-interval boundary value

problem (9.12)–(9.13) and consequently also (9.16) has only the trivial solution.
(2) The matrix [A1 + B1Φ1(b1, a1, λ)|A2 + B2Φ2(b2, a2, λ)] has an inverse.
(3) For every f = {f1, f2}, fr ∈ L(Jr , ℂ), r = 1, 2, each of the problems (9.12), (9.13), and

(9.16) has only the trivial solution.

Proof. We know that Yr is a solution of

Y 󸀠 = (Pr − λWr)Y + Fr on Jr (9.18)
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if and only if yr is a solution of

− (pry
󸀠)󸀠 + qry = λwry + fr on Jr , (9.19)

where

Yr = [
yr
(pry󸀠r) ] .

For Cr = [
cr1
cr2 ], cr1, cr2 ∈ ℂ, r = 1, 2, determine a solution Yr of (9.16) on Jr by the initial

condition

Yr(ar , λ) = Cr .

Then yr is a solution of (9.12) determined by the initial conditions yr(ar , λ) = cr1 and
(pry󸀠r)(ar , λ) = cr2.

By the variation-of-parameters formula we have

Yr(t, λ) = Φr(t, ar , λ)Cr +
t

∫
ar

Φr(t, s, λ)Fr(s) ds, ar ≤ t ≤ br . (9.20)

In particular,

Yr(br , λ) = Φr(br , ar , λ)Cr +
br

∫
ar

Φr(br , s, λ)Fr(s) ds.

Let D(λ) = (A1 + B1Φ1(b1, a1, λ) | A2 + B2Φ2(b2, a2, λ)) and C = [
C1
C2 ]. Then

A1Y1(a1, λ) + B1Y1(b1, λ) + A2Y2(a2, λ) + B2Y2(b2, λ)

= D(λ)C + B1

b1

∫
a1

Φ1(b1, s, λ)F1(s) ds + B2

b2

∫
a2

Φ2(b2, s, λ)F2(s) ds. (9.21)

When fr = 0 on Jr (r = 1, 2), Y = {Y1,Y2} and y = {y1, y2} are nontrivial solutions if and
only if C is not the zero vector. By (9.21) we have that when fr = 0 on Jr(r = 1, 2), there is
a nontrivial solution {Y1,Y2} (and a nontrivial solution {y1, y2}) of (9.12) satisfying the
boundary conditions

A1Y1(a1) + B1Y1(b1) + A2Y2(a2) + B2Y2(b2) = 0

if and only if D(λ) is singular. It also follows from (9.21) that there is a unique solution
{Y1,Y2} satisfying the boundary conditions (9.13) for every fr ∈ L(Jr , ℂ), r = 1, 2, if and
only if D(λ) is nonsingular. Similarly, there is a unique solution y = {y1, y2} satisfying
the boundary conditions (9.13) for every f = {f1, f2}, fr ∈ L(Jr , ℂ), r = 1, 2, if and only if
D(λ) is nonsingular.
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Next, we construct the Green’s function for two-interval boundary value prob-
lems. Assume that

D(λ) = (A1 + B1Φ1(b1, a1, λ) | A2 + B2Φ2(b2, a2, λ))

is nonsingular. We use the notation D1(λ) to denote the 2 × 4 matrix whose rows are
the first two rows of D−1(λ), and D2(λ) denotes the 2× 4 matrix whose rows are the last
two rows of D−1(λ). Let

G1(t, s, λ) = {
−Φ1(t, a1, λ)D1(λ)B1Φ1(b1, s, λ), a1 ≤ t < s ≤ b1,
−Φ1(t, a1, λ)D1(λ)B1Φ1(b1, s, λ) +Φ1(t, s, λ), a1 ≤ s ≤ t ≤ b1,

G̃1(t, s, λ) = −Φ1(t, a1, λ)D1(λ)B2Φ2(b2, s, λ), a1 ≤ t ≤ b1, a2 ≤ s ≤ b2,
G2(t, s, λ) = −Φ2(t, a2, λ)D2(λ)B1Φ1(b1, s, λ), a2 ≤ t ≤ b2, a1 ≤ s ≤ b1,

G̃2(t, s, λ) = {
−Φ2(t, a2, λ)D2(λ)B2Φ2(b2, s, λ), a2 ≤ t < s ≤ b2,
−Φ2(t, a2, λ)D2(λ)B2Φ2(b2, s, λ) +Φ2(t, s, λ), a2 ≤ s ≤ t ≤ b2.

Theorem 9.3.2. Assume D(λ) is nonsingular, that is, [A1 +B1Φ1(b1, a1, λ) | A2 +B2Φ2(b2,
a2, λ)]−1 exists. Then for any f = {f1, f2}, fr ∈ L(J, ℂ), r = 1, 2, the unique solution y =
{y1, y2} of (9.12)–(9.13) and the unique solution Y = {Y1,Y2} of (9.18), respectively, are
given by

y1(t) = −
b1

∫
a1

G1,(12)(t, s, λ)f1(s)ds − b2∫
a2

G̃1,(12)(t, s, λ)f2(s)ds, a1 ≤ t ≤ b1, (9.22)

y2(t) = −
b1

∫
a1

G2,(12)(t, s, λ)f1(s)ds − b2∫
a2

G̃2,(12)(t, s, λ)f2(s)ds, a2 ≤ t ≤ b2, (9.23)

Y1(t) =
b1

∫
a1

G1(t, s, λ)F1(s) ds +
b2

∫
a2

G̃1(t, s, λ)F2(s) ds, a1 ≤ t ≤ b1, (9.24)

Y2(t) =
b1

∫
a1

G2(t, s, λ)F1(s) ds +
b2

∫
a2

G̃2(t, s, λ)F2(s) ds, a2 ≤ t ≤ b2. (9.25)

Set K(t, s, λ) = {K1(t, s, λ),K2(t, s, λ)}, where

K1(t, s, λ) = {
G1(t, s, λ), a1 ≤ s ≤ b1,
G̃1(t, s, λ), a2 ≤ s ≤ b2,

a1 ≤ t ≤ b1,

K2(t, s, λ) = {
G2(t, s, λ), a1 ≤ s ≤ b1,
G̃2(t, s, λ), a2 ≤ s ≤ b2,

a2 ≤ t ≤ b2.

We call K(t, s, λ) = K(t, s, λ,P1,P2,W1,W2,A1,A2,B1,B2) (here we use the complete
notation to highlight the dependence of K on these quantities), the Green’s matrix of the
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regular boundary value problem

Y2(t) =
b1

∫
a1

G2(t, s, λ)F1(s) ds +
b2

∫
a2

G̃2(t, s, λ)F2(s) ds, a2 ≤ t ≤ b2,

(9.6), and (9.4). And we call K12 = {K1,(12),K2,(12)} the Green’s function of two-interval
boundary value problem

Y2(t) =
b1

∫
a1

G2(t, s, λ)F1(s) ds +
b2

∫
a2

G̃2(t, s, λ)F2(s) ds, a2 ≤ t ≤ b2,

(9.3), and (9.4).

Proof. Let

C = D−1(λ)(−B1 b1

∫
a1

Φ1(b1, s, λ)F1(s) ds − B2

b2

∫
a2

Φ2(b2, s, λ)F2(s) ds).

By (9.21) we have

A1Y1(a1) + B1Y1(b1) + A2Y2(a2) + B2Y2(b2) = 0.

Recalling the notation D1(λ) and D2(λ), we have

C1 = D1(λ)(−B1

b1

∫
a1

Φ1(b1, s, λ)F1(s) ds − B2

b2

∫
a2

Φ2(b2, s, λ)F2(s) ds),

C2 = D2(λ)(−B1

b1

∫
a1

Φ1(b1, s, λ)F1(s) ds − B2

b2

∫
a2

Φ2(b2, s, λ)F2(s) ds).

From (9.13) we obtain that

Y1(t) = Φ1(t, a1, λ)D1(λ)(−B1

b1

∫
a1

Φ1(b1, s, λ)F1(s) ds − B2

b2

∫
a2

Φ2(b2, s, λ)F2(s) ds)

+
t

∫
a1

Φ1(t, s, λ)F1(s) ds

=

b1

∫
a1

[Φ1(t, a1, λ)D1(λ)(−B1Φ1(b1, s, λ)F1(s))] ds +
t

∫
a1

Φ1(t, s, λ)F1(s) ds

+

b2

∫
a2

[Φ1(t, a1, λ)D1(λ)(−B2Φ2(b2, s, λ)F2(s))] ds

 EBSCOhost - printed on 2/10/2023 3:33 PM via . All use subject to https://www.ebsco.com/terms-of-use



188 | 9 The Green’s and characteristic functions

=

b1

∫
a1

G1(t, s, λ)F1(s) ds +
b2

∫
a2

G̃1(t, s, λ)F2(s) ds, a1 ≤ t ≤ b1.

Y2(t) = Φ2(t, a2, λ)D2(λ)(−B1

b1

∫
a1

Φ1(b1, s, λ)F1(s) ds − B2

b2

∫
a2

Φ2(b2, s, λ)F2(s) ds)

+
t

∫
a2

Φ2(t, s, λ)F2(s) ds

=

b1

∫
a1

[Φ2(t, a2, λ)D2(λ)(−B1Φ1(b1, s, λ)F1(s))] ds +
t

∫
a2

Φ2(t, s, λ)F2(s) ds

+

b2

∫
a2

[Φ2(t, a2, λ)D2(λ)(−B2Φ2(b2, s, λ)F2(s))] ds

=

b1

∫
a1

G2(t, s, λ)F1(s) ds +
b2

∫
a2

G̃2(t, s, λ)F2(s) ds, a2 ≤ t ≤ b2.

Note that (9.22) and (9.23) follow directly from these formulas for Y1(t) and Y2(t),
respectively, by taking the upper right component, that is,

y1(t) = −
b1

∫
a1

G1,(12)(t, s, λ)f1(s) ds − b2∫
a2

G̃1,(12)(t, s, λ)f2(s) ds, a1 ≤ t ≤ b1,

y2(t) = −
b1

∫
a1

G2,(12)(t, s, λ)f1(s) ds − b2∫
a2

G̃2,(12)(t, s, λ)f2(s) ds, a2 ≤ t ≤ b2.

Remark 9.3.1. Note that the above construction of the Green’s function and the char-
acteristic function does not assume any symmetry or self-adjointness of the problem.
The coefficients pr , qr ,wr may be complex valued, and the boundary conditions need
not be self-adjoint. If wr is identically zero on the whole interval Jr, then there is no λ
dependence, and the problem becomes degenerate. Similarly, in the case where 1/pr
is identically zero on Jr, the problem can be considered degenerate.

9.4 Examples

In this section, we give examples to illustrate that the construction of the two-interval
Green’s function can be applied to problems with transmission and interface condi-
tions as mentioned in the Introduction.

To avoid unnecessary subscripts, we let

J1 = (a, b), J2 = (c, d), b = c (9.26)
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and use c+ = b for the right endpoint of J1 and c− = c for the left endpoint of J2. Also,
we let A = A1, B = B1, C = A2, and D = B2 in (9.13).

Using this notation, we make the following simple but key observation.

Remark 9.4.1. Recall the simple but important observation: when b = c, the direct
sum of the Hilbert spaces from the two intervals (a, b) and (c, d) can be identified with
the Hilbert space of the “outer” interval (a, d) :

L2((a, b),w1) ∔ L
2((c, d),w2) = L

2((a, d),w), (9.27)

wherew1 is the restriction ofw to J1, andw2 is the restriction ofw to J2. In each example
below the given boundary conditions generate a self-adjoint operator in the Hilbert
space L2((a, d),w).

The first example has separated boundary conditions: these are often called
“transmission conditions” in the literature.

Example 9.4.1 (Transmission conditions). Separated boundary conditions:

A1y(a) + A2y
[1](a) = 0, A1,A2 ∈ ℝ, (A1,A2) ̸= (0,0);

B1y(b) + B2y
[1](b) = 0, B1,B2 ∈ ℝ, (B1,B2) ̸= (0,0);

C1y(c) + C2y
[1](c) = 0, C1,C2 ∈ ℝ, (C1,C2) ̸= (0,0);

D1y(d) + D2y
[1](d) = 0, D1,D2 ∈ ℝ, (D1,D2) ̸= (0,0). (9.28)

Let

A =
[[[[

[

A1 A2
0 0
0 0
0 0

]]]]

]

, B =
[[[[

[

0 0
B1 B2
0 0
0 0

]]]]

]

, C =
[[[[

[

0 0
0 0
C1 C2
0 0

]]]]

]

, D =
[[[[

[

0 0
0 0
0 0
D1 D2

]]]]

]

.

In this case the 4 × 8 matrix (A,B,C,D) has full rank, and

0 = AEA∗ = BEB∗ = CEC∗ = DED∗.
Considering (a, c]∪[c, d) as one interval (a, d), the next example has transmission

conditions at the outer endpoint a, d and interface conditions at c. This example is
chosen to highlight the (discontinuous) interface conditions at an interior point c. The
roles of the endpoints a, c+, c−, d can be interchanged in this example (but care must
be taken regarding the signs of the matrices A,B,C,D; see [102]).

Example 9.4.2. Let h, k ∈ ℝ, h ̸= 0 ̸= k. Separated boundary conditions at a and at d
and coupled jump conditions at c:

A1y(a) + A2(py
󸀠)(a) = 0, A1,A2 ∈ ℝ, (A1,A2) ̸= (0,0);

D1y(d) + D2(py
󸀠)(d) = 0, D1,D2 ∈ ℝ, (D1,D2) ̸= (0,0);
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and

Y(c) = eiγKY(b), Y = [ y
y[1] ] , K = (kij), kij ∈ ℝ, 1 ≤ i, j ≤ 2,

detK ̸= 0, −π < γ ≤ π.

Let A,D be as in Example 9.4.1. Then rank(A,D) = 2 and kAEA∗ − hDED∗ = 0 for
any h, k since 0 = AEA∗ = DED∗. Let

C =
[[[[

[

0 0
−1 0
0 −1
0 0

]]]]

]

, B = eiγ
[[[[

[

0 0
k11 k12
k21 k22
0 0

]]]]

]

, −π < γ ≤ π.

Then a straightforward computation shows that

hCEC∗ = kBEB∗
is equivalent with

hE = k(detK)E,

which is equivalent with

h = k detK.

Since this holds for any h, k ∈ ℝ, h ̸= 0 ̸= k, it follows from Theorem 2 in [102]
that the boundary conditions of this example are self-adjoint for any K ∈ M2(ℝ) with
det(K) ̸= 0.

The next remark highlights a remarkable comparison with the well-known classi-
cal one-interval self-adjoint boundary conditions; see [113].

Remark 9.4.2. It is well known that in the one-interval theory, detK = 1 is required
for self-adjointness of the coupled boundary conditions. We find it remarkable that
the one-interval condition detK = 1 extends to det(K) ̸= 0 in the two-interval theory
and that this generalization follows from two simple observations: (i) TheMukhtarov–
Yakubov [82] observation that for h > 0 and k > 0, using inner product multiples
produces an interaction between the two intervals yielding det(K) > 0 and (ii) the
Wang–Zettl observation that the boundary value problem is invariant under multipli-
cation by−1, and this yields the further extension det(K) ̸= 0.Note that the parameters
h, k play no role in Example 9.4.1 when the boundary conditions are separated.

The next example illustrates the situation where there are two sets of coupled,
that is, “jump” boundary conditions. In one case the jumps are between the outer
endpoints a, d and the other between the inner “endpoints”, b = c+ and c = c−.
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Example 9.4.3. Two pairs of coupled conditions with −π < γ1, γ2 ≤ π:

Y(d) = eiγ1GY(a), G = (gij), gij ∈ ℝ, i, j = 1, 2, detG ̸= 0,

Y(c) = eiγ2KY(b), K = (kij), kij ∈ ℝ, i, j = 1, 2, detK ̸= 0, Y = [ y
y[1] ] .

(9.29)

Proceeding as in the previous example, we obtain the equivalence of the conditions
for self-adjointness:

kGEG∗ = hE and kKEK∗ = hE;
k detG = h and k detK = h;

that is,

detG = detK = h
k
.

This shows that (9.29) are self-adjoint boundary conditions for any positive or negative
h, k.

9.5 Comments

This chapter is based on the paper by Wang and Zettl [102]. As mentioned in the In-
troduction of this chapter, the Green’s function construction used here is modeled by
a construction of Neuberger [85] for the one-interval case. This one-interval construc-
tion differs from the usual one found in textbooks and in most of the literature in that
the discontinuity of the derivative of the Green’s function along the diagonal occurs
naturally, in contrast to the usual construction as found, for example, in Coddington
and Levinson [24], where this discontinuity is assigned a priori as part of the construc-
tion. This one-interval construction is extended here to two-interval self-adjoint and
nonself-adjoint problems.

The next remark is from J.W. Neuberger and published here with his permission.
It is of interest not only because we refer to “a construction of Neuberger” in the Intro-
duction of this chapter but also for pedagogical reasons.

Remark 9.5.1 (J.W. Neuberger). In the spring of 1958, I taught my first graduate
course. It was an introduction to functional analysis by means of Sturm–Liouville
problems. As was, and still is, my custom, I didn’t lecture, but rather I broke up ma-
terial for the class into a sequence of problems. The night before I was concerned
with finding problems that gave a good introduction to Green’s functions to the class.
The standard “recipe” with its prescribed discontinuity, seemed contrived. I man-
aged to come up with the algebraic method discussed here. Problems for some simple
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examples quickly led to the general case, again algebraically. To me this remains
an example of how “teaching” and “research” can impact one another, particularly
in a nonlecture situation. If I had been lecturing, I would have given the standard
approach, the only one I knew the day before. The algebraic approach to Green’s
functions might have never seen the light of day, and some nice mathematics would
have been missed.

 EBSCOhost - printed on 2/10/2023 3:33 PM via . All use subject to https://www.ebsco.com/terms-of-use



10 The Legendre equation and its operators

10.1 Introduction

The Legendre equation

− (py󸀠)󸀠 = λy, p(t) = 1 − t2, λ ∈ ℂ, (10.1)

is one of the simplest singular Sturm–Liouville differential equations. Its potential
function q is zero, its weight function w is the constant 1, and its leading coefficient p
is a simple quadratic.

Equation (10.1) and its associated self-adjoint operators exhibit a surprisingly
wide variety of interesting phenomena. We survey some of these. Of course, one of
the main reasons this equation is important in many areas of pure and applied math-
ematics stems from the fact that it has interesting solutions. Indeed, the Legendre
polynomials {Pn}∞n=0 form a complete orthogonal set of functions in L2(0,∞), and for
n ∈ ℕ0, y = Pn(t) is a solution of (10.1) when λ = λn = n(n + 1). Properties of the
Legendre polynomials can be found in several textbooks including the remarkable
book of Szego [95]. Most of the results discussed here can be inferred from known
results scattered widely in the literature; others require some additional work. It is
remarkable that we can find some new results about this simple and well-studied
equation and the operators it generates.

In this chapter, equation (10.1) and its associated self-adjoint operators are studied
on each of the three intervals

J1 = (−∞, −1), J2 = (−1, 1), J3 = (1,∞). (10.2)

For each interval, the corresponding operator setting is the Hilbert space Hi = L2(Ji),
i = 1, 2, 3, consisting of complex-valued functions f ∈ ACloc(Ji) such that

∫
Ji

|f |2 < ∞. (10.3)

Since p(t) is negative when |t| > 1, we let

r(t) = t2 − 1. (10.4)

Then (10.4) is equivalent to

− (ry󸀠)󸀠 = ξy, ξ = −λ. (10.5)

Note that r(t) > 0 for t ∈ J1 ∪ J3, so that equation (10.5) has the usual Sturm–Liouville
form with positive leading coefficient r.

https://doi.org/10.1515/9783110719000-010
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We also discuss Legendre operators on the whole real line ℝ in the Hilbert space
L2(ℝ), which we identify with the direct sum

H5 = L
2(ℝ) = L2(−∞, −1) ∔ L2(−1, 1) ∔ L2(1,∞). (10.6)

This is a three-interval problem, but the modifications needed to apply the two-
interval results from Chapter 8 to three intervals are straightforward. For this three-
interval theory, we take the Mukhtarov–Yakubov constants h, k to be h = 1 = k.

To illustrate the two-interval theory, we also discuss operators on the intervals
(−1, 1) and (1,∞) by identifying the space L2(−1,∞) with

H4 = L
2(−1, 1) ∔ L2(1,∞), (10.7)

but hereweuse the generalMukhtarov–Yakubov [82] constantsh, k andgive examples.
In addition, we construct regular problems that are equivalent to the singular Leg-

endre problem, and we construct the Green’s function.

10.2 General properties

Equation (10.1) has singularities at the points ±1 and at ±∞. The singularities at ±1
are due to the fact that 1/p is not Lebesgue integrable in left and right neighborhoods
of these points; the singularities at −∞ and at +∞ are due to the fact that the weight
function w(t) = 1 is not integrable in a neighborhood of these infinite endpoints.

Before proceeding to the details of the study of the Legendre equation on each of
the three intervals Ji, i = 1, 2, 3, using the one-interval theory on thewhole lineℝ, using
the 3-interval theory, and on the two intervals (−1, 1) and (1,∞), using the two-interval
theory with modified inner products, we make some general observations. This can
also be considered one interval (−1,∞) with a singularity at the interior point 1.

For λ = ξ = 0, two linearly independent solutions are given by

u(t) = 1, v(t) = − 1
2
ln(
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1 − t
t + 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
). (10.8)

Since these two functions u, v play an important role further, we make some observa-
tions about them.

Observe that for all t ∈ ℝ, t ̸= ±1, we have

(pv󸀠)(t) = +1. (10.9)

Thus the quasi-derivative (pv󸀠) can be continuously extended so that it is well defined
and continuous on the whole real line ℝ including two singular points −1 and +1. It
is interesting to observe that u, (pu󸀠), and (the extended) (pv󸀠) can be defined to be
continuous on ℝ, and only v blows up at the singular points −1 and +1.
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These simple observations about solutions of (10.1)when λ = 0 extend in a natural
way to solutions for all λ ∈ ℂ and are given in the next theoremwhose proof may be of
more interest than the theorem. It is based on a “system regularization” of (10.1) using
the above functions u, v.

The standard system formulation of the scalar equation (10.1) has the form

Y 󸀠 = (P − λW)Y on (−1, 1), (10.10)

where

Y = [ y
(py󸀠)
] , P = [ 0 1/p

0 0
] , W = [ 0 0

1 0
] . (10.11)

For u and v given by (10.8), let

U = [ u v
(pu󸀠) (pv󸀠)

] = [
1 v
0 1
] . (10.12)

Note that detU(t) = 1 for t ∈ J2 = (−1, 1) and set

Z = U−1Y . (10.13)

Then

Z󸀠 = (U−1)󸀠Y + U−1Y 󸀠 = −U−1U 󸀠U−1Y + (U−1)(P − λV)Y

= −U−1U 󸀠Z + (U−1)(P − λW)UZ

= −U−1(PU)Z + U−1(DU)Z − λ(U−1WU)Z = −λ(U−1WU)Z.

Letting G = (U−1WU), we may conclude that

Z󸀠 = −λGZ. (10.14)

Observe that

G = U−1WU = [ −v −v
2

1 v
] . (10.15)

Definition 10.2.1. We call (10.14) a “regularized” Legendre system.

This definition is justified by the next theorem.

Theorem 10.2.1. Let λ ∈ ℂ, and let G be given by (10.15).
(1) Every component of G is in L1(−1, 1), and therefore (10.14) is a regular system.
(2) For any c1, c2 ∈ ℂ, the initial value problem

Z󸀠 = −λGZ, Z(−1) = [ c1
c2
] (10.16)

has a unique solution Z defined on the closed interval [−1, 1].
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(3) If Y = [ y(t,λ)
(py󸀠)(t,λ) ] is a solution of (10.10) and Z = U

−1Y = [ z1(t,λ)z2(t,λ)
], then Z is a solution

of (10.14), and for all t ∈ (−1, 1), we have

y(t, λ) = uz1(t, λ) + v(t)z2(t, λ) = z1(t, λ) + v(t)z2(t, λ), (10.17)
(py󸀠)(t, λ) = (pu󸀠)z1(t, λ) + (pv

󸀠)(t)z2(t, λ) = −z2(t, λ). (10.18)

(4) For every solution y(t, λ) of the singular scalar Legendre equation (10.8), the quasi-
derivative (py󸀠)(t, λ) is continuous on the compact interval [−1, 1]. More specifically,
we have

lim
t→−1+
(py󸀠)(t, λ) = −z2(−1, λ), lim

t→1−
(py󸀠)(t, λ) = −z2(1, λ). (10.19)

Thus the quasi-derivative is a continuous function on the closed interval [−1, 1] for
every λ ∈ ℂ.

(5) Let y(t, λ) be given by (10.17). If z2(1, λ) ̸= 0, then y(t, λ) is unbounded at 1; if
z2(−1, λ) ̸= 0, then y(t, λ) is unbounded at −1.

(6) Fix t ∈ [−1, 1]. Let c1, c2 ∈ ℂ. If Z = [
z1(t,λ)
z2(t,λ)
] is the solution of (10.16) determined by

the initial conditions z1(−1, λ) = c1, z2(−1, λ) = c2, then zi(t, λ) is an entire function of
λ, i = 1, 2. Similarly for the initial condition z1(1, λ) = c1, z2(1, λ) = c2.

(7) For each λ ∈ ℂ, there is a nontrivial solution that is bounded in a (two-sided) neigh-
borhood of 1, and there is a (generally different) nontrivial solution that is bounded
in a (two-sided) neighborhood of −1.

(8) A nontrivial solution y(t, λ) of the singular scalar Legendre equation (10.1) is
bounded at 1 if and only if z2(1, λ) = 0; a nontrivial solution y(t, λ) of the singu-
lar scalar Legendre equation (10.1) is bounded at −1 if and only if z2(−1, λ) = 0.

Proof. Part (1) follows from (10.15); (2) is a direct consequence of (1) and the theory of
regular systems; Y = UZ implies (3) 󳨐⇒ (4) and (5); (6) follows from (2) and the basic
theory of regular systems. For (7), determine solutions y1(t, λ), y−1(t, λ) by applying the
Frobenius method to obtain power series solutions of (10.1) in the form (see [3], page
5 with different notations):

y1(t, λ) = 1 +
∞

∑
n=1

an(λ)(t − 1)
n, |t − 1| < 2;

y−1(t, λ) = 1 +
∞

∑
n=1

bn(λ)(t + 1)
n, |t + 1| < 2. (10.20)

To prove (8), it follows from (10.17) that if z2(1, λ) ̸= 0, then y(t, λ) is not bounded
at 1. Suppose z2(1, λ) = 0. If the corresponding y(t, λ) is not bounded at 1, then there
are two linearly unbounded solutions at 1, and hence all nontrivial solutions are un-
bounded at 1. This contradiction establishes (8) and completes the proof of the theo-
rem.
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Remark 10.2.1. From Theorem 10.2.1 we see that, for every λ ∈ ℂ, the Legendre equa-
tion (10.1) has a solution y1 that is bounded at 1 and has a solution y−1 that is bounded
at −1.

It is well known that for λn = n(n + 1), n ∈ ℕ0, the Legendre polynomials Pn (see
the formula below) are solutions on (−1, 1) and hence are bounded at −1 and at +1.

For later reference, we introduce the primary fundamental matrix of system
(10.11).

Definition 10.2.2. Fix λ ∈ ℂ. Let Φ(⋅, ⋅, λ) be the primary fundamental matrix of (10.11),
that is, for each s ∈ [−1, 1], Φ(⋅, s, λ) is the unique matrix solution of the initial value
problem

Φ(s, s, λ) = I , (10.21)

where I is the 2 × 2 identity matrix. Since (10.11) is regular, Φ(t, s, λ) is defined for all
t, s ∈ [−1, 1], and, for any fixed t, s, Φ(t, s, λ) is an entire function of λ.

We now consider two-point boundary conditions for (10.16); later, we will relate
these to singular boundary conditions for (10.1).

Let A,B ∈ M2(ℂ), the set of 2 × 2 complex matrices, and consider the boundary
value problem

Z󸀠 = −λGZ, AZ(−1) + BZ(1) = 0. (10.22)

Lemma 10.2.1. A complex number −λ is an eigenvalue of (10.22) if and only if

Δ(λ) = det[A + BΦ(1, −1, −λ)] = 0. (10.23)

Furthermore, a complex number −λ is an eigenvalue of geometric multiplicity two if and
only if

A + BΦ(1, −1, −λ) = 0. (10.24)

Proof. Note that a solution for the initial condition Z(−1) = C is given by

Z(t) = Φ(t, −1, −λ)C, t ∈ [−1, 1]. (10.25)

The boundary value problem (10.22) has a nontrivial solution for Z if and only if the
algebraic system

[A + BΦ(1, −1, −λ)]Z(−1) = 0 (10.26)

has a nontrivial solution for Z(−1).
To prove the furthermore part, observe that two linearly independent solutions of

the algebraic system (10.24) for Z(−1) yield two linearly independent solutions Z(t) of
the differential system, and conversely.
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Given any λ ∈ ℝ and any solutions y, z of (10.8), applying the Lagrange form (6.3),
we have

[u, v](t) = +1, [v, u](t) = −1, [y, u](t) = −(py󸀠)(t), t ∈ ℝ,
[y, v](t) = y(t) − v(t)(py󸀠)(t), t ∈ ℝ, t ̸= ±1.

Wewill further see that although v blows up at ±1, the form [y, v](t) is well defined
at −1 and +1 since the limits

lim
t→−1
[y, v](t), lim

t→+1
[y, v](t)

exist and are finite from both sides. This holds for any solution y of equation (10.8) for
any λ ∈ ℝ. Note that since v blows up at 1, this means that ymust blow up at 1 except,
possibly, when (py󸀠)(1) = 0. We will expand on this observation further in the section
on “Regular Legendre” equations.

Now we make the following additional observations. For definitions of the tech-
nical terms used here, see [113].

Proposition 10.2.1.
(1) Both equations (10.1) and (10.5) are singular at −∞, +∞ and at −1, +1 from both

sides.
(2) In the L2 theory the endpoints −∞ and +∞ are in the limit-point (LP) case, whereas
−1−, −1+, 1−, and 1+ are all in the limit-circle (LC) case. In particular, both solutions
u, v are in L2(−1, 1). Here we use the notation −1− to indicate that the equation is
studied on an interval that has −1 as its right endpoint. Similarly for −1+, 1−, and 1+.

(3) For every λ ∈ ℝ, equation (10.1) has a solution that is bounded at −1 and another
solution that blows up logarithmically at −1. Similarly for +1.

(4) When λ = 0, the constant function u is a principal solution at each of the endpoints
−1−, −1+, 1−, and 1+, but u is a nonprincipal solution at both endpoints −∞ and +∞.
On the other hand, v is a nonprincipal solution at −1−, −1+, 1−, and 1+, but it is the
principal solution at −∞ and +∞. Recall that at each endpoint, the principal solu-
tion is unique up to constant multiples, but a nonprincipal solution is never unique
since the sum of principal and nonprincipal solutions is nonprincipal.

(5) On the interval J2 = (−1, 1), equation (10.1) is nonoscillatory at −1−, −1+, 1−, and 1+

for every real λ.
(6) On the interval J3 = (1,∞), equation (10.5) is oscillatory at∞ for every λ > −1/4 and

nonoscillatory at∞ for every λ < −1/4.
(7) On the interval J3 = (1,∞), equation (10.1) is nonoscillatory at∞ for every λ < 1/4

and oscillatory at∞ for every λ > 1/4.
(8) On the interval J1 = (−∞, −1), equation (10.1) is nonoscillatory at −∞ for every λ <
+1/4 and oscillatory at −∞ for every λ > +1/4.

(9) On the interval J1 = (−∞, −1), equation (10.5) is oscillatory at −∞ for every λ > −1/4
and nonoscillatory at −∞ for every λ < −1/4.
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(10)The spectrum of the classical Sturm–Liouville problem (SLP) consisting of equation
(10.1) on (−1, 1) with the boundary condition

(py󸀠)(−1) = 0 = (py󸀠)(+1)

is discrete and is given by

σ(SF) = {n(n + 1) : n ∈ ℕ0}.

Here SF denotes the classical Legendre operator, that is, the self-adjoint operator in
the Hilbert space L2(−1, 1) that represents the Sturm–Liouville problem (SLP) (10.1)
with boundary condition (py󸀠)(−1) = 0 = (py󸀠)(+1). The notation SF is used to indi-
cate that this is the celebrated Friedrichs extension. Its orthonormal eigenfunctions
are the Legendre polynomials {Pn : n ∈ ℕ0} given by

Pn(t) = √
2n + 1
2

[n/2]
∑
j=0

(−1)j(2n − 2j)!
2nj!(n − j)!(n − 2j)!

tn−2j (n ∈ ℕ0),

where [n/2] denotes the greatest integer ≤ n/2.
The special (ausgezeichnete) operator SF is one of an uncountable number of self-
adjoint realizations of the equation on (−1, 1) in the Hilbert space H = L2(−1, 1). The
singular boundary conditions determining the other self-adjoint realizations will be
given explicitly below.

(11) The essential spectrumof every self-adjoint realization in theHilbert spaces L2(1,∞)
and L2(−∞, −1) is given by

σe = (−∞, −1/4].

For each interval, every self-adjoint realization is bounded above and has at most
two eigenvalues. Each eigenvalue is ≥ −1/4. The existence of 0, 1, or 2 eigenvalues
and their locations depends on the boundary condition. There is no uniform bound
for all self-adjoint realizations. For more information, see [74].

(12) The essential spectrum of every self-adjoint realization of the Legendre equation in
the Hilbert spaces L2(1,∞) and L2(−∞, −1) is given by

σe = [1/4,∞).

For each interval, every self-adjoint realization is bounded below and has at most
two eigenvalues. Each eigenvalue is ≥ −1/4. There is no uniform bound for all self-
adjoint realizations. The existence of 0, 1, or 2 eigenvalues and their locations de-
pends on the boundary condition.

Proof. Parts (1), (2), and (4) are basic results in Sturm–Liouville theory [113]. The proof
of (3) will be given further in the section on regular Legendre equations. For these
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and other basic facts mentioned below, the reader is referred to [113]. Part (10) is the
well-known celebrated classical theory of the Legendre polynomials; see [86] for a
characterization of the Friedrichs extension. In the other parts, the statements about
oscillation, nonoscillation, and the essential spectrum σe follow from the well-known
general fact that when the leading coefficient is positive, the equation is oscillatory
for all λ > inf σe and nonoscillatory for all λ < inf σe. Thus inf σe is called the oscilla-
tion number of the equation. It is well known that the oscillation number of equation
(10.5) on (1,∞) is −1/4. Since (10.5) is nonoscillatory at 1+ for all λ ∈ ℝ, oscillation can
occur only at∞. The transformation t → −1 shows that the same results hold for (10.5)
on (−∞, −1). Since ξ = −λ, the above-mentioned results hold for the standard Legen-
dre equation (10.1) but with the sign reversed. To compute the essential spectrum on
(1,∞), we first note that the endpoint 1 makes no contribution to the essential spec-
trum since it is limit circle nonoscillatory. Note that ∫∞2

1
√r = ∞ and

lim
t→∞

1
4
(r󸀠󸀠(t) − 1

4
[r󸀠(t)]2

r(t)
) = lim

t→∞

1
4
(2 − 1

4
4t2

t2 − 1
) =

1
4
.

From this and Theorem XIII.7.66 in Dunford and Schwartz [25], part (12) follows,
andpart (11) follows from (12). Parts (6)–(10) follow from the fact that the startingpoint
of the essential spectrum is the oscillation point of the equation; that is, the equation
is oscillatory for all λ above the starting point and nonoscillatory for all λ below the
starting point. (Note that there is a sign change correction needed in the statement of
Theorem XIII.7.66 since 1 − t2 is negative when t > 1, and this theorem applies to a
positive leading coefficient.)

10.3 Regular Legendre equations

In this section, we construct regular Sturm–Liouville equations that are equivalent to
the classical singular Legendre equation (10.1). This construction is based on a trans-
formation used by Niessen and Zettl [86]. We apply this construction to the classical
Legendre problem on the interval (−1, 1):

My = −(py󸀠) = λy on J2 = (−1, 1), p(t) = 1 − t2, −1 < t < 1. (10.27)

This transformation depends on a modification of the function v given by (10.8). Note
that v changes sign in (−1, 1) at 0 and we need a function that is positive on the entire
interval (−1, 1) and is a nonprincipal solution at both endpoints.

This modification consists of using a multiple of v that is positive near each end-
point and changing the function v in the middle of J2:

vm(t) =
{{{
{{{
{

−1
2 ln( 1−t1+t ),

1
2 ≤ t < 1,

m(t) −1
2 ≤ t ≤

1
2 ,

1
2 ln(

1−t
1+t ), −1 ≤ t ≤

−1
2 ,

(10.28)
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where the “middle function”m is chosen so that the modified function vm defined on
(−1, 1) satisfies the following two properties:
(1) vm(t) > 0, −1 < t < 1.
(2) vm, (pv󸀠m) ∈ ACloc(−1, 1), vm, (pv

󸀠
m) ∈ L

2(−1, 1).
(3) vm is a nonprincipal solution at both endpoints.

For later reference, we note that

(pv󸀠m)(t) = +1,
1
2
≤ t < 1,

(pv󸀠m)(t) = −1, −1 < t <
−1
2
,

[u, vm](t) = u(t)(pv
󸀠
m)(t) − v(t)(pu

󸀠)(t) = (pv󸀠m)(t) = 1,
1
2
≤ t < 1,

[u, vm](t) = u(t)(pv
󸀠
m)(t) − v(t)(pu

󸀠)(t) = (pv󸀠m)(t) = −1, −1 < t < −
1
2
. (10.29)

Niessen and Zettl [86, Lemmas 2.3 and 3.6] showed that such choices for m are
possible in general. Although in the Legendre case studied here, an explicit such m
can be constructed, we do not do so here since our focus is on boundary conditions at
the endpoints that are independent of the choice ofm.

Definition 10.3.1. LetM be given by (10.27). Define

P = v2mp, Q = vmMvm, W = v2m on J2 = (−1, 1). (10.30)

Consider the equation

Nz = −(Pz󸀠)󸀠 + Qz = λWz on J2 = (−1, 1). (10.31)

In (10.30), P denotes a scalar function; this notation should not be confused with
P defined above where P denotes a matrix.

Lemma 10.3.1. Equation (10.31) is regular with P > 0 on J2 and W > 0 on J2.

Proof. The positivity of P andW is clear. To prove that equation (10.31) is regular on
(−1, 1), we have to show that

1

∫
−1

1
P
< ∞,

1

∫
−1

Q < ∞,
1

∫
−1

W < ∞. (10.32)

The third integral is finite since v ∈ L2(−1, 1).
Since vm is a nonprincipal solution at both endpoints, it follows from SL theory

[113] that

c

∫
−1

1
pv2m
< ∞,

1

∫
d

1
pv2m
< ∞
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for some c, d, −1 < c < d < 1. By (10.10) 1/v2m is bounded on [c, d], and therefore

d

∫
c

1
p
< ∞,

and so we can conclude that the first integral (10.32) is finite. The middle integral is
finite sinceMvm is identically zero near each endpoint and vm, (pv󸀠m) ∈ ACloc(−1, 1).

Corollary 10.3.1. Let λ ∈ ℂ. For every solution z of (10.31), the limits

z(−1) = lim
t→−1+

z(t), z(1) = lim
t→1−

z(t),

(Pz󸀠)(−1) = lim
t→−1+
(Pz󸀠)(t), (Pz󸀠)(1) = lim

t→1−
(Pz󸀠)(t) (10.33)

exist and are finite.

Proof. This follows directly from SL theory [113]; every solution and its quasi-deriva-
tive have finite limits at each regular endpoint.

We call equation (10.31) a “regularized Legendre equation”. It depends on the
function v that depends on m. The key property of v is that it is a positive nonprin-
cipal solution at each endpoint. Note that vm in (10.28) is “patched together” from two
different nonprincipal solutions, one from each endpoint, and the “patching” func-
tionm plays no significant role in this book.

Note that (10.31) is also defined on (−1, 1) but can be considered on the compact in-
terval [−1, 1], in contrast to the singular Legendre equation (10.1). A significant conse-
quence of this is that, for each λ ∈ ℂ, every solution z of (10.31) and its quasi-derivative
(Pz󸀠) can be continuously extended to the endpoints ±1. We use the notation (Pz󸀠) to
remind the reader that the product (Pz󸀠) has to be considered as one function when
evaluated at ±1 since P is not defined at −1 and at 1.

Remark 10.3.1. Note that we use the theory of quasi-differential equations. Conditions
(10.32) show that equation (10.31) is a regular quasi-differential equation. We take full
advantage of this fact in this chapter.

Let Smin(N) and Smax(N) denote the minimal and maximal operators associated
with (10.31), and denote their domains byDmin(N) andDmax(N), respectively. Note that
these are operators in the weighted Hilbert space with weight function v2m, which we
denote by L2(vm) = L2(J2, v2m). A self-adjoint realization S(N) of (10.31) is an operator in
L2(vm), which satisfies

Smin(N) ⊂ S(N) = S
∗(N) ⊂ Smax(N). (10.34)

Applying the theory of self-adjoint regular Sturm–Liouville problems to the regu-
larized Legendre equation (10.12), we obtain the following:
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Theorem 10.3.1. Let A and B be 2×2 complex matrices satisfying the following two con-
ditions:

rank(A : B) = 2, (10.35)
AEA∗ = BEB∗. (10.36)

Then the set of all z ∈ Dmax(N) satisfying

A [ z(−1)
(Pz󸀠)(−1)

] + B [ z(1)
(Pz󸀠)(1)

] = [
0
0
] (10.37)

is a self-adjoint domain. Conversely, given any self-adjoint realization of (10.31) in the
space L2(v), that is, any operator S(N) satisfying (10.34), there exist 2 × 2 complex ma-
trices A and B satisfying (10.35) and (10.36) such that the domain of S(N) is the set of all
z ∈ Dmax(N) satisfying (10.37). Here (A,B) is the 2×4matrix whose first two columns are
the columns of A and last two columns are those of B.

For a proof of the theorem, see Chapter 1.
It is convenient to divide the self-adjoint boundary conditions (10.37) into two dis-

joint mutually exclusive classes, the separated and coupled conditions. The former
have the well-known canonical representation

cos(α)z(−1) + sin(α)(Pz󸀠)(−1) = 0, 0 ≤ α < π,
cos(β)z(1) + sin(β)(Pz󸀠)(1) = 0, 0 < β ≤ π. (10.38)

The latter have the canonical representation

[
z(1)
(Pz󸀠)(1)

] = eiγK [ z(−1)
(Pz󸀠)(−1)

] , −π < γ ≤ π. (10.39)

Examples of separated conditions are the well-known Dirichlet condition

z(−1) = 0 = z(1) (10.40)

and the Neumann condition

(Pz󸀠)(−1) = 0 = (Pz󸀠)(1). (10.41)

Examples of coupled conditions are the periodic conditions

z(−1) = z(1),
(Pz󸀠)(−1) = (Pz󸀠)(1) (10.42)

and the semiperiodic (also called antiperiodic) conditions

z(−1) = −z(1),
(Pz󸀠)(−1) = −(Pz󸀠)(1). (10.43)
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Note that when γ ̸= 0, we have complex matrices A and B defining regular self-adjoint
operators. Next, we explore the relation between solutions y of the singular Legendre
equation (10.1) and solutions z of the regularized Legendre equation (10.1). Note that
both equations are on the same interval (−1, 1).

Lemma 10.3.2. For any λ ∈ ℂ, the solutions y(⋅, λ) of the singular equation (10.1) and
the solutions z(⋅, λ) of the regular equation (10.31) are related by

y(t, λ)
vm(t)
= z(t, λ), −1 < t < 1, λ ∈ ℂ, (10.44)

and the correspondence y(⋅, λ) → z(⋅, λ) is one-to-one onto. Note that λ is the same on
both sides.

Proof. Fix λ ∈ ℂ and simplify the notation for this proof so that v = vm and let

z = y
v

on (−1, 1).

Then z󸀠 = vy󸀠−yv󸀠
v2 , and

((pv2)z󸀠)󸀠 = (v(py󸀠) − y(pv󸀠))󸀠 = v(py󸀠)󸀠 + v󸀠py󸀠 − y󸀠pv󸀠 − y(pv󸀠)󸀠

= v(−λy) + y(Mv) = −λv2 y
v
+
y
v
vMv = −λv2z + Qz,

fromwhich (10.31) follows. Reversing the steps shows that the correspondence is one-
to-one.

Remark 10.3.2. We comment on the relation between the classical singular Legendre
equation (10.1) and its regularizations (10.31); this remark will be amplified further af-
ter we discuss the self-adjoint operators generated by the singular Legendre equation
(10.1). In particular, we will see that the operator S(N) determined by the Dirichlet
condition (10.41), which we denote by SF(N), is a regular representation of the cele-
brated classical singular Friedrichs operator, denoted by SF , whose eigenvalues are
{n(n + 1) : n ∈ ℕ0} and whose eigenfunctions are the classical Legendre polynomials
Pn. Note that the solutions y(t, λ) and z(t, λ) have exactly the same zeros in the open
interval (−1, 1) but not in the closed interval [−1, 1] since zmay be zero at the endpoints
and y may not be defined there.

Remark 10.3.3. Each solution z and its quasi-derivative (Pz󸀠) is continuous on the
compact interval [−1, 1]. Note that v(t) does not depend on λ. Therefore the singularity
of every solution y(t, λ) for all λ ∈ ℂ is contained in v; in other words, the nature of the
singularities of the solutions y(t, λ) are invariant with respect to λ. Although v(t) does
not exist for t = −1 and t = 1 and y(t) also may not exist for t = −1 and t = 1, the limits

lim
t→−1+

y(t, λ)
v(t)
= z(−1, λ), lim

t→1−
y(t, λ)
v(t)
= z(1, λ) (10.45)

exist for all solutions y(t, λ) of the Legendre equation (10.1). If z(1, λ) ̸= 0, then y(t, λ)
blows up logarithmically as t → 1, and similarly at −1.
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Remark 10.3.4. Applying the correspondence (10.44) to the Legendre polynomials,we
obtain a factorization of these polynomials:

Pn(t) = v(t)zn(t), −1 < t < 1, n ∈ ℕ0. (10.46)

Since Pn is continuous at −1 and at 1 and v blows up at these points, it follows that
zn(−1) = 0 = zn(1), n ∈ ℕ0. Note that zn has exactly the same zeros as Pn in the open
interval (−1, 1). However, also note that this is not the case for the closed interval [−1, 1]
since zn(−1) = 0 = zn(1) but Pn(1) ̸= 0 ̸= Pn(−1) for each n ∈ ℕ0.

Remark 10.3.5. Following the characterization of the self-adjoint Legendre realiza-
tions S of the singular Legendre equation (10.1) using singular SL theory, we will fur-
ther specify a one-to-one correspondence between the self-adjoint realizations S(N)
of the regularized Legendre equation (10.31) and the self-adjoint operators of the sin-
gular classical Legendre equation (10.1). In particular, we will see that the operator
SD(N) determined by the regular Dirichlet boundary condition

z(−1) = 0 = z(1) (10.47)

corresponds to the celebrated classical Friedrichs Legendre operator SF determined
by the singular boundary condition

(py󸀠)(−1) = 0 = (py󸀠)(1),

whose eigenvalues are {n(n + 1), n ∈ ℕ0} and whose eigenfunctions are the classical
Legendre polynomials Pn. The Dirichlet operator SD(N) has the same eigenvalues as
SF , but its eigenfunctions are given by

zn =
Pn
v2
, n ∈ ℕ0.

Note that each zn has exactly the same zeros in the open interval (−1, 1) but not in
the closed interval [−1, 1] since zn(−1) = 0 = zn(1). Also note that SF is a self-adjoint op-
erator in the space L2(−1, 1) and SD(N) is a self-adjoint operator in theweighted Hilbert
space L2((−1, 1), v2). Thus all the Legendre polynomial Pn can be factored as

Pn = v
2zn, n ∈ ℕ0,

with the same factor v2 for all n.

10.4 Self-adjoint operators in L2(−1, 1)
By a self-adjoint operator associated with equation (10.1) in H2 = L2(−1, 1) we mean a
self-adjoint operator S satisfying (10.52). Let

Dmax = {f : (−1, 1) → ℂ : f , pf
󸀠 ∈ ACloc(−1, 1); f , pf

󸀠 ∈ H2}, (10.48)
Smaxf = −(pf

󸀠)󸀠, f ∈ Dmax. (10.49)
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Note that all bounded continuous functions on (−1, 1) are inDmax; in particular, all
polynomials are in Dmax. (More precisely, the restriction of every polynomial to (−1, 1)
is in Dmax.) However, Dmax also contains functions that are not bounded on (−1, 1), for
example, f (t) = ln(1 − t).

Lemma 10.4.1. The operator Smax is densely defined in H2 and therefore has a unique
adjoint in H2 denoted by Smin:

S∗max = Smin. (10.50)

Furthermore, the minimal operator Smin in H2 is symmetric, closed, and densely defined,
and

S∗min = Smax. (10.51)

Moreover, if S is a self-adjoint extension of Smin, then S is also a self-adjoint restriction
of Smax, and conversely. Thus we have

Smin ⊂ S = S
∗ ⊂ Smax. (10.52)

It is clear from (10.52) that each self-adjoint operator S is determined by its domain
D(S).

Next, we characterize these self-adjoint domains. It is remarkable that all self-
adjoint Legendre operators can be described explicitly in terms of two-point singular
boundary conditions. For this, the functions u, v from Section 10.2 play an important
role. We will use them to describe all self-adjoint boundary singular boundary condi-
tions explicitly.

Let

My = −(py󸀠)󸀠. (10.53)

Of critical importance in the characterization of all self-adjoint boundary conditions
is the Lagrange sesquilinear form [⋅, ⋅] defined for all maximal domain functions,

[f , g] = fp(g󸀠) − gp(f
󸀠
) (f , g ∈ Dmax), (10.54)

and the associated Green’s formula
b

∫
a

{gMf − fMg} = [f , g](b) − [f , g](a), f , g ∈ Dmax, −1 < a < b < 1. (10.55)

From this equality it follows that the limits

lim
a→−1+
[f , g](t), lim

b→+1−
[f , g](t) (10.56)

exist and are finite.
The next theorem characterizes all self-adjoint Legendre operators S in L2(−1, 1).
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Theorem 10.4.1. Let the functions u, v be given by (10.8), that is,

u(t) = 1, v(t) = − 1
2
ln(
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1 − t
t + 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
), −1 < t < 1.

Let A and B be 2 × 2 complex matrices satisfying the following two conditions:

rank(A : B) = 2, (10.57)

AEA∗ = BEB∗, E = [ 0 −1
1 0
] . (10.58)

Define D(S) = {y ∈ Dmax} such that

A [ (−py󸀠)(−1)
(ypv󸀠 − v(py󸀠))(−1)

] + B [ (−py󸀠)(1)
(ypv󸀠 − v(py󸀠))(1)

] = [
0
0
] . (10.59)

Then D(S) is a self-adjoint domain. Furthermore, all self-adjoint domains are generated
this way. Here (A : B) denotes the 2 × 4 matrix whose first two columns are those of A
and last two columns are the columns of B.

Proof. See Section 10.4 in [113] for a proof of the general characterization and use the
functions u, v to obtain (10.59).

Remark 10.4.1. We comment on some aspects of this remarkable characterization of
all self-adjoint Legendre operators in L2(−1, 1).
(1) Just as in the regular case, the singular self-adjoint boundary conditions (10.59)

are explicit since u and v are given explicitly.
(2) Note that [y, u] = −(py󸀠) and [y, v] = y(pv󸀠)−v(py󸀠). Hence−(py󸀠) and (ypv󸀠−v(py󸀠))

exist as finite limits at −1 and 1 for all maximal domain functions y. In particular,
these limits exist andare finite for all solutions y of equation (10.1) for any λ. Thus a
number λ is an eigenvalue of the singular boundary value problem (10.57)–(10.58)
if and only if equation (10.1) has a nontrivial solution y satisfying (10.59). Note that
the separate terms y(pv󸀠) and v(py󸀠)may not exist at −1 or at +1, theymay blow up
or oscillate wildly at these points, but the Lagrange bracket [y, v] has finite limits
at −1 and +1 for any maximal domain functions y, v.

(3) Choose

A = [ 1 0
0 0
] , B = [ 0 0

1 0
] .

Then (10.57)–(10.58) hold, and the singular boundary condition (10.59) reduces
to

(py󸀠)(−1) = 0 = (py󸀠)(1). (10.60)
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This is the boundary condition that determines, among the uncountable number
of self-adjoint conditions, the special (“ausgezeichnete”) Friedrichs extension
SF . It is interesting to observe that even though (10.60) has the appearance of
a regular Neumann condition, in fact, it is the singular analogue of the regular
Dirichlet condition. It is well known [113] that, in general, the Dirichlet boundary
condition determines the Friedrichs extension SF of regular SLP and that for sin-
gular nonoscillatory limit-circle problems, in general, the Friedrichs extension SF
is determined by the condition

[y, ua](a) = 0 = [y, ub](b),

where ua is the principal solution at the left endpoint a, and ub is the principal
solution at the right endpoint b. (The principal solution is unique up to constant
multiples at each endpoint.) Since the constant function u = 1 is the principal
solution at both endpoints −1 and 1 in the Legendre case, we have [y, u] = −(py󸀠),
and (10.60) follows.

(4) Condition (10.59) includes separated and coupled conditions. Wewill further give
a canonical form for these two classes of conditions, which is analogous to the
regular case. We will also see that (10.59) includes complex boundary conditions.
These are coupled; it is known that all separated self-adjoint conditions can be
taken as real, that is, each complex separated condition (10.59) is equivalent to a
real such condition.

(5) Since each endpoint is LCNO (limit-circle nonoscillatory), it is well known that
the spectrum σ of every self-adjoint extension S, σ(S), is discrete, bounded below,
and unbounded above with no finite cluster point. For SF , we have the celebrated
result that

σ(SF) = n(n + 1) (n ∈ ℕ0),

and the corresponding orthonormal eigenfunctions are the polynomials Pn. For
other self-adjoint Legendre operators S, the eigenvalues and eigenfunctions are
not known in closed form. However, they can be computed numerically with the
FORTRAN code SLEIGN2, developed by Bailey, Everitt, and Zettl [10]; this code,
and a number explanatory files related to it, can be downloaded free from the
internet. It comes with a user-friendly interface.

(6) It is known from general Sturm–Liouville theory that the eigenfunctions of ev-
ery self-adjoint Legendre realization S are dense in L2(−1, 1). In particular, the
Legendre polynomials Pn are dense in L2(−1, 1).

(7) If S is generated by a separated boundary condition, then the nth eigenfunction
of S has exactly n zeros in the open interval (−1, 1) for each n ∈ ℕ0. In particular,
this is true for the Legendre polynomials Pn.

(8) The self-adjoint boundary conditions (10.59) depend on the function v given by
(10.8). Note that only the values of v near the endpoints play a role in (10.59), and
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therefore v can be replaced by any function that is asymptotically equivalent to
it; in particular, v can be replaced by any function that has the same values as v
in a neighborhood of −1 and of 1.

Now that we have determined all self-adjoint singular Legendre operators with
Theorem 10.3.1, and we compare these with the self-adjoint operators determined by
the regularized Legendre equation given by Theorem 10.4.1. In making this compari-
son, it is important to keep inmind that these operators act in different Hilbert spaces,
L2(−1, 1) for the singular classical case and L2(v2) = L2((−1, 1), v2) for the regularized
case.

But first we show that the correspondence

y
v
= z, y = vz (10.61)

extends from solutions to functions in the domains of the operator realizations of the
classical Legendre equation and its regularization. Sincewe now compare operator re-
alizations of the singular equation (10.1) and its regularization (10.31) with each other,
we use the notation S(M) for operators associated with the former and S(N) for those
of the latter.

We denote the Lagrange forms associated with these equations by

[y, f ]M = y(pf 󸀠) − f (py
󸀠), y, f ∈ Dmax(M) (10.62)

and by

[z, g]N = z(Pg
󸀠) − g(Pz󸀠), z, g ∈ Dmax(N), P = v2p, (10.63)

respectively.

Notation 10.4.1. Wesay thatD(N) is a self-adjoint domain for (10.31) if the operatorwith
this domain is a self-adjoint realization of (10.31) in the Hilbert space L(v2). Similarly,
D(M) is a self-adjoint domain for (10.1) if the operator with this domain is a self-adjoint
realization of (10.1) in the Hilbert space L2(−1, 1).

The next theorem compares the singular self-adjoint Legendre operators with the
self-adjoint regularized Legendre operators.

Theorem 10.4.2. Let (10.1) and (10.31) hold; let v be given by (10.8).
(1) A function z ∈ Dmax(N) if and only if vz ∈ Dmax(M).
(2) D(N) is a self-adjoint domain for (10.31) if and only if D(M) = {y = vz : z ∈ D(M)}.
(3) In particular, we have a new characterization of the Friedrichs domain for (10.1):

D(SF(M)) = {vz : z ∈ Dmax(N) : z(−1) = 0 = z(1)}.
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Proof. Let y, f ∈ Dmax(M), and let z =
y
v , g =

f
v . Then we have

[z, g]N = [
y
v
,
f
v
]
N
=
y
v
P( f

v
)
󸀠

−
f
v
P(y

v
)
󸀠

=
y
v
pv2 vf

󸀠 − f v󸀠

v2
−
f
v
pv2 vy

󸀠 − yv󸀠

v2
= ypf 󸀠 − y

v
pf v󸀠 − f py󸀠 + y

v
pf v󸀠

= ypf 󸀠 − f py󸀠 = [y, f ]M . (10.64)

Part (2) follows from (1) and (10.43). To prove (1), assume that

y ∈ Dmax(M) = {y ∈ L
2(J2) : py

󸀠 ∈ ACloc(J2), My = (py󸀠)󸀠 ∈ L2(J2)}.

Wemust show that

z ∈ Dmax(N) = {z ∈ L
2(v2),Pz󸀠 ∈ ACloc(J2),Nz = (Pz

󸀠)󸀠 ∈ L2(v2)}.

Note that
1

∫
−1

󵄨󵄨󵄨󵄨z
2󵄨󵄨󵄨󵄨v

2 =
1

∫
−1

󵄨󵄨󵄨󵄨y
2󵄨󵄨󵄨󵄨 < ∞,

Pz󸀠 = v(py󸀠) − y(pv󸀠) = v(py󸀠) − y ∈ ACloc(J2),

and

(Pz󸀠)󸀠 = v󸀠py󸀠 + v(py󸀠)󸀠 − y󸀠(pv󸀠) − y(pv)󸀠 = vMy ∈ L2(v2).

The converse follows similarly by reversing the steps in this argument.

10.4.1 Eigenvalue properties

In this subsection,we study the variation of the eigenvalues as functions of the bound-
ary conditions for the Legendre problem consisting of the equation

My = −(py󸀠)󸀠 = λy on J2 = (−1, 1), p(t) = 1 − t2, −1 < t < 1, (10.65)

together with the boundary conditions

A [ (−py󸀠)(−1)
(ypv󸀠 − v(py󸀠))(−1)

] + B [ (−py󸀠)(1)
(ypv󸀠 − v(py󸀠))(1)

] = [
0
0
] . (10.66)

Here v is given by (10.8) near the endpoints, and the matrices A and B satisfy the self-
adjointness condition.
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Since these homogeneous boundary conditions are invariant under multiplica-
tion by a nonsingular matrix, to study the dependence of the eigenvalues on the
boundary conditions, it is very useful to have their canonical representation. For such
a representation, it is convenient to classify the boundary conditions into two mu-
tually exclusive classes, separated and coupled. The separated conditions have the
form [113]

cos(α)[y, u](−1) + sin(α)[y, v](−1) = 0, 0 ≤ α < π,
cos(β)[y, u](1) + sin(β)[y, v](1) = 0, 0 < β ≤ π, (10.67)

whereas the coupled conditions have the following canonical representation [113]:

Y(1) = eiγKY(−1), (10.68)

where

Y = [ [y, u]
[y, v]
] , −π < γ ≤ π, K ∈ SL2(ℝ), (10.69)

that is, K = (kij), kij ∈ ℝ, and det(K) = 1.

Definition 10.4.1. The boundary conditions (10.67) are called separated, and (10.68)
are coupled; if γ = 0, then we say they are real coupled, and with γ ̸= 0, they are
complex coupled.

We have the following theorem.

Theorem 10.4.3. Let S be a self-adjoint Legendre operator in L2(−1, 1) according to The-
orem 10.4.1 and denote its spectrum by σ(S).
(1) Then the boundary conditions determining S are either given by (10.59) and each

such boundary condition determines a self-adjoint Legendre operator in L2(−1, 1).
(2) The spectrum σ(S) = {λn : n ∈ ℕ0} is real and discrete, and can be ordered to satisfy

−∞ < λ0 ≤ λ1 ≤ λ2 ≤ ⋅ ⋅ ⋅, (10.70)

Here equality cannot hold for two consecutive terms.
(3) If the boundary conditions are separated, then strict inequality holds everywhere in

(10.70), and if un is an eigenfunction of λn, then un is unique up to constant multiples
and has exactly n zeros in the open interval (−1, 1) for each n = 0, 1, 2, 3, . . . .

(4) If the boundary conditions are coupled and real (γ = 0) and un is a real eigenfunc-
tion of λn, then the number of zeros of un in the open interval (−1, 1) is 0 or 1 if n = 0
and n − 1, n, or n + 1 if n ≥ 1. (Note that although there may be eigenvalues of mul-
tiplicity 2, the indexing of the eigenvalues λn is uniquely determined, but there may
be some ambiguity about the indexing of the eigenfunctions un.)
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(5) If the boundary conditions are coupled and complex (γ ̸= 0), then all eigenvalues
are simple, and strict inequality holds in (10.70). If un is an eigenfunction of λn, then
the complex eigenfunction un has no zero in the closed interval [−1, 1]. The number
of zeros of both real part Re(un) and imaginary part Im(un) in the half-open interval
[−1, 1) is 0 or 1 if n = 0 and is n − 1, n, or n + 1 if n ≥ 1.

(6) If the boundary condition is the classical condition

(py󸀠)(−1) = 0 = (py󸀠)(1),

then the eigenvalues are given by

λn = n(n + 1), n ∈ ℕ0,

and the normalized eigenfunctions are the classical Legendre polynomials Pn.
(7) For any boundary conditions, separated, real coupled, or complex coupled, we have

λn ≤ n(n + 1), n ∈ ℕ0. (10.71)

In other words, the eigenvalues of the self-adjoint Legendre operator determined by
the classical boundary conditions maximize the eigenvalues of all other self-adjoint
Legendre operators.

(8) For any self-adjoint boundary conditions, separated, real coupled, or complex cou-
pled, we have

n(n + 1) ≤ λn+2, n ∈ ℕ0. (10.72)

In other words, the nth eigenvalue of the self-adjoint Legendre operator determined
by the classical boundary conditions is a lower boundof λn+2 for all other self-adjoint
Legendre operators. These bounds are precise:

(9) The range of λ0(S) = (−∞,0] as S varies over all self-adjoint Legendre operators in
L2(−1, 1).

(10)The range of λ1(S) = (−∞,0] as S varies over all self-adjoint Legendre operators in
L2(−1, 1).

(11) The range of λn(S) = ((n−2)(n− 1), n(n+ 1)] as S varies over all self-adjoint Legendre
operators in L2(−1, 1).

(12) The last three statements about the range of the eigenvalues are still valid if the
operators S are restricted to those determined by real boundary condition only.

(13) Let S be any self-adjoint Legendre operator in L2(−1, 1) determined by separated,
real coupled, or complex coupled boundary conditions, and let σ(S) = {λn : n ∈ ℕ0}
denote its spectrum. Then

λn
n2
→ 1 as n→∞.
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Proof. Part (6) is the well-known classical result about the Legendre equation and its
polynomial solutions. All the other parts follow from applying the known correspond-
ing results for regular problems; see [113, Chapter 4] for the above regularization of the
singular Legendre equation.

10.5 The maximal and Friedrichs domains

In this section, we develop properties of the maximal and Friedrichs domains includ-
ing various their characterizations. Recall that the maximal domain Dmax is defined
as follows. Let H = L2(−1, 1) and

Dmax = {y ∈ H : (py
󸀠) ∈ ACloc(−1, 1), (py

󸀠)󸀠 ∈ H .

The next lemmadescribesmaximal domain functions and their quasi-derivatives.

Lemma 10.5.1. Let v be given by (10.8). For every y ∈ Dmax, there exist two constants
c, d ∈ ℂ and a function g ∈ H such that

y(t) = c + dv(t) +
t

∫
−1

[v(t) − v(s)]g(s) ds, −1 < t < 1,

(py󸀠)(t) = d +
t

∫
−1

g(s) ds, −1 < t < 1. (10.73)

Conversely, for every c, d ∈ ℂ and g ∈ H, the function y defined by (10.73) is in Dmax.

Proof. Suppose y ∈ Dmax. Then (py󸀠)󸀠 ∈ H. Let (py󸀠)󸀠 = g. Since u, v are linearly
independent solutions of (py󸀠)󸀠 = 0, (10.73) follows directly from the variation-of-
parameters formula. (The integrals exist since v ∈ H and v ∈ L1(−1, 1).) Differentiating
(10.73) yields, for almost all t ∈ (−1, 1),

y󸀠(t) = dv󸀠(t) + v󸀠(t)
t

∫
−1

g(s) ds.

Multiplying by p(t) and noting that (pv󸀠)(t) = 1 yield the first part of (10.73). To
prove the converse statement, note that y is in H since each its term is in L2(−1, 1).
Clearly, (py󸀠) ∈ ACloc(−1, 1), and (py󸀠)󸀠 = g ∈ H.

Corollary 10.5.1. The quasi-derivative (py󸀠) of every maximal domain function y can be
continuously extended to the compact interval [−1, 1] and is therefore continuous and
bounded on [−1, 1].

Proof. This follows from Corollary 10.5.1.
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Lemma 10.5.2. Let v be given by (10.8). For every y ∈ Dmax, we have:
(1) Both limits

lim
t→−1+

y(t)
v(t)

and lim
t→1−

y(t)
v(t)

(10.74)

exist and are finite.
(2) For any c, d such that −1 < c < 0 < d < 1,

(√p)v( y
v󸀠
) ∈ L2(−1, c), (√p)v( y

v󸀠
) ∈ L2(d, 1). (10.75)

Proof. In Section 10.3, we showed that z = y/vm is a solution of the regular Legendre
equation (10.1). Therefore z can be continuously extended to both endpoints. Since vm
agrees with v near both endpoints, (10.74) follows. For part (2), see Niessen and Zettl
[86, Theorem 4.2, p. 558].

Recall the definition of the Friedrichs domain DF :

DF = {y ∈ Dmax : (py
󸀠)(−1) = 0 = (py󸀠)(1)}. (10.76)

The next theorem gives a number of equivalent characterizations of the Friedrichs
domain; see also [30] and [52].

Theorem 10.5.1. Let v be given by (10.8). For any y ∈ Dmax, the following statements are
equivalent:
(i) In (10.73) of Lemma (10.5.1) the constant d = 0.
(ii) y is bounded on (−1, 1).
(iii) The limits

y(t)
v(t)
→ 0 as t → −1+ and as t → +1

exist and are finite.
(iv)

lim
t→−1+
(py󸀠)(t) = 0 = lim

t→1−
(py󸀠)(t).

(v) The limits

lim
t→−1+

y(t), lim
t→1−

y(t)

exist and are finite.
(vi) y ∈ AC[−1, 1].
(vii) y󸀠 ∈ L2(−1, 1). Furthermore, this result is best possible in that there exists g ∈ D(SF)

such that g󸀠 ∉ Lq(−1, 1) for any q > 2, where g is independent of q.
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(viii) p1/2y󸀠 ∈ L2(−1, 1).
(ix) For any −1 < c < 0 < d < 1, we have

y
(√p)v
∈ L2(−1, c) and y

(√p)v
∈ L2(d, 1), −1 < c < 0 < d < 1.

(x) y, y󸀠 ∈ ACloc(−1, 1) and py󸀠󸀠 ∈ L2(−1, 1). Furthermore, this result is best possible in
the sense that there exists g ∈ D(SF) such that pg󸀠󸀠 ∉ Lq(−1, 1) for any q > 2, where
g is independent of q.

Proof. The equivalence of (i), (ii), (iii), (v), and (vi) is clear from (10.73) of Lemma
(10.5.1) and the definition of v(t) in (10.8). We now prove the equivalence of (ii) and
(iv) by using the method used to construct regular Legendre equations. In particular,
we use the “regularizing” function vm and other notation from Section 10.2. Recall
that vm agrees with v near both endpoints and is positive on (−1, 1). As in Section 10.2,
[⋅, ⋅]M and [⋅, ⋅]N denote the Lagrange brackets ofM andN, respectively. Let z = y/v and
x = u/v. Then

−(py󸀠)(1) = [ y
vm
,
u
vm
]
M
(1) = [z, x]N (1)

= lim
t→1

z(t) lim
t→1
(Px󸀠)(1) − lim

t→1
x(t) lim

t→1
(Pz󸀠)(1) = lim

t→1
z(t) lim

t→1
(Px󸀠)(1) = 0.

All these limits exist and are finite since N is a regular problem. Since u is a principal
solution and v is a nonprincipal solution, it follows that limt→1 x(t) = 0. The proof for
the endpoint −1 is entirely similar. Thus we have shown that (ii) implies (iv). The con-
verse is obtained by reversing the steps. Thus we conclude that (i)–(vi) are equivalent.
Proofs of (vii), (viii), (ix), and (x) can be found in [3].

10.6 The Legendre Green’s function

In this subsection, we construct the Legendre Green’s function. Let

− (py󸀠)󸀠 = λy, p(t) = 1 − t2 on J = (−1, 1). (10.77)

This construction is a five-step procedure:
(1) Formulate the singular second-order scalar equation as a first-order singular sys-

tem.
(2) “Regularize” this singular system by constructing regular systems equivalent to

it.
(3) Construct the Green’s matrix for boundary value problems of the regular system.
(4) Construct the singular Green’s matrix for the equivalent singular system from the

regular one.

 EBSCOhost - printed on 2/10/2023 3:33 PM via . All use subject to https://www.ebsco.com/terms-of-use



216 | 10 The Legendre equation and its operators

(5) Extract theupper right corner element from the singularGreen’smatrix. This is the
Green’s function for singular scalar boundary value problems for equation (10.1).

For convenience of the reader, we present these five steps here even though some of
them were given above.

For λ = 0, recall the two linearly independent solutions u, v of (10.1) given by

u(t) = 1, v(t) = − 1
2
ln(
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1 − t
t + 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
). (10.78)

The standard system formulation of (10.77) has the form

Y 󸀠 = (P − λW)Y on (−1, 1), (10.79)

where

Y = [ y
(py󸀠)
] , P = [ 0 1/p

0 0
] , W = [ 0 0

1 0
] . (10.80)

Let

U = [ u v
(pu󸀠) (pv󸀠)

] = [
1 v
0 1
] . (10.81)

Note that detU(t) = 1 for t ∈ J = (−1, 1) and set

Z = U−1Y . (10.82)

Then

Z󸀠 = (U−1)󸀠Y + U−1Y 󸀠 = −U−1U 󸀠U−1Y + (U−1)(P − λW)Y

= −U−1U 󸀠Z + (U−1)(P − λW)UZ

= −U−1(PU)Z + U−1(PU)Z − λ(U−1WU)Z = −λ(U−1WU)Z.

Letting G = (U−1WU), we can conclude that

Z󸀠 = −λGZ, (10.83)

where

G = U−1WU = [ −v −v
2

1 v
] . (10.84)

Note that (10.83) is the regularized Legendre system discussed in Section 10.3.
The next theorem summarizes the properties of system (10.83) and its relation to

(10.77).

 EBSCOhost - printed on 2/10/2023 3:33 PM via . All use subject to https://www.ebsco.com/terms-of-use



10.6 The Legendre Green’s function | 217

Theorem 10.6.1. Let λ ∈ ℂ and let G be given by (10.84).
(1) Every component of G is in L1(−1, 1) and therefore (10.84) is a regular system.
(2) For any c1, c2 ∈ ℂ, the initial value problem

Z󸀠 = −λGZ, Z(−1) = [ c1
c2
] (10.85)

has a unique solution Z defined and continuous on the closed interval [−1, 1].
(3) If Y = [ y(t,λ)

(py󸀠)(t,λ) ] is a solution of (10.79) and Z = U
−1Y = [ z1(t,λ)z2(t,λ)

], then Z is a solution
of (10.83), and for all t ∈ (−1, 1), we have

y(t, λ) = uz1(t, λ) + v(t)z2(t, λ) = z1(t, λ) + v(t)z2(t, λ), (10.86)
(py󸀠)(t, λ) = (pu󸀠)z1(t, λ) + (pv

󸀠)(t)z2(t, λ) = z2(t, λ). (10.87)

(4) For every solution y(t, λ) of the singular scalar Legendre equation (10.77), the quasi-
derivative (py󸀠)(t, λ) is continuous on the compact interval [−1, 1]. More specifically,
we have

lim
t→−1+
(py󸀠)(t, λ) = z2(−1, λ), lim

t→1−
(py󸀠)(t, λ) = z2(1, λ). (10.88)

Thus the quasi-derivative (py󸀠)(t, λ) is a continuous function on the closed interval
[−1, 1] for every λ ∈ ℂ.

(5) Let y(t, λ) be given by (10.86). If z2(1, λ) ̸= 0, then y(t, λ) is unbounded at 1; if
z2(−1, λ) ̸= 0, then y(t, λ) is unbounded at −1.

(6) Fix t ∈ [−1, 1]. Let c1, c2 ∈ ℂ. If Z = [
z1(t,λ)
z2(t,λ)
] is the solution of (10.85) determined by

the initial conditions z1(−1, λ) = c1 and z2(−1, λ) = c2, then zi(t, λ) is an entire function
of λ, i = 1, 2, and similarly for the initial conditions z1(1, λ) = c1 and z2(1, λ) = c2.

(7) For each λ ∈ ℂ, there is a nontrivial solution that is bounded in a (two-sided) neigh-
borhood of 1; and there is a (generally different) nontrivial solution that is bounded
in a (two-sided) neighborhood of −1.

(8) A nontrivial solution y(t, λ) of the singular scalar Legendre equation (10.77) is
bounded at 1 if and only if z2(1, λ) = 0. A nontrivial solution y(t, λ) of the singu-
lar scalar Legendre equation (10.77) is bounded at −1 if and only if z2(−1, λ) = 0.

Proof. Part (1) follows from (10.84); (2) is a direct consequence of (1) and the theory
of regular systems; Y = UZ implies (3) 󳨐⇒ (4) and (5); (6) follows from (2) and the
basic theory of regular systems. For (7), determine the solutions y1(t, λ) and y−1(t, λ) by
applying the Frobenius method to obtain power series solutions of the following form
(see [30], p. 5 with different notations):

y1(t, λ) = 1 +
∞

∑
n=1

an(λ)(t − 1)
n, |t − 1| < 2;

y−1(t, λ) = 1 +
∞

∑
n=1

bn(λ)(t + 1)
n, |t + 1| < 2. (10.89)
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To prove (8), it follows from (10.86) that if z2(1, λ) ̸= 0, then y(t, λ) is not bounded at 1.
Suppose z2(1, λ) = 0. If the corresponding y(t, λ) is not bounded at 1, then there are two
linearly unbounded solutions at 1, and hence all nontrivial solutions are unbounded
at 1. This contradiction establishes (8) and completes the proof of the theorem.

Remark 10.6.1. From Theorem 10.6.1 we see that for every λ ∈ ℂ, equation (10.77) has
a solution y1 that is bounded at 1 and has a solution y−1 that is bounded at −1. It is well
known that for λn = n(n + 1), n ∈ ℕ0, the Legendre polynomials Pn are solutions on
(−1, 1) and hence are bounded at −1 and +1.

We now consider two-point boundary conditions for (10.85); later, we will relate
these to singular boundary conditions for (10.77).

Let A,B ∈ M2(ℂ), the set of 2 × 2 complex matrices, and consider the boundary
value problem

Z󸀠 = −λGZ, AZ(−1) + BZ(1) = 0. (10.90)

Recall that Φ(t, s, −λ) is the primary fundamental matrix of the system Z󸀠 = −λGZ.

Lemma 10.6.1. A complex number −λ is an eigenvalue of (10.90) if and only if

Δ(λ) = det(A + BΦ(1, −1, −λ) = 0. (10.91)

Furthermore, a complex number −λ is an eigenvalue of geometric multiplicity two if and
only if

A + BΦ(1, −1, −λ) = 0. (10.92)

Proof. Note that a solution for the initial condition Z(−1) = C is given by

Z(t) = Φ(t, −1, −λ)C, t ∈ [−1, 1]. (10.93)

The boundary value problem (10.90) has a nontrivial solution for Z if and only if the
algebraic system

[A + BΦ(1, −1, −λ)]Z(−1) = 0 (10.94)

has a nontrivial solution for Z(−1).
To prove the furthermore part, observe that two linearly independent solutions of

the algebraic system (10.93) for Z(−1) yield two linearly independent solutions Z(t) of
the differential system, and conversely.

Given any λ ∈ ℝ and solutions y, z of (10.1), the Lagrange form [y, z](t) is defined
by

[y, z](t) = y(t)(pz󸀠)(t) − z(t)(py󸀠)(t).
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So, in particular, we have

[u, v](t) = +1, [v, u](t) = −1, [y, u](t) = −(py󸀠)(t), t ∈ ℝ,
[y, v](t) = y(t) − v(t)(py󸀠)(t), t ∈ ℝ, t ̸= ±1.

Wewill further see that although v blows up at ±1, the form [y, v](t) is well defined
at −1 and +1 since the limits

lim
t→−1
[y, v](t), lim

t→+1
[y, v](t)

exist and are finite from both sides for any solution y of equation (10.1) and any λ ∈ ℝ.
Note that since v blows up at 1, this means that y must blow up at 1, except, possibly,
when (py󸀠)(1) = 0.

We are now ready to construct the Green’s function of the singular scalar Legendre
problem consisting of the equation

My = −(py󸀠)󸀠 = λy + h on J = (−1, 1), p(t) = 1 − t2, −1 < t < 1, (10.95)

together with two-point boundary conditions

A [ (−py󸀠)(−1)
(ypv󸀠 − v(py󸀠))(−1)

] + B [ (−py󸀠)(1)
(ypv󸀠 − v(py󸀠))(1)

] = [
0
0
] , (10.96)

where u, v are given by (10.78), and A,B are 2 × 2 complex matrices. This construction
is based on the system regularization discussed before, and we will use the notation
from above. Consider the regular nonhomogeneous system

Z󸀠 = −λGZ + F, AZ(−1) + BZ(1) = 0, (10.97)

where

F = [ f1
f2
] , fj ∈ L

1(J, ℂ), j = 1, 2. (10.98)

Theorem 10.6.2. Let −λ ∈ ℂ, and let Δ(−λ) = [A + BΦ(1, −1, −λ)]. Then the following
statements are equivalent:
(1) For F = 0 on J = (−1, 1), the homogeneous problem has only the trivial solution.
(2) Δ(−λ) is nonsingular.
(3) For every F ∈ L1(−1, 1), the nonhomogeneous problem (10.78) has a unique solu-

tion Z, and this solution is given by

Z(t, −λ) =
1

∫
−1

K(t, s, −λ)F(s) ds, −1 ≤ t ≤ 1, (10.99)
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where

K(t, s, −λ) =

{{{{{{{{{
{{{{{{{{{
{

Φ(t, −1, −λ)Δ−1(−λ)(−B)Φ(1, s, −λ)
if − 1 ≤ t < s ≤ 1,

Φ(t, −1, −λ)Δ−1(−λ)(−B)Φ(1, s, −λ) + ϕ(t, s − λ)
if − 1 ≤ s < t ≤ 1,

Φ(t, −1, −λ)Δ−1(−λ)(−B)Φ(1, s, −λ) + 1
2ϕ(t, s − λ)

if − 1 ≤ s = t ≤ 1.

The proof is a minor modification of the Neuberger construction given in [85]; see
also [113].

From the regularGreen’smatrixwenowconstruct the singularGreen’smatrix and,
from the latter, the singular scalar Legendre Green’s function.

Definition 10.6.1. Let

L(t, s, λ) = U(t)K(t, s, −λ)U−1(s), −1 ≤ t, s ≤ 1. (10.100)

The next theorem shows that L12, the upper right component of L, is the Green’s
function of the singular scalar Legendre problem (10.95)–(10.96).

Theorem 10.6.3. Assume that [A+BΦ(1, −1, −λ)] is nonsingular. Then for every function
h satisfying

h, vh ∈ L1(J, ℂ), (10.101)

the singular scalar Legendre problem (10.95)–(10.96) has a unique solution y(⋅, λ) given
by

y(t, λ) =
1

∫
−1

L12(t, s)h(s) ds, −1 < t < 1. (10.102)

Proof. Let

F = [ f1
f2
] = U−1H , H = [ 0

−h
] . (10.103)

Then fj ∈ L1(J2, ℂ), j = 1, 2. Since Y(t, λ) = U(t)Z(t, −λ), from (10.99) we get

Y(t, λ) = U(t)Z(t, −λ) = U(t)
1

∫
−1

K(t, s, −λ)F(s) ds

=
1

∫
−1

U(t)K(t, s, −λ)U−1(s)H(s) ds =
1

∫
−1

L(t, s, λ)H(s) ds, −1 < t < 1. (10.104)
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Therefore

y(t, λ) = −
1

∫
−1

L12(t, s, λ)h(s) ds, −1 < t < 1. (10.105)

An important property of the Friedrichs extension SF is the well-known fact that it
has the same lower bound as theminimal operator Smin. But this fact does not charac-
terize the Friedrichs extension of Smin. Haertzen, Kong, Wu, and Zettl [44] character-
ized all self-adjoint regular Sturm–Liouville operators that preserve the lower bound
of theminimal operator; see also Proposition 4.8.1 in [113]. The next theorem uniquely
characterizes the Legendre Friedrichs extension SF .

Theorem 10.6.4 (Everitt, Littlejohn, and Marić). Let S ̸= SF be a self-adjoint Legendre
operator in L2(−1, 1).Then there exists f ∈ D(S) such that

pf 󸀠󸀠 ∉ L2(−1, 1) and f 󸀠 ∉ L2(−1, 1).

Proof. See [30].

10.7 Operators on the interval (1, +∞)
In this section, we discuss self-adjoint operators for the interval J3 = (1,∞). A similar
discussion for (−∞, −1) can be obtained from the change of variable t → −t. Consider

My = −(py󸀠)󸀠 = λy on J3 = (1,∞), p(t) = 1 − t2. (10.106)

Note that p(t) < 0 for t > 1. So to conform to the standard notation for Sturm-Liouville
problems, we study the equivalent equation

Ny = −(ry󸀠)󸀠 = ξy on J3 = (1,∞), r(t) = t2 − 1 > 0, ξ = −λ. (10.107)

This N should not be confused with the notation N used for the regularized equa-
tion in Section 10.3.

Recall that for λ = ξ = 0, two linearly independent solutions are given by

u(t) = 1, v(t) = 1
2
ln(
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
t − 1
t + 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
). (10.108)

Although we focus on the interval (1,∞) in this section, we make the following
general observations. For all t ∈ ℝ, t ̸= ±1, we have

(pv󸀠)(t) = −1, (10.109)

 EBSCOhost - printed on 2/10/2023 3:33 PM via . All use subject to https://www.ebsco.com/terms-of-use



222 | 10 The Legendre equation and its operators

so for any λ ∈ ℝ and any solution y of the Legendre equation, we have the following
Lagrange forms:

[y, u] = −py󸀠, [y, v] = −y − v(py󸀠), [u, v] = −1, [v, u] = 1. (10.110)

Asbefore for the interval (−1, 1), theseplay an important role in the studyof self-adjoint
operators in L2(1,∞). Recall that although v blows up at −1 and +1 from both sides, it
turns out that these forms are defined and finite at all points ofℝ including −1 and +1,
provided thet we define the appropriate one-sided limits

[y, u](1+) = lim
t→1+
[y, u](t), [y, u](1+) = lim

t→−1−
[y, u](t) (10.111)

for all y ∈ Dmax(J3). Since u ∈ L2(1, 2) and v ∈ L2(1, 2), it follows from general Sturm–
Liouville theory that 1, the left endpoint of J3, is limit-circle nonoscillatory (LCNO). In
particular, all solutions of equations (10.106) and (10.107) are in L2(1, 2) for each λ ∈ ℂ.

In themathematics and physics literature, when a singular Sturm–Liouville prob-
lem is studied on a half-line (a,∞), it is generally assumed that the endpoint a us
regular. Here the left endpoint a = 1 is singular. Therefore regular conditions such as
y(a) = 0 or, more generally,

A1y(a) + A2(py
󸀠)(a) = 0, A1,A2 ∈ ℝ, (A1,A2) ̸= (0,0)

do not make sense. It is interesting that, as pointed out before, in the Legendre case
studied here, although the Dirichlet condition

y(1) = 0

does not make sense, the Neumann condition

(py󸀠)(1) = 0 (10.112)

does in fact determine a self-adjoint Legendre operator in L2(1,∞), the Friedrichs ex-
tension! So although (10.112) has the appearance of a regular Neumann condition, in
the Legendre case, it is actually an analogue of the Dirichlet condition!

By a self-adjoint operator associated with equation (10.78) in H3 = L2(1,∞), that
is, a self-adjoint realization of equation (10.78) inH3, wemean a self-adjoint restriction
of the maximal operator Smax associated with (10.78). This is defined as follows:

Dmax = {f : (−1, 1) → ℂ | f , pf
󸀠 ∈ ACloc(−1, 1); f , pf

󸀠 ∈ H3}, (10.113)

Smaxf = −(rf
󸀠)󸀠, f ∈ Dmax. (10.114)

Note that, in contrast to the (−1, 1) case, the Legendre polynomials neither are in Dmax
nor are solutions of (10.78) in general. As in the case for (−1, 1), we have the following
basic lemma.
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Lemma 10.7.1. The operator Smax is densely defined in H3 and therefore has a unique
adjoint in H3, denoted by Smin:

S∗max = Smin.

The minimal operator Smin in H3 is symmetric, closed, and densely defined and satisfies

S∗min = Smax.

Its deficiency index d = d(Smin) = 1. If S is a self-adjoint extension of Smin, then S is also
a self-adjoint restriction of Smax, and conversely. Thus we have

Smin ⊂ S = S
∗ ⊂ Smax.

Proof. See [113].

It is clear from Lemma 10.6.1 that each self-adjoint operator S is determined by its
domain. Next,wedescribe these self-adjoint domains. As before for the interval (−1, 1),
the functions u, v play an important role.

The Legendre operator theory for the interval (1,∞) is similar to that on (−1, 1),
except for the fact that the endpoint∞ is in the limit-point case and therefore there
are no boundary conditions required or allowed at∞. Thus all self-adjoint Legendre
operators in H3 = L2(1,∞) are generated by separated singular self-adjoint boundary
conditions at 1. These have the form

A1[y, u](1) + A2[y, v](1) = 0, A1,A2 ∈ ℝ, (A1,A2) ̸= (0,0). (10.115)

Theorem 10.7.1. Let A1,A2 ∈ ℝ, (A1,A2) ̸= (0,0), and define the linear manifold D(S)
consisting of all y ∈ Dmax satisfying (10.115). Then the operator S with domain D(S) is
self-adjoint in L2(1,∞). Moreover, given any operator S satisfying Smin ⊂ S = S∗ ⊂ Smax,
there exist A1,A2 ∈ ℝ, (A1,A2) ̸= (0,0), such that D(S), the domain of S, is determined
by (10.115).

The proof of this theorem is based on the next three lemmas.

Lemma 10.7.2. Suppose Smin ⊂ S = S∗ ⊂ Smax. Then there exists a function g ∈ D(S) ⊂
Dmax satisfying
(1) g is not in Dmin, and
(2)

[g, g](1) = 0,

so that D(S) consists of all y ∈ Dmax satisfying
(3)

[y, g](1) = 0. (10.116)

Conversely, given g ∈ Dmax that satisfies conditions (1) and (2), the set D(S) ⊂ Dmax
consisting of all y satisfying (3) is a self-adjoint extension of Smin.
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Proof. The proof of the lemma follows from the GKN theory [113] applied to (10.78).

The next lemma also plays an important role and is called the “bracket decompo-
sition lemma” in [113].

Lemma 10.7.3 (Bracket decomposition lemma). For any y, z ∈ Dmax, we have

[y, z](1) = [y, v](1)[z, u](1) − [y, u](1)[z, v](1). (10.117)

Proof. See [113, pp. 175–176].

Lemma 10.7.4. For any α, β ∈ ℂ, there exists a function g ∈ Dmax(J3) such that

[g, u](1+) = α, [g, v](1+) = β. (10.118)

Proof. See [113, pp. 175–176].

Armed with these lemmas, we can now proceed to the proof of Theorem 10.7.1.

Proof. Let A1,A2 ∈ ℝ, (A1,A2) ̸= (0,0). By Lemma 10.7.3 there exists g ∈ Dmax(J3) such
that

[g, u](1+) = A2, [g, v](1
+) = −A1. (10.119)

From (10.116) we get that for any y ∈ Dmax,

[y, g](1) = [y, v](1)[g, u](1) − [y, u](1)[g, v](1) = A1[y, u](1) + A2[y, v](1).

Now consider the boundary condition

A1[y, u](1) + A2[y, v](1) = 0. (10.120)

If (10.120) holds for all y ∈ Dmax, then it follows from Lemma 10.4.1, p. 175 of [113],
that g ∈ Dmin. But this implies, also by Lemma 10.4.1, that (A1,A2) ̸= (0,0), which is a
contradiction. From this it follows that

[g, g](1) = [g, v](1)[g, u](1) − [g, u](1)[g, v](1)
= A1[g, u](1) + A2[g, v](1) = A1A2 − A2A1 = 0.

Therefore g satisfies conditions (1) and (2) of Lemma 10.7.2, and, consequently,

[y, g](1) = A1[y, u](1) + A2[y, v](1) = 0 (10.121)

is a self-adjoint boundary condition.
To prove the converse, reverse the steps in this argument.
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It is clear fromTheorem 10.7.1 that there are an uncountable number of self-adjoint
Legendre operators in L2(1,∞). It is also clear that the Legendre polynomials Pn are
not eigenfunctions of any such operator since they are not in the maximal domain
and therefore not in the domain of any self-adjoint restriction S of Dmax.

Next, we discuss the spectrum of the self-adjoint Legendre operators in H3 =
L2(1,∞). Recall that the essential spectrum of all self-adjoint extensions of Smin is the
same.

Lemma 10.7.5. Let Smin ⊂ S = S∗ ⊂ Smax, where Smin and Smax are the minimal and
maximal operators in L2(1,∞) associated with equation (10.106). Then:

Lemma 10.7.6. S has no discrete spectrum.
The essential spectrum σe(S) is given by

σe(S) = ( −∞, −
1
4
].

The proof of this lemma is given in Proposition 10.2.1. The next theorem gives the
version of this lemma for the Legendre equation in the more commonly used form
(10.1).

Theorem 10.7.2. Let Smin ⊂ S = S∗ ⊂ Smax, where Smin and Smax are the minimal and
maximal operators in L2(1,∞) associated with equation (10.1). Then:
– S has no discrete spectrum.
– The essential spectrum σe(S) is given by

σe(S) = [
1
4
,∞).

Proof. This follows from the preceding lemma by simply changing the sign.

10.8 The Legendre operators on the whole line

In this section,we study the self-adjoint operators generated by the Legendre equation
(10.1) on thewhole real lineℝ =(−∞,∞). Our approach is using the direct summethod
developed by Everitt and Zettl [37]. To apply thismethod, we identify the Hilbert space
L2(ℝ) with the direct sum

L2(ℝ) = L2(−∞, −1) ∔ L2(−1, 1) ∔ L2(1,∞). (10.122)

The Legendre equation (10.1) has singular points at −∞ and +∞ and at the interior
points −1 and +1. So we study the three-interval problem for the three intervals

J1 = (−∞, −1), J2 = (−1, 1), J3 = (1,∞). (10.123)
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We use the notations −1−, −1+, +1−, and +1+ to indicate that −1 is a right endpoint for
J1 and a left endpoint for J2; +1 is a left endpoint for J2 and a left endpoint for J3.

Although only two-interval problems are discussed in Chapter 8, their extension
to three intervals is straightforward, especially, since in this section, we use only the
usual inner product on each interval, not the Mukhtarov–Yakubov [82] modification.

Let Smin(Ji) and Smax(Ji) denote the minimal and maximal operators in L2(Ji), i =
1, 2, 3, with domains Dmin(Ji) and Dmax(Ji), respectively.

Definition 10.8.1. The minimal and maximal Legendre operators Smin and Smax in
L2(ℝ) and their domains Dmin, Dmax are defined as follows:

Dmin = Dmin(J1) ∔ Dmin(J2) ∔ Dmin(J3),
Dmax = Dmax(J1) ∔ Dmax(J2) ∔ Dmax(J3),
Smin = Smin(J1) ∔ Smin(J2) ∔ Smin(J3),
Smin = Smax(J1) ∔ Smax(J2) ∔ Smax(J3).

Lemma 10.8.1. The minimal operator Smin is a closed densely defined symmetric oper-
ator in L2(ℝ) satisfying

S∗min = Smax, S∗max = S.

Its deficiency index d = d(Smin) = 4. Each self-adjoint extension S of Smin is a restriction
of Smax, that is, we have

Smin ⊂ S = S
∗ ⊂ Smax.

Proof. The adjoint properties follow from the corresponding properties of the compo-
nent operators, and it follows that

def(Smin) = def(Smin(J1)) + def(Smin(J2)) + def(Smin(J3))
= 1 + 2 + 1 = 4,

since −∞ and +∞ are LP and −1−, −1+, +1−, +1+ are all LC.

Remark 10.8.1. Although theminimal andmaximal operators Smin, Smax are the direct
sums of the corresponding operators on each of the three intervals, wewill further see
that there are many self-adjoint extensions S of Smin that are not simply direct sums of
operators from these three intervals.

For y, z ∈ Dmax, y = (y1, y2, y3), z = (z1, z2, z3), we define the “three-interval” or
“whole-line” Lagrange sesquilinear form [⋅, ⋅] as follows:

[y, z] = [y1, z1]1(−1
−) − [y1, z1]1(−∞) + [y2, z2]2(+1

−) − [y2, z2]2(−1
+)

+ [y3, z3]3(+∞) − [y3, z3]3(+1
+)

= [y1, z1]1(−1
−) + [y2, z2]2(+1

−) − [y2, z2]2(−1
+) − [y3, z3]3(+1

+). (10.124)
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Here [yi, zi]i denotes the Lagrange form on the interval Ji, i = 1, 2, 3. In the last
step, we noted that the Lagrange forms evaluated at −∞ and at +∞ are zeros because
these are LP endpoints. The fact that each of these one-sided limits exists and is finite
follows from the one-interval theory.

As noted before for λ = 0, the Legendre equation

My = −(py󸀠)󸀠 = λy (10.125)

has two linearly independent solutions

u(t) = 1, v(t) = − 1
2
ln(
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
t − 1
t + 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
).

Observe that u is defined on the whole ℝ, but v blows up logarithmically at the two
interior singular points from both sides. Observe that

[u, v](t) = u(t)(pv󸀠)(t) − v(t)(pu󸀠)(t) = 1, −∞ < t < ∞, (10.126)

where we have taken appropriate one-sided limits at ±1, and for all y ∈ D, we have

[y, u] = −py󸀠, [y, v] = y − v(py󸀠), (10.127)

and again by taking appropriate one-sided limits, if necessary, [y, u](t) is defined
(finitely) for all t ∈ ℝ. Similarly, the vector

Y = [ [y, u]
[y, v]
] = [

−py󸀠

y − v(py󸀠)
] (10.128)

is well defined. In particular,

Y(−1−), Y(−1+), Y(1−), Y(1+) (10.129)

are all well defined and finite. Note also that Y(−∞) and Y(−∞) are well defined and

Y(−∞) = [ 0
0
] = Y(∞). (10.130)

Remark 10.8.2. For any y ∈ Dmax, the one-sided limits of (py󸀠) and of y − v(py󸀠) exist
and are finite at −1 and at 1. Hence if (py󸀠) has a nonzero finite limit, then ymust blow
up logarithmically.

Now we can state the theorem giving the characterization of all self-adjoint ex-
tensions S of the minimal operator Smin; recall that these are all operators S satisfying
Smin ⊂ S = S∗ ⊂ Smax in the Hilbert space L2(ℝ), which we identify with the direct sum
space L2(−∞, −1) ∔ L2(−1, 1) ∔ L2(1,∞).
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Theorem 10.8.1. Suppose A = (aij), B = (bij), C = (cij), and D = (dij) are 4 × 2 complex
matrices satisfying the following two conditions:
(1)

rank(A,B,C,D) = 4, (10.131)

(2)

AEA∗ − BEB∗ + CEC∗ − DED∗ = 0, E = [ 0 −1
1 0
] . (10.132)

Componentwise, conditions (10.132) are written for j, k = 1, 2, 3, 4 as

(aj1ak2 − aj2ak1) − (bj1bk2 − bj2bk1) + (cj1ck2 − cj2ck1) − (dj1dk2 − dj2dk1) = 0.

Define D to be the set of all y ∈ Dmax satisfying

AY(−1−) + BY(−1+) + CY(1−) + DY(1+) = 0, (10.133)

where

Y = [ −(py
󸀠)

y − v(py󸀠)
] .

Then D is the domain of a self-adjoint extension S of the three-interval minimal op-
erator Smin.

Conversely, given any self-adjoint operator S satisfying Smin ⊂ S = S∗ ⊂ Smax with
domain D = D(S), there exist 2 × 4 complex matrices A = (aij), B = (bij), C = (cij), and
D = (dij) satisfying conditions (1) and (2) such that D(S) is given by (10.133).

Proof. The proof of the theorem is based on three lemmas, which we establish next.
Also see Example 13.3.4, pp. 273–275, in [113].

Remark 10.8.3. Theboundary conditions are given by (10.133); (10.131) determines the
number of independent conditions, and (10.132) specifies the conditions on the bound-
ary conditions needed for self-adjointness.

Using the three-interval Lagrange form, the next lemma gives an extension of the
GKN characterization for the whole-line Legendre problem.

Lemma 10.8.2. Suppose Smin ⊂ S = S∗ ⊂ Smax. Then there exist v1, v2, v3, v4 ∈ D(S) ⊂
Dmax satisfying the following conditions:
(1) v1, v2, v3, v4 are linear independent modulo Dmin, that is, no nontrivial linear combi-

nation is in Dmin;
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(2)

[vi, vj] = 0, i, j = 1, 2, 3, 4, (10.134)

so that D(S) consists of all y ∈ Dmax satisfying
(3)

[y, vj] = 0, j = 1, 2, 3, 4. (10.135)

Conversely, given v1, v2, v3, v4 ∈ Dmax satisfying conditions (1) and (2), the set D(S) ⊂
Dmax consisting of all y satisfying (3) is a self-adjoint extension of Smin.

The lemma follows from [37, Theorem 3.3], extended to three intervals and ap-
plied to the Legendre equation. The next lemma is called the “bracket decomposition”
lemma in [113]. It applies to each of the intervals Ji, i = 1, 2, 3, but for simplicity of no-
tation, we omit the subscripts.

Lemma 10.8.3 (Bracket decomposition lemma). Let Ji = (a, b), let y, z, u, v ∈ Dmax =
Dmax(Ji), Ji = (a, b)m and assume that [v, u](c) = 1 for some c, a ≤ c ≤ b. Then

[y, z](c) = [y, v](c)[z, u](c) − [y, u](c)[z, v](c). (10.136)

For a proof of the lemma, see [113, pp. 175–176]. The next lemma applies a one-
interval result to three intervals Ji, i = 1, 2, 3.

For this lemma, we extend the definitions of the functions u, v, but we will con-
tinue using the same notation:

u(t) = { 1, −1 < t < 1, −2 < t < −1, 1 < t < 2,
0, |t| > 3m

(10.137)

v(t) = { −
1
2 ln(

t−1
t+1 ), −1 < t < 1, −2 < t < −1, 1 < t < 2,

0, |t| > 3,
(10.138)

and define both functions on the intervals [−3, −2] and [2, 3] so that they are continu-
ously differentiable on these intervals.

Lemma 10.8.4. Let α, β, γ, δ ∈ ℂ.
– There exists g ∈ Dmax(J2) that is not in Dmin(J2) such that

[g, u](−1+) = α, [g, v](−1+) = β, [g, u](1+) = γ, [g, v](1+) = δ. (10.139)

– There exists g ∈ Dmax(J1) that is not in Dmin(J1) such that

[g, u](−1−) = α, [g, v](−1−) = β. (10.140)

– There exists g ∈ Dmax(J3) that is not in Dmin(J3) such that

[g, u](1+) = γ, [g, v](1+) = δ. (10.141)
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Proof of Theorem 10.8.1. The method of proof is the same as that used in the proof of
Theorem 10.7.1, but the computations are longer. It consists in showing that each part
of Theorem 10.7.1 is equivalent to the corresponding part of Lemma 10.7.1.

10.8.1 A self-adjoint Legendre operator on the whole real line

The boundary condition

(py󸀠)(−1−) = (py󸀠)(−1+) = (py󸀠)(1−) = (py󸀠)(1+) = 0 (10.142)

satisfies the conditions of Theorem 10.8.1 and therefore determines a self-adjoint oper-
ator SL in L2(ℝ). Let S1 in L2(−∞, −1) be determined by (py󸀠)(−1−) = 0, S2 = SF in (−1, 1)
by (py󸀠)(−1+) = (py󸀠)(1−) = 0, and S3 by (py󸀠)(1+) = 0. Then each Si is self-adjoint, and
the direct sum

S = S1 ∔ S2 ∔ S3 (10.143)

is a self-adjoint operator in L2(−∞,∞). It is well known that the essential spectrum of
a direct sum of operators is the union of the essential spectra of these operators. From
this, the above proposition, and the fact that the spectrum of S2 is discrete we have

σe(S) = (−∞, −1/4].

Note that the Legendre polynomials satisfy all four conditions of (10.142). Therefore
the triple

PL = (0,Pn,0) (n ∈ ℕ0) (10.144)

are eigenfunctions of SL with eigenvalues

λn = n(n + 1) (n ∈ ℕ0). (10.145)

Thus we may conclude that

(−∞, −1/4] ∪ {λn = n(n + 1), n ∈ ℕ0} ⊂ σ(S). (10.146)

We conjecture that

(−∞, −1/4] ∪ {λn = n(n + 1) : n ∈ ℕ0} = σ(S). (10.147)

By using equation (10.1) on the interval (−1, 1) and equation (10.5) on the intervals
(−∞, −1) and (1,∞), in other words, by using p(t) = 1− t2 for −1 < t < 1 and p(t) = t2 − 1
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for −∞ < t < −1 and for 1 < t < ∞ and applying the three-interval theory as in Exam-
ple 1, we obtain an operator whose essential spectrum is [1/4,∞) and whose discrete
spectrum contains the classical Legendre eigenvalues

{λn = n(n + 1) : n ∈ ℕ0}.

Note that λ0 = 0 is below the essential spectrum and all other eigenvalues λn for n > 0
are embedded in the essential spectrum. Each triple

(0,Pn,0) when n ∈ ℕ0

is an eigenfunction with eigenvalue λn for n ∈ ℕ0.

10.9 Singular transmission and interface conditions for the
Legendre equation

In this section, we illustrate the two-interval characterization of self-adjoint domains
given by case 4, d = 3, of Theorem 8.3.1 and the application of this theorem discussed
in Section 8.4 by describing the two-interval self-adjoint realizations of the Legendre
equation

− (py󸀠)󸀠 = λy, p(t) = 1 − t2 (10.148)

in the Hilbert spaceH = L2(−1,∞). For this, we identify the direct sum space L2(−1, 1)∔
L2(1,∞) with this Hilbert space:

H = L2(−1,∞) = L2(−1, 1) ∔ L2(1,∞). (10.149)

For clarity of exposition, we state case 4 of Theorem 8.3.1 as the next corollary.

Corollary 10.9.1. Consider the two-interval problem consisting of the Legendre equation
(10.148) on the intervals J1 = (−1, 1), J2 = (1,∞) with endpoints a = −1−, b = 1+, c = 1−

and d = ∞. Let (u1, v1) be a boundary basis at a, let (u2, v2) be a boundary basis at b,
and let (u3, v3) be a boundary basis at c. Suppose A = (aij), B = (bij), and C = (cij) are
3 × 2matrices with complex entries satisfying the following two conditions:
(1) The matrix (A,B,C) has full rank,
(2) For some h, k ∈ ℝ, h ̸= 0 ̸= k,

kAEA∗ − kBEB∗ + hCEC∗ = 0.

Then D(S) = {y = (y1, y2) ∈ Dmax such that

AY1(a) + BY2(b) + CY3(c) = 0},
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where

Y1(a) = [
[y, u1]1(a)
[y, v1]1(a)

] ,Y2(b) = [
[y, u2]2(b)
[y, v2]2(b)

] , Y3(c) = [
[y, u3]3(c)
[y, v3]3(c)

] ,

is the domain of a self-adjoint operator S in H = L2(−1,∞) satisfying

Smin(J1, J2) ⊂ S = S
∗ ⊂ Smax(J1, J2), (10.150)

and every operator S in H satisfying (10.150) is obtained this way.

Proof. This is case 4 of Theorem 8.3.1 where the right endpoint of the second interval
J2 is LP and each of the other endpoints a, b, c is singular LC. In this case the deficiency
index is 3.

Next, we recall some observations about the Legendre equation and use these to
give explicit singular self-adjoint transmission and interface conditions at the interior
singular point 1.

For λ = 0, two linearly independent solutions of (10.148) are given by

u(t) = 1, v(t) = − 1
2
ln(
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1 − t
t + 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
).

Since these two functions u, v further play an important role, we list some their prop-
erties.

Observe that for all t ∈ ℝ, t ̸= ±1, we have

v[1](t) = (pv󸀠)(t) = +1.

Thus the quasi-derivative (pv󸀠) can be continuously extended so that it is well defined
and continuous on the whole real line ℝ including the two singular points −1 and +1.
It is interesting to observe that u, (pu󸀠), and the extended (pv󸀠) can be defined to be
continuous onℝ and only v blows up at the singular points−1 and+1, and this blowup
is logarithmic.

Note that

[u, v](t) = u(t)(pv󸀠)(t) − v(t)(pu󸀠)(t) = 1, −∞ < t < ∞,

where we have taken appropriate one-sided limits at ±1.
For all y = (y1, y2) ∈ Dmax(J1, J2), we have

[y, u] = −(py󸀠), [y, v] = y − v(py󸀠),

and again by taking appropriate one-sided limits, if necessary, we see that [y, u](t) is
defined and finite for all t ∈ ℝ. Thus the vector

Y(t) = [ [y, u](t)
[y, v](t)

] = [
−(py󸀠)(t)
(y − v(py󸀠))(t)

]
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is well defined for all t ∈ ℝ. In particular,

Y(−1−), Y(1−), Y(1+)

are well defined and finite. Note also that Y(∞) is well defined and

Y(∞) = [ 0
0
] ,

since∞ is LP.
Using these observations, we can make Corollary 10.9.1 more explicit.

Corollary 10.9.2. Consider the two-interval problem consisting of the Legendre equa-
tion (10.148) on the intervals (−1, 1) and (1,∞) with endpoints a = −1−, b = 1+, c = 1−

and d = ∞ and note that the deficiency index is 3. Suppose A = (aij), B = (bij), and
C = (cij) are 3 × 2matrices with complex entries satisfying the following two conditions:
(1) The matrix (A,B,C) has full rank,
(2) For some h, k ∈ ℝ, h ̸= 0 ̸= k,

kAEA∗ − kBEB∗ + hCEC∗ = 0.

Then D(S) = {y = (y1, y2) ∈ Dmax(J1, J2) such that

AY1(−1
−) + BY1(1

+) + CY2(1
−) = 0},

where

Y1(−1
−) = [

−(py󸀠)(−1−)
(y − v(py󸀠))(−1−)

] , Y1(1
+) = [

−(py󸀠)(1+)
(y − v(py󸀠))(1+)

] ,

Y2(1
−) = [

−(py󸀠)(1−)
(y − v(py󸀠))(1−)

] ,

is the domain of a self-adjoint operator S in H = L2(−1,∞) satisfying (10.150), and every
operator S in H satisfying (10.150) is obtained this way.

Proof. Note that (u1, v1) where u1 = u on J1 and v1 = v on J1 are a boundary condition
basis at both endpoints −1− and 1+. Also, u3 = u and v3 = v are a boundary condition
basis for 1−. The explicit form of the singular boundary conditions then follows from
the observations above.

Remark 10.9.1. We comment on Corollary 10.9.2. Let y = {y1, y2} ∈ Dmax(J1, J2). Since
(py󸀠r)(t) and yr − v(py

󸀠
r) are finite for all t ∈ ℝ and v blows up at a = −1

−, b = 1+, c = 1−,
it follows that yr, r = 1, 2, also blow up at these points. In particular, this holds for any
solution of equation (10.148) on J1 and J2 for any λ ∈ ℝ.

Next, we give some examples.
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Example 10.9.1. Let a1j, b1j, c1j ∈ ℝ, j = 1, 2, with at least one member of each pair
not 0.

A = [[
[

a11 a12
0 0
0 0

]]

]

, B = [[
[

0 0
b11 b12
0 0

]]

]

, C = [[
[

0 0
0 0
c11 c12

]]

]

,

0 = −a11(py
󸀠)(−1−) + a12(y − v(py

󸀠))(−1−)
= −b11(py

󸀠)(1+) + b12(y − v(py
󸀠))(1+)

= −c11(py
󸀠)(1−) + c12(y − v(py

󸀠))(1−).

Example 10.9.2. Note that in the previous example, these singular transmission con-
ditions are independent of the parameters h, k. We mention a couple of particular
cases:
–

0 = (py󸀠)(−1−) = (py󸀠)(1+) = (py󸀠)(1−).

It is interesting to note that each of these conditions looks like a regular Neumann
conditions but is actually a singular analogue of the regular Dirichlet condition
[113]. The singular analogues of the regular Neumann conditions are given by

–

0 = (y − v(py󸀠))(−1−) = (y − v(py󸀠))(1+).

These depend on the function v.

The next example illustrates singular self-adjoint interface conditions. These are
“jump” conditions involving a solution y that blows up, that is, has an infinite jump
at the singular interior point 1, where the condition is specified.

Example 10.9.3. In this example, we have a separated condition at −1− and a coupled
condition “coupling” the endpoints 1+ and 1−. For a11, a12 ∈ ℝ, (a11, a12) ̸= (0,0),

0 = −a11(py
󸀠)(−1−) + a12(y − v(py

󸀠))(−1−),

and

Y2(1
−) = eiγKY1(1

+), −π < γ ≤ π, i = √−1,

where Y1(1+) and Y2(1−) are given previously, and K is a real 2 × 2 nonsingular matrix.

Remark 10.9.2. The particular case K = I and γ = 0 is a singular analogue of the
regular periodic boundary condition. Similarly, the case where K = −I and γ = 0 is
a singular analogue of the regular semiperiodic (antiperiodic) boundary condition.
However, in both cases, these conditions depend on the function v.
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Remark 10.9.3. Consider γ = 0 and

K = [ 1 0
r 1
] , r ∈ ℝ.

Then the self-adjoint boundary condition reduces to

(py󸀠)(1−) = (py󸀠)(1+),

that is, the quasi-derivative (py󸀠) is continuous at the singular interior point 1, and

(y − v(py󸀠))(1−) − (y − v(py󸀠))(1+) = r(−(py󸀠)(1)).

Note that the right-hand side is finite. On the left-hand side, as remarked before, y
must blow up asymptotically like v so that each of (y − v(py󸀠))(1−) and (y − v(py󸀠))(1+)
is finite and the self-adjointness condition is that the difference between these two
finite numbers is equal to the right-hand side.

10.10 Comments

This chapter is based largely on papers by Littlejohn and Zettl [74], Niessen and
Zettl [86], Arvesu, Littlejohn, and Marcellan [3], Everitt and Zettl [37], Mukhtarov and
Yakubov [82], Neuberger [85], and Wang and Zettl [103].
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A Notation
A good notation has a subtlety and suggestiveness which at times make it almost seem like a live
teacher.

Russell, Bertrand (1872–1970). In J. R. Newman (ed.) TheWorld of Mathematics, New York: Simon
and Schuster, 1956.

In this Appendix, we provide a brief list of the mathematical notation used.
ℕ0 = {0, 1, 2, 3, . . .}.
ℕ = {1, 2, 3, . . .}.
ℤ = {. . . , −3, −2, −1,0, 1, 2, 3, . . .}.
ℝ is the set of real numbers.
ℂ is the set of complex numbers.
(a, b) denotes the open interval with finite or infinite endpoints, −∞ ≤ a < b ≤ ∞.
[a, b] denotes the closed interval with finite endpoints.
[a, b) includes a but not b; similarly for (a, b].
L(J, ℂ) is the set of Lebesgue-integrable complex-valued functions defined almost

everywhere on J.
L(J, ℝ) is the set of real-valued Lebesgue-integrable functions on J.
Lloc(J, ℝ) is the set of functions y satisfying y ∈ L([a, b], ℝ) for every compact subin-

terval [a, b] of J.
Lloc(J, ℂ) is the set of functions y satisfying y ∈ L([a, b], ℂ) for every compact subin-

terval [a, b] of J.
ACloc(J) is the set of complex-valued functions that are absolutely continuous on

all compact subintervals of J. (Note: ACloc(J) = ACloc(J, ℂ), but we do not need this no-
tation since we have no need for just the real-valued absolutely continuous functions
on compact subintervals.)

Mn,m(S) is the set of n × m matrices with entries from S; if n = m, we abbreviate
this toMn(S). Also, ifm = 1, then we sometimes write Sn forMn,1(S).
|P| denotes the absolute value of P if P is a real or complex number or a func-

tion. If P is a real or complex matrix constant or function, then |P| denotes the matrix
norm. Since allmatrix norms are topologically equivalent (in a finite-dimensional vec-
tor space), this matrix norm can be taken as the 1-norm:

|P| = ∑ |pij|.

‖Y‖ denotes a norm in a vector space; this space is either specified or is clear from
the context.
{Xn : n ∈ N} denotes the sequence X1,X2,X3, . . ..
L2(J,w) = {f : J → ℂ, ∫J |f |

2w < ∞} is the Hilbert space of square-integrable func-
tions with weight w > 0 a. e. on J. Since we have no need for the Hilbert space of real-
valued square-integrable functions, we do not use or need the notations L2(J, ℂ,w)
and L2(J, ℝ,w).

https://doi.org/10.1515/9783110719000-011
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L2(J,w) = {f : J → ℂ, ∫J |f |
2w < ∞} is the Krein space of square-integrable

functions with weight w changing sign on J. Since we have no need for the Krein
space of real-valued square-integrable functions, we do not use or need the notations
L2(J, ℂ,w) and L2(J, ℝ,w).

Φ(t, u, ) or Φ(t, u,P) is the “primary fundamental matrix” of the system Y 󸀠 = PY
on J. The primary fundamental matrix Φ is a matrix solution satisfying Φ(u, u) = I for
all u ∈ J. Here I is the identity matrix.

T󸀠(x) is the Fréchet derivative in Banach spaces; see Section 1.7.
o(|h|) See Section 1.7.
σ(C) is the set of eigenvalues of a matrix C ∈ 𝕄n.
σ(C,D) is the set of eigenvalues of the matrix pair (C,D), (C − λD)u = 0.
C[1] is the submatrix of C obtained by removing the first row and column.
C[n] is the submatrix obtained by removing the last row and column.
C[1,n] is the submatrix obtained by removing both the first and last rows and

columns.
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B Open problems
Unfortunately, what is little recognized is that the most worthwhile scientific books are those in
which the author clearly indicates what he does not know; for an author most hurts his readers
by concealing difficulties.

Galois, Évariste. In N. Rose (ed.) Mathematical Maxims andMinims, Raleigh NC: Rome Press Inc.,
1988.

These problems are “open” as far as the author knows at the time of this writing and
are stated in randomorder. Somemaybe intractable, someaccessible but challenging,
and others routine. I have made no effort to grade these problems by their difficulty.
Some I feel can be done with a moderate amount of effort, others with considerable
effort, and some I have no idea how to do.
1. Chapter 10 “The Legendre Equation and its Operators” contains an extensive dis-

cussion of the Legendre equation. Chapter 14 in [113] has a list of other equations,
which are of considerable interest in mathematics, physics, and other fields, in-
cluding those named after Bessel, Laplace, Laguerre, Fichera, Latzko, etc.
Problem: Write Chapter 10 for one of these.

2. In Chapter 5, it is shown that given any finite set of primes, there is a Sturm–
Liouville boundary value problemwhose spectrum is this set. Show that there is a
Sturm–Liouville boundary value problemwhose spectrum is the set of all primes.
This may be a one-interval problem or a multiinterval problem with a finite or in-
finite number of intervals.
Note that Example 22 in Chapter 14 of [113] gives a class of Laguerre problems all
having spectrum given by

σ = {λn = n : n ∈ ℕ0}.

3. Does there exist a regular classical self-adjoint SLP with an infinite set of eigen-
values all of which are simple except for arbitrary three λn1 , λn2 , λn3?

4. Consider the equation

−(py󸀠)󸀠 + qy = λwy, λ ∈ ℂ, on J = (a, b), −∞ < a < b < ∞,

with coefficients satisfying

r = 1/p, q,w ∈ L1(J, ℝ), p > 0, w > 0 a. e.

and separated self-adjoint boundary conditions

cos αy(a) − sin α(py󸀠)(a) = 0, 0 ≤ α < π,
cos βy(b) − sin β(py󸀠)(b) = 0, 0 < β ≤ π.

https://doi.org/10.1515/9783110719000-012
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Given real numbers {λi, μi : i ∈ ℕ = 1, 2, 3, . . . } satisfying the strict interlacing
relation

λ1 < μ1 < λ2 < μ2 < ⋅ ⋅ ⋅ < λk−1 < μk−1 < λk
and a weight function w, do there exist coefficients p, q such that for some α1 ∈
[0,π) and β1 ∈ (0,π], we have

σ(α1, β1) = {λi, i ∈ ℕ}

and

σ(α2, β2) = {μi : i ∈ ℕ}?

5. Extend the inverse theorems of Chapter 5 to regular self-adjoint classical problems
for any coupling matrix K.

6. Extend the inverse theoremsof Chapter 5 to regular complex self-adjoint boundary
conditions, that is, to γ ̸= 0 in

Y(b) = eiγKY(a).
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