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PREFACE 

 

 

 

Nowadays, all of us enjoy the benefits of the global rebirth of 

measurement and data science due to a revolution in sensory devices and 

the amazing data transmission, storage and processing capabilities that 

have become available and are now embedded everywhere. Thanks to the 

unbelievable amount of recorded information and the theoretical results of 

measurement and data science, many newly developed products invade 

our surroundings and enable previously inconceivable smart services and 

support. 

This volume consists of selected chapters covering the scientific results 

of researchers working at the Department of Measurement and 

Information Systems at Budapest University of Technology and 

Economics, Hungary. The authors decided to reconsider the achievements 

of their previous research—summarized typically in their dissertations—

and place these results in a larger contextual framework.  

The intention of this volume is to provide a comprehensive picture of 

the knowledge, ways of thinking, and working methods of researchers in 

measurement science, and arouse interest in the study, acquisition, and 

application of these achievements. This book is recommended for MSc 

and PhD students, as well as partners in research and development. The 

topics covered display the experience and references the authors have, i.e. 

the fields in which they can contribute and cooperate. 

Measurement science is a cognitive science dealing with the 

observation and evaluation of phenomena and interaction in the 

surrounding world. We consider a measurement process to be the 

systematic activity of broadening our previous knowledge based on more 

and more, possibly repeated, observations. Within this process, first the 

intensity relations of different quantities are explored and recorded as data. 

This is followed by the processing of those data that convey information 

about the features being investigated. Finally, the process is completed 

with the interpretation of this newly developed and expanded knowledge. 

While every human activity has its measurement science, and the 

information delivered by the data is rather far-reaching, it is a valuable 

feature that the methodology of these measurement processes can be 

placed—in several respects—into a common framework. In this volume 

we attempt to contribute to this process. 
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In utilizing measurement science in any given domain, we carry out 

four types of interrelated activity: 

 

 Modelling: We rearrange our prior knowledge in order to achieve 

improved understanding. On the one hand, we create/extend the model 

of the investigated phenomena and their interactions and, 

simultaneously, we make it clear which feature is to be the focus of 

observation. This possibly iterative process is called modelling and 

results in an approximate description of reality, of limited extent, 

considered to be sufficient to find out further information. During this 

process we cannot neglect that our resources are limited both in time 

and space. We must also strive to keep expenses at an acceptable level. 

 Measurement design: In order to get new information, we try to 

separate useful interactions from effects caused by 

distortion/disturbance, and, if needed, we apply appropriate test, 

excitation, or training signals/samples. This is the process of 

measurement design. It cannot be separated from modelling and also 

requires prior information concerning test/excitation signals and 

distortion/disturbance effects. During measurement design, we seek to 

perform such interactions for the observation of which we have 

appropriate devices and experience. 

 Data acquisition: We perform the targeted observations using sensors 

and measuring channels. The results are then converted into a format 

that can be processed. This activity is the most domain-specific, as 

domain-specific features are characterized by appropriate data. 

 Evaluation: Using the model of the investigated features and their 

interactions, we evaluate our observations. We develop conclusions 

and also formulate and characterize new information. The 

computational demand of data, coming partly from sensors and partly 

from databases, may be remarkably large. This is an exciting issue if 

observation-based conclusions and evaluations specify the necessity of 

intervention and/or determine their parameters. The foundation of such 

real-time, typically autonomous measurement systems requires the 

sound coordination of modelling, measurement design, data 

acquisition, and evaluation. 

 

All the studies in this volume provide overviews of specific fields and 

research results that enable the coordination of the above noted 

procedures. Furthermore, to some extent, the conceptual foundation of 

measurement science is also extended, and new measurement methods, 

opening up completely new vistas, are also introduced. 
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All the chapters of this volume are available to readers as independent 

studies and cross-references are occasional. The authors were free to apply 

the wording and notation they are accustomed to. 

The first chapter, entitled Structure and Interpretation of Model-based 
Signal Processing, argues that the measurement of directly non-

measurable quantities can be efficiently solved by the application of the 

so-called observer-based approach. An observer is a mechanism that is 

capable of following, as a simulator, an observed object. Its operation is 

based on the model of the observed object and thus the simulator tracks 

not only the observations, but also the internal (unknown) quantities. The 

operation of the observer is controlled, in a negative feedback loop, by the 

difference between the observed values and the simulated output. A 

measurement process that follows this strategy can estimate an unknown 

quantity based on the corresponding internal variable of the observer. The 

simulation proceeds in parallel with data acquisition until the required 

accuracy is achieved, or the results of simulation are needed. The resulting 

evaluation is based on recursive expressions that fit the requirements of 

real-time operation well. The recursive expressions of the observer-based 

approach also provide an inclusive framework for signal representation 

and corresponding signal analysis. The resulting recursive signal 

processing structure can serve as a universal tool, as it decomposes the 

signals into components that can be used in signal synthesis and can 

implement arbitrary linear filters and transformations. Thanks to the 

passivity and orthogonality of the structure, it displays excellent properties 

concerning stability, limit-cycle avoidance, round-off errors, and transient 

behaviour. 

The first part of the second chapter, which is entitled Adaptive Spectral 
Estimation and Active Noise Control, is devoted to the high-precision 

measurement and tracking of periodic signal components where the basic 

harmonic varies in time or is not exactly known. The proposed adaptive 
Fourier analyser (AFA) follows the model-based approach introduced in 

the first chapter and, correspondingly, is composed of tunable resonators 

that are capable of generating harmonic signal components. Several 

strategies are offered for tuning the resonators, each of which concerns 

various aspects of convergence. The second part of this chapter deals with 

the consequences of data loss on spectral estimation and proposes 

modifications of the original methods to avoid distorting effects. As a first 

step, the author introduces data loss models, which are followed by 

solutions, based on both recursive and fast Fourier transformations. The 

third part of the chapter covers the problem of active noise control. First, 

using the model-based approach, a possible method for the active control 
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of periodic disturbances in the acoustic environment is treated. To achieve 

spatial noise reduction, loudspeakers receiving input from tunable 

resonators are used to counteract periodic acoustic noise components. The 

elaborated method has proven successful in linear system identification, 

automatic offset compensation, and in reducing nonlinear distortion. As a 

next step, the author presents an improved version of the least mean square 

(LMS) algorithm that is capable of reducing wide-band and stochastic 

disturbances. The last part of this chapter introduces, as a test application, 

an active noise control system based on a wireless sensor network.  

The third chapter, entitled Inverse Problems and Algorithms of 
Measurement Science, deals with the problem of how the accuracy of the 

devices used to observe our environment can be improved by digital signal 

processing. Its starting point is that our observations are affected by 

distortions and disturbances; therefore, compensating these effects, i.e. 

reconstructing the real value of the quantity to be measured, is of serious 

interest. In the first part of the chapter, the author presents an overview of 

methods that can minimize distortions due to limited bandwidth, assuming 

that the signal path can be characterized by a linear model, and an 

appropriate criterion of minimization is also given. These methods are 

called inverse algorithms and they try to compensate known distortions 

while simultaneously suppressing disturbances. As an important extension, 

the author provides an automatic process to optimize inverse filter 

parameters and a method to compensate sampling jitter. The efficiency of 

the proposed methods is proven through practical examples. As a next 

step, the possible compensation of nonlinearities is discussed, followed by 

the introduction of redundant observation setups where the abundance 

and/or diversity of sensors enables simultaneous and/or redundant 

observations. In this case, sensor fusion offers further solutions for 

successfully compensating distortions and disturbances. The next part of 

the chapter concerns the case of directly non-measurable quantities, for 

which data path compensation and measured data reconstruction cannot be 

separated. In such situations the estimation process should involve the 

partial or complete identification of the observed system, and the 

derivation of the quantity to be measured can be achieved via the 

identified system. In the last part of the chapter, the author introduces 

some of his contributions to the solution of practical inverse problems.  

The author of the fourth chapter, entitled Optimized Random 
Multisines in Nonlinear System Characterization, deals with a rather large 

family of measurements, namely with the nonparametric identification of 

dynamic systems. His investigations primarily concern measurement 

methods of the frequency response function. The first part sums up the 
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features of the knowledge, attainable by measurement that is needed to 

identify such systems, which are modelled assuming linearity and time 

invariance. Furthermore, it presents the consequences of the finite time 

duration of measurement records. As a next step, he introduces methods to 

measure the frequency response function, assuming both periodic and 

random signals, and systems with multiple-input and multiple-output, or 

even feedback. Based on his investigations, the author concludes that it is 

more beneficial to perform the measurement of the frequency response 

function if it is designed assuming multisine excitation and frequency 

domain interpretation. The second subchapter is devoted to the 

nonparametric identification of such systems, which cannot be identified 

properly under the assumption of linearity and time invariance, i.e. the 

consequences of deviation from linearity should also be considered. The 

investigations of the author concern systems excited by random multisines 

that have nonlinear behaviour, which can be efficiently characterized by 

Volterra systems. As a first step, he interprets the best linear 

approximation frequency characteristic and attaches a model of nonlinear 

distortions. As a next step, the author shows how, based on a systematic 

design of the multisine excitation, i.e. by the proper composition of the 

frequency grid, nonlinear distortions can be separated and/or suppressed. 

In the following, two significant methods for measuring the best linear 

approximation are provided, which are extended to measurements in 

closed loops and for systems having multiple inputs and multiple outputs. 

The last subchapter provides practical considerations concerning the 

proposed methods to help application designers and other users. 

The authors of the fifth chapter, entitled Methods for Processing 
Measured Sinusoidal Signals and their Application in Analogue-to-digital 
Converter Classification, deal with the reduction of problems arising in 

the implementation of the IEEE 1241 standard, elaborated to regulate 

analogue-to-digital converter (ADC) classification, and, in certain 

respects, to suggest new, more efficient solutions that exceed the 

specifications of the standard. ADCs assign digital codes to analogue 

signal levels. The classification of a converter is based on knowledge of 

the actual threshold levels at which code transition occurs. The 

determination of these threshold levels requires an appropriate excitation 

signal, and, practically speaking, this is possible only via an indirect 

evaluation using statistical methods. To test ADCs, as excitation signals, 

sine waves consisting of an integer number of periods are preferred, 

together with the additional condition that the total number of digitized 

samples and the number of periods are relative primes. The histogram test 

can contribute to the appropriate evaluation of the digitized samples, 
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which, if the excitation signal parameters are known, gives the occurrence 

statistics of the samples within a given code bin. In this chapter, the 

authors first review some of the properties of ADCs, the method of least 

squares (LS) sine-fitting, and that of the histogram test. This is followed 

by the presentation of methods that allow the verification of the 

correctness of the excitation signal settings and the unbiasedness of the 

ADC measurement. As a next step, it is pointed out that the numerical 

errors of least squares sine-fitting algorithms, unless properly handled, can 

be several orders of magnitude larger than the round-off errors of the 

numerical representation. Following a proper analysis, new methods are 

proposed that can significantly increase the numerical stability of the 

investigated algorithms. As a possible further improvement, the maximum 

likelihood (ML) estimation of ADC and excitation signal parameters is 

introduced and developed in two directions. The first one is a method, 

which can, by an appropriate approximation of the ADC static transfer 

characteristic, significantly decrease the size of the parameter space, while 

the second is a proposition to estimate the aperture jitter in the sense of 

ML estimation. 
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CHAPTER ONE 

 STRUCTURE AND INTERPRETATION OF 

MODEL-BASED SIGNAL PROCESSING  

GÁBOR PÉCELI 

 
 

 

1.1 Introduction 

The objective of this chapter is to interpret and implement measurement 

processes and related signal processing algorithms as observer 

mechanisms (Luenberger 1971).  

The basic concept of this observer-based approach is that the 

measurement of directly non-measurable quantities is enabled by 

simulation of the investigated real-world phenomena. This simulation is 

based partly on prior knowledge, including the executable relevant model 
of the system to be measured, and partly on observed data. The simulator 

device, which is typically a digital computer, tries to copy the events and 

processes of the environment, and thus the quantity to be measured will 
have an available estimate from among the quantities computed by the 

simulator.  

In a domain of interest, the relevant model of the system to be 

measured is an ordered set of indispensable prior knowledge required for 

the success of the measurement. Here, success means that new and useful 

information becomes available, i.e. our knowledge will become deeper 

and/or wider.  

The simulator operates the relevant model of the system, while the 

measurement process itself is governed as an observer. The differences of 

the observed values and their estimates, provided by the simulator, force 

the simulator to behave as a model-copy of the investigated real-world 
phenomena. Any process that follows this type of operation is an observer. 

The application of this observer-based approach to measurements 

shows that evaluation of the observed data can be performed in parallel 

with data acquisition. This process can be continued until the required 

accuracy is achieved, or the simulation results are useful.  
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In the following, we will concern ourselves with such observations, for 

which, using an independent variable (e.g. time or space coordinates), the 

fact and measure of interrelation can be characterized and is interpretable. 

Without providing a detailed specification of the concept of a signal, in the 

following we will refer to the evaluation of such observations as digital 
signal processing, and the entire process as signal processing.  

This chapter addresses cognitive processes that can be considered as 

observers. Since such processes typically work on interrelated, multiple 

observations and apply the relevant model of the system to be discovered, 

we will refer to this as model-based signal processing. At the same time, 

in order to enable real-time evaluation, only signal processing algorithms 
that do not require prior knowledge of measured data sequences or blocks 

will be considered.  

In engineering practice, the result of the measurement process is 

typically observation-based inference. Essentially this inference, at an 

appropriate level of abstraction, is the solution of an equation, even if the 

interrelation of observations and unknowns may be rather uncertain and 

changeable in time and space.  

In this context, model-based signal processing is the solving of 

different equations in such a way that the new information available in 

parallel with the solution, to improve its quality, is utilized within the 

process itself. As a result, we get iterative or even recursive solutions.  
This iterative nature is inherent to the measurement process. In the 

following, firstly, the attributes of the measurement processes are reviewed 

and then the recursive evaluation of equations related to signal processing 

problems is considered. Such an approach is applied both to the 

measurements and the signal processing problems, where we estimate the 

unknown value, according to prior observations, then make a new 

observation, before finally improving/refining our estimate in accordance 

with the following scheme: 

new estimate 
= prediction based on previous estimate + correction based on new observation 

It is a speciality of the applied approach that the quantities are 

represented by discrete time (and/or space) samples, hence the available 

new information is also related to discrete time and/or space coordinates. 

The capability of determining the value at other time or space coordinates 

is ensured by meeting the conditions of the sampling theorems. 

Accordingly, the model-based simulation applied is also discrete.  
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1.2 Attributes of measurement processes 

This section presents the main topic of this chapter: the observer-based 

interpretation of measurement processes together with the wide-ranging 

relationships of related signal processing algorithms.  

 The goal of the measurement process (Pavese and Forbes 2009) is to 

improve and refine available prior knowledge and information. More 

precisely, the measurements are targeted to characterize various real-world 

phenomena. Preferably, this characterization relies on quantities/features 

that show stability in some respect. We can discover such quantities/ 

features by abstraction. The role of the following quantities/features is of 

basic importance:  

 

- State variables (�), which change with time and/or space and are 

related to energy processes due to interactions/counteractions of 

objects in the real world (e.g. voltage, pressure, temperature, speed, 

etc.); 

- Parameters (�), which characterize the intensity of interactions or 
counteractions; 

-  Structures (�), which describe the relationships between the objects 

(system components).  

 
The goal of a measurement process is the determination of such 

quantities or features; these are the unknowns of the equation set to be 

solved as part of the measurement process. The measurement process can 

be divided into two main parts (See Fig. 1-1).  

The first part is the observation process, which is devoted to getting 

information—this is called observation. These observations are inaccurate 

due to distortion and/or noise in the observation channel. The effect of 

distortion and/or noise in the channel can be reduced if we gather more 

information, i.e. if we increase the number of observations. The 

determination of unknown quantities or features is based on observation. 

This is the second major part of the measurement process, which can also 

be interpreted as the inverse of the observation process. The observation 
process corresponds to the setting up of the equation set to be solved, 

while the inverse operation corresponds to solving the equation set. The 

result of the measurement process, depending on its nature, is interpreted 

as a decision or estimation and also has a qualification. This qualification 
is typically a measure of uncertainty, generally characterized by variance 

and bias. 
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Fig. 1-1. The measurement process. 
 

The real-world space is an abstraction where the values of the 

investigated quantities or features correspond to one point in this space. 

Before measurement these coordinates are unknown. Through the 

measurement process we intend to determine (measure) the coordinates of 

such a point by mapping it. This mapping is called observation. The path 

between the value to be measured and the observed value is called the 

measurement or transmission channel.  

The observation space is an abstraction where the values of the 

observed quantities or features correspond to one point in this space.  
Finally, the decision/estimation space is an abstraction where values of 

the measurement results correspond to one point in this space.  

In the following subsections, this general framework is fleshed out. We 

will acquaint the reader with the observer-based way of thinking, which 

provides a receptive environment for many measurement processes. Most 

of these techniques have been presented separately in the literature, many 

times using particular notations and wording, which makes it difficult to 

discover similarities and analogies. In the following sections, the 

unification of these notations is a major concern. For certain processes, 

this leads us to neglect traditions or usual conventions; however, this all 

contributes to the identification of a common framework.  

1.2.1 Observation in the case of noiseless system  
and observation models 

As a first step, let us suppose that the real world and the observation can 

be described at discrete time instants with the help of the following linear 

(state and observation) equations:  

(distorted and/or noisy) channel uncertainty 

�� ������
��� � 

Real-world space Observation space 
Decision/Estimation 

space 

Observation process “Inverse” of the observation process 

 EBSCOhost - printed on 2/14/2023 6:11 AM via . All use subject to https://www.ebsco.com/terms-of-use



 Structure and Interpretation of Model-Based Signal Processing  
 

5 

 ��	 
 ��  ���	� (1.1) 

 ��	�  ���	� (1.2) 

 

In the following, the state equation describes the system model, while 

the observation equation describes the observation model. Let us suppose 

that the state transition matrix � and the observation matrix � are known. 

The “real-world” is supposed to be an autonomous system, therefore in 

(1.1) no external excitation or noise/disturbance is added. Similarly, the 

observation is also free of noise/disturbance. The object of the observation 

is the unknown state vector ��	�, which, at first glance, can be derived as 

the solution of equation (1.2). However, this is possible only if the number 

of the observed data, i.e. the dimension of vector ��	�, is equal to or 

higher than the dimension of the state vector ��	�.  

With respect to equations (1.1) and (1.2), we investigate cases where 

the state vector ��	� is of dimension �; the state transition matrix A is of 

dimension � � �; the observation vector ��	� is generally of dimension � � �; and, correspondingly, the observation matrix � is of dimension � � �. Our aim is to estimate the state vector ��	�. Within the given 

framework, this is not possible in a single step, because the required 

minimum number of observations (measured data) is only attainable in 

more than one step. It is the particularity of the “real-world” that the 

unknown state vector changes with time and, according to (1.1), in the 
next step it will have a different value. In this case, the observer can be a 

proper tool of estimation, which, thanks to a dedicated correction/ 
learning/adaptation mechanism, tends to behave as a copy of the “real-
world”, providing an iterative solution of the equation to be solved.  

Fig. 1-2 shows the block-diagram of a discrete-time observer. The 

input of the observer is the observation vector ��	�, which is compared to 

its estimate ���	�, generated by simulating the observed system. The 

difference ��	� � ���	� controls the simulator in such a way that its output 

values will follow the output of the observed system. 

After convergence, the “result” of the measurement ���	� can be read 
from the observer (see Fig. 1-3). In the figure, ��� stands for a one-step 

time difference/delay for all the components of ���	 
 ��. The state and 

the observation equations of the observer are:  

 

 ���	 
 ��  ����	� 
 ���	�  ����	� 
 ����	� � ���	�� (1.3) 

 ���	�  ����	� (1.4) 
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where the correction matrix � is of dimension � � ��  

Fig. 1-2. Measurement using discrete-time observer. 

 Fig. 1-3. The discrete-time observer. 

The matrix � is designed to produce ���	� � ��	�� Taking the 
difference of (1.1) and (1.3): 

 

 ��	 
 �� � ���	 
 ��  ���	� � ����	� � ���	�  �� � ������	� � ���	� . (1.5) 

 

Let us introduce notations !�	�  ��	� � ���	� and "  � � ��. The 

state transition matrix of the so-called error system will be:  

 
 !�	 
 ��  "!�	�� (1.6) 

 

Using this interpretation, we find the solution to the equation, i.e. the value 

of the unknown state vector, if the state error !�	� (the state variable of 

the error system) achieves a value of zero in finite steps. If, for some 

reason, this is not be possible, it can be reduced to below the level of 

required accuracy. The correction matrix � should be designed in such a 

way that matrix " reduces the size/norm of state error !�	�.  

���	� ���	 
 �� �� ���	� ��	� � � ��� 

� 

�� 

���	� 

��	� ��	� 
��	�  ��	� � ���	� 

��	 
 �� ���	� ��	�  ���	� Correction 

���	 
 �� ����	�
 ���	� ���	�  ����	� 
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Remarks: To resolve the error, a monotonic decrease is not necessary. 
What is required is the stability of the error system, i.e. its convergence to 

zero in the case of zero input. This property can be interpreted as follows: 

in order to reach a stable state, the error system dissipates its internal 

energy. If it dissipates its internal energy at every step, then the size 

reduction of the error vector will be a monotonic process. 

Cases: 
 

1. "  � � ��  #. In this case �  ����. This is possible if matrix � 

is quadratic, i.e. the observation vector has as many components as the 

state vector. In this case the value of the unknown state vector can be 

found without iteration in one step. This means that the observer, and 

within the observer the “copy” of the state, follows the observed 

(physical) system. 

 

2. "$  �� � ���$  #. In this case the error system converges in � 
steps:  

 

 ���� � �����  �� � ���$���%� � ���%�  # (1.7) 

 

Matrices having the property "$  # are called non-derogatory 
nilpotent matrices. An important property of these matrices is that all 

their eigenvalues are zero (Halmos 1995). Systems having state 

transition matrices with this property have a finite impulse response 

(FIR systems), because the initial error disappears in a finite number of 

steps. (Remark: if "&  #, with�� � �, then matrix " is a derogatory 
nilpotent matrix, for the convergence of which fewer than � steps are 
needed.) 

 

3. If "$  �� � ���$ ' #, then, if the error system is designed for 
stability, the size of the state vector of the error system will decay 

exponentially. Such a system will be stable if all the eigenvalues are 

within the unit circle. Systems having this property have an infinite 

impulse response (IIR systems), because the initial error will disappear 

after an infinite number of steps.  

Remarks: 
 
1. Both models (the system model and its copy within the observer) of 

Fig. 1-2 can be excited by a common input. Since the models 
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themselves are linear, due to the superposition theorem the 

convergence of the observer remains valid.  

 

2. The observer in Fig. 1-2 is called a Luenberger observer (“Almost any 

System is an Observer”, Luenberger 1971). The condition of the 

capacity to behave as an observer is that the observer should be 

“faster” than the observed system; otherwise it will not be able to 

follow the changes.  

 

3. In the case of a resistance or impedance measuring bridge, the branch 

containing the unknown element implements the physical model of the 
real world, while the branch containing the component for bridge 

balancing corresponds to the adjustable model within the observer. 

Both branches divide the voltage of the common driving source and the 

difference in voltage controls the correction mechanism. If the 

difference is zero, the set value of the compensating component is used 

to determine the unknown parameter. Such a circuit, together with the 

feedback performed by the operator, implements an observer.  

1.2.2 Observation in the case of noisy system  
and observation models 

In measuring processes, it is usual that some details of the observation are 

modelled as random observation noise, because they cannot be modelled 

or are difficult to model using deterministic tools. Based on similar 

considerations, we try to bridge the problem of being unable to give the 

accurate next value of the unknown state variable by applying random 

plant noise. With the introduction of these changes to the models, if we 

apply the observer concept, the expectation !�	� (�)*++,# is no longer 

realistic; instead, the requirement of achieving the smallest error of an 

approximate solution is set. The smallest error is defined according to an 

appropriate error criterion.  

With the appearance of noise processes, errors can be characterized 

only by statistical methods; as such, the best approximate solutions are 

based on minimizing the values of appropriate statistical error criteria. 

Minimization here means finding the optimum value of the free 

parameters; in our case, this is the value of the correction matrix �. In the 

case of equalities such as (1.5), which is linear in its free parameters, mean 

square error criteria are preferred. This is because under this condition the 
optimum parameters are given as the solution of a set of linear equations.  
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If we extend the equations (1.3) and (1.4) with random processes, then 

both the observation and the quantity to be measured become stochastic 

processes. Therefore, instead of minimizing the state variable of the error 

system, a squared function of this error is minimized. In the following, the 

covariance matrix -�	�  ./!�	�!0�	�1 plays an important role, the trace 

of which 23-�	�  ./!0�	�!�	�1 will be a suitable error criterion and its 
minimization can serve our purpose. With the introduction of the 

covariance matrix -�	� the state equation of the error system (1.6) can be 

replaced by: 

 

 -�	 
 ��  ./!�	 
 ��!0�	 
 ��1  "-�	�"0+ perturbations
1
. (1.8) 

 

This type of error matrix has a significant role in the case of the famous 

Kalman predictor and filter (Anderson and Moore 1979). In the following 

we will consider the predictor, because it better fits the point of this 

chapter.  

Remarks:  

In the following, we will use the sign of transposition � �0 for vectors 

and matrices, the effect of which is the transformation of rows into 

columns, and vice versa. In the case of complex-valued matrices/vectors, 

together with transposition, conjugation is also applied, which is not 

indicated separately. If we transpose possibly complex-valued vectors/ 

matrices, this is indicated by applying: � �4. 
Optimum recursive minimum mean square error estimator (Kalman 
predictor): 

In accordance with the above considerations, the linear system and 
observation models with which we attempt to describe the behaviour of the 

real world can be described by:  

 

 ��	 
 ��  ���	� 
 5�	� (1.9) 

 ��	�  ���	� 
 6�	�, (1.10) 

 

where the state transition matrix � and the observation matrix � are 

supposed to be known; 5�	� is the plant (or system) noise; and 6�	� 

                                                        
1Due to the plant and observation noises, -�	 
 �� is not only a function of -�	�. 
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stands for observation noise. Concerning the noise processes, we suppose 

that they are zero-mean white Gaussian noise processes that are 

independent of each other and the state of the system. Their covariance 

matrices are:  

 

 

In the following, we repeat Fig. 1-2 and indicate the differences in the 

model (see Fig. 1-4). Formally, the only difference is that the observed 

system has been excited by the plant (system) noise and the observed 

values are perturbed by the addition of observation noise.  

The measurement process assigned to the extended model is also an 

observer: 

 

 ���	 
 ��  �78�	� 
 ��	���	�  �78�	� 
 ��	����	� � ����	� , 
(1.12) 

 

which differs from (1.3) only in that matrix � is a function of discrete time 

(see Fig. 1-5).  

Fig. 1-4. Measurement using the Kalman predictor. 

Fig. 1-5. The Kalman predictor as an observer. 

 9�	�  ./5�	�50�	�1, :�	�  ./6�	�60�	�1. (1.11) 

���	� ���	 
 �� �� ���	� ��	� � ��	� ��� 

� 

5�	� 
6�	� �� 

���	� ��	� ��	� 
��	�  ��	� � ���	� 

��	 
 �� ���	� 
 5�	� ��	� ���	� 
 6�	� 

Correction 

���	 
 �� ����	� 
 ���	� ���	�  ����	� 
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We are looking for matrix ��	� (the so-called predictor gain), which 

minimizes the trace of the error covariance matrix: 

 

 -�	 
 ��  ./���	 
 �� � ���	 
 �� ���	 
 �� � ���	 
 �� 01 ./!�	 
 ��!0�	 
 ��1� (1.13) 

 

To find this minimum, we compute the derivative by ��	� of the trace of 

(1.13), i.e. that of 23-�	 
 ��  ./!0�	 
 ��!�	 
 ��1. The optimum 

value of ��	� is given as the derivative equal to zero.  

If we substitute the system model (1.9), the observation model (1.10) 

and the recursive predictor model (1.12) into (1.13), then the optimum ��	� vector can be derived from the following equation: 
 ;23-�	 
 ��;��	�  

 ;23/�� � ��	�� -�	��� � ��	�� 0 
 9�	� 
 ��	�:�	��0�	�1;��	�  #� (1.14) 

 

In (1.14), we have utilized our prior knowledge concerning 
independence:  

 
 ./!�	�60�	�1  #<./5�	�!0�	�1  #< ./5�	�60�	�1  #< (1.15) 

 

i.e. the fact that the 	th value of the noise processes is independent of the 	th value of ��	� and ���	�. (The noise-effects only influence the samples 

indexed by 	 
 �.)  

After completing the derivations in (1.14), the optimum predictor gain 

can be expressed as:  

 ;23-�	 
 ��;��	�  �=�� � ��	�� -�	��0 
 =��	�:�	�  #� ��	�  �-�	��0��-�	��0 
 :�	� �� 

(1.16) 

 

The following derivation rules are applied:  

 ;23�>?>0 ;>  >?0 
 >?@�;23�>? ;>  ?0@�;23�?>0 ;>  ?< (1.17) 

 

where matrix ? is independent of matrix >.  

Using the notation "�	�  � � ��	��, the covariance matrix of the 
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estimation error expressed in (1.13) can be expressed in the following 

way: 

 -�	 
 ��  . A �"�	�!�	� 
 5�	� � ��	�6�	� B �"�	�!�	� 
 5�	� � ��	�6�	� 0C  "�	�-�	�"0�	� 
 9�	� 
 ��	�:�	��0�	� 

(1.18) 

 
Remarks: Based on (1.18) it can be seen that the covariance matrix of the 

estimation error changes due to three effects:  

 

- The reducing effect, thanks to the contractivity property of the matrix "�	�  � � ��	��, as has already been discussed with respect to the 

observer, and which, due to the quadratic criterion, appears here in 

squared form. 

- The statistical error-increasing effect, represented by the covariance 

matrix of the plant noise, which is present here since the value 5�	� 

influences ��	 
 ��, the predicted value based on the previous state ��	�.  

- Another statistical error-increasing effect, represented by the 

covariance matrix of the observation noise and weighted by the 

predictor gain, which is presented here as the value 6�	�, influences ���	 
 ��, the predicted value based on the previous estimate ���	�. 

 

Equation (1.18) can be written in a more compact form. Let us replace "�	�  � � ��	�� and by expressing the first term in more detail:  
 -�	 
 ��  �-�	��0 � �-�	��0�0�	� � ��	��-�	��0 
��	��-�	��0�0�	� 
 ��	�:�	��0�	� 
 9�	� 

(1.19) 

 

If we combine the fourth and fifth term with the second expression of 

(1.16), we have ��	���-�	��0 
 :�	� �0�	�  �-�	��0�0�	�, which 
cancels the second term of (1.19). What remains is the first, third and sixth 

terms:  

 

 -�	 
 ��  �� � ��	�� -�	��0 
 9�	� (1.20) 

 
In summary:  
 

If the system model has the form ��	 
 ��  ���	� 
 5�	�, and the 

observation model is given by ��	�  ���	� 
 6�	�, then the equations 
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of the optimum recursive (Kalman) predictor are as follows:  ���	 
 ��  ����	� 
 ��	����	� � ����	�  ����	� 
 ��	���	� ��	�  �-�	��0��-�	��0 
 :�	� �� -�	 
 ��  �� � ��	�� -�	��0 
 9�	� 

(1.21) 

 
Remarks:  
 

1. If the noises are stationary processes, then 9�	�  9, :�	�  :� 
 

2. It is important to note how the model of the observed system is 

incorporated by the observer.  

 

3. Using the above development, we can also find the equations of the 

optimum recursive (Kalman) filter. In this case, the model 

corresponding to (1.9) and (1.10) is: 
 

 ��	�  ���	 � �� 
 5�	� (1.22) 

 ��	�  ���	� 
 6�	�. (1.23) 

 

Here, the assumptions concerning the noise processes are unchanged 

and their covariance matrices are given by (1.11). The observer 
corresponding to (1.12) is: 

 ���	�  �78�	 � �� 
 D�	���	�  �78�	 � �� 
 D�	����	� � �����	 � �� , (1.24) 

 

where D�	� denotes the Kalman gain. Measurement using the Kalman 

filter is illustrated by Fig. 1-6 and the corresponding observer by Fig. 

1-7. To obtain an optimum result, we look for matrix D�	� (the 

Kalman gain), for which the trace of the covariance matrix 
 -�	�  ./���	� � ���	� ���	� � ���	� 01  ./!�	�!0�	�1 (1.25) 

 

is the minimum. To find it, we compute the derivative by D�	� of the 

trace of (1.25), i.e. that of 23-�	 
 ��  ./!0�	 
 ��!�	 
 ��1. The 

optimum value of D�	� is given if the derivative equals zero. If we 

repeat the procedure, which can be characterized by expressions (1.14) 

to (1.20), the equations of the optimum recursive (Kalman) filter are as 

follows: 
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���	�  ����	 � �� 
 D�	����	� � �����	 � ��   ����	 � �� 
 D�	���	� D�	�� ��-�	 � ���0 
 9�	� �0 B ����-�	 � ���0 
 9�	� �0 
 :�	� ���-�	�  �E � D�	�� ��-�	 � ���0 
 9�	�  
(1.26) 

 

By introducing the notation -��	�  ��-�	 � ���0 
 9�	� , we get 
the widely used formulation (Kay 1993) of the Kalman filter: 

Fig. 1-6. Measurement using the Kalman filter. 

 
Fig. 1-7. The Kalman filter as an observer. 

���	�  ����	 � �� 
 D�	����	� � �����	 � ��  ����	 � �� 
 D�	���	� -��	�  ��-�	 � ���0 
 9�	�  D�	�  -��	��0��-��	��0 
 :�	� �� -�	�  �E � D�	�� -��	� 
(1.27) 

 

4. If the coupling matrix of the plant noise is F, i.e. it differs from E, then 

in the above equations 9�	� should be replaced with F9�	�F0 . 
 

���	� ���	� �� 

���	 � �� 
��	� � ��� � D�	� 

5�	�
6�	� �� 

���	� ��	� ��	� 
��	�  ��	� � ���	� 

��	� ���	 � �� 
 5�	� ��	�  ���	� 
 6�	� 

Correction 

���	� ����	 � �� 
 ���	� ���	�  ����	� 
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5. If the system to be measured is also influenced by deterministic inputs, 

then, because of the assumption of linearity, the superposition principle 

can be applied. 

 

6. The similarities and differences between the Kalman predictor and 

filter can be characterized using Fig. 1-4 to Fig. 1-7 and related 

expressions. Both structures are suitable for formulating the message of 

this chapter. The essence of the difference is that the Kalman filter 

provides the estimate of the state variable assigned to the time of 

observation, while the Kalman predictor predicts the value of the state 

variable at one step ahead. The efficiency of the method remains the 
same. The predictor structure seems to be more expressive if we take 

the copy of the system model as part of the observer. The application 

of the predictor structure was decided for this chapter.  

1.2.3 Measurement processes based on observation models 

In this section, we consider measurement/computing processes where we 

do not have information about the internal operation of the real world; 

thus, we do not have descriptions like (1.1) and (1.9), only the observation 
models are available, which, in the linear case, follow the form of (1.2) or 

(1.10). Using these observations, we wish to estimate the state vector, 

which describes the internal energy relationships; the parameter vector, 

which characterizes the intensity level of the internal interactions; or some 

combination of these unknowns.  

In the following, these unknowns are denoted uniformly by ��	�  �, 

and at the same time we suppose that, at least during investigation, these 

values do not change. (Formally this means that both (1.1) and (1.9) have 

the form of ��	 
 ��  ��	�, i.e. the state transition matrix is the unit 

matrix E, and the system model has no input.) Starting from (1.2), and in 
accordance with (1.4), the linear model of observation is:  

 

 ���	�  ��	����	�< (1.28) 

 

which gives an estimation of the observed values, based on a supposed 

state or parameter vector value and the mapping mechanism of the 

observation. With equation (1.28) we suppose that the observed values can 

be approximated by the linear combination of the estimates of the 

unknown values, where the weights (the rows of matrix ��	�, i.e. the 
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regression vectors) of the linear combination are known2. The generation 

of the regression vector, depending on the known specifics of reality and 

the actual mode of observation, may have several forms. Examples will be 

given later, here we confine ourselves to the introduction of a common 

framework. 

Due to the inaccuracy of the assumption, and because of noise and 

disturbance effects, the observed value and its estimate will differ from 

each other:  

 

 ��	� � ���	�  ��	� � ��	����	�  ��	�� (1.29) 

 

The purpose of the measurement process is to find a setting of ���	� that 

will minimize the difference ��	� in some sense. Selection of the criterion is 
influenced by our prior knowledge and by some user-specific considerations. 

If the quantities and the channel characteristics can be described by random 

processes, then, assuming a multitude of experiments and measurements, the 

minimization of certain moments of (1.29) (in most cases the expected value 

of the squared difference) can offer a solution. If we do not have such prior 

information, then deterministic criteria are applied.  

After minimization, we get the optimum value of ���	�, which, 

according to the selected criterion, is the best approximation of the 

measured ��	�. Having this, we can undertake to solve equation (1.28). At 
this point, it is important to emphasize that to find the optimum setting of ���	�, we need at least as many measured values as unknown state 

variables or parameters. To reduce the effects of noise and other 

disturbances, measurement technology processes typically use more data, 

as the number of unknowns and measurements may run parallel, providing 

additional data to consider. This leads to matrix ��	� not being quadratic; 

therefore, its immediate inversion is not possible.  

An expedient solution of the above problem can be summed up as 

follows: We observe 	 data, G�H�, H  %<�<I < 	 � �, and these values are 

ordered into the 	-dimensional vector3 ��	�, which is a function of the 

                                                        
2 The matrix ��	� of model (1.28), in accordance with the previous developments, 

relates the estimate of the state variable (here considered to be constant) to the 
estimate of the values measured at the output of the system. The output vector of the 
system, in contrast with previous cases, consists of a sequence of measured values, 
each element of which is estimated by the scalar product of the estimate of the 
unknown state variable and the appropriate row of matrix ��	�. 
3 The observed value G�H� can be replaced by its arbitrary mapping J�G�H��: in this 

case this latter one is considered to be the observed value. 
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unknown vector �� The argument 	 of vector ��	� equals the number of the 

observed values and identifies the time instant to which we assign a result 

based on the 	 observed value, and at which we perform a new observation 

resulting in the value indexed by 	 
 �. The dimension of the parameter 

vector is chosen by the designer. In accordance with the above proposition, 

we suppose a linear model underpinning the observed values, i.e. we assume 

that the observed values are linear combinations of unknowns. The weights 

of these linear combinations are arranged in the observation matrix ��	�, 
where the number of rows is equal to the number of observations and the 

number of columns is equal to that of the number of parameters. 

The value of the unknowns will be arranged in vector ���	�. Then, we 

investigate the relation of the true observations and the estimates of 

observation computed from the parameter estimates. Perfect agreement 

cannot be expected due to the uncertainty of the observations and of the 

model. However, we can look for, in some sense, an optimal 

correspondence. A frequently used variant is the least squares (LS) 

estimate ��KL of unknown vector �. In the following we will show that this 

problem requires the solution of a set of linear equations; a recursive form 
of the estimation is also possible. Based on the above, the relation of the 

observation and the model of the actual observation can be expressed as:  

 

 ��	�  ��	����	� 
 ��	� (1.30) 

 

where vector ��	� stands for the difference between the true observation 

and the model of the observation, which is due to measurement and 

modelling errors. 

Using the selected criterion, the value of ���	� will be optimal if ��	� 

reaches its minimum in a (weighted) squared sense: 

 

 M��< ��< 	�  �0�	�?�	���	�  ���	� � ��	����	� 0?�	����	� � ��	����	�  (1.31) 

 

Here, M��< ��< 	� denotes the cost-function; at the minimum value of ���	��is 

the optimum estimate of unknown �. ?�	� is a symmetric weighting 
matrix, with the help of which, if needed, a fine-tuning of the criterion is 

possible.  

At the minimum of (1.31), we have: 

 

 ;M��< ��< 	�;���	� N��OP  #� (1.32) 
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the details of (1.31) are 

 

 M��< ��< 	�  �0�	�?�	���	� � =��0�	��0�	�?�	���	� 
��0�	��0�	�?�	���	����	�< (1.33) 

 

and finally, the derivative is 

 
 ;M��< ��< 	�;���	� N��OP 

 �=�0�	�?�	���	� 
 =�0�	�?�	���	����	�Q��OP  #� (1.34) 

 
From (1.34), we get a set of linear equations: 

 

 �0�	�?�	���	���KL�	�  �0�	�?�	���	�< (1.35) 

 

the solution of which is equal to:  

 

 ��KL�	�  ��0�	�?�	���	� �R�0�	�?�	���	�� (1.36) 

 

This expression is an explicit result, which, based on 	 observations and 

under the given conditions, gives an optimum estimate. The minimum 

value of the cost-function is:  

 

 M��< ��< 	�QST(  �0�	�?�	����	� � ��	���KL�	�  (1.37) 

 

The linear observation model of (1.30), the criterion of (1.31), and the 

estimate made using (1.36) provide a uniform execution framework for the 

following estimation methods (Kay 1993): 

 

- The minimum variance unbiased estimator (MVU), where ��	� 
represents Gaussian noise. If the density function of the noise is normal 

and is characterized by U�#< VWE�, then ?�	�  E, and the density 
function of the estimator is also normal; it can be characterized by U���< VW��0�	���	� ���. If the density function of the noise is 

characterized by U�#<:�, then with ?�	�  :�� the density of the 

estimate is given by U���< ��0�	�:����	� ���. 
- The maximum likelihood (ML) estimator provides the same result, if 

the observation model is linear, and ��	� models Gaussian noise. This 
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estimate is also called a Gauss-Markov estimate. 

- The best linear unbiased estimator (BLUE), where ��	� models zero 

mean noise with covariance matrix :; otherwise the density function of 

the noise is arbitrary. In this case, ?�	�  :��, and the covariance 

matrix of the estimate is ��0�	�:����	� ��. 

- The least squares (LS) estimate, where ��	� probabilistic assumptions 

are not available or applied.  

1.2.4 Recursive evaluation of measurement processes  
based on observation models 

In the following, the possible recursive evaluation of expression (1.36) is 

presented. The significance of these methods is that, having a new 

observation, the calculation of the new estimate is performed as a 

correction of the previous estimate, which can be computed efficiently, 

and thus real-time evaluation becomes a viable option. In our case, in 

dealing with recursive expressions it is a question of key importance how 

efficiently ��0�	 
 ��?�	 
 ����	 
 �� �R with the help of ��0�	�?�	���	� �R can be expressed. 
To enable comparison of the expressions, in the following we again 

introduce the notation -�	� as follows: 

 

 ��0�	�?�	���	� ��  -�	� (1.38) 

 

The question remains: how can we express -�	 
 �� using -�	�? The 

solution is given by the application of the following matrix inversion 

lemma (Woodbury 1950): 

 
 �� 
 F�X ��  ��� � ���F���� 
 X���F ��X��� (1.39) 

 

(1.39) can be evaluated efficiently, if F�X is a dyadic product, because 
in this case the right-hand side of (1.39) can be computed without matrix 

inversion, since ��� is known from the previous iteration. The 

consequence of this criterion is that matrix � in (1.39) is a scalar value. 

Obviously, from a computational point of view, all those cases where 

dimension matrix � is much lower than matrix � are advantageous. 

In the following, we consider only those cases where F�X can be 

written as a dyadic product. This can be done only if matrices ?�	� and ?�	 
 �� have special forms. We will show three cases: 
 

 EBSCOhost - printed on 2/14/2023 6:11 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter One 
 

20 

A) ?�	�  �?�	 
 ��  E 
 

Thanks to a new measurement, G�	�, the observation model is extended by 

a new value: 

 

 ��	 
 ��  Y��	�G�	�Z  ��	 
 �����	 
 �� 
 ��	 
 �� 

 Y��	�[�	�Z ���	 
 �� 
 ��	 
 ��� (1.40) 

 

The observation matrix ��	 
 �� has 	 
 � rows and as many columns 

as unknowns. The dimension of the row vector4 [�	� is given by the 

number of unknowns. Based on (1.36): 
 

 ��KL�	 
 ��  ��0�	 
 ����	 
 �� ���0�	 
 ����	 
 ��� (1.41) 

 

If we put �  -���	�, F  [0�	�, X  [�	� and �  � into (1.39), 

then: 
 

 ��KL�	 
 ��  ��KL�	� 
 ��	��G�	� � [�	���KL�	�  (1.42) 

 ��	�  -�	�[0�	�� 
 [�	�-�	�[0�	� (1.43) 

 -�	 
 ��  �E � ��	�[�	� -�	� (1.44) 

 

B) ?�	�  \H]^_`a<`�<I < `(��b, ?�	 
 ��  \H]^_`a<`�<I <`(��<`(b 
 

In this case also, thanks to the new measurement, G�	�, the observation 

model is extended by a new value (see (1.40)): 

 

 ��	 
 ��  Y��	�G�	�Z  Y��	�[�	�Z ���	 
 �� 
 ��	 
 ��� (1.45) 

 

Based on (1.36): 

                                                        
4 The row vector [�	� is used to compute the estimate of the scalar observation G�	� 
as a scalar product: G8�	�  [�	����	 
 ��.The argument �	 
 �� of the estimated 

unknown indicates that the estimation is based on 	 
 � observed values. 
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 ��KL�	 
 ��  ��0�	 
 ��?�	 
 ����	 
 �� �R B �0�	 
 ��?�	 
 ����	 
 ��� (1.46) 

 

If we put �  -���	�, F  [0�	�, X  [�	� and �  (̀ into (1.39), 
then: 

 
 ��KL�	 
 ��  ��KL�	� 
 ��	��G�	� � [�	���KL�	�  (1.47) 

 ��	�  -�	�[0�	�� (̀c 
 [�	�-�	�[0�	� (1.48) 

 -�	 
 ��  �E � ��	�[�	� -�	� (1.49) 

 

It is worth comparing equations (1.47)–(1.49) to equation (1.21), since, 

in the case of variant observation (regression) vector (�  ��	�) and 

scalar observation, after replacing �  E, 9�	�  #, :�	�  V(W, we get 
rather similar equations: 

 
 ���	 
 ��  ���	� 
 ��	����	� � ��	����	�  ���	� 
 ��	���	� ��	�  -�	��0�	�V(W 
 ��	�-�	��0�	� -�	 
 ��  �E � ��	���	� -�	� 

(1.50) 

 

Conditions �  E and 9�	�  # mean that the unknowns do not 

change during observation. Here, vector ��	� serves as a regression 

vector, which can be derived in various ways and -�	� is the “covariance” 
matrix of the parameter estimation -�	�  ./!�	�!0�	�1, where !�	� �def � ���	� is the parameter error, i.e. the difference between the 

optimum and the estimated values. The result corresponds to a recursive 

estimate, where:  

 

 ?�	�  :��  �\H]^_VaW< V�W<I < V(��W �b ��. (1.51) 

 

Thus, we conclude that the Kalman predictor structure can also be used 

for evaluating estimations based on observation models.  

C) ?�	�  \H]^_g(��< g(�W<I <�b, ?�	 
 ��  \H]^_g(< g(��<I <�b 
In this case, thanks to the new measurement, G�	�, the observation model 

is extended by a new value (see (1.40)): 
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 ��	 
 ��  Y��	�G�	�Z  Y��	�[�	�Z ���	 
 �� 
 ��	 
 ��� (1.52) 

 

Based on (1.36) also in this case: 

 

 ��KL�	 
 ��  ��0�	 
 ��?�	 
 ����	 
 �� �R B �0�	 
 ��?�	 
 ����	 
 ��� (1.53) 

 

If we put �  g-���	�, F  [0�	�, X  [�	� and �  � into (1.39), 
then: 

 

 ��KL�	 
 ��  ��KL�	� 
 ��	��G�	� � [�	���KL�	�  (1.54) 

 ��	�  -�	�[0�	�g 
 [�	�-�	�[0�	� (1.55) 

 -�	 
 ��  �g �E � ��	�[�	� -�	� (1.56) 

 

(1.54) to (1.56) are equations for the exponentially weighted LS estimate. 

In the case of equations (1.44), (1.49), and (1.56), the initial value of -�	� is to some extent an open question. The answer can be given starting 

from the definition (1.38) by estimating the approximate value of -�	� for 

small 	 values.  

The methods discussed in this section can also be used if vector ��	� is 
a function of observations and the linear model is set up assuming this 

function. This is the case when we recursively estimate the moments of 

random variables, as presented in the next section.  

1.2.5 Recursive estimations if the unknown  
quantity is a single value 

Even if we do not consider this as a solution to an equation, all those 

estimations can be interpreted in a manner similar to that described in the 

previous section, where a single value is assigned to a set of observations by 

computing a linear combination of the observed values with weights 

depending on the number of observations. Typical examples include 

estimations of different moments of random variables. The most widely used 

assignment is the computation of the linear average. In this case:�G8�	� ��	����	�  �� � h � 0���	�, ?�	�  E, ��0�	�?�	���	� �� �i	 and �0�	�?�	�  �0�	�, which starting from (1.36), results in: 

 EBSCOhost - printed on 2/14/2023 6:11 AM via . All use subject to https://www.ebsco.com/terms-of-use



 Structure and Interpretation of Model-Based Signal Processing  
 

23 

 j8KL�	�  �	 kG�H�(��
Tla � (1.57) 

 

In this case, -�	�  �i	, therefore in (1.43) ��	�  �i�	 
 ��, and 

from (1.44) -�	 
 ��  � �	 
 ��m ; as such, the recursive form of (1.57) 
is: 

 

 j8KL�	 
 ��  j8KL�	� 
 �	 
 � �G�	� � j8KL�	� � (1.58) 

 

In (1.57) and (1.58), the assigned value is a scalar, since the 

“unknown” is a scalar value. The derivation of (1.58), similar to several 

recursive formulations, does not require the recursive evaluation of a set of 

equations: it is easily and straightforwardly found starting from (1.57). The 

reason we have followed the previous approach is simply to show the 

applicability of the uniform execution framework presented for a simple 
case.  

Expression (1.57) is the estimate of the expected value. It is defined 

according to the given preconditions. Its recursive evaluation is justifiable 

for all those procedures where processing is performed in parallel to the 

observation and estimates of the different moments of the random 

variables are also required. Applying the recursive form of (1.57), the 

recursive LS estimate of the arbitrary moment (n�KL�	�) is possible, the 

only difference being that the observed G�H� values are replaced, n�H�. 

Thus, replacing e.g. n�H�  GW�H�, we get the expected value of the 
squared inputs. In general:  

 
 n�KL�	 
 ��  n�KL�	� 
 �	 
 � �n�	� � n�KL�	� � (1.59) 

 

In the case of linear averaging, and all the computations having the same 

structure, the weights of the observed values change, step by step, as is given 

in (1.58) and (1.59); consequently, the weight of the correction term, i.e. the 

“significance” of the new observation also gradually decreases. 

It may be proposed that the weight of the newer observation, and thus 

the weight of the correction term, is constant, while, similar to the 

weighted LS estimation, the weights of previous observations decrease 

step by step. We can meet our expectations if, for the recursive 
computation (by selecting the constant weight of the correction term as % � o � �), we use the following expression: 
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 j8�	 
 ��  j8�	� 
 o�G�	� � j8�	�  �� � o�j8�	� 
 oG�	� (1.60) 

 
The non-recursive computation corresponding to (1.60) is: 

 

 j8�	 
 �� 
 o k�� � o�(�TG�H�  o��� � o�( �� � o�(�� I � pG�%�G���qG�	�r �(

Tla  
(1.61) 

 

Expressions (1.60) and (1.61) implement exponential averaging, 

which, as with linear averaging, can be generalized for functions of 
observations. The values calculated using (1.60) and (1.61) can be 

considered LS estimations, if the model of observation for 	 
 � values 

has the form of: 

 
 ����	 
 ��  ��	 
 ��j8�	 
 �� 

 �o s �� � o�W�(�T�(Tla p �� � o�(�� � o�(��q� r j8�	 
 �� 
(1.62) 

 

If we follow the preceding steps, the solution of (1.62) for j8�	 
 �� 

will result in (1.61). 

It is interesting to see how the simplest measuring process, the simple 

averaging of the observed values, fits the observer structure. The 

expressions corresponding to (1.57) and (1.58), using the notations of Fig. 

1-5 (for scalar values), are:  

 

 j8�	�  �	 k G�t� u j8�	 
 ��(��
vla  �	 
 �k G�t�(

vla  

 		 
 �j8�	� 
 �	 
 �G�	�  j8�	� 
 �	 
 � �G�	� � j8�	�  (1.63) 

 

(1.63) describes an observer with special parameters:  

 

 �  �  �, ��	�  � �	 
 ��m , and ��	� w %, if 	 w x.  (1.64) 
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Its block diagram is: 

 

Fig. 1-8. Block diagram of the recursive form of linear averaging. 

1.2.6 Frequently used linear observation models 

In many cases, measuring processes can be interpreted as model fitting, 
since their aim is to describe the real world, corresponding to set criteria as 

accurately as possible. The essence of this concept is summarized in Fig. 

1-9. A novelty with respect to the previous development is that both the 

real world and the model receive a common excitation (see figure), the 

discrete samples of which are denoted by y�	�. Errorless modelling of the 

real world is not possible due to the noise or disturbance represented by 

the discrete sequence `�	�.  

 
Fig. 1-9. The task of model fitting. 

 

Typically, the fitted model consists of two parts. The first part 

generates the weights (the so-called regression vector) of the observation 

model. The second is the observation model itself, which produces the 

linear combination of the model parameters and the weighting factors (see 

Fig. 1-10). In the figure, z�y� assigns the � dimensional regression vector [�	� to the actual, and possibly to the previous, samples of y�	�. This part 
is fixed and does not change during the measurement process; this is a 

decision of the designer.  

�� j8�	 
 ��
G�	� G8�	� 

j8�	� �	 
 � {�� 

-1 

Optimum setting  G8�	� 

`�	� y�	� G�	� 
Real world 

Model 

Criterion 

function 
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Fig. 1-10. Model, linear in the fitted parameters. 
 

Vector [�	�  �|a�	�< |��	�<I < |$���	�  is a row vector, which 

weights the elements of the unknown column vector as: ���	�  �j8a�	�< j8��	�<I < j8$���	� 0 

to generate the estimate G8�	� of the observation. If we use (1.42)–(1.44), 

then we get the estimate of the unknown optimum in the least squares (LS) 

sense. 

 
Some examples: 
 
1. Polynomial regression:  

 [�	�  ��< y�	�< yW�	�< I < y$���	� < (1.65) 

i.e. a polynomial of y�	� is fitted to the unknown, from which storage 
of energy or dynamic behaviour is not expected. Its special case is 

linear regression when [�	�  ��< y�	� . 
 

2. Curve fitting:  

 [�	�  ��< 	< 	W<I < 	$�� < (1.66) 

i.e. [�	� consists of the components of the polynomial of the discrete 

time index.  

 

3. The observed signal contains a known component }�	�. ���	� ��	����	� 
 }�	�. The solution is the same as above for the estimate ��~�	�  ���	� � }�	�  ��	����	�. 

|$���	� 

|��	� 

|a�	� 

j8$���	� 

j8��	� 

j8a�	� 

Seeking the optimum 

G8�	� y�	� 

|$���	�
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|a�	�

j8$���	�
j8��	�

j8a�	�  
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4. Fitting finite impulse response filters: 

 [�	�  ��y�	�< y�	 � ��<I < y�	 � � 
 �� < (1.67) 

i.e. the regression vector consists of the actual and previous samples of 

the input. In this case, the mapping z�y� is a dynamic system, which 

implements a delay line.  

 

It is interesting to note that the non-recursive expressions of the 

optimum setting can be rewritten as:  

 

 �0�	���	�  k [0�t�[�t�<(��
vla ��0�	���	�  k [0�t�(��

vla ��t� (1.68) 

 

which can be related to estimates of autocorrelation and cross-correlation:  

 

 �	�0�	���	�  :����	�< �	�0�	���	�  :����	�< (1.69) 

 

i.e., to determine the unknown parameters we estimate the autocorrelation 

matrix of y�	� values and the cross-correlation matrix/vector of y�	� and G�	�; thus (1.36) (with ?�	�  E) can be written in the following form: 

 

 ��KL�	�  �:����	���R:����	�� (1.70) 

 

Equation (1.70) recalls the Wiener-Hopf equation (Widrow and Stearns 

1985), which gives optimum parameters, in the least squares sense, if the 

corresponding correlation matrices are known. Since the correlation matrix 

to be inverted is modified at every step by a dyad (see the structure of the 

first term of (1.68)), the recursive evaluation of (1.70), in parallel with the 

“continuous” estimation of the correlation matrices, results in an efficient 
approximate solution of the Wiener-Hopf equation. We can consider the 

combination of the recursive evaluation of :����	� with exponential 
weighting. 

Remarks:  

In real-time data processing recursive evaluations play a significant role. 
In most of the applications computation times cannot be neglected and to 

meet the requirements for evaluation we need extra considerations. For 

example, in the case of Fig. 1-10, the simultaneous availability of y�	� and G8�	� can be provided only if computation of G8�	� is based on previous 
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input values. Although this requirement is rarely emphasized in the 

literature, in the subsequent sections we attempt to meet it. 

1.2.7 Evaluation of nonlinear observation models 

If our observation model is nonlinear:  

 

 ���	�  }����	�� ' ��	����	�< (1.71) 

 

then the resulting nonlinear optimization problem can only be solved 

numerically, with few exceptions. A usual method involves the iterative 

solution to the equation “the derivative of the criterion function equals 
zero” by applying the Newtonian method:  

 

 ;M����	��;���	�  ;;���	� _���	� � }����	���0���	� � }����	���b 
 �=;�}0����	���;���	� ���	� � }����	���  �=�����	��  # 

where �����	��  ;�}0����	���;���	� ���	� � }����	��� 
(1.72) 

 

The roots of �����	�� applying the Newtonian method (t  %< �<I �: 

 

 ��v~��	�  ��v�	� � �;�����	��;���	� ��R����(�l����(� ����v�	��� (1.73) 

 

Note that this method can be applied in the case of every differentiable 

criterion function having a finite global minimum. A quadratic nature is not 

necessary; however, solutions related to local minima should be excluded. 

Another feasible approach can be found in the linearization of the 

observation model }����	�� in such a way that the small environment of 

the actual estimate ��#�	� is expanded into a Taylor series, and the higher 

order (higher than one) terms are neglected: 

 

 EBSCOhost - printed on 2/14/2023 6:11 AM via . All use subject to https://www.ebsco.com/terms-of-use



 Structure and Interpretation of Model-Based Signal Processing  
 

29 

 ���	�  }����	�� � �}���a�	�� 
 ����a�	������	� � ��a�	� < 
where ����a�	��  ;}����	��;���	� N���(�l����(� 

(1.74) 

 

With the introduction of this linearized observation model, and 

assuming a quadratic criterion function, we can compute an approximate 

LS estimate. For the sake of simplicity, let us use ?�	�  E. Here, as 

previously, 	 denotes the number of observations and, at the same time, is 

considered to be a time index. The iterative solution (t  %< �< I � based 
on the linearized model is:  

 

 ��v~��	�  ��v�	� 
��0���v�	������v�	������0���v�	�����	� � }���v�	���,  
where ����v�	��  ;}����	��;���	� N���(�l����(� 

(1.75) 

 

A further possibility involves the expansion of the (not necessarily 

quadratic) criterion function M��< ��< 	�  M����	�� into a Taylor series: 

 

 M����	��  M���a�	�� 
 ;M����	��;���	� N���(�l����(� ����	� � ��a�	�  

�= ����	� � ��a�	� � ;WM����	��;��W�	� N���(�l����(� ����	� � ��a�	� 
 h 

and for further notation 

 ;M����	��;���	� N���(�l����(�  �M���a�	��@�� 
;WM����	��;��W�	� N���(�l����(�  ����a�	�� 

(1.76) 

 

We are looking for the minimum position of M����	�� using the 

condition �M�����	��  #. An approximate solution is easily attainable 

based on the second and the third terms and neglecting the others. By 

setting an initial estimate �����a�	�:  
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 �M�����	��  ����a�	�������	� � ��a�	�  # (1.77) 

 
from where 

 

 ����a�	������	�  ����a�	����a�	� � �M0���a�	��< (1.78) 

 

and finally, the iterative procedure 

 

In the following, we do not consider further methods of evaluating 

nonlinear observations, only the rich background literature is referred to 

(Kay 1993; Ljung 1987). 

1.2.8 Measurement processes using sliding-window methods 

Methods that process observations “visible” through a fixed-size window, 

which moves ahead in every time-step, form a special class of 
measurement processes: in every time-step we include a new observation 

and simultaneously omit the oldest one. 

The decision to follow this strategy is made by the designer of the 

measuring process. The reasons for choosing this strategy are based on 

various considerations. For example, the phenomenon to be observed may 

be of limited time duration and can be investigated more easily within a 

fixed-size time window than as part of a longer record. Alternatively, the 

operating conditions of the real world may change leading to older 

observations losing their relevance.  

If more accurate measurements are required, the simultaneous 

consideration of more observations, and thus the application of a larger 
window size, cannot be avoided. In such a scenario the recursive 

evaluation of these computations may also be a concern. In these methods, 

recursivity means that the inclusion of a new observation does not require 

computations for the whole block, because previous results can be reused.  
In the following, the general framework of such methods is presented 

in two steps. Firstly, as above, procedures for data reduction are discussed, 

followed by an introduction of recursive transformations. The structure of 

the observation equation corresponds to (1.28). It is important to note that 

the number of rows of the observation matrix equals the window size and 

does not increase with the number of observations. 

Here, the unknown state(-vector) or parameter(-vector) can also be 
interpreted as the solution of an equation (a set of equations). As such, we 

 ��v~��	�  ��v�	� � �����a�	������M0���v�	��<t  %< �< I (1.79) 
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are looking for expressions that can be considered the inverse of the 

observation model and can be evaluated recursively.  

Recursion in sliding-window calculations 

The time-index of the unknown is 	; the time index of the last observation 

within the window of size � is 	 � �; and the time index of the oldest 

observation is 	 � �. The unknown can be expressed as: 

 j8�	�  ��G�	 � ��< G�	 � =�< I < G�	 � ���< (1.80) 

where ��I � represents a mapping considered to be the inverse of the 

observation model. To get a recursive evaluation we need a function that 

gives j8�	 
 �� based on the observation G�	� and estimation j8�	�, while 

omitting G�	 � ��, which falls outside the window. For so-called first-
order recursion (Unser 1983), if the unknown value can be formulated as: 

 j8�	�  | k J�G�	 � � 
 H��$��
Tla ��T  |��$ k J�G�	 � t���v$

vl�  (1.81) 

where | is a constant, J�I � is an arbitrary function, and � is a complex 

value, then it can also be written as: 

 j8�	 
 ��  �j8�	� 
 |��$~��J�G�	�� � J�G�	 � ����$�� (1.82) 

The proof can be made straightforward by substituting j8�	� in (1.82) 

with (1.81). If the above conditions are met, then the computational load of 

(1.82) can be much lower than that of the non-recursive evaluation. 

Starting from (1.81), we express the non-recursive form of j8�	 
 �� as: 

 j8�	 
 ��  |��$~� k J�G�	 � t���v$��
vla | k J�G�	 � t���v�$~��$��

vla  

(1.83) 

From this, it is easy to realize that the measuring process is nothing more 

than the computation of the weighted average of the J�G�	�� values, 

where the weights are composed from the powers of the complex value �. 
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The coefficients in (1.82) are constants, thus we can define the transfer 

function of this weighting averager, with the input sequence /G�	�1 �	  %<�<I �: 

 ��{�  |{����$~� �� � �{����$ � � {���  

 |���$ � {�$ {���� � {��� 

(1.84) 

This transfer function represents a finite impulse response (FIR) 

system, thus its nominator can be divided by its denominator polynomial. 

Since the roots of the nominator are ������ S
, n  %< �<I < � � �, the root 

corresponding to n  % is cancelled by the root of the denominator. In 

practical applications, typically Q�Q � � settings are applied. 

Some widely used expressions: 

Sliding-window estimation of the average of the observations (|  �i�, �  �, J�G����  G���): 

 j8�	 
 ��  �� k G�	 � � 
 H�  j8�	�$��
Tla  


 �� �G�	� � G�	 � �� � 
(1.85) 

The transfer and magnitude characteristics corresponding to (1.85) (see 

also Fig. 1-11): 

 �a�{�  {��� � � {�$� � {��  �� �{�� 
 {�W 
 h
 {�$�<�
Q�a����Q  �� ��H	 ��= ����H	 ��=���� (1.86) 
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Fig. 1-11. Magnitude characteristics of the sliding-window averager. 

 
Sliding-window estimation of the �-th moment of the observations 
(|  �i�, �  �, J�G����  G����): 

 n���	 
 ��  �� k G��	 � � 
 H�  n���	�$��
Tla  


 �� �G��	� � G��	 � ��  
(1.87) 

Sliding-window estimation of the n-th component of the discrete Fourier 
transform (DFT) (|  �i�, �  ����� S

, J�G����  G���): 

 j8�n< 	 
 ��  �� k G�	 � � 
 H����W $ ST$��
Tla  

=j8�n< 	������ S 
 ¡¢��� £$ �G�	� � G�	 � �� < 
(1.88) 

where n  %<�<I� <� � ��� 
The transfer function corresponding to (1.88) ({S  ����� S

): 

1 

1 

1 

�� 

�� 

�� 

¤ 

¤ =¤ 

�  ¥ 

�� ��H	 ��= ����H	 ��=���� 

�H	 ¦�= ��§ 

�H	 ¦�= ��§ 
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 �S�{�  {S{��� � � {�$� � {S{�� 

 �� �{S{�� 
 �{S{���W 
 h
 �{S{���$ � (1.89) 

Fig. 1-12 shows the block diagram/signal flow when computing the 

recursive discrete Fourier transform for all � coefficients. This is a single-

input, � parallel output filter-bank, at the outputs of which the discrete 

Fourier transform of the last � input samples can be read.  

Remarks:  

1. The signal flow in Fig. 1-12 is a Lagrange structure (Rabiner and Gold 

1975), which implements, in the frequency domain, a complete set of 

Lagrange polynomials. For the sake of real-time evaluability, all the 

channels have a one-step delay.  

2. All the channels of the Lagrange structure consist of a common comb 

filter (see (1.86) and Fig. 1-11) and a resonator, resulting in a complete 

set of bandpath filters. The centre frequencies are determined by the 
resonator poles; the transfer value at these frequencies equals the unity.  

Fig. 1-12. Sliding-window estimation of the DFT. 

In another case of first-order recursion, the unknown quantity can be 
written as: 

 j8�	�  | k J�G�H��(��
Tl(�$ ��T  |��( k J�G�	 � t���v$

vl�  (1.90) 

j8�� � �< 	� q q 

{a{��� � {a{�� 

{$��{��� � {$��{�� 

{�{��� � {�{�� �� �� � {�$� G�	� 

j8�%< 	� 

j8��< 	� 
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where | is a constant; J�I � is an arbitrary function; and � is a complex 

value. It can also be written as: 

 j8�	 
 ��  j8�	� 
 |��(�J�G�	�� � J�G�	 � ����$�� (1.91) 

The proof can be straightforwardly made through a simple substitution. 

The corresponding non-recursive form (as that of (1.83)) is:  

 j8�	 
 ��  |��( k J�G�	 � t���v$��
vla  

 | k J�G�	 � t�����(�v�$��
vla < (1.92) 

where the multiplier ��( is a function of the discrete time-step. The effect of 

this multiplication (in the case of a complex �) is frequency transposition. For 

example, for Q�Q  � it is easy to see that multiplication by ��( transposes a 

complex exponential /�(1 to zero frequency, i.e. it shifts the signal to the left 

along the frequency axis with the frequency value of the complex exponential 

itself. Therefore, the effect of (1.91) on the transposed J�G�	�� �	  %<�<I � 

can be characterized by the transfer function: 

 �a�{�  |{�� � � {�$� � {��  |�{�� 
 {�W 
 h
 {�$�< (1.93) 

which, if |  �i�, corresponds to the sliding-window averaging. 
The second-order recursion concerns the recursive forms of bivariate 

functions. If the unknown quantity can be written as:  

 j8�	�  | k J�G��	 � � 
 H�< GW�	 � � 
 H��$��
Tla �T (1.94) 

where | is a constant; J�� < � � is an arbitrary bivariate function; and � a 

complex value. It can also be written in the form: 

 j8�	 
 ��  �j8�	� 
|��$~��J�G��	�< GW�	�� � J�G��	 � ��< GW�	 � ����$�� (1.95) 
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As an example, see the recursive estimate of the correlation function: 

(|  �i�<�  �<J�G��	�<GW�	��  G�	�G�	 
 \�): 

 ©̈�	 
 �< \�  �� k G�	 � � 
 � 
 H�G�	 � � 
 � 
 H 
 \�$��
Tla  

 ©̈�	< \� 
 �� �G�	�G�	 
 \� � G�	 � ��G�	 � � 
 \� � 
(1.96) 

We also note that the recursive form of the two-dimensional discrete 

Fourier transform can be similarly derived.  

Recursive transformations 

The recursive transformations are (typically sliding-window) procedures 

that compute recursively � output data from � input data. They do not 

perform data reduction, as with previous recursive forms. In general, the 

transformation itself is the product of the N-dimensional input vector by an � � � transformation matrix. If all the rows of the transformation matrix 

follow the structure of (1.82), then:  

 j8�n< 	 
 ��  �Sj8�n< 	� 
|�S�$~��J�G�	�� � J�G�	 � ����S$�< (1.97) 

where n  %<�<I� < � � ��and the transformation can be evaluated 

recursively. If, for example, �S  {S  ����� S
, |  �i� and J�G���� G���, then we get (1.88). 

The conditions, where a sliding-window transformation takes recursive 

form, can be derived in a more straightforward way. In the following, 

based on the interpretation of Stuller (1982), such an alternative derivation 
and characterization is presented.  

Let us put the � observed values denoted by G�H� �H  	 � �< 	 � � 
�< I < 	 � �� into the �-dimensional vector ��	�, and the results of the 

transformation, the N transformed values j8�	<n� �n  %<�<I < � � ��, 

into the �-dimensional vector ���	�. Here, 	 stands for the discrete time 

variable, while m stands for the discrete transformed domain (“frequency”) 
variable. At the output, we keep the concept and notation of estimation, 

and the transformation is considered as an observation model. The 

transformation itself is a product with a non-singular � � �-dimensional 

matrix �  /2S(1: 
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 p j8�%< 	�j8��< 	�qj8�� � �< 	�rª«««¬«««���(�
 p 2aa2�a 2a�2�� h 2a<$��h 2�<$��q q ® q2$��<a 2$��<� h 2$��<$��

rª«««««««««¬«««««««««�l�¯� ¯° h ¯�±° 
p G�	 � ��G�	 � � 
 ��qG�	 � �� rª««««¬««««��(�

 
(1.98) 

In (1.98), to every discrete “frequency” m �n  %<�<I <� � �� we 

assign the scalar product of the n-th row of � and ��	�. The recursive 

formulation means that computation of ���	 
 �� can directly utilize the 

result of (1.98). Let us introduce a transformation �, implemented as a 

multiplication by�� � � matrices on both sides, which circularly advances 

the rows of matrix � as follows: 

 ����	�  p 2a<$��2�<$�� 2aa2�a h 2a<$�Wh 2�<$�Wq q ® q2$��<$�� 2$��<a h 2$��<$�W
rª««««««««««¬««««««««««��l�¯�±° ¯� h ¯�±� 
p G�	 � ��G�	 � � 
 ��qG�	 � �� rª««««¬««««��(�

� 
(1.99) 

Thus (1.99), with the exception of introducing the new G�	� and 

neglecting the unnecessary G�	 � �� values, will preserve the scalar 

products of (1.98) for every m. Based on (1.98) and (1.99), it can be seen 

that to compute ���	 
 �� both the new G�	� and the unnecessary G�	 ��� elements should be multiplied by vector ¯$��. Thus, the recursive 

transformation has the form: 

 ���	 
 ��  ����	� 
 �G�	� � G�	 � �� ¯$��� (1.100) 

Using (1.100) makes sense if it is advantageous from a computational 

point of view, i.e. where matrix � is sparse, or its elements are mainly %< � 

or ��. To explore the properties of matrix �, let us multiply the matrix � 

from the right by matrix F: 

 F  ²%q% E� % h %³ (1.101) 

to get 

 �F  �¯$�� ¯a h ¯$�W  ��< (1.102) 
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from which � equals 

 �  �F���< (1.103) 

being the known expression of similarity transformation. Since the 
eigenvalues of similar matrices are equal, starting from (1.101) the 

eigenvalues of matrix � equal the roots of ´$ � �  %, i.e. ´T ��W Ti$  �T, H  %<�< I <� � �.  

Remark:  

The parameter � introduced here can be related to that introduced in 

(1.81); however, this latter context has a wider range of possible 
applications to which we will return later. 

 

Using these eigenvalues, we can give the diagonal form µ of matrix �, 
and matrix � itself, respectively: 

 �  �µ���< where µ  ²� % h %% � h %q% q% ® qh �$��³. (1.104) 

The m-th row of matrix �, n  %<�<I < � � �, which is an inverse discrete 

Fourier transform of the n-th row of matrix �, i.e. �  �"��, where matrix "  R$ /��S(1 (n<	  %<�<I <� � �) is the matrix of the discrete Fourier 

transformation. The reason for this property is that the eigenvectors of F can 

be written as �T  �� �T h ��$���T 0 (H  %< �< I <� � �), and the 

matrix constructed from them is "��  /�S(1, therefore: 

 F  "��µ" and �  �µ��R  �"�Rµ"��R� (1.105) 

Due to the orthogonality of the basis and reciprocal basis vectors, the 

matrix of the inverse transformation equals the transposed conjugate of the 

transformation matrix multiplied by �: "��  �"0.  

If the transformation � is actually the DFT, then the transformation 

matrix equals �¶  ". This can be put into (1.105) resulting in �  µ, and 

the last column of the transformation matrix becomes ¯$�� �$ ��<�< I <�$�� 0  �$ µ��<�<I <� 0. Thus, the recursive Fourier 

transform ��¶�	 
 �� has the following form: 
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 ��¶�	 
 ��  µ��¶�	� 
 �� �G�	� � G�	 � �� µ ²��q�³� (1.106) 

It is worth comparing (1.106) with (1.82), which, after substituting |  �$, �$  � and J�G�	��  G�	�, becomes: 

 j8�	 
 ��  �j8�	� 
 �� �G�	� � G�	 � �� �� (1.107) 

Since condition �$  � means that the value of � can be any of the �-
th roots of unity, expression (1.107) is suitable for computing the elements 

of (1.106); i.e. (1.107) can be used to recursively evaluate the DFT.  

Returning to the general case, using (1.104) expression (1.100) becomes:  

 ������	 
 ��  µ������	� 
 ����G�	� � G�	 � �� ¯$��� (1.108) 

since 

 ���¯$��  ��"�R ��¯$��  "���¯$��  " ²%%q�³  �� µ²��q�³< (1.109) 

therefore 

 ������	 
 ��  µ������	� 
 �� �G�	� � G�	 � �� µ ²��q�³� (1.110) 

If we compare (1.110) with (1.106), we get: 

 ���	 
 ��  ���"�	 
 ��< (1.111) 

i.e. we can compute the general discrete transform in two steps. First, we 
implement recursive DFT, then we implement a multiplication with matrix � resulting in the transform ���	 
 ��. (Matrix � is derived from the rows 

of matrix � by taking its inverse Fourier transform (Ahmed and Rao 

1975)). We can recall Fig. 1-12, which is extended in this case by � linear 

combinations of the parallel outputs resulting in � output channels. 
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1.2.9 Summary: Recursive algorithms 

In this section, using the observer concept, we considered recursive 

measurement processes. The scheme of these computations is laid out in 
the following: 

new estimate  

= prediction based on previous estimate + correction based on new observation 

The previous estimate of the unknown quantity to be measured is the 

internal variable ���	� of the observer operating as a simulator of the real 

world. The predicted value is computed from this internal variable using 

the state transition matrix �. This computation is explicitly present in 

equations (1.3), (1.12), and (1.100); as well as by applying �  � in 

(1.82) and �  µ in (1.106). In these cases, we assume that, parallel to the 
measurement process, the changes in the unknowns in time and/or space 

can be described as state transitions. In the cases of (1.42) and (1.91), 

changes in the unknowns are not assumed and we suppose no change as 

expressed by �  E.  

In the case of expressions (1.3), (1.12) and (1.42), the correction is the 

weighted difference of the new measured value and its predicted value. 

The weight is derived from an appropriate optimum criterion.  

In the case of sliding-window solutions (see (1.82), (1.91), (1.100) and 

(1.106)) the correction is the properly weighted difference of the new 

measured value and the value that falls outside the window (the value to be 
neglected).  

1.3 Model-based signal representation and  
its recursive algorithms 

An important point in the previous subchapter is that the model of the 

observation is adopted by the observer that implements the measurement 

process. During its operation, the observer aims to simulate the real world 

and track its variables. 

In this subchapter, we deal with model-based signal representation. We 

apply the same approach to measure different features of signals. The 

essence of the observer approach here is that the signals are represented by 

systems capable of generating them and assuming such system models we 
create observers. The unknown values (signal features) can be derived 

from the variables of the observers, similar to the state variables 

previously presented.  
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1.3.1 Signal representation in signal spaces 

Signal spaces are generalizations of Euclidean space. To represent discrete 

time signals, the concept of linear vector spaces together with the 
definitions of distance, norm, inner product and basis, and reciprocal basis 

systems, proves to be enough (Halmos 1995). � basis vectors are capable 

of describing an � dimensional vector space, where they can also serve as 

coordinate system. In this space, any signal corresponds to an � 

dimensional vector, which can be represented as an appropriate linear 

combination of the basis vectors.  

In this framework, to measure a signal involves the estimation of the 

unknown weights. The model of the observation, i.e. the observation 

equation, is: 

 �  ��< (1.112) 

where � is a vector consisting of the weights of the basis vectors, the 

columns of matrix �  �[a [� h [$��  are the basis vectors, and � is 

a vector containing � samples of the observed signal. By applying the 

reciprocal basis vectors �S, n  %<�<I < � � �<�the solution of (1.112) is: 

 �  ��  ���< (1.113) 

where �4  ��a �� h �$�� . (Here � �4 denotes matrix 

transposition.) Expression (1.113) gives the discrete transformation of data 

blocks of length �. Here, �  �, i.e. the matrix of the transformation. 

1.3.2 Observers to compute signal parameters 

Based on the above considerations, we imagine the elements of vector �, 
i.e. the discrete observed values G�	�, 	  %< �<I <� � �, as outputs of a 

system the state variables of which are the unknown weights (Hostetter 

1980). We assume that these weights are constant; to indicate 

correspondence with the previous notation we denote them as ��	� �ja�	� j��	� h j$���	� 0. The basis vector values valid in the 	-th 

time instant are given by the appropriate rows of matrix �: [�	� �|a�	� |��	� h |$���	� . Thus, the equations describing the 

hypothetical signal generator system are: 

 ��	 
 ��  ��	�<��G�	�  [�	���	�� (1.114) 
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If we complete signal generation for the first � time instants, then we 

reach the end of the data block of the basis vectors. If we cyclically 

reapply them, keeping the weights unchanged, we will generate a periodic 

signal.  

The unknown weights are estimated by an observer. The state variables 

of the observer are ���	�  �j8a�	� j8��	� h j8$���	� 4, and the 

equation describing its operation (see also (1.3)) is: 

 ���	 
 ��  ���	� 
 ��	�[�	����	� � ���	� , 
 G8�	�  [�	����	�< (1.115) 

where ��	� stands for the gain vector of the observer to be set. The error 

system (see also (1.5)) is: 

 ��	 
 �� � ���	 
 ��  �E � ��	�[�	� ���	� � ���	� < (1.116) 

or, starting from the initial error: 

 ��	 
 �� � ���	 
 ��  ·¸�E � ��t�[�t� (
vla ¹ ���%� � ���%� � (1.117) 

The hypothetical signal generator system and the block diagram of the 

corresponding observer can be seen in Fig. 1-13. In this figure, the weights 

of the basis vectors, as initial values, are “stored” in zero-input discrete 
integrators. The time and frequency domain descriptions of the discrete 

integrators are as follows:  

 jS�	 
 ��  jS�	� 
 GT(f<S�	�, n  %< �<I<  � {��� � {��  {�� 
 {�W 
 h< (1.118) 

i.e. the input GT(f<S�	� is added to the previous value. If the input is zero, 

the output of the integrator is unchanged, i.e. it is capable of storing the 

initial value.  
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Fig. 1-13. The hypothetical signal generator and corresponding observer. 

The observer will converge in � steps if: 

 ¸�E � ��t�[�t� $��
vla  #� (1.119) 

This condition is fulfilled if the vector ��	�  �^a�	� ^��	� h ^$���	� 4 
is composed from the appropriate columns of matrix �, i.e. if /|S�	�1 and /^S�	�1, n<	  %< �<I < � � �, are basis/reciprocal basis pairs (Péceli 
1986). To prove this it is enough to see that in (1.117), thanks to the 

orthogonality of the basis/reciprocal basis elements, all the terms 

containing the product ��H�[�H���º�[�º� �H ' º� are zero, while the 

remaining terms fulfil: 

 ¸�E � ��t�[�t� $��
vla  E � k ��t�[�t�$��

vla  #� (1.120) 

To see the latter, it is enough to express the dyadic product ��t�[�t� for 

every t, and perform addition for every term, resulting in ��  E.  
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Finally, this means that after � steps, i.e. after processing � 

observations, the state vector �� of the observer (see Fig. 1-13) will equal 

the unknown weights. Consequently, we can reconstruct how the 

individual basis vectors (as discrete time signals) contribute to the 

measured signal. Theoretically, after convergence, all the variables of the 

hypothetical signal model and that of the structurally identical signal 

model (built into the observer) will be equal and therefore will produce 

identical outputs.  

Remarks: 

1. Continuation: Using the observer in Fig. 1-13, the observation can be 

continued after the first � steps. If we generate a signal by applying 

cyclic reuse of the bases, then we have the setting: 

 [�	�  [�	�n»\���, ��	�  ��	�n»\���, 	  %< ��< I (1.121) 

Due to (1.119), the results only concern the last � input samples, i.e. 

sliding-window processing is performed. If the state variables (the 
weights) of the hypothetical model remain unchanged, the same is true 

(after convergence) for the state variables of the observer. Any change 

in the weights causes a learning phase of � steps. To get exact 

measurement values, during measurement the weights must be kept 

unchanged.  

 

2. Interpretation of the discrete transformation ��  �� if sliding-window 
processing is applied: The hypothetical model of Fig. 1-13 produces G�	�, 	  %< �<I�, a discrete signal sequence, as a linear combination 
of periodically generated (standardized) signal components (the basis 

vectors). The weights of the linear combination, the elements of vector �� after convergence, are equal to the transform domain representation 

of the first � samples of the sequence G�	�. If we apply a sliding-

window evaluation this property changes. This is due to the circular 

reuse of the components of the basis system; the transform domain 

representation thus corresponds to the circularly phase-shifted basis 

vectors. The observer provides a series expansion as its state variables 

are, at every step, the weights of the last � input samples relative to the 

cyclically generated basis vector sequences. However, in every �-th 

step the state variables of the observer are equal to the discrete 

transform performed by matrix �, i.e. the result of the series expansion 

and the transformation are equal at every �-th step. 
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3. It is interesting to note that at the parallel outputs we do not lose 

information if we use only every �-th value, i.e. if we perform a 

sampling frequency reduction (decimation) by �. This is possible 

because of the data traffic conditions of serial-to-parallel conversion.  

 

4. This feature can be related to the second version of the first-order 

recursion defined by (1.90) and (1.91). Both perform complex 

demodulation followed by discrete integration/lowpass filtering, the 

results of which correspond to series expansion, and, at every �-th 

step, correspond to the discrete Fourier transform of the last � samples.  

 

5. The introduced observer structure can be used to compute transforms 

based on arbitrary basis/reciprocal basis systems. These transforms 

have the common feature of being serial-to-parallel converters that 

decompose the discrete input signals into parallel components. Based 

on the parallel components, further transforms and signal 

representations can be derived. Special basis/reciprocal basis systems, 

like the Walsh system, can help improve computational efficiency.  

 
6. Implementation of the discrete Fourier transform-pair: the basis/ 

reciprocal basis elements are: 

 ¼|S�	�  ����� S(½, ¼^S�	�  �$ ������ S(½< 
n<	  %< ��<I < � � � 

(1.122) 

The transform-pair itself is: 

  j8�n�  �� k G�	����W $ S(<$��
(la G�	�  k j8�n���W $ S($��

Sla < (1.123) 

where 	  %< �<I <� � � is the discrete “time-index”; and n %< �<I <� � � is the discrete “frequency-index”. In this case, the 

hypothetical model in Fig. 1-13 is a signal generator capable of 

generating periodic signals whose weighting coefficients can be 

interpreted as Fourier expansion coefficients. The observer, following 

the hypothetical model, generates the components of the periodic 

signal, and reconstructs the measured signal in � steps. The 

components appear at the outputs of the parallel channels of the 
observer.  
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It is a notable feature that the actual values of the components at the 

parallel outputs are equal to the discrete Fourier transform of the last � 

observations.  

The observer-based discrete Fourier Transform is referred to as a 

recursive DFT (RDFT). 

 

7. The cyclical application of the basis and reciprocal basis vectors of 

(1.122) implements frequency transposition. For example, if we 

multiply the complex time-function ¾����� S(
 by the reciprocal basis ^S�	�  �$ ������ S(

 (	  %< �<I ), the result is a zero frequency �n  %� signal with magnitude ¾ �m . Multiplication of a constant 

signal by the basis |S�	�  ����� S(
 (	  %< �<I ) results in a signal of 

frequency corresponding to index n. With this approach, every 

channel of the observer in Fig. 1-13 can be interpreted as demodulation 

(frequency transposition), discrete integration (lowpass filtering), 

followed by modulation (reposition to the previous frequency 

position); all these channels are located within a common feedback 

loop.  

 

8. The scalar product of the signal to be processed with the reciprocal 

basis vector is the generalization of demodulation: the scalar (or inner) 

product appears at the output of the discrete integrators and indicates to 

what extent that component is present in the signal to be processed. 
The product of the integrator’s output with the samples of the basis 
vectors results in the reconstruction of the corresponding signal 

component.  

1.3.3 Derivation of resonator-based structures 

To implement the recursive DFT, a feasible method is to use a network 

consisting of delay elements, constant multipliers, and adders, since the 

eigenfunction of such networks is a complex exponential, i.e. this set of 
components is capable of generating complex exponentials. Let us start 

from the structure of the n-th channel in Fig. 1-13. For Fig. 1-14 we 

extracted from this channel the demodulator, the discrete integrator, and 

the modulator elements. The discrete integrator is visualized as a delay 

element with feedback. Let us rearrange this subnetwork in the following 

way:  
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Fig. 1-14. Derivation of resonators. 

Let us shift the multiplication with |S�	� into the feedback loop of the 
delay element. As a further step, let us shift this multiplication further 

ahead within the loop. Following these steps we get the required structure. 

In the case of the recursive DFT, this has advantageous properties because:  

 |S�	 
 ��|S�	�  ��W $ S  {S<^S�	�|S�	�  ���� 
n  %< ��< I <� � �� (1.124) 

With this rearrangement, the structure becomes independent of the 

discrete time index 	 and thus can be described in the frequency domain. 

The transfer function of the n-th channel becomes:  

 �S�{�  �� {S{��� � {S{�� < n  %< ��<I <� � �� (1.125) 

The subunit having this transfer function is called a resonator, since its 

pole is located on the unit circle, i.e. on the limit of stability. As an 

autonomous system it is capable of generating complex exponential 

discrete time sequences. Using the closed form of the geometric series:  

 �S�{�  �� {S{��� � {S{��  �� �{S{�� 
 �{S{���W 
 h�< 
n  %< ��<I < � � �< (1.126) 

^S�	�|S�	 
 �� 

|S�	 
 ��|S�	�  

× 

{�� × 

^S�	�|S�	� 

|S�	 
 ��|S�	�  
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describing a sequence of complex exponentials generated by pole {S in the 

time domain. The result of this rearrangement is bandpass filtering rather 

than demodulation-integration-modulation: the function of the discrete 

integrator is transposed to the frequency range determined by pole {S.  

The observer locates the � resonators operating at the stability limit in 

a common feedback loop, the channels of which can be characterized by 

the following transfer function:  

 �S�{�  �S�{�� 
 s �v�{�$��vla  ��� {S{��� � {S{��� 
 ��s {v{��� � {v{��$���vla  

n  %< ��<I < � � �. 

(1.127) 

The loop-gain of the observer at the frequencies determined by the 

resonator-poles is infinite; therefore, the overall transfer value is 

determined by the transfer of the feedback part, which, in this case, is 

equal to �. In (1.127), the common denominator of the denominator 

determines the zeros of �S�{�, equal to the resonator-poles except for {S, 

which is cancelled by the corresponding resonator pole (see (1.127)). 

Consequently: 

 �S�{�Q¿l¿£  �< �S�{�Q¿l¿À<¿Á¿£  %<�� 
n  %< ��< I < � � �� (1.128) 

By summing up the parallel channel outputs, the overall transfer 

function results in:  

 �Â�{�  s �v�{�$��vla� 
 s �v�{�$��vla  �� s {v{��� � {v{��$���vla� 
 ��s {v{��� � {v{��$���vla � (1.129) 

It is a notable property that �Â�{�Q¿l¿À  �, 	  %< ��<I <� � �. Since 

the observer is set to converge in � steps, it will therefore reconstruct the 

input signal without error. To have this property we need �Â�{�  {�$.  
If we multiply both the nominator and the denominator of (1.129) by Ã �� � {v{���  � � {�$$��vla , we get: 
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�Â�{�  s �v�{�$��vla� 
 s �v�{�$��vla  

 �� �� � {�$�s {v{��� � {v{��$���vla�� � {�$� 
 �� �� � {�$�s {v{��� � {v{��$���vlaª««««««««¬««««««««¿±�
 {�$� (1.130) 

To prove (1.130), we use:  

 
 k {v{��� � {v{��

$���
vla  k�{v{�� 
 �{v{���W 
 �{v{���Ä 
 h  $��

vla  

 ��{�$ 
 �{�$�W 
 �{�$�Ä 
 h   � {�$� � {�$ 

(1.131) 

 

since the sum of the �-th roots of unity and their integer powers is zero, 

apart from in the case of the �-th power. 

The investigation in (1.130) shows that the structure in Fig. 1-15 is an 

alternative realization of �Â�{�, which is identical in every respect to the 

Lagrange structure (see Fig. 1-12). The transfer function of the n-th 

channel, based either on that figure or on (1.127), is: 

 �S�{�  �� �� � {�$�� {S{��� � {S{�� <n  %< ��< I <� � � (1.132) 

Fig. 1-15. Alternative implementation of transfer function �Â�{�� 
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The sum of the channel transfer functions is: 

 

 �Â�{�  k �v�{�$��
vla  �� �� � {�$� k {v{��� � {v{��

$��
vla  {�$�� (1.133) 

Main features of the Lagrange structure 

1. The impulse response of the system described by (1.132) is the n-th 

basis vector, which consists of � samples. If n  %��{a  ��, then 

(1.132) is equal to the transfer function of that of the sliding-window 

averager (1.86).  

2.  Expression (1.132) describes a filter having the magnitude 

characteristics in Fig. 1-11, apart from the fact that its centre frequency 

may differ from zero; it is determined by the resonator pole {S. This 

frequency is equal to the sampling frequency multiplied by ni�. This 

filter passes the n-th component of periodic signals with period � and 

completely suppresses all the others—at the harmonic positions, the 

nominator of the transfer function is zero.  

3.  Expression (1.132) describes a sliding-window, finite impulse response 

(FIR) filter: its nominator can be divided by the denominator. Its 

nominator is a comb filter, the n-th tooth of which is cancelled out by 

the pole. The implementation of the nominator is very simple, as has 

been known for a long time (Rabiner and Gold 1975). 

4.  The structure of Fig. 1-15 is a Lagrange structure. It is capable of 
implementing Lagrange interpolation in the frequency domain 
(Rabiner and Gold 1975). The transfer functions of the individual 

channels correspond to Lagrange polynomials. Interpolation in the 

frequency domain is performed by a linear combination of the 

individual channel outputs.  

5.  Consequently, the Lagrange structure is applied (also) to implement 

finite impulse response (FIR) filters using the following formulation: 

 ��{�  k `v�v�{�$��
vla <� (1.134) 

i.e. by forming the linear combination of individual channel outputs. 

Since `S  ��{S�, n  %< �< I�< this approach is called a frequency-
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sampling method.  

6.  Expression (1.132) describes a system operating at the limit of stability 

since it consists of resonators, which are capable of producing an 

output signal if the input is zero, if its operation starts with a non-zero 

initial condition. Exact pole positioning may fail, resulting in a 

numerical problem, i.e. pole-zero cancelling will not be perfect.  

7.  To reduce numerical/stability problems, it is proposed that, instead of 

the realization of the polynomial � � {�$, we can realize the 

polynomial Ã �� � {v{���$��vla  as a product of individual factors; each 

factor is to be computed in the same way that the poles are. Perfect 

cancellation of an imperfect zero by a (similarly) imperfect pole may 
result in better overall performance.  

8. The zeros and poles of the structure are either real or appear as 

complex conjugate pairs. The conjugate of a complex resonator pole {S can be expressed as {S�  �¿£  {S��. For this reason, the transfer 

functions can be interpreted in the range �¤ � =¤ v$ � ¤, or 

equivalently in the range � ÆÇW � v$ zÈ � ÆÇW , where zÈ is the sampling 

frequency and index t, the identifier of the resonator positions takes 

values in the range � $W � t � $W.  

9. The model of the system generating the signal disappears from the 

structure described by (1.132) due to algebraic manipulations, therefore 
signal processing using this structure cannot be considered model 

based.  

Main features of a resonator-based structure with a common feedback 

1. Starting from the observer in Fig. 1-13, and applying the conversion 
introduced in Fig. 1-14, we get a resonator-based structure with a 

common feedback. Its main features are summed up in Fig. 1-16. The 

complex coefficient, first-order resonators are placed in a common 

negative feedback loop. Each channel realizes an FIR bandpass filter 

with a centre frequency determined by the corresponding resonator 

pole position. These channels decompose the input signal into 

components, which can be used in further signal analyses and 

syntheses. 
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2. Thanks to the �%%�É negative feedback, the secondary properties of 

the resonator-based structure are more favourable than those of the 

Lagrange structure. These favourable properties are rather similar to 

those of operational amplifiers with �%%�É negative feedback and the 

very high loop gain can result in very high accuracy.  

3. As is shown later, while this resonator-based structure with common 
feedback is suitable for all the tasks solved by the Lagrange structure, 

it offers extensions: (a) Lagrange interpolation based on arbitrary (but 

not coinciding) resonator pole positions; (b) implementation of 

arbitrary FIR and IIR transfer functions. 

4. In many cases, it is worth applying second-order, real-coefficient 

resonators, instead of first-order resonator pairs arranged as complex 

conjugate pairs. These second-order real-coefficient resonators can be 
derived by adding and subtracting the transfer functions of the first-

order complex conjugate resonators. In the case of addition, we get a 

channel output producing two times the real part of the corresponding 

resonator outputs; while in the case of subtraction we get another 

channel output producing two times the imaginary part of the 

corresponding resonator outputs.  

 

Fig. 1-16. Some features of the resonator-based structure having common feedback. 

1.3.4 The resonator-based observer as universal signal 
processing structure 

From the above, it can be seen how the signal-model-based observer (see 

Fig. 1-13) and the resonator-based observer (see Fig. 1-16) are capable of 

implementing discrete transforms. The first structure can provide outputs 
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for arbitrary discrete series expansion, as well as for producing coefficients 

of discrete transforms. The second one gives the DFT coefficients: an 

arbitrary transformation can be produced as a linear combination of the 

DFT outputs (see (1.111)). In the following, with proper selection of the 

resonator pole positions and the output weights we can extend the list of 

problems that can be solved using these structures (Péceli 1989). 
Let us generalize (1.125) in the following way: 

 �S�{�  ^S{��� � {S{�� <n  %< ��< I <� � �� (1.135) 

We can rewrite transfer function �Â�{�: 

 �Â�{�  s �v�{�$��vla� 
 s �v�{�$��vla  s ^v{��� � {v{��$���vla� 
 s ^v{��� � {v{��$���vla � (1.136) 

If we require finite-impulse response (FIR) behaviour, then we need to 

meet the following condition: 

 � 
 k ^v{��� � {v{��
$���
vla  �Ã �� � {v{���$��vla < (1.137) 

in this case (1.136) is a polynomial of {��, i.e. it has a finite impulse 

response. To have this property, the /^S1 and the ¼3S  Ë£¿£½ weights, n  %< ��<I < � � �, can be determined by the method of partial fraction 

expansion: 

 ^S  {SÃ �� � {v{S���$��vla<vÁS �< 3S  �Ã �� � {v{S���$��vla<vÁS  (1.138) 

FIR filters are realized following the frequency-sampling method, as 

the linear combination of the outputs of the individual channels (see 

equation (1.134)). 

Remarks: 

1. The resonator pole positions can be arbitrarily selected, but they should 

take different positions. (The case of multiple resonator poles will be 
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discussed in connection with Hermite interpolation.) 

 

2. If the resonator pole positions are the �-th roots of unity, then 3S  �$ 

for every n. 

If infinite impulse response (IIR) behaviour is required, and the ÌS, n  %< �<I < � � �< � � � poles to be realized are given, then the 

expressions corresponding to (1.137) and (1.138) are: 

 � 
 k ^v{��� � {v{��
$���
vla  Ã �� � Ìv{���&��vlaÃ �� � {v{���$��vla � (1.139) 

 ^S  {S Ã �� � Ìv{S���&��vlaÃ �� � {v{S���$��vla<vÁS � < 3S  Ã �� � Ìv{S���&��vlaÃ �� � {v{S���$��vla<vÁS  (1.140) 

Here again the output of the filter will be a linear combination of the 
individual channel outputs.  

Important properties of the recursive signal transformer, and that of the 

resonator-based signal processing structure, which can be used for both 

FIR and IIR filter realization, are as follows:  

(a) The signal is decomposed into components, from which signal 

synthesis is possible by forming a linear combination.  

(b) By adapting the weights of the linear combination, i.e. using 

methods introduced for observation models, transform-domain 

adaptive filtering or model-fitting can be implemented. 

(c) At the resonance frequencies, the loop-gain is infinite, therefore the 
parameter sensitivities of the transfer functions (Péceli 1988) at 

these frequencies, except for the weights of the output linear 

combination, are zero and the accuracy of the transfer function is 

influenced only by these weights.  

(d) With a systematic selection of the resonator pole positions, we get 

an advantageous computation scheme in terms of stability and 

numerical accuracy.  

Relation to the Lagrange and Hermite interpolation polynomials 

Lagrange interpolation: Let us take the values of a function at the 

positions /ja< j�<I < j$��1 of the independent variable Ga  G�ja�, G�  G�j��< I�, G$��  G�j$���. The Lagrange interpolation polynomial, 

which takes these values, is given by: 
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Í�j�  ¸�j � jv� k ]Sj � jS <$��
Sla

$��
vla  (1.141) 

where  

 ]S  GSÃ �jS � jv�$��vla<vÁS � (1.142) 

If we compare the corresponding expressions, it turns out that the 

frequency sampling method (see expression (1.134)) corresponds to the 

Lagrange interpolation and cannot only be used for the case of the �-th 

roots of unity. 

Hermite interpolation: If, at the position jS, we have �a�n� data to 

characterize the function (its value, the value of its first derivative, the 

value of its second derivative, etc.), then the Hermite interpolation 

polynomial is given by:  

 Í�j�  ¸�j � jv�$��v� k s ]STjT$��S���Tla�j � jS�$��S�
$��
Sla

$��
vla < (1.143) 

and the transfer function of the corresponding digital filter is: 

 ��{�  ¸�� � {v{���$��v� k s ¾ST{�T$��S���Tla�� � {S{���$��S�
$��
Sla

$��
vla  (1.144) 

the common zeros of which can be realized, similar to Lagrange 

interpolation, by the common feedback. The only difference is that every 

channel will contain as many serially coupled resonators as their 

multiplicity (Péceli and Simon 1996). 

Remarks:  

1. If in (1.129), instead of �i� we apply Îi�, where % � Î � �, then we 

combine the sliding-window transformation with exponential 

averaging. This means that the subsequent blocks of length � are 

averaged by a forgetting factor. In this case, (1.129) has the form:  
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�Â�{�  Î� s {v{��� � {v{��$���vla� 
 Î� s {v{��� � {v{��$���vla  Î{�$� � {�$ 
 Î{�$ 

 Î{�$� � �� � Î�{�$� 
(1.145) 

Expressed as a geometric series: 

 �Â�{�  Î{�$ 
 Î�� � Î�{�W$ 
 Î�� � Î�W{�Ä$ 
 h< (1.146) 

i.e. the samples N steps apart from each other are considered with an 

ever-decreasing weight in averaging. In the case of the individual 

channels, the very same effect results in the exponential averaging of 

samples of the filtered components calculated for blocks of length � 

(See Fig. 1-17). 

 
2. Starting from (1.81) and (1.82), most of the relations introduced above 

are also interpretable for “damped resonators”, i.e. if they are located 
within the unit circle. However, in these cases the benefits of the high 

loop-gain at resonance frequencies will be smaller.  

 

Fig. 1-17. Exponential averaging of data blocks. 

1.3.5 Signal synthesis using the resonator-based structure 

In Fig. 1-13, the hypothetical signal generator system is built up as the 

linear combination of cyclically repeated basis vectors where the weights 

of the linear combination are stored in zero-input discrete integrators as 

their initial value. (In an equivalent solution, the integrators at time zero 

contain zero value and their input at time zero is the required weight, 

otherwise zero.) 

The transformation of Fig. 1-14 can also be applied for the signal 

generator system, which, in the case of the DFT, results in complex-

Î Î�� � Î�W 

Î�� � Î� 
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coefficient first-order resonators capable of generating complex 

exponential signal components corresponding to the magnitude and phase 

provided by their initial values. In this case, signal synthesis is performed 

as a linear combination of these “oscillators”. 
It is noteworthy that the two types of signal generator system 

introduced above can also be used if the weighted samples after the first � 

values do not periodically repeat themselves. This happens in expressions 

(1.81) and (1.82) if the complex value � is not proportional or equal to 

any of the �-th roots of unity. For the resonator-based version, the 
parameters needed to meet possible requirements are given in (1.138) and 

(1.140). 

Signal synthesis based on resonators (without applying a common 

feedback), as with the Lagrange structure, suffers from stability/numerical 

problems. These problems can be avoided by the transposition of the 

resonator-based structure having a common feedback. The transposition of 

the resonator-based recursive DFT structure involves inverting the 

direction of the signal paths. Thus, we receive an �-input single-output 

filter. This can be considered a parallel-to-serial converter, where the input 

value (input “impulse”) located at the channel inputs at every �-th step 
weights the complex exponential basis function. As a result, the signal is 

composed as the linear combination of complex exponentials. (The 

response of the individual channels to the input impulse is the weighting 

function of the channel. This weighting function equals the corresponding 

basis function.) Using this solution, we implement the inverse discrete 

Fourier transform (IDFT) in recursive form. The common feedback 

ensures that individual resonators do not operate autonomously and their 

inaccuracies do not accumulate, as is the case for resonators without 

common feedback. 

Remarks:  

1. In principle, the transposing of the Lagrange structure in Fig. 1-12 is 

also suitable for signal synthesis.  

 

2. A signal synthesizer based on the transposed structure, together with 

the corresponding signal analyser, can be considered to form a 
generator-analyser pair, the synchronised application of which may be 

an efficient tool in the measurement technology of networks and signal 

transmission channels. This is because it can drastically reduce the 

distorting effects of numerical inaccuracies of signal generation and 

detection, since, due to its inherent structural properties, the numerical 

side-effects can compensate each other. (Due to the structural 
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identity/similarity, e.g. if the resonator position of the generator 

slightly differs from the theoretical value, the same will be true for the 

analyser resulting in an efficient compensation effect.)  

3. To apply the resonator-based structure with a common feedback for 

signal synthesis and analysis can be recommended primarily in 

situations where both the signal generation and the synthesis utilises 

the majority of the related basis-reciprocal basis vectors. In the case of 
excitation signals consisting of few harmonic components, or analysis 

based on a few analysis channels, solutions with lower computational 

loads may be preferable.  

4.  In the case of signals consisting only of odd harmonics, the 

basis/reciprocal basis system or transformation based on the �-th roots 

of �� might be of interest. In this case, the first basis vector is a half-
period complex exponential; the second one has a one and a half 

period, etc. The overall transfer function has the form �Â�{�  �{�$ , 

i.e. apart from the delay of � steps, it changes its sign. Such 

generalizations, starting from (1.84), can be made until the �-th roots 

of �$, i.e. the �-th roots of unity multiplied by � can serve as signal 
component generating values. Among these, the application of values 

providing some regularity (�  ��<�  º<�  �º< I ) may be of 

interest. 

1.3.6 Summary: Observer-based signal analysis and synthesis 

In this section the concept of observer-based signal analysis and synthesis 

together with their recursive algorithms have been considered. In these, the 

recursive transformations, operating as serial-to-parallel converters, play 

an important role. They decompose signals into components that 

characterize the behaviour of a signal in the transform domain.  

Based on the (perhaps adaptive) linear combination of the components, 

new signals can be synthesized, the results of which can correspond to 

signal filtering.  

The transpose of the structure performing recursive transformation 

implements parallel-to-serial conversion and can operate as a signal 

generator.  

The recursive implementation of the DFT involves the application of 
resonators. The resonator-based structure with a common feedback 

provides better properties in several respects relative to the resonator-

based (Lagrange) structure without feedback. 
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The resonator-based structure with feedback can be suggested as a 

universal signal-processing device, because, apart from the realization of 

recursive transforms, FIR and IIR filters can also be implemented simply 

by changing the relevant parameters (Padmanabhan, Martin and Péceli 
1996; Bitmead and Anderson 1981). 

1.4 Structural properties, aspects of implementation 

In this section, we review those properties of the resonator-based observer 

as a universal signal processing device that significantly influence the 

quality features of signal processing and are essential, while we compare 

signal processing structures. 

Representing numbers using finite word length influences the accuracy 

of every calculation as a limiting factor; however, this depends 

significantly on the dynamic range required by the calculations and how 

rounding errors intensify during calculation. 

The literature of digital signal processing is very rich concerning these 

aspects. Criteria are available, which, when we meet them, can ensure that 
the device performing the calculations behaves as a passive system and, 

what is more, apart from some global conditions, do this independently of 

the parameters of the calculations. We also know the condition of avoiding 

oscillations due to quantization errors and that of dissipating internal 

energy if no input (zero input) is available. Finally, for the case of fixed-

point arithmetic, we can show how the rounding error due to quantization 

can be summed up in the most beneficial way resulting in the smallest 

possible numerical error.  

These problems are related, almost without exception, to energy 

relations. The computational structures with good properties can be 

characterized by balanced internal energy relations due to their state 
variables and parameters lying in ranges of similar magnitude and 

requiring a modest dynamic range of calculation. 

The properties of the introduced resonator-based observer structure 

underpin the fact that, concerning the above features, this structure relates 

to the best ones, and is efficient in implementing signal processing 

algorithms, even when using fixed-point arithmetic.  

1.4.1 Condition of boundedness in the case  
of resonator-based observers 

Calculations that can be considered passive systems are advantageous, 

because, thanks to their structure, they produce bounded values that are 
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typically independent of their parameters, i.e. the signal level remains 

below a given value. In the case of the resonator-based structure, the 

transfer function of the feedback system from the input to the summed 

output has the form: 

 �Â�{�Q¿l¡¢ÏÐ  ] 
 ºÑ� 
 ] 
 ºÑ< (1.147) 

where ]  ]��� and Ñ  Ñ��� are real values—they are the real and 

imaginary parts of the loop gain. The condition for Q�Â�{�Q � � can be 

calculated from the absolute value of (1.147), ] Ò �%�Ó, since: 

 ]  ¨� k �v�{�$��
vla �¿l¡¢ÏÐ (1.148) 

or 

 =]  k � ^v{��� � {v{�� 
 ^v�{� � {v�{�
$��
vla  

 k ^v{�� � ^v{v�� 
 ^v�{ � ^v�{(= � {v{�� � {v��{$��
vla  

 k �¨� Ô^v{v Õ �= � {v{�� � {v��{� 
 ºÖn Ô^v{v Õ �{v{�� � {v��{�= � {v{�� � {v��{$��
vla  

Ò ��� 

(1.149) 

The condition ] Ò �%�Ó is met independently of the value of {, 

if�Ön ÔË�¿�Õ  %< t  %< �<I <� � �. In this case: 

 ¨� k Y^v{v Z  k 3v � �$��
vla �$��

vla  (1.150) 

Remarks: 

1. In the case of the recursive DFT, 3v  �$�for ×t. In the case of the 

recursive DFT combined with exponential averaging, 3v  Ø$�for ×t, % � Î � �. 
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2.  For stabile filters, such a resonator pole set always exists, for which 

(1.150) holds. 

3. For stabile filters 3S<n  %< �<I� <� � � is always a positive real 

value. 

4. This property is called structural passivity, because, apart from the 

“global” condition of (1.150), it is a “passivity” property independent 
of the parameter values.  

5. From (1.140):  

 �3S  Ã �� � Ìv{S���&��vlaÃ �� � {v{S���$��vla<vÁS  (1.151) 

6. The design procedure, which keeps the above properties, is as follows:  

(1) Having the values of the poles to be implemented, the resonator 

pole positions are determined in such a way that all the 3S values 
are real. To find these resonator pole positions, we utilize: 

 ��Â�{�  s �v�{�$��vla� 
 s �v�{�$��vla  � � Ã �� � {v{���$��vla Ù�{� <� 
k �v�{�  Ù�{�Ã �� � {v{���$��vla � �$��
vla < (1.152) 

where Ù�{� is the denominator polynomial to be implemented (see 
(1.149)): 

 =]  � Ù�{�Ã �� � {v{���$��vla 
 Ù��{���Ã �� � {v��{�$��vla � =� Ò ��< (1.153) 

from which, because at frequencies corresponding to the resonator 
pole positions the equality holds, the resonator pole positions can 

be calculated as: 

 ¸�� � {v{���$��
vla  �� Ú {��$�&�Ù~�{�Ù�{� � Ù�{�� (1.154) 

Here, Ù~�{� is an �th-order �� � �� polynomial, the roots of 

which are in a mirror-image position to the roots of Ù�{�, relative 

to the unit circle, i.e. Ù~�{�iÙ�{� is all-pass.  

(2) Calculation of the 3S values based on (1.151).  
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(3) “Sampling” of the transfer function to be implemented at the 
frequencies corresponding to the resonator pole positions and thus 

the calculation of the weighting factors.  

7. To implement transfer function �Â�{�, we set as many parameters as 

there are free parameters: the complex conjugate poles /Ìv1 of the 

transfer function fix � independent values; and the resonator pole 

position /{v1 and the /3S1 values fix another � independent data. 

1.4.2 Structural passivity and energy relations 

Concerning this issue, we tackle only the orthogonal structures and show 

that, in the case of the resonator-based observer structure, if s 3v  �$��vla  
then it will be lossless and with a simple modification it can be made 

orthogonal—if otherwise the implementation errors are negligible.  

For orthogonal structures, it can be proved that if before storing the 

calculated state variable in the memory (delay element) we apply 

magnitude truncation, i.e. we take its absolute value and truncate its value 

downwards, then the calculated values will represent step-by-step lower 

(or equal) “energy”, thus the calculations will not result in limit-cycle 

oscillations and the internal energy dissipates.  

The orthogonal structures are defined in such a way within the system 

description in the form: 

 Y��	 
 ��G�	� Z  � Y��	�y�	�Z (1.155) 

where G�	� and y�	� denote the discrete time function of the scalar input 

and output, respectively, and ��	� denotes the state vector. For the 

orthogonal structures �0�  E, i.e. �0  ���, meaning that � is an 
orthogonal matrix, since their columns are vectors that are orthogonal to 

each other.  
If we take the scalar product of both sides of (1.155) with itself, we 

have: 

 ���	 
 �� G�	� Y��	 
 ��G�	� Z  ���	� y�	� �0�Y��	�y�	�Z< (1.156) 

or alternatively 
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 k jvW�	 
 �� 
 GW�	� � k jvW�	� 
 yW�	�$��
vla

$��
vla � (1.157) 

If we suppose that the input is zero, i.e. y�	�  %, meaning that the 
system is left “alone”, then (1.157) has the form: 

 k jvW�	 
 �� � k jvW�	�$��
vla  �GW�	��$��

vla  (1.158) 

according to which, if the output is not zero then the energy represented by 

the state variables decreases (Mills, Mullis and Roberts 1978). Having this 

property and applying magnitude truncation, then, independently of their 

parameters, the system without input will dissipate its internal energy and 

thus limit-cycle oscillations are avoided. (To avoid limit-cycles, magnitude 

truncation should be performed before storing the state variables.) 

In the case of the resonator-based observer, we have:  

 Y��	 
 ��G�	� Z  Ô� � �� �� %Õ Y��	�y�	�Z < �  Ô� � �� �� %Õ< (1.159) 

where �  \H]^_{a< {�<I < {$��b. 
In (1.150), if the equality holds, then the resonator-based structure, 

which can be used to realize recursive DFT and arbitrary FIR and IIR 

filters, will meet the above condition of orthogonality, if the input and the 

output vectors related to the state variables have the form: 

 �4  �{aÛ3a {�Û3� h {$��Û3$���< �  �Û3a Û3� h Û3$���� (1.160) 

Note that the forms 

 �4  �{a3a {�3� h {$��3$�� < �  �� � h �  (1.161) 

used up to now, differ only as the signal levels within the resonators differ.  

Remarks: 

1. According to the general theory of boundedness and losslessness 

(Mills, Mullis and Roberts 1978; Vaidyanathan 1985), while we 
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calculate the energy balance (1.157), the state variables are weighted 

by a symmetric, positive definite matrix 9. Incidentally, if this 

weighting matrix has the form 9  \H]^_3a��< 3���<I < 3$���� b, 
and the input and the output correspond to (1.161), then instead of 

(1.157) we have 

 k �3v jvW�	 
 �� 
 GW�	� � k �3v jvW�	� 
 yW�	�<$��
vla

$��
vla  (1.162) 

which, if magnitude-truncation is applied, as in the case of stabile 

filters, 3v Ü %<�for Ýt, describes dissipative behaviour. Note that, to 

guarantee dissipative behaviour, due to unavoidable nonlinear 

(quantization) effects during calculation, the diagonality of the 

weighting matrix 9 is a requirement. This is explained in more detail 

in the following. 

  

2. Among the criteria that guarantee the avoidance of zero-input limit 

cycles (Mills, Mullis and Roberts 1978; Vaidyanathan 1985; 

Vaidyanathan and Liu 1987), perhaps the most straightforward can be 

stated in the following form: If there exists a diagonal matrix X with 

positive values in its diagonal, for which the matrix X � �� ����0X�� � ��� is a positive semidefinite, then all zero-input limit 
cycles can be avoided. To achieve this behaviour, it is necessary that 

the individual state variables are quantized independently of each other 

using magnitude truncation, immediately before storing them in the 

unit-delay element, or in the case of overflow the value of the two’s 
complement is used. In the case of the structure in hand, 

 X  \H]^_3a��< 3���<I < 3$���� b< (1.163) 

ensures the avoidance of zero-input limit cycles for any, in a linear 

sense, stabile signal processing algorithms, if the above rules of 

quantization and overflow handling are applied. The positive semi-

definiteness of the matrix X � �� � ���0X�� � ��� is relatively easy 
to check based on its eigenvalues using the following condition: 

 \�2�´E � �X � �� � ���0X�� � �����  % (1.164) 

After computing the products using the values of (1.161) and 
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introducing the notation ]  �= 
 s 3v$��vla  we get: 

 \�2 ²´ 
 ] ] h ]] ´ 
 ] h ]q] q] ® qh ´ 
 ]³  \�2 p´ % h �´% ´ h �´q] q] ® qh ´ 
 ]r 

 \�2 ²´ % h %% ´ h %q] q] ® qh ´ 
 �]³ 

 ´$���´ 
 �]�  % 

(1.165) 

Since we typically use settings meeting the condition s 3v$��vla � �, it 

follows that matrix X � �� � ���0X�� � ��� is a positive 

semidefinite, since its � � � eigenvalues are zero, and one is firmly 
positive. 

 

3. We investigate the round-off noise behaviour of the resonator-based 

structure using the model in Mullis and Roberts (1976). This model is 

related to state variable formulation and concerns errors due to round-

off noise. If rounding of the state variables is performed, typically 

before storing it in the delay element, then we achieve minimum 

round-off noise for fixed-point arithmetic filters if matrices 

 D  �� � ���D�� � ���0 
 ��0  ?  �� � ���0?�� � ��� 
 �0� 
(1.166) 

are simultaneously diagonal. For the structure in hand, this condition is 

met automatically if: 

 D  �= � s 3v$��vla \H]^_3a< 3�<I < 3$��b 
?  �= � s 3v$��vla �\H]^_3a��< 3���<I < 3$���� b� (1.167) 

Having matrices D and ?, the measures of actual arithmetic noise 

behaviour can be calculated (Mullis and Roberts 1976). 

Concerning arithmetic noise behaviour, we investigate the 

aggregation of errors. This problem is of a different nature to the 
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avoidance of limit cycles. These investigations have resulted in 

different strategies (rounding versus truncation), thus its contradiction 

requires consideration by the designer. 

 

4. In the complex notation, the above relations are valid for that version 

of the structure consisting of complex-coefficient, first-order 

resonators. Practical realizations may require the application of second-

order, real-coefficient resonators. In such cases, those resonator 

sections are to be used that can preserve the above-noted advantageous 

properties (Mills, Mullis and Roberts 1978). 

 
5. The structural properties introduced above result in favourable 

sensitivity properties of the parameters used within the algorithms 

(Péceli 1988). As mentioned previously, due to the large loop gain the 

sensitivity of most of the parameters is small. Within the investigated 

structures, the dynamic range of the signal values is also balanced. 

Investigations concerning transients due to drastic parameter changes 

show that the above properties also result in favourable transient 

behaviour (Péceli and Kovácsházy 1999). 

1.4.3 Summary: Structural properties 

This section addressed the numerical properties of structures based on 

resonators in a common feedback loop and presented their beneficial 

features, including: 

- Being structurally passive, i.e. independent of the actual value of the 

parameters, the absolute values of the transfer function to the summed-

up output (1.147) do not exceed one, if the global condition (1.150) is 

met. 

- Meeting this property of structural passivity, the structure is also 

orthogonal if (1.160) is met. As such, within this structure zero-input 

limit cycles can be avoided if fixed-point arithmetic quantization is 
performed by magnitude truncation at the entrance of the 

delay/memory elements. This property holds if setting (1.161) is 

applied too. 

- The resonator-based structure with a common feedback also meets the 

more general condition of zero-input limit-cycle avoidance. The 

quantization strategy should be the same as above. 

- The structure meets the requirement of minimum round-off noise in 

state variable formulations. 
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As such, it may be stated that the resonator-based structure in a 

feedback loop is a universal signal processing device and displays 

beneficial structural properties. 

1.5 Summary 

The most important statements made in this chapter are as follows: 

 

1. Based on prior information gathered from the real world, and arranged 

into state and observation equations, measuring processes can be 

evaluated recursively, for the algorithms of which a uniform 

framework can be formulated for the majority of the most widely used 

methods. 

2. Arbitrary discrete transformation can be evaluated recursively. The 
recursive discrete Fourier transformation (RDFT) leads to a structure 

consisting of resonators. 

3. The observer structure consisting of resonators with a common 

feedback can serve as a universal signal processing device, enabling 

the implementation of arbitrary discrete transformations, FIR and IIR 

filters, and transform domain signal processing. The transpose of the 

structure can be used as a signal synthesizer. 

4. The structural properties of a resonator-based observer are 

advantageous: it is structurally passive, can avoid limit cycles, has 

good round-off noise properties, and reacts favourably to transients 

caused by parameter changes. 
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CHAPTER TWO 

ADAPTIVE SPECTRAL ESTIMATION  
AND ACTIVE NOISE CONTROL 

LÁSZLÓ SUJBERT 

 
 

 

2.1 Introduction to Chapter 2 

The resonator-based structure dealt with here is the periodic signal 

observer introduced in Chapter 1. The choice of parameters for the 

observer, depending on the specification of the measurement procedure, 

has been discussed for several cases. Accordingly, there are explicit 

equations for the design of the resonator set and the state feedback vector. 

If the output is formed as the weighted sum of the closed-loop observer 

channels, it can implement any pole-zero set. If the determination of the 

resonator set follows certain rules, the resonator-based structure is able to 

implement digital filters with excellent features. 

This chapter reviews some further applications of resonator-based 
signal processing. The problems discussed in this chapter have some 

theoretical novelty and cannot be simply handled by the parameter choice 

of the basic structure introduced in Chapter 1. New results are presented 

here, together with the physical background of the signal processing or 

measurement problem. 

The success of the approach based on the periodic signal model relies 

on the true knowledge of the signal component frequencies. This 

estimation problem is solved using the adaptive Fourier analyser, which is 

introduced in the first section of the chapter. Nowadays, with the spread of 

sensor networks and the development of the Internet of things, data loss in 

measurement systems is an emerging problem. The effect of data loss in 
spectral estimation and some solutions are introduced in the second 

section. The state variables in the resonator-based observer accurately 

follow those of the input signal. This operation is in correspondence with 

the signal processing task of active noise control. The third section deals 

with the application of the resonator-based structure in active noise control 
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and deals with some related results. 

2.2 Adaptive Fourier Analysis 

2.2.1 Introduction 

The resonator-based observer can be successfully applied in all fields of 

signal processing where the periodic signal model is useful. It is especially 

suitable for recursive calculation of the discrete Fourier transform (or any 

orthogonal transform). With some tweaking, the structure is able to 

implement digital filters with excellent stability and sensitivity 
characteristics (Péceli 1989). 

In some measurement applications the fundamental frequency of the 

signal to be observed is not known in advance or changes during 

measurement. Therefore, error-free modelling requires estimation of the 

resonator frequencies. The adaptive Fourier analyser (AFA) (Nagy 1992) 

tunes the resonator frequencies so that they coincide with those of the 

signal to be analysed. Thus, the well-known errors of the DFT (picket 

fence problem, leakage) are cancelled out. This procedure has been 

successfully applied in, for example, vector voltmeters. 

This section reviews all the results related to the AFA; Section 2.2.2 

recalls the resonator-based structure, while Section 2.2.3 introduces the 
algorithm of the AFA. The AFA is a nonlinear system and its stability 

issues are discussed in Section 2.2.4. Improvements are presented in 

Section 2.2.5, and results are summarized in 2.2.6.  

2.2.2 Resonator-based observer 

The resonator-based observer (Péceli 1986) can be used for the analysis of 

periodic or multisine signals. For these signals, the conceptual signal 

model is valid: 

 G(  Þ(0ß(< (2.1) 

 Þ(  �|v<(  ���W Æ�( < t  �I�< (2.2) 

where ß( is the state vector of the signal model at time instant 	; G( is its 

output (input of the observer); and Þ( denotes the basis functions. The 

variable zv  denotes the relative frequency being the ratio of the frequency 

and the sampling frequency, i.e. zv à �%I� . For real signals, the basis 

functions defined by (2.2) are real or form complex conjugate pairs. In this 
case, the state variables are also real or form complex conjugate pairs. The 
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conceptual signal model can generate any band-limited multisine signal. 

The observer for the signal model can be seen in Fig. 2-1. 

 

 

Fig. 2-1. Resonator-based observer. 

The equations for the observer are: 

  ß8(~�  ß8( 
 á(�G( � Þ(0ß8(�<���á(  �^v<(  �3v|âv<( < (2.3) 

where /ß8(  �j8v<( @ �t  �I�1 is the estimated state vector, while /3v@ t  �I�1 are free parameters that can be used to set the poles of the 

system. (The overbar denotes complex conjugation.) The relation between 

the parameters 3v and the pole positions is the following: 

 3v  Ã �$ãl�<ãÁv �� � Ìã{v���Ã �$ãl�<ãÁv �� � {ã{v���< (2. 4) 

where /Ìã@ �ä  �I�1 denotes the pole positions specified in advance and 

the parameters /{v@ �t  �I�1 are the resonator frequencies. These are 

introduced in the following. 
Each channel of the observer (each forward branch in Fig. 2-1) has a 

time-invariant transfer function with a single pole on the unit circle—this 

is why it is called a resonator. Each resonator frequency can be expressed 

as the ratio of the consecutive samples of the corresponding basis function: 

 {v  |v<(~�|v<(  ��W Æ� < t  �I �� (2.5) 

j8�<( 
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The transfer function of a channel is presented in the following: 

 åv�{�  3v{v{��� � {v{�� < t  � I�� (2.6) 

These channels work in a common feedback loop, thus a single input-
multiple output system is established. In such a system, the transfer 

function between the single input and a channel output is: 

 �v�{�  3v{v{��� � {v{��� 
 s �$Tl� 3T{T{��� � {T{�� < t  �I �� (2.7) 

The transfer functions defined by (2.7) have zeros at the resonator 

frequencies, with the exception of z  zv, where �v�zv�  �. Note that 

this feature is independent of the choice of the resonator frequencies and 

the parameters 3v. 

Considering G( as the input and G8( as the output, the transfer function 

of the closed loop is presented in the following: 

 Å�{�  k�$
vl� �v�{�� (2.8) 

The error signal �( is defined as the difference between the input and the 

feedback signals. It has a prominent place in this chapter. The transfer 

function between the input signal and the error signal is: 

 .�{�  � � Å�{�  �� 
 s �$Tl� 3T{T{��� � {T{��� (2.9) 

The transfer function .�{� has zeros at the resonator frequencies, making 

it a notch filter at the frequencies of the periodic signal model. The 

“bandwidth” of the notch filter depends on the parameters 3v: the smaller 

their absolute values the narrower the notch. Note that the zero positions 

are independent of the actual values of 3v. 

If the resonators are arranged uniformly on the unit circle, and /3v  �i�@ t  �I �1, the observer is dead-beat and performs the 

recursive discrete Fourier transform (RDFT). In this case, the transfer 

function (2.7) is very simple: 
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 �v�{�  �� �� � {�$� {v{��� � {v{�� < t  �I �� (2.10) 

The corresponding magnitude response is: 

 Q�v�z�Q  æçèé¤��z � zv��çèé¤�z � zv�æ < t  �I �� (2.11) 

 

Fig 2-2. Magnitude response of one channel of the closed loop for the case �  ê< zv  �i�. 

 

 Fig. 2-3. Magnitude response of the error path for the case �  ê. 
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The magnitude response (2.11) has zeros at the resonator frequencies, 

with the exception of z  zv, where �v�zv�  �. The magnitude response 

is the well-known �H	| function, as illustrated in Fig. 2-2 for the � ê< zv  �i� case. 

If we suppose a uniform resonator distribution and /3v  �i�@ t �I�1 set, then transfer functions (2.8) and (2.9) have a very simple form: 

 Å�{�  {�$< .�{�  � � {�$� (2.12) 

The magnitude response between the input signal and the error signal can 

be seen in Fig. 2-3 for the case �  ê. 

2.2.3 Algorithm of the AFA 

2.2.3.1 Derivation of the algorithm 

The resonator-based observer provides error-free estimation of the 

supposed periodic signal model. However, if the fundamental frequency of 

the periodic input signal does not coincide with that of the supposed 

model, then the estimation is distorted. This distortion is due to the well-

known “picket fence” and “leakage” effects of the discrete Fourier 

transform (DFT). The AFA (Nagy 1992) eliminates this distortion by 

tuning the resonator poles to the frequency values of the input signal. As a 
result, the estimate of the signal components remains undistorted. 

Let us consider again the signal model and its observer, this time, 

however, using special initial values. Let the signal model be defined by 

(2.1), where: 

 |v<(  ��W $ v(< t  �ë I ë< �  =ë 
 �� (2.13) 

In this case, the relative fundamental frequency is z�  �i�. The 

relationship between the frequencies is important and the relationship 

between the non-zero frequencies is as follows: 

 ëz� � %�Ó � �ë 
 ��z� . (2.14) 

Thus, no signal component at the relative frequency z  %�Ó is modelled. 
In reality, this component would appear at one half of the sampling 

frequency. The state equation (2.3) can be rewritten as: 
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  ß8(~�  ß8( 
 3vÞâ(�G( � Þ(0ß8(� G8(  Þ(0ß8(� (2.15) 

Additionally, let us take the setting /3v  �i�< t  �ë Ië1. In this case, the 

system performs a DFT for an odd number of points. If G( has a relative 

fundamental frequency of zìí  �i�, then ß( provides the Fourier 

coefficients of the input signal. If zìí ' �i�, but z�  zìí, then ß8( also 

provides the Fourier coefficients of the input signal. Estimation of the relative 

frequency zìí can be seen as a task that is independent of the resonator-based 
observer, but the AFA utilizes the observer itself for this purpose. 

 
Remarks:  

If zìí ' �i�, the setting 3v  �i� in (2.15) does not ensure dead-beat 

settling. Nevertheless, if the position of the resonators is almost uniform, 

the system is fairly fast, and the transient vanishes at a few periods of the 

input signal. 
 

The operation of the observer’s channels can be interpreted as follows. 
The error signal is first mixed down to a zero frequency by the 

corresponding function |âv<(; then, after integration, it is mixed up again to 

the original frequency by |v<(. If the observer fits the input signal model, 

the state variables do not change. However, if the input signal has a 

different frequency, the mixing results in a signal with a non-zero 

frequency. In steady-state conditions, each state variable is a rotating 

complex vector and the speed of the rotation corresponds to the actual 

frequency difference; this can be used to adapt the frequency in the 

observer. This is the basic idea of the AFA and, for small frequency 

differences, the observer works as described above. 

Thus, the main equation of the frequency estimation of the AFA is as 

follows: 

 zî�<(~�  zî�<( 
 o ï ðéñòó�j8�<(~�< j8�<(�< (2.16) 

where j8�<( is the state variable belonging to the fundamental frequency 

and the notation “angle” is a function yielding the angle between two 
complex numbers. The frequency is no longer a parameter of the model, 

but a new state variable estimated by the observer. This is why the 

estimation operator (� ô) is used for the frequency. The adaptation given by 

(2.16) is used at each time step, not just if the observer reaches the steady 
state. In this way, the settling of the AFA is faster, but the convergence 
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analysis discussed in Section 2.2.4 becomes difficult. 

Let the scalar gain o in Eq. (2.16) be: 

 o  �=¤�� (2.17) 

The basis functions Þ(~� can be expressed by the updated frequency and 
the use of (2.13): 

 |v<(~�  |v<(��W Æî°<Àõ°v� (2.18) 

Operation of the observer is based on the state equations (2.15), using the 

actual Þ( value. If the fundamental frequency changes only slightly, the 

system is fairly fast, as the resonators are arranged almost uniformly. If the 

fundamental frequency changes across a wide range, fast settling can be 

ensured through structural adaptation. The condition (2.14) can be fulfilled 

if new resonators are started or those above z  %�Ó are cancelled. The 
initialization of the new resonators is as follows: 

 j8K<(~�  j8�K<(~�  % |K<(~�  |�K<(~�  �� (2.19) 

The choice of gain o (2.17) for the frequency update equation (2.16) can 

be supported by a heuristic explanation: the dead-beat observer has a delay 

of � steps (see Eq. (2.12)), thus the frequency update results in a change in 

the observer’s output in only � steps, so the measured frequency 

difference is divided by � for one time step. The constant =¤ is the 

coefficient between the angle and the relative frequency. 

2.2.3.2 Fine tuning of the parameters 

Based on the experience of settling the AFA, the parameters can be 

modified slightly. If the periodic input signal has a high signal-to-noise 

ratio, minimization of the settling time is the most important issue. The 

fastest systems can be attained if zî�<( (instead of �i�) is used for the 

parameters 3v and the frequency adaptation gain is: 

 3v  zî�<(< t  �ë I ë o  zî�<(=¤ � (2.20) 

Note that zî�<( is the relative fundamental frequency. In the case of a 
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uniform resonator arrangement zî�<(  �i�, otherwise satisfying the 

condition (2.14) zî�<( � �i�. 

A nearly uniform resonator arrangement is ensured by the condition 

(2.14), but it needs to be refined. Condition (2.14) allows the modelling of 

a periodic signal having a harmonic component arbitrarily close to the 

relative frequency z  %�Ó. In this case, Q{�K � {KQ ö Q{v � {v~�Q< t �ë Ië � �, i.e. the resonators of highest frequency are much closer to 

each other than other, neighbouring resonators. This results in an ill-

conditioned system. This can be avoided if condition (2.14) is modified as 

follows: 

 ëzî�<(~� � %�Ó � �=� � �ë 
 ��zî�<(~�<�����  =ë 
 �� (2.21) 

If the signal-to-noise ratio is poor, the above settings result in high 
variance of state estimation. Exponential settling and noise suppression 

can be achieved if the parameters 3v and o are reduced: 

 3v � zî�<(< t  �ë I ë o � zî�<(=¤ � (2.22) 

There are no explicit formulas available to characterize noise suppression 

and settling time. 

The algorithm of the AFA can be summarized as follows: 

1. Initialization: ë is arbitrary, zî�<a  �i� ��  =ë 
 ��< ß8a  %<Þa0  �. 
2. Operation by (2.15) and (2.16), with the settings of (2.20). 

3. Update of the basis functions by (2.18). 

4. Initialization or cancellation of resonators by (2.19), considering 

condition (2.21).  

2.2.4 Convergence of the frequency estimator 

2.2.4.1 Initial results and experiences 

The stability of the AFA introduced in the previous section has not been 

proven, i.e. it has not been proven that the state variables (including the 

frequency estimator) converge to those of the signal model. Nevertheless, 

many simulations, experiments, applications, and products have verified 
the stable and robust behaviour of the AFA. 
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Accordingly, the AFA is stable if: 

� The frequency of the periodic input signal varies across a wide 

range, including frequency jumps. 

� The harmonic content of the periodic input signal changes, keeping 

the fundamental one dominant. 

� The periodic input signal is burdened by high bandwidth noise. 

� A combination of the above. 

 

It should be emphasized that the algorithm has low sensitivity to 

problems of finite word length. 

A question that arises, besides these features, as to which conditions 
lead to unstable operation of the AFA. The algorithm can be regarded as 

unstable if the state variables diverge, or do not converge to the state 

variables of the signal model. 

Accordingly, the AFA can be unstable if:  

� The input signal is quasi-periodic and there is no dominant 

component. 

� One of the higher harmonic components of a periodic signal is 

dominant. 

� The periodic input signal has a very high signal-to-noise ratio, but 

its fundamental frequency is close to one of the actual higher 

resonator frequencies. 
 

In the first case, there is no single component that the AFA can be adapted 

to. In the second and third cases, the frequency estimator converges to a 

certain value, but it does not equal the fundamental frequency of the input 

signal. In the second case, the AFA is adapted to the dominant higher 

harmonic component. The third case is somewhat more interesting, as the 

real frequency is a multiple of the estimated one. Its value is a local and 

unstable minimum, from which noise can dislocate the state variables, but 

they can still be stuck at this minimum. 

It is important to note that the above conditions are not definite 

stability or instability criteria, thus the stability of the AFA cannot be 
defined in advance. 

2.2.4.2 Block-adaptive Fourier analyser (BAFA) 

The development of the BAFA was initiated by the idea that the original 

AFA needed to be modified to guarantee its stability. The BAFA, and the 
analysis of it presented here, are based on Simon and Péceli (1999). The 

basic idea is as follows: estimation of the Fourier components and frequency 

 EBSCOhost - printed on 2/14/2023 6:11 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Two 
 

80 

adaptation are separated out; the latter is accomplished only in the steady-

state of the resonator-based observer. The parameters 3v�are calculated by 

(2.4) assuming /Ìã  %@ �ä  �ë Ië1 to obtain dead-beat settling: 

  3v  �Ã �$ãl�<ãÁv �� � {ã{v��� < t  �ëI ë� (2.23) 

In this way, the real scalar parameters 3v  �i� or 3v  zî�<( are 

substituted by the ones above, which are complex and different for each 

channel. In this case, the steady-state is reached in � steps, allowing the 
update of the frequency estimator. In order to reduce the variance, 

successive samples of the state variables belonging to the fundamental 

frequency are not compared to each other; the angle is calculated only 

after Å steps, i.e. the equation of the frequency update is as follows: 

 zî�<(~Â  zî�<( 
 �=¤Å ï ðéñòó�j8�<(~Â< j8�<(�� (2.24) 

Comparing equations (2.24) and (2.16), one may ask whether the increase 

of Å is equivalent to the decrease of o. This, however, is not correct: after Å steps the rotation of the state variable is Å times greater as well. The 

reduction of o would be equivalent to the division of the rotation by Å÷ Ü Å after Å steps. 

After the frequency is updated, the number of harmonic components ë 
has to be re-calculated. The new basis functions are calculated by (2.18), 

as before, then the parameters 3v are re-calculated. As (2.23) results in 

dead-beat settling anyway, the simpler condition (2.14) for ë seems to be 

enough. However, considering the numerical problems of the evaluation of 

(2.23), if the resonators are close to each other, the use of (2.21) is advised. 

The operation of the BAFA involves the repetition of the above two 

phases or blocks and this is the origin of the name.  

 

The BAFA algorithm can be summarized as follows: 

1. Initialization: ë is arbitrary, zî�<a  �i� (�  =ë 
 �), ß8a  %<Þa0  �, 3v  �i�< t  �ë Ië.  

2. Operation in blocks of length of � 
 Å by the state equation (2.15).  

3. Frequency update in the last Å steps of the block by (2.24).  

4. Update of the basis functions and the parameters 3v after the last 
step of the block by (2.18) and (2.23).  

5. Initialization or cancellation of resonators by (2.19), considering 

condition (2.21). 
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The AFA and BAFA have been compared to each other in simulation. 

These simulations have shown that the settling times of the two systems 

are approximately equal to the choice of Å  �. 

The stability of the BAFA can be judged if the upper limit of each 

Fourier component, the actual estimated frequency, as well as the possible 

frequency jump of the input signal, is known. For the actual input signal, a 

frequency jump, øz, can be calculated at which the BAFA is stable. 

Let us suppose that the upper limit for each Fourier component is 

already known, i.e.: 

 Qjv<(QQj�<(Q � ]v< t  �ë Ië� (2.25) 

The BAFA is stable if all the conditions below are fulfilled: 

 Jù � J�< Qø�Q 
 =ðúûçèéJùJ� � ¤< =Å ðúûçèé JùJ� � Qø�Q< (2.26) 

 

where ø�  =¤øz and Jù, J� are derived from the magnitudes of the 

fundamental component and the upper harmonic components, respectively. 

Then: 

 Jù  k �K
vl�K<vÁ� ]vQ�v���W vÆ°<À�Q<����J�  Q�����W Æ°<À�Q� (2.27) 

The first and second equations of (2.26) show that the phase difference 

between the two successive samples of the state variable is less than ¤. 

The third equation gives a condition for the ratio for J� and Jù. It is clear 

that stability can be ensured across a wide frequency range by increasing Å, if the upper limits for the amplitudes are fulfilled. 

The above stability conditions are formulated for exact periodic 

signals. If the periodic signal is burdened by noise, or other sinusoidal 

components are present, these disturbing components increase the quantity Jù, and the stability range reduces. The stability range is determined by 

(2.26) and can be evaluated for a specific case in computer simulation. Fig. 
2-4 shows the result of such an evaluation. 
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Fig. 2-4. Stability range of the BAFA for a specific case. 

The initial value for the relative angular frequency was �  %��Ó while 

the upper limits for the harmonic components were the following: 

 ]v  �tW <����t  Ú�IÚ ë<����]a  %� (2.28) 

The results of the simulation show that the stability range for Å � ü%: 
there is a stable transition between any two specific points of the white 

area, e.g. if the relative angular frequency of the input signal does not 

leave the %�� � � � %�= interval, the frequency updates and thus the 

estimation of the Fourier components are stable. 

As such, the stability of the BAFA can be guaranteed. Nevertheless, 

there are only a few implementations and experience is limited with this 

algorithm. 

2.2.5 Improvements 

2.2.5.1 Adaptation for a prescribed time-frequency function 

The observers introduced above are capable of error-free reconstruction of 

periodic signals of constant frequency. Error-free reconstruction is indicated 

at the error signal output defined by (2.9). If the frequency of the signal is 
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not constant, the error signal is not zero and the observed state variables are 

distorted as well. Although the AFA is able to follow changes in frequency, 

and the error is negligible in certain applications, precise measurements 

require exact reconstruction. An example in the field of system identification 

can be mentioned. In certain measurements, the system is excited by the 

quasi-periodic signal of a prescribed time-frequency function. In many 

cases, the system is a non-electrical system with different modes and 

nonlinear behaviour resulting in a changing spectrum. The result of such 

measurements is often not the spectrum itself, but the relation between the 

harmonic components. This is an order analysis where the spectral 

components are measured as a function of the indices. 
Error-free reconstruction of a quasi-periodic signal of changing 

frequency is possible only if the signal model (including the time-

frequency function) is built into the observer. As such, there is no 

“universal” AFA that is capable of reconstructing periodic signals for any 

time-frequency function, but rather each one is developed for a specific 

signal model. Nagy (1994) introduces observers for three time-frequency 

functions (sweep): 

a) linear,  

b) logarithmic, 

c) hyperbolic.  

 
Linear sweep is the most common and being the simplest it has many 

applications. Logarithmic sweep is, for example, used for acoustic 

measurements, while a hyperbolic sweep is best used for the investigation 

of mechanical systems. 

As such, the corresponding AFA requires the completion of the signal 

model defined by (2.1): 

a) In the case of linear sweep:  

 z�<(~�  z�<( 
 ý(< (2.29) 

b) In the case of logarithmic sweep:  

 z�<(~�  z�<( 
 z�<( ï ý(< (2.30) 

c) In the case of hyperbolic sweep: 

 z�<(~�  z�<( 
 z�<(W ï ý(< (2.31) 

where z�<( is the actual frequency and state variable and ý( is a kind of 
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“sweep rate” increment, which is a new state variable. Thus, the signal 

model has two state variables beyond the Fourier components. (Note that z�<( is a relative frequency and so there is no dimensional problem with the 

equations.) 

The state equations of the AFA algorithms for the above signals need 

to be completed. The algorithm is the same as that described at the end of 

Section 2.2.3, but the frequency update is carried out in two steps. First, 

the frequency is updated by (2.16), then one of the following procedures, 

depending on the sweep type, is implemented: 

a) In the case of linear sweep:  

 ý8(~�  ý8( 
 %�ü�o ï zî�<( ï ðéñòó�j8�<(~�< j8�<(� zî�<(~� þ zî�<(~� 
 ý8(~�< (2.32) 

b) In the case of logarithmic sweep:  

 ý8(~�  ý8( 
 %�ü�o ï ðéñòó�j8�<(~�< j8�<(� zî�<(~� þ zî�<(~� 
 zî�<( ï ý8(~�< (2.33) 

c) In the case of hyperbolic sweep:  

 ý8(~�  ý8( 
 %�ü�o ï zî�<(�� ï ðéñòó�j8�<(~�< j8�<(� zî�<(~� þ zî�<(~� 
 zî�<(W ï ý8(~�� (2.34) 

In the above equations, the constant 0.4 was determined experimentally. 

The frequency is updated twice, first by (2.16), then by one of the 

equations in (2.32) to (2.34). This is why zî�<(~� stands on both sides of 

these equations (the use of new notation here would be confusing). The 

mechanism of adaptation can be explained for linear sweep as an example. 
In the steady-state of the observer, the state variable belonging to the 

fundamental frequency does not rotate. As such, according to (2.16) and 

the first row of (2.32), neither the frequency estimator nor the sweep rate 

need be changed. However, according to the signal model, in the last step 

the frequency estimator has to be increased. If the sweep rate of the input 

signal changes, the state variable belonging to the fundamental frequency 

starts to rotate, and both the frequency estimator and the sweep rate are 

updated according to the rotation. The reason for the double update of the 

frequency estimator is that this procedure ensures the fastest possible 

settling in the case of a frequency jump of the input signal. 

Certainly, with ý(  % all the introduced systems can model periodic 
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signals with a constant frequency. In the case of an unknown time-

frequency function, any AFA with tracking ability (e.g. for linear sweep) 

can reconstruct the signal with a lower error than the original algorithm. 

2.2.5.2 Adaptation to a decaying periodic signal 

The frequency of the periodic signal does not necessarily change, but its 

magnitude decays, converging to zero. The problem originates with active 

noise control. The resonator-based noise cancelling system introduced in 

2.4.3 needs a reference signal, i.e. an additional input signal. However, the 

noise to be suppressed contains all the components of the reference signal 

and as such it can potentially be used for frequency adaptation. 

Let us suppose that the noise to be suppressed is the input for the 

frequency adaptation. Note that the term “noise” is somewhat ambiguous. 

In the case of noise control, the noise to be suppressed is the signal 

burdened by other periodic or random components (e.g. measurement 

noise) that can be treated as noise. In a case of convergence of the noise 
cancelling system, the components are available only with a decreasing 

signal-to-noise ratio, which can degrade the frequency adaptation. This can 

be avoided if formula (2.16) for frequency adaptation is modified as 

follows (Sujbert 1997): 

 zî�<(~�  zî�<( 
 o ï Qj8�<(~�Q ï ðéñòó�j8�<(~�< j8�<(�< (2.35) 

Multiplication by the absolute value of the state variable can be seen as a 

magnitude-dependent gain of the adaptation. If the noise control is on and 
in a steady-state, the signal is zero, thus the frequency estimator is precise 

and it is not modified. If the frequency estimate is not correct, the noise 

control does not work as well, but the magnitude of the state variable is 

large enough to be used for adaptation. 

This procedure has been tested in practice and works well, but it is 

sensitive to non-modelled disturbances. 

2.2.5.3 Adaptation in a wide frequency range 

Although the AFA can theoretically adapt to periodic signals of any 

frequency, the minimum is practically limited. By decreasing the 

fundamental frequency, the number of the resonators and consequently the 

computational demand of the system increases. The available practical 

applications (e.g. order analysis) deal with components in the order of 100. 

A much greater computational demand cannot be tolerated, especially in 

real-time applications. Additionally, signals of very low fundamental 
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frequency would be heavily oversampled and there is no need to measure 

components of high indices. 

The proposed solution involves the decimation of the input signal 

according to the fundamental frequency (Sujbert, Simon and Várkonyi-
Kóczy 1999). As the frequency is not known in advance, a decimation 

filter bank is applied, the proper output of which can be the input for the 

AFA. This arrangement can be seen in Fig. 2.5. At the start the AFA 

receives the signal without decimation. If the frequency estimator is too 

small, the input of the AFA switches to the first, then the second 

decimated output etc. If the frequency increases again, the system switches 

back to a lower decimation level. Theoretically, this procedure allows the 
analysis of periodic signals of arbitrarily low frequencies. 

The switch function between the decimation levels should have a 

hysteresis. Such a function helps avoid fast switching between the levels 

triggered by noise or the transient behaviour of the AFA. 

 

Fig. 2.5. AFA operating in a wide frequency range. 

The filters of the decimation filter bank should consist of linear phase 

filters. All filters have a delay, so the output of the filter is delayed relative 

to the input, resulting in a switching transient in the AFA. In the case of 
linear phase filters, this delay is constant. By applying equal delay at the 

lower decimation level, the input signal of the AFA has equal phases after 

switching. The magnitude response of the filter in the passband slightly 

modifies the components of the input signal, but this error can be managed 

depending on the measurement task. 

2.2.5.4 Further results 

Further research into the original algorithm of the AFA is primarily 

focused on improving its robustness and reducing computational demand. 
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The AFA is a nonlinear system, as the frequency update is a nonlinear 

function of the state variables. As a result, it can be unstable, depending on 

the initial and actual values of the state variables. A new version of the 

AFA is said to be “robust” if its frequency estimator is stable in a wider 
range of state variables than the original AFA algorithm. 

Ronk (2002) increased the robustness of the AFA by averaging the 

state variable belonging to the fundamental frequency. In the case of a 

noisy input signal, the variance can be reduced if the parameters o and 3v 

are decreased (see Eq. (2.22) in Section 2.2.3.2). Even if the input signal is 

not noisy, the stability of the frequency estimation can be increased in this 
way. An AFA with such a parameter setting is called a “robust AFA” in 
Dabóczi (2013). One advantage of the BAFA (Simon and Péceli 1999) is 

that the region of stability can be calculated in advance. In Dabóczi (2013) 

the previously mentioned methods are unified, i.e. a BAFA that averages 

the state variable belonging to the fundamental frequency is proposed and 

the parameters o and 3v are set to lower values than those of the basic 

algorithms. The appropriateness of the modified system has been justified 

in simulation. 

The development of the AFA has had to take into account issues of 

implementation. The first versions of the AFA were implemented on 

digital signal processors (DSP). A disadvantage of the AFA is that in the 

case of � components, the resonator-based observer requires operations 

that are proportional to �W, rather than �ò�ñ�, as is well-known for fast 
Fourier transform (FFT) based spectral estimation. Additionally, the 

formula for frequency adaptation (Eq. (2.16) or any of its improvements) 

is also crucial and is usually calculated on a floating-point processor. A 

fast procedure is proposed in Várkonyi-Kóczy (1995) for the evaluation of 

the RDFT, which is also completed by a new adaptive structure 

(Várkonyi-Kóczy, Simon et al. 1998). The basic idea is that the input 

signal is transformed by a fast method, where the number of components is 

fitted to the lowest possible fundamental frequency and the proper state 

variable is calculated as the linear combination of the spectral components. 

The coefficients of the linear combination depend on the actual frequency 
estimator, while the frequency is updated by the original formula (2.16). 

The frequency update (2.16) requires the calculation of the angle 

between two complex numbers. In practice, it needs a division and an 

arctangent function calculation. The arctangent can be omitted because, for 

small angles, the tangent can be approached by its argument, but even in 

this form the function is overly demanding in terms of resources. The 

speed of the rotation of the state variable can be measured as the reciprocal 

of its period time (Hajdu, Zamantzas and Dabóczi 2016). The period time 
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can simply be measured by the zero crossings of the angle of the state 

variable. 

The above introduced procedures increase the robustness of the AFA, 

but they also increase the settling time; as such, the original version of the 

AFA remains a competitive option. 

2.2.6 Summary 

This section dealt with the basic idea of the AFA algorithm and possible 
refinements that can increase its robustness and broaden its area of 

application. The AFA can be proposed for any signal processing problem 

where precise frequency estimation and/or spectral estimation is needed. 

The versions of the algorithm introduced in this section offer different 

possibilities to the designer. 

The development of the AFA was motivated by practical measurement 

problems. It has been used in the CALIN impedance analysers developed 

at the Budapest University of Technology and Economics. Another 

application was an order analysis tool for a vibration analysis system of 

Josef Heim KG. 

The active noise control introduced in Section 2.4 also goes back to the 
AFA. Periodic disturbances can be effectively suppressed by a resonator-

based observer, but the frequency has to be precisely estimated, which can 

be done by using the AFA. Research into this has been undertaken in 

cooperation with TPD (Delft, the Netherlands) with the goal of developing 

effective noise reduction algorithms for propeller airplanes.  

The resonator-based observer has been applied for sine-fitting 

procedures (Simon, Pintelon et al. 2002), but without frequency 

adaptation. The AFA has been successfully applied in testing analogue-to-

digital converters (Dabóczi 2012). Recently, the AFA has been used in an 

auxiliary system of a particle accelerator (Hajdu, Zamantzas and Dabóczi 
2016). A particle leaving the main flow enters an ionization chamber and 

increases its conductivity. This conductivity is measured by a signal of 
about 30 kHz. However, the frequency is not constant and the signal-to-

noise ratio is poor, which is why the AFA is used. 

2.3 Spectral estimation in the case of data loss 

2.3.1 Introduction 

Traditional measurement systems use fast, high-precision and reliable data 

transmission. Over the past two decades, there has been an emerging 
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demand for measured data transmission via much less reliable, typically 

wireless, channels, like sensor networks. In such systems, data can become 

distorted or communication can be broken (Kong 2013; Mathiesen, Thonet 

and Aakwaag 2005). The recent concept of the Internet of things proposes 

the networked operation of sensors and actuators via the Internet enabling 

the remote control of physical systems (Kopetz 2011). 

This section first recalls the basics of spectral estimation, then 

introduces data loss models (sections 2.3.2 and 2.3.3). Sections 2.3.4 and 

2.3.5 deal with some modifications of the resonator-based observer and the 

discrete Fourier transform that allow undistorted spectral estimation. The 

investigation of data loss requires analysis of the spectral behaviour of the 
data loss models. The inverse procedure involves the identification of the 

data loss model by the measured spectrum. This problem is discussed in 

Section 2.3.6. A brief summary is presented at the end of this section. 

2.3.2 Estimation of the power spectral density function 

First, the basics of spectral estimation are briefly reviewed and the 

notations used are introduced as well. 

The Fourier transform of a sampled signal G�2(� can be estimated by a 
finite number of samples (Ferraz-Mello 1981): 

 Í�z��  k �$��
(la G�2(����W Æ�fÀ< (2.36) 

where z� denotes the frequency. The variable z denotes the relative 

frequency as before, i.e. z  z�izÈ à �%I� . If the signal G�2(� is 

uniformly sampled and the spectrum is calculated by the discrete Fourier 

transform (DFT), the formula (2.36) can be modified as follows: 

 Í�zv�  k �$��
(la G(���W $ (v<����	< t  %I � � �< (2.37) 

where zv  ti� and G(  G�2(�. In the case of non-coherent sampling, 

the picket fence and leakage effects distort the estimation; this can be 

effectively reduced by windowing. This means that the finite number of 

samples of the signal are multiplied by a window function (̀: 
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 Í��zv�  k �$��
(la G( (̀���W $ (v<����	< t  %I � � �� (2.38) 

Plenty of window functions are available (see, e.g., Harris 1978), most of 

these are in some sense optimal.  

The DFT is usually evaluated by the fast Fourier transform (FFT), 

which is computationally much more effective. The transformed values Í�zv� can also be recursively calculated, for which the previously 
introduced resonator-based structure is a feasible tool. Window functions 

can be implemented as well. The transformed values are provided by the 

state variables of the resonator-based structure as follows: 

 Í�zv�  � ï j8(<v<����	< t  %I � � �� (2.39) 

The equality is true if the indices 	< t  %I � � � are equal for both the 

DFT and the resonator-based structure. If the time instant 	  % is fixed, 

and the resonator-based structure works on an ë � �-points long record, 

the result of the DFT is a phase shift according to the initial time instant of 

the �-points long block of the DFT and the result should be corrected if 

required. Nevertheless, the magnitudes are equal, independent of the 

indices: 

 QÍ�zv�Q  � ï Qj8(<vQ<����t  %I� � �� (2.40) 

The resonator-based observer provides the spectrum for any /zv< t �I�1 frequency set, i.e. the condition zv  ti� is not necessary. Hence, 

the analysis of periodic signals does not require the application of window 

functions and the resonator frequencies can be tuned to those of the input 

signal. This tuning can be done by effectively the AFA. Window functions 

are used for the non-adaptive case. 

The transformed vector Í�zv� usually consists of complex numbers 

and the spectral content of the signal is expressed by the power spectral 

density (PSD) function: 

 ��zv�  �� QÍ�zv�QW<����t  %I � � �� (2.41) 

As the PSD calculation is based on a finite number of samples, it can be 
also used for periodic signals. Analysis of noisy periodic or quasi-periodic 

signals requires more than � samples, a longer record is needed, and the 

PSD is calculated by the averaging of individual PSDs of successive 
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blocks �-points long derived from the record. In the Welch method, the 

blocks may overlap (Welch 1967). Different averaging methods can be 

used. Linear averaging is a possibility: 

 �â�zv�  �Ö k����
Tla �T�zv�< (2.42) 

where �â�zv� denotes the averaged PSD and �T�zv� stands for the PSD of 

the H-th block. Another possibility is exponential averaging: 

 �âT~��zv�  �âT�zv� 
 g��T�zv� � �âT�zv��< (2.43) 

where g is the weighting factor of the exponential averaging (see also 

(2.80)); and �âT�zv� and �T�zv� denote the averaged and individual PSDs, 
respectively. In the case of precise measurements, the PSD of the noise is 

subtracted from the averaged PSD. To achieve a given quality estimate, a 

block number Ö can be assigned to each method. This number can 

characterize the settling time of the averaging. 

The parameters of the resonator-based observer can be calculated using 

the formulae introduced in Section 2.2.2. The state variables can be 

averaged according to (2.42) or (2.43), but exponential averaging can be 

accomplished by decreasing the absolute value of the parameters 3v, 

without additional resources, as described in Section 2.4.4.1. 

2.3.3 Description of data loss 

Handling data loss requires an auxiliary variable that marks the validity of 

the sample. The origin of data loss is usually a physical problem (a 

communication error or a synchronization error, etc.) and this information 

is usually available. This auxiliary variable is the data availability indicator 

function (see, e.g., Sanneck, Carle and Koodli 2000): 

 �(  A�< è	��
ó�çð��òó�èç�ððèòð�òó�ð���è�ó�èéç�ðé��	%< è	��
ó�çð��òó�èç�é���ððèòð�òó�ð���è�ó�èéç�ðé��	� (2. 44) 

Data loss is usually a random process, so the indicator function is usually a 
stochastic signal independent of the measured signal. There are special 

situations when this is not true and these will be highlighted later. 

The data loss rate can be defined as follows: 

 �  �/�(  %1< (2.45) 

 EBSCOhost - printed on 2/14/2023 6:11 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Two 
 

92 

where �/ï1 is the probability operator. The probability is that a sample is 
not lost, i.e. it is processed: 

 �  �/�(  �1  � � �< (2.46) 

and it is often described as the data availability rate. The variables � or � 

do not determine the time distribution of the lost samples. This can be 

done by the introduction of the ¨�	� reliability function defined for 

systems exposed to failure (Hoyland and Rausand 2004). The function ¨�	� provides the probability that the system fails in the time interval �%< 	 . In our case, the failure means that at least one sample of the record 

is lost. Let the total length of the record ë and the reliability ¨�ë�  �. 

Their relation is as follows: 

 � ·¸�K
(l� �(  %�¹  � � �� (2.47) 

The probability � is a small number and the corresponding ë is the length 

of the record, where there is a high probability that at least one sample is 

lost. For example, /�  %�%�< ë  Ó%%%1 means that in a record of 5,000 

samples long at least one sample is lost with a probability of Ì  êê�É. 

The relation of the quantities ë, �, and � depends on the data loss model. 

Three types of data loss model have been previously investigated 

(Fletcher, Rangan and Goyal 2004; Plantier et al. 2012): 

a) random independent data loss, 

b) random block-based data loss, 

c) Markov model-based data loss. 

 

Random independent data loss is the most important one; it is often 

applied because of its simplicity (Nagayama et al. 2006). Random block-

based data loss is often used if the data are transmitted over a packet-based 
communication system. Markov model-based data loss can also result in 

lost blocks, but the size of the block is a random variable. The Markov 

model is useful, for example, if real-time data transmission over the 

Internet needs to be described (Hohlfeld, Geib and Hasslinger 2008). 

Random independent data loss can be defined as follows: 

 �/�(  �1  ��/�(  %1  ��×�	� (2.48) 

The time distribution of the data loss can be characterized by the /ë< �1 
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couple. Their relation can be expressed by the data availability rate �: 

 �  ��K� (2.49) 

In the case of random block-based data loss, the time axis is divided 

into blocks of length �. The indicator function is given as: 

 ����v& I���v~��&���  ��  �����v& I���v~��&���  %�  ��×�t� (2.50) 

The time distribution of the data loss can be characterized by the /ë< �1 

couple. Their relation can be expressed by the data availability rate �: 

 �  �&K � (2.51) 

Note that, for a given/ë< �1 set, (2.51) is less than the previous one defined 

by (2.49). 

Markov model-based data loss is illustrated in Fig. 2-6.

Fig. 2-6. Two-state Markov model-based data loss. State ‘1’: actual sample is 
available ��(  �); state ‘0’: actual sample is lost (�(  %). 

The states of the model represent the values of the indicator function �(. If 

a sample is available at time instant 	, the next sample will be available 

with probability Ì and will be lost with probability � � Ì. If a sample is 

missing at time instant 	, the next sample will be available with 

probability � � � and will be lost with probability �. The data availability 

rate � is as follows (Boufounos 2007): 

 �  � � �Ì 
 � � =� (2.52) 

� 

� � Ì 

� � � 

Ì 1 0 11 
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Note that the parameters Ì, �, and � cannot be prescribed simultaneously. 

If the data loss is defined by the /ë< �1 couple, the connection to the 

Markov model parameters can be determined in two steps. First, the 

probability that no data are lost within an ë sample-long interval can be 

expressed: 

 �ÌK��  �� (2.53) 

as the probability that the first randomly chosen sample is available equals �, and the probability that the last ë � � samples are not lost equals ÌK��. 

Suppose that � is also prescribed, then Ì and � can also be expressed as: 

 Ì  ¦��§ �K�� <�����  ��Ì � =� 
 �� � � < (2.54) 

i.e. the parameters ë and � are completed by the data availability rate � 

and the probabilities�Ì and � are determined according to this triplet. 

2.3.4 Spectral estimation using the resonator-based observer 

The basic idea for handling data loss is that the state variables of the 

observer depicted in Fig. 2-1 are updated only if a valid input sample is 

present (Orosz, Sujbert and Péceli 2013). This is a straightforward 

solution, but it is yet to be proven whether this strategy results in 

convergence of the state variables to those without data loss. 

The state equations (2.1) and (2.3) should be modified to incorporate 

the data availability indicator function: 

 G(  �(Þ(0ß8(< ß8(~�  ß8( 
 á(�(�G( � Þ(0ß8(�� (2.55) 

The second equation shows that if no valid sample is present, the loop is 

broken and the state variables are not updated. The modified observer can 

be seen in Fig. 2-7. The convergence is determined by the time domain 

and probability description of the indicator function �(. Data loss can be 

deterministic (e.g., correlated with the periodic input signal) or a random 
process. 

There are necessary and sufficient conditions for the convergence of 

the resonator-based observer (Orosz, Sujbert and Péceli 2013). 
Convergence means that the state variables of the observer tend towards 

those of the signal model. If noise is also present, the expected values of 
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the state variables converge to those of the signal model. 

a) The necessary condition for convergence is that the rank of the 

observability matrix 

 �(0  ��aÞa ��Þ� �WÞW I �(Þ(  (2.56) 

shall be �, where � is the number of resonators.  

b) If the observer performs the DFT, i.e. z  �i�< 3v  �i�< t �I �, the condition (2.56) will be necessary and sufficient.  

 

If the data are invalid, e.g., because of an overdriven channel, then this 

constitutes a special case. The data can be treated as lost, as their true 

values are unknown. This data loss is deterministically connected with the 

signal. Based on the above 

 

Fig. 2-7. Resonator-based observer with the ability to handle data loss. 

theorem, if data are lost because of overdriving in each period of a 
periodic signal, the necessary condition of convergence is not met. This is 

a special situation, as it occurs only if the sampling is coherent. In the case 

of non-coherent sampling and overdriving, the indicator function �( is 

formally a random phase periodic signal, and the stochastic model can be 

used. If the sampling is “almost” coherent (e.g. sampling of the mains 

supply at a multiple frequency of 50 Hz), then convergence is very slow. 
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There are some variables that need to be introduced in order to 

formulate sufficient conditions. First, the state transition matrix of the 

resonator-based observer is expressed in a time-invariant form: 

 �  _{vb � á�0< (2.57) 

where 

 á  3v� �0  ��<�<I <� <����t  �ë Ië (2.58) 

The state transition matrix is decomposed as follows: 

 �  �µ���� (2.59) 

This state transition matrix belongs to the normal operation of the observer 

(the switch is on in Fig. 2-7). There are some auxiliary variables as well:  

� A scalar variable �  QQ�QQQQ���QQ  
� The eigenvalue having the largest absolute value ´��� �ð7Q´���Q  
� A scalar variable�t defined as the number of all the processed (not 

lost) samples counted from the time instant 	  % 

� A scalar variable�Å�defined as the number of lost intervals counted 

from the time instant 	  % 

 

If, for example, samples at time instants 	  �%%I�%ü and 	 =%%I=%ü are lost up to 	  êêê, then t  êê% and Å  =. 

Sufficient conditions for convergence are as follows: 

a) If the condition below is met:  

 Åt � ¤��  � ò�ñ�´����ò�ñ��� < (2.60) 

then, in the case of 	 � x and t � x, the observer is convergent. 

The value ¤�� is a crucial ratio of data loss, allowing the 

formulation of further theorems. 

b) If the inequality below is true for the data loss:  

 � � �� 
 �i¤��< (2.61) 

then the observer is convergent.  
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c) If the observer receives an infinite number of blocks of valid data 

of length of at least ë��: 
 ë��   �¤�� 
 �!< (2.62) 

then the observer is convergent. The notation"� # denotes the lower 

integer function.  

 

The first theorem implies the second and the third ones. The second 
theorem is interesting in that it states that if the data loss ratio is less than a 

certain limit (independent of the nature of the data loss, i.e. it is not 

necessarily random), then the observer is convergent. A further implication 

of the third theorem is that if the data loss is random (independent of the 

data loss ratio), then the observer is convergent. The latter is true as there 

is a non-zero probability of the occurrence of valid blocks that are long 

enough. 

2.3.5 FFT-based spectral estimation 

2.3.5.1 The proposed procedure 

The resonator-based observer modified according to (2.55) provides an 

undistorted spectrum, apart from in certain specific situations. As was 

introduced in Section 2.2.2, in the case of a uniform resonator arrangement 

and the parameter setting /3v  �i�@ �t  �I�1, the observer performs 

the DFT that is usually calculated by the FFT. The procedure to be 

discussed in this section tries to unify the effectiveness of the FFT with the 
robustness of the resonator-based observer. 

The resonator-based observer does not update its state variables if there 

is no valid sample at its input. This also happens in the normal operation of 

the observer when the sample reconstructed by the observer equals the 

input sample, i.e. the estimation is error-free. As such, in the case of data 

loss the observer behaves as if the estimation of the input signal is correct. 

Accordingly, a procedure can be developed so that the lost elements of a 

measurement record are calculated using a previous spectrum estimate. 

This solution requires the basis functions to generate a periodic signal, 

which is identical to coherent sampling (Palkó and Sujbert 2017). 
However, the sampling is usually not coherent and so another solution is 
needed (Sujbert and Orosz 2015,  2016). 

Let us assume that the PSD is estimated by averaging the spectra of 

several data blocks. A straightforward way of avoiding the effects of data 
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loss is to use complete blocks where no samples are missing. If only 

complete blocks are used for this estimation, all records containing even a 

single lost sample are rejected. The question arises as to how parts of such 

records can be used for estimation. 

The procedure involves searching for the first lost data position in the 

block (if there are any lost samples), then filling the rest of the block with 

zeros. This zero-padded block can then be used for estimating the 

spectrum. This method can be formulated by redefinition of the 

availability indicator function (2.44): 

 �÷(  A� 	  %I	� � �% 	  	� I� � �< (2.63) 

where 	� is the index of the first lost sample in the block. Thus, the new 
spectral block is computed by the redefinition of (2.37): 

 Í�zv�  �	� ï k �$��
(la �÷(G(���W $ (v<����	< t  %I� � �< (2.64) 

where � is the length of the DFT. Scaling of the spectrum is necessary to 
compensate for lost signal power. This procedure is demonstrated in Fig. 

2-8. 

Fig. 2-8. Modified indicator function of the proposed method. 

Zero padding of the signal samples is a well-known procedure to 

interpolate the spectrum. Indeed, the proposed method involves a kind of 

interpolation where the number of original points varies depending on the 

position of the first lost sample. If 	� ö �, the side-lobe falloff in the 

spectral block Í�zv� is very low compared to the original value. To avoid 

this situation, a minimal value ��ìí of 	� can be set and the record is only 

used if the actual value of 	� reaches this minimum. 

Fig. 2-8 demonstrates the procedure for non-overlapping blocks. The 

efficiency of the method may be further improved by using any 

uninterrupted part of the block (consisting of at least ��ìí samples) for 

� % 

: lost samples �÷ 
	 

basic FFT block 
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calculation of the DFT. However, this would result in overlapped blocks 

with very short non-overlapping segments and the noise in the calculated 

spectral block would not be independent of the previous one, making it 

useless for averaging. However, averaging overlapped blocks is a common 

practice in spectrum analysis (Welch 1967). The correlation analysis of the 

overlapping blocks presented in Harris (1978) has shown that an overlap 

ratio of 75 % can further reduce variance. Based on these results, a 

maximal overlap ratio of 75 % can be proposed and according to this 

value, ��ìí  �iü is a reasonable setting. This setting allows most of the 

available data to be utilized for spectrum analysis. 
The processing of overlapping blocks is demonstrated in Fig. 2-9. Here ��ìí  �iü is set and is equal to the length of non-overlapping segments. 

The first and the last block is processed in the usual way. Blocks 2...4 are 

processed, but zero padding is necessary. For the fifth one, the non-zero 

part of the block is too short, and therefore no samples are processed. 

2.3.5.2 Assessment of the procedure 

The spectrum of the signal distorted by data loss can be calculated by 

(2.36), where the samples of G�2� at 2( time instants are processed. In the 

case of the DFT, this means that certain samples are not available for 

summation as in (2.37). Incorporating the original definition of the data 

loss indicator function (2.44), the spectrum can be expressed as follows: 

 Í�zv�  k �$��
(la �(G(���W $ (v<����	< t  %I� � �� (2.65) 

The lossless signal is multiplied by the indicator function �(, so the 

spectrum of the lossless signal is convolved by the spectrum of the 

indicator function. This results in a noise-like component in the spectrum, 

as is discussed later, making the detection of low-power signal 
components difficult. 
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 Fig. 2-9. Processing of overlapped blocks. The striped regions show the zero 
padding. 

Zero padding in the proposed procedure results in the interpolation of 

the spectrum. In comparison to the spectrum of the lossless signal, the 

interpolated spectrum has the following features: 

a) The frequency resolution is the same.  

b) The side lobes of the interpolated spectrum are wider due to the 

shorter window. 

 

As the window length of valid data varies in the ��ìí I� range, so the 

amplitudes of the side lobes vary accordingly, as do the side lobes of the 
averaged spectrum as well. 

The proposed procedure approaches the operation of the modified 

resonator-based observer in an abstract manner: Data loss is not handled in 

the time domain, but in the frequency domain; the shorter data block 

updates the PSD with a lower resolution and the interpolated PSD values 

appear at the frequency points of the original resolution. 

The signal �(G( is a non-uniformly sampled signal. The calculation of 

spectra of non-uniformly sampled signals is a well-known problem and 

several methods are presented in the literature. The aim of the proposed 

procedure is to preserve the applicability of the FFT. As such, the 

proposed method has been compared to others in terms of computational 

demand. The proposed procedure calculates the Fourier transform of � 

sample-long blocks using the FFT. It is well-known that its complexity is � ï ò�ñ� (see e.g. Bendat and Piersol 1971) and zero padding does not 

change this. The methods reviewed in Sujbert and Orosz (2016), including 

Plantier et al. (2012), Broersen, de Waele and Bos (2003), Lomb (1976), 
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Scargle (1989), and Ferraz-Mello (1981), require operations proportional 

to �W for the processing of � sample-long blocks. 
The proposed procedure outperforms existing solutions regarding 

computational demand. The cited methods were developed to manage 

different problems of uneven sampling and offer solutions that are, in 

some sense, optimal. Although a detailed analysis is beyond the scope of 

this chapter, based on the analysis of its complexity, the FFT-based 

solution proposed here is a real alternative to those found in the literature. 

2.3.5.3 Convergence of the proposed method 

If enough individual PSDs are averaged then PSD estimation is complete. 

As stated previously, the simplest solution is to use only complete blocks 

of � samples; the proposed method uses all those blocks for which 	� Ò ��ìí. It may be supposed that the proposed method needs much less 

time to collect enough blocks than the straightforward one. As the data 

loss is random, the faster settling of the proposed method can be shown by 
investigating the probabilities of complete blocks of different lengths 

occurring. 

These probabilities depend on the reliability function ¨�	�. 

Nevertheless, they can also be expressed by data loss model parameters if ¨�ë�  � is known. To this end, the relationships in Section 2.3.3 are 

used. First, ë and � are set, then the model parameters are calculated, and 

finally the probabilities of complete blocks are expressed. 

In the case of random independent data loss, the probability of 

complete blocks of � samples can be expressed by the data availability 
rate: 

 Ì�$�%&'('  ��$  �$K < (2.66) 

where �� is the data availability rate expressed by (2.49). 
In the case of random block-based data loss, the probability of 

complete FFT blocks of � samples (i.e. �i� data blocks) can be 

expressed by the data availability rate: 

 Ì�$�%&'('  �W$&  �&K ï$&  �$K < (2.67) 

where �W is the data availability rate for this model, expressed in (2.51). 

The reliability function ¨�	� has an exponential decay rate for the two 

data loss models above and there is a direct relationship between the data 
availability rate and the probability of complete blocks. Markov model-
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based data loss has two independent parameters making this relation more 

complicated. We have chosen the following setup: 

 �  �W<����Ì  ��< (2.68) 

where �� and �W are the data availability rates defined for random 

independent and random block-based data loss, respectively. Thus, the 

data availability rate equals that of the random block-based data loss 
model. This is reasonable as the Markov-based loss model results in lost 

blocks as well. On the other hand, assuming that, usually, �W � � and ë � �, the probability of complete blocks are approximately equal to that 

of the previous models: 

 Ì�$�%&'(' � �$K � (2.69) 

A detailed derivation can be found in Sujbert and Orosz (2016). It has 

been shown that for a given ¨�ë�  � the first two data loss models result 

in exactly equal probabilities of complete blocks of � samples existing. 

Using reasonable assumptions, such a nearly equal probability can be 

expressed for Markov model-based data loss as well. As such, it has been 

shown that shorter blocks are much more likely to be complete, as was 
supposed, and the probabilities are nearly equal for the investigated 

models. 

For long records, the expected number of available complete blocks is 

proportional to the reciprocal of their probability of occurrence. As PSD 

estimation requires the averaging of a large number of spectral blocks, the 

proposed method needs less time to settle than the straightforward one, 

which only uses complete blocks. 

2.3.6 Frequency domain identification of data loss models 

As was stated in Section 2.3.5.2, if the spectrum were to be calculated by 

formula (2.65), noise-like components would appear due to the spectrum 

of the indicator function �(. In this section, the PSDs of the introduced 

data loss models are discussed in detail (Sujbert and Orosz 2015). 

The spectrum of random independent data loss is as follows: 

 �)�zv�  ��� � ��� 
 �W*�zv�< (2.70) 
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where *�zv� is the Kronecker-delta. The PSD is white, which is 

represented by the constant term; the term �W*�zv� represents the power of 
the DC component. The PSD of random block-based data loss is as 

follows: 

 �)�zv�  ��� � ���� æçèé�zv¤��çèé�zv¤� æW 
 �W*�zv�� (2.71) 

The spectrum is not white, but “sinc-like”; the DC-level is given by the 

second term, as above. The PSD of Markov model-based data loss is as 

follows (Boufounos 2007): 

 �)�zv�  � � ]W��� � ]W$� ï �Q� � ]{��QW 
 �W*�zv�< (2.72) 

where {��  ���W Æ� and ]  Ì 
 � � �. Now the spectrum decays 

according to the single real pole; the second term corresponds to the DC 

level. The shapes of the PSDs are specific, as Fig. 2-10 shows. 

 
Fig. 2-10. Spectral shapes of data loss models: (a) random independent; (b) 
random block-based; (c) Markov model-based data loss. 

The identification of the discussed data loss models can be carried out by 

the PSD of the data availability indicator function �( (Sujbert and Orosz 

2016). The process can be seen in Fig. 2-11. 

It is important that the data availability indicator function �( is 

available. Without this function, only a qualitative assessment can be 

made, for example, in the analysis of sinusoidal signals, where the spectral 

shapes defined by (2.70), (2.71) or (2.72) appear near to the spectral peak  
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Fig. 2-11. Identification process of data loss models. 
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of the sinusoidal function. Thus the nature of the data loss can be detected 

by appropriate excitation. 

If �( is available, then it is also known whether the communication is 

block-based. In the latter case, a single indicator for each block is enough, 

thus �( can be decimated by the block size �. 

The data availability rate can be calculated as the DC level of �(. This 

DC level should be subtracted from �( in order to remove the *�zv� 

component from the PSD, which disturbs the fit of the model. 

The next step is the calculation of �)�zv�, the PSD of the indicator 

function. To achieve this, the spectra of the � sample-long blocks of �( 

are calculated. Following this, the inverse Fourier transform (IFFT) of �)�zv� is performed to find the autocorrelation function to which the 

model is fitted. Based on the PSDs of the discussed models, at most a 

single pole autoregressive (AR) model is required. 

Random independent data loss does not need a pole, while Markov 

model-based data loss requires one pole. Random block-based data loss 

also requires zeros, but decimation makes this unnecessary. Model fitting 
itself is a simple problem. We can use a linear prediction coding (LPC) 

filter to minimize the fitting error in a least squares sense (Jackson 1989). 

If the second and subsequent LPC parameters are zero (]W � %), the 

data loss is of the random independent type. Its single parameter � has 

already been calculated. 

However, if ]W ' %, Markov model-based data loss is estimated; the 

parameters Ì and � can be estimated as follows: 

 Ìô  �ô �� � ]8� 
 ]8<�����8  �ô �]8 � �� 
 �< (2.73) 

where ]8  �]W. Finally, the information on whether the communication is 

block-based should be incorporated. If yes, the parameters �ô, Ìô and �8 do 

not change, but the result is completed by the block size �. 

2.3.7 Summary 

This section addressed the problem of spectral estimation where 

measurement data are partly missing or not available. This issue is 

important, because in recent applications of networked sensors, actuators, 

and other processing units wireless communication with lower reliability 

dominates. The effectiveness of the proposed resonator-based or FFT-

based methods has been confirmed by simulation and experimental results. 

These achievements are closely related to the active noise control system 

employing wireless sensors, which is introduced in the next section. 
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Further practical applications are expected in this field. 

Nevertheless, the investigation of data loss models is part of ongoing 

research, mainly in the direction of frequency domain description of 

Markov models (Sujbert and Orosz 2017). The investigation of data loss 

models discussed in this section has been justified experimentally. Further 

research is necessary to assign data loss models to the different physical 

systems and communication modes frequently used in sensor networks and 

Internet of things applications. 

2.4 Active noise control 

2.4.1 Introduction 

Passive suppression of acoustic noise or vibration in the low frequency 

range is a very difficult task, mostly because of the dimension and weight 

of the adsorbing materials required. Spreading the digital signal processors 

out enables the application of the idea of active noise control (ANC). ANC 

is based on destructive interference, i.e. a “secondary” noise or vibration is 

generated that suppresses the unwanted “primary” noise in certain regions 

(Kuo and Morgan 1999). This secondary noise is usually generated by 

loudspeakers and microphones are placed in the enclosure where 

suppression is to be achieved. The microphone signals are used to control 
the loudspeakers. Other microphones or sensors (e.g., accelerometers) may 

be utilized to monitor the noise to be suppressed, acting as reference 

sensors. In certain cases, if the secondary source can be installed close to 

the error microphone, a single loudspeaker-microphone pair is satisfactory. 

Where the primary noise source is not concentrated and/or suppression is 

required over a larger enclosure (e.g. in an airplane cabin), several 

microphones and loudspeakers are applied (Kajikawa 2012; Kidner 2006). 

ANC development and research is taking place in the fields of acoustics, 

signal processing, and control, among others. This section presents some 

achievements in the field of signal processing and the theoretical results are 

supported by practical applications. Section 2.4.2 briefly introduces the 

signal processing problem of ANC. Section 2.4.3 shows that periodic 
disturbances can be effectively suppressed using the resonator-based 

observer, while some relevant results are reviewed in Section 2.4.4. ANC of 

random broadband noise is primarily based on the least mean squares (LMS) 

algorithm; Section 2.4.5 presents some improvements. Finally, Section 2.4.6 

introduces a noise controller utilizing a sensor network. It describes its 

hardware components and operation, as well as the relevant signal 

processing problems. A brief summary closes the section.  
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2.4.2 The active noise control problem 

An abstract model of the ANC system can be seen in Fig. 2-12. In the 

figure, ‘F’ denotes the controller and , is the primary noise to be 

suppressed; � is the reference signal; - is the output of the controller; and . stands for the error signal. The analogue (acoustic) system is represented 

by ��{�. The signals are vectors, as noise controllers are usually multiple 

channel systems. The basic problem of ANC can be formulated as follows: 

we need to find the structure and parameters of ‘F’ that are able to 

minimize the norm of the error signal .. 

 

 
Fig. 2-12. ANC system. 

 

An ANC systems usually utilizes adaptive filters, updated by the LMS 

algorithm, and the squared norm (power) of the error signal is minimized 

(Kuo and Morgan 1999). Early systems were feedback systems, with 

successful application in one microphone-one loudspeaker (one channel) 

systems where the sensor and the actuator were placed close to each other 
(e.g. active ear muffs). The next step saw the development of feedforward 

systems requiring reference signals. Such systems have been successfully 

applied in resolving a wide range of ANC problems. The basic algorithm 

is the filtered-X LMS (XLMS) algorithm. This algorithm needs a model of 

the secondary path between the secondary loudspeakers and the error 

microphones. The accuracy of this model determines the behaviour of the 

ANC system. In the case of an inaccurate model, the control is less 

effective and in some cases the system can become unstable. Adaptive 

controllers can be used for both periodic and random noise control. 

2.4.3 Active control of periodic disturbances 

The resonator-based observer can be applied if periodic noise is to be 

suppressed (Sujbert 1997; Sujbert and Péceli 1997). The periodic noise 
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control structure offers better results and greater efficiency than the usual 

solutions. 

The resonator-based structure (see Fig. 2-1) reconstructs the input 

signal with zero error, according to (2.9), if the frequencies of the signal 

components are equal to those of the resonators. The operation can also be 

interpreted as the feedback signal of the resonator-based structure 

cancelling out the input signal. Comparing the resonator-based structure to 

that presented in Fig. 2-12, it can be seen that the structure is a noise 

controller with ¾�{�  �. It corresponds to the basic problem of ANC so 

that the output of the structure filtered by ¾�{� is equal to the input signal, 
thus the feedback of the resonators is accomplished by an “external” loop. 
In the case of acoustic noise control, the output of the resonators is 

connected to a loudspeaker and its sound is superposed onto the primary 

noise to be suppressed. (In this case the output signal is multiplied by –1.) 

The result of the interference is sensed by the microphone, the signal of 

which is the input to the resonators. This is depicted in Fig. 2-13(a). The 

noise control loop is a resonator-based observer, wherein the resonator 

positions (�() are estimated by the adaptive Fourier analyzer (AFA). Fig. 

2-13(b) shows a simplified block diagram of the system with the resonator 

positions already estimated by the AFA. This is appropriate for 

convergence analysis. The expression ¨�{� in the figure denotes the sum 

of the transfer functions of the resonators: 

 

 ¨�{�  k�$
vl� åv�{�< (2.74) 

where åv�{� has been defined as in Section 2.2.2 by (2.6). 

Fig. 2-13. Acoustic noise suppression by resonators. 
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The noise controller is designed through appropriate modification of 

the resonator-based structure. The following requirements should be 

fulfilled: the structure of the controller should be suitable for any ¾�{� and 

the choice of the parameters should result in fast settling of the system. 

Furthermore, the computational demand should allow for online 

implementation. Considering the above presented system and 

requirements, the design of the controller is actually the design of the 3v 

parameters of the resonator-based structure. 

In the case of a one channel controller, the parameter setting is as 

follows: 

 3v  Î`v< `v  �¾�{v� < t  �I�< (2.75) 

where Î is a positive scalar constant that governs system convergence. Its 

value can be set experimentally. The actual set `v depends on the actual 

fundamental frequency of the periodic noise to be suppressed. The transfer 

function ¾�{� is identified offline, and its frequency response, as well as 

(2.75), is calculated for a finite frequency set zT@ �H  �I�<� � �. 

During the operation of the controller, having the actual resonator 

frequencies {v, the proper value of `v is assigned by mapping /zT1 �/`v1. 
The foundation of the parameter choice (2.75) is that in this way the 

resonator-based structure approximates the inverse of ¾�{�, as does the 

feedback path for the unity gain and the closed loop system for the finite 

impulse response. Usually, ¾�{� is of a high order and as such the 

approximation is inaccurate, but the proposed setting ensures the fastest 

convergence. 

In the case of multiple channel noise control, each loudspeaker is 

controlled by one resonator set the input of which is the weighted sum of 

the microphone signals. This weighting corresponds to the above 

parameter set `v, but each of them is a matrix: 

 0v  �1�{v�< (2.76) 

where ��{� is the transfer function matrix between the loudspeakers and 

the microphones and 0v is the weighting matrix. The mark # stands for 

the Moore-Penrose inverse. The multiple channel noise controller is 

depicted for 4 inputs and 3 outputs in Fig. 2-14. 
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Fig. 2-14. Multiple channel noise controller.

 

The resonator sets or channels are denoted by ‘RCH’ in the figure. 
The weighting 0v ensures similar convergence features as `v does for 

a one channel controller. In the case of both single and multiple channels, 

if the system consists of an equal number of loudspeakers and 

microphones, the steady-state error is zero and suppression is perfect. If 

there are more microphones than loudspeakers, the squared norm of the 
error is minimal. On the other hand, if there are more loudspeakers than 

microphones, the error is zero and suppression is achieved with minimal 

loudspeaker power. 

The speed of convergence of the system can be improved if the 

structure depicted in Fig. 2-15 is applied. The novelty of this structure is 

that the error signal is decomposed by a non-adaptive resonator-based 

Fourier analyser (FA), and the noise controlling resonators (denoted by 

‘rch’ in the figure) receive these components, i.e. the inputs of the 

resonators are not common. Both resonator sets are tuned by the AFA 

using the reference signal. FA is, in fact, a filter bank, with the transfer 

function of a channel defined by (2.7). The parameter set `v and 0v can 
be the same as defined in (2.75) and (2.76), respectively, as the FA 

channels have unity gain at the resonator frequencies. 

 

 Fig. 2-15. Noise controller with Fourier decomposition of the error signal. 

All the introduced systems are stable for any ��{�. This stability can be 

proven by the Nyquist stability criterion (Åström and Wittenmark 1990). 
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The resonator-based noise controller developed to suppress periodic 

disturbances can be compared to the popular adaptive transversal filter-

based solution. The latter can simply be considered an adaptive filter. It 

may be stated that: (i) the resonator-based and adaptive filter-based 

systems have equal phase margins; (ii) the steady-state behaviour of the 

two systems is the same; (iii) the resonator-based system ensures faster 

convergence, due to the parameter set calculated by the inverse of ��{�; 

and (iv) the resonator-based controller employs information on the 

secondary path in the frequency domain and only at single points 

determined by the periodic noise components, thus the features (i)-(iii) 
hold even if  the secondary path is under-modelled. 

2.4.4 Achievements related to periodic noise control 

2.4.4.1 Identification of linear systems 

Let ¾�z� be a linear, time-invariant system. Non-parametric frequency 

domain identification can be accomplished by the estimation of ¾�z� at a 

finite set of zv  (Ljung 1999; Schoukens and Pintelon 1991): 

 ¾î�zv�  �$2(�zv��ìí�zv� < t  �I �< (2.77) 

where ¾î�zv� denotes the estimation of ¾�zv�, while �ìí�z� and �$2(�z� 
denote the Fourier transform of the input and output signals, respectively. 

Multisine excitation is suitable for identification (Godfrey 1993); in this 

case �ìí�zv� is known in advance and �$2(�zv� can be calculated using the 

DFT. In the case of coherent sampling, the estimation in a steady-state 

condition is undistorted. Averaging can be used to decrease the variance of 

estimation if measurement noise cannot be ignored.  

The resonator-based generator-observer pair introduced in Section 

2.2.2 is able to perform the identification, as can be seen in Fig. 2-16 
(Sujbert, Péceli and Simon 2005). 
The excitation is given by the state vector of the generator (ßa), which 

does not change while identification is in progress. The system to be 

identified ¾�{� is placed between the generator and the observer and the 

ratio of the corresponding state variables of the observer and the generator 

give the results: 

 ¾î�zv�  j8vjv < t  �I�� (2.78) 
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Exponential averaging is one option of the structure and is controlled by 

the parameter Î. Its role is discussed later. The setup in Fig. 2-16 assumes 

that the input of the system is known exactly. In practical cases, where the 

exact input of the system may be unknown, the input state variables can be 

measured by another resonator-based observer. Since the same basis 

functions are applied both in the generator and the observer, no picket-

fence effect or leakage occurs, even if finite word length effects are 

considered. The operation of the method can be characterized by noise 

suppression and measurement time. These are discussed below. 

 

 
Fig. 2-16. Identification using the resonator-based generator-observer pair. 

First, it is assumed that the resonators are arranged uniformly on the 

unit circle, i.e. zv  ti�. Additionally, if /3v  �i�@ �t  �I�1�, the 

observer performs the RDFT (see Section 2.2.2), as is the case when�Î  � 

in Fig. 2-16. In the case of noisy measurement, the noise power of the 

estimation can be calculated by (2.11). If the measurement noise is white, 

the ratio of the variances is: 

 V�WVaW  ��< (2.79) 

where VaW is the variance of the original measurement noise and V�W is the 

variance of the state variable j8v<(. The system has finite impulse response 
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and the measurement time is � steps. 

If % � Î � �, the measurement results are averaged exponentially. The 

equivalent time constant is: 

 g  � � �� � Î��i$� (2.80) 

In this case, assuming again white measurement noise and � � � settling 
steps, the noise suppression is (see e.g. Schnell 1993): 

 VWWVaW � g=< (2.81) 

where VaW is the variance of the original measurement noise and VWW is the 

variance of the state variable j8v<(, as above. This averaging improves the 

noise suppression of (2.79) if g is small enough. Since the system has an 

infinite impulse response, the measurement time depends on the accuracy 

of the measurement. The estimation of the required number of steps is as 

follows: 

 � � ò�ñ�ò�ñ�� � g�< (2.82) 

where � denotes the final error to be achieved. Note that, in practical cases, g is first determined upon the specification of the identification task, Î is 

calculated by the inverse of (2.80), and � is obtained at the end. 
In many practical cases, the identification is done over a non-uniform 

frequency set, for example acoustic measurements that require logarithmic 

frequency points. In these cases, (2.10) and (2.11) are no longer valid and 

the system has an infinite impulse response. However, it is still the case 

that �v�{� has zeros at each resonator frequency, except when z  zv , 

where �v�zv�  �. This means that the structure is able to perform 

undistorted measurements, according to (2.78). Note that the identification 

in this case does not require extra calculations compared to the uniform 

resonator set case. 

The calculation of noise suppression and measurement time is 
generally very complicated, since each channel has a different equivalent 

noise bandwidth. Fortunately, in practical cases when averaging is applied, 

and g ö �, the relevant transfer functions can be well approximated as 

follows: 
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 �v�{�  3v{v{��� � {v{��� 
 3v{v{��� � {v{�� 
 s �$Tl�<TÁv 3T{T{��� � {T{��  

� 3v{v{��� � {v{��� 
 3v{v{��� � {v{��  3v{v{��� � {v�� � 3v�{�� < t  �I �< 
(2.83) 

where 3v  g. In this case, the transfer function of any channel can be 

approximated with another resonator-based observer output, containing 

one resonator only at a frequency of zv , with 3v  g. Due to Parseval’s 
theorem, a sufficient approximation of the transfer function coincides with 

that of the impulse response. Therefore, noise suppression and 

measurement time can be estimated by (2.81) and (2.82), respectively.  

2.4.4.2 Automatic offset compensation 

Analogue measurement systems for measuring physical quantities often 

require offset compensation. Despite the very different physical structure 

of such systems, a common problem is that a non-zero output signal is 

generated at the zero value of the quantity to be measured. The magnitude 

of this offset can be much greater than the output range of the real 

measurement signal. Strain gauge bridges and magnetic flow meters can 

be mentioned as examples (Cooper 1970; Moghimi 2004). For other 

reasons these systems are excited by alternating or simple sinusoidal 

voltage, or current, rather than by a direct one. In this way some errors are 

eliminated, but the problem still exists. Part of such a measurement system 
can be seen in Fig. 2-17. The analogue system is completed by a digital 

one that processes the analogue input and can compensate the unwanted 

offset signal. 

Fig. 2-17. Analogue measurement system with offset compensation. 

The sensor and its electronic circuit generate the useful signal 3È�2�, 

burdened by the offset signal 3a�2�. The signal should be amplified before 
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analogue-to-digital conversion, as the magnitude of 3È�2� is too small 

compared to the range of the analogue-to-digital converter (ADC). 

However, if the signal is amplified without compensation (34�2�  %), the 

amplifier and/or the ADC is overdriven and the measurement cannot be 

performed. If the gain ¾ is decreased so that nothing is overdriven, the 

resolution of the useful signal 3È�2� will be very poor and the accuracy of 

the system will deteriorate. This problem can be solved by generating a 

compensating signal: 

 34�2� 5 �3a�2� (2.84) 

thus, the input signal of the ADC is 

 3�2� 5 ¾ ï 3È�2� (2.85) 

and the gain, ¾, can be sufficiently high, according to the input range of 
the ADC. 

The signals 3a�2� and 3È�2� cannot be separated out, as they are with 

the same frequency. Consequently, during compensation condition 3È�2�  % needs to be met. After compensation, the signal 34�2� does not 

change. The compensation problem shown in Fig. 2-17 corresponds to the 

noise control problem depicted in Fig. 2-12. The controller ‘F’ now can be 
found in the DSP block. (The analogue-digital and digital-analogue 
converters are not shown in Fig. 2-12.) As the excitation is periodic, the 

resonator-based controller can be used for compensation. 

The controller needs the identification of the compensation loop, which 

can be done using the procedure introduced in the previous section. As the 

frequency of excitation is known in advance, it is enough to measure at 

this frequency (and maybe at multiple frequencies and at DC). The 

system�¾�{� in the loop is very simple compared to the acoustic transfer 

functions, but it can produce a meaningful delay. 

Experimental results show that the compensation is fast and accurate. 

The speed of compensation is important, especially if excitation is through 

a low-frequency signal. 

2.4.4.3 Active nonlinear distortion reduction 

Many measurement procedures require sinusoidal excitation. The 

generation of a pure sine-wave is a common task, if, for example, the 

required sinusoidal voltage has a value of several volts and the load is 
negligible. However, in many cases this is not appropriate for the system 

to be measured and the system needs high-voltage or high-current 
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excitation; or the excitation is a non-electrical signal. The latter situation 

occurs if vibration analysis is performed. In this case, an 

electromechanical actuator is used to transform the generator voltage to 

force; due to the nonlinear behaviour of the mechanical parts sinusoidal 

inputs result in non-sinusoidal outputs. 

A possible solution to the problem is the active cancellation of 

unwanted harmonic components (Sujbert and Vargha 2004). System 

design starts with the modelling of a real sinusoidal generator. This can be 

decomposed as in Fig. 2-18. 

Fig. 2-18. Model of a real sinusoidal generator. 

The output signal �(  of the block ‘Generator’ is sinusoidal and the block 
‘Driver’ produces the output signal \(. The ‘Driver’ is usually a nonlinear 
dynamic system. There are offline solutions available (Louge, Schoukens 

and Rolain 1994), but an online solution is proposed based on the ANC 

design. A possible solution can be seen in Fig. 2-19(a).  

Fig. 2-19. Active distortion reduction (a) at the output of the driver; (b) at the input 
of the driver. 

The input of the system is the sinusoidal excitation ��<(. It is distorted 

by the primary driver D1, the output of which is \�<(. A sensing circuit S is 

connected to the output; its role is to convert the output signal to make it 
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appropriate for the controller F. The linearity of S is essential. The input of 

the controller, the error signal �(, should be zero in a steady-state 

condition for each harmonic component of \$2(<(, with the exception of 

the fundamental one. The output of the controller �W<( goes to a secondary 

driver D2, whose output is \W<(. The difference between the two driver 

outputs results in the output signal \$2(<(. Note that the subtraction of the 

signals may require special hardware depending on the type of output 

signal. 

Another possible distortion reduction system can be seen in Fig. 2-

19(b). In this system, the output of the controller �W<( does not lead to a 

driver, but is subtracted from the primary excitation signal ��<(. This 

arrangement is more advantageous than the previous one, since the 

secondary driver can be ignored and the subtraction can be made using a 

simple circuit. Unfortunately, in some cases ��<( is not accessible and only 

the first arrangement, Fig. 2-19(a), can be used. A typical example of such 

a generator is the mains supply. 

The control loop in Fig. 2-19(a) or 2-19(b) corresponds to that in Fig. 

2-12 with the controller F consisting of resonator channels, as is 

demonstrated in Fig. 2-20. The system depicted in Fig. 2-20(a) is a simpler 
structure that directly processes the error signal, while the one depicted in 

Fig. 2-20(b) utilizes the Fourier decomposition of the error signal. The 

latter structure was previously presented in Section 2.4.3, Fig. 2-15. 

Fig. 2-20. Active distortion reduction (a) processing the error signal directly; and 
(b) by Fourier decomposition of the error signal. 

Comparing the distortion reduction systems to the original ANC 

structures, the obvious difference is that the component belonging to the 

fundamental frequency must not be suppressed, so there is no resonator at 

this frequency in the blocks ‘RCH’ and ‘rch’ (the prime in the notation 
refers to the change). Note that the block FA in Fig. 2-20(b) has a 
resonator at the fundamental frequency, but its output does not go to the 

controller; this is denoted by the terminated output in the figure. 
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All the components of ��<( and �W<( appear at each resonator output, 

according to the closed loop transfer function of the corresponding 

resonator. If only the harmonic components of the desired fundamental 

frequency are present, the higher harmonics appear only at the output of 

the corresponding resonator. Since there is no resonator at the fundamental 

frequency, in the simpler system in Fig. 2-20(a), the fundamental 

component appears as a disturbing component at the output of each 

resonator. Another advantage of the improved system in Fig. 2-20(b) is 

that the FA block filters the fundamental component out. 

The models of the closed loops can be seen in Fig. 2-21: Fig. 2-21(a) 

belongs to the solution in Fig. 2-19(a), while Fig. 2-21(b) belongs to the 

solution in Fig. 2-19(b).  

Fig. 2-21. Model of the closed loop: (a) actuation at the output of the driver; and 
(b) actuation at the input of the driver. 

 ¨÷�{� denotes the resonator set without the fundamental one. The 

blocks �6�{� and �7�{� are nonlinear systems, thus the two block 

diagrams are different, even if at a certain operating point �6�{�  �7�{�. 

During operation, the stability of the system is the most important issue. 

No theoretical investigations have yet been carried out, but stable 

operation may be achieved by decreasing the convergence parameter. 

As an example, a system is introduced that is able to reduce the 

distortion of the mains (Sujbert and Vargha 2004). The main components 

of the system can be seen in Fig. 2-22. The controller can reduce the 

distortion of the mains from 4.9 % to 0.3 %. 
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 Fig. 2-22. Active distortion reduction of the mains supply. 

2.4.5 Filtered error-filtered reference LMS algorithm 

2.4.5.1 LMS-based noise control systems 

The LMS algorithm (Widrow and Walach 1996) is at the core of the most 

frequently applied noise controllers. It is a simple and robust algorithm for 
the generation of secondary noise or for the identification of the relevant 

transfer functions. The application of the LMS algorithm is introduced by 

the notation in Fig. 2-12: the output signal G is generated by an adaptive 

transversal filter, the input of which is the reference signal y. The 

adaptation is based on the error signal � and carried out by the LMS 

algorithm. However, because of the phase shift of the system ¾�{� in the 

feedback path, the LMS algorithm on its own is unstable. The solution to 

the problem is the filtered reference LMS algorithm (Widrow and Walach 
1996). Its abbreviation is usually FxLMS or XLMS, as the reference signal 

is usually denoted by j. In this chapter the letter j is used for the state 

variable of the signal model, while the reference signal is denoted by y. 

The XLMS algorithm basically deals with single input-single output 

(SISO) systems, but it has also been generalized for multiple input-

multiple output (MIMO) systems, as the multiple error LMS (MLMS) 

algorithm (Elliot, Stothers and Nelson 1987). Because many ANC systems 

consist of multiple loudspeakers and error microphones, application of the 

MLMS algorithm is straightforward. 

Although the XLMS algorithm is stable, its convergence can be very 

slow depending on the transfer function ¾�{�. The settling time for 

sinusoidal noise at certain frequencies can reach some tens of seconds, 

which makes the system practically useless. Knowing of this disadvantage, 

some modifications of the original algorithm have been proposed. Perhaps 

the most successful development has been frequency domain adaptation 

(Ferrara 1985). Its main advantage is that different convergence 
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parameters can be set separately at each frequency band. In the following, 

the LMS, XLMS, and MLMS algorithms are reviewed, then the filtered 

error-filtered reference LMS (EXLMS) algorithm is introduced (Sujbert 

1999). 

A block diagram of the filter adapted by the LMS algorithm can be 

seen in Fig. 2-23. 

 
Fig. 2-23. Adaptive filter with LMS algorithm. 

 

The transversal filter is denoted by ��{�, and y(, G(, and �( stand for the 

reference, output, and error signals at the time instant 	, respectively. The 

desired signal is \(, which should correlate with the reference signal y(. 

The equations describing the operation are as follows:

 G(  8(0�(< (2.86) 

 �(  \( � G(< (2.87) 

where 8( is a vector consisting of � coefficients of the adaptive filter and �( is another vector consisting of the actual and the delayed samples of the 

reference signal at time instant 	. The equation of adaptation is as follows: 

 8(~�  8( 
 ��(�9(< (2.88) 

where the overbar denotes the complex conjugation and � is a positive 

scalar convergence parameter. The correlation between the signals y( and \( can be represented by a transfer function approached by ��{� in 

steady-state in a least squares sense. If, for example, y( and \( are the 

input and output of an acoustic system, the adaptive filter approximates the 

acoustic transfer function. 
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Fig. 2-24. Noise control algorithms: (a) XLMS algorithm; (b) MLMS algorithm. 

Active noise control in a single channel case needs the XLMS algorithm 

shown in Fig. 2-24(a). The transfer function of the secondary path is 

denoted by ¾�{�, as before. The transfer function ¾î�{� is the model of ¾�{� to be identified offline. The equations describing the system are as 

follows: 

 �(  \( � ¾�{�G(< (2.89) 

where G( is defined by (2.86). The equation of adaptation is modified as: 

 8(~�  8( 
 ��(:â(< (2.90) 

where :( is a vector consisting of the actual and delayed samples of the 
filtered reference signal: 

 :(  ¾î�{��(� (2.91) 

The filter ¾î�{� is usually an FIR filter and can be identified by the simple 
LMS algorithm presented in Fig. 2-23, applying white noise as a reference 

signal. The system adapted by the XLMS algorithm is stable if the phase 

error of ¾î�{� is less than ¤i=. This condition implies the number of 

coefficients of ¾î�{�, but this number is irrelevant here. 
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An ANC system usually comprises � reference signals, ë output 

signals, and � error signals. For the sake of simplicity, we consider the �  � case, but this is not a restriction for the results introduced. The 

generalization of the XLMS algorithm gives the MLMS algorithm shown 

in Fig. 2-24(b). The adaptive filter can be described by a transfer function 

vector, each element of which is a transversal filter. Again, for the sake of 

simplicity, each filter has � coefficients. The equations describing the 

system are as follows: 

 -(  0(0�(< (2.92) 

 .(  ,( � ��{�-(< (2.93) 

where 0( denotes the vector consisting of the filters; �( is the vector 

consisting of the actual and the delayed samples of the reference signal; 

and -( and .( are the vectors of the output signals and the error signals, 

respectively. The matrix 0( has � rows and ë columns, thus the indices 

contain both time and space coordinates. This notation is an expansion of 
the form of (2.86) introduced by Widrow and Walach (1996) for the LMS 

algorithm. The matrix ��{� represents the transfer functions between all 

the inputs and outputs. The equation of adaptation is as follows: 

 8T<(~�0  8T<(0 
 ��;(�T< .(�0<����H  %I� � �< (2.94) 

where 8T<(0  is the row vector of 0( belonging to the H-th filter coefficient 

and ;(�T denotes the filtered reference signal delayed by H samples. The 

superscript H denotes the conjugate transpose operator. The filtered 

reference signal can be expressed similarly to that of the single channel 

case: 

 ;(  ���{�y(� (2.95) 

Here, ���{� denotes the model of the transfer function matrix, each element 
of which is a transversal filter. This allows, as with the single channel 

case, LMS-based identification. The number of filter coefficients is 

irrelevant—for practical reasons these are equal for all the elements of the 

matrix. Equation (2.95) means that each element (each filter) of the matrix 

filters the single reference signal. The identification of the transfer 

function matrix ��{� can also be accomplished using the LMS algorithm, 

but the ë channels should be excited separately. The MLMS algorithm can 

be generalized for the � ' � case (Elliot, Stothers and Nelson 1987).  
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2.4.5.2 Improvement of convergence speed 

The disadvantageous features of convergence of the XLMS algorithm 

originate in the high dynamics of ¾�{�. The adaptation of the filter 

coefficients is a feedback and its loop gain is determined directly by the 

convergence parameter �, but indirectly influenced by ¾�{�. The updated 

equation of the XLMS algorithm (2.90) evaluated in the frequency domain 

contains a multiplication by ¾â�{�, while ¾�{� is also present in the loop. 

As such, the loop gain is frequency-dependent and proportional to Q¾�{�QW. 

The convergence speed is influenced by �, but it is limited by the 

maximum of Q¾�{�Q. If Q¾�{�Q displays high dynamics, the loop gain can 

be very small at certain frequencies, resulting in slow convergence of the 

noise components of these frequencies. 

The parameter setting (2.75) of the resonator-based structure offers a 

kind of approximation of the inverse of ¾�{� that ensures maximum 

convergence speed. Furthermore, the setting ensures unity feedback for the 

periodic noise components. This idea can be applied to the adaptive 

feedforward controller. The system is completed by an additional FIR 

filter that filters both the reference signal and the error signal. The block 

diagram can be seen in Fig. 2-25(a) (Sujbert 1999). The new element in 

this figure is the filter ��{�, which is designed so that the resultant 

magnitude response for both the reference signal path and the error signal 

path ripples around the unity.  

Fig. 2-25. EXLMS-algorithm: (a) single channel controller; (b) multiple channel 
controller. 
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The system is described by (2.86) and (2.89), but the adaptation rule of the 

XLMS algorithm is modified: 

 8(~�  8( 
 ���{��(:â(< (2.96) 

where  

 3(  ��{�¾î�{�y(� (2.97) 

As ��{� is applied on both paths, the system remains stable, as before. 

The design of ��{� is based on the following. The stability of the system 

is ensured by ¾î�{�, while the role of ��{� is the maximization of the 

convergence speed. To achieve this, the magnitude response of ��{� is 

prescribed as: 

 Q��{�Q � �Q¾î�{�Q� (2.98) 

The error of the approximation could be higher than is usual in common 

filter design, thus the order of ��{� can be much lower than that of ¾î�{�. 

(Assuming the filter design, it can be supposed that ¾î�{�  ¾�{�.) 

In ANC systems, the convergence parameter � is usually set 

experimentally to achieve the fastest convergence. In our experience, � is 

worthy of being set at a resolution of 6 dB; a finer resolution is useless. As 

the loop gain is determined by Q��{�¾�{�QW, the specification (2.98) has to 

be fulfilled so that Q��{�¾î�{�Q varies within a 3 dB interval. Filter design 

can be very simple, for example, the frequency sampling method can be 

applied by sampling �iQ¾î�{�Q. If ��{� is designed so that the resultant 

magnitude is too smooth, i.e. it varies near to the unity, the order will be 

high and the convergence speed cannot be increased sufficiently because 

of the high delay of ��{�. 

The role of ��{� can be interpreted by frequency domain adaptive 

filtering (Ferrara 1985). In this case, the convergence parameter can be set 

for each band by the power measured in the band. The result of 

normalization by power is the same as smoothing by ��{�. However, ��{� is applied in the time domain, which is usually computationally less 

demanding than transform domain filtering. 

The MLMS algorithm can be completed accordingly (Sujbert 1999). 

The goal is that the effect of the transfer function matrix ��{� is 

compensated for each adaptive filter (see Fig. 2-24(b)), thus close to unity 

gain (apart from the convergence parameter) is ensured for ë adaptive 

filters. Instead of the compensating filter ��{�, a filter vector ?�{� is 

required so that the reference and error signals are filtered. The block 
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diagram of the system can be seen in Fig. 2-25(b), its description is given 

by (2.92) and (2.93) and the updated equation (2.94) is modified as 

follows: 

 8T<(~�0  8T<(0 
 � ï @èðñ�>(�T< .(?�{��< (2.99) 

where  

 >(  ���{� � �ã�{� Ü y(<����?�{�  ����{�I�K�{� � (2.100) 

and � �ã�{� Ü is a diagonal matrix, the elements of which are the �ã�{�< ä  �Ië filters. The operator @èðñ�� selects the diagonal elements 
of a matrix. The explanation of the matrix multiplications in (2.99) and 

(2.100) is as follows. The product ���{� � �ã�{� Ü in the expression of the 

matrix >( means that each column of ���{� is weighted by the 
corresponding compensating filter and each element (filter) of this product 

matrix filters the single reference signal y(. The matrix .(?�{� is a dyad 

containing the results of filtering all the elements of the error vector by all 

the compensating filters. Finally, the product of the dyad and the matrix >(�T<  is another matrix, each diagonal element of which can be used for the 

update of the H-th coefficient of each adaptive filter. 

The filters �ã�{� are specified as follows: 

 Q�ã�{�Q � �QQ��ã�{�QQW< (2.101) 

where ��ã�{� denotes the ä-th column of ���{� and QQ� QQW stands for the 
Euclidean norm, i.e. 

 QQ��ã�{�QQW  Ak �&
Sl� Q¾îSã�{�QW� (2.102) 

Each magnitude response �ã�{� can be designed independently, similar to 

the single channel case. In the ANC system, ���{� ensures the stability of 

the adaptation, while the filter set �ã�{�< ä  �Ië compensates for the 

dynamics of ���{�. 

The compensating filters can be designed offline for either a single 

channel or multiple channel case. In order to ensure stability, the accuracy 

of ���{� is crucial and so needs higher-order filters. On the other hand, the 
order of the compensating filters can be chosen depending on the available 

computational capacity. Thus, during operation of the ANC system, the 
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compensating filters imply only a moderate additional computational 

burden. 

2.4.6 Wireless sensor network for active noise control  

The development of sensor networks over the last two decades has enabled 

the employment of the technology in the field of signal processing (Kopetz 

2011). Wireless sensor networks (WSN) and the Internet of things (IoT) do 

not just rely on communication technology, but also required the 
development of smart devices as system nodes. These nodes use small-scale, 

cheap, low power devices with simple processors and sensors. The 

advantage of a sensor network, as opposed to a traditional system, is its low 

cost, easy installation, and reconfigurability. In the early days, WSNs were 

used in non-critical applications such as a meteorological data acquisition 

system in a forest. Later, WSNs appeared in the field of measurement and 

control where online signal processing is also required. The design of such a 

system is very difficult, because of the uncertainty of communication, 

especially if a feedback is realized in the network. Mathiesen, Thonet and 

Aakwaag (2005) distinguish between “open loop” and “closed loop” WSN-

based control. In open loop systems, the crucial feedback is realized in the 
traditional way and the sensor network only delivers auxiliary information. 

In closed loop systems, the crucial signals are already transmitted via WSN. 

Three problems arise if a WSN is used for signal processing: 

� distributed sensing and processing; 

� limited communication bandwidth;  

� data loss. 

 

As the system is distributed, each node uses its own clock generator, 

thus the sampling frequencies differ from each other even if their nominal 

values are equal. If the signal processing needs equal the sampling 

frequency on the nodes, synchronization is necessary. 
A nice feature of the nodes is that they are simple, cheap, and have low 

power consumption. On the other hand, the achievable bandwidth is low (a 

few kilobits per second (kbps)). If a single datum is transmitted by each 

node to a central unit in each sample interval, this gives a very low 

bandwidth for a single channel. (If the maximum speed of the network is 

128 kbps, and the number of the nodes is 8 with a resolution of 8 bits each, 

not assuming the communication overhead, at most a 2 kHz sampling 

frequency can be reached.) If the signal to be processed needs a higher 

sampling frequency (such as is the case for audio signals), data reduction 

is necessary. 
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Due to the radio wave propagation problems of WSNs, the issue of 

data loss cannot be ignored. In IoT applications, the likelihood of lost 

packages cannot be ignored either. Protocols developed for computer 

networks to avoid data loss cannot be used, as the system would not be in 

real time anymore. As such, the system should tolerate data loss. 

Some ANC systems apply several microphones and loudspeakers. 

Their cabling is difficult and expensive and so the application of a WSN 

can be advantageous. As a result, it is not just costs that can be reduced, 

but the acoustic design can also be made more flexible. 

In the following, a WSN-based ANC system is introduced (Sujbert, 

Molnár et al. 2006; Orosz and Sujbert 2014). The block diagram of the 
system can be seen in Fig. 2-26. 

The main signal processing unit integrates a digital signal processor 

and a stereo codec. The DSP is a floating-point one and the codec consists 

of delta-sigma analogue-to-digital and digital-to-analogue converters. The 

active loudspeakers are connected to the board in the traditional way, 

because of their high-power demand, but the microphones are connected 

via a WSN to the DSP. The microphones are installed on the nodes of the 

network; the nodes are called “motes” (www.openautomation.net 2020). � 

microphones are located at � motes, the mote � 
 � is the base station 

connected to the DSP by a serial line. All data are transmitted by the base 
station. The reference signal has a specific role and can be connected to 

the DSP in a traditional manner. 

 
Fig. 2-26. WSN-based ANC system. 

 

The controller contains an Analogue Devices AD21364 floating-point 

signal processor with a clock rate of 333 MHz, and an Analogue Devices 
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AD1847 codec with preset sampling frequencies (www.analog.com 2020). 

The nodes of the sensor network are Berkeley MICAz motes 

(www.openautomation.net 2020), which communicate by ZigBee radio at 

2.4 GHz and within a range of 100 m (www.zigbee.org 2020). Each mote 

has an ATmega128 8-bit processor with a 7.4 MHz clock rate for simple 

signal processing and an 8-bit AD converter samples the signal of the 

microphone. The sampling frequency is 2 kHz, so the maximal bandwidth 

of the noise control is 1 kHz. Because ANC is effective for low-frequency 

noise, the bandwidth of the node is appropriate for this application. 

A resonator-based noise controller is implemented in the system. In the 

first configuration, the noise controller is implemented on the DSP alone; 
the motes only sample the microphone signals and transmit the raw data to 

the DSP. In the following, the signal processing results are detailed in 

relation to the problems of synchronization, low bandwidth, and data loss. 

2.4.6.1 Synchronization 

Synchronization is carried out in two stages: first, the sampling time 

instants of the motes are synchronized to each other and then the motes are 

synchronized to the codec of the signal processing board. Finally, the 

sampling frequency of the system is determined by the DSP (Orosz, 

Sujbert and Péceli 2010). The nominal sampling frequencies of the motes 

are equal, but in practice, due to manufacturing and some ambient 

features, they are slightly different. The sampling frequency of the codec is 

also nominally different, but synchronization is necessary, even if its value 

is nominally the same. Without synchronization, the system would be 

unstable. This can be proven through an analysis of sampling on the 

motes. Let us suppose that the motes sample the signals at exactly the 
same time in a certain time instant, but the clock rates are slightly 

different. In this case, the following samples are taken at a slightly 

different time instant. This means that the samples are slightly delayed 

compared to that of the slowest mote. This delay continuously increases 

resulting in an increasing phase shift in the signals. If the phase shift 

reaches ê%B, the system becomes unstable. One sample delay results in a ê%B phase shift at a quarter of the sampling frequency, making it a live 

problem. 

The synchronization of the mote is carried out by a method similar to a 

phase-locked loop, as presented in Fig. 2-27. The sampling is controlled 
by a counter; its clearing starts the sampling. As such, the counter 

produces a sawtooth signal, the phase of which is the content of the 

counter. Let mote No. 1 be the reference, with a sampling frequency of zÈ<�  z� . The message sent by the reference is received by all the motes 
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and at this time instant all of them read their own phase (�v for mote No. 

k), and are compared to a reference value (�a), then the frequency zv  is 

increased or decreased depending on the difference. In a steady-state 

condition zÈ<v  zÈ<�< t  =I�. 

Fig. 2-27. Synchronization of motes. 

Stable operation does not require the motes to sample at exactly the 

same time, but the sampling frequencies have to be equal. Delays between 

the motes are identified together with the identification of ¾�{� and if the 

delays do not change during operation, no stability problem occurs.  
Theoretically, the DSP could also be synchronized in this way, but the 

sampling frequency of the codec cannot be tuned. Therefore, the 
synchronization on the DSP is carried out by interpolation: The data 

coming from the already synchronized motes are interpolated at the 

sampling time instants of the DSP. In actuality, a linear interpolation is 

used that distorts the signal to an extent, but it is good enough for sampling 

the error signal. 

2.4.6.2 Overcoming the bandwidth constraint 

In the system introduced above, all the microphone samples are 

transmitted to the DSP. The motes transmit the 8-bit samples in packets of 

25 samples to the base station, which sends them to the DSP. Despite the 

fact that data transmission is burdened only by the communication 

overhead (there is no further data traffic and the synchronization is based 

on packet arrival times), on two channels a sampling frequency of only 2 

kHz can be achieved. 

The problem can be solved by distributing the noise control algorithm 

without changing the hardware (Orosz and Sujbert 2014; Orosz, Sujbert 
and Péceli 2010). The noise control algorithm can be seen in Fig. 2-15. 

The blocks denoted by ‘FA’ are implemented on the motes. As such, only 
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the Fourier coefficients of the error signal are sent to the DSP, where the 

control resonators ‘rch’ and the AFA operate. The numerically crucial 

AFA is implemented on the DSP, while the computational capacity of a 

mote is used only for the Fourier decomposition of the error signal sensed 

by that mote. 

Although the analysers, ‘FA’, provide the Fourier coefficients at each 

time instant, they need not be sent to the DSP with the same rate. In 

steady-state conditions these components do not change and can be 

assumed to be constant. In the transient phase of the error signal (transient 

at the start of control; transient if the content of the error signal changes, 

etc.), the speed of the transient corresponds to the acoustic system and so a 
much lower sampling frequency is sufficient than for an audio signal. 

Assuming the time series of the Fourier coefficients constitute a quasi-

constant signal, the frequency of transmission to the DSP may be as low as 

possible and, at the same time, the number of the motes with the audio 

sampling frequency may be as high as possible. The noise control problem 

does not require a significant increase in the audio sampling frequency, but 

many more motes, i.e. microphones, may be necessary. In order to ensure 

a fairly rapid control, too little data transmission to the DSP is undesirable 

and the frequency depends on the application. In the actual system, five 

Fourier coefficients are transmitted from each mote in each 50 sampling 

intervals, as a result all the available motes (�  ¥) work at an audio 
sampling frequency of 2 kHz. 

The improved system requires the modification of both data 

transmission and synchronization. The motes need the actual values of the 

resonator frequencies estimated by the AFA. These are sent to the motes in 

a synchronized fashion and thus a reverse direction DSP � mote data flow 

is added to the previous mote � DSP data flow. The frequency of the latter 

equals the former and the main statement concerning the possibility of 

increasing the audio sampling frequency and the number of motes need not 

be changed. 

2.4.6.3 Handling of data loss 

The main idea is that the resonators of the ‘FA’ and ‘rch’ blocks depicted 
in Fig, 2-15 are updated only if a valid sample is present at the input of the 

structure. This is a straightforward solution, the correctness of which was 
shown in the previous section. 

There are necessary and sufficient conditions concerning the 

convergence of the resonator-based observer in the case of data loss 

(Orosz, Sujbert and Péceli 2013). The necessary condition is that the rank 

of the observability matrix of the modified system is �, where � is the 
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number of resonators. There are various sufficient conditions; some of 

them can be cited briefly as follows: if the data loss rate is less than a 

certain value (independent of the nature of the data loss) or data loss is a 

random process (independent of the data loss rate), the system is 

convergent. These results can be generalized for the case of an 

independent stable linear dynamic system placed in the feedback path 

(Orosz 2012); as such, the resonators ‘rch’ also converge on the correct 

solution. 

2.4.6.4 Further results 

The amount of data to be transmitted from the motes to the DSP can be 

decreased both by signal decomposition and by only sending the sign of 

the actual sample. This system provides the same features in a steady-state 

condition, but settling takes longer (Orosz, Sujbert and Péceli 2008). 
In the case of broadband noise control, the XLMS or MLMS algorithm 

can be implemented in the sensor network framework. In this case, the 
amount of data sent by the motes can be reduced by sending only the sign 

of the actual sample. The convergence of this system has previously been 

proven (Orosz, Sujbert and Péceli 2012). 
In our experience, a sensor network-based ANC system offers a testbed 

for the investigation of distributed signal processing algorithms (Orosz, 

Sujbert and Péceli 2007). 

2.4.7 Summary 

This section introduced several results in the field of active noise control. 

These are theoretical achievements related to signal processing. All these 

systems have been implemented and the practical results justify the 

theoretical expectations. 

This research was undertaken together with the Institute of Applied 

Physics, Delft (TPD-TNO, The Netherlands), where the resonator-based 

controller was shown to be a competitive solution for effective noise 

reduction algorithms for propeller airplanes. The algorithm displayed 

excellent features and robustness during physical tests (Sujbert and Dunay 

1995). Some successful experiments were carried out for outdoor noise 

control of large transformers (Sujbert 2002). 
Related results have been implemented in other fields. Resonator-based 

identification and automatic offset compensation have been applied in a 

magnetic flow meter and a dynamic weighing system for railway carriages 

(Görgényi et al. 2005; Molnár et al. 2003). 

LMS-based noise control systems can also be used for the reduction of 
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stochastic, broadband noise. The proposed filtered error-filtered reference 

LMS algorithm improves convergence speed significantly, addressing an 

important issue. Other solutions are also available, of which the method 

we proposed has also been cited in Morgan (2013). ANC of broadband 

noise is an ongoing research subject with the most up-to-date results being 

applied in offices and call centres (Sujbert and Szarvas 2018). 

The sensor network-based ANC system is a testbed (Orosz, Sujbert and 

Péceli 2007) for other research, such as investigating issues of data loss as 

introduced in the previous section. 

2.5 Summary of Chapter 2 

This chapter discussed various procedures and algorithms inspired by the 

observer structure based on the periodic signal model and the resonator-

based observer introduced in Chapter 1. The connection to the resonator-

based structure is often direct, as in the case of the adaptive Fourier 

analyser; but its influence can be shown even if there are no resonators in 

the algorithm—see, for example, LMS-based systems. We offered a 
description of the methods and detailed the theoretical results, while the 

simulation or the practical results can be found in our research papers. The 

summaries of the sections have listed practical, industrial applications. 

This chapter had three main sections. The first section introduced the 

adaptive Fourier analyser (AFA), which has been the subject of further 

research and publications. The second section discussed some procedures 

for spectral estimation in the case of data loss. The third section 

concentrated on active noise control to achieve a number of results. Data 

loss in active noise control motivated the research presented in the second 

section. 

The topic of the first section is complete in the sense that the 
development and analysis of the AFA is complete; however, further 

improvements are likely to appear in the future. Research is currently 

being undertaken in the field of the second and the third sections and new 

theoretical and practical results are expected. 
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CHAPTER THREE 

INVERSE PROBLEMS AND ALGORITHMS  
OF MEASUREMENT SCIENCE 

TAMÁS DABÓCZI 

 
 

 

3.1 Introduction 

Both humans and machines sense the physical world surrounding them. 

For this purpose, sensors and measurement systems are utilized. Their 

quality is a primary concern as decisions (made by humans or autonomous 

systems) are based on information gained from sensing devices; similarly, 

that is also the basis for intervening in the physical processes of the world 

in the case of an embedded system. The correctness and quality of a 

decision depends strongly on the accuracy (how close the measured value 

is to the true or theoretical value) and precision (how close the 

measurements are to each other) of the acquisition of primary information 

about the physical world (Joint Committee for Guides in Metrology 
(JCGM/WG 1) 2008). This study deals with possibilities for improving the 

accuracy and precision of devices seeking to observe the surrounding 

world by means of digital signal processing. 

The importance of this topic is highlighted by the fact that, with 

advancements in computer science, sensor techniques, microelectronics, 

and software technology, we are surrounded by more and more complex 

autonomous systems that are very often heavily interconnected with each 

other through high speed networks (ad-hoc networks, mobile internet, and 

5G etc.). These elements have the potential to accomplish complicated 

tasks in synchrony with each other, such as autonomous driving, adaptive 

traffic control, autonomous truck platooning, or the simultaneous 
locomotion of robots and humans in a storehouse. We call such a complex, 

networked, cooperating system, involving strong interaction with the 

physical world, a Cyber-Physical System (CPS). It is a common 

characteristic of all the above-mentioned applications that they require 

accurate information about the world and about physical quantities like 
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temperature, pressure, and the position and movement of objects. 

Decisions are carried out according to this information through 

complicated information processing algorithms. 

Embedded and Cyber-Physical Systems process information primarily 

in digital form. In the course of observation, many distorting and 

disturbing effects corrupt the signal path from the physical quantity to the 

digital information. Our aim is the compensation or reduction of these 

effects by means of digital signal processing methods. 

We do not try to reconstruct the analogue signal from its distorted and 

noisy version that carries information about the physical quantity; rather, 

we solve the inverse problem, i.e. we compensate the known distortions 
and suppress the disturbances by digital signal processing. As such, we 

strive to reconstruct the information. Perfect reconstruction, in general, is 

not possible, as we can have knowledge about distortion only with limited 

accuracy; the inversion itself also contains distortion (e.g. finite arithmetic) 

and the observation is corrupted by noise. 

We deal with the following topics, all of which have posed challenges: 

a) compensation of frequency-dependent errors of systems that can be 

modelled as linear in ill-conditioned cases; 

b) compensation of nonlinearities in ill-conditioned cases; 

c) signal-model-based reconstruction; 

d) and systems that can be indirectly observed. 

3.2 Distortions of the signal path and possibilities  
for their compensation 

We seek to accurately and precisely measure some physical quantities 

(pressure, position, temperature etc.) of a physical system. The given 

physical process can only be observed through a channel (signal path), 

which is noisy and corrupted by distortions, as part of the 

measurement/observation process. Our aim is to compensate these 

distortions, also taking the noise into account. We will consider every 

deterministic effect altering the original shape of the signal and this can be 

described by a (deterministic) model as distortion. All unmodelled 

effects/interferences or stochastic processes (noises) are called disturbances. 

In terms of the level of difficulty of observation and corresponding 
compensation:  

 

1. The physical quantity to be observed can be directly measured by a 

sensor: signal path compensation starts with the compensation of 

known or identified sensor distortion (measurement system). 
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2. The physical quantity to be observed cannot be directly measured with 

a sensor: the signal path up to the sensor also needs to be identified and 

compensated. 

 

3. The physical quantity to be observed and the signal path to the sensor 

is affected by other physical quantities: identification and 

compensation of these effects is also necessary. 

In the first case, the physical quantity to be observed is directly 

measured by a sensor. The sensor transforms the physical quantity into an 

electrical one (voltage, current, charge, resistance change etc.). This signal 

is processed by an analogue signal conditioning circuit (analogue signal 

processing—ASP), then digitized by an analogue/digital converter (ADC). 

This is the starting point of digital signal processing. The role of the 

analogue signal conditioning circuit is to fulfil all tasks worth 

accomplishing in the analogue domain or that can exclusively be 

accomplished there. These include level shifting, impedance matching, 

anti-alias filtering before sampling, galvanic isolation, overvoltage 

protection, and noise filtering etc. In talking of a measurement system, we 

mean the whole signal processing chain with all distorting and disturbing 
effects (Fig. 3-1).  

 

 

Fig. 3-1. Digital processing of analogue physical quantities. 

One of the most frequent types of distortion is frequency-dependent 

linear distortion (the effect of finite bandwidth). For example, where the 
temperature sensor cannot track rapid changes due to its own thermal 

capacitance. We also encounter, similarly, static nonlinear distortion (e.g. 

saturating characteristics), or distortion described by nonlinearity having 

memory (e.g. hysteresis). Another example, presented later on, is the 

pressure sensor, which has a deforming diaphragm between two spaces 

having different pressures. Due to the mechanical properties of the 

diaphragm, it returns to a different position after relaxing from a given 

one-sided excitation in the opposite direction after receiving the same 

excitation. 
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Typically, measurement noise is treated as a disturbance. If we know 

the effects of distortion and disturbance, it is possible to compensate them 

and reduce their effects (Fig. 3-2). 

This inverse filtering task (reconstruction, signal path compensation) is 

an ill-posed problem, as the estimate can change significantly with only a 

small disturbance in the measurement. The scientific and engineering 

challenge is the solution of ill-posed inverse filtering problems. 

The robustness of compensation can be increased if the signal to be 

measured can be described by a model having a finite (small) number of 

parameters. (For example, it is known that the signal has a sinusoidal form 

that can be characterized by four parameters.) In this case, the simple form 
described by the signal model ensures immunity against noise (regression). 

 

 

Fig. 3-2. Compensation of the distortion of the measurement system and 
suppression of noise. 

The accuracy of the estimate of an observed physical quantity can be 

increased if several, typically different, types of sensor are applied to 

measure the same physical quantity or its effect. Nowadays, all 

smartphones contain an orientation measurement unit that estimates the 

angle of the device relative to a ground reference by utilizing 

accelerometers, rotational speed sensors, and magnetometers. In such 

cases, we can fuse the information of individual channels by taking the 

reliability, accuracy, finite measurement range, or type/level of disturbance 
of a particular channel into account. Through this sensor fusion we achieve 

a complex sensor that contains an aggregate of information from all of the 

channels and offers the possibility of compensating for all the distortions 

together (Fig. 3-3). For this, we need to combine information from 

different sensors in a way that provides a smooth transition between the 

different ranges; with appropriate weighting of the channels this gives us a 

result with a smaller error than the individual channels and the resultant 

transmission in the range of interest is the most accurate one possible. The 

process of sensor fusion also needs to take the distortion of the sensor into 

account. Distortion may refer to linear or nonlinear distortion of the sensor 

(or the measurement system) itself, but also the fact that a particular sensor 
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measures the derivative or integral of the quantity observed. Sensor fusion 

is treated as an inverse problem only if the distortions of the sensors are 

taken into account during fusion. In that case, sensor fusion acts like 

channel equalization for the whole system, rather than just for individual 

channels. 

 

 

Fig. 3-3. Joint compensation of measurement systems and suppression of noise in 
the case of sensor fusion. 

If the physical quantity to be measured cannot be directly measured by 

a sensor, but it is possible to measure some of its effects, the 

reconstruction process is extended through the identification and 

correction of the distortions and disturbances of the signal path in the 

physical system (Fig. 3-4). An example of this type of reconstruction is the 

observation of a distant object through a camera where the index of 

refraction of the medium between the camera and the object fluctuates (by 

atmospheric turbulence) causing distortion. This effect smooths the image 

of the object, as if the picture had been processed through a lowpass filter. 
The above-noted phenomena can make astronomic observation difficult. 

If the signal path of the physical system can be characterized by an 

invertible distortion, the distortions of both the measurement system and 

the physical system can be combined and compensated together, as in 

Fig. 3-2. When compared to previous cases, the complexity is increased by 

the extra step of system identification (both physical and measurement 

systems need to be identified). After the system identification task is 

completed, the reconstruction task does not differ mathematically from the 

one previously investigated. 
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Fig. 3-4. Reconstruction in the case of indirectly measurable quantities.  

The effect of signal paths within the physical system also needs to be taken into 
account. 

A more complicated type of observation of a physical quantity is 

shown in Fig. 3-5. The signal path within the physical system is influenced 

by other, unknown and time-varying, physical quantities. Compared to the 

previous case (Fig. 3-4), the difference is that the parameters describing 

the distortions of signal paths within the physical system vary in time. 

Their variation over time is not known, but is influenced by changes in the 

physical quantities. The physical system can also be treated as a multiple 

input multiple output (MIMO) system with one particular input signal 

being of primary interest (the physical quantity to be measured).

 

 

Fig. 3-5. Reconstruction in the case of indirectly measurable quantities.  

The physical quantity to be observed is one of the unknown excitations of a multi-
input system. 

A practical example for the above model is the measurement of a 

vehicle’s speed by measuring the rotational speed of the axle driving the 
wheel. This measurement principle contains a systematic error, as the 

rolling radius is only known inaccurately. The air pressure of the tire, the 

temperature, the wear of the tire, and an uneven road surface all influence 

the rolling radius (Fig. 3-6). A couple of these effects can be measured and 

compensated (e.g. tire pressure, temperature), others can be treated as 

disturbances (wear, road surface). 
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Fig. 3-6. Change of rolling radius as a function of tire pressure, wear, temperature, 
and unevenness of the road surface. 

The most difficult case investigated in this chapter is shown in Fig. 3-7. 

The physical quantity to be observed is an internal state of a physical system 

that cannot be directly measured using a sensor. The state variables of the 

system are influenced by other physical quantities (in terms of the physical 

quantity itself, not just its measurement). Using the terminology of control 

theory, if the physical system is observable, then the physical quantity to be 

observed can be estimated as an estimate of state variables by observing 

both the excitation and output of the system along the time variable and 

knowing the relationships describing the system (observer theory). 

Parameters of system description are determined by physical quantities, thus, 
their change over time is not known a priori. Excitations and system outputs 

are measured by sensors and their signal paths are compensated, as in Fig. 3-

2. The state-estimator copies the system model and tries to act with the same 

excitation as the true system by bringing the estimated output close to the 

measured one. After the transients are settled, the estimate of the physical 

quantity to be observed is one of the states of the state-estimator. 

 

 

Fig. 3-7. Reconstruction in the case of indirectly measurable quantities.  
The physical quantity to be observed is an internal state of a physical system that 
cannot be directly measured by a sensor. 
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Estimating the state of the charge of an electrical vehicle, where there 

is a requirement to judge the range, is a good example. In the case of plug-

in electrical cars, the current (charge) pumped into the battery at the last 

charge can easily be measured. One can also accurately measure the 

charge consumed by the load. But the battery cannot be regarded as being 

perfect and lossless. Electrical energy is transformed into chemical energy 

with only finite efficiency and the battery suffers from self-discharge. A 

model of the battery describing both electrical and ion-transport properties 

provides the solution. The model-parameters (internal resistances, 

inductances, and capacitances etc.) can be continuously identified based on 

measurable physical quantities (voltage, current, temperature etc.). From 
such a model the available energy can be calculated. 

3.3 Extension of finite bandwidth of linear systems 

We will deal with the most common types of distortion and the 

possibilities for their digital compensation. In this section, we investigate 

the effect of finite bandwidth while a later section deals with the effect of 
nonlinearities. 

The accuracy of measurement systems is primarily influenced by their 

finite bandwidth. This poses a problem if the physical quantity to be 

observed changes quickly in time (or as a function of some other 

independent quantity) compared to the bandwidth of the measurement 

system. In such cases, the measurement is nearly always inaccurate as the 

signal shape is distorted. The peaks of the signal to be measured are 

flattened, the slopes of the rising or falling edges decrease, and characteristic 

signal positions (zero crossing, the positions of peaks or edges) undergo 

change. If the measurement system can be described by a linear and time-

shift invariant model, the correspondence between the quantity to be 
measured (as the input or excitation of the system) and the recorded output 

of the measurement system can be described by a convolution integral: 

G�2�  C D�E�j�2 � E�\E�)
�) < (3.1) 

where j�2� is the physical quantity to be measured; D�2� is the impulse 

response of the measurement system describing the finite bandwidth; and G�2� is the distorted output acquired by the measurement system. In 

dealing with the possibilities for digital compensation of distortions, the 

above relationship can be rewritten for sampled systems and finite 

 EBSCOhost - printed on 2/14/2023 6:11 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Three 
 

146 

registration length where the convolution integral becomes the convolution 

sum: 

G�H�  k D�º�j�H � º���$��
�la  (3.2) 

If we transform the signals into the frequency domain by means of a 

discrete Fourier transform (DFT), convolution becomes multiplication: Í�z�  ��z�Ê�z��< (3.3) 

where capital letters stand for the discrete Fourier transform of the 

corresponding signals. We should note here that the convolution becomes 

circular when accomplished by a DFT. Circular convolution well 

approximates the continuous time convolution integral, if the signal is 
periodic and the record length matches the multiple of period length, or it 

is a transient signal and the record length is long enough for the transient 

to settle. In other cases, the side effects of circular convolution need to be 

reduced using appropriate methods (e.g. zero padding); these are not 

discussed here. 

The relation written in the frequency domain provides a trivial solution 

for the compensation of the distortion (inverse filtering or deconvolution). 

Where the distortion is caused by multiplication of the input spectrum by 

the transfer function, then let us divide the spectrum of the measured 

signal by the transfer function: 

Ê©�z�  Í�z���z�  Í�z� ��z��Q��z�QW (3.4) 

where Ê©�z� is the spectrum of the reconstructed signal (after 
compensation of the distortion); * stands for complex conjugation. This 

approach (called many-times naïve inverse filtering in the literature) can 

only be applied if measurement disturbances can be neglected. 

Compensation of the distortion assumes that the transfer function is 

known. In practice, this is determined from known measurements (system 

identification). The measurement system is excited by a signal that is 

either well controlled (its shape is known) or measured. The response to 

this excitation is measured and, based on the input-output relationship, a 

parametric or nonparametric model is identified. (System identification 

itself is also a deconvolution problem.) 
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Ill-conditioned problem: 

Let us investigate the effect of disturbances on the results of the above 

naïve reconstruction. For this, we have to extend the model of the 

measurement and reconstruction process to the disturbances. First, we deal 

with disturbances that can be treated as measurement noise 

(electromagnetic interference, thermal noise of electronic components of 

measurement system, quantization noise of ADC etc.): {�H�  G�H� 
 	�H�< (3.5) 

where {�H� is the noisy observation and 	�H� is the sampled noise record. 

If the naïve reconstruction is applied to noisy measurements, we can 
observe that measurement noise is amplified by the inverse of the transfer 

function: 

Ê©�z�  F�z���z�  Ê�z���z� 
 ��z���z�  Ê�z� 
 ��z���z�� (3.6) 

In the stop band, the spectrum of the noise record is divided by a 

transfer function value near to zero, amplifying the noise to such a great 

extent that the estimation achieved is completely useless. The noise 

becomes a couple of orders of magnitude larger than the useful signal and 

completely masks it. The phenomenon is described as “ill-conditioned”, 

meaning that a small perturbation in the observed signal (due to noise) 

results in a large deviation of the estimate. 

In order to improve the condition of the problem, several methods have 

been developed to suppress noise in the naïve reconstruction process (to 
regularize the problem). These algorithms will be briefly surveyed in the 

next section. Nearly all the methods have the same limitation. Suppression 

cannot be applied separately to measurement noise, but rather to noisy 
observations. As a result, the useful signal is also filtered, i.e. it is distorted 

during noise suppression. An inverse filtering process is thus always an 

optimization process looking for a sensitive trade-off between noise 

suppression and distortion of the signal. We face two problems, which are 

investigated in more detail in the following sections. These are:  

� finding or selecting a good regularization operator that efficiently 

separates the useful signal from the noise; 

� setting a level of regularization that offers the best compromise 

between noise suppression and distortion. 
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Using simulated signals, let us investigate the effect of the level of 

regularization on the reconstruction. The physical quantity to be observed 

is assumed to be a narrow band signal measured by a system with a 

bandwidth narrower than that of the signal. The signal waveform needs to 

be reconstructed from a distorted and noisy observation where the signal-

to-noise ratio is 20 dB. The observed signal and the measured signal are 

depicted in Fig. 3-8 

 

 

Fig. 3-8. Measurement system with lowpass, narrowband signal to be measured. 
Input signal (solid line); distorted and noisy system response (dashed line). 

A reconstruction is shown in Fig. 3-9 applying Tikhonov-type 

regularization (see Section 3.3.1) and various regularization parameters. 

During naïve reconstruction (without regularization), the amplitude of the 

noise is increased by a factor of several thousand, completely masking the 

signal we wish to observe (on the upper left). The scale of the vertical axis 

on this graph differs from the others in the figure because of the increase 
in noise amplification. By gradually increasing the regularization 

parameter, the noise is increasingly suppressed and the signal we wish to 

measure becomes more and more visible and recognizable (upper right). 

Further increasing the regularization parameter and setting it to a very 

large value, the estimation becomes very smooth (with little noise), but, at 

the same time, the useful signal is filtered out and the estimate is a near 

constant DC value (lower right). The compromise is somewhere in-

between these extreme values (lower left). 
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Fig. 3-9. Demonstration of regularization during the inverse filtering process with 

different levels of regularization. Quantity to be measured (input): dashed line; 
estimated input: solid line. 

3.3.1 Deconvolution algorithms 

Our aim during the inverse filtering process is to simultaneously 

compensate the distortion and limit the amplification of noise. To this end, 

we first define a measure to qualify the correctness of the reconstruction 
and then we investigate if the given error criteria can give a useful inverse 

filter. Next, we investigate modifications of this measure, inverse filtering 

algorithms resulting from the modified error criteria, and further heuristic 

approaches. 

 

3.3.1.1 Input error criterion 

In the case of a time (or other independent variable) domain signal, an 

obvious error criterion (cost function) is an average (e.g. mean of squares, 
l2 norm) of the difference between the physical quantity to be observed 

and the estimated one. This is called the input error criterion, since the 

physical quantity to be observed is the input of the measurement system 

(see Fig. 3-10): û�ç�  G��2�G  Gj8�2� � j�2�G< (3.7) 

 EBSCOhost - printed on 2/14/2023 6:11 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Three 
 

150 

where cost stands for the cost function (error criterion) to be minimized; ��2� denotes the error; and G G denotes the norm of the signal.  

Let us investigate under what condition we could design an inverse 

filter using the input error criterion. This expression is minimal (equal to 

zero) if the reconstruction is perfect, i.e. the estimate matches the quantity 

to be observed in every time instant without any error, even though the 

observation is noisy. This corresponds to the following inverse filter:  

�T(H�z�  ��z�  Ê�z�F�z�� (3.8) 

The above expression assumes that the spectrum of the signal to be 

observed is known. If we already knew it, then we would also know the 

time domain waveform of the signal since there is a mutually 

unambiguous correspondence between the spectrum and the time domain 

waveform. If we knew the signal that we are trying to estimate, we could 

construct a linear filter that reconstructs it perfectly from noisy and 

distorted measurements.  

 

Fig. 3-10. Input error of the reconstruction. 

Unfortunately, however, in this scenario neither the spectrum nor the time-

domain signal is known. As such, a solution based on the input-error 

criterion cannot be calculated due to a lack of information. Nevertheless, 

we cannot completely ignore the input-error criterion, as it is a measure 

that consequently characterizes the quality of the reconstruction.  

3.3.1.2 Output error criterion 

The next possible error criterion is based on comparison of the measured 

output signal and the (predicted) estimated output derived from the 
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estimated input. This is called the prediction error or output error criterion 

(Fig. 3-11): û�ç�  GG8�2� � {�2�G�< (3.9) 

where G8�2� stands for the estimated (predicted) output derived from the 

estimated input j8�2�. If we assume an l2 norm, this gives us the inverse 

filter and estimation shown in (3.6): 

��z�  ���z� <���������
Ê©�z�  F�z���z�  Ê�z���z� 
 ��z���z�  Ê�z� 
 ��z���z� �� (3.10) 

As was described in the introduction to Section 3.3, this inverse filter 

gives an ill-conditioned solution, i.e. a small perturbation of the observed 

signal due to noise causes a large deviation in the input signal estimate and 

measurement noise is amplified to a large extent. This method can be 

applied only if the noise level is very low, meaning that the amplified noise 

during the inverse filtering is tolerable. Although the output error criterion is 
rarely used on its own, it provides a basis for many modifications.  

   

Fig. 3-11. Prediction error or output error of the reconstruction. 

Overdetermined matrix equations 

It is also worth deriving the solution in the time domain, not just in the 

frequency domain, since this leads to an overdetermined set of linear 

equations and, as such, the conclusions will apply to a broad set of 

problems. The derived and the regularized solutions can be applied 

independently of inverse filtering to any problem that requires the solution 

of an ill-conditioned linear matrix equation. Let us present the convolution 
sum in the form of a matrix multiplication (Sarkar, Weiner and Jain 1981): 
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� 
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NNN
O
�< 

(3.11) 

where  denotes column vector;  denotes matrix; T stands for transpose; 

and � stands for the length of the impulse response. Taking into account 

the fact that � is not quadratic, the set of linear equations is perturbed by 

stochastic disturbance and the Moore-Penrose pseudo-inverse provides the 

solution in a LS sense (least squares, i.e. minimization according to the l2 

norm): 

j8  ��0����� �0{�� (3.12) 

The matrix equation is said to be ill-conditioned if the condition 

number of the non-quadratic matrix �, is large: û�é@���  G�GG�~G�< (3.13) 

where �~ denotes the pseudo-inverse of the matrix and G�� G stands for the 

norm of the matrix (e.g. Euclidean norm). This condition number is 

connected to the singular values of matrix �, which are determined by the 

eigenvalues of matrix �0� (their square root). The condition number of a 
matrix is greater than or equal to the ratio of the largest and smallest 

singular values. For ill-conditioned problems, rather than (3.12), a 

regularized version is applied; this will be presented later in this section. 

Iterative methods 

The iterative method developed by van Cittert converges to the 

solution of (3.10) (Van Cittert 1930): 
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j8a  {@         j8(~�  j8( 
 Ñ�{ � D � j8(��< (3.14) 

where j8( denotes the estimated input signal at the nth iteration number; b 

is a constant that controls the speed of convergence; and * denotes 

convolution. Convergence can only be ensured for a limited set of signals. 

The iterative process is time consuming and can only be efficiently 

calculated with suitable hardware support, but the problem of inverting an 

ill-conditioned matrix is eliminated. 

Noise reduction during inverse filtering (regularization) can be 
accomplished by stopping the iteration earlier than the point at which the 

signal settles to its final waveform. The level of noise reduction is 

controlled by the number of steps in the iteration. Unfortunately, this 

parameter cannot be adjusted without limitations. Unless the result of 

every iteration step is stored, stepping back (reducing the iteration number) 

is non-trivial. It is crucial to detect the appropriate stopping condition in 

the runtime. However, an indisputable advantage of the method is its 

simplicity. Moreover, it is easy to improve on the general idea so as to 

handle the amplitude limit of the signal to be measured or utilize prior 

knowledge about its non-negativeness (see further on). 

3.3.1.3 Output error criterion + filtering 

We have shown that the output error criterion leads to significant noise 

amplification in the case of ill-conditioned problems. One obvious idea 

involves suppressing the noise with a filter in the frequency range at which 

the noise is amplified. This idea does not provide a systematic error 
criterion, but rather it determines a smoothing filter in an ad-hoc way. 

There are widespread linear and nonlinear methods for smoothing. 

Regularization is provided by the smoothing filter and the level of 

regularization is determined by the filter parameters (e.g. cut-off 

frequency, roll-off rate, etc.). 

In most cases, we may assume that the measurement system has a 

lowpass nature and the signal to be measured predominantly contains low 

frequency components. In such cases, the multiplication of the measured 

spectrum by the reciprocal of the transfer function dominantly amplifies 

the measurement noise at high frequencies (at the stop band). As such, a 

lowpass filter should be applied before the frequency domain division. 

This smoothing filter can be a simple moving average filter. We might also 

fit a polynomial of order � to � 
 � (odd) points and exchange the value 

at the middle of the moving window to the midpoint �� =m 
 �� of the 

polynomial. Filtering is often accomplished in the frequency domain. In 

such a case, a possible solution involves the truncation of the spectrum 
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corresponding to a very sharp lowpass filter. However, truncation causes 

Gibbs oscillations and, as a result, truncation needs to be consolidated by 

further smoothing (Taylor et al. 1987). 

In the case of Gaussian additive noise, linear filtering is efficient. For 

other types of noise, nonlinear filtering methods are more beneficial. Order 

statistic filters comprise one of the most popular families of nonlinear 

filters. Such a filter sorts the samples within a moving window in 

ascending order and replaces the middle sample with one of the samples 

from within the sorted window. The replacement rule may be: smallest 

(first) or largest (last) value (min. or max filter) and the selection of a 

middle sample (median filter). The median filter is very efficient at 
removing impulse-like noises that a linear filter cannot handle well. A 

linear filter spreads the energy of the impulse into the neighbouring 

samples. The median filter replaces the midpoint of the moving window 

with one of the samples (Balakrishnan and Rao 1998). Consequently, the 

filtered signal only contains samples from the original signal. Order 

statistic filters have versions that relax this (sometimes useful) feature. 

One of the most popular examples of this is the removal of outliers by 

sorting the samples in ascending order, omitting the K largest and K 

smallest samples, and averaging the remaining samples. Window length is 

set to 3K+1. The simplest method of averaging uses the arithmetic mean, 

which gives an alpha-trimmed mean filter (Balakrishnan and Rao 1998). 
Both median and alpha-trimmed mean filters are used to intensively 

remove impulse-like noises and outliers. Impulse-like noises, or noises 

having concentrated energy around a sample, model the degradation of 

information in the signal processing chain where samples are 

stochastically replaced, the MSB bit is corrupted during AD conversion, or 

information corresponding to MSB bits are inverted in a communication 

channel. (Certainly, error detection code may help to detect and error 

correction code to correct an error, but there is a cost in terms of the 

increased requirements of storage space, communication bandwidth, and 

signal processing capacity.) 

3.3.1.4 Iterative methods handling amplitude limits 

A modified version of van Cittert’s iterative deconvolution method (Van 

Cittert 1930) can handle problems where the quantity to be observed has 

physical meaning only between certain amplitude limits. For example, 

light intensity is interpreted only in the range of positive numbers 

(spectroscopy, chromatography). The following modification removes the 

negative samples of the estimate with a Ì operator (Crilly 1991): 
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j8a  {<������j8(~�  Ì�j8(� 
 Ñ �{ � D � Ì�j8(�� 

Ì�j8(�  PÌ4�j8�(�Ì4�j8W(�q Q,     Ì4�j8T(�  Aj8T(��è	�j8T( Ò %�%��è	�j8T( � % �< (3.15) 

where  j8T(  denotes the ith element of vector j8( . Similarly, an amplitude 

limit can be incorporated, if not just the sign but also a limited range is to 

be forced in the estimate (Crilly 1991): 

j8a  {<������j8(~�  j8( 
 3�j8(��{ � D � j8(��< (3.16) 

where the relaxation function 3�j8(� has the duty of limiting the estimate 

between the given bounds. Jansson’s recommendation for the relaxation 

function is as follows (Jansson 1984):  

 3�j8(�  Ñ ¦� � =| Rj8( � |=R§ �< (3.17) 

where the relaxation function forces the estimate to remain between 0 and 

c. The convergence of this technique can be improved by cross-

correlation. 

Another algorithm for handling amplitude limits is Gold’s ratio method 
(Gold 1964; Richardson 1972): 

j8(~�  j8( {{ � j8( �� (3.18) 

Although the above equation does not contain an explicit amplitude 

limitation, it has been observed that as long as the estimate j8( gets close 

enough to the real value, the physically uninterpretable components cancel 

each other out. Siska’s similar method takes the following form (Siska 

1973): 

j8(~�  j8( S {D � j8(TU �< (3.19) 

where � is an arbitrary non-negative number. Here, the numerator is the 

observation inherently containing the physical limitations and the 

denominator is the estimated output. The ratio of these two factors weights 

the change in the estimate over the course of the iterations. This method 

intuitively moves the estimate towards the required amplitude limits and 
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its effect, as far as we know, has not yet been proven. Regularization, thus 

the limitation of noise amplification, is accomplished through limitation of 

the amplitude of the estimate. 

3.3.1.5 Regularization 

The Russian mathematician Tikhonov was a pioneer in developing 

solutions for ill-conditioned problems. He derived systematic solutions for 

a very wide range of problems and his approach is still widespread in 

engineering practice. 

A particular type of ill-conditioned equation is the convolution integral. 

Tikhonov redefined this ill-posed problem and introduced new error terms 

into the cost function to be optimized (Tikhonov and Arsenin 1977). In this 

way, the problem becomes well-conditioned. He called the new error terms 

regularization operators and their role is to enforce a priori knowledge about 

the solution. In the case of convolution, possible regularization operators are 

the known (or assumed) energy, smoothness, and higher order derivatives of 
the convolution kernel (input signal). Tikhonov (being a mathematician) 

suggested introducing an infinite number of regularization operators, but in 

engineering practice only a few operators, at most, are used because of the 

lack or uncertainty of a priori information.  

If the regularization operator is the energy of the signal to be 

reconstructed, we get the following modified cost function compared to 

the output error criterion: û�ç�  GG8�2� � {�2�G 
 ´Gj8�2�G�< (3.20) 

where G�� G is the norm of the discrete signal. The weighting constant, ´, 

tunes the ratio between the role of the output error and a priori information 

regarding the estimated signal. If ´  % we get the output error criterion; 

in the setting ´  x, we limit the energy of the estimate independently of 

the prediction error. By increasing ´, we gradually increase the 

suppression of (amplified through deconvolution) noise. Setting ´ to 

infinity, we get a completely noiseless signal, reducing the estimate to a 

constant DC value. The advantage of this method is that the level of noise 

suppression (regularization) can be adjusted with a single parameter. 

Based on (3.20), the solution can be derived in both the time and 

frequency domains. In the frequency domain, we get the following inverse 

filter (Narduzzi and Offelli 1991): 
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��z�  ��z��Q��z�QW 
 ´ �� (3.21) 

It is worth comparing the above result with the inverse filter derived 

from the output error criterion (see (3.10)): 

��z�  ���z�  ���z����z����z��  ��z��Q��z�QW �� (3.22) 

We may note that the denominator contains an extra term (´) compared 

to the filter derived from the output error criterion—this expressively 

shows how regularization works. As long as the transfer function 

approaches zero at a given frequency, the regularization constant puts a 

lower limit on the denominator. It does not allow the denominator to 

become zero. In this way, it selectively acts only at those frequencies at 

which the transfer function has a small absolute value, i.e. at those 
frequencies at which the problem is ill-conditioned. 

Deriving the solution in the time domain, we get the following form 

(Narduzzi and Offelli 1991): 

j8  ��0�� 
 ´Ö��� �0{�< (3.23) 

where Ö is a unity matrix. Here, the matrix ´Ö detunes the eigenvalues of 

matrix �0�� (and in that way the singular values of matrix � also), 

improving thus the condition number defined by (3.13). The condition 

number can also be improved by factorization of matrix �0� (QR 
decomposition and singular value decomposition; see Press et al. 1988) 

and omitting problematic singular values. 

A further possibility is the introduction of smoothness or a higher order 

derivative of the estimated signal as a regularization operator, besides or 

instead of its energy. The following form shows the joint use of two 
regularization operators:  û�ç�  G{�2� � G8�2�G 
 ´Gj8�2�G 
 �Gë/j8�2�1G�< (3.24) 

where ë/�� 1 stands for the second order difference operator (Narduzzi 
2005). The second regularization term is the second order derivative of the 

reconstructed input signal. In the discrete time domain this corresponds to 

an impulse response of ��< �=< �< %< %< I  , while in the frequency domain 

its DFT is: 
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Që�z�QW  �V çèéW ¦¤zzÈ § �� (3.25) 

The inverse filter derived from this error criterion takes the following 
form in the frequency domain: 

��z�  ��z��Q��z�QW 
 ´ 
 �Që�z�QW �� (3.26) 

The effect of regularization on the frequency domain form of the 

inverse filter can be clearly seen. ë�z� is a highpass filter—the role of this 

term is to enhance regularization at higher frequencies. At lower 

frequencies, this term has limited effect, while at higher frequencies its 
role becomes dominant. The regularization operator derived from the 

smoothness can be efficiently applied if the bad signal-to-noise ratio 

(SNR) is concentrated in high frequency bands. 

The estimate can be derived in the time domain as well and is, at the 

same time, a universal solution for ill-conditioned matrix equations: 

j8  ��0�� 
 ´Ö 
 �ë0ë��� �0{�� 
ë 

IJJ
JJK

� % % % I %�= � % % I %� �= � %% � �= � I %I% % % % � MNN
NNO �� (3.27) 

By constructing regularization operators, one can incorporate a priori 
knowledge about the signal to be observed or about the system. 

3.3.1.6 Signal model-based noise and inverse filtering 

We always assume some kind of disturbance in the model of our 

measurement systems (Fig. 3-2. to Fig. 3-7). We consider disturbances to 

be both deterministic effects, which we cannot or do not aim to model, and 

stochastic processes, which are generally called noise. 

In the case of ill-conditioned problems, compensation of the distortion 

of the measurement system and noise filtering is accomplished together. 

The inverse filter needs to effectively suppress measurement noise that is 

amplified during compensation. Noise suppression might also be required 
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separately, without the need for compensation of any distortion. In this 

section, we show how noise suppression efficiency can be improved if a 

mathematical model about the signal to be observed is provided, without 

any in-depth introduction of linear and nonlinear noise filtering 

techniques. Later on, we will show how this model can be incorporated 

into the inverse filtering process. 

The robustness of noise suppression can be greatly improved if the 

signal to be observed can be parametrically modelled according to a priori 
knowledge (e.g. it is known that the signal shape is triangular, step-like, 

sinusoidal, or periodic etc.): 

j�2� � jSdù¡ã �2< Ì� �< (3.28) 

where Ì is the set of parameters of the model that characterizes the signal. If 

the model parameters are not known, but the shape of the signal and thus the 

model is known, then optimizing the parameters to ensure a good fit of the 

model to the measured signal results in an estimate with greater immunity 

than other noise suppression techniques. This is called regression: 

Ìô  �ðúñ��èéÌ ¼XjSdù¡ã �2< Ì� � {�2�X½ �<���j8  jSdù¡ã �2< Ìô�� (3.29) 

Throughout such a regression, we need many more measurement 

points than the number of model parameters. The finite degree of freedom 

provides the robustness and, as such, the noise can only mislead the fitted 

curve by a limited amount (Fig. 3-12).
 

 

Fig. 3-12. Regression task. 
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This regression problem generally requires the minimization of a cost 

function (deviation of measured values from the model according to a 

norm), by varying model parameters. The solution can be derived 

analytically in several cases (e.g. through linear regression); in other cases, 

numerical optimization (e.g. simplex search, gradient method etc.) is 

required. 

Noise usually causes the measured values to deviate slightly from the 

model. However, there may be values that lie far from those expected, 

though with small probabilities. Data that are inconsistent with the model, 

which can be modelled as impulse-like noise, are considered outliers. 

These extreme values are mostly generated by some kind of error in the 
measurement system (e.g. a pixel error in a CCD where one of the pixels is 

constantly fully bright or fully dark), or the data in a communication 

channel is corrupted (the MSB bit is corrupted). To detect this, an 

additional parity bit is enough assuming only a one-bit error. If the aim is 

to correct it, rather than just detect it, additional redundant bits are 

necessary for error correcting coding. Outliers mistune the model 

parameters to a great extent during regression. This effect can be reduced 

by nonlinear prefiltering (e.g. median filter, alpha-trimmed mean filter 

(Balakrishnan and Rao 1998)), or by clustering the samples according to 

the fit of the model (e.g. Random Sample Consensus—RANSAC 

algorithm (Fischler and Rolles 1981)). 
In engineering practice, we often face phenomena that periodically 

repeat. Assuming a finite bandwidth, such a signal can be characterized by 

a DC component—by the amplitudes and phases of the fundamental 

component and its (finite number of) harmonics. In this case, one may also 

fit a model in the spectral domain in addition to the time domain. The 

discrete Fourier transformation (DFT), or its recursive, observer-based 

variant (see Chapter 1) accomplishes the regression, i.e. the fit of the 

periodic signal model to the measured values in a least squares sense. 

If the useful signal contains only a limited number of harmonic 

components, we might decouple only the sum of those components from 

the observer. If it is not just the number of harmonics, but also the mutual 

ratios of amplitudes and phases that are fixed, then the shape of the 
waveform is also fixed. Such a signal model can be fitted to the measured 

values in the time domain, where possible linear or nonlinear distortion 

can also be taken into account. We might also model this mutual amplitude 

and phase bound in the spectral domain and incorporate it into our 

observer-based Fourier analyser. For this, we need to modify the signal 

model and the corresponding observer shown in Fig. 3-13 so that the 

amplitudes and phases of the selected harmonic components are bound to 
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the fundamental one (each with the appropriate amplitude ratio and phase 

shift). This approach provides a method for robust detection of the 

presence of a specific periodic signal (Hajdu et al. 2018). 

 

Fig. 3-13. Model of the signal generator and the spectral observer (Fourier 

analyser—FA), where Ê©a�H�� � Ê©K�H� stand for the estimators of Fourier 
components. 

The a priori information about the observed signal can be utilized during 

compensation of limited bandwidth (inverse filtering). Throughout the 

reconstruction, model parameters are adjusted until the signal, simulating 

known distortions, approaches the observation with a given measurement 

error. As such, the predicted output of the model needs to be calculated: 

G8�2�  jSdù¡ã �2< Ì� � D�2��< (3.30) 

where * stands for convolution. The cost function to be minimized can be 

calculated based on the prediction error. Henderson et al. suggest weighting 

of the error to allow emphasis on certain details of the reconstruction (e.g. 

reconstruction of the peak value (Henderson et al. 1988)): 

û�ç�  s `�H��{�H� � G8�H��W$Y��Tlas `�H�jSdù¡ãW �H< Ì�$Y��Tla �� (3.31) 
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Many times, a uniform weight distribution is applied to the whole 

sample record. Immunity against noise disturbing the measurement is 

provided by the constraint that the reconstruction is searched for within the 

class of known signal models. This constraint acts as regularization 

operator. We get signal reconstruction by minimizing the cost function 

with respect to the parameter set Ì, typically by means of nonlinear 

optimization algorithms such as, for example, a simplex search. 

This method takes linear distortion into account and also assumes a 

nonlinear transfer function: 

G8�2�  ^ ¦jSdù¡ã �2< Ì�§ �< (3.32) 

where ^�� � describes the nonlinear transfer. The optimization in this case 

is also a minimization with respect to the parameter vector Ì: 

Ìô  �ðúñ��èéÌ ¼X^¦jSdù¡ã �2< Ì�§ � {�2�X½ <�����j8  jSdù¡ã �2< Ìô� �� (3.33) 

3.3.1.7 Inverse filtering based on a stochastic signal model 

Norbert Wiener developed a filter (named after him) for noise filtering of 

stochastic signals (Wiener 1949). If a stationary stochastic process, j�2�, is 

corrupted by an additive noise process, 	�2�, that is {  j 
 	, then 
optimal linear noise filtering can be derived based on the power spectral 

densities of the processes (non-causal Wiener filter): 

o�z�  �Z¿�z��¿¿�z� �< (3.34) 

where �¿¿�z� is the power spectral density function of the observation and �Z¿�z� is the cross power spectral density function of the useful signal and 
observation. If the useful signal and the noise are uncorrelated, the above 

expression takes the form: 

o�z�  �ZZ�z��ZZ�z� 
 �((�z� �� (3.35) 

In the case of deterministic signals, the Wiener filter can be applied in 

inverse filtering if we assume that the sample record is one realization of a 
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stochastic process. In such a case, the estimator of the power spectral 

density function is the periodogram that calculates the spectral density 

from a finite sample record: �îZZ�z�  �� QÊ0�z�QW�< (3.36) 

where Ê0�z� is the Fourier transform of the sample record of length T. If 

the observation is first compensated by the inverse of the transfer function 

of the measurement system (estimation based on output error criterion), 

inverse filtering is reduced to a Wiener filtering problem having an 

unbiased useful signal and an amplified measurement noise: F�z���z�  Ê�z���z� 
 ��z���z�  Ê�z� 
 ��z���z�ª¬$[�Æ�
�� 

(3.37) 

From here, the inverse filter can be derived as follows (Gupta and 

Reddy 2017): 

��z�  ���z� �ZZ�z��ZZ�z� 
 �([([�z�  ���z� �ZZ�z��ZZ�z� 
 �((�z�Q��z�QW �� 
(3.38) 

Substituting (3.36) into (3.38) we get: 

��z�  ���z� QÊ�z�QWQÊ�z�QW 
 ��((�z�Q��z�QW  ��z��
Q��z�QW 
 �((�z��� QÊ�z�QW �� 

(3.39) 

The above expression is very similar to the regularization introduced 

by Tikhonov with the regularization parameter being the reciprocal of the 

signal-to-noise ratio at the given frequency. The Wiener filter assumes 

a priori information about the power spectral density of the noise that does 
not contain phase information. This is advantageous since the power 

spectral density is many times estimated from the Fourier transform of the 

finite length noise record (periodogram) and we can provide a better 

estimate of the absolute value of the Fourier transform than for its phase. 

Typically, a white noise model is appropriate and, based on the noise level, 

a uniform spectral model can be used. Unfortunately, the Wiener filter also 

requires the absolute value of the spectrum of the signal to be 
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reconstructed. This spectrum needs to be approximated. Failure in 

approximation mistunes the level of regularization. 

We note here that among the approaches using a stochastic signal 

model a modification of Kalman filtering suitable for inverse filtering is 

also available  that can handle time-varying systems and process noise as a 

state disturbance (Kollár, Osváth and Zaengl 1988). An extended Kalman 

filter can cope with weakly nonlinear systems as well. However, 

modification of the Kalman filter for inverse filtering requires the 

parametric modelling of the excitation signal (the signal we are going to 

reconstruct), which is difficult to provide in most cases. 

3.3.2 Automatic parameter optimization 

The methods introduced in previous sections can be categorized into two 

major groups based on the possibility of adjusting the level of noise 

reduction—parametric and nonparametric regularization. (Here the word 

“regularization” will be used in its universal meaning, as the improvement 

of an ill-conditioned problem. We will not refer solely to Tikhonov-type 

regularization, but to any case of noise reduction that improves 

reconstruction.) We refer to methods adjusting the level of noise reduction 
(and that of distortion) by one or a few parameters, as parametric 

regularization. Non-exhaustively, this category includes the following 

algorithms:  

• Output smoothing, if only the cut-off frequency of the filter is adjusted 

(the structure of the filter is fixed);  

• Tikhonov-type regularization (assuming only a finite number of 

regularization operators); 

• Kalman filtering modified for inverse filtering where the variance of 
the hypothetical input noise is adjusted; 

• Iterative deconvolution where the number of iteration steps is the 

parameter to be adjusted; 

• Time domain model fitting where the parameters of the known signal 

model are adjusted. 

We will refer to methods that jointly influence noise suppression 

through many parameters as nonparametric regularization. Non-
exhaustively, this category includes: 

• Neural networks where the weight of each perceptron is adjusted, 
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• Wiener-filtering where the power spectral density function of both the 

useful signal and of the noise influence the level of noise suppression 

(individually at each frequency). 

In engineering practice, it is a fair expectation to automatically 

compensate distortions and suppress disturbances. We are going to 

eliminate every subjective element. This is necessary to eliminate the need 

for human interaction enabling the application of these reconstruction 
methods in autonomous systems (e.g. in embedded systems). 

Reproducibility also requires the minimization of the human factor. We 

have to admit that individual parameter optimization by an expert might 

result in a better estimate than an automatic method; however, our 

requirement is to formalize this expert knowledge and incorporate it as 

a priori information into such methods. 

In the remaining part of this section we will introduce parameter 

optimization of parametric inverse filtering methods, assuming transient 

signals to reconstruct. We can find many solutions for this in the literature, 

but most of them are based on ad-hoc criteria and thus their performance 

(distance from the true optimum, stability) is limited. Partly because of this 

limitation, partly for reasons of space, we will introduce only one 
systematic method developed in the Department of Measurement and 

Information Systems at BME. 

Spectral-model based automatic parameter optimization for transient signals 

Assuming that the type of inverse filtering method has already been 

selected for a given application, the free parameters need to be adjusted to 

provide an optimal compromise between noise amplification (due to the 

ill-posedness of the problem) and distortion of the useful signal (due to 

regularization). We define the optimum as the minimum of the input error: 

Ìdef  ðúñ�èéª«¬«e ¼Xj8 �2< Ì� � j�2�X½< 
(3.40) 

where Ì is the set of free parameters of the inverse filter; Ìdef  is the 

optimal parameter set; j�2� is the signal to be measured; j8 �2< Ì� is the 

reconstructed signal; and G� G stands for the norm. In the case of a transient 

signal, the äW norm is the convention; we will also develop a proposed 

solution for it. In Section 3.3.1.1 it was shown that, without any restriction 
on the inverse filter, the minimization of the input error leads to an 

expression that cannot be calculated due to a lack of information. We will 
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still lack information, even if the inverse filter is fixed. The key point of 

our method is to generate a frequency domain approximation that allows 

the calculation of the optimum. A solution acquired in this way will be 

suboptimal because of the approximation, but will be close enough to the 

true optimum, as it minimizes the (approximate) input error. Moreover, it 

is robust and can be quickly calculated. 

The first step of this parameter optimization is to rewrite (3.40) into the 

frequency domain using Parseval’s theorem. Then, rearranging the 

equation, we can separate out three terms: the first describing distortion; 

the second describing the effect of noise; and a third one expressing their 

cross relation (Dabóczi and Kollár 1996): 

û�ç�  �È k �j�H� � j8�H��W$Y��
Tla  �È�Æ k \Ê�t� � Ê©�t�\W$]��

vla �
 �È�Æ k RÊ�t� �� � ��t���t< Ì��RW$]��

vla 
 �È�Æ k R��t���t< Ì��RW$]��
vla �

�=�È�Æ k RÊ�t� �� � ��t���t< Ì��Rª«««««««¬«««««««^
$]��
vla R��t���t< Ì�Rª«««¬«««_ |»� �`^_�t< Ì���

 û�ç�7T6È 
 û�ç�(dTÈ¡ 
 û�ç�7T6È<(dTÈ¡�< Ê©�t�  F�t�� �t< Ì�  �Ê�t���t� 
 ��t��� �t< Ì�< 

(3.41) 

where the notation is in agreement with the previous notation in this 

chapter, `^_ �t< Ì�  ]3|y�/¾<a1, and ��t< Ì� denotes the transfer 

function of the inverse filter that can be optimized by adjusting parameter 

set Ì. It can be proven that the third term can be neglected under weak 

conditions. For the other two terms we apply a spectral model for the 

absolute values of the Fourier transform of an unknown input signal and 

measurement noise. These models/estimators can be automatically derived 

from the measurement. For the noise spectrum, we assume a white noise 
model. The level of noise (variance) can be extracted from the spectrum of 

the observation by averaging the squared absolute value of the DFT in the 

stop band. (If the noise spectrum is not white, but its power spectral 

density is known, we can also model it and the level of noise model will be 

proportional to the square root of the power spectral density function.) The 

spectral estimator of the useful signal (input signal) is also automatically 
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derived by an iterative process. The initial estimator is the absolute value 

of the spectrum of the reconstruction without regularization: 

Q���@óò�z�Q  |»	�2�<�����QÊ��@óò�z�Qa  NF�z���z�N� (3.42) 

If the absolute value of ��z� approaches zero at any frequency, instead 

of (3.42) we might apply a much moderated regularization for the model 

of the input signal. (By moderate we mean that a small amount provides, 
based on a priori information, definitively less noise suppression than the 

optimum.) Utilizing these models, the cost function can be calculated and 

the minimum can be derived for the parameter set Ì. Starting the running 

index of the iteration number at n  %: 

 

û�ç��  �L�Æ k QÊ�$b'&�t�QSW R� � ��t�� �t< Ì�RW$]��
vla


 �È�Æ k Q��$b'&�t�QW R� �t< Ì�RW$]��
vla  

ÌS  ðúñ�èéª«¬«e ¼û�ç�� �QÊ�$b'&�z�QS< Q��$b'&�z�Q< Ì�½ 

(3.43) 

The model of the input spectrum can be further improved by utilizing 

the above parameter set ÌS: 

QÊ��@óò�z�QS~�  RF�z���z< ÌS�R �� (3.44) 

With this improved spectral model, a new estimate can be calculated 

for the optimal regularization parameter using (3.43). The iteration 

described by equations (3.43) and (3.44) is continued until parameter set ÌS settles. By settle we mean that it achieves a state at which the change 

of the reconstructed input signal at consecutive steps is negligible. It has 

been observed that only a few iteration steps (10-20) are sufficient to reach 

this state. At the end of the iteration, the reconstructed signal is gained in 

the following way: 

j8�H�  3�]ä� ¼�cd/e� ¼�F�z���z< ÌÆT(6ã��½�½ �< (3.45) 

 EBSCOhost - printed on 2/14/2023 6:11 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Three 
 

168 

where IDFT stands for the inverse discrete Fourier transform. (Taking the 

real value of the result is necessary because of round-off errors during the 

transformation of the DFT, the IDFT, and the calculation in-between. If 

the arithmetic were of infinite precision, the algorithm would result in a 

real number.) 

It is important to note that the spectral signal models (models for the 

absolute values of the spectra) only determine the estimation of the input 

signal indirectly; they influence the level of regularization through the cost 

function. This optimization only utilizes absolute value information for the 

spectral models of the signal to be reconstructed and of the noise—the phase 

is not required. This is an advantage of the chosen cost function, as the phase 
information has a much greater uncertainty than the absolute value, 

especially at the stop band. Together, these properties ensure the robustness 

of the final estimate, against the inaccuracy of the spectral models. 

The value of the cost function derived in the frequency domain is 

sufficiently close to the error norm defined in the input signal domain 

(input error criterion). The advantage of the approach is that the solution is 

derived from this input error norm with appropriate approximations, thus 

the method is systematic. 

The number of parameters is theoretically arbitrary; however, in 

practice it is worth limiting it. The cost function may contain more and 

more local minima as the number of parameters increase, complicating the 
search for the global optimum. Increasing the number of parameters 

decreases the convergence speed of optimization and heavily influences 

the computation time. 

We have provided a proof for the convergence of iterative spectral 

modelling of input signal (Eqs. (3.43) and (3.44)), assuming one of the 

variants of Tikhonov-type regularization and containing bounded energy 

as a regularization operator (Bakó and Dabóczi 2016). We also provided 

the analytical form of the final state of iteration, which enables a further 

improvement in the speed of computation. This form only requires the 

modelling of the absolute value of the noise spectrum, which, in the case 

of a white noise model, is simply the measurement or estimation of the 

variance: 

´�s Q���@óò�t�QW Q��t�QW��Q��t�QW 
 ´�Ävs QF�t�QW Q��t�QW��Q��t�QW 
 ´�fv �� (3.46) 
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The above equation can only be solved through numerical 

optimization, but its computation requirement is smaller than that of the 

original method (which was not computationally demanding either). 

 

Handling both input and output noise for the nonparametric system 
identification task (see Fig. 3-14) 

 

Fig. 3-14. Model of nonparametric system identification. D©�H� stands for the 

estimate of the impulse response of the system; ��z� denotes the transfer function 

of the inverse filter; ¨�z� denotes regularization; and 	Z�H� and 	��H� are the 

measurement noises of excitation and the observed signals. 

System identification and signal reconstruction are, mathematically 

speaking, solutions of the same equation (reversal of the convolution 

integral equation). The difference is that: in the case of signal 

reconstruction the impulse response is assumed to be known and the input 

signal is estimated; in the case of system identification the input signal is 

controlled by the user and the impulse response is estimated. A further 

difference is that in the case of system identification the excitation signal 

is (usually) also measured, thus both input and output measurement noise 
need to be assumed.  

Describing the estimator in the frequency domain we get the following: 

���z�  Í(�z�Ê(�z�¨�z��
����������� �Ê�z� 
 �Z�z� � �Z�z����z� 
 ���z�Ê�z� 
 �Z�z� ¨�z��
����������� ��z�¨�z� 
 ���z� � �Z�z���z�Ê�z� 
 �Z�z� ¨�z��
����������� ��z�¨�z� 
 �¡��z�Ê¡��z� ¨�z�< 

(3.47) 
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where capital letters represent discrete Fourier transforms of the 

corresponding signals and ¨�z� is the regularization filter that suppresses 

the amplified noise. The model, containing both input and output noise, 

has been reduced thusly to an output noise only model where �¡��z� 

denotes the equivalent output noise and Ê¡��z� denotes the equivalent 

kernel function of the convolution: �¡��z�  ���z� � �Z�z���z�< Ê¡��z�  Ê�z� 
 �Z�z��  (3.48) 

As in (3.41), we may derive the error of deconvolution, taking into 

account the fact that ¨�z�  Ê¡��z���z�: 

û�ç�  �È k �D�H� � D©�H��W$Y��
Tla  �È�Æ k \��t� � ���t�\W$]��

vla �
 �È�Æ k R��t�¦� � Ê¡��t�� �t< Ì�§RW$]��

vla �

 �È�Æ k R�¡��t�� �t< Ì�RW$]��

vla �
� =�È�Æ k R��t� �� � Ê¡��t���t< Ì��R�ª««««««««¬««««««««^

$]��
vla R�¡��t���t< Ì�Rª««««¬««««_ |»� �`^_�t< Ì�� 

 û�ç�7T6È 
 û�ç�(dTÈ¡ 
 û�ç�7T6È<(dTÈ¡ � 

(3.49) 

The absolute value of the spectrum of the equivalent noise takes the 

following form: 

\�¡��z�\W  \���z� � ��z��Z�z�\W  \���z�\W 
 Q��z��Z�z�QW �=\���z�\Q��z��Z�z�Q û�ç ¦`$��z� � `<$g�z�§ �� (3.50) 

Here, we do not have much information about the last cosine term. We 

have two choices. The first one is the replacement of the cosine with its 

upper or lower bound (+1 or �1). The other possibility is to neglect it. We 
have chosen the latter since the mean value of the cosine function is zero if 

its argument has a uniform distribution and the phase of the noise 

spectrum usually has a uniform distribution.  
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The cost function of (3.49) is approximated in two steps. First, the û�ç�7T6È<(dTÈ¡  term, then the cosine term in the spectrum of equivalent 

noise in (3.50) will be neglected: 

û�ç��  �È�Æ k Q��$b'&�t�QW$]��
vla R� � Ê(�t���t< Ì�RW 


 �È�Æ k �\��<�$b'&�t�\W 
 \�Z<�$b'&�t�\WQ���$b'&�t�QW�$]��
vla R� �t< Ì�RW� (3.51) 

The spectrum of the equivalent input signal does not need to be 

modelled since this is the measured noisy excitation signal (Ê(�z�). For 

the input and output noise models, only the absolute values of the spectra 

are required. In the majority of cases a white noise model is appropriate 

and the noise level can be automatically extracted from the spectra of the 

measurements (by averaging the squared absolute values of the spectra in 

the stop band). The difference when compared to the previous method is 

that, here, the input noise also needs to be taken into account as well as the 
output noise. The model of the absolute value of the transfer function is 

again determined by an iterative process. The initial estimate is provided 

by Q�Sdù¡ã�z�Qa  RhÀ�Æ�iÀ�Æ�R, or by its regularized version applying a 

minimal level of noise reduction. The cost function of (3.51) needs to be 

minimized with respect to parameter set p, providing an estimate for the 

optimal regularization parameters of the estimation of the impulse 

response, subject to the given models. The absolute value of the Fourier 
transform of this impulse response provides the model for the next 

iteration step: 

Q�Sdù¡ã�z�QS~�  NÍ(�z�Ê(�z�¨�z< ÌS�N �� (3.52) 

The iteration is continued until the regularization parameters are settled 

(typically 10-20 steps). The stabilized parameters provide the estimated 

optimum regularization operators of nonparametric system identification: 

���z�  Í(�z���z< ÌÆT(6ã�  Í(�z�Ê(�z�¨�z< ÌÆT(6ã��� (3.53) 
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3.3.3 Sampling jitter and its effect 

We deal with measurement systems that represent the signals in digital 

form. Digitization (sampling and quantization) is accomplished using an 
AD converter. The time instant of the sampling is determined by the edges 

of a clock, controlling the sample-and-hold circuitry. The phenomenon of 

the sampling time instant deviating from the expected one is called jitter. 

This deviation is usually slight and may be both deterministic and 

stochastic. Deterministic jitter is bounded or systematic (e.g. crosstalk, 

duty-cycle distortion etc.). Random jitter is not bounded. The primary 

reason for the presence of random jitter is the uncertainty of the 

comparator receiving the clock signal (e.g. noise has been added to the 

clock signal). Short term instability of the clock generator and the 

uncertainty of the delay in the sample-hold circuitry and in other logic 

gates also add to the fluctuation. The difference between the ideal and real 
sampling instant (in the time domain) is called aperture jitter, while the 

effect in the sampled signal (in the amplitude domain) is called the 

aperture jitter error. The effect of jitter on the sampled signal depends on 

the local slope of the signal (Fig. 3-15). The effect thus depends on the 

derivative of the signal: jk  ùlùf j2̂ . The effect of the jitter can be 

modelled as time-varying noise, where the noise amplitude depends on the 

derivative of the signal. Modelling of jitter is required when processing 

high frequency signals.  

 

Fig. 3-15. Uncertainty of sampling time (aperture jitter) and its effect on the 
sampled signal. 

For signals containing very high frequency components, sampling can 

be very challenging. Above a certain frequency, AD converters cannot 

achieve the required speed of sampling (no AD converter of sufficient 
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speed is available). In the case of a periodic signal, equivalent-time 

sampling can help overcome this problem. The general idea is as follows. 

In the case of a periodic signal, consecutive samples are taken from 

different periods of the repeating signal, as the same value can be found 

with a delay of the integer number of the time period. The signal is not 

scanned with fast sampling, but rather samples are taken at time instances 

of j2È 
 t�e, where j2È is the required (equivalent) sample time 

difference and �e is the time period. This approach enables slower 

sampling, but does require very accurate timing. The effect of aperture 

jitter becomes crucial with the fast change in the signal. 

 

Fig. 3-16. Visualization of equivalent-time sampling in the case of periodic signals. 

Ultra-high speed AD converters usually have low resolution (the cost 

of a Flash AD converter increases exponentially with the number of bits). 

To increase the resolution, several periods are averaged if the signal is 

periodic. (We wish to note that this approach is not an efficient method of 

increasing the bit number.) The effect of jitter, together with averaging, 

can be modelled as lowpass filtering, where the impulse response of the 

filter is the probability-density function of the jitter in the time domain, 

assuming a stochastic-type jitter. (This describes the probability of 

deviation of the sampling time instant from the expected one.) 

If the probability-density function of the jitter can be measured, its 

lowpass filtering effect can be compensated by inverse filtering methods. 

We utilized this approach in the primary calibration laboratory of the USA 
(the National Institute of Standards and Technology, NIST) to calibrate 

ultra-high speed sampling oscilloscopes (Deyst et al. 1998). The 

equivalent sampling frequency achieved with this system was 512 GHz, 

which corresponds to a 2 ps sampling time (light travels approximately 

0.6 mm in this time period). 
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3.3.4 Illustrations of application possibilities 

3.3.4.1 Extension of the bandwidth of high-voltage dividers 

Non-destructive testing of insulators is accomplished by applying high 

voltage impulses (Malewski and Poulin 1988). The insulators are stressed 

with a short (2-200 μs) but high voltage (100 kV-4 MV) signal and the 

shape of the voltage signal is observed. If the insulator has a fault, the 

charge moves towards the middle of the insulator and this changes the 

shape of the signal. The test starts with a reduced signal level, at which the 

distorting effect is not expected, so that a reference waveform can be 

stored. The voltage level is gradually increased and the resultant signal 

shape is compared to the reference one. This method enables the detection 
of faults at an early stage, before they are able to cause any errors during 

normal operation; as such, maintenance or replacement can be scheduled 

for a time period that does not cause service outage. 

The signal level required for this measurement (several MV) cannot be 

directly measured by a sampling oscilloscope or a general-purpose AD 

converter. A high-voltage divider attenuates the signal to a range of some 

tens of volts (maybe to 100 V), which the input divider of the digital 

oscilloscope can handle. These special high-voltage dividers are 

expensive. High bandwidth measurements can be accomplished with 

resistive dividers. The drawback of a resistive divider is that it is suitable 

for measuring very short lightning impulses because of its limited 
dissipation capabilities. Pulses with longer duration can be measured by 

capacitive dividers, but they are of moderate bandwidth. A compromise is 

provided by damped capacitive dividers, which are suitable for measuring 

a broad range of signals. Unfortunately, their bandwidth lags behind 

resistive dividers. 

We undertook some measurements at the Swiss Federal Institute of 

Technology (ETH Zürich) High Voltage Laboratory. The aim of our 
investigation was to extend the capabilities of a damped capacitive divider 

by means of digital post processing of the signal (inverse filtering) aiming 

to ensure a cost-effective measurement system with an overall bandwidth 

comparable to that of a resistive divider. We generated a front-chopped 
lightning impulse using a high-voltage generator and applying a chopping 

gap to short-circuit the rising voltage at a certain level (Fig. 3-17). This 

chopping provides a good excitation signal in the high frequency range 

suitable for testing insulators (e.g. for insulation of transformers). In 

addition to using the investigated damped capacitive divider, we also 

measured the waveform with a high accuracy resistive divider, developed 

for calibration purposes, to give us a reference measurement. As the 
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reference divider was resistive, the measurements were accomplished at a 

reduced signal level (with an approx. 60 kV peak). Signals attenuated in 

this way were observed and digitized using a sampling oscilloscope. 

Fig. 3-17. Measurement setup to acquire high voltage lightning impulses. 

After frequency domain system identification of the divider being 

tested (divider under test, DUT), its distortion can be reduced by means of 

deconvolution. To regularize the ill-posed problem, we applied Tikhonov-

type inverse filtering with tree free parameters: 

��z�  ��z��Q��z�QW 
 ´ 
 �Që�z�QW 
 *Që�z�QW�� (3.54) 

Signals measured by the damped capacitive divider and the 

reconstruction developed from it can be seen in Fig. 3-18, along with the 

waveform of the reference divider, for two different impulse durations. We 

normalized the amplitudes to the peak value measured by the reference 

divider in order to make comparison of the relative error easier. The 

waveform reconstructed by inverse filtering is very close to the one 
measured by the reference divider. The important waveform parameters 

(rising and falling slope, peak value, etc.) can be measured with much 

more accuracy than with the damped capacitive divider. The parameters of 

the inverse filter were automatically adjusted to the spectral model-based 

optimization method introduced in Section 3.3.2. 

If the distance of the chopping gap is decreased, the waveform is 

chopped at an earlier voltage level, as the chopping gap fires earlier. At an 

impulse duration of 0.7 μs, the efficiency of the reconstruction is even 

more visible. Waveform parameters based on measurement by the DUT 

are very distorted, while the reconstruction is in accordance with the 

reference waveform: the peak error of 32 % was reduced to 2.1 % in the 

reconstruction. In the same way, the error of the rising time was reduced 
from 17 % to 1.4 %.  
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Fig. 3-18. High voltage lightning impulse measurements (pulse durations of 2.5 

and 0.7 μsec). Waveforms acquired by the reference divider, the investigated 
damped capacitive divider (DUT), and the reconstruction from the DUT. 

3.3.4.2 Extension of the bandwidth of an accelerometer 

In the following experiment, we extended the bandwidth of a (differential 

capacitor type) MEMS-based accelerometer, with a small bandwidth, by 

means of inverse filtering. The investigated accelerometer is a low 

bandwidth MEMS-based sensor utilizing the deflection of a differential 

capacitor (device under test, DUT). The reference accelerometer is a high 

bandwidth piezoelectric sensor from Bruel & Kjaer (type 4399). Both 

 EBSCOhost - printed on 2/14/2023 6:11 AM via . All use subject to https://www.ebsco.com/terms-of-use



Inverse Problems and Algorithms of Measurement Science 177 

sensors were excited mechanically by a shaker in the laboratory 

environment. The transfer function of the investigated accelerometer was 

determined by parametric system identification methods, assuming a first 

order lowpass filter nature. The model parameters were adjusted to several 

measurement points and the accelerometers were excited by sinusoidal 

waveforms at different frequencies (identification phase). At the 

measurement phase, we applied impulse-like excitation (the signal having 

a broad bandwidth) at a duration of approx. 1.5 ms. Because of its 

mechanical inertia, the shaker responded with an oscillating signal—the 

accelerometers measure this damped oscillating signal (Fig. 3-19). We 

applied Tikhonov-type regularization with one free parameter for inverse 
filtering. The optimal parameter was adjusted automatically using the 

method described in Section 3.3.2. (Fig. 3-20). The reconstruction was 

very successful and the estimation (reconstruction) based on the narrow-

bandwidth accelerometer was very close to the signal acquired by the 

reference sensor. This performance was due to the small order of the 

system (a first order system) and the moderate noise level. 

 

Fig. 3-19. Signals measured by the 
accelerometers.  

Fig. 3-20. Reconstruction of the 
accelerometer signal on the DUT 
(reconstructed signal is shifted by 1 msec 
for visibility). 

3.3.4.3 Correction of images 

Limited bandwidth can be interpreted not just for time domain signals, but 
also for signals in any domain with an independent variable. For example, 

many distortions in a camera can be described by a two-dimensional 

convolution. In an ideal case, the image of a point-like object is a point—
in the case of a digital camera, only the intensity of a single pixel changes. 

However, even a perfectly spherical lens possesses spherical aberrations 

(parallel rays, apart from at the optical axis, do not meet at the focal point) 
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and chromatic aberrations (focal length depends on the wavelength of the 

light). The camera may be out of focus and suffer from shake during the 

exposure. All these effects can be modelled by convolution. If the point-

spread function (the image of a point-like object, i.e. impulse response) is 

known, reconstruction can be accomplished with the methods introduced 

earlier (certainly, all operations need to be performed in two dimensions, 

e.g. with two-dimensional Fourier transforms). The next experiment shows 

such a reconstruction attempt. An out-of-focus image was simulated by 

convolving the original image using a two-dimensional Gaussian point-

spread function. The image was corrupted with noise having a uniform 

distribution spanning 1 LSB, which corresponds to the quantization noise 
in the case of 8 bit colour depth (Fig. 3-21). Selecting the optimal 

regularization parameter involves either experimentation and subjective 

human interaction (see Fig. 3-22), or we can rely on automatic parameter-

optimization methods (Fig. 3-23). The spectral model-based automatic 

parameter optimization algorithm (in Section 3.3.2.) seems to estimate the 

ideal level of regularization well.  

  

Fig. 3-21. Original image (left); distorted and noisy image (right). 
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Fig. 3-22. Reconstruction in the case of over-regularization (left); under-
regularization (right). 

  

Fig. 3-23. Reconstruction by means of spectral model-based automatic parameter 
optimization (left) and the theoretical optimum for a given inverse filter type 
(right). 

We consider the theoretical optimum to be the one that provides the 

smallest error in a least squares sense, given the selected inverse filter. 

(This optimum can only be calculated for simulated signals where the 

undistorted signal is also known. Automatic parameter optimization seeks 

an estimate close to this.) 

In the above experiment, we assumed the distortion, i.e. the point-

spread function to be known. If it is not known (e.g. camera shake), the 

distortion needs to be identified from the image. This is called blind 
deconvolution and has two main approaches. The first one assumes a 

model for the point-spread function (e.g. two-dimensional Gaussian shape) 

and only the model parameters are estimated. The second approach 

acquires information about the distortion from other pictures suffering 

from the same distortion, from the different segments of the same picture, 

or by chance from reference images. 
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3.4 Compensation of nonlinearities 

Beside frequency domain dynamic distortion (see Section 3.3), a frequent 

error source is the nonlinearity of the measurement system. For a nonlinear 

system the superposition principle is no longer valid and we cannot 

operate with a frequency domain description of phenomena (although this 

is favoured in engineering practice). In the case of periodic excitation, the 

system response might contain components at frequencies other than those 

the excitation signal originally contained, such as in the case of harmonic 

or intermodulation distortion. Nonlinearity might arise from several 

sources, for example the transfer between the sensor output and the signal 

to be measured might be nonlinear. On many occasions, the analogue 

signal conditioning circuit contains nonlinear elements (e.g. 
semiconductors). There are cases where nonlinearity is intended and is part 

of the design, like over-voltage protection. In other cases, it is an unwanted 

phenomenon (e.g. sensor hysteresis, nonlinearity of a bridge circuit). In 

this latter case, our aim is to compensate or reduce its effect. 

A simpler case of nonlinearity can be described by a one-to-one 

relationship between the input and output samples at any given time 

instance. The static transfer function of such a nonlinearity can be 

analysed by applying Taylor series expansion. 

A nonlinear system having memory is a more complicated case, as the 

output may also depend on arbitrary earlier inputs. This can be described 

by the Volterra series, which can be considered as the extension of the 
convolution integral (or convolution can be treated as a special case of the 

Volterra series): 

G�2�  Da 
 kCICD(�E�< EW<I < E(�¸j�2 � E��\E�(
�l�

7
6

7
6

$
(l� �< (3.55) 

where D(�E�< EW<I < E(� is the nth order Volterra kernel (Flake 1963). � 

may be infinity in general. The best linear approximation of weakly 

nonlinear systems is dealt with in (Dobrowiecki and Schoukens 2007; for 

more details see Chapter Four.) In the remainder of this section, we will 

only deal with the compensation of nonlinearities having no memory. 
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3.4.1 Compensation of memoryless static nonlinearities  
in well-conditioned cases 

Compensation of memoryless static nonlinearities is trivial in simple 

cases—the signal needs to be transferred through the inverse function of 

the nonlinearity. It is important to note that the order of modelling of the 

distorting effect is not interchangeable and, as such, the (opposite) order of 

their compensation is also important. 

One possibility for the universal description of the inverse nonlinearity 

is by its power series (Tsimbios and Lever 2001); however, today’s 

processing power and available memory enables the use of a lookup table 

to store the inverse static transfer function. (If the available memory for 

the lookup table does not provide good enough resolution, a low-order 
polynomial interpolation between the samples can be applied. Often, even 

a linear approximation is satisfactory.) 

3.4.2 Compensation of memoryless static nonlinearities  
in ill-conditioned cases—a model-based approach  

The inversion of a static nonlinearity becomes ill-conditioned at those 
parts of the transfer function that get close to horizontal, like saturating 

characteristics. Its inverse significantly amplifies additive measurement 

noise. 

 

 
Fig. 3-24. Static nonlinearity. 
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To illustrate nonlinearity, let us simulate a sinusoidal signal led 

through a saturating nonlinearity. The static transfer function is shown in 

Fig. 3-24. The excitation signal, the system response to the nonlinearity, 

and the reconstruction based on the noisy and distorted signal are depicted 

in Fig. 3-25. The noise is amplified during reconstruction at those parts of 

the output signal that become saturated. Unlike deconvolution, the error 

depends on the instantaneous value of the signal, rather than on its 

frequency content. 

 

 

 

Fig. 3-25. Excitation and response of a nonlinear system (left) and the 
compensated nonlinearity (right) (SNR = 35 dB). 

Noise amplification can be handled by introducing regularization 

operators, as with deconvolution (Bakó and Dabóczi 2002). The general 

idea is to approximate the inverse nonlinearity by the first two elements of 

the Taylor series and to slightly modify the first order term: 
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��Ga 
 øG� � ��Ga� 
 \��G�\G æ�l�� m øG�< (3.56) 

where ��G� stands for the inverse nonlinearity. Instead of the derivative, 

we will introduce the following regularized amplification: 

\��G�\G æ�l�� � \��j�\j æZlZ8�S\��j�\j æZlZ8�T
W 
 ´ �< (3.57) 

where ��j� describes the nonlinearity. The regularized characteristics are 

obtained by numerically integrating the derivative of the inverse function. 

The constant offset can be calculated from other constraints. In the 

simulated example, the regularized reconstruction is shown for ´  Ó m�%�Ä (Fig. 3-26). Similar to the deconvolution problem, the trade-off 
between distortion and noise amplification needs to be found. In the 
estimation depicted in Fig. 3-26, positive peaks are rounded. The noiseless 

excitation signal reaches the amplitude valued of 2, while estimation 

around the positive peak is slightly rounded. The negative peaks do not 

suffer from significant distortion, as this part of the signal is around the 

transfer characteristic having a derivative of 1. 

Our department successfully applied the above methods for the 

purposes of restoring old audio recordings (Bakó, Bank and Dabóczi 
2001). 
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Fig. 3-26. Compensated nonlinearity with regularization ´  Ó m �%�Ä (SNR = 35 dB). 

3.4.3 Inverse filtering with learning systems 

With the proliferation of neural networks and their varied applications 

since the 1980s, the solution of inverse filtering problems using neural 

networks has also attracted attention. The primary area of focus has been 

on image reconstruction, but there have also been attempts to reconstruct 

one-dimensional signals (Lehman 1990). A typical task is to equalize a 

communication channel where the transfer of the channel can be modelled 
by a nonlinear transfer function having memory. 

The general principle of a neural network is that many parameters of a 

universal nonlinear system are adjusted based on training samples (in the 

learning phase); then, after a verification phase, the network is applied to 

unknown samples (recall). If the training set was diverse enough and the 

neural network managed to adapt to all of the samples in the learning 

phase, we hope to see a correct response to any new samples, which are 

similar to the training samples. In the case of inverse filtering, the inputs of 

the neural network are distorted and noisy output signal samples in the 

time domain (as a vector) and the desired output (training sample) is the 

(distortionless) reconstructed signal. Training samples can be generated in 
this case by simulation (Russel and Norvig 2009). 

One of the most widespread types of neural network is the multilayer 

perceptron (MLP). The essential element of such a network is the 

perceptron, which is a linear combiner followed by a nonlinear function 

(Fig. 3-27).  
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(a)    (b) 

Fig. 3-27. Setup of a perceptron (a) and a neural network (b). 

This sums the weighted inputs and propagates them through a nonlinear 

characteristic to the next layer. These weights are adjusted throughout the 

learning phase. The nonlinear characteristic is typically a saturating 

function (step function, linear characteristic with saturation, sigmoid, etc.). 
A neural network is formed by the interconnection of such perceptrons, 

typically involving several layers one after the other. Fig. 3-27 shows the 

interconnection of perceptrons (circles) for one hidden layer. (The special 

nature of the input layer is that it has only one input and one output; its 

task is to store the sample arriving at the input.) In a multilayer perceptron 

network, an arbitrary number of hidden layers can be applied and the 

number of perceptrons does not need to be the same in different layers. In 

this way, the neural network provides a universal nonlinear approximation. 

A neural network is able to learn the distorting effect of convolution 

and nonlinear distortion and their inverse. A further advantage is that the 

distortion does not need to be known. The neural network learns through 
samples. This method is worth applying if identification of the distortion is 

not possible. The learning phase is a critical process (how large the 

training set is; how representative the training samples are for the whole 

parameter space etc.) Due to its nonlinearity, formal proof of its 

behaviours is difficult. 
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3.5 Sensor fusion 

Due to the continuously decreasing cost of electronics and the appearance 

of micro-electromechanical systems (MEMS) providing the possibility of 

sensor manufacturing on silicon, sensors are more and more often being 

used to observe our environment.  

Several sensors can also be used to observe the same physical quantity 

economically. Such a multiplication of observations may be desirable for a 

number of reasons, like providing a level of redundancy in safety-critical 

systems. If one of the sensors fails, and the information it needs to provide 

is critical, we require an alternative information source (e.g. altitude 

information with respect to ground-level in the case of autonomous 

landing of an airplane). Often, we need to verify if the data provided by 
the sensor is plausible. If it fails and does not provide any data, the case is 

simple as the redundant element supplements it. If the sensor fails in such 

a way that it provides incorrect information, it can be detected (or even 

compensated) by comparing it with the output of the other sensors 

measuring the same physical quantity. 

The input range can also be extended by using more sensors. For 

example we can generate a panorama picture using several cameras with 

different orientations around the horizon, taking partially overlapping 

shots enabling appropriate shifting and rotation of single pictures to 

provide a good match at the overlapping part. (If the object is still, we can 

do the same with one camera, taking the shots with different orientations 
one after the other. In this case, every camera orientation is considered to 

represent an individual sensor.) The problem here with a single shot is not 

the accuracy or precision of the measurement when it goes outside the 

given range, but the complete lack of information provided: outside the 

picture border there is no information about the scene. 

The third motivation of using multiple sensors is the need to increase 

both accuracy and precision. Theoretically, sensors of the same type can 

be repeated, producing a better signal-to-noise ratio through averaging of 

their output. However, this is an expensive method for increasing precision 

and does not improve accuracy. It is more common to measure the same 

physical quantity on several different principles, with different sensors 

having different ranges that provide accurate and/or precise measurements. 
In this way, we can cover a broader range more accurately/precisely than a 

single sensor could. (Here, the range may cover any one of a number of 

possibilities, not just the input amplitude range. The most common range 

extension is that of the frequency range.) The alignment of individual 

channels is accomplished by combining their weighted values, according 
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to their accuracy or precision in a particular range, rather than by simply 

selecting one of the sensors (multiplexing the channels). In this way, we 

get a complex sensor in which all the individual sensors contribute to the 

final estimate with a certain weight. Such a combination of different 

sensor information is called sensor fusion (Fig. 3-3).  

The term sensor fusion is used to denote this general principle, but the 

term is used slightly differently in a number of professional disciplines. 

Here, we will deal with a scenario where the physical quantity to be 

measured is important as a time (or other independent variable) domain 

signal. That is, the time domain positions of sampled values, their change, 

and their frequency domain behaviour are important. As such, with this 
emphasis, our attention focuses on sensor fusion methods that utilize the 

differences of bandwidth limits or frequency domain transfer functions to 

gain a complex sensor that can be useful across a wide frequency range. 

Distortion in Fig. 3-3 refers to limited bandwidth, where one of the sensors 

is accurate at small, another at medium, and the third at high frequencies. 

Accuracy at low/high frequencies may also mean that the sensor 

practically measures only in a given frequency range; outside of this 

region, the measured data is useless. For example, let us assume that our 

aim is to measure the position of an object and we use a sensor measuring 

position, while another sensor measures speed (being the derivative of 

position). In this case, the speed sensor, by sensing position changes, 
provides useful positional information only at high frequencies; at low 

frequencies it does not. The distortion in this case can be modelled with a 

derivation operation. 

3.5.1 Extension of bandwidth by means  
of complementary filtering 

The general idea behind this type of sensor fusion is to lead all sensor 

channels through a well-designed filter (each channel through a different 

filter), which lets the signal pass in the range in which it is accurate, 

suppresses it in other ranges, and then sums the filtered channels. Filtering 

individual channels is not arbitrary and the whole system should provide a 

unit transfer function. 

In the case of two sensors, the two channels should complement each 

other with the transfer function—these filters are called a complementary 

filter pair. There are also other important definitions of complementarity 

here. Besides having a resultant unit transfer, (��{� denotes the transfer 

function of the first channel, while �4�{� denotes that of the 
complementary channel in the z domain: 
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� all-pass complementary: ��{� 
 �4�{�  ¾�{� where ¾�{� is the 

transfer function of an all-pass filter, i.e. only the phase is modified; 

� delay complementary, where the two channels together provide a delay 

with n steps and G amplification: ��{� 
 �4�{�  o{�(; 

� magnitude complementary: Q��{�Q 
 Q�4�{�Q  o; 

� and power complementary: Q��{�QW 
 Q�4�{�QW  o. 

The most common case for offline processing involves specifying a 

unity transfer without delay, phase, or magnitude distortion: ��{� 
�4�{�  �. As this might result in a non-causal filter, delay 

complementary is considered the most suitable if real-time processing is 

needed. In the following, only the first case will be investigated in more 

detail. We will universally denote frequency by f, referring to either the 

continuous or discrete time domain (Fig. 3-28). (It is common to design 
the complementary filter in the continuous frequency domain and later 

transform it to its digital representation.) 

 

 

Fig. 3-28. Sensor fusion by means of a complementary filter pair. 

If the distortions of the sensors are also taken into account, the two 

channels need to be complementary, modelling sensor distortion as well as 

the filters we designed (Fig. 3-29): 
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Fig. 3-29. Sensor fusion by means of a complementary filter, also taking into 
account distortion in the sensors. ���z�o��z� 
 �W�z�oW�z� n ��� (3.58) 

Typical types of complementary filters are introduced and compared 

with the Kalman filtering approach in Higgins (1975). 

3.5.2 Sensor fusion by means of Kalman filtering 

A Kalman filter is a proven optimal method for estimating the (not directly 
observable) internal state variables of a linear system having a state-space 

description and to filter the system output based on estimates of state 

variables. With a slight modification, this concept can be adapted for 

sensor fusion. The simplest case is one where we have a single output 

quantity to observe, but we measure that quantity with several sensors. The 

sensors have different disturbances (vector of observation noise ýT in 

Fig. 3-30). This can be modelled by decoupling the state variable using 

output matrix oT to as many outputs as the number of sensors. Kalman 

filtering takes all the output observations into account while estimating 

state variables, each according to the standard deviation of any 
corresponding observation noise.  
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Fig. 3-30. Application of a Kalman filter for sensor fusion: the matrix oT decouples 
the observation to several sensor measurements. 

A state variable is estimated using information from many sensors (and 
their earlier samples). From this, a filtered, smoothed, or even predicted 

output can be derived for the quantity to be observed. In Fig. 3-30, j86Q7 

denotes the state variables of the observer at sample instant a, utilizing the 

output samples {�H� up to sample instant b. We use the same notation to 

denote the estimate of the output derived from the estimated state variable 

({ô6Q7). (At implementation, it is worth noting that the observer does not 

contain process and observation noise in the system model. Thus, 

decoupling the state variables to model the different sensors is redundant 

as all outputs would provide the same estimate. Their computation is 

required only once.) 

If required, the dynamic behaviour of the sensors can be modelled in 

the state space description of the system. The most common case sees the 

estimation of a signal representing a physical quantity based on its 

derivative or integral (e.g. estimation of angular speed based on angular 
position measurement with an optical encoder, or estimation of angle 

based on angular speed measurement with a rate-gyroscope). Modelling a 

derivative or integral in the state space description is obvious, as the 

derivatives (or difference, in the case of the discrete time domain) of the 

state variables are expressed with the state transition matrix. 
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3.6 Estimation of quantities that can  
be measured indirectly 

Section 3.5 dealt with the possibility of improving the accuracy and 

precision of measurement by utilizing information from several sensors 

through sensor fusion. In this section, we will address the challenge of 

estimating a physical quantity that cannot be directly measured by a 

sensor; only its distorted effect can be measured, where the distortion is 
influenced by a (non-constant) physical quantity. If the signal path in the 

physical system can be described by invertible static or dynamic transfer 

characteristics with known parameters (see Fig. 3-4), compensation of the 

distortion can be accomplished using the methods described in sections 3.3 

and 3.4. In this section, we will target those more complicated cases where 

the parameters of the transfer function are not known, or the transfer 

function is not invertible. 

3.6.1 Time-varying transfer function 
Let us first investigate the case where the physical quantity to be observed 

can be treated as one of the excitations of the system along the signal path 

of the observation (Fig. 3-31). Further physical quantities influence the 

transfer on this signal path, making the transfer function time variable, 

where this variation according to time is a priori not known. 

A simple example to help understand this would be measuring force by 

means of displacement in a spring force meter. In order to infer 

information from the displacement of the force, we have to measure 

temperature too, as the spring constant (the transfer function) depends on 

the temperature. The compensation process is obvious. 

A more complicated case involves accurately measuring the velocity of 
a car by measuring the rotational speed of the wheel. To do this we need 

the effective rolling radius of the wheel, which is influenced by many 

physical parameters including air pressure, temperature, and road surface. 

All of these need to be measured to estimate the rolling radius and thus the 

vehicle speed. 

It is important to emphasize that the inputs in Fig. 3-31 are unknown, 

continuously changing physical quantities observed by sensors, many 

times in a distorted fashion. In most cases, the task can be broken down 

into two consecutive steps. In the first step, the distortions of the 

measurement system are compensated. In the second step, the inverse of 

the system with time-variant parameters needs to be robustly determined 
(moreover, this has to be done in a well-conditioned manner). 
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It is worth distinguishing between these two cases. In the first case, the 

physical quantities influencing the transfer change slowly with respect to 

the length of the measurement, thus they can be treated within the duration 

of the measurement constant. In this case, after measuring those quantities 

using sensors, the system can be modelled as time-invariant. Its inverse 

can be calculated with the previously presented methods. 

In the second case, the physical quantities influencing the transfer 

change quickly and therefore the changes in the physical system can only 

be modelled using a time-variant system. If the model describing the 

distortion takes a simple form (e.g. time-variant amplification or static 

nonlinearity), its compensation is not a challenge, as the model is 
invertible and only its parameters change. If the model also contains 

dynamics, the case is more difficult as we cannot use frequency domain 

description. We will not investigate this latter case further in this study.  

 

 
 
Fig. 3-31. Reconstruction in the case of quantities that cannot be directly measured 
by sensors. The physical quantity to be measured is an unknown excitation of a 
multi-input system. 

3.6.2 Estimation of state variables that cannot  
be directly measured 

Let us investigate the case where the physical quantity to be observed is 

influenced by other physical excitations of the system (they influence the 

quantity itself, not just its measurement), as shown in Fig. 3-32. We can 
consider this a MIMO system (multi-input, multi-output) and our aim is to 

estimate one of the state variables that cannot be directly measured using a 

sensor (observer). In such cases, the transfer between the physical quantity 

to be observed and the outputs measured by the sensors are typically non-

invertible. A good example is state of charge estimation of batteries of 

(plug-in) electric cars (referred to in Section 3.2). For estimation of the 

range, the question does not relate to the charge pumped into the car at the 
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last charge, but rather the energy stored in the battery (in the form of 

chemical energy) and the available energy during use (transformed back 

into electrical energy). We cannot directly measure that state of charge. 

Instead, the physical and chemical processes can be modelled and model 

parameters can be identified based on continuous measurement of battery 

voltage, current, and temperature. Using this model, the available energy 

can be calculated (Hu and Yurkovich 2010). 

 

 
 

Fig. 3-32. Reconstruction of physical quantities that cannot be directly measured by 
sensors. The physical quantity to be measured is a state variable of the system that 
cannot be directly measured using a sensor. Further physical quantities influence not 
only the signal path of the observation, but also the quantity to be observed. 

 

In the case of observing internal state variables, the task can also be 

separated into two steps. In the first step, the known distortions of the 

measurement system are to be compensated and then we can apply a linear 

or nonlinear observer to estimate the internal state variables. If the system is 

linear, Kalman filtering is proven to be optimal for the estimation of state 

variables (Kalman 1960; Jazwinski 1970). For weakly nonlinear systems, 
the extended Kalman filter (EKF) can be used, which utilizes the idea of 

linearization around a working point in the case of nonlinearities that can be 

described by continuous, differentiable analytic forms. A further 

modification is required if the differential equations describing the system 

are not the function of time, but the derivatives of variables of a function of 

the power of time (fractional calculus). This seems to be advantageous for 

describing distributed systems. Neural networks can also be applied for 

observers that approximate nonlinear transfer through training samples.  

The above method is sometimes called the sensorless principle, as the 

given physical quantity is not directly measured. However, this requires 

other, and many times more, sensors to utilize the analytical redundancy 

and to estimate the required parameter knowing the relationship between 
the measured and unmeasured quantities. A simple example of this is the 

estimation of velocity based on distance and time information. Velocity is 
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the ratio of distance and time (more accurately, the derivative of distance 

with respect to time). The measurement of velocity can be replaced by 

measurements of displacement and time. 

The sensorless principle can also be efficiently used in cases where the 

measurement of a particular quantity is not possible. It can also be used as 

a cost-effective alternative (as one sensor can be omitted), if sensors 

required for other features of the system can be utilized for state 

estimation. A further motivation can be the provision of redundancy in 

safety-critical systems. In that case, the sensor is not omitted, but neither is 

it duplicated for redundancy. If it fails, the information is acquired in an 

alternative way (the sensorless principle). Furthermore, a plausibility 
check can be accomplished using the alternative information source during 

normal operation. 

Among many areas, there is huge potential for its use in the automotive 

industry, with its requirements for applications to be cost sensitive and 

safety critical at the same time. There are many examples of its successful 

application in other domains as well, both for reasons of cost reduction 

(non-safety-critical applications) and for increasing redundancy (safety 

critical applications). 

3.6.3 An illustrative example 

3.6.3.1 Parameter estimation of a permanent magnet synchronous 
motor 

The following example concerns safety critical systems. More and more 

often, electronic actuators are being used in modern cars. Many of these 

are electric motors. Their use might relate to a comfort function (e.g. a 

power window, electrically adjustable mirrors, adjustable seats etc.), but 
there is an increasing number of safety critical functions available in 

today’s cars (electronic power assisted steering, adaptive suspension, 

semiautomatic transmission, variable ratio steering etc.). Here, we 

investigate a permanent magnet synchronous motor used in a safety 

critical application. Torque control is one of the most common uses in the 

operation of the motor, requiring accurate information about the torque. 

Unfortunately, a torque sensor is rather expensive. However, in the case of 

electric motors the torque can be calculated from the rotor position and 

currents. In a safety critical application, the operation cannot depend on 

the actual condition of a single current sensor. We can estimate the current 

through an alternative pathway and infer the torque. Using analytical 
redundancy and setting up the electric model of the motor gives us this 
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possibility. We introduce here an algorithm developed at the Department 

of Measurement and Information Systems, BME (Zentai and Dabóczi 
2005). First, we introduce the motor model and then discuss the parameter 

estimation method that allows the estimation of the current not directly 

measured. 

Permanent magnet synchronous motors can be conveniently described 

using a rotor-oriented reference frame. For this, we first transform the 

description of a three-phase system drawn in a stator-oriented reference 

frame to a hypothetical two-phase system also described in a stator-

oriented frame. (As the three currents are not independent of each other, 

they can be described in an orthogonal frame by two current components.) 
This is called the Clarke transformation: 

HØ  =L¨� AH� 
 HH��W Ä 
 H���W Ä C  H��< 
Hp  =L Ön AH� 
 HH��W Ä 
 H���W Ä C  =HH 
 H�qL �< (3.59) 

where H�< HH < H� are the phase currents. Park’s transformation rotates the 

stator- oriented frame to the rotor-oriented one: 

Hù  û�ç�rsHØ� 
 çèé�rsHp� �<   H�  �çèé�rsHØ� 
 û�ç�rsHp� �� (3.60) 

In this description, we take into account the inductivity of the coils, 

their dependence on the angle, the coupling between the phase coils, the 

resistance of the coils and the induced voltage generated by the magnetic 

field of the rotor (Fig. 3-33). The two resulting circuits are not independent 

of each other. The induced voltages depend on the currents of the other 

circuit (the upper part depends on H� and the lower part on Hù), that is, we 

can describe their behaviour with a coupled equation set. 

Identification 

Our final goal is to estimate the current. For this, we first need to identify 
the parameters of the above model through measurement (system 

identification). The physical parameters to be determined during this 

identification are the resistance and inductance of the coils and the 

generator constant of the rotating machine. For this identification, a field-

oriented control is used where the motor is excited by a sinusoidal voltage 

and the phase currents are measured at different rotational speeds. 

However, the two-phase currents described in the rotating frame depend 

upon each other (the d component on q, and q on d) and each other’s 
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derivative. Thus, we get a coupled differential equation set. This coupling 

can be stopped if the currents (and their derivative) are considered to be 

the excitations and the phase voltages are considered to be the system 

response (Zentai and Dabóczi 2005). Through this modification, the 

system can be described in the following way: 

 3ù�2�  ¨ÈÖù�2� 
 ëù \Öù�2�\2 � ë��¡ã�2�Ö��2��< (3.61) 

3��2�  ¨ÈÖ��2� 
 ë� \Ö��2�\2 
 ëù�¡ã�2�Öù�2� 
 �¡ã�2��Ë¡(�< (3.62) 

where Öù< Ö� are the current components in direction d and q, respectively; 3ù<3� are voltage components; ¨È is the serial resistance corresponding to 

the winding; ëù< ë� are inductance components corresponding to windings; �¡ã�2� stands for the electric angular frequency of the rotor; and �Ë¡( is 

the generator constant. 

 

Fig. 3-33. Motor model in a rotating rotor-oriented frame. The two circuits are 

coupled through induced voltages (the upper part depends on H� and the lower part 

on Hù). 

If the cost function of the identification is defined in the following way, its 

minimization can be accomplished using common optimization methods 

(sampled signals are assumed): 

û�ç�  k�3ù�¨È< ëù< ë�<�Ë¡(< H� � 3ù<S¡6È�s¡ù�H��W����������
k�3��¨È< ëù< ë�<�Ë¡(< H� � 3�<S¡6È�s¡ù�H��W� (3.63) 
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Rearranging the above equations into matrix form and assuming 

sampled signals we get: 

3S¡6È�s¡ù  ��Å 
 ��< (3.64) 

where 

3S¡6È�s¡ù 
IJJ
JJJ
JK3ù<S¡6È�s¡ù���3�<S¡6È�s¡ù���3ù<S¡6È�s¡ù�=�3�<S¡6È�s¡ù�=�q3ù<S¡6È�s¡ù���3�<S¡6È�s¡ù���MNN

NNN
NO �<        Å  IJJ

K ¨Èëùë��Ë¡(MNN
O �< 

�



IJJ
JJJ
JJJ
JJJ
JJKÖù��� Öù��� � Öù�%��È ��¡ã���Ö���� %
Ö���� �¡ã���Öù��� Ö���� � Ö��%��È �¡ã���
Öù�=� Öù�=� � Öù����È ��¡ã�=�Ö��=� %
Ö��=� �¡ã�=�Öù�=� Ö��=� � Ö�����È �¡ã�=�q q q qÖù��� Öù��� � Öù�� � ���È ��¡ã���Ö���� %
Ö���� �¡ã���Öù��� Ö���� � Ö��� � ���È �¡ã���MNN

NNN
NNN
NNN
NNO

< 

(3.65) 

and � stands for the error vector. The parameters can be derived from this 

in the following way: 

Å  ��0���� �03S¡6È�s¡ù�� (3.66) 

Sensorless measurement 

The above parameter identification allows the calculation of the phase 

currents of the motor, based on the phase voltages and rotational speed, by 
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making use of analytical redundancy (sensorless principle). Considering 

that differential equations (3.61) and (3.62) are still coupled, the solution 

can be numerically calculated using finite differences, or the current values 

can be estimated using an observer. The torque required for the control 

algorithm is based on the current: �  H��Ë¡(�� (3.67) 

The rotor position or speed can be similarly estimated, according to the 

current and voltage measurements, allowing a plausibility check of the 

given sensor. (We can apply only one of the above two sensorless 

principles at a time and so either the currents or the rotor position are 

estimated.) 

3.7 Application areas—results achieved  
at the department BME-MIT 

Inverse filtering is applied in a very wide range of fields and we cannot 
undertake an exhaustive introduction here. Rather, we wish to present 

some examples to demonstrate the approaches we have taken in the 

Department of Measurement and Information Systems (MIT) at the 

Budapest University of Technology and Economics (BME). We categorize 

them according to their area of application.  

3.7.1 Cost-effective measurement system using inverse filtering 

In the course of observing parameters of physical quantities (using 
embedded or data acquisition systems), the bottleneck encountered is often 

financial, rather than technical or technological—there is often an 

available sensor or measurement system that provides the desired 

accuracy, but it is too expensive to be purchased for the given application. 

This is a primary concern for devices manufactured in large volumes, such 

as cases where the cost of the material/components is dominant (e.g. the 

automotive industry) and the development cost is distributed among many 

products. However, cost-effectiveness is also important for non-series 

products. The digital post-processing of signals provides an opportunity to 

increase the quality of the total signal acquisition chain (sensor, signal 

conditioning, AD converter). 
If the aim is to extend the limited bandwidth available, deconvolution 

methods can help reconstruct information about the physical quantity, 

assuming that the distortion is linear and shift-invariant. If nonlinear 
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distortion causes difficulties, it can be efficiently handled using 

conventional or regularization techniques. Stochastic disturbances 

corrupting the measurement can be effectively suppressed using (linear 

and nonlinear) digital filtering algorithms. The efficiency of suppression 

can be significantly improved if a parametric model can be provided for 

the signal. 

Results achieved in this field at the department BME-MIT include the 

following: 

� We successfully applied deconvolution methods to compensate 

frequency-dependent (dynamic) errors in high voltage dividers, 

improving the capabilities of a moderately priced damped capacitive 
divider so that it could compete with the level of accuracy and 

bandwidth of a resistive divider (Dabóczi and Kollár 1996). We 

accomplished the measurements at the Swiss Federal institute of 

Technology (ETH Zürich), High Voltage Laboratory. 
� We efficiently increased the bandwidth of sensors in embedded 

systems (e.g. accelerometers) by means of inverse filtering (Bakó and 
Dabóczi 2016). 

� We applied signal model-based noise filtering for testing AD 

converters with very long time records (a couple of million samples) 

where our algorithm could handle the short-term instability of the 

signal generator (Dabóczi 2013; Dabóczi 2012). 

3.7.2 Extending physical/technological barriers  
using inverse filtering methods 

The second major area for the application of inverse filtering is where the 

quality of the measurement system (sensor, signal conditioning, AD 

converter) cannot be further improved because of physical or technological 
barriers, or we need to compensate the distortion of an observation of a 

quantity that cannot be directly measured using a sensor. 

Technological barriers are reached in the case of precision 

measurement techniques (typically in the case of instruments in calibration 

laboratories). One of the tasks of a calibration laboratory is the 

certification of measuring instruments, which requires procedures resulting 

in greater accuracy than that of the device under test. This is not a big 

challenge for instruments with moderate specifications. The problem arises 

when the most accurate instrument in the world needs to be certified. In 

this case inverse filtering comes in handy. 

Yet another challenge is dealing with distorted signal recordings that 
cannot be repeated. The reason for this may be that the recording (e.g. 
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sound or film) is an archive, or we cannot repeat the measurement in the 

case of a special, one-time occasion (e.g. a photo-finish). In these cases, 

although we may have a better measurement or recording system to 

improve the measurement, the signal to be measured cannot be reproduced 

and therefore we need to compensate the distortions in the individual 

recording. 

We achieved the following results in this field at the department BME-

MIT: 

� We extended the bandwidth of ultra-high speed sampling oscilloscopes 

at the primary calibration laboratory of the USA (National Institute of 

Standards and Technology, Gaithersburg, MD) as part of a cooperative 
research project. The sampling system operates in equivalent sampling 

mode. In order to improve the signal-to-noise ratio and resolution, 

many periods are averaged. Due to the local uncertainty of the timing 

of sampling (jitter), this averaging acts as low-pass filtering that 

reduces the available accuracy. However, deconvolution techniques 

can compensate for this effect (Deyst et al. 1998; Dabóczi 1998).  
� We applied inverse filtering to increase the accuracy of a marker-based 

motion analysis system. In the case of poor lighting conditions, 

exposure time cannot be short enough to freeze the object in the image. 

As a result, the marker image will be blurred, distorting the estimation 

of its centre. We made an accurate centre-point estimation by means of 
deconvolution, even in the case of heavily blurred marker images 

(Dabóczi 2016). 
� We applied regularization techniques to compensate nonlinear 

distortions of the optically-recorded sound tracks of archive movies 

(Bakó and Dabóczi 2002). 

3.7.3 Complex sensors 

The input range, accuracy, and bandwidth of sensors can be extended by 
using several (usually different) sensors where fusing the information 

together gives a new complex sensor. The accuracy can be increased by 

utilizing redundant information. Sensor fusion has a very wide range of 

applications in engineering. 

The compilation of a panoramic picture from several (not accurately 

aligned) shots with different orientations is a good example of the 

extension of the input range. Many digital camera manufacturers offer 

some kind of software support to automatically rotate and shift the 

individual images to provide a good match of the overlapping parts of 

adjacent images. A single image contains information that is distorted (the 
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scene outside of the viewing angle is cropped). Several images combined 

together can cover the whole range required. 

Sensor fusion is frequently applied if the direct measurement of a 

quantity is expensive, but fusion of the information of several simple 

sensors provides a good estimate. This is the case in orientation 

measurement with an expensive gyroscope, containing rotating elements, 

and its substitution with a MEMS-based accelerometer and rate-gyroscope 

(e.g. MEMS tuning fork rate-gyro). Today, smartphones estimate 

orientation for navigation applications based on the fusion of several low-

cost MEMS sensors. The same inertial measurement unit (IMU) assists the 

stabilization of model helicopters, drones, and balancing robots by 
estimating orientation. For estimating orientation in applications that also 

require localization, additional sensors are included in the fusion. 

We achieved the following results in this field at the department BME-

MIT: 

� Modern driver-assistance systems and autonomous driving of cars 

requiring a knowledge of lane trajectory and obstacle positions where 

three-dimensional reconstruction is accomplished using images from 

several cameras (Bódis-Szomorú, Dabóczi and Fazekas 2008; Bódis-

Szomorú, Dabóczi and Fazekas 2009). 
� We developed an algorithm to compensate the non-modelled 

systematic error of sensor fusion for inertial measurement units (IMU) 
and used it to estimate the orientation of a balancing robot (Kalvach 

and Dabóczi 2012). 
� We developed an algorithm to plan the optimal cruising trajectory of a 

sailboat. Sensors allowing the continuous identification of a boat model 

(its speed characteristics as a function of wind speed and angle) were 

used to measure different cruising and environmental parameters. 

Using the model, the optimal cruising angle (and corresponding turns 

along the trajectory) can be calculated (Velinszky and Dabóczi 2013). 

3.7.4 Safety-critical systems 

One very interesting area of application is that of safety critical systems, 

demanding rigorous and continuous verification of operation (sensors, 

signal paths, signal processing) by extra devices. It may also require the 

duplication or multiplication of critical units. 

This multiplication of units may encounter both physical (i.e. there is 

no room for more sensors) and economic limits. To address this problem, 

an alternative solution is the use of a “virtual sensor”, where the required 
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quantity is estimated from the signals of other sensors utilizing analytical 

redundancy (“sensorless” principle). 
We achieved the following results in this field at the department BME-

MIT: 

� We developed efficient algorithms for the estimation of the current 

required for torque control in electric power assisted steering systems 

in cars. This enables a plausibility check of the current sensors by an 

alternative (non-current sensor) measurement. If the current sensor 

fails, this method enables the substitution of the sensor by its estimate. 

A parameter identification is required for this solution (Zentai and 

Dabóczi 2005; Zenta and Dabóczi 2009). 
� In research cooperation with CERN (the European Organization for 

Nuclear Research, Geneva, Switzerland), we developed a test system 

for the large hadron collider that inspects the integrity of the 

supervisory system responsible for monitoring beam losses. The 

model-based test system can be efficiently implemented on an FPGA 

platform (Hajdu, Zamantzas and Dabóczi 2016; Hajdu et al. 2018). 

3.8 Summary 

In this chapter, we have discussed how digital signal processing algorithms 

can compensate distortions and disturbances that corrupt the measurement 

of physical quantities. The most important aspects are summarized here: 

� When observing physical quantities, the measurement system contains 

distortions and disturbances. If the distortions are known (they can be 

described by a model), their effect can be partly compensated by means 

of digital post-processing of the signals (inverse filtering). 

Disturbances can be mitigated. The most common types of distortion 

are limited bandwidth and nonlinear distortion. 

� We can describe not just those distortions caused by the measurement 

system, but also energy conversions in the physical system. These 

conversions can be modelled and compensated in the same way as the 

compensation of the measurement system. 

� Inverse filtering is an estimation task, as the measurement is always 

corrupted by stochastic disturbances. 

� Inverse filtering is an ill-posed problem, as the estimate changes 

heavily in response to a small disturbance in the observation (due to 

noise). In the case of ill-posed problems, regularization techniques can 

help mitigate noise amplification. Its accidental effect is distortion of 

the useful signal (the physical quantity to be observed). In ill-posed 
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cases, inverse filtering always involves a trade-off with noise 

amplification and distortion of the useful signal. 

� The accuracy and precision of the measurement/observation can be 

improved if several (often of different types) sensors are utilized. 

Different channels of information are combined to produce an overall 

measurement system that is more accurate, more precise, has a larger 

bandwidth, and has a broader input range than any one sensor (sensor 
fusion). 

� The accuracy and precision of the measurement/observation can be 

improved if we provide a parametric model for the signal to be 

observed (a model for the signal, not just for the distortion). In such a 
case, the bound provided by the finite parameters of the model 

guarantees immunity against noise. 

� If the physical quantity to be observed is an internal state variable of a 

physical system that cannot be directly measured by a sensor, 

observation theory offers the possibility of state estimation. The 

observer copies the structure of the system to be observed and adjusts 

its own state variables until the output of the observer is sufficiently 

close to that of the real system. 
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4.1 Introduction 

In the following, we invite the reader to examine the modelling of systems 

in the frequency domain. Modelling is equally possible in the time and the 

frequency domains and gives us mutually convertible models. From a 

practical point of view, however, the frequency domain offers more 

advantages and, when feasible, is preferred (Pintelon and Schoukens 

2012).  
In the frequency domain, the (linear) nonparametric frequency 

response function (FRF) is one of the most easily measurable and 

universally applicable system models. Its theoretical basis is linear system 

theory, i.e. it relies on the properties of linear and time-invariant systems 

and on the duality of the time domain/frequency domain. This latter aspect 

is bridged by the Fourier transform. The measured FRF yields a view of 

the system dynamics, the essential frequency bands, and the number and 

character of resonances. It is also a good starting point from which to 

construct optimization criteria for subsequent parametric system 

identification (Pintelon and Schoukens 2012). 

A frequency response function can, nevertheless, be determined for 
any kind of (nonlinear) system, for example as the ratio of the Fourier 

transforms of the output and input signals. However, what meaning does 

such a system description convey, an attentive reader may ask?  

Considering that all world phenomena are nonlinear and time-varying, 

the concept of a linear and time-invariant (LTI) system is truly a 

mathematical fiction—an idealized view, but one that has proved to be 

enormously convenient and useful. A linear system model acts as an 

adequate description in a number of applications where the nonlinear 
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behaviour of the system is concealed below the level of observation or 

computation errors. 

If the nonlinear behaviour of the measured system is strong, the FRF, 

as the system model, should be accepted with some reservations. To 

embed our task in a more formal setting, in the following we interpret the 

measured FRF as the FRF of the best linear approximation GBLA (BLA) 

to a nonlinear system (with inputs y�2� and outputs G�2�), defined as (see 

Section 4.12): o_K^���  ðúñ�èét��� ./QG�2� � o���y�2�QW1 (4.1) 

The measurement procedure, derived from (4.1), yields the linear 
minimizer GBLA, which represents the second order properties of the 

nonlinear system. It does not (cannot) fully explain the behaviour of the 

nonlinear system. In this sense, the measured GBLA carries a burden of 

modelling error, which is also reflected in the measured FRF. 

Due to the assumed nonlinear character of the measured system, this 

modelling error depends on the applied input signals (their frequency band 

and amplitude levels, etc.) and will appear somehow in the magnitude and 

the phase of the measured FRF. Unfortunately, linear system theory is not 

capable of quantifying such modelling errors, nor of answering the 

question: “Is the measured FRF accurate enough to represent the system 

dynamics?” As such, we may state our aims as: 

 
 

 

 

 

 

 

 

 

 

 

 

 

To realize these aims, in sections 4.2 to 4.8 we give a short compilation 

of important topics in (linear) FRF measurements. We will accentuate the 

merits of working (performing system modelling) in the frequency domain 

and will compare the utility of periodic and random input signals. Periodic 

(1) Considering that general nonlinear system theory does not exist, any 

question related to nonlinear behaviour must be conditioned on the 

specific properties of the system and its input signals. To this end, we 

must decide on the class of nonlinear systems we wish to deal with, and 

the class of input signals deemed essential to the application. 

(2) Exploring how nonlinear modelling errors appear in the measured 

FRF. 

(3) Extending the FRF measurement technique to make it possible to analyse 

such nonlinear effects and also to indicate to what extent the obtained FRF is 

acceptable as a nonparametric dynamic model of the system. 
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signals will win out in this comparison. Then, in sections 4.9 to 4.11, we 

define the classes of (nonlinear) systems and (periodic) signals for which 

we are seeking the solution to the stated problem. In Section 4.12, the FRF 

measurement technique is extended to the BLA for the chosen class of 

systems and signals. Finally, in Section 4.13 the optimal choice of input 

signals is presented to yield more accurate FRF measurements. 

4.2 On linear system models and measurement design 

4.2.1 Linear system models 

Linear and time-invariant (LTI) systems can be characterized by the 

superposition principle and invariance with respect to the passage of time. 

The output signal G�2� of an LTI system can be computed in the time 

domain as the convolution of the input signal y�2� and the impulse 

response (IR) ^�2�:  

G�2�  u ^�E� y�2 � E�\E, or G�	�  s^�t�y�	 � t� (4.2) 

in the case of discrete time. 

We expect impulse responses to be integrable or summable in terms of 

their absolute value, because an (integral or discrete) Fourier transform 

then exists. In such a case, the temporal convolution can be written as the 

product of the respective Fourier transforms:  Í���  o��� 3��� (4.3) 

The Fourier transform o��� of the impulse response is the frequency 
response function (FRF). From these two models (i.e. IR vs. FRF), the 
frequency characteristic becomes generally more informative. It indicates 

explicitly (with spectral amplitudes, phases, and frequency bands) how the 

investigated system will affect its input signals. For this reason, and as 

mentioned in the introduction, we focus in the following on the 

computation of the frequency characteristic. Summing up, an LTI system 

can be formally written as:  G�2�  o��� y�2� or  G�2�  o��<v� y�2�. (4.4) 

The o��� operator is a recognized notation meaning that the system is 

dynamic. The � is the operator of the time shift, i.e. ���y�2�  y�2 � ��, 

consequently o��� indicates that the o system constructs its output from 

time-shifted signals (see Ljung 1999). In other domains, the powers of 
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��are represented by the powers of the angular frequency, �, or { variables. 

The o����operator may be a nonparametric model, specified typically by 

a value table or a graph. The o��<�� operator, on the contrary, indicates a 

parametric model, based on the choice of a suitable model structure, with 

� parameters generally estimated from the measurements. 

It is important to distinguish between static and dynamic systems. The 

output of a dynamic system may depend on the past behaviour of its input, 

but it may also depend on the past values of the output. Accordingly, we 
can distinguish between a moving average (MA) parametric model 

structure, dependent solely on past inputs; an auto-regressive (AR) 

parametric model structure, dependent solely on past outputs; and the 

general dynamic auto-regressive moving average (ARMA) parametric 

model structure, possessing both (i.e. input and output) memories. The 

impulse response function of a MA linear system takes (in discrete time) a 

finite number of non-zero values (finite impulse response, FIR). AR or 

ARMA systems, however, always generate impulse responses with an 

infinite number of non-zero values (infinite impulse response, IIR). A 

system can have multiple inputs, acting at diverse input terminals, and 

more than a single output point can produce a measurable output signal. 
For this reason, in addition to single input, single output (SISO) systems 

we will also discuss multiple input, multiple output (MIMO) systems. 

4.2.2 Measurement setup 

In the following, we assume the measurement setups depicted in Fig. 4-1. 

The LTI system o��� is excited by the input signal ya�2� and produces an 

output signal:  Ga�2�  o��� ya�2� (4.5) 

Signals in the measurement setup can be random and/or deterministic. 

Input signals can be random or deterministic, depending on the situation. 

Disturbance signals perturbing the measurements are almost always 
considered random. The processing of signals in the measurement is therefore 

certainly not trivial and one must be able to process mixed signal types.  

Input excitation can be a purposefully designed signal. In this case, the 

required signal shape is generated by a suitable signal generator and is 

injected at the input of the system. Aside from special input signals 

uniquely designed for specific situations, designed excitations are usually 

random or periodic signals. 
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Usually, as random excitations, normally distributed (band limited) 

white noise or white noise coloured with a linear filter is used. Periodic 

signals contain a number of harmonic components, where spectral 
amplitudes, frequencies, and phases are design parameters of the 

measurement (experiment) design.  

The measurement can also be performed with natural, non-designed 

excitations, meaning that we observe the investigated phenomenon under 

its normal working conditions (as is typical in the identification of 

industrial systems). In that case, the input signals are given and we aim to 

measure them with sufficient accuracy. 

 

 

Fig. 4-1. (a) Error-in-variables (EIV) scheme with input and output measurement 

noise. (b) Measurement scheme with known inputs. (c) Output error (OE) scheme 
with all output noises reduced to a single noise source. (d) Closed loop scheme: the 
feedback mixes the output noise into the system input, invalidating the OE scheme 
assumption. 

 

The measurement setup may contain multiple disturbance signals. The 

most important is output or process noise 	e�2� at the system output. This 

convention is valid for linear systems because wherever the disturbance 

enters the linear system, it can be transformed to the system output with a 
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suitable frequency domain weighting, retaining its assumed independence 

from other signals in the setup5.  

Frequently, we may assume that the input ya�2� is known and that the 

disturbances are present solely at the output of the system. The true output 

signal Ga�2� is thus unknown and we must measure its G��2� value 

distorted with output noise. Depending on the implementation, the output 

measurement data can also be distorted by additional measurement noise 	��2�. The full scheme covering this is called the output error (OE) 

scheme (see Fig. 4-1 (b, c). The principal assumption of the OE scheme is 

the independence of the summed output noise ý�2� from the input signal y�2� and consequently the desirable consistency of the system model6.  

The situation is more complicated when the input signals are unknown 

and their values must be discerned from noisy measurements. Considering 

that the input signal data appears during (e.g. least squares) identification 

in the “denominator” (matrix inverse) of the model, for finite (input) 
signal-to-noise ratio (SNR) the estimates will be biased, consistency will 

be lost, and the model will have a permanent error, even in the linear case. 
Noisy inputs can be tackled, in general, by the error-in-variables (EIV) 

criterion (see Fig. 4-1(a)). Identification, then, aims to restore the unknown 

input/output signals ya�2�, Ga�2�, based on their noisy measurements y�2�, G�2�, while keeping in mind the theoretical constraint that these signals are 

indeed the respective inputs and outputs of an LTI system. 

If the properties of the disturbance signals vary, this must be accounted 

for during modelling to ensure accuracy. When calculating the model, it is 

not appropriate to treat the more accurate and less accurate (noisy) data 

with the same confidence. Thus, in identifying LTI models, noise 
modelling should be treated as a distinct task. As with the system model, 

the model of the output noise 	e�2� in the setup in Fig. 4.1 is a white, i.i.d. 
(independent identically distributed) noise signal filtered with an LTI 

filter ���). The parameters of this noise model are the parameters of the 

model structure chosen to describe ���� and the variance level � of the 

white noise ��2�. The full model is thus: 

                                                        
5 The situation is different in nonlinear systems. If the transfer between the actual 
occurrence of the disturbance and the output of the system is nonlinear, the 
disturbance cannot be moved without changing its essential properties (e.g. the 

amplitude density function). In this case, disturbances within the system and at the 
system output must be treated separately. 
6 Speaking informally, a consistent estimate will gradually improve as the amount 
of data grows. 
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G��2�  o���y�2� 
 ������2� 
(4.6) 

Finally, in a closed loop situation (Fig. 4-1 (d)), the output noise mixes 

through the feedback connection with the input signal, invalidating the 

assumed independence of these two signals, as needed in the OE scheme. 

In consequence, the FRF estimated from input/output measurements will 

generally be (significantly) biased. The solution of this problem is 

discussed in Section 4.7. 

4.2.3 Measurement data 

Regardless of how the measurement was designed, at the end of 

measurement we will have a certain number of digitized, and not 

necessarily accurate, data: F$  /y�2�< G�2�1fl�$ , or  F$  /3�t�< Í�t�1vla$�� (4.7) 

Time t, depending on the context, may be discrete or continuous (see 

Ljung 1999). Some serious, unavoidable problems may include: 

(1) The estimate of the FRF calculated from the measurements of at 

least partially random signals is also a random variable that has some bias 

and certainly has a non-zero variance.  

(2) Every experiment has a finite time span. Only a finite � amount of 

data can be obtained in a finite time and further extension of the 

measurement time may be theoretically limited (by the loss of time-

invariance) or practically limited (by sampling and processing costs). 
Another problem is that signals outside the measurement time window 

(y�2�<  2 � % and G�2�<  2 Ü �) are unknown to the experimenter. Yet, in 

the identified dynamic systems, signal memory affects actual system 

behaviour. Ignoring unknown signals from outside the window causes 

transients in the time domain or spectral leakage in the frequency domain. 

These effects disappear by extending the time window (i.e. waiting out the 

transients), but if the measurements are short-term and are made on 

weakly damped systems, we can expect problems. Three typical cases can 

be distinguished: 

(2a) The excitation signals in the experiment are strictly controlled and 

their value outside the measurement time window 2 � %<  2 Ü � is set 
to zero. 

(2b) We guarantee that in the measurement time window the unknown 

initial and final transients are identical (the signals are periodically 

extended, i.e. we work with periodic signals). 
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(2c) The experiment is an observation of the system under operating 

conditions. In this case, the nature of the transients is completely 

unknown. They must be identified together with other system 

parameters and then the measured data can be compensated with the 

estimates obtained.  

4.3 Estimating the frequency response function  
from measurements 

We sample the signals uniformly at times 2( � �	�L (�L � ��izL is the 

sampling time, zL  is the sampling frequency). The measurement starts at 	�  �% and continues until N /y�	�L�< G�	�L�1(la$�� data are collected in 

the measurement time window �& � ����L. Using the discrete Fourier 
transform (DFT), we obtain the DFT transforms of the data /3w¶0�t�< Íw¶0�t�1vla$�� (Pintelon and Schoukens 2012): 

3w¶0��v�  �q� k y�	�L����(0Px�$��
(la < 

Íw¶0��v�  �q� k G�	�L����(0Px�$��
(la

 (4.8) 

at DFT frequencies: 

 �v  W v$0P (4.9) 

The DFT data from a finite measurement window can be used to 

determine the transfer function of the examined LTI system o���; more 

precisely, we can use them to estimate the o��� frequency characteristic 

of the operator o���: 

o©��v�  Íw¶0�t�3w¶0�t� (4.10) 

This empirical transfer function estimate (ETFE) intuitively appears to 

be a good choice; however, to obtain useful results one has to solve a 

number problems. Despite these, in LTI system theory (see (4.2) to (4.3))7: 

                                                        
7 Note on the frequency argument. In the functions defined on the frequency axis, 
we usually use a (circle) frequency with its values computed from the measurements. 
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Í���  o��� 3��� 
(4.11) 

o©��v�  Íw¶0�t�3w¶0�t� ' o��v� 
(4.12) 

and this difference can be significant. 

As with any statistical estimate, o©��v� can be biased and its variance 

may not be zero. Knowing this (i.e. the bias and the variance), we can 

compute the confidence interval of o©��v�. It is the task of the experiment 
designer to reduce these two factors to as low a value as possible. In 

practice, when evaluating estimate (4.10), we must address several 

disturbing effects: 

1. A fundamental difficulty is that in (4.3), the Fourier transforms are 

defined (and assumed to be known) on a ���< 
�� time interval. In the 

DFT computed from the finite-length measurement window, there is not 

enough information to fully restore these transforms. This missing 

information relates to the initial and final conditions already mentioned in 

Section 4.2, which appear as transients in the time domain or as spectral 

leakage in the frequency domain. 
Assuming a noise-free measurement, the correct, so-called extended 

input-output relationship equation, also accounting for transients, is: Íw¶0�t�  o��v� 3w¶0�t� 
 �t��v� (4.13) 

o©��v�  Íw¶0�t�3w¶0�t�  o��v� 
 �t��v�3w¶0�t�  o��v� 
 Öt��v� (4.14) 

where �t��v� (or Öt��v�) expresses the unknown initial (2���%) or final 

conditions (Ljung 1999; Pintelon and Schoukens 2012; Pintelon and 

Schoukens 1997; Pintelon, Schoukens and Vandersteen 1997).  

2. If the input y�2� is random, then its DFT transform 3w¶0�t� is an 

asymptotically circular complex Gaussian distributed random variable 

(Ljung 1999; Pintelon and Schoukens 2012). Due to its location in the 

denominator of (4.10), it has a powerful variance-increasing effect on the 

estimate.  

                                                                                                                   
These functions also have values at other frequencies, for example, calculated by 
interpolation. The arguments of the DFT transforms obtained from the sampling of 
the finite measurement record, on the other hand, are integers, because these 
functions are only defined on a finite frequency grid (so-called DFT frequencies). 
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3. The measured signals can be distorted by noise. In the output error 

(OE) setup we have: Íw¶0�t�  o��v� 3w¶0�t� 
 kw¶0�t� (4.15) 

If the measurement noise is significant, the situation corresponds rather 

to the error-in-variables (EIV) scheme: Íw¶0�t�  o��v� 3a<w¶0�t� 
 ��<w¶0�t� (4.16) 

3w¶0�t�  3a<w¶0�t� 
 ��<w¶0�t� (4.17) 

Finally, if the process noise is modelled as filtered white noise (see Fig. 

4.1(a, b)) then due to the transients of the noise filter ����, we have to 

consider the following relationship (Pintelon and Schoukens 2012): Íw¶0�t� ��������� o��v� 3w¶0�t� 
 �t��v� 
 ���v� .w¶0�t� 
 �<��v� 
(4.18) 

Generally, the separation and independent estimation of both �t��v� 
and �<��v� transients are not possible. 

4. The extended input-output relationship (4.13) is exact for discrete-

time systems. For continuous-time systems, it should be considered that 

the stepwise approximation of the Fourier integrals by the DFT is that of 

the ZOH (zero order hold) and results in infinite spectral leakage in the 

frequency domain. As a consequence, (4.13) should be amended 

accordingly (Pintelon and Schoukens 1997): 

 Íw¶0�t�  o��v� 3w¶0�t� 
 �t��v� 
 y��v� 
(4.19) o©���x��  o��v�  
 Öt��v� 
 *��v�  

where y��v� (or *��v�) accounts for the non-ideal characteristic of the 

anti-aliasing filter. 

In a specific measurement situation, the above-listed disturbing effects 

(1-4) do not necessarily appear together, but, when present, they contribute 

to the bias or variance. The transient �t��v� in (4.13) is zero if the 

measured signals are zero outside the measurement window, or if the input 

signal is periodic, making the initial and final conditions coincide. 

Otherwise, �t��v� is non-zero and its effects may need to be considered.  
In the following, we present a short overview of the properties of the 

FRF estimate when the input signals are periodic and when they are 
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random. We will see that periodic inputs are more advantageous. Later, we 

move on to the topic of the nonlinear system. In pursuing a more widely 

usable FRF estimate, we will be forced to give up the deterministic inputs. 

This is why we nevertheless keep the periodicity of the input signals. 

4.4 Properties of the frequency transfer function  
estimate measured with periodic signals 

Here, we assume that in the measurement setup of Fig 4-1(a), the noise-

free input, and thus the output signals, are periodic and filtered with an 

ideal anti-aliasing filter. Signals are sampled uniformly with a sampling 

frequency zL to obtain � samples in a period. It is also assumed that the 
initial transients of the periodic excitation have decayed (the measurement 

does not start with the first period when excitation is switched on, but at 

some tth period later on) and that the initial and final conditions in the 

measurement window are identical. In general, the measurement time 

window may contain � integer multiples of the period. Under these 

conditions, in the case of noise-free signals, the frequency characteristic 

can be estimated without spectral leakage by the (4.10) ratio of DFT 

transforms. 

Assuming, in turn, that the measurements are disturbed with noise 

(output process noise; input and output measurement noise, see Fig 4-1(a)) 
then (in the following, DFT transforms are used and so the DFT subscript 

is left out): 

 Ía�t�  o��v� 3a�t� (4.20) Í�t�  Ía�t� 
 �h�t�3�t�  3a�t� 
 �z�t� (4.21) 

and o©��v�  Í�t�3�t� (4.22) 

 

The DFT transform of the output signal is distorted by process noise and 
measurement noise, but the DFT transform of the input signal is distorted 

solely by measurement noise. The standard assumptions are that  �h�t�, �z�t� noises are independent of Ía�t�, 3a�t� signals, and at a given 

frequency they are circularly complex Gaussian random variables. Noise 

values at different frequencies are independent, furthermore (Pintelon and 

Schoukens 2012):  
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./�z�t�1  %< ./�zW�t�1  %./�h�t�1  %< ./�hW�t�1  %./Q�zW�t�QW1  VzW�t�./Q�hW�t�QW1  VhW�t�./�h�t��z�t�1  %< ./�h�t��9z�t�1  VhzW �t�
 (4.23) 

4.4.1 Quality of the estimate—bias and variance 

The quality of a random estimate can be characterized by its bias (i.e., a 

systematic error) and its variance (i.e., a random error), or by its mean 
squared error (MSE), which concerns both errors together. For the 

detailed derivation of the bias and variance of the FRF estimate, we direct 

the reader to Pintelon and Schoukens (2012). Here, we summarize only 

those results essential for processing the measurement data.  

If the noise is small, i.e. if Q �z�t� 3a�t�m Q  � �, then the FRF estimate 

will be unbiased, ./o©��v�1  o��v�. In the case of Gaussian 

measurement noise, however, this condition is definitely violated. If the 

input {|} (signal-to-noise ratio) is high (i.e. Vz�t� �  Q3a�t�Q), the 
violation will be rare and the resulting bias small. However, for a low {|}, we can count on serious bias. For independent �z< �h Gaussian 

measurement noise (Vhz�t�  %), and with a fixed input signal, this bias 

can be approximated by:  

./o©��v�1  o��v��� � �� Q  z��v� Q�~�� �v� � (4.24) 

For correlated noises (VhzW �t� ' %), the expression is more 
complicated (Pintelon and Schoukens 2012). It is important to note that the 

output (measurement) noise itself does not cause bias. Bias is caused only 

by the input noise and/or the dependence of the input and output noises. 

The variance of the frequency characteristic can be approximated by: 

 k]3�o©��v��  VtW�t� � Qo��v�QW� ~���v�Qh��v�Q� 
 ~�� �v�Qz��v�Q� � =}ó/ ~��� �v�h��v�z9��v�1� 
(4.25) 

 

where the noise variances VhW�t�< VzW�t�< VhzW �t� are known, a priori 
theoretical values, or can be estimated from the measurements (see (4.29)).  

Due to Gaussian noise and randomly occurring near-zero values in the 

denominator of (4.22), the theoretical value of the variance would be 

 EBSCOhost - printed on 2/14/2023 6:11 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Four 
 

220 

infinite. Yet (4.25) is a good approximation, if the input�{|}�is high, or if 

the outlier values (near-zero denominator) are omitted from the collected 

data (Guillaume, Kollár and Pintelon 1996). The input {|} can be 

increased by minimizing the so-called peak (crest) factor of the input 

signal (see Pintelon and Schoukens 2012; Schroeder 1970; Guillaume, 

Schoukens, et al. 1991).  

4.4.2 Variance reduction with averaging 

If taking longer measurements is an option, periodic input signals offer a 

simple way to reduce variance. In a measurement time window extended 

over several (complete) periods, the noise-free periodic signal will be the 

same in each period, but the disturbing, random noise will vary in its 

realizations in each period. If the time period is sufficiently long compared 

to the noise correlations, the noise realizations measured in each period 

will be independent and can be cancelled out through averaging. 

Therefore, to calculate the frequency characteristic let us use averaged 

DFT transforms8. Assuming that the �& measurement window contains � 

intervals of time period �Â , and the DFTs computed in every period are 

distinguished by the superscript, then:  

 

Í©�t�  ��k Í�s �t� &
sl�  Ía�t� 
 ��k�h�s �t�� &

sl�   Ía�t� 
 �h��t� 

(4.26) 

3��t�  �� k3�s �t�   
&

sl� 3a�t� 
 �� k�z�s �t�&
sl�   ����������� 3a�t� 
 �z��t� 

 

o©��v�  Í©�t�3��t� (4.27) 

 

Considering that, in the case of independent random quantities, 

averaging reduces the variance in proportion to the averaging number, 

similar to (4.25). The variance is now: 

                                                        
8 Since DFT and averaging are interchangeable linear operations, averaging can 
also be performed in the time domain, before using the DFT. 

 EBSCOhost - printed on 2/14/2023 6:11 AM via . All use subject to https://www.ebsco.com/terms-of-use



Optimized Random Multisines in Nonlinear System Characterization 221 

k]3�o©��v�� 

��� V8tW�t� � Qo��v�QW� � ��hW�t�QÍ©�t�QW 
 ��zW �t�Q3��t�QW � =}ó/ ��hzW �t�Í©�t�3��t�1� 
(4.28) 

with the empirical noise variances calculated as: 

 

��zW �t�  �� � �kQ3�s �t� � 3��t�QW&
sl�

��hW�t�  �� � �kQÍ�s �t� � Í©�t�QW&
sl�

��hzW �t�  �� � �k�Í�s �t� � Í©�t���3�s �t� � 3��t������������������������&
sl�

 (4.29) 

 

For these results to hold, obviously, we must assume that the 

synchronization error in sampling each period is insignificant. Incorrect 

synchronization may cause an additional error (see Pintelon and 

Schoukens 2012).  

Please note that, for the sake of later developments, we keep the 3a�t� 
input signal fixed and apply it many times. However, each time a new 

noise contributes to the input/output signal. We can deduce the useful 

signals by averaging and measure the variability (variance, spectrum, 

background) of the noise itself. 

4.5 Properties of the frequency transfer function  
estimate measured with random signals 

To clearly see the benefits of periodic excitation, let us see what would 

happen if the measurement were carried out with an arbitrary (non-

periodic, random) signal of length �. 

Assuming that, in Fig. 4-1(c), the input signal y�2� and the output 

noise ý�2� are independent and that the input signal is strictly bounded at 

all 2< i.e. Qy�2�Q � o, then, in cases of random excitation, we must be 

prepared for transients (see (4.13) to (4.19)):  
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Í�t�  oa��v� 3�t� 
 �t��v� 
 k�t� (4.30) o©��v�  Í�t�3�t�  oa��v� 
 �t��v�3�t� 
 k�t�3�t� (4.31) 

where Q�t��v�Q � 4d(Èfq$  (Ljung 1999). Since ý�2� has a zero mean, the 

expected value of the FRF estimate is: 

./o©��v�1  oa��v� 
 �t��v�3�t�  (4.32) 

and see Ljung (1999) 

./Qo©��v� � oa��v�QW1  �H��v�Q3�t�QW 
 ������ (4.33) 

ETFE is thus asymptotically unbiased, but is not consistent. Its 

variance does not disappear with increasing �, but tends to a finite {|}-

dependent value. In the case of Gaussian excitations, the boundedness of 
the input signal can no longer be assumed and the variance of the simple 

(4.10) estimate is, in principle, infinite (cf. Pintelon and Schoukens 2012; 

Guillaume, Kollár and Pintelon 1996). 
In the case of periodic excitation, it is natural to apply several ��periods of the input signal and to reduce the variance of the estimate by 

a��i� ratio through averaging. However, splitting the measurement time 

window into smaller windows followed by direct averaging cannot be 

utilized for random inputs. The random input signal would be present in 

each sub-window, as a varying realization, and the expected value of the 

DFT transform calculated from them would be zero due to the circular 
distribution of the complex phases: ./ 3�s �t�1  % (4.34) 

A well-behaved FRF estimate requires a statistically stable 

denominator, as in (4.27). Consequently, the circular random phase in the 

denominator must be eliminated. We can rely on the spectral input/output 

relation �hz��v�  o��v��zz��v� (the H1 method): 

o©<���v�  �� � Í�s �t�39�s �t�&sl���� 3�s �t�39�s �t�&sl�
 (4.35) 
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 �� � Í�s �t�3� �s �t�&sl���� Q3�s �t�QW&sl�
 �îhz��v��îzz��v� 

The denominator is now a real random number with a zero phase at 

every frequency. The H1 method also has a matching counterpart, H2, 

which is based on the spectral relation �hh��v�  o��v��zh��v�: 
o©<W��v�  �� � Í�s �t�Í� �s �t�&sl��� � 3�s �t�Í� �s �t�&sl�

 

�� �� � QÍ�s �t�QW&sl���� 3�s �t�Í� �s �t�&sl�
 �îhh��v��îzh��v� 

(4.36) 

4.5.1 Quality of the estimate—bias and variance 

Similar to the periodic case, we summarize the final results, which are 

essential for the comparison. For more details on derivation, see Pintelon 

and Schoukens (2012). If we assume that the � number of (smaller) time 

windows used for averaging increases beyond all limits, then: 

o©<���v�  oa��v�� 
 VhzW �t� ./Ía�t�39a�t�1m� 
 VzW�t� ./Q3a�t�QW1m  (4.37) 

Please note that the output (measurement) noise does not contribute to 
the bias. The source of the bias is the input noise and/or the dependence of 

the input and output noises (such as in a closed loop measurement). As 

such, we obtain: 

o©<W��v�  oa��v� � 
 VhW�t� ./QÍa�t�QW1m� 
 VzhW �t� ./3a�t�Í�a�t�1m  (4.38) 

Here, however, the source of bias is the presence of output noise and/or 

the dependence of the input and output noises. Supposing that the input 

and output noises are independent (VhzW �t�  %), then: Qo©<���v�Q  �  Qoa��v�Q  �  Qo©<W��v�Q (4.39) 
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In order to choose the appropriate estimate for identification, the input 

and output {|}ç should be considered. If the output {|} is high, then the 

H2 estimate is better. If the input {|} is high, then the H1 estimate is 

better (see Pintelon and Schoukens 2012 for further analysis). 

In the case of random inputs, random 3a< Ía signals change from 

measurement to measurement. In addressing variance we must account for 

the variability not only of the disturbing noise (noise variances), but also 

of the signals (signal frequency spectra): 

VtW�t� � Qo��v�QW� �VhW�t��h�h� 
 VzW�t��z�z� � =}óVhzW �t��h�z� � (4.40) 

The essential difference between the expression of the variances (4.25) 

and (4.40) is that, in the periodic case, the denominators contain the 

spectral amplitudes of the deterministic signals. As such, the frequency 

spectra in the denominators must be estimated from statistically varying 

spectral estimates. Such expected value estimates (of 	W or �), computed 
from finite means, may, for low average numbers, differ considerably from 

true, expected values. For example: 

�z�z���v�  ./Q3a�s �t�QW1 � �� kQ3a�s QW&
sl�  (4.41) 

 
Fig. 4-2. Evolution due to averaging of the frequency spectrum estimate of white 
noise (Gaussian) excitation coloured with a lowpass filter (� is the number of 

averaged records). 

 

Assuming zero-mean circular complex Gaussian signals, the right-hand 

side of (4.41) is the �-degree of freedom �W  random variable whose 

distribution only gradually approximates the expected value �z�z���v� 
(see Fig. 4-2). Due to this phenomenon, the variance-reducing effect of 

averaging is, for random excitation, far behind that provided by periodic 

excitation (see also Fig. 4-3 and its explanation). 

 EBSCOhost - printed on 2/14/2023 6:11 AM via . All use subject to https://www.ebsco.com/terms-of-use



Optimized Random Multisines in Nonlinear System Characterization 225 

Another problem with random (or non-periodic) excitation is the 

presence of transients (spectral leakage) because the input signal changes 

randomly from time window to time window and therefore transients 

appear in every window (this phenomenon does not occur for periodic 

signals). The transient magnitude (the relative power of the transient 

compared to the input signal) decreases, though, with the length of the 

measurement time window; however, for a finite � it can be significant. 

This means that even for noise-free measurements, despite the increasing 

number of averages �, the error in the estimate of the frequency 

characteristic does not drop to %, but reaches a level where the spectral 
leakage is dominant. Spectral leakage caused by transients can be reduced 

by further processing, but this lengthens the processing time of the 

measurement data (Schoukens, Vandersteen et al. 2009; McKelvey and 

Guérin 2012) 

 
Fig. 4-3. The evolution of the SNR as a function of averaging number M for 

random and periodic input signals. For periodic signals (
), the improvement is 

strictly proportional to M. In the case of a random signal, the improvement is 

affected by the statistical uncertainty of the estimated signal spectrum ((�, o), with 

a 95 % confidence level of the spectrum estimate). In the case of a random signal, 
in the worst case, at least 4 measurement periods must be used to approach the 

quality of the estimate of the FRF obtained from a single period measured by a 
periodic signal. For time-critical applications, the use of a periodic input signal is 
therefore recommended. 
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4.6 Estimating the frequency transfer  
matrix of a MIMO system 

We consider here measuring the frequency characteristics of a MIMO LTI 

system (see Fig. 4-4), assuming a system of \� input and \� output 

dimensions. In many cases, such a system can, in fact, be examined as a 	� separate standalone MISO system with a specific output signal of: 

ÍT�t� ������ o�T� ��v� 3��t�
 o�TW ��v� 3W�t�
� � � 
o�T(� ��v� 3ù��t� 
(4.42) 

If all the outputs are arranged in a vector, a MIMO system at frequency 

��  ��v  can be characterized by the frequency characteristic matrix 

(frequency response matrix, FRM): 

 

��t�  ² Í��t�IÍù��t�³  ² o��� ��v� I o��ù� ��v�I I Io�ù�����v� I o�ù�ù����v�³ ² 3��t�I3ù��t�³ 

 ���v� ��t� 

(4.43) 

How can a FRM be estimated from the measurements? Various 
solutions are possible depending on the available instruments and 

numerical requirements. In addition, we will see that periodic input signals 

allow great flexibility in designing suitable experiments. 

The single measurement approach is based on the fact that the 

harmonic signals are the eigenfunctions of an LTI system, i.e. the set of 

frequencies in the output signal may be at most a subset of the frequencies 

of the input signal. Therefore, the whole FRM could be estimated in a 

single experiment, provided that each input signal (as in a zipper) contains 

harmonics of different frequencies (see Fig. 4-4). At the inputs of the 

investigated system, we simultaneously apply: 

yT�2�  k3Tvv û�ç��Tv2 
 `Tv� (4.44) 

multisine signals (i.e. trigonometric polynomials defined on a time 

interval), where (taking into account that the maximum frequency of the �st input is ��and the frequency resolution is�za): 

 EBSCOhost - printed on 2/14/2023 6:11 AM via . All use subject to https://www.ebsco.com/terms-of-use



Optimized Random Multisines in Nonlinear System Characterization 227 

zTv  za B  �\� B  �% � � � t � � � � � � 
 H < H à  ��<  � � � < \�  (4.45) 

 

 

 

Fig. 4-4. Zip-like excitation of \�  �L input and�\�  �Ì output dimensional 

system. 

 

In principle, each input frequency will be present in all output signals. 

Thus each o�e� ��v� FRF can be interpreted for a set of its corresponding 

input frequencies: 

�o��v� e�  o�e� ��v�  Í��t�3e�t� < t  za B \� B �� � �� 
 Ì (4.46) 

 

In addition to the advantage of single measurement, there are a number 

of disadvantages. Several multisine generators are required to perform the 

measurement (due to simultaneous measurements on multiple frequency 
grids). Measuring closed loop systems is impossible because the (zipper) 

condition for the input frequencies cannot be met (feedback). Also, if the 

number of inputs is large, finer resolution (za B \�) may be problematic. 

Finally, any nonlinear effect may transform the frequencies (see Section 

4.12) and interfere with the correctness of the (4.46) restoration. 

In the multiple measurement channel by channel approach, the 

superposition principle yields the opportunity to selectively measure the 

frequency characteristics of the chosen input-output signal channel by 

setting signals in other channels to %, then repeating the process for each 

channel. 
The advantage of this is that only a single signal generator is needed 

and the available frequency resolution is not limited. The disadvantage is 

the long measurement time needed (the necessary \� B \�  measurement 

and, in the case of noise, longer averaging time demanded by low {|}). 
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Also, since we inject % energy into other input channels, the output {|} 

will only be the � Û\�m  multiple of the {|} otherwise obtainable by 

averaging (Pintelon and Schoukens 2012). 

If a sufficient number of signal generators is available, the 

simultaneous multiple measurements on all channels approach can be 

tried. Here, all inputs of the MIMO system can be excited by input signals 
(multisines or random) that are designed not to limit the frequency 

resolution. The problem now is that the contributions from various inputs 

will be mixed in with the output signals and cannot be separated by the 

frequency zipper. The solution is to make multiple measurements 

(deterministically or randomly) using input signals with variable 

properties, then process the resulting data to selectively determine each 

frequency characteristic. We have to remember that non-periodic random 

signals lead to transients (spectral leakage), which should be mitigated by 

a suitable windowing procedure or other post-processing (Schoukens, 

Vandersteen et al. 2009; McKelvey and Guérin 2012). 
We denote the collected noise-free data as F  / 3�e<¡ �t�< Í��<¡ �t�1, 

where Ì à  �� � � � \�  is the input index; � à  �� � � � \���is the output index; 

and � à  �� � � � 	¡  is the index of the experiment. Generally, we assume 

that 	¡  \�, but \�  \�< \� � \�<  \� Ü \� are also possible. As such: 

�a�t�  ² Í��<� �t� � � � Í��<ù� �t�� � � � � � � � �Í�ù�<���t� � � � Í�ù�<ù���t�³  �a��v� �a�t� 

������������������
� ² oa<��<� ��v� I oa<��<ù� ��v�I I Ioa<�ù�<����v� I oa<�ù�<ù����v�³

B�² 3��<� �t� � � � 3��<ù� �t�� � � � � � � � �3�ù�<� �t� � � � 3�ù�<ù� �t�³
 

(4.47) 

If �a�t� is invertible, then:  �a��v�  �a�t� �a���t� (4.48) 

For a MISO system (e.g. the MISO system of signal channel 1): 
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�oa<��<� ��v� � � � oa<��<ù� ��v�   �Í��<� �t� � � � Í��<ù� �t� �a���t� 
(4.49) 

What to do if �a�t� is singular? The solution is the Moore-Penrose 

pseudo-inverse �a~�t�: �a��v�  �a�t� �a��t���a�t� �a��t����  �a�t� �a~�t� (4.50) 

where � represents the complex conjugate transpose. 

For noisy measurements (denoted by omitting the index %), more data 

must be collected (	¡ Ü \�): 

����v�  ��t� �a~�t� (4.51) 

The goodness of the estimate can be examined by its covariance matrix 

(see Pintelon and Schoukens 2012 for details). 

4.6.1 Optimizing input signals 

The quality of the estimate (4.50) is basically determined by the 

conditioning of the input matrix �a�t�: |»	\ ��a�t��a��t��  �|»	\ ��a�t���W (4.52) 

For a poorly conditioned �a�t�, the inverse in (4.48) can be very large, 

resulting in outliers in the obtained FRF estimates. To solve this problem, 
the independent variables of the experiment can be designed in a variety of 

ways to optimize the multiple properties of the dependent variables. For 

example, the D-optimal inputs, i.e. �a�t� inputs for which the determinant 

of �a�t��a��t� is maximal (the determinant of �a�t� is maximal), 

guarantee a minimum volume error (confidence) ellipsoid around the 

calculated estimate ����v� (Pronzato 2008). 

The task is thus to apply such (different) 3def�t� input signals, so that 

the properties of the design (or moment) matrix ��t�  �def�t��def� �t� will be optimal in the above sense. A possible 

solution is: 

�def�t�  3L�L��t� P 2�� � � � 2�ù�� � � � � � � � �2ù�� � � � 2ù�ù�
Q  3L�L��t� � (4.53) 
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demanding that  � ��  \�  �, (4.54) 

and where 3L�L��t� is some input signal used to measure the SISO system. 

Thus: @ó�����¯�t��def� �t��  @ó��Q3L�L��t�QW\�Ö� (4.55) 

It is also noteworthy that the design matrix:  �def�t��def� �t�  Q3L�L��t�QW\�� (4.56) 

is deterministic, which further improves the statistical stability of the 

estimate. 

The n]j�\�2��� task is related to Hadamard’s maximum determinant 

problem9. For example, if \�    ü, then ��can be  

�  p�   �   �   �� ��   � ���   � �� ��� �� ��   � r, and if \�    L, then 

     �   P� � �� ��W iÄ ���W iÄ� ���W iÄ ��W iÄ Q is a possible choice, (see Fig. 4-5)10.  

                                                        
9 Hadamard’s maximum determinant problem involves the search for a finite real or 
complex matrix composed of unimodular entries, the determinant of which is 
maximal (Hadamard upper bound) (Brenner and Cummings 1972). Among complex 
matrices, the maximizing matrices are, e.g. orthogonal matrices constructed from the 

roots of unity (e.g. DFT matrix). For real matrices, the existence of a maximizing 
matrix for any dimension is not proven. In the case of \�  % ���@ü� input 

dimensions, the optimum � is the so-called Hadamard matrix: 

 ?WÀ  ?W � ?WÀ±° where ?W  �� �� ��  (� is the Kronecker product). 
10 Using complex matrices is no problem, because with their elements we already 
weigh complex DFT transform values, or if complex weights � are frequency-

independent, then in the time domain, we only have phase-shifted signals. It should 

be noted that in measurement practice, Hadamard matrices are used even if the input 
dimensions are not compatible, by cutting-out minor matrices of suitable dimensions. 
In such cases, the orthogonality of (4.54) is degraded and the elements remaining 
along the off-diagonals increase the statistical fluctuation of the estimate. 
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The required spectral colouring of the optimized inputs can be specified in 

addition to 3L�L��t� as: �def�t�  3L�L��t�  ��t� � (4.57) 

where D is a diagonal matrix. 
 

 
Fig. 4-5. Optimized experiment sequence for the four-input system using inputs 

according to the Hadamard matrix. 

4.7 Measuring frequency transfer characteristics  
in a closed loop 

A separate problem involves the estimation of the frequency characteristic 
in closed loop conditions. If in the measurement setup shown in Fig. 4-

1(d), the FRF would be estimated in the usual way, i.e. as: 

o©��v�  �îhz��v��îzz��v� (4.58) 

then, in 

o©��v� � o��v� � 
 VhzW �t� ./Ía�t�39a�t�1m� 
 VzW�t� ./Q3a�t�QW1m  (4.59) 

the estimate VhzW �t� ' %. Therefore, the estimate cannot be consistent (it 

does not tend to the correct value despite the increasing number of data). 

The reason for the dependence of input and output noises is the appearance 
of process noise in the input signal of the system due to the feedback loop. 

One solution to this problem is the joint input-output indirect 

estimate, where y�2� and G�2� signals of the feedback system are 

considered as response signals for 3�2� and the noise inputs. In this case, a 

consistent estimate is given by (Pintelon and Schoukens 2013): 
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o©��v�  �îh���v��îz���v�  ��� Í�s �t� �̈�s �t�&sl���� 3�s �t� �̈�s �t�&sl�
� o��v� (4.60) 

4.8 Selecting domain and excitation signals 

Let us now offer some commentary on the relative merits of working in 

the frequency or time domains. 

On a strictly theoretical basis, using arbitrary excitation signals, the 
measurement methods of linear systems can be implemented with equal 

success in both the time and frequency domains. The realization of a 

specific measurement under real conditions depends heavily, however, on 

the available a priori knowledge and involves many trade-offs. As a result, 

the information about the measured system, concealed in the measured 

signals, cannot necessarily be efficiently processed.  

Predictably, in the time domain, modelling can be solved more 

favourably if we can guarantee the fulfilment of the y�2�  %<  2 � % initial 

conditions. Here, however, the noise modelling and the separation of useful 

signals from disturbances are more involved. If the time domain data are 

transformed to the frequency domain, then additional frequency components 
(spectral leakage) corresponding to transients should be expected. It is also 

more difficult in the time domain to reduce large amounts of data and 

combine data blocks from independent measurements. 

In the frequency domain, the situation is more promising. Data 

reduction (making high frequency data sparse by, for example, a 

logarithmic frequency grid), or fusing independent measurements by 

simply fusing together data measured in different frequency bands, is 

easier. Pre-filtering of the data is easy to implement as multiplication, even 

when using non-causal filter characteristics. The measurement of unstable 

systems is not a problem, because the frequency characteristic is only 

calculated at the discrete frequencies located on the unit circle. 
Periodic excitations and the frequency domain allow for the 

separation of useful signals, disturbances, and the separate (nonparametric) 

modelling of noise, all during the same measurement time. In the case of 

periodic excitations, in steady-state conditions, there are no transients 

between the measurement time windows corresponding to the integer 

number of signal periods (no spectral leakage at the measured 

frequencies). As such, calculating the DFT using a rectangular window in 

the time domain is sufficient. At the measured frequencies, the estimate of 

the frequency characteristic (computed by averaging multiple periods) is 
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unbiased and its variance decreases as the ratio �i� (M is the number of 

measurement time windows used for averaging). 

In the periodic signal, the full power spectrum of the harmonics can be 

freely chosen and outside the input frequency band no additional power 

may appear (in the linear case). The design of the frequency content of the 

signal and the elimination of non-excited frequencies are easy. For 

example, an input signal with only odd (or any other combination of) 

harmonics can be simply created. By manipulating the phases, the crest 

factor (�}) of the input signal can be minimized. In this way, the 

amplitude of the applicable input signal can be significantly increased, 
injecting higher input power into the measured system, and thus 

significantly improving the input {|} value. 

In measurement problems where, in addition to periodic excitations, 

their derivatives or their integrals are also needed (e.g. with a combination 

of displacement, velocity, and acceleration signals), these operations can 

be performed analytically based on the theory of the Fourier series, instead 

of using error-generating numerical procedures. 

However, the advantages of periodic signals can only be utilized by 

applying appropriate measurement techniques. We must be sure that the 

measurement does contain an integer number of periods and that the 
harmonic components of the signal are generated without harmonic 

distortions. 

The principal drawback of periodic excitation is that the period of the 

signal sets the frequency resolution and the measurable frequencies of the 

measured frequency characteristic. The estimate of the frequency 

characteristic is defined solely at /�v  º=¤ti�1vl�$iW$ Wm
 frequencies. 

Furthermore, if the periodic excitation contains � harmonics, then it is 

persistent of an at most �th order thus limiting the number of measurable 

parameters of the fitted parametric models to � (if it is computed post-

measurement). Finally, choosing periodic excitation (setting its free 

parameters) requires more sophistication on the part of the experiment 

designer. 

If the excitations are non-periodic, the elimination of the transient 

effects is simpler in the frequency domain through modelling and 

compensating for the spectral leakage (Pintelon and Schoukens 2012; 

Schoukens, Vandersteen et al. 2009; McKelvey and Guérin 2012). 
As such, we may conclude that, if you have the choice, use periodic 

signals unless there is a definite contraindication against them and then 
work in the frequency domain. 
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4.9 Nonparametric identification in the frequency  
domain in the case of nonlinear systems 

So far, deviation from the idealized situation has only concerned the 

collection of measurement data (transients, noise, etc.). In the following, 

we extend our analysis to systems for which the LTI property can no 

longer be assumed. 

There are two cases, of which only one will be dealt with in the 
following. Firstly, the nonlinear (NL) component in the system shown in 

Fig. 4-6 may be “strongly nonlinear”. The behaviour of such a system is 

determined by its nonlinearity and, for example, such nonlinear 

phenomena can be experienced at its output, including: high sensitivity to 

initial conditions (chaos); dynamic dependency on the amplitude of the 

input signal (nonlinear resonances); the appearance of subharmonics 

relative to the input frequencies; bifurcation; hysteresis behaviour, and so 

on. In this case, nonlinear identification techniques should be fully utilized 

in the modelling, although these issues are not addressed here (Khalil 

1996; Ljung 2010; Palm 1978; Palm 1979; Pearson 2006; Rugh 1981; 

Schetzen 1980). 

Secondly, and in the case discussed below, we find “weakly nonlinear” 
behaviour, where the nonlinear effects are not strong (we may say that the 

LTI component of the system is dominant). By properly handling the 

nonlinear effects as disturbances, an acceptable linear model can be 

obtained for the whole system shown in Fig. 4-6. For this purpose, we will 

use and extend the ETFE measurement techniques discussed in the 

previous section, which are easy to implement. 

 

 
 
Fig. 4-6. Nonlinearly distorted LTI system. The grey colour indicates that the 
linear component is not necessarily always present. 

 

However, we may face the following problem. Any model of a 
nonlinear system (and thus its linear model also), if calculated from 

measured data (and not the theoretical result of a physical insight, for 

example), is a function of applied excitation and, in principle, can only be 
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utilized for inputs with the same characteristics. If the input signal (in 

terms of amplitude level, spectral colouring, amplitude density, etc.) 

changes, then the original model may become unsuitable for describing the 

system. The change in excitation can amplify its nonlinear effects, raising 

them significantly above the background noise level and thereby 

invalidating the resulting linear model11 (cf. Fig. 4-7). 

Non-conformance of a linear model cannot be exploited using the 

methods for measuring the frequency characteristic presented so far. 

Measuring the characteristics relies on and produces results always 

consistent with the second order statistics of the data. The suitability of the 

linear model should therefore be measured independently; many 
(nonlinearity) tests are available in practice (Vanhoenacker and Schoukens 

et al. 2002; Ljung 2000; Schoukens, Pintelon and Dobrowiecki 2002; 

Schoukens, Pintelon and Rolain et al. 2001). A typical test involves, for 

example, checking the violation of the superposition principle in the time 

or frequency domains, but we can also investigate the behaviour of the 

modelling residuals. Although the residuals (due to the LS methods used) 

are not correlated with the input, they are not independent of it in the 

nonlinear case. The modelling error hidden in the residuals can be 

modelled separately and added to the primary model (Ljung 2000). 

However, such a model will necessarily be nonlinear. 

 

                                                        
11 Let us examine the seemingly linear system G�2�  y�2� 
 � yÄ�2� with    �%�. 

Let the measurement be noise-free and the linear model be G&�2�  Î  y�2�. The α 

(ETFE) is measured with a zero expected value, V  � u(t) input Gaussian signal, 

and is estimated as �  ./G�2�y�2�1i./yW�2�1  � 
 L � VW  ��%L. In the ideal 

linear case (�  %), the ��.  ./�G�2� � G&�2��W1 would be 0. Now, ��. V�WV�  �%%%V, which we might write down as the measurement noise. The 

nonlinear part of the output power also seems negligible at �%%�É ./��yÄ�2��Wi./GW�2�1  �%%É �Ó�W  V�  i�VW 
 V�VW 
 �Ó�WV��  %��üÉ and we would be 

well pleased with a successfully developed linear model. However, in the case of 
other inputs, such a model can lead to trouble. Suppose that the model is used with 
inputs of V  ü. The ratio of nonlinear power is now 16.4 % and the ��. of =�üÓ� 

is a clear indication that our model has lost its validity. 
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Fig. 4-7. Example of the relationship between the nonlinear model and the 
excitation signal. The measured system is called a Wiener-Hammerstein system, 
which is an LTI system (3rd order highpass Butterworth filter), a static nonlinearity G�2�  y�2� 
 �%Ó yW�2� 
 �� yÄ�2� 
 �%=Ó yW�2� 
 �%� yf�2�, and an LTI system 
(3rd order lowpass Butterworth filter) connected in series. The ETFE frequency 
characteristics of the tested system is measured in a noiseless measurement setup 

by the single application of a harmonic signal, consisting of 409 only odd, equal 
amplitude, random phase harmonics. The excitation level is gradually increased 
(from left to right the standard deviation of the excitation signal is V� �%�%�< %��< %�Ó< �). For low excitation amplitude levels, the frequency characteristic 

is convincingly linear; for higher levels, the nonlinearity becomes noticeable, 
generating distortion and random “noise”. (For the sake of compact presentation, 
the figures have been overlapped.) 

 

The essence of the nonparametric FRF estimate presented below is that 

through proper selection of excitation, the resulting linear model of a 

weakly nonlinear system can be widely used and, very importantly, the 

strength of the nonlinear effects (the level of the nonlinear distortions) will 

be determined simultaneously with the model, within the same 
measurement procedure. Thus, at the end of measurement, we obtain a 
linear non-parametric FRF model and its error model describing the 

nonlinear effects both qualitatively and quantitatively. 

4.10 Modelling nonlinear effects 

Unlike linear system models, there are no universally applicable canonical 
models for nonlinear systems. In order to analyse nonlinear effects, the 

nature of the nonlinear component (model class) in Fig. 4-6 should 

therefore be limited. Considering that the nature of nonlinear effects 

strongly depends on the input signal, the set of applicable input signals 

should be similarly limited. 
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In the results presented below, the nonlinear input/output relationship 

of the investigated system is captured with a Volterra system. A Volterra 

system (in the time domain) is a generalization of the Taylor series used 

for series expansion of analytical functions, substituting multiple 

convolutions in place of power terms (Schetzen 1980; Boyd 1985): 

G�2�  k�)��y �2�  k GØ�2�)
Øl�   

 C ^��E)
�) �y�2 � E�\E��

����
 � C ^W�E�< )
�) EW�

)

�)
y�2 � E��y�2 � EW�\E�\EW��

������� � � 
  C � � �)
�) C ^Ø�E�< � � � < )

�) EØ�¸y�2 � ET�\Ø
Tl� ET 
  � � ���

 (4.61) 

where GØ�2� means the nonlinear dynamic term corresponding to the Îth 

power and where ^Ø�E�< � � � < EØ� is its multidimensional impulse response 

function—the Volterra kernel. There is a discrete-time equivalent of the 

Volterra system with a similar structure; furthermore, the limits in 

convolution integrals and sums can be finite (finite memory). The 

maximum (nonlinear) degree � can be infinite if the input signals and the 

Volterra kernels are sufficiently bounded to guarantee the convergence of 

such a series (in the case of � � x, we are talking of the Volterra system, 

and in the case of �  x about the Volterra series). For periodic inputs, in 

the steady state, we have a well-behaved frequency domain representation 

of the Volterra system (Boyd 1985): 

Í�t�  k�)��3 �t�  k ÍØ�t�)
Øl�   �

 ����  o��t�3�t� 
 k oW�t�< tW�v°à L�vlv°~v�
 3�t�� 3�tW�

�  (4.62) 

�������������� � � 
 k oØ�t�< � � � < tØ�v°< v�< ���< v�±°à L�vlv°~ v�~ ���~ v�
¸ 3�tT�Ø

Tl� 
  � �� 
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where Í�t�<  3�t� are DFT transforms; oØ�t�< � � � < tØ� are the frequency 

domain kernels obtained from ^Ø�E�< � � � < EØ� by applying multi-

dimensional DFTs; and, finally, �& is the set of frequencies of the 

harmonic components of the harmonic input signal used (see the multisine 

definition in Section 4.6 for details). Also, in order to make the kernel 

expressions more readable, the �v  =¤ti� (angular) frequency 

argument is replaced by the corresponding DFT frequency index k. 

There are a number of arguments in favour of using Volterra models 
(see Pintelon and Schoukens 2012; Dobrowiecki and Schoukens 2007; 

Boyd and Chua 1985; Doyle, Pearson and Ogunnaike 2002): 

1.  The management of the additive relationship between linear and 

nonlinear components and the control of the strength of nonlinearity 

are simple. 

2.  Many practically important nonlinear systems can be modelled with 

finite (low) order Volterra systems. 

3.  A wide class of nonlinear (or even non-continuous) systems can be 

well approximated in the least square sense with an infinite Volterra 

series12. 

4.  There exists a well-elaborated frequency domain representation 
(Schetzen 1980; Boyd 1985). 

5.  The modelling of nonlinear dynamics is easy. 

6.  Volterra systems (series) cover a number of practically important 

nonlinear block models, e.g. the Wiener, Hammerstein, and Wiener-

Hammerstein models; furthermore, nonlinear FIR (nonlinear finite 
response, NFIR) models. 

7.  SISO Volterra systems can be easily extended to MIMO systems 

(Dobrowiecki and Schoukens 2007). 

8.  Volterra system models are free to incorporate various a priori 
physical information (number, degree, symmetry, and frequency band 

of Volterra kernels). 

9.  Volterra systems are characterized by a unique steady state and PISPO 
(periodic-input same periodic-output) properties, i.e. a Volterra 

system responds to a periodic input with a periodic output of the same 

                                                        
12 A Volterra system is a universal approximator for fading memory time-
invariant nonlinear systems. All such systems can be arbitrarily well approximated 
by finite dimension (nonlinear degree) Volterra systems. For approximation, it is 

enough to choose a system structure of multiple parallel linear dynamic system 
branches combined with an output static nonlinearity. For discrete-time systems, 
this means that all nonlinear time-invariant systems can be approximated by a 
nonlinear moving averaging system (Boyd and Chua 1985). 
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period. Finally, for almost-periodic13 inputs, Volterra systems also 

respond with almost-periodic outputs according to (4.62). 

Additionally, the modelling capability of Volterra systems (series) is 

limited and many interesting and important nonlinear behaviours are 

difficult, or even impossible, to describe with Volterra systems. These 

include bifurcations, chaos, nonlinear resonances, and subharmonics, etc. 

4.11 A wide range of input signals 

Another important decision relates to the choice of input signals. In the 

following, we use asymptotically normal (Gaussian) periodic signals, 

multisines, as input signals. 

A random (phase) multisine signal combines the characteristics of a 

Gaussian stochastic process (asymptotic amplitude-density, correlations, 

etc.) and a periodic deterministic signal (deterministic frequency 

spectrum), which is very useful for measurement methods based on 

second-order properties. 

Let � zLm  be the period of the signal, where � is the number of samples 

in the period and zL is the sampling frequency. The periodic noise or 

random multisine signal is: 

y�2�  �q� � 3� ¦t�§���W vf$ ~���
và  L�õ�  L�±�� �q� � 3 ¦t�§��W vf$
và  L�õ�  L�±

<
3v  3 ¦t�§  3� ¦t�§����  3�v��������������

�� (4.63) 

where `�v  �`v; 3�v Ò % real; and 3��v  3�v. The 3� amplitudes and `v 

phases are mutually independent and independent at different frequencies 

                                                        
13 An almost-periodic signal is a generalization of a periodic signal. Informally, an 
almost-periodic signal has a discrete spectrum and even countable set of 

irrationally related frequencies, which is the reason for it not being exactly 
periodic. The formal definition is more abstract. The importance of almost-periodic 
signals stems from the fact that such signals are common solutions of ordinary 
linear differential equations (Corduneanu 1989).  
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and finally the frequency grid �& defines the set of harmonic components 

of the harmonic signal with exactly M harmonics14. For the distribution of 

the phases we require ./����1  % (e.g. a phase uniformly distributed on 

the unit circle). For the amplitudes, we assume that /Q3�vQW1  ¾�t zLi��W, 

i.e. the spectral amplitudes are taken from the frequency function ¾�z�, 

which is piecewise continuous, possesses a finite number of 

discontinuities, and is bounded (independently of ��. The excitation 

(4.50) is thus normalized in power, i.e.: ./yW�2�1  ./Q3�vQW1  ���� (4.64) 

In many measurement problems, it is advantageous if the amplitude 

spectrum of the random excitation is deterministic, as then, in each 
realization of the random excitation, the same user-defined amplitude 

spectrum is present. We obtain such an excitation signal, a random phase 

multisine, if we choose deterministic amplitudes: 

y�2�  �q� � 3� ¦t�§���W vf$ ~���
và  L�õ�  L�±��� �q� k 3�ti����W vf$và  L�õ�  L�±

< 
3v  3 ¦t�§  3� ¦t�§����  3�v��������������

 (4.65) 

where `�v  � `v; 3�v Ò %; and 3��v  3�v. The `v phases are independent 

at different frequencies and we require ./����1  %. For the amplitudes, we 

assume that 3�v  ¾�t zLi��. Through normalization, we now have: 3�v  ���� (4.66) 

                                                        
14 Generally, multisine signals can be defined on a variety of, not necessarily 
uniform, frequency grids. Apart from some natural conditions, the results presented 
here are independent of the specific frequency grid. Let � be the number of 

samples in the measurement period; let the base frequency (frequency resolution) 
be za  �i�; and the set of harmonic indices for the full frequency grid be �$~  � �< =< � � � <  � = � �m  < �$~  ��$�< �$  �$~ � �$�. Then the frequency grid 

of N-period signal possessing precisely M harmonics is �&~ � �$~< /�1 à �&~< �&~  ��&�< Q�&~Q  �i=, t à  �&  �&~ � �&�< zv  tza. 
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We can ignore the normalization coefficients Û� �m  in signal 

definitions (4.65), but then, in order to achieve normalization, we must 

assume that: 

./Q3�vQW1  ������ or 3�v  �����iW� (4.67) 

Random periodic signals have several important advantages: 

1.  They possess an asymptotically Gaussian amplitude distribution15. 

2.  Considering that in many measurement problems the prevailing 

excitation is Gaussian noise, the results obtained with the new 

excitations can be directly compared with older results and can be 

easily ported and integrated. As such, when switching to the new type 

of excitation, the user does not lose the usefulness of his/her older 

results, but also has access to the new theoretical features. 

3.  Gaussian signals are “nonlinear-friendly”. The result of their usage in 

the case of static nonlinearity is easily computable16. 

4.  Periodicity alleviates measuring the frequency characteristics (and after 
the transients decay, the measurement will be transient/leakage-free). 

5.  The effect of the input (periodic) signal and of (non-periodic) noise can 

easily be identified and separated. 

6.  Introducing and modelling randomness (by selecting random phases or 

random spectral amplitudes) is easy. 

7.  We have a free hand to shape the different properties of the signal 

because we can influence its spectrum, frequencies, and phases. 

8.  Such signals can be easily synthesized in modern signal generators, 

thus enabling a broad practical application of the theory. 

9.  It is also possible to model non-periodic signals by selecting a 

sufficiently high number of harmonics in a finite frequency band. 

                                                        
15 Due to independent phases (and amplitudes), the terms in (4.63) are independent 
random variables. As such, according to the central limit theorem, the distribution 
of the sum (at any time moment 2), tends to a normal distribution with an 

increasing harmonic number. The speed of convergence is typically ������. 
16 Consider here, for example, the Busgang theorem and its many developments, 
according to which the cross-correlation of a Gaussian signal passing through static 
nonlinearity is proportional to its autocorrelation. The important consequence of this 
is that the LTI model of static nonlinearity is also static (static gain) (Enqvist 2005). 
Although the random multisine is only asymptotically Gaussian, the effect of an ideal 

Gaussian noise is reached with a small error (������ for a high harmonic content. 
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4.12 The best linear approximation frequency characteristics 

If the F$  /y�2�< G�2�1fla$�� measurement data is obtained from the 

nonlinear system shown in Fig. 4-6, the ETFE frequency characteristics can 

be estimated exactly, as described in Section 4.2. The difference is that the 

resulting empirical FRF will be a better or worse (nonlinear error) 

approximation of the examined system. Since the location and nature of 

nonlinear errors are not detectable with the methods described in Section 4.3 

and it is necessary to rethink the measurement of the frequency characteristic. 

4.12.1 Theoretical principles 

Let the measurement setup be the OE (output error) setup described in Fig. 

4.1(b, c), i.e. we assume 	��2� output (process, measurement) noise, but 

the input signal is assumed to be known. Let us apply random excitation y�2� to the system input and measure the G�2� system output. The 

approximating LTI system, which we call the best linear approximation 

(BLA), is defined as the solution of the optimum task: o_K^���  ðúñ�èét��� .�< ( /QG�2� � o���y�2�QW1 (4.68) 

where the expected value is computed with respect to the input signal and 

the output noise (Schoukens, Pintelon and Dobrowiecki 2001; J. Schoukens, 

R. Pintelon and T. Dobrowiecki et al. 2005; Schoukens, Pintelon and 

Dobrowiecki 2002; Schoukens, Pintelon and Rolain et al. 2001). 

The theoretical solution to such a least squares task is: 

o_K^�t�  �hz�t��zz�t�  òè�)�).�< ( /Í�t�39�t�1òè�)�).�< ( /3�t�39�t�1 (4.69) 

 (� is the number of averaged periods), yielding the basis for the specific 

measurement procedure (see Section 4.5): 

o©_K^�t�  ��� Í�t�39�t�)sl���� Q3�t�QW)sl�
 (4.70) 

o_K^�t� is defined at those (DFT) frequencies where �zz�t� is not zero, 

otherwise its value is undefined. As mentioned previously, the estimate of 

the LTI FRF is formally computed according to (4.10). Comparing it to the 
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equation in (4.10), the difference is that the obtained frequency 

characteristics will be analysed here for nonlinear modelling errors. 

Before we analyse the problem analytically, it is worth thinking about 

what we can expect from the BLA model (when using stochastic 

excitations). Firstly, we assume that the nonlinear system under study is a 

superposition of a linear system (called o��t�, see (4.62) or Fig. 4-6) and a 

nonlinear component. Since the response of these two components to the 

input signal cannot be separated by the measurement, the optimal linear 

approximation (BLA) cannot separate the linear component and model it 

exactly. Now, let us discuss the modelling error of the BLA model. 
The result of the procedure in (4.68) is that we will experience a 

systematic deviation, a nonlinear distortion, between the BLA 

approximation o_K^�t� and the actual linear system o��t�, which we will 

denote o_�t�  o_K^�t� � o��t�. It is systematic because it is non-zero 

and deterministic, and nonlinear because it is rooted in the nonlinearity of 

the original system. If there is no real linear o��t� component in the 

examined nonlinear system, then o_�t�  o_K^�t� is a linear model 

providing some degree of approximation. 

Since o_K^�t� is laden with a nonlinear modelling error, the GL�2� G�2� � o_K^���y�2� difference between the actual G�2� output of the 

system and the o_K^���y�2� output of the linear BLA model (the 

approximation residual) will also be some function of the nonlinearity. 

This component is usually referred to as stochastic distortion, nonlinear 

noise, because the nonlinear residual has a zero expected mean (the non-

zero expected mean nonlinear effect is located in the o_�t� component). 

In the following, we explore the deeper properties of o_K^�t� and GL�2�. 

Based on them, we formulate a measurement technique for the practically 
important case when an investigated nonlinear system is excited with 

Gaussian-like signals (Gaussian noise, random phase multisine, etc.) and is 

modelled as a single dimension or multi-dimension Volterra series. 

4.12.2 Model of nonlinear distortions 

If o_K^�t� has already been provided, then let us compose its modelling 

error/residual: GL�2�  G�2� � o_K^���y�2� (4.71) 

With this residual, in the least squares sense, we can provide a substitute 

model of the nonlinear system of Fig. 4-10 consisting of a linear BLA 
approximation system and nonlinear additive noise: 
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Í�t�  o_K^�t� 3�t� 
 ÍL�t� 
 �h�t� �o��t� 
 o_�t�� 3�t� 
 ÍL�t� 
 �h�t� (4.72) 

Divide (4.72) by the input signal DFT: Í�t�3�t�  o_K^�t� 
 ÍL�t�3�t� 
 �h�t�3�t�  o_K^�t� 
 oL�t� 
 �t�t� (4.73) 

In the resulting model, therefore, o_K^�t� is the best LTI 

approximation of the nonlinear system; ÍL�t� is the stochastic nonlinear 

noise; and �h�t� is the output noise of the OE setup. If the nonlinear 

system has a real LTI component, then o_�t� expresses the systematic 
nonlinear error of the best linear approximation (see above). In measuring 

the frequency characteristic, our task is to eliminate, by averaging in 

(4.73), the “nonlinear FRF noise” oL�t� coming from the nonlinear 

effects, together with the �t�t� noise coming from the output noise, and 

to emphasize the remaining o_K^�t� component. 

 
 
Fig. 4-8. BLA and nonlinear additive noise model. 

 

Several features of the /o_K^�t�< ÍL�t�1 {systematic, stochastic} 

nonlinear distortion model are of interest from a practical point of view. 

We can talk about: 

-  The asymptotic properties of the distortions, when the number of 

harmonics in the input signal increases. From the point of view of 

memory-based modern signal generators, the generation of excitation 

signals with multiple harmonics is not a problem and, consequently, 

asymptotic properties must be considered in practice. 
-  The frequency-dependent properties of the distortions, or its 

robustness and other free parameters specific to the measurement 

setup (such as the amplitude spectrum of the excitation, the 

nonlinearity level of the nonlinear system, or the modification of the 

frequency grid of the harmonic signal). 
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First, we explore the relationship between the (4.62) Volterra system 

model and the /o_K^�t�< ÍL�t�1 descriptors. In general17 (Pintelon and 

Schoukens 2012): o_�t�  k o_Ø�t�)
ØlÄ �dùù� 
 ������ (4.74) 

o_Ø�t�  Î¡¡�Ø��WB � oØ ¦t< t�<  � t�<  I < tØ��W <  � tØ��W §
v°< I< v�±°� à L�

�B ¸ .�/Q3�tT�QW1�Ø���iW
Tl�

 (4.75) 

 

for Gaussian noise or for a random phase multisine  
 o_Ø�t�  Î¡¡�Ø��WB � oØ ¦t< t�<  � t�< I < tØ��W <  � tØ��W §

v°< I< v�±°� à L�
�

���B ¸ Q3�tT�QW�Ø���iW
Tl�

 (4.76) 

 

The stochastic nonlinear noise component ÍL�t� is a zero-mean 

asymptotically circular complex normally distributed random variable. 

Furthermore, it is mixed for any order, asymptotically non-correlated with the 

input signal, and its values taken at different frequencies are also asymptotically 

uncorrelated. In addition, we know that (Pintelon and Schoukens 2012): 

 

                                                        
17 On the one hand, remember (see Appendix A) that the results of the BLA theory 

are always ������ accurate. On the other hand, it is apparent from the 

calculations in Appendix A that only the odd nonlinearities of the investigated 
nonlinear system contribute to the systematic nonlinear distortions. The effect of 
even nonlinearities is a zero-mean and appears in the nonlinear stochastic noise 
component ÍL�t�. 
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./ÍL�t�1  % (4.77) ./ÍL�t�39�t�1  % (4.78) ./�ÍL�t�Í�L�ä�1  VhPW �t�  ����< t  ä (4.79) ./�ÍL�t�Í�L�ä�1  ������< t ' ä (4.80) ./�W�QÍL�t�QW � VhPW �t���QÍL�ä�QW � VhPW �ä��1�  /������< t ' ä
  ����< t  ä 

(4.81) 

./�Ä Wm ÍL�t�QÍL�t�QW1  ������ (4.82) 

To illustrate the computational techniques used, the derivation of the 

(4.74) equation for a simple Volterra system with only second and third 

order kernels is described in Appendix A. 

It is important to note that the interpretation of the nonlinear effect as the 

systematic bias o_�t� and the noise ÍL�t� affecting linear frequency 

characteristics is valid for all finite Volterra systems and convergent Volterra 

series, i.e. for all nonlinear dynamic systems with sufficiently smooth 

behaviour. However, if the nonlinear effect is strong, the use of the linear 

model does not make much sense. The measurement (averaging) will be 
long due to the high variance of the nonlinear noise and the extent of 

systematic errors covering the characteristic can completely distort the view 

of the dynamics. Despite the general validity of the results, their usability is 

limited to weakly nonlinear systems (in the nonlinearity level or the degree). 

4.12.3 The variance of the best linear approximation-based 
nonparametric FRF estimate 

BLA variance is crucial for the design of experiments. The surprising 

characteristic of the Volterra model and the asymptotic Gaussian-like 

excitations is that, although GL�2� depends on the input signal y�2�, their 

cross-spectrum can be expressed asymptotically as (Schoukens, Barbe, et 

al. 2010): ./Q�hPz�t�QW1  �hPhP�t� �zz�t� 
 ������ (4.83) 

As such, the variance Vt�¢O£W �t� of nonparametric18 frequency 

characteristic measurement o©_K^�t� in the output noise-free case (where ¨ 

                                                        
18 This will not be the case if we wish to estimate the BLA frequency 
characteristics with a parametric model (Schoukens and Pintelon 2010). 
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is the number of independent input realizations, i.e. the size of the 

population used to average out the measurements of the BLA 

characteristics, see later (4.102) to (4.105)) is: 

Vt�¢O£W �t� � �̈ �hPhP�t��zz�t� 
 ������ (4.84) 

and considering also the presence of noise Vt�¢O£W �t� � �̈ �hPhP�t� 
 �$�$��t��zz�t� 
 ������ 
(4.85) 

The variance resulting from the nonlinear distortion and the variance of 

the measurement noise are thus simply added (see Schoukens and Barbe et 

al. 2010 for more details). 

4.12.4 The question of the frequency grid 

There are many free parameters with which we can design the properties 
of multisine excitation. We can influence its “colour” with spectral 
amplitudes, its amplitude spectrum with the phases (Gaussian in the 

current setting), and finally its frequency grid (the location and number of 

frequencies with which we wish to excite the system). 

For an LTI system, we have these options. However, nonlinearity 

opens up new perspectives on the harmonic signal. Choosing a frequency 

grid can affect the testability and measurability of nonlinear effects and 

distortions. Nonlinearity has a multiplying and transposing effect on the 

harmonic frequencies. If, in a given frequency band of the excitation 

signal, all the possible frequencies are present, the systematic distortion 

and stochastic noise will be equally present at all points of the BLA. 
Let us now look at Fig. 4-9 and assume that only odd frequencies are 

present in the excitation. Let us apply this signal to the input of a Volterra 

system with an even and an odd nonlinearity (see (4.61) and (4.62)). The 

frequencies appearing in the output signal are derived from the frequencies 

of each kernel term. The output of the linear term, with suitable gain, 

reproduces exactly the input frequencies (red, top right). The output of 

even-order Volterra kernels contains signed even term sums of the input 

frequencies, which produce only even-order harmonics (blue, centre-

right). Similarly, Volterra kernels of odd degree produce signed odd term 

sums of the input frequencies, resulting in only odd-order harmonics 

(green, bottom right). The full frequency view of the output signal can thus 

be interpreted as shown in the figure. 
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Fig. 4-9. Effect of the nonlinearities on the harmonic frequencies of the input 
signal. 

 

In the example, the BLA FRF, which is defined only at the input (red) 

frequencies, is distorted in a systematic and stochastic way by the odd-

order (green) nonlinearities. However, there exist non-excited (test) 

frequencies where, due to nonlinear frequency transformation, the effect of 

even and odd-order stochastic distortions can be seen (all non-red output 

frequencies). Therefore, at the end of the measurement we may obtain not 
only an approximate linear FRF, but also information on the strength of 

the effects generated by the nonlinearities. In practice, several frequency 

grids have been tried. 

A. Full frequency grid za B  �� = L ü Ó V � � � �  <  z  za B t<  t à �~ (4.86) 

 (�~ natural numbers). A full frequency grid contains all even and odd 

harmonics and has the best frequency resolution. It is recommended if the 

level of nonlinear distortions is negligible. 

B. Prime frequency grid za B  ��  =  L  Ó  �  ��  �L � � �  <  z  za B Ì<  Ì à Å (4.87) 

 (Å prime numbers). A prime number frequency grid can be used to 
eliminate the effects of even nonlinearities.  
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 C. Odd frequency grid za B  ��  L  Ó  �  ê  ��  �L � � �  <  z  za B   �=t � ��<  t à �~ (4.88) 

Leaving out even harmonics serves multiple purposes. Given that the FRF 
(and its systematic nonlinear distortion) is a smooth function, a uniformly 

rarer grid may still be appropriate for the measurement. The strength of the 

nonlinear noise can be estimated at the left-out (test) frequencies and can be 

used to compensate for the error at the excited frequencies. Leaving out all 

even harmonics reduces the level of nonlinear noise. 

D. Odd-odd frequency grid za B  ��  Ó  ê  �L  �� � � �  <  z  za B   �üt � L�<  t à �~ (4.89) 

By limiting the frequency resolution further, another opportunity opens 

up for handling nonlinear distortion. The cubic nonlinearity will not now 

affect the FRF measurement, because its effect will only be felt on the 

abandoned odd frequencies. Thus, if the nonlinear component of the tested 

system is only of second and third degrees, the frequency characteristic 
will be measurable without any nonlinear systematic distortion (albeit with 

lower resolution). Another advantage is that the strength of the stochastic 

noise decreases (due to left-out frequency combinations).  

E. Special-odd frequency grid za B  ��  L  ê  ��   I  < �z  za B   �¥t � ��<   z  za B   �¥t � Ó�<  t à �~ 
(4.90) 

In the case of a nonlinearity of an order higher than three, a 

modification of the odd-odd grid can be used, where the odd excited and 

test frequencies do not follow each other uniformly but are grouped in a 

special way. The expected goal is to estimate the variance of nonlinear 

stochastic noise at the excited frequencies based on its variance measured 

at the test frequencies (Vanhoenacker, Dobrowiecki and Schoukens 2001). 

F. Log-tone frequency grid za B  ��  L  Ó  ��  =�  Ó�  �%� � � �  <  ò�ñ�za B   t�<  t à �~ (4.91) 

The logarithmic grid provides uniform resolution, e.g. to represent the 
frequency characteristic on a logarithmic scale (e.g. Bode plot). 
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G. No-interharmonic distortion (NID) frequency grid za B  ��  Ó  �L  =ê  üê  ¥����ê��ü��=%��=VL�LÓê� � �  <  (4.92) 

The idea is to generate a numerically optimized grid where the proper 
placement of the harmonics guarantees that at a given degree of 

nonlinearity, the stochastic nonlinear noise does not occur on the excited 

frequencies (the example shows a grid optimized for a cubic nonlinearity) 

(Evans, Rees and Jones 1994).  

H. Randomized frequency grid za B  ��  L  Ó  ê  �L  �Ó�����ê�=L� � �  <  (4.93) 

A randomized grid that was developed from the special-odd grid, with 

the regularity of the grid eliminated by randomization. The odd grid is 

subdivided into blocks and one (odd) frequency is left randomly in each 

block. Simulations have shown that the nonlinear noise variance estimated 

at the test frequencies is well matched to the variance at the excited 

frequencies (Pintelon and Schoukens 2012). 

I. Randomly generated frequency grid za B  ��  =  L  Ó  V  �%�����=��L� � �  <  (4.94) 

A randomly generated frequency grid, i.e. a random selection of the 

grid assigned to individual realizations of the multisine excitation signal, 

results in a non-stationary excitation signal that can be used to quickly 

detect nonlinearities (Pintelon and Schoukens 2012). 

 
 
Fig. 4-10. The degree of stochastic nonlinear distortion (noise) on the measured 
frequency characteristic as a function of the applied frequency grid compared to 

pure Gaussian noise excitation. From left to right: Gaussian noise; random phase 
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multisine (full frequency grid); odd random phase multisine; and odd-odd random 

phase multisine. It can be seen that the appropriate design of the frequency grid can 
reduce the stochastic nonlinear distortion (and thus the required measurement time) 
by an order of magnitude. It is also apparent that the degree of systematic nonlinear 
distortion is constant, regardless of the frequency grid used. 

4.12.5 Riemann-equivalent excitation signals 

Note that, if the excitation signal is normalized (./Q3�vQW1  ������) and 
the frequency domain is properly (and evenly) dense, the expression of 

systematic nonlinear distortion (4.74) to (4.76) is the Riemann-sum of a �� � ��i= multiple Riemann integral: 

o_Ø�t�  | B � oØ ¦t< t�<  � t�<  I < tØ��W <  � tØ��W §
v°< I< v�±°� à L�

B ¸ Q3�tT�QW�Ø���iW
Tl�� C oØ ¦z< z�<  � z�<  I < zØ��W <  � zØ��W §Æ°< I< Æ�±°� à  _�

B ¸ \zT�Ø���iW
Tl���

 (4.95) 

We will consider excitation signals to be Riemann-equivalent if they 

have equivalent spectral behaviour and, when refining them by increasing 

their harmonic content, the (4.95) Riemann-sums tend exactly to the same 

integral limit and consequently to the same nonparametric model. 

Identification with the (normalized) multisine signals defined on different 

frequency grids thus yields equivalent results up to the ������ order of 

magnitude. The prerequisite for this is that the frequency grid used should 

be a uniformly distributed pointset in the frequency band chosen for 

modelling, with the discrepancy tending to zero as ������ (most of the 

above-mentioned frequency grids possess this feature) (Dobrowiecki and 

Schoukens 2007; Schoukens and Lataire et al. 2009). 
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4.12.6 Relationship between stochastic and  
systematic nonlinear model errors 

In the case of nonlinear (systematic and stochastic) distortions, a special 

situation allows stochastic nonlinear distortion, or nonlinear noise 

(variance), to be directly measured (see (4-29)), but this is not so for the 

nonlinear systematic distortion of the FRF. The other interesting issue is 

that the odd and even nonlinearities have different distorting effects (see 

Fig. 4-11). 

We have seen that by properly selecting the frequency grid, it is 

possible to measure nonlinear variance at the test frequencies and 

extrapolate this result to the excited frequencies. An interesting question, 

however, is whether the measured nonlinear variance can be used to give a 
worst-case estimate of the degree of nonlinear systematic distortion, 

assuming minimal prior knowledge of the measured system. 

Analysis of the static nonlinearity shows that, indeed, given the 

(measured) level of nonlinear variance, the most conservative assumption 

about the systematic nonlinear error is that it comes from a third degree 

nonlinearity. This observation, with certain restrictions, can in principle be 

generalized to the case of static polynomial nonlinearities and, based on 

simulations, for Volterra systems (though without rigorous evidence). In 

the absence of more accurate information, the nonlinear cubic character is 

therefore a rough empirical but robust estimate of the expected distortion 

levels (Schoukens, Pintelon and Dobrowiecki 2001; Schoukens, 
Dobrowiecki et al. 2010). 

 
Fig. 4-11. BLA and the components of the nonlinear additive noise model from the 
nonlinearity perspective: the effect of the linear part of the measured system (white 
area); the effect of odd nonlinearities (hatched area); and the effect of even 
nonlinearities (crosshatched area). 

Y U 

Systematic 
distortion 

Stochastic 
distortion 

 EBSCOhost - printed on 2/14/2023 6:11 AM via . All use subject to https://www.ebsco.com/terms-of-use



Optimized Random Multisines in Nonlinear System Characterization 253 

4.12.7 Measuring the best linear approximation 

There are two general methods for measuring the BLA FRF together with 

its nonlinear model error information. In the robust method, n�  ���I �¨ 
realizations are selected from the realization ensemble of the random 

phase multisine input signal and then one realization is applied to the input 

of the tested system. For a given fixed realization, we wait for the 

measurement transients to decay and then measure the Ì�  ���I �Å 

periods from the output signal. For a fixed input realization, nonlinear 

distortions are also fixed, but the output noise evolves independently. 

From such measurements it is possible to calculate the specific estimate of 

the BLA dependent on the input realization and the estimate of the output 

noise (with respect to the noise realization assembly). By switching the 

input realizations, we obtain the estimates of the frequency characteristic 
and the output noise. At the end of the measurement, from the estimates of 

the frequency characteristic (acc. to the realization ensemble of the input 

signal) we obtain the actual estimate of the frequency characteristic 

(distorted by the nonlinear systematic error) and the estimate of the 

stochastic nonlinear distortion. By averaging the output noise estimates, 

the final estimate of the output noise is calculated (see Fig. 4-12) (Pintelon 

and Schoukens 2012; Schoukens, Pintelon and Dobrowiecki et al. 2005;  

Schoukens, Pintelon and Dobrowiecki et al. 2003). 

In the fast method, multiple periods of a single realization of a random 

phase multisine defined on a randomized frequency grid are used as the 

excitation. Foreseeably, the signal level measured on the test frequencies 
(i.e. zero amplitude, “not excited” components of the excitation signal) can 

be related to the level of stochastic nonlinear distortions, which appear at 

the excited frequencies (Pintelon and Schoukens 2012). An FRF not 

directly measured at the test frequencies can be calculated by interpolation. 

The level of stochastic nonlinear distortion should also be investigated 

through a hypothesis test to discern whether the behaviour of the measured 

system at this frequency is nonlinear, or an otherwise linear measured 

system is laden with possible nonlinear effects from generating the input 

signal. 
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Fig. 4-12. BLA measurement with the robust method, averaged over the output 
noise and the ensemble of the input signal. 

 

In the following, we present details of robust methods (based on 

Pintelon and Schoukens 2012). Let Í�S<e �t� be the output signal 
measured in the p-th period of the response signal given to the m-th input 

realization 3�S �t�. Then: 

o�S<e �t�  Í�S<e �t�3�S �t�  o_K^�t� 
 ÍL�S �t�3�S �t� 
 ��S<e �t�3�S �t�  (4.96) 

It can be seen that averaging of o�S<e �º�v� according to the periods 

depends only on the output noise, while averaging according to the 

realizations depends on both the output noise and the stochastic nonlinear 
distortion. Let: 

�t�t�  �h�t�3�t� < oL�t�  ÍL�t�3�t�  (4.97) 

then 

o©�S �t�  �Å k o�S<e �t�Â
el�  (4.98) 
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��t��£ W �t�  ��Å � ��Åk Qo�S<e �t� � o©�S �t�Â
el� QW (4.99) 

o©_K^�t�  �̈ k o©�S �t��
Sl�  (4.100) 

��t�¢O£W �t�  ��¨ � ��¨ k Qo©�S �t� � o©_K^�t��
Sl� QW (4.101) 

Now note that the estimate of the variance of the output characteristic 

noise is: 

��t�¢O£< $W �t�  �̈W k ��t��£ W �t��
Sl�  (4.102) 

In principle: ./��t�¢O£< $W �t�1  ðú/�t�t�1¨Å  (4.103) 

and then (see also Schoukens and Pintelon 2010) 

./��t�¢O£W �t�1  ðú/oL�t�1¨ 
 ðú/�t�t�1¨Å  (4.104) 

which implies that the estimate of the variance of stochastic nonlinear 

distortion is 

ðú/oL�t�1  ¨ ���t�¢O£W �t� � ��t�¢O£<$W �t�� (4.105) 

By processing o�S<e �t�, Ì�  ���I �Å<n�  ���I �¨ measurements, at 
the same time as estimating the BLA frequency characteristics, we can 

separate the stochastic nonlinear distortion from the background of the 

measurement noise and together with the FRF we can get an impression of 

the legitimacy of the linear approximation. (Using the appropriate 

frequency grid, we can also separate the even and odd nonlinear effects 

and evaluate them separately (see above, Fig. 4-9, Fig. 4-11 and the 
corresponding evaluation.)) 

If there is measurement noise at the input, then it also changes from 

period to period, and: 
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3�S<e �t�  3a�S �t� 
 �z�S<e �t�������������������������������������Í�S<e �t�  o_K^�t�3a�S �t� 
 ÍL�S �t� 
 �h�S<e �t�  (4.106) 

as well as 

o©�S �t�  Í©�S �t�3��S �t�  � Í�S<e �t�Âel�� 3�S<e �t�Âel�  (4.107) 

Now, considering that 

�t�t�  �h�t� � o_K^�t��z�t�3a�t�  (4.108) 

estimates similar to (4.105) can be calculated (Pintelon and Schoukens 

2012). 

4.12.8 Best linear approximation measurement in a closed loop 

From the point of view of the best linear approximation measurement, the 

fundamental difference between the open and closed loop configurations is 

that, (see Fig. 4-13) due to the feedback, the output signal G�2� is directed 

to the system input and it is no longer true that the y�2� input signal and 

the�GL�2� stochastic nonlinear distortion are not correlated. As a 

consequence, the BLA frequency characteristics calculated in this way will 

be biased: ����t�����t�  ./Í�t�39�t�1./Q3�t�QW1  

 o_K^�t� 
 ./ÍL�t�39�t�1./Q3�t�QW1 ' o_K^�t� 
(4.109) 

because /ÍL�t� 39�t�1 ' %. 

To solve this problem, modification of the definition of the BLA 

frequency characteristics in the sense of (4.60) can be applied (Pintelon 

and Schoukens 2013): 

o_K^�t�  ��s�t���s�t�  ./Í�t� �̈�t�1./3�t� �̈�t�1 (4.110) 

where the reference signal is now a random phase multisine signal. 
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Now, the feedback system is considered to be a single-input, two-

output, nonlinear system with an input 3�2� reference, and outputs y�2� 

and G�2�, respectively. With the definition of the BLA FRF (4.110), the GL�2� nonlinear distortion at the output G�2� is not correlated with the 

reference signal 3�2�.  

 

 

Fig. 4-13. Measuring the BLA in a closed loop. 

 

Measurement of the BLA defined by (4.110), with minor 

modifications, can be performed using the robust or fast methods 

described above. 

4.13 The best linear approximation measurement— 
MISO systems 

The Volterra system model can easily be generalized to multi-input, 

single-output (MISO) systems, and thus to multi-input multi-output 

(MIMO) systems that emerge as the parallel composition of such systems. 

For the purposes of illustration, we assume a two-input and at most cubic 

nonlinear system. As such, a suitable model could be: 
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G�2�  C ^��E)
�) �y��2 � E�\E 
 C ^W�E)

�) �yW�2 � E�\E��

¤ ^���E�< EW�y��2 � E��  y��2 � EW� \E�\EW)

�)
¤ ^�W�E�< EW�y��2 � E��  yW�2 � EW� \E�\EW)
�)
¤ ^WW�E�< EW�yW�2 � E��  yW�2 � EW� \E�\EW)
�)
  ¥ ^����E�< EW< EÄ�y��2 � E��  y��2 � EW� y��2 � EÄ�\E�\EW \EÄ)

�)
  ¥ ^��W�E�< EW< EÄ�y��2 � E��  y��2 � EW� yW�2 � EÄ�\E�\EW \EÄ)
�) �


  ¥ ^�WW�E�< EW< EÄ�y��2 � E��  yW�2 � EW� yW�2 � EÄ�\E�\EW \EÄ)
�) �


  ¥ ^WWW�E�< EW< EÄ�yW�2 � E��  yW�2 � EW� yW�2 � EÄ�\E�\EW \EÄ)
�) �

 (4.111) 

where, in the multidimensional impulse response function ^¦° ¦� ��� ¦��E�< � � � < EØ�, the index vector refers to the presence of the input 

signals of a given index in the otherwise Î2D order kernel. The same 

model in the frequency domain representation is: 
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Í�t�  o��t� 3��t� 
 oW�t� 3W�t� 
��������������������������������
 k o���t�< tW�v°à L�vlv°~v�
 3��t�� 3��tW�


 k o�W�t�< tW� v°à L�vlv°~v�
3��t�� 3W�tW�


 k oWW�t�< tW�v°à L�vlv°~v�
 3W�t�� 3W�tW�


 k o����t�< tW< tÄ�v°< v�< v§à L�vlv°~ v�~ v§
 3��t�� 3��tW� 3��tÄ� 


 k o��W�t�< tW< tÄ�v°< v�< v§à L�vlv°~ v�~ v§
 3��t�� 3��tW� 3W�tÄ� 


 k o�WW�t�< tW< tÄ�v°< v�< v§à L�vlv°~ v�~ v§
 3��t�� 3W�tW� 3W�tÄ� 


 k oWWW�t�< tW< tÄ�v°< v�< v§à L�vlv°~ v�~ v§
 3W�t�� 3W�tW� 3W�tÄ��

 (4.112) 

assuming that the realizations of random-phase multisines, defined on the 

same frequency grid and applied to the system inputs, are independent of 
each other. Each input-output channel is characterized by (BLA) FRF o_K^� �t�, or o_K^W �t�, respectively: 

 o_K^� �t�  ./Í�t�3��t���������1./Q3��t�QW1 < o_K^W �t�  ./Í�t�3W�t���������1./Q3W�t�QW1  (4.113) 

 

Comparing (4.113) with the frequency pairing procedure outlined in 

Appendix A, it is easy to see that the expected values in the nominators of 
(4.113) will be non-zero only in those cases when, in the odd degree 

kernels in Í�t�, the “own” input (i.e. the input present in the denominator 

of the term) is present an odd number of times and the “foreign” input (i.e. 

not associated with the measured input-output channel) is present an even 

number of times. For (4.113), this means: 
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o_K^� �t�  o��t� 
 L� k o����t< 	<  � 	�( à L�
Q3��	�QW


 L� k o�WW�t< 	<  � 	�( à L�
Q3W�	�QW

o_K^W �t�  oW�t� 
 L� k o��W�t< 	<  � 	�( à L�
Q3��	�QW


 L� k oWWW�t< 	<  � 	�( à L�
Q3W�	�QW

 (4.114) 

 

Fig. 4-14. An illustration of the BLA FRM of the two input two-output MIMO 
nonlinear system. The MIMO system is measured input-by-input as a MISO 

system. The components marked in black correspond to the previously described 
model in (4.111) and (4.112). The additional lower index shown in the figure is 
used to distinguish the outputs. 

For a general MISO system with input signals defined on the same 

frequency grid, we have: 
 G�2�  k�y�< yW< I < yw �2�  k GØ�2�)

Øl�  

 k k G�°  �� ��� ���2��°  �� ��� ��
)

Øl�  ºv à /�< =< � � � < Ù1 
(4.115) 

 

where the inner sum contains all �2D order monomials and mixed kernels 
and 
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G�°  �� I ���2� 

 C � � �)
�) C ^�°  �� I ���E�< I < )

�) EØ�¸y�¨�2 � ET�\Ø
Tl� ET (4.116) 

 

or in the frequency domain 

 Í�°  �� ��� ���t� ��ØW k o�°  �� I ���t�< I < tØ�v°< v�< ���< v�±°à L�vlv°~ v�~ ���~ v�
¸ 3�¨�tT�Ø

Tl�  (4.117) 

 

Such a kernel will contribute to the BLA FRF, as a source of the 

systematic nonlinear distortion, only if � is odd and the input (index) of 
the investigated input-output channel has an odd multiplicity; however, all 

other inputs (indices) occur with an even multiplicity (including zero) in º� ºW � � � ºØ index vector (see Dobrowiecki and Schoukens 2007 for more 

detail). When calculating the expected value ./Í�t�39¦�t�1 (4.113), in the 

frequency pairing each other kernel yields a zero expected value and thus 

contributes only to the stochastic nonlinear distortion. 

The BLA FRF of the 3v � Í channel therefore looks like: 
 o_K^v �t�  �ov�t� 
�� k k o_�°  �� I ���t��°  �� ��� ��

)
ØlÄ �dùù� �� (4.118) 

 

where ov�t� is the linear system component of the channel and 
 o_�°  �� I ���t�  o©'�(¡ã�Ø��WB k o�°  �� ��� ���t<  � t�< t�< � � � �v°<  ���< v��±°� i�à L�

 �
  B ¸ �z�¢°z�¢°�	��(°

¸�z�¢�z�¢��	W�(�
� � � ¸�z�¢ªz�¢ª�	v�(ª

 (4.119) 

 

is an odd ��
 order kernel with � different input signals, where the “own” 

input 3v is of odd �� multiplicity and all other “foreign” inputs are of 

even �( multiplicity (including �( � �%) (see the explanation after 

4.113). In equation (4.119), the first product is defined for ��� �� ���i= 
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frequencies; the second product for��Wi=�frequencies; and finally the last 

product is defined for �)i= frequencies, based on the possible summed �t�< tW< � � � < t�Ø���iW� frequencies (Dobrowiecki and Schoukens 2007). In 

addition: 

 

o©'�(¡ã  ��¡¡   ¸��ã � ��¡¡)
ãl�  <  Î  k�ã

)
ãl�  (4.120) 

 

where 	¡¡ � �	�	 � =��	 � ü��I is the double factorial and �z�z��z� 3�vW�z� for the random phase multisine; �z�z��z�  ./3�vW�z�1 for the 

periodic noise; or �z�z��z�  �zz�z� z��� for Gaussian noise. One can also 

see that if the frequency grid of the periodic excitations is refined beyond 

the limit and the frequency spectrum of the signals is normalized to the 
same value (Riemann-equivalent signals), the measured BLA FRF tends to 

the same limit regardless of the type of excitation (Dobrowiecki and 

Schoukens 2007). 

We have seen ((4.68) and (4.69)) that the measurement of the BLA 

FRF is in fact an empirical solution of the least squares estimation 

problem. In the case of multiple inputs, more signal paths must be 

computed. In practice, the way to do this is to apply the independent 

realizations of each excitation signal to the corresponding inputs of the 

nonlinear system and to perform several such experiments (with 

independent realizations). We denote the experiment number in the upper 

index in parentheses. The signals of a Ù input MISO system measured in M 
number of experiments are arranged in a suitable matrix equation:  

 ��t�  ��t� ��t�  �Í����t� Í�W��t� � � � Í�«��t� ������������������
 �o��t� oW�t� � � � ow�t� IJJ

JK3�����t� 3��W��t� � � � 3��«��t�3W����t� 3W�W��t� � � � 3W�«��t�� � � � � � � � � � � �3w����t� 3w�W��t� � � � 3w�«��t�MNN
NO (4.121) 

 

(we will denote separately the case M�  �Ù with ¬X�. The estimated BLA 

FRM can be computed from:  

 ���t�  �o©v�t��  ��t� ���t� ���t����t����
  ©hz�t� ©zz�� �t� 

(4.122) 

 ��� is the complex conjugate transpose.) 
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Similar to estimating the BLA characteristics of SISO systems, 

attention should now be paid to the behaviour of the inverse in formula 

(4.122). If the matrix ��t����t� is poorly conditioned, it will be difficult 

to attenuate the variance of the estimate to sensible limits. 

When measuring the frequency characteristic matrix of linear MIMO 

systems, we have seen that the variance of the estimate can be greatly 

reduced if the excitations applied to the different input channels are 

“mixed” orthogonally. The question arises as to whether this or a similar 

solution would work if the measured system was a nonlinear system 

(modelled with a Volterra system). However, due to the nonlinearities, the 
stake is not just the reduction in variance. Specifically, the goal is to 

optimize inputs so as to significantly reduce the variance of the BLA FRF 

estimate, yet keep the value of the measured BLA FRF strictly equal to 

what would be measured with non-optimized signals (e.g. with Gaussian 

excitation). 

The surprising result is that the linear solution (4.53) works in this 

sense for two-input MISO systems of an order not higher than cubic, so 

that the optimum inputs are (Dobrowiecki, Schoukens and Guillaume 

2006; Dobrowiecki and Schoukens 2007): 

�def�t�  3�t� Ô� �� ��Õ  3L�L��t� ?W (4.123) 

but this result cannot be generalized for higher input dimensions or higher 

nonlinear orders.  

Of course, the case Ù�  �=<���L is interesting in itself and widespread 

in practice; however, in the general case, the characteristics measured with 

the optimized excitation according to (4.53) will have different systematic 

nonlinear distortions and such results will not be compatible with the 
results measured with conventional excitations. This is not surprising, as, 

in the case of nonlinear systems, all modelling results are linked to specific 

excitations. The surprise is, as we will see below, that a generalized 

optimal solution still exists. 

Let us begin with the independent realizations of the first experiment 

(the first column of matrix ��t� in (4.121)) and without generating new 

realizations, let us “mix” these signals orthogonally in the experiments as 

follows (Dobrowiecki and Schoukens 2007; Dobrowiecki, Schoukens and 

Guillaume 2006): 
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�w�t�  IJJ
JK3�����t� 3��W��t� � � � 3��w��t�3W����t� 3W�W��t� � � � 3W�w��t�� � � � � � � � � � � �3w����t� 3w�W��t� � � � 3w�w��t�MNN

NO

  u IJJ
JK �̀�3�����t� �̀W3�����t� � � � �̀w3�����t�

Ẁ�3W����t� `WW3W����t� � � � Ẁw3W����t�� � � � � � � � � � � �`w�3w����t� `wW3w����t� � � � `ww3w����t�MNN
NO

 \H]^/3v����t�1 P �̀� � � � �̀w� � � � � � � � �`w� � � � `wwQ  �z  0

 (4.124) 

Matrix 0 may be any deterministic unitary (orthogonal) matrix: 0 0� 0� 0  Ù �w . The excitations thus defined are called orthogonal 
random phase multisine signals. When using optimized excitations, 

inverse matrix computation in (4.122) is not necessary because: 

�w�t� �w� �t�  Ù  B \H]^/Q3v����t�QW1 (4.125) 

In addition, (4.125) becomes a deterministic quantity and thus we can 
avoid stochastic fluctuations in the denominator of the estimate. The 

estimate of the FRM is then: 

��_K^�t�   �Ù \H]^/Q3v����t�Q�W1 ��ä� �w� �t� (4.126) 

The conditioning of �w�t�  is excellent, ®��w�t��  Ù, if the 

multisine is white (the spectral amplitudes are the same). Matrix W can be 

a deterministic Hadamard matrix, but this significantly limits the number 

of input dimensions (Ù�  �%��n»\�ü�). Complex Hadamard matrices exist 

for multiple dimensions, but perhaps the best choice is the DFT matrix, 

which can be defined for any input dimension: �0  v(  ���W �v����(���iw (4.127) 
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Fig. 4-15. Illustration of the effect of orthogonal multisine excitations in noise-free 
measurement conditions. The nonlinear 4D MISO system is a Wiener-
Hammerstein system (a static nonlinear system between two linear dynamic 

systems). Single measurement in this case means performing four experiments and 
mixing inputs according to (4.124). The figure shows that, with conventional 
(random phase multisine) excitations, the BLA characteristics are strongly 
distorted by nonlinear stochastic noise; however, this hardly occurs when the 
excitations are orthogonalized. Comparison of the characteristics also shows that 
the degree of systematic nonlinear distortion is the same in both cases. 
 

It should be noted that the advantageous properties of orthogonal 

multisine signals are independent of the used frequency grid, meaning that 

the advantages of “orthogonal mixing” can be enhanced with the 

advantages of, for example, an odd or odd-odd frequency grid. 
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Fig. 4-16. Variances estimated from �<%%% measurements for the system in Fig. 4-

15: (upper)—measured with random phase multisines; and (lower)—measured 
with orthogonal multisines. The particular gain in the variance levels depends on 
the dynamics of the linear FRFs in the input-output channels and the character of 
the nonlinearity; the experienced gain is however high. Please note that the overall 
frequency dependence of the variances is similar, because, in the case of the 
Wiener-Hammerstein system, the nonlinear variance is roughly proportional to the 
output linear system dynamics (i.e. to system S in Fig. 4-15). 

4.14 Best linear approximation FRF—application issues 

4.14.1 Nonlinear models and the best linear approximation FRF 

One of the most noticeable differences in the identification of linear and 

nonlinear systems is that there is no well-defined, canonical model set for 

nonlinear systems, with an equivalent formulation in multiple 

representations. One of the most important, black box-like, nonlinear 

model families are the block models. The characteristic feature of a block 
model is that it is made up only of linear dynamic and nonlinear static 
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components, bypassing the difficulties of direct modelling nonlinear 

dynamics19.  

 

 

Fig. 4-17. Typical block model structures (a selection). More complex block 
models can be formed by embedding or superposing the three basic structures, or 
by some of the internal blocks. If, in the Wiener-Hammerstein model (left), e.g. ¨����, we are talking about the Hammerstein model; if �����, we are talking about 
the Wiener model. 

In order to interpret the FRF measurements for block models, we need to 

define the appropriate Volterra kernels for those block structures. For the 

Wiener-Hammerstein system, the equivalent �2D order Volterra kernel is: 

 

 oØ�t�< I < tØ�  |Ø  ¨�t��¨�tW� � � � ¨�tØ� ��t� 
 tW 
  � � � 
tØ� (4.128) 

 

For this reason (see Appendix B):  

o_K^�t�  o��t� 
 o�<zo_�t�   �� 
 o�<z� o��t� � o��t� (4.129) 

where o��t�   ¨�t���t�. 

                                                        
19 We can say a lot more about block models. Basically, we can bypass the 
“dimension curse” of Volterra systems with them, i.e. by exponentially increasing the 
number of parameters needed to describe kernels with an increasing nonlinear order 
and memory-length, soon making parametric identification impossible. Block 
models, even if they are in fact black-box models, in many cases well reflect the 
structure of the system under investigation, especially if we know that the 
nonlinearity appears in a particular way in the system structure. Some special block 
models (the parallel Wiener systems) have the properties of a universal approximator 

(Rugh 1981; Schoukens and Barbe et al. 2010; Dobrowiecki and Schoukens 2007; 
Crama and Schoukens 2004), i.e. Volterra systems can be modelled using them with 
an arbitrarily small error and, conversely, with Volterra systems nonlinear fading 
memory systems can be similarly modelled (Boyd and Chua 1985).  
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The relative systematic nonlinear distortion of the SISO Wiener-

Hammerstein system (and, of course, the SISO Wiener, or Hammerstein 

system) is constant as a function of frequency and the FRF as a whole 

changes proportionally with the variable input level. This means that such 

nonlinear block system can only be moderately useful in modelling 

nonlinear systems. Input-level-dependent zero/pole migrations (nonlinear 

resonances) cannot be described by this model. Multiple parallel nonlinear 

branches are required to model the signal-dependent zero migration (see 

Fig. 4-17, middle). In order to model nonlinear resonances (pole 

migrations), however, block structures with nonlinear feedback (Fig. 4-17, 

right) should be used. (On the input-dependent behaviour of the frequency 
response, and the use of such behaviour as a test for identifying block 

structures suitable for modelling, see Lauwers et al. 2008; Schoukens, 

Pintelon and Rolain et al. 2015; Schoukens and Tiels 2017.) 

An interesting extension of traditional block structures involves 

replacing static nonlinearity with a nonlinear FIR (NFIR) system, as in the 

structures shown in Fig. 4-17. The properties of the BLA frequency 

characteristics of such nonlinear systems can be found in the literature 

(Enqvist 2005; Lauwers et al. 2008). 

4.14.2 What is the BLA FRF good for? 

The approximate linear FRF o©_K^�t� is a linear model used to describe 

nonlinear systems. Our approach can thus be characterized, in principle, in 

terms of modelling errors. The nature and size of the modelling errors, and 

thus the usability of these characteristics as a model, should be treated 

consciously. As such, what is the frequency characteristic o©_K^�t� good 
for? 

4.14.3 The linear model alone 

If the nonlinear distortions are small across the whole set of input signals 

of interest to us, the linear o©_K^�t� is a good, usable model. If the 
nonlinearities are stronger, but, for example, the degree of systematic 

nonlinear distortion is not disturbing and does not impair the qualitative 

image of the system, stochastic nonlinear distortion can be averaged out 

and we can proceed with the linear model (such is the case of the Wiener-

Hammerstein system, for example). 

The linear o©_K^�t� model can be calculated for input signals other than 

those described in (4.63), since (4.68) does not specify the type of input 

signal. It should be noted, however, that the BLA theory described in the 
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previous paragraphs is defined for Riemann-equivalent, asymptotically 

Gaussian-distributed signals. The properties of BLA frequency 

characteristics measured with other excitations should be re-examined 

(Wong, Schoukens and Godfrey 2013). 

4.14.4 Indicator and estimator for nonlinear model structure, 
nonlinearity type, and nonlinear model degree 

In the case of applied excitations, if the nonlinear nature of the system can 

no longer be ignored and, for example, the characteristics measured for 

different excitations are very different from one another, the BLA FRF 

cannot be relied on as a model. However, it is still worthwhile estimating 

the BLA with changing excitations so that we can analyse the variability 

of the BLA characteristics and see what kinds of coarser structure and 

nonlinearity exist in a nonlinear system. 

Structure identification is a current and important issue given that there 

are no generally applicable canonical modelling solutions for nonlinear 

systems. There are two types of relevant task: 
(1) Selection of the specific block structure (more precisely, excluding 

impossible structural candidates). 

(2) Determination of where the process noise enters a given structure 

(in addition to the output noise). 

 

The main task is to produce excitations that allow comparison of the 

BLA measurements to be used as an indicator of the structure of the 

nonlinear system. Typically, there are three strategies for forming test 

excitation signals (random phase multisines): 

(1) Varying the DC component and rms of the signal. 

(2) Varying signal energy and spectral colour. 
(3) Comparison of the results of the BLA measurement technique 

based on various kinds of linearization (Schoukens, Pintelon and 

Rolain et al. 2015) 

 

Test results have been obtained for feedback systems with the 

following systems: Wiener-Hammerstein, Wiener, Hammerstein, and 

Hammerstein-Wiener branches; parallel Wiener-Hammerstein feed-

forward and parallel-branch feedback (Lauwers et al. 2008; Schoukens, 

Pintelon and Rolain et al. 2015). 

Signals collected during the measurement of non-parametric BLA 

characteristics and frequency characteristic values o��v��measured at the 
selected frequencies allow us to approximate (identify) BLA 
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characteristics with a o��v< v� parametric function. For this purpose, a 

suitable cost function must be formed from the measured values, which is 

then minimized according to the v parameter vector. Several cost 

functions are possible for solving the problem and minimizing them gives 

estimates with different properties. 

An example cost function is the weighted least squares criterion 

(Pintelon and Schoukens 2012; Ljung 1999): 

k&�v<F�  �� k Qo��v� � o��v< v�QWVtW�t�$��
vl�  (4.130) 

which affixes greater weight to low-error (small VtW�t�) FRF values when 
searching for the optimal parameter vector. The cost function behaves well 

if there is no input noise. In the presence of input noise, the non-parametric 

frequency characteristic will be biased (see (4.63)) and its use will also 

distort the estimate of the parametric characteristic. 

Input noise gives an error-in-variables (EIV) criterion (see Pintelon 

and Schoukens 2012). Since the actual input and output signals are 

unknown due to noise, they must also be estimated from the data, 

observing the constraint that the actual input and output DFTs are related 

by the FRF. The non-parametric noise models required for its evaluation 

can easily be obtained from multiple measurements based on periodic 

excitation. We refer to Pintelon and Schoukens (2012) for more detail on 

estimating parametric models via DFT (and FRF) measurements and to 
Schoukens and Pintelon (2010) and Schoukens, Vandersteen et al. (2009) 

on the variance and confidence analysis of such models. 

4.14.5 Initial values in nonlinear system identification 

We have seen that one of the characteristic component types of block 

models is a LTI system of some complexity (Fig. 4-17) and these linear 

systems appear in some functional form in the expression of the BLA 

frequency characteristics of a nonlinear system. 
The complete parametric identification of a block model involves 

parametric models of nonlinear and linear components, for which the 

parameters extracted from the BLA characteristics (amplitude of the 

characteristic; estimated values of poles/zeros; estimated parameters of 

rational form function; state equation parameters, etc.) are good initial 

values (close to the actual values). Such a use of the BLA is presented, for 

example, in (Schoukens, Pintelon and Dobrowiecki 2001; Crama and 

Schoukens 2004).  
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Appendices 

Appendix A: Deriving BLA characteristics  
for a simple nonlinear system 

Let the model of the examined nonlinear system be a Volterra system of 

up to the L3\ degree: 

Í�t�  k�Ä��3 �t�  k ÍØ�t�Ä
Øl� o��t�3�t� 
 k oW�t�< t � t�� v°à L�

3�t��3�t � t���

  k oÄ�t�< tW< t � t� �  tW�v°< v�à L�

 3�t��3�tW�3�t � t� �  tW��
 (4.131) 

Let us now evaluate the nominator of: 

o_K^�t�  .�/Í�t�39�t�1.�/Q3�t�QW1  (4.132) 

.�/Í�t�3� �t�1  o��t�.�/Q3�t�QW1
 �q� k oW�t�< t � t��.�/3�t��3�t � t��39�t�1 v° à  L�
 
�� � oÄ�t�< tW< t � t� �  tW� B��������������������.�/3�t��3�tW�3�t � t� �  tW�39�t�1v°< v� à  L�

 (4.133) 
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We consider the expected values in formula (4.133) in general. The 

expected values will be different to zero if the number of their factors is 

even (odd number of 3�tT� factors from the kernel + 3� �t�), and the 

frequencies are matched as �t< ä  �t�, resulting in 3�t�  3� �ä�. As 

such: .�/3�t��3�tW�  I  3�t(�1 .��Q3�ä��QW Q3�äW�QW  � � �  \3�ä( Wm �QW�
    .�/Q3�ä��QW1.�/ Q3�äW�QW1  � � � .�/ Q3�ä( Wm �QW1 (4.134) 

if all paired index pairs are different. In the random phase multisine, a 

random character is present only in the phases. Since the sum of the phases 

is pairwise zero: .�/3�t��3�tW� � � � 3�t(�1  Q3�ä��QW Q3�äW�QW  � � �  Q3�ä( Wm �QW (4.135) 

When the number of indices (the number of terms in the expected 

value) is odd, one of them cannot be paired. This results in a zero expected 

value due to the circular distribution of the phase. 

Since pairing reduces the number of freely running frequency indices 

by half, and taking into account the normalization of the input signal, the 

non-zero expected values from the odd degree kernels contribute at the 

magnitude of ���� to the nonlinear distortion: (4.74) to (4.97). The Î¡¡ 
multiplier still needs explanation. The source of this factorial is that, in the 

generation of the non-zero expected values, the equivalent frequency 

pairings are obtained from different index pairs in several ways, 

combinatorially, cf. the following table (for a Volterra system up to the 

third order Î¡¡  L¡¡  L): 

 

 
 

If multiple frequency index pairs coincide, e.g. �t�< tW< t � t� � tW<  �t�  �t<  � t<  t<  � t�, this produces .�/Q3�ä�QW1 terms and we may 

expect higher order moments (in the case of higher degree nonlinearities). 
However, further reduction of freely running frequency indices reduces the 
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number of summations required. As a result, this contribution is of ������ magnitude or lower and asymptotically disappears. 

In the case of a third degree Volterra system, the result is as follows: 

o_K^�t�  .�/Í�t�39�t�1.�/Q3�t�QW1 �
������ �o��t� 
  

L� k oÄ�t< 	<  � 	�.�/Q3�	�QW1�(à   L�
    o��t� 
 o_�t�

��������� (4.136) 

asymptotically, by � � x based on (4.95) 

o_�t�   
L� k oÄ�t< 	<  � 	�.�/Q3�	�QW1(à   L�� �L C oÄ�t< z<  � z�¾W�z�\z)
Æl�)  

(4.137) 

If the multisine spectrum is uniform (“white”), then: 

o_�t�   |»	�2 B L� k oÄ�t< 	<  � 	�(à   L�
 

� ���|»	�2 B L C oÄ�t< z<  � z� \z)
Æl�)  

(4.138) 
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Appendix B: Calculation of BLA characteristics  
for the Wiener-Hammerstein system 

Let the examined nonlinear system be a Wiener-Hammerstein block 

system with a corresponding Volterra system �th order kernel: oØ�t�< � � � < tØ�  |Ø  ¨�t��¨�tW� � � � ¨�tØ� ��t� 
 tW 
  � � � 
tØ� (4.139) 

Therefore, the �th order component of the systematic nonlinear distortion 
is:  

o_Ø�t�  Î¯�Ø��W B��
k oØ ¦t< t�<  � t�< I < tØ��W <  � tØ��W §v°<  I< v�±°� à L�

¸ Q3�tT�QW�Ø���iW
Tl�

 |Ø Î¯�Ø��W�B k ¨�t��¨��t�� � � � ¨�t� ��t�v°<  ���< v��±°�i�à L�
¸ Q3�tT�QW�Ø���iW

Tl� �
 °|Ø Î¯�Ø��W k ¨�t��¨��t��  I  v°<  I< v�±°� à L�

¸ Q3�tT�QW�Ø��� Wm
Tl� ±������

B ¨�t� ��t��
 °|Ø Î¡¡�Ø��W k ¸ Q¨�tT�3�tT�QW�Ø��� Wm

Tl�v°< ���< v�±°� à L�
± B ¨�t� ��t���

 Î¡¡ |Ø ²¸ �� k Q¨�tT�3�tT�QWv¨à L�
�Ø��� Wm
Tl� ³ B o��t����������������

 Î¡¡ |Ø� �� k Q¨�tT�3�tT�QWv¨à L�
��Ø���iW B o��t�  oØ<�<z B o��t����

 (4.140) 

For a sufficiently high harmonic number M, and a densely 

implemented frequency grid, the inner Riemann integral sums (4.140) tend 

towards the same value. Ultimately: 
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o_K^�t�  o��t� 
 o_�t�  o��t� 
 k o_Ø�t�)
ØlÄ �dùù�

 o��t� 
 ´ k oØ<�<z
)

ØlÄ �dùù� µo��t��������
 o��t� 
 o�<z  o��t� �  o��t� �
 �������

 (4.141) 

where the gain value o�<z  is a function of the variance of the signal, which 

appears at the nonlinearity input. In turn, this depends on the block 

structure of the nonlinear system: o�<z  � o�<z�/ V�Wu Q¨���QW������ \�   Hammerstein
Wiener,Wiener-Hammerstein� (4.142) 
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5.1 Research background and objectives 

This chapter is dedicated to the memory of Prof. István Kollár, whose 
scholarly achievements contributed significantly to the statistical theory of 

quantization (Widrow, Kollár and Liu 1996; Widrow and Kollár 2008) and 

to analogue-to-digital converter (ADC) classification (Kollár and Márkus 
2002; Bilau et al. 2004). Along with his PhD students he fostered the 
publication of IEEE Standard 1241 (IEEE 2011), which is devoted to 

providing test methods for ADCs. His research group has also developed a 

MATLAB/LabVIEW toolbox to support ADC-test evaluation (Kollár, 
Pálfi et al. 2020; Pálfi, Virosztek and Kollár 2013). 

This chapter gives some insight into the latest results of the research 

group. Practical issues that may occur during the implementation of IEEE 

Standard 1241 are treated and novel solutions that go beyond the standard 

are proposed. This chapter contains a short overview of these new 

methods. More detailed descriptions may be found in three doctoral theses 

covering these topics (Pálfi 2015; Renczes 2017; Virosztek 2018). 

ADCs yield digital codes corresponding to analogue signal levels. The 

classification of a converter can be performed using knowledge of the 
actual threshold levels where code transitions occur. The determination of 

these threshold levels is non-trivial. On the one hand, an appropriate 

excitation signal is needed, while on the other, evaluation can only be 

made in an indirect way using statistical methods. The direct evaluation of 
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signal levels would only be possible by applying ADCs with a much finer 

resolution than the device under test (which clearly do not yet exist). 

Indirect evaluation is based on the responses to the excitation signal and is 

performed in the digital domain. 

The digital codes obtained include conjunct information about the 

excitation signal and the actual threshold levels of the converter. 

Consequently, indirect evaluation strives for a separation and 

determination of, the imperfectly known, actual excitation signal 

parameters and thresholds. The latter of these correspond to the signal 

transition levels. Due to the interactions involved, if the resolution is 

increased, a sufficiently accurate determination of the searched-for 
parameters asks for improved methods in several interrelated respects. 

A widely used excitation signal for ADC testing is an appropriate sine 

wave consisting of an integer number of periods. In addition, the number 

of digitized samples and the number of periods should be relative primes. 

To evaluate the digital codes obtained, a suitable method is the histogram 

test. In applying this test, statistics on the occurrence of the excitation 

signal samples in the digital domain are investigated, assuming that the 

excitation signal parameters are known.  

The determination of sine parameters from converted values is usually 

performed separately from other attributes. As such, in this case a sine-

fitting problem is solved. The quoted standard proposes the least squares 
method. Due to the high number of converted samples, the evaluation of 

this method may display issues regarding computational demand and 

accuracy. In connection with these issues, in this chapter, the results of two 

investigations will be presented. First, the computational complexity of the 

parameter estimation process is significantly decreased by the application 

of a proper window function and performance of the estimation in the 

frequency domain (data reduction). The resulting method reduces the 

computational burden without affecting the quality of the results.  

The second investigation highlights that least-squares parameter 

estimation suffers from numerical errors that may render non-negligible 

values. Additionally, methods that significantly decrease these errors are 

proposed. 
Due to the non-idealities of the applied instrumentation, the conditions 

prescribed in the standard for histogram test-based characterization of 

ADCs are not necessarily fulfilled if the nominal values of the parameters 

are set accordingly. Recognition of bad parameter settings and 

identification of an applicable sub-record creates an opportunity to 

characterize the converter without systematic errors and avoid repeating 

the whole measurement process. The presented subchapters deal with the 
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method of verifying the correct parameter settings and the algorithm to 

find the best sub-record for characterization. 

5.2 Introduction to the field of reported investigations 

Signals in the surrounding world are of an analogue nature and are 
continuous in time and amplitude. Nowadays, however, the digital 

processing of signals is prevalent. In order to convert analogue signals to 

digital ones, they have to be sampled and quantized. After sampling, the 

signal becomes discrete in time; after quantization, it also becomes 

discrete in amplitude. These steps are performed by analogue-to-digital 

converters (ADCs). Although we tend to assume a zero error of conversion 

(or at least one that is negligibly small), this does not hold in practical 

applications. This section gives an overview of some fundamental 

characteristics of the ADCs and some of the sources of error in performing 

conversion. These should be considered when planning measurements. 

Firstly, the process of ADC testing is investigated in terms of what should 

be measured; how these measurements should be planned; and how the 
characterization of the converter is obtained from measured data. It is 

reasonable to perform testing in a standardized way since by this means 

different devices are made comparable. Since the current standardized 

procedures do not cover all user demands, it is worthwhile dealing with, 

and developing, methods not included in the standard that go beyond 

existing ones. Furthermore, from the point of view of realization, there are 

some weak points in the standard methods. In principle, these can be easily 

handled, but during practical implementation a number of problems may 

occur. Through a thorough analysis, we will point out how to sample a 

signal having an exact integer number of periods and how to perform 

operations in a numerically stable way with finite precision arithmetic. 
Furthermore, novel methods are proposed for classifying ADCs more 

accurately. These include the application of the maximum likelihood 

estimation method and the approximation of an ADC’s nonlinearity. In 

order to significantly decrease the numerical sensitivity of the solution, an 

advantageous change of the estimated parameters is also suggested. 

It is possible that evaluation of the A/D converted data gives better 

results if the estimation of the excitation signal and the parameters of the 

quantizer are performed simultaneously (due to the complex connection 

between the excitation signal and the code transition levels). This leads us 

to the application of the maximum likelihood estimation (MLE) method. 

Regarding MLE, Kollár and Blair (2005) and Balogh, Kollár and Sárhegyi 
(2010) offer some important preliminary considerations. This section 

 EBSCOhost - printed on 2/14/2023 6:11 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Five 282 

shows that, despite the large number of parameters to be estimated, the 

maximum likelihood estimation of these parameters can be performed 

successfully if the estimates achieved via the standard methods are used as 

initial estimates. 

The structure of the chapter is as follows: 

� In Section 5.2, the field of reported investigations is briefly introduced. 

Beyond giving an overview of ADC characteristics, the least squares 

sine-fitting algorithms and the histogram test used in characterizing 

ADCs are presented. Finally, the effect of non-coherent sampling, i.e. 

when the record of samples includes a non-integer number of periods, 

is discussed. 

� In section 5.3, methods are presented based on Pálfi (2015) that allow 

the verification of correct excitation signal settings and unbiased 

estimation of the transfer characteristics of an ADC. 

� Section 5.4 is based on scientific results reported in Renczes (2017). It 

is pointed out that the numerical errors of least squares sine-fitting 

algorithms may be of several orders of magnitude greater than the 

round-off error of the number representation, if the algorithms are 

coded without a number of considerations. Besides the enumeration of 

numerical errors, methods are proposed that can significantly increase 

the numerical stability of the investigated algorithms. 

� Section 5.5 introduces two methods that improve the maximum 
likelihood estimation of an ADC and excitation signal parameters, 

based on results reported in Virosztek (2018). The first decreases the 

size of the parameter space significantly via the approximation of the 

static transfer characteristic of the quantizer. The second proposes a 

technique to estimate the aperture jitter in a maximum likelihood sense. 

5.2.1 Characterization of analogue-to-digital converters 

The procedure of analogue-to-digital conversion is depicted in Fig. 5-1. A 
signal that was measured in an analogue way is sampled and quantized, i.e. 

it is made discrete in time and amplitude. The digitized signal is then 

processed by a computer. In practice, the digitized signal is often 

considered to be perfectly accurate. Due to quantization errors this is not 

completely true, but if sampling is performed with sufficiently high 

frequency and with sufficiently high resolution, then, in principle, these 

errors should remain small. A sufficiency of frequency is determined by 

the sampling theorem, while a sufficiency of resolution is determined by 

the accuracy required by the user. 
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Unfortunately, however, in practice ADCs perform conversion with 

much higher errors, as could be expected from their resolution. The 

reasons for these errors, a detailed list of specific ADC properties, and a 

description of their measurement methods can be found in IEEE Standard 

1241 (IEEE 2011). Here, only a brief overview of some of these properties 

will be given, focusing on characteristics that are considered relevant to 

the proposed new methods.  

 

Fig. 5-1. Block scheme of analogue-to-digital conversion. 

� Code bin (ä): a digital value that is assigned to an analogue range. 

� Code transition level (��ä ): analogue value separating code bins ä � � 

and ä. 
� Code bin width (��ä ): difference between two transition levels: ��ä � ���ä 
 � �¶ ���ä . 
� Ideal code bin width (å): quotient of the input full scale range and of 

the number of code bins. 

Fig. 5-2 shows the static transfer characteristic of an ideal ADC. 

Voltage levels kST(  and kS6Z  denote the allowable minimum and 

maximum input voltage levels, respectively. In the ideal static 

characteristic, every code bin assumes a width of å. This does not hold for 

a real ADC. In this case, the user has to address the following 

nonlinearities: 

� Differential nonlinearity (DNL[ä]): difference between ideal and actual 

code bin width. 

� Integral nonlinearity (INL[ä]): difference between the straight line 

fitted to the converter’s static characteristic and the static characteristic 
itself. 

These properties characterize the static behaviour of the converter. If 

the input signal is not constant, we can define the dynamic characteristic 
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properties as follows: 

� Signal-to-noise and distortion ratio (SINAD): The output of an ADC 

suffers from noise and harmonic distortion, even if the input is purely 

sinusoidal. The value of SINAD can be given as the ratio of the rms 

(root mean square) value of the input excitation signal to the rms of 

these errors. 

 

Fig. 5-2. Static characteristic of an ideal 3-bit ADC. 

Since the exact rms of the analogue signal is unknown, the rms of the 

fitted sine is calculated (a detailed description of sine-fitting algorithms is 

given in Section 5.2.2). Mathematically speaking: 

 
{c|·d  ú�ç¸ìí|·d  ¨iq=¹��s �Gv � jv�W$vl�

�< 
(5.1) 

where ú�ç¸ìí denotes the rms of the fitted sine wave; NAD is the sum of 

the additive noise and distortion; R is the amplitude of the fitted sine wave; Gv is the tth sample in the fitted sine wave; and jv is the tth sample in the 

sampled sine wave. The value of SINAD is not %, even if the converter is 

ideal because quantization errors are always present. Ideal quantization 

can be modelled as additive noise with uniform distribution in the range ��åi=@ �åi= , according to the PQN (pseudo-quantization noise) model 
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(Widrow and Kollár 2008). In this ideal case, the value of NAD is: 

 |·dìb'�&  ºåW�=�� (5.2) 

With the help of these values, we can define the effective number of bits 
(ENOB) of a converter. For an input sine wave of specified frequency and 

amplitude, after correction for gain and offset, the effective number of bits 

(ENOB) is the number of bits of an ideal ADC for which the rms 

quantization error is equal to the rms noise and distortion of the ADC 

under test. ENOB is given by: 

»|¼½  ò�ñW ²�kS6Z � kST(�o�¾Ùq�= ³  ò�ñW ² =7 m åo�¾Ùq�=³ 

�� Ñ � ò�ñW p�¾Ùåq�= r � ò�ñW o � Ñ � ò�ñW Y �¾Ù|·dìb'�&Z< 
(5.3) 

where Ñ is the specified number of bits in the ADC and G is the measured 

gain of the converter. Since this latter is very close to 1 (nominally equal 

to 1), its effect in (5.3) can be neglected. 

Practically, the value of ENOB defines how many bits of the specified 

number of bits (Ñ) give valuable information about the input signal. If 

NAD has a large value, then the least significant bits are very much 

influenced by noise and distortion and, consequently, no useful 

information can be obtained from them. 

To determine the above described parameters, the least squares sine-
fitting and histogram test methods are used. 

5.2.2 Least squares (LS) sine-fitting 

In order to perform sine-fitting, we need to have a signal model to describe 

the sampled signal. A general sine with arbitrary initial phase and offset 

can be described with four parameters: 

 Gv  ¨ m û�ç�=¤z2v 
 ¾� 
 o< (5.4) 

where R is the amplitude of the signal; f is the frequency; 2v is the tth 
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sampling time instant in the fitted sine; and ¾ and C denote the initial 

phase and the offset, respectively. Since this description is nonlinear, both 

in the initial phase and in the signal frequency, another equivalent signal 

model is applied: 

 Gv  ¾ m û�ç�=¤z2v� 
 a m çèé�=¤z2v� 
 o< (5.5) 

where A and B denote the amplitudes of the co-sinusoidal and sinusoidal 

components, respectively. These are often referred to as in-phase and in-

quadrature components. If sampling is regular, i.e. equidistant, sampling 

time instants are specified by: 

 2v  t m �È  tzÈ <����������t  �< I <� (5.6) 

where N is the length of the sampled dataset; �È is the sampling time; and zÈ denotes sampling frequency. In the following, only equidistant sampling 

will be considered, i.e. k assumes only integer numbers. 
Let us denote the angular frequency normalized to the sampling 

frequency by ¿ and the instantaneous phase by `v: 

 ¿  =¤ zzÈ  �zÈ <�����`v  t¿� (5.7) 

Applying these notations, samples of the fitted sine can be described as 

follows: 

 Gv  ¾ m û�ç�t¿� 
 a m çèé�t¿� 
 o� (5.8) 

The measure of LS fitting is the sum of squared errors between the 

measured and fitted sines, which is then preferably minimized to achieve 

an optimum fit. The cost function (�/) of the fitting is: 

/ÀÁ�ß<-�  k�jv � Gv�W$
vl�  �ß � -���ß � -�  .�.  � m �ÂÃÁW ��� (5.9) 

where x and y are vectors containing the samples of the measured and 

fitted sines, respectively. Basically, two cases can be distinguished: the 

three-parameter and the four-parameter sine-fitting methods. If the angular 

frequency is assumed to be known, we only have to fit three parameters 

and the parameter vector to be estimated (Ä) is 
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Ä�  �¾����a����o�� 

(5.10) 

Since the fitted sine is linear in these parameters, the description of its 

samples can be summarized by the following system of equations: 

 -  �#Ä��< (5.11) 

where 

 
�#  °û�ç`� ���çèé`� �û�ç`W ���çèé`W �q� q qû�ç`$ ���çèé`$ ��±� 

(5.12) 

Thus the relation of the measured and fitted samples can be expressed as: 

 ß  �#Ä 
 . (5.13) 

Application of the LS method means that the value of Ä is set in order to 

minimize the squared sum of the elements of the error vector .. This 

measure is the cost function (CF) of the fitting which is equivalent to 

finding the minimum of the 2-norm of .: 

 Gß � �#ÄGW  G.GW< (5.14) 

where 

 
G.GW  Ak�jv � Gv�W$

vl�  Û�/ÀÁ�Ä�� (5.15) 

If G.GW is minimal, Û�/ÀÁ�Ä� is also minimal, and consequently �/ÀÁ�Ä� 

is minimal. Parameter vector Ä#, for which G.GW is minimal, can be 
determined with the help of the Moore-Penrose pseudo-inverse: 

 ðúñ�èé�/ÀÁ�Ä�  Ä#  �#~ß< (5.16) 

where �#~ denotes the pseudo-inverse of matrix �#. 

If the frequency of the signal is unknown, the problem becomes much 

more involved, since the fitting becomes nonlinear in the fourth parameter 
and cannot be solved in a single step. In the following, an iterative solution 

proposed by IEEE Standard 1241 is briefly summarized. In order to 

simplify the description, ¿ will be estimated instead of f. From the value of 
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¿, using (5.7), the frequency can be easily determined. 

Let us assume that we have an initial relative angular frequency 

estimator that is not sufficiently accurate. The results of three-parameter 

fitting could be improved if this inaccuracy were also considered. The 

fitted sine wave can be given as: 

 Gv  ¾ m û�ç�t�¿ 
 ø¿� 
 a m çèé�t�¿ 
 ø¿� 
 o� (5.17) 

For the co-sinusoidal term, the following first order approximation can be 

applied: ¾ û�ç�t¿ 
 tø¿ � ¾ û�ç�t¿� 
 ¾ m tø¿�� çèé�t¿��� (5.18) 

The approximation is appropriate if tø¿ is sufficiently small, that is, if the 

error in the initial angular frequency estimator is small. The sinusoidal 

term can be similarly approximated. With these approximations, (5.17) can 

be written as: Gv � ¾ m û�ç�t¿� 
 a m çèé�t¿� 
 o � ¾ m tø¿ çèé�t¿� 
a m tø¿ û�ç�t¿�  ¾ m û�ç�t¿� 
 a m çèé�t¿� 
 o 
��¾ m t çèé�t¿� 
 a m t û�ç�t¿� ø¿� (5.19) 

If we consider the fine-tuning ø¿ of the angular frequency ¿ as the fourth 

unknown parameter, then this approximation will be linear in the unknown 

parameters. Thus, in the iteration step i, the estimated parameter vector 

takes the form: 

 ÄT�  �¾T����aT����oT����ø¿�T�< (5.20) 

and the LS problem to be solved is based on the relation 

 ß  �ÅÄÅ 
 .�� (5.21) 

where the system matrix �Å in iteration step H is 
�Å  °û�ç`�û�ç`Wqû�ç`$

çèé`�çèé`Wqçèé`$
��q�

�/�¾T�� çèé`� 
 aT�� û�ç`�1=/�¾T�� çèé`W 
 aT�� û�ç`W1q�/�¾T��çèé`$ 
 aT�� û�ç`$1±< (5.22) 

and where 
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`v  t¿T � 

(5.23) 

The relative angular frequency for the next iteration step can be 

determined by: 

 ¿T~�  ¿T 
 �ø¿�T� (5.24) 

In order to perform the first iteration step, an initial relative angular 

frequency estimator (¿a) is needed. With the help of this estimator, a 

three-parameter fitting can be carried out to obtain ¾a, aa and oa. With 

these values, the first iteration step can be performed to obtain ¾�,�a�, o�, 

and, after fine-tuning ¿, ¿� also. The iterations proceed until �ø¿�T is 

sufficiently small or a previously determined number of iterations is 

reached. In each iteration step, the calculation of the Moore-Penrose 

pseudo-inverse is needed, similar to the case of three-parameter fitting. 

5.2.3 Sine wave histogram test for ADC characterization 

Histogram test-based characterization of ADCs can be performed by 
applying different deterministic or stochastic excitation signals. Test 

methods using stochastic excitation exploit the fact that random signals 

can be generated with a predefined probability density function (PDF). In 

such a case, the transfer properties of the converter are determined by 

comparing the histogram of the digitized signal to the theoretical PDF. The 

most commonly applied stochastic signals are Gaussian noise (see Björsell 
and Händel 2005; Björsell and Händel 2008; Carbone and Petri 2000) and 

uniformly distributed random noise (Addabbo et al. 2010).  

The triangle wave, exponential wave, and sine wave are typical 

examples of deterministic signals applied in histogram tests. The 

advantage of the triangle wave is that the transition levels of the ADC can 
be measured directly. On the other hand, most signal generators are unable 

to produce a signal with the signal-to-noise ratio (SNR) needed to 

accurately test high resolution ADCs (Corrado et al. 2008). Gaining a 

sufficiently high signal-to-noise ratio for exponential signals is also a 

problem (Holcer, Michaeli and Saliga 2003) and precise estimation of the 

transition level becomes more challenging as the voltage level of the input 

decreases.  

The most commonly used deterministic excitation signal is the sine 

wave due to the fact that it can be generated with relatively low levels of 

noise and harmonic distortion. Nevertheless, since the ADC is excited only 

at one frequency, measurements at other frequencies may also be included 

to properly characterize the transfer properties of the converter. Some 
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propositions (e.g. Serra et al. 2006), suggest splitting the input voltage 

range into multiple domains and characterizing each domain separately. 

This chapter deals with the case of an input signal completely covering the 

input voltage range of the ADC.  

The sine wave histogram test was first presented in Blair (1994). Later, 

it became part of the standard for ADC characterization (see IEEE 2011). 

The test assumes that the ADC is excited with a sine wave input of 

amplitude ¨, frequency z, initial phase `, and DC offset�o (see Eq. (5.4)). 

Let us denote the histogram of the converted signal by ��H , which gives 

the number of hits per code bin H�(H  %� � � =7��). 
To determine the transition levels, a cumulative histogram is used that 

gives the total number of samples measured in the first º codes (including 

code bin %): 

 
�4�º  k��H �

Tla � 
(5.25) 

Figs. 5-3 and 5-4 show the histogram and cumulative histogram of an 

ideal, noiseless sine wave. It can be seen that the shape of the histogram is 

similar to the PDF of a continuous sine wave. Each point of ��H  can be 

approximated as the corresponding value of the PDF multiplied by the 

number of samples in the measurement record. Based on the cumulative 

histogram and the signal parameters, the transition levels can be estimated 

with the following formula: 

 ��ä  o � ¨ m û�çS¤�4�ä � � � T� (5.26) 

Once the transition levels are determined, the width of each code bin can 

be expressed as: 

 ��ä  ��ä 
 � � ��ä � (5.27) 
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Fig. 5-3. Histogram of a noiseless sine wave converted with an ideal ADC. 

 

Fig. 5-4. Cumulative histogram of a noiseless sine wave converted with an ideal 
ADC. 

In the case of the first and last codes, the bounds of the voltage range of 

the ADC can be used. The transition levels together define the static 

transfer characteristics of the measured ADC, the properties of which are 

characterized, in addition to gain and offset errors, by integral and 

differential nonlinearity.  

5.2.4 Effects of improper frequency selection  
on the results of the histogram test 

The quality of the sine wave histogram test results depends strongly on the 

proper selection of the excitation signal parameters. The standard (IEEE 

 EBSCOhost - printed on 2/14/2023 6:11 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Five 292 

2011) defines how to select amplitude and frequency parameters correctly. 

The amplitude should be set to slightly overdrive the ADC; thus the peak-

to-peak amplitude of the signal should be higher than the full scale voltage 

range of the converter. This will introduce a little distortion in the shape of 

the histogram, but this selection reduces the code width and nonlinearity 

errors in the two outermost code bins. This error is caused by the additive 

noise that is always present in a real measurement setup. Since the sine 

wave is flat at its extreme values, if the peak-to-peak amplitude exactly 

covered the input voltage range of the ADC, the noise would dominate the 

results for the outermost codes. Besides additive noise, the results are often 

influenced by nonlinear and harmonic distortions and other noise sources. 
The combined effect is modelled as additive Gaussian noise and described 

by its standard deviation. Due to the uncertainty caused by these distorting 

effects, the transition levels can be estimated with finite precision only. 

Blair (1999) determined the amount of overdrive required in closed form 

assuming the tolerable upper limits of uncertainty of the code widths and 

integral nonlinearity.  

Precise selection of the signal frequency is also a key factor in the 

histogram test since even small deviations in frequency can introduce 

significant estimation errors and ruin the quality of the results. Let M be the 

number of periods in the measured signal: 

 M  � ï zzÈ�� (5.28) 

The standard requires sampling to be coherent and therefore M has to be an 

integer value. In addition, the number of periods and the total number of 
samples must be relative primes, so the value of the greatest common 

divisor should be �. The requirement for coherent sampling comes from 

the operational philosophy of the test method where the measured 

histogram is compared to the theoretical histogram that would result if the 

measurement were done on an ideal ADC and test setup without any 

distorting effects. The behaviour of the ideal test setup can be represented 

with the probability density function of the sine wave (Fig. 5-3). Fig. 5-5 

presents the histogram of a sine wave converted by a non-ideal ADC. The 

comparison of the two figures highlights how some codes contain few 

samples and other codes have more hits. Based on these deviations, the 
width of each code bin can be estimated. Codes that contain more samples 

than the reference value are wider than the least significant bit (LSB—the 

ideal bin code width), while codes with fewer samples are narrower. Based 

on this information, the location of the transition levels resulting in the 
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static transfer characteristics of the ADC can be estimated. 

To sum up, the test considers the PDF of the sine wave as a reference 

for the number of hits in each code bin. However, the shape of the 

histogram would differ if the sampling were not coherent, even if an ideal 

converter were used. If M is not an integer, a fractional period is present at 

the end of the signal and the above process would no longer be correct. 

The samples of this fractional period appear in some of the code bins and 

when the test is performed these codes will appear wider than their real 

size. This effect is illustrated in Fig.5-6.  

 

Fig. 5-5. Histogram of a noiseless sine wave converted with a non-ideal ADC. 

The figure shows that codes between 1200 and 1750 contain an 

increased number of samples due to the non-integer number of measured 

periods of the sine wave. The simulation was done assuming ideal 

quantization and therefore this is the real shape of the histogram with non-
coherent sampling. If we estimate the characteristics of an ADC using 

such a reference histogram, a modelling error will appear within the 

process. As a result, the test will display code bins that are wider than their 

actual size for codes between 1200 and 1750, even if the input signal is 

noiseless and the converter is ideal. On the other hand, the estimated size 

of other codes outside this domain will be smaller than their actual size.  
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Fig.5-6. Cumulative histogram of a noiseless sine wave converted with a non-ideal 
ADC. 

Considering these effects, coherent sampling is essential in the 

execution of a sine wave histogram test and incorrect frequency settings 

lead to systematic errors in the determination of transition levels, resulting 

in a biased estimator.  

The second requirement for the input signal is the relative prime 
condition: the greatest common divisor of the number of measured periods 

and the total number of samples has to be 1. To highlight the importance of 

this condition, first let us assume that the signal has been sampled 

coherently. Fig. 5-7 shows the phases of the samples in the ��¤@ ¤� domain 

(utilizing the periodicity of the signal, all phases can be converted into this 

domain) and the locations of the transition levels. It is important to note that, 

in distinction to samples that have one exact position on the phase axis, each 

transition level has two phases. The reason for is that the transition levels are 

voltage levels and each voltage level inside the input voltage range of the 

ADC can have two phases: Î and =¤ � Î. Consequently, two phases were 
assigned for each transition level in the figure. It can be seen that the 

fulfilment of the relative prime condition results in the uniform distribution 

of the samples in the ��¤@ ¤� phase domain; for a given number of samples, 

the distance between two adjacent phase positions is minimal. This optimal 

phase distance can be expressed using the number of samples: 

 M  � ï zzÈ�� (5.29) 

Since the distance between adjacent phases is small, the positions of the 

transition levels can be estimated accurately, with little uncertainty. This 
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reveals that the relative prime condition’s importance is rooted in the 

standard deviation of the error—in other words, the precision of the 

estimation. In order to get results with minimum uncertainty, the condition 

has to be fulfilled.  

Let us investigate the case when the relative prime condition is not 

fulfilled. Let k Ü � be the greatest common divisor of M, the number of 

periods, and � the number of samples. In this case, the measurement can 

be divided into k equivalent sub-records, where the samples of each sub-

record cover the same phase positions. In other words, the phase of the 

first sample will be the same for the 1st, 2nd, …, and k(Æ �sub-record; this 

“sameness” is true for every sample. Despite measuring � samples, the 

“useful” number of samples is only �ik, since the other samples do not 
provide any new information about the relevant characteristics. Fig. 5-7 

presents this case: the samples are arranged into �ik groups where each 

group consists of k samples in the same phase position. This arrangement 

leaves the transition levels a lot of space “to move” between two 
measurement points, thus their location cannot be estimated precisely due 

to limited “phase resolution”. As a result, the variance of the estimation 
error increases.  

Here, it is very important to note that the unfulfilled relative prime 

condition itself will not introduce any systematic errors into the results of 

the estimation, only the variance is influenced. If the independent number 

of samples ��ik� is still large enough compared to the number of 

transition levels (taking the required precision of the results into account), 

the histogram test can still be executed without giving biased results. 

 

Fig. 5-7. Distribution of samples in phase space in different scenarios (Pálfi and 
Kollár 2013). 
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The overview of the importance of coherent sampling and the 

fulfilment of the relative prime condition has noted that the frequency of 

the sine wave should be chosen with care as improper selection might 

significantly harm the results. The ratio of the signal and sampling 

frequencies is related to the number of samples and periods in the 

following way: 

 

M�  zzÈ�� (5.30) 

In other words, the number of periods depends on the chosen record 

length, the sampling frequency, and the signal frequency. Unfortunately, 

the exact values of these latter two are generally unknown—only their 

nominal values are available. Both frequencies have some uncertainty 

introduced by the signal generator and the oscillator of the ADC; generally 

these uncertainties are specified on the instrumentation datasheets. 

Consequently, the verification of the settings based on nominal values is 
not possible. As such, to get reliable results, a measurement record-based 

estimation of the number of periods is unavoidable. 

5.3 Verification of signal parameter settings  
for the sine wave histogram test 

5.3.1 Estimation of sine wave parameters 

The quality of the results from the histogram test method presented in 

5.2.3 has been significantly influenced by the number of periods in the 

measured sine wave. In principle, this number must be an integer value 

and a relative prime in relation to the length of the record. The literature 

shows that slight deviations of M from being an exact integer can be 

tolerated in the test. Carbone and Chiorboli (2001) have shown that the 

measured signal can still be considered coherent if the deviation from the 

nearest integer value fulfils the following condition: 

 QøMQ � �=��� (5.31) 

To be more precise, the authors state that in the case where the above 

condition is true, the upper bound of the variance of the elements of the �4�t  cumulative histogram is less than or equal to a tolerable 0.25. This 

condition ensures that the samples of the fractional period at the end of the 

signal will not appear in large numbers in any of the code bins (otherwise 
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the variance of the cumulative histogram would be much higher). As a 

result, the condition can be utilized to check the fulfilment of the coherent 

sampling condition prescribed by the standard. In addition to the 

estimation of the number of periods in the measured signal, that of the 

signal parameters is also needed since they are used in the estimation of 

the transition levels (see Eq. (5.26)). 

The four-parameter sine wave fit presented in the standard (see 

subchapter 5.2.2) is an obvious way to estimate the parameters; however, 

the method has some drawbacks: 

� The computational complexity of the method is proportional to =%� in 
every iteration, where N is the number of samples in the record. In 

addition, the computational costs of the fast Fourier transform (FFT) have 

to be taken into account, since a precise initial estimate of the frequency 

parameter is needed to ensure convergence. The resulting computational 
burden is quite high for long records; however, testing of high-resolution 

ADCs (16-20-24 bits) is not possible with short measurements. 

� According to the standard (IEEE 2011), the ADC has to be slightly 

overdriven by the excitation signal, but the effect of overdrive 

(clipping the sine input) is not modelled in the standard method. As a 

result, the fitting error, and ultimately the estimation error, increases.  

� Generally, the input signal is influenced by different distorting effects. 

Harmonic distortion is often present in the measurement, which means 

that the signal contains additional sinusoidal components of small 

amplitudes. (Further distorting sources can include the frequency of  

the mains and those of its integer multiple.) The presence of these 
components decreases the precision of the estimate.  

To eliminate the negative effects summarized above, an alternative, 
frequency domain sine estimator was proposed in Pálfi (2015). This method 

reduces the negative side-effects of overdrive and harmonic distortion with 

less computational burden than the original time-domain LS method. The 

key idea is data reduction in the frequency domain by the application of a 

low sidelobe window function that compresses the distorted sine into a few 

samples in the frequency domain. To illustrate this method, let us define the 

following multi-harmonic signal in the frequency domain, consisting of a 

DC offset and three harmonic components: j�t�  �%<V 
 û�ç�`v� 
 %<= ï û�ç�= ï `v� 
 %<� ï û�ç�L ï `v�� (5.32) 

Let � be �%f, M  �%<Ó, t  %< I < � � � and `v  W «v$ �� The upper part 

of Fig. 5-8 shows the signal in the time domain.  
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Fig. 5-8. Multi-harmonic signal of a DC, a fundamental component, and two 
harmonic components in the time (upper) and frequency (lower) domains. 

It can be seen that the information about the sine is distributed among 

samples of the time domain j�t� signal and the fundamental component 

cannot be easily separated from the harmonic components. As a result, 

since every sample introduces new information, the whole record should 

be processed, which leads to a high computational burden, and the 

negative effect of the harmonic components cannot be completely 

eliminated. It is possible to decrease the computational costs by reducing 

the number of samples used in the estimation process, but this will 
increase the uncertainty of the results since every sample increases 

available knowledge about the signal parameters. In addition, the applied 

signal model does not take the harmonic components into account. Since 

their effect cannot be eliminated in the time domain, this results in a 

further increment in the fitting residual.  

The lower part of Fig. 5-8 presents the same signal in the frequency 

domain. After the application of the FFT, the signal was windowed using 

the three term Blackman-Harris window function (Harris 1978). The 

figure is zoomed to the frequencies of the fundamental and harmonic 

components; there are no other peaks in the results of the FFT. The 

information about the sine is concentrated in three peaks (the DC 

component at 	  % and the fundamental component around the 	  ��% 

and 	  �% DFT bins). This means that the information is not uniformly 

distributed among the samples in the frequency domain as some points 

provide a lot of knowledge about the parameters, while others (most of the 

record) have no information about the signal. As a result, we do not need 

to use the whole record to estimate the signal parameters; it is enough to 

have 5 points around the 	  %, 	  ��%, and the 	  �% DFT bins. 
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Thanks to the compressing effect of the window function, the 

computational demands of the estimation can be significantly reduced. In 

addition, the figure shows that the harmonic components appear around 

the 	  Ú=% and 	  ÚL% DFT bins. This means that the harmonic 

components are separated from the fundamental in the frequency domain, 

significantly lessening their negative effect on the result. The estimation 

can be done using the 	  ���=I� ¥<�=I=< ¥I�=� samples, which 

contain useful information about the sine parameters. The resulting 

estimator has increased precision with a lower computational burden.  

The signal was windowed using the three term Blackman-Harris 
window function in the previous example. The reason for this choice is the 

high rejection of the window: the level of the highest sidelobe is only -71.5 

dB (Albrecht 2001). This is a very important property in terms of data 

reduction, since the lower the sidelobes are compared to the main lobe, the 

stronger the compression effect of the window function. This is illustrated 

in Fig. 5-8, which presents the (continuous) Fourier transform of the 

rectangular window and the Blackman-Harris window. The samples of 

these windows are convolved with the FFT of the sine wave (Dirac delta 

function) when a sampled sine is windowed and transformed. If no 

window functions are applied (rectangular window, left side of the figure), 

the samples of the discrete �H	|�� window appear in the result. This would 
be disadvantageous in terms of data reduction because the highest sidelobe 

level of the rectangular window is -13 dB compared to the main lobe. As a 

result, the separating effect for the harmonic components of such a 

window is weaker, which harms the quality of the estimation results. 

 

 

Fig. 5-9. Rectangular and Blackman-Harris windows in the frequency domain. 
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Below, we summarize the two main advantages of the proposed method: 

� The frequency domain approach is less sensitive to harmonic 

components. 

� The computational burden is much lower as 15 samples are enough to 

perform the estimation independently of the original length of the 

measurement. This latter aspect influences the computational costs of 

the FFT only.   

To perform the estimation, first, we require the signal model of the sine 

wave in the frequency domain (Kollár and Blair 2005). Utilizing equation 

(5.30): 

 jÈT(�t�  ¾ m û�ç ¦=¤tM� § 
 a m çèé¦=¤tM� §< (5.33) 

 ÊÈT(�	�  ÊÈT(� �	� 
 ÊÈT(~ �	�< (5.34) 

 
ÊÈT(� �	�  ��� �(�«�$��$ � m ¾ 
 ºa= m çèé/¤�	 � M�1çèé ¼¤�	 � M� ��½�< (5.35) 

 
ÊÈT(~ �	�  ��� �(~«�$��$ � m ¾ � ºa= m çèé/¤�	 
 M�1çèé ¼¤�	 
 M� ��½�� (5.36) 

Data reduction requires the windowing of the signal. The three term 

Blackman-Harris window (Harris 1978) is an obvious choice because of 

its previously noted advantages. The terms are: 

 

]a  %�ü=üL¥%�< ]�  �%�üê�Lü%V< ]W  %�%�¥=�êL� (5.37) 

The time domain expression of the window is: 

 _̀<�t�  ]a 
 ]� m û�ç¦=¤t� § 
 ]W m û�ç ¦ü¤t� §� (5.38) 

The DC offset component of the windowed signal should also be taken 

into account in the model: 
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Ê�	�  d/e A¾ m û�ç ¦=¤tM� § 
 a m çèé ¦=¤tM� § 
 oC 
 Êù4�	� 
 ÊÈT(�	�� (5.39) 

The windowing can be done in both the time and frequency domains. In 

the time domain, the samples of the measurement are multiplied with the 

samples of the window, resulting in a convolution in the frequency 

domain. This can be expressed as: 

 Ê_<�	�  d/e/j�t� m _̀<�t�1  Ç� m -< (5.40) 

 

Ç  �=ÈÉ
Ê ]W]�=]a]�]W ËÌ

Í< 

- 
ÈÉ
ÊÊ�	 � =�Ê�	 � ��Ê�	�Ê�	 
 ��Ê�	 
 =�ËÌ

Í� 
(5.41) 

In equation (5.41), Ê_<�	� is the 	(Æ sample of the result of the windowed 

signal in the frequency domain. Each sample is a linear combination of the 

terms of the window (Ç) and the original frequency domain samples of the 

non-windowed signal �-�. The result of the operation, Ê_<�	�, is a 

mathematical model of the FFT of a signal using the three-term Blackman-

Harris window. This can be used in the estimation of signal parameters. 

The resulting model is nonlinear in the parameter of the number of periods 

(similar to the original time domain model) and so an iterative method is 

needed. The optimization process is done using the Gauss-Newton method 

(van den Bos 2007). The Newton-Raphson method (Schoukens and 

Pintelon 1991) is a good starting point for the derivation of the Gauss-

Newton algorithm. Let Î be the vector of parameters of the sine wave 

(¾<a<o< M) and �/ the least squares cost function (see (5.9)). The Taylor 
expansion of the cost function can be written as: 

�/�Î 
 ÏÎ�  �/�Î� 
 øÎ� ;�/�Î�;Î 
 �= �øÎ�� ;W�/�Î�;Î;Î� øÎ 
 h (5.42) 
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Let us approximate the above expression with the first three elements of 

the series. Here, we utilize a cost function with a minimum at Î 
 ÏÎ, if 

the derivative with respect to �ÏÎ�� is #:  

 
;�/�Î�;Î 
 ;W�/�Î�;Î;Î� øÎ  #� (5.43) 

The above equation can be solved for ÏÎ: 

 ÏÎ  �S;W�/�Î�;Î;Î� T�� m ;�/�Î�;Î �� (5.44) 

The result is the Newton-Raphson step; repeating it and updating the 

parameters at every step leads to the solution. One disadvantage of this 

method is that the second order derivatives of the cost function are present in 

the Hessian matrix. Sometimes, this matrix may become indefinite (thus it 

has both positive and negative eigenvalues), resulting in a saddle point in the 

process of minimization. If the matrix is a positive semi-definite (it has only 

non-negative eigenvalues), the result is a local minimum. The positive semi-

definite property of the Hessian matrix can be guaranteed by replacing the 

Newton-Raphson step with the Gauss-Newton step. This neglects the second 
order derivatives in the approximation of the Hessian matrix: 

 
;W�/�Î�;Î;Î� � = ï ;.?;Î m ;.;Î��� (5.45) 

In the above equation, . is the complex fitting residue, the difference 

between the FFT of the measured and windowed signal and the z�Î� 

mathematical model (see (5.40)); and .? is the Hermitian conjugate of .. 

Let Ð be a Jacobian matrix, containing derivatives of the z�Î� model with 

respect to the parameters: 

 Ð  ;z�Î�;Î �� (5.46) 

Finally, let ß_< be the vector of measurements after windowing and 

calculating the FFT, thus ß_<  /Ê_<�	�1. First, expression (5.45) is 

given using the Jacobian matrix: 
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= ï ;.?;Î m ;.;Î�  = ï ;�ß_< � z�Î��?;Î ï ;�ß_< � z�Î��;Î�  

 = ï S�;zÑ�Î�;Î T ï S�;z�Î�;Î� T  = ï Ð?Ð� (5.47) 

The second term of the Gauss-Newton step can be expressed as: 

 

;�/�Î�;Î  ;.?.;Î  = ï S�;zÑ�Î�;Î T.  �= ï Ð?.� (5.48) 

thus, the Gauss-Newton step can be written as 

 ÏÎ  ��= ï Ð?Ð��R��=� ï Ð?.  �= ï = ï �Ð?Ð��R ï Ð?.� (5.49) 

The above expression does not take the correlation of adjacent samples 

into account, however this is a side effect of the application of a window 

function (5.41). Skipping the derivation, the Gauss-Newton step for 

correlated samples can be written in the following form: 

 ÏÎ  �Ð?Ò�RÐ��RÐ?Ò�R.� (5.50) 

Here, Ò denotes the covariance matrix, which can be expressed utilizing 

the Ç vector of equation (5.40) as Ò  Ç m Ç�. 
In the Gauss-Newton step, defined in (5.50), it is not necessary to 

process all samples in the measurement. Due to data reduction, it is 

enough to include the bins of the FFT where the DC offset and the 

fundamental component is present (see Fig. 5-8.). As a result, the matrices 

and vectors in the Gauss-Newton step consist of 15 rows only, since five 

samples are used for the DC components and an additional 5-5 samples 

around M and � � M are used for the fundamental of the sine wave. The 

residue error vector . has 15×1 elements and the size of the Ð Jacobian 

matrix is 15×4, while the Ò covariance matrix has 15×15 elements. As 

such, the computational demands of the iterative part of the algorithm can 

be neglected, as compared to the original time domain method, which 

required =%� additions and multiplications at every iteration. For the 

proposed method, assuming � � �Ó� the computational demands of the 

calculation of the FFT can give a good approximation for the total 

computational burden. This requires � ï ò�ñW � additions and 

multiplications. 
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The statistical properties of the estimation can be determined in closed 

form using the Jennrich theorem for nonlinear least squares methods 

(Jennrich 1969). It has been shown that, assuming additive Gaussian noise 

with zero mean and VW variance, the estimator is asymptotically unbiased 
and normally distributed. Its covariance can be given as: 

 VW ï �Ð� ï Ò�R ï Ð���� (5.51) 

The diagonal components of the above matrix give the variance for each 

estimated parameter of the sine wave �¾<a<o< M�. In the case of non-ideal 

quantization, the amplitude and DC offset components become biased, but 
the estimator of the number of periods remains unbiased. As a result, the 

above expression can be used to estimate the variance of the measured M. 

Using (5.51), this variance can be given as (Belega, Petri and Dallet 2012): 

 V«îW  VVW¨W¤W��� (5.52) 

5.3.2 Overdrive handling 

If the sine wave is fitted in the frequency domain, the FFT of the measured 

signal has to be calculated first. In the case of overdrive (the input signal’s 
peak-to-peak amplitude is higher than the full-scale range of the ADC), the 

measured signal will be distorted since it will be clipped at the extremes. 
The clipped signal is still periodic, but the clipping introduces new 

harmonic components in the frequency domain. The increased harmonic 

distortion decreases the signal-to-noise ratio of the signal, resulting in 

higher estimation errors. This side effect of overdrive can be reduced if the 

clipped samples are replaced by an estimate of their original values before 

the FFT is calculated (see Fig. 5-10). This estimation is possible if, based 

on the distorted signal, the sine parameters are determined with sufficient 

precision. These parameters will not be quite accurate, but, if we use them 

to calculate the signal-correcting samples, the signal-to-noise ratio in the 

modified signal will increase significantly and consequently the suggested 

frequency domain estimator will give better results. The parameter 

estimation from the distorted signal is performed in two steps: first, the 
number of periods is estimated using interpolated FFT (IpFFT); then the 

other parameters can be determined using the time domain three-parameter 

sine wave fit (IEEE 2011). Rife-Vincent window-based IpFFT methods 

have good statistical properties even for strongly distorted signals 

(harmonic distortion, overdrive, and quantization) (Belega and Dallet 

2009).  
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The main steps of signal reconstruction are presented in the following. 

These are:  

� Estimation of the number of periods using Rife-Vincent window-based 

IpFFT (Belega and Dallet 2009).  

� Having the number of periods, the remaining parameters of the sine 

wave can be estimated using the standard three-parameter least squares 

fit (IEEE 2011).  

� Having the estimated parameters of the sine wave, the location of the 

clipped samples can be identified: the set of points where the estimated 

signal level (in LSB unit) is higher/lower than the value of the 

highest/lowest code bin of the ADC. 

� These points should be replaced with their estimated value before 

performing the frequency domain sine-fitting method.  

 

Fig. 5-10. Clipped signal due to overdriving the ADC and the restored samples.  

The above steps significantly reduce the effect of clipped samples on the 

result given by the FFT. Consequently, the statistical properties of the 

estimation will improve, resulting in better estimation of M. This is quite 

important in accomplishing the original goal and in deciding whether the 

measurement fulfils the coherent condition or not.  

As far as computational complexity is concerned, to reduce the effect 

of overdrive, the FFT of the measured signal is calculated. Then the 
number of periods is determined using IpFFT and the three parameters LS 

fit is also performed to determine the amplitudes and DC offset. As a 

result, the total computational burden increases to ~��=� 
 � ï ò�ñW ��, 

but this is still less than the original time-domain LS method’s Ó=%� 

operation in every iteration. 
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5.3.3 Checking coherent sampling and relative prime conditions 

The method presented in the previous subchapter allows the estimation of 

the signal parameters with a reduced computational burden. In terms of the 
histogram test, the most important signal parameter is the number of 

periods M. The standard prescribes coherent sampling and uniform 

distribution of the phases to execute the test—both of these conditions 

depend on the M parameter. The estimation of M allows the verification of 

proper frequency settings. To do this, the statistical properties of the 

estimator also need to be known (presented in subsection 5.3.1). 

According to the Jennrich theorem, the estimator is a Gaussian distributed, 

unbiased random variable and its standard deviation can be expressed 

using Eq. (5.52).  

Let M be the true number of periods in a given measurement record, Mî 
the LS estimator of the number of periods, and � the number of samples in 

the record. Utilizing the statistical properties of Mî, the following probability 
can be evaluated: 

 Å�j< G�  Å�M � j ï V � Mî � M 
 G ï V�< (5.53) 

where V is the standard deviation of Mî, and j and G are non-negative 
constants defining the bounds of the domain for which the probability is 

evaluated. The true number of periods, M, is the mean value of Mî in the 
expression, since the estimator is unbiased. The equation can be rewritten 

in the following form: 

 Å�j< G�  Å��j ï V � Mî � M � 
G ï V�� (5.54) 

Subtracting Mî and multiplying with �� leads to the following confidence 
interval: 

 Å�j< G�  Å�Mî � G ï V � M � Mî 
 j ï V�� (5.55) 

The upper and lower bounds of the above inequation can be determined 

based on the results of the estimation and application of the Jennrich 

theorem (see (5.52)). The formula can be used to evaluate the probability 

of coherency in the record, which is a much more informative quantity for 

the user than simply checking whether the number of samples is an integer 

number or not. To evaluate the above probability, the boundaries can be 

determined using the Carbone-Chiorboli condition (5.31), which defines 

the upper bound of frequency deviation as a function of �. Let Ma be the 
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estimation’s �Mî� value rounded to the nearest integer. If the measurement 

consisted of exactly Ma periods, the sampling would be perfectly coherent. 

In the following steps, we give the conditional probability of M (the true 

number of periods) being inside the Ú �W$ interval of Ma, given that Mî is the 

estimated number of periods. To define such a probability, expression 

(5.55) is used with j and G given as: 

 j  �V ¦Ma 
 �=� � Mî§< (5.56) 

 
G  �V ¦Mî� Ma 
 �=�§� 

(5.57) 

Substituting the above formulas into Eq. (5.55), the probability of 

coherency can be evaluated and the fulfilment of the conditions can be 

checked. 

In the case of the whole record not being coherent, it is worth checking 

whether we can find a sub-record that fulfils both conditions of the 

standard for ADC testing. Repeating the whole measurement process can 

be avoided and the transition levels can be estimated using a proper sub-

record. The following steps show how the proper length of a sub-record 

that meets the requirements can be determined.  

Let \ be number of periods covered by a single sample: 

 \  M��� (5.58) 

Since M is unknown, \ has to be estimated too: 

 \î  Mî��� (5.59) 

The above expression shows that \î is proportional to Mî. As such, \î is also 

asymptotically normally distributed with a zero mean; its standard 

deviation is also proportional to the standard deviation of Mî and their ratio 

is 
�$. Assuming that a record of � samples and M periods is not coherent 

(not fulfilling the Carbone-Chiorboli condition), for MW � M and �W � � 

both conditions are fulfilled (thus MW and �W are relative primes). Where �W 

is the length of the sub-record consisting of MW periods, the latter can be 

estimated in the following form: 
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MîW  �W ï \î  �W� ï Mî�� 

(5.60) 

The statistical properties of the resulting estimator are also known, being a 

Gaussian distribution with a zero mean. The standard deviation can be 

given as: 

 VW  �W� ï V� (5.61) 

At this point, every necessary input is present for evaluating the 

probability of coherence for a shorter sub-record and checking the 

fulfilment of the relative prime condition. 
To sum up, the steps used in the determination of the length of 

potential sub-records are as follows: 

� Estimation of the number of periods using the frequency domain LS 

estimator. This gives Mî and V.  

� The possible number of periods in the sub-records from 1 to Ma. These 

values are stored in the ÔÅ vector.  

� In the next step, \î can be determined based on Mî.  
� Determination of the lengths of the sub-records for every possible 

value of the number of periods. These can be calculated as the ratio of 

the elements of ÔÅ and \î. The resulting values will not be integers in 

most cases and so they are rounded to the nearest integer value. The 

results are stored in the 6 vector.   

� Using 6, the true number of periods in the sub-records can be 

estimated (the deviation from ÔÅ is caused by rounding in the previous 

step). The true number of periods can be determined as Ô  \î ï 6.  

� All elements of the vector Ô are random variables with unique V 
standard deviations: 

 }  V� ï 6� (5.62) 

� In the next step, the bounds defined by the Carbone-Chiorboli 

condition are calculated for every element of 6. Using these limits, the 

probability of coherence can be determined for every element of the Ô 
vector. These probabilities are stored in vector �. To choose the best 

record length from among the elements of the 6 vector, the greatest 

common divisors of the sub-record length and of the number of periods 

must first be determined. These divisors are stored in vector Õ. 
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� Using the results (Ô, 6, Õ and �), the best option can be chosen: the 

greatest common divisor should be 1 and the probability of coherence 
should be very close to 1. The following quantity is recommended for 

sorting the different possibilities: yT  	T ï ÌTiýT. The sub-record with 

the highest y value tends to be the longest and with the highest 

probability of coherence, as well as the lowest of the greatest common 

divisors. The aim of the formula is to maximize the amount of 

independent information about the converter, while minimizing the 

distortions introduced by non-coherent sampling. 

 

The above defined quantity helps the user to choose from among multiple 

possibilities and find the best sample set for testing the ADC, but it cannot 
guarantee the quality of the results. If none of the sub-records provide 

enough information (e.g. compared to a given tolerance for the quality of 

the results), the measurement should be retaken using a modified 

frequency setting.  

5.3.4 Real measurement results 

The methods presented in subchapters 5.3.1, 5.3.2 and 5.3.3 were applied 

in the histogram test-based characterization of an NI 9201 12 bit ADC. 
The nominal value of the converter’s sampling frequency was set to zÈ  �%% kHz. According to the datasheet, the value of INL is Ú��Ó LSB, 

the DNL is �%�L Ú ��=) LSB. The measurement was done using a record 

length of �  �%� . The sine wave generator’s frequency was set to zZ  �¥�� Hz, so theoretically the measured number of periods is exactly M  �¥�, which fulfils the relative prime condition. The results of the 

frequency domain LS estimation were as follows: ¾î  �VL��êLê� LSB, a©  ��ê%�¥%V% LSB, oî  =%üV��ü=% LSB, Mî  �¥V�ê¥%¥, and the estimated value of the standard deviation of Mî was V8«  V�L=üü ï �%�Ö. According to the results, the sampling was not 

coherent and the deviation was higher than the Carbone-Chiorboli upper 

bound (Ó ï �%�Ö). As such, the histogram test was performed on a shorter 

sub-record. Fig. 5-11 shows the fitting error (the difference between the 

measured and calculated values); the standard deviation of the additive 

noise was approximately 1 LSB. The slight increase in the mean value of 

the fitting error can be observed in the figure, which suggests that the 

signal parameters were not stable on the generator side during 
measurement.  

The results of the coherency analysis suggest that the histogram test 

should be done using �W  �üê�ü¥ samples, meaning that in this case, the 
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probability of coherence was practically 1. The number of periods in the 

sub-record was MW  =��êêêêê��=, meaning that the greatest common 

divisor of the new number of samples and the (rounded) number of periods 

was ýW  ü. Thus, the relative prime condition was not fulfilled, but we 

should note that this will not lead to systematic errors in the results. The 

output of the test was compared to the case when the whole measurement 

was used to determine the transition levels. Fig. 5-12 shows a jump in the 

curve of the INL when the whole record was used. The difference of the 

two curves is quite typical for a histogram test performed with non-

coherent sampling: the samples from the fraction period at the end of the 
record made the codes below 1500 look wider than their real size and the 

other codes look narrower. 

 

Fig. 5-11. Fitting residue measured on the NI 9201 A/D converter. 

The outcome of measurement shows that the quality of the results of 

the histogram test can be improved by application of the proposed method: 

the transition levels can be estimated without bias and with minimal 

variance for a given independent number of samples.  
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Fig. 5-12. Estimated INL using the whole record (INL); a proper sub-record 
(INL2); and the difference in the results (e). 

5.3.5 Summary of results 

The most important results presented in the previous subchapters can be 

summarized as follows: 

� A frequency domain four-parameter sine-fitting algorithm was 

presented with a reduced computational burden (Ó�=� 
 � ï ò�ñW �) 
in comparison to the complexity of the original time-domain LS 

method (Ó=%� in every iteration). This reduction in computational 

cost does not affect the quality of the results. 

� Assuming the application of the presented sine wave estimator, a 

method was introduced to verify the correct signal frequency parameter 

setting and check that the conditions of the sine wave histogram test 

were fulfilled (in relation to coherent sampling and the relative prime 

relation between the number of periods and record length).  

If the excitation signal fails to meet the requirements, a sub-record 
fulfilling both conditions may be identified using the proposed steps in 

subchapter 5.3.3. Using this sub-record, the presence of systematic errors 

in the results can be avoided and thus the transition levels can be estimated 

without bias. 
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5.4 Numerical problems of sine-fitting algorithms 

5.4.1 Some characteristics of floating-point arithmetic 

Nowadays, signal processing algorithms are mostly realized digitally. 

During the implementation of these algorithms, it is often assumed that the 
applied arithmetic is sufficiently accurate and therefore the results will 

also be accurate enough. In this subsection, the numerical behaviour of 

digitally realized sine-fitting algorithms (described in 5.2.2) is 

investigated. It is highlighted that the numerical problems of these 

algorithms may be much larger than expected, even if floating-point 

arithmetic is applied. In order to gain insight into these problems, an 

overview on floating-point arithmetic is given. 

Floating-point number representation is widely used in the field of 

digital signal processing. This is due to its wide dynamic range. In 

floating-point number representation, numbers are described in the 

following normalized form: 

 �H^	 m � m =× < (5.63) 

where M denotes the mantissa, in which the significant digits are stored, 

and E denotes the exponent, which expresses the order of magnitude of the 

number. Sign is represented in one bit and can be either 
� or ��. In a 

mantissa of Ì bits, it is preferable to assign the coded number to the 

interval ��<���= � =�e~� , because, in this case, the representation of the 

mantissa requires only Ì � � bits, since the first bit is always 1. Having 

such a mantissa representation, if, for example, the number coded in the 

mantissa is 1, and E assumes �ü@ %@ �%, then the represented numbers are %�%V=Ó<��ðé@��%=ü, respectively. It follows that, with the same mantissa 

and contrary to fixed-point arithmetic, by changing the exponent a very 

wide dynamic range can be covered. The size of the dynamic range is 

determined by the length of the exponent, while the relative accuracy is 

determined by the length of the mantissa. Let us denote the relative 
accuracy of the number representation by eps. Having the above mantissa 

representation, the upper bound of relative accuracy can be given as 

 �Ì�  =�e~�� (5.64) 

Further technical details can be found in IEEE Standard 754 (IEEE, 2019). 

According to the standard, numbers can be represented with 32 bits 
(binary32, single precision), 64 bits (binary64, double precision), or 128 
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bits (binary128, quadruple precision). The parameters of these 

representations are delineated in Table 5-1. 

Speaking of the resolution of floating-point numbers, it is important to 

emphasize the term relative. The least significant bit of the mantissa 

represents accuracy of =�e~� relative to the most significant bit. However, 

the absolute value of these bits is modified by the exponent and, 

consequently, the larger the number the coarser its resolution, while the 

upper bound of the relative accuracy remains constant. 

Parameter Single precision Double 

precision 

Quadruple 

precision 

Resolution (p) 24 bits 53 bits 113 bits 

Relative 

accuracy (eps) 

=�WÄ� ���ê m �%�Ö 

=�fW� =�== m �%��� 

=���W� ��êL m �%�ÄW 

Maximal 

exponent 
127 1023 16383 

Table 5-1. Parameters of different floating-point number representations. 

Let us introduce a function denoted by LOB (lowest order bit) which 

assigns to every representable floating-point number the upper bound of its 

absolute accuracy. For example, in the case of single precision arithmetic  

 

Ø¼½���  Ø¼½�=a�  =�WÄ m =a � ���ê m �%�Ö��< çèéûó��=a � � � =�����ðé@ Ø¼½��%%%�  Ø¼½�=Ù�  =�WÄ m =Ù � V��% m �%�f�<� çèéûó��=Ù � �%%% � =�a��< (5.65) 

that is, larger numbers have coarser resolution and therefore have greater 

possible round-off errors. 

It is important to emphasize that the round-off errors of the numerical 

evaluation are undesirable and independent of the round-off errors of the 

investigated analogue-to-digital conversion.  

Concerning the required accuracy of numerical calculations, single 
precision floating-point number representation is enough in most cases. 

However, as is pointed out in this section, the error of the results, due to 

the errors of the performed calculations, may be several orders of 

magnitude higher than that of the number representation. This section 

deals with two major error sources that influence the accuracy of the 

algorithms. The first error source is the evaluation error of the 
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instantaneous phase, while the second is the numerical sensitivity of the 

system matrix used by the algorithms. 

5.4.2 Phase evaluation error 

In this subsection, it will be shown that during the execution of sine-fitting 

algorithms, the evaluation of the instantaneous phase based on the 

conventional approach is inaccurate and may cause significant numerical 

error in the final result.  
To understand the nature of the phase evaluation error, let us consider 

the instantaneous phase. This must be evaluated at each time instant as the 

argument of sine and cosine functions: 

 `v  =¤ zzÈ t� (5.66) 

Due to the finite length of number representation, this value cannot be 

stored exactly. The value stored in single precision can be described as the 

sum of the real value and a round-off error: 

 çèéñòó�`v�  `v 
 �ø`�v< (5.67) 

where çèéñòó�`v� is the numerically represented, i.e. the rounded form of `v in single precision floating-point arithmetic, and �ø`�v  is the round-off 

error at the kth time instant (Renczes, Kollár and Moschitta et al. 2016). It 

can be clearly seen that with an increase in k, the absolute value of the 

phase increases, and, consequently, possible round-off errors will also 

increase because the higher the absolute value, the coarser the resolution. 

In order to illustrate the error, let us evaluate instantaneous phase 

values for zizÈ  �iL=, increasing k from 1 to 5000. If the evaluation is 
performed at both single and double precision, then we can use the results 

of double precision as a reference to determine the error of the single 

precision evaluation. The exact phase evaluation errors are depicted in Fig. 

5-13. In the figure, the evaluation error compared to the upper bound of 

the relative accuracy (eps) for the case of single precision arithmetic is 

plotted as a function of the absolute value of the instantaneous phase. The 

figure shows that the maximum of the round-off errors increases stepwise, 

and the length of each step increases as well. A more detailed analysis 

reveals that each step is twice as wide and twice as high as its predecessor. 

The reason for this phenomenon is that changes in the amplitude of errors 
occur when, on the horizontal axis, an integer power of two is reached. 

Namely, at that point the value of the exponent must be increased in order 
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to represent the number. Consequently, the resolution becomes coarser. 

For instance: 

 Ó�� � ��êêV m =Ú�������ðé@�������Ó�L � ��%%= m =Ù� (5.68) 

In representing 513, the corresponding resolution, based on (5.65), is =Ù  Ó�= times, relative to single precision resolution. However, Fig. 5-13 

shows that the error in this step is between �=ÓV��Ì� and =ÓV��Ì�. The 
reason for this is that, at the storage of a floating-point number, it is 

rounded to the nearest representable value. Therefore, the error may vary 

between �Ø¼½�`v�i= and Ø¼½�`v�i=.  

 

Fig. 5-13. Evaluation error of the instantaneous phase.  

After gaining some insight into the nature of the error, let us 

investigate how this error source influences the sine-fitting algorithms. 

Since the round-off errors from the phase evaluation error perturb the 

argument of the fitted sine, the sine itself will also be perturbed. The 

caused error can be approximated in the following way: Gv 
 �eÛ6È¡<v  ¾û�ç/`v 
 �ø`�v1 
 a çèé/`v 
 �ø`�v1 
 o � ¾ û�ç�`v� � ¾ çèé�`v� m �ø`�v 
 a çèé�`v� 
a û�ç�`v� m �ø`�v 
 o  ¾ û�ç�`v� 
 a çèé�`v� 
 o 
 �a û�ç�`v� � ¾ çèé�`v� �ø`�v 

(5.69) 
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where �eÛ6È¡<v denotes the error at time instant t 

 
�eÛ6È¡<v � �a û�ç�`v� � ¾ çèé�`v� �ø`�v� 

(5.70) 

Furthermore, due to the imprecise phase calculation, the LS cost function 

will also be perturbed: 

�/ÀÁ  k�jv � �Gv 
 �eÛ6È¡<v��W  k��v � �eÛ6È¡<v�W$
vl�

$
vl�  

 k��vW � =�v�eÛ6È¡<v 
 �eÛ6È¡<vW �$
vl� � (5.71) 

The exact value of �eÛ6È¡<v is unknown, since the only information on �ø`�v is that it is in a given range. According to Widrow and Kollár 
(2008), this error can be reasonably well modelled as a random variable, 

having a uniform distribution between �Ø¼½�`v�i= and Ø¼½�`v�i=. Let 

us introduce the notation �ø`�����v  for this random phase-evaluation error 

and use �ø`�v  to denote an actual realization of this error. 

Similarly, we can introduce the random variable version of (5.70): 

 �âeÛ6È¡<v � �a û�ç�`v� � ¾ çèé�`v� �ø`�����v< (5.72) 

and the corresponding cost function based on (5.71) 

 �/����ÀÁ  k��âvW � =�âv�âeÛ6È¡<v 
 �âeÛ6È¡<vW �$
vl� � (5.73) 

The statistical properties of (5.73) can give us some insight into how the 

phase evaluation error influences the cost function of LS fitting. Let us 

introduce the notation Ü�%Æ�¸' for the error of the cost function due to 

imprecise phase evaluation. From (5.71), we can obtain: 

 Ü�%Æ�¸'  k��=�âv�âeÛ6È¡<v 
 �âeÛ6È¡<vW �$
vl� � (5.74) 

It can be proven that the expected value of this error, that is, the expected 

value of the increase in the cost function as a random variable, can be 

given as: 
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 .�Ü�%Æ�¸'� � ¤W¨W m �Ì�WMW��¥ �� (5.75) 

The derivation of this result can be found in Renczes (2017). The increase 
in the expected value is squarely proportional to the amplitude of the 

sample set, to the number of sampled periods, and to the relative accuracy 

of the floating-point number representation; it is proportional to the 
number of samples. It is important to note that, besides the number of 

samples, the increase in the expected value is also influenced by the 

number of periods in which these samples were collected. If we increase 

the number of samples, while keeping J constant, i.e. sampled more 

frequently, the error is much smaller than if we increase N with the same 

sampling frequency, i.e. by increasing J. This phenomenon can be easily 

explained, since, in increasing J, the absolute values of the evaluated 

phases will increase to a greater extent than when the sampling frequency 

is increased while keeping the number of sampled periods constant (see 

Fig. 5-13). 

The increase in the variance of the cost function can be similarly 
estimated. The extent of this increase depends on the distribution of 

additive noise, which affects the pure sampled sine wave. In Renczes 

(2017), two cases were investigated. First, the signal was distorted by 

uniformly distributed noise, modelling ideal quantization. In the second 

case, the noise was of zero-mean Gaussian distribution with standard 

deviation V(dTÈ¡. In practical cases, the dominant term in the increase of 

the variance can be expressed as: 

3�Ü�%Æ�¸'� � ÝÞ
ß ¤WåW¨W�Ì�WMW�Óü �������àéè	�ú��é�èçó�@èç�úè�à�è�é=¤WV(dTÈ¡W ¨W�Ì�WMW�ê ��áðàççèðé�é�èçó�@èç�úè�à�è�é (5.76) 

The derivation of these expressions can be found in Renczes (2017). This 

increase, similar to the increase in the expected value, is proportional to 
the number of samples, being squarely proportional to the number of 

sampled periods, to the signal amplitude, and to the relative accuracy of 

the floating-point number representation. Both the increase in the expected 

value and the variance are proportional to �Ì�W, i.e. they are strongly 
related to the precision of the evaluation (for numerical values, see Table 

5-1). The extent of this influence will be illustrated at the end of this 

subsection. 
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After revealing the source of the error, we investigate how we can 

reduce phase evaluation errors. Since these errors are due to the increase in 

absolute phase values, we expect that, if this increase were limited, the 

evaluation error would decrease significantly. To limit the absolute value 

of the evaluated phases, we can make use of the periodicity of the sine and 

cosine functions, since, in evaluating these functions, the fractional part of 

the phase with reference to =¤ is enough. Let us denote the fractional part 

of the phase with `v4 : 

 `v4  =¤ âzzÈ tã< (5.77) 

where ämå denotes the operator of the fractional part of the calculation after 

rounding its argument to the nearest integer value. For instance, äL�üå %�ü and äL��å  �%�L. If the phase information is evaluated as described in 

(5.77), the absolute value is limited in range ��¤@ ¤ . This means that the 

effect of round-off errors originating from the increasing absolute values 

of the phase information can be drastically reduced (Renczes, Kollár and 
Moschitta et al. 2016). 

Unfortunately, if we evaluate ätz zÈm å in the conventional way, by first 

computing tz zÈm  and subtracting the integer part from the result, large 

round-off errors cannot be avoided. The reason for this is that, during 

calculation, the large tz zÈm  value must be stored as a floating-point 

number causing a large round-off error. This error directly influences the 

accuracy of the fractional part and therefore improvement cannot be 

achieved.  

The effect of the large round-off error can be significantly reduced by 
applying the following recursive algorithm (Renczes 2017). Let us 

introduce the notation: 

 �v4  âzzÈ tã� (5.78) 

The phase information can be obtained by: 

��4  âzzÈã ����ðé@�����v~�4  A �v4 
 ��4 ��< è	����v4 
 ��4 � %�Ó�v4 
 ��4 � � óòçó < (5.79) 

that is, the phase information at the next time instant can be recursively 

calculated from the actual phase information. After evaluating �v~�4 , we can 

calculate its fractional part. In this way, the phase information can be mapped 
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to range ��¤@ ¤  (Renczes 2017). However, the issue is not solved completely 

due to the floating-point number representation, as round-off errors may 

accumulate at each summation step. To illustrate this effect, let us consider the 

result of the following operation, calculated in single precision: 

 ���%%%% 
 %�%�� � �%%%%� � %�%� � �=�Lü m �%�W��� (5.80) 

The result of the calculation is not 0, as expected. The reason for this is 

that the resolution of the mantissa of the two addition operands is 

significantly different, as bits that ensure fine resolution for small numbers 

get lost during summation. As such, if the additions that are needed to 
evaluate (5.79) are performed in the conventional way, these errors may 

accumulate. To avoid this accumulation, a compensated summation, 

suggested in Kahan (1965), can be applied. During this compensated 

summation, the error of each addition step is stored and this error is added 

to the next operand, reducing the inaccuracy of the whole summation. If 

the proposed recursive algorithm is extended with this compensated 

summation, the effect of round-off errors on the cost function of the LS 

fitting is significantly reduced (see Renczes 2017). 

After analysing the source of the error and its possible reduction, let us 

investigate the effect of imprecise phase evaluation on the results of ADC 

testing. The increase in the cost function can be illustrated through the 

value of ENOB. The effect of the error source on the ENOB will be shown 
in the following. Let us generate an ideal sine with the following 

parameters: 

 ¾  %�=���a  %�üÓ���o  %�Ó%���ðé@��� zzÈ  �L=� (5.81) 

We generate 100 different noise realizations and after adding the noise to 

the signal, the value of the ENOB is evaluated in each case. The fitting is 

characterized by the mean ENOB value. 

Firstly, we model the effect of a 12 bit ideal ADC. In this case, the 

additive noise is of uniform distribution. Three-parameter sine-fitting is 

performed using three different ways of computation. The first way applies 

double precision floating-point arithmetic, the result of which serves as a 

reference to classify the other methods. In the second case, conventional 

single precision evaluation is applied; while in the third case, the single 

precision evaluation is extended with the modified phase calculation 

method. Table 5-2 illustrates that, for small record lengths, differences are 
negligible. However, if the number of samples is increased, the difference 

of results for single and double precision may be more than 1 LSB. 
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Furthermore, the table shows that the modified single precision evaluation 

yields accurate results, even for long records. 

Number of 

samples 

Double 

precision 

evaluation 

Single 

precision 

evaluation 

Single precision evaluation 

extended with recursive 

phase calculation 

1 000 12.00 12.00 12.00 

10 000 12.00 11.97 12.00 

100 000 12.00 10.76 12.00 

Table 5-2. Mean ENOB values after performing different evaluations; the additive 
noise is of uniform distribution 

Besides modelling ideal quantization, the case of an ideal sine wave 

distorted by zero-mean Gaussian noise with a standard deviation of 1 LSB 
is also investigated. The results are given in Table 5-3. In this case, the 

effect of the imprecise phase evaluation is much smaller than in the former 

case. However, for longer records the difference between conventional 

single and double precision evaluation is non-negligible. This difference 

can be eliminated if single precision arithmetic, together with the proposed 

recursive phase evaluation, is applied.  

 

Number of 

samples 

Double 

precision 

evaluation 

Single 

precision 

evaluation 

Single precision evaluation 

extended with recursive 

phase calculation 

1 000 10.21 10.21 10.21 

10 000 10.21 10.20 10.21 

100 000 10.21 9.97 10.21 

Table 5-3. Mean ENOB values after performing different evaluations; the additive 
noise is of Gaussian distribution 
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5.4.3 Conditioning of the system matrix 

The other main error source connected to the numerical evaluation of sine-

fitting is the conditioning of the algorithms: the more ill-conditioned a 
system of equations, the more sensitive it is to small uncertainties in the 

inputs. Before investigating this effect, the conditioning of a system of 

equations is overviewed. We highlight here what conditioning means in 

general and how it influences the accuracy in the solution of a system of 

equations. 

As was pointed out in Subsection 5.2.2, for both three and four-

parameter sine-fittings, the system of equations can be given in the 

following form: 

 �Ä  ß�� (5.82) 

The solution of the system of equations can be obtained by the pseudo-

inverse of matrix D: 

 Ä  �~ß�� (5.83) 

Although the analytical solution is unique, during processing small 

perturbations may be added to both D and x. The source of these 

perturbations is, once again, the finite precision of floating-point number 

representation. The sensitivity of the solution can be described with the 

following formula: GÄæ � ÄGWGÄGW � û�é@��� çG�æGW � G�GWG�GW 
 Gßæ � ßGWGßGW è 
 ��ÜW�< (5.84) 

where �æ is the matrix obtained by the perturbation of matrix D, while Äæ 

and ßæ are obtained by the perturbations of Ä and x, respectively (Allaire 

and Kaber 2008). It follows from this formula that the upper bound of the 

evaluation errors is proportional to the errors of D and x. The proportional 

factor is the condition number of matrix D, which is the quotient of its 

largest and smallest singular values. The more ill-conditioned matrix D, 

i.e. the larger this ratio, the higher the errors that may occur during the 

solution of the system of equations. 

Let us get back to the solution of (5.83). The easiest way to calculate 
the pseudo-inverse of D can be described by the following formula: 

 �~  ������R����� (5.85) 
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However, in this case, ��� must be calculated. The condition number 
assigned to the algorithm is the square of the condition number of D. 

Therefore, for an ill-conditioned D, the errors described by (5.84) may 

assume even higher values. In order to avoid the squaring of the condition 

number, it is possible to calculate the pseudo-inverse with the help of 

different decomposition methods (e.g. QR decomposition or singular value 

decomposition; see Allaire and Kaber 2008). However, the computation of 

these decomposition methods is much more involved than that of direct 

evaluation given in (5.85). On the other hand, decomposition methods only 

prevent the squaring of the assigned condition number. If the original 

problem was ill-conditioned, it will remain ill-conditioned even if these 

decomposition methods are applied. On the contrary, if the condition 

number of the original problem was significantly decreased (in an ideal 

case to 1), then, even after the calculation of ���, we would still have a 
well-conditioned task. 

In the following, condition numbers assigned to three and four-

parameter sine-fitting are investigated. It is emphasized that three-

parameter fitting is well-conditioned, even without any further extension. 

On the contrary, four-parameter fitting may become ill-conditioned for 

long records, but with the help of some simple steps (scaling and 

modification of time axis parameters), its conditioning can be significantly 

improved. 

In order to evaluate the condition number assigned to three-parameter 

fitting, we investigate matrix �#��#. This matrix is denoted by ?é: 

�aê�a 
ÈÉ
ÉÉÉ
ÉÊ k û�çW `v�$

vl� k �û�ç`v
$

vl� çèé`v k �û�ç`v
$

vl�
k �û�ç`v
$

vl� çèé`v k çèéW `v�$
vl� k �çèé`v

$
vl�

k �û�ç`v
$

vl� k �çèé`v
$

vl� k ��$
vl� ËÌ

ÌÌÌ
ÌÍ

 ?é  ²Dë�� Dë�W Dë�ÄDë�W DëWW DëWÄDë�Ä DëWÄ DëÄÄ
³� 

(5.86) 

Let us introduce notation: 
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 ?é  ? 
 ì< (5.87) 

where 

 
?  ´�i= % %% �i= %% % �µ< (5.88) 

and E is the error of approximation. Thus, matrix ?é  can be described as 
the perturbation of diagonal matrix H. This description is advantageous, 

since the matrix perturbation theory on eigenvalues can be applied (Li 

1998). According to this theory, the following statement holds: 

 
\ í́T � ´T\ � î?é � ?îW  GìGW � GìG¶��< (5.89) 

where GmGW denotes the 2-norm of the investigated matrix and GmG¶ denotes 

the Frobenius norm. The former norm equals the largest singular value of 

the matrix, while the latter equals the square root of the sum of squared 

elements in the investigated matrix. In the inequation, ´T denotes the ith 
eigenvalue of H, while í́T denotes the ith eigenvalue of ?é . Since H is 
diagonal, its eigenvalues are equal to the diagonal elements. The aim of 

this investigation is to provide an upper-bound on the Frobenius norm of E 

and, by this means, to localize the eigenvalues of ?é  around the eigenvalues 
of H.  

Matrix perturbation theory provides an upper bound for the difference 

between eigenvalues, while, for the determination of the condition 

number, we need singular values. However, ?é  �aê�a and therefore it is 
symmetrical and a positive semi-definite. It follows that its singular values 

are equal to its eigenvalues. The same statement holds for matrix H.  

After these considerations, let us determine an upper bound for the 

Frobenius norm of E. To this end, let us investigate the elements of this 

matrix. During this investigation, we will make use of the fact that the 

elements of ?é  can be described as the sum of the products of sine and 

cosine function values. The only exception is DëÄÄ, which is equal to N. 
These sums of products can be given in closed-form equations 

(Gradshteyn and Ryzhik 1994). For instance: 

 Dë��  k û�çW `v
$

vl�  k � 
 û�ç=`�= �$
vl�  (5.90) 
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 �= 
 û�ç�� 
 ��`� çèé�`�= çèé`� � 
The deviation of this element from D�� is: 

 

\Dë�� � D��\  NS�= 
 û�ç�� 
 ��`� çèé�`�= çèé`� T � �=N 
 N�û�ç�� 
 ��`� çèé�`�= çèé`� N�� (5.91) 

An upper bound on this value can be given, if the sine and cosine values in 

the nominator are majorated by 1. However, the sine value in the 

denominator should be minorated in order to provide an upper-bound. To 

this end, we can use inequation: 

 çèé`� Ü =¤`������ú�è@ó@��
ð����% � `� � ¤=�� (5.92) 

Since `�  is the phase of the first sample, we can write:  

 `�  =¤ zazÈ  =¤ M��� (5.93) 

Condition `� Ü % is fulfilled, since J and N are positive. Therefore, the 

condition in (5.92) is fulfilled, if: 

 `� � ¤= <�����
ð��èç�� M� � �ü�� (5.94) 

This holds if at least four samples are sampled from one period. In 

practical applications, this is not a strict constraint. If this constraint is 

fulfilled, (5.91) can be further derived as: 

 

\Dë�� � D��\  æû�ç�� 
 ��`� çèé�`�= çèé`� æ � � � m �= m �=¤`��� 
 � �= m �=¤ =¤ M���  �¥M�� 

(5.95) 
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Other upper bounds of the elements of matrix E can be similarly 

determined. Let us denote the matrix that contains these upper bounds ìï: 

 ì7  �M
ÈÉ
ÉÉÊ

�¥ �¥ �=q=�¥ �¥ �=q=�=q= �=q= % ËÌ
ÌÌÍ� (5.96) 

Detailed derivations can be found in Renczes (2017). It is important to 

note that the elements of E can also be negative. However, in the 

calculation of the Frobenius norm, the sign of the elements is indifferent 
due to the summation of squared values. Consequently, since the elements 

of ì7 majorate the absolute values of the elements of E, the Frobenius 

norm of ì7 majorates the Frobenius norm of E: 

 GìG¶ � GìïG¶� (5.97) 

Making use of the equality of eigenvalues and singular values, we obtain 

the following inequation: 

 Q�T � �ðTQ � GìïG¶  %��Ó�M �< (5.98) 

where singular values are denoted by s. Applying this formula, the 

condition number of ?é , that is, the condition number of �aê�a can be 
upper-bounded, as well. For the maximal and minimal singular values of ?é , the following constraints hold: 

 

�ð7��ðT� � ��ð7��T� 
Gì7G¶  � 
 %��Ó�M �< 
�èé��ðT� Ò ��èé��T� �Gì7G¶  �= � %��Ó�M �� (5.99) 

Based on these constraints, the condition number that can be assigned to 

the three-parameter fitting can be upper bounded by: 
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��û�é@��aê�a�  �ð7��ðT��èé��ðT� � � 
 %��Ó�M�= � %��Ó�M  � 
 %��ÓM%�Ó � %��ÓM �è	��M Ü ��Ó� (5.100) 

The constraint on the number of sampled periods is needed in order to 

ensure the positivity of the denominator. From the inequation, it follows 

that the condition number is smaller than 11 if at least two periods are 

sampled; and it is smaller than 3.8 if at least four periods are sampled. 

Thus, the algorithm is well-conditioned. For large J, the upper-bound on 
the condition number can be approximated with its Taylor-series: 

û�é@��aê�a� � = m � 
 %��ÓM� � ��ÓM � = m ¦� 
 %��ÓM § m ¦� 
 ��ÓM § 

� = m ¦� 
 %��ÓM 
 ��ÓM §  = 
 ü�ÓM �������è	�M�èç�òðúñó� 
(5.101) 

The approximation shows that the upper bound is approximately inversely 

proportional to the number of sampled periods and asymptotically tends to 

2. This fits our expectations, since ?é  asymptotically tends to H, the 

condition number of which is equal to =. 

Let us now investigate the conditioning of four-parameter fitting. 

Contrary to three-parameter fitting, no approximate diagonal matrix can be 

given and the approximate matrix is, in this case, as follows (Renczes, 

Kollár and Dabóczi 2016): 

 EBSCOhost - printed on 2/14/2023 6:11 AM via . All use subject to https://www.ebsco.com/terms-of-use



Methods for Processing Measured Sinusoidal Signals and their  
Application in Analogue-to-Digital Converter Classification 

327 

 

? 
ÈÉ
ÉÉÉ
Ê �= % % a�Wü% �= % �¾�Wü% % � %a�Wü �¾�Wü % ¨W�ÄV ËÌ

ÌÌÌ
Í

 �
ÈÉ
ÉÉÊ

�= % % a�ü% �= % �¾�ü% % � %a�ü �¾�ü % ¨W�WV ËÌ
ÌÌÍ� 

(5.102) 

Furthermore, it can be clearly seen that if R or N is increased, the condition 

number increases as well. For example, if ¨  �%%%�ðé@��  �%�, the 

condition number is in the order of magnitude of �%�Ú. A condition 

number of �%�Ú means that, in applying floating-point arithmetic, the 
smallest singular value cannot be represented beside the largest singular 

value, even if double precision arithmetic is applied (the relative accuracy 

of which is in the order of magnitude of �%���; see Table 5-1). 
In the fourth row and column of H, the second and third power of N 

can be found. It is clear that the ill-conditioning is due to these four 

parameters. It follows that, by scaling this parameter, the condition number 

can be significantly decreased. Scaling can be performed as follows. Let us 

denote the scaling factor by �. If the fourth column of system matrix �T is 

scaled, that is, divided by �, this will influence the fourth row and column 

of matrix �Å��Å. After scaling the fourth parameter, the approximate 
matrix can be described as: 
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?ñÞ 
ÈÉ
ÉÉÉ
Ê �= % % a�Wüò% �= % �¾�Wüò% % � %a�Wüò �¾�Wüò % ¨W�ÄVòW ËÌ

ÌÌÌ
Í

 �
ÈÉ
ÉÉÉ
Ê �= % % a�üò% �= % �¾�üò% % � %a�üò �¾�üò % ¨W�WVòW ËÌ

ÌÌÌ
Í � �?ñÞó< 

(5.103) 

where ?ñÞ denotes the matrix H after scaling, while ?ñÞó can be obtained 

by multiplying N out of matrix ?ñÞ. In the scientific literature, this method 

is called pre-conditioning (Allaire and Kaber 2008). This modifies the 

estimated parameter vector: 

 ÄT<¸��  �¾T����aT����oT�����ø¿�T���� (5.104) 

The method is advantageous if, with appropriate �, 

 û�é@�?ñÞ� ö û�é@�?� 
(5.105) 

can be reached. We address how � should be chosen in a general case in 

order to achieve a significant decrease in the condition number of H. Let 

us investigate the effect of � on this condition number. 

In the following, it is assumed that ìñÞ � �%, that is, the approximation 

error is zero. It follows that ?éñÞ  ?ñÞ and the eigenvalues of ?ñÞ can be 

determined. These eigenvalues are equal to the singular values, since ?ñÞ 
is symmetric and positive semidefinite. From ?ñÞó, matrix ?ñÞ can be 

obtained by multiplication with N. It follows that the singular values of ?ñÞ are equal to N times the singular values of ?ñÞó. Therefore, the 

condition numbers of ?ñÞó and ?ñÞ are the same, i.e. the ratio between the 

singular values is unchanged. Eigenvalues (and singular values) of ?ñÞó 

can be obtained from the characteristic equation of the matrix. Derivation, 
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based on (Chen and Xue (2007), can be found in (Renczes, Kollár and 
Dabóczi (2016): 

o�´�  �%�Ó � ´ ç�%�Ó � ´��� � ´�S ¨WVòW �W � ´T � ¾�üò ¾�üò �� � ´�è 

�a�üò �%�Ó � ´�a�üò �� � ´� 
 �%�Ó � ´��� � ´�ç�%�Ó � ´�S¨WVò�W � ´T � ¾W�W�VòW � aW�W�VòW è 

 �%�Ó � ´��� � ´�ç�%�Ó � ´�S ¨WVòW �W � ´T � ¨W�VòW �Wè� 
(5.106) 

It can be clearly seen that ��  ´�  �� and �W  ´W � �%�Ó are always 

singular values. The third and fourth singular value can be obtained from 

the third term. Introducing the notation: 

 {  ¨W�WòW  (5.107) 

the following formula for the remaining singular values can be derived 

(Renczes, Kollár and Dabóczi 2016): 

 �Ä<W  {V 
 %<Ó Ú ¹{WLV 
 {�= 
 %<=Ó= �� (5.108) 

The results can be interpreted as follows. Decreasing z and approaching 0, 

we get �Ä � %�Ó and �W will approach 0. Due to the singular value of the 

latter, the condition number will assume high values. On the other hand, 

increasing z we get �Ä � {iV� and �W � %�=Ó. In this case, the conditioning 

is being rendered ill because of �Ä. Therefore, we expect that there is an 

optimal value of z (and correspondingly of �), for which the condition 

number is minimal. This minimal value is assumed to be at {def  L�ü=ê 

(see Fig. 5-14). The corresponding optimal � that ensures the minimal 

condition number for ?ñÞ is: 

 òdef  º¨W�W{def  ¨�qL�ü=ê  ¨���¥Ó=�� (5.109) 

Applying this scaling factor, the condition number drops to 14. 
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Under real circumstances, the assumption ìñÞ  ìñÞó � �% does not 

hold. Unfortunately, the helpful analytical investigation used for three-

parameter fitting cannot be applied here because, after scaling, the largest 

singular value of ?ñÞó is 1, while the smallest is 0.07. If we wish to 

provide an upper bound on the condition number, similar to (5.100), then 

the singular values should be localized more narrowly than the vicinity of 

0.07 to ensure a positive denominator in the upper-bound formula. To 

attain this narrow localization, a great number of periods need to be 

sampled. Consequently, this type of analysis does not yield applicable 

result for practical measurements.
 

 

Fig. 5-14. Condition number of ?ñÞ as a function of parameter z. 

The improvement in conditioning has been demonstrated through 

simulation. These simulations covered �%f different cases with parameters as 

follows. J/N was uniformly distributed in �%�%%�@ �%�=Ó  to ensure that at least 

four samples were sampled from a period. The lower bound was necessary to 

prevent the signal being arbitrarily oversampled. Furthermore, parameters A 
and B were also uniformly distributed in [0; 20 000]. Simulations were 

carried out for four different intervals of sampled periods. In the first case, the 

number of sampled periods was uniformly distributed in the range [4;5]; in 

the second case in the range [12;13]; in the third case in the range [34;35]; 

while in the fourth case, distribution was in the range [99;100]. In this way, 

the domain between 4 and 100 was divided logarithmically into four equal 
parts. The results are depicted in Fig. 5-15. In the figures, the width of code 

bins is always 0.01. Corresponding to expectations, the greater the number of 

sampled periods, the closer the approximation of the condition number of 14, 

which was determined for the case of ìñÞ � �%. It can also be seen that, if at 
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least four periods are sampled, the condition number remains smaller than 20. 

Consequently, if pre-conditioning (scaling) is applied, four-parameter fitting 

will be well-conditioned. 

In the following, the condition number will be further decreased. By 

modifying the time axis parameters, the matrix �Å��Å assigned to the four-

parameter fitting will become approximately diagonal. Therefore, with 

appropriate pre-conditioning, the optimal condition number of 1 can be 

approached. 
 

 

Fig. 5-15. Histogram of condition numbers of ?ñÞ with different numbers of 
sampled periods. 

We have seen that ill-conditioning is caused mainly by the fourth 

parameter, which corresponds to signal frequency. In (5.22) the fourth 

column of system matrix �Å is: 

 °�/�¾T�� çèé`� 
 aT�� û�ç`�1=/�¾T�� çèé`W 
 aT�� û�ç`W1q�/�¾T��çèé`$ 
 aT�� û�ç`$1± (5.110) 

consisting of sinusoidal signal samples multiplied by an increasing 

number. The computation of matrix �Å��Å requires the scalar 

multiplication of a sinusoidal signal with increasing amplitude and with 
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the other columns of �Å. As an example, consider the scalar product with 

the column assigned to the cosine parameter: 

��Å��Å�Rô  k t m �¾T�� m çèé`v m û�ç`v 
 aT�� û�çW `v�$
vl� � (5.111) 

The more samples that are considered, the greater the value of this non-

diagonal element. 

However, since the samples are processed offline, the origin of the 

discrete time axis can be shifted to the centre of the record, i.e. these time 

instants can be located symmetrically around 0 and take values from ��i= to �i=. Formally, time instants are shifted by:  

 ä  � 
 �= �� (5.112) 

In this way, time instant 2  % is shifted to the middle of the dataset 
(Renczes, Kollár and Dabóczi 2016). With this modification, time instants 

take both positive and negative values. As such, in summations where t is 

a multiplying factor, we can expect a decrease in the value of the sum. 

The method is indeed advantageous because, if each sample is used for 

the fitting, no data loss or data discarding due to overdrive at the input of 

the ADC ensues. In this case, the summation of odd functions gives a 

result of 0. As mentioned before, matrices assigned to both three and four-

parameter LS sine-fitting (denoted by H in both cases) are built from the 

sums of sinusoidal and cosinusoidal terms. By making sampling instants 

symmetrical to % for odd functions, for example, for çèé�Î� the following 
equation holds: 

 
k �çèé�`v�ã�$
vl�  %� (5.113) 

The result is exactly %. Therefore, there is no need to perform � 

summation steps. Similarly: 

 k �çèé�`v�ã�$
vl� û�ç�`v�ã�  k �=çèé�=`v�ã�$

vl�  %� (5.114) 

After modification, the estimated parameter vector is as follows: 
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 �ÄÅ��4  �¾T4 ���aT4��oT���ø¿�T�< (5.115) 

where ÷ indicates that the given parameter is calculated after the 

modification of the time-axis parameters. It should be noted that after 

modification, oT and the necessary fine tuning in the angular frequency 

remains unchanged, since these parameters are not influenced by the 
interpretation of time-axis parameters. On the contrary, the amplitudes of 

sine and cosine parameters, which determine the initial phase of the 

sinusoidal signal, are sensitive as to whether the sampling instant 0 occurs 

at the beginning of the dataset or in its middle. The sampled signal with 

the new parameters can be described with the following expression: 

 Gv  ¾4 m û�ç�`v�ã� 
 a4 m çèé�`v�ã� 
 o� (5.116) 

It is important to emphasize that the change in the parameter vector does 

not change the fitted sine as a time domain signal. It only modifies the 

interpretation of the sampling instants. The original signal parameters can 

be expressed with the new ones (Renczes, Kollár and Dabóczi 2016): 

 

¾  ¾÷ û�ç¦=¤ zzÈ ä§ � a÷ çèé¦=¤ zzÈ ä§ 

a  ¾÷ çèé¦=¤ zzÈ ä§ 
 a÷ û�ç ¦=¤ zzÈ ä§� (5.117) 

Certainly, the amplitude of the signal remains the same, i.e. the time 

domain signal remains unchanged: 

 ¨  Û¾÷W 
 a÷W  Û¾W 
 aW� (5.118) 

With the given modification, as is shown in the following, matrix ��Tê�T�4
 

of the modified four-parameter LS fitting becomes diagonal (Renczes, 

Kollár and Dabóczi 2016). In order to further improve the conditioning, 

the third parameter, i.e. the DC level, can be scaled so that the assigned 

singular value becomes �i=, similarly with singular values assigned to 

cosinusoidal and sinusoidal parameters. This can be achieved by scaling 

the third column of system matrix XÅ by q=. At this moment, the 

following description of the four-parameter fitting can be given: 

 ��Tê�T�4  ?é 4  ?4 
 ì4< (5.119) 
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where 

?4  °�i= % % %% �i= % %�% % �i= %% % % ¨W���±<������  �Ä � �=ü �< (5.120) 

and it can be shown that the absolute values of ìõ can be upper-bounded by 

the following matrix 

 ì74  �M
ÈÉ
ÉÉÉ
ÉÉÊ

�¥ % �ü Q¾4Q��ÓM% �¥ % Qa4Q��ÓM ��ü % % Q¾4Q�Óq=MQ¾4Q��ÓM Qa4Q��ÓM Q¾4Q�Óq=M ¨W�W=¥M �ËÌ
ÌÌÌ
ÌÌÍ� (5.121) 

Detailed derivations can be found in Renczes (2017). (5.120) shows that 

conditioning can be significantly improved by scaling the fourth 

parameter. If this parameter is scaled by:  

 �4  º=¨W���  ¨º=���  ¨º�W � ��= �� (5.122) 

the approximate matrix can be given as 

 
?¸�4  °�i= % % %% �i= % %�% % �i= %% % % �i=�±� 

(5.123) 

this matrix possesses the optimal condition number of 1. 

To sum up, the original four-parameter fitting has been modified at two 

points. Firstly, time-axis parameters have been set symmetrically to zero. 

Secondly, the elements of the system matrix have been appropriately 

scaled. After these modifications, the fitting problem can be solved in the 

regular way: 

 EBSCOhost - printed on 2/14/2023 6:11 AM via . All use subject to https://www.ebsco.com/terms-of-use



Methods for Processing Measured Sinusoidal Signals and their  
Application in Analogue-to-Digital Converter Classification 

335 

 �ÄÅ�}[4  ��XÅ�}[4  ~ß< (5.124) 

where �XÅ�}[4  denotes the scaled system matrix, the elements of which are 
calculated after applying time-axis parameter modifications. Due to the 

scaling of the DC and the frequency fine tuning parameter, the estimated 

parameter vector contains the following elements: 

 �ÄÅ��}[4  �¾T4 ���aT4��oTq=���4�ø¿�T�� (5.125) 

Similar to the three-parameter fitting, the matrix perturbation theory on 

eigenvalues can be applied (Li 1998). In this way, it can be shown that 

with the proposed modifications, the condition number assigned to the 

four-parameter fitting can be upper-bounded: 

����û�é@�?é¸�4 �  û�é@ ¼��Tê�T�¸�4 ½  �ð7���ðT��èé��ðT� � �ð7��T� 
îì¸�<ö4 î¶�èé��T� � îì¸�<ö4 î¶
 %�Ó 
 %�ê¥M%�Ó � %�ê¥M < è	�M Ò ü� (5.126) 

where ì¸�<ö4  contains upper bounds on the error elements of the 

approximation of ?¸�4 . It should be noted that the approximation holds only 

if at least four periods are sampled—this constraint is needed during 

calculation of the absolute upper-bound values of error matrix ì¸�<ö4 . 

Detailed derivations can be found in Renczes (2017). If the number of 

sampled periods is increased, the given upper bound can be approximated 

with its Taylor-series: 

 
û�é@�?é¸�4 � � %�Ó 
 %�ê¥M%�Ó � %�ê¥M � � 
 L�ê=M <���è	�M�èç�òðúñó� 

(5.127) 

It follows that, with the increase in J, the optimal condition number of 1 
can be approached. 

5.4.4 Summary of results 

In this subsection, the effect of two error sources has been investigated. 

These error sources influence the results of both three and four-parameter 

 EBSCOhost - printed on 2/14/2023 6:11 AM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Five 336 

least squares sine-fitting algorithms. Besides investigation, novel methods 

have been proposed to decrease these unfavourable effects. It has been 

shown that with the application of the proposed methods, numerical 

stability of these algorithms can be improved significantly. The most 

important results can be summarized in the following points: 

� We have shown that due to round-off errors of floating-point 

arithmetic, the mean value and the variance of the LS cost function 

may increase significantly. In the applicable range of assumptions, 

these values are approximately proportional to the square of the 

sampled periods, to the square of the relative number representation 

accuracy, and to the record length. 

� We have shown that the numerical stability of the sine-fitting 

algorithms can be increased significantly, provided that the 

instantaneous phase values are limited to the range ��¤@ ¤�. This was 

realized by using the periodic property of sine and cosine functions. 

� We have proven that three-parameter least squares sine-fitting is a 

well-conditioned task. On the contrary, the condition number assigned 

to the four-parameter fitting is increasingly squarely proportional to the 

amplitude of the signal and to the number of samples. 

� We have shown that, with appropriate scaling, the four-parameter 

problem becomes well-conditioned as well. 

� With the modification of the time-axis parameters, we have made the 
matrix assigned to the four-parameter problem approximately diagonal. 

Then, after applying appropriate scaling, we have proven that the 

condition number assigned to the four-parameter fitting approaches the 

optimal value of 1. 

5.5 Maximum likelihood estimation 

5.5.1 Attributes of maximum likelihood estimation 

Maximum likelihood estimation (MLE) can be successfully used to solve 

such problems that can be handled with probabilistic modelling. The most 
attractive attributes of MLE are as follows (Schnell 1985): 

� Consistence: The ML estimator converges to the real value of the 

parameter if the number of independent observations tends to infinity. 

This behaviour is also called asymptotic unbiasedness. Convergence in 

this case means convergence in probability, i.e.: 
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 òè�(�) Å�Qv&K � vQ Ü �  %��< (5.128) 

where n is the number of independent observations and v&K is the ML 

estimator of model parameter v.  

� Asymptotic normality: The distribution of the estimators tends to a 
normal (Gaussian) distribution if the number of observations tends 

towards infinity. The expected values of this distribution tend towards 

the real values of the parameter, while its covariance matrix 

approaches the Cramér-Rao lower bound. 
� Efficiency: The covariance matrix of the ML estimators reaches the 

Cramér-Rao lower bound, if the number of independent observations 

tends towards infinity. This lower bound is the inverse of the Fischer 

information matrix, which is a derivative of the joint density function 

of the observations (the likelihood function). The Fisher information 

matrix can be expressed as: 
 Ö�v  �. ç;W òé�z�va��;v�;vv è (5.129) 

where z�va� is the likelihood function evaluated at va; va is the real 

value of the parameters to be estimated; and Ö�v is the element of the 

Fisher information matrix corresponding to row j and column k. 

� Invariance: Let us consider transformation g, which is not necessarily 

linear, applied to parameter v: 
 Î  ^�v�. (5.130) 

In this case, the ML estimator of Î can be achieved through applying 

transformation ^ to the ML estimator of v: 
 Î&K  ^�v&K�� (5.131) 

This means that the transformed value of the ML estimator is the ML 

estimator of the transformed value. 

5.5.2 Application of ML estimation for ADC testing 

It is not trivial to apply the ML estimation method in ADC testing. The 

model elaborated for this purpose assumes that the stimulus is a noisy sine 

wave: the additive noise has a Gaussian distribution and a white spectrum. 

The white spectrum implies that the noise samples are not correlated. This 
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assumption is important in terms of deriving the joint density function. 

The ADC itself is modelled as an ideal sample-and-hold unit and a non-

ideal quantizer. This latter can be described by its code transition levels. 

The measurement record is the sampled and quantized noisy sine wave and 

based on these observations the parameters of the excitation signal and the 

ADC under test can be estimated. In the following, we introduce ADC 

testing based on ML estimation, including: the description of the model; 

the solution of the estimation problem; and the challenges of its 

application and their resolution.  

A model for ADC testing with sinusoidal excitation using ML 

estimation has been published in Balogh, Kollár and Sárhegyi (2010). The 
sampling is considered to be ideal and the quantizer is described by its 

code transition levels. Code transition level �v�equals the input DC voltage 

level for which the quantizer provides, with a Ó%�É probability, either 

digital code t�¶ �� or t. A Ñ-bit quantizer can provide output codes 

between % and =7 � �, i.e. it has =7 � � code transition levels. The 

reduced full scale (RFS) is between  �� and �W÷�� transition levels. Any 

input voltage value above �W÷�� will lead to output code =7 � � and any 

input voltage below �� will cause code % at the digital output of the 

quantizer. The behaviour of the quantizer can be described by function ��j�: 

 ø�7�  %< ��è	�7 � e��<������������j�  �=7 � � �������è	�j Ü �W7���<�������ðé@�����j�  n< ������������������è	��S � j � �S~�� (5.132) 

The noiseless component of the sinusoidal excitation can be described by 

four parameters: ¾ is the coefficient of the cosine component; a is the 

coefficient of the sine component; and�z�stands for the frequency of the 

signal. The DC component of the excitation signal is denoted by o. The 

external disturbances, the electronic noise, and all other kinds of noise are 

represented by a noise signal superimposed on the sine wave. According to 

the model, this noise follows a Gaussian distribution with a zero mean and V standard deviation. The spectrum of the noise is considered to be white. 
In our case, these assumptions are acceptable and make mathematical 

modelling considerably easier. Let 	�2� denote the additive noise as a 

function of time. Since the noise spectrum is white, the noise samples 	�E�� and 	�EW� are independent if, and only if, E� ' EW. The noisy sine 

wave is sampled and quantized at time instant 2v�(t�  ��I�).  The tfÛ 
sample of the measurement record appears at the digital output of the 

ADC: 
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 j�t  ��G�2v 
 	�2v �� (5.133) 

The objective of the method is to estimate the following parameters: 

� The code transition levels of the quantizer: ��< �W< � � � < �W÷�� 

� The cosine component of the excitation: A 

� The sine component of the excitation: B 

� The DC component of the excitation: C 

� The frequency of the excitation: f 
� The standard deviation of the additive noise: V. 

Ideal equidistant sampling is assumed: 2v  2v<Tù¡6ã  t�È. The 

frequency of the sine wave can be expressed by the angular frequency 

normed to the sampling frequency (¿) (see (5.7)). In this case the signal 

can be expressed as in (5.8). The parameter vector to be estimated is: 

 ��  �¾ a o ¿ �� �W I �W÷�W �W÷���� (5.134) 

To express the likelihood of these parameters, we introduce the vector > of discrete random variables. The length of > is �. The tfÛ element of 

this vector �Ê�t � is assigned to the tfÛ sample of the measurement 

record. Ê�t , with a given probability, takes the value of one of the ADC’s 
output codes between % and =7 � � , i.e.: 

 

k Å�Ê�t  ä W÷��
ãla  ��� (5.135) 

The probabilities of Ê�t  show, assuming parameter set �, how the tfÛ 

sample is distributed. To express the probabilities, based on the Gaussian 

noise model, the “error function” is evaluated as: 
 óú	�j�  =¤ C ��¿�Z

¿la \{� (5.136) 

In this way, the probability distribution of Ê�t  can be expressed as: 
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 Å�Ê�t  %  �= �óú	 S�� � G�t q=V T 
 ��
Å�Ê�t � �=7 � � � ��= �� � óú	 S�W÷�� � G�t q=V T�

Å�Ê�t  ä  �= �óú	 S�ã~� � G�t q=V T 
 óú	 S�ã � G�t q=V T� <
 (5.137) 

where ä  �� � =7 � =.  
To avoid the use of three equations, it is worth introducing two more 

virtual code transition levels: let �a  �x and �W�  
x. Using this 

notation, the distribution of Ê�t  can be expressed by one equation: 

 Å�Ê�t  ä  �= �óú	 S�ã~� � G�t q=V T 
 óú	 S�ã � G�t q=V T�< (5.138) 

where ä covers the entire digital code range, i. e. ä  %� � =7 � �. The joint 
density function of the observations (the likelihood function) can be 

expressed as: 

 ë�Î�  ¸Å�Ê�t  j�t  $
vl� � (5.139) 

This means that each element of the measurement record is an observation. 

Using the previous equations, the likelihood function can be expressed in 

closed form: 

 ë�Î�  ¸�= �óú	 S�ã~� � G�t q=V T 
 óú	 S�ã � G�t q=V T� $
vl� � (5.140) 

The objective function (or cost function) of the estimate is derived from 

(5.132), typically as its negative log-likelihood function, which has better 

numerical properties. �/�Î�  � òéë�Î� 

 � m òé = � k �= �óú	 S�ã~� � G�t q=V T 
 óú	 S�ã � G�t q=V T�$
vl� ��� (5.141) 
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The maximum likelihood estimator of parameter vector p is attained at the 

minimum of this cost function. 

5.5.3 The noise model 

The noise model applied must meet two requirements: on the one hand, it 

has to describe real noise phenomena properly and, on the other hand, it 

must be feasible from a mathematical point of view. A Gaussian 

distribution is a generally attractive option for multiple reasons. The actual 
value of additive noise can be considered as the linear combination of 

many different and independent noise sources. Furthermore, the 

probability density function of the Gaussian distribution is continuous 

everywhere and can be differentiated anywhere; as such, the cost function 

can be handled well from a numerical perspective. 

These assumptions can be confirmed or denied via examination of long 

measurement records. In the following, evaluation of a measurement 

record containing one million samples is described (Virosztek 2013). 

During measurement, the excitation was a constant zero voltage, thus the 

samples of the additive noise were recorded. The histogram of the noise 

samples is shown in Fig. 5-16. The measured distribution is not 
symmetrical (the skewness is approximately 0.44) and the kurtosis is more 

than 1.5 times larger than that of the Gaussian distribution. 

This histogram, similar to other histograms of noise samples, contains 

more outliers than expected from the Gaussian distribution. However, even 

though the Gaussian distribution is not fat-tailed enough to model the 

outliers properly, it can be used well in practice. It penalizes the deviation 

between measured and modelled values in a monotonic and differentiable 

way. Based on our experience, this is enough to gain consistent and 

efficient estimators. Furthermore, the parameter describing the standard 

deviation of the additive noise can be used to relax the optimization 

problem. The value of the noise deviation estimator can be artificially 

increased to be in the range of the quantization step. This way the 
numerical properties of the cost function can be improved without 

changing the nature of the estimation itself. These special cases and the 

method of the relaxation are described later. 
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Fig. 5-16. Histogram of � million noise samples. 

The whiteness of the additive noise superimposed on the sinusoidal 

excitation is an assumption that also needs to be checked because the un-

correlatedness of the noise samples is crucial in terms of the expression of 

the likelihood function. If the realization of a noisy signal leads to 

independent noise samples, then the joint density function of the 
observations can be expressed as in (5.131). 

The spectral properties can also be checked using long measurement 

records: let us take a look at a record containing two million samples. The 

sampling frequency is zÈ  =%%�ùúû and therefore the resolution of the 

DFT is øz  %���úû. There are only a few minor peaks in the spectrum 

(see Fig. 5-17) and these are all traces of electromagnetic interference. The 

peak at 50 Hz is due to the emission of the devices using the electric power 

network; however, it is barely visible due to the linear scaling in the x-axis 

and the resolution of the picture. With appropriate EMC design of the 

measurement setup, periodic disturbances can be successfully avoided. If 
the experiment is designed properly to suppress disturbances, the spectrum 

of the noise will be smooth enough to consider the noise samples 

uncorrelated. In this way, our previously mentioned assumptions can be 

used during the solution of the estimation problem. 
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Noise has a special role in the likelihood function and its optimization. 

On the one hand, V, the standard deviation of the additive noise, is a 

simple parameter to estimate. On the other hand, especially in the case of 

measurements where the amount of noise is relatively low, the proper 

handling of parameter V can be a tool to relax the problem and improve 

the numerical properties of the likelihood function (or the cost function). 

In the following, we introduce the special role of the noise parameter. 

Since the likelihood function is a product, and all the elements of the 

product are achieved via evaluation of the error function, each observation 

has a large impact on the likelihood of the parameter vector p. 
 

 

Fig. 5-17. Spectrum of 2 million noise samples. 

Considering the kth sample of the measurement record, the probability 

of the sample being between code transition levels �Z�v  and ��Z�v ~� can 

be given by integrating the probability density function of the Gaussian 

distribution between �Z�v  and ��Z�v ~�. The standard deviation of this 

Gaussian distribution is V and the expected value of it is the tfÛ sample of 

the noiseless sine wave, i.e. x�t  �¾�¿t� 
 a�¿t� 
 o. Formally: 
 Å��Z�v � j�t 
 	�t � �Z�v ~�� (5.142) 
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 ��=óú	S�Z�v ~� � G�t q=V T � óú	 S�Z�v � G�t q=V T�< 
where 	�t  is the tfÛ sample of the additive noise:�	�t � �	�2v  t�È�. 
It can be observed that, with fixed sine wave parameters (¾<a<o and ¿) 

and the adjustable noise parameter (σ), the probabilities can be 

significantly different. Fig. 5-18 shows that the sample of the pure sine 

wave lies between code transition levels �Z�v  and  �Z�v ~�. If the standard 

deviation of the noise is low, only output code j�t �will be compatible 

with the parameters. However, if we increase the value of V, the digital 

codes in the neighbourhood of j�t  will also become compatible with the 

parameters. They can appear on the output of the ADC with a finite, non-

zero probability. 

 

 
Fig. 5-18. Probability density function of a noisy sample using different values for 
σ. 
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The connection between the noise and the probability of the output 

codes can be described in this way: in the case of a given measurement 

record, the set of the parameter vectors compatible with the measurement 

depends on the amount of noise. If we assume large values for�V, a wide 

range of parameter vectors become compatible with the measurement; 

nevertheless, none of these will have a large likelihood. If we assume a 

small standard deviation for the noise, only a narrow set of parameter 

vectors will be compatible with the measurement record, but the likelihood 

of these compatible parameter vectors will be larger than in the previous 

case. If V tends to %, the following special case will be faced: each sample 
of the measurement record will either be totally compatible with the 

parameters (in this case the component of the likelihood function 

corresponding to that sample will be �), or totally incompatible (in this 

case the component of the likelihood function corresponding to that 

sample will be %). In this way, a parameter vector can either be totally 

compatible with the measurement record or totally incompatible. In the 

former case all the components of the likelihood function are � and 

therefore the product of them is � as well. In the latter case, there is at least 

one component with a % value in the product, so the likelihood function 

becomes % as well. In the case of very low noise, the parameter space is 

split into two domains: the domain of parameter vectors compatible with 

the measurement record (here the likelihood is 1) and the domain of the 

parameter vectors incompatible with the measurement record (here the 

likelihood is %). Compatibility and incompatibility are shown in Fig. 5-19. 
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Fig. 5-19. Waveforms compatible and incompatible with the measured samples. 

 

In the case of arbitrary low V, the first and second order partial 

derivatives of the likelihood function are either % or they do not exist. 

Thus the extremum of the likelihood function cannot be found by 

optimization strategies based on derivatives. In this case, the estimation 

problem can be solved via the following steps: 

 

1. The initial estimators for the parameters of the sinusoidal stimulus 

(¾<a<o<¿) are calculated using a four-parameter sine wave fit in the 

least squares sense. 
2. The estimators for the code transition levels are calculated via the 

histogram test (note the prerequisites of histogram testing with a 

sinusoidal stimulus).  

3. The initial estimator for the standard deviation of the noise can be 

calculated using the samples of the quantized, pure sine wave and the 

samples of the measurement record: 

 

Va  A ��~ � �k���GKL��t � � j�t ��W$ü
vl� ����< (5.143) 
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where GKL�t  is the tfÛ sample of the pure sine wave achieved via 

the four-parameter fit in a least squares sense; ��j� is the function 

describing the quantizer based on the code transition levels and �~ 

is the number of samples used to get an initial estimator for 

parameter V. Naturally, �~ � � and it is not necessary to use the 

entire measurement record for this initial estimation of σ. If the 
value of Va is very low (Va ö ��ë�a�, it is increased artificially. 

Based on our experience, Va  %�Ó�Ø{½ is a good choice. 

4. The optimization of the likelihood function can be initiated. Since 

the first and second order partial derivatives can be calculated, an 
arbitrary gradient-based method can be chosen. If the calculation of 

the derivatives leads to numerical problems, the value of V can also 

be increased during optimization. 

The figures from Fig. 5-20 to Fig. 5-24 show the process of such an 

optimization. The likelihood function is displayed with respect to two 

parameters: A and B. The parameters corresponding to the frequency and 

the DC component are constant during this optimization. The standard 
deviation of the additive noise changes in each step. 

 

 

Fig. 5-20. The initial estimators are incompatible with the measurement record: the 

likelihood is 0 and the derivatives do not provide any information. 
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Fig. 5-21. Increasing V makes the likelihood function continuous. The derivatives 

can be calculated and the optimization can be initiated. 
 

 

Fig. 5-22. Using derivative-based methods, the extremum of the smoothed 
likelihood function can be approached. 
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Fig. 5-23. Decreasing the standard deviation of the noise makes the likelihood 

function sharper. 
 

 

Fig. 5-24. Decreasing σ back to 0: now the parameter vector is compatible with the 
measurements and the likelihood reaches 1. 
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5.5.4 ML estimation of aperture jitter 

By adding one further parameter, aperture jitter can also be considered 

within the framework of ML estimation (Virosztek 2019). In this case, the 
real sampling time instances are distributed around the ideal sampling time 

instances: 

 2v  2v<Tù¡6ã 
 ø2v  t m �È 
 ø2v< (5.144) 

where the values of ø2v follow a Gaussian distribution with a % expected 

value and standard deviation of Vf. Since the ø2v values due to aperture 

jitter are small (typically in the ps range), and the sine waves used for 

ADC testing are relatively slow (their frequency is usually in the range of 

10…100 Hz), the effect of jitter can be well modelled by a first order 

approach: 

 øGv  \j�2�\2 Nflvm0Ç m ø2v� (5.145) 

Since the excitation is sinusoidal, its first order derivative is a sine wave as 

well. As such, the noise component owing to aperture jitter is a Gaussian 

noise, which is amplitude-modulated by a sine wave. In the ML estimation, 

the noise owing to jitter and the other noise components can be decomposed: 

in the parameter vector, instead of V, there are two parameters: VH and Vf. 
The former describes the noise component that is unrelated to the jitter; the 

latter is the standard deviation of the difference between the real and ideal 

sampling time instances. The details of aperture jitter estimation in the ML 

sense are described in Virosztek (2019). The conclusion is that in ML 
estimation, the aperture jitter can be included in the above procedure via 

increasing the parameter space by only one parameter. 

5.5.5 Parameter space size reduction 

The size of the parameter space is crucial in the case of ML estimation 

of an ADC and its excitation signal parameters. The number of parameters 

to be estimated is =$ 
 ü in the case of a N-bit quantizer (if the aperture 

jitter is also the subject of estimation, this number is =$ 
 Ó). The number 

of code transition levels is =$ � �. This means that the number of the 
parameters to be estimated exponentially depends on the number of bits, 

which provides serious challenges to the algorithm for optimizing the cost 

function for several reasons: 
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� The number of the first and second order derivatives increases 

exponentially as well. 

� The cost function will be barely sensitive to the unique code transition 

levels, compared to other parameters, e.g. the frequency of the sine 

wave. 

Since the number of samples corresponding to the same code bin is 

relatively small (e.g. in the case of a 16 bit quantizer and 100,000 samples, 
mostly one or two samples will be in the same code bin), the variance of 

the estimators of the code transition levels is large. The variance can be 

calculated based on the formulae described in Blair (1994). The idea is that 

the global behaviour of the quantizer shall not be described using 

relatively uncertain estimators of the code transition levels, but using 

other, more global and less variable, parameters. In other words, the 

information contained in the uncertain estimators of the code transition 

levels shall be compressed into a smaller set of less uncertain parameter 

estimators.  

To achieve this goal, the static transfer characteristic of the quantizer 

shall be approximated. In this case, the coefficients of the approximating 
polynomials or series become the parameters to be estimated. Virosztek 

and Kollár (2017) examine three different approximation approaches. 

These are: the use of Taylor polynomials; the use of Chebyshev-

polynomials; and the use of Fourier series. The result of this investigation, 

and thus the conclusion, is that using Fourier series for the purposes of 

approximation efficiently decreases the size of the parameter space, while 

the level of information loss is tolerable. To quantify information loss, 

three quantities are introduced: 

� The äW norm of the difference of the code transition levels 

corresponding to the original quantizer and to the approximated one; 

� The  ä) norm of the difference of the code transition levels 
corresponding to the original and the approximated quantizer and; 

� The äW norm of the difference of noisy sine waves quantized by the 
original and the approximated quantizer. 

In theory, the ä) norm of the difference of noisy sine waves quantized by 
the original and the approximated quantizer may also be an important 

quantity; however, in practice this value is typically 1 or 2 and therefore of 

little use in comparing different types of approximation.  

Based on the investigation described in Virosztek and Kollár (2017), 

the approximation of the static transfer characteristic of the quantizer by a 
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few tens of real Fourier coefficients can be effective. The size of the 

parameter space decreases significantly and it becomes independent of the 

number of bits. Furthermore, the global behaviour of the quantizer will 

still be modelled properly: the information loss due to approximation will 

be small compared to the information loss for other reasons (e.g. the 

additive noise and harmonic distortion). The variance of the Fourier-

coefficients used for approximation is smaller than the variance of the 

code transition levels. This can be verified by a formal sensitivity 

calculation and summation of the variances. The sensitivity of the 

approximation parameters of the code transition levels was previously 

published in Virosztek and Kollár (2017). 
The approximation of the static transfer characteristic of the quantizer 

offers a good solution to the challenges of the large parameter space. The 

relevant information regarding the behaviour of the quantizer can be kept 

and compressed by using fewer parameter estimators with smaller 

variance. 
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