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Introduction

We discuss recent results in the one- and in two-interval theory of Sturm-Liouville
problems. The one-interval theory is covered in Chapters 1-7, the two-interval theory
in Chapters 8-10. The extension of the 2-interval theory to finitely many intervals is
routine. A list of notations is given in Appendix A, and open problems are given in
Appendix B.

The Priifer transformation is a powerful tool, theoretically and computationally,
for studying the eigenvalues and eigenfunctions of self-adjoint Sturm-Liouville prob-
lems with separated boundary conditions. In 2012, Bailey and Zettl [13] developed an
algorithm based on the Priifer transformation, which can be used to compute the
eigenvalues of self-adjoint Sturm-Liouville problems with coupled boundary condi-
tions using “families” of problems with separated conditions. This is discussed at the
end of Chapter 1.

Problems with periodic coefficients are discussed in Chapter 2. This chapter was
motivated, to some extend, by numerous discussions with Shang Yuan Ren, the author
of the book Electronic States in Crystals of Finite Size, Quantum Confinement of Bloch
Waves, Springer Tracts in Modern Physics, 2005, second edition, volume 270, 2017.

It also uses some of the methods used by M. S. P. Eastham in his well-known book
The Spectral Theory of Periodic Differential Equations, Scottish Academic Press, Edin-
burgh and London, 1973, but with the following major differences:

(1) We use quasi-derivatives (py’) instead of the classical derivative y'; in particular,
for the periodic boundary conditions, we have

y(a)=y(b), (py')@) = (py')(b)

instead of

y(a) =y(b), y'(a)=y' D).

(2) We do not assume that p is differentiable nor that g and w are piecewise continu-
ous and that w is bounded away from 0.

(3) We do assume that p is positive. This seems to be an oversight by Eastham. If p has
positive and negative values, each on a set of positive Lebesgue measure (such
as a subinterval, but it need not be a subinterval), then the eigenvalues are un-
bounded above and below. So there is no unique ordering of the eigenvalues, and
consequently A, is not well defined.

(4) The quasi-derivative (py’) is continuous on the interval [a, b], whereas the classi-
cal derivative y'(t) may not exist for all t in [a, b].

(5) We use the interval (0,m), instead of (0,1), to parameterize the complex self-
adjoint boundary conditions. This provides a simple visualization of the “move-
ment” of the eigenvalues A,,(y) on the unit circle of the complex plane relative to
the points 0 and 77, which correspond to the periodic and semiperiodic eigenval-
ues.

https://doi.org/10.1515/9783110719000-201
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(6) We use a notation that makes it easier to “keep track” of the dependence of the
eigenvalues on the many parameters a, b, k, n, i, 9, etc. of the problem. This de-
pendence sometimes requires a very delicate analysis.

It is well known that for h-periodic coefficients, the eigenvalues of complex self-adjoint
boundary conditions on the base interval (a, a + h) are related to the periodic eigen-
values on the larger intervals (a,a + hk), k = 1,2,3,4,... For fixed a, h, let A,(y), )lf; (k),
and A,Sl(k) denote the complex, periodic, and semiperiodic eigenvalues on the inter-
vals (a,a + hk), k = 1,2,3,4,.... In 2017, 2018 Yuan, Sun, and Zettl [107, 108] found
a similar relationship for the semiperiodic boundary conditions and — for both cases
— found a one-to-one correspondence between the eigenvalues of the complex self-
adjoint boundary conditions on the base interval ] = (a,a + h) and the periodic and
semiperiodic boundary conditions on the larger intervals. The complex boundary con-
ditions on J can be parameterized by y € (0, ).

Let P(k) = URAE(K), Sk = URpAS(k), and T(y) = J2oAa(y) denote the pe-
riodic, semiperiodic, and complex eigenvalues. The sets of periodic and semiperi-
odic eigenvalues P(k) and S(k) are countable; the set of complex eigenvalues I'(y),
y € (0, m), is not countable. Given }lf: (k) forany n =1,2,3,... for which y and which m
is /\5 (k) = A,,(y)? This question and a similar question for semiperiodic eigenvalues is
answered in Chapter 2.

Chapters 3 and 4 discuss various extensions of the classical Sturm-Liouville the-
ory, including the Atkinson extension. In his classical book, Atkinson [4] hints at the
existence of self-adjoint regular Sturm-Liouville problems with finite spectrum. This
was confirmed in 2001 by Kong, Wu, and Zettl [65]. These authors later showed that
Sturm-Liouville problems of “Atkinson type” are equivalent to matrix problems.

Chapter 5 discusses the inverse theory for problems with finite spectrum devel-
oped by Kong and Zettl [69] in 2012. This finite spectrum inverse theory applies to
problems with both the leading coefficient p and the potential function g and weight
function w in contrast to the infinite spectrum inverse theory, where p and w are as-
sumed to be the constant function 1.

The eigenvalues below the essential spectrum of singular problems developed by
Zhang, Sun, and Zettl [114] are discussed in Chapter 6. For operators that are bounded
below we can now claim to understand the continuous dependence of the eigenval-
ues of self-adjoint Sturm-Liouville problems on the boundary conditions. Chapter 7
discusses results on lambda-dependent boundary conditions, also found by these au-
thors.

Recently, there has been a lot of interest in the literature of self-adjoint Sturm-—
Liouville problems with discontinuous boundary conditions specified at regular in-
terior points of the underlying interval. Such conditions are known by various names
including transmission conditions [1, 2, 82, 87, 88, 98], interface conditions [61, 76, 92,
109], discontinuous conditions [51, 91, 81], multipoint conditions [55, 76, 36, 112], point
interactions (in the physics literature) [42, 21, 23, 35], conditions on trees, graphs, or
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networks [90, 87, 88], etc. For an informative survey of such problems arising in appli-
cations, including an extensive bibliography and historical notes, see Pokornyi and-
Borovskikh [87] and Prokornyi and Pryadiev [88]. These problems are not covered by
the classical Sturm-Liouville theory since, in this theory, solutions and their quasi-
derivatives are continuous at all interior points of the underlying interval J = (a, b).
In particular, this applies to all eigenfunctions. These two-interval problems are intro-
duced in Chapter 8. Chapter 9 develops the Neuberger construction of the two-interval
Green’s function.

Chapter 10 is based on the 2011 paper by Littlejohn and Zettl [74]. It discusses
the Legendre equation and its self-adjoint operators on the intervals (-oo, -1), (-1,1),
(1, 00), and (-o0, co) in detail. Most of the results discussed here can be inferred from
known results scattered widely in the literature; others require some additional work.
Some are new in this paper, for example, the construction of a regular Legendre equa-
tion on the interval (-1, 1), which is equivalent to the classical singular Legendre equa-
tion on the same interval. It is remarkable that we can find some new results about this
well-studied classical equation and its associated operators.

Appendix A is a list of notations used.

Appendix B discusses some open problems. These problems are “open” as far as
the author knows at the time of this writing and are stated in random order. Some may
be intractable, some accessible but challenging, and others routine.

The world of Mathematics is full of wonders and of mysteries, at least as much so as the physical

world. Without Mathematics (M) there would be no Science (S), without Science there would be

no Engineering (E), and without Science and Engineering there would be no modern Technol-

ogy (T). STEM should be spelled MSET.

Mathematics exists in all Galaxies and in all Universes.
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1 Classical regular self-adjoint problems

1.1 Introduction

In this chapter, we discuss properties of the eigenvalues of classical regular self-
adjoint Sturm-Liouville problems. Such a problem consists of the equation

My = —(py’)' +qy=Awy, AeC, on]J=(ab), -co<a<bs<oo, (L1)
with coefficients satisfying
1p,gweL'J,R), p>0, w>0 a.e.on], (1.2)
and boundary conditions
y
AY(a) +BY(b)=0, Y= [ ] (1.3)
®y")
satisfying
1 0

A,B e My(C), AEA" =BEB*, rank(A:B)=2, E= [ o - ] . (1.4)

Here M,(C) denotes the 2 x 2 matrices with complex entries. Recall the system formu-
lation of equation (1.1):

Y =P-AW)Y (1.5)
with
P:[O Up 1 W:[O 0]. (1.6)
q O | w 0
From (1.2) it follows that
y(a) ] [ y(b) ]
Y(a) = . Y(b) =
(@) [(py’)(a). O =1 oyhm

exist as finite limits so that the boundary conditions (1.3) are well defined.

Definition 1.1.1. Let ®(t,u, P, w, A) be the primary fundamental matrix of (1.5) and re-
call that

@' (t) = [P(t) - AW (1)]D(t), DPu,u,A)=1, a<ut<h, AecC. 1.7
Define the characteristic function § by
8(A) = 6(a, b, A,B,P,w,A) = det[A + BO(b,a,P,w,1)], AeC. (1.8)
Definition 1.1.2. This function 6 is the characteristic function of problem (1.1)-(1.4).

https://doi.org/10.1515/9783110719000-001
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Lemma 1.1.1. Let (1.1) to (1.4) hold, and let 6(A) be defined by (1.8). Then 6(A) is an entire
function of A € C, and its zeros are precisely the eigenvalues of problem (1.1)-(1.4).

Proof. The fact that 6(A) is an entire function of A is well known. A direct computation
shows that its zeros are precisely the eigenvalues of the problem. O

It is convenient to classify the self-adjoint boundary conditions into two mutually
exclusive classes, separated and coupled.

Lemma 1.1.2 (Separated boundary conditions). Let (1.1)-(1.4) hold. Fix P, W, ] and as-
sume that

A:[Al Az] B:[o o]
o o |’ B, B, |’

Then §(A) = -A,B,¢11(b, a, L) — Ay,Bry (b, a,A) + A1Bi1o(b, a,A) + A1B,dpy(b, a, A)
ford e C.

Proof. This follows from the definition of § and a direct computation. O

The characterization of the eigenvalues as zeros of 6(A) reduces to a simpler and
more informative form when the boundary conditions are coupled. This reduction is
given by the next lemma.

Lemma 1.1.3 (Coupled self-adjoint boundary conditions). Let (1.1)-(1.4) hold. Let @ =
(¢35) be the primary fundamental matrix of system (1.5). Fix P, W, ] and assume that

B=-I, A=é"K, -m<ys<m K eSL(R), (1.9)
that is, K is a real 2 x 2 matrix with determinant 1. Let K = (k,-j) and define
DA, K) = ki19p(b, a,A) — kiypx (b, a,A) — ky p1o(b, a, A) + kyy 1 (b, a, A) (1.10)

for A € C. Note that D(A, K) does not depend on'y. Then
(1) The real number A is an eigenvalue of (1.1)-(1.4) if and only if

D(A,K) =2cosy, -m<y<nm. (1.11)

(2) IfAis an eigenvalue for A = e"K,B=-1,0 < Y < m, with eigenfunction u, then A is
also an eigenvalue for A = e"VK, B = —I, but with eigenfunction u.

Proof. Since @ is a primary fundamental matrix, we have det ®(b, a,A) = 1. We abbre-
viate (¢;(b, a, 1)) to ¢;;. Noting that detK = 1, we get

. iy _ iy —
o - deeni o) | G~ Gl

=1+e” - e"D).
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Hence 6(A) = 0 if and only if (1.11) holds. Part (2) follows from (1.11) and by taking
conjugates of equation (1.1). O

Remark 1.1.1. Throughout Chapters 1 and 2, we assume that (1.1)-(1.4) hold and use
the notations (1.5)—(1.11).

1.2 Self-adjoint operators in Hilbert space

In this section, we survey self-adjoint operator realizations of equation (1.1) in the
Hilbert space L*(J,w) determined by two-point boundary conditions and their spec-
trum {A, : n € Ny}. The dependence of the eigenvalues of regular self-adjoint Sturm—
Liouville problems (SLP) on all parameters of the problem, the coefficients, the end-
points of the domain interval J, and the boundary conditions, is now well understood
due to some surprisingly recent results given the long history and voluminous liter-
ature of Sturm-Liouville problems dating back at least to the seminal 1836 paper of
Sturm and Liouville.

Notation 1.2.1. M,(C) denotes the 2 x 2 matrices over the complex numbers C, and
L'(J,R) denotes the real-valued Lebesgue-integrable functions on the entire interval J.
We also use the notation M,(R) for the real 2 x 2 matrices and L,.(J, R) for the real-
valued functions integrable on all compact subintervals of J. R and C denote the real
and complex numbers, respectively, N = {1,2,3,...}, Ny = {0,1,2,3,.. .}.

Lemma 1.2.1. LetA € C. Let 1/p,q,w € L'(J, R). Then the appropriate one-sided limits
. . 1l . . 1l
limy(®), lim(py')(®), limy(®), lim(py')(®), (112)

exist and are finite for each solution y and its quasi-derivative (py'). Furthermore, every
initial value problem has a unique solution y defined on the entire interval J, and both y
and (py') are continuous at eacht,a < t < b.

Proof. See Everitt and Race [34] and [113]. O

Remark 1.2.1. Note that each endpoint of J can be finite or infinite. In much of the lit-
erature an infinite endpoint is automatically classified as singular in contrast to here.
From the basic existence—uniqueness theorem (see Theorem 1.2.1 in [113]) it follows
that each solution y and its quasi-derivative (py’) are continuous for all t € J and, by
Lemma 1.2.1, can be continuously extended to the (finite or infinite) endpoints a, b.
Also note that, under condition (1.13), y' (t) may not exist for some ¢ ¢ J. This is the
main reason for using the quasi-derivative (py’) as one function. Note the parenthe-
ses around py' since (py’)(t) not always can be separated into p(t)y’(t). The existence
of the limits (1.12) shows that the boundary condition (1.3) is well defined. Although
(1.3) and (1.4) consist of two independent conditions, we refer to the pair (1.3)-(1.4) as
one self-adjoint boundary condition.
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Remark 1.2.2. Why only “two-point” boundary conditions of the form (1.3)? Rather
than three-point conditions or integral conditions or others? The answers can be seen
from the next theorem.

Definition 1.2.1. Let H = L?(J,w) and define

Dyax = {feH: le EH]»,
w
Smaxf = Mf (f € Dmax)' (1~13)

Theorem 1.2.1. Let D,,, be defined by (1.13). Then Dy, is dense in H. Let Sp;, = Sy«
and denote its domain by D, Then Sp;,, € Spax- Define the operator S from H to H by
Sy = %My for ally € H satisfying the two-point boundary conditions (1.3)-(1.4). Then S

satisfies
Smin €S =5 € Spax- (1.14)

Furthermore, if S satisfies (1.14) and is generated by two-point boundary conditions (1.3),
these conditions satisfy (1.4).

Proof. This is well known; see [113].

It is clear from Theorem 1.2.1 that — for a fixed equation (1.1) — the operators S satis-
fying (1.14) differ from each other only by their domains. In the rest of this chapter, we
survey how the eigenvalues of each operator S change when the coefficients and the
boundary conditions, including the endpoints, change. This is now, due to some sur-
prisingly recent results, well understood. In Section 1.7, we survey inequalities among
eigenvalues of different boundary conditions. O

1.3 Canonical forms of self-adjoint boundary conditions

The self-adjoint boundary condition (1.3)-(1.4) is homogeneous and thus clearly in-
variant under left multiplication by a nonsingular matrix. This is a serious obstacle
to studying the continuous dependence of the eigenvalues on the boundary condi-
tion and for their numerical computation. In preparation for the investigation of how
eigenvalues change when the boundary condition is changed, in this section, we dis-
cuss canonical forms of self-adjoint boundary conditions.

At first glance, it may seem that the self-adjoint boundary conditions (1.3)-(1.4)
always connect the endpoints a, b with each other. This is not the case: they can be
divided into three mutually exclusive classes: separated, real coupled, and complex
coupled. The three classes are:

(1) Separated self-adjoint BCs. These are

Ay(a) +A,(py' ) @) =0, A A eR, (4,4, #(0,0), (1.15)
Byy(b) +B,(py')(b) =0, BB, €R, (B, B,) #(0,0). (1.16)
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These separated conditions can be parameterized as follows:

cosay(a) - sina(py')(@) =0, O<a<m, (1.17)
cos By(b) —sinB(py')(b) =0, 0<B=m, (1.18)

by choosing a € [0, 1) such that

A
tana = A—2 ifA; #0, and a=m/2 ifA; =0, (1.19)
1

and similarly, by choosing § € (0, ] such that

tanf = —B_Bz ifB;#0, and B=m/2 ifB, =0. (1.20)

1
Note the different normalization in (1.20) for 8 from that used for a in (1.19). This is
for convenience in using the Priifer transformation, which is widely used for the
theoretical studies of eigenvalues and their eigenfunctions and for the numerical
computation of these. For example, the FORTRAN code SLEIGN2[10, 13, 12, 9] uses
this normalization. This code can be downloaded free from the internet and comes
with a user-friendly interface.

(2) All real coupled self-adjoint BCs. These can be formulated as follows:

Y(b) =KY(a), Y= [ ’}'/ Nt (1.21)
where K € SL,(R), that is, K satisfies
K= { ';; ZZ ] . kjeR, detK=1 (1.22)
(3) All complex coupled self-adjoint BCs. These are:
Y(b) = "KY(a), Y = [ Z/ ) ] , (1.23)

where K satisfies (1.22),and -mr <y <0or0O <y <.

Lemma 1.3.1. Given a boundary condition (1.3)-(1.4), it is equivalent to exactly one of
the separated, real coupled, or complex coupled boundary conditions defined above,
and each of these conditions can be written in the form (1.3)-(1.4).

Proof. See [113]. O

Notation 1.3.1. Given the canonical forms of the boundary conditions, we use the fol-
lowing notation for the eigenvalues:

M(a,b,a,B,p,q,w), A (a,b,K,p,q,w), A,(a,b,y,K,p,q,w), neN,. (1.24)
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To study the dependence of the eigenvalues for a fixed equation, we abbreviate this nota-
tion to A,(a, B), A,(K), A, (v, K); to study the eigenvalues for a fixed boundary condition,
the notation is abbreviated to A,(p, g, w). Since the eigenvalues depend not on p, but
rather on 1/p, we should use 1/p in (1.24), but since the use of p is so well established
in the literature, we continue to use (1.24). Note that this notation covers all self-adjoint
boundary conditions. Since each of these has a unique representation as a separated,
real coupled, or complex coupled condition, we can study how the eigenvalues change
when the boundary condition changes. The existence of eigenvalues is discussed in the
next section.

Remark 1.3.1. This unique representation of the boundary conditions as separated,
real coupled, or complex coupled is of fundamental importance for the study of the
theoretical properties of the eigenvalues as functions of the boundary conditions (e. g.,
continuity) as well as for their numerical computation. Although the characterization
(1.3)-(1.4) of the self-adjoint boundary conditions extends naturally to equations of
general order n > 2,

AY(a) +BY(b) =0
with solution vector Y, where A, B satisfy
A,Be M, (C), AEA" =BEB*, rank(4:B)=n,

and all entries of E are zeros except those on the counter diagonal that alternate be-
tween —1 and +1, there is no comparable canonical representation of the self-adjoint
boundary conditions for n > 2. Recently, for n = 4, Wang, Sun, and Zettl [101] have
shown that there are three classes of self-adjoint boundary conditions, separated, cou-
pled, and mixed, and found canonical forms for each class. The separated and cou-
pled canonical forms for n = 4 are more complicated than the corresponding ones for
n=2.

Remark 1.3.2. In this remark, we comment on what happens when the normalization
conditions a € [0,77) and € (0, 7] are violated. For fixed § € (0,1],asa — 07, A,(a, B)
has an infinite jump discontinuity when n = 0 and a finite jump discontinuity when
n € N. Similarly, for fixed a € [0,7), as B — 7", A, (a, B) has an infinite jump discon-
tinuity when n = 0 and a finite jump discontinuity when n € N. In each case where
A, (a, B) has a jump discontinuity the eigenvalue can be embedded in a “continuous
eigenvalue branch”, which is defined by two indices n and n + 1; in other words, the
eigencurves from the left and right of the point where the jump occurs “match up”
continuously when one of the indices n is changed to n + 1. Furthermore, the resulting
matched eigencurve determined by two consecutive indices is not only continuous but
also differentiable everywhere including at the matched point.
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1.4 Existence of eigenvalues

Given a self-adjoint realization S of equation (1.12) in H, what is its spectrum o(S)? This
is the question we discuss in this section.

Theorem 1.4.1. Let S satisfy (1.14). Then the spectrum of S is bounded below and dis-

crete. Furthermore:

(1) There are an infinite but countable number of eigenvalues with no finite accumula-
tion point.

(2) The eigenvalues can be ordered to satisfy

—00<Ag <A <A <5 Ay > +00 asn— oo. (1.25)

Each eigenvalue may be simple or double, but there cannot be two consecutive
equalities in (1.25) since, for any value of A, equation (1.12) has exactly two linearly
independent solutions. Note that A, is well defined for each n € N, but there is
some arbitrariness in the indexing of the eigenfunctions corresponding to a double
eigenvalue since every nontrivial solution of the equation for such an eigenvalue is
an eigenfunction. Let o(S) = {A,, : n € Ny}, where the eigenvalues are ordered to
satisfy (1.25).

(3) If the boundary condition is separated, then strict inequality holds everywhere in
(1.25). Furthermore, if u,, is an eigenfunction of A, then u,, is unique up to constant
multiples and has exactly n zeros in the open interval ] = (a, b) for eachn € N,,.

(4) Let S be determined by a real coupled boundary condition matrix K, and let u, be
a real-valued eigenfunction of A, (K). Then the number of zeros of u, in the open
intervalJisOorlifn=0andn-1,n,orn+1ifn> 1.

(5) LetS be determined by a complex coupled boundary condition (K, y), and let o(S) =
{A, : n € Ny} Then all eigenvalues are simple, and strict inequality holds every-
where in (1.25). Moreover, if u,, is an eigenfunction of A,,, then the number of zeros of
Reu,onla,b)isOorlifn=0andn-1,n,orn+1ifn > 1. The same conclusion
holds for Im u,,. Moreover, u,, has no zero in [a, b], n € N,,.

(6) For any self-adjoint boundary condition, separated, real coupled, or complex cou-
pled, we have the following asymptotic formula:

b -
/\—g—w:nz(j\/?) asn — oo. (1.26)
n J\p

Proof. See [113]. O

Remark 1.4.1. Note that Theorem 1.4.1justifies notation (1.24). Thus for each S satisfy-

ing (1.14), we have that the spectrum ¢(S) of S is given by

(1) a(S) = {A(a,B),n € Ny} if the boundary condition of S is separated and deter-
mined by the parameters a, f;
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(2) a(S) = {A,(K),n € Ny} if the boundary condition of S is real coupled with coupling
constant K;

(3) a(S) = {A,(y,K),n € Ny} if the boundary condition of S is complex coupled with
coupling constants K, y.

Remark 1.4.2. Canonical forms of the boundary conditions make it possible to intro-
duce the notation of Remark 1.4.1. This notation identifies A,, uniquely and makes
it possible to study the dependence of the eigenvalues on the boundary conditions
and on the coefficients as well as inequalities among eigenvalues of different bound-
ary conditions. As mentioned before, no comparable canonical representation of all
self-adjoint boundary conditions is known for higher-order ordinary differential equa-
tions. There are some recent results by Hao et al. [48, 46], but these are much more
complicated and thus more difficult to use for the study of the dependence of the eigen-
values on the problem. This is a major open problem for n > 2.

The next result shows what happens to the eigenvalues when the interval shrinks
to one endpoint. This study was motivated by a problem in fuel cell dynamics [8].

Theorem 1.4.2. Let c € (a,b), and let {A,(c,a, B);n € Ny}, a € [0,7), B € (0, 7], denote
the eigenvalues on the interval (a, c) with all other parameters fixed. Then:

@

Ay(c,a,B) — +00 asc —a’, neN. (1.27)

(2) Ifa<§B,then
Ao(c,a,B) — +0o asc —a'. (1.28)

(3) Ifa > B, then
Ao(c,a,B) — +oo asc — a'. (1.29)

(4) A,(c,a B) may have a finite limit as ¢ — a* if and only if « = B and n = 0.
(5) Similar results hold at the endpoint b.

Proof. See the paper by Kong, Wu, and Zettl [66]. O

Remark 1.4.3. Kong, Wu, and Zettl [66], under certain conditions on the coefficients,
found the finite limits of A,(c,a, a) as ¢ — a* and showed that these finite limits do
not always exist. They may be +oco, or they may not exist.
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1.5 Continuity of eigenvalues

In this section, we survey the continuity of the eigenvalues as functions of each pa-
rameter of the problem. Recall notation (1.24) for the eigenvalues:

A(a, b, a,B,p,q,w), A (a,b,K,p,q,w), A,(a,b,y,K,p,q,w), neN,.

When we study the dependence on one parameter x with the others fixed, we ab-
breviate the notation to A,(x); thus A,,(g) indicates that we are studying A,, as a function
ofq e L'(J, R) with all other parameters of the problem fixed, A,(a) indicates that we
are studying A, as a function of the left endpoint with all other parameters fixed, and
so on.

The eigenvalues are continuous functions of each of 117, q,w, a, b;, in general, they
are not continuous functions of the boundary conditions. The continuity on the coef-
ficients 1_17’ g, w is with respect to the L'(J, R) norm, the continuity on K is with respect
to any matrix norm, and the continuity with respect to a, b, a,f,y is in the reals R.
It is shown in [60] (see also [113]) that even though, in general, A, is not a continu-
ous function of the boundary conditions for fixed n, it can always be embedded in a
“continuous branch” of eigenvalues by varying the index n. For separated boundary
conditions, there is a jump discontinuity when either y(a) = 0 or y(b) = 0. The coupled
boundary conditions at which the eigenvalues are not continuous are characterized in
[113], and it is shown that all discontinuities are finite or infinite jumps. We call the set
of boundary conditions at which the eigenvalues have discontinuities “the jump set”
since all discontinuities are of the jump type.

We start with the continuous dependence on the coefficients and endpoints.

Theorem 1.5.1 (Kong, Wu, and Zettl). Let n € N,. Then:
(1) A,(1/p) is a continuous function of 1/p € L'(J, R);
(2) A,(g) is a continuous function of q € L}J,R);

(3) A,(w) is a continuous function of w € L'(J, R);

(4) A, (a) is a continuous function of a; and

(5) A, (b) is a continuous function of b.

Proof. See Section 2 of Kong, Wu, and Zettl [60]. O

Next, we characterize the boundary conditions at which A,, is not continuous, and
we call this set the “jump” set since all discontinuities are of jump type.

Definition 1.5.1 (Jump set of boundary conditions). The “jump set of boundary condi-
tions” J is the union of
(1) the (real and complex) coupled conditions

Y(b) = eYKY (a), Y:[ y } n<y<n, (1.30)
(b) (a) (oy") y
where the 2 x 2 matrix K = (kij) € SL(2, R) satisfies k;; = 0, and

printed on 2/10/2023 3:33 PMvia . Al use subject to https://ww.ebsco.confterms-of-use



EBSCChost -

12 — 1 Classical regular self-adjoint problems

(2) the separated boundary conditions

Ay(a) + Ay )@ =0, ALA R, (ALA) #(0,0), (1.31)
Byy(b) + B,(py')(b) =0, B;,B,€R, (B},B,)# (0,0),

satisfying A,B, = 0. Note that these are precisely the conditions where eithera = 0
orf=morbotha=0andpf =r.

Theorem 1.5.2. Let n € N,. Let J be given by Definition 1.5.1. Then:

(1) If the boundary condition is not on the jump set J, then A, is a continuous function
of the boundary condition.

(2 Ifne N,k =0,andA, = A,_,, then A, is continuous at K.

(3) The lowest eigenvalue A, has an infinite jump discontinuity at each separated or
(real or complex) coupled boundary condition in J.

(4) Let n e N. If the boundary condition is in J and A,, is simple, then A, has a finite
jump discontinuity at this boundary condition.

Proof. See Section 3 in [60]. O

For the important particular case of separated boundary conditions in canonical
form, there is a stronger result:

Lemma 1.5.1. For any n € N, A,(a, B) is jointly continuous on [0, &) x (0, 7r] and strictly
decreasing in a for each fixed 8 and strictly increasing in B for each fixed a.

Proof. See [60]. O

The next theorem gives more detailed information about separated boundary con-
ditions not in canonical form, in particular, for the separated jump boundary condi-
tions.

Theorem 1.5.3 (Everitt, Méller, and Zettl). Fix a,b,p,q,w and consider conditions

(1.31).

— FixBy,B, and let A; = 1. Consider A, = A,(4,) as a function of A, € R. Then for
each n € Ny,A,(4,) is continuous at A, for A, > 0 and A, < O but has a jump
discontinuity at A, = 0. More precisely, we have:

(1) A,(4y) - A, (0)asA, —» 07, n e N,.
(2) Ap(4,) » —coasA, — 0",
(3) Api(4y) — A,(0) as A, — 0*.

— Fix Ay, A, and let B; = 1. Consider A,, = A,(B,) as a function of B, € R. Then for each
n € Ny, A,(B,) is continuous at B, for B, > 0 and B, < 0 but has a jump discontinuity
at B, = 0. More precisely, we have:

(1) A,(By) — A,(0)as B, — 0F,n e N,.
(2 Ay(By) » —c0asB, — 0.
(3) A1 (By) = A,(0)asB, —» 0.
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Proof. See Everitt, Moller, and Zettl [32, 33]. O

Remark 1.5.1. Note that A5(4,) has an infinite jump discontinuity at A, = 0, but for
alln > 1, 1,(4,) has a finite jump discontinuity at A, = 0, and A,(4,) is left but not
right continuous at 0. Similarly, Ay(B,) has an infinite jump discontinuity at B, = 0,
but for all n > 1, A4,(B,) has a finite jump discontinuity at B, = 0, and A,(B,) is right
but not left continuous at 0. In all cases, A,(0) is embedded in a continuous branch
of eigenvalues as A, or B, passes through zero, but this branch is not given by a fixed
index n; to preserve the continuity, the index “jumps” from nton+1as A, or B, passes
through zero from the appropriate direction.

Remark 1.5.2. This forced “index jumping” to stay on a continuous branch of eigen-
values plays an important role in some of the algorithms and their numerical imple-
mentations used in the code SLEIGN2 [10] for the numerical approximation of the spec-
trum of regular and singular Sturm-Liouville problems.

Remark 1.5.3. This “index jumping” phenomenon to stay on a “continuous eigen-
value branch” is quite general: It applies to all simple eigenvalues for all boundary
conditions on the jump set J, separated, real coupled, or complex coupled. For de-
tails, the reader is referred to [113], Theorems 3.39, 3.73, and 3.76, and Propositions 3.71
and 3.72 in [60].

Remark 1.5.4. Kong and Zettl [68] have shown that each continuous eigenvalue
branch is in fact differentiable everywhere including the point A, = 0 (or B, = 0)
where the index jumps. This also follows from Moéller and Zettl [79].

Remark 1.5.5. It is remarkable that if the boundary condition is in J and A,, is simple,
then it can be embedded in a continuous eigenvalue branch, and this branch is differ-
entiable. Moller and Zettl [79] extended this result to abstract operators in a Banach
space.

1.6 Differentiability of eigenvalues

Now that as the continuities of A,, have been characterized, it is natural to investigate
the differentiability of A, as a function of the parameters of the problem. We embark
upon this next. Here for each n € N, u,, denotes a normalized eigenfunction of A, For
all cases except where y # 0, we choose u,, to be real valued.

Theorem 1.6.1 (Kong and Zettl). Let (1.1)-(1.4) hold, and let n € IN,,.
(1) Assume that p,q,w are continuous at a and p(a) + 0. Then A, (a) is differentiable
at a, and

N@) = ——|put (@) - luyP@[a(@) - A (@w(@)]- (132)
p(a)
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(2) Assume that p,q,w are continuous at b and p(b) # 0. Then A, (b) is differentiable
at b, and

1
p(b)

(3) Let-m <y <0or0 <y < ThenA,(y) is differentiable at y, and

A (b) = ——— |pu [} (b) + [, 2(B)[q(b) - A, (DYw(b)]. (1.33)

A (y) = =2Im[u,(b)(pu,,)(b)], (1.34)

where Im([z] denotes the imaginary part of z.
(4) Let a € (0,m). Then A, (a) is differentiable, and its derivative is given by

A (@) = —u’(a) - (pu')(a). (1.35)
(5) Let B € (0,m). Then A,(B) is differentiable, and its derivative is given by
N(B) = u2(b) + (pud')' (b). (1.36)

Proof. See [68]. O

Next, we survey the differentiability of the eigenvalues with respect to the remain-
ing parameters: %, q,w, and K.

Theorem 1.6.2 (Kong and Zettl). Let (1.1)-(1.4) hold, and let n € N,,.

(1) Assume that A,,(q) is a simple eigenvalue with real-valued normalized eigenfunction
U, (-, q). Then A, (-, q) is differentiable in LY(J,R), and its Fréchet derivative is given
by

b
2
X (@h = j|un(-, ofh hel'(.R). (137)

a

(2) Assume that A,(1/p) is a simple eigenvalue with real-valued normalized eigenfunc-
tion u,(-, 117). Then A,(-,1/p) is differentiable in L}(J,R), and its Fréchet derivative is
given by

b
X A/p)h = - J|u£}]<-, Up)Ph, heI'0,R). (1.38)

a

(3) Assume that A, (w) is a simple eigenvalue with real-valued normalized eigenfunction
u,(-,w). Then A, (-, w) is differentiable in L}(J,R), and its Fréchet derivative is given
by

b
X (w)h = ~A,(w) J|un(-, w’h, heL'(,R). (1.39)

a
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(4) Assume that A,(K) is a simple eigenvalue with real-valued normalized eigenfunc-
tion u, (-, K). Then A,,(-, K) is differentiable, and its Fréchet derivative is given by the
bounded linear transformation defined by

Uy (b)

! e = -1
An(K)H - [pun (b)> un(b)]HK [ (pu),q)(b)

] . HeMy(©).  (140)

Proof. See [68]; also, see [79] for (4). O

1.7 Eigenvalue inequalities

In this section, we describe how, for a fixed equation, the eigenvalues change when the
boundary conditions change. Since the Dirichlet and Neumann boundary conditions
play a special role, we introduce the notation

A= 0,m), AN =Nm/2,m/2), neN,. (1.41)

Theorem 1.7.1. Let Af be defined by (1.41). Then for all (A, B) satisfying the self-adjoint
boundary conditions (1.4), we have:

€))
A(A,B) < A2, neN,. (1.42)

Equality can hold in (1.42) for non-Dirichlet eigenvalues; see Theorem 1.7.2 and Re-
mark 1.7.1.
(2) For all (A, B) satisfying (1.4), we have

A2 < A,»(A,B), neN,. (1.43)

(3) Therange of Ay(A,B) is (—oo,)lg ].
(4) The range of (A, B) is (-c0, A5].
(5) The range of A,,(A,B) is (AP /\flJ ] forn>2.

n-2>

Moreover, (3), (4), and (5) still hold when A, B are restricted to be real.

Proof. See [113]. O

Equality can occur in (1.42). The next result characterizes all such cases of equality
forn=0.

Theorem 1.7.2. Let (1.1)-(1.4) hold, let/lf be defined by (1.41), and let ©(t,A) = (¢;;(t, 1))
be the primary fundamental matrix of the system representation of equation (1.12).
Then

Ao(A,B) = A2

printed on 2/10/2023 3:33 PMvia . Al use subject to https://ww.ebsco.confterms-of-use



EBSCChost -

16 —— 1 Classical regular self-adjoint problems

if and only if the boundary condition is the Dirichlet condition or the boundary condition
matrices A, B are given by

b,AL 0 _
A_[(Ibn( o) ] B:{ 1

0 .
= D D d -1 ] withd < 0. (1.44)
¢21 (b’Ao) ¢22(b:/lo)

In canonical form, these conditions are given by the coupling matrix

¢ (b,AY) 0
K= [ o , d<0 (1.45)
dgy1(b,Ag) + Py (b,Ay)  P(b,Ag)
Proof. See Corollary 4.5 in Haertzen, Kong, Wu, and Zettl [45]. O

Remark 1.7.1. We make a number of observations about Theorem 1.7.1.

1 Ay p) = Ag if and only if & = 0 and B = 7. In other words, for no separated
boundary condition other than the Dirichlet condition does equality hold in (1.42)
whenn = 0.

(2) For no complex coupled boundary condition does equality hold in (1.42) when
n=0.

(3) For n = 0, equality holds in (1.42) for some coupled real boundary conditions. All
these are characterized in Theorem 1.7.1, and all these lie on the jump set J. (Recall
that this is the set of boundary conditions on which all eigenvalues A,, have jump
discontinuities as functions of the boundary conditions.)

(4) Friedrichs Extension. Among all self-adjoint realizations of the Sturm-Liouville
equation (1.12) with p > 0, w > 0, that is, among all operators S satisfying
(1.14), there is a special one (“eine ausgezeichnete”) often singled out in applied
mathematics and mathematical physics, which is called the Friedrichs extension
in honor of K. O. Friedrichs, who constructed it without any direct reference to
a boundary condition. One of its basic properties is that it preserves the lower
bound of the minimal operator S;, associated with equation (1.12) in the Hilbert
space L? (J, w); however, it is not characterized by this property, that is, there may
be other self-adjoint extensions of the minimal operator that preserve its lower
bound. This lower bound is Ag . Thus Theorem 1.7.1 gives examples of operators S
that have the same lower bound as S,;, and are not the Friedrichs extensions of
Smin and characterizes all these.

(5) It is interesting to note that all operators S that have the same lower bound as
Smin are determined by boundary conditions that lie on the jump set J, and all,
except for the Dirichlet condition, are determined by real coupled boundary con-
ditions.

Next, we investigate more closely how the eigenvalues change when the boundary
conditions change.
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According to a well-known classical result (see [27] and [24] for the case of smooth
coefficients and [105] for the general case), we have the following inequalities for
K = I, the identity matrix:

A < (D) < Ag(€T) < Ao(-I) < (AR, AV}
<A (D) < Ay(e"I) < A (D) < AP AN
< (D) < A1) < (=) < (A2, A0

< A-D < A1) < ) < A2 A <, (1.46)

where y € (-m1,m) and y # 0. In (146) the notation {A2, A, |} means either of A2 and
AN ., and there is no comparison made between these two. These inequalities are well
known in Flochet theory.

Eastham, Kong, Wu, and Zettl [26] extended these inequalities to general K ¢
SL(2,R). A key feature of this extension is the identification of separated boundary
conditions, which play the role of the Dirichlet and Neumann conditions. These are
given next.

For K € SL,(R), K = [g g], denote by y,, = p,(K) and v, = v,(K), n € Ny, the

eigenvalues of the separated boundary conditions
y(@) =0, kyy(b)- klzy[”(b) = 0; (1.47)
Y@ =0, kyyb) -ky"b) = 0; (1.48)
respectively. For convenience, we let y!! = (py’), the quasi-derivative of y. Note that
(kyp, ki3) # (0,0) # (ky, kyp) since detK = 1. Therefore each of these is a self-adjoint

separated boundary condition with a countably infinite number of only real eigenval-
ues.

Theorem 1.7.3. Let (1.1)-(1.4) hold. Let p,, and v,,, n € IN,, be the eigenvalues for (1.47)
and (1.48), respectively. Then we have:

— Suppose that k;, < 0 and k;; < 0. Then
(1) Ay(K) is simple;
(2) Ap(K) < Ay(=K); and
(3) the following inequalities hold for -7 <y < 0and 0 < y < 7:
—00 < Ag(K) < Ay(y, K) < Ay(=K) < {ug,vo}
<A (-K) < A4(y, K) < 4(K) < {uy, vy}
< A(K) <Ay, K) < A(=K) < {up, v5}

<A3(=K) < 50, K) < A3(=K) < {ug,v3h < ---. (1.49)

printed on 2/10/2023 3:33 PMvia . Al use subject to https://ww.ebsco.confterms-of-use



EBSCChost -

18 —— 1 Classical regular self-adjoint problems

— Suppose that k;, < 0 and k;; > 0. Then
(1) A¢(K)is simple;
(2) A(K) < Ay(-K); and
(3) the following inequalities hold for -m <y < 0and 0 < y < 7:

Vo £ Ag(K) < Ag(y, K) < Ag(=K) < {pg,vq}
< M(=K) < (7. K) < A (K) < (v}
< LK) < Ly, K) < (-K) < {py,vs}

<A3(=K) < A5y, K) < A5(K) < {ps, v} <o (1.50)
— Furthermore, for O < a < § < , we have

A (B K) < Ag(a, K) < A(a, K) < 1B, K) < A,(B,K) < Ay(a, K)

<A3(a,K) < A3(B,K) < ---.

— If neither of the above cases holds for K, then one of them must hold for -K. The
notation {p,,v,,} is used to indicate either v, or v,,, but no comparison is made
between u, and v,,,.

Proof. For a diagonal matrix K, these inequalities were established by Weidmann
[105]. The general result is proven by Eastham, Kong, Wu, and Zettl [26]. O

Next, we mention some interesting consequences of Theorem 1.7.3.

Remark 1.7.2. For separated boundary conditions, the Priifer transformation is a pow-
erful tool for proving the existence of eigenvalues, studying their properties and com-
puting them numerically. There is no comparable tool for coupled conditions. For cou-
pled conditions, the standard existence proof for the eigenvalues is based on operator
theory in a Hilbert space; the Green’s function is constructed and used as a kernel in
the definition of an integral operator whose eigenvalues are those of the problem or
their reciprocals; see Coddington and Levinson [24] or Weidmann [105].

A proof based on Theorem 1.7.3 is given in [26] and goes as follows: Starting with
the eigenvalues y,, and v,, n € Ny, of the separated boundary conditions (1.47)-(1.48),
the proof of Theorem 4.8.1 in [26] (although this is not explicitly pointed out there) in
fact shows that there is exactly one eigenvalue of the coupled condition determined by
K in the interval (-0, 4y ], and it is A, (y, K); there is exactly one eigenvalue in the inter-
val [pg, 1y, and it is A;(y, K); there is exactly one eigenvalue in the interval [y, yp,.1],
and it is A,,,1(y, K) for n € IN,. This not only proves the existence of the eigenvalues of
K but can be used to construct an algorithm to compute them. Such an algorithm is
used by SLEIGN2; see [10]; see also [11, 12]. This seems to be the first existence proof
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for coupled eigenvalues that does not use self-adjoint operators in a Hilbert space and
thus can be considered as the first “elementary” existence proof.

Remark 1.7.3. By Theorem 1.7.3, for any K € SL(2,R), either A,(K) or Ay(-K) is sim-
ple. This extends the classical result that the lowest periodic eigenvalue is simple to
the general case of arbitrary coupled self-adjoint boundary conditions. Here “simple”
refers to both the algebraic and geometric multiplicities, since these are equal.

Theorem 1.7.4. Let (1.1)-(1.4) hold. Let y,, and v,, n € IN,, be the eigenvalues for (1.47)
and (1.48), respectively.
(1) Aneigenvalue A, (K) is double if and only if there exist k,m € IN, such that

A(K) = Py = Ve

(2) Given eigenvalues A,(K) and A,,1(K) of K, distinct or not, there exist eigenvalues
Vs> Vi Of the separated boundary conditions (1.47) and (1.48) such that

An(K) < {]'llovm} < An+1(K)-

Proof. See Theorem 4.3 and Corollary 4.2 in Kong, Wu, and Zettl [60]. O

1.8 Monotonicity and multiplicity of eigenvalues

In this section, we fix a boundary condition and study how the eigenvalues change
when a coefficient changes monotonically and discuss their multiplicity.

Theorem 1.8.1. Let (1.1)-(1.4) hold, and let n € IN,. Assume that —co < a < b < co.

(1) Fix p,w. Suppose Q € L((a, b), R) and assume that Q > ga.e.ona,b].
Then A,(Q) = A,,(q)- If Q > q on a subset of [a, b] having positive Lebesgue measure,
then 1,(Q) > A,(g).

(2) Fix g, w. Suppose1/P € L'((a,b),R) and 0 < P < p a.e. on [a, b].
Then A,(1/P) = A,(1/p); if 1/P < 1/p on a subset of [a, b] having positive Lebesgue
measure, then A,,(1/P) < A,(1/p).

(3) Fixp,q.Suppose W € L'((a,b),R) and W > w > O a.e. on [a, b].
Then A, (W) = A,(w) if A,(W) < 0 and A, (w) < O; but A,(W) < A,(w) if A,(W) > 0
and A,(w) > 0. Furthermore, if strict inequality holds in the hypothesis on a set of
positive Lebesgue measure, then strict inequality holds in the conclusion.

Proof. We give the proof for (1); the proofs of (2) and (3) are similar. Define the function
f:R—- Rby

f(t) =A,(s(®)), s(t)=qg+t(Q-q), tel0,1].
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Then s(t) € L'((a, b), R) for each t € [0, 1]. From the chain rule in a Banach space
and formula (1.37) for A;l(q) we have
b
f1(6) = A ((s(t)s'(t) = Jluz(r,S(t))l(Q(r) -q(r)dr>0, te[0,1].
a
Hence f is nondecreasing on [0,1], and f(1) = 1,(Q) > A,(q) = f(0). The strict
inequality part of the theorem also follows from this argument. O

The next theorem shows that the algebraic and geometric multiplicities of the
eigenvalues of classical regular self-adjoint SLP are the same. Recall that the geomet-
ric multiplicity of an eigenvalue is the dimension of its eigenspace, that is, the number
of linearly independent eigenfunctions of this eigenvalue. The algebraic multiplicity
of an eigenvalue is the order of its zero as a root of the characteristic function

8(A) = 68(a,b,A,B,P,w,A) = det[A + BO(b,a,P,w,1)], AeC.

Theorem 1.8.2. The algebraic and geometric multiplicities of the eigenvalues of regular
self-adjoint Sturm—Liouville problems (1.1)-(1.4) are the same.

Proof. For coupled boundary conditions, this is given in [26]. The separated case is
proven in Theorem 4.12 of [60]. O

From here on we speak only of the multiplicity of an eigenvalue.
Theorem 1.8.3. Let (1.1)-(1.4) hold. Fix all components except q, and fix n € N,. Let
S, = {q € L'UJ,R) : A, (q) is simple};
S, = {g € L'(J, R) : A,(q) is double}.

Then S, is an open set in L(J,R), and S, is closed and nowhere dense in L'(J,R).
The same results hold when q is replaced by either 1/p or w.

Proof. This follows from Theorem 4.3 of [68] and the continuous dependence of A,, on
1/p, q, and w established in [60]. O

1.9 The Priifer transformation and separated boundary conditions

In this section, we briefly describe the well-known Priifer transformation and its re-
lationship to separated boundary conditions. An elementary proof of the existence of
eigenvalues and their theoretical and numerical properties can be based on this trans-
formation.

To discuss the relation between the Sturm-Liouville equation and the equations
arising from the Priifer transformation, we consider the equations

~ (") +qy=2wy onJ, (1.51)
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0 =p'cos’ 0+ (Aw — g)sin’6 on], (1.52)
p =[(p"+q-Aw)sinfcosblp on], (1.53)

where
1/p,q,w € Ll(],IR), AeR, p>0 a.e.onJ=[ab], -co<a<b<oco (1.54)

Theorem 1.9.1. Let (1.51)—(1.54) hold.

(1) Then every initial value problem for equation (1.52) has a unique real-valued solu-
tion, and this solution is defined on J.

(2) Suppose 6 and p be solutions of (1.52) and (1.53), respectively. Theny = psin @ is a
solution of (1.51) on ], and (py') = p cos 6.

(3) Suppose y is a nontrivial solution of (1.51). Then there exist a solution 6 of (1.52)
and a solution p of (1.51) satisfying p(t) # O for t € J such thaty = psin6 and

(py') = pcosh.
Proof. This is well known and classical. O
Consider the SLP consisting of the equation
- (py’)' +qy=Awy, on(a,h), —-co<a<bh< oo, (1.55)
together with separated boundary conditions

Ay(a) + Ay(py')@) =0, (A, Ay) #(0,0), ApA)eR, (1.56)
Byy(b) + By(py')(b) =0, (By,B;) #(0,0), B;,B,€R, (1.57)

and coefficients satisfying
p.q,w:(a,b) > R, 1/p,q,we€L(a,b), p>0, w>0 a.e.on(ab). (1.58)

Theorem 1.9.2. Let (1.55)—(1.58) hold. Then:

(1) All eigenvalues are real and simple.

(2) There are an infinite but countable number of eigenvalues {A,, : n € Ny}; they are
bounded below and can be ordered to satisfy the inequalities

—00 <Ay <A <A <Az <,

and A, — coasn — oo.

(3) Ifu, = u,(-A,) is an eigenfunction of A,, then u,, has exactly n zeros in the open
interval (a, b).

(4) Choose a € [0, ) such that

A
tano(=A—2 ifA;#0, and a=m/2 ifA,=0;
1
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similarly, choose 8 € (0, ] such that

-B
tanﬁzB—z, ifBj+0, and B=mn/2 ifB;=0.
1

Then each eigenvalue A,, is the unique solution A = A, of the equation
0(b,A) =B +nm, neNN,, (1.59)

where 6 is the solution of (1.52) determined by the initial condition 6(a,A) = a for
each A € R.

(5) The sequence of eigenfunctions {u, = u,(-,A,,) : n € Ny} can be normalized to be an
orthonormal sequence in the Hilbert space H = LZ(] ,w), that is,

b
_ 0 ifn+m,
Junumw: 1 ifn=m

a
Furthermore, the orthonormal sequence {u, = u,(-,A,) : n € Ny} is complete in H,
that is, for any f € H, we have

o b
f= zcnun’ Cn = Jf“nw'
0 a

Here the left equality means that the partial sums of the series on the right side of
the equation converge to f in the norm of H.

Proof. This is well known. Although the proof given by Coddington and Levinson [24]
has stronger hypotheses, it can readily be adapted to the given hypotheses. O

The characterization (1.59) of Theorem 1.9.2 is established under the hypotheses
p > 0and w > 0. These assumptions on p and w guarantee that the spectrum is
bounded below and (1.59) holds for each A,,, n € Ny, This characterization of A,, is in-
teresting from theoretical and numerical perspectives. It can be used to numerically
compute each eigenvalue independently of all other eigenvalues; this is done in the
code SLEIGN2. Theoretically, it can be used to study the dependence of A, on the prob-
lem. Also, it follows directly from (1.52) that each eigenfunction of A, has exactly n
zeros in the open interval J. When p changes sign, the spectrum is unbounded above
and below. Does (1.59) hold in this case for all positive and negative eigenvalues? The
next theorem gives an affirmative answer to this question. We state this theorem in full
even though part of it is repetitive.

Theorem 1.9.3 (Binding and Volkmer). Consider the SLP consisting of the equation

~(0y') +qy=2Awy onJ=(ab),
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together with separated boundary conditions

Ay(a) + Ay)(py')(@) =0, (A, 4A,) #(0,0), A,A eR,
Byy(b) + By(py')(b) =0, (B;,B,) #(0,0), BB, €R,

and coefficients satisfying
1/p,ggw e LJ,R), w>0 a.e.on]J=(a,b), -co<a<bc<oo.

Assume that p changes sign on]. Then this SLP has only real and simple eigenvalues,
there are an infinite but countable number of them, and they are unbounded below and
above and can be indexed and ordered to satisfy

<A <AL <A <Ay <A <A <A< (1.60)

Let 6 be defined as before. Then for each integern e Z. = (...,-2,-1,0,1,2,3,...}, there
is exactly one eigenvalue A, which is the unique solution of the equation

0(b,A,) = nm + B. (1.61)

There are no other eigenvalues. Here f is defined as in equation (1.59).
Proof. See Binding and Volkmer [15] and the next remark. O

Remark 1.9.1. The fact that all eigenvalues are real and that there are an infinite but
countable number of them follows from the “standard” Hilbert space proof — using
the Hilbert space L*(J,w) — and the self-adjoint operator realization of this SLP; see
[24]. Moller [78] showed that these eigenvalues are unbounded above and below. By
the characterization of the eigenvalues as zeros of the characteristic function (see
[113]) the eigenvalues are isolated with no finite accumulation point. The simplicity
of the eigenvalues is clear from the separated boundary conditions. The indexing of
the eigenvalues so that (1.60) holds is not unique, in fact, rather arbitrary. It can be
made more definite as follows: If A = 0 is an eigenvalue, then denote it by A, and let
A; denote the smallest positive eigenvalue. The latter exists: Let

Ay = inf{A,, : A, > 0},

then A, is an eigenvalue by the continuity of the characteristic function §(A) and is
positive since A = 0 is isolated. Similarly, A, = inf{A,, > A;} is an eigenvalue greater
than A;, and so on. The same argument can be used when A = 0 is not an eigenvalue.
This is the indexing scheme used by the code SLEIGN2 for the numerical computation
of the eigenvalues in the singular limit-circle oscillatory case. As already mentioned,
it is rather arbitrary: we can replace A = 0 in this scheme by any real A and use it for a
“pivot”.
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In sharp contrast the characterization of the eigenvalues in terms of the Priifer an-
gle 6 given by equation (1.61) is definite and explicit. It is interesting from theoretical
and numerical perspectives. For instance, if we compute an eigenvalue as a root of
the characteristic equation §(A) = O, then the following question arises: Which eigen-
value is it? Characterization (1.61) gives a definite answer to this question for this class
of SLPs. In general, indexing the eigenvalues in some definite and explicit manner
is a difficult open problem for nonclassical problems, even in the case where the co-
efficients are real-valued and the boundary conditions are self-adjoint, for example,
when both p and w change sign. The Binding-Volkmer characterization (1.61) is an
important result for problems where p changes sign.

1.10 A Priifer characterization for real coupled conditions

In the previous section, we saw that the Priifer transformation is a powerful tool for
studying properties of eigenvalues and eigenfunctions; for example, to prove that the
nth eigenfunction has exactly n zeros in the open domain interval (a, b). In 1966, Bai-
ley [7] showed that the Priifer transformation can be used to compute the eigenval-
ues for separated conditions very effectively and efficiently. The nth eigenvalue can be
computed without any prior knowledge of the previous or subsequent eigenvalues for
any n.

The code SLEIGN2 [10] computes eigenvalues for separated and real or complex
coupled self-adjoint boundary conditions. The algorithm used by SLEIGN2 is based on
the inequalities discussed in Section 1.7. These inequalities locate the coupled eigen-
values uniquely between two separated ones. The Priifer transformation is then used
to compute the separated eigenvalues followed by a search mechanism to compute
the coupled eigenvalue within the bounds given by the separated ones.

Bailey and Zettl [13] developed an algorithm to characterize and compute the
eigenvalues of general real coupled boundary conditions

Y(b) = KY(a), Y:[ ’;,)],

where K € SL,(R), that is, K is real, and det K = 1. They constructed a one-parameter
family of separated conditions and proved that the extrema of this family were eigen-
values for K or —K and all eigenvalues for K and —K can be obtained in this way. Given
the index n, for any eigenvalue of K, they determined an appropriate separated bound-
ary condition and determined which eigenvalue of this separated condition was equal
to the coupled eigenvalue with this index n.

Thus the Priifer characterization for separated boundary conditions discussed in
the previous section can be used to study the eigenvalues of any real coupled condi-
tion. If A, is a simple eigenvalue for K, then the number of its zeros in the open domain
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interval is determined exactly by this characterization. Furthermore, this characteri-
zation can be used to compute the eigenvalues for any K € SL,(R) using any code that
works for separated conditions.

In stark contrast to this close relation between the eigenvalues A, (K) and A,(a, 8),
no eigenvalue of the constructed family of separated conditions determined by K or
-K is an eigenvalue A,(K,y) for any y # O.

As mentioned before, for each K € SL,(R), all eigenvalues for K and -K can be
found from the eigenvalues of a related family of separated conditions constructed
from K. Next, we define this separated family and present an algorithm.

Definition 1.10.1 (a-family of K). Let K = (kj) € SLy(R). For each a € [0,7), consider
the separated boundary conditions

y(a)cosa - (py')(a)sina = 0,
y(b)(ky sin & + ky, cos a) — (py")(b) (ky; sin & + ky, cos @) = 0. (1.62)

Define a* € [0, ) by

o = <|tal’1(—k12/k11) if kll #0, (1.63)

Note that a* = 0 when k;, = 0 since ky; # O in this case.

Remark 1.10.1. Note that condition (1.62) for —K is equivalent to (1.62) for K. Since K ¢
SL,(R), (ki1, ki) # (0,0) # (ky;, ky), i = 1,2, and (1.62) is a self-adjoint boundary condi-
tion for each a € [0,7). When a = 0, (1.62) reduces to y(a) = 0 = y(b)ky, — (py')(b)kyp;
when a = 71/2, (1.62) is equivalent with (py')(a@) = 0 = y(b)ky — (py')(b)k;;. When
a = /2 and ky; = 0, (1.62) becomes (py')(a) = 0 = y(b).

Definition 1.10.2. Let K = (k) € SL,(R). For each a € [0, ), let
{up(@) 1 n € Ny} (1.64)
denote the eigenvalues of (1.62).

These eigenvalues {u,(a) : n € Ny} determine all eigenvalues for K and for -K for
each K € SL,(R). The next theorem defines the continuous eigenvalue curves whose
maxima and minima are the eigenvalues for K and -K.

Theorem 1.10.1. LetK = (kij) € SL,(R).
(1) Suppose ki, # 0 and a* is defined by (1.63). Then a* € (0,7). For each n € N,
define the eigencurves R, and L,, as follows:

R, (a) = pp(a), o <a<m; (1.65)
Ly(a) =y (@), O<a<a™. (1.66)

Then R, (a) is continuous on [a*, ), and L,(a) is continuous on [0, a*).
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(2) Suppose k;, = 0. Define R,, by
Ry(a) =py(@), O<a<m. (1.67)
Then R, (a) is continuous on [0, ). (There is no L,, in this case.)

Proof. This follows from Lemma 1.5.1. O

The selection process for the eigenvalues for K and -K is given by the following
algorithm.

Algorithm 1. Let K € SL,(R).
- IfA,(K) = A,,1(K) for some n € N, then u,(a) = A,(K) for all a € [0, ).

(1) Assume kj, = 0 and ky; > 0. Then A,(K) is simple, and
a:

Ap(K) = maxRy(a), O<a<m. (1.68)
b: Ifniseven, then

A (K) =maxR, (@), O<a<m. (1.69)
c: Ifnisodd, then

A(K) =minR, (@), O<a<m. (1.70)

(2) Assume k;, = 0 and ky; < 0. (Note that if k;, = 0, then k;; # O since det(K) = 1.)
Then
a:
Ap(K) =minRy(a), O<a<m.
b: Ifniseven, then
A(K) =minR, (@), O<a<m.
c: Ifnisodd, then
A (K) =maxR,(a), O<a<m.
(3) Assume k;, < 0. Then
a:
Ao(K) = maxRy(a), a* <a<m.
b: Ifniseven, then
A,(K) = maxR,(a), a" <a<m.

c: Ifnisodd, then

A(K) =minL,(@), O<a<a’.
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(4) Assume ky, > 0. Then
a:
Ap(K) = minLy(a), O<a<a”.

b: Ifniseven, then

A(K)=minL,(a), O<a<a.
c: Ifnisodd, then

A, (K) = maxR,(a), a" <a<m.

Proof. See below. O

Except for the case where k;, < 0 and n = 0, the inequalities given in Section 1.7
locate each eigenvalue A,,(K), n € N, uniquely between two consecutive eigenvalues
of the separated boundary conditions. The next corollary fills this gap.

Corollary 1.10.1. Assume that ky, > 0. Then for any a € [a*, ), we have that
Ao (K) < po(a).

In particular, for any € > 0, ug(a) — € is a lower bound of Ay(K).

Proof. This follows from part 3(a) of the Algorithm. O

1.11 Another family of separated boundary conditions

In this section we study another family of separated boundary conditions generated
by a coupling matrix K. This family and its relation to the a-family constructed in the
previous section is used in the proof of Algorithm 1 and, we believe, is of independent
interest. But we first recall the characterization of the eigenvalues by means of the
characteristic function.

For any A € C, define two linearly independent solutions ¢(x, 1) and ¥(x, A) of the
differential equation (1.1) by the initial conditions

par) =0, (pp')al =1, 1.71)
@) =1, (py¥')aA) =0.

Then any solution y(x, A) of equation (1.1) can be expressed in the form

yx,A) = y(a, D, A) + (py') (@ Dex, D), 1.72)
0y )6 A) = y(@D)(py") (6 A) + (py") (@ D) (pp’)(x,A)
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forall x € [a, b] and A € C. In particular, we have

y(b,A) = y(a, Dp(b, A) + (py') (@, D)p(b, ), (1.73)
(py")(b,A) = y(a,)(pY")(b,A) + (py' ) (@, D) (pg") (b, ),
and two basic results follow.

Theorem 1.11.1. Let A € C. The differential equation (1.1) has a nontrivial solution sat-
isfying the separated boundary conditions (1.15)-(1.16) if and only if

8(A) := —A;By(pp")(b,A) + A,B (b, A) + A,By(pY' ) (b, A) — A,B;p(b,A) = 0.  (1.74)
Proof. Simply substitute (1.73) into (1.1) to get two equations in y(a,A) and (py')(a,A),
which must be consistent. This condition is (1.74). O
Theorem 1.11.2. Let K € SL,(R), A € C, -7 < y < m. The differential equation (1.1) has
a nontrivial solution satisfying the coupled boundary conditions (1.9) if and only if

D) = kyy(pg")(b,A) — ky@(b,A) + kpyp(b, A) — kpp(pY") (b, A) = 2 cosy. (1.75)

Proof. Proceed as in the proof of Theorem 1.11.1 using the coupled boundary condi-
tions (1.9); see [113] for details. O

Now we define a family of separated boundary conditions in terms of r € RU {+0c0}
as follows: Given K € SL,(R), for each r € R, consider the boundary conditions

y(a) - r(py')(@) =0, (1.76)
(knr + kyp)y(b) — (kyyr + kyp) (py')(b) = 0,

and also the condition

(py')(@) = 0 = kyy(b) — kyy (py')(b) = 0. (.77)

Condition (1.77) corresponds to r = +oo; its eigenvalues are denoted by v, =
A, (£00),n € N,. Here it is important to keep in mind that conditions (1.76) forall r ¢ R
and condition (1.77) together form one family of separated conditions generated by K;
we refer to this family as the r-family of K. Next, we study this family.

Notation 1.11.1. Let o(r) = {A,(r),n € Ny} denote the eigenvalues of the r-family with
vy, = A, (+00) corresponding to r + co.

The next lemma discusses the continuity properties of the eigenvalues of the
r-family.

Lemma 1.11.1. For a fixed n € Ny, the eigenvalue function A,(r) is a continuous function
of r € R except in the following three cases:
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(1) asr—0".
(2) whenky, = 0 andr = 0 (note that ry, # O in this case).

Proof. This follows from the continuity theorem. O

Next, for each K = (k,~]-) € SL,(R), we construct a family of separated boundary
conditions associated with K. Let r € R U {+o0}, let

rku + klz

= , 1.78
rky; + kyy (1.78)

and note that:

(1) Not both of ky;, k5 or ky, ky, can be 0 since det(K) = 1.

(2) Ifk, =0,thenky; # 0and R = 0 ifand only if r = 0.

(3) Ifky # 0andr = —ky/ky, then R is undefined.

(4) Ifky =0, then ky, # 0, and R is well defined forall r € R.

The next theorem relates the eigenvalues of K and —K with those of the r-family of K.

Theorem 1.11.3. Let K € SL,(R), and let D(A) be defined by (1.75). If A is an eigenvalue
of any member of the r-family of K, then D*(A) — 4 > 0, that is, D(A) > 2 or DA) < -2.

Proof. We first prove the case wherer € R.IfAis such an eigenvalue, then its boundary
conditions are of the form (1.15)-(1.16) with
Ay=1 A,=-r, B;=1 B,=-R (1.79)
Substituting into (1.78) gives a quadratic equation in r,
Ar*+Br+C=0, (1.80)

where

A= k21l/)(b) /1) - kll(plp,)(b) A)’ (181)
B = ky@(b, A) + kpp(b,A) — kyy (py") (b, A) = kyp(p@" ) (b, A),
C = kpp(b, ) - ki (pg") (b, A).

Since A is an eigenvalue for some fixed number r, the left-hand side of (1.80) must
vanish. Hence
2

2_
4A2{<r + E) - B—4AC} =0,
24 4A?

or

2
2 B\
4A r+ﬂ =B" - 4AC.
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A direct computation shows that B? - 4AC = D*(A) - 4. Therefore

4A2(r + £>2 =D*N) -4
i) = .

Sincer, A, B, C are real, it follows that
D) >4 and DA)>2 or D) <-2. (1.82)

This concludes the proof for r € R.

Forr = +00, the member of the r-family is (1.77), whose eigenvalues are v,,, n € IN,,.
The conclusion (1.82) forv,,, n € N, was established in [113] pp. 80—-84. This concludes
the proof. O

Although the next result is a corollary of Theorem 1.11.2 and other known results,
we state it here as a theorem because we think it is surprising and provides a stark
contrast with Algorithm 1.

Theorem 1.11.4. Let K € SL,(R). Let a(r) forr € RuU {xoo}, and let o(K,y) fory €
(-m,0) U (0, ) be defined as before. Then no eigenvalue of any member of any r-family
is an eigenvalue in o(K,y) for any y € (-m,0) U (0, ). More explicitly,

or)naoK,y)=0 (1.83)
forallr e RuU {xoo} andy € (-m,0) U (0, ).

Proof. If A is an eigenvalue in o(K,y) for any y € (-m,0) U (0,m), then [D(A)| < 2 by
(1.82), and the conclusion follows from Theorem 1.11.2. O

Theorem 1.11.5. Let K € SL,(R). If/\,’1(r0) = 0 for somen € N, and somer, € R U {+co},
then A,(r,) is an eigenvalue of either K or —K.

Proof. Suppose A = A, (r) satisfies equation (1.75). Each term of this equation is a func-
tion of r, so we differentiate the left-hand side of the equation with respect to r and
obtain

0A 0B oC) dA
2Ar+B+{rza+ra+Ca—A}E =0 atA=A,). (1.84)

By assumption, A/, (r) = 0. Hence (1.84) reduces to
2Ary+B =0 atA,(ry). (1.85)

This equation yields B? - 4AC = 0, and this implies that D*(1) — 4 = 0, which means
that A is an eigenvalue for either K or —K. O

Remark 1.11.1. In other words, Theorem 1.11.3 says that the eigenvalues for K and —-K
are the extrema of the continuous eigencurves L, (a) and R,(a) defined before. For any
K and n, the algorithm explicitly states which extremum is equal to A,(K).
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Next, we study the relation of the a- and r-families with each other.
Letr € RU {+oco} be determined by

tan(a) =r, a € [0,m), (1.86)

where r = oo when a = 71/2.
Let R be given by (1.86). Now define 8 = B(a) = B(a(r)) by

tan() =R, B e (0,m] (1.87)

and observe that

(1) B=m/2whenky # 0andr = —ky,/kqo;
(2) B=mifandonlyifk;, =0andr =0, and
(3) by (1.87) B = /2 corresponds to R = +oco.

By definition, @ = 71/2 corresponds to r = +co.
In each of these three cases, there is an infinite jump discontinuity whenn = 0
and a finite jump discontinuity when n > 0.

1.12 Proof of the algorithm

The proof is basically obtained by combining Theorems 1.11.3 and 1.11.4 with the
known inequalities given in Section 1.7.

Proof of Algorithm 1. First, consider the particular case k;, = 0. Thena* = 0.Ifk;; > 0,
then by the inequalities theorem, the interval [A,,_;(K),A,(K)] for even n contains v,, =
v,(1/2), and the function v,(a) is continuous at a = 7/2. By Theorem 1.4.2, v,(a) can-
not move outside the interval [A,,_; (K), A,(K)] as a varies continuously away from a =
/2 since v, (a) > A,(K) or v, (a) < A,_1(K) would contradict Dz(vn(a)) —4 > 0. There-
fore A,_1(K) < v,(a) < A,(K) forall a € [0, 7). If A,,_;(K) = A,(K), then v, (a) = A,(K) for
all a € [0, ).

If 4,_1(K) < A,(K), then the continuous function v,(a) has a maximum and a
minimum in the compact interval [A,_;(K),A,(K)] as a varies in [0, ). If the maxi-
mum is not A,(K), then it occurs in the interior of this interval, and by Theorem 1.4.2
A (K) = max{v,(a) : a € [0,m)}. Similarly, A,_;(K) = min{v,(a) : a € [0,m)}. The proof
for k;, = 0 and k;; < O is similar.

If k;; # O, then 0 < a*. In this case the proof is also similar to the above proof but
with one important difference: The interval [0, ) in the above argument is replaced
by two intervals [0, a*) and [a*, 7). This is due to the fact that the function v, (a) has
a jump discontinuity at a* — see part (1) of Theorem 1.2.1 for a discussion of jump
discontinuities of eigencurves for separated boundary conditions. This discontinuity
is due to the fact that tan(8) = 0 when a = a*, and hence (recall the normalization
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for Bin (1.5)) B = m when a = a*. See part (1) of Theorem 1.2.1 for a discussion of
jump discontinuities. Although this discussion is for the case where f is fixed as a
varies, it extends readily to our situation where f is a continuous function of a. In
fact, the results mentioned in part (1) of Theorem 1.2.1 have far reaching extensions;
see Sections 3.4, 3.5, and 3.6 in [113]. O

Remark 1.12.1. Note that the intersections of the function D(A) with the horizontal
lines at +2 and -2, which are the eigenvalues for K and —K, correspond precisely with
the local extrema of the continuous eigencurves R, (a) and L, (a) of the related a-family
in an appropriate a interval. See the graph of a typical characteristic function D(A) on
page 92 in [113].

The eigenvalues corresponding to each index n lie along two distinct continuous
curves, one on [0, a*) and the other on [a*, 7).

When the parameter y = 0 (or 71), then D(A) = 2 if and only if A is an eigenvalue
for the problem with coupled boundary conditions defined by a matrix K; D(A) = -2
when A is an eigenvalue of the problems defined by —K. Thus to compute eigenval-
ues of such coupled boundary condition problems, we simply compute the values of
functions ¢(x,A) and Y(x,A) at x = b, evaluate D(A), and search for values of A for
which D(A) = 2. But then we have to determine the index n. For this, the upper and
lower bounds obtained from Theorem 1.2.1 (see Remark 1.2.1) can be used. See [13] for
examples of computed eigenvalues of coupled boundary conditions computed with
SLEIGN2 and this algorithm.

1.13 Comments

Most of the material covered in Sections 1-9 can be found in the book [113]. Sections
10, 11, and 12 describe an algorithm developed by Bailey and Zettl [13] in 2012, which
can be used with SLEIGN2 to compute the eigenvalues of regular and singular Sturm—
Liouville problems with real coupled self-adjoint boundary conditions. This algorithm
is based on using the Priifer transformation on families of separated boundary condi-
tions.

In 1978, Bailey introduced the code SLEIGN to compute the eigenvalues of Sturm-—
Liouville problems with regular self-adjoint separated boundary conditions and for a
singular problem selected by the code. This singular problem is usually, but not al-
ways, the Friedrichs extension. In 1991, Bailey, Everitt, and Zettl [6] introduced the
code SLEIGN2 based on new algorithms. SLEIGN2, when used together with appro-
priate theoretical results, can also provide some information about the spectrum of
some singular problems, for example, the starting point of the essential spectrum,
the number and numerical value of eigenvalues below the essential spectrum, and
an approximation of the first few spectral bands and gaps; see the paper [10] of these
authors for examples and additional information.
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The SLEIGN2 “package” and a number of related papers can be downloaded from
the Web at

http://www.math.niu.edu/~zettl/SL2

This package contains a user-friendly interface consisting of six FORTRAN files,
two tex files, and three pdf files. All these files can be downloaded by clicking on the
given links.

Also see [10] for a comparison of SLEIGN2, which uses the Priifer transformation,
and the Fulton-Pruess code SLEDGE [40], which is based on approximating the coef-
ficients. Both codes are used in [10] on some examples to compute eigenvalues, and
the results are compared.
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2 Periodic coefficients

2.1 Eigenvalues of periodic, semiperiodic, and complex boundary
conditions

Consider the equation
~(py) +ay=Awy, AeC, @1)
with coefficients satisfying
1/p,q.we L, (RR), p>0, w>0 a.e.onR (2.2)
The coefficients are h-periodic if for some h € R, 0 < h < oo,
pt+h)=p(t), q(t+h)=q(t), wlt+h)=w(), telR; (2.3

the complex boundary conditions on the interval [a,a + h] for any given a € R are
defined by

y(a+h) = e?y(a),

(y')a+h) =e"(py')@), O<y<m 2.4)

and the periodic and semiperiodic boundary conditions on each of the k intervals
[a,a + kh], k € N, are defined by

y(a + kh) = y(a),
(py')(a + kh) = (py')(a), (2.5)

and

y(a +kh) = -y(a),
(py')(a +kh) = —(py')(a). (2.6)

Remark 2.1.1. Note that condition (2.2) implies that the coefficients satisfy
1/p,q,w € L'J,R), p>0, w>0 a.e.onj 2.7

for any interval J] = [a,a + kh], a € R, k € IN. Thus all these problems are regular
classical self-adjoint boundary value problems. So the results of Chapter 1 apply to
each of these problems.

Remark 2.1.2. Also note that we do not assume that h is the smallest positive number
for which (2.3) holds.

https://doi.org/10.1515/9783110719000-002
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Each of these boundary value problems has a discrete spectrum consisting of a
countable number of real eigenvalues {A, : n € Ny}, which are bounded below and
unbounded above and can be ordered to satisfy

—OO<A0SA1SA2SA3S"'. (2.8)

Furthermore, for the complex boundary condition (2.4), all inequalities are strict,
that is, each eigenvalue has multiplicity 1; for the periodic and semiperiodic condi-
tions (2.5) and (2.6) — with k = 1 - the eigenvalues may have multiplicity 1 or 2 with
the exception of the lowest periodic eigenvalue, which has multiplicity 1. Here multi-
plicity can be interpreted as either the geometric or algebraic multiplicity since these
are the same.

For these and other basic results, definitions, and notation about Sturm-Liouville
problems used further, we refer the reader to Chapter 1 or [113].

Notation 2.1.1. We denote the complex, periodic, and semiperiodic eigenvalues by
), /\5 (k), and Aﬁ(k), respectively, forn € Ny, k € N, and y € (0,m). Note that each
eigenvalue A, is uniquely defined, although there may be some ambiguity for its eigen-
functions in case of multiplicity 2 for the periodic and semiperiodic cases. We also use
the notations /\5(1) = Aﬁ = Aﬁ(O), )lﬁ(l) = Ai = Aﬁ(n), n € Ny, since the periodic eigen-
values correspond to the endpoint 0, and the semiperiodic eigenvalues correspond to
the endpoint it of the interval (0, ) in a natural sense as we will see further. Also, }lf (k)
and Aﬁ,v (k) denote the Dirichlet and Neumann eigenvalues; these play a special role for
eigenvalue inequalities for different boundary conditions.

For each k > 2, we identify which values of y generate the periodic eigenvalues
Aﬁ (k) and which ones generate the semiperiodic eigenvalues )lﬁ(k). The case where
k = 2is special in the sense that no value of y generates these eigenvalues.

Remark 2.1.3. For smooth coefficients, periodic boundary conditions of the form

y@=yb), y'@=yb)

and semiperiodic conditions of the form

y(a) = -y(b), y'(a)=-y'(b),

as well as different parameterizations of y and relation between the eigenvalues A,,(y)

and Aﬁ (k) are investigated in the well-known book by Eastham [27]. Although we are

influenced by some of the methods used in [27], there are a number of significant dif-

ferences in our approach:

(1) We assume neither that p is differentiable nor that g and w are piecewise contin-
uous and that w is bounded away from 0.
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2.2 General eigenva