
C
o
p
y
r
i
g
h
t
 
 
2
0
2
1
.
 
M
i
c
h
i
g
a
n
 
S
t
a
t
e
 
U
n
i
v
e
r
s
i
t
y
 
P
r
e
s
s
.
 
A
l
l
 
r
i
g
h
t
s
 
r
e
s
e
r
v
e
d
.
 
M
a
y
 
n
o
t
 
b
e
 
r
e
p
r
o
d
u
c
e
d
 
i
n
 
a
n
y
 
f
o
r
m
 
w
i
t
h
o
u
t
 
p
e
r
m
i
s
s
i
o
n
 
f
r
o
m
 
t
h
e
 
p
u
b
l
i
s
h
e
r
,
 
e
x
c
e
p
t
 
f
a
i
r
 
u
s
e
s
 
p
e
r
m
i
t
t
e
d
 
u
n
d
e
r
 
U
.
S
.
 
o
r
 
a
p
p
l
i
c
a
b
l
e
 
c
o
p
y
r
i
g
h
t
 
l
a
w
.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 2/13/2023 6:33 AM via 
AN: 2739526 ; Jiquan Chen.; Biophysical Models and Applications in Ecosystem Analysis
Account: ns335141



Biophysical Models and Applications 

in Ecosystem Analysis

 EBSCOhost - printed on 2/13/2023 6:33 AM via . All use subject to https://www.ebsco.com/terms-of-use



 EBSCOhost - printed on 2/13/2023 6:33 AM via . All use subject to https://www.ebsco.com/terms-of-use



Biophysical Models and Applications 

in Ecosystem Analysis 

Jiquan Chen

Higher Education Press Michigan State University Press

China East Lansing

 EBSCOhost - printed on 2/13/2023 6:33 AM via . All use subject to https://www.ebsco.com/terms-of-use



Copyright © 2021 by Higher Education Press. All rights reserved. 

i The paper used in this publication meets the minimum requirements 

of ANSI/NISO Z39.48-1992 (R 1997) (Permanence of Paper).

Michigan State University Press

East Lansing, Michigan 48823-5245

Published in China by the Higher Education Press Limited Company

p
Published in the United States of America by Michigan State University Press

Library of Congress Cataloging-in-Publication Data is available

ISBN 978-1-61186-393-2 (paperback)

ISBN 978-1-60917-667-9 (PDF)

ISBN 978-1-62895-426-5 (ePub)

ISBN 978-1-62896-427-1 (Kindle)

Visit Michigan State University Press at www.msupress.org

 EBSCOhost - printed on 2/13/2023 6:33 AM via . All use subject to https://www.ebsco.com/terms-of-use



Contents

 Foreword, by Dennis Baldocchi — vii
 Preface — ix

List of Online Supplementary Materials — xiii
List of Symbols — xvii

Chapter 1 Biophysical Essentials for Ecosystem Models — 1
1.1 Introduction — 1
1.2 Diurnal Changes of Air Temperature and Humidity — 4
1.3 Atmosphere Water Vapor Pressure and VPD — 8
1.4 Solar Radiation — 11
1.5 Heat Storages in Soil, Air and Vegetation — 18
1.6 Vertical Profile of Wind Speed — 19
1.7 Energy Balance — 22
1.8 Summary — 23

Online Supplementary Materials — 24
 Acknowledgements — 25
 References — 25

Chapter 2 Modeling Ecosystem Production — 29
2.1 Introduction — 29
2.2 Core Biophysical Models for Ecosystem Production — 34
2.2.1 Michaelis-Menten Model — 35
2.2.2 Landsberg Model — 38
2.2.3 Farquhar’s Model — 39
2.2.4 Photosynthesis based on Stomatal Conductance (gs) — 40
2.2.5 Light Use Efficiency (LUE) Model — 44
2.2.6 Nitrogen Use Efficiency (NUE) Model — 46
2.2.7 Water Use Efficiency (WUE) Model — 47
2.2.8 Multiple Resource Use Efficiency (mRUE) Model — 48
2.3 The Datasets for Modeling Photosynthesis — 49
2.4 Model Performances — 49
2.4.1 Light Response Models — 49
2.4.2 Results from Farquhar’s Model — 50
2.4.3 Results from Ball-Berry Model — 52
2.4.4 Other Models — 54
2.5 Summary — 54

Online Supplementary Materials — 56
 Acknowledgements — 56
 References — 57

 EBSCOhost - printed on 2/13/2023 6:33 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 3 Modeling Ecosystem Respiration — 63
3.1 Introduction — 63
3.2 Models for Ecosystem Respiration — 68
3.2.1 Linear and Log-linear Models — 68
3.2.2 Quadratic and Polynomial Models — 69
3.2.3 Arrhenius Model — 69
3.2.4 Logistic Model — 70
3.2.5 Gamma Model — 70
3.2.6 Biophysically Constrained Models — 71
3.2.7 Time Series Models — 73
3.3 Measured Datasets for Modeling Soil Respiration — 74
3.4 Model Performances — 76
3.5 Summary — 80

Online Supplementary Materials — 81
Acknowledgements — 82
References — 83

Chapter 4 Modeling Evapotranspiration — 89
4.1 Introduction — 89
4.2 Methods for Quantifying ET — 93
4.3 ET Models — 96
4.3.1 PET Models — 97
4.3.2 Empirical Actual ET Models — 103
4.4 Model Demonstrations — 106
4.4.1 Meteorological Data — 106
4.4.2 Modeled PET at Multiple Scales and Actual ET — 109
4.5 Summary — 111

Online Supplementary Materials — 112
Acknowledgements — 112
References — 113

Chapter 5 Modeling Ecosystem Global Warming  
Potentials — 119

5.1 Introduction — 119
5.1.1 Temperature of the Earth — 120
5.1.2 The Greenhouse Effects — 121
5.1.3 The Roles of Terrestrial Ecosystems in GWP — 126
5.2 Calculating GWP of Greenhouse Gases — 128
5.3 Calculating GWP from Surface Albedo — 137
5.4 Case Examples — 139
5.5 Summary — 144

Online Supplementary Materials — 144
Acknowledgements — 145
References — 145

Index — 151

Authors — 154

 EBSCOhost - printed on 2/13/2023 6:33 AM via . All use subject to https://www.ebsco.com/terms-of-use



Foreword

As biophysical ecologists we study the metabolism of the biosphere through
its breathing. This requires that we observe and model trace gas fluxes be-
tween ecosystems and the atmosphere, and the constituent biophysical pro-
cesses of ecosystems. Modeling involves defining and parameterizing func-
tional relations that describe how trace gas fluxes respond to environmen-
tal conditions. Application of these models require that we quantify these
functions based on the environmental state that organs (leaves, roots, soil
microbes) sense, not those of some distant weather station.

If we want to apply biophysical information for policy, practice and learn-
ing, doing so by qualitative means, like waving hands or inferring condi-
tions and relationships by back of the envelope sketches is not good enough.
Modern-day scientists, practitioners, policy makers and the next generation
of students, need a quantitative toolbox to assess the state of the world in
a quantitative manner. Here is where Prof. Chen’s book on. Biophysical
Models and Applications in Ecosystem Analysis can make a mark and fill an
educational void.

Students learn better by doing. How to do so effectively and equally, when
so many environmental science students have different and wide skill sets?
We can provide them with state of art learning from a common base, which
will provide hand holding for environmental problem solving. This book
meets this goal. It has over 20 examples of biophysical calculations based
on spread sheets and Python on a wide range of topics, such as foundational
micrometeorological changes, carbon and water fluxes, energy balance, and
global warming potentials.

This modeling approach allows students to explore biophysical questions
and problems, to ask “how so?” and “so what?” questions and to get im-
mediate feedback from plots. For example, students will be able to explore
foundational concepts like the Michaelis-Menten and Arrhenius Equations.
They will have in their hands the revolutionary Farquhar’s, von Caemmerer,
Ball-Berry model of leaf photosynthesis. And, they can study water balances
with a suite of evaporation equations.
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viii Foreword

As someone who started his career modeling with Quick Basic and C, I
have learned to realize how blind I was in my early career. In recent years, I
have converted many of my codes and scripts to Matlab and Python. In my
own teaching I have learned how scripting languages give students an ability
to organize their thoughts and how visualization power enables students to
inspect the impacts of parameters, different inputs of environmental drivers
and predict future scenarios. So, I have first-hand experience of the power
and importance of such a suite of well-created and tailored educations tools.

Prof. Chen has produced a much more professional set of applications
than those I have cobbled together. Hence, I expect many of my peers will
gravitate towards this book for their teaching. And students, will use this
book to gain confidence about modeling.

Dennis Baldocchi 
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Preface

A number of questions usually arise when a student starts to consider quan-
titative models for fitting their experimental data, achieving a specific study
objective, or testing a hypothesis. Common questions include: Which model
should I use, and why? Are there alternative options? What are the mean-
ings of the parameters in each model? What values should I use as parame-
ters? And how do I construct the model for my study? My answer to each of
these legitimate questions often is, “It depends.” This is because every model,
biophysically or empirically, was developed for specific conditions or under
certain assumptions. In ecosystem studies, no single model could be used
to answer the full range of scientific questions. They are based on crucial
ecological and physical processes and should not be assumed to work “per-
fectly” in all ecosystem types, under all kinds of circumstances, and across
all spatial and temporal scales. Yet, the answer “It depends” often adds to
the confusion, until algorithms are well explained, with history, rationales,
and applications. I also find that demonstrative examples with real-world
data are very helpful. Over 30 model templates in Excel Spreadsheets or
Python codes are provided here for demonstrations and uses. Above needs
for context and background were the primary motivation behind writing this
book.

A second motivation stemmed from the unprecedented growth in the num-
ber and complexity of ecosystem models developed over the past 40 years.
Now there are a variety of system models that predict the magnitudes and
dynamics of ecosystem properties. Each of these models was carefully con-
structed with sound algorithms from meteorological, hydrological, ecological,
biogeochemical, and/or statistical principles. As a result, they are com-
plex in terms of the number of processes factored, as well as regarding the
inter-connections among the processes. Understanding and applying these
models are not easy due to their complexity. Fortunately, almost all ecosys-
tem models were developed with a few common algorithms. For example,
Farquhar’s photosynthesis equation, the Ball-Berry stomatal conductance
algorithm, Michaelis-Menten kinetics, temperature-dependent respiration in
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x Preface

the form of Q10, and energy balance are widely used. This book is de-
signed to describe and explain the major biophysical and empirical modules
that have been used in ecosystem models. Understanding these fundamen-
tal algorithms will speed up the application of system models. For model
developers, knowledge about each of the crucial modules, including their
varieties, behaviors and parameterization, model performances, and their
strengths and limitations, are essential to improving and advancing their
work. For example, a simple Q10 algorithm based on exponential equation
(Chapter 3) has been widely used in many ecosystem models for calculating
respiration, yet there are many other forms that may provide more realistic
predictions, albeit requiring different sets of parameters.

There also are practical reasons to develop a good understanding of fun-
damental biophysical models (and their algorithms) in experimental studies.
Observational and experimental research is conducted with finite amounts of
information (e.g., number of manipulative factors). It often is best to express
empirical data with quantitative models, so results can be generalized using
different combinations of inputs, since observations cannot cover all kinds
of environmental conditions. Unexpected results may emerge through this
type of modeling exercise. One of the reasons for fitting empirical data into
a biophysical model is because it produces meaningful parameters that allow
investigators to compare the magnitude, differences and changes of those pa-
rameters to help them better understand the underlying mechanisms among
ecosystems, over time, or under different environmental conditions (includ-
ing disturbances). For example, estimated Q10 values in soil and ecosystem
respiration models have been widely used to assess CO2 loss from terrestrial
ecosystems by types, among continents or climatic zones, and under differ-
ent natural and anthropogenic disturbances (e.g., wild fires, extreme heat
waves). Similarly, Vmax and Jmax values estimated in photosynthesis mo-
dels (Chapter 2) permit us not only to assess the CO2 assimilations among
different leaves, species, or ecosystems, but also to guide management prac-
tices such as plantation density, species selection, irrigation scheduling, etc.
Estimating resource use efficiency as a key parameter in production models
is another example for such a purpose.

In some studies, the objective is to re-scale results to different spatial and
temporal resolution and content, which requires a mathematically expressed
model. Using predicted climate conditions (e.g., from IPCC) to calculate
future ecosystem production is an example of this. Recent advancements in
remote sensing modeling of ecosystem structure and function also require
well-calibrated algorithms to scale up in-situ data to regional levels. A well-
calibrated biophysical model can serve this purpose. MODIS NPP/GPP
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Preface xi

products, for example, are based on light-use efficiency (Chapter 2) prin-
ciples for each time period at a global scale. Another practical use for a
biophysical model is to fill data gaps in observations. It is common to have
missing data points in observational databases, and filling these data gaps is
a necessary step before other analyses can proceed. A great example of this is
the continuous measurement of net exchange of carbon, water and energy by
using the eddy-covariance method. Due to factors such as stable boundary
layers, malfunctions of sensors, climatic conditions, and unexpected distur-
bances there are many data gaps in these time series. Applying empirical and
biophysical algorithms to fill these gaps, or predict other relevant measures
(e.g., daytime respiration from nighttime data), are widely used approaches
to solve this problem. Again, different protocols and algorithms have been
proposed and applied. It is critical to understand the foundation of each
algorithm for filling the gaps.

There are many ecosystem functions that can be explored through bio-
physical modeling. To cover all of them here would not be practical, espe-
cially due the cross-disciplinary nature of the processes involved in model
construction. The long list of models was necessarily reduced to a few key
focal areas while preparing this text. As it stands now, this book covers
ecosystem production (Chapter 2), respiration (Chapter 3), evapotranspi-
ration (Chapter 4), and global warming potentials (Chapter 5). Other im-
portant processes and functions (e.g., nutrient cycling, species interactions,
transpiration, etc.) are not covered here, though they are equally important
in ecosystem studies. Many of these models were proposed and constructed
based on biophysical and biogeochemical processes, suggesting that rele-
vant knowledge bases are needed. Chapter 1 is designed to introduce the
major biophysical (mostly micrometeorological) essentials needed to under-
stand the models in the following four chapters. Remote sensing modeling,
another emerging field that uses measurements to quantify ecosystem struc-
ture and functions, is particularly advantageous in modeling spatial changes
(i.e. variations within and among ecosystems), but these models are not
covered in this book due to rapid advancement in the field.

Many researchers at the Landscape Ecology & Ecosystem Science Lab
stimulated ideas and, in some cases, contributed to the content of this
book. I am particularly indebted to Michael Abraha, Amy Concilio, Housen
Chu, Jared DeForest, Eugenie Euskirchen, Juanjuan Han, James Lemoine,
Qinglin Li, Xianglan Li, Cheyenne Lei, Nan Lu, Asko Noormets, Soung
Ryu, Pietro Sciusco, Changliang Shao, Ariclenes Silva, Burkhard Wilske,
and Terenzio Zenone, for their discussion, data sharing, or insights on some
models. Ge Sun has been a long-time collaborator. Recognizing his leading
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research on water cycle, I twisted his arm to be the lead author of Chapter 4
on evapotranspiration. My appreciation also goes to Huimin Zou, who is in
her first year of doctoral studies in Beijing Normal University. She spent
hours revising the solar.PY codes and performed the non-linear regression
analysis for ecosystem production and respiration models.

As I was finalizing these chapters during the COVID-19 epidemic in the
spring of 2020, I was fortunate to have several mentors, colleagues and
students provide constructive and detailed reviews and suggestions for im-
proving the drafts. Richard Waring continued his support, which has been
steady over the past 30 years, with timely responses, important references,
and specific advice regarding the texts on modeling ecosystem production;
Martin Kappas helped translate the publications on soil respiration that
are in German and held in German libraries; Dan Wang, Mike Abraha and
Naishen Liang provided field data on photosynthesis, respiration, and eddy-
covariance fluxes for testing models, along with detailed explanations. More
than a dozen colleagues provided very detailed reviews, including Deven-
dra Amatya, Altaf Arain, Housen Chu, Jared DeForest, Steve Hamilton,
Phil Robertson, Thomas Sharkey, Gordon Smith, Ying-Ping Wang, and
Richard Waring. Encouragement from Phil Robertson, Dennis Baldocchi,
Jerry Franklin, and Richard Waring to complete this book helped me along.
Kristine Blakeslee carefully edited every chapter with sharp eyes and picky
wording. Finally, I am grateful for the invitation and persistent support of
Bingxiang Li and Yan Guan at the Higher Education Press (HEP). Their
trust and confidence in me have been the major force behind the completion
of this book. Julie Loehr of MSU Press added her encouragement to pro-
mote the Ecosystem Science and Application (ESA) series as a joint endeavor
between HEP and MSU Press.

This book would not be possible without support from many foundations
and agencies, including the National Science Foundation, NASA (LCLUC,
Carbon Cycle Science), USDA NRI, USDA Forest Service, DOE, and State
of Missouri. In particular, this book was planned as part of ongoing re-
search at the Great Lakes Bioenergy Research Center (GLBRC) under the
U.S. Department of Energy. Multiple resources at GLBRC were accessed to
complete the final manuscript.
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Chapter 1
Biophysical Essentials for Ecosystem
Models

Jiquan Chen

1.1 Introduction

Before getting into the specifics of the models for key ecosystem functions
(e.g., evapotranspiration, ecosystem production), it is first necessary to cover
some relevant biophysical foundations. Major models for ecosystem produc-
tion (Chapter 2), respiration (Chapter 3), evapotranspiration (Chapter 4)
and global warming potentials (Chapter 5) will be covered in this book.
These models, biophysically or empirically derived, have different sets of in-
put variables and/or parameters that are required. Some parameters are
physical properties of materials (e.g., vaporization of water at a given pres-
sure), or have been approved as empirically true (e.g., transmission coeffi-
cient of light through the atmosphere), while others lack theoretical founda-
tions but can be empirically estimated (e.g., change in atmospheric pressure
with elevation). In practice, there also often is mismatch or lack of direct
presentation between the required model parameters and the physical quan-
tities that can be measured practically. For example, vapor pressure deficit
(VPD) is a critical variable in parameterizing many biophysical models (e.g.,

Jiquan Chen
Landscape Ecology & Ecosystem Science (LEES) Lab, Department of Geography, Environment, and
Spatial Sciences & Center for Global Change and Earth Observations, Michigan State University, East
Lansing, MI 48823
Email: jqchen@msu.edu

© Higher Education Press, 2020
Jiquan Chen, Biophysical Models and Applications in Ecosystem Analysis,
https://doi.org/10.3868/978-7-04-055256-0-1
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2 Jiquan Chen

the Ball-Berry model for estimating stomatal conductance of CO2 diffusion)
(Dewar 2002). It is, however, not directly measured at micrometeorological
stations. Hence, it is critical to understand how VPD is calculated by using
other measured variables (i.e., air temperature and relative humidity).

A comprehensive introduction to these foundations — the scope of “en-
vironmental biophysics” — is a challenge because this book is designed to
provide sufficient information to use the models in later chapters. Users
are encouraged to consult the classical works of Fritschen and Gay (1979),
Rosenberg et al. (1983), Kaimal and Finnigan (1994), Griffiths (1994), Chen
et al. (1999), Lee et al. (2004), Ebi et al. (2009), Campbell and Norman
(2012), Lowry (2013), and Bonan (2019). After an assessment of the major
models that will be covered in later chapters, this chapter will cover the
following topics:

• modeling diurnal changes of air/soil temperature,
• calculations of atmospheric pressure, VPD, wet-bulb temperature (Tw)

and dew point temperature (Td),
• calculations of zenith and azimuth angles of the Sun,
• calculations of heat flux and/or storage of air, water and vegetation,
• modeling vertical wind profiles of wind speed, and
• quantifications of energy balance equation.

The second challenge that is often frustrating for beginners is the long list
of physical (sometimes empirical) constants and the variety of symbols used
in environmental biophysics. These constants are described as each occurs
and are summarized in the “List of Symbols”. Coupled with this challenge is
the variety of units that have been used for the same variable. The Interna-
tional System of Units (SI) is applied throughout the book. Calculations for
converting between different units are also presented. When possible, sym-
bols and abbreviations are applied consistently throughout the book and are
matched with those in Campbell and Norman (2012). Unfortunately, one
cannot always avoid using the same symbol for different variables due to the
conventions in separate disciplines (e.g., meteorology vs. hydrology). For
example, Rs is commonly used for “shortwave radiation” in micrometeorology
and for “soil respiration” in ecology (see Chapter 3).

To best understand the models, their performances and applications, it is
effective to use in-situ data for demonstrations. Again, this is difficult be-
cause of variations in how models perform in different ecosystems, available
input parameters, and temporal scale (e.g., hourly-yearly scale) of the appli-
cations. While it is desirable to use actual datasets from different ecosystems
and for different models, this book is designed as a generic presentation of
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Chapter 1 Biophysical Essentials for Ecosystem Models 3

popular biophysical models. Consequently, I use the data collected from an
eddy-covariance (EC) flux tower at a switchgrass (Panicum virgatum) bioen-
ergy crop site for demonstrations (S1-1: Switchgrass_metdata2016.xlsx).
Other chapters use different sets of data for diverse applications.

The EC tower is one of seven flux towers constructed in November of
2008 by the Great Lakes Bioenergy Research Center (GLBRC) at the W.
K. Kellogg Biological Station (KBS), Michigan, USA. It is located within a
14.1 ha plantation of switchgrass (Latitude = 42◦28′36.15′′N; Longitude =
85◦26′48.33′′ W; Elevation = 295 m). The region lies on the northeastern
edge of the US Corn Belt. The climate is temperate and humid, with a mean
annual air temperature of 9.7 ◦C at KBS and an annual precipitation of 920
mm, evenly distributed throughout the year, with about half falling as snow.
The soil textural class of all sites is sandy clay loam with a pH range from
5.8 to 6.4. The site has been cultivated conventionally as a corn/soybean
rotation for the past 10 years and was planted in row crops for at least 30
years before that (Zenone et al. 2011). In 2009 the field was converted to
no-till soybean; it has been planted as switchgrass ever since (Abraha et al.
2015).

Continuous open-path eddy covariance and meteorological measurements
have been maintained since December 2008. The measurement system in-
cludes a LI-7500 open-path infrared gas analyzer (IRGA, LI-COR, Lincoln,
Nebraska, USA) for H2O and CO2 concentrations and a CSAT3 three-
dimensional sonic anemometer (Campbell Scientific Inc. (CSI), Logan, UT,
USA) for lateral, longitudinal, and vertical wind velocities and sonic tem-
perature. The sensors are oriented toward the prevailing wind direction to
minimize wind distortions due to supporting structures and have been peri-
odically checked and cleaned. The IRGAs is calibrated every 4 – 6 months
using zero-grade nitrogen gas for zeroing H2O and NOAA standard gas for
CO2 calibration, and a dew point generator (LI-610, LI-COR) and standard
CO2 –N2 gas mixture for setting the H2O and CO2 spans, respectively. All
EC measurements are conducted at 10 Hz and logged using a Campbell
CR5000 datalogger. Additionally, we measure soil heat flux (G) (HFT3,
CSI) at 2 cm below the soil surface using three randomly placed soil heat
flux plates, soil temperature (Ts) at three depths (2, 5, and 10 cm) below the
soil surface using CS107 probes (CSI), and soil water content in the upper 30
cm of the soil profile using a vertically inserted Campbell CS616 time domain
reflectometry (TDR) probe (CSI). Measurements of incoming and outgoing
short- and long-wave radiation (CNR4 net radiometer, Kipp & Zonen BV,
the Netherlands) and air temperature and relative humidity (HMP45C, CSI)
are also made at the site. Precipitation is measured at a nearby weather sta-
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4 Jiquan Chen

tion1 located about 4 km away from the nearest tower using a tipping bucket
rain gauge (TE525WL-S: Texas Electronics, Dallas, Texas, USA). More in-
formation about instrumentation and measurements can be found in Zenone
et al. (2011, 2013) and Abraha et al. (2015, 2018).

Data collected in 2016 from this site is used for demonstrations of different
models in this chapter. Half-hourly fluxes were computed using the software
EdiRe (University of Edinburgh, v1.5.0. 32, 2012) as a covariance of a scalar
(sonic temperature, H2O, or CO2) and vertical wind speed, following the
standard protocols of the FLUXNET (Baldocchi et al. 2001, Abraha et al.
2015). The datasets have gaps (due to various reasons); they are filled using
the gap-filling algorithm of Reichstein et al. (2005). Both the raw data and
gap-filled data are included for the modeling exercises of this chapter. This
dataset is split into several files for convenience of model demonstrations.
Altogether, there are 84 variables, labeled with abbreviations and proper
units. Table 1.1 lists some of the variables that are frequently used in this
book, while the explanations of other variables can be found in the database
(S1-1: Switchgrass_metdata2016.xlsx).

1.2 Diurnal Changes of Air Temperature and
Humidity

Air temperature (Ta, ◦C) and relative humidity (h, %) are the two most com-
mon variables recorded at climatic stations worldwide and are used in many
biophysical models in this book (Chapter 2). They are usually measured at
2.0 m above the ground, but the measurement frequency varies substantially
from 30 min to 1 hour, 3 hours, or daily. Prior to automatic weather stations,
air temperature and relative humidity were recorded daily for their minimum
and maximum values. Modern weather stations are equipped with datalog-
gers and sensors for continuous measurements a few times per minute, which
are tallied at mostly 30 min for the mean, minimum, maximum, range, etc.
With increasing interest and efforts in modeling ecosystem functions at finer
temporal resolution, half-hourly or hourly data are increasingly used in pa-
rameterizing biophysical models. This section focuses on a few key issues
in modeling and measuring diurnal changes of air temperature and relative
humidity.

Air temperature has a unit of Celsius (i.e., centigrade scale) within the

1 http://lter.kbs.msu.edu/datatables
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Table 1.1 Major variables and their units in the KBS-switchgrass dataset (S1-1: Switch-
grass_metdata2016.xlsx) for September 22, 2016. Variable names match those in the
original databases, with some differences from the symbols applied in this chapter.

Name in the file Unit Description
Fc_wpl mg m−2 s−1 Net ecosystem exchange of CO2, corrected

with WPL¬ method
LE_wpl W m−2 Latent heat flux density (L)
Hs W m−2 Sensible heat flux density (H)
tau kg m−1 s−2 Momentum flux (τ)
u_star m s−1 Friction velocity (u∗)
rho_a_Avg kg m−3 Moist air density (ρ)
press_Avg kPa Atmospheric pressure
wnd_dir_compass degree Prevailing wind direction (D)
wnd_spd m s−1 Average horizontal wind speed (u)
Rad_short_Up_Avg W m−2 Incoming short-wave radiation
Rad_short_Dn_Avg W m−2 Outgoing short-wave radiation
Rad_long_Up_Avg W m−2 Incoming long-wave radiation
Rad_long_Dn_Avg W m−2 Outgoing long-wave radiation
Rn_short_Avg W m−2 Average short-wave net radiation
Rn_long_Avg W m−2 Average long-wave net radiation
Rn_total_Avg W m−2 Average net radiation (Rn)
t_hmp1_Avg ◦C Average air temperature (Ta)
rh_hmp1_Avg fraction Relative humidity (h)
e_Avg kPa Average actual vapor pressure (ea)
VPD_Avg kPa Average vapor pressure deficit (VPD)
par_flxdens_Avg µmol m−2s−1 Average flux of photosynthetically active

radiation (PAR)
vwc_Avg % Average volumetric soil water content of top

30-cm soil
SoilT_Avg (1-3) ◦C Average soil temperature (Ts) at 2 m, 5 m

and 10 cm
HFT_Avg (1-3) W m−2 Average soil heat flux tramsducer (i.e., G1,

G2 and G3)

Note: ¬ WPL, Webb-Pearman-Leuning.

 EBSCOhost - printed on 2/13/2023 6:33 AM via . All use subject to https://www.ebsco.com/terms-of-use



6 Jiquan Chen

International System of Units. However, in some regions (e.g., the United
States, the Bahamas, Belize, the Cayman Islands, Liberia, etc.) and in
some historical databases it is also given in Fahrenheit (◦F). The conversion
between the two units is:

Temperature (◦C) = 5/9 · (Temperature (◦F)− 32) (1.1)

Under standard atmospheric pressure at sea level (∼101.3 kPa), the tem-
perature at which water freezes into ice is 32 ◦F (i.e., zero in ◦C) and the
boiling point of water is 212 ◦F (i.e., 100 ◦C). Another unit, the Kelvin scale,
is used in biophysics, because many original models, or biophysical rela-
tionships, were derived from the absolute zero temperature — the lowest
temperature possible — at −273.15 ◦C.

In a typical mid-latitude ecosystem, air temperature reaches its minimum
before sunrise, increases after sunrise, and peaks a few hours after solar
noon before decreasing again in the afternoon (Fig. 1.1). Several measures
of temperature during the course of a day include daily minimum (Tmin),
maximum (Tmax), mean (Tmean), range (Trange), and timing when Tmin and
Tmax occur. Because of large diurnal changes in air temperature, it is crucial
not to use a snapshot measure to describe the temperature of the day. For
example, on September 22, 2016, Ta at KBS-switchgrass was 24.8 ◦C at
10:00 h, but it varied from a minimum of 14.3 ◦C to a maximum of 30.2 ◦C
over the 24 hours.

Air temperature is not always continuously recorded or reported for a
study site. In cases where continuously measured air temperature is unavail-
able, Tmean in the literature of popular ecosystem models is often calculated
from Tmin and Tmax as:

Tmean = (Tmin + Tmax)/2 (1.2)

Daily mean temperature based on Equation (1.2) is an approximation and
can carry large biases. Based on Equation (1.2), the Tmean at the KBS site
is 22.3 (◦C), although it is 21.3 (◦C) when calculated from the continuous
30-min time series (S1-2: Ta_Diel.xlsx). An alternative would be to model
the diurnal changes before calculating Tmean.

Numerous efforts and algorithms have been proposed to model the diurnal
changes of air temperature based on Tmin and Tmax in the literature (see Chen
et al. 1993b). A model proposed by Parton and Logan (1981) is among
the good choices for this purpose owing to its simplicity. Air temperature
between sunrise and sunset is calculated as:

Ta = (Tmax − Tmin) · sin
(

π ·m
DL + 2α

)
(1.3)

 EBSCOhost - printed on 2/13/2023 6:33 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 1 Biophysical Essentials for Ecosystem Models 7

Fig. 1.1 Diel changes of air temperature (Ta) and relative humidity (h) at an ex-
perimental switchgrass site (Latitude = 42◦28′36.15′′N; Longitude = 85◦26′48.33′′W;
Elevation=295 m) of the Great Lakes Bioenergy Research Center (GLBRC), W. K. Kel-
logg Biological Station (KBS), Michigan (USA) on September 22, 2016. The field data
were collected at an eddy-covariance flux tower that will be used throughout this chapter
for demonstrations of different biophysical models. Details about tower setup, measure-
ment systems, and data collections and processes can be found in Zenone et al. (2013)
and Abraha et al. (2015). Predicted air temperatures are based on algorithms (Eqs. 1.3
and 1.4) from Parton and Logan (1981), with Tmax of September 21 and Tmin of Septem-
ber 23 used for the two sections of nighttime temperature on September 22, 2016 (i.e.,
before sunrise and after sunset).

where m is the number of hours after Tmin occurs, DL is the day length
(hour), and α is the lag coefficient for Tmax. For nighttime after sunset, Ta
is calculated as a log linear function:

Ta = (Tmin 0)− (Tsr − Tmin 0) · e−β· nZ (1.4)

where Tmin 0 is the minimum temperature of the previous day, Tsr is the
temperature at sunrise, β is the nighttime temperature coefficient, n is the
number of sampling for the day, and Z is the night length (hour). The
sunrise/sunset time and length of day/night are dependent on geographic
positions (e.g., latitude, longitude, elevation) and day on year (DOY) (see
Section 1.4). Hourly values of soil temperature can be estimated using these
algorithms (Parton and Logan 1981) or the modified algorithms of Kimball
and Bellamy (1986). This model assumes an exponential decrease, with
lag hours, after sunset and a sinusoidal pattern between sunrise and sunset.
For September 22, 2016, at the KBS-switchgrass site, the sunrise and sun-
set times were 5.79 hour and 17.95 hour, respectively. This model predicts
changes at the hourly scale reasonably well (e.g., Fig. 1.1). The daily mean

 EBSCOhost - printed on 2/13/2023 6:33 AM via . All use subject to https://www.ebsco.com/terms-of-use
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temperature for the given example is 21.8 ◦C, which is much closer to the
actual mean, as it accounts for the asymmetric diurnal pattern of tempera-
ture. More importantly, the predicted temperature values can also be used
for approximation of the value at given hours when constructing ecosys-
tem models or exploring its empirical relationships with other physical and
ecological variables.

The diurnal change of atmospheric humidity, often expressed as relative or
absolute values, shows an opposite pattern, although its magnitude is highly
dependent on the regional weather conditions (e.g., atmospheric pressure,
air temperature) and height of measurements (Kimball and Bellamy 1986,
Campbell and Norman 2012). In brief, relative humidity (%) at night is
high, decreases rapidly after sunrise, and reaches its minimum at approxi-
mately the same time of Tmax (Fig. 1.1). Unfortunately, there are no widely
accepted models for estimating the hourly values. Nevertheless, users are en-
couraged to use a combination of linear and sinusoidal algorithms when the
daily minimum value and timing for the maximum value as well as for any
sudden decreases/increases (often after sunrise/sunset) are known (Chen et
al. 1993a).

1.3 Atmosphere Water Vapor Pressure and
VPD

Water in the atmosphere is crucial for all biophysical processes in terres-
trial ecosystems. Amount of water in the air is quantified with water vapor
density or vapor pressure. Vapor density is the relative weight of water in
the weight of an equal volume of air. Vapor density (or vapor pressure)
exponentially increases with air temperature (Fig. 1.2). For a given tem-
perature, the maximum amount of water that a volume of air can hold is
called saturation vapor pressure (es). The difference between actual vapor
pressure (ea) and es is the VPD. In practice, vapor density (pressure) is also
reported as relative humidity (h) — the amount of water vapor present in
air expressed as a percentage of the amount needed for saturation at the
same temperature. With a fixed amount of water in the air, dew forms with
temperature decreases — a term called dew point temperature (Td). Under
a fixed pressure, the temperature reading from a thermometer covered in
water-soaked cloth (wet-bulb) is called wet-bulb temperature (Tw), this can
be compared with the dry air temperature (Ta). At 100% relative humidity,
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Chapter 1 Biophysical Essentials for Ecosystem Models 9

the wet-bulb temperature is equal to the air temperature (dry-bulb tempera-
ture). The relationships among Ta, Td, Tw, ea, es, and h are conventionally
illustrated as psychrometric chart (Fig. 1.2). Reading of the chart is based
on the above definition.

Fig. 1.2 Psychrometric chart of the relationships among ambient air temperature (Ta),
relative humidity (h), dew point temperature (Td), wet-bulb temperature (Tw) and vapor
pressure (modified from Campbell and Norman 2012).

Vapor pressure, VPD, and associated biophysical variables are required in-
put variables (i.e., drivers) in many ecosystem models. In practice, however,
air temperature and relative humidity are directly measured. Using the 30-
min mean air temperature and relative humidity at KBS-switchgrass, this
section presents commonly applied algorithms for calculating hourly values
of actual vapor pressure (ea, kPa), actual vapor density (Ea, kg m−3), sat-
uration vapor pressure (es, kPa), saturation vapor density (Es, kg m−3),
vapor pressure deficit (kPa), dew point temperature (Td, ◦C) and wet-bulb
temperature (Tw, ◦C). These algorithms were well described in detail by
Fritschen and Gay (1979), Campbell and Norman (2012), and Lowry (2013).

Atmospheric vapor pressure can be approximated from altitude A (eleva-
tion above the sealevel):

ea = 101.3 · e− −A
8200 (1.5)

where A (m) is the altitude of a site. The vapor pressure at sea level is
assumed at 101.3 kPa.
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Actual vapor density (kg m−3) is a function of vapor pressure (kPa) and
air temperature (◦C):

Ea =
2170 · ea
Ta

(1.6)

Saturation vapor pressure can be estimated from Tetens for temperatures
above 0 ◦C (Monteith and Unsworth 2013):

es = 0.6118e(
17.502Ta

Ta+240.97) (1.7)

Alternatively, Lowry (2013) and Fritschen and Gay (1979) proposed a
power function for estimating vapor pressure:

es = (6.1078 + Ta(0.44365185 + Ta(0.01428945 + Ta(0.00026506485

+ Ta(3.0312404 ∗ 10−6 + Ta(2.034809 ∗ 10−8

+ Ta ∗ 6.1368209 ∗ 10−11))))))/10 (1.8)

Saturation vapor density (Es) can be calculated as:

Es =
es

4.62× 10−4(Ta + 273.15)
(1.9)

With known relative humidity and Es, vapor density (i.e., absolute atmo-
spheric humidity) is calculated as:

Ea =
h · Es
100

(1.10)

By reversing the Tetens equation (Eq. 1.7), dew point temperature (Td)
is estimated as (note that parameters are slightly different) (see Fritschen
and Gay 1979):

Td =
237.3log10

( ea
0.61078

)
17.269− log10

( ea
0.61078

) (1.11)

Wet-bulb temperature (Tw) is estimated as (Campbell and Norman 2012):

Tw =
ea + γ · Ea · Ta
es + γ · Ea

(1.12)

where γ is the thermodynamic psychrometric constant (0.000666 ◦C−1),
which is calculated as:

γ =
Cp
λ

(1.13)

 EBSCOhost - printed on 2/13/2023 6:33 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter 1 Biophysical Essentials for Ecosystem Models 11

where Cp is the specific heat of air (29.3 J mol−1 ◦C−1) and λ is the la-
tent heat vaporization of water (40.660 kJ mol−1, or 2.260 kJ kg−1). λ is
the amount of energy (enthalpy) that must be added to transform a given
quantity of water into a gas (i.e., vapor). It is slightly dependent on air
temperature (∼0.01% ◦C−1). Because relative humidity is sometimes more
difficult to measure under certain circumstances, direct measurement of wet-
bulb temperature, which is relatively easy to measure, has been practiced
as an alternative to estimate all other variables using the above algorithms.
A word of caution is that these equations should only be applied when air
temperature (Ta, ◦C) is greater than zero. The second caution is that these
calculations should not be applied for longer time scales (e.g., more than 2 – 3
hours) because atmospheric vapor density or pressure can be very different.
The above equations are nonlinear, suggesting that the mean output from
each equation is different from the results when means are used instead. In
sum, ea, es, and VPD should be averaged after being calculated based on
30-min or hourly values.

Using the 30-min measurements ofTa (◦C) andh (%) at the KBS-switchgrass
site on September 22, 2016, a spreadsheet model to calculate other variables
of half-hourly values (S1-3: Ta_h_VPD.xlsx) is provided. The diurnal
changes in es, ea, Ea, Es, VPD, Td, and Tw reflect some typical patterns
for major ecosystems in temperate regions (Fig. 1.3). In brief, es and VPD
change similarly with time, except in the early morning and late afternoon
(Fig. 1.3a) when ea peaks (mostly due to a rapid increase in air tempera-
ture). After mid-morning, ea stabilizes until around 17:00 hours, resulting in
a bell-shaped VPD during the day. For wet-bulb temperature, there appears
a similar diurnal pattern with relative humidity (Fig. 1.3b and Fig. 1.1).
However, the diurnal change in dew point temperature is different, with
the twin peaks occurring in early morning and late afternoon (Fig. 1.3b).
Nevertheless, these diurnal patterns vary greatly among days and seasons
and should not be interpreted as a “typical diurnal pattern” for the site, or
elsewhere in temperate regions.

1.4 Solar Radiation

Solar radiation is the ultimate energy source necessary for ecosystems to
function. It is conventionally expressed as flux density in units of W m−2,
or flux in units of W m−2 s−1, depending on one’s needs (note that 1 W=
1 J s−1). The amount of energy received at the top of the atmosphere
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Fig. 1.3 Diurnal changes of key biophysical variables estimated from Equations (1.5) –
(1.13) for a switchgrass plantation at the Kellogg Biological Station, MI, USA on Septem-
ber 22, 2016. The model is presented in an Excel spreadsheet (S1-3: Ta_h_VPD.xlsx).

is between 1360 W m−2 and 1380 W m−2, commonly known as the solar
constant (R0) (Fig. 1.4).

As sunbeams pass through the atmosphere, a certain amount of incoming
solar radiation is absorbed or reflected back to the universe, resulting in a
reduction that can be determined by sky transmittance (τ):

R = τ ·R0 (1.14)

where τ varies with the path length of solar beams through the atmosphere
and air turbidity. Alternatively, R can be modeled with Beer’s law:

R = R0 · e−k·z (1.15)
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Fig. 1.4 Schematic illustration of key parameters for calculating solar radiation flux
density (Rs) at the land surface. Solar constant (R0) is the radiation flux density normal
to the Sun’s beams on top of the atmosphere; zenith angle (ψ) is the difference in solar
elevation (β) from 90 degrees (i.e., ψ = 90 − β); solar flux density normal to the Sun’s
beam (R) is determined from R0 and sky transmittance (τ , Eq. 1.14), or a combination of
atmospheric extinction coefficient (k, km−1) and the path length of solar beams through
the atmosphere (z, km) (Eq. 1.15).

where k is the atmospheric extinction coefficient (km−1) and z (km) is the
path length through the atmosphere, which depends on the solar elevation
(β, degree) and solar declination (τ). Rosenberg et al. (1983) reported k

values from 0.01 km−1 in very clear air to 0.03 – 0.05 km−1 in turbid air.
Clouds, aerosols, and other particulate matters in the air directly determine
the k value. As expected, the z value changes rapidly with hour of a day and
is larger in the early morning or late afternoon than at noon. Nevertheless,
solar radiation at the land surface normal to Sun’s beams should be always
lower than the solar constant. The horizontal flux density of solar radiation
at the land surface is calculated with cosine law (Fig. 1.4):

Rs = R · cos  (ψ) (1.16)

where ψ is zenith angle (degree) (ψ = 90−β). At the KBS-switchgrass site,
Rs in 2016 ranged from 450 – 500 W m−2 in December and to 900 – 1000
W m−2 in June (S1-1: Switchgrass_metdata2016.xlsx).

Atmospheric transmission varies by wavelength (e.g., infrared, visible),
latitude, time of day, day of year, altitude and atmospheric conditions (e.g.,
temperature, pressure, humidity, chemistry). The essential parameters for
calculating the Rs value of a specific location (Eq. 1.16) include sunrise
time, sunset time, solar declination, solar elevation or zenith angle, and at-
mospheric transmittance, where sunrise and sunset define the beginning and
end boundaries of Rs. The following widely used algorithms in environmen-
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tal biophysics can be used to approximate these values (see Campbell and
Norman 2012).

Sunrise time (Timesr, hour) is calculated as:

Timesr = 12− 1

15
cos−1

(
− sinϕ sin δ
cosϕ cos δ

)
− t

60
(1.17)

where t is local time (hour). Sunset time (Timess) is calculated as:

Timess = 12 +
1

15
cos−1

(
− sinϕ sin δ
cosϕ cos δ

)
− t

60
(1.18)

Zenith angle (ψ) is calculated from:

ψ = cos−1{sinϕ sin δ + cosϕ cos δ cos  [15(t− t0)]} (1.19)

where t0 is the time of solar noon. Solar declination (δ) from 23.45◦ (i.e.,
summer solstice) to −23.45◦ (i.e., winter solstice) is calculated as:

δ = −23.25 · cos
[
360

365
(d+ 10)

]
(1.20)

where d is the day of the year (DOY), with January 1 as 1. Occasionally,
biophysical models may also need the solar azimuth angle (Az), which is
the Sun’s relative direction along the local horizon. It is usually applied
the same as compass directions, with North = 0◦ and South = 180◦. At
solar noon, the Sun is always directly south in the northern hemisphere and
directly north in the southern hemisphere. Az can be calculated as:

Az = cos−1

(
− sin δ − cos δ sinψ sinϕ

cosϕ sinψ

)
(1.21)

For more advanced calculations, with updated coefficients, users can con-
sult the publications of the Nautical Almanac Office of the United States
Naval Observatory1. Based on the “Nautical Almanac of 1989”, a Python-
based calculator was developed for the users of this book to visually assess
the changes in sunrise time, sunset time, day length, solar zenith angle, and
solar azimuth angle (degree) (S1-5: Solar.py). This model requires inputs of
year, month of the year (1 – 12), day of the month (1 – 31), latitude (degree
with decimals), longitude with decimals, and time interval for output. Sun-
rise time, sunset time, zenith angle and azimuth angles are calculated with
a graphical display. Many similar online calculators are available (e.g., the
Earth System Research Lab of NOAA2. To demonstrate its use, the diurnal

1 https://bookstore.gpo.gov/agency/nautical-almanac-office
2 https://www.esrl.noaa.gov/gmd/grad/solcalc/sunrise.html
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Fig. 1.5 (a) Diurnal change of solar zenith angle (degree) for the 22nd day of June–
December in 2016 at the KBS-switchgrass site; (b) simulated incoming solar radiation
(Rs, W m−2) by assuming a transmittance of 0.85 on June 22 and a monthly decreasing
rate of 4% for the seven days during June–December based on Equations (1.17) – (1.19);
and (c) the simulated/measured Rs values for September 22, 2016, by assuming ±10%
and ±20% variation of sky transmittance from the mean value (i.e., 0.75) used in (b).

changes in zenith angle on the 22nd day for June through December of 2016
are presented in Fig. 1.5a for the KBS-switchgrass site. The sunrise and
sunset times for June 22, 2016, were 4.5 hour and 19.5 hour, respectively,
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which yielded a day length of 15 hours; for December 22, these values are
7.5 hour and 16.5 hour, respectively, and resulted in a day length of 9 hours.
More importantly, the minimum zenith angle at local noon was 19.04 de-
grees on June 22, but was 61.95 degrees on December 22, which determines
the maximum and diurnal changes of radiation flux density on the ground
(compared with sky transmittance).

Atmospheric transmittance value (τ) is another key variable in calculat-
ing the actual radiation flux density at the land surface (Fig. 1.4). While
tremendous efforts have been made in the literature to quantify the mech-
anistic influences of atmospheric characteristics (e.g., chemical and physical
properties of the air), a fundamental knowledge base is the understanding
of spatial (different latitude and longitude) and temporal (diurnal, seasonal)
changes. A simple Excel spreadsheet model for this purpose is provided to
demonstrate these changes by using the KBS-switchgrass site. Assuming
τ = 0.85 for June 22, 2016, the peak Rs value would be 1086 W m−2 (Fig.
1.5b). With a monthly decreasing rate of 4%, τ would be dropped to 0.66
(i.e., 66% of radiation reached the ground) and result in an Rs value of 430
W m−2 at noon. This reduction is partially due to the decrease in zenith
angle in December (Fig. 1.5b). These simple simulations are for illustration
purposes; alternative approximations in the literature include using a τ value
of 0.852 or processing remote sensing images when in-situ measurements are
unknown1. Nevertheless, users can use different τ values to see how they
may directly affect Rs for their study sites.

Atmospheric transmittance value also changes substantially over the course
of a day because of coupled changes in azimuth angle, diurnal change in air
turbidity, and solar elevations that directly determine the extinction coef-
ficient and the atmospheric depth (Eq. 1.15). One can assume different
levels of τ from its hypothetical daily mean to assess its influence on Rs.
Here, for September 22, 2016, the illustration model considered a sinusoidal
change (based on instantaneous zenith angle) during daytime (i.e., the low-
est at noon with decreases following a sinusoidal trend toward sunrise/sunset
time) and ±10% and ±20% deviation from the mean. The model predicts
the diurnal change of Rs under a clear sky condition, which appears consis-
tent with measured values at the KBS-switchgrass site (Fig. 1.5c), especially
for the afternoon (note that it was cloudy before noon). Again, these demon-
strations are designed for exploring the potential effects of τ on Rs and for
understanding the potential magnitude and diurnal changes for a site. How-
ever, this model can be potentially used to answer some specific scientific

1 e.g., https://atmcorr.gsfc.nasa.gov/
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questions. For example, the differences between predicted and modeled Rs
values would indicate the sky condition (i.e., low transmittance, or cloud
cover/depth). Atmospheric transmittance is one of the key parameters in
calculating radiation forcing (RF) in modeling global warming potentials
(Chapter 5).

Two relevant measures of radiation in ecosystem studies are albedo (α,
%) and photosynthetically active radiation (PAR, µmol m−2 s−1). Albedo
is the amount of reflection of solar radiation out of the total incoming solar
radiation. By definition, albedo calculation should include both shortwave
(loosely defined for wavelengths of 300 – 700 nm) and longwave radiation
(>700 nm). However, outgoing longwave radiation is more greatly influenced
by the Earth’s temperature according to Stefan-Boltzmann’s Law (i.e., dis-
proportional to the longwave radiation from the Sun) (Chapter 5). As a
result, albedo is often calculated based on shortwave radiation. Albedo val-
ues can vary from 14% – 26% in grasslands, 30% – 40% in dry deserts, and
<10% in coniferous forests. Albedo also varies by time, latitude, altitude
and topography. At the KBS-switchgrass site, the albedo value in 2016 was
generally lower than 20%, with slightly higher values in the winter months.

PAR in wavelengths of 400 – 700 nm, which is close to visible light (370 –
600 nm), has been especially important in modeling many ecosystem pro-
cesses because this is the energy used for photosynthesis (Chapter 2). The
unit for PAR is often given in µmol photon per m−2 s−1. Some authors have
attempted to convert this to regular energy flux density units (i.e., W m−2)
of short or total radiation, but with large uncertainties due to in-situ at-
mospheric and vegetation conditions. This is because of a different energy
distribution of the Sun and different absorptions of solar radiation by the
atmosphere. A substantial portion of the bias results from two factors: (1)
PAR only covers a portion of the spectra of shortwave radiation, and (2) the
conversion of quantum and energy flux is wavelength dependent (Chapter
5). Nevertheless, the diurnal change pattern of PAR is similar to that of
Rs (Fig. 1.5c) but with a slightly different shape. Absorption of light by
chlorophyll takes place largely within narrow bands that peak at 680 – 700
nm. Three types of PAR values are frequently calculated in the literature for
modeling photosynthesis or gross primary production of vegetation. Inter-
cepted PAR (iPAR) is the amount of PAR caught by various canopy layers
as the PAR incident at the top of the canopy travels down through the
canopy layers to the ground. Absorbed PAR (aPAR) is the amount of PAR
absorbed by canopy leaves. fPAR is the fraction of the incident PAR that
is either intercepted or absorbed. Obviously, all three measures are directly
affected by vegetation structure (e.g., canopy cover, canopy height, leaf area
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and vertical distribution, sky condition, etc.). aPAR in particular has been
a focal variable for input in many photosynthesis-based models of water and
carbon (Chapters 2 and 4).

1.5 Heat Storages in Soil, Air and Vegetation

The amount of heat energy stored in soil, air and vegetation is a key measure
for explaining the changes in microclimate (e.g., temperature, moisture)
and/or energy balance of an ecosystem (see Section 1.7). In developing
biophysical models for ecosystem functions such as evapotranspiration (ET)
and energy balance (Chapter 4), one needs a reliable estimation of heat
stored or passed through layers of vegetation, air within the canopies, and
the soils (Lindroth et al. 2010). This energy term is difficult to measure
directly, but is estimated based on the thermal and physical properties of
air, organic materials and soil. The following two basic models use a topsoil
layer as an example but this can also be applied for air and vegetation (see
example in Oliphant et al. 2004).

In principle, heat passes through a thin layer (e.g., surface soil layer) be-
cause the temperatures on the top [Ts(0)] and the bottom [Ts(1)] are different
(∆Ts,

◦ C). The heat flux density (G, W m−2) is calculated as (Fig. 1.6):

G = κ · ∆T
d

(1.22)

where κ (W m−1 K−1) is the thermal conductivity of the soil and d (m)
is the thickness of the soil layer. The κ value is ∼ 2.5 W m−1 K−1 for
soil minerals, ∼1.92 W m−1 K−1 for organic matter, and 4.18 W m−1 K−1

for water. Following Equation (1.22), G can be quantified by measuring the
temperature difference if the thermal conductivity of the media is known. In
ecosystem studies, the κ value of the air, vegetation, and soil is also largely
determined by moisture in the media. Fortunately, both temperatures and
G can be directly measured with modern sensors, suggesting that modeling
the continuous change of κ is possible by reversing Equation (1.22).

As heat passes through the soil, a certain amount is stored in the soil layer.
The heat storage (∆S, W m−3) over a period of time (t) can be calculated
as:

∆S = (ρb · cd + θ · ρw · cw)
∆T

∆t
· d (1.23)

where ρb (kg m−1) is the soil bulk density, ρw is the density of water, cd
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Fig. 1.6 Schematic illustration of heat flow through, and storage in, a thin plate (e.g.,
topsoil layer), labeled as G and ∆S, respectively. Temperature difference on the two
sides of the plate and soil properties are jointly determined the magnitude and dynamics
of G and ∆S, including thermal conductivity (κ), density, water content (θ) and specific
heat capacity of the soil.

(890 J kg−1 K−1) and cw (4190 J kg−1 K−1) are the specific heat capacities
of the dry mineral soil and the soil water, respectively, θ is the volumetric
soil water content (%), and ∆T/∆t (K s−1) is the mean soil temperature
change at the time t interval (i.e., can be approximated with the mean
values of Ts(0) and Ts(1) at a given time). In terrestrial ecosystems, heat
flux density through the soil surface ranges from several W m−2 to 10s W
m−2 in forests and croplands, but it can be high (>100 W m−2) in drylands
where canopy cover is low (Oliphant et al. 2004, Shao et al. 2017). ∆S is
small within the canopy column because of the low specific heat capacity of
air (29.3 J mol−1 C−1 vs. 75.4 J mol−1 C−1 for water), while it is also low
in vegetation due to the small volume.

1.6 Vertical Profile of Wind Speed

Energy and materials enter and leave ecosystems through the boundaries
between vegetation and the atmosphere in gas, liquid and solid forms, as-
suming horizontal input and output are equal. Other than water, which can
be in the form of a liquid (rain, dew) or solid (snow, hail), gas is the dom-
inant form for the exchange of CO2, N2O, CH4, and water vapor. For this
reason, it is critical to understand how air moves between the boundaries —
a scientific field known as boundary layer meteorology (see details in Kaimal
and Finnigan 1994).

The wind profile of homogeneous vegetation under neutral atmospheric
conditions is typically expressed as a logarithmic function of height (z) from
the ground, where horizontal wind speed (U) decreases at heights approach-
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ing the ground, as a consequence of surface’s drag effects (Fig. 1.7):

U(z) =
u∗

κ
· ln

(
z − d

z0

)
(1.24)

where U(z) is the horizontal wind speed (m s−1) at height z (m); u∗ is the
friction velocity (m s−1), κ is the von Karmon constant with an average
value of 0.35 – 0.43 (Kaimal and Finnigan 1994) (note: a value of 0.40 is
often used in the literature), d (m) is a zero plain displacement, and z0 is
the roughness length (m) at which is U is near zero. Because the surface
of vegetation is not solid, wind speed at zero depth is not zero; instead it
reaches zero at some depth (d) within the top canopy: U(z0 + d) = 0.
u∗ depends on the shear stress (τ , kg m−1 s−2) at the boundary of the

flow and air density (ρ):

u∗ =

(
τ

ρ

) 1
2

(1.25)

where ρ depends on air temperature and pressure. With atmospheric pres-
sure of 101 kPa, the value of ρ at 20 ◦C is approximately 41.6 mol m−3.
u∗ represents a characteristic velocity of the airflow and hence reflects the
effectiveness of turbulent exchange at the boundaries between vegetation
and the atmosphere. Because u∗ as a scalar of the model is physically, or
empirically, related to many turbulent properties and reflects the canopy
structure of vegetation, it has been widely used in constructing biophysical
models and has been used as an important indicator for exploring the under-
lying mechanisms in the literature. For example, u∗ has been widely used
as an indicator of air mixing in eddy-covariance studies through identifying
thresholds of u∗ for filtering out unreliable flux measurements below which
turbulence may be poorly developed and the results from eddy-covariance
method may be biased (Baldocchi et al. 2001, Papale et al. 2006). By
solving the wind profile equation with U and u∗ (which commonly can be
directly measured by eddy-covariance measurement systems), one can infer
the change in canopy height from the changes in z0 and d (Pennypacker and
Baldocchi 2016, Chu et al. 2018).

The logarithmic wind profile model (Eq. 1.24) is strictly valid only for the
neutral atmosphere (i.e., neither stable nor unstable conditions) and should
not be applied for tall canopies or vegetation with large variation across the
horizontal space. Other modified versions of the model have been proposed
for different purposes (e.g., Goulden et al. 1996, Kaimal and Finnigan 1994,
Campbell and Norman 2012, Chu et al. 2018). Many biophysical models
use aerodynamic conductance – a key parameter controlling the exchange
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of energy/material between vegetation canopies and the atmosphere. For
example, u∗ has been applied as (Gu et al. 2005, Shao et al. 2008, Cleverly
et al. 2015):

ga =
1

u

u∗2
− 6.2u∗−0.67

(1.26)

where ga is used for estimating canopy surface conductance (gc, m s−1) in the
Penman-Monteith equation (Monteith and Unsworth 2013) for estimating
latent heat (L) or evapotranspiration (ET) of an ecosystem (see Chapter 4).
An Excel spreadsheet simulation model is presented in S1-4 (Wind.xlsx) to
show how each of the variables in Equation (1.24) may affect the changes of
other variables (see examples in Fig. 1.7).

Fig. 1.7 Typical wind profiles over terrestrial ecosystems can be expressed with a
logarithmic function (Eq. 1.24). These profiles are simulated by assuming a vegetation
height of 3 m (e.g., the peak height of KBS-switchgrass site), a u∗ of 0.1 m s−1, κ value
of 0.4, and z0 values of (z − d), with three d values of 2.4 m, 2.3 m and 2.2 m for the
illustration of model behaviors (S1-4: Wind.xlsx).
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1.7 Energy Balance

Assuming a homogeneous vegetation, the energy balance of a terrestrial
ecosystem is conventionally described as:

Rn = H + L+G+∆S + ε (1.27)

where Rn is net radiation (i.e., incoming − outgoing radiation), H is the
sensible heat, L is the latent heat through vaporization (i.e., evapotranspi-
ration, ET), G is the soil heat flux, ∆S is the heat storage over a period
of time within the canopy column (air and vegetation), and ε is the energy
used for photosynthesis (which is very minor and negligible). (L + H) is
commonly called available energy. All terms have a unit of W m−2. ET is
also widely expressed with a unit of mm in order to compare with precipi-
tation (mm); a conversion is made by using latent heat of vaporization of
water (λ, J mol−1). The value of λ varies by temperature and air pressure.
At air pressure of 101 kPa, its value is 44.6 kJ mol−1 at 10 ◦C and 44.1 kJ
mol−1 at 20 ◦C (note the molecular mass of H2O is 18 g mol−1).

While this model has been widely used at multiple spatial and temporal
scales, it is more valid for a homogeneous stand and at relative short tem-
poral resolution (e.g., less than a few hours). It is often and appropriately
applied to describe the diurnal changes of an individual term or all of the
terms (Fig. 1.8a). In theory, energy balance of an ecosystem should hold
at any spatial scale, but it is difficult to measure all the terms accurately
at the same temporal and spatial scale, with storage terms in the soil and
vegetation being especially difficult to measure. The footprint of the corre-
sponding sensors also varies substantially, often resulting in a large portion
of missing energy (Fig. 1.8b).

In the literature, the ratio between H and L is called the Bowen ratio (β).
This ratio was originally proposed as an indirect method to estimate L and
H based on the vertical gradient of temperatures when both L and H are
difficult to measure. Using the Bowen ratio-Energy Balance Method, L can
be estimated as:

L =
Rn −G

1 + γ · ∆T
∆e

(1.28)

where β can be derived expressed as:

β = γ · ∆T
∆e

(1.29)
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Fig. 1.8 (a) Diel changes of four major energy flux terms (Eq. 1.27) at KBS-switchgrass
on September 22, 2016; (b) relationship between (L+H) and (Rn−G) showing the energy
enclosure.

This approach allows us to measure estimate L and H based on the mea-
surements of dry- and wet-bulb temperatures at two heights for L and H,
avoiding direct measurements of vapor density in the air (Rosenberg et al.
1983). The Bowen ratio method has been widely used to estimate evapo-
transpiration (ET) prior to the eddy-covariance method (Chapter 4).

1.8 Summary

Popular environmental biophysical models applied in ecosystem studies are
largely developed based on several key physical processes (e.g., radiation and
kinetic energy flows) near the land surface. Understanding these processes
is essential before discussing the other models presented in the following
chapters. The comprehensive description of these processes, however, is a
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large, multi-disciplinary field of study. The several major processes that are
presented in this chapter were selected because of their foundational roles in
constructing, understanding and applying the models that will be introduced
in later chapters, but this chapter is far from a comprehensive review of our
current knowledge on environmental biophysics. Several classical texts are
thus provided as must-read references for advanced users.

Similarly, I have focused on the diel changes of the aforementioned vari-
ables and parameters in this chapter largely because the dominant models
that will be introduced in later chapters are applied at the hourly scale. I
recognize that not all ecosystem models or Earth system models are designed
to run at an hourly scale. The purpose here is to help users to understand
the theoretical (or empirical) foundations of different physical processes and
relationships among the variables, though additional measures are needed
at broader temporal scales (month, season, and years).

To better understand the underlying biophysical principles and processes
for the diel changes of temperature, vapor pressure, VDP, heat storage and
fluxes in soils, solar radiation, wind profile, and energy fluxes near the land
surface, hourly data collected on September 22, 2016, from a switchgrass
field at the W. K. Kellogg Biological Station of Michigan State University
are used to demonstrate the models’ behaviors and capabilities. A complete
dataset of continuous records of 84 variables from this site are included
in the appendix of this chapter through the book’s Web connection. Four
Excel spreadsheet models (coupled with graphic displays) and one Python
calculator are provided for such a purpose. While these models can be ap-
plied elsewhere with site-specific input information, users should be cautious
about model assumptions and requirements. The International System of
Units (SI) is applied, and a consistent use of symbols is maintained whenever
possible.

Online Supplementary Materials

S1-1: Micrometeorological data collected at an open-path eddy-covariance
tower located in a switchgrass cropland of the W. K. Kellogg Biological
Station (KBS), Michigan, USA, in 2016 (Switchgrass_metdata2016.xlsx).
This dataset is provided for modeling exercises (e.g., S1-2, S1-3, S1-4), as
well as for model parameterizations in Chapters 2 – 5.
S1-2: A simple simulator of diel change of air temperature based on daily
maximum and minimum temperature, as well as their timings (Ta_Diel.xlsx).
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S1-3: Calculations of wet-bulb temperature (Tw), dew point temperature
(Td), vapor pressure (ea), saturation vapor pressure (es) and vapor pressure
deficit (VPD) from in-situ measurements of air temperature (Ta) and relative
humidity (h) (Eqs. 1.5 – 1.13) (Ta_h_VPD.xlsx).
S1-4: An empirical model for simulating vertical profile of wind speed over
a hypothetical vegetation based on Equation (1.24) (Wind.xlsx).
S1-5: Python codes for simulating the position of the Sun over a given
location. Input variables include latitude, longitude, elevation (m), year,
month and day of year; outputs are solar zenith angle, declination and day
length at 0.1-hour interval (Solar.py).
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Chapter 2
Modeling Ecosystem Production

Jiquan Chen

2.1 Introduction

Ecosystem production is the amount of organic compound generated in a
land area. Gross primary production (GPP) is the amount of organic sub-
stances produced by plants through photosynthesis (Pn, or An). Plants need
carbon dioxide (CO2), water (H2O), energy and nutrients to conduct pho-
tosynthesis, transport water from soil to leaves (i.e., transpiration), and
convert and transport synthesized carbon to different parts of organs. The
amount of carbon needed to maintain photosynthesis and carbon realloca-
tions is called autotrophic respiration (Ra). The difference between GPP and
Ra is termed net primary production (NPP). Dead materials from plants are
broken down into simple organic substances by microorganisms, and even-
tually released as gases (mostly as CO2) back into the atmosphere. This
process is called heterotrophic respiration (Rh). The sum of Ra and Rh
equals ecosystem respiration (Reco). The difference between NPP and Rh is
net ecosystem production (NEP). The relationship among these flux terms
is expressed in Figure 2.1.

There are other minor components of carbon cycles in an ecosystem.
These have been well described in many textbooks in ecology, forestry and
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Fig. 2.1 Schematic illustration of the major carbon fluxes for ecosystem production.

agriculture (e.g., Waring and Running 2010, Chapin et al. 2011, Chen et al.
2014). Modeling respiration will be covered in Chapter 3, while this chap-
ter focuses on GPP, which is determined by photosynthesis. Production is
conventionally expressed in units of mass per unit area per unit time. In
ecosystem studies, mass of carbon per unit area per year (g C m−2 yr−1) is
most often used as the unit of production, although other expressions are
common in the literature, including mg C m−2 s−1, µmol CO2 m−2 s−1, g
C m−2 yr−1, Mg C ha−1 yr−1. The molar mass of CO2 is 44 g mol−1, with
27.3% as carbon (12 g mol−1). The molar mass of water (H2O) is ∼18 g
mol−1, with 11.2% as hydrogen (H) that has an atomic mass of 1. Organic
material (i.e., biomass) is expressed in dry weight per unit land area, Mg
ha−1 (i.e., t ha−1) or annual production, Mg ha−1 yr−1. For terrestrial
ecosystems, approximately 50% of biomass is considered to be carbon, al-
beit this can vary from 45.0% to 47.9% among terrestrial plants (Ma et al.
2018).

Predicting ecosystem productivity has always been a core effort in all dis-
ciplines of natural science. In forestry, a central focus has been on timber
production, which is commonly called growth and yield modeling (Clut-
ter 1983). Stand age, density, site index, diameter, crown ratio, and tree
height are used to construct growth-yield tables with forest type, stand age,
site index, and management activities (e.g., thinning, harvesting, rotation,
etc.). For agricultural crops, the focus has been on grain production, which
is modeled using crop type, weather and climatic conditions (e.g., growing
degree-days), soil, and management (e.g., fertilization, irrigation, weed con-
trols, etc.) (Evans 1996). In grassland ecology, type, canopy cover, height,
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climate, and human disturbances have been used as the primary predictors
for grass production (Parton 1996). The above mentioned models rely on in-
situ measurements and are empirically developed with ground measurements
of both production and independent variables. Various forms have been pro-
posed for constructing these empirical models (e.g., Landsberg 1977).

With the installation of the International Geosphere-Biosphere Programme
(IGBP) in the late 1960s, process-based models emerged (Schlesinger 1977).
The JABOWA (Botkin et al. 1972) and FORET class models (a.k.a. gap
models) are among the earliest examples that considered interactions among
trees for modeling forest production and dynamics, with localized climates
as key drivers (Shugart 1984). Since the 1980s, detailed ecosystem processes
have been included in dozens of ecosystem models to address ecosystem pro-
duction under changing climate and human disturbances. These models were
designed for broad applications (e.g., Schaefer et al. 2012) and emphasize
physiology (e.g., Landsberg and Sands 2011, Thornley and Johnson 1990.),
soil (e.g., CENTURY model) (Parton 1996), energy and mass balance (SiB
models) (Sellers et al. 1986), species interactions (Shugart 1984), resource
use (PnET) (Aber and Federer 1992), or management (e.g., 3PG model)
(Landsberg and Waring 1997). Nevertheless, most models include critical
biophysical processes (e.g., photosynthesis, respiration, nutrient cycling, and
genetics) with often one or more temporal, spatial or organismal resolutions
left unspecified (Muller and Martre 2019).

Photosynthesis is the first step for assimilating atmospheric CO2 into or-
ganic substances in an ecosystem and is the focus of this chapter, so read-
ers can understand the key algorithms employed in most ecosystem mod-
els. Photosynthesis is a physiological process in which plants, algae and
certain bacteria convert solar energy and CO2 to chemical energy and
carbohydrate — such as glucose, sugar, and cellulose. The name “photosyn-
thesis” is a combination of the Greek words “light” and “putting together”.
The process was discovered by Dutch physician Jan Ingenhousz in the late
1700s. Photosynthesis involves many complex chemical and biological pro-
cesses and is performed differently by different functional groups of species.
There are a number of pigments involved, but all the chemical conversions
take place with chlorophyll a. Two types of chlorophyll pigments absorb light
in the blue and red part of the visible spectrum. Its chemical expression has
several forms, including:

6CO2 + 12H2O + Solar Energy → C6H12O6 + 6O2 + 6H2O

where six molecules of CO2 combine with 12 molecules of H2O using light
to split water. The detailed chemical processes is very similar in most pho-
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tosynthetic organisms but there are some variations in how CO2 is taken
up, for example, C3 plants (diffusion only) and C4 plants (active CO2 ac-
cumulation) (Ehleringer and Björkman 1977). The solar energy used in
photosynthesis is derived from photosynthetically active radiation (PAR) in
the visible wavelengths from 400 – 700 nm (see Chapter 5) because visible
light is not equally used by pigments. The product of photosynthesis is the
formation of sugars along with one molecule of breakable oxygen per carbon
fixed and water. Based on this principle, photosynthesis or gross production
of an ecosystem is modeled with leaf mass (e.g., leaf area and leaf mass),
radiation energy (e.g., PAR), availability of soil water and nutrients, as well
as climatic conditions (Section 2.2).

Since plant or ecosystem production requires CO2, H2O, PAR, chloro-
phylls (leaves), and essential macro- and micro-nutrients, the amount and
availability of these resources dictate the kind of algorithms selected in mod-
eling production. This is also known in agronomy as the “G x E x M” concept
of crop production (e.g., grain yield), and it is a function of genetics (G),
environment (E), and management (M) (e.g., Montesino-San Martín et al.
2014; Muller and Martre 2019). Recent synthesis of global data also confirms
that plant functional type, climate and disturbances (both natural and hu-
man) are key variables for predicting the magnitude of ecosystem production
and its change over time (Peaucelle et al. 2019).

Before any model can be widely used it must first be parameterized and
tested. The data needed for model parameterizations and validations come
in different forms. Each has advantages and limitations, and are appropri-
ate for specific temporal and spatial scales. Ground-based measurements
usually do not tally the contributions of individual species but measurement
of net exchange of CO2 provides direct values of production, whereas re-
mote sensing-based approaches provide indirect estimates across continuous
space but are limited by their sampling frequency and atmospheric condi-
tions (Chen et al. 2004).

In the field, data are collected with chambers (Pearcy et al. 2012) such
as the LI-COR Portable Photosynthesis System (Fig. 2.2a) that dominates
photosynthesis studies (e.g., Ehleringer and Cook 1980, Hunt 2003). These
systems have been modified to measure photosynthesis of branches and small
plants. Rapid development in the eddy-covariance approach (Lee et al. 2004)
provides measurements of net exchange of CO2, H2O, energy, trace gases,
and microclimate over homogeneous canopies (Fig. 2.2b). Both chamber-
based and micrometeorology-based methods provide instantaneous measure-
ment of carbon assimilation and losses (Fig. 2.2a, b). FLUXNET — a
collaborative association of regional networks — houses thousands of year-
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site data on fluxes of trace gases between ecosystems and the atmosphere1.
These measurements represent ecosystem level NEP and can be partitioned
into GPP and Reco (Reichstein et al. 2005) (see notes in Section 2.2.1). Sta-
ble carbon and oxygen isotopic analyses are increasingly used to tease apart
different components of production such as autotrophic and heterotrophic
respiration (e.g., Farquhar et al. 1989, Yakir and Sternberg 2000, Pataki et
al. 2003, Helliker et al. 2018).

Fig. 2.2 Examples of various ways to assess components of ecosystem production: (a)
with a portable photosynthesis chamber; (b) an open path eddy-covariance flux tower;
(c) via biometric sampling of diameter at breast height (DBH) and stem mapping; and
(d) using lidar images of canopy height and tree distribution (modified from Giannico et
al. 2016).

Biometric measurements of ecosystem production using conventional plot
sampling methods are another major data source. Community composition
(e.g., species), structure (diameter, canopy cover, height, leaf area index
(LAI), coordinates of individual plants) and biomass are measured sequen-
tially at 1 – 5 year intervals (Fig. 2.2c). The change in above- and below-
ground biomass between two consecutive years is NEP, assuming both below-
and above-ground assessments are made. The monitoring plots at the Long-

1 https://fluxnet.fluxdata.org/
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Term Ecological Research (LTER)1 sites (Franklin et al. 1990), for example,
have data since 1980s that can be used for calculating NEP or NPP (e.g.,
Knapp et al. 2001). Similar data are also increasingly developed and avail-
able through other coordinated networks (e.g., CERN, NEON, LTAR, etc.).
For temperate forests, diameter growth of trees is well preserved in tree
rings, allowing direct assessment of historical changes of stem growth (i.e.,
NEP of the stems) and indirectly estimate NEP. The International Tree-
Ring Data Bank (ITRDB)2 is the world’s largest public archive of tree ring
data, including raw ring width, wood density, and isotope measurements,
site index, etc. The Laboratory of Tree-Ring Research (LTRR)3, established
in 1937 at the University of Arizona, is another source of data in Tucson,
Arizona, USA. These data are valuable for modeling relative changes in
above-ground production in response to major regulatory variables (e.g.,
LAI, PAR, soil moisture) (Bhuyan et al. 2017) or disturbances (e.g., insect
defoliation, heat waves, wild fires, etc.). Another useful data source is the
plant phenology that has been increasingly recognized as a critical variable
in modeling ecosystem production. The USA National Phenology Network
(USA-NPN)4 was established in 2007 to collect, store, and share phenologi-
cal data and other information. Finally, climatic variables are also needed
in modeling ecosystem production. These data are now widely organized for
public use by many countries and organizations (e.g., Food and Agricultural
Organization)5.

2.2 Core Biophysical Models for Ecosystem
Production

Models to be covered in this chapter can be divided into three broad types:
1. Modeling photosynthesis rates (Pn, or An) from PAR (i.e., light response

curve), CO2 concentration (i.e., A-ci curve), and other biophysical vari-
ables (e.g., VPD, temperature, soil moisture, leaf quantity and quality).

2. Modeling gas exchange of both CO2 and water vapor through stomatal
conductance (gs).

1 https://lternet.edu/
2 https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring
3 https://ltrr.arizona.edu/
4 https://www.usanpn.org/
5 http://www.fao.org/3/X0490E/x0490e07.htm
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3. Modeling gross primary production (GPP) through constraints imposed
by limiting resources supplies (e.g., light, nutrient, water, and carbon-use
efficiency).

In the next section, a number of different mathematical models will be
presented that are designed to predict gross or net photosynthesis. Near
the end of the chapter, a comparison of model performance will be made
against carefully acquired field data. For more detailed information, readers
are encouraged to access the original publications where models were de-
rived (e.g., Monteith 1972, Farquhar et al. 1980, Shugart 1984, Ball et al.
1987, Thornley and Johnson 1990, Aber and Federer 1992, Xiao et al. 2004,
Sharkey et al. 2007, Farquhar et al. 2001, von Caemmerer 2013, Bonan et
al. 2014, Buckley 2017).

2.2.1 Michaelis-Menten Model

Photosynthesis rate (Pn) increases initially with PAR at a variable rate (α).
The increasing trend will level off as light is saturated (i.e., α = 0), even-
tually resulting in the maximum photosynthesis (Pm). These changes in
photosynthesis with PAR have been widely modeled by using Michaelis-
Menten (MM) kinetics (Michaelis and Menten 1913). MM kinetics describes
a specific case of enzymes. It can be applied to many things because it de-
scribes a rectangular hyperbola (Chapter 3). The relationship between Pn
and PAR, also commonly known as light response curve, is expressed as a
rectangular hyperbolic model:

Pn =
α · PAR · Pm
α · PAR + Pm

(2.1)

where α is the photochemical efficiency of photosynthesis at low light and
Pm (µmol m−2 s−1) is the maximum photosynthetic capacity of a leaf or
an ecosystem. A unique property of this model is that the Michaelis con-
stant (Km) of the enzyme is an inverse measure of affinity. Km is the value
when Pn reaches half of the Pm. Both Pm and Km values help a user to
evaluate and compare the light response curves among leaves or ecosystems.
The Michaelis-Menten model (Eq. 2.1), however, assumes that the photo-
synthetic rate is zero when PAR = 0. In reality, measured net exchange
of CO2 through stomata (or an ecosystem) is the difference between gross
photosynthesis and respiration (Rd) — the simultaneous CO2 loss during
photosynthesis, including growth and maintenance costs (Thornley 2011).
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This causes a Pn of zero until PAR reaches a certain level (i.e., light com-
pensation point, Io). Inclusion of Rd (or Re) in Equation (2.1) is necessary:

Pn =
α · PAR · Pm
α · PAR + Pm

−Rd (2.2)

Equation (2.2) assumes the light response curve is vertically lowered by Rd
(or Re). An alternative is to replace Pm with (Pm − Rd), but the interpre-
tations of the model parameters would need to be adjusted accordingly. It
is worth noting that daytime respiration is proportional to that recorded at
comparable temperatures at night (Reichstein et al. 2005) — a common
approach applied with the FLUXNET community to calculate GPP. This
assumption is questionable because photosynthesis and the related exudate
production can affect soil microbial activity (Högberg et al. 2001).

While the Michaelis-Menten equation has a unique feature determined by
the Michaelis constant, the shape of the light response curve is not flexible.
Landsberg and Sands (2011) introduced an additional shape factor (β) into a
non-rectangular hyperbolic model (see also Buckley and Diaz‐Espejo 2015):

Pn = Pm · 2 · α · PAR/pm

1 + α · PAR
Pm

+

√(
1 + α · PAR

Pm

)2

− 4 · α · β · PAR/Pm

(2.3)

This model is virtually the same as Equation (2.1) when β = 0. The value
of β should be less than 1 for simulations.

An alternative expression of the non-rectangular hyperbolic model is ap-
plied by Peat (1970) as:

Pn =
1

2 · β

[
α · PAR + Pm −

√
(α · PAR + Pm)

2 − 4 · α · PAR · Pm · β
]
(2.4)

Gilmanov et al. (2003) point out that the rectangular hyperbola tends to
overestimate the initial slope (α) and Pm, and the nonrectangular model
provides a much better fit (Eq. 2.1), albeit more measurements are needed
to have large sample size because extra parameters are involved in non-linear
regression analysis.

Six sets of parameters are used to illustrate model behaviors (S2-1: LightRe-
sponse.xlsx). With a Pm of 10 (µmol m−2 s−1), Pn (µmol m−2 s−1) increases
faster with a higher α value and eventually moves toward its capacity (Pm)

(scenarios 1–3). The Michaelis constant is 83, 200, 500 (µmol m−2 s−1), re-
spectively, in scenarios 1 – 3. The curves are lowered with reduced Pm values
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(scenarios 4 and 5) or with Rd included (scenario 6) (Fig. 2.3a). For the hy-
perbolic model (Eq. 2.3), a β value of < 1 will result in a faster increase in Pn
with PAR (µmol m−2 s−1), whereas negative values will lower the increasing
rate of Pn with PAR (Fig. 2.3b). A user is encouraged to test different sets
of parameters for the models before performing the corresponding non-linear
regression analysis.

Fig. 2.3 (a) Light response curves based on Michaelis-Menten model (Eq. 2.2); (b) non-
rectangular hyperbolic model; and (c) Landsberg model (Eq. 2.5) with different sets of
model parameters. Note that modeled curve with β = 0 in (b) is the same as scenario 2 in
(a). Other curves can be generated by altering parameters in S2-1 (LightResponse.xlsx).
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2.2.2 Landsberg Model

One of the models proposed by Landsberg (1977) for biological growth pro-
cesses is the saturating exponential model. When applied for light-response
curve, it is expressed as:

Pn = Pm ·
[
1− eα·(PAR−Icomp)

]
(2.5)

where Pm (µmol m−2 s−1) is the maximum photosynthesis, α is the slope of
the change in Pn (µmol m−2 s−1) with PAR (i.e., a shape factor), and Icomp
(µmol m−2 s−1) is the light compensation point at which Pn is zero (also
labeled as I0). This model assumes that α value is a constant. Inclusion of
Icomp in the exponential model provides us a unique feature: Pn switches from
negative to positive (i.e., gross photosynthesis minuses photorespiration) at
a certain PAR level. The equations were designed for leaf-level photosyn-
thesis but have been applied to describing ecosystem level CO2 fluxes as a
function of irradiance (Hollinger et al. 1994, Chen et al. 2002). The Lands-
berg model emphasizes the statistical properties of the light response curve
(i.e., compensation and saturation point), whereas the Michaelis-Menten
model (Eqs. 2.1 – 2.4) was formed with enzyme kinetics. Six simulations are
included in the demonstrative spreadsheet (S2-1). Again, a user can explore
the light responses by providing different values of α, Pm, and Icomp (Fig.
2.3c).

The rectangular and non-rectangular approach were attempted in 1950s
(see Thornley and Johnson 1990). Light response models are often con-
structed with in-situ measurements at leaf, individual or ecosystem level.
When the same model is applied with empirically estimated coefficients, one
can infer the underlying processes. At leaf level, for example, one can assess
differences among leaves of different species, at different positions in the
canopy, during different seasons, or under different climatic and soil condi-
tions. At ecosystem level, the models have been applied to fill data gaps
to create continuous time series, examine ecosystem responses to changes
in local climate and disturbances, scale up from individual ecosystems to
landscape-region-global levels, and investigate other biophysical regulations
such as fertility through quantum efficiency, VPD, temperature constraints,
phenology, soil moisture and nutrients, disturbances, etc.
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2.2.3 Farquhar’s Model

Photosynthesis rate is not only regulated by radiation (i.e., PAR) and water
supplies from the soil (see Section 2.1) but also by the intercellular CO2

concentration (i.e., CO2 supply) that depends on CO2 diffusion through
stomata (i.e., stomatal conductance, gs). Farquhar, von Caemmerer and
Berry (1980) proposed a biochemical growth model for leaf level photosyn-
thesis rate, known as Farquhar’s model. There are several ways to express
the model in the literature (note that different sets of symbols are used in
this section to be consistent with those used in plant physiology). Net leaf
CO2 assimilation (An, µmol m−2 s−1) is the least of the three rates:

An = minimum (Ac, Aj, Ap) (2.6)

where Ac, Aj, and Ap are the photosynthesis rate for Rubisco-limited, RuBP-
limited, and product-limited assimilations, respectively. Photosynthesis rate
as a function of intercellular CO2 concentration is described by FvCB equa-
tion:

Ac =
Vmax · (ci − Γ ∗)

ci +Kc ·
(
1 +

oi
Ko

) (2.7)

where Vmax is the maximum activity of Rubisco, ci is the intercellular CO2

concentration (µmol mol−1), Γ ∗ is the CO2 compensation point in the ab-
sence of day respiration (Rd), Kc is the Michaelis-Menten constant of Rubisco
for CO2, Oi is the oxygen (O2) concentration in the atmosphere (209 mol
mol−1), and Ko is the Michaelis-Menten constant of Rubisco for O2. Γ ∗ is
calculated as:

Γ ∗ =
0.5 ·Oi

2600 · 0.57Q10
(2.8)

where Q10 is the leaf respiration and can be modeled with leaf temperature
(Evans 1987). Details about Q10 modeling are provided in Chapter 3. The
dependence of quantum yield on wavelength and growth irradiance. Kc for
CO2 is calculated as:

Kc = 30 · 2.1Q10 (2.9)

and Ko for O2 is calculated as:

Ko = 30000 · 1.2Q10 (2.10)
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Vmax as the maximum capacity of Rubisco varies with leaf temperature, foliar
carbon and nitrogen ratio, soil moisture, and other biophysical conditions
(Wolf et al. 2006).

RuBP-limited photosynthesis rate (Aj), also commonly known as light-
limited photosynthesis rate, is calculated as:

Aj =
j · (ci − Γ ∗)

4 · ci + 8 · Γ ∗ (2.11)

where j is the electron transport rate (µmol m−2 s−1) and varies with ab-
sorbed photosynthetically active radiation (aPAR). Finally, the product-
limited photosynthesis rate is calculated as:

Ap = 3 · Tp (2.12)
where Tp (µmol m−2) is the triose phosphate utilization rate. This rarely lim-
its the rate of photosynthesis under physiological conditions (Kumarathunge
et al. 2019) but inclusion in the models improves parameterizations (Sharkey
2019).

The four major parameters that are needed to fit Farquhar’s model through
constructions of review for the A–ci curve are Vmax (µmol m−2 s−1), Jmax
(µmol m−2 s−1), Tp (µmol m−2 s−1), and Rd (µmol m−2 s−1). Sharkey et
al. (2007) (see also Sharkey 2015) provided a comprehensive review of the
models and their applications. There are a number of updated methods
for estimating the parameters in Equations (2.7) – (2.11), including those
described by Medlyn et al. (2002), Kattge and Knorr (2007), Bonan et
al. (2014), and Moualeu‐Ngangue et al. (2017). There also are many on-
line tools that provide parameter estimations and model demonstrations,
and some of these are equipped with original codes, principles of Farquhar’s
model, and interactive illustrations. The Denning Lab at Colorado State
University is one resource for model demonstration1. Bellasio et al. (2019)
presented more sophisticated fitting tools in Excel. The LeafWeb provides
automated numerical analyses of leaf gas exchange measurements2.

2.2.4 Photosynthesis based on Stomatal Conductance (gs)

Carbon dioxide for photosynthesis diffuses into intercellular chambers through
leaf stomata. The diffusion rate is called stomatal conductance (gs, µmol

1 https://biocycle.atmos.colostate.edu/shiny/photosynthesis/
2 https://leafweb.org/
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m−2 s−1), which is proportional to the photosynthesis rate (An, µmol m−2

s−1). This linear relationship is modulated by leaf surface CO2 and H2O con-
centration and varies among leaves and species. Understanding the changes
in gs is a powerful tool not only for predicting photosynthesis by reversing
the [gs ∼ An] relationship but also for modeling transportation of other mate-
rials through stomata (e.g., H2O-transpiration). Ball et al. (1987) proposed
a simple empirical model for the diurnal changes of gs for simulating the
exchanges of CO2 and H2O at leaf surface, known as the Ball-Berry model:

gs = K ·An ·
hs
cs

(2.13)

where hs (ranging 0 – 1) is the fractional relative humidity at the leaf surface,
cs (µmol mol−1) is the CO2 concentration of leaf surface, and K is the slope
constant of the model that represents the composite sensitivity of gs to CO2

concentration. By reversing Equation (2.13), photosynthesis is modeled as:

An =
gs · cs
K · hs

(2.14)

Because stomata do not completely close, there is a minimum conductance
value (g0, mol m−2 s−1). The Ball-Berry model is also expressed as:

gs = g0 + g1 ·An ·
hs
cs

(2.15)

where g0 and g1 are empirically estimated intercept and slope, respectively.
By reversing Equation (2.15), we have:

An =
(gs − g0) · cs

g1 · hs
(2.16)

The challenge here is to measure or estimate stomatal conductance (gs) un-
der different conditions (e.g., PAR, temperature and vapor pressure, soil
moisture and fertility), as well as over time and among species.

Leuning (1990) argued that the use of (cs −Γ ) is more appropriate in the
numerator, and he modified the original Ball-Berry model:

gs = g0 +
a1 ·An
cs − Γ

(2.17)

Leuning reasoned this new form was applicable because An → 0 when cs →
Γ , rather than when cs → 0. With this model, the supply-constraint model
of photosynthesis can be expressed as:

An =
g0

1.6 · (cs − ci)− g1 · hs · (cs − Γ )
(2.18)
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Later, Leuning et al. (1995) made an additional modification to the model
(Eq. 2.18) for C3 plants as:

gs = g0 +
a1 ·An

(cs − Γ )

(
1 +

Ds
D0

) (2.19)

where D0 is the value of VPD at which stomatal conductance becomes zero.
Note that D instead of VPD is used in Equation (2.19) and Equation (2.20).

Lloyd (1991) proposed that gs is dependent on
√
D. Medlyn et al. (2011)

further emphasized the importance of g1 in the Ball-Berry model because of
its sensitivity to environmental changes (e.g., temperature, soil water and
nutrients). They also agreed with Leuning et al. (1995) that VPD, instead
of relative humidity, should be used in modeling [An ∼ gs] for a new form of:

gs = g0 + 1.6 ·
(
1 +

g1√
D

)
· An
cs

(2.20)

In this model, g1 is assumed to increase with the marginal water cost of
carbon and with the CO2 compensation point (Γ ∗, kPa):

g1 ∝
√
Γ ∗ · λ (2.21)

where λ (mol H2O mol−1 CO2) is a parameter, describing the marginal water
cost of carbon gain (i.e., similar meaning to water use efficiency).

There are four major empirical parameters in Ball-Berry model (Eq. 2.13):
An, g0, g1, and hs (or D). A demonstrative spreadsheet model is provided in
S2-2 to show the role of these parameters in affecting stomatal conductance
(Fig. 2.4). The curves of [gs ∼ cs] will be lowered with increases in g1 values
(Fig. 2.4a). Similarly, higher photosynthesis of a leaf is coupled with higher
gs and a faster decreasing trend (Fig. 2.4b). As for relative humidity, its
absolute influences on gs appears to be less than that of An and g1 (Fig.
2.4c). Note that when hs is replaced with D (Eqs. 2.19 and 2.20), water
vapor effects are reversed; i.e., a high D value means low relative humidity
(see Chapter 1 for their relationships).

Independent estimates of gs in abovementioned models becomes a neces-
sity for predicting photosynthesis. Stomata opening is regulated by many en-
vironmental variables and depends on species, leaf age, time (phenophases),
regional climate, disturbances, etc. Major hydro-meteorological influences
include vapor pressure deficit (i.e., reflecting both air temperature and ab-
solute air moisture), level of radiation (e.g., due to photoprohibition), and
available water in the soil (i.e., water supply). Jarvis (1976) proposed a
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Fig. 2.4 Simulations of stomatal conductance (gs) with different sets of parame-
ters (Eq. 2.13). Other curves can be generated by altering parameters in S2-2
(Ball_Berry_model.xlsx).

VPD-driven gs model:

gs = gmax ·
(
1− D

D0

)
(2.22)

From a soil water perspective, Jarvis (1976) also proposed a gs model based
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on soil water potential (ψ, MPa):

gs = gmax ·
(
1− ψ

ψ0

)
(2.23)

where ψ0 (MPa) is at which gs = 0. Due to the fact that stomata can reduce
their closure when incoming radiation (R) is high, Loustau et al. (1977)
integrated R and VPD into a new empirical model:

gs = gmax ·
Rs

k1 +Rg
· 1− k2 ·D
1 + k3 ·D

(2.24)

where Rs and Rg are the incoming solar radiation (W m−2) and global radi-
ation (W m−2), respectively (see Chapter 1); and k1 (W m−2), k2 (kPa−1)
and k3 (kPa−1) are empirical coefficients.

An obvious advantage of Ball-Berry-Leuning-Medlyn family models is that
they allow us to model the exchange of CO2 and H2O, i.e., coupling car-
bon and water cycles and changes over time (Dewar 2002). This is widely
used in many ecosystem models for simulating carbon production and plant
transpiration, including in the Community Land Model (Bonan et al. 2014).
Meanwhile, these models involve numerous parameters that need to be mea-
sured or empirically estimated. While each of these parameters reflects spe-
cific physiological or physical process (i.e., mechanistic foundations), their
applications are more complicated and difficult than other models listed in
Sections 2.2.1, 2.2.2 and 2.2.6.

2.2.5 Light Use Efficiency (LUE) Model

Ecosystem primary production (GPP, or NPP), or canopy photosynthesis
(Pn), can be simply molded as a portion of PAR — light use efficiency (ε):

Pn = ε · PAR (2.25)

This model was proposed by Monteith (1972) for a tropical rain forest and
tested for crop production in Britain (Monteith 1977). The LUE concept
was theorized so that ecosystem production is proportional to the amount
of energy (i.e., absorbed PAR, or aPAR) used for photosynthesis that con-
verts CO2 to carbohydrate. A great challenge for applying this model is to
estimate absorbed PAR that is directly affected by the amount of leaf in the
canopy (e.g., LAI), horizontal and vertical distributions of the leaves, foliar
quality (e.g., nitrogen content), species, soil and climatic conditions, and
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disturbances. Xiao et al. (2004) applied the following algorithm for aPAR:

aPAR = fPAR · PAR (2.26)

where fPAR is the fraction (0 – 1) of PAR that reaches leaves (or canopies),
which can be estimated as a linear function of leaf area index (LAI) or veg-
etation index from remote sensing technology (e.g., EVI) (Wu et al. 2010,
John et al. 2013). Another challenge is that ε varies with climate, soil,
vegetation, time of a day and day of year (Medlyn 1998). Nevertheless,
an LUE-based model for estimating ecosystem primary production is sim-
ple, using PAR as the sole independent variable that is more available at
ecosystem-regional-global scales. This advantage is the primary reason why
the MODIS teams were able to measure global, continuous GPP based on
Terra satellite data (Running et al. 2004). GPP is estimated as:

GPP = [εmax · mod(Temperature) · mod(VPD)] · aPAR (2.27)

where εmax is the maximum light use efficiency, and mod (Temperature)
and mod (VPD) are modifiers (or scalars) to reduce εmax under unfavor-
able temperatures and high VPD (Zhao et al. 2006). Other scalars can be
added to the model. For example, a water-sensitive vegetation index (i.e.,
land surface water index, LSWI) was used to calculate the relative value to
the maximum potentials for a water scalar in the Vegetation Photosynthesis
Model (VPM) (Xiao et al. 2004). While the LUE model mostly has been
applied to estimating GPP, there is an increasing effort to apply the model
for NPP. NPP can be estimated by modeling GPP first and then calculating
NPP by assuming a portion of GPP is for NPP. Waring et al. (1998) sug-
gested that the NPP/GPP ratio is conservatively (0.47±0.04). This ratio
has since been revised to a range of 0.4 – 0.6 (Landsberg et al. 2020).

As demonstrated in Figure 2.5, there is a hypothesized “optimum” bio-
physical condition εmax for a regulatory variable (a.k.a. modifier or scalar).
Actual ε decreases from this optimum condition as stress increases. The rate
of decrease can be modeled with linear, exponential, parabolic, and other
forms, or set between known the minimum and maximum values (i.e., the
range). The range is used to normalize the scalar to (0, 1). It is worth noting
that symmetric change of a regulatory variable from its optimum condition
to the low/high extremes is widely practiced, albeit the reduction of ε from
εmax can be asymmetric. As an example, temperature scalar between min-
imum and optimum temperature can be different from that between the
optimum and maximum. For estimating ε at a broader spatial scale (i.e.,
landscape-region-globe), developing a reference table for each scalar is also
an option (e.g., Running et al. 2004). This re-scaling approach from the
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maximum values by including multiple environmental variables in all re-
source use models (Eq. 2.27) is one of the major philosophical approaches in
ecological modeling (e.g., the gap family models, and growth-yield models in
forestry). For example, the gap class of models assume a geographical center
has the optimum conditions for a species, whereas the distribution bound-
aries are used for the minimum value (Shugart 1984). This scalar-based
modeling approach also can be applied to the other resource use models
(Sections 2.2.7 – 2.2.9).

Fig. 2.5 Scalar development for modifying resource use efficiency (ε) from its maximum
value (εmax). Both symmetric and asymmetric functions can be used for estimating ε from
εmax. Minimum (Tmin), maximum (Tmax) and optimum (Topt) temperature are used for
deriving temperature scalar of three asymmetric approaches.

2.2.6 Nitrogen Use Efficiency (NUE) Model

Aber and Federer (1992) developed an ecosystem model — PnET — where
they suggested that the maximum photosynthetic rate of an ecosystem
(Pmax) is a linear function of foliar nitrogen concentration, regardless of
species and plant community structure. Pmax, however, is modified by other
biophysical variables such as temperature, available water, VPD, etc. Pmax
(µmol CO2 m−2 s−1) is calculated with a simple linear model based on a
meta-analysis of prior publications:

Pmax = α+ β ·N% (2.28)
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where α and β are empirically estimated coefficients that value at −5.98

and 4.56, respectively, based on published data from 20 forests, and N%
is the percentage of nitrogen in foliage of a stand (dry weight). Leaf gross
photosynthesis (Pn) is calculated by assuming 10% of Pmax is being used for
basal respiration (i.e., Pn = 0.9×Pmax). Pn is further modified for suboptimal
environmental conditions (see Section 2.2.6) as:

Pn = α · Pmax ·∆T ·∆W ·∆VPD (2.29)
where α is the portion of net photosynthesis in the gross photosynthesis (note
the original PnET model assumes a value of 0.9); ∆T , ∆W , and ∆VPD are
modifiers (or scalars) for temperature, available water, and vapor pressure
deficit, respectively. All scalars have a value of 0–1 (i.e., similar thinking
in LUE, gap models). ∆T is calculated with a parabolic equation based on
maximum and minimum daily Pmax; ∆W is set as the mean level of water
stress experienced in the previous month; and ∆VPD is calculated as VPD
times a system specific constant (K). This equation is the core algorithm of
the PnET model for simulating ecosystem NPP and ET at monthly step by
treating an ecosystem as a big leaf, with a small number of model parameters,
compared with other ecosystem models that use hundreds of parameters.

2.2.7 Water Use Efficiency (WUE) Model

Water use efficiency (WUE) has also been used for modeling ecosystem pro-
duction (Tanner and Sinclair 1983). Briggs and Shantz (1913) introduced the
concept of WUE by realizing that crop production needs support from suf-
ficient water that can be improved through irrigation. Three major types of
WUE have been practiced, including intrinsic WUE, instantaneous WUE,
and ecosystem WUE. They are based CO2 and H2O exchanges through
leaf stomata, gross photosynthesis and plant transpiration; gross primary
productivity (parabolic); and actual evapotranspiration (ETa), respectively.
GPP has been substituted with NPP in some models.

Assuming CO2 uptake and H2O loss are coupled, GPP at ecosystem can
be molded as:

GPP = WUE · ET (2.30)
An advantage of this model is predicting ecosystem production by moni-
toring ET loss, which is critical for intensively managed ecosystems such
as crops (i.e., through scheduling irrigation). Another advantage is to un-
derstanding the coupled carbon and water cycles under water stress (e.g.,
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drought), as well as under direct irrigation practices. Similar to the LUE
models, challenges include empirical estimate of WUE and potential bio-
physical regulations for rescaling WUE (e.g., Ito and Inatomi 2012).

2.2.8 Multiple Resource Use Efficiency (mRUE) Model

Multiple resources simultaneously regulate ecosystem production (Hodapp et
al. 2019). Binkley et al. (2004) synthesized published results in a Eucalyptus
plantation and concluded that the concept of RUE should at least include
water, nutrients and light use. Han et al. (2016) integrated multiple resource
use concepts in modeling GPP:

GPP = resource supply × proportion of resource supply
× captured efficiency of resource use

Here resource use efficiency for a specific resource (Ri) is defined as:

RUEi =
GPP
Ri

(2.31)

where Ri is the amount of absorbed resources, which can be expressed as
available resource (Ravail) and an efficiency (εi) that ranges 0 – 1. When
multiple RUEs are integrated, GPP can be modeled as:

GPP = (Ravail1×Ravail2×· · ·×Ravailn)
1/n · (RUE1×RUE2×· · ·×RUEn)

1/n

(2.32)

where n is the number of resource types to be considered. Multiple resource
use (mRUE) is referred as (RUE1×RUE2×· · ·×RUEn)

1/n, and that of mul-
tiple εi (i.e., (ε1 × ε2 × · · · × εn)

1/n) is referred as ε. Biophysical regulations
of RUE and ε can be explored using approaches similar to LUE and NUE
models (Sections 2.2.6 – 2.2.7). This model allows one to assess the regula-
tion of all resources as an integrated subsystem, while their importance at
different time periods or scales can be independently assessed. The inter-
actions among various limiting resources can be examined and considered
(Reed et al. 2020). Finally, resource use under constraints of temperature,
moisture, disturbances, etc. can be included in the model.
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2.3 The Datasets for Modeling
Photosynthesis

The datasets (S2-3: Wang2018.xlsx) used for model demonstrations are from
Wang et al. (2018). The authors measured net photosynthetic rate (An),
stomatal conductance (gs), and other relevant variables with a portable in-
frared gas analyzer (LI-COR 6400, LI-COR, Lincoln, Nebraska, USA) in
an alpine meadow of the Tibetan Plateau (37◦37′ N, 101◦12′ E, 3240 a.s.l)
during 2014 – 2016. The study was designed to assess how fertilizations of N
and P may affect photosynthesis of two major plants: Elymus dahuricus and
Gentiana straminea. Fully expanded healthy leaves were used in the experi-
ment following the standard protocols of the LI-COR Company. In brief,
leaves were exposed to a CO2 concentration of 370 µmol mol−1, at a leaf
temperature of 25 ◦C, and with airflow through the chamber of 300 µmol s−1.
Leaves were acclimated to a photosynthetic photon flux density of 2000 µmol
m−2 s−1 until photosynthetic rates stabilized. The rate of photosynthesis at
a PPFD of 2000 µmol m−2 s−1 was defined as the net photosynthetic rate.
Photosynthesis rates of different species and treatments were modeled with
Farquhar’s model (Eqs. 2.7, 2.11 and 2.12) and stomatal conductance was
modeled with the Ball-Berry (Eq. 2.15) and Medlyn (Eq. 2.20) models (Fig.
2.6). Major model parameters (e.g., Vmax, Jmax, WUEi, Kc, Rd, etc.) are
included in a supplementary Excel spreadsheet (S2-3: Wang2018.xlsx).

2.4 Model Performances

2.4.1 Light Response Models

Three versions of the Michaelis-Menten model (MM model) (Eqs. 2.2 – 2.4)
and the Landsberg model (Eq. 2.5) are fitted for estimating leaf photosyn-
thesis rate (Pn, µmol m−2 s−1) for the two species used in Wang et al. (2018)
(Fig. 2.7). These models performed well with a correlation coefficient of de-
termination (r2) of 0.67 for E. dahuricus and 0.52 for G. straminea. The
three MM models produced almost identical results. More importantly, the
MM model assumes the photosynthesis rate is zero only when PAR = 0
unless Rd (µmol m−2 s−1) is included, whereas the Landsberg model has
a light compensation point (Icomp). The Landsberg model also assumes a
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Fig. 2.6 Changes in photosynthesis rate (An) with (a) photosynthetically active radi-
ation (PAR) and (b) CO2 concentration (ca) for two species in Wang et al. (2018) (data
use permission received from the authors).

constant increasing rate of Pn with PAR (i.e., α value); whereas the mod-
ified MM models (Eqs. 2.3 and 2.4) include a shape parameter (i.e., β)
to control the light response. Estimated model parameters, model compar-
isons, and model performances are included in the supplement spreadsheet
LightR_models.xlsx (S2-4).

2.4.2 Results from Farquhar’s Model

Photosynthesis rate of the two species studied in Wang et al. (2018) was
modeled with three algorithms of Farquhar’s model: A-ci curve (Eq. 2.7),
light-response curve (Eq. 2.11) and product-limited model (Eq. 2.12). Over
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Fig. 2.7 Fitted light response curves using three Michaelis-Menten (MM) equations
(Eqs. 2.2, 2.3 and 2.4) and the Landsberg model (Eq. 2.5) for two species on the Tibetan
Plateau (Wang et al. 2018): (a) E. dahuricus, (b) G. straminea. Details are included in
the supplement spreadsheet LightR_models.xlsx (S2-4).

the two-year study period, 33 leaves of each species were measured under
four experimental treatments (i.e., control, additional of N, P and N+P).
The changes in photosynthesis rate with Vmax (Ac model, Eq. 2.7; Fig. 2.8a)
and Jmax (Aj model, Eq. 2.11; Fig. 2.8b) showed a near identical [An ∼ Jmax]

relationship between the two species. The [An ∼ Vmax] relationship appears
more variable than [An ∼ Jmax], emphasizing the important roles of K and
atmospheric vapor pressure (or VPD) in modeling Ac. Photosynthesis rate
based on the rate of phosphate release (Ap model, Eq. 2.12) yields the high-
est among all 66 leaves. Surprisingly, the Ac model predicts overall higher
values than the Aj model for both species, with 10 of 66 leaves having a lower
photosynthesis rate based on the Ac model (Fig. 2.8c). This suggests that
the photosynthesis rate of these two alpine species can be mostly modeled
with the light response model (Eq. 2.11) or the light use efficiency model
(Eq. 2.25).
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Fig. 2.8 Changes in photosynthesis rate (An) of two species in Wang et al. (2018) based
on Farquhar’s model (Eq. 2.6) with (a) the maximum rate of Rubisco (Vmax) and (b)
maximum rate of electron transport (Jmax). Differences between Rubisco-limited model
(Eq. 2.7) and light-limited model (Eq. 2.11) are shown in (c).

2.4.3 Results from Ball-Berry Model

Predicted stomatal conductance (gs) of the two species using the Ball-Berry
model (Eq. 2.13) is higher for E. dahuricus than for G. straminea, albeit
their changes with photosynthesis rate (An) and the leaf surface CO2 con-
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centration (ca) are similar (Fig. 2.9). The gs value at a photosynthesis
rate of zero (go; Eq. 2.15) is 0.0179 µmol m−2 s−1 for E. dahuricus and
0.0156 µmol m−2 s−1 for G. straminea. Because photosynthesis rate was
mostly estimated with light-limited algorithm in Farquhar’s model (Eq. 2.11,
Fig. 2.8c), the gs ∼ An relationship (Fig. 2.9a) reflects the regulatory role
of the incoming radiation level, whereas the gs ∼ ca relationship accounts
for the reduction in stomatal conductance under high CO2 concentration
(Fig. 2.9b).

Fig. 2.9 Changes in stomatal conductance (gs) with photosynthesis rate (An) and leaf
surface CO2 concentration for two species studied in Wang et al. (2018). An was esti-
mated with Farquhar’s model (Eq. 2.6) and gs was estimated with the Ball-Berry model
(Eq. 2.15). The data and regression results are included in the supplement document
S2-3 (Wang2018.xlsx).
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2.4.4 Other Models

Remote sensing modeling of GPP from various vegetation indexes (VIs),
solar-induced fluorescence (SIF), and other land surface properties (e.g., soil
moisture, temperature) is emerging (e.g., Gu et al. 2019). Performances
of resource-based models (Eqs. 2.25 – 2.32) are not compared because these
models are conventionally constructed through regression (linear or non-
linear) analysis. They are applied at ecosystem-regional levels. The last
four decades witnessed rapid growth in remote sensing technology, employing
diverse platforms (satellite, airborne, Unmanned Aerial Vehicle or UAV) and
sensors (passive and active). Remotely sensed data are particularly useful for
estimating model parameters, such as leaf area index (LAI), vegetation index
(VI), land surface temperature, soil moisture, canopy cover, phenology, etc.
Various products of ecosystem structure and functions (e.g., GPP, fractional
cover, canopy structure) are estimated based on these indices (e.g., GEDI
LiDAR). Among the most relevant open data sources are NASA’s Earthdata
portal1, Landsat products2 since 1972, MOIDS products3 since 2000 and
Sentinel 1 and 2 of the European Space Agency4 since 2014.

2.5 Summary

Empirical, mechanistic, and hybrid models have long been sought to describe
and predict production of plants and terrestrial ecosystems. All models are
based on assimilation through photosynthesis, which requires measurements
of CO2, H2O, photosynthetically active radiation (PAR), and nutrients to
address the underlying biological, ecological and physical processes. Here
vegetation, soil and microclimatic conditions are used as regulatory factors
for modeling the magnitude and changes of CO2 assimilation. Plant physiolo-
gists and ecologists approached CO2 assimilation from leaf and ecosystem
perspectives, respectively, and developed their models more or less indepen-
dently. Nevertheless, the approaches of modeling CO2 assimilation from
radiation (light response curve) and CO2 concentration (A-ci curve), along
with biophysical regulations (e.g., species vegetation characteristics, soil,
and climate), have been the same in both schools of thought. With the

1 https://earthdata.nasa.gov/
2 https://earthexplorer.usgs.gov/
3 https://modis.gsfc.nasa.gov/data/dataprod/
4 https://sentinel.esa.int/web/sentinel/home
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rapid development of computing technology and cross-disciplinary research,
recent decades have witnessed fast integrations and merging of different mo-
dels. Today, physiological models (e.g., Farquhar’s model, Ball-Berry model)
are widely used in ecosystem models, including remote sensing modeling.
Likewise, classical ecosystem production models (e.g., the gap models) are
increasingly considering detailed biophysical processes for model improve-
ment.

Selections and uses of suitable models depend on study objectives and
available resources (e.g., data, infrastructure, duration, etc.). No single
model can serve all purposes, but every model is suitable under certain con-
ditions or specifications. With the emergence of Farquhar’s photosynthesis
model, and exponential increases in computing power, most ecosystem mod-
els predict GPP using light use efficiency approach scale Farquhar’s model
up in space and time with additional input parameters (e.g., LAI, cover
type, etc.). Resource use efficiency models are more commonly used at daily
or longer time steps, while algorithms of Farquhar and Ball-Berry families
appear more favored at hourly scale.

• Models based on light response curve are easy to understand and use.
Only a few parameters (2 – 4) are needed to construct these models. Much
more effort is needed to examine the influences of other potential driving
forces on model parameters.

• Physiological models have solid chemical and physical processes and theo-
retical foundations. Farquhar’s model is based on the kinetic energy
concept of the Michaelis-Menten model as well as the chemical processes
of photosynthesis, whereas the Ball-Berry family of models are rooted in
the gas diffusion process and the corresponding properties of gases and
physical conditions.

• A large number of parameters (5 – 10) are required for both Farquhar’s
model and the Ball-Berry model. These parameters are often difficult to
measure or estimate. When these models are used to model ecosystem
production, a tremendous amount of ancillary data on species composi-
tion, structure, soil conditions and microclimate are needed.

• Resource use models are also easy to understand and can be based on
empirical parameters. They are particularly advantageous for modeling
ecosystem production at landscape-region-global scales. These models
have specific merits when applied with remote-sensed measures such as
vegetation index, phenology, etc.
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Online Supplementary Materials

S2-1: Light response curves through Michaelis-Menten and Landsberg mod-
els (LightResponse.xlsx).
S2-2: Simulations of stomatal conductance (gs) based on the Ball-Berry
model (Ball_Berry_model.xlsx).
S2-3: Field measurements andmodeled photosynthesis rate (An,µmolm−2 s−1)
and parameters for two species in Wang et al. (2018) (Wang2018.xlsx).
S2-4: Model performances of Michaelis-Menten and Landsberg models for
the two species in Wang et al. (2018) (LightR_models.xlsx).
S2-5: Python codes for estimating empirical coefficients through nonlin-
ear regression analysis of Michaelis-Menten and Landsberg models (Chap-
ter2_python.rar). This package has one dataset in Excel for practice and
four Python programs for non-linear regression.
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https://msupress.org/supplement/BiophysicalModels 
to access the supplementary materials.
User name: biophysical
Password: z4Y@sG3T
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Chapter 3
Modeling Ecosystem Respiration

Jiquan Chen

3.1 Introduction

Ecosystem respiration is broadly referred to as the carbon dioxide (CO2)
released from an ecosystem to the atmosphere. It may comprised of au-
totrophic (Ra) from living plant components and heterotrophic (Rh) respi-
ration due to decomposition of organic matter (Chapter 2). In some in-
stances, CO2 may also be released from weathering of bedrock (Chapter 2).
Ecosystem respiration is the second largest carbon (C) flux in most terres-
trial ecosystems after photosynthetic uptake. Some ecosystems experience
CO2 flux, as well, for example wetlands, old-growth forests, or ecosystems
that are experiencing extreme events (e.g., drought) or natural or human
induced disturbances (e.g., fire, insect defoliation, harvesting or grazing of
grasslands). It includes terms of above- and below-ground autotrophic (Ra)
and heterotrophic (Rh) respiration, fauna respiration and CO2 release from
weathering of bedrock. The last two terms, as well as heterotrophic res-
piration of aboveground live biomass, are small and negligible in most ter-
restrial ecosystems (Harmon et al. 2011, Chen et al. 2014). The sum of
belowground components of Ra and Rh is conventionally referred as soil res-
piration (Rs). The respiration is often expressed as µmol CO2 m−2 s−1, or
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mg C m−2 s−1, where the molar mass of CO2 is 44 g mol−1, with 27.29%
carbon or 12 g mol−1. Depending on the measurements and study objec-
tives, ecosystem respiration is reported at hourly, daily, or yearly time scale.
Aboveground autotrophic respiration in arid and semi-arid ecosystems is
small, while aboveground heterotrophic respiration in rain forests and old-
growth forests potentially can be high. Most respiration studies focus on
belowground respiration, with sporadic efforts to examine respirations from
canopies, tree trunks, and understory vegetation (see Law et al. 1999, Lav-
igne et al. 1996, 2003, Gough et al. 2007, Li et al. 2012).

Scientific investigations of respiration can be traced to the late 1800s,
when German scholars measured CO2 concentration in soils (Peterson 1870),
which were included in agricultural handbooks in 1878 (Wollny 1880, 1881).
In the early 1900s, carbon production in soils was already considered an
indicator of soil productivity (e.g., Neller 1918). The earliest descriptions of
respiration were likely from Leather (1915) and Lundegårdh (1922), where
soil respiration was described as “the amount of CO2 produced by a certain
soil area during a certain time” (Lieth and Ouellette 1962). Endeavors to
examine soil respiration have been promoted since the late 1960s, when
the International Geosphere-Biosphere Programme (IGBP) initiated global
studies on ecosystem productivity of different biomes, where understanding
of the respiratory losses of carbon was a major focus (e.g., Schlesinger 1977,
Raich and Nadelhoffer 1989).

Measuring CO2 in natural systems can be traced to the mid-1900s (Pet-
tenkofer 1861). Before the 1870s measurements of respiration were mostly
based on incubations of samples (e.g., soil, or organic materials) (e.g., Lun-
degårdh 1927), but these have been replaced with in-situ chamber-based or
micrometeorological approaches since the 1990s (Falge et al. 2002, Ryan and
Law 2005, Harmon et al. 2011). The devolvement of automated chambers
(Fig. 3.1) promoted studies beyond soils and included specific components
ecosystems, such as leaves, stems, litter, and down logs in a forest (e.g., Li
et al. 2012). Field measurement studies also include manipulative exper-
iments (e.g., Euskirchen et al. 2003, Concilio et al. 2005, DeForest et al.
2006) or focus on the changes in ecosystem composition and structure (e.g.,
Li et al. 2012). Since 1990s, there has been an increass in studies that are
based on measurements from eddy-covariance flux towers (see Fig. 2.2b) be-
cause these measure the net ecosystem exchange (NEE) of CO2 between an
ecosystem and the atmosphere because measurements taken in dark (e.g.,
nighttime, or chambers under cover) are respiration. Nighttime data from
eddy-covariance towers (Fig. 3.2b) is considered ecosystem respiration (Re-
ichstein et al. 2005, Gorsel et al. 2009). Chamber-based approaches are
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relatively inexpensive and suitable for small areas (less than a few square
meters), whereas tower-based measurements are costly and difficult to obtain
but can provide an integrated measure of an ecosystems at several hectres
to hundreds hectres of square meters (Fig. 2.2b). Additionally, carbon and
oxygen isotopic compositions have been used to tease apart different respi-
ration components (Yakir and Sternberg 2000).

Fig. 3.1 One of the 24 automated chambers at the Mt. Fuji Flux Site in central Japan.

Unlike photosynthesis (Chapter 2) and evapotranspiration (Chapter 4)
that have mechanistic bases (e.g., Michaelis-Menten kinetics), soil and ecosys-
tem respiration is modeled empirically. These models require direct measure-
ment of respiration as well as the independent variables for model validation,
algorithms establishment, and estimates of empirical coefficients through re-
gression analysis. The most dominant driving force on respiration is temper-
ature of the soil or air. In general, respirations of soil, dead and live organic
materials, or ecosystems increases with temperature. The theoretical foun-
dation of the relationship between respiration and temperature was initially
proposed by a Dutch chemist Jacobus Henricus Van’t Hoff in 1884 (Van’t
Hoff 1884). His concept was that the change in the equilibrium constant of a
chemical reaction to the change in temperature drives the standard enthalpy
change for a process. For example, change in respiration with temperature
can be expressed as a Q10 model (Van’t Hoff 1898):

Q10 =

(
R2

R1

)( 10
T2−T1

)
(3.1)

where respiration rate is measured as R1 under temperature T1 and R2 is
measured at temperature T2. Q10 (a unitless measure) describes the reaction
rate increase when the temperature is raised by 10 ◦C (or K). This model
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Fig. 3.2 (a) Schematic illustration of change in respiration with temperature by an
exponential function (Eq. 3.3) for four Q10 values; (b) The exponential increase of res-
piration can be limited by other ecological resources such as moisture. The respiration
reduction due to low moisture can be linear, polynomial, Gamma, logistic, or other forms.
The threshold point can be empirically determined for a site or a specific time period.

(Eq. 3.1) is often used in the literature and has been expressed as well:

R = R0 ·Q
(T2−T1)

10
10 (3.2)

where R0 is called reference respiration at 0 ◦C. The change in R with tem-
perature can be expressed as linear, exponential, or in other complex forms
(see Section 3.2). An exponential form is also widely used in respiration
studies as:

R = α · eβ·T (3.3)
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where β is the rate of change with increasing temperature and α is the
respiration at near zero temperature (◦C). Q10 is calculated as:

Q10 = e10·T (3.4)

The introduction of the Q10 concept allowed comparing respiration among
samples, such as among different ecosystems or in one ecosystem in different
time periods, or under different climatic conditions and disturbance regimes.
Across the global terrestrial ecosystem, Q10 varies from 1 to 10, depending
on the geographic location and ecosystems characteristics (Xu and Qi 2001).
Davidson et al. (1998) reported a range of 3.4 to 5.6 for soil respiration
among several temperate mixed-hardwood forests. A synthesis of global
soil respiration by Raich and Schlesinger (1992) indicated a Q10 value of
1.3 to 3.3, with an overall mean of 2.4. Ecosystem respiration analysis
conducted by Mahecha et al. (2010) based on the global FLUXNET dataset
that included observations from 60 flux tower sites showed a Q10 value of
1.4±0.1, which is insensitive of mean annual air temperature and biome. Q10

models were developed by scientists mostly for cool, temperate climates. It
might not be useful for some ecosystems (e.g., desert, boreal peatlands) on
a global scale because of complications from other driving forces (e.g., water
table in wetlands, extreme low soil moisture in arid regions).

Ecosystem respiration, or its components such as soil respiration, is the
result of complex interactions among biological, ecological and physical pro-
cesses. Increasing evidence shows that simulations of ecosystem respiration
needs to include more than just soil or air temperature. In modeling soil res-
piration, soil moisture has been proposed as another significant independent
variable, because available water is crucial for many biological and phys-
ical processes (e.g., Davidson et al. 2006, Curiel et al. 2007, Giasson et
al. 2013). For example, Meyer et al. (2018) concluded that amount of soil
organic carbon (SOC) or belowground biomass, carbon quality, pH level,
nitrogen content, C : N ratio, mean annual precipitation (MAP), and mean
annual temperature (MAT) are needed in modeling soil respiration. Other
studies show that including snow cover (Wang et al. 2013), disturbances
(e.g., fertilization, irrigation), climatic extremes, plant community composi-
tion (e.g., C3 vs. C4 plants) and structure, phenology, vigor of plant growth
(i.e., photosynthesis; Högberg et al. 2001), and timing during a day or day
of year may help in accurate modeling of soil or ecosystem respiration (see
DeForest et al. 2006, Khomik et al. 2006, Richardson et al. 2006, Xu et al.
2011).
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3.2 Models for Ecosystem Respiration

Over a dozen model forms have been proposed and applied in the literature.
These models are empirical and have to be constructed using in-situ mea-
surements of respiration. Some models can be used to calculate Q10 values
based on Van’t Hoff’s principle. Luo and Zhou (2010) presented 11 different
models, whereas Richardson et al. (2006) expanded the time dimension in
12 types of respiration models. These models cover simple linear, log-linear
(Eq. 3.3), Gamma function (Khomik et al. 2009), or sophisticated time
series (Richardson et al. 2006). Some models included other ecosystem/
soil properties, such as soil moisture, day of year, litter depth, and multiple
temperature measurements, as additional independent variables. Modeling
respiration based on complex relationships also has been attempted (e.g.,
Richardson et al. 2006). An overview of the respiration models is presented
below. They are mostly applied for soil respiration, but they can be applied
for modeling respiration of an ecosystem or its components.

3.2.1 Linear and Log-linear Models

These are simple linear models for predicting respiration (R) using tempera-
ture (T, ◦C):

R = α+ β · T (3.5)

where α and β represent the basal respiration at near zero temperature (R0,
◦C) and rate of R increase per degree (i.e., a constant), respectively. The
Q10 value is calculated as (10 * β). Although this model has not been
widely applied because of large error terms (see Section 3.4, Table. 3.1), its
simplicity and easy use have some merit in modeling respiration, especially
when R varies substantially for a given temperature. To improve model
precision, a natural logarithm linear model (i.e., Eq. 3.3) has been applied
instead:

ln(R) = ln(α) + β · T (3.6)

This model assumes that the changing rate of respiration with tempera-
ture is an exponential function of temperature. An obvious pitfall of both
linear models is that empirically estimated α and β cannot be compared
among different respiration terms, among ecosystems, or in different times,
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because α and β are correlated. Replacing α value with the basal respiration
(R0) at T = 0

◦C will partially resolve the problems but reduce model’s ac-
curacy.

3.2.2 Quadratic and Polynomial Models

Both quadratic and polynomial models have been used to predict respiration
with high level of confidence (Wofsy 1993, Yu et al. 2011). The quadratic
model is expressed as:

R = α+ β0 · T + β1 · T 2 (3.7)

The quadratic model assumes that the rate of respiration change with tem-
perature is a linear function of T and is symmetric around an optimum
temperature, which is one of the mathematical properties. For site-specific
modeling, a polynomial equation of various orders can also be applied, such
as (Wofsy et al. 1993):

R = α+ β1 · T + β1 · T 2 + β3 · T 3 + β4 · T 4 + β5 · T 5 (3.8)

The polynomial equation can provide accurate predictions but lacks any
theoretical foundation and should not be used beyond the range of in-situ
measurements.

3.2.3 Arrhenius Model

The Arrhenius form of the model proposed by Lloyd and Taylor (1994) has
been widely used as the algorism in modeling respiration. There exist several
forms of the model as well (a.k.a., Lloyd-Taylor model). Görres et al. (2016)
presented the model as:

R = R10 · eE0[ 1
56.02−

1
T−227.13 ] (3.9)

where R10 is the respiration rate at a reference temperature of 10 ◦C (a.k.a.
reference respiration), E0 is the temperature sensitivity coefficient (K), and
T is soil temperature at a certain (e.g., 5 cm) depth (K). Temperature in
Kelvin units is used, which is the base unit of thermodynamic tempera-
ture measurement in the International System of Units (SI) of measurement
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(K = ◦C + 273.15). Introduction of R10 allows comparisons among ecosys-
tems or at different times, by avoiding the correlation between the two coef-
ficients in Equations (3.5)–(3.6), albeit the confidence level (e.g., correlation
coefficient of determination, or r2) is also lowered. The reference respiration
is recommended to be site and time specific (Yuan et al. 2011, Perkins et al.
2012). Other types of expressions of the same form can be found in Reich-
stein et al. (2005), Richardson and Hollinger (2005), Perkins et al. (2012),
Hill et al. (2018) and others.

3.2.4 Logistic Model

Barr et al. (2002) revised the classical logistic model to a simple form to
model respiration:

R =
α

1 + e(β0−β1·T )
(3.10)

where α, β0, and β1 are estimated coefficients and T is temperature
in ◦C. The logistic model assumes that the rate of change in respiration
with temperature is not a constant, but peaks at a specific temperature and
eventually returns to zero at high temperature. The precise temperature at
1/2 of the maximum R can be calculated.

3.2.5 Gamma Model

Khomik et al. (2009) proposed an approach, based on integrals of the
Gamma function, for predicting respiration because prevalent respiration
models in the literature had limitations when they were applied across a
wide range of ecosystems or climates. They also did not allow R to decrease
at high temperatures when respiration was constrained (e.g., Fig. 3.2b).
Gamma model helped to address these aspects. Gamma model is expressed
as:

R = Tα · eβ0+β1·T (3.11)

where α, β0 and β1 are empirical coefficients to be estimated with measure-
ments. Khomik et al. (2009) stated that this model has two strong features:
exponentiality and power. When α is equal to zero, the model becomes an
exponential function, and when β1 is equal to zero, the model becomes a
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power function. Furthermore, unlike quadratic functions that would also
allow R to decrease at high T values, Gamma model provides asymmetric
changes by its maximum value. The T (◦C) value at which R peaks (i.e.,
Tmax, ◦C) can be determined as:

Tmax =
α

−β1
− 40 (3.12)

For convenient estimation of the coefficients, the model can be linearized as:

ln(R) = α · ln(T ) + β0 + β1 · T (3.13)

From Equation (3.11), it appears that this model assumes that the loga-
rithm of respiration is a linear combination of logarithm and linear function
of temperature, which is similar to the model of DeForest et al. (2006)
(Eq. 3.14). Khomik et al. (2009) point out that an additional advantage
of the linear form of Gamma model is that it can incorporate additional
explanatory variables (into Eq. 3.13) as qualitative or quantitative values
(e.g., moisture, root biomass, etc.).

3.2.6 Biophysically Constrained Models

Respirations from different components of an ecosystem are simultaneously
modulated by other biophysical conditions (i.e., covariates). Soil respiration
is significantly regulated by soil moisture, nutrients, root biomass, above-
ground photosynthesis, etc. In some cases, these variables are better predic-
tors of respiration (see example in Xu et al. 2011). For example, Euskirchen
et al. (2003) reported that litter depth contributed more to the variations
in soil respiration than soil temperature among the six temperate forest
ecosystems. Inclusions of these variables in respiration modeling is highly
recommended. For drylands and Mediterranean ecosystems, soil water con-
tent can suppress respiration when its value decreases to the threshold point
(Xu and Qi 2001). Similarly, submerged wetlands (i.e., high water table)
have very different respiration-temperature relationships.

Numerous moisture-included respiration models exist, with most of them
focusing on soil respiration (e.g. Ma et al. 2004, DeForest et al. 2006).
A simple approach is to assume that respiration is linearly, or quadratically,
suppressed by availability of water in soil (see Fig. 3.3b). In many terrestrial
ecosystems, soil moisture is often negatively related to soil temperature (e.g.,
Fig. 3.3a). This results in a reduced respiration rate after a temperature
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threshold. When water was available, water was a poor predictor of soil
respiration; only when it was limiting did it make a difference in modeling
respiration. In other words, it is the lack of water, not abundance, that
mediates soil respiration. It is worth noting that available water is a function
of soil texture although it is rarely reported as water potential rather than
water content. DeForest et al. (2006) assumed that this reduction is a linear
function of soil moisture (θ). Soil respiration based on the exponential model
(Eq. 3.3) was tried as:

R =
(
R10 · eβ·T

)
+ (a · θ + b) (3.14)

where a and b were empirically estimated from the residuals after the ex-
ponential term with θ. This model was successfully modified for modeling
respiration of soil-to-snow profiles (Contosta et al. 2016).

Fig. 3.3 (a) Change in soil temperature (◦C) at 5 cm and soil moisture (%) at 10 cm
and (b) soil respiration (µmol CO2 m−2 s−1) at a larch forest in the Mt. Fuji Flux Site
in central Japan during March 18 and December 17, 2015. The shaded area in yellow
indicates a month-long drought period in 2015.
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Martin et al. (2009) employed a log linear model of multiple variables:

ln(R) = β0 + β1 · T + β2 · T 2 + β3 · θ + β4 · θ2 + β5 · (T · θ) (3.15)

Other variables, such as root biomass or soil C : N ratio can be added to this
model. Xu et al. (2011), for example, added a parabola function of θ:

R = α · eβ0·T · β1 · (θ − β2)
2 (3.16)

where β1 and β2 are empirically estimated. Other model forms have also
been tested (see Table 10.3 in Luo and Zhou 2006). Concilio et al. (2005)
adopted a slightly different model:

R = R0 · eβ0·T · eβ1·θ · β2 · T · θ (3.17)

The residuals are further examined as function of litter depth, precipitation,
and treatment (e.g., burning, thinning) (see also Ma et al. 2004, Teramoto
et al. 2019). At monthly and annual scale, precipitation, or precipitation
minus evapotranspiration, can be used to replace soil moisture due to its
availability worldwide. Recent studies also found that soil respiration is pos-
itively correlated with aboveground photosynthesis. Raich and Schlesinger
(1992) proposed a simple linear model for predicting soil respiration from
net primary production (NPP), with a linear increasing rate of 1.24.

3.2.7 Time Series Models

Soil and ecosystem respiration change over time due to not only the corre-
sponding changes in significant biophysical variables but also the temporal
correlations from memory or legacy effects, especially under extreme climate
and disturbances (Besnard et al. 2019). It is often necessary to include time
in respiration models. This can be done by constructing unique models (e.g.,
day vs. night, by seasons or phenophases), or directly including time as a
variable in the model. Considering day of year (DOY) as a critical measure
of the seasonal changes in respiration, Xu et al. (2011) expanded Equation
(3.16) to include an additional quadratic term:

R = α · eβ0·T + β1 · (θ − β2)
2
+ β3 · (DOY − β4)

2 (3.18)

This model works well for modeling growing season respiration by assum-
ing a symmetric seasonal pattern before and after the peak respiration (i.e.,
β4 value). A more complex form for time series of respiration was proposed
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by Davidson et al. (2006) by using a second-order Fourier regression with
DOY:

R = κ0 + κ1 · sin (DOY∗ + φ1) + κ2 · sin (2 · DOY∗ + φ2) (3.19)

where DOY∗ = DOY·(2π/365). Additional higher-order terms can be added
to the model (Richardson and Hollinger 2005).

To include all other covariates, with or without consideration of temporal
autocorrelations, can be tried with conventional multivariate analysis such
as neural network model (Richardson et al. 2006). Techniques from Bayesian
and machine learning can also be applied to improve the models.

3.3 Measured Datasets for Modeling Soil
Respiration

Continuous measurements of soil respiration (µmol CO2 m−2 s−1), soil tem-
perature (◦C) at certain depths such as 5 cm and soil moisture (%) at 10 cm
or root zone are used to demonstrate the model applications. The data is
from one of the 24 automated chambers (90 cm in length × 90 cm in width ×
50 cm in height) installed in a mature larch plantation (Larix kaempferi) (35◦

26′ 36.7′′ N, 138◦ 45′ 53.0′′ E; 1105 m a.s.l.) on the northeastern slope of Mt.
Fuji in central Japan. This forest was planted in 1950 and thinned in 2014.
Twenty-four automated chambers were installed in 2006 (see Fig. 3.1 as an
example). Over the course of two hours, the twenty-four chambers were
closed sequentially and the sampling period for each chamber was 300 s.
CO2 concentration inside the chamber and the relevant soil and airtempe-
rature and soil moisture were recorded on a datalogger at 10 s intervals. The
Chamber #1 is used for demonstrations in this chapter. Understory vege-
tating inside the chamber had been regularly cleared at about two-week in-
tervals so the measurements represent soil respiration. In 2015, the available
data were recorded during the snow-free season between March 18 and De-
cember 17. Data gaps of less than 4 hours (i.e., 1 missing value) are filled
with the average values before and after the gap, while gaps larger than 4
hours are treated as “no values”. Less than 10 extremely high or low respi-
ration measurements (out of 3105) are removed from the database (see data
and Figs. 3.3 and 3.4 in S3-2: RespirationData.xlsx). During 2013–2017
average (± standard deviation) soil temperature was 8.94 ± 0.23 ◦C; soil
moisture was 17.19 ± 0.97%; and annual total precipitation was 1848 ± 275
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mm. Detailed descriptions of the chambers, measurements, data processing,
and site characteristics are provided by Teramoto et al. (2017, 2019).

As expected in a typical temperate region, soil temperature of the site
rapidly increased after March 18, peaked around late July, and decreased
linearly to the end of October (Fig. 3.3a). Soil moisture, meanwhile, had
episodic changes, i.e., gradually decreasing after each precipitation event.
A month-long dry period between July 8 and August 17 had one rainfall,
resulting in soil moisture of < 20%. The seasonal changes in soil respi-

Fig. 3.4 Changes in soil respiration (µmol CO2 m−2 s−1) with soil (a) temperature
and (b) moisture. Exponential model (Eq. 3.3) and linear regression lines are presented
for the relationships with soil temperature and moisture, respectively. Soil respiration
without moisture stress (>20%) is fitted with an independent model (blue).
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ration over the measurement period is similar to soil temperature, except
during the dry period of July-August. The overall average respiration is
3.19 µmol CO2 m−2 s−1, with values of < 2 µmol CO2 m−2 s−1 before May
or after October (note that the larch forest generally drops leaves around
October 20). Its values are the highest in June (> 6 µmol CO2 m−2 s−1).
Respiration during the dry period was reduced by approximately 2 µmol
CO2 m−2 s−1 (Fig. 3.3a). Another interesting phenomenon is that respira-
tion from late October to mid-November was elevated, which coincided with
the relatively high soil temperature and low moisture (Fig. 3.4a).

Soil respiration increased with soil temperature (Fig. 3.4a) and moisture
(Fig. 3.4b). Its relationship with soil temperature appeared exponential until
soil temperature reached ∼16.5 ◦C at which point it leveled off, or decreased
slightly. Exponential model (Eq. 3.3) carried a basal respiration of 0.592
(µmol CO2 m−2 s−1) and an increasing rate of 1.145 µmol CO2 m−2 s−1

10 ◦C−1, yielding a Q10 value of 3.14 and an R2 of 0.847. The variation in
respiration also increased with temperature — a typical phenomenon in the
literature. For the changes with moisture, there appeared a weak positive
relationship (i.e., suppression at lower moisture levels) when soil temperature
was greater than 16.5 ◦C (Fig. 3.5b). The variation in respiration at lower
moisture ranges was much higher than that at high moisture ranges. When
respiration without water stress was used, the estimated coefficients in the
same exponential model had higher slope (1.300 µmol CO2 m−2 s−1 10
◦C−1), Q10 (3.67), and R2 (0.89) values (Fig. 3.4a). This suggests that it
is crucial to include soil moisture in modeling respiration even in this moist
forest with an annual precipitation of 1819±252 mm (Teramoto et al. 2019).

3.4 Model Performances

To demonstrate model behaviors and performances, models presented in
Section 3.2 are applied to the field data (Section 3.3). Their performances are
compared in four sets: (1) linear models, (2) nonlinear models, (3) moisture
included models, and (4) a DOY-included model.

All models captured the general increasing trends of soil respiration with
soil temperature (Fig. 3.5a). The simple linear model showed over-predictions
except at low and high respiration and results in a Q10 value of 2.7 and
an R2 of 0.752. Predictions from both exponential and quadratic models
have obvious over- or under-predictions across the full respiration range,
but the variations are high when respiration exceeds 4.0 µmol CO2 m−2
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Fig. 3.5 Modeled soil respiration from three sets of models: (a) linear (log-linear) mod-
els, (b) nonlinear models, and (c) moisture-included models. Field data were collected
at Chamber #1 every 2 hours from March 18 through December 17 in 2015 at a larch
plantation in the Mt. Fuji Flux Site, central Japan (Teramoto et al. 2019).

s−1. They also have an improved R2 value at 0.846 and 0.775, respectively
(Table 3.1). Logistic and Gamma models have a sigmoid shape, allowing
respiration at high temperature to level off or decrease. The Lloyd-Taylor
model — the most widely used form in many ecosystem models — performs
well and yields a Q10 value of 2.9. Moisture-included models have four pa-
rameters and predict multiple values at any given temperature. The R2

values (0.840–0.986) are higher than models solely based on soil tempera-
ture. Compared with the mean (standard deviation) value of measured soil
respiration (2.746 t C ha−1 yr−1), the linear, exponential, and quadratic
models produce a mean respiration value of 3.394, 2.683 and 2.753 t C ha−1

yr−1, whereas the three nonlinear and moisture-included models produce a
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similar value at ∼ 3.2 t C ha−1 yr−1. The overestimation of 0.649 t C ha−1

yr−1 from the linear model accounts 23.6% of the actual measurement (Fig. 3.6).

Fig. 3.6 Comparisons of predicted and measured soil respiration (µmol CO2 m−2 s−1)
from 9 models (Fig. 3.5). The cyan lines are the 1 : 1 ratios. Field data were collected
with an automated respiration chamber every 2 hours from March 18 through December
17 in 2015 at a larch plantation in the Mt. Fuji Flux Site, Japan (Teramoto et al. 2019).

Including day of year (DOY) in a respiration model (Eq. 3.18) requires
six parameters to be estimated through nonlinear regression analysis (S3-
2). It does not improve the model’s overall performance (R2=0.854), but it
produces the closest annual total estimate (3.193 t C ha−1 yr−1) to the
actual measurement and captures many unique changes throughout the
year(Fig. 3.7), such as the decreases during the dry period of July 18–August
17 when compared to predicted respiration from Lloyd-Taylor model. How-
ever, it does not capture the high respiration in June and the low respiration
in late April. Finally, data from one of the 24 chambers are used in this
chapter. It is well known that both soil microclimate and vegetation chara-
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Fig. 3.7 Comparisons of predicted and measured soil respiration (µmol CO2 m−2 s−1)
between (a) DOY-included model and (b) Lloyd-Taylor model. Field measurements (gray
dots) were collected with an automated respiration chamber every 2 hours from March
18 through December 17 in 2015 at a larch plantation in the Mt. Fuji Flux Site, central
Japan (Teramoto et al. 2019).

cteristics within a forest community vary substantially (Chen et al. 1999).
To accurately predict the ecosystem-level respiration, independent models
are needed for each chamber. Using stand average values of independent
variables for predictions is not recommended.

3.5 Summary

Accurate prediction of ecosystem respiration remains a challenge because
of lack of theoretical foundation. Modeling ecosystem respiration is mostly
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based on Van’t Hoff’s theory where temperature is the sole driving force for
changes in respiration. Q10 value, which describes increase in rate of reac-
tion when temperature is raised by 10 ◦C, is widely used for model devel-
opment but has been challenged by studies in the literature, where several
dozen forms have been exercised. Among these models, the temperature-
dependent Q10 model is mostly widely applied in ecosystem models because
of its simplicity (Chapter 2). Including available soil water in the model is
nonetheless critical in modeling soil respiration. For modeling the changes
of respiration, inclusions of phenophase and DOY of year appear necessary.
More importantly, applying the same model for diverse ecosystem types or
under very different climatic conditions should be cautiously practiced be-
cause no single model will work for all kinds of conditions. This is because
these models are all empirical, with their coefficients estimated with in-situ
measurements of respiration and forcing variables. Field measurements of
soil respiration, soil temperature and moisture have been used for these
model developments and validations. Based on the literature and model
performances, the following aspects are critical for development of reliable
respiration models:

• Simple linear, power, and polynomial forms are not recommended in mod-
eling respiration regardless of their simple-to-use nature.

• Selection of model form is critical for producing reliable predictions.
Residual analysis can help development of additional covariates and model
forms.

• Incorporating other independent variables is necessary. Soil moisture,
soil carbon and nutrient content, biomass or production, canopy cover,
litter depth, etc. are among the potential factors to be considered.

• Multiple model forms or a unique set of coefficients for the same model
need to be used for different times such as seasons (phenophases), climatic
conditions, and disturbances. For modeling seasonal changes, day of year
should be included in the models.

Online Supplementary Materials

S3-1: Spreadsheet models (Schematics.xlsx) for illustrating the roles of two
parameters in exponential model (Eq. 3.3) for respiration-temperature re-
lationship, calculations of Q10 values, and inclusion of linear constraints by
moisture (θ) at high temperature ranges (Fig. 3.3).
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S3-2: Field measurements of soil respiration, soil temperature and moisture
in 2015 from Chamber #1 (RespirationData.xlsx) in a mature larch planta-
tion (Larix kaempferi) (35◦ 26′ 36.7′′ N, 138◦ 45′ 53.0′′ E; 1105 m a.s.l.) on
the northeastern slope of Mt. Fuji in central Japan (Fig. 3.3).
S3-3: Spreadsheet modeling and model comparisons (Rmodel_1.xlsx) of
linear, exponential and quadratic forms (Eqs. 3.5, 3.3, 3.7).
S3-4: Spreadsheet modeling and model comparisons (Rmodel_2.xlsx) of
Logistic, Lloyd-Taylor and Gamma models (Eqs. 3.10, 3.9, 3.11).
S3-5: Spread sheet modeling and model comparisons (Rmodel_3.xlsx) of
three model forms by including soil moisture (θ) as an additional indepen-
dent variable (Eqs. 3.14, 3.16, 3.17).
S3-6: Spreadsheet modeling of soil respiration with day of year (DOY) and
soil moisture (θ) as additional covariates of temperature (Rmodel_4.xlsx)
(Eq. 3.18) (Fig. 3.7).
S3-7: Python codes for estimating empirical coefficients through nonlinear
regression analysis of Logistic, Lloyd-Taylor, Gamma, DeForest, Xu, Con-
cilio and DOY models (Respiration.rar). This file has two Excel data files
and 12 Python programs for linear and non-linear regression.
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Chapter 4
Modeling Evapotranspiration

Ge Sun and Jiquan Chen

4.1 Introduction

The process by which water changes from liquid form to gas from a sur-
face is called evaporation — a term used since the mid-1600s according to
Stanhill (2005). Water can also move directly from the snowpack to the
atmosphere due to the direct phase transition of snow to water vapor, which
is called snow sublimation and is considered part of evaporation in the li-
terature (Stigter et al. 2018). In terrestrial ecosystems where vegetation
dominates land surfaces, the processes of transporting water into the at-
mosphere from bare lands (i.e., soil, rock and paved surfaces), water (i.e.,
streams, ponds and open-water swamps), and vegetation-covered areas is
called evapotranspiration (ET) — a term created by American geographer/
climatologist Charles Warren Thornthwaite (1948). While devising a climate
classification system that is still used worldwide (Hewlett 1982), Thornth-
waite proposed “potential evapotranspiration” as an “index of thermal effi-
ciency” in predicting crop growth. Here the water loss through plant growth
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is called transpiration to distinguish it from water loss through evaporation.
He argued that “We cannot tell whether a climate is moist or dry by know-
ing the precipitation alone. We must know whether precipitation is greater
or less than the water needed for evaporation and transpiration.” Potential
evapotranspiration (PET, cm), a term used since 1937 (Stanhill 2005), is
calculated with air temperature (◦C) by Thornthwaite, with a unit that is
the same as precipitation (e.g., cm):

PET = c · T a (4.1)

where T (◦C) is the monthly mean air temperature, and c and a are empirical
parameters that are hypothesized as a function of heat index (Thornthwaite
1948). Although modern terms (e.g., vapor pressure deficit) were not used in
Thornthwaite’s paper, heat stress and precipitation were already considered
in modeling PET.

In some regions and disciplines, the term evaporation is preferred over
evapotranspiration (Savenije 2004). Penman (1963) objected to the use of the
term evapotranspiration because evaporation already includes transpiration,
since the latter is an evaporation process from leaf surface (Stanhill 2005).
In a mathematical form, ecosystem ET includes three sub-components:

ET = T + I + E (4.2)

where T is vegetation transpiration, I is evaporation from canopy intercep-
tion, and E is evaporation from soil and vegetation surfaces (e.g., stems,
standing and downed logs). All terms are normally expressed in millimeters
(mm) but can be quantified in mass weight (e.g., kg) or energy by multiply-
ing ground surface area. One mm of ET equals to 1.0 g of water (i.e., water
density 1 gram per milliliter). The amount of energy needed to evaporate
water is called latent heat of vaporization of water (λ, J mol−1), which varies
by temperature and atmospheric pressure. At air pressure of 101 kPa, its
value is 44.6 kJ mol−1at 10 ◦C and 44.1 kJ mol−1at 20 ◦C (note the mole-
cular mass of H2O is 18 g mol−1, and 1 watt (W) = 1.00 joules per second (J
s−1)). ET from mass balance (Eq. 4.2) is approached as precipitation minus
stream flow, change in soil moisture and exchange with the deep ground
water. From an energy balance perspective, ET (W m−2) can be calculated
as:

ET = Rn −H −G−∆S (4.3)

where Rn is net radiation, H is the sensible heat, G is the soil heat flux,
and ∆S is the heat storage over a period of time within the canopy column
(air and vegetation). All terms have a unit of W m−2 (see Chapter 1). The
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sum of (Rn−G−∆S) is equal to the sum of H and ET, which is termed as
available energy in the literature. When the unit of ET is millimeters, the
left side of the equation is replaced with λET. Clearly, the mass balance
in Equation (4.2) emphasizes the subcomponents of ET, whereas the Equa-
tion (4.3) model shows ET from an energy balance perspective. The mass
balance approach has been favored in the hydrological community, while
the energy balance approach appears to be preferred in micrometeorology
and ecosystem studies, though both methods are employed in all scientific
disciplines.

Recent global synthesis on ET partitions into transpiration and other
components suggests plant transpiration dominates the ET flux for most
vegetated surfaces (Jasechko et al. 2013), while (I+E) can be as high as
30% of total ET. (I+E) can be an important component of ecosystem ET
in very dry or very wet environments. These three components (T, I, and
E) must be estimated independently for effective water management and
water-ecosystem interactions.

Ecologists and hydrologists are interested in understanding and quantify-
ing ET from several perspectives:

1. Ecosystem processes. ET is a key variable that is directly coupled with
ecosystem productivity and carbon sequestration (Aber and Federer 1992).
This is easy to understand because carbon dioxide (CO2) uptake during
plant photosynthesis uses the same pores (stomata) as water loss (transpi-
ration) pathways (Gedney et al. 2006). Evapotranspiration is the only
variable that links hydrology and biological processes in many ecosys-
tem models. ET is also highly linked to ecosystem productivity and net
ecosystem exchange of CO2 between an ecosystem and the atmosphere
because photosynthesis and ecosystem respiration are controlled by avail-
able energy and soil water availability (see Chapters 1 and 2).

2. Water balances. ET is a large component of the water budget at global
scale. Worldwide, mean annual ET rates are estimated to be about
600 mm or 60%–70% of precipitation (Oki and Kanae 2006). In the
United States more than 70% of annual precipitation returns to the at-
mosphere as ET (Sanford and Selnick 2013), while the percentage is high
as 90% in Australia (McMahon et al. 2013). Regional annual ET rates
can be as high as 85% of precipitation in forest landscapes in the humid
southern United States (Lu et al. 2003). Vegetation affects watershed
water balances by influencing ET (Zhang et al. 2001, Bosch and Hewlett
1982), though its influence is minor compared to climate (Oudin et al.
2008).
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3. Emerging global change science. ET is a key variable in meteorological,
hydrological, and ecosystem sciences (Baldocchi et al. 2000); it must be
considered in contemporary watershed management (Sun et al. 2008a).
Climate change and land use change directly affect the hydrological cycle
and water resources through altering ET processes (Sun et al. 2011a).
For example, an increase in air temperature generally means an increase
in evaporative demands, resulting in an increase in water loss through
ET — thus a decrease in groundwater recharge, available soil water,
stream flow, and human water supply. Similarly, land use conversion
(i.e., bioenergy crop expansion, deforestation) can dramatically change
plant cover and biomass, affecting transpiration and evaporation rates,
site water balance, and regional water resources. Climate change and
land use change directly affect the hydrological cycle and water resources
through altering the ET processes (Caldwell et al. 2012). Changes in
water balance patterns will consequently impact stream flow and water
quality. Accurate quantifications of ET would better prepare us respond
to climate change and its many consequences (Vose et al. 2011). Recent
decades have witnessed rapid growth in remote sensing technology and
other “big data” for cross-disciplinary “big science” (e.g., Schellekens et al.
2017). This growth is fueled by modern computing capability, permit-
ting us to re-evaluate the spatiotemporal changes in ET and associated
components.

4. Climate change and feedbacks. ET is the key link between energy, wa-
ter balances, and climate systems. More than half of the solar radia-
tion absorbed by the land surface (Trenberth et al. 2009) is used for
ET. Changes in ET directly affect runoff, soil water, and local precipita-
tion (Koster et al. 2004), temperature, and local-to-region air humidity
(Hao et al. 2018). ET is tightly coupled to land surface energy balance
(Chen et al. 2004) in both managed and unmanaged systems (Sun et al.
2010), and thus influences vegetation-climate feedbacks (Bonan 2008).
For example, studies have found that reforestation in China lowered lo-
cal air temperature due to increased ET through reforestation (Peng et
al. 2014).

5. Ecosystem diversity. ET is also used as an index to represent the avail-
able environmental energies and ecosystem productivity. For example,
Currie (1991) found that 80%–93% of the variability in species richness in
the four vertebrate classes that the author studied could be statistically
explained by a monotonically increasing function of a single variable: po-
tential evapotranspiration. In contrast, tree richness was more closely
related to actual ET.
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4.2 Methods for Quantifying ET

ET may be directly measured or estimated using models discussed later.
Field methods for measurement are diverse and have been evolving (Table
4.1). For a specific ecosystem, Stanhill (2005) categorized these methods
into three major groups: lysimeter measurement, Bowen ratio method, and
eddy-covariance method. Prior to modern eddy-covariance flux towers, the
Lagarangian profiling method was also used by meteorologists (Chapter 1)
Campbell and Norman 2012). At landscape and watershed scale, catchment
water balance is examined in hydrological studies because ET is the residual
of (precipitation–stream flow–change in soil water) by ignoring the water
movement between land surface and ground water that is small (especially
at hourly to days scale; Hewlett 1982). During a short period of time (e.g.,
hours to days) when there is no precipitation, the changes in soil water can
be used to approximate ET by the water balance principle. The past two
decades also witnessed increasing use of remote sensing spectra to indirectly
measure (i.e., remote sensing modeling) ET at regional to global scales (e.g.,
Mu et al. 2007, Jung et al. 2010).

ET is complex in nature, involving both physical and physiological pro-
cesses that vary tremendously in space and time (Shuttleworth 2012, Amatya
et al. 2014). Accurate quantification of ET for long periods and large areas
is often costly, if possible at all; thus ET remains one of the least-measured
components of the hydrologic cycle. ET is still an imprecise science (Shuttle-
worth 2012). There are many ways to quantify ET at different scales (Table
4.1). Direct ecosystem-scale ET measurement techniques include catchment
water balance (Bosch and Hewlett 1982), sap flow (Smith and Allen 1996),
eddy-covariance (Baldocchi et al. 1988) and Bowen ratio (Bowen 1926)
methods. It is worth noting that the Bowen ratio (i.e., sensible heat to la-
tent heat ratio) was not used to measure ET until the 1950s (Webb 1960).
Remote sensing techniques allow monitoring ET at a very large scale, but
the estimated values are snapshots of time series at low frequencies, and
modeling is involved to extrapolate for continuous estimation. Wilson et
al. (2001) and Domec et al. (2012) compared multiple ET methods and
found that each had its own advantages and limitations. For example, the
watershed water balance method, which is typically applicable to long-term
average ET estimates, has errors when change in soil moisture is ignored. ET
would be overestimated or underestimated when ET is computed as resid-
ual of precipitation and runoff. Sap flow measurements provide a powerful
tool for quantifying plant water use and physiological responses of plants
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Table 4.1 A comparison of major methods for estimating evapotranspiration (ET).

Methods Strengths Weaknesses Sources
Field
measure-
ments

Catchment
water
balance

Easy to measure;
low cost

Only long-term
average is reliable

Sun et al. 2002

Sap flow Allows routine
unsupervised
measurement
accurately at single
plant scale

Large-scale
measurement errors
are determined by
the sample size and
variability of sam-
ples

Domec et al. 2012,
Ford et al. 2007

Eddy-
covariance

Measures fluxes
continuously,
offering high
temporal resolution
data

High cost in
instrumentation;
gap filling required;
energy imbalance
problems

Baldocchi et al.
1988, Sun et al.
2008b

Bowen
ratio

Low cost; works for
both crops and na-
tural vegetation

Relies on several
assumptions; errors
associated with low
gradients

Irmak et al. 2014,
Bowen 1926

Remote
sensing

Remote
sensing

Spatially
continuous;
low temporal
resolution

Uncertainties due
to errors generated
by measurement
of sparse canopies;
data mostly from
clear sky conditions

Kustas and Norman
1996, Mu et al. 2007,
Justice et al. 1998

Modeling Theoretical
models
(e.g.,
Penman-
Monteith)

Widely used; long
accepted; low cost

Requires site-
specific parameters;
not easy to apply
on large scale

Penman 1948,
Priestley and Taylor
1972, Allen et al.
1994

Empirical
(Budyko
curves; flux
data based)

Easy to
understand;
long-term mean
estimate; easy to
apply

May not be
applicable to
short-term
estimates

Budyko et al. 1962,
Zhang et al. 2004,
Sun et al. 2011a

to environmental conditions (Domec et al. 2009). However, this method
would be less reliable for forest stands with mixed species or where there is
inappropriate sample size of measurement and structural scalars (Vinukollu
et al. 2011). The eddy-covariance method measures fluxes continuously,
offering high temporal resolution data series, but data availability is li-
mited by costly site instrumentation and gap filling issues. In addition,
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the eddy-covariance method may underestimate ET by as much as 20% due
to a lack of energy balance closure (Wilson et al. 2002). The Bowen ratio
method estimates ET from the ratio of sensible heat and latent heat, using
air temperature, humidity gradients, net radiation, and soil heat flux. It is
relatively inexpensive but relies on several assumptions such as an extensive
fetch over a homogeneous surface — a similar requirement for the eddy-
covariance method (Heilman et al. 1989). Remote sensing has been widely
used to estimate ET (Kustas and Norman 1996). This method has been
regarded as a flexible technology to obtain large-scale ET and associated
biophysical controls. MODIS global products (Mu et al. 2007) have pro-
vided spatially and temporally continuous ET estimates at a high resolution
for modeling and analysis (Justice et al. 1998). However, estimation errors
exist due to uncertainties in modeling effective surface emissivity and effec-
tive aerodynamic exchange resistance, and sparse canopies and thick clouds
make remote sensing methods less reliable (Shuttleworth 2012). An exam-
ple of estimated annual ET by biome using the eddy-covariance method is
presented in Figure 4.1 to show the contrast of water uses in the USA.

Fig. 4.1 Mean annual evapotranspiration (ET) and ET : precipitation (P ) ratio by
biome type measured using the eddy-covariance method from 74 sites within the Ameri-
Flux network (dashed line represents ET : P with reference to the right y axis) (Fang et
al. 2016).

Due to the high cost of measuring ET at large scales, mathematical mode-
ling has been widely used to estimate ET (McMahon et al. 2013). The
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primary ET models used in water balance and terrestrial ecosystem model-
ing include the theoretical methods (Penman 1948), Monteith (1965), and
the Penman-Monteith model (Jensen et al. 1990). However, process-based
models are difficult to use in practice due to limitations in parameterization
and available climate data. Empirical models, which require fewer environ-
mental variables and are easy-to-use, are consequently more commonly used
in hydrologic modeling, especially at large spatial scale (Fang et al. 2016).
Hydrological models that are designed to quantify discharge at watershed
outlets must compute ET flux accurately to match stream flow observations.
However, ET fluxes predicted by hydrological models are rarely calibrated or
validated at the watershed scale (Tian et al. 2015). As a result, there exist
large uncertainties in the model parameters, which potentially may result in
“right answers for the wrong reasons” (Tian et al. 2012).

4.3 ET Models

Biophysical models are simplifications of the real world. Therefore, ET mo-
dels are mathematical expressions that describe the ETprocesses at the plant,
ecosystem, or landscape scale. ET models can be roughly divided into two
groups, biophysical (or theoretical) and empirical models. Biophysical mod-
els are developed based on physical and physiological principles describing
energy and water transport in the soil-plant-atmosphere continuum (SPA).
Many of these models have evolved around the famous Penman-Monteith
model that represents most advanced ET model. The Penman-Monteith
model estimates ET as a function of available energy, vapor-pressure deficit
(VPD), air temperature, vapor pressure, aerodynamic resistance (a function
of primarily wind speed, and plant-canopy height and roughness) (Chapter
1), and canopy resistance (a measure of resistance to vapor transport from
plants). In contrast, empirical ET models are developed using observed ET
data and biophysical variables of plant characteristics, soil moisture, and
atmospheric conditions by developing regression equations. Empirical mod-
els do not intend to describe the processes of vaporization, but can provide
reasonable estimates with limited environmental input information.

In practice, it is often rather difficult to parameterize the process-based ET
models to estimate actual ET, which is influenced by many factors such as
stomata conductance (Chapter 2). To simplify the calculations, the concept
of potential evapotranspiration was introduced by Penman in the 1940s. For
any ecosystem, PET represents the potential water loss when soil water is not
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limiting. Actual ET (ETa) then can be scaled down from the hypothetical
PET by limiting canopy conductance, soil moisture and other constraining
variables. PET models are often embedded in hydrological models that can
simulate soil moisture dynamics. Here we present several PET methods and
discuss the strengths and limitations for each.

4.3.1 PET Models

Existing PET models can be classified into five groups: (1) water budget
(Guitjens 1982), (2) mass-transfer (Harbeck 1962), (3) combination (Pen-
man 1948), (4) radiation driven, and (5) temperature based. There are
approximately 50 models available to estimate PET, with models giving in-
consistent values due to the assumptions, input data, or design (i.e., for
specific climatic regions). Previous studies at multiple scales have suggested
that PET methods may give significantly different results (Lu et al. 2003,
McMahon et al. 2013). In this chapter, we describe selected commonly used
PET models listed in Table 4.2.

Table 4.2 Climatic variables and parameters required by the widely practiced PET
models.

Method Temperature Radiation Humidity Others
FAO Penman-
Monteith

Daily mean Net radiation
derived from
solar radiation
and extraterres-
trial radiation;
sunshine hours

Daily
mean

Wind speed

Thornthwaite
(1948)

Daily mean Daytime length;
heat index

Hamon (1963) Daily mean Daytime length;
latitude

Blaney-Criddle
(1950s)

Daily mean Daytime length

Hargreaves-
Samani (1982)

Daily maximum
and minimum

Extraterrestrial
radiation

Latitude

Priestley-Taylor
(1972)

Daily mean Net radiation
derived from
solar radiation
and extraterres-
trial radiation

Calibration
constant (1.26)

Turc (1961) Daily mean Solar radiation Daily
mean

Makkink (1957) Daily mean Solar radiation
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4.3.1.1 Penman-Monteith Model: FAO Reference ET Model

Potential evapotranspiration (PET) is a nebulous term. It can evoke con-
fusion because PET does not clearly specify what land surface it refers to.
The term, reference ET (ETo) has gradually been replacing PET as a stan-
dard way to represent the energy conditions for a particular region, making
PET estimates comparable worldwide. Using the process-based Penman-
Monteith ET equation, actual daily ET of a hypothetical well-watered grass
as reference ET (ETo) is estimated using the following equation, referred as
the FAO 56 model (Allen et al. 1994):

ETo =
0.408 ·∆ · (Rn −G) + γ · Cn

T+27·3 · u2 · (es − ea)

∆+ γ · (1 + Cd · µ2)
(4.4)

where
ETo = grass reference ET (mm)
∆ = slope of the saturation water vapor pressure at air temperature (T ,

kPa ◦C−1)

∆ = 2503
e 17.27·T

T+237.3

(T + 237.3)2

Rn = net radiation (MJ m−2)
G = soil heat flux (MJ m−2)
γ = psychrometric constant (kPa ◦C−1)
es = saturation vapor pressure (kPa)
ea = actual vapor pressure (kPa)
µ2 = wind speed (m s−1) at 2 m height
Cn = numerator constant that that changes with reference surface and

calculation time step (900 ◦C mm s−3 Mg−1 d−1 for 24 h time steps,
and 37 ◦C mm s−3 Mg−1 d−1 for hourly time steps)

Cd = denominator constant that changes with reference surface and cal-
culation steps (0.34 s m−1 for 24 h time steps, 0.24 s m−1 for hourly
time steps during daytime, and 0.96 s m−1 for hourly nighttime for
grass reference surface) (Djaman et al. 2018).

This model assumes a stand that has a 0.12 m canopy height, a leaf area
index (LAI) of 4.8, a bulk surface resistance of 70 s m−1, and an albedo of
0.23. Details of the computation procedures can be found in Allen et al.
(1994). Once ETo is calculated, actual ET for the ecosystem can be esti-
mated by simply multiplying a scalar Kc (crop coefficient). Crop coefficient
is an empirical parameter that may vary by vegetation type, season, and
disturbances (Allen et al. 1994).
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As the most widely used model, the Penman-Monteith model has been
presented in many different forms. These forms, nonetheless, all contain
three key components (Allen et al. 1998). The first one is that (Rn − G)
represents available energy; the second one is the influences of vapor pressure
deficit (e.g., es − ea); and the third one is an expression of canopy and
atmospheric conductance that is related to canopy roughness and wind speed
(e.g., u ∗; Chapters 1 and 2). Due to its broad uses, various numerical tools
have also been developed (e.g., Zotarelli et al. 2010).

4.3.1.2 Thornthwaite Model

The Thornthwaite (1948) PET model is the most widely used temperature-
based monthly scale PET model because of its simplicity (see also Eq. 4.1).
This model was derived by correlating mean monthly temperature with PET
as determined from water balance for areas where sufficient moisture was
available to maintain active transpiration.

PET = 1.6 · Ld ·
(
10 · T
I

)a

(4.5)

where
PET = monthly PET (cm)
Ld= mean daytime length (h), it is time from sunrise to sunset in multiples

of 12 hours
T = monthly mean air temperature (◦C)
a = 6.75× 10−7 · I3 − 7.71× 10−5 · I2 + 0.01792 · I + 0.49239

I = annual heat index, which is computed from the monthly heat indices
I =

12∑
j=1

ij

where
ij =

(
Tj

5

)1.514

Tj= mean air temperature (◦C) for month j; j = 1, …, 12.

4.3.1.3 Hamon’s PET Model

Hamon’s PET model is also a temperature-based model (Hamon 1963). This
method computes daily ET based on air temperature and theoretical daytime
length (DAY). This model has been widely used in modeling studies on the
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impacts of climate change on water resources (Lu et al. 2005).

PET = 0.1651 · DAY · 216.7 · es
ta + 273.3

(4.6)

where
es = 6.108 · e

17.2694·ta
ta+237.3

DAY = 2× acos(−1× tan(Lat × 0.0175)

× tan
(
0.4093× sin

(
2×3.1415×DOY

365.0

)
− 1.405

))
/3.14159

where
PET = daily potential evapotranspiration (mm)

DAY = day length in multiples of 12 hours calculated from latitude and
Julian day

es = saturation vapor pressure at a given temperature (mb)
ta = mean air temperature (◦C)

DOY = Julian day of the year ranging between 1 and 366
Lat = the latitude of the site

4.3.1.4 Blaney-Criddle PET Model

Blaney and Criddle (1957) proposed a model for estimating ET for the west-
ern USA and was modified by modified by Doorenbos and Pruitt (1977). The
Blaney-Criddle equation has the following form:

PET = P · (0.46 · T + 8.13) (4.7)
where PET (mm) is the potential water use for a reference crop, T (◦C)
is mean temperature, and P (%) is percentage of total daytime hours for
the period used (daily or monthly) out of total daytime hours of the year
(365×12 = 4380 h). ET can be estimated as:

ET = PET · k

where k is a monthly consumptive use coefficient, depending on vegetation
type, location and season. According to Blaney (1959) for the growing season
(May–October) k varies from 0.5 for orange tree to 1.2 for dense vegetation.

4.3.1.5 Turc PET Model

Turc (1961) simplified earlier versions of a PET (mm d−1) equation for 10-
day periods under general climatic conditions of Western Europe.
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When relative humidity (RH) is < 50%

PET = 0.013

(
T

T + 15

)
(Rs + 50)

(
1 +

50− RH
70

)
(4.8)

when RH is > 50%

PET = 0.013

(
T

T + 15

)
(Rs + 50)

where
T = daily mean air temperature (◦C)
Rs= daily solar radiation (ly d−1, or cal cm−2 d−1); 1 cal cm−2 d−1 =

(100/4.1868) (MJ m−2 d−1)
RH = daily mean relative humidity in percentage (%).

4.3.1.6 Priestley-Taylor Model

The Priestley-Taylor PET model (Priestley and Taylor 1972) was developed
as a substitute to the Penman-Monteith equation to estimate ET when there
is no soil water stress. For Priestley-Taylor model, only radiation observa-
tions are required. This is done by removing the aerodynamic terms from
the Penman-Monteith equation and adding an empirically derived constant
factor, α, of 1.26, when the general surrounding areas are wet or under hu-
mid conditions. In dry regions or seasons, α values are much higher than
1.26.

λPET = α
∆

∆+ γ
(Rn −G) (4.9)

where
PET = daily PET (mm d−1)
λ = latent heat of vaporization (MJ kg−1)

λ= 2.501 – 0.002361 · T
T = daily mean air temperature(◦C)
α = calibration constant, α = 1.26 for wet or humid conditions
∆ = slope of the saturation vapor pressure-temperature curve (kPa ◦C−1)

∆= 0.200 (0.00738 · T + 0.8072)7 –0.000116
γ = psychrometric constant modified by the ratio of canopy resistance to

atmospheric resistance (kPa ◦C−1)

γ =
cpP

0.622 · λ
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cp= specific heat of moist air at constant pressure (kJ kg−1 ◦C−1)

cp = 1.013 kJ kg−1 ◦C−1 = 0.001013 MJ kg−1 ◦C−1

P = atmospheric pressure (kPa)

P = 101.3− 0.01055· EL

EL = elevation (m)
G = heat flux density to the ground (MJ m−2 d−1)

G = 4.2
Ti+1 − Ti−1

∆t
= −4.2

Ti−1 − Ti+1

∆t

where
Ti = mean air temperature(◦C) for the period i
∆T= difference of time in days between two periods
Rn = net radiation (MJ m−2 d−1). It is calculated as
Rn = 0.77Rs − 2.45× 10−9f × [0.261× exp (−7.7710× 10−4T 2)− 0.02]

× (T 4
max + T 4

min) + 0.83

f =
(
1.2× Rs

Ra
+ 0.1

)
where
Rs = solar radiation (MJ m−2 d−1)
Ra = extraterrestrial solar radiation (MJ m−2 d−1)
T = mean air temperature (K)
Tmax = maximum air temperature (K)
Tmin= minimum air temperature (K)

4.3.1.7 Makkink PET Model

Makkink (1957) estimated PET (mm d−1) over 10-day periods for grassed
lands under cool climatic conditions in the Netherlands as (Xu and Singh
2002):

PET = 0.61

(
∆

∆+ γ

)
Rs
58.5

− 0.12 (4.10)

All variables in this equation have the same meanings and units as those in
the Priestley-Taylor model (Eq. 4.9).
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4.3.1.8 Hargreaves-Samani PET Model

The Hargreaves–Samani PET model was derived from eight years of cool
season Alta fescue grass lysimeter data in Davis, California (Hargreaves and
Samani 1982). There exist several equations for calculating PET, including
the following one:

λ · PET = 0.0023 ·Ra · TD0.5 · (T + 17.8) (4.11)

where
PET = daily PET (mm d−1)
λ = latent heat of vaporization (MJ kg−1)
T = daily mean air temperature (◦C)
Ra = extraterrestrial solar radiation (MJ m−2 d−1)
TD = daily difference between the maximum and minimum air tempera-

ture (◦C)
This method was later updated for reference ET (ETo) estimates (Hargreaves
and Samani 1985).

The Penman-Monteith, Priestley-Taylor, Hargreaves, and Stanghellini mo-
dels (Stanghellini 1987) have all been widely used. A software developed by
Donatelli et al. (2006) is useful one to fit these models with in-situ input
variables.

4.3.2 Empirical Actual ET Models

Using field data collected from 13 sites across a variety of ET methods, Sun
et al. (2011a) developed an empirical model for estimating monthly ET as
a function of LAI, ETo (mm mo−1), and precipitation (mm mo−1).

ET = 11.94 + 4.76 · LAI + ETo · (0.032 · LAI + 0.0026 · P + 0.15) (4.12)

where ETo is the FAO 56 reference ET (Eq. 4.4) and P is monthly precipi-
tation.

Another form of the ET model uses Hamon’s PET model instead of the
more data-demanding FAO reference ET method (Sun et al. 2011b):

ET = 0.174 · P + 0.502 · PET + 5.31 · LAI + 0.0222 · PET · LAI (4.13)

Following a similar concept, Fang et al. (2016) employed the 250 FLUXNET
synthsis dataset to develop the following two types of monthly ET models
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that require different input variables.

ET = 0.42 + 0.74 · PET − 2.73 · VPD + 0.10 ·Rn (4.14)

where PET is monthly potential ET (mm) calculated by the Hamon’s method.
VPD (Pa, kPa) is estimated from air temperature and relative humidity
(Chapter 1). Since Rn is rarely available at the regional scale, another model
that uses commonly available data was developed:

ET = −4.79 + 0.75 · PET + 3.92 · LAI + 0.04 · P (4.15)
R2 = 0.68,RMSE = 18.1 mm mo−1

Fang et al. (2016) further developed a series of monthly scale ET models
by land cover type (Tables 4.3 and 4.4). These models accommodate users
with different levels of access to climate data.

Table 4.3 Type I models by land cover type developed using the three most significant
variables. These models are appropriate at a monthly scale. RMSE = root mean square
error, R2= coefficient of determination, n = number of monthly samples.

Land cover type Model RMSE
(mm mo−1) R2 n

Shrubland ET = −4.59+13.02 ·LAI+0.10·
Rn + 0.11 · P

11.2 0.85 193

Cropland ET = 0.87 + 0.19 ·Rn + 13.99·
LAI + 0.06 · P

20.2 0.72 649

Grassland ET = −0.87 + 0.20 ·Rn + 0.10·
P + 0.24 · SWC

15.7 0.73 562

Deciduous forest ET = −14.22+0.74·PET+0.1·Rn 22.2 0.77 788
Evergreen needle leaf forest ET = 13.47+0.10 ·Rn +1.35 ·Ta 17.2 0.71 1720
Evergreen broad leaf forest ET = 0.01+0.63·Ta+0.46·SWC+

0.14 ·Rn

12.5 0.90 69

Mixed forest ET = −8.76 + 0.95 · PET 13.1 0.79 259
Savannas ET = −8.07+33.46 ·LAI+0.07·

Rn

14.0 0.66 36

Units: ET, mm mo−1; Rn, MJ mo−1; P, mm mo−1; PET, mm mo−1 estimated by Hamon’s method; VPD, hPa; SWC,
soil water content (%).

It is well known that long-term mean ET in a region is mainly controlled
by water availability and atmosphere demand (Budyko et al. 1962). This
relationship is well described in the Budyko-type of models (Zhang et al.
2004). Based on this concept, Zhang et al. (2001) analyzed watershed
balances data for over 250 catchments worldwide and developed a simple
two-parameter ET model that relates mean annual ET to rainfall, PET,
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and plant-available water capacity. The model offers a practical tool that
can be readily used for assessing the long-term average effect of vegetation
changes on catchment evapotranspiration.

Table 4.4 Type II models by land cover type developed using three commonly measured
biophysical variables. RMSE = root mean square error, R2 = coefficient of determination,
n = number of monthly samples.

Land cover type Model RMSE
(mm mo−1) R2 n

Shrubland ET = −3.11+0.39 ·PET+0.09

·P + 11.127 · LAI
12.5 0.80 193

Cropland ET = −8.15+0.86 ·PET+0.01

·P + 9.54 · LAI
20.9 0.70 653

Grassland ET =−1.36+ 0.70 ·PET+0.04

·P + 6.56 · LAI
16.8 0.66 803

Deciduous forest ET = −14.82+0.98·PET+2.72

·LAI
23.7 0.74 754

Evergreen needle leaf forest ET = 0.10 + 0.64 · PET + 0.04

·P + 3.53 · LAI
17.8 0.68 1382

Evergreen broad leaf forest ET = 7.71 + 0.74 · PET + 1.85

·LAI
16.8 0.76 233

Mixed forest ET = −8.763 + 0.95 · PET 13.1 0.79 259
Savannas ET = −5.66+0.18 ·PET+0.10

·P + 44.63 · LAI
11.1 0.68 36

Units: ET, mm mo−1; P, mm mo−1; PET, mm mo−1 estimated by Hamon’s method.

ET = P
1 + w · PET

P

1 + w · PET
P

+ P
PET

(4.16)

where w is the plant-available water coefficient that represents the relative
difference in plant water use for transpiration. PET as annual total can be
estimated by Priestley-Taylor model. P is annual precipitation. The best
fitted w values for forest and grassland are 2.0 and 0.5, respectively, when
PET is estimated using the Priestley–Taylor model (Zhang et al. 2001). The
w value can be as high as 2.8 when Hamon’s PET model is applied for the
humid southeastern USA (Sun et al. 2005).

By combining remote sensing and climate data for 299 river basins, Zeng
et al. (2014) developed an annual ET model:

ET = 0.4(±0.02) · P + 10.62(±0.39) · T + 9.63(±2.27) · NDVI
+ 31.58(±7.89), R2 = 0.85 (4.17)
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where, ET is basin-averaged annual evapotranspiration (mm yr−1), P, T and
NDVI are annual precipitation (mm yr−1), mean annual temperature (◦C)
and the annual average normalized difference vegetation index, respectively.
This regression explains more than 85% of the spatiotemporal differences in
ET across the 299 river basin years.

4.4 Model Demonstrations

4.4.1 Meteorological Data

Depending on methods used for estimating potential ET and actual ET,
data requirements vary substantially. Here we use an example dataset to
demonstrate the applications of major PET and actual ET models at differ-
ent scales (hourly, daily, and monthly, and annual). Required microclimatic
and biophysical variables, such as net radiation (Rn, W m−2), air tempera-
ture (◦C), wind speed (u, m s−1), soil heat flux (G, W m−2) and soil moisture
(Ms, %) are presented to illustrate data requirements to use these models.

The one-year demonstration data sets (2016) were collected at one of the
seven scale-up sites of the Great Lakes Bioenergy Research Center (GLBRC)
at the Kellogg Biological Station (KBS) in southwestern Michigan, USA,
with an open-path eddy-covariance flux tower (Zenone et al. 2011). This
site (42◦28′36.19′′ N, 85◦26′48.37′′ W, 294 m a.s.l.) had been managed for
more than 50 years as conventionally tilled corn-soybean crop field. The
region lies on the northeastern edge of the US Corn Belt. The climate is
temperate and humid, with a mean annual air temperature of 9.7 ◦C at KBS
and an annual precipitation of 920 mm, evenly distributed throughout the
year, with about half falling as snow. The soil textural class of all sites is
sandy clay loam with a pH range from 5.8 to 6.4. The flux tower was installed
in November 2008, and the mean fluxes of CO2, H2O and energy have been
processed following conventional protocols of the FLUXNET (Abraha et al.
2019). Leaf area index (LAI) was not measured in 2016. An empirical linear
model between LAI and NDVI from 2018 was used to back-predict LAI for
the summer months of 2016. Day length (hour) for 2016 was calculated using
the site-specific latitude and longitude with Solar. PY (S1-5) described in
Chapter 1. Measured ET values at 30-min interval had a unit of W m−2

and were converted to mm at daily and monthly scales by excluding obvious
outliers (Data4_1).
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The mean annual ET for the site was estimated as 587 (±15) mm during
2010–2018, with a total precipitation of 951 mm and actual ET of 628 mm in
2016 (Abraha et al. 2019). Hourly ET can be as high as 0.35 mm per hour
throughout the year. Except in July and August, hourly ET was normally
less than 0.10 mm (Fig. 4.2a). Diel changes of ET are typical of those in
the temperate zone (i.e., low at night and high during the day), with peak

Fig. 4.2 (a) Change in hourly evapotranspiration (ET, mm) in 2016 and (b) the diel
change on four selected days at a continuous corn site of the Kellogg Biological Station
(KBS) in southwestern Michigan, USA, in 2016. Negative ET values from the flux tower
were not shown.
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hours during 10:00–16:00. The daily range was low in winter months and
high during the summer (Fig. 4.2b). Calculated daily ET was low in the
dormant season from October to April and high in the growing season, with
five days higher than 5 mm d−1 in August (Fig. 4.3a). Monthly ET varied
from 11 mm in January to 120 mm in August (Fig. 4.3b).

Fig. 4.3 Measured ET (mm) at (a) daily and (b) monthly scale using the eddy-
covariance method at a continuous corn site of the Kellogg Biological Station (KBS) in
southwestern Michigan, USA, in 2016. Negative ET values from the flux tower were not
included in calculations.
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4.4.2 Modeled PET at Multiple Scales and Actual ET

The FAO reference ET model (Eq. 4.4) is applied to estimate ETo at a half-
hour time intervals (Fig. 4.4) for the corn field at the Kellogg Biological
Station (KBS) in southwestern Michigan, USA, in 2016. In this case, the
30-min meteorological variables and the specific parameters (Cn, Cd) for
the hourly ETo calculations are used. Similar to measured ET by the eddy-
covariance method, ETo rates are low in winter and highest in July and
August (∼0.46 mm per half hour).

Fig. 4.4 Modeled 30-min reference evapotranspiration (ETo) for a continuous corn
field at the Kellogg Biological Station (KBS) in southwestern Michigan, USA, in 2016.

The FAO reference ET model (Eq. 4.4), the Priestley-Taylor equation
(Eq. 4.9) representing the simplified Penman-Monteith model (Eq. 4.4),
and the Hamon PET method (Eq. 4.6) representing a simple temperature-
based PET model are applied to estimate ETo at daily time interval (Fig.
4.5). Daily meteorological variables and the specific parameters (Cn, Cd) for
daily ETo calculations are used. Similar to measured daily ET by the eddy-
covariance method, PET values are low in the winter and highest in July
and August, but generally less than 10 mm per day. Hamon’s method gives
the lowest values among the three PET methods. As expected, the daily
PET rates are generally higher than measured actual ET, most noticeably
during the corn growing season when soil water stress is common at the site.

Two monthly-scale empirical ET models are applied to the same dataset
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Fig. 4.5 Modeled daily reference ET (ETo) and potential evapotranspiration (PET)
with three biophysical models for a continuous corn field at the Kellogg Biological Station
(KBS) in southwestern Michigan, USA, in 2016.

Fig. 4.6 Measured and modeled actual monthly evapotranspiration (ET, mm) using
two empirical models for the continuous corn site at the Kellogg Biological Station (KBS)
in southwestern Michigan, USA, in 2016.

for estimating actual ET for 2016 (Fig. 4.6). The two models published
in Sun et al. (2011a) and Fang et al. (2016) represent a generalized ET
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model (Eq. 4.12) and a biome specific ET model (i.e., the cropland model,
Table 4.4), respectively. Both models require precipitation, PET, and LAI
as model input. LAI was measured on site. Monthly PET calculated by
Hamon’s method was summarized from daily PET values. This exercise
indicates that both models perform well to simulate the seasonal patterns
and total annual ET (600–644 mm, compared to 628 mm from the measure-
ments). It is clear that an ecosystem-specific model is not necessarily more
accurate than a generalized model; there are always uncertainties associated
with these empirical models.

Equation (4.16) may be used to estimate long-term annual ET for forests,
grasslands, and other land cover types when P and PET are available. In
this practice, P = 920 mm, PET = 1000 mm, and the empirical parameter w
of 1.0 are used for demonstration purpose. The total annual ET is estimated
to be 638 mm. This is considered to be high when compared to the long-
term mean value reported for the study site (587±15 mm). It should be
acknowledged that there is uncertainty to the w factor and it needs to be
calibrated for local applications in practice.

ET = 920
1 + 1.0 1000

920

1 + 1.0 1000
920

+ 1000
920

= 638

4.5 Summary

The ET process serves as a major linkage among climatic, hydrologic, and
ecological processes. Understanding the biophysical controls to ET helps un-
derstand other biological and physical processes of the Earth system. Thanks
in part to the advances in micrometeorology and digital technology, much
progress has been made in the past two decades towards measuring ET “ev-
erywhere all the time”. However, the study of ET is still regarded as an
imprecise science. Accurate quantification of water budgets, including water
uses by ecosystems and humans, is becoming increasingly important given
the growing competition for water resources among all users from agricul-
tural irrigation and bioenergy development to domestic water withdrawals
by cities in the Anthropocene. Climate change poses great environmental
threats to ecosystems and water resources in the 21st century. Climate
warming and the increase of the variability of precipitation form, amount,
and timing can have ripple effects on ecosystem structure and functions
through directly or indirectly altering the ET processes (e.g., plant species
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change, water use efficiency). Similarly ET can change dramatically during
land conversion from forests or wetlands to urban uses, resulting in urban
environmental change such as increase in runoff, Urban Heat Island and Ur-
ban Dry Island effects. More reliable science on ET measurements must be
developed to accurately scale it up or down among plot, watershed, regional,
global scales to serve different purposes in natural resource management. In
recent years remote sensing and radar technology have advanced rapidly
and enhanced our capability to accurately quantify water use at a relatively
fine scale. The best approach to estimate ET for practical applications is
achieved by combining field measurements with high resolution remote sens-
ing, and energy balance-based land surface modelling.

Online Supplementary Materials

S4-1: Field measurements of evapotranspiration (ET) and micrometeorolog-
ical variables at 30 min interval in 2016 in an agricultural site (42◦28′36.19′′ N,
85◦26′48.37′′ W, 294 m a.s.l.) with an eddy-covariance tower of the Kellogg
Biological Station, Michigan, USA (ETData.xlsx).
S4-2: Spreadsheet modeling of reference ET (ETo), potential evapotranspi-
ration (PET), and actual ET (Eqs. 4.4, 4.6, 4.12, 4.15, Table 4.4) for a corn
field of the Kellogg Biological Station, Michigan, USA (ETModels.xlsx).
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Chapter 5
Modeling Ecosystem Global Warming
Potentials

Jiquan Chen, Cheyenne Lei and Pietro Sciusco

5.1 Introduction

Scientific investigations on global warming potential (GWP) have seen esca-
lating growth since 1990 amid a rapid global warming trend and its profound
impacts on nature and society. To explore the surrounding issues and the
needs for modeling GWP, here we will introduce the physics of Earth energy
balance (Section 5.1), calculate GWP of three major greenhouse gas species
and albedo (Sections 5.2–5.3), and provide demonstration examples (Section
5.4). GWP refers to the net effect of greenhouse gas (GHG) emissions as well
as of the albedo changes on the radiative balance of the Earth and therefore
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its temperature warming potential over a specified time period, usually 100
years. Because the effect of a GHG is determined by both its physical in-
teraction with radiation and its chemical life span in the atmosphere, GWP
cannot easily be determined by first principles alone and instead are usually
calculated by simulating the climate effect of an emission using energy ba-
lance and Earth system models. Typically, GWP are rendered unitless by
being normalized against the GWP of a long-lived gas, usually CO2. The
purpose of this chapter is to provide algorithms for calculating relative and
absolute GWP following IPCC protocols and to demonstrate the use of these
calculations through a spreadsheet model that predicts GWP of three major
GHGs and albedo.

5.1.1 Temperature of the Earth

Temperature within the Earth system is maintained by the energy balance—
received from the sun and reflected/emitted from the Earth. Earth receives
radiation from its cross section area (πr2, a.k.a. shadow of the Earth) but
emits radiation as a sphere (i.e., 4πr2). The amount of solar radiation at the
top of the atmosphere is a constant (342 W m−2). When this is converted to a
spherical surface, the actual amount of energy at the top of the atmosphere is
four times this value at ∼1370 W m−2 — the solar constant. Of the radiation
that permeates the atmosphere, part is absorbed by the atmosphere, part
of it reaches the ground, and approximately 30% is reflected back to outer
space by clouds and the surface. The ratio between the reflection of solar
radiation and the total incoming solar radiation is defined as albedo (αs),
with a range of 0–1. The remaining 70% of this radiation is absorbed by the
Earth and emitted as longwave radiation. After accounting for absorption,
the surface radiation is closer to 50% of incoming TOA (top of atmosphere)
(Trenberth et al. 2009). The blackbody theory states that any object with a
temperature higher than absolute zero (−273.15 ◦C) emits energy. According
to Stefan-Boltzmann law, the total energy (W m−2) radiated from Earth is
proportional to the fourth power of Earth’s temperature (T ):

E = ε · σ · T 4 (5.1)

where σ is the Stefan-Boltzmann constant (1.38054 × 10−23 J K−1) and ε

is the emissivity (W m−2 µm−1) of the Earth. Emissivity varies by wave-
length (λ, µm). With a stable atmosphere, the incoming radiation energy
and outgoing emittance is balanced, resulting in an approximate Earth tem-
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perature of ∼15 ◦C (∼288 K). Notably without any greenhouse gases in the
atmosphere, Earth’s temperature would be 255 K (i.e., atmospheric effective
emissivity of 0).

Both solar radiation and emitted energy fromEarth are transported through
photons. These photons travel at the speed of light (c = 3 × 1010 m s−1) and
behave as particles and waves. The spectral density of radiation by wave-
length under a thermal equilibrium at a given temperature (T) is calculated
as:

E =
h · c
λ

(5.2)

where h is Planck’s constant (6.6256 × 10−34 J s), and λ is the wavelength of
the photons (µm). Planck’s law also defines the radiant spectral flux density
as:

E(λ, T ) =
2 · π · h · c2

λ5 ·
(
e h·c

σ·λ·T − 1
) (5.3)

Equations (5.2) and (5.3) define the radiant emittance from the Earth. Based
on Planck’s law, radiant emittance from the sun (T = 6000 K) varies from
0.2 nm to 3.0 nm and peaks at spectra of ∼0.55 nm, with most energy coming
from a wavelength of 0.3–0.7 µm (>50%). These wavelengths are loosely
called “shortwave radiation” or “visible light”. The Earth’s (T = 288 K) peak
emittance is 9.5–10.0 nm. In sum, Earth’s temperature is mostly maintained
by the balance of incoming shortwave radiation from the sun and outgoing
longwave radiation from the Earth.

5.1.2 The Greenhouse Effects

This energy balance is maintained by assuming that three major components
of the Earth system remain the same: water (oceans and inland lakes), land
surface, and the atmosphere. While the division between land and water has
been stable since the last glaciation, atmospheric composition and land sur-
face properties have gone through rapid and magnificent changes, mostly due
to increasing use of fossil fuels and land conversions. Excessive consumption
of fossil fuels (e.g., coals, crude oil, natural gases, etc.) has been substan-
tially changing atmospheric composition, which in turn alters both incoming
shortwave and outgoing longwave radiation. Due to extensive and intensive
land use, terrestrial ecosystems have very different capacity for converting
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atmospheric CO2 to biomass through plant photosynthesis (Chapter 2), up-
taking CH4 into soils through methane oxidation, producing CH4 in the soil,
decomposing dead organic materials for respiring (Chapter 3), partitioning
latent and sensible heat differently (Chapters 1 and 4), releasing more N2O
due to elevated fertilization, and others. All of these changes in ecosystem
structure and functions have direct consequences on many chemical species of
the atmosphere. As illustrated in Figure 5.1a, the CO2 concentration of the
atmosphere increased from 337 ppm in 1979 to 407 ppm in 2018. Similarly,
N2O and CH4 concentrations that were 301 ppb and 1578 ppb, respectively,
in 1979 rose to 331 ppb and 1858 ppb, respectively, in 2018. The decadal
increase in CO2, N2O and CH4, on average, was 17.6 ppm, 7.5 ppb, 59.2 ppb,
respectively, during this 40-year period. As a result, the radiative forcing
(RF) due to these increasing concentrations has been elevated, with a higher
increasing rate for CO2 and N2O than CH4 (Fig. 5.1b). When examined for
their relative importance of the total, CO2 increased from 66.8% to 74.2%,
CH4 decreased from 26.4% to 18.6%, and N2O increased from 6.8% to 7.2%
(Fig. 5.1c). These changes in their importance in contributing the warming
trend highlight the recent increasing interest in N2O.

Earth’s atmosphere is composed of many gases and particles. Nitrogen
(∼78%) and oxygen (∼21%) are the two major chemical species. Other
species, including water, argon, carbon dioxide, neon, helium, methane,
krypton, hydrogen, nitrous oxide, xenon, ozone, carbon monoxide, and am-
monia, account for <1%. The atmosphere also contains a large amount
of particulate matters and biological materials that can affect the energy
balance of the Earth. For example, an increase in the amount of aerosol
deposition on snow and glacier surfaces will reduce reflection (i.e., lowered
albedo) and, consequently, keep more energy within the Earth system. Vol-
canic eruptions, large-scale fires, and industrial production are major sources
of aerosols at global scale.

If these gases and particular matters had the same reflection (or scat-
tering) and absorption to radiation at all wavelengths, the energy balance
of the Earth would not be affected. Unfortunately, this is not the case
(Fig. 5.2). Ozone (O3) absorbs almost all wavelengths of <300 nm (i.e.,
ultraviolet radiation, UV), and water (H2O) absorbs many wavelengths
of >700 nm. This suggests that a reduction in ozone concentration would in-
crease the amount of incoming UV light on the Earth’s surface. This process
witnessed rapid change during a period of increased chlorofluorocarbon emis-
sions from a variety of industrial processes until their ban in the late 1980s
that reduced ozone concentration in the stratosphere. Water vapor emissions
from high-altitude flight also contribute to this ozone depletion, but this is
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Fig. 5.1 Long-term changes in three major greenhouse gas (GHG) species (CO2, CH4

and N2O) (a) concentrations, (b)their radiative forcing (RF), and (c) their RF portion
of the total during 1979–2018 1.

1 Data source: https://www.esrl.noaa.gov/gmd/aggi/NOAA_MoleFractions_2019.csv(downloaded
on 29 March 2020).
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Fig. 5.2 Spectral distribution of solar radiation intensity and absorptions by water
vapor and major greenhouse gases. Absorptions were computed using the HiTRAN
database1, and the US Standard Atmosphere with the assistance of Brad Schrag’s PyRad
analysis package by Robert Rhode of Berkeley Earth (permission received on April 3,
2020).

a much smaller cause of ozone loss than CFCs. Fortunately, according to
Planck’s law (Eq. 5.3), the total amount of energy from UV radiation is
small because of the shorter wavelength. Meanwhile, water vapor can ab-
sorb a large amount of longwave radiation in a large number of wavelengths,
and thus is the primary greenhouse gas on Earth, resulting in a planet that
maintains a temperature that supports life. Liquid and frozen water behaves
similarly. This is the reason cloudy nights are typically warmer than clear
nights. Fortunately, water vapor has a short lifespan (e.g., hours to days) in
the atmosphere and its quantity in the atmosphere is determined by evapora-
tion and condensation processes that are functions of temperature. Humans
cannot significantly modify water vapor concentration. Rather, water va-
por changes as temperature changes due to changes in greenhouse gases like
CO2. Thus the climate effect of change in water vapor is called a climate
feedback. Roughly, the relative humidity of Earth has stayed constant.

Unlike H2O, there are serious concerns about trace gases that humans
can modify directly by emissions. As shown in Figure 5.2, GHGs such as
CH4, N2O, O2, and O3 can absorb radiation at several wavelengths, with

1 https://hitran.org/data-index/
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CO2, CH4 and N2O representing the top three species in terms of absorption
of longwave radiation. The abovementioned mechanism for keeping energy
within a system is illustrated in pioneering experiments by John Tyndall
and Joseph Fourier, whose work in the mid-1800s found that glass lets most
shortwave radiation through, while it intercepts most longwave radiation
— known as the “greenhouse effect”. This principle is widely used to grow
vegetables and crops in glass greenhouses because a greenhouse reduces tur-
bulent mixing while allowing for solar absorption that leads to a higher tem-
perature. In the case of the Earth system, the atmosphere functions similarly
to glass. In 1896, Swedish scholar Svante Arrhenius concluded that fossil fuel
combustion may eventually result in enhanced global warming. He predicted
that a doubling of CO2 concentration would lead to a 5 ◦C increase in global
temperature. His warning was mostly ignored until the late 1950s. Roger
R. D. Revelle and other pioneering scholars started scientific investigations
on anthropogenic influences on global warming (see more detailed history in
Archer and Pierrehumbert 2011). However, they hypothesized that oceans
would absorb all the CO2. Through the establishment of the International
Geophysical Year (IGY) in 1958, the Atmospheric Carbon Dioxide Program
was promoted to instrument two monitoring stations the Mauna Loa Obser-
vatory on Mauna Loa, Hawaii, and in Antarctica, with Charlie D. Keeling as
the lead investigator. Later, the change in atmospheric CO2 concentration
became known as “the Keeling Curve” — a measure that is widely used in
many current studies in global climate change and ecosystem science.

In 1967 Manabe and Wetherald (1967) published a groundbreaking paper
based on the first generation of computer modeling. They stated that “The
results show that it takes almost twice as long to reach the state of radia-
tive convective equilibrium for the atmosphere with a given distribution of
relative humidity than for the atmosphere with a given distribution of ab-
solute humidity. Also, the surface equilibrium temperature of the former
is almost twice as sensitive to change of various factors such as solar con-
stant, CO2 content, O3 content, and cloudiness, as that of the latter, due to
the adjustment of water vapor content to the temperature variation of the
atmosphere.” They concluded that “A doubling of the CO2 content in the at-
mosphere has the effect of raising the temperature of the atmosphere (whose
relative humidity is fixed) by about 2 ◦C.” This early report set the stage
for future investigations on the influences of CO2 to global climatic change.
In the late 1980s the scientific community realized the escalating increase in
CO2 concentration changed interdependently changes with global tempera-
ture. In 1988 the Intergovernmental Panel on Climate Change (IPCC) was
founded by the United Nations Environmental Program (UNEP) and the
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World Meteorological Organization (WMO) to assess the warming trend,
explore the underline mechanisms, and predict future temperature under
various scenarios. Quantifying the contributions of various greenhouse gases
for their GWP has been the major task of the IPCC and the scientific com-
munity since then. For IPCC working groups, climate forcing is defined as
“An externally imposed perturbation in the radiative energy budget of the
Earth climate system, such as through changes in solar radiation, changes
in the Earth albedo, or changes in atmospheric gases and aerosol particles.”
Climate forcing is the changes that can make current climate different.

In sum, greenhouse gases (GHGs) warm the Earth by absorbing energy
and slowing the rate at which that energy escapes to outer space; they
act like a blanket insulating the Earth. Different GHGs can have different
effects on the Earth’s warming (Fig. 5.2). Two key measures for assessing
their effects are concentration, which determines the radiative efficiency of
a GHG species, and lifespan (i.e., how long it stays in the atmosphere).
The contribution of each GHG species is quantified by calculating its GWP
by converting its impact on CO2 equivalence (i.e., CO2-equivalent) over a
certain time horizon (TH) (i.e., 20, 50, 100, 500 years, as applied in the
IPCC reports). CO2 has a lifespan of approximately 120 years, but it varies
between 5 years and 200 years because its sources and sinks operate on many
timescales while atmospheric sink is very small in the atmosphere; whereas
CH4 and N2O have estimated lifespans of 12.4 and 120 years, respectively.
In the literature, the term global warming impact (GWI) generally is used
interchangeably with the more commonly used GWP.

5.1.3 The Roles of Terrestrial Ecosystems in GWP

Terrestrial ecosystems were hypothesized to play an important role in reg-
ulating the amount and dynamics of GHG (including water) as well as
albedo. In the 1990s, after the First Assessment Report (FAR) of the IPCC
(Houghton and Giddes 1992), a major hypothesis was that the “missing
carbon” or unaccounted mismatch between accelerating fossil fuel emissions
and the slower than expected growth rate of atmospheric CO2 in the global
carbon budget might be due to a significant underestimation of terrestrial
carbon sink strength through photosynthesis (Sundquist 1993). Substantial
research since 1990 has been conducted to quantify the carbon sequestration
strength of global ecosystems. A parallel effort was made to quantify the
amount of contributions from various GHGs (Lashof and Ahuja 1990, Rodhe
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1990). Here, ecosystems are considered to have strong capability to add
(N2O, CH4) or remove (CO2, CH4) GHGs from the atmosphere (Robertson
et al. 2000, Syakila and Kroeze 2011, Knox et al. 2019). Chu et al. (2014)
compared ecosystem fluxes of CO2 and CH4 in a soybean cropland and a
nearby freshwater marsh in northwestern Ohio, USA. The average annual
CH4 flux was 49.7 g C-CH4 m−2 yr−1 from the marsh, which was compati-
ble with its net annual CO2 uptake (−21.0 g C-CO2 m−2 yr−1). But in the
cropland the CH4 flux was small and accounted for a minor portion of the
atmospheric carbon budget. In coastal wetlands of Shanghai, Cheng et al.
(2007) compared the CH4 and N2O fluxes of marshes dominated by native
Phragmites australis and invasive Spartina alterniflora. They found that
N2O emission was higher in the invaded site than in native marshes. Addi-
tionally, CH4 and N2O emissions were suppressed and enhanced by clipping
manipulations, respectively. Through a global synthesis of CH4 fluxes from
60 monitoring tower sites, Knox et al. (2019) reported that annual estimates
of net CH4 flux ranged from −0.2 g C m−2 yr−1 for an upland forest site
to 114.9 g C m−2 yr−1 for an estuarine freshwater marsh. The mean and
median CH4 fluxes were smaller at higher latitudes and larger at lower lati-
tudes. At the LTER sites of the Kellogg Biological Station, Robertson et al.
(2000) synthesized 10-year field measurements of CH4 and N2O in six ex-
perimental crops and found that none of the cropping systems provided net
mitigation to GWP. When these measurements were integrated with CO2

fluxes and different management and production options through life cycle
analysis (LCA), the GHG impact was substantially higher than the emis-
sions from an equivalent amount of fossil fuel-derived gasoline, including
production, distribution, and combustion (Gelfand et al. 2011). Altogether,
we know that all terrestrial ecosystems are N2O sources and natural wet-
lands and rice paddies are also CH4 sources, but upland soils are small CH4

sinks (Neubauer and Megonigal 2015).
Another frontier in quantifying GWP of terrestrial ecosystems is resulted

from the changes in albedo (∆αs) that reflect more solar radiation back to
outer space (e.g., lighter canopies) or keep more radiation energy within
Earth systems (e.g., taller and denser canopies) (Chapter 1). This is known
as the radiative forcing (RFs) of land surface. Imagine an area that can
reflect 1% more solar radiation (i.e., an increase of albedo by 1%). With
an atmospheric transmission of 0.854, the total amount of solar energy that
reaches the ground will be ∼1170 W m−2 (i.e., solar constant times 0.854).
Assuming the same transmittance for the outgoing shortwave radiation, 1%
more reflection is equivalent to ∼10 W m−2 (i.e., 1170×0.854×0.01). This
value is equivalent to a cooling effect of ∼11 kg CO2, or ∼3 kg C m−2 (see
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Section 5.2 for conversion). Globally, the radiative forcing due to albedo
changes has been most significant in regions with high snow cover or with
land cover changes (conversion from forests to crop lands or urban lands).
Aerosol contamination of snow can significantly reduce surface albedo, a.k.a.
black-carbon, resulting in a positive feedback between warming-melting-
albedo reductions (Hadley and Kirchstetter 2012). For example, strong nega-
tive trends in snow cover were observed in a study over North America and
Eurasia (Déry and Brown 2007). Globally, Ghimire et al. (2014) reported
an overall albedo increase of 0.00106 during 1700–2005, which is equivalent
to −0.15 W m−2 cooling effect. IPCC (2013) claimed an overall cooling
effect of 0.05–0.25 W m−2 using 289 ppmv as reference.

Land cover change (LCC) is another major process that has caused changes
in land surface albedo. Across terrestrial landscapes albedo varies substan-
tially by cover type and under different climate/weather conditions. In
general, forests have a lower albedo than grasslands; water bodies have a
much lower albedo than bare soils (e.g., Chen et al. 2019). Cai et al. (2016)
studied albedo effects in the context of expansive biofuel production in the
United States. They found significant variations in albedo-induced effects
among different land conversions, among crop systems, and among regions
for the same land conversion. Yet, all conversions produced various degrees
of cooling effects. In Europe, Carrer et al. (2018) reported that the in-
troduction of cover crops into crop rotations during the fallow period would
increase albedo by >4.17% of Europe’s surface, which is equivalent to a miti-
gation of 15.91 g CO2-eq yr−1 m−2. Within a managed landscape, Sciusco
et al. (2020) confirmed the differences in albedo among cover types and by
climate, averaging between 0.4% and 2.0% in southwestern Michigan, USA.
A landscape with a high proportion of forest can significantly reduce CO2-
eq mitigation by up to 24%–30%. Using our field measurements of albedo
during the growing seasons as an example, a land conversion from forest to
maize field will yield a cooling potential that is equivalent to −0.043 Mg C
ha−1 due to a 0.051 increase in albedo, whereas a conversion to sorghum will
result in a cooling equivalent to 0.094 Mg C ha−1 from an albedo increase
of 0.111 (Fig. 5.3).

5.2 Calculating GWP of Greenhouse Gases

The global warming potential (GWP), also interchangeably called the global
warming impact (GWI), is the most widely used metric for assessing the
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Fig. 5.3 Calculated CO2-eq due to changes in albedo (α) that can result in either
warming (positive values) or cooling (negative values) when a unit of land area (ha) is
converted. Three examples of land conversions are based on our field measurements of
albedo at the Kellogg Biological Station (see Section 5.3 for detailed calculations).

global warming impacts of different GHGs and albedo-induced changes. It
was introduced by the IPCC in 1990 (Shine et al. 1990) to compile a national
GHG inventory. It is designed to determine the lifetime and behavior of CO2

or any other greenhouse gas in the atmosphere in varying time horizons (i.e.,
20, 50, 100 years) and allows landscape effects to be converted into CO2

equivalences (CO2-eq), or the emissions of CO2 required to have the same
climatic effect as the change being investigated. Based on the time integrated
radiative forcing of a pulse emission of a unit mass of gas, GWP measures
how much energy the emissions of 1 t of a gas will absorb over a given period
of time, relative to the emissions of 1 t of CO2 (Joos et al. 2013, Shine et al.
2005). The larger the GWP, the more a given GHG species warms the Earth.
Its transparent algorithms, simplicity, and the relatively small number of
input parameters required for the calculations make it highly favored by
policymakers to compare emissions reduction, opportunities across sectors,
and gases with little further input from scientists. However, it can be used
incorrectly in some situations, especially in ecosystem management.

Although GWP has been lauded as a highly efficient method for weigh-
ing the climatic impact of emissions of different GHGs, it is not without
some drawbacks. Despite its name, global warming potential does not rep-
resent the actual temperature change from each gas species but its time-
integrated radiative forcing (Shine et al. 2005). This time integration (i.e.,
the time horizon or TH) is very sensitive to short-lived GHGs (Levasseur
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et al. 2010). GWP does not effectively capture non-climatic effects such
as ozone, aerosols, and carbon monoxide, due to their highly variable con-
centrations within the atmosphere. These forcing agents can have vastly
distinct impacts on climate and the Earth system. While some GWP calcu-
lations can reflect preliminary changes in nitrogen due to yield and fertilizer,
others do not account for methane from livestock production. Finally, GWP
is also known to be affected by landscape dynamics such as natural distur-
bances (e.g., wildfires, windthrows) and anthropogenic activities, such as
land conversion (e.g., forest to urban) and management practices (fertiliza-
tion in agriculture, harvesting in forestry). Conversions of forested wetlands,
for example, are of increasing concern to the scientific community because
of large storage of carbon in ecosystems, high CO2 emission through respi-
ration, and high CH4 emission when they are drained for other management
objectives (e.g., for forests or croplands). Depending on the climate and
management, they can produce either cooling or warming impacts on the
climate system. Frolking et al. (2006) modeled different climate and mana-
gement in northern peatlands and concluded that the ratio of CH4 emission
to CO2 sequestration was approximately 0.1–2.0 mol mol−1, resulting a ra-
diative forcing impact as a net warming that peaks after about 50 years for
several hundred to several thousand years. Petrescu et al. (2015) synthe-
sized the warming impacts from CO2 and CH4 when natural wetlands were
converted to agricultural or forested lands. As expected, these conversions
produced significant increases in atmospheric radiative forcing, particularly
for wetlands converted to croplands. These two case examples highlight the
complex nature of human influences, immediate feedbacks between ecosys-
tems and the changing climate, as well as desynchronized consequences from
different GHGs.

Carbon dioxide (CO2), by definition, has a GWP value of 1 regardless
of the time period used because it is the gas being used as the reference.
Because CO2 remains in the atmosphere for centuries, its emissions cause
increases in atmospheric concentrations of CO2 that can last thousands of
years. Methane (CH4), another common GWP gas, is estimated to have
a GWP of 28–36 of CO2 over 100 years. CH4 emitted today has a much
shorter time integration compared to CO2 and N2O, but it absorbs much
more energy than CO2. N2O has an estimated GWP of 265–298 times that
of CO2 over a 100-year time horizon because it is much more potent in ab-
sorbing energy compared to the previous two gasses and has a long lifetime
(Table 5.1). This is partly because CH4 absorbs more radiation, but more
importantly, its concentration in the atmosphere is low and not saturated.
Note that impact of a gas grows logarithmically with concentration. CO2
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in the atmosphere is closer to saturation (seeFig. 5.4). Finally, chlorofluo-
rocarbons (CFCs), hydrofluorocarbons (HFCs), hydrochlorofluorocarbons
(HCFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF6) are some-
times called high-GWP gases because, for a given amount of mass, they
absorb more longwave radiation than CO2 and are extremely stable com-
pounds that have thousands year lifetimes. Thankfully, most are in minute
quantities in the atmosphere. However, the GWPs for these gases can be in
the thousands or tens of thousands (Table 5.1).

Table 5.1 Global warming potential (GWP) of greenhouse gases (GHGs) based on
the fourth Assessment Report (AR4) of the IPCC (2007). The release of 1 kg CH4, for
example, is equivalent to 25 kg of CO2 (from Forster et al. 2007).

GHG Species Formula Lifetime (years) 20-year 100-year 500-year
Carbon Dioxide CO2 Variable 1 1 1

Methane CH4 12±3 72 25 7.6
Nitrous Oxide N2O 120 289 298 153

Fig. 5.4 The impulse response functions from the fifth IPCC Annual Report (AR5) for
calculating AFx of CO2, CH4 and N2O (Eqs. 5.5 and 5.6). The horizontal dashed line
indicates the average AFCO2 (0.52) over 100 years (TH = 100) (IPCC 2014 SM). This
means that 52% of the emitted CO2 pulse remains in the atmosphere after 100 years.

GWP is expressed with two units: CO2-eq in mass (g, kg, or Mg) or
radiative forcing (RF, W m−2). This section describes the GWP induced
by production of three major GHG species (CO2, CH4 and N2O) and land
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use induced changes in albedo (∆αs) of an ecosystem. Over 20 parameters
are needed to calculate GWP. Explanations and symbol uses for the major
parameters are provided in Table 5.2. There are two approaches for calcu-
lating the global warming impacts of GHGs. The absolute global warming
potential (AGWP) calculation takes into account both the infrared radiation
absorption and the atmospheric lifetime (e.g., atmospheric decay) of a gas.
On the other hand, the relative GWP of a GHG is calculated as the ratio of
its AGWP to that of CO2. AGWP is calculated by integrating the radiative
forcing due to GHG pulses over a time horizon (usually in kg W m−2 yr−1).
The AGWP of a GHG “x” pulse (GHGx) is calculated as:

AGWPx(TH) =

ˆ TH

0

IRFx(t) · y(t)GHGx (5.4)

where TH is the chosen time horizon (i.e., 20, 100, 500 years), the impulse
response function (IRFx (t)) is the radiative forcing (W m−2) of a gas “x”
at time t, while y(t) is proportion of the GHG “x” pulse that is still in
the atmosphere at time t. This pulse is usually labelled AF (i.e., Airborne
Fraction). IRFx represents the time-dependent radiative forcing caused by
a specific GHG. This is determined by the following equation (IPCC 2013):

IRFx(t) = exp
(
− t

τx

)
(5.5)

where IRFx is the impulse response function of a specific GHGx at the time
horizon (t), t is the TH considered, and τx is the GHGx lifetime in years
(e.g., CH4 = 12.4 years and N2O = 121 years).

The calculation of IRF for CO2 is more complex because its lifetime cannot
be represented by a simple exponential decay (Joos et al. 2013), partially
because its lifespan is very difficult to define. Nevertheless, the following
equation is proposed (IPCC 2013, Skytt et al. 2020):

IRFCO2(t) = a0 +
3∑

i=1

ai · exp
(
−t
τi

)
(5.6)

where IRFCO2 is the impulse response function of CO2 at the time horizon
(t), and t is the TH considered. The coefficients ai and τ i are constants and
are equal to a0 = 0.2173, a1 = 0.2240, a2 = 0.2824, a3 = 0.2763, and τ1 =
394.4, τ2 = 36.54, τ3 = 4.304, respectively (Joos et al. 2013).

Equations (5.5) and (5.6) lead to the calculation of the fraction of GHGx

that remains in the atmosphere after the emission pulse, with losses occurring
from either atmospheric chemical sinks, wet and dry deposition, and/or land
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Table 5.2 Symbols, full names and their descriptions of parameters involved in calcu-
lating GWP of an ecosystem.

Symbol Name Description
CO2 carbon dioxide A colorless gas that occurs naturally in Earth’s at-

mosphere
pCO2ref reference of partial CO2

pressure
Reference of partial CO2 pressure in the atmo-
sphere, approximately at 389 ppmv or 0.383 g kg−1

Ta upwelling transmittance
constant

Upwelling transmittance can be used as a constant
based on a clear day (0.854), sunny day (0.73) or
cloudy day (0.48), or it can be calculated based on
zenith angle from time of day (Chapter 1)

TH time horizon The time horizon used when calculating GWP, the
IPCC usually refers to TH 20 years, 100 years, and
500 years

α albedo The proportion of incident light to total solar ra-
diation that is reflected by a surface. It is usually
unitless but can be expressed as a percentage (i.e.
0.2 = 20%)

TOA top of the atmosphere The place where solar energy enters the Earth sys-
tem, and where reflected light and thermal radia-
tion from the sun-warmed Earth exit

Sw shortwave Shortwave radiation (UV/visible light) from solar
energy within the atmosphere

RFCO2 radiative forcing of CO2 Marginal RF of CO2 emissions at the current at-
mospheric concentration. It is the derived radiative
forcing from 1 kg of CO2 at a constant of 0.908 (W
kg−1 CO2)

AF airborne fraction Proportion of human-emitted GHG that remains in
the atmosphere after a certain period of time. AF
of CO2 is 0.69, 0.48 and 0.32 for time horizons of
20, 100, and 500 years, respectively. These values
refer to other calculations (Bright et al. 2015)

S local area The area affected by the change in surface albedo
(m−2)

∆αs delta albedo The local change in albedo in a region at a specific
time. Calculated by subtracting a reference albedo

RF∆α albedo-induced radia-
tive forcing

The change in net radiative flux from the surface
driven by surface albedo changes (∆α)

∆RFTOA delta radiative forcing
at the top of the atmo-
sphere

The RF at the TOA due to surface albedo changes.
It is usually a function of latitude and it is related
to changes in α
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continued

Symbol Name Description
GWP∆α global warming poten-

tial
Also called global warming impact (GWI), it is a
quantified measure of the relative radiative forcing
impact due to albedo change, specific to CO2

MCO2 molecular weight of
CO2

The atomic weight of carbon is 12, while oxygen is
16. Therefore, the molecular weight of CO2 is 44 g
mol−1 (Table 5.4)

mair atmospheric mass The total mean mass of the atmosphere, which is
5.1480×1018 kg

SEarth area of Earth The surface area of the Earth, which is ∼510 mil-
lion km2 (5.1×108 km2)

∆F2x forcing of CO2 concen-
tration

Radiative forcing resulting from a doubling of cur-
rent CO2 concentration in the atmosphere, at a
current rate of +3.7 W m−2

Mair molecular weight of dry
air

The weight of dry air (28.95 g mol−1). It is com-
posed of nitrogen (78%), oxygen (20.85%), argon
(0.93%) and other gases (0.04%)

and ocean absorption. This is often called the airborne fraction (AFx) of
a GHGx. It is expressed in percentage or (0–1) (Fig. 5.4). AFx tends to
decrease over the years. The literature often uses a constant AFx value, such
as the average AFx for a specific TH (Betts 2000, Akbari et al. 2009). For
example, the AFCO2 at TH = 100 is normally set at 0.52 (or 52%).

Most GHGs are involved in extremely complex chemical interactions within
the atmosphere. Thus, assuming that the GHG (e.g., CO2) is distributed
evenly in the atmosphere, the IRF of a model is then normally computed
by monitoring the decrease of an initial atmospheric CO2 perturbation due
to a pulse-like CO2 release into an atmosphere. This approach is useful, as
it represents GHGs in climate models as they change temporally, which is
shown in the following equation:

IRFCO2
=

RF ·MC
C0 · GTC ·MCO2

(5.7)

where RF is the radiative forcing constant for CO2 (5.35 W m−2), C0 is the
reference concentration (389 ppm), GTC is the conversion from 1 ppm of
atmospheric CO2 to equivalent gigaton carbon (2.123E+12 kg C ppm−1),
MC is the molecular weight of carbon (12 g mol−1), andMCO2

is themolecular
weight of CO2 (44 g mol−1). Multiplication of the IRFCO2 and AF yields
a value of 1.767E−15 kg W m−2 CO2

−1. The RF value represents the
sensitivity of longwave radiation to CO2 concentration (i.e., feedbacks to
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warming potential); its values are conventionally estimated from climate
models.

To calculate AGWP of CH4 and N2O we use a modified version of Equa-
tion (5.4) (IPCC 2013). For further information, see Myhre et al. (2013)
and Skytt et al. (2020).

The IPCC currently reports the AGWP for common GHGs at 20-year
and 100-year intervals. The AGWP100 for CO2 is 9.351E−14, while CH4 is
2.61E−12 and N2O is 2.43E−11. These values enable a smoother calculation
of GWP by dividing the AGWPx by the AGWP of a reference gas. To
calculate the relative GWP of a gas “x”, the following equation is then used:

GWPx(TH) =
AGWPx(TH)

AGWPCO2
(TH)

(5.8)

In the case of CO2, GWP can also be derived by determining the RFCO2
,

which uses RFCO2 to analyze the fraction of CO2 remaining in the atmo-
sphere after a single pulse emission from interactions between the atmo-
sphere, oceans, and the terrestrial biosphere (Joos et al. 2013). It is deter-
mined by calculating the time-integrated atmospheric response function of
CO2 with its radiative forcing and converting it into equivalent CO2 using
the following equation:

RFCO2
=

ln(2) · pCO2ref ·MCO2
·mair

SEarth ·∆F2x ·Mair
(5.9)

where pCO2ref is a reference of partial CO2 pressure in the atmosphere (389
ppmv or 0.383 kg g−1), SEarth is the area of the Earth’s surface (5.1×1014

m2),MCO2 is the molecular weight of CO2 (44.01 g mol−1), mair is the mass of
the atmosphere (5.148×1018 kg), ∆F 2x is the radiative forcing resulting from
a doubling of current CO2 concentration in the atmosphere (+3.7 W m−2),
and M air is the molecular weight of dry air (28.95 g mol−1). The inverse of
this equation then provides us with a constant of 0.908 (W kg CO2

−1) (Table
5.1), which can then be compared to other sources of CO2 emissions such
as CO2 fluxes in agriculture (Cherubini et al. 2011, Gelfand et al. 2011).
AF is the ratio of the annual increase in atmospheric CO2 to the total CO2

emissions, and its value has been disputed by many researchers — variously
estimated at 0.53 (Joos et al. 2013), 0.55 (Akbari 2009) and 0.52 (Bright
et al. 2015). However, most agree on a 20% uncertainty in predicting the
amount of CO2 remaining in the atmosphere due to variations in Earth’s
land and ocean carbon sinks from changing weather and emission patterns
(Table 5.3).

Calculated changes in RF value (i.e., ∆RF) are used in the calculation of
AGWP (IPCC 2013). For each GHG, past and present global abundance (in
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Table 5.3 Radiative forcing (RF) calculations used for calculating Annual Greenhouse
Gas Index (AGGI) by NOAA1. These empirical expressions are derived from atmospheric
radiative transfer models and generally have an uncertainty of ∼10%. The uncertainties
in the global average abundances of the long-lived greenhouse gases are much smaller
(<1%).

GHG ∆F
(
W m−2

)
Constant RF (W m−2)

CO2 ∆F = α ln (C/Co) α = 5.35 5.35

CH4 ∆F = β(M1/2 −M
1/2
o )− [f(M,No)− f(Mo, No)] β = 0.036 2.7

N2O ∆F = ε(N1/2 −N
1/2
o )− [f(Mo, N)− f(Mo, No)] ε = 0.12 0.65

*IPCC (2001); The subscript o denotes the unperturbed (1750) global abundance; f (M, N) = 0.47ln[1 + 2.01×10
–5 (MN)0.75 + 5.31×10-15M(MN)1.52] ; C is the CO2 global measured abundance in ppm, M is the same for
CH4 (ppb); N is the same for N2O in ppb, X is the same for CFCs (ppb); Co = 278 ppm, Mo=722 ppb, No=270 ppb,
Xo=0.

ppm for CO2, in ppb for CH4 and N2O) as well as constant values are consi-
dered to calculate the radiative forcing of the GHGx (Table 5.3). Regarding
CH4, augmented radiative forcing can be calculated by multiplying the con-
stant β by the value 1.65, which includes the indirect effects of methane on
the ozone and stratospheric H2O:

GWP =
∆RFTOA · S
AF · RFCO2

· 1

TH (5.10)

where, ∆RFTOA is the radiative forcing (W m−2) from changes in albedo from
the TOA (Eq. 5.9), S is the local area subjected to albedo change (m−2),
AF is percentage of emitted CO2 that remains in the atmosphere after a
period of time from anthropogenic sources, RFCO2

is the derived radiative
forcing from 1 kg of CO2, and TH is the time horizon for 100 years (TH =
100). See Table 5.2 for detailed explanations of abovementioned parameters
and Table 5.4 for user defined values in calculating GWP.

It must be stressed that there is no universally accepted methodology for
combining all required components into a single GWP. Multiple angles have
been approached in the last decade for determining the most efficient method
for relating and modelling all necessary variables for the sake of simplicity.
For example, Bright et al. (2013, 2015) and Sieber et al. (2019) used AGWP
that is determined by integrating radiative forces over a specific time horizon
(i.e., 100 years) (Table 5.1), while Muñoz et al. (2010) and Carrer et al.
(2018) attempted to determine an impulse response function (IRF) using
a slightly different method to achieve a constant paired with an airborne

1 https://www.esrl.noaa.gov/gmd/aggi/aggi.html
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Table 5.4 User defined variables for the calculation of GWP.

Variable Value Unit
MCO2 44.01 g mol−1

mair 5.15E+18 kg
SEarth 5.10E+14 m2

∆F2x 3.7 W m−2

Mair 28.95 g mol−1

MCO2 44.01 g mol−1

AF 0.53 unitless
S 1 m2

∆αs unitless
RFs W m−2

∆RFTOA W m−2

GWI∆ᾱs kg CO2 yr−1

TH 100 year
Ta 0.854 unitless
C/CO2 0.273
N 1 day
RFCO2 0.908 W kg CO−1

2

∆F2x(CO2) 3.7 W m−2

fraction, which inherently achieves the same result.

5.3 Calculating GWP from Surface Albedo

To establish direct comparisons between changes in surface albedo (∆αs)
and its effects on a landscape to GWP, radiative forcing or albedo can be
converted into CO2-eq. To first determine αs, the ratio of reflected light
(Sw↑) to the total incident sunlight (Sw↓) for a given area of land surface is
calculated as albedo:

αs =
Sw↑

Sw↓
(5.11)
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Albedo is angle dependent and wavelength dependent. Black sky albedo
(i.e., direct light albedo) differs from white sky albedo (i.e., diffuse albedo).
Albedo under real-world conditions with a combination of both black and
white sky albedo is called blue sky albedo. The global surface albedo is the
ratio of global incoming shortwave radiation divided by outgoing, averaged
over all angles, wavelengths, and cloud illumination conditions. Across the
terrestrial lands, albedo varies from 0 to 1. Fresh snow or a mirror have
albedo of 0.8–1.0 while water or asphalt have albedos near 0.1. On average,
global annual albedo is approximately 0.3 (Goode et al. 2001), accounting
for land, ocean, and clouds. Because albedo is only derived during sunlight
hours, it is imperative to ensure radiation values are measured during these
hours (i.e., daytime, Chapter 1). Contribution of albedo to GWP is also
meaningful only when compared with a reference to the region (e.g., a site
without human disturbances, or historical values). Change in albedo (∆αs)
can then be found by determining the difference between the albedo value
of the reference site and the target ecosystem:

∆αs = αsNEW − αsREF (5.12)

During the summer, ∆αs are much more pronounced among ecosystem
types due to seasonal high solar irradiance and zenith angle and vegetation
growth. In agricultural regions, ∆αs is highly dependent of surface moisture,
crop height, planting density, crop species, crop cover and land management
practices (e.g., irrigation, fertilization, harvest, tilling, etc.). However, in the
winter, ∆αs in temperate zones is usually not significant because landscapes
are covered by snow or are bare. Once ∆αs is found, it can then be used to
calculate the instantaneous radiation forcing (RF∆α) of:

RF∆α = −Sw↓∆αs (5.13)

Finally, RF∆α can be inserted into the GWP equation via IRF method
(Eq. 5.14) and AGWP method (Eq. 5.15):

∆RFTOA = − 1

N
Ta · RF∆α (5.14)

∆RFTOA = − 1

N

S · Ta · RF∆α

SEarth
(5.15)

where RF∆α is the change in net radiative forcing from the surface driven by
surface albedo (W m−2), Sw↓ is local incoming solar radiation incident to the
surface (W m−2), Ta is the upwelling transmittance derived from estimat-
ing thermal radiant fluxes within the environment (Campbell and Norman
2012; Chapter 1), N is the number of days (or hours), and ∆αs is the local
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change in albedo between two specific surfaces. The value of the ∆RFTOA
is a representation of the daily local power (W m−2) that would have been
reflected back to outer space due to changed land surface (e.g., vegetation
cover, greenness, moisture; Carrer et al. 2018). Positive and negative RFs
due to ∆αs correspond to warming and cooling effects, respectively, which
can determine whether an ecosystem is actively mitigating global warming
(Caiazzo 2014). Regardless of which method (AGWP or GWP) is used, sur-
face albedo can be determined over a specific area to determine GWP for a
spatiotemporal period.

5.4 Case Examples

Once the model parameters are determined, calculations of GWP are straight-
forward. Here we provide two examples as demonstrations.
Example I. Find the GWP for CO2, CH4, and N2O for a switchgrass
(Panicum virgatum) site with Sw↓ of 478 W m−2 and Sw↑ of 134 W m−2,
when the reference native grasses have a Sw↓ of 482 W m−2 and a Sw↑ of
83 W m−2. The Ta of the day is 0.854. AGWP100 for CO2 is 9.351E−14,
while CH4 is 2.61E−12 and N2O is 2.43E−11.

Solution using AGWP method:
Switchgrass αs : 134⁄478 = 0.28

Native grasses αs : 83⁄482 = 0.17

∆αs = 0.28− 0.17 = 0.11

RF∆α = −(478× 0.11) = −52.6 W m−2

∆RFTOA=−{1/1×[1×0.854×(−52.6)/(5.10E−14)]}=−8.80E−14 W m−2

GWP = −(−8.80E − 14)⁄(9.17E − 14) = −9.39E − 01 kg CO2 m−2 yr−1

Solution using IRF method:
Switchgrass αs : 134⁄478 = 0.28

Native grasses αs : 83⁄482 = 0.17

∆αs = 0.28− 0.17 = 0.11

RF∆α = −(478× 0.11) = −52.6 W m−2

∆RFTOA = −[1/1× (0.854− 52.6)] = −44.9 W m−2

GWP = [(−44.9× 1)/(0.52× 0.908)× (1/100)]

= −9.39E − 01 kg CO2 m−2 yr−1

GWP for each GHG:
GWPCO2

= (−8.80E− 14)/(9.17E− 14) = −9.39E− 01 kg CO2 m−2 yr−1
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GWPCH4
= (−8.80E− 14)/(2.61E− 12) = −3.31E− 02 kg CH4 m−2 yr−1

GWPN2O = (−8.80E− 14)/(2.43E− 11) = −3.55E− 03 kg N2O m−2 yr−1

The solutions above not only prove both methods of calculating GWP,
which have been utilized in the literature over the past decade, but also
show how to integrate other GHG emissions in context of GWP. As men-
tioned in Section 5.2, the reference of GWP for CO2 is 1, while the GWP of
CH4 and N2O is approximately 28 and 264, respectively (Table 5.1). These
magnitudes are compared in Table 5.5.

Table 5.5 Explanation of GWP in relation to reference GWPCO2 .

GHG Species
Solution GWP

(kg CO2/CH4/N2O
m−2 yr−1

GWP Reference GWP Reference
Magnitude to CO2

CO2 −9.39E−01 1 1.00
CH4 −3.31E−02 28 28.41
N2O −3.55E−03 264 264.50

One of the critical parameters in calculating GWP involves the bias from
the upwelling transmittance constant (Ta). Ta is usually derived from clear-
sky conditions, often as a constant of 0.854 (Lenton and Vaughan 2009,
Bright and Kvalevåg 2015). This value represents regions with very little
cloud cover, such as deserts (Muñoz et al. 2010). However, a Ta value
of 0.854 usually results in an overestimation of RF∆α(Carrer et al. 2018)
in regions with highly variable weather or persistent cloud cover. Liu and
Jordan (1960) determined that Ta can be calculated for other typical sky
conditions, such as overcast (Ta < 0.45), sunny (Ta < 0.75) and clear (Ta >

0.85). The upwelling transmittance can also be determined on a daily basis,
using the solar zenith angle and latitude (S1-5: Solar.PY in Chapter 1) and
ground measurements, which will reduce the amount of error and bias in
the calculations. This method is known to reduce bias up to at least 30% of
RF∆α (Sciusco et al. 2020) in northern forested and grassland regions. To
calculate Ta, the following equation is needed:

Ta =
Sw↓

SWTOA
(5.16)

where SWTOA (W m−2) is the value of extraterrestrial radiation energy
falling on a canopy surface. To determine SWTOA, three constants should be
found based on the day of the year (DOY):

SWTOA = Isc · dr · Iθ (5.17)
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where I sc is the solar constant (1367 W m−2), Iθ is the extraterrestrial
irradiance intensity onto a crop canopy [cos (θZENITH · π

180
)], and dr is the

Earth-sun distance [1+0.0334 cos
(
DOY · 2π

365.25

)
]. Alternative equations are

also provided in Chapter 1.
Example II. Calculations of an upwelling transmittance value (Ta) for

the 27th July, 2018, with a Sw↓ value of 691.55 W m−2 are listed below:

SWTOA = 1367 W m−2 ·
[
1 + 0.0334 cos

(
DOY 2π

365.25

)]
·
(
cos 41.89 · π

180

)
= 980.99 W m−2

Ta =
691.55

980.99
= 0.70

A spreadsheet model for calculating AGWP and GWP is provided as a
supplementary document (S5-2: GWP_model.xlsx) with this chapter. Ap-
plication of this model needs actual fluxes of CO2, CH4 and N2O in µmol
m−2 s−1, as well as the total incoming radiation (S). It also needs the albedo
value of the study ecosystem and a reference site for calculating the difference
(i.e., ∆α) for albedo-induced GWP. The GWP in several unit expressions
are provided, including radiation forcing in W kg−1 CO2, GWP of CO2-eq
in kg m−2 yr−1, C-eq in Mg C ha−1 yr−1, and biomass-equivalent in Mg
ha−1 yr−1.

To further demonstrate the model application, we used the ground mea-
surements of CO2, N2O and CH4 fluxes and albedo of four bioenergy crops
at the Kellogg Biological Station (KBS), Michigan, USA, for GWP calcula-
tions. The reference site is a mixed prairie under the Conservation Reserve
Program (CRP). Three crop ecosystems are a continuous corn plantation,
switchgrass, and managed prairies (Zenone et al. 2011). These sites were
instrumented with eddy-covariance flux towers for CO2 flux, albedo minor-
ing sensors, and static chambers for CH4 and N2O emission/uptake. The
mean values of the three GHG species and albedo are based on Robertson et
al. (2000) and Abraha et al. (2019) for calculating the GWPs of the three
ecosystems (Table 5.6).

Calculated GWPs for these sites are similar to those of Abraha et al.
(2018, 2019) and Gelfand et al. (2011). In brief, the switchgrass crop offsets
the highest GWP (6.14 Mg C ha−1 yr−1) because of its high CO2 sequestra-
tion and high albedo. Here the GWP of the high albedo is 4.18 (Mg C ha−1

yr−1), which is 20.1% of ecosystem production of carbon. This value alone is
much higher than the total GWP of other three crop types. The net GWPs
of the corn and the mixed prairie indicate they provide warming and cooling
services to the atmosphere, respectively, though the magnitude (i.e., 0.028
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Table 5.6 Annual mean fluxes of CO2, N2O and CH4 as well as from the albedo
differences of three bioenergy crops at the KBS for calculating GWP (Eqs. 5.4–5.15).
The input parameters were generated based on the literature of Abraha et al. (2019) and
Robertson et al. (2000) in assessing the contributions of each GHG toward ecosystem
GWP. Albedo values were from our in situ measurements in 2018.

GHG flux and GWP Reference Corn Switchgrass Mixed Prairies
Mean CO2

(
µmol m−2 s−1

)
1.823 0.4920 5.485 0.0789

N2O
(
µmol m−2 s−1

)
0.000018 0.0025 0.00045 −0.000022

CH4

(
µmol m−2 s−1

)
0.00064 0.00078 0.00127 0.00663

Albedo (α) 0.12 0.17 0.33 0.18
∆α 0.00 0.05 0.21 0.06
GWP-CO2

(
Mg ha−1 yr−1

)
−6.907 −1.864 −20.782 −0.299

GWP-CH4

(
Mg ha−1 yr−1

)
−0.025 −0.031 −0.050 −0.260

GWP-N2O
(
Mg ha−1 yr−1

)
0.018 2.506 0.451 0.022

GWP-∆α
(
Mg ha−1 yr−1

)
0.000 −0.498 −4.180 −0.597

GWP -Total
(
Mg ha−1 yr−1

)
−1.729 0.028 −6.140 −0.284

and 0.284 Mg C ha−1 yr−1) is at a similar or much higher level compared
to the global mean net ecosystem production of grasslands (i.e., ∼ 0.1 Mg
C ha−1 yr−1) or to the reference site 1.73 (Mg C ha−1 yr−1).

Finally, reforestations of marginal lands/croplands are become the most
used global effort to improve ecosystem functions, including GWP reduction.
Here we provide another spreadsheet model to demonstrate the changes in
GWP over a 100-year period (Fig. 5.5). An exponential curve is used to
simulate the changes in albedo and the net ecosystem exchanges of CO2,
CH4 and N2O based on estimated values from the literature (e.g., Abraha et
al. 2018, Robertson et al. 2000). The default parameters for CO2 flux are
set with an initial net carbon loss of −1.5 Mg C ha−1 yr−1 and a maximum
gain of 2.0 Mg C ha−1 yr−1. These values are approximated with average
net ecosystem production (NEP) of deciduous forests in northern America
(Amiro et al. 2010). The shape factor was set at 0.05 by assuming that the
forest would reach its maximum NEP in 30–40 years. For CH4 and N2O
fluxes, we generated the average flux from Robertson et al. (2000) for the
forest and a no-till cropland. The shape factors were set at 0.15 and 0.12,
respectively, allowing the fluxes reaching level of forest at about 15–20 years.
Initial albedo values were based on our field measurements, and they were
set at 0.131 for the cropland and 0.102 for the forest; this way, the cropland
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Fig. 5.5 Simulated changes in albedo and fluxes of three GHGs over a 100-year
period. The model parameters used for calculating GWP of each species are from the
literature (top table). GWP from each GHG and albedo are simulated using the S5-2
(GWP_Model.xlsx) for six ages during the course of 100 years (bottom table).

level reaches the forest level at 20–30 years. Both the initial/ending values
and the rate of change can be altered by users for specified applications.
The exponential model for predicting the changes can also be replaced with
other equation forms.

The CO2-equivelent values due to changes in albedo and the three GHG
species were predicted for stand age of 0, 5, 15, 30, 60 and 100 years as
examples by using the GWP spreadsheet model (S5-2: GWP_Model.xlsx).
The forest would be net carbon source, measured by total CO2-equivelent
of GWP, until age 30. During this period, the GWP of CO2-equivelent is
attributable to high CO2 and N2O emissions, with ∆α and CH4 setting
off the GWP. Over the time, CO2 uptake becomes the dominant process
turning the forest into a net carbon sink regardless of lowered albedo that
elevates GWP values (up to 0.67 Mg C ha−1 yr−1). A small reduction in
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N2O in later stages also contributes to a significant reduction in total GWP
(from 4.27 Mg C ha−1 yr−1 to 0.85 Mg C ha−1 yr−1). It is notable that
the contributions of albedo changes to the total GWP appear to be similar
to the level of CH4-induced GWP, due to its high radiative forcing. An
alternative interpretation of these results is to compare forests of different
ages across a landscape, assuming they have similar land use history. For
example, a 5-year-old stand would have a CO2-equivalent of 3.63 Mg C ha−1

yr−1, compared to −1.05 Mg C ha−1 yr−1 for a 60-year-old mature forest.

5.5 Summary

Investigating global warming potential (GWP) of various ecosystems, espe-
cially those under human influences, is becoming a core research focus in
ecological studies. After brief reviews of the physical foundation of energy
balance for the Earth system, we provided a short history of global warming
and anthropogenic influences. Then we followed the IPCC protocols and
provided step-by-step calculations of actual and relative GWP. For a bet-
ter understanding the algorithms involved in the calculations, physical and
chemical background of energy balance, as well as the role of greenhouse
gases, are provided as an introduction. A spreadsheet model for calculating
GWP of an ecosystem is provided for practical uses. Examples from experi-
mental sites at the Kellogg Biological Station are used for demonstrations.

Online Supplementary Materials

S5-1: Solar radiation intensity and absorptions by different gases through
the atmosphere. Data provided by Robert Rhode of Berkeley Earth (Atmos-
phereTransmission.txt).
S5-2: Spreadsheet model for calculating actual global warming potential
(AGWP) and the relativeGWP based on in-situ input parameters (GWP_Mo-
del.xlsx).
S5-3: Simulations of GWP changes over a 100-year period when a stand is
planted for forest from managed cropland (StandDynamics.xlsx).
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day length, 7
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emission, 129
emissivity, 120
empirical model, 103
energy balance, 18, 22, 91
evaporation, 89
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global warming potential, 119, 128
grain production, 30
grass production, 31
greenhouse effect, 125
greenhouse gas, 119, 126
gross primary production, 29
growth and yield, 30

 EBSCOhost - printed on 2/13/2023 6:33 AM via . All use subject to https://www.ebsco.com/terms-of-use



152 Index

H

Hamon’s PET model, 99
Hargreaves-Samani PET model, 103
heat storage, 22
heterotrophic respiration, 29

I

impulse response function, 132
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solar radiation, 11
specific heat, 19
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vapor pressure, 8
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zero plain displacement, 20

 EBSCOhost - printed on 2/13/2023 6:33 AM via . All use subject to https://www.ebsco.com/terms-of-use



Author

Jiquan Chen
Landscape Ecology & Ecosystem Science (LEES) Lab 
Department of Geography, Environment, and Spatial Sciences & 
Center for Global Change and Earth Observations
Michigan State University
East Lansing, MI 48823
Email: jqchen@msu.edu
Web: http://lees.geo.msu.edu

Contributing Authors

Ge Sun
Eastern Forest Environmental Threat Assessment Center 
USDA Forest Service
Email: ge.sun@usda.gov

Cheyenne Lei
Landscape Ecology & Ecosystem Science (LEES) Lab 
Department of Geography, Environment, and Spatial Sciences & 
Center for Global Change and Earth Observations
Michigan State University
East Lansing, MI 48823
Email: cheyenne@msu.edu

Pietro Sciusco
Landscape Ecology & Ecosystem Science (LEES) Lab 
Department of Geography, Environment, and Spatial Sciences 
Michigan State University
East Lansing, MI 48823
Email: sciuscop@msu.edu

 EBSCOhost - printed on 2/13/2023 6:33 AM via . All use subject to https://www.ebsco.com/terms-of-use


	Contents
	Foreword, by Dennis Baldocchi
	Preface
	List of Online Supplementary Materials
	List of Symbols
	Chapter 1. Biophysical Essentials for Ecosystem Models
	1.1 Introduction
	1.2 Diurnal Changes of Air Temperature and Humidity
	1.3 Atmosphere Water Vapor Pressure and VPD
	1.4 Solar Radiation
	1.5 Heat Storages in Soil, Air and Vegetation
	1.6 Vertical Profile of Wind Speed
	1.7 Energy Balance
	1.8 Summary
	Online Supplementary Materials
	Acknowledgments
	References

	Chapter 2. Modeling Ecosystem Production
	2.1 Introduction
	2.2 Core Biophysical Models for Ecosystem Production
	2.3 The Datasets for Modeling Photosynthesis
	2.4 Model Performances
	2.5 Summary
	Online Supplementary Materials
	Acknowledgments
	References

	Chapter 3. Modeling Ecosystem Respiration
	3.1 Introduction
	3.2 Models for Ecosystem Respiration
	3.3 Measured Datasets for Modeling Soil Respiration
	3.4 Model Performances
	3.5 Summary
	Online Supplementary Materials
	Acknowledgments
	References

	Chapter 4. Modeling Evapotranspiration
	4.1 Introduction
	4.2 Methods for Quantifying ET
	4.3 ET Models
	4.4 Model Demonstrations
	4.5 Summary
	Online Supplementary Materials
	Acknowledgments
	References

	Chapter 5. Modeling Ecosystem Global Warming Potentials
	5.1 Introduction
	5.2 Calculating GWP of Greenhouse Gases
	5.3 Calculating GWP from Surface Albedo
	5.4 Case Examples
	5.5 Summary
	Online Supplementary Materials
	Acknowledgments
	References

	Index
	Authors



