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PREFACE 

 

 

 

The recent progress in computational methods and computer-based 

simulation models contributed significantly to the efficiency of scientific 

research in different areas. In the area of thermomechanics, for example, the 

widespread implementation of the modern computer methods is motivated 

by the complexity of scientific problems addressing the thermo-mechanical 

phenomena in material structures, the coupling of processes and 

physicochemical fields, variety in shape and material properties of the 

structures or their assemblies, multi-field nature of impacts, time and cost 

constraints for the computation and analysis, etc. Such a complexity level 

makes it nearly impossible to derive a solution analytically. This reason tips 

the scale of interest for students, scholars, and research-engineers towards 

the “fast and efficient” numerical methods over the analytical ones, which 

may seem to be “potentially insufficient” and “too sophisticated”. This also 

widens the gap between the “modern” and “pre-computer” scientists in their 

approach. So maybe it is the time for analytical methods to take their place 

in the “museum of science” alongside the slide rule and arithmometer? 

The authors sincerely believe that the depreciation of analytical 

methods, in many cases, fails to capture important features of the studied 

processes and phenomena. In our experience, the implementation solely of 

even the newest and most efficient numerical methods for the analysis of 

structures of specific geometries (for example, propellant tanks of launch 

vehicles) is related to certain complications. One of those is a very large 

number of equations to solve, which presents a challenge even for modern 

computational facilities. Therefore, the original boundary value problem on 

the mechanical analysis of the entire structure is to be segmented into a 

number of sub-problems formulated for the representative elements of the 

structure. This, however, imposes a new problem on the adequate evaluation 

of the boundary conditions for the considered structural element allowing 

for the simulation of the impact caused by the remaining parts of the 

structure. The efficiency in solving the latter problem depends on 

understanding the critical stress behavior which calls for implementing 

analytical procedures for a clear cause-consequence analysis.  

This makes it clear that the progress in the analysis of complex 

mechanical problems depends, in the final count, on the synergy of 

analytical and numerical methods. In this regard, we can refer to the motto 
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of the book [101] by R. W. Hamming: “The purpose of computing is insight, 
not numbers”. From this viewpoint, the main demand for the analytical 

methods is not just constructing a solution (which is now not the final goal 

of the research but rather an intermediate step), but presenting it in the most 

convenient form that can be used for further analysis. Such a solution form 

in mechanics of solids implies the explicit analytical relationship between 

the loadings and stress-strain fields.   

In this book, we present an analytical method for the thermoelastic 

analysis inhomogeneous solids, the central idea of which is representing the 

stresses in the form of explicit analytical dependencies on the mechanical 

and thermal loadings. This method is based on the concept of direct 

integration of the governing equations of the elasticity and thermoelasticity 

problems  from  the “first principles”, i.e., by operating with the stresses or 

displacements without implementation of the potential functions of higher 

differential order. The method is oriented towards the integrodifferential 

relationship between the stress-tensor components, which is derived on the 

basis of equilibrium equations in terms of stresses and thus is irrespective 

of the material properties. This fact makes this method very attractive for 

solving thermoelasticity problems in anisotropic and inhomogeneous solids.  

The hypotheses and models underlying classical theories of elasticity 

and thermoelasticity mostly assume the elastic properties of isotropic and 

anisotropic materials to be constant. However, later, primarily due to a 

deeper empirical study of the elastic behavior of real-life structures and the 

needs of engineering practice, it became necessary to take into account the 

dependence of the material moduli on spatial coordinates. Materials with 

such properties are known as inhomogeneous materials. The studies of the 

thermomechanical behavior of inhomogeneous structures under the action 

of force and thermal loadings attract the attention of specialists in both 

academia and industry. In particular, this is due to the development of the 

concept of functional-gradient materials (FGM) and the latest technologies 

for the formation of inhomogeneous structures with a predetermined 

distribution profiles of thermophysical and mechanical properties, which 

are intensively introduced and studied in scientific and industrial centers 

around the world.   

The development of methods for the analysis of the thermomechanical 

behavior of inhomogeneous or FGM solids is concerned with significant 

difficulties, caused primarily by the need to solve governing differential 

equations with variable coefficients within the framework of corresponding 

problems of thermomechanics. The classical methods, in the vast majority, 

fail to meet urgent needs in this field, the main of which is to determine the 

optimal distribution of material characteristics to ensure certain functional 
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parameters of a structure as a whole, as well as optimal control of their 

thermostressed state. From this point of view, the determination of the 

stress-strain state is not the final goal of the research, but only an 

intermediate stage, which should provide an analytical solution of the direct 

problem, which satisfies the boundary and initial conditions, fundamental 

principles and modeling constraints of solids mechanics, and is in the form 

of an explicit functional dependence on loadings and material properties, 

which is critical for further application. 

This book generalizes the results in solving two-dimensional elasticity 

and thermoelasticity problems for anisotropic inhomogeneous solids we 

generated over two decades by developing the direct integration method. 

We attempted to emphasize the advantages and, what is more important, the 

disadvantages of the method for solving practical problems. 

The book consists of four chapters. The first chapter is devoted to the 

historical aspects of the research into the thermomechanical performance of 

inhomogeneous solids along with the review of the dominant analytical 

methods in this subject area. We intentionally emphasized the earlier studies 

over the new ones for the reason that, unfortunately, many “new” results 

published in recent decades reproduce (completely or in some part) the older 

ones, which we may explain by the lack of knowledge about the studies 

provided in pioneering research works. The second chapter presents the 

application of the direct integration method for solving thermoelasticity 

problems for orthotropic inhomogeneous infinite, semi-infinite, and finite 

solids in the Cartesian coordinate system. The third chapter presents the 

analysis of orthotropic inhomogeneous annuli in the polar coordinates. The 

fourth chapter deals with the construction of solutions to thermoelasticity 

problems for infinite, semi-infinite, and finite solids in the cylindrical 

coordinate system. Under the assumption that the material properties are 

arbitrary functions of the spatial coordinates, besides the construction of 

solutions in the form of explicit dependencies on the force and thermal 

loadings, we provided a technique of deriving the necessary existing 

conditions for the stresses and displacements in terms of the loadings 

applied, and the one-to-one relationship between the stresses and 

displacements on the boundary of the considered solids. In every considered 

coordinate system, we discussed the cases of the material inhomogeneity 

profiles, which allow for comparatively simple analytical solutions of 

thermoelasticity problems. We hope, these results may be of interest for 

scientists and engineers working in the area of thermal stresses with the 

focus on the effects caused by the material anisotropy and inhomogeneity, 

as well as for university students with the specialty in mechanical and civil 

engineering and methods mathematical physics.  
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CHAPTER ONE 

ELASTIC AND THERMOELASTIC ANALYSIS 

OF INHOMOGENEOUS SOLIDS 

 
 
 

1.1.  Introduction 

In the first part of the nineteenth century, the classical theory of 

elasticity broke off into a separate academic discipline within the continua 

mechanics owing to the fundamental contributions of scientists, such as 

Claude Louis Marie Henri Navier (1785–1836), Augustin Louis Cauchy 

(1789–1857), and Siméon Denis Poisson (1781–1840), and others [34, 

281, 284]. This theory lays the foundation by which to analyze the elastic 

response of solids to static and dynamic force loadings, which is crucial to 

projecting and evaluating the mechanical performance of the structural 

elements of buildings and mechanisms. The central hypotheses of this 

theory are based on the assumption that materials are continuous (i.e., each 

material point of a considered solid can be bijectively represented by a 

point in three-dimensional Euclidean space) and homogeneous (i.e., 

mechanical properties are the same at any point in a solid).  

By the end of the nineteenth century however, it became obvious that 

the assumption of material homogeneity is unable to capture several 

important features pertaining to the mechanical performance of solids. A 

lack of homogeneity is associated with structural imperfections or 

microdefects, the consolidation of which within a macrovolume can cause 

profound disturbances of mechanical and thermal fields. Materials with 

such properties are known as inhomogeneous, nonhomogeneous, or 

heterogeneous [169, 202]. Since that time, there has been considerable 

research on the analysis of inhomogeneous solids with concern to various 

aspects and applications [32, 35, 36, 116, 142]. In recent years, this trend 

has accelerated due to the widespread implementation of modern materials 

with advanced properties. There has been a particular focus on 

functionally-graded materials (FGM), the technology of which allows for 

the intentional modification of material-variation profiles during 

fabrication [265, 267] in order to meet specific thermo-mechanical 
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performance requirements. This has led to a proliferation of scientific 

publications on the various aspects of modeling and analysis of 

inhomogeneous solids. Sadly, many of these papers reiterate results 

published in older articles.  

Maxwell [170, pp. xiii–xiv] pointed out that “it is of great advantage to 
the student of any subject to read the original memoirs on that subject, for 
science is always most completely assimilated when it is in the nascent 
state...”. We therefore present in this chapter a brief historical survey of 

the analysis of inhomogeneous solids, with an emphasis on the dominant 

methods for elastic materials exhibiting continuously variable properties, 

as is typical of FGM. Note that this survey is illustrative rather than 

exhaustive. We direct the interested reader to a number of recent reviews 

on problems associated with inhomogeneous solids and FGM in particular 

[63, 121, 268, 269, 279]. 

According to Maugin [169], “the most common definition of 
inhomogeneity1 relates to a whole composed of dissimilar or nonidentical 
elements or parts”. Such microstructure-dependent elements could be 

situated within that solid for many reasons [168]. For example, defects in 

polycrystal material structures, changes in the chemical composition of 

materials, microcracks, inclusions or dislocations, and sudden or 

continuous physical and chemical actions can all contribute to 

inhomogeneity. These elements can induce local disturbances of the 

mechanical fields, which, when consolidated, affect the macroscopic 

mechanical performance of the solid [32]. Such consolidation (i.e., 

material inhomogeneity) is caused by various effects, which can be divided 

into three basic types. The first is environmental effects influenced by 

specific mechanical, physical, or chemical fields or their superposition, 

radiation, or diffusion of chemically-active agents, gravity, nonuniform 

temperature, or humidity, etc. The second is technological effects 

associated with specific treatments during fabrication and exploitation, 

such as hot-rolling, forging, pressing, quenching, consolidation, and 

chemical treatment. The third is design intent, such as the situation where 

inhomogeneity is an intentional result of engineering aimed at reinforcing 

a material, such as composite materials, FGM, etc.  

It seems that Jasinsky (see a survey of his outstanding contribution into 

the development of theories of elasticity and strength of materials in [281, 

pp. 294–297]) was the first to evaluate the effect of macro-inhomogeneity 

resulting from the consolidation of micro-defects in a solid. According to 

1 Note that Maugin has given preference to the rather mathematical term 

“inhomogeneous” over the terms “nonhomogeneous” and “heterogeneous”, which 

are more widely used in engineering, material and physical sciences.  
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his hypothesis [119], the material continua can be considered a 
homogeneous medium when it meets the following empirical criterion: 

 2 ,  (1.1.1) 

where  is the characteristic length of a solid,  denotes the 
characteristic length of an element representing certain physical properties, 
and  is a large real number (1 / 1) obtained from stochastic 
experiments. If this criterion is not met, then the material continua cannot 
be treated as homogeneous, such that we must account for variations in the 
material properties within the spatial coordinates. Since the initial 
publication of this theory, a number of criteria have been formulated for 
more advanced techniques aimed at estimating material inhomogeneity 
[203]. However, the Jasinsky formula remains both the simplest and most 
practical. 

It is worth noting that there have been many attempts to systemize the 
types of inhomogeneity in solids based on their physical nature, 
mechanical behavior, and geometrical shape. Even the term itself has been 
given different meanings in different studies. The term inhomogeneity was 
used in [149, 217] to define bodies consisting of a number of 
homogeneous layers (note that Muskhelishvili [186] referred to such solids 
as compound or piecewise-homogeneous). Lekhnitskii [154] used the term 
nonhomogeneous to refer to both multilayer solids and bodies with 
continuous variation in elastic properties. In his book [156], he identifies 
the latter case as continuously nonhomogeneous. In other studies, bodies 
with macro-defects and macro-inclusions are also regarded as 
inhomogeneous [169]. Such solids are referred to as statistically (or 
stochastically) inhomogeneous in cases where the defects are randomly 
distributed [142, 189] within a solid or its parts.  

In cases where the inhomogeneity is associated with certain kinds of 
impact, the consolidation of defects may induce unidirectional 
distributions. This is termed inductive inhomogeneity [142], and includes 
three basic types: i) multilayer or stratified bodies (material properties are 
constant in certain layers or blocks of a solid); ii) continuously 
inhomogeneous bodies (the variation profiles of the material properties are 
continuous but not necessarily smooth); and iii) multi-modular bodies (the 
properties are different under contraction and tension). Often, inductively 
inhomogeneous solids exhibit anisotropic behavior. More detail on the 
classifications of inhomogeneities can be found in [103, 142, 202].  

An important class of inhomogeneity is concerned with the response of 
certain materials to non-uniform temperature distributions, which 
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significantly affect mechanical performance. This effect is usually referred 
to as thermosensitivity, and presents a profound impediment to analysis, 
due to the fact that heat-conduction and thermoelasticity in 
thermosensitive materials appear to be nonlinear [107, 195]. Nonlinearity 
arises not only in the heat-conduction equation (the coefficients of which 
are dependent on the unknown temperature), but also in the specific types 
of boundary condition, such as complex heat exchange [151]. 

One specific type of inhomogeneity is concerned with the effects of 
time. The material properties of concrete, for example, depend 
significantly on curing time so that they are non-uniform within the solid 
(e.g., the surface hardens more quickly). Analogous situations can be 
observed in the imbibition/drying of porous materials, saturation and 
material diffusion, and fatigue damage. All of these processes are of the 
evolutionary type and affect the material properties in a non uniform 
manner within the solid, such that material inhomogeneity is actually a 
function of time and/or spatial coordinates. 

Inhomogeneity can be also categorized with respect to i) the number of 
variable moduli (whether all or only specific material moduli can be 
regarded as functions of their spatial coordinates) and ii) the direction 
(whether the inhomogeneity is exhibited in one or more spatial directions). 
In the case of anisotropic inhomogeneous solids, this type of classification 
is made more complicated by the large number of independent material 
moduli and the possibility of changes in anisotropy from point to point. 

1.2.  History of development 

1.2.1. Applications in geomechanics 

It appears that most of the pioneering works related to the mechanics 
of inhomogeneous solids have been related to important problems in the 
field of geomechanics. Most of those studies were performed at the end of 
the nineteenth century, and have continued in two main directions: wave 
propagation in soil deposits (Fig. 1.1), with applications in seismology, 
and the distribution of forces in massive soil deposits when acted upon by 
either transient or steady-state localized pressures (Fig. 1.2), i.e., 
indentation problems with applications in civil engineering. 
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Fig. 1.1 Schematic representation of the soil nonhomogeneity effect in the seismic 
wave velocity 

 
Due to the stratified nature of soil deposits, most pioneering papers 

devoted to the analysis of wave propagation have addressed multilayer semi-
infinite structures [67, 120, 243]. There are, however, a number of earlier 
papers that assumed variation in all or certain properties of rocks and soils in 
a continuous manner with respect to depth coordinate. Specifically, 
Meissner [172] studied the propagation of surface waves in an 
inhomogeneous medium, rigidity modulus ( )G z  and density ( )z  of 

which are respectively quadratic and linear functions of depth coordinate z : 

 2
0 0 0( ) (1 ) , ( ) (1 ), , constG z G z z z G .  (1.2.1) 

Meissner demonstrated that if soil inhomogeneity is taken into account, 
then the surface waves are purely torsional in character. These waves 
oscillate horizontally and normally to the direction of propagation, and 
thus should be regarded as transverse waves. Meissner also demonstrated 
that these waves exhibit dispersive characteristics, which can be evaluated 
numerically under the assumption of (1.2.1) using the shear modulus and 
density given by linear functions of depth. In an attempt to analyze the 
main features of waves travelling through an inhomogeneous material, 
Aichi [3] addressed a problem similar to the one considered by Meissner 
under the assumption that both of the above-mentioned parameters can be 
represented using exponential functions of depth with dissimilar exponent 
numbers. Sezawa [248] extended the Meissner–Aichi solution to cases 
involving two dimensions. The propagation of Rayleigh waves in a 
continuously-inhomogeneous medium was first considered by Stoneley 
[263], and later by Pekeris [211]. Further developments were presented in 
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[40, 47, 51–53, 58, 65, 94, 108–110, 122, 161, 180, 187, 193, 245, 254, 
256, 264, 270, 338, 340, 341, 349]. The history of this development is 
detailed in [67, 188]. 
 

 
Fig. 1.2 Scheme of pressure distribution in soil due to local pressure 

  
In three papers [42–44], Burmister considered an analogy to the well-

known Boussinesq problem to analyze pressure distributions in two- and 
three-layer soil deposits. Later, Kogan [140] extended this technique to the 
case of an arbitrary number of layers resting on a homogeneous substrate. 
A natural development of this technique has been done by Lekhnitskii 
[155] generalizing the solution for multilayer solids in order to analyze 
continuous inhomogeneity. 

The effect of continuous material inhomogeneity in distribution of 
pressure in soil deposits due to external force loadings applied to a part of 
plane boundary or when the boundary suffers a local deflection, has been 
earlier studied by Fröhlich [74], who has pointed out the importance of 
encountering the with-the-depth variation of the Young modulus in the 
evaluation of stress in semi-infinite elastic foundations with a reference to 
earlier experimental results published by Föppl [72] in 1897. Fröhlich 
further evaluated the influence of void ratio on variations in the modulus 
of elasticity in soil deposits modeled by a half-space and attempted 
thereby the inhomogeneity contribution into the distribution of normal and 
shearing forces under the plane boundary of a half-space. By making use 
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of these results, Ohde [201] estimated the depth-variation of the shearing 
modulus ( )G z  of an elastic soil foundation as  

 0( ) ( ) ,wG z g z z   (1.2.2) 

with g , w  , and 0z  being constants.   

Besides the dependence (1.2.2), there were a number of similar 
estimations for the dependences of elastic moduli on the depth coordinate. 
For example, Lekhnitskii [155] demonstrated that if the Poisson ratio is 
assumed to be constant and the Young modulus varies proportionally to 
the depth, then the radial stress rr  due to a concentrated force applied to 

a point on the surface can be expressed as follows: 

 2 ( 2 )cosrr x yP P
r ,  (1.2.3) 

where xP  and yP  are the components of applied force in directions 

perpendicular and parallel to the surface, respectively, and  r  and  are 
the polar coordinates with the origin at the point where the force is 
applied. It follows from (1.2.3) that if the applied force is normal to the 
surface (i.e., 0yP ), then the radial stress distribution within the 

framework of the plane problem for an incompressible isotropic material is 
the same as for a homogeneous half-plane. If the Young modulus varies 
inversely proportional to the depth, formula (1.2.3) takes the form: 

 x
rr

P
x

, (1.2.4) 

wher x is the depth coordinate. Furthermore, concentrated force applied 
parallel to the boundary does not cause any stress in the half-plane.  

In [80], Gibson addressed the case of linear depth-variation in the 
sharing modulus ( ) (0)G z G mz  in an incompressible elastic 

foundation 0z . He also pointed out other simple cases of 

inhomogeneity; i.e., ( ) (0)exp( )G z G z  and  

 
(0)

( )
GG z z

,   (1.2.5) 
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which allow for the comparatively simple analysis of stresses or 
displacements in such solids. Here, m , , and  are constant parameters 

and (0)G  denotes the value of the shearing modulus on surface 0z . In 

[83], these results were extended for the case of an inhomogeneous layer. 
Awojobi [19] was able to solve the dual integral equations of a mixed 
boundary value problem by studying vertical vibrations in so-called 
“Gibson soil” (i.e., the kind of inhomogeneity addressed by Gibson). In 
[20], the same technique was used for the analysis of multilayer coatings 
resting on a homogeneous substrate. “Gibson soil of second kind” (i.e., 
soil with the shear modulus given in (1.2.5) with negative ) was 

analyzed in [21]. Those results were further developed in [22, 38, 39, 82, 
84, 86, 253]. Gibson and Sills [85] also analyzed the case where the 
Poisson ratio varies with depth. 

In addition to the distribution of stresses within the depth of soil 
deposits, another important problem in geomechanics is determining 
contact pressure on the surface of a half-space (or a half-plane) caused by 
an indenter applied against the surface or surface deflection resulting from 
the imposed pressure. In a series of papers, Popov (e.g., [221]) introduced 
the following simple formula for the calculation of surface deflection 

( , )w x y  due to a force ( , )p x y  applied to boundary 0z  of half-space 

0z :         

 2 2
0 0

0

( , ) ( ) ( ) ( ) ( , ) ,w x y f t dt J x y p d d  (1.2.6) 

where 0 ( )J x  is the zero order Bessel function of the first kind. In view of 

(1.2.6), the problem of determining surface deflection is reduced to 
determining function 0 ( )f t . Popov demonstrated that if the Young 

modulus of the half-space varies as a power function of depth (i.e., 

( ) n
nE z E z , constnE , constn  and 0 1n ), then function 0 ( )f t  

can be described in the following form:  

   0

1
2 2( )
1 2
2 2

n

n

tf t E
 .  (1.2.7) 
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Here, constant 3
2(1 )(2 )

n
n n

 was contributed by Klein [137], who 

was the first to derive the following equation for surface deflection in this 
type of inhomogeneity: 

 
1

2 2 2

( , )
( , )

( ) ( )
m

n

p d dw x y E
x y

.  (1.2.8) 

This equation can also be obtained by inserting (1.2.7) into (1.2.6). A 
similar result was found for the case of exponential variation in the Young 
modulus (i.e., ( ) exp( )E z E z , constE and const  [220]).  

The analysis of surface deflections and inner stresses for certain 
dependences of the Young modulus on depth and various loading profiles 

( , )p x y  have been developed using equations similar to (1.2.8) by 

Rostovtsev [234, 235], Rostovtsev and Khranevskaia [237], Mossakovskii 
[185], Chuaprasert and Kassir [56, 131], Kassir [128–130], Carrier and 
Christian [46], Chuong [57], and many others.  

1.2.2. Mechanics of composite materials 

The analysis of inhomogeneous materials was developed further in the 
mid-twentieth century due to advances in materials science and the 
widespread implementation of composite materials. Composite materials 
may exhibit anisotropic [55, 154, 156, 277, 310] and/or inhomogeneous 
[103, 104, 202, 203] mechanical behavior [62, 87, 123, 194], contingent 
on the methods used to combine constituent phases or reinforcing 
elements. In the analysis of material inhomogeneity, one important 
publication of note is a collection of papers [203] presented at The Warsaw 
Symposium on Nonhomogeneity in Elasticity and Plasticity (Warsaw, 
Poland, September 3 – 9, 1958). This book reflects the experience of 
numerous scientists from 14 countries and summarizes the basic methods 
developed for the analysis of inhomogeneous materials in the fields of 
elasticity, plasticity, rheology, dynamics, and wave propagation as well as 
the statistical methods used to characterize micro-non-homogeneity.  

It is worth noting that the periodic or semi-periodic material structures 
found in some composite materials (e.g., fiber composites and reinforced 
composites) make it possible to nullify the effects of material 
inhomogeneity through the implementation of various homogenization 
procedures, such that the focus is shifted solely to the effects of anisotropy 
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[25]. In many cases however, inhomogeneity must be considered within 
the context of multilayer structures [217, 258, 259].  

 

 
a) 

 
b) 

Fig. 1.3. Two-component metal-ceramic composite without (a) and with (b) FGM 
interlayer  

1.2.3. Functionally-graded materials 

In the 1980s, considerable advances were made in the fabrication of 
inhomogeneous materials with intentionally-continuous variations in 
macroscopic material properties based on desired distribution profiles 
[141, 190, 165]. Much of this work focused on functionally-graded 
materials (FGM) – a class of multiphase composite combining two or 
more phase-materials with contrasting properties. According to Rabin and 
Shiota [231], “the term FGM, now widely used by the materials 
community, originated in Japan in the late 1980s as a description of a 
class of engineering materials exhibiting spatially inhomogeneous 
microstructure and properties” (see also [115, 141, 183, 230, 233]). FGM 
are widely used to improve the operational performance of structural 
members subjected to mechanical as well as thermal loading [182, 195]. 
They comprise dissimilar materials that provide high thermal and 
mechanical resistance (e.g., ceramics and metals) [33, 54, 132, 184, 255, 
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266, 339]. Residual stresses that develop at the interfaces between the two 
constituents due to the mismatch in material properties can lead to material 
degradation (Fig 1.3a). This effect can be minimized by continuously (or 
almost continuously) varying the material properties of FGMs (Fig 1.3b) 
from one constituent material to another [16,  196, 271]. This type of 
variation is generally presented in the form of arbitrary dependences of the 
elastic moduli on spatial coordinates. Note that this makes it nearly 
impossible to solve problems of elasticity and thermoelasticity analytically 
[272], due to the fact that the governing equations include unknown 
variable coefficients. Thus, the development of efficient methods 
applicable to the thermomechanical analysis of inhomogeneous materials 
(and FGM in particular) is an important problem in modern engineering. 
The interested reader can find recent reviews of problems related to FGM 
solids in [63, 121, 268, 269, 279]. 

1.3.  Overview of Solutions 

1.3.1. Specific solution methods 

Modeling and analysis methods vary according to the type of 
inhomogeneity. The methods also differ in terms of body shape, 
coordinate system, the type of solution that is required, techniques 
used, and loading types. There is really no way therefore to present a 
comprehensive review of methods used in the analysis of 
inhomogeneous solids. Thus, in this section, we present a brief 
description of the methods and solutions that are most relevant to the 
subject matter dealt with in this book. We are aware that many 
important results remain beyond the scope of this review, and for this 
we apologize.   

Mikhlin [177] developed a general theory of the hyperbolic equations 
with variable (piecewise-variable) coefficients used to analyze the dynamic 
processes in non-homogeneous media with further development, e.g., in 
[23]. The method of plane waves was presented in [61, 153] aimed at 
dealing with systems that involve hyperbolic equations with smooth variable 
coefficients. An extensive review of early work in this area can be found in 
[24]. This general theory makes it possible to derive important theoretical 
results, such as the mathematical substantiation of the existence and 
uniqueness of solutions for certain functional spaces; however, it has not 
found widespread use in practical engineering applications.    

The complex variable method was developed by Mishiku and Teodosiu 
[181] for the analysis of plane static problems, which were reduced to a set 
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of conjugation problems to be solved through successive approximations. 
Gorbachev and Pobedria [92, 93] used the averaging method for differential 
equations by reducing problems of elasticity in inhomogeneous materials to 
recurrent problems for homogeneous bodies that approximate but satisfy the 
boundary conditions. Naumov and Chistyak [191] constructed a formal 
asymptotic solution to the problem of an arbitrarily inhomogeneous layer. 
Shevchuk [251] presented a method by which to derive approximate 
solutions of heat conduction problems in solids with thin multilayer coatings 
modeled using generalized boundary conditions. 

A number of solutions have been constructed using approximate 
formulations [232] and variational principles [1, 30, 340]. The 
perturbation method was proposed in [150] to reduce thermoelasticity 
problems for thermosensitive bodies to a recurrent sequence of boundary-
value problems to be solved using differential equations with constant 
coefficients. The Hamilton variational principle was presented in [102] to 
develop a hybrid numerical method for the analysis of transient wave 
propagation in an FGM cylinder. The simplified Gurtin’s variational 
principle was presented in [347] for FGM thermoviscoelastic plates. 
Variational principles were also used to develop homogenization 
procedures for micro-inhomogeneous periodic structures [15, 163]. 
Vasilenko [309] proposed a numerical approach to solving a non-
axisymmetric problem for a radially-inhomogeneous anisotropic cylinder. 
Klimenko [138] reported a numerical solution for a cylinder 
inhomogeneous in the circumferential direction. Other important methods 
include the finite element method [91, 171, 276, 307], the boundary 
element method [95, 97, 113, 350], the method of the displacement 
potential [127, 212], and the finite difference method [66].  

One interesting analytical-numerical technique was developed by 
Aizikovich et al. [4, 5, 7] for the analysis of contact problems in 
inhomogeneous materials with arbitrary variations in the properties with 
respect to depth. This technique is based on the bilateral asymptotic 
method [8]. The key point is to numerically evaluate the kernels of the 
obtained integral equations. After the kernel structure is defined, it can be 
approximated using a special expression, which makes it possible to solve 
the integral equation analytically. This allows for the calculation of an 
analytical solution, which is convenient for mechanical analysis of the 
effects of arbitrary inhomogeneity [147, 148] and FGM material properties 
using indentation experiments [6, 9]. In the following, we discuss the 
dominant analytical methods used in the analysis of continuously-
inhomogeneous solids. 
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1.3.2  Dominant methods 

1.3.2.1. Material moduli in form of elementary functions of spatial 
coordinates 

 
The dominant approach to the analysis of continuously-

inhomogeneous solids is based on the assumption that the material 
properties take the form of specific elementary functions (e.g., linear, 
polynomial, or exponential functions) in a manner that allows for the 
separation of variables in the governing equations. This yields 
comparatively simple solutions based on classical techniques. Various 
issues involved in the separation of variables by means of this approach 
have been discussed by Kolchin [142], Leknitskii [156], Teodorescu [278], 
and others.  

In illustrating this technique, we consider a plane-stress problem for an 
elastic element a x a , b y b , where x  and y  are 

dimensionless Cartesian coordinates and a  and b  are constant 

parameters. By introducing the potential Airy function ( , )x y  [282], this 

problem can be reduced to the following equation [288]: 

  
2 2 2

2 ( , ) ( , ) 1 ( , )
2

( , ) ( , )
x y x y x y

E x y x y x y E x y   

 
2 2

2 2

( , ) 1 ( , )
( , )

x y x y
E x yy x

2 2

2 2

( , ) 1 ( , )
0

( , )
x y x y

E x yx y
,  (1.3.1) 

where 2  stands for the differential Laplace operator. If we assume that 

the Young modulus is 0 ( )E E y  (where 0E  is a dimensional constant 

and ( )y  is an arbitrary twice-continuously-differentiable function) and 

Poisson ratio  is a constant, then the problem on the elastic equilibrium 
of the considered element can be reduced to the following equation:  

 4 2( )1( , ) 2 ( , )
( )

d yx y x yy dy y
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22

2

( ) ( )1 12
( ) ( )

d y d y
y y dydy

2 2

2 2

( , ) ( , )
0

x y x y
x y

.  (1.3.2) 

Note that in the plane-strain case, we substitute  with / (1 )  and  

with 2/ (1 ) . 

Clearly, this equation has constant coefficients under the following 
condition: 

 
( )1 const

( )
d y

y dy
.  (1.3.3) 

This means that  

 0( ) exp( )y y ,  (1.3.4) 

where 0 0  is an arbitrary constant. 

 If we assume that 

 
22

2

( ) ( )1 12 0
( ) ( )

d y d y
y y dydy

,  (1.3.5) 

then we obtain the following: 

 
1 2

1( )y
y

,  (1.3.6) 

where 1  and 2  are arbitrary constants that ensure the feasibility of the 

Young modulus; i.e., 1 2 0y  for b y b . This expression does 

not make the coefficients in (1.3.2) constant; however, it does allow for 
the representation of (1.3.2) in the following form: 

 4 2
1 2 2( ) ( , ) ( , ) 0y x y x y

y
,  (1.3.7) 
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which can be integrated (e.g., for the case where  is a harmonic 

function), as follows: 

 2 ( , ) 0x y .  (1.3.8) 

Note that equation (1.3.7) does not involve the Poisson ratio , that is 
typical for the plane problems of elasticity in homogeneous materials with 
no body forces or thermal loading [282]. 

Another type of material-distribution profile that allows for the 
integration of equation (1.3.2) by making use of the classical methods has 
the form of a power function 

 0
3 y ,  (1.3.9) 

where 3  and 0  are arbitrary constants. 

For obvious reasons, i.e., a comparatively simple solution technique 
along with the ability to implement classical methods, representations 
(1.3.4), (1.3.6), and (1.3.8), with some modifications, have remained in the 
spotlight from the very beginning till nowadays. As mentioned in 
Section 1.2.1, Gibson [80, 81] presented a simple approach to the analysis of 
a nonhomogeneous half-space with the shear modulus in the forms given in 
(1.3.4) and (1.3.6), as well as the linear form for problems in geomechanics. 
In [21, 46, 253], these types of nonhomogeneity were examined using 
numerical techniques with different loadings on the half-space boundary. 
Korenev [143], Mossakovsii [185], Popov [222], and many others have 
presented solutions to problems involving indentation of a circular punch 
into an exponentially-nonhomogeneous half-space using the couple-integral 
equation representation. Mixed and contact problems for a nonhomogeneous 
half-space with power-law dependences of the elastic moduli on the depth-
coordinate were addressed in [155, 234, 236]. Giannakopoulos and Pallot 
[79] presented an exact solution to the axisymmetric problem of indentation 
by a circular punch into an elastic half-space, where the Young modulus 
varies with depth in accordance to the power law and Poisson’s ratio is 
constant. The same material properties were considered in [28] for the 
analysis of a plane-strain contact problem with an inhomogeneous half-
space subjected to the action of a rigid punch within the finite area of its 
limiting plane. Teodorescu [278, p. 653] generalized the representation 
(1.3.4) by considering inhomogeneity in the following form: 

 0 exp ( , , )f x y z ,  (1.3.10) 
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where ( , , )f x y z  is a continuous differentiable function of class 4C . An 

extensive review of studies involving exponential inhomogeneity can be 
found in [302].  

Similar types of inhomogeneity have been analyzed in a wide range of 
coordinate systems. Zimmerman and Lutz [351] used the Frobenius series 
method to analyze thermal stresses in an FGM cylinder under uniform 
heating to characterize the linear dependences of properties on the thickness-
coordinate. Horgan and Chan [111, 112] constructed a solution to an 
isotropic inhomogeneous hollow circular cylinder and disk, where the 
Young modulus is a power function of the thickness coordinate under 
constant rotation velocity and uniformly pressurized on inner and outer 
boundaries. They reduced this problem to the Navier equation for radial 
displacement to be solved in a closed form. A closed-form solution was also 
reported by Oral and Anlas [205] for a hollow orthotropic cylinder with 
analogous variation in the elastic moduli. Jabbari et al. [117] solved plane 
axi-symmetric elasticity and thermoelasticity problems for hollow cylinders 
by reducing them to the governing Navier equation. An analytic solution to 
the latter equation for plane non-axisymmetric elasticity and thermoelasticity 
problems in a thick hollow cylinder was presented [118] in the form of the 
complex Fourier series where the material properties are given as power 
functions of the radial coordinate. The non-axisymmetric temperature has also 
been derived for cases with a various thermal conduction coefficients. A 
similar solution was reported by Tarn [274] and Tarn and Chang [275] for a 
radially-inhomogeneous piezoelectric circular cylinder. Zhang and Hasebe 
[346] constructed a solution to the plane non-axisymmetric elasticity problem 
for a radially-inhomogeneous hollow cylinder with an exponential Young’s 
modulus and constant Poisson’s ratio.  

At this point, the sheer number of studies on this method makes it 
difficult to present an exhaustive review (numerous references are listed in 
[63, 121, 269, 279, 335]). The popularity of this approach can be attributed 
to several advantageous features. First, the assumption that material 
properties are specific functions of spatial coordinates makes it possible (in 
many cases) to simplify the governing equations, such that classical methods 
of mathematical physics are applicable. Second, this approach allows for the 
modeling and analysis of inhomogeneity implementing the dependence of 
elastic moduli on more than one spatial coordinate. This makes it possible to 
obtain closed-form analytical solutions for use as benchmarks in the 
verification and validation of solutions applicable to problems of greater 
complexity. 

Nonetheless, the solutions obtained using this approach are subject to 
limitations. First, they are not widely generalizable; therefore, a new 
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system of fundamental solutions must be constructed for each 
inhomogeneity profile. Furthermore, the representation of material 
properties using monotonic functions for infinite or semi-infinite solids 
often produces unfeasible results, due to the fact that such representations 
contradict modeling restrictions when the material properties become 
either zero or infinitely large (see, e.g., [225]). Unfeasible results can be 
avoided by modeling these solids using combined material properties, e.g., 
polynomial [224, 273], polynomial-exponential [246], or periodic [247]. 
Another way to ensure the material properties fall within model 
restrictions at infinite points is to consider an infinite or a semi-infinite 
body as an assembly comprising a finite elastic inhomogeneous part 
perfectly connected to a homogeneous semi-infinite massive (the rest of 
the original body) [147, 148, 297]. This approach has been used for the 
analysis of mixed-type boundary-values problems, such as the indentation 
of semi-infinite inhomogeneous solids. In just such a manner, Choi and 
Paulino [50] considered thermoelastic contact between a flat punch and a 
nonhomogeneous assembly consisting of an exponentially-nonhomo-
geneous layer resting on a homogeneous half-space. Yang et al. [342] 
considered the thermo-elastic response of a three-layer half-space (with 
the outer and infinite layers homogeneous and the intermediate layer 
graded exponentially) to a mixture of Hertz pressure, tangential traction, 
and frictional heating. Yevtushenko et al. [345] considered transient 
temperature processes in a composite strip resting on a homogeneous 
foundation. One solution to the plane problem of thermoelastic contact 
instability in an FGM layer and homogeneous substrate was recently 
obtained using the perturbation method [167]. The elastic properties of the 
layer were assumed to vary exponentially within the thickness coordinate. 
A similar form of the material properties of a layer resting upon a 
homogeneous substrate has been addressed in [48] to solve a rigid punch 
indentation problem with heat generation due to contact friction using an 
integral transform method. 

In most studies based on this method, the Poisson ratio is assumed to 
be constant because “Poisson’s ratio  has, in general, small variation” 
[278, p.653]. However, the effect of variation in Poisson’s ratio plays a 
significant role in the mechanical behavior of inhomogeneous materials 
[90, 106, 134]. One solution to the problem of elasticity in an 
inhomogeneous half-plane which is acted upon by a concentrated surface 
load was obtained in [88, 89] for the case where Poisson’s ratio is an 
exponential function of depth. 

The representation of material properties using the specific functions of 
spatial coordinates provides ample opportunity for the precise analysis of 
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inhomogeneous solids; however, this approach offers little in terms of 
characterizing materials with arbitrary material-distribution profiles.  
 
1.3.2.2 Discrete-layer approach 
 

One effective approach to the analysis of solids exhibiting continuous 
inhomogeneity in one spatial direction (Fig. 1.2a) rests upon the 
representation by assemblies of perfectly-connected homogeneous layers, 
such that the original dependences of the material properties can be 
approximated using a piecewise-constant function (Fig. 1.2b). Having 
solved the problem for each homogeneous layer, we can tailor the solutions 
using interface conditions to obtain a solution for the entire solid, which 
satisfies the original boundary conditions on its surfaces. This method is 
known as the discrete-layer approach [229]. Zhang and Hasebe [346] used 
this approach to approximate an exponentially-graded cylinder with a 
composite cylinder consisting of a number of perfectly-bounded thin 
homogeneous cylindrical layers of uniform thickness. They applied the 
Michell stress function to solve each layer, and provided recommendations 
for extending this approach to the general case of inhomogeneity. Liew et al. 
[158] analyzed symmetric and non-symmetric thermal stresses in an FGM 
hollow cylinder sectioned into a number of sub-cylinders. In [159], a contact 
between a cylindrical punch and a homogeneous half-space coated with an 
exponentially-graded layer has been solved. A semi-analytical solution was 
derived by representing the material using an assembly of homogeneous 
layers. The same approach was extended in [160] to the case of an 
arbitrarily-nonhomogeneous layer and in [133] to the case of frictionless 
contact between indenters and a functionally-graded half-plane with an 
arbitrarily-varying elastic modulus. This problem was reduced to a Cauchy 
singular integral equation. By the analogy to a layered media, Green’s 
function has been constructed by Alshits and Kirchner [11] for hollow and 
solid radially inhomogeneous cylinders. By representing a radially 
inhomogeneous hollow cylinder as a multilayer solid, Kim and Noda [136] 
employed the method of Green function in order to solve a thermoelasticity 
problem in the case of unsteady axisymmetric thermal loading. The same 
concept has been used in [249] for the analysis of axisymmetric thermal 
stresses in a cylinder of finite length. A numerical technique for the one-
dimensional problem in a thermosensitive FGM cylinder composed of 
functionally-graded ceramic–metal-based materials was developed in [18]. 
Different aspects of this method have also been discussed in [135, 192, 204, 
215, 250]. 
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a) 

 
b) 

 
c) 

Fig. 1.2. Continuously inhomogeneous solid (a) and its discrete-layer models (b, 
c): representation of original material profile using stepwise functions, where the 
material moduli are constant (b) or linear (c) within each layer 

 
The discrete-layer method makes it possible to analyze inhomogeneous 

solids whose moduli have arbitrary variations in a spatial direction. In 
application however, this approach generates certain complications. 
Watremetz et al. [336] compared the results of modeling a continuously-
inhomogeneous solid with its multi-layer model. This comparison 
highlighted the weaknesses of the discrete-layer approach, which include 
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stress discontinuities at layer interfaces, weak convergence of the 
approximate solution to the exact one when the number of layers is 
increased, and complex 3D modeling. The effect of discontinuity of the 
stresses on the interfaces of layers representing a continuously-
inhomogeneous solid has also been emphasized in [286].  

In order to optimize convergence and avoid discontinuities at layer 
interfaces, Plevako [213] proposed the formulation of material properties 
within each layer as linear functions (Fig. 1.2c). This allows the 
approximation of elastic characteristics using continuous polylines instead 
of piecewise constant functions, thereby improving the approximation 
toward an exact solution. An analogous approach to the approximation of 
an inhomogeneous strip using a piecewise-exponential composite was 
presented by Guo and Noda [98]. It can be seen that this approach 
combines the discrete-layer method and the representation of material 
properties in the form of elementary functions. 

1.3.3 Direct integration method 

An efficient approach to the analysis of inhomogeneous solids can be 
developed on the basis of a general direct integration concept. The 
advantages of applying direct integration to elasticity-related problems 
was clearly delineated by Michell [176] over a hundred years ago: “In 
treating the problem of an elastic solid in equilibrium under given volume- 
and surface-forces, some of the advantages of a direct determination of 
the stress are so obvious that it is surprising more attention has not been 
given to this mode of attack”. However, the interpretation of the concept of 
direct integration requires clarification. 

In mathematical physics, the concept of direct methods is concerned, 
traditionally, with the application of approximate methods for solving 
certain boundary value problems for differential or integral equations by 
reducing them to systems of linear algebraic equations [178, 179, 257]. 
These methods are widely applied to problems in practical engineering as 
well as theoretical analysis into the existence and correctness of solutions 
to engineering problems of greater complexity. Direct methods based on 
variational principles [60, 257] include the energy method (the practical 
implementation of which deals with the application of the Ritz technique), 
the Galerkin method, the least-squares method, and the finite-difference 
method.  

In this book, we discuss a direct integration method that differs 
fundamentally from the above-mentioned methods. Conceptually, the 
proposed method is based on integration of the governing elasticity and 
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thermoelasticity equations derived directly from first principles without 
the use of potential functions of higher differential order. This allows for 
the construction of correct solutions, particularly for boundary value 
problems for bounded domains. 

With this regard we would refer to a comment made by Gakhov2 in his 
foreword to the book [139]: “In present time, integral transforms can be 
regarded as the most powerful and widely-used mathematical tool for 
solving practical problems.3” Potential (harmonic or biharmonic) 
functions are constructed in the mapping domain an integral transform is 
used for the separation of variables in boundary value problems of solid 
mechanics. However, those functions do not necessarily exist in the 
physical domain unless certain supplementary conditions, such as 
conditions of general equilibrium of the applied force and thermal 
loadings, are fulfilled. This can be explained by the divergence of integral 
representations for potential functions at some points of the physical 
domain corresponding to the poles of their images in the mapping domain 
with respect to the transform parameter. 

Consider, for example [321], the biharmonic Airy stress function 
( , )A x y  for the plane elasticity problem in a half-plane 

{( , ) :| | , 0 }x y x y  which is acted upon by normal 0 ( )p x  and 

shear 0 ( )q x  force loadings applied to its boundary 0y . This function 

can be represented in the physical domain by the following expression: 

  0 02

1 1( , ) exp( | | )
2 | |A

y iyx y p q s y isx ds
s ss

,  (1.3.11) 

where 1i  is an imaginary unit and 0p   and  0q  are the images of the 

force loadings 0 ( )p x  and 0 ( )q x  in the mapping domain of the Fourier 

integral transform [41]. As shown in (1.3.11), the integrand can be 
unlimited at the pole 0s . This drawback can be removed by subjecting 

the forces 0 ( )p x  and 0 ( )q x  to the following static conditions of 

equilibrium: 

2 Gakhov, Fyodor Dmitriyevich (1906 – 1980) was a full member of the Academy 
of Sciences of the Byelorussian SSR. He was recognized as an outstanding Soviet 
and Belorussian specialist on the theory of boundary value problems in 
mathematical physics, analytical functions of complex variables, and the theory of 
integral transforms. 
3 Translated from Russian by the authors.

 EBSCOhost - printed on 2/14/2023 2:18 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter One 22

 0 0 0( ) 0, ( ) 0, ( ) 0p x dx xp x dx q x dx ,  (1.3.12) 

where the first and second equations express the self-equilibration of 
normal loading 0 ( )p x  by its resultant force and moment, and the third 

condition describes the self-equilibration of the shear loading by its 
resultant vector. In the mapping domain of the Fourier integral transform, 
conditions (1.3.12) can be given, respectively, as 

 0 0 0(0) 0, (0) 0, (0) 0p p q .   (1.3.13) 

Here, prime stands for a formal derivative by the parameter s . Obviously, 
in view of conditions (1.3.13), the integrand in formula (1.3.11) is limited 
for the entire range of variation for transform parameter s . 

Conditions (1.3.12) appear obvious if formulating the problem in terms 
of stresses; however, they are not necessarily captured when formulating 
this problem in terms of displacement. Thus, when imposing boundary 
conditions for the displacement vector on the boundary of the half-plane, 
we must ensure that the displacements induce stress under meeting 
conditions (1.3.13). This necessity has been shown, e.g., by 
Muskhelishvili [186]. However, it is usually very difficult to ensure that 
the boundary displacements are in agreement with the stresses under 
meeting conditions (1.3.12), albeit with a few exceptions.  

If the boundaries of an elastic solid are subjected to mixed-type 
boundary conditions, the conditions (1.3.12) are even harder to meet 
during problem formulation. In the formulation of boundary value 
problems in semi-infinite domains (i.e., contact problems for a half-plane 
or half-space), infinitely-distant areas are expected to be subjected to 
infinitesimal force loading. This is meant to equilibrate the non-
equilibrated normal and shear stresses at the boundary, in contradiction of 
conditions (1.3.12). If, for example, shear loading is absent at boundary 

0y  of a half-plane, then 0 ( ) 0q x , ( , )x , and a normal 

pressure 0 0( ) constp x p  is uniformly distributed over its finite 

segment [ , ],a ax x x  0 ax , while 0 ( ) 0p x  for 

( , ) ( , )a ax x x , such that the resulting force of the applied 

loading is easily derived as follows: 
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 0 0( ) 2 ap x dx x p .   (1.3.13) 

This means that i) the resultant stresses at the infinitely distant points 
y  are to vanish and, at the same time, to be of the resultant force 

equal to 02 ax p  and ii) the stress function (1.3.11) is unbounded at point 

0s  due to a failure to meet conditions (1.3.13). This failure complicates 
or makes it impossible to a) construct a solution to the formulated problem 
in the space of bounded and continuous functions, b) ensure the elastic 
strain energy is limited to the considered solid, and c) ensure that the 
conditions for solution correctness are met for the displacements and their 
integral characteristics (i.e., integral compatibility conditions) [17, 280]. 

Elucidating the elastic response of solids (particularly inhomogeneous 
solids) can be viewed as a primary goal in formulating an analytical mode 
of attack. The previous example makes it clear that this understanding 
calls for the construction of a solution to a specific boundary value 
problem and for establishment of fundamental correctness conditions. 
These conditions are meant to ensure that the fields of stresses and 
displacements fall within the assumptions of elasticity theory. This 
guarantees the strain energy accumulated in a solid is a bounded function.  

Vihak4 proposed a direct integration method to deal with this challenge. 
This was further developed by subsequent researchers [126, 287], resulting in 
a general approach to optimizing thermal regimes, thermal stresses, and 
displacements in elastic solids based on the method of inverse 
thermomechanics [312, 313].  The latter method can be used to determine 
optimal control function u  representing, for example, the density of inner 

heat sources in an elastic solid * . This reduces the problem to minimizing 

the uniform deflection function of component ( , , )S x u  of a quasi-static 

stress-tensor or a displacement vector from a given distribution ( , )x , as 

follows: 

 
( , )

( ) max ( , , ) ( , ) , ( , ) * (0, *]
x

u S x u x x .  (1.3.14) 

4 Vihak (or Vigak), Vasyl’ Mykhaylovych (1936 – 2003) was a Doctor of Science, 
leading scientist, and head of the solid mechanics department at the Pidstryhach 
Institute for Applied Problems of Mechanics and Mathematics of the National 
Academy of Sciences of Ukraine. He is the author of more than 230 scientific 
papers (including two fundamental monographs on optimization theory) in the 
mechanics of solids and optimization theory. 
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The existence of such a control function (i.e., * (0, *]( , )u x C ) implies 

the existence of an exact lower limit of the above optimization criterion. 
This lower limit can be written as follows: 

 ( , , ) ( , ), ( , ) * (0, *]S x u x x .   (1.3.15) 

Then, heat-conduction and thermoelasticity problems result in the 
following integral equation of the first kind:  

  1
0 *

( , , , ) ( , ) ( , ), ( , ) * (0, *]x x u x dxd x x ,  (1.3.16) 

where ( , , , )x x  and 1( , )x  are known functions. Solving equation 

(1.3.16) is generally an ill-posed problem [244]. It was demonstrated by 
Vihak [312, 313] that an optimal control function ( , )u x , which meets 

condition (1.3.15) and, which is the same, satisfies equation (1.3.16), exists 
only under certain necessary conditions for function ( , )x . The conditions 

include those corresponding to integral conditions of equilibrium and 
compatibility for the stress-tensor and displacement-vector components. 

This “intermediate”, at the first glance, result originated an important 
stage of studies related to the substantiation of a method for the direct 
integration of differential equilibrium and compatibility equations in terms 
of stresses. This method makes it possible to reduce a direct elasticity 
problem to a governing equation for an individual stress-tensor component 
(or a linear combination of stress-tensor components). This component is 
referred to as a key function and, in a certain sense, can be regarded as 
analogous to a control function. The component can be derived using the 
governing equation by implementing certain integral equilibrium and 
compatibility conditions in conjunction with relations expressing all 
quested-for functions in terms of the key function. 

The principal strategy underlying the application of this method to 
problems of elasticity and thermoelasticity in terms of stresses can be 
represented in a step-wise manner, as follows: 

 
 In the first step, the key functions are selected from the stress-tensor 

components or their linear combinations (e.g., the first invariant of 
the stress-tensor) with the aim of achieving the most convenient 
formulation of the governing equations and the integral conditions. 
This choice depends strictly on the properties of the differential 
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operators presenting the original equations of the formulated 
problem, the boundary conditions, and the material properties. The 
key functions are usually involved in differential compatibility 
equations.   

 The next step involves deriving the relations expressing all the 
stress-tensor components   through the key functions identically in 
view of the conditions imposed on the boundary of the solid 
considered. Such relations can be obtained through the correct 
integration of the local differential equilibrium equations pertaining 
to all of the stresses (irrespective of the material properties) within 
the framework of a static or quasi-static formulation.    

 The relations derived in the previous step can then be used to 
reduce the compatibility equations to the governing equations along 
with the local and integral conditions for the key functions. This 
makes it possible to reduce the original problem to a boundary 
value problem for the key functions. Note that unlike the relations 
between stresses in the previous step, the governing equations 
generally involve material properties. This is because they cover 
strain compatibility in an elastic solid. 

 In this step, the key functions are determined from the derived 
boundary value problem. This can be achieved using an appropriate 
variable-separation method to construct the key functions in the 
form of explicit dependences on the given loadings and material 
properties.  

 After the key stresses are determined, the remaining stress-tensor 
components are restored using the relations obtained in the second 
step. 

 After the stress-tensor components are computed explicitly, the 
strain-tensor and displacement vector components can be 
determined through the integration of the strain-displacement 
equations. 
 

This method was used to construct correct (continuous and integrable) 
solutions to the plane elasticity and thermoelasticity problems in 
homogeneous isotropic domains in [314, 319, 329]. For a half-plane, the 
boundary conditions have been analyzed in detail in terms of stresses, 
displacements, and mixed-type boundary conditions [283, 299]. In addition 
to the construction of analytical solutions, this approach allows for 
derivation of i) the integral equilibrium and compatibility conditions for 
thermal and mechanical loadings along with the quested-for stresses, strains, 
and displacements, ii) expressions for the resultant force and resultant 
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moment of the normal and sharing stress-tensor components and applied 
loadings, and iii) one-to-one relations between the stress-tensor and 
displacement-vector components, which remain valid at the boundary of a 
solid. Similar results have been obtained for the one- and two-dimensional 
problems of elasticity and thermoelasticity in cylindrical-polar coordinate 
systems [315]. 

Note that the advantages of the direct integration method have been 
demonstrated for problems of elasticity and thermoelasticity in finite 
domains with corner points (i.e., domains with surface that can be 
represented by families of dissimilar coordinate surfaces [96]). Obtaining 
solutions to such problems is complicated by the non-self-conjugated 
differential operator for domains with such boundaries. This makes it 
difficult to construct comprehensive orthogonal systems for the 
separations of variables in the governing equations. Generally, the 
fundamental functions of such systems are complex, variable, and non-
orthogonal, requiring decomposition algorithms of some sophistication 
[164]. This makes it very difficult to satisfy the boundary conditions 
throughout the entire surface of the solid (including areas adjacent to 
corner points). The history of such problems analysis can be traced back to 
the famous problem on the elastic equilibrium of a cube under arbitrary 
normal loadings on each side, which has been formulated by Lamé and 
nominated in 1846 for the “Grand Prix de Mathématiques” of the Paris 
Academy of Sciences [173].   For example, we can mention the method of 
crosswise superposition [174] and the method of homogeneous solutions 
[164] as the dominant ones involving biharmonic potential functions and 
setting the priority in exact satisfaction of the differential equations 
while the boundary conditions are satisfied approximately. In contrast to 
these methods, the one suggested by Vihak is aimed in exact satisfaction 
of the boundary conditions by explicitly expressing the solutions through 
the functions imposed on the boundary, which is advantageous, e.g., for 
solving inverse and optimization problems [343, 344]. By making use of 
this approach, analytical solutions to the plane elasticity and 
thermoelasticity problems for a rectangular domain 0| |x x , 0| |y y , 

where 0x  and 0y  are positive constants, were represented in the form of 

decompositions by the followings complete and orthogonal systems of 
functions: 
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0 0

0 0

1, , cos , sin ,

1, , cos , sin , 1,2, ,

n n

n n

y y
y

y y

x x
x n

x x

   (1.3.17) 

where n n  and n  are positive roots of a transcendent equation 

tan  enumerated in increasing order.  

In (1.3.17), subsystems 
0 0

cos , sinn ny y
y y

 and 
0 0

cos , sinn nx x
x x

 

comprise the eigen-functions of the problem and segregate the parts  

 

1 2

0 01

1 2

0 01

( )cos ( )sin ,

( ) cos ( )sin

s n n
xx n n

n

s n n
yy n n

n

y y
X x X x

y y

x x
Y y Y y

x x

  (1.3.18) 

of the normal stresses with the resultant force and moment are both zero: 

 
0 0 0 0

0 0 0 0

0, 0
x x y y

s s s s
yy yy xx xx

x x y y

dx x dx dy y dy .  (1.3.19) 

They correspond to the self-equilibrated parts of the force loadings applied 
to the sides of the rectangle and the body forces. Here, 

0

0

1

0 0

1 cos ,
y

n
n xx

y

y
X dy

y y

0

0

0

0

2
2

00

1

0 0
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n y

x
n

n yy
x

y
X dy

yy

x
Y dx

x x

   (1.3.20) 
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0

0

2
2

00

1 sin .
sin

x
n

n yy
n x

x
Y dx

xx
 

One approach to deriving the above coefficients was developed in [325, 
327] for elasticity problems and in [330] for thermoelasticity problems 
based on an iterative routine that satisfies the governing equations within 
the required degree of accuracy.  

Subsystems {1, }y  and {1, }x  of the system in (1.3.17) comprise the 

so-called associated functions used to segregate the elementary parts [282] 

 0 1 2 0 1 2
0 0 0 0( ) ( ), ( ) ( )xx yyX x yX x Y y xY y   (1.3.21) 

of normal stresses corresponding to the resultant forces and moments of 
the applied loadings: 

 
0 0

0 0

0
1 22

y y

xx
y y

dy p p dy  

 
0 0

0 0

4 3( ) ( ) ( , ) sgn( )
x y

x
x y

q q F y dy x d , 

  
0 0

0 0

0
1 22

y y

xx
y y

y dy p p ydy  

 
0 0

0 0

3 4( ) ( ) ( , )
x y

y
x y

p p F y dy x d   

 
0

0

0 1 0 2( ) ( )
y

y

x x q x x q dy  

 
0 0

0 0

0 3 4( ) ( ) ( , ) sgn( )
x y

x
x y

y q q yF y dy x d , 
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0 0

0 0

0
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x x

yy
x x

dx p p dx    (1.3.22) 
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2 1( ) ( ) ( , ) sgn( )
y a

y
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q q F x dx y d , 

 
0 0

0 0
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x x

y
x x

x dx p p xdx  

 
0 0
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1 2( ) ( ) ( , )
y x

x
y x

p p F x dx y d  

 
0

0

0 3 0 4( ) ( )
x

x

y y q y y q dx  

 
0 0

0 0

1 2( ) ( ) ( , ) sgn( )
y x

y
y x

a q q xF x dx y d . 

Here, ( )jp y  and ( )jq y  are the normal and shear loadings applied to the 

sides 1
0( 1) jx x  ; 2 ( )jp x  and 2 ( )jq x  are the loadings on the sides 

1
0( 1) jy y , 1, 2j ; and xF  and yF  are the projections of body forces 

onto the coordinate axes. The following coefficients were identified and 
analyzed in [318]: 

 

0 0
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0 0

0 0

1 2
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0 0

1 2
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X dy X y dy
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  (1.3.23) 
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In this manner, the following representation of the solution makes it 
possible to represent the stress state through the superposition of self-

equilibrated and non-self-equilibrated parts 0  and s , respectively: 

 0 , { , }s x y .   (1.3.24) 

The self-equilibrated stresses peak (in terms of magnitude) in the vicinity 
of the loaded zones, and vanish when moving away from these zones. 
Hence, this representation confirms the Saint-Venant principle of static 
equivalence [282]. In [323, 326, 328], this approach was extended to plane 
problems for circular and annular segments and a cylinder of finite length. 

The direct integration method also allows us to clear up important 
theoretical issues in the field of solid mechanics, such as the 
“overdetermined” system of equations for the three-dimensional 
formulation of elasticity theory in terms of stresses. Barré de Saint-Venant 
[281] obtained the following strain-compatibility (or continuity) equations:  

 
2 22

2 2

yy xyxx
x yx y

 , etc.  (1.3.25) 

and 

 
2

2
yz xyzxzz

x y z x y z , etc.   (1.3.26) 

If we eliminate displacements from the Cauchy strain-displacement 
equations, they can be regarded as classical, and are therefore included 
into most textbooks on the theory underlying elasticity and 
thermoelasticity theories. Here, m  represents the strain-tensor 

components, u  represents the displacements, , { , , }m x y z , and “etc.” 

indicates two more equations obtained by cyclic permutation of indices 
and variables of differentiation. Using the constitutive strain-stress 
equations in conjunction with the equilibrium equations [282], allows us to 
represent equations (1.3.25) and (1.3.26) in terms of stresses; i.e., the 
Beltrami-Michell equations [278]. Along with three equilibrium equations, 
the six Beltrami-Michell equations present a system of nine equations for 
six stress-tensor components, which is, obviously, overdetermined.   

In 1938, Southwell [260] proved that the application of Maxwell 
potential functions to the solution of a three-dimensional problem using 
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the Castigliano principle yields only (1.3.25), whereas the application of 
the Morera functions yields only (1.3.26). In a subsequent paper [261], 
Southwell noted the following: “Commenting on these results, Professor 
G. I. Taylor remarked to me that by them three of the six conditions (11) 
[(1.3.25) and (1.3.26) herein] would seem to be made redundant; for if 
either the first or the second three of (11) are sufficient to ensure that U  
[the total strain energy] is stationary, then according to Castigliano’s 
principle they should also ensure the existence of single-valued 
displacements, and no further conditions should be necessary. Once the 
paradox is revealed its resolution becomes a problem of some urgency...”. 
In the same paper, he sought to prove that all six of the equations given 
in (1.3.25) and (1.3.26) are necessary for the identic determination of 
displacement. His proof, however, was not supported with compelling 
evidence and the “Southwell paradox” remains an issue of some 
contention (see, [13, 14, 37, 146, 166, 175, 214, 262, 308, 331–333, 
348]). In [337], Washizu used the Bianchi formulae to demonstrate that if 
equations (1.3.25) are satisfied in the interior points of body  and 
equations (1.3.26) are satisfied at its boundary , then (1.3.26) is 
necessarily satisfied in the interior points on the body , and vice versa. 
Thus, Washizu presumed that while equations (1.3.25) are used as 
governing equations, equations (1.3.26) serve as a supplementary 
condition for the determination of displacements.   

That hypothesis was confirmed by making use of the direct 
integration method, when Vihak [320] used three out of six Cauchy 
strain-displacement equations for an elastic parallelepiped | | ,xx a  

| | ,yy a  | | zz a  to derive the following expression for displacements:  

     2
a a

u u u

sgn( ) , { , , }

a

a

d x y z .   (1.3.27) 

The remaining three Cauchy’s equations in view of (1.3.27) yield the 
following integro-differential compatibility equation:  

 2 sgn( )

a

a a
a

u u d  
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 sgn( ) ,

a

a a
a

u u d

, { , , }.x y z   (1.3.28) 

Differentiating equation (1.3.28), they can be reduced, under certain 
conditions on the sides of the parallelepiped to (1.3.25). This 
demonstrated that three out of the six Cauchy equations can be used for 
the determination of displacements u , { , , }x y z , while the 

remaining three can be used to derive three strain-compatibility 
equations. In bounded domains, these are generally of the integro-
differential type. There are 17 equivalent triads of such equations, which 
support the results obtained by Ostrosablin [206] almost simultaneously. 
The advantage of this result has been efficiently used for solution of a 
number of three-dimensional problems for homogeneous and 
inhomogeneous solids [301, 302, 304, 316, 317].   

The fact that the method of direct integration is oriented primarily 
toward the use of equilibrium equations and the establishment of relations 
between stress-tensor components in conjunction with the necessary 
conditions for stresses, strains, and displacements, irrespective of the 
material model makes the direct integration method useful for a wide 
range of applications. It has been combined with the method of conditional 
plastic strains [216] to develop an experimental-computational technique 
by which to determine steady-state residual stresses in welded joints 
modeled using locally-distributed fields of incompatible strains. In 
experiments, this technique was verified through the analysis of residual 
stresses in unbounded [324] and rectangular [293] plates with a rectilinear 
welded joint and a thick-walled elastic cylinder with a circumferential butt-
weld [300]. 

The strategy generally used to apply the direct integration method 
appears to be an efficient approach to the analysis of elastic and 
thermoelastic responses of inhomogeneous solids. The efficiency can be 
explained by the fact that the basic stages of the method deal with the 
equations of equilibrium in terms of stresses, which are invariant with 
respect to a model of material properties. When deriving and solving the 
governing equations for key functions, the variable material properties 
are involved only in the later stages of the solution process. Thus, the 
technique used to deal with inhomogeneous solids is similar to that used 
for homogeneous material. The only difference is the fact that the 
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governing equations for inhomogeneous solids appear to be of integral or 
integro-differential type.  

Note that the theoretical basis for this type of implementation was 
established by Lopatynsky [162] and Fichera [69]. The application of 
the integral equations received further development in papers by 
Panferov and Leonova [207], Clements and Rogers [58, 59], and 
Furuhashi [75, 76]. Furuhashi and Kataoka [77, 78], Li et al. [157], and 
Peng and Li [209, 210] focused on solutions to one-dimensional problems. 
A systematic implementation of this approach was later presented in [290].  

In the following chapters, we systematically illustrate the application 
of the direct integration method to the solution of some basic boundary 
value problems related to elasticity, thermoelasticity, and heat-conduction 
when dealing with inhomogeneous solids. 
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CHAPTER TWO 

PLANE PROBLEMS IN  
CARTESIAN COORDINATES 

 
 
 

2.1.  Basic assumptions and governing equations 

2.1.1. Thermoelasticity equations for orthotropic 
inhomogeneous solid 

Consider an elastic solid S  in a dimensionless Cartesian coordinate 
system ( , , )x y z . Within the framework of the classical uncoupled theory 

of thermoelasticity [197, 198], the equilibrium state of the considered solid 
is governed by the following vector equation  

 ˆdiv 0B , (2.1.1) 

where div / , / , /x y z  is the divergence vector within 

Cartesian coordinates, 
{ , } { , , }

ˆ j j x y z
 is the symmetric ( j j ) 

stress tensor, and ( , , )x y zF F FB , jF  is a projection of the resulting 

body force along the axes { , , }j x y z . The above equation can be written 

in scalar form as follows: 

 0, { , , }
jx jy jz

jF j x y z
x y z

.  (2.1.2) 

According to the theory of small deformations [278, 282], every 
component of the total strain tensor can be represented by a linear 
combination of stresses along with a thermal strain under the constitutive 
law as follows: 

 jk jkxx xx jkxy xy jkxz xz jkyy yyB B B B
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, { , } { , , }T

jkyz yz jkzz zz jkB B j k x y z , (2.1.3) 

where, 0( )T
jk jk jk T T  are components of the spherical thermal-

strain tensor involving only the diagonal elements expressed through the 
coefficients of linear thermal expansion jj j  along the Cartesian axes 

{ , , }j x y z ; jk  is the Kronecker delta; and T  is the steady-state 

temperature distribution within body S , where 0T  is the initial 

temperature corresponding to the thermal-stress-free state, jk mB , 

{ , , , } { , , }j k m x y z , are components of the tensor of material properties 

(elastic compliance components), which are irrespective of both strains 
and stresses and are functions of a material point only. In the general case 
of a linearly elastic solid, there are 21 independent component jk mB  out 

of 36 total. The number of independent components jk mB
 
can be reduced 

in some specific cases of material anisotropy [199, 240].  
For example, if every point of an anisotropic solid can be regarded as 

an intersection of three mutually perpendicular planes with identical 
material properties, then, after ensuring that the planes are parallel to the 
coordinate planes, the number of independent components can be reduced 
to 9 and the solid referred to as orthotropically anisotropic or orthotropic. 
The constitutive law given in (2.1.3) in this case takes the following form: 

 

0

0

0

( ),

( ),

( ),

, , .

xx xxxx xx xxyy yy xxzz zz x

yy xxyy xx yyyy yy yyzz zz y

zz xxzz xx yyzz yy zzzz zz z

xy xyxy xy xz xzxz xz yz yzyz yz

B B B T T

B B B T T

B B B T T

B B B

 (2.1.4) 

The elastic compliances in (2.1.4) can also be represented using so-called 
technical parameters, which gives us another representation of the 
constitutive law [12, 154, 156]: 
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0

0

0

1 ( ),

1 ( ),

1 ( ),

1 1 1, , .

yx zx
xx xx yy zz x

x y z

xy zy
yy xx yy zz y

x y z

yzxz
zz xx yy zz z

x y z

xy xy xz xz yz yz
xy xz yz

T T
E E E

T T
E E E

T T
E E E

G G G

 (2.1.5) 

Here, xE , yE , and zE  respectively indicate the Young moduli in the 

directions of coordinate axes x, y, and z; jk  denotes the Poisson ratio 

describing contraction in the j-direction at tension in the k-direction; and 

jkG  is the shear modulus within the ( , )j k -coordinate plane where 

{ , } { , , },j k x y z j k . Note that the technical parameters must meet the 

following conditions of symmetry:  

 , { , } { , , },j kj k jkE E j k x y z j k .  (2.1.6) 

If every point in an elastic solid lie along a plane in which all material 
properties are equal (i.e., the plane of isotropy), then the number of 
independent elastic compliances is 5 and the body is referred to as 
transversely isotropic or transtropic. The constitutive law given in (2.1.3) 
for this type of solid is as follows: 

0

0

0

( ),

( ),

( ) ( ),

2( ) , , .

xx xxxx xx xxyy yy xxzz zz x

yy xxyy xx xxxx yy xxzz zz y

zz xxzz xx yy zzzz zz z

xy xxxx xxyy xy xz xzxz xz yz xzxz yz

B B B T T

B B B T T

B B T T

B B B B

 (2.1.7) 

Then, applying the technical parameters [154], (2.1.7) can be rewritten as 
follows: 
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0

0

0

1 ( ) ( ),

1 ( ) ( ),

( ) ( ),

, , .

xx xx yy zz

yy xx yy zz

zz
zz xx yy

xy yzxz
xy xz yz

T T
E E

T T
E E

T T
E E

G G G

  (2.1.8) 

Here, E  and E  are the Young moduli under tension or compression in the 
directions respectively lying along the plane of isotropy and in the direction 
perpendicular to this plane;  indicates the Poisson ratio characterizing the 
out-of-plane contraction in response to tension applied in the plane of 
isotropy; and  is the Poisson ratio characterizing the in-plane contraction 
in response to tension applied in the out-of-plane direction; 

/ (2 2 )G E ,  and G ,  are the shearing moduli and linear 

thermal expansion coefficients in the in-plane and out-of-plane directions, 
respectively. 

If an elastic solid is elastically equivalent in all directions (i.e., all of 
the planes passing through a material point are equivalent), then there are 
only three independent elastic compliances and the solid can be regarded 
as isotropic. The constitutive law (2.1.3) for an isotropic solid can be 
written as follows: 

 

0

0

0

( ) ( ),

( ) ( ),

( ) ( ),

, , ,

xx xx yy zz

yy yy xx zz

zz zz xx yy

xy xy xz xz yz yz

E E T T

E E T T

E E T T

G G G

  (2.1.9) 

where E  and G  respectively indicate the Young modulus and shearing 
modulus,  is the Poisson ratio, and  is the coefficient of linear thermal 
expansion.  
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After establishing a connection between the stress- and strain-tensor 
components in an elastic anisotropic solid, we can use the following 
Cauchy equations [240, 282] to express strain jk  and elastic 

displacement ju  in the direction of the j coordinate axis, , , ,j k x y z : 

 

, , ,

, , .

yx z
xx yy zz

y yx x z z
xy xz yz

uu u
x y z

u uu u u u
y x z x z y

 (2.1.10) 

Assuming that the initial and current temperature distributions (i.e., 0T  

and T ) are known, then deriving the solution to a general thermoelasticity 
problem implies determining the following fifteen unknown functions: six 
stress-tensor components jk , { , } { , , },j k x y z  six strain-tensor 

components jk , { , } { , , },j k x y z  and three elastic displacements ,ju

{ , , },j x y z in elastic body S  using fifteen equations: the three 

equilibrium equations (2.1.2), the six constitutive equations (2.1.3) (which 
can be in the form (2.1.5), (2.1.8), or (2.1.9)), and the six Cauchy strain-
displacement equations (2.1.10).  

The number of quested-for functions can be reduced by formulating 
thermoelasticity boundary-value problems in terms of stresses or 
displacements, which are usually motivated by the boundary conditions 
imposed on boundary S  of solid S .  

If, for example, boundary S is subjected to external force loadings as 
follows: 

  ˆ n P
S

,  (2.1.11) 

then it is reasonable to formulate the problems in terms of stresses. Here, 
n  is the unit vector of outer normal to surface S  and P  is the vector of 
external force loadings. In this case, the displacements can be eliminated 
from the Cauchy equations (2.1.10) in order to derive the following strain-
compatibility equations: 

2 22

2 2
,

yy xyxx
x yx y
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2 22

2 2
,xx xzzz

x zz x

2 22

2 2

2

,

2 ,

yy yzzz

yz xyzxzz

y zy z

x y z x y z

  (2.1.12) 

 
2

2 ,
xy yzxx xz

y z x y z x

2

2 .
yy xy yz xz

x z y z x y
 

Substituting the constitutive equations (2.1.3) (or any equivalent such 
as (2.1.5), (2.1.8), or (2.1.9)), into the compatibility equations (2.1.12) 
makes it possible to represent the problems in terms of stresses. In the case 
of homogeneous isotropic solids, these equations are known as the 
Beltrami-Michell equations [278].  

If the components of the displacement vector u  are imposed on 
surface S :   

  u uS
,  (2.1.13) 

where u  is a given vector of boundary displacements, the problems can 
be formulated in terms of displacements by substituting (2.1.3) and 
(2.1.10) into (2.1.2), which yields three scalar equations for the 
determination of displacements in solid S  (in the case of homogeneous 
isotropic material they are known as the Lamé equations) [145].  

The formulation of a boundary-value problem in terms of six stresses 
or three displacements appears to be simpler than the general formulation; 
however, it presents a challenge for analytical as well as numerical modes 
of attack. In some cases, the formulation of the problem can be simplified 
once the shape of the solids and loading profiles exhibit specific types of 
symmetry or the loadings show little variation in some spatial directions. 
One such simplification can be made when implementing the plane-strain 
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or plane-stress hypotheses, under which problems involving 
thermoelasticity can be considered using only a plane (two-dimensional) 
formulation with a smaller number of independent equations and quested-
for functions of two spatial variables. 

2.1.2. Plane strain 

Assume that the length of orthotropic elastic solid S  in the z-direction 
| | 1z L  far exceeds the dimensions in the x - and y-directions. We set 

the temperature distribution T  and external forces P  or boundary 

displacement u  under conditions (2.1.11) and (2.1.13), with body force 
B  (where 0zF ) independent of coordinate z.  Then, at a sufficient 

distance from end-faces z L  of body S  we assume i) the stress- and 
displacement-fields do not depend on coordinate z; i.e., they vary only 
with coordinates x and y within a planar cross-section 

0 0{( , , ), const}x y z zD  of body S ; ii) shear strains xz , yz  
and 

stresses xz , yz  are equal to zero; and iii) axial strain is constant (i.e., 

0 constzz e ). If both end-faces of body S  are confined between two 

smooth rigid planes, then, obviously, 0 0e . If one or both of the end-

faces are free of force loading, then due to (2.1.5), the constant axial strain 
can be determined as follows: 

 0 0
1 ( )

yzxz
xx yy zz zz

x y z
e T T dxdy

E E E
D

. (2.1.14) 

In view of the foregoing assumptions, the equilibrium equations (2.1.2) 
take the following form: 

 0, 0
xy xy yyxx

x yF F
x y x y

. (2.1.15) 

In view of the relationship depicted in (2.1.6), the constitutive equation 
given in (2.1.5) for zz  becomes  

 0 0( )zz zx xx zy yy zz ze E T T .  (2.1.16) 
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Substituting (2.1.16) into the first and second equations of (2.1.5) gives yet 
another form of the constitutive law for the case of plane strain within 
plane domain D : 

 
1 yx zx yzzx xz

xx xx yy
x yE E

0 0( )( ),zx x z zxe T T   

 
1xy xz zy zy yz

yy xx yy
x yE E  (2.1.17) 

 0 0( )( ),zy y z zye T T  

 1 .xy xy
xyG  

In view of the assumptions of the plane-strain hypothesis, the Cauchy 
equations (2.1.10) can be represented using the following three 
independent equations: 

 , ,
y yx x

xx yy xy

u uu u
x y y x

.  (2.1.18) 

Furthermore, the Saint-Venant equations (2.1.12) yield only one nontrivial 
equation: 

 
2 22

2 2

yy xyxx
x yx y

.  (2.1.19) 

Thus, the problem of determining stresses in solid S  under the plane 
strain hypothesis is reduced to determining three stress-tensor components 

xx , yy , and xy , three strain-tensor components xx , yy , and xy , 

and two displacements xu  and yu  as functions of x and y. This is 

achieved using the eight equations (2.1.15), (2.1.17), and (2.1.18) under 
the conditions represented by (2.1.11) or (2.1.13) imposed on boundary 
D  of domain D . Substituting the constitutive equations in (2.1.17) into 

the compatibility equation (2.1.19) allows for deriving a compatibility 
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equation in terms of stresses, which along with two equations of 
equilibrium (2.1.15) present a closed system of three equations for 
determination of three stress-tensor components. After the in-plane 
stresses are computed, out-of-plane stress zz  can be derived using 

(2.1.16). Similarly, substituting the Cauchy equations (2.1.18) into the 
constitutive equations (2.1.17) allows the representation of the equilibrium 
equations in (2.1.15) in terms of displacement. This creates a closed 
system in which two Lamé equations are used for the determination of xu  
and yu . 

2.1.3. Plane stress 

A similar simplified formulation can be found in the case when an 
elastic body {( , , ), | | / 2}x y z z hS  is a thin plate of constant thickness 

h , the z-dimension of which is significantly smaller than the in-plane 

dimensions within domain 0{( , , ),x y zD  0 const,z  0 / 2}z h . 

Assume that faces / 2z h  are free of force loadings; the circumference 
of plate S  is loaded by forces symmetric with respect to its midplane 

0z  and parallel to it; the component of body-force vector zF  is absent; 

and components xF  and yF  along with temperature T  are symmetric 

about the midplane 0z . The assumption of symmetric loadings implies 

that vertical displacement zu  is zero at the midplane 0z . This, along 

with small value for h , makes 0zu  for arbitrary z . Variations in xu  
and yu  as a function of z  can be regarded as insignificant, which means 

that they can be substituted with their averaged values 

 
/2

/2

1 , { , }
h

j j
h

u u dz j x y
h

,  (2.1.20) 

which are functions of ( , )x y D . 

Averaging the stress-tensor components in a fashion similar to 
(2.1.20), the foregoing assumptions imply that 0zz xz yz  and, 

consequently, 0xz yz . By omitting the tildes, equations (2.1.15), 

(2.1.18), and (2.1.19) become valid for the considered case of generalized 
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plane stress. In this case, the constitutive equations in (2.1.5) take the 
following form: 

 

0

0

1 1( ), ,

1 ( ).

yx
xx xx yy xx xy xy

x y xy

xy
yy xx yy yy

x y

T T
E E G

T T
E E

 (2.1.21) 

The averaged axial strain can then be determined as follows: 

 0( )
yzxz

zz xx yy zz
x y

T T
E E .  (2.1.22) 

Similar to the case of plane strain, the generalized plane-stress 
hypothesis makes it possible to reduce the general thermoelasticity 
problem to three equations for in-plane stresses xx , yy , and xy  or two 

equations for displacements xu  and yu with the out-of-plane strain zz  

expressed via the in-plane normal stresses using (2.1.22). 

2.1.4. Governing thermoelasticity equations in terms of stresses 

Despite the fact that the plane-strains and plane-stress hypotheses are 
applicable to solids of very different shapes (long prismatic bars for plane 
strain versus thin plates for plane stress), the thermoelasticity problems in 
both cases imply that in-plane stresses xx , yy , and xy  and 

displacements xu  and yu  must be derived using the same sets of 

equations (i.e., (2.1.15), (2.1.18), and (2.1.19)) under the constitutive law 
(in the form of (2.1.17) or (2.1.21)). In order to unify these two cases, the 
constitutive equations given in (2.1.17) and (2.1.21) can be rewritten as 
follows: 

         
11 12 1 1 0

12 22 2 2 0

( ),

( ), ,

xx xx yy

yy xx yy xy xy xy

a a T T

a a T T G
 (2.1.23) 

where  
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 11 22

1,1,1 1
1 ,1 , zy yzzx xzx y

a a
E E

 

 12

, ,1 1
,

yx xy

yx zx yz xy xz zyy x
a

E E
 (2.1.24) 

 1 2 1 2
00

, 0,, 0,
.,, ,

yx

zyzxx z zx y z zy ee  

The first line under each brace represents a case of plane stress and the 
second line corresponds to plane strain.  

In the case of transversely isotropic materials whose general three-
dimensional constitutive equations have the form (2.1.8), the unified plane 
constitutive law has the form (2.1.23), where 

11 22 12 1 2

1 2 0

1 , , ,

, ,xy

a a a
E E

G G
 (2.1.25) 

and  

2

2 2

0
0

,,

, ,

0,,
.,

E
E EE E E

E E E E

e

 (2.1.26) 

Note that 2 / (1 )G E . 

In the case of isotropic materials represented by (2.1.9), the unified 
plane constitutive equations have the form (2.1.23) using the coefficients 
in (2.1.25), where  

 0
02

, , 0,,
, .(1 ),,

11

E
E E e  (2.1.27) 
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Note that due to the fact that 11 22 12 21 0a a a a , the constitutive 

equations (2.1.23) can be inversed to determine the elastic stresses in 
terms of the strain-tensor components.  

Now, by making use of the unified plane constitutive equations 
(2.1.23), we can represent the compatibility equation (2.1.19) in terms of 
stresses. 

If we assume that the material properties in the unified plane 
constitutive law (2.1.23) are functions of the in-plane coordinates x  and 
y , then in terms of stresses, the compatibility equation (2.1.19) has 

variable coefficients. The derived compatibility equation can be simplified 
using the following formulae: 

 

2 2

2 2

2 22

2 2

,

2 .

yy yxx x

xy yy yxx x

FF
x yy x

FF
x y x yx y

  (2.1.28) 

These formulae follow from the equilibrium equations (2.1.15). In view of 
equations (2.1.15) and (2.1.28), the third equation of (2.1.23) yields the 
following: 

 
2

2 1 1xy xx
xy x

xy xy
F

x y x y G x G x

1 yy
y

xy
F

y G y
 

 

22

2 2

1
2

yy yxx x

xy

FF
G x yx y

.  (2.1.29) 

Substituting (2.1.29) as well as the first and second equations of 
(2.1.23) into (2.1.19) yields the following compatibility equation in terms 
of stresses: 

 
2

12 22 2 2 02
( )xx yya a T T

x
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2

11 12 1 1 02
( )xx yya a T T

y
 

22

2 2

1 1 1
2

yy yyxx xx

xy xy xyx G x y G y G x y
 

 

2 1 1
xy x

xy xy
F

x y G x G

1 1 yx
y

xy xy

FF
F

y G G x y .  (2.1.30) 

If all of the material properties depend on only one variable, then the 
compatibility equation can be simplified greatly. If, for example, the 
material properties are arbitrary functions of y , then equation (2.1.30) 

takes the following form: 

 

11 1 0 1 2 0( ) ( )( )a T T T T

1
12

yy

xyy G y  

 
2 2 2

1 1
2 2 2 2

yy
yy

d d
x dy dy

1
y yx

xy

F FF
y x y G ,  (2.1.31) 

where  

 
2 2

1 11 12 2 22 11 2 2
, ,a a a a

x y
 (2.1.32) 

and 

 xx yy   (2.1.33) 
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is the in-plane total stress. 
In the case of transversely isotropic or isotropic materials, the 

compatibility equation (2.1.31) takes the following form: 

 

22
0

0 2 2

1 1( )
2
yy ddT T

GE dy dy

1 y yxF FF
G y x y G ,  (2.1.34) 

where parameters E  and  are expressed by equations (2.1.26) for 
transversely isotropic material and by equations (2.1.27) for isotropic 
material. 

The resulting compatibility equations (2.1.31) and (2.1.34) are 
formulated only for normal stress yy  and the total stress introduced by 

(2.1.33). One more equation for these functions can be derived by adding 
2 2/yy x  to both sides of the first equation (2.1.28). In view of (2.1.33), 

this addition yields 

 

2

2
.

yx
yy

FF
x yx

  (2.1.35) 

Equations (2.1.35) and (2.1.31) or (2.1.34) present a complete system 
for the determination of stresses yy  and  in an inhomogeneous 

orthotropic, transversely isotropic, or isotropic solid, whose material 
properties are arbitrarily differentiable functions of y . Thus, these 

functions can be regarded as the key function in the realization of the 
direct integration method procedure (see Section 1.5) Calculating these 
stresses makes it easy to derive the normal stress xx  using (2.1.33). 

Shearing stress xy  can then be determined using the second equation of 

(2.1.28). 

2.1.5.  Two-dimensional heat-conduction equation 

The governing thermoelasticity equations (2.1.30), (2.1.31), and 
(2.1.34) involve the temperature field, which can be determined from a 
relevant heat-conduction problem. If the temperature T  varies with z  so 
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little that / 0dT dz , which is the case under the foregoing plane-strain 
and plane-stress hypotheses, the corresponding steady-state heat-
conduction equation is as follows [100, 199]: 

     
( , ) ( , )

( , ) ( , ) ( , )x y
T x y T x yx y x y w x y

x x y y
,  (2.1.36) 

where ( , )w x y  denotes the quantity of heat generated by inner heat 

sources and ( , )x x y  and ( , )y x y  are the heat transfer coefficients 

respectively in the directions of the Cartesian axes x  and y . For 

inhomogeneous materials, the heat transfer coefficients can be regarded as 
arbitrary functions of position ( , )x y . If we assume that these coefficients 

are functions of coordinate y  only, then equation (2.1.36) can be written 

in the following form: 

 
( ) ( , )

( ) ( , )
y

y

d y T x yy T x y
dy y

2

2

( , )
( ) ( ) ( , )x y

T x yy y w x y
x

.   (2.1.37) 

For isotropic material and transversely isotropic one for which plane 
isotropy is parallel to the plane ( , )x y , the orthotropic coefficients in 

equation (2.1.36) are ( , ) ( , ) ( , )x yx y x y x y . For equation (2.1.37), 

the orthotropic coefficients are ( ) ( ) ( )x yy y y . If the coefficients 

are constant, equation (2.1.37) yields the classical heat-conduction 
coefficient for homogeneous material [197]. 

To determine the temperature field uniquely, equations (2.1.36) or 
equation (2.1.37) must be set within relevant boundary conditions. There 
are three basic types of boundary conditions: i) the values of temperature 
are imposed on the boundary (known as the boundary conditions of the 
first kind, or Dirichlet boundary conditions), ii) the values of heat flux are 
imposed on the boundary (known as the boundary conditions of the second 
kind or Neumann boundary conditions), and iii) the values of temperature 
and the heat flux are imposed on the mutually complementary parts of the 
boundary (mixed-type boundary conditions) or both temperature and heat 
flux are imposed on the entire boundary (the boundary conditions of the 
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third kind). The latter is often applied in the modeling of convective heat 
exchange [200]. 

Note that many practical cases involve a special type of 
inhomogeneity, in which the heat conduction coefficients are functions of 
temperature (e.g., thermosensitive material [195]). In these cases, equation 
(2.1.36) becomes nonlinear. Moreover, when heat exchange is imposed on 
the surface of a thermosensitive body, the coefficients can also be 
dependent on the unknown temperature, which means that the conditions 
are also nonlinear. This greatly complicates the derivation of solutions for 
this type of heat-conduction problem and calls for the application of 
specific linearization techniques to deal with the heat conduction equation 
and the boundary conditions [151, 223]. 

2.2. Thermoelasticity solutions for inhomogeneous 
orthotropic unbounded domain 

2.2.1. Formulation and integral conditions 

Consider a plane thermoelasticity problem for an inhomogeneous 
orthotropic unbounded domain 0 | ,{| xD | | }y  related to the 

dimensionless Cartesian coordinate system ( , )x y . Assume that all of the 

material moduli are arbitrary functions of coordinate y  and 0 0 0T e . 

Plane 0D  is exposed to a steady-state non-uniform distribution of 

temperature ( , )T x y  and body forces ( , )xF x y
 
and ( , )yF x y .  

Under the assumption that the temperature approaches zero, 

( , ) 0T x y , at infinitely distant points, 2 2x y , our intention is 

to construct a local solution to the equations of equilibrium (2.1.15) and 
compatibility (2.1.31). This implies that the stress-tensor components also 

vanish as 2 2x y . Before constructing this solution, we must first 

derive equilibrium conditions for the stress-tensor components and the 
applied force loadings using the method suggested in [321, 322]. 

By integrating the first equation in (2.1.15) over x  and assuming that 

the normal stress xx  tends to zero at x , we derive the following 

two expressions:   

 
( , )

( , )
x

xy
xx x

y
F y d

y
 (2.2.1) 
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and 

 
( , )

( , )
xy

xx x
x

y
F y d

y
.   (2.2.2) 

Summing these expressions, we obtain the following equality:  

 
( , )1 ( , ) sgn( )

2
xy

xx x

y
F y x d

y
. (2.2.3) 

Equation (2.2.3) expresses normal stress xx  through shear stress xy  and 

body-force component xF .  Here,  

  
1, ,

sgn( ) 0, ,
1, .

x
x x

x
  (2.2.4) 

Similarly, the following expression can be obtained by integrating the 
second equation in (2.1.15) over y :  

 
( , )1 ( , ) sgn( )

2
xy

yy y

x
F x y d

x
.  (2.2.5) 

If we let x  in (2.2.3) and y  in (2.2.5), while assuming 

that the stress-tensor components are equal to zero at infinitely distant 
points, we arrive at the following integral conditions: 

 

( , ) ( , ) ,

( , ) ( , ) .

xy x

xy y

d x y dx F x y dx
dy

d x y dy F x y dy
dx

 (2.2.6) 

Deriving the latter conditions involves switching the integration and 
differentiation operators. This implies [283] that the involved functions 
belong to class 

0
LD of the absolutely integrable functions ( , )f x y . That 

is, 
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0

( , )f x y dx dy
D

.   (2.2.7) 

Because  

 

0 0

( , ) ( , )f x y dx dy f x y dx dy
D D

,   (2.2.8) 

then (2.2.7) implies the following: 

 

0

( , )f x y dx dy
D

.  (2.2.9) 

Equation (2.2.9) means that the absolute values of the stress resultants 
over the entire domain 0D  are not allowed to grow infinitely. This can be 

regarded as a necessary condition of the solution feasibility for the 
considered plane thermoelasticity problems. 

Now, by integrating the first and second equations in (2.2.6) with 
respect to y  and x , respectively, we arrive at the following: 

 
0

0

1( , ) ( , ) sgn( ) ,
2

1( , ) ( , ) sgn( ) .
2

xy x

xy y

x y dx F x y dxd

x y dy F y x d dy

D

D

  (2.2.10) 

These express the resultant shearing forces through the integral 
characteristics of body forces over the entire domain 0D . If we let 

y  and x  respectively in the equations above, then we can 

derive the following general equilibrium conditions for the resultants of 
body forces: 

 

0 0

( , ) 0, ( , ) 0x yF x y dxdy F x y dxdy
D D

.   (2.2.11) 
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Note that this implies that the body forces are self-equilibrated by the 
resultant vector over the entire unbounded domain 0D . At first glance, 

this restriction does not appear feasible, as body forces are usually 
associated with the weight of the body, which is in turn related to its 
density [282]. However, we have to keep in mind that dealing with 
unbounded domains is also a kind of modeling generalization which can 
bring, by itself, a considered problem beyond the feasibility limits for 
which solutions are not integrable. Thus, it is preferable to use conditions 
(2.2.11) to understand the local distribution of stresses and displacements 
in an infinite body. If the body forces for a considered problem do not 
display this type of local behavior, then the superposition principle can be 
used to split the stress-strain state into two or more problems. One of these 
problems is concerned with the local disturbance of forces governed by the 
conditions given in (2.2.11).  

By integrating first and second formulae in (2.2.10) respectively over 
y  and x , we derive the following equilibrium conditions:  

 

0 0 0

( , ) ( , ) ( , )xy x yx y dxdy yF x y dxdy xF x y dxdy
D D D

. (2.2.12) 

These conditions ensure that the main vector of shear stress within the 
entire plane 0D  equals the resultant moments of each body-force 

component within this plane. 
Similar to (2.2.3) and (2.2.5), the following equations can be obtained 

using (2.1.15):  

 

( , )1 ( , ) sgn( ) ,
2

( , )1 ( , ) sgn( ) .
2

xx
xy x

yy
xy y

x
F x y d

x

y
F y x d

y

  (2.2.13) 

These equations represent shear stress via normal stresses (either yy  or 

xx ). If we let y  and x  respectively in the first and second 

equations of (2.2.13), we derive the following integral conditions: 
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( , ) ( , ) ,

( , ) ( , ) .

xx x

yy y

d x y dy F x y dy
dx

d x y dx F x y dx
dy

  (2.2.14) 

Then, by integrating these respectively over x  and y , we derive the 

following equilibrium conditions: 

 
0

0

1( , ) ( , ) sgn( ) ,
2

1( , ) ( , ) sgn( ) .
2

xx x

yy y

x y dy F y x d dy

x y dx F x y dxd

D

D

  (2.2.15) 

The latter conditions express the resultant normal stress-tensor 
components in terms of the given body forces. Note that under x  
and y , formulae (2.2.15) yield the conditions of general 

equilibrium for the body forces given in (2.2.11). The integration of the 
first and second equations in (2.2.15) over x  and y , respectively, yields 

the following conditions: 

  
0 0

0 0

( , ) ( , ) ,

( , ) ( , ) .

xx x

yy y

x y dxdy xF x y dxdy

x y dxdy yF x y dxdy

D D

D D

 (2.2.16) 

Obviously, substituting the first equation of (2.2.13) into (2.2.3) and 
the second equation of (2.2.13) into (2.2.5) creates identities. However, 
substituting the second equation of (2.2.13) into (2.2.3) yields the 
following: 

       

2

2

( , )1 1( , )
2 2

yy
xx x

y
F y

y
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( , )
sgn( ) sgn( )

yF y
d x d

y .  (2.2.17) 

Changing the order of integration, this becomes 

 

2

2

( , ) ( , )1 | |
2

yy y
xx

y F y
x

yy

( , ) sgn( )xF y x d .  (2.2.18) 

Similarly, the following expression can be derived by substituting the first 
equation of (2.2.13) into (2.2.5):  

 
2

2

( , ) ( , )1 | |
2

xx x
yy

x F x
y

xx

( , ) sgn( )yF x y d .   (2.2.19) 

Note that double-differentiating (2.2.18) by x  and double-
differentiating (2.2.19) by y  both yield the first equation of (2.1.28). In 

view of (2.1.33), this equation makes it possible to derive equation 
(2.1.35). 

If we let x  in (2.2.18) and y  in (2.2.19) and assume that 

the stress-tensor components vanish as 2 2x y  tends towards infinity, 

then we can derive the following integral conditions of equilibrium: 

 

2

2

2

2

( , )
( , ) ( , ) ,

( , )
( , ) ( , ) .

y
yy x

x
xx y

F x yd x x y dx F x y x dx
ydy

F x yd y x y dy F x y y dyxdx

 (2.2.20) 
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By respectively integrating the first equation in (2.2.20) twice over y  

and the second equation in (2.2.20) twice over x , we arrive at the 
following expressions for the resultant moments of the normal stress-
tensor components: 

 
0

0

( , )

1 ( , ) | | ( , ) sgn( ) ,
2

( , )

1 ( , ) | | ( , ) sgn( ) .
2

yy

x y

xx

y x

x x y dx

F x y xF x y dxd

y x y dx

F y x yF y x d dy

D

D

  (2.2.21) 

If we let y  in the first equation of (2.2.21) and x  in the 

second equation of (2.2.21), then we obtain the following: 

  

0 0

( , ) ( , )x yyF x y dxdy xF x y dxdy
D D

.   (2.2.22) 

This complies with the conditions given in (2.2.12). By integrating 
formulae (2.2.21) in view of integral conditions (2.2.11), we obtain the 
following conditions expressing the resultant moments of the normal 
stresses within the entire plane 0D   through the integral characteristics of 

body forces: 

 
0 0

0 0

2

2

( , ) ( , ) ( , ) ,
2

( , ) ( , ) ( , ) .
2

yy y x

xx x y

yx x y dxdy xyF x y F x y dxdy

xy x y dxdy xyF x y F x y dxdy

D D

D D

 (2.2.23) 
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We derived the integral relations between the stress-tensor components 
(2.2.3), (2.2.5), (2.2.13), (2.2.18), (2.2.19) along with integral equilibrium 
conditions (2.2.10), (2.2.12), (2.2.15), (2.2.16), (2.2.21), (2.2.23) for the 
stress-tensor components and necessary integral equilibrium conditions 
(2.2.11) and (2.2.22) for given components of the body-force vector. Note 
that these calculations involve integrating the equilibrium equations 
(2.1.15). Thus, they hold irrespective of material properties and are 
therefore valid for homogeneous or inhomogeneous materials presenting 
any form of anisotropy [297, 321, 322]. 

2.2.2.  Solutions of governing equations 

In view of the conditions for the body forces (2.2.11) and the 
assumption that the temperature and stresses vanish at the points of 
infinity, we hereby introduce the integral Fourier transform [41]:  

 ( ) ( ; ) ( , ) exp( )f y f y s f x y isx dx ,  (2.2.24) 

where s  is a parameter of the transform, 2 1i ,  and ( , )f x y  is an 

arbitrary function, for which the integral (2.2.24) exists. 
Applying this transform to (2.1.31) and (2.1.35) and minding the local 

character of the stress-strain state returns the following boundary value 
problem for key functions ( )y  and ( )yy y  in the mapping domain of 

transform (2.2.24): 

 2
( )

( ) ( ) ( )
y

yy x

dF y
y s y isF y

dy
,  (2.2.25) 

2
11 1 1 2( ) ( ) ( ) ( ) ( ) ( ) ( )a y y y T y s y y T y

 

1

( )12 ( )
( )

yy

xy

d yd y
dy G y dy

2
21

22

( )
( ) ( )yy

d y
s y y

dy
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1

( ) ( )
( ) ( )

( )
y y

x
xy

dF y F ydy isF y
dy dy G y

,  (2.2.26) 

 

0, 0, .yy xy y    (2.2.27) 

The boundary value problem (2.2.25) – (2.2.27) can be solved by 
constructing the following partial solutions to (2.2.25) and (2.2.26): 

 

( )1( ) ( ) exp | || |
2 | |

y
yy x

dF
y isF s y d

s d
 

 
| |

( ) exp | || |
2
s s y d   (2.2.28) 

and 

 

PL PL
11

1( ) ( ) ( ) ( , )
( ) yyy y y d

a y
 

 1

( )1 ( ) ( )
2 | |

y
x

dF
isF

s d

( )
exp | || |

( )
y

xy

Fd s y d
d G

.  (2.2.29) 

Here,  

 PL 1
11

1( ) ( ) ( )
( )

y y T ya y

1 2
| |

( ) ( ) ( ) exp | || |
2
s T s y d , (2.2.30) 

 EBSCOhost - printed on 2/14/2023 2:18 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Two 58

 
2

21
PL 22

( ) exp( | || |)1( , ) ( )
2 | |

d s yy s
sd

 

 1
12 ( ) exp( | || |) sgn( )
( )xy

d s y y
d G . (2.2.31) 

Substituting (2.2.28) into (2.2.29) and changing the order of integration 
yields the following integral equation for ( )y : 

 PL PL PL( ) ( ) ( ) ( )( ) ,y y y y d ,  (2.2.32) 

where 

PL PL
11

( )1( ) ( , ) ( )
2 | | ( )

y
x

dF
y y isF

s a y d

exp | || |s d d

1

( )
( ) ( )

y
x

dF
isF

d
 

( )
exp | || | ,

( )
y

xy

Fd s y d
d G

 

 PL PL
11

| |
( , ) ( , ) exp | || | .

2 ( )
sy y s d

a y
 (2.2.33) 

The construction of an efficient solution to the second-kind integral 
equation (2.2.32) presents an interesting problem; however, space 
limitations limit us to indicating only the dominant approaches that could 
be employed for its solution: i) Picard’s process of successive 
approximations [125, 294, 306], ii) the operator series method [27], iii) the 
Bubnov-Galerkin method [68], iv) a numerical procedure based on 
trapezoidal integration and the Newton-Raphson method [73], v) iterative-
collocation method [99], vi) discretization methods, and vii) special 
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kernels and projection-iterative method [64], spline approximations [152], 
the quadratic-form method [29], and grid methods [209]. Herein we 
employ the resolvent-kernel algorithm [218, 219] in a manner similar to 
[295, 296]. This allows us to obtain an explicit-form analytical solution 
that is convenient for analysis. Using this, the solution to equation (2.2.32) 
can be obtained as follows: 

    PL PL( ) ( ) ( )y y y

PL PL PL( ) ( ) ( , )y d ,  (2.2.34) 

where the resolvent kernel PL ( , )y  can be represented in the form of an 

infinite series 

    PL
1PL

0

( , ) ( , )
n

ny y   (2.2.35) 

through the use of recurring kernels 

    

PL
1 PL

PL PL PL
11

( , ),

(

( , )

( , ) ( , ) , 1, 2,, )n n

y

y t t

y

d ny t

 (2.2.36) 

Note that this technique follows directly from the solution scheme in 
the Picard iterative process [311]. 

It is worth noting that the resolvent kernel (2.2.35) is aggregated using 
the recurring kernels, which are computed successively from the original 
kernel (2.2.33) of integral equation (2.2.32) by means of the routine 
indicated in (2.2.36). Due to the fact that kernel (2.2.33) is expressed 
solely through material properties and does not involve force or thermal 
loadings, the resolvent kernel need only be computed once for specific 
material profiles to be used with a range of loadings.  

In many cases of specific dependences of the material properties on 
coordinates, the series (2.2.35) can be evaluated analytically [227, 311]. 
However, the practical computation of solution (2.2.34) expressed through 
the infinite series (2.2.35) generally presents a challenge. Due to the fact 
that with an increase in the number n , kernels (2.2.36) decrease by both 
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arguments, the series (2.2.35) can be truncated for practical computation 
as follows:  

    PL
P P

0
1L L( , ) ( , ) ( , )N

n

N

n
y y y ,  (2.2.37) 

where natural digit N  can be evaluated either by a succession of 
numerical experiments [295, 296] or estimated analytically [285] by 
minimizing the residual term in equation (2.2.32) obtained with expression 
(2.2.34) and the resolvent-kernel in the form (2.2.37) instead of (2.2.36).  

Once we have determined the total stress in the form (2.2.34), normal 
stress yy  can be constructed by substituting (2.2.34) into (2.2.28): 

 
( )1( ) ( ) exp( | || |)

2 | |
y

yy x

dF
y isF s y d

s d
  

     PL PL
| |

( ) ( ) exp( | || |)
2
s s y

PL ( , ) exp( | || |)s y d d .  (2.2.38) 

Normal stress xx  can then be computed using the equation 

 xx yy    (2.2.39) 

that follows from (2.1.33) in the mapping domain of transform (2.2.24). 
As a result, the stress can be expressed by the following form: 

 PL PL( ) ( ) ( )xx y y y

( )1 ( ) exp( | || |)
2 | |

y
x

dF
isF s y d

s d
  

     PL PL PL

| |
( ) ( ) ( , ) exp( | || |)

2
s y s y  
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 PL ( , ) exp( | || |)s y d d .   (2.2.40) 

Shear stress xy  can be computed using any of the equations given in 

(2.2.13) in the mapping domain of the transform (2.2.24). For instance, the 
second equation of (2.2.13) yields the following: 

 
( )

( ) ( )
yy

xy y

d yiy F y
s dy .  (2.2.41) 

Substituting (2.2.38) into (2.2.41), we arrive at the following: 

 ( ) ( )xy y
iy F y
s

( )
( ) exp( | || |) sgn( )

2
y

x

dFi isF s y y d
s d

  

 PL PL( ) ( ) exp( | || |) sgn( )
2
is s y y  

 PL ( , ) exp( | || |) sgn( )s y y d d .  (2.2.42) 

The in-plane stresses are found in the form (2.2.34), (2.2.38), (2.2.40), 
(2.2.42) in the mapping domain of the transform (2.2.24). The 
corresponding components in the physical domain can then be computed 
using the following inverse transform, either analytically or numerically 
[41]: 

 1( , ) ( ) exp( )
2

f x y f y isx ds .   (2.2.43) 

Note that a similar strategy can be employed in cases such as periodic 
behavior, by implementing an appropriate integral or series transform 
instead of the direct and inverse integral transforms (2.2.24) and (2.2.43).  
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2.2.3. Determination of elastic displacements 

After finding the stresses as described, we can determine the 
corresponding elastic displacements using the correct integration of the 
Cauchy equations (2.1.18). Assuming that plane 0D  is fixed at an 

infinitely distant periphery, the first and second equations of (2.1.18) yield 
the following:  

 

1( , ) ( , )sgn( ) ,
2

1( , ) ( , )sgn( ) .
2

x xx

y yy

u x y y x d

u x y x y d

  (2.2.44) 

Putting expressions (2.2.44) into the third equation (2.1.18) yields the 
following equation 

 
( , )

2 ( , ) sgn( )xx
xy

y
x y x d

y

( , )
sgn( ) ,

yy x
y d

x
  (2.2.45) 

which represents the actual strain compatibility equation for the 
considered problem formulation. Note that after the application of 

differential operator 2 / x y , equation (2.2.45) can be reduced to the 

classical equation of strain compatibility (2.1.19). Under the assumption 
that the stress, strain, and displacement fields are local and vanish at the 
points of infinity, it is not difficult to prove that equation (2.1.19) is 
equivalent to (2.2.45). It is necessary only to successively integrate 
(2.1.19) by x  and y  and then compare the result to (2.2.45). Therefore, if 

strains ( , )xx x y , ( , )yy x y , and ( , )xy x y  are determined in the form 

(2.1.23) using the stress-tensor component found in the form (2.2.38), 
(2.2.40), and (2.2.42) in the physical domain of transform (2.2.43), then 
we can use any two equations out of three ones of (2.1.18) to determine 
displacements ( , )xu x y  and ( , )yu x y . Thus, after determination of the 
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displacements in the form (2.2.44), the third equation (2.1.18) is fulfilled 
automatically.  

In the mapping domain of transform (2.2.24), expressions (2.2.44) take 
the following form: 

 1( ) ( ), ( ) ( )sgn( )
2x xx y yy

iu y y u y y d
s .  (2.2.46) 

Making use of the strain representations (2.1.23) in the mapping 
domain of transform (2.2.24) along with the expressions (2.2.34), (2.2.38), 
and (2.2.40), the elastic displacements (2.2.46) can be written as follows:  

11 12( ) ( )
( )

2 | |x
a y a y

u y i
s s

( )
( ) exp( | || |)

y
x

dF
isF s y d

d
 

 

11 PL PL 1( ) ( ) ( ) ( ) ( )i a y y y y T y
s   

     11 12
PL PL

( ) ( )
( ) ( ) | |

2

a y a yi ss
 

PLexp( | || |) ( , ) exp( | || )s y s y d

11 PL( ) ( , )a y y d ,  (2.2.47) 

 
( )

( ) ( )
y

y x

dF
u y isF

d

22 12( ) ( )
exp( | || |) sgn( )

4 | |

a a
s y d d

s
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PL PL 12
1 ( ) ( ) ( )sgn( )
2

a y  

 22 12
| |

( ) ( ) exp | || | sgn( )
2
s a a s y d  

 PL 12( , ) ( )sgn( )a y  

 22 12
| |

( ) ( ) exp | || | sgn( )
2
s a a s y d d d  

 2
1 ( ) ( )sgn( )
2

T y d .  (2.2.48) 

After the elastic displacements are found using (2.2.47) and (2.2.48) in 
the mapping domain of transform (2.2.24), they can be restored in the 
physical domain using the inverse transform (2.2.43). 

2.2.4. Steady-state temperature determination 

In the previous sections, we constructed stresses (2.2.38), (2.2.40), and 
(2.2.42) and displacements (2.2.47) and (2.2.48) as functions of body 
forces and temperature ( , )T x y . The temperature field ( , )T x y  in plane 

0D  can be found by correct solving a boundary value problem for the 

heat-conduction equation (2.1.37). In order to do so, let us first derive 
integral conditions of thermal balance in inhomogeneous orthotropic plane 

0D . Introduce the heat flux components by the following expressions: 

 

( , )
( , ) ( ) ,

( , )
( , ) ( ) .

x x

y y

T x yx y y
x

T x yx y y
y

  (2.2.49) 
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In the context of the latter formulae, the heat-conduction equation (2.1.37) 
can be given as follows: 

 
( , )( , )

( , ).
yx x yx y

w x y
x y

  (2.2.50) 

Assume that components of heat flux have local distribution profiles that 
vanish for infinitely distant points as follows: 

 
2 2
lim ( , ) lim ( , ) 0x y

x y
x y x y .  (2.2.51) 

By integrating (2.2.50) in view of conditions (2.2.51), we can obtain the 
following equation: 

 ( , ) ( , )y
d x y dx w x y dx
dy

.  (2.2.52) 

Integration of the latter equation by y  yields 

 

0

( , ) ( , )sgn( )y x y dx w x y dxd
D  

 

1 1lim ( , ) lim ( , )
2 2y yy y

x y dx x y dx . (2.2.53) 

Letting y  in (2.2.53) allows for deriving the following condition 

 0

( , ) lim ( , )yy
w x y dxdy x y dx

D

lim ( , )yy
x y dx .  (2.2.54) 

Now, integrating (2.2.53) over y  from 1L  to 2L , where 1L  and 2L  are 

large real numbers and 1 2L L , yields 
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2

1

( , )
L

y
L

x y dxdy

2 1 lim ( , ) lim ( , )
2 y yy y

L L
x y dx x y dx

 

 0 0

1 2 ( , ) ( , ) .
2

L L
w x y dxdy yw x y dxdy

D D

 (2.2.55) 

Due to the fact that 1L  and 2L  can tend independently towards  

and , while the resultant of heat flux ( , )y x y  over the entire domain 

remains finite, i.e., 

 0

( , )y x y dxdy
D

,  (2.2.56) 

equation (2.2.55) implies the following conditions: 

 0

( , ) 0w x y dxdy
D

,  (2.2.57) 

 lim ( , ) 0yy
x y dx ,  (2.2.58) 

and 

 0 0

( , ) ( , )y x y dxdy yw x y dxdy
D D

.  (2.2.59) 

It can be shown in a similar fashion that  

 lim ( , ) 0xx
x y dx ,  (2.2.60) 

and 
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 0 0

( , ) ( , )x x y dxdy xw x y dxdy
D D

.  (2.2.61) 

Conditions (2.2.58) and (2.2.60) imply that the local distribution 
(2.2.51) of the heat fluxes in the in-plane directions necessarily leads to 
local distributions of their resultants. Due to conditions (2.2.59) and 
(2.2.61), the average heat fluxes over the entire domain 0D  

are equal to 

the thermal “moments” generated by the internal heat sources. Equation 
(2.2.57) imposes the necessary condition for the density of inner heat 
sources to ensure the correct solution of the steady-state heat-transfer 
problem in plane 0D . 

Under the assumption that the heat conduction coefficients are 
functions of y  and 0 0T , equation (2.1.37) the following form in the 

mapping domain of  transform (2.2.24):  

 
2

2 2
2

( ) ( )( )
( ) ( )

( )
x y

y

y yd T y s T y s T y
ydy

ln ( ) ( ) ( )
( )

y

y

d y dT y w y
dy dy y .  (2.2.62) 

If the density of heat sources and consequently the temperature vanish at 
y , then the solution to equation (2.2.62) with respect to its left-

hand side is as follows: 

 PL LP( ) ( ) ( ) ( , )yT y w y T d ,   (2.2.63) 

where  

 PL

( )
exp | || |

( )
1( )

2 | | y

w sw y y d
s

,  (2.2.64) 

2
PL

( ) ( )1
2 | (

, )
| )

(
y x

y
y s

s
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ln ( )
| | sgn( )

yd
s y

d
 

 

2

2
exp | |

(
|

l )
|

n yd

d
s y .  (2.2.65) 

Equation (2.2.63) is similar to (2.2.32). Thus, we can apply the 
resolvent-kernel technique to obtain the following solution to (2.2.63): 

 PL PL PL ( ,) ( ) ( )( )T yy w y w d ,  (2.2.66) 

where the resolvent kernel PL ( , )y  can either be evaluated analytically 

or computed using an infinite series 

 PL
PL 1

0

( , ) ( , )n
n

y y   (2.2.67) 

of recurring kernels 

 

PL
1 PL

PL PL PL
1 1

( , ) ( , ),

( , ) ( , ) ( , ) .n n

y y

y y t t dt

 (2.2.68) 

It should be possible to sum up the resolvent kernel (2.2.67) 
analytically; however, if that poses a challenge, then the following 
approximate formula can be applied: 

 PL
PL PL 1

0

( , ) ( , ) ( , ),
M

M
n

n
y y y   (2.2.69) 

where M  is a positive integer evaluated numerically or based on the 
minimization of the residual term, which occurs after the substitution of 
solution (2.2.66) with approximated resolvent-kernel (2.2.69) into 
equation (2.2.63). 

After temperature is constructed in the form (2.2.66) in the mapping 
domain of the transform (2.2.24), it can be restored in the physical domain 
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via analytical or numerical implementation of the inverse transform 
(2.2.43). 

2.3. Thermoelasticity solutions for inhomogeneous 
orthotropic half-plane 

2.3.1. Formulation, integral conditions, and governing equations 

Consider applying the direct integration method to the plane 
thermoelasticity problem for an inhomogeneous orthotropic half-plane 

1 | ,{| xD 0}y . We assume that all of the material properties are 

arbitrary functions of coordinate y  and 0 0 0T e . The elastic 

equilibrium of domain 1D  is governed by equations (2.1.15) and (2.1.19) 

in view of the constitutive equations (2.1.23). Boundary 0y  of half-

plane 1D  is exposed to static force loadings  

 0 0( ,0) ( ), ( ,0) ( ), | |yy xyx p x x q x x , (2.3.1) 

where  0 ( )p x  and 0 ( )q x  are given functions. The interior of half-plane 

1D  is subject to body forces ( , )xF x y   and ( , )yF x y  and a steady-state 

temperature distribution ( , )T x y , which can be determined using a 

relevant heat-conduction problem.  
By following a strategy similar to the one presented in Section 2.2.1, 

we can conclude that the functions presenting the force loadings satisfy the 
following integral conditions: 

 

1

0( , ) = ( ) ,xF x y dxdy q x dx
D

  

 

1

0( , ) = ( ) ,yF x y dxdy p x dx
D

 (2.3.2) 

 

1

0( , ) ( , ) = ( ) .x yyF x y xF x y dxdy xp x dx
D
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Similarly, the relations between the stress-tensor components can be 
derived in the following form: 

 
( , )

2 ( , ) = ( , ) sgn( )
yy

xy y

y
x y F y x d

y
 

 0
0

( , )
= ( ) ( , ) sgn( ) ,xx

x
x

q x F x y d
x

( , )
2 ( , ) = ( , ) sgn( )

xy
xx x

y
x y F y x d

y

2

2

( , ) ( , )
=

yy yy F y
x

yy
 

 ( , )sgn( ) ,xF y x d   (2.3.3) 

 02 ( , ) = ( )yy x y p x

0

( , )
( , ) sgn( )

xy
y

x
F x y d

x
 

 0
0

( )
= ( )

dq x
p x y

dx

2

2
0

( , ) ( , )xx xx F x
y

xx

( , )sgn( )yF x y d .  

We can also derive equations for the resultant forces and moments, as 
follows: 
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 0
0 0

2 ( , ) = ( ) ( , ) sgn( ) ,xx xx y dy q F y dy x d  

 0
0

2 ( , ) = ( ) ( , )sgn( ) ,yy yx y dx p x F x y d dx  

 

0
0

0
0

2 ( , ) = ( ) ( , )sgn( )

= ( ) ( , ) sgn( ) ,

xy x

y

x y dx q x F x y d dx

p F y dy x d

 

 0
0 0

2 ( , ) = ( ) ( , )xx yy x y dy p F y dy x  (2.3.4)

0

= ( , )sgn( ) ,xyF y x dy d  

 0 02 ( , ) = ( ) ( )yyx x y dx yq x xp x

0

( , ) ( , )sgn( )x yF x y xF x y d dx .  

The integral equilibrium conditions can be established in the following 
form: 

 

1

0
0

( , ) = ( , ) ( ) ,xx xx y dxdy x F x y dy q x dx
D

 

 

1 1

( , ) = ( , ) ,yy yx y dxdy yF x y dxdy
D D
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1 1

( , ) = ( , )xy xx y dxdy yF x y dxdy
D D

0
0

= ( ) ( , ) ,yx p x F x y dy dx  (2.3.5) 

 

1

( , )xxy x y dxdy
D

2

0
0 0

= ( , ) ( ) ( , ) ,
2x y
xxyF x y dy p x F x y dy dx  

 

1

( , )yyx x y dxdy
D

1

2

= ( , ) ( , ) .
2y x
yxyF x y F x y dxdy

D

 

Note that the formulae in (2.3.2) – (2.3.5) are based on the equilibrium 
equations (2.1.15) in view of boundary conditions (2.3.1). They are 
irrespective of the material properties and thus they are the same as for the 
case of isotropic homogeneous [321, 322] and inhomogeneous [297] half-
planes.  

2.3.2.  Stress determination 

Applying the second equation in (2.1.15) allows us to transform the 
condition for shear stress given in (2.3.1) to obtain the derivative of 
normal stress as follows: 

 0

0

( , ) ( )
( ,0)

yy
y

y

x y dq x
F x

y dx
.   (2.3.6) 

In the mapping domain of the transform (2.2.24), the first boundary 
conditions in (2.3.1) and (2.3.6) take the form: 
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 0 0
0

( )
(0) , (0)

yy
yy y

y

d y
p isq F

dy
. (2.3.7) 

The governing equations used to determine key stresses  and yy  are 

given by (2.2.25) and (2.2.26).  
One solution to equation (2.2.25) for half-plane 1D  in view of the first 

condition (2.3.7) can be derived as follows: 

 0( ) exp( | | )yy y p s y

2

0

( )1 ( ) ( )
2 | |

y
x

dF
isF s

s d
 

 exp( | | ( )) exp( | || |)s y s y d .  (2.3.8) 

Substituting (2.3.8) into the second condition of (2.3.7) yields, after 
some algebra, the following integral condition for the total stress in the 
mapping domain: 

 2
0 0

0

( ) exp( | | ) | | (0)ys y s y dy s p isq F  

 
0

( )
( ) exp( | | )

y
x

dF y
isF y s y dy

dy
.   (2.3.9) 

In view of condition (2.3.9), formula (2.3.8) can be expressed as follows: 

 
0

0

(0) exp( | | )
( )

| | 2
y

yy

isq F s yy p
s

 

 
0

( )
( ) exp( | || |)

2| |
y

x

dFs iF s y d
s sd

0

| |
( ) exp( | || |)

2
s s y d .  (2.3.10) 
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One solution to equation (2.2.26) for half-plane 1D  can be constructed 

as follows: 

 11 1 0( ) ( ) ( ) ( ) exp( | | )a y y y T y A s y

 

 

1 2
0

| |
( ) ( ) ( ) exp( | || |)

2
s T s y d  

 1
0

( )1 ( ) ( )
2 | |

y
x

dF
isF

s d

( )
exp( | || |)

( )
y

xy

Fd s y d
d G

  

 
0

1 exp( | || |)
2 | |

s y
s

1

( )12 ( )
( )

yy

xy

dd d
d G d   

 
2

21
22

0

( )1 ( )
2 | |

d
s

s d

( )exp( | || |)yy s y d .  (2.3.11) 

Substituting (2.3.10) into (2.3.11), after some algebra, yields the following 
integral equation: 

 0 0 HP
11 0

exp( | | )
( ) ( ) ( ) ( , )

( )
s yy A F y y d

a y
, (2.3.12) 

where  

 0 0 0 0 0( ) ( ) ( ) ( ) ( ),F y P y Q y y y
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0 0 0 0

11 11

( ) ( )
( ) , ( ) ,

2 ( ) 2 | | ( )
y yP y p Q y isq

a y s a y  

 0 1
11

1( ) ( ) ( )
( )

y y T y
a y

1 2
0

| |
( ) ( ) ( ) exp( | || |) ,

2
s T s y d  

 

0 1
11 0

( )1( ) ( ) ( )
2 | | ( )

y
x

dF
y isF

s a y d

( )
exp( | || |)

( )
y

xy

Fd s y d
d G

  (2.3.13)

 

 PL
0 0

( )
( , ) ( )

y
x

dF
y isF

d

exp( | || |) ( ) (0)ys d d y F , 

 1
1( ) 2 (0) exp( | | )
(0)xy

y s y
G

PL
0

( , ) exp( | | )y s d , 

 HP PL
11 0

| |
( , ) ( , ) exp( | || |)

2 ( )
sy y s d

a y
, 

where PL ( , )y  is given in (2.2.31).  
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Note that kernel in (2.3.13) is similar to that in (2.2.33) obtained for 
the analogous problem pertaining to plane 0D . The only difference is the 

lower limit of integration.  
By solving equation (2.3.12) in a manner similar to (2.2.32) and 

eliminating the constant of integration 0A  by making use of condition 

(2.3.9), the total stress can be derived as follows: 

 0 HP 0 HP HP HP( ) ( ) ( ) ( ) ( )y p P y isq Q y y y . (2.3.14) 

Here, 

     0
HP 0 HP

0

( ) ( ) ( ),
h

P y y f y
c

0
HP 0 HP

0

1( ) ( ) ( ) ,
| |

h
Q y y f y

s c
 (2.3.15) 

 HP 0( ) ( )y y

HP
0 HP HP

00

( )
( ) ( , ) ( )

f y
y g d

c
,  (2.3.16) 

 HP 0( ) ( )y y

HP
0 HP HP

00

( )
( ) ( , ) ( )

f y
y g d

c
 

  HP
2

0 0

( )( )
(0) ( ) exp( | | )

y
y x

dF yf y
F isF y s y dy

dys c
,   (2.3.17) 

 0 HP
11 110

( ) ( )1( ) ( , ) ,
2 ( ) 2 ( )

yy y d
a y a

HP
0

110

( ) ( )1
| | ( )

g
h d

s a
,   (2.3.18) 
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 HP HP
0

( ) exp( | | ) exp( | | ) ( , )g s s y y dy , (2.3.19) 

 0
110

exp( 2 | | )
( )

s yc dy
a y

HP
11 00

exp( | | )
exp( | | ) ( , )

( )
s s y y dyd

a
, (2.3.20) 

    HP
HP

11 110

( , ) exp( | | )exp( | | )
( ) ,

( ) ( )

y ss yf y d
a y a

 

 

(2.3.21) 

and 

    1
HP

HP
0

( , ) ( , )
n

ny y    (2.3.22) 

is the resolvent kernel, which can be computed as a series of recurring 
kernels, as follows: 

    

1
0

HP
1 HP

HP HP HP
1

( , ),

(

( , )

( , ) ( , ) , 1, 2) ,,n n

yy

y t ny t t d

  (2.3.23) 

In practical computations, the resolvent can be evaluated analytically; 
however, if this presents a challenge, the series (2.3.22) can be truncated, 
such that the resolvent kernel is approximated using the following finite 
sum:  

    HP
H H

0
1P P( , ) ( , ) ( , )N

n

N

n
y y y ,   (2.3.24) 

where N  is a natural digit allowing for satisfaction of equation (2.3.12) 
using (2.3.14) with the resolvent kernel (2.3.24) instead of (2.3.22). 
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Once we have determined the total stress in the form (2.3.14), we can 
construct normal stress yy  by substituting (2.3.14) into (2.3.10) to yield 

the following: 

 0 HP 0 HP HP HP( ) ( ) ( ) ( ) ( )y y y y
yy y p P y isq Q y y y . (2.3.25) 

Here,  

 HP HP
0

1( ) | | ( ) exp( | || |) exp( | | )
2

yP y s P s y d s y , 

 2
HP HP

0

1( ) ( ) exp( | || |) exp( | | )
2 | |

yQ y s Q s y d s y
s

, 

 HP HP
0

| |
( ) ( ) exp( | || |)

2
y sy s y d , 

 HP HP
0

| |
( ) ( ) exp( | || |)

2
y sy s y d

(0)
exp( | | )

2 | |
yF

s y
s

  

 
0

( )1 ( ) exp( | || |)
2 | |

y
x

dF
isF s y d

s d
. (2.3.26) 

Normal stress xx  and shear stress xy  
can be computed using the 

total and normal stresses   and yy   via (2.2.39) and (2.2.41), as 

follows: 

 0 HP 0 HP HP HP( ) ( ) ( ) ( ) ( )x x x x
xx y p P y isq Q y y y , (2.3.27) 

 0 HP 0 HP HP HP( ) ( ) ( ) ( ) ( )xy xy xy xy
xy y p P y isq Q y y y . (2.3.28) 

Here, 
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0
HP 0 HP

0

exp( | | )
( ) ( ) ( )

2
x hs yP y y f y

c
  

 
HP

0

| |
( ) exp( | || |) ,

2
s P s y d   (2.3.29) 

      0
HP 0 HP

0

exp( | | )1( ) ( ) ( )
| | 2

x hs yQ y y f y
s c

 

 
2

HP
0

( ) exp( | || |) ,
2
s Q s y d    (2.3.40) 

 HP HP HP
0

| |
( ) ( ) ( ) exp( | || |)

2
x sy y s y d , (2.3.41) 

 HP HP HP
0

| |
( ) ( ) ( ) exp( | || |)

2
x sy y s y d

(0)
exp( | | )

2 | |
yF

s y
s

  

 
0

( )1 ( ) exp( | || |)
2 | |

y
x

dF
isF s y d

s d
, (2.3.42) 

 HP
| |

( ) exp( | | )
2

xy siP y s y
s

HP
0

( ) exp( | || |) sgn( )
2
is P s y y d , 

 HP HP
0

( ) ( ) exp( | || |) sgn( )
2

xy isQ y Q s y y d
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exp( | | )
2
i s y
s , 

 HP HP
0

( ) ( ) exp( | || |) sgn( )
2

xy isy s y y d , 

 HP

(0)
( ) ( ) exp( | | )

2
yxy

y

Fiy F y s y
s

 

 HP
0

( ) exp( | || |) sgn( )
2
is s y y d   

   
0

( )
( ) exp( | || |) sgn( )

2
y

x

dFi isF s y y d
s d

. (2.3.43) 

After finding the in-plane stresses in the mapping domain of the 
transform (2.2.24), we can compute the corresponding components in the 
physical domain using the inverse transform (2.2.43). 

2.3.3.  Determination of thermo-elastic displacements 

Consider the thermoelasticity problem for an inhomogeneous 
orthotropic half-plane 1D , where the boundary conditions (2.3.1) are 

substituted using the following conditions for in-plane displacements:  

 0 0( ,0) ( ), ( ,0) ( )x yu x u x u x v x .   (2.3.44) 

where 0 ( )u x  and 0 ( )v x  are given functions of a local distribution profile; 

i.e., they vanish as | |x . 

In view of conditions (2.3.44), integration of the first and second 
Cauchy equations of (2.1.18) yields the following: 

 EBSCOhost - printed on 2/14/2023 2:18 PM via . All use subject to https://www.ebsco.com/terms-of-use



Plane Problems in Cartesian Coordinates 81 

 

0

0

1( , ) ( , )sgn( ) ,
2

( ) 1( , ) ( , )sgn( ) .
2 2

x xx

y yy

u x y y x d

v x
u x y x y d

  (2.3.45) 

If we let | |x  in the first equation of (2.3.45) and take the local 

distribution of the displacement field into consideration, we can then 
obtain the following integral compatibility condition for strain-tensor 
component ( , )xx x y : 

  ( , ) 0xx x y dx .  (2.3.46) 

Similarly, by substituting 0y  in the second equation of (2.3.45), we 

arrive at the following integral compatibility condition for strain-tensor 
component ( , )yy x y : 

 0
0

( , ) ( )yy x y dy v x .  (2.3.47) 

Substituting (2.3.45) into the third Cauchy equation of (2.1.18) yields 
the following compatibility equation: 

 0 ( ) ( , )
2 ( , ) sgn( )xx

xy
dv x y

x y x d
dx y

0

( , )
sgn( )

yy x
y d

x
.   (2.3.48) 

Clearly, the application of the mixed derivative 2 / x y  to equation 

(2.3.48) reduces it to the classical strain compatibility equation (2.1.19). It 
is important to mention, however, that deriving (2.3.48) from (2.1.19) 
requires that the following necessary condition be fulfilled: 
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 0 ( ) ( ,0)1( ,0) sgn( )
2

xx
xy

dv x
x x d

dx y
. (2.3.49) 

Condition (2.3.49) was derived by integrating equation (2.1.19) by x   and 
y  and comparing the result with (2.3.48). It can also be obtained from the 

fulfillment of equation (2.3.48) on the boundary 0y  of half-plane 1D  

by taking into account boundary conditions (2.3.44).  
Now, applying the Fourier transform (2.2.24) to expressions (2.3.45) in 

view of formula (2.3.47), we obtain the following expressions for 
displacements in the mapping domain: 

 

0

( ) ( ),

1( ) ( ) sgn( ) 1 .
2

x xx

y yy

iu y y
s

u y y d

 (2.3.50) 

Using formulae (2.3.50) in conjunction with equations for strain-tensor 
components (2.1.23) expressed through stresses (2.3.14) and (2.3.25), we 
obtain the following expressions for displacements: 

 [ ] [ ] [ ] [ ]
0 HP 0 HP HP HP( ) ( ) ( ) ( ) ( )x x x x

xu y p P y isq Q y y y , (2.3.51) 

 [ ] [ ] [ ] [ ]
0 HP 0 HP HP HP( ) ( ) ( ) ( ) ( )y y y y

yu y p P y isq Q y y y . (2.3.52) 

Here,  

 [ ]
HP 11 12 HP 11 HP( ) ( ) ( ) ( ) ( ) ( )x yiP y a y a y P y a y P y

s , 

 [ ]
HP 11 12 HP 11 HP( ) ( ) ( ) ( ) ( ) ( )x yiQ y a y a y Q y a y Q y

s , 

[ ]
HP 11 12 HP 11 HP 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )x yiy a y a y y a y y y T y

s ,  

 [ ]
HP 11 12 HP 11 HP( ) ( ) ( ) ( ) ( ) ( )x yiy a y a y y a y y

s
, 
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 [ ]
HP 12 HP 22 12 HP

0

1( ) ( ) ( ) ( ) ( ) ( )
2

y yP y a P a a P

sgn( ) 1y d , 

 [ ]
HP 12 HP 22 12 HP

0

1( ) ( ) ( ) ( ) ( ) ( )
2

y yQ y a Q a a Q

sgn( ) 1y d , 

 [ ]
HP 2 12 HP

0

1( ) ( ) ( ) ( ) ( )
2

y y T a  

 22 12 HP( ) ( ) ( ) sgn( ) 1ya a y d , 

 [ ]
HP 12 HP 22 12 HP

0

1( ) ( ) ( ) ( ) ( ) ( )
2

y yy a a a

sgn( ) 1y d .  (2.3.53) 

Equations (2.3.51) and (2.3.52) represent the elastic displacements in 
half-plane 1D  due to the force loadings (2.3.1), body forces, xF   and yF ,  

and temperature field ( , )T x y  in the mapping domain of transform 

(2.2.44). Note that these displacements are also to satisfy the boundary 
conditions (2.3.44). This necessitates a one-to-one relationship between 
the stresses (2.3.1) and displacements (2.3.44) at boundary 0y  of half-

plane 1D . 

2.3.4.  One-to-one relationship between stresses  
and displacements on boundary of inhomogeneous  

orthotropic half-plane 

The method of direct integration makes it possible to express stresses 
(2.3.25), (2.3.27), and (2.3.28) and displacements (2.3.51) and (2.3.52) in 
terms of applied loadings explicitly. This opens up opportunities for 
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solving thermoelasticity problems related to inhomogeneous orthotropic 
half-plane 1D  using boundary conditions given in terms of displacements 

or mixed-type boundary conditions. Obviously, substituting 0y  into 

expressions (2.3.51) and (2.3.52) allows for the derivation of a one-to-one 
relationship between the boundary displacements and the boundary 
tractions:   

 [ ] [ ] [ ] [ ]
0 0 HP 0 HP HP HP(0) (0) (0) (0)x x x xu p P isq Q , (2.3.54) 

 [ ] [ ] [ ] [ ]
0 0 HP 0 HP HP HP(0) (0) (0) (0)y y y yv p P isq Q , (2.3.55) 

where 0u  and 0v  are mappings of the boundary displacements introduced 

in conditions (2.3.44), and 0p  and 0q  are the boundary tractions involved 

in conditions (2.3.7). Note that equation (2.3.55) can be replaced by a 
simpler one obtained from condition (2.3.49) in the mapping domain of 
transform (2.2.44), as follows: 

 0 2

(0)1 (0)xx
xy

d iv
dy ss

 .  (2.3.56) 

In view of expressions 

 0(0) ,
(0)xy

xy

q
G

12 11
0

00

( ) ( ( ) ( ))xx

yy

d y d a y a y
p

dy dy
 

 11 12 0( (0) (0)) (0)ya a isq F   

 11 1 0
( ( ) ( ) ( ) ( ))

y
d a y y y T y
dy

,  (2.3.57) 

which follow from constitutive equations (2.1.23) and boundary 
conditions (2.3.7), formula (2.3.56) can be rewritten as follows: 

0 0 HP 11 122
0

1 (1 ( )) ( ) ( )
y

dv p P y a y a y
dys
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0 11 HP 12 11
0

1( ) ( ) ( ) ( )
( )xy y

i dq a y Q y a y a y
s dy sG y

 

 11 HP 12
0

1 ( ) ( ) ( ) ( )
y

d a y y y T y
dys

 

 11 HP 11 122
0

1 ( ) ( ) ( ) ( ) ( )y
y

d a y y a y a y F y
dys

  (2.3.58) 

with expression (2.3.14) in mind.  
Equations (2.3.54) and (2.3.58) yield the following: 

 0 011 12 1 1

0 21 22 0 2 2

,
u p
v q    (2.3.59) 

where  

 [ ] [ ]
11 HP 12 HP(0), (0),x xP isQ

[ ] [ ]
1 HP 1 HP(0), (0)x x , 

 21 HP 11 122
0

1 (1 ( )) ( ) ( )
y

d P y a y a y
dys

, 

 22 11 HP 12 11
0

1( ) ( ) ( ) ( )
( )xy y

i d a y Q y a y a y
s dy sG y

, 

 2 11 HP 12
0

1 ( ) ( ) ( ) ( ) ,
y

d a y y y T y
dys

 

2 11 HP 11 122
0

1 ( ) ( ) ( ) ( ) ( )y
y

d a y y a y a y F y
dys

. (2.3.60) 

Due to the fact that system of equations (2.3.59) always has a unique 
solution, it can be inverted to express the boundary tractions in terms of 
boundary displacements, as follows: 
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 0 011 12 1 1

0 021 22 2 2

,
p u
q v    (2.3.61) 

where 

 22 12
11 12, ,

2 12 1 22 2 12 1 22
1 1, , 

 21 11 1 21 2 11
21 22 2, , ,

1 21 2 11
2 , 11 22 12 21 .   (2.3.62) 

Thus, when solving a thermoelasticity problem for inhomogeneous 
orthotropic half-plane 1D  with the boundary conditions given in terms of 

stresses (2.3.1), the solution for stresses can be obtained directly using 
(2.3.25), (2.3.27), and (2.3.28). The solution for displacements can be 
found using (2.3.51) and (2.3.52). For a thermoelasticity problem with 
boundary conditions given in terms of displacements (2.3.44), we first use 
(2.3.61) to determine unknown boundary tractions through the given 
boundary displacements. We can then combine these with (2.3.25), 
(2.3.27), (2.3.28), (2.3.51), and (2.3.52) to determine stresses and 
displacements in domain 1D . A similar strategy can be used if the 

boundary of inhomogeneous orthotropic half-plane 1D  is exposed to one 

of the boundary tractions (either 0p  or 0q ) with one of the boundary 

displacements (either 0u  or 0v ) imposing mixed-type boundary 

conditions [149]. 
If, for example, the limiting surface 0y  of half-plane 1D  is under 

conditions of sliding support, i.e. it is constrained to move vertically and 
induces no friction; then traction 0 ( )p x  in conditions (2.3.1) remains 

unknown while  

 0 ( ) 0q x .    (2.3.63) 
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and 0 ( ) 0v x  in conditions (2.3.44). Then, making use of (2.3.61) allows 

for determining the unknown traction in the mapping domain of transform 
(2.2.44) in the form as follows: 

 12 2 1 1 12 2
0

12 21 12 211 1
p .    (2.3.64) 

Now, tractions (2.3.63) and (2.3.64) can be used in conditions (2.3.1) to 
determine the stress-tensor and displacement-vector components in 
inhomogeneous orthotropic half-plane 1D . 

2.3.5.  Steady-state temperature field in  
inhomogeneous half-plane 

In the following, we consider the problem of steady-state temperature 
( , )T T x y  in half-plane 1D  due to the action of inner heat sources with 

density ( , )w x y  and the following generalized thermal conditions at 

boundary 0y : 

 0 1 0
0

( , )
( ,0) ( )

y

T x yT x T x
y

.  (2.3.65) 

where 0 ( )T x  is given and constants 0  and 1  define the type of 

boundary condition. If, for example, 1 0  and 0 0 , then (2.3.65) is 

the Dirichlet boundary condition, which imposes temperature on the 
boundary. If, on the other hand,  0 0  and 1 (0)y , then (2.3.65) is 

the Neumann boundary condition, which imposes heat flux through the 
boundary as follows: 

 
0

( , )
(0) ( )y

y

T x y x
y

,  (2.3.66) 

where 0( ) ( )x T x . If both 0 0  and 1 0 , then (2.3.65) imposes 

heat exchange between  half-plane 1D  and its surroundings via boundary 

0y . 
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Before we determine the temperature due to (2.3.65) and the inner heat 
sources of density ( , )w x y , we derive the conditions of thermal balance to 

ensure that the temperature has a finite value within half-plane 1D . In 

[239], the following integral condition of thermal balance is derived for 
the case of a homogeneous isotropic half-plane, where ( )x  is the heat 

flux imposed through the boundary by (2.3.66): 

 

1

( , ) ( )w x y dxdy x dx
D

.  (2.3.67) 

A similar condition has been derived in [299] for an isotropic 
inhomogeneous half-plane. In the following, we prove that (2.3.67) holds 
for the case of inhomogeneous orthotropic half-plane 1D . 

Following the strategy used in [239, 299], we introduce the heat flux 
components (2.2.49) and refer to the heat conduction equation in the form 
(2.2.50). We assume that the components of heat flux vanish for infinitely 
distant points: 

 
| |
lim ( , ) lim ( , ) 0x yx y

x y x y .  (2.3.68) 

In view of (2.3.68), integrating (2.2.50) by x  from  to   yields 

 ( , ) ( , )y
d x y dx w x y dx
dy

.  (2.3.69) 

Now, we integrate (2.3.69) over y  to obtain the following: 

 

1

0
1( , ) ( , )sgn( )
2y x y dx A w x y dxd
D

. (2.3.70) 

where 0 constA . By setting 0y  and letting y   in (2.3.70), we 

obtain the following: 
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1

0
1 1( ,0) lim ( , ) ,
2 2

( , ) ( ,0) lim ( , ) .

y yy

y yy

A x dx x y dx

w x y dxdy x dx x y dx
D

 (2.3.71) 

Integrating (2.3.70) over y  from 0  to L , where L  is a large real 

number, we derive the following: 

  

1

0
0

1( , ) ( , )
2

L

y x y dxdy A w x y dxdy L
D

1

( , )yw x y dxdy
D

.  (2.3.72) 

We account for the fact that L  can grow infinitely while the resultant 
heat flux within the half-plane is finite: 

 

1

( , )y x y dxdy
D

.  (2.3.73) 

Then, (2.3.72) implies that 

 

1

0
1 ( , )
2

A w x y dxdy
D

  (2.3.74) 

and 

 

1 1

( , ) ( , )y x y dxdy yw x y dxdy
D D

.  (2.3.75) 

Combining (2.3.74) with (2.3.71) yields the following: 

 0
1 ( ,0) , lim ( , ) 0
2 y yy

A x dx x y dx  (2.3.76) 
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and  

 

1

( , ) ( ,0)yw x y dxdy x dx
D

.  (2.3.77) 

The second equation in (2.3.76) stipulates that the resultant of the heat-
flux ( , )y x y  vanishes as y . The condition given in (2.3.77) relates 

to thermal balance and, in view of (2.3.66), it coincides with the condition 
given in (2.3.67). 

Similarly, in view of (2.3.68), by integrating (2.2.50) over y  from 0  

to , we obtain the following: 

  
0 0

( , ) ( ,0) ( , )x y
d x y dy x w x y dy
dx

.  (2.3.78) 

Integrating this over x , we obtain the following:  

 0
0

( , )x x y dy B

0

1 ( ,0) ( , ) sgn( )
2 y w y dy x d , (2.3.79) 

where 0 constB . If we let | |x  in (2.3.79), we derive the 

following: 

0
0 0

1 1lim ( , ) lim ( , ) ,
2 2x xx x

B x y dy x y dy

0

( ,0) ( , )y x w x y dy dx

0 0

lim ( , ) lim ( , )x xx x
x y dy x y dy .  (2.3.80) 
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Integrating (2.3.79) over x  from 1L  to 2 1L L   yields 

 
2

1

0 2 1
0

( , ) ( )
L

x
L

x y dxdy B L L

1 2

0

( ,0) ( , )
2 y

L L
x w x y dy dx  

 

1

( ,0) ( , )yx x dx xw x y dxdy
D

.  (2.3.81) 

The fact that constants 1L  and 2L  respectively tend toward  and 

 leads us to condition (2.3.77) and 0 0B . The conditions in (2.3.80) 

thereby yield 

 
0 0

lim ( , ) lim ( , ) 0x xx x
x y dy x y dy . (2.3.82) 

This implies that the resultant of heat flux ( , )x x y  vanishes as 

| | ,x  and the following thermal balance condition holds: 

 

1

( , ) ( , ) ( , ) .y xx x y dy xw x y x y dxdy
D

 (2.3.83) 

Condition (2.3.83) verbalizes the balance between the thermal 
“moment” of the heat flux through the surface 0y  and the longitudinal 

heat flux and heat generated by thermal sources. This means that the 
thermal loadings cannot be imposed arbitrarily; i.e., they must support the 
derived integral conditions of thermal balance.  

After the thermal balance conditions are derived, we can obtain an 
analytic solution to equation (2.2.62) with respect to its left-hand side, 
which vanishes as y  and possess a degree of freedom in order to 

meet condition (2.3.65), as follows: 
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0

( )1( ) exp( | | ) exp( | || |)
2 | | ( )y

wT y C s y s y d
s

 

 
0

( ) ( ) ln ( )1 ( ) | | sgn( )
2 ( )

y x y

y

d
T s y

d
 

 

2

2

ln ( )1 exp( | || |)
| |

yd
s y d

s d
.   (2.3.84) 

where C  is the constant of integration. We first determine this constant 
from the following condition, which is obtained by applying integral 
transform (2.2.24) to (2.3.65):  

 0 1 0
0

( )
(0)

y

dT yT T
dy .  (2.3.85) 

 Within the context of the latter condition, equation (2.3.84) can be 
transformed into the following integral equation: 

 0 HP HP
0

exp( | | )
( ) ( ) ( ) ( , )

s yT y T W y T y d
æ

, (2.3.86) 

where 

 HP
0

( )1( )
2 | | ( )y

wW y
s

exp( | || |) exp( | | ( ))s y s y dæ
æ

, 

 

2

HP 2

( ) ( ) ln ( )1 1( , ) | |
2 ( ) | |

y x y

y

d
y s

s d
 

 exp( | || |) exp( | | ( ))s y s yæ
æ

 (2.3.87)
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ln ( )1 exp( | || |) sgn( )
2

yd
s y y

d
 

 exp( | | ( )) ,s yæ
æ

0 1 0 0
0

( )1| | ,
(0)

y

y y

d y
s

dy
æ æ æ . 

The resolvent-kernel technique can then be used to solve the integral 
equation (2.3.86) in the form as follows: 

 0 HP HP( ) ( ) ( )T y T t y w y ,  (2.3.88) 

where resolvent kernel HP ( , )y  can be computed using an infinite series 

 HP
HP 1

0

( , ) ( , )n
n

y y   (2.3.89) 

of the recurring kernels 

 

HP
1 HP

HP HP HP
1 1

0

( , ) ( , ),

( , ) ( , ) ( , ) , 1, 2,...,n n

y y

y y t t dt n

  (2.3.90) 

and 

     

HP HP

HP HP HP HP
0

0

1( ) exp( | | ) exp( | | ) (

( ) ( ) ( ) ( )

,

.

) ,

,w

t y

y

s y s

W y y

y

W d

d
æ

 (2.3.91) 

In practical computations, resolvent kernel (2.3.89) can be substituted 
with the following approximate expression: 
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 HP
HP HP 1

0

( , ) ( , ) ( , )
M

M
n

n
y y y ,   (2.3.92) 

where M  is a positive integer evaluated either analytically or on the basis 
of numerical experiments. 

After we construct the temperature using (2.3.88) in the mapping 
domain of transform (2.2.24), it can be restored in the physical domain 
using either analytical or numerical implementation of the inverse 
transform (2.2.43). 

 

2.4. Thermoelastic analysis of inhomogeneous  
orthotropic strip 

2.4.1. Formulation, integral conditions,  
and solutions in terms of stresses 

Consider the problem on the determination of thermoelastic stresses 
and displacements in an inhomogeneous orthotropic strip 

2 {( , ) ( , ) [ 1,1]}x yD , where all of the material properties are 

arbitrary functions of coordinate y  and 0 0 0T e . The stress state is 

governed by equations (2.1.15) and (2.1.31). Strip 2D  is exposed to the 

following static force loadings on sides 1y : 

 
1 1

2 2

( ,1) ( ), ( ,1) ( ), | | ,

( , 1) ( ), ( , 1) ( ), | | .

yy xy

yy xy

x p x x q x x

x p x x q x x
 (2.4.1) 

The interior of the strip is exposed to temperature field distribution 
( , )T x y , which can be determined from a relevant problem of heat-

conduction, and body forces ( , )xF x y   and ( , )yF x y .  

Following a similar strategy to that presented in Section 2.3.1, we can 
establish the necessary conditions for the force loadings applied to the 
interior and periphery of domain 2D : 

 EBSCOhost - printed on 2/14/2023 2:18 PM via . All use subject to https://www.ebsco.com/terms-of-use



Plane Problems in Cartesian Coordinates 95 

 

2

2

2

2 1

1 2

2 1 1 2

( ) ( ) ( , ) ,

( ) ( ) ( , ) ,

( ) ( ) ( ) ( )

( ) ( ) .

x

y

x y

q x q x dx F x y dxdy

p x p x dx F x y dxdy

x p x p x q x q x dx

yF x xF x dxdy

D

D

D

  (2.4.2) 

The integral expressions for stress-tensor components can be derived as 
follows: 

 
( , )

2 ( , ) ( , ) sgn( )
yy

xy y

y
x y F y x d

y
  

 
1

1 2
1

( , )
( ) ( ) ( , ) sgn( )xx

x
x

q x q x F x y d
x , 

 
( , )

2 ( , ) ( , ) sgn( )
xy

xx x

y
x y F y x d

y
 

 

2

2

( , ) ( , )
| |

yy yy F y
x d

yy

( , ) sgn( ) ,xF y x d   (2.4.3)

 
1 22 ( , ) ( ) ( )yy x y p x p x

 

 

1

1

( , )
( , ) sgn( )

xy
y

x
F x y d

x
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1 2 1 2( ) ( ) ( ) ( )dp x p x q x q x
dx

1 2( ) ( )dy q x q x
dx  

 
1 2

2
1

( , ) ( , )
| |xx xx F x

y d
xx

1

1

( , ) sgn( )yF x y d . 

We can also derive equations for the resultant forces and moments as 
follows: 

 
1

2 1
1

2 ( , ) ( ) ( ) sgn( )xx x y dy q q x d

2

( , )sgn( ) ,xF y x d dy
D

  

 1 22 ( , ) ( ) ( )yy x y dx p x p x dx

2

( , )sgn( )yF x y dxd
D

, 

 1 22 ( , ) ( ) ( )xy x y dx q x q x dx

2

( , )sgn( )xF x y dxd
D

  

 1 2( ) ( ) sgn( )p p x d  (2.4.4) 
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2

( , )sgn( ) ,yF y x d dy
D

 

 
1

1 2
1

2 ( , ) ( ) ( ) | |xxy x y dy p p x d

2

( , ) | |yF y x d
D

 

 1 2( ) ( ) sgn( )q q x d

2

( , )sgn( ) ,xyF y x d
D

 

 1 22 ( , ) ( ) ( )yyx x y dx x p x p x dx

1 2 1 2( ) ( ) ( ) ( )q x q x dx y q x q x dx  

 

2

( , ) | | ( , )sgn( )x yF x y xF x y dxd
D

. 

The integral equilibrium conditions can also be derived as follows: 

 

2

1 2( , ) ( ) ( )xx x y dxdy x q x q x dx
D

2

( , ) ,xxF x y dxdy
D

 

 

2

1 2( , ) ( ) ( )yy x y dxdy p x p x dx
D
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2

( , ) ,yyF x y dxdy
D

 

 

2

1 2( , ) ( ) ( )xy x y dxdy q x q x dx
D

2

( , )xyF x y dxdy
D

 

 

2

2 1( ) ( ) ( , ) ,yx p x p x dx xF x y dxdy
D

 (2.4.5) 

 

2

1 2( , ) ( ) ( )xxy x y dxdy x q x q x dx
D

2
1 2

1 ( ) ( )
2

x p x p x dx  

 

2 2

21( , ) ( , ) ,
2x yxyF x y dxdy x F x y dxdy

D D

 

 

2

2 1
1( , ) ( ) ( )
2yyx x y dxdy q x q x dx

D

1 2( ) ( )x p x p x dx  

 

2 2

21( , ) ( , ) .
2y xxyF x y dxdy y F x y dxdy

D D

 

Note that formulae (2.4.2) – (2.4.5) are derived on the basis of the 
equilibrium equations (2.1.15), and are irrespective of the material 
properties. Thus, they hold for the cases of isotropic homogeneous [321, 
322] and inhomogeneous [297] half-planes.  
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Using the second equation of (2.1.15), conditions (2.4.1) for shear 
stress can be transformed into conditions for the derivatives of normal 
stress: 

 

1

1

2

1

( , ) ( )
( ,1),

( , ) ( )
( , 1).

yy
y

y

yy
y

y

x y dq x
F x

y dx

x y dq x
F x

y dx

  (2.4.6) 

In the mapping domain of the transform (2.2.24), the boundary 
conditions (2.4.6) along with (2.4.1) for normal stress take the following 
form: 

 1 2(1) , ( 1) ,yy yyp p   (2.4.7) 

 

1
1

2
1

( )
(1),

( )
( 1).

yy
y

y

yy
y

y

d y
isq F

dy

d y
isq F

dy

  (2.4.8) 

The system of governing equations used to determine the key functions 
( )y  and ( )yy y  in domain 2D  is presented by equations (2.2.25) and 

(2.2.26).  
In view of conditions (2.4.7), a solution to equation (2.2.25) can be 

derived as follows: 

 2

sinh (1 )
( )

sinh 2yy
s yy p

s
 

 

 
1

2
1

1

( )1 ( ) ( ) sinh (1 )
y

x

dF y
p isF y s y s y dy

s dy

sinh (1 )
sinh 2

s y
s
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2

1

( )1 ( ) ( ) sinh ( )
y

y
x

dF
isF s s y d

s d
. (2.4.9) 

Substituting expression (2.4.9) into conditions (2.4.8) yields, after 
some algebra, the following integral conditions for total stress ( )y  in the 

mapping domain: 

 
1 1

1 2
1 1

( )sinh , ( ) coshy sydy Z y sydy Z  .  (2.4.10) 

Here, 

 1 1 2 1 2
1 cosh sinhiZ p p s q q s
s s

 

 
2

1 ( (1) ( 1))sinhy yF F s
s

1

2
1

( )1 ( ) sinh ,
y

x

dF y
isF y sydy

dys
   (2.4.11) 

 2 1 2 1 2
1 sinh coshiZ p p s q q s
s s

 

 
2

1 ( (1) ( 1)) coshy yF F s
s

1

2
1

( )1 ( ) cosh .
y

x

dF y
isF y sydy

dys
  

Using (2.4.10) and (2.4.11) yields the following equality: 

 
1

2

1

( )1 ( ) ( ) sinh (1 )
y

x

dF y
isF y s y s y dy

s dy
 

 1 2 2

( 1)
cosh 2 sinh 2

yF
p p s iq s

s
.   (2.4.12) 
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In view of this, expression (2.4.9) can be simplified as follows:  

 2 2

( 1)
( ) cosh (1 ) sinh (1 )

y
yy

F
y p s y iq s y

s
 

 2

1

( )1 ( ) ( ) sinh ( ) .
y

y
x

dF
isF s s y d

s d
 (2.4.13) 

A solution to equation (2.2.26) for strip 2D  can be derived as follows: 

 1
11

1( ) cosh sinh ( ) ( )
( )

y A sy B sy y T y
a y

1 2
1

( ) ( ) ( )sinh ( )
y

s T s y d  

 1
12 ( 1)
( 1)xyG

2 2

( 1)
cosh (1 ) sinh (1 )

yF
p s y iq s y

s
  

 1
1

( )1 ( ) ( )
y

y
x

dF
isF

s d

( )
sinh ( )

( )
y

xy

Fd s y d
d G

  

 1
12 ( ) ( )
( ) yy

xy
y y

G y

2
21

22
1

( ) sinh ( )
( ) ( )

y

yy
d s ys

sd
 

 EBSCOhost - printed on 2/14/2023 2:18 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Two 102

 

1
12 ( ) cosh ( )
( )xy

d s y d
d G . (2.4.14) 

Here, A  and B  are arbitrary constants of integration. Substituting 
(2.4.13) into (2.4.14) yields the following integral equation: 

 2 2
11 11

cosh sinh
( ) ( ) ( )

( ) ( )
sy syy A B p P y isq Q y

a y a y
 

 

S
1

T( ) ( ) ( ) ( , ) ,
y

y y y d  (2.4.15) 

where  

 1
11

1( ) ( ) ( )
( )

y y T y
a y

1 2
1

( ) ( ) ( )sinh ( ) ,
y

s T s y d  

 
2

21
22

11 1

( )1( ) ( )
( )

y d
P y s

sa y d
 

 2
1

1sinh ( )cosh (1 ) 2 ( )
( )xy

s y s s
G

cosh ( )sinh (1 ) ,s y s d  

 2
12

11

1( ) 2 ( 1) sinh (1 )
( 1)( ) xy

q
Q y s s y

Gs a y
 

 
2

21
22

1

( )
( ) sinh ( )sinh (1 )

y d
s s y s

d
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 2
1

12 ( ) cosh ( )cosh ( 1) ,
( )xy

s s y s y d
G  

 11
11

1( ) ( ) ( ) ( 1)
( ) yy sa y Q y F

sa y  (2.4.16) 

 1
1

( ) ( )
( ) ( ) sinh ( )

( )

y
y y

x
xy

dF FdisF s y d
d d G

 

 1
1

( )12 ( ) ( ) sinh ( )
( )

y
y

x
xy

dF
y isF s y d

G y d
 

 
1 1

( )
( ) sinh ( ) ( , ) ,

y
y

x

dF
isF s d y d

d
 

 1ST
11

1( , ) 2 ( ) sinh ( )
( ) ( )xy

sy y s y
a y G y

( , )sinh ( ) ,
y

y s d   (2.4.17) 

 
2

21
22

( ) sinh ( )
( , ) ( )

d s yy s
sd

1
12 ( ) cosh ( ) .
( )xy

d s y
d G  

Note that the expression for ( , )y  resembles the expression for 

PL ( , )y  given in (2.2.31) for the orthotropic inhomogeneous plane 1D , 

which was also used for the half-plane in (2.3.13). A resolvent-kernel 
solution to integral equation (2.4.15) is as follows: 

 ( ) ( ) ( ) ( )A By Af y Bf y y .  (2.4.18) 
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Here, 

      

ST
11 111

11 111
ST

cosh cosh
( ) ( , ) ,

( ) ( )

sinh sinh
( ) ( , ) ,

( ) ( )

y

A

y

B

sy sf y y da y a

sy sf y y d
a y a

 (2.4.19) 

   S2
1

T( ) ( ) ( ) ( , )
y

y p P y P y d

2
1

ST( ) ( ) ( , )
y

isq Q y Q y d  

 S
1

T( ) ( ) ( ) ( ) ( , ) ,
y

y y y d  (2.4.20) 

 1 22 2 12 2 11 1 21

11 22 12 21 11 22 12 21

, ,
F I F I F I F I

A B
I I I I I I I I

 

 
1 1

1 1 2 2
1 1

( )sinh , ( ) cosh ,F Z y sydy F Z y sydy  

 
1 1

11 21
1 1

( )sinh , ( ) cosh ,A AI f y sydy I f y sydy  

 
1 1

12 22
1 1

( )sinh , ( )cosh ,B BI f y sydy I f y sydy  (2.4.21) 

and 

 1
ST

ST
0

( , ) ( , )n
n

y y   (2.4.22) 
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is the resolvent kernel, which can be computed as a series of the recurring 
kernels 

    

ST
1 ST

ST ST ST
1 1

( , ) ( , ),

( , ) ( , ) ( , ) , 1, 2,...n

y

n

y y

y y t t dt n

  (2.4.23) 

For practical computations, the series (2.4.22) can be truncated so that 
the resolvent-kernel can be approximated with the following finite sum:  

    ST
S S

0
1T T( , ) ( , ) ( , )N

n

N

n
y y y ,   (2.4.24) 

where N  is a natural digit allowing for the satisfaction of equation 
(2.4.15) with expression (2.4.18), where resolvent kernel (2.4.22) is 
substituted with the approximate formula (2.4.24). 

In view of the formulae (2.4.19) – (2.4.21), the solution (2.4.18) can be 
rewritten as follows: 

    1 1 2 2( ) ( ) ( )y p P y p P y

1 1 2 2 ST ST( ) ( ) ( ) ( )is q Q y q Q y y y .  (2.4.25) 

Here,  

    1 11
1( ) ( ,1),P y y
s

1

2 12 21
1

1( ) ( ,1) ( ) ( ) ( , )P y y P y P y d
s

, 

 1 212
1( ) ( ,1),Q y y
s

1

2 22 212
1

1( ) ( ,1) ( ) ( ) ( , )Q y y Q y Q y d
s

, 
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1

ST 21
1

( ) ( ) ( ) ( , )y y y d , 

 ST 21 222
1( ) (1) ( ,1) ( 1) ( ,1) ( )y yy F y F y y
s

  

 
1

212
1

( )1 1( ) ( ) ( , )
y

x

dF
F y d

s ds
, 

 ST
1

( ) ( ) ( ( , ) ,)
y

P y P y P y d

ST
1

( ) ( ) ( ( , ) ,)
y

Q y Q y Q y d  

 ST
1

( ) ( ) ) ( , ) ,(
y

y dy y

ST
1

( ) ( ) ) ( , ) ,(
y

y dy y  

 1 12 11( , ) ( ) ( ) sinhn A By f y f y s

22 21( 1) ( ) ( ) coshn
A Bf y f y s , 

 2 22 21( , ) ( ) ( ) sinhn A By f y f y s

12 11( 1) ( ) ( ) coshn
A Bf y f y s , 

 
11 22 21 12

, , 1, 2.nm
nm

I
n m

I I I I
   (2.4.26)   

Solution (2.4.25) explicitly expresses the total stress in terms of the 
force and thermal loadings. Substituting it into (2.4.13) yields the 
following expression for the mapping of normal stress ( )yy y : 
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    1 1 2 2( ) ( ) ( )y y
yy y p P y p P y

1 1 2 2 ST ST( ) ( ) ( ) ( )y y y yis q Q y q Q y y y . (2.4.27) 

Here,  

  1 1
1

( ) ( )sinh ( ) ,
y

yP y s P s y d

2 2
1

( ) cosh (1 ) ( )sinh ( ) ,
y

yP y s y s P s y d   

 1 1
1

( ) ( )sinh ( ) ,
y

yQ y s Q s y d

2 2
1

sinh (1 )
( ) ( )sinh ( ) ,

y
y s yQ y s Q s y d

s
 

 ST ST
1

( ) ( )sinh ( ) ,
y

y y s s y d

ST

sinh (1 )
( ) ( 1)y

y
s yy F
s

 

 2
ST

1

( )1 ( ) ( ) sinh ( ) .
y

y
x

dF
isF s s y d

s d
  (2.4.28) 

Using (2.2.39) and (2.2.41) in view of (2.4.25) and (2.4.27) yields 
equations for xx  and xy : 

    1 1 2 2( ) ( ) ( )x x
xx y p P y p P y

1 1 2 2 ST ST( ) ( ) ( ) ( )x x x xis q Q y q Q y y y ,  (2.4.29) 
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    1 1 2 2( ) ( ) ( )xy xy
xy y p P y p P y

1 1 2 2 ST ST( ) ( ) ( ) ( )xy xy xy xyis q Q y q Q y y y .  (2.4.30) 

where 

 1 1 1
1

( ) ( ) ( )sinh ( ) ,
y

xP y P y s P s y d  

 2 2 2
1

( ) ( ) cosh (1 ) ( )sinh ( ) ,
y

xP y P y s y s P s y d   

 1 1 1
1

( ) ( ) ( )sinh ( ) ,
y

xQ y Q y s Q s y d  

 2 2 2
1

sinh (1 )
( ) ( ) ( )sinh ( ) ,

y
y s yQ y Q y s Q s y d

s
 

 ST ST ST
1

( ) ( ) ( )sinh ( ) ,
y

x y y s s y d  

 ST ST

sinh (1 )
( ) ( ) ( 1)x

y
s yy y F
s

 

 2
ST

1

( )1 ( ) ( ) sinh ( )
y

y
x

dF
isF s s y d

s d
,  

 1 1
1

( ) ( ) cosh ( ) ,
y

xyP y is P s y d  

 2 2
1

( ) sinh (1 ) ( )cosh ( ) ,
y

xyP y i s y is P s y d  (2.4.31) 
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 1 1
1

( ) ( )cosh ( ) ,
y

xyQ y is Q s y d  

 2 2
1

( ) cosh (1 ) ( )cosh ( ) ,
y

xy iQ y s y is Q s y d
s  

 ST ST
1

( ) ( ) cosh ( ) ,
y

xy y is s y d  

 ST ( ) ( ) ( 1)cosh (1 )xy
y y

i iy F y F s y
s s

ST
1

( )
( ) ( ) cosh ( ) .

y
y

x

dFiF is s y d
s d

 

After deriving the stresses in the mapping domain of transform 
(2.2.24), they can be restored in the physical domain by applying the 
inverse transform (2.2.43) to the expressions (2.4.27), (2.4.29), and 
(2.4.30).  

2.4.2.  Determination of elastic displacements under 
displacement- and mixed-type boundary conditions 

Consider the situation where the following displacements  

 
1 2

1 2

( ,1) ( ), ( , 1) ( ),

( ,1) ( ), ( , 1) ( )

x x

y y

u x u x u x u x

u x v x u x v x
  (2.4.32) 

pertain to the boundary of inhomogeneous orthotropic strip 2D , where 

( )nu x  and ( )nv x  are given and vanish as | |x , 1,2n .  

With conditions (2.4.32) in mind, the first and second Cauchy 
equations (2.1.18) yield the following expressions for components of the 
displacement vector: 
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 1 2

1

1

1( , ) ( , ) sgn( ) ,
2

1( , ) ( ) ( )
2

1 ( , )sgn( ) .
2

x xx

y

yy

u x y y x d

u x y v x v x

x y d

   (2.4.33) 

Under the assumption that the boundary displacements vanish as 
| |x , the first equation of (2.4.33) as | |x  yields the following 

integral condition 

 ( , ) 0xx x y dx    (2.4.34) 

of self-balancing normal strain ( , )xx x y . Putting 1y  into the second 

equation of (2.4.33) in view of (2.4.32) makes it possible to derive the 
following condition, which implies that the resulting strain is equal the 
difference between vertical boundary displacements: 

 
1

1 2
1

( , ) ( ) ( )yy x y dy v x v x .  (2.4.35) 

Substituting expressions (2.4.33) into the third Cauchy equation of 
(2.1.18), we obtain the following compatibility equation: 

  1 22 ( , ) ( ) ( )xy
dx y v x v x
dx

( , )
sgn( )xx y

x d
y

 

 
1

1

( , )
sgn( )

yy x
y d

x
.   (2.4.36) 
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Applying derivative 2 / x y  to equation (2.4.36) reduces it to the 

classical strain compatibility equation (2.1.19). Conversely, deriving 
equation (2.4.36) from (2.1.19) requires that the following necessary 
condition be fulfilled: 

 1 2( ,1) ( , 1) ( ) ( )xy xy
dx x v x v x
dx  

 
( ,1) ( , 1)1 sgn ( )

2
xx xx x d

y y
. (2.4.37) 

Condition (2.4.37) was derived by integrating equation (2.1.19) over x   
and y , and comparing the result with (2.4.36). The same condition can 

also be obtained by fulfilling (2.4.36) for the boundaries 1y  of half-

plane 2D  under the conditions (2.4.32) and (2.4.35) in mind: 

   

1

2

( ,1)( ) 1( ,1) sgn( ) ,
2

( , 1)( ) 1( , 1) sgn( ) .
2

xx
xy

xx
xy

dv x
x x d

dx y

dv x
x x d

dx y

  (2.4.38) 

In the mapping domain of the Fourier transform (2.2.24), the 
expressions in (2.4.33) take the following form: 

 
1

1 2
1

( ) ( ),

1 1( ) ( )sgn( ) .
2 2

x xx

y yy

iu y y
s

u y v v y d

  (2.4.39) 

Note that implementing the condition (2.4.35) means that the second 
equation of (2.4.39) can be represented in two alternative forms: 

  
1

1
1

1( ) ( ) sgn( ) 1
2y yyu y v y d    (2.4.40) 
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or 

 
1

2
1

1( ) ( ) sgn( ) 1
2y yyu y v y d .  (2.4.41) 

Using the first equation in (2.4.39) in conjunction with the equation 
(2.1.23) for the strain-tensor component xx  represented in terms of the 

stresses (2.4.25) and (2.4.27), we obtain the following equation for 
displacement ( )xu y : 

 [ ] [ ]
1 1 2 2( ) ( ) ( )x x

xu y p P y p P y

[ ] [ ] [ ] [ ]
1 1 2 2 ST ST( ) ( ) ( ) ( )x x x xis q Q y q Q y y y ,  (2.4.42) 

 where 

 [ ]
11 12 11( ) ( ) ( ) ( ) ( ) ( )x y

n n n
iP y a y a y P y a y P y
s , 

 [ ]
11 12( ) ( ) ( ) ( )x y

n n
iQ y a y a y Q y
s

11( ) ( ) , 1, 2na y Q y n , 

 [ ]
ST 11 12 ST( ) ( ) ( ) ( )x yiy a y a y y

s

11 ST 1( ) ( ) ( ) ( )a y y y T y ,  

 [ ]
ST 11 12 ST 11 ST( ) ( ) ( ) ( ) ( ) ( )x yiy a y a y y a y y

s . (2.4.43) 

 Horizontal (in parallel to the sides 1y ) displacement ( )xu y  is 

represented by (2.4.42) in terms of the applied force loadings (2.4.1), body 
forces, and the temperature field in the mapping domain of the transform 
(2.2.24). In deriving a similar expression for vertical displacement ( )yu y , 

it is important to eliminate boundary displacements 1v  and 2v  from the 

second equation of (2.4.39).  
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To determine the boundary displacements in terms of the force and 
thermal loadings, we can employ the necessary conditions (2.4.38), which 
take the following form in the mapping domain of the transform given in 
(2.2.24): 

 

1 2
1

2 2
1

( )1 (1),

( )1 ( 1).

xx
xy

y

xx
xy

y

d y iv
dy ss

d y iv
dy ss

  (2.4.44) 

In view of the constitutive equations (2.1.23) and conditions (2.4.7) and 
(2.4.8), we derive the following:  

 1 2(1) , ( 1) ,
(1) ( 1)xy xy

xy xy

q q
G G

 

 11 1 1
1

( )
( ) ( ) ( ) ( )xx

y
y

d y d a y y y T y
dy dy

 

 1 11 12 1
( ) ( ) y

dp a y a y
dy

11 12 1(1) (1) (1)ya a isq F ,  (2.4.45) 

 11 1 1
1

( )
( ) ( ) ( ) ( )xx

y
y

d y d a y y y T y
dy dy

 

 2 11 12 1
( ) ( ) y

dp a y a y
dy

11 12 2( 1) ( 1) ( 1)ya a isq F . 

In view of expressions (2.4.45), the boundary displacements can be 
derived from (2.4.44) in the following form: 

 1 1 2 2 1 1 2 2n n n n nv c p c p is d q d q

 EBSCOhost - printed on 2/14/2023 2:18 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Two 114

, 1,2,n nt n   (2.4.46) 

where 

 11 1 11 12 12

1 1 ( ) ( ) ( ) ,y
dc P y a y a y
dys

12 11 2 12

1 ( ) ( ) ,y
dc a y P y
dys

 

21 11 1 12

1 ( ) ( ) ,y
dc a y P y
dys

 

 22 2 11 12 12

1 1 ( ) ( ) ( ) ,y
dc P y a y a y
dys

 11 11 12

1 ( ) ( )dd a y Q y
dys

12 11
1

1 ( ) ( )
( )xy y

a y a y
G y

 , 

 22 11 22

1 ( ) ( )dd a y Q y
dys

12 11
1

1 ( ) ( )
( )xy y

a y a y
G y

, 

 12 11 2 12

1 ( ) ( ) ,y
dd a y Q y
dys

21 11 1 12

1 ( ) ( ) ,y
dd a y Q y
dys

  

 111 ST 12 ( 1)

1 ( ) ( ) ( ) ( ) ,nn y
dt a y y y T y
dys
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 11 ST2

1 ( ) ( )n
d a y ydys

1
11 12

( 1)

( ) ( ) ( ) .
ny

y
a y a y F y   (2.4.47) 

Now, using expressions (2.4.46) in conjunction with the second 
equation of (2.4.39) yields the following expression for displacement 

( )yu y : 

 [ ] [ ]
1 1 2 2( ) ( ) ( )y y

yu y p P y p P y

[ ] [ ] [ ] [ ]
1 1 2 2 ST ST( ) ( ) ( ) ( )y y y yis q Q y q Q y y y .  (2.4.48) 

Here, 

 [ ]
1 2

1( )
2

y
n n nP y c c

1

21 22 21
1

( ) ( ) ( ) ( ) ( ) sgn( ) ,y
n na P a a P y d  

 [ ]
1 2

1( )
2

y
n n nQ y d d

1

21 22 21
1

( ) ( ) ( ) ( ) ( ) sgn( ) ,y
n na Q a a Q y d  

 
1

[ ]
ST 1 2 21 ST

1

1( ) ( ) ( )
2

y y t t a  

 22 21 ST 2( ) ( ) ( ) ( ) ( ) sgn( ) ,ya a T y d  
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1

[ ]
ST 1 2 21 ST

1

1( ) ( ) ( )
2

y y a  

 22 21 ST( ) ( ) ( ) sgn( )ya a y d . (2.4.49) 

Using formula (2.4.48), we can determine vertical displacement ( )yu y  

via the force loading applied to the sides of strip 2D , as well as the body 

forces and temperature field within the interior of the strip. If the boundary 
of the strip is exposed to the boundary conditions in terms of 
displacements (2.4.32), then formula (2.4.46) can be used with the 
following equation: 

 1 1 2 2 1 1 2 2 , 1,2n n n n n n nu c p c p is d q d q t n  (2.4.50) 

to determine the unknown boundary tractions np  and nq , 1, 2n , using 

the given boundary displacements nu  and nv . Formula (2.4.50) follows 

from (2.4.42) at 1y , where 

 [ ] [ ]( ( 1) ), ( ( 1) ),x n x n
nm m nm mc P d Q  

 [ ] [ ]
ST ST( ( 1) ), ( ( 1) ), , 1, 2.x n x n

n nt n m  (2.4.51) 

A similar strategy can be used for the case of mixed boundary 
conditions on sides 1y  of strip 2D . If, for example, the sides 1y  

of the strip are under conditions of sliding support, then the following 
conditions hold: 

 1 2 1 2 0q q v v ,  (2.4.52) 

while 1 2,p p  and 1 2,u u  remain unknown. In order to use formulae 

(2.4.27), (2.4.29), and (2.4.30) for the stress determination and (2.4.42) 
and (2.4.48) for displacements, one needs to evaluate the boundary 
tractions 1p  and 2p  in view of conditions (2.4.52). Making use of 

equation (2.4.42) along with (2.4.52) yield 
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2 2 12 1 1 22
1

11 22 12 21

1 1 21 2 2 11
2

11 22 12 21

,

.

t c t c
p

c c c c

t c t c
p

c c c c

 (2.4.53) 

Now, the normal boundary tractions (2.4.53) can be used together with the 
shear ones given in (2.4.52) to evaluate the stresses and displacements in 
orthotropic inhomogeneous strip 2D . 

2.4.3.  Steady-state temperature field 

Consider the problem on the determination of steady-state temperature 
( , )T T x y  in strip 2D  due to inner heat sources of density ( , )w x y  and 

the following generalized thermal conditions on sides 1y : 

 

11 12 1
1

21 22 2
1

( , )
( ,1) ( ),

( , )
( , 1) ( ),

y

y

T x yT x T x
y

T x yT x T x
y

 (2.4.54) 

where ( )nT x  is given and constants nm , , 1, 2n m , define the type of 

boundary condition (similar to (2.3.65) in Section 2.3.5). 
To derive the integral balance conditions, we introduce the heat fluxes 

(2.2.49) and represent the heat conduction equation in the form (2.2.50). 
Let us assume that 

 
2
lim ( , ) 0x

x
x y .  (2.4.55) 

We integrate (2.2.50) over x  from   to , which brings us to 
formula (2.3.69). Integrating (2.3.69) over y  yields 

 1( , ) ( ,1) ( , 1)
2y y yx y dx x x dx
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2

1 ( , ) sgn( )
2

w x y dxd
D

.  (2.4.56) 

At 1y , the following integral condition can be derived from (2.4.56): 

 

2

( , ) ( ,1) ( , 1)y yw x y dxdy x x dx
D

. (2.4.57) 

This condition implies the action resulting from the inner heat sources 
within domain 2D  is equal to the difference between the resulting heat 

fluxes through sides 1y . 

Integrating (2.3.56) over y  from 1   to 1  allows us to derive the 

following condition for the resultant of the vertical heat flux over the 
entire domain 2D : 

  

2

( , ) ( ,1) ( , 1)y y yx y dxdy x x dx
D

2

( , )yw x y dxdy
D

.  (2.4.58) 

  Combining formulae (2.4.57) and (2.4.58) yields the following: 

 
2

2

1( ,1) ( , ) ( , ) 1 ,
2

1( , 1) ( , ) ( , ) 1 .
2

y y

y y

x dx x y w x y y dxdy

x dx x y w x y y dxdy

D

D

 (2.4.59) 

Similarly, integrating (2.2.50) over y  from 1   to 1  yields the following: 

 
1 1

1 1

( , ) ( ,1) ( , 1) ( , )x y y
d x y dy x x w x y dy
dx

. (2.4.60) 

After integrating this over x , we obtain the following formula:  
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1

1

( , )x x y dy A

1 ( ,1) ( , 1) sgn( )
2 y y x d  

 

2

1 ( , ) sgn( )
2

w y x d dy
D

,  (2.4.61) 

where A  is a constant of integration. If we let x  in (2.4.61), we 
derive the following conditions: 

  
1 1

1 1

1 1lim ( , ) lim ( , )
2 2x xx x

A x y dy x y dy , (2.4.62) 

 

2

( , 1) ( ,1) ( , )y yx x dx w x y dxdy
D

 

 
1 1

1 1

lim ( , ) lim ( , )x xx x
x y dy x y dy .  (2.4.63) 

Integrating (2.4.61) over x  from 1L  to 2 1L L   yields 

 
2

1

1

2 1
1

( , ) ( )
L

x
L

x y dxdy L L A

2

( ,1) ( , 1) ( , )y yx x x dx xw x y dxdy
D

 

 
1

1 2

1

( , 1) ( ,1) ( , )
2 y y

L L
x x w x y dy dx . (2.4.64) 
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Since 1L  and 2L  respectively tend toward  and  independently, 

formula (2.4.64) implies that 0A  and formula (2.4.57) holds. Under the 
conditions (2.4.60) and (2.4.61), we can conclude that  

  
1

1

lim ( , ) 0xx
x y dy .  (2.4.65) 

Then (2.4.64) yields the following thermal balance condition: 

 ( ,1) ( , 1)y yx x x dx

2

( , ) ( , ) 0xxw x y x y dxdy
D

.  (2.4.66) 

In such manner, we derived thermal balance conditions (2.4.57), 
(2.4.58), and (2.4.66) ensuring the average temperature field within 
orthotropic inhomogeneous strip 2D  not to grow infinitely.  

Now, an analytical solution to equation (2.2.62) that has two degrees of 
freedom to meet conditions (2.4.54) can be given as follows: 

 ( ) cosh sinhT y A sy B sy

1
2

1

( ) ( )1 ( )
2 ( )

x y

y
T s

s

2

2

ln ( )
sinh | |

yd
s y

d
 

 
1

1

( )1 sinh | |
2 ( )y

w s y d
s

  

 
ln ( )

cosh ( )sgn( )
yd

s s y y d
d .  (2.4.67) 
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We first eliminate the constants of integration A  and B  by substituting 
(2.4.67) into conditions (2.4.54) in the mapping domain of transform 
(2.2.24). We then obtain the following expression for temperature: 

 22 21
1

cosh sinh
( )

sy sy
T y T

11 12
2

sinh coshsy sy
T  

 ST

1

1

( ) ( )( ,)w y T y d ,  (2.4.68) 

where 

 2
ST

2

2

( ) ( ) ln ( )
)

)
(

(
1,
2

x y y

y
y s

s
d

d

22 11sinh | | sinh (1 )s y s  

 22 12
1

ln ( )
cosh (1 ) sinh (1 )

y

y

d y
s s s

dy   

 12 21 sinh (1 )s  

 12 22
1

ln ( ) cosh
cosh (1 ) sinh (1 )

y

y

d y sys s s
dy  

 11 21 sinh (1 )s

11 22
1

ln ( )
cosh (1 ) sinh (1 )

y

y

d y
s s s

dy
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21 11 sinh (1 )s  

 21 12
1

ln ( ) sinh
cosh (1 ) sinh (1 )

y

y

d y sys s s
dy  

 
ln ( )

cosh ( )sgn( )
yd

s s y y
d   

 22 11 cosh (1 )s

22 12
1

ln ( )
sinh (1 ) cosh (1 )

y

y

d y
s s s

dy

12 21 12 22cosh (1 ) sinh (1 )s s s

 
1

ln ( ) cosh
cosh (1 )

y

y

d y sys
dy   

 11 22
1

ln ( )
sinh (1 ) cosh (1 )

y

y

d y
s s s

dy  

 21 11 11 21cosh (1 ) cosh (1 )s s   

 21 12 sinh (1 )s s

1

ln ( ) sinh
cosh (1 )

y

y

d y sysdy
,  (2.4.69) 
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1

1

( )1( ) sinh | |
2 ( )y

ww y s y
s

  

 22 11 sinh (1 )s  

22 12
1

ln ( )
cosh (1 ) sinh (1 )

y

y

d y
s s s

dy

12 21 sinh (1 )s

 12 22
1

ln ( ) cosh
cosh (1 ) sinh (1 )

y

y

d y sys s s
dy   

 11 21 21 11sinh (1 ) sinh (1 )s s  

 11 22
1

ln ( )
cosh (1 ) sinh (1 )

y

y

d y
s s s

dy   

 21 12 cosh (1 )s s

1

ln ( ) sinh
sinh (1 )

y

y

d y sys d
dy ,  (2.4.70) 

 11 11 12 12
1

ln ( )
cosh sinh ,

y

y

d y
s s s

dy  

 12 11 12 12
1

ln ( )
sinh cosh ,

y

y

d y
s s s

dy   
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 21 21 22 22
1

ln ( )
cosh sinh ,

y

y

d y
s s s

dy  

 22 21 22 22
1

ln ( )
sinh cosh ,

y

y

d y
s s s

dy

11 22 12 21.  (2.4.71) 

Using the resolvent-kernel method, a solution to equation (2.4.68) can be 
derived explicitly as 

 1 1 2 2 ST( ) ( ) ( ) ( )T y T y T y w y .  (2.4.72) 

Here, 

 22 c 21 s 11 s 12 c
1 2

( ) ( ) ( ) ( )
( ) , ( ) ,

y y y y
y y  

 ST

1

c
1

(( ) cosh cosh ,, )y sy s y d

T

1

s
1

S( ) sinh sinh ( , )y sy s y d , 

 ST
1

T

1

S( ) ( ( , )) ( )w y w y w y d ,  (2.4.73) 

and the resolvent-kernel has the form of an infinite series 

 ST
ST 1

0

( , ) ( , )n
n

y y   (2.4.74) 

using the following recurring kernels: 
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ST
1 ST

1
ST ST ST

1 1
1

( , ) ( , ),

( , ) ( , ) ( , ) , 1, 2,n n

y y

y y t t dt n

 (2.4.75) 

If the analytical evaluation of the series given in (2.4.74) presents a 
challenge, it can be substituted with the following approximation: 

 ST
ST ST 1

0

( , ) ( , ) ( , )
N

N
n

n
y y y ,  (2.4.76) 

where N  is a natural digit allowing for the satisfying of equation (2.4.68) 
with solution (2.4.72) together with the approximate resolvent kernel 
(2.4.76) within an appropriate level of accuracy. 

2.5. Special cases of anisotropy and inhomogeneity 

As it can be concluded from the foregoing Sections 2.2.2, 2.3.2, and 
2.4.1, the key point of the solution construction to the formulated 
thermoelasticity problems is to solve the governing integral equations for 
total stress; i.e., (2.2.32) for plane 0D , (2.3.12) for half-plane 1D , and 

(2.4.15) for strip 2D . Obtaining explicit solutions to these equations 

requires construction of the resolvent kernels (2.2.35), (2.3.22), and 
(2.4.22), respectively. The resolvent kernels are constructed by 
successions of recurring kernels originated by kernels (2.2.33), (2.3.13), 
and (2.4.17) of the integral equations (2.2.32), (2.3.12), and (2.4.15), 
respectively. Thus, they do not depend on the force or thermal loadings; 
they depend directly on the material properties and indirectly on the 
geometry of the domains via integral limits in their expressions. From this 
perspective, specific cases of orthotropic material inhomogeneity permit 
relatively simple analysis of the thermoelasticity solutions to the problems 
being considered. 

The simplest situation seems to be the one when solutions (2.2.34), 
(2.3.14), and (2.4.25) can be computed without evaluation of the 
corresponding resolvent kernels; i.e.: i) PL ( , ) 0y  for 

2( , ) ( , )y ; ii) HP ( , ) 0y  for 2( , ) [0, )y ; and iii)  

ST ( , ) 0y  for ( , ) [ 1,1] [ 1, ]y y . In view of formulae (2.2.36), 

(2.3.23), and (2.4.23) within the context of (2.2.33), (2.3.13), and (2.4.17), 

 EBSCOhost - printed on 2/14/2023 2:18 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Two 126

this case manifests when the material properties meet the following 
conditions: 

 
2

21
2 12

( ) 1( ) 0, ( )
2 ( )xy

d y
s y y

G ydy
. (2.5.1) 

In (2.5.1), variable y  falls within the corresponding range, i.e., 

( , )y  for plane 0D , [0, )y  for half-plane 1D , and 

[ 1,1]y  for  strip 2D . Due to the fact that the material properties do not 

depend on transform parameter s , the first equation of (2.5.1) yields the 
following conditions: 

 
2

1
2 2

( )
( ) 0, 0

d y
y

dy
.  (2.5.2) 

The second equation of (2.5.1) together with the second one in (2.5.2) 
imply that 

 
2

2

1 0
( )xy

d
G ydy

.   (2.5.3) 

In view of expressions (2.1.32), the first condition in (2.5.2) means that  

 11 22( ) ( )a y a y .  (2.5.4) 

Taking into account (2.1.24), equation (2.5.4) presents the following 
condition of equality for the orthotropic Young moduli in the case of plane 
stress: 

 ( ) ( )x yE y E y .  (2.5.5) 

Then, in view of the symmetry condition (2.1.6), 

 ( ) ( )xy yxy y .  (2.5.6) 

In the case of plane strain, conditions (2.5.4) and (2.1.24) mean that 

 ( ) 1 ( ) ( ) ( ) 1 ( ) ( )x zy yz y zx xzE y y y E y y y . (2.5.7) 
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By implementing the symmetry condition (2.1.6), formula (2.5.4) can be 
expressed in many alternative forms, for example: 

 
2 2

2 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
x x xz z

y y yz z

E y E y y E y
E y E y y E y

,  (2.5.8) 

 
2

2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
x z zx x

y z zy y

E y E y y E y
E y E y y E y

,  (2.5.9) 

or 

 2 2
( ) ( )

( ) ( ) ( )
( ) ( )

x y
zy zx z

x y

E y E y
y y E y

E y E y .  (2.5.10) 

Similarly, the orthotropic Young moduli can be eliminated from formula 
(2.5.7) to obtain the following relationship between the Poisson ratios: 

 
( ) 1 ( ) ( )

( ) 1 ( ) ( )
x zx xz

y zy yz

E y y y
E y y y

.  (2.5.11) 

In view of (2.1.32), the second equation of (2.5.1) can be written as 
follows: 

 11 12
12 ( ) 2 ( )
( )xy

a y a y
G y .  (2.5.12) 

This, along with (2.1.24) and (2.5.4) – (2.5.6), yields the following 
expression for the case of plane stress: 

 
( )

( )
2 1 ( )

xy
E yG y

y
,  (2.5.13) 

where ( ) ( ) ( )x yE y E y E y and ( ) ( ) ( )xy yxy y y . 

For the case of plane strain, we can similarly obtain the following:  

 
( )

( )
2 1 ( ) ( ) ( ) ( )

x
xy

xy zy zx xz

E y
G y

y y y y
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( )

2 1 ( ) ( ) ( ) ( )

y

yx zx zy yz

E y

y y y y
,   (2.5.14) 

which is to be considered within the context of equalities (2.5.7) –(2.5.11). 
Under the hypotheses of both plane stress and plane strain, equation 

(2.5.3) implies that 

 0

0 0

( )xy
G

G y
a y b

,  (2.5.15) 

where 0G  is an arbitrary constant in dimension of stresses, and 0a  and 0b  

are dimensionless constants.  
Under the physical constraint 0 ( )xyG y  for the shear modulus 

[154], expression (2.5.15) is valid for 

 0 0 00, 0G a y b  (2.5.16) 

or 

 0 0 00, 0G a y b   (2.5.17) 

for the entire range of variation associated with variable y . Thus, for the 

case of inhomogeneous orthotropic plane 0D  where y , 

conditions (2.5.16) and (2.5.17) necessitate that 0 0a
 
and 

 0

0

( ) const > 0xy
G

G y
b

.  (2.5.18) 

In view of this, formula (2.5.13) for plane stress yields the following: 

 0

0

( ) 2 (1 ( ))
G

E y y
b

.   (2.5.19) 

Similarly, adopting (2.5.18) and (2.5.14) for the case of plane strain allows 
us to obtain, e.g., the following equality:  

 0

0

( ) 2 1 ( ) ( ) ( ) ( )x xy xz zy zx
G

E y y y y y
b

. (2.5.20) 
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Note that formula (2.5.19) implies functional variation of Poisson’s ratio 

( )y  with the coordinate y  in the following form in the case of plane 

stress: 

 0

0

( ) ( ) 1
2

b
y E y

G
.  (2.5.21) 

In the case of plane strain, this dependence is more complex, as follows 
from (2.5.20).   

In the case of plane stress, formulae (2.5.6), (2.5.13) and (2.5.19) cover 
the variations of material properties occurring within an orthotropic inho-
mogeneous plane 0D  for which resolvent kernel (2.2.35) equals zero. 

Similarly, formulae (2.5.7) – (2.5.11), (2.5.14), and (2.5.20) cover the 
material properties ensuring resolvent kernel (2.2.35) to be zero in the case 
of plane strain. For both the plane strain and plane stress, solution (2.2.34) 
of the governing integral equation (2.2.33) can be written explicitly as 
follows: 

    0
PL PL( ) ( ) ( )y y y ,  (2.5.22) 

where PL ( )y  is given by (2.2.30),  

 0
PL

11

1( ) ( ) exp | || |
2 | | ( )

y s y d
s a y

, (2.5.23) 

and  

 1
1

( ) ( )
( ) ( ) ( ) 2 ( )

y
x y

dF d
isF F

d d
. (2.5.24) 

Thus, stress-tensor components (2.2.38), (2.2.40), and (2.2.42) take the 
following form: 

 PL
1( ) ( ) exp( | || |)

2 | |yy y s y d
s

, 

 0
PL PL( ) ( ) ( )xx y y y   
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 PL
1 ( )exp( | || |) ,

2 | |
s y d

s
 (2.5.25) 

 ( ) ( )xy y
iy F y
s

PL
1 ( ) exp( | || |) sgn( )
2

s y y d .  

Here, 

2 0
PL PL PL

( )
( ) ( ) ( ) ( )

y
x

dF
isF s

d
. (2.5.26) 

Similar simplifications can be made for the displacements (2.2.47) and 
(2.2.48). 

For the case of inhomogeneous orthotropic half-plane 1D  where 

0 y , conditions (2.5.16) and (2.5.17) imply that 

 0 0 00, 0, 0G a b  (2.5.27) 

or 

 0 0 00, 0, 0G a b .  (2.5.28) 

Taken together, (2.5.13) and (2.5.15) in view of (2.5.27) and (2.5.28) yield 
the following condition for the case of plane stress: 

 0
0 0

1 ( )
( ) 2

yE y G
a y b

.  (2.5.29) 

For the case of plane strain, formulae (2.5.13) and (2.5.15) yield, e.g., the 
following equality 

 0
0 0

1 ( ) ( ) ( ) ( )
( ) 2

xy xz zy zx
x

y y y y
E y G

a y b
.  (2.5.30) 
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Formulae (2.5.5), (2.5.6), (2.5.13), and (2.5.29), in the case of plane 
stress, and formulae (2.5.7) – (2.5.11), (2.5.14), and (2.5.30), in the case of 
plane strain, cover the material properties variation within an orthotropic 
inhomogeneous half-plane 1D  for which resolvent kernel (2.3.22) equals 

zero. Thus, the solution to the governing integral equation (2.3.12) can be 
given in explicit analytical form (2.3.14), where 

     HP HP 2
0 11 0 11

exp( | | ) exp( | | )
( ) , ( ) ,

| | ( ) ( )

s y s yP y Q y
s c a y s c a y

 

 HP 0 0
0 11 0

1( ) ( ) ( ) exp( | | ( ))
( )

y y s y d
c a y

, 

 HP 0 2
0 11

exp( | | )
( ) ( ) (0)

( )
y

s yy y F
s c a y

 

 02 2
0 11 0

( )1 1( ) ( ) exp( | | ( ))
( )

y
x

dF i F s y d
d ss c a y s

, 

 0
11 0

1( ) ( ) exp( | || |)
2 | | ( )

y s y d
s a y

,  

 0
110

exp( 2 | | )
( )

s yc dy
a y

,  (2.5.31) 

and 0 ( )y  is given by (2.3.13) and ( )  has the form (2.5.24). Thus, 

coefficients (2.3.26), (2.3.29) – (2.3.43) for stress-tensor components 
(2.3.25), (2.3.27), and (2.3.28), as well as the coefficients (2.3.53) for the 
displacements (2.3.51) and (2.3.52) can be expressed through coefficients 
(2.5.31).  

In the case of inhomogeneous orthotropic strip 2D  where | | 1y , 

conditions (2.5.16) and (2.5.17) imply that 

 0 0 00, | |b a b  for  0 0G  (2.5.32) 

or 
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 0 0 00, | |b a b  for  0 0G .  (2.5.33) 

Then, formulae (2.5.5), (2.5.6), (2.5.13), and (2.5.29) for the plane stress, 
and (2.5.7) – (2.5.11), (2.5.14), and (2.5.30) for the plane strain, in view of 
the parameter constrains (2.5.32) or (2.5.33), cover the material properties 
variation in orthotropic inhomogeneous strip 2D  when the resolvent 

kernel (2.4.22) equals to zero. Thus, solution (2.4.25) for the governing 
integral equation (2.4.15) can be expressed using the following 
coefficients: 

 2
1

11

sinh( (1 ))
( )

( )

I s y
P y

sIa y

0 1

11

sinh( (1 )) cosh( (1 ))

( )

I s y I s y
sIa y

,  

 2
2

11

sinh( (1 ))
( )

( )

I s y
P y

sIa y

0 1

11

sinh( (1 )) cosh( (1 ))

( )

I s y I s y
sIa y

,  

 1 2
1 22 2

( ,1) ( ,1)
( ) , ( ) ,

y y
Q y Q y

s s

1

ST 1
1

( ) ( ) ( ) ( , )y y y d , 

 ST 1 22

1( ) (1) ( ,1) ( 1) ( ,1)y yy F y F y
s

11 1

1 ( )
( )

y

d
sa y

 

     
1

12
111 1

( )1 1 1( ) ( ) , ( , )
( )

y
x

dF
F d y d

s d sas
, (2.5.34) 
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 0
1

11

cosh( ( ))
( , )

( )

I s y
y

Ia y

1 2

11

sinh( ( )) cosh( ( ))
,

( )

I s y I s y
Ia y

  

 0
2

11

cosh( ( ))
( , )

( )

I s y
y

Ia y

1 2

11

sinh( ( )) cosh( ( ))
,

( )

I s y I s y
Ia y

 

 
1 1

1 2
11 111 1

sinh 2 cosh 21 1, ,
2 ( ) 2 ( )

sy syI dy I dy
a y a y

1
2 2 3

0 0 1 2
111

1 , ,
2 ( )

dyI I I I I
a y

  

where ( )y  is given by (2.4.16) and ( )  is presented in (2.5.24). 

Coefficients (2.4.28) and (2.4.31) for the stress-tensor components 
(2.4.27), (2.4.29), and (2.4.30), as well as coefficients (2.4.43) and (2.4.49) 
for displacements (2.4.42) and (2.4.48) can be expressed through the 
coefficients (2.5.34).  

In view of expressions (2.1.25) – (2.1.27), it is easy to conclude that 
relations (2.5.1) are always valid for the case of inhomogeneous isotropic 
or transversely isotropic material properties. Thus, to eliminate the 
resolvent kernel from the corresponding thermoelasticity solutions, it is 
enough to ensure that condition (2.5.3) holds. This yields an expression 
similar to (2.5.15): 

 0

0 0

( )
G

G y
a y b

.  (2.5.35) 

Note that this representation of the shear modulus corresponds to the well-
known model of “Gibson soil” for the problem in an isotropic 
inhomogeneous half-plane (see equation (1.2.5) in Section 1.2.1). In this 
case, key stresses (2.4.25) and (2.4.27) for an inhomogeneous isotropic 
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strip 2D , for example, can be given in the mapping domain of transform 

(2.2.24) as follows: 

 
2 ( )

( ) cosh sinh
1 ( )

G yy A sy B syy

( ) ( )(1 ( )) ( )H y y y T y ,  

 2 2
1cosh (1 ) ( 1) sinh (1 )yy yp s y iq F s y
s

 (2.5.36) 

 
1

( ) cosh sinh sinh ( )
2

1 ( )

y G A s B s s y
s d  

 
1

( ) ( ) ( ) 2 ( ) ( )
sinh ( )

1 ( )

y E T G Hs s y d ,  

where 

2 1
1 22 2

2 3 1 2 3 1

,
I I

A
I I I I I I

3 1
2 12 2

2 3 1 2 3 1

I I
B

I I I I I I
, 

1

1
1

( )1 sinh 2 ,
2 1 ( )

GI s d

1
2

2
1

( )
sinh ,

1 ( )
GI s d  

1
2

3
1

( )
cosh

1 ( )
GI s d , 

 1 2 2 1
1 1, ,
2 2c c s sZ H Z H  
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1

1

( ) ( )
cosh ,

1 ( )c
G HH s d  (2.5.37)

1

1

( ) ( ) ( )
cosh

1 ( )c
E T s d , 

1

1

( ) ( )
sinh ,

1 ( )s
G HH s d

1

1

( ) ( ) ( )
sinh

1 ( )s
E T s d ; 

1

1 1( ) ( )
( )

y

y
dH y F

s d G

( )1 ( ) sinh ( )
2 ( )

y
x

dF
isF s y d

G d
 

and 1Z and 2Z  are given by (2.4.11). 

Note that (2.5.37) can be regarded as a benchmark solution for the 
verification of various methods. Its usefulness in verification is associated 
with its functional flexibility, which is greater than that of approaches in 
which material properties are formulated as specific elementary 
dependences on the coordinates (see Section 1.2.1). For example, it can be 
used to analyze the effect of variations in the Poisson ratio associated with 
the distribution of thermal stress within inhomogeneous domains. 

Consider, for example, the case of inhomogeneous isotropic strip 2D  

subject to external normal loadings (2.4.1), where  

 
1 2

1 2

( ) ( ) ( ),

( ) ( ) ( , ) ( , ) ( , ) 0,x y

p x p x p x

q x q x F x y F x y T x y
 (2.5.38) 

2( ) exp( )px a x ,  0 constpa , and p  is a constant in dimension of 

stresses. 
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Assume that the material properties of the strip are as follows:  

 

0
1const, ( ) 1 ,

const, const.

G G y
a b y

a b
  (2.5.39) 

 
 a) b) 
Figure 2.1. Effect of the variable Poisson ratio (2.5.39) under constant shear 
modulus in the transversal stress for inhomogeneous isotropic strip subjected to 
loadings (2.4.1) and (2.5.38):  a) distributions of Poisson’s ratio versus strip width 
for cases of 1.33, 0.00a b  (homogeneous material – curve 1); 

1.39, 0.28a b  (curve 2); and 1.50, 0.50a b  (curve 3); b) distribution 

of transversal stress (2.5.36) due to loading (2.5.38) for cases of 1pa  at 0x ; 

the curve numbers correspond to the material parameters in plot a  
 

Then,  

 0

4 2
( )

a b y
E y G

a b y
. (2.5.40) 

and the material properties (2.5.39) and (2.5.40) are within the constraints 
(2.5.2) and (2.5.3), such that the key stresses can be expressed using 
formulae (2.5.36).  
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 a) b) 
Figure 2.2. Effect of material properties (2.5.41) and (2.5.42) under constant 
Young’s modulus in the transversal stress (2.5.36) for an inhomogeneous isotropic 
strip subjected to loadings (2.4.1) and (2.5.38): a) distributions of Poisson’s ratio 
(2.5.41) – curves 1 and 2 corresponding to 3 / 20, 1 / 4a b  and 0a ,

1 / 4b ; distributions of shear modulus (2.5.42) –  curves 1’ and 2’ 
corresponding to the same values versus strip width; b) distribution of the 
transversal stress due to loading (2.5.38) for cases of 1pa  at 0x ; the curve 

numbers correspond to the material parameters in plot a.  
 
The effect of variable Poisson’s ratio and Young’s modulus under the 

constant shear modulus is illustrated in Fig 2.1. In the case of 
homogeneous material (curves 1 in plots a and b), the transversal stress is 
symmetric about 0y , due to the symmetry of loading (2.5.38). As 

Poisson’s ratio is varied, the symmetry in the stress values is no longer 
observed. In cases where the variation in Poisson ratio’s (2.5.39) presents 
a steeper gradients, there is a corresponding drop in the magnitude of 
stress.  

The effect of linear variation of Poisson’s ratio 

      ( ) , const, consty a y b a b ,  (2.5.41) 

is illustrated in Fig. 2.2 in the case of constant Young’s modulus, 

0( ) constE y E , allowing the shear modulus 

      0( )
2(1 )

E
G y

b a y
  (2.5.42) 
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to meet the condition (2.5.3). As shown in Fig. 2.3 in comparison to 
Fig. 2.2, allowing Poisson’s ratio (2.5.41) to drop into negative values 
(when the one side of the strip exhibits auxetic material properties [238]) 
has a critical effect on the stress field. 
 

 
 a) b) 
Figure 2.3. Effect of material properties (2.5.41) and (2.5.42) under constant 
Young’s modulus in the transversal stress in the case of inhomogeneous isotropic 
strip subject to loadings (2.4.1) and (2.5.38) when Poisson’s ratio of the material 
moves into negative values: a) distributions of Poisson’s ratio (2.5.41) – curves 1, 
2, and 3 respectively correspond to 2 / 5, 0a b , 3 / 10, 1 / 10a b  and  

1 / 5, 1 / 5a b ; distributions of shear modulus (2.5.42) –  curves 1’, 2’, and 3’ 
correspond to the same values versus strip width; b) distribution of the transversal 
stress due to loading (2.5.38) for cases of 1pa  at 0x ; the curve numbers 

correspond to the material parameters in plot a.  
  

Note that in the case of homogeneous isotropic or transversely 
isotropic materials (all elastic material moduli are constants), the 
conditions (2.5.2) and (2.5.3) are fulfilled automatically for any possible 
interrelations between the elastic moduli. This, however is not the case for 
homogeneous orthotropic materials, for which condition 2 ( ) 0y  is not 

always satisfied. This means that the resolvent kernel is to be computed 
for the case of homogeneous orthotropic material, when 11 22a a .  

In the case of homogeneous orthotropic material, an exact solution can 
be constructed by making use of equations (2.1.35) and (2.1.31). The latter 
one takes the following form: 

 

11 1 0 1 2 0( ) ( )( )a T T T T
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2

1 2

12
yy

xyG y
 

 
2

2 12

1yy y yx

xy

F FF
y x G yx

.  (2.5.43) 

By eliminating the total stress from the system of equations (2.1.35) and 
(2.5.43) in view of (2.1.32), the following fourth-order partial-differential 
equation can be obtained:  

 
4 4 4

1 24 2 2 2
2

yy yy yya a
y x y x

2

1 0 1 2 02
11

1 ( )T T T T
a x

 

 

3 33 3
12 12

2 3 2 3
11 11

1y xy yx x

xy

F a G FF Fa
a G ax y y x y x

, (2.5.44) 

where  

 
12 22

1 2
11 11

2 1
,

2
xy

xy

a G a
a a

a G a .  (2.5.45) 

The characteristic equation 

 4 2 2 4
1 22 0a s a s   (2.5.46) 

makes it possible to determine the eigenvalues for equation (2.5.44) as 
follows: 

 1,2 1 3,4 2,s s ,  (2.5.47) 

where  
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2
1 1 1 2 1 1

2
2 1 1 2 2 2

,

,

a a a i

a a a i

  (2.5.48) 

s  is the transform parameter and 2 1i . By taking into consideration the 
constrains [49, 154] 

   

0, 0, , , ,

1| | ,

| | , | | ,

| | , | |

j xy

zx yx zy x y yx y z zy
y z

yx
yx xy

y x

y z
zy yz

z y

E G j x y z

E E E E
E E

EE
E E

E E
E E

 (2.5.49) 

for material properties, it can be concluded that the form of an analytical 
solution to equation (2.5.44) depends on the interrelation between the 
coefficients (2.5.45), which are expressed through material properties 
falling within the constrains (2.5.49). The behavior of the real and 
imaginary parts of the eigenvalues (2.5.48) is shown in Fig. 2.4. This fact 
complicates the construction of general solutions to equation (2.5.44) for 
infinite or semi-infinite domains satisfying the condition of solution 
boundedness. In this case, the developed resolvent-kernel solution presents 
an efficient alternative to the construction of solutions in a unique way for 
any possible interrelations between material properties. 

In order to verify our solution for various material properties, consider 
the case of a general orthotropic inhomogeneous material with the 
following material properties variation profiles: 

   

0 0

0

( ), ( ),

( ), ( ) exp( ),

x x y y

xy xy

E E y E E y

G G y y ky
  (2.5.50) 
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where constk  and 0 0, ,x yE E and 0
xyG  are constant values of Young’s and 

shear moduli ,xE  ,yE  and  xyG  on the line 0y . Assume that 

0 0 / (2 2 )xy x xyG E  and the Poisson ratio 0.2xy . We introduce the 

following orthotropic parameter to characterize the relationship between 
the elastic moduli: 

  
0

0
x

y

E
E

.  (2.5.51) 

In view of the symmetry condition (2.1.6) and expression (2.5.50), it can 

be shown that xy yx  and 0 0 / (2 2 )xy y xyG E . Obviously, 1  

for isotropic materials.  
 

 
Figure 2.4. Behavior of real and imaginary parts of eigenvalues (2.5.48) 

 
The distribution of transversal stress is shown in Fig. 2.5 for different 

values of orthotropic parameter (2.5.51) and inhomogeneity value k  in 
(2.5.50) due to loading (2.5.38). In the case of 0k , this stress reaches 
extreme values at midline 0y . In the inhomogeneous case of 1k , 

the extreme values shift in the direction of increased inhomogeneity. 
Under the parameters considered in this example, the effect of orthotropy 
is more pronounced in the distribution of stress than in the effects of 
inhomogeneity. 

A similar effect is observed in Fig. 2.6 for the material properties given 
by  
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0 0

0
1 2

( ), ( ),

( ), ( ) ( ) .

x x y y

k
xy xy

E E w y E E w y

G G w y w y c c y
 (2.5.52) 

Interested readers can find detailed analysis of the thermoelastic 
response of orthotropic inhomogeneous solids under specific material 
properties profiles in our previous works [296, 297, 299, 301, 302]. 

 
 a) b) 

Figure 2.5. a) Distribution of function ( ) exp( )y ky presenting variation profiles 

of orthotropic material properties (2.5.50) for k = 0; -1; b) Distribution of the 
transversal stress at 0x  under various orthotropic parameter values 1 / 2;1;2  

in cases of homogeneous material 0k  (solid lines) and inhomogeneous material 

1k  (dashed lines), due to loading (2.5.38), where 1pa  (adapted from our 

paper [296]) 
 

Consider the computation of thermal stresses in an isotropic 
inhomogeneous half-plane 1D  

due to thermal loading (2.3.55) of its 

boundary 0y , where 0 1, 1 0 , and  

  2 2 2
0 0 0 0( ) exp , constT x x x x x  (2.5.53) 

and 0  is a constant parameter in dimension of temperature. Assume the 

internal heat sources, as well as all the force loadings to be absent. As 
shown in [239], thermal loading (2.5.53) meets the conditions of thermal 

balance derived in Section 2.3.5, if 0 1 / 2x . By assuming the heat-

conduction coefficient of the considered isotropic half-plane to be 
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constant, the temperature field (2.3.88) in the mapping domain of 
transform (2.2.44) takes the following form: 

  20 | |
exp | |

4 4
sT s s y .  (2.5.54) 

      
 a) b) 

Figure 2.6. a) Distributions of function ( )w y  in cases of 1 2c , 2 1,c  

0, 1;k  b) Transversal stress  /yy p  at 0x  in the strip with properties 

(2.5.52) for cases of  1 , 1 2c , 2 1c , 0k  (solid lines) and 1k  (dashed 

lines) due to loading (2.5.38), where 1pa  (adapted from our paper [296]) 

 
Its distribution in the physical domain is shown in Fig. 2.7. 

 
Figure 2.7. Distribution of the static temperature 0( , ) /T x y , which corresponds 

to the Fourier mapping function (2.5.54) (adapted from our paper [239]). 
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 a) b) 

 
c)

Figure 2.8. Distribution of the dimensionless thermal stresses (a) 
2

1 010 / ( )yy E ,  (b) 2
1 010 / ( )xx E , and (c) 2

1 010 ( )xy E  

in the half-plane for 1 0  and 2 1  (adapted from our paper [239]) 

 
When analyzing the thermal stresses, we consider the plane stress case and 
assume the material properties in the form as follows: 
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1 2

1 2

1 2

1 2

1 2

( ) 1 exp( ) ,

( ) 1 exp( ) ,

( ) 1 exp( ) ,

, , const, ,
2(1 )

const, , , const.

E y E y

G y G y

y y

E
E G

 (2.5.55) 

All the constant parameters (2.5.55) are assumed to be not negative. Thus, 
for y , ( )E y E , ( )G y G , and ( )y . At 0y , 

these functions are equivalent to the constants 0 1(1 )E E , 

0 (1 )G G  and 0 1(1 ) . Thus, the assumption of material 

properties (2.5.55) meet the physical constrains adopted in linear elasticity 
theory [49]. 

In Fig. 2.8, the full-field analysis of the thermal stresses is shown for 
the case when 1 0  and 2 1 . As we can observe, thermal stresses 

arise in the half-plane even in the case if only the thermal expansion 
coefficient depends on the depth coordinate. Figure 2.9 shows how the 
thermal stresses depend on the inhomogeneity. As expected, the stresses 
are as more intensive as the material properties are of higher functional 
gradient. Plots in Fig. 2.8 a and c, as well as Fig. 2.9 a and c ensure that 
the stresses meet the condition of force-free boundary.  

Consider the case of fixed boundary for an inhomogeneous isotropic 
strip 2D  with material properties  

  
0 0

0 0

const, 0.3,

(1 ), , const.m

E E

y m
 (2.5.56) 
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 a) b) 

 
 c) d) 
Figure 2.9. Comparison of thermal stresses in the half-plane for different cases on 
inhomogeneity, 2 1 / 5;1 / 2;1.0;2.0;3.0  and 0 , showing: (a) 

1 0/ ( )yy yy E  and (b) 1 0/ ( )xx xx E  at 0x , and 

1 0/ ( )xy xy E  at (c) 1x  and (d) 1y  

 
The strip is under conditions (2.4.32), where 

  1 1 2 2( ) ( ) ( ) ( ) 0u x v x u x v x ,  (2.5.57) 

while subjected to the temperature field with Fourier mapping function  

  
2

0

cosh
( ) exp

4 cosh
sysT y
s

,  (2.5.58) 
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where 0  is a constant parameter in the dimension of temperature. 

Temperature (2.5.58) has been obtained by solving the heat conduction 
equation with boundary conditions  

  2
0( , 1) expT x x ,  (2.5.59) 

for materials with constant heat-conduction coefficient. Making use one-
to-one relationships (2.4.46) and (2.4.50) between the given boundary 
displacements (2.5.57) and yet unknown boundary tractions 1( )p x , 

2 ( )p x  and 1( )q x , 2 ( )q x , the latter ones can be evaluated and used for 

computing thermal stresses and displacements. In the Fig. 2.10, the 
temperature at 1y  and boundary tractions are shown for 0m  

(homogeneous material), 1m , and 3m  in (2.5.56). The tractions arise 
on the sides of strip in the zone, which approximately is twice wider than 
the zone of non-zero temperature distribution, and they vanish when 
moving away from it. The normal tractions are even functions of the 
longitudinal coordinate x, while the shearing tractions are odd functions. 
For homogenous material, 1 2p p  and 1 2q q . If the linear thermal 

expansion coefficient depends on the transversal coordinate y in the form 
(2.5.56), then the tractions on sides 1y  and  1y  are different. As we 

can observe in the figure, the tractions on the side 1y  are smaller in 

magnitude than the ones on the side 1y . This can be explained by lesser 

thermal expansion of the side 1y  and, thus, lower thermal stresses due 

to rigid fixation (2.5.57). 
If the material of the inhomogeneous strip in the latter example is 

orthotropic with properties 

   

1 1

0
0 02

1
2

const, 0.3,

const,
2(1 )

2 , 1, 2, .

xyx
y yx

x
xy

xy

k
j j

E
E

E
G

y j

 (2.5.60) 
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Figure 2.10. Boundary tractions and temperature on the sides 1y   of an 

isotropic inhomogeneous strip with material properties (2.5.56) due to temperature 
(2.5.60) 

 
 

 
Figure 2.11. Dimensionless (normalized by 0

1 0xE T ) normal tractions on the sides 

1y  of the clamped orthotropic nonhomogeneous strip (curves 1: 1p  at 1;k  

curves 2: 2p  at 1;k  curves 3: 1p  and 2p  at 0k ) 

 
then the boundary tractions those arise on the sides 1y  of the strip due 

to the temperature (2.5.58) and fixation condition (2.5.57) are shown in 
Fig. 2.11. As we can see, for the case of homogeneous material ( 0k ), 
the tractions on both sides are equal for different ratio between the 
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constant elastic moduli. We can conclude that greater values of 2  cause 

the tractions of larger magnitude at 0x . The anisotropy effects 
substantially in the distribution of tractions for both homogeneous and 

nonhomogeneous cases. Note that for the latter one, when 2
1
2

 (dashed 

curve 1), in contrast to the other cases, the traction 1p  is compressive in 

vicinity of 0x . This can be explained by the fact that longitudinal 
thermal expansion is double of the transversal expansion, which leads to 
the contractions in transversal direction. 
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CHAPTER THREE 

PLANE PROBLEMS FOR RADIALLY-
INHOMOGENEOUS ELASTIC ANNULI 

 
 
 

3.1.  Governing equations and integral conditions 

3.1.1.  Governing equations in terms of stresses 

Consider a plane problem (within the framework of either plane stress 
or plane strain) in an elastic annular domain {( , ) :R 1,k

[0,2 ]}  using a dimensionless cylindrical-polar coordinate system 

( , , )z , where / oz r , / or r , /i ok r r ; ir  and or  respectively 

indicate the inner and outer radii, and r  and  are dimensional radial and 

axial coordinates. Assume that domain R  has cylindrically orthotropic 
material properties, which vary arbitrarily within the radial coordinate. 
The generalized strain-stress constitutive law for this plane problem is 
similar to (2.1.23), as follows: 

 

11 12

1 1

12 22

2 2

( , ) ( ) ( , ) ( ) ( , )

( ) ( ) ( , ),

( , ) ( ) ( , ) ( ) ( , )

( ) ( ) ( , ),

( ) ( , ) ( , ).

rr rr

rr

r r r

a a

T

a a

T

G

 (3.1.1) 

Here, we assumed the initial temperature distribution of the stress-free 
state to be zero, i.e. 0 0T . Similar to (2.1.24), 
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11 22

1 2
00
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1 2

1,1,1 1
1 ,1 ,

0,0,
,,

, ,1 1
, ,

,,
, .

z zzr rzr

zzr

r r

r zr z r rz zr

r

r z zr z z

a aE E

ee

a
E E

 (3.1.2) 

Furthermore,  rr , , r  and rr , , r  are in-plane elastic 

stress- and strain-tensor components in the radial, circumferential, and 
tangential directions, respectively; and ( )rE , ( )E , and ( )zE  are the 

Young moduli in the , , and z directions, respectively; ( )jk  denotes 

the Poisson ratio describing the contraction in the j-direction under tension 
in the k-direction { , } { , , },j k r z j k ; ( )rG  is the shear modulus 

within the ( , ) -coordinate plane;; and ( )j  is the linear thermal 

expansion coefficient in the j-direction. The orthotropic material properties 
represented by (3.1.2) meet the following symmetry conditions:  

 , { , } { , , },j kj k jkE E j k r z j k .  (3.1.3) 

If the material of the considered domain is transversely isotropic, then 
coefficients (3.1.2) for the unified plane constitutive law (3.1.1) are as 
follows: 

 

11 22 12 1 2

1 2 0

1 , , ,

, ,r

a a a
E E

G G
 (3.1.4) 
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2

2 2

0
0

,,

, ,

0,,
.,

E
E EE E E

E E E E

e

  (3.1.5) 

Here, ( )E  and ( )E  refer to the Young moduli under tension or 

compression respectively in the in-plane and out-of-plane directions; ( )  

is the Poisson ratio characterizing the out-of-plane contraction of ring R  

in response to tension applied in the plane of isotropy; ( )  is the 

Poisson ratio characterizing in-plane contraction in response to tension 

applied in the out-of-plane direction; and ( )G , ( )  and ( )G , ( )  

are the shear moduli and linear thermal expansion coefficients respectively 

in the in-plane and out-of-plane directions. Note that 2 /(1 )G E .  

In the case of isotropic materials, coefficients (3.1.5) take the following 
form:  

 0
02

, , 0,,
, .(1 ),,

11

E
E E e  (3.1.6) 

Here, E  and G  are the Young and shear moduli, respectively,  is the 

Poisson ratio, and  is the coefficient of linear thermal expansion.  

In the case of plane strain, constant axial strain 0 constzz e either 

equals zero (when the end faces of a long hollow cylinder with cross-
section R  are confined between two smooth rigid planes) or can be 
determined under following condition: 

 0( , )zz zzd d p
R

,  (3.1.7) 

where 0
zzp  is the resultant of normal stresses applied to the end-faces. If 

0 0zzp , then the end-faces are free of force loadings. Using the 

constitutive physical equation 
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 0( , ) ( ) ( ) ( , )zz z zr rrE e

( ) ( , ) ( ) ( ) ( , )z z zE T ,   (3.1.8) 

condition (3.1.7) yields 

 0
0

1 ( ) ( , )
2 zz zr rre p

e
R

( ) ( , ) ( ) ( ) ( , )z z zE T d d , (3.1.9) 

where  

 
1

( )z
k

e E d .  (3.1.10) 

The equilibrium equations (2.1.2) take the following form in the 
cylindrical-polar coordinate system ( , , )z : 

 1 0,
r rrrr rz

rF
z  

 
1 2 0,

r z r F
z

  (3.1.11) 

 1 0
zrz zz rz

zF
z

. 

Here, rF , F , and zF  are projections of body forces onto the coordinate 

directions. In the cases of plane-stress and plane-strain, these equations 
take the following form: 
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2

2

1 ( ) ,

1 ( ) 0.

r
rr r

r

F

F

 (3.1.12) 

The Cauchy equations (2.1.10) can be represented as follows:  

 

1, ,

1 1, ,

, ,

r r
rr r

r z
z

z z r
zz rz

u uu u

u uu u
z

u u u
z r z

  (3.1.13) 

where ru , u , and zu  are the elastic displacements. Within the 

framework of plane formulation, equations (3.1.13) can be rewritten as 
follows: 

 

1, ,

1 .

r
rr r

r
r

uu
u

uu
  (3.1.14) 

Note that the due to introduction of dimensionless coordinates, the right-
hand sides of the latter equations are to be multiplied with 1 / or , which is 

omitted for the sake of brevity.  By eliminating displacements from these 
equations, we can obtain the following strain-compatibility equation: 

 

2 2
2

2

( )r rr rr .  (3.1.15) 

This equation corresponds to (2.1.19) in the Cartesian coordinate system. 
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Making use of constitutive equations (3.1.1) in conjunction with 
(3.1.8) permits the representation of compatibility equation (3.1.15) in 
terms of stresses, as follows: 

 
2

22 2 2
1

rr
d

a T
d

Q

2

1 2 1 2 32 2

1 1 ( ) rrT  

 2
22

1 1 r

r

d d
d G d

2

2
1 1 2

r

rG
.  (3.1.16) 

Here,  

 
2

2 2
1 1Q ,  (3.1.17) 

 12 3 22 11, , 1,2j jja a a a j ,  (3.1.18) 

and  

 rr .  (3.1.19) 

We can use (3.1.19) to transform equilibrium equations (3.1.12) with 
the aim of expressing stress-tensor components in terms of the total stress 
(3.1.19), as follows: 
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2
2

2

2
2

2

2

( , )
( , ) ( , ) ,

( , ) ( , ) ,

( , ) ( , ) .

rr

r

O

O

O

 (3.1.20) 

Note that the left side of equations (3.1.20) involves the same differential 
operator; i.e., 

 
2

2
2

O .  (3.1.21) 

 We can determine the steady-state temperature field ( , )T  

distributed within orthotropic domain R  in which the material properties 
vary with radial coordinate  from the following equation of heat 

conduction [100, 124]: 

 
( , )1 ( )r

T

2

( , )1 ( ) ( , )
T w ,  (3.1.22) 

where ( , )w  is the density of internal heat sources and ( )r  and 

( )  are the heat-conduction coefficients in the radial and 

circumferential directions, respectively. This equation of heat conduction 
must be accompanied by thermal boundary conditions on the inner and 
outer surfaces of ring R .  

3.1.2.  Integral conditions of strain compatibility 

Using the first equation in (3.1.14), the radial displacement can be 
determined as follows: 
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1
1 1( , ) ( ) ( , ) sgn( )
2 2r r rr

k

u U d , (3.1.23) 

where 

 
( ) ( , ) (1, )r r rU u k u .  (3.1.24) 

Inserting k  and 1  into (3.1.23) yields the following condition: 

 

1

( , ) (1, ) ( , )rr r r
k

d u u k .  (3.1.25) 

By integrating the second equation in (3.1.14) over the angular coordinate 
 in view of (3.1.23) and the angle-periodicity of the functions, we obtain 

the following expression for the circumferential displacement: 

 
( , ) ( ,0)u u

2

0

1 2 ( , ) ( ) sgn( )
4 rU d  

 1 ( , )sgn( )sgn( )
4 rr d d
R

.  (3.1.26) 

Inserting 0  or 2  into (3.1.26) yields the following condition: 

 
2

0

2 ( , ) ( , ) sgn( )rrd d d
R

2

0

( )rU d .  (3.1.27) 

If we substitute expressions (3.1.23) and (3.1.26) into the third 
equation in (3.1.14), we derive the following integro-differential equation: 
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1

24 ( , ) ( ) ( , ) sgn( )r r rr
k

U d  

 4 ( ,0)u

2

0

12 ( , ) ( ) sgn( )rU d  

 1 ( , ) sgn( )sgn( )rr d d
R

.  (3.1.28) 

This equation verbalizes the condition of strain compatibility within 

annular domain R . Applying differential operator 
2

( )  allows us to 

reduce this equation to the classical differential compatibility equation 
(3.1.15). However, deriving (3.1.28) from (3.1.15) requires that we fulfill 
the following fitting condition:  

 
2

2

0

( ,0)( )
2 ( )sgn( ) 4r

r
uU

U d  

 2 2 ( ,0) ( , )r rk k

(1, ) ( ,0) (1,0)r r rk k  

 
2

0

( , ) (1, )rr rrk k

2

1

( , ) ( , )
sgn( )

k

k d  
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1

0

( , )
2 sgn( )rr

k

d .  (3.1.29) 

 By substituting 0  into the third equation in (3.1.14) and making 

use of (3.1.23), we can obtain the following: 

 
2

( ,0)
2 2 ( ,0)r

u

1

0 0

( ) ( , )
sgn( )r rr

k

U
d . (3.1.30) 

Substituting (3.1.30) in (3.1.27) and differentiating the result by  to 

obtain the following: 

 

2

2

( )
( ) ( )r

r
d U

U f
d

,  (3.1.31) 

where 

 
( ) ( , ) (1, )r r

df k k
d

 

 ( , ) (1, )rr rrk k

2

1

( , ) ( , )

k

k .  (3.1.32) 

The solution to equation (3.1.31) is derived as follows: 

 
2

0

1( ) cos sin ( )sin | |
2rU A B f d , (3.1.33) 

where A  and B  are arbitrary constants of integration. The first derivative 

of this solution is  

 EBSCOhost - printed on 2/14/2023 2:18 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Three 160

 
( )

sin cosrdU
A B

d

2

0

1 ( )cos( )sgn( )
2

f d .  (3.1.34) 

If we substitute 0  and 2  into (3.1.33) and (1.3.34) in view of 

the angle-periodicity of the functions, we obtain the following necessary 

conditions: 

 
(0)

(0), r
r

dU
A U B

d ,  (3.1.35) 

 
2 2

0 0

sin 0, cos 0f d f d .  (3.1.36) 

Within the context of (3.1.35), term cos sinA B  in expression 

(3.1.33) describes radial translation of annular domain R  as a rigid solid. 
Thus, the constants (3.1.35) can be eliminated using of the corresponding 
fixation conditions.  

In view of (3.1.32), conditions (3.1.36) imply the following strain-
compatibility conditions: 

 
2

0

( , ) (1, )rr rrk k

2

1

( , ) ( , )
sin

k

k d  

 

2

0

2

0

( , ) (1, ) cos ,

( , ) (1, )

r r

rr rr

k k d

k k

 (3.1.37) 
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 2

1

( , ) ( , )
cos

k

k d  

 
2

0

( , ) (1, ) sinr rk k d . 

These conditions are important to the uniqueness of strains, stresses, 
and displacements in multiply-connected domain R  (see Section 3.2.3). 

Determining function ( )rU  using (3.1.33) allows for the construction 

of radial displacement ( , )ru  in the form (3.1.23). Moreover, in view of 

(3.1.35), expression (3.1.30) yields the following: 

 
1

sgn( )
( ,0) ( ,0)

2 2 r
k

Bu C d  

 
1

0

( , ) 1 11 | |
4 2

rr

k

d
k

, (3.1.38) 

where 

 1 2 ( ,0) 2 (1,0) (1 )
4

C u k ku k B
k .  (3.1.39) 

Term 2B C  can be excluded from expression (3.1.38) to prevent 

rotation of ring R  as a rigid solid. In conjunction with (3.1.33) and 
(3.1.38), equation (3.1.26) makes it possible to determine the 
circumferential displacement using strain-tensor components. 

3.2.  Stress and displacement analysis 

3.2.1.  Solution representation and boundary conditions 

Assume that radially-inhomogeneous annular domain R  is loaded by 
normal and shear forces on its inner and outer surfaces under the absence 
of body forces 0F , { , , }r z : 
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1 2

1 2

( , ) ( ), (1, ) ( ),

( , ) ( ), (1, ) ( ).

rr rr

r r

k p p

k q q
  (3.2.1) 

Variables in the governing equations are separated by decomposing all 
of the angle-dependent functions into the Fourier series, as follows: 

 1 2
0

1

( , ) ( ) ( ) cos ( )sin ,rr n n
n

R R n R n  

 1 2
0

1

( , ) ( ) ( ) cos ( )sin ,n n
n

n n  

 1 2
0

1

( , ) ( ) ( ) cos ( )sin ,n n
n

n n  

 1 2
0

1

( , ) ( ) ( ) cos ( )sin ,n n
n

T T T n T n  (3.2.2) 

 1 2
0

1

( ) cos ( )sin ,j j jn jn
n

p p p n p n  

 2 1
0

1

( , ) ( ) ( ) cos ( )sin ,r n n
n

S S n S n   

 2 1
0

1

( ) cos ( )sin ,j j jn jn
n

q q q n q n  

where 1, 2j   and  

 
2 2

0 0
0 0

1 1( ) ( , ) , ( ) ( , ) ,
2 2rrR d d  
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 (3.2.3) 

 
2 2

0 0
0 0

1 1( ) , ( ) ,
2 2j j j jp p d q q d  

and 

 

2
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2
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n d

 

 

2
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2
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0
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1( ) ( , )sin ,

n

n

T T n d

T T n d

  (3.2.4) 

 

2
1

0

2
2

0

1( ) ( , )sin ,
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n r

n r

S n d

S n d

 

 

2
1

0

2
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0

1 ( ) cos ,

1 ( )sin ,

jn j

jn j

p p n d

p p n d

 

 

2
1

0

2
2

0

1 ( )sin ,

1 ( )cos .

jn j

jn j

q q n d

q q n d

 

If external loadings (3.2.1) and the temperature field do not vary with 
angular coordinate , then stresses (3.2.2) can be represented only by the 

terms with subscript “0” given in (3.2.3). This represents the case of axial 
symmetry. If loadings (3.2.1) and the temperature vary with the angular 
coordinate, then stresses (3.2.2) necessarily involve the terms with 
subscript “n” given in (3.2.4). These two cases can be treated individually.  

3.2.2.  Solutions in the case of axial symmetry 

Consider the case where the force and thermal loadings do not vary 
with the angular coordinate. Substituting expressions (3.2.2) into 
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equilibrium equations (3.1.12) and combining the terms with the subscript 
“0” yields 

  2 2
0 0 0( ) ( ), ( ) 0.d dR S

d d
  (3.2.5) 

Similarly, we can present compatibility equation (3.1.15) for the angle-
independent parts of stresses as follows: 

 22 0 2 2 0( ) ( ) ( ) ( ) ( )d d a Td d
 

 2 0 1 0 2 0( ) ( ) ( ) ( ) ( ) ( )d d R Rd d
 

 1 2 0 1 2( ( ) ( )) ( ) ( ) ( )T .  (3.2.6) 

Making use of (3.2.5) in conjunction with (3.1.19) and (3.1.3) allows 
us to represent equation (3.2.6) in the following form: 

 22 0 2 2 0( ) ( ) ( ) ( )d d a Td d
 

 2
3 0

( )
( ) ( )

dd R
d d

1 2 0 1 2( ( ) ( )) ( ) ( ) ( ) .T   (3.2.7) 

We then integrate it over the radial coordinate to obtain the following: 

 22 0 2 2 0( ) ( ) ( ) ( ) ( )d a T
d

 

 2
3 0

( )1 ( ) ( )
d

R
d

 EBSCOhost - printed on 2/14/2023 2:18 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Three 166

1 2 0 1 2( ( ) ( )) ( ) ( ) ( )T .  (3.2.8) 

In the case of isotropic inhomogeneous materials, equation (3.2.8) 
complies with the compatibility equation in terms of stresses related to the 
one-dimensional thermoelasticity problem for a long hollow radially-
inhomogeneous cylinder [252]. Note that we eliminate the constant of 
integration obtained when integrating equation (3.2.7) by imposing the 
condition of single-valuedness of displacement [282]. 

We solve equations (3.2.5) and (3.2.8) under the boundary conditions 
for radial stress 

 0 10 0 20( ) , (1)R k p R p ,  (3.2.9) 

and shear stress 

 0 10 0 20( ) , (1)S k q S q .  (3.2.10) 

These conditions are obtained using (3.2.1) and (3.2.2). 
A solution to the second equation in (3.2.5) under boundary conditions 

(3.2.10) can be derived as follows: 

 
2

20
0 10 2

( )
qkS q .  (3.2.11) 

Similar to the case of a homogeneous isotropic material [298], solution 
(3.2.11) is irrespective of the material properties and temperature field. It 
is also easy to see that the condition  

 2
20 10q k q   (3.2.12) 

follows from (3.2.11), which in view of expressions (3.2.3) yields the 
following integral condition:  

 
2

2
2 1

0

( ) ( ) 0q k q d   (3.2.13) 

for the shearing tractions on the inner and outer circumferences of annulus 
R . Note that solution (3.2.11) and condition (3.2.13) have been discussed 
in the literature on homogeneous isotropic materials [282, 298]. 
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Integration of the first equation in (3.2.5) under the first condition in 
(3.2.9) yields the following expression for radial stress in the one-
dimensional case: 

 
2

0 10 02
1( ) ( )

k

kR p d .  (3.2.14) 

In view of the second condition in (3.2.9), expression (3.2.14) yields the 
following integral equilibrium condition: 

 
1

2
0 10 20( )

k

d k p p .  (3.2.15) 

Note that expressions (3.2.11) and (3.2.14) are derived on the basis of 
equilibrium equations, which means that they remain the same for 
isotropic or anisotropic, homogeneous or inhomogeneous material 
properties. 

By integrating equation (3.2.8) with expression (3.2.14) in mind, the 
following expression  

  0 0 0 10 0
22

1( ) ( ) ( ) ( )
( )

A p P
a  

 32
02

( )( )1 ( )
k k

d
d d

d
 (3.2.16) 

can be obtained. Here, A  is an arbitrary constant of integration and 

    0 2 1 2
1( ) ( ) ( ) ( )

k

d ,  

    
0 2 0

1 2 0

( ) ( ) ( )

1 ( ( ) ( )) ( ) ,
k

T

T d

 (3.2.17) 
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    2 3 2
0 2

( ) ( )1( )
k

d
P k d

d
.  

Changing the order of integration in equation (3.2.16) yields the 
following Volterra integral equation of the second kind: 

    0 0 0
22

1( ) ( ) ( )
( )

A
a

10 0 0 0( ) ( ) ( , )
k

p P d ,  (3.2.18) 

where the kernel is given as 

    32
0 2

( )( )1( , )
d

d
d .  (3.2.19) 

Using the resolvent-kernel technique (see Chapter 2) allows us to 
obtain the following solution to equation (3.2.18):  

      0 0
22

1( ) ( ) ( ) ( )
( )

Af
a

0 10 0
10 0

22
0

( ) ( )
( ) ( , )

( )
k

p P
p P d

a
. (3.2.20) 

Here, 

    
22

0
0

22

0

0

( , )
( ) 1 ,

( )

( )
( ) ( ) ( , ) ,

( )

k

k

f d
a

d
a

 (3.2.21) 

where the resolvent kernel can be computed as a series 
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    0
10

0

( , ) ( , )m
m

  (3.2.22) 

of recurring kernels 

    
0

1

0
1

0 0

2

1

2

0

( , ) ( , ),

( , ) ( , )
( , ) .

( )
m

m d
a

 (3.2.23) 

The constant of integration A  can be eliminated by substituting (3.2.20) 
into integral condition (3.2.15). Then, expression (3.2.20) for the total 
stress component takes the following form: 

    2
0 10 20 0

22 0

( )1( ) ( )
( )

fk p p b
a a

0 10 0( ) ( ) ( )p P  

 0
0 10 0

22

( ) ( )
( , )

( )
k

p P
d

a
,  (3.2.24) 

where 

 

1 1

0
22 0 22

1

0 0 10 0
22

0 10 0

22
0

( ) ( ) ( )
, ( ) ( ) ,

( ) ( )

( ) ( )
( )

( ) ( )
( , ) .

( )

k k

k

k

f fa d d
a a a

b p P
a

p P
d d

a

 (3.2.25) 

The total stress represented by (3.2.24) can also be written explicitly in 
terms of applied loadings: 
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 0 10 10 20 20 0
22

( )
( ) ( ) ( ) ( )

( )
p P p P

a . (3.2.26) 

Here, 

 
1

2
10 0 0

22 0

( )1( ) ( ) ( )
( )

k

fP k P d
a a
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22
0

( )
( ) ( , )

( )
k

P
P d

a
,  

 20
0 22

( )
( ) ,

( )
fP

a a   (3.2.27) 

 0
0 0

22 2
0

2

( )1( ) ( ) ( , )
( ) ( )

k

d
a a

1

0 0
0

( )
( ) ( ) ,

k

f d
a

  

 0
2

0
1

2 22

( , )1( )
( ) ( )

d
a a .  

After finding the axisymmetric component of the total stress in form 
(3.2.26), we can use (3.2.14) and (3.1.19) to derive the following 
expressions for the radial and circumferential components: 

 
0 10 10 20 20 0

0 10 10 20 20 0

( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ),

r r r rR p P p P

p P p P
 (3.2.28) 

where 

 
2

0 1 02
1( ) ( ) ,r

j j j
k

kP P d
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0 0 0

0 0 0 0 02

( ) ( ) ( ), 1, 2,

1( ) ( ) , ( ) ( ) ( ),

r
j j j

r r

k

P P P j

d

 (3.2.29) 

 
2

22 22

( ) ( )1( ) , ( ) ( )
( ) ( )

r r

k

d
a a

, 

and 1j   is the Kronecker delta. 

Expressions (3.2.26) and (3.2.28) contain undetermined terms ( ) , 

( )r , and ( )  expressed in terms of axial strain 0e  (see (3.1.2)) . As 

mentioned in Section 3.1.1, this strain equals zero, 0 0e , in the case of 

plane stress or plane strain of an inhomogeneous cylinder whose end-faces 
are confined between two absolutely rigid smooth planes. In these cases, it 
is obvious that 

 ( ) ( ) ( ) 0r .  (3.2.30) 

Thus, expressions (3.2.26) and (3.2.28) take the following forms: 

  0 10 10 20 20 0( ) ( ) ( ) ( ),p P p P  

 0 10 10 20 20 0( ) ( ) ( ) ( ),r r rR p P p P  (3.2.31) 

 0 10 10 20 20 0( ) ( ) ( ) ( ).p P p P  

In the case of plane strain in a cylinder, the end-faces of which are 

subject to normal force loadings with resultant vector 0
zzp , we can use 

(3.1.9) in conjunction with (3.1.19), (3.2.2), (3.2.14), and (3.2.26) to 
obtain the following expressions: 

 0 0 0 0 0 0( ) ( ), ( ) ( ), ( ) ( )r re e e , (3.2.32) 

where 
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 (3.2.33) 

 00
1( ) ( ) ( ) ( )z z zr

k

d ,  

and 

 
0

0 10 1 20 2
12 ( )

zz
e e e

p
e p P p P

e e
.  (3.2.34) 

Here, 
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1 ( ) ( ) ( ) ( )r
je zr j z j
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P P P d
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1

0
1

0 0

1 ( ) ( ) ( )

( ) ( ) ( ) ( ) ,

e z z
k

r
zr z

E T
e e

d
  (3.2.35) 

 
1

1 0 0( ) ( ) ( ) ( )r
zr z

k

e d ,  

and e is given by  (3.1.10). 
In view of (3.2.32) and (3.2.34), axisymmetric components (3.2.26) and 

(3.2.28) can be written as follows: 
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If it is impossible to evaluate the resolvent kernel (3.2.22) for certain 
material properties, then it can be substituted in practical computations 
using the following approximation:  

    0 0
0

1
0

( , ) ( , ) ( , )
N

N
m

m
,  (3.2.37) 

where natural digit N allows for satisfaction of equation (3.2.18) within the 
required degree of accuracy. 

3.2.3. Angle-dependent (non-axisymmetric) components 

In order to determine the angle-dependent parts of series (3.2.2), which 
are indicated by coefficients (3.2.4), the sine- and cosine-transforms 
(3.2.4) are to be applied to equations of equilibrium (3.1.12) to obtain  

 EBSCOhost - printed on 2/14/2023 2:18 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Three 174

 

2

2

1 ( ) ( 1) ( ) ( ),

1 ( ) ( 1) ( ) 0,

n n n

n n

d R nS
d

d S n
d

 (3.2.38) 

where 1,2 . From (3.1.20), we can derive alternative equations:  
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2
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( ) ( ) ,

( ) ( 1) ( ) ,

n n n
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n
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n

dR n
d

d
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dS n
d

O

O

O

  (3.2.39) 

where 

 2 2
n

d d nd dO .  (3.2.40) 

Similarly, equation (3.1.19) yields  

 ( ) ( ) ( )n n nR .  (3.2.41) 

We then obtain the following boundary conditions for the angle-dependent 
terms of expressions (3.2.2) using the transforms given in (3.2.4): 

 
1 2

1 2

( ) , (1) ,

( ) , (1) .

n n n n

n n n n

R k p R p

S k q S q
  (3.2.42) 

One solution to the third equation in (3.2.39) under the third and fourth 
conditions in (3.2.42) is 

 
2

1
2

( )
( )

( )

n n
n

n n n
k q

S
k k
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where 

 ( , )
n n

n
y xx y
x y

,  (3.2.44) 

and x  and y  are arbitrary arguments. 

Using the second equation in (3.2.38) in conjunction with expression 
(3.2.43) yields  
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1
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n n
n

n n n

k q
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 22

( , )
2( 1)
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n

nn n
k

q
k k

1

( ) ( 1) ( 1)n n
n

k

n n d .  (3.2.45) 

Using (3.2.41) and (3.2.45), we can now express the coefficients of the 
angle-dependent part of radial stress through the corresponding angle-
dependent part of total stress, as follows: 
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Inserting (3.2.46) into the first and second conditions in (3.2.42) allows 
us to derive two integral conditions 

 
1

1( 1) ( )n
n

k

n d

2 2
1 2 1 2( 1) ,n n

n n n nk p p k q q  (3.2.47)

  

 
1

1( 1) ( )n
n

k

n d

2 2
2 1 1 2( 1)n n

n n n np k p k q q  (3.2.48) 

for the coefficients ( )n  of the angle-dependent parts of the total stress.  

Note that condition (3.2.48) cannot be used for the first harmonic 1n , 
as the left-left side changes to zero. In this case, the right-hand side of 
(3.2.48) yields the following: 

 21 21 11 11( 1) ( 1)p q k p q .  (3.2.49) 

In view of expressions (3.2.4), we can rewrite this as follows: 
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2 2 1 1
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sin sin .

p q d k p q d

p q d k p q d

  (3.2.50) 

Conditions (3.2.50) are well-known in elasticity theory (e.g., [282, p. 
134]). They articulate the condition of equilibrium for the external normal 
and shear forces acting on the inner and outer circumferences of annular 
domain R  in projections onto the Cartesian axes. 

In view of integral conditions (3.2.47) and (3.2.48), we can simplify 
expressions (3.2.43), (3.2.45), and (3.2.46) as follows: 

 2 2
1 12

1( ) ( , ) ( 1) ( , )
2

n n n n nS k k q k k p  

 ( 1) ( ) ( , ) ( , ) ,n n n
k

n d  

 

1 2 2
1 12

1( ) ( 1) ( , ) ( , )
2

( ) ( , ) ( , ) ,

n n n n n

n n n
k

R k k q k k p

n d

 (3.2.51) 

 2 2
1 12

1( ) ( 1) ( , ) ( , )
2

n n n n n nk k q k k p  

 ( ) ( , ) ( , )n n n
k

n d . 

These expressions represent the angle-dependent constituents of normal 
and shear stresses in terms of the corresponding total-stress constituents. 
Along with conditions (3.2.47) – (3.2.50), they are derived on the basis of 
equilibrium equations. Thus, they do not depend on material properties and 
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can be used for homogeneous or inhomogeneous, isotropic or anisotropic 
materials. Ultimately, determining the constituents of the stress-tensor 
components requires that we calculate the total stress using equation (3.1.15) 
under conditions (3.2.47) and (3.2.48). 

Making use of the transforms defined by expressions (3.2.4), the 
compatibility equation (3.1.15), in view of the equations in (3.2.39) for the 
shear stress, can be represented as 

 22 2( ) ( ) ( ) ( )n n na TQ

1 2( ( ) ( )) ( )nn TG  

 23
2 3

( )1 1 12 ( ) ( )
( ) n

r

d d Rd G d  

 32
2

( )( )1 dd
d d

2

1 22

1( ) ( ) ( )
( ) n

r

n RG  

 2
1 1 ( )

( )r

d
d G

2

2
1 1 2 ( ) ( )

( ) n
r

n
G .  (3.2.52) 

Here, 1( )   is given in (3.1.18) and 

 
2 2

1 1,n n
d d n d n

d d d
Q G . (3.2.53) 

Inserting expression (3.2.51) for the radial stress into equation (3.2.52) 
allows us to represent the latter equation in the following form: 

 22 2 1 2( ) ( ) ( ) ( ) ( ( ) ( )) ( )n n n nn a T TQ G  
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where 
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G ,  (3.2.55)  

 2 1
2

( ) ( )
( )n

d
d

2

2
12 ( )
( )r

n
G .  

Solving equation (3.2.54) with respect to its left-hand side returns the 
following Voltera integral equation of the second kind: 

     1
22

1( ) ( )
( )

n n
n n n n nA B p Pa

1 ( ) ( ) ( ) ( , )n n n n n
k

q Q d .  (3.2.56) 
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Here, nA  and nB  are arbitrary constants of integration, 

   
2 1( ) ( ) ( ) ( , )

4
n n n n

n n n n
k

kP k k d
n

,  

 
2( 1) 1( ) ( ) ( ) ( , )

4
n n n n

n n n n
k

kQ k k d
n

, 

 
2

1 2

( ) ( ) ( )

1 ( , ) ( ) ( ) ( ) ,
2

n n

i
n n n

k

T

T d
n

G

 (3.2.57) 
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n n
n nnn  

 ( 1)( ) ( ) ( , ) 2 ( ) ( , )n n
n n n nn d .  

Using the resolvent-kernel technique, we can derive the following 
solution to equation (3.2.56):  
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where 
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and the resolvent kernel can be expressed using the infinite series 

 1
0

( , ) ( , ),n
n m

m
  (3.2.60) 

and 
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22

( , ) ,
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  (3.2.61) 

 We can substitute (3.2.58) into (3.2.47) and (3.2.48) for 1n  in order 

to determine the constants of integration nA  and nB , as follows: 
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A F b F b
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  (3.2.62) 

Here,  

 2 2
1 1 2 1 2( 1)n n

n n n n nF k p p k q q
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Note however that for 1n , conditions (3.2.47) and (3.2.48) are 

insufficient to determine constants 1A  and 1B  since, as mentioned above, 

condition (3.2.48) degenerates. This problem can be attributed to the fact 
that this annular domain is multiply-connected [145]. It can be solved 
using displacement single-valuedness conditions [145, 282] or Michell 
conditions [124]. Herein, we apply an alternative and, in our opinion, more 
efficient method of implementing the strain-compatibility conditions 
(3.1.37). Making use of constitutive equations (3.1.1) and expressions 
(3.2.4) and (3.2.51) under conditions (3.2.42) along with (3.1.37) yields 
the following: 
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1 11 1 21 1
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1 21 1 11 1
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1 ,

A F b F b
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B F a F a
a

  (3.2.64) 

where 
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1 1 1 1 1a a b a b .  

In view of expressions (3.2.58) and (3.2.59), total stress can be 
presented in the form of explicit dependence on the force and thermal 
loadings as 

 1 1 2 2( ) ( ) ( )n n n n np P p P

1 1 2 2( ) ( ) ( ), 1, 2,n n n n nq Q q Q n  (3.2.66) 

Here,  
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Deriving total stress in the form (3.2.66) allows us to find the stress-
tensor components represented by (3.2.51) in the following form: 
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We can use (3.2.2), (3.2.11), (3.2.26), (3.2.28), (3.2.36), and (3.2.69) to 
determine the in-plane thermal stresses in radially-inhomogeneous 
orthotropic annulus R  resulting from the force loading (3.2.1) and steady 

temperature field ( , )T .  

3.2.4. Evaluation of axial stress and strain 

After in-plane stresses are determined, axial stress can be computed for 
the case where ring R  is a cross-section of a long hollow cylinder under 

the condition of plane strain 0( , ) constzz e . This stress can be 

represented in the form of a periodic Fourier series, as follows: 

 1 2
0

1

( , ) ( ) ( ) cos ( )sinzz n n
n

Z Z n Z n , (3.2.71) 

where  

 
2

0
0

1( ) ( , ) ,
2 zzZ d  

 
2

1

0

1( ) ( , ) cos ,n zzZ n d   (3.2.72) 

 
2

2

0

1( ) ( , )sin .n zzZ n d  

We can use the constitutive equation in (3.1.8) for axial strain 

0( , )zz e  to deal with the considered orthotropic case in the polar 

coordinates under symmetry conditions (3.1.3), thereby deriving the 
following expression: 
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0( ) ( ) ( ) ( , )z z zE e E T .   (3.2.73) 

In view of (3.2.2) and (3.2.71), we obtain the following: 
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  (3.2.74) 

 ( ) ( ) ( ), 1, 2z z nE T . 

In the case where the cylinder’s end-faces are fixed by smooth rigid 
planes, 0 0e  and, hence, in view of (3.2.31), the elementary part of the 

axial stress can be expressed as 

  0 10 10 10( ) ( ) ( ) ( ) ( )r
zr zZ p P P

20 20 20( ) ( ) ( ) ( )r
zr zp P P  

 0 0 0( ) ( ) ( ) ( ) ( ) ( ) ( )r
zr z z zE T   (3.2.75) 

with the coefficients given by formulae in (3.2.29).  
If the end-faces are free of constraints and under load from normal 

forces with the resultant 0
zzp  given in (3.1.7), then the constant axial strain 

and elementary stresses can be found in the forms given in (3.2.34) and 
(3.2.36), respectively. Thus, making use of these expressions in 
conjunction with (3.2.74) yields 

 0 10 1 10 1 0( ) ( ) ( ) ( ) ( )r r
z e zr eZ p E P P P

10 1 0( ) ( ) ( )z eP P  

 20 2 20 2 0( ) ( ) ( ) ( )r r
z e zr ep E P P P
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20 2 0( ) ( ) ( )z eP P  

 
0 00

1

( ) ( ) ( ) ( ) ( )
( )

2 ( )

r
z zr z

zz z e

E
p E

e e   

 0 0 0( ) ( ) ( ) ( ) ( ) ( )r r
z z zr eE T

0 0( ) ( ) ( )z e .   (3.2.76) 

Here, the coefficients are given by (3.2.29) and (3.2.35).  

Note that in the case of a homogeneous isotropic material at 0 0zzp , 

the expressions (3.2.75) and (3.2.76) coincide with the following 
expressions obtained in [298]:   

 
1

0 0 02
2( ) ( ) ( )

1 1 k

EZ T d T
k

   (3.2.77) 

and  

 
2

10 20
0 2

2 ( )
( )

1

k p p
Z

k

1

0 02
2 ( ) ( )

1 1 k

E T d T
k

,  (3.2.78) 

respectively. 
In the case of axisymmetric force loadings associated with 

homogenous and isotropic annulus R , the term described in (3.2.77) 
represents the axial stress in the cylinder with cross-section R  and free 
end-faces. This stress is independent of the in-plane force loadings. In the 
case where the end-faces are fixed, the axial stress described in (3.2.78) 
depends on in-plane tractions, even for axisymmetric distributions. 

In view of expressions (3.2.69), the angle-dependent part of axial stress 
represented by (3.2.74) can be derived as follows: 

 1 1 2 2( ) ( ) ( )z z
n n n n nZ p P p P
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1 1 2 2( ) ( ) ( ), 1, 2z z z
n n n n nq Q q Q .  (3.2.79) 

Here,  

 ( ) ( ) ( ) ( ) ( ),z r
jn zr jn z jnP P P            

( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( )

z r
jn zr jn z jn

z r
n zr n z n

Q Q Q
   (3.2.80) 

 ( ) ( ) ( ), 1, 2.z z nE T j  

In the case where the end-faces of the cylinder with cross-section R  
are free or when the end-faces are loaded by the normal force described in 
(3.1.7), we can see that axial stress induces the following bending 
moment: 

 2 ( , ) coszzM d d
R

.  (3.2.81) 

or, in view of (3.2.71), 

 
1

2 1
1 ( )

k

M Z d .  (3.2.82) 

Thus, axial stress must be balanced by applying the opposite force to the end-
faces of the cylinder as follows:  

 
1

2
11 11 21 21( ) ( )z z

k

M p P p P

11 11 21 21 1( ) ( ) ( )z z zq Q q Q d .  (3.2.83) 

The component of axial stress that emanates the moment (3.2.83) can be 
determined in the form 

 11 11 21 21 11 11( , ) ( ) ( ) ( )M z z z
zz p P p P q Q
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21 21 1( ) ( ) cosz zq Q ,  (3.2.84) 

where 

 
1

2
1 14

4
( ) ( ) ,

1

z z
j j

k

P P d
k

1
2

1 14

4
( ) ( ) ,

1

z z
j j

k

Q Q d
k

 (3.2.85) 

 
1

2
1 14

4
( ) ( ) , 1, 2, 1, 2.

1

z z

k

d j
k

 

Ultimately, determining axial stress in a hollow orthotropic radially-
inhomogeneous cylinder with free ends under the plane-strain condition 
involves adding term (3.2.84) to expression (3.2.71).  

In the plane-stress case ( 0zz ) for a thin plate (disk) with a midplane 

indicated by inhomogeneous orthotropic ring R , axial strain can be derived 
using (3.1.8) within polar coordinates under symmetry conditions (3.1.3). 
This yields the following: 

 
( )

( , ) ( , )
( )

zr
zz rr

zE

( )
( , ) ( ) ( , )

( )
z

z
z

T
E

.  (3.2.86) 

Thus, axial strain can be computed as follows: 

 1 2
0

1

( , ) ( ) ( ) cos sin ,zz n n
n

n n  (3.2.87) 

where  

 
10 10

0 10

( ) ( ) ( ) ( )
( )

( )

r
zr z

z

P P
p

E
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20 20
20

( ) ( ) ( ) ( )

( )

r
zr z

z

P P
p

E

 

 

0 0
0

( ) ( ) ( ) ( )
( ) ( )

( )

r
zr z

z
z

T
E

, 

 
1 1

1

( ) ( ) ( ) ( )
( )

( )

r
zr n z n

n n
z

P P
p

E

2 2
2

( ) ( ) ( ) ( )

( )

r
zr n z n

n
z

P P
p

E
 (3.2.88) 

 
1 1

1

( ) ( ) ( ) ( )

( )

r
zr n z n

n
z

Q Q
q

E

2 2
2

( ) ( ) ( ) ( )

( )

r
zr n z n

n
z

Q Q
q

E
  

 
( ) ( ) ( ) ( )

( ) ( ) , 1, 2
( )

r
zr n z n

z n
z

T
E . 

3.2.5. Analysis of elastic displacements 

Consider the problem on determination of elastic displacements in 
inhomogeneous orthotropic annular domain R . We apply the formulae 
derived in Section 3.1.2 and the expressions for stress-tensor components 
outlined in Sections 3.2.2 and 3.2.3. Note that construction of function 

( )rU , as expressed by (3.1.24), is key to the construction of explicit 

expressions for the displacements given in (3.1.23) and (3.1.26). To 
evaluate this function, let us represent function ( )f  introduced in 

(3.1.32) as follows: 

 1 2
0

2

( ) cos sinn n
n

f f f n f n , (3.2.89) 
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where  

 

2 2
1

0
0 0

2
2

0

1 1( ) , ( ) cos ,
2

1 ( )sin .

n

n

f f d f f n d

f f n d

 (3.2.90) 

Note that the terms corresponding to 1n  are absent from expression 
(3.2.89) under conditions (3.1.36). 

Making use of (3.1.1), (3.1.32), (3.2.36), and (3.2.69) allows us to 
derive the coefficients (3.2.90) of expression (3.2.89) as follows: 

 

0 0 0 0 0
0 10 1 20 2

1 1 2 2 1 1 2 2

,

, 1, 2,

p p T zz z

n n n n n n n n n Tn

f p f p f f p f

f p f p f q g q g f
 (3.2.91) 

where 

 0 3 2 22 10 1 0
1 3

( ) ( ) ( ) ( )
( ) e

p
k

a P Pdf k k k
d  

22 10 1 0

1

( ) ( ) ( )ea P Pd
d  

2
1

1

( ) ( )
( ) (1)

z z
zr zr e

k

d d
k k k k P

d d , 

 0 2 22 20 2 0
2 3

1

( ) ( ) ( ) ( )
(1) e

p
a P Pdf k

d  

3 22 20 2 0( ) ( ) ( )e

k

a P Pdk
d  
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2
2

1

( ) ( )
( ) (1)

z z
zr zr e

k

d d
k k k k P

d d , 

 0 2
1 0 2 0( ) ( ) ( ) ( )T k

df k k T k k T
d

1 0 2 0 1
(1) (1) ( ) ( )dT T

d
  

 3 22 0 0( ) ( ) ( )e

k

adk
d

22 0 0

1

( ) ( ) ( )ead
d   

 2

1

( ) ( )
( ) (1)

z z
zr zr e

k

d d
k k k k

d d , 

 0 2

1

( )

2 ( )
z

z
k

d
f k

e e d

1

( )
( ) (1)

z
zr zr

d
k k k

d
 

 3 0 0

1

( ) ( )

k

d dk
d d

;   (3.2.92) 

3 2 22 1
1 3

( ) ( ) ( )
( ) n

n
k

a Pdf k k k
d

22 1

1

( ) ( )na Pd
d  , 
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2 22 2
2 3

1

( ) ( ) ( )
(1) n

n
a Pdf

d

3 22 2( ) ( )n

k

a Pdk
d  , 

1 2
1( 1) ( )
( )n

r
g nk k

G k

3 22 22
1 1

1

( ) ( )
( ) ( )n n

k

a ad dk Q Q
d d

, 

2 2
1( 1) (1)

(1)n
r

g nk
G

3 22 22
2 2

1

( ) ( )
( ) ( )n n

k

a ad dk Q Q
d d

, 

 1 1( ) ( ) (1) (1)Tn n nf k k T k T

2
2 2 1
( ) ( ) ( ) ( )n nk

d dk T T
d d

  

 3 22 22

1

( ) ( )
( ) ( )n n

k

a ad dk
d d

 . 

 We now apply (3.2.92) and (3.1.33) in view of formulae 
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2

0

2

2
0

2

2
0

sin | | 2 1 cos ,

cos cos
cos sin | | 2 ,

1

sin sin
sin sin | | 2 , 1,

1

d

nn d
n

n nn d n
n

  (3.2.93) 

to derive the following expression: 

 0( ) cos sinrU f A B

1 2

2 2
2

cos sin
1 1

n n

n

f f
n n

n n
,  (3.2.94) 

where 

 
1 2

0 2 2
2 2

,
1 1

n n

n n

f nf
A A f B B

n n
. (3.2.95) 

The coefficients represented by (3.2.94) and (3.2.95) are given by 
formulae (3.2.92). 

In the application of formula (3.1.23), we represent the radial strain by 
a Fourier series 

 0 1 2

1

( , ) ( ) ( ) cos ( )sinrr rr rrn rrn
n

n n . (3.2.96) 

Applying the corresponding constitutive equation given in (3.1.1) in 
conjunction with the expressions for the coefficients of stress-tensor 
components yields the following expressions for the coefficients of the 
foregoing series: 
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0 0 0
10 1 20 2

0 0 0

1 2
1 2

1 2
1 2

( ) ( ) ( )

( ) ( ),

( ) ( ) ( )

( ) ( ) ( ),

rr rp rp

zz rpz rT

rrn n rnp n rnp

n rnq n rnq rnT

p p

p

p p

q q

  (3.2.97) 

where 

 0
0 0 1( ) ( ) ( ) ( )r r

rpj j jeP P  

 0
12 0 1

22

( )
( ) ( ) ( ) ,

( )j je zr ea P P P
a

 

 0
0 0 1( ) ( ) ( ) ( )r r

rT e  

 0
12 0 1 0

22

( )
( ) ( ) ( ) ( ) ( ),

( )e zr ea T
a

 

 0
1 0

1

( ) ( ) ( )
2 ( )

r
rpz e e

  (3.2.98)

12
0

22

( )
( ) ( )

( ) zr
a
a

, 

 1 12( ) ( ) ( ) ( ) ( ),j r
rnp jn jnP a P  

 1 12( ) ( ) ( ) ( ) ( ),j r
rnq jn jnQ a Q  

 1 12( ) ( ) ( ) ( ) ( ), 1, 2; 1, 2r
rnT n na j . 

Deriving strain ( , )rr  and function ( )rU  in terms of external 

force and thermal loadings allows us to compute radial displacement using 
(3.1.23), as follows: 
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 0( , ) ( ) ( ) cos ( )sinr r u uu u A B

1 2

2

( ) cos ( )sinrn rn
n

u n u n ,  (3.2.99) 

where 

 0 0 0 0 0 0
10 1 20 2( ) ( ) ( ) ( ) ( ),r rp rp zz rpz rTu p u p u p u u      

 1 2
1 2( ) ( ) ( )rn n rnp n rnpu p u p u  

 1 2
1 2( ) ( ) ( ),n rnq n rnq rnTq u q u u   (3.2.100) 

 
1

1
1

1( ) ( )sgn( ) ,
2u r p

k

A A d

1
2
1

1( ) ( )sgn( ) ,
2u r p

k

B B d  

and 

 
1

0 0 01( ) ( )sgn( ) ,
2rpj pj rpj

k

u f d      

 
1

0 0 01( ) ( )sgn( ) ,
2rpz z rpz

k

u f d  

 
1

0 0 01( ) ( )sgn( ) ,
2rT T rT

k

u f d     

  
1

2

1( ) ( )sgn( ) ,
2 1

jnj j
rnp rnp

k

f
u d

n
 (3.2.101)
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1

2

1( ) ( )sgn( ) ,
2 1

jnj j
rnq rnq

k

g
u d

n
 

 
1

2
1( ) ( )sgn( ) , 1,2; 1, 2.
2 1

Tn
rnT rnT

k

f
u d j

n
 

In such a manner, radial displacement ( , )ru  is expressed using 

Fourier series in (3.2.99), the coefficients of which can be found explicitly 
through the force loadings applied to the inner and outer circumferences of 
the annulus and the thermal field distribution in its interior. Similarly, the 
circumferential displacement ( , )u  can be derived using formula 

(3.1.26). This yields the following expression: 

 

1
sgn( )

( , ) ( ,0)
2 2 r

k

Bu C d

1 ( ,0) | |11
4 2

rr

k

d
k

 

     
2

0

1 2 ( , ) ( ) sgn( )
4 rU d  

 1 ( , )sgn( )sgn( )
4 rr d d
R

,  (3.2.102) 

where constants B and C can be eliminated by anchoring the ring from the 
rotation as a rigid solid [328].   

Due to the fact that the displacements represented by (3.2.99) and 
(3.2.102) are found explicitly through the applied thermal and force 
loadings, the one-to-one relationship between the tractions and 
displacements on the inner and outer boundaries of annular domain R  can 
be established using the approach proposed in Section 2.3.4. This allows 
for the analysis of boundary conditions in terms of displacements, as well 
as mixed-type boundary conditions. 
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3.3. Steady-state temperature field 

Consider the problem of steady-state temperature field in an orthotropic 
inhomogeneous annular domain R . We solve the heat-conduction 
equation (3.1.22) within the following boundary conditions:  

 

1 2
1

1 2

( , )
(1, ) ( ),

( , )
( , ) ( ),

k

TT t

TT kæ æ

  (3.3.1) 

where ( )t  and ( )  are given functions and constants m  and mæ , 

1, 2m , define the type of boundary condition (similarly to (2.3.65) in 

Section 2.3.5). Using the temperature representation (3.2.2) and 
representing the heat sources density and right-hand sides of conditions 
(3.3.1) as follows:   

 

1 2
0

1

1 2
0

1

1 2
0

1

( , ) ( ) ( )cos ( )sin ,

( ) cos sin ,

( ) cos sin ,

n n
n

n n
n

n n
n

w w w n w n

t t t n t n

n n

 (3.3.2) 

we can separate variables in the formulated heat-conduction problem 
(3.1.22) and (3.3.1) to determine the coefficients of corresponding series 
representations separately. Here, 

 
2

0
0

1( ) ( , ) ,
2

w w d

2
1

0

1( ) ( , ) cos ,nw w n d
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2
2

0

1( ) ( , ) sin ,nw w n d  

 

2

0
0

2
1

0

2
2

0

1 ( ) ,
2

1 ( )cos ,

1 ( )sin ,

n

n

t t d

t t n d

t t n d

  (3.3.3) 

 

2

0
0

2
1

0

2
2

0

1 ( ) ,
2

1 ( )cos ,

1 ( )sin .

n

n

d

n d

n d

 

For constituent 0 ( )T  of the temperature series representation (3.2.2), 

equation (3.1.22) and boundary conditions (3.3.1) take the forms 

 0 0 0( ) ( ) ( )ln ( )

( )
r

r

dT w dTdd
d d d d

 (3.3.4) 

and 

 

0
1 0 2 0

1

0
1 0 2 0

( )
(1) ,

( )
( ) ,

k

dT
T t

d

dT
T k

d
æ æ

  (3.3.5) 
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respectively. Solving equation (3.3.4) with respect to its left-hand side yields 

 
12

0
0 0 0

( )1( ) ln ln
2 ( )rk

w
T A B d

k
 

 
1

0

ln ( )1 ( ) ln
2

r

k

ddT
d d

ln ( )
sgn( )rd

d
d

.   (3.3.6) 

The constants of integration, 0A  and 0B , can be computed by inserting 

(3.3.6) into conditions (3.3.5), which yields the expression for the 
temperature in the case of thermal loading independent of the angular 
coordinate, in the following form:  

 

2 2

22 21 11 12

0 0 0
0 0

ln 2 2 ln
( )

2 2
k kT t

0

1

0 0( ) ( ) ( , ) ,
k

W T d   (3.3.7) 

where 

 
1 2

0 1 22
0 21

0

( ) ( )
( ) ln

( ) 2rk

w
W

k

2
12

11
0

( ) 1ln ln
2 2

k d
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 0

ln ( ) 1( , ) ln
2

rdd
d d k
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 0 1 2
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 0 1 2
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æ æ æ    (3.3.8) 
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 1 1 2
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1 2
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 0 11 22 12 21,
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ln ( )1( , ) ln 1,r

j

d
j j k

j d
.  

A solution to integral equation (3.3.7) can be written explicitly as 
follows:  

 0 0 0 0 0 0( ) ( ) ( ) ( )T t t w ,   (3.3.9) 

where  

  

0 0
0 22 2 21 1

0 0
0 11 1 12 2

( ) ( ) ( ),

( ) ( ) ( ),

t
 

 0

1

0 0 0( ) ( ) ( () ,, )
k

dw W W   (3.3.10) 
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0
1

0
0 ( , )1( ) 1 ,

2
k

d  

  
12 2

0
2

0
0 ( , )1( ) ln ln ,

2
k

k k
d  

and the resolvent kernel can be evaluated as 

  1
0 0

0

( , ) ( , )m

m
,  (3.3.11) 

where 

  

1
0 0

1
1 1

0 0 0

( , ) ( , ),

( , ) ( , ) ( , ) , 1, 2,...m m

k

t t dt m

 (3.3.12) 
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Constituents ( )nT , 1, 2 ; 1,2,n , of the temperature series 

representation (3.2.2) satisfy the following equation: 

   
2 2

2 2

( ) ( )1 ( )n n
n

d T dT n T
dd

 

 
2

2

( ) ( )
( )

( )
r

n
r

n T

( ) ( )ln ( )

( )
n nr

r

dT wd
d d

  (3.3.13) 

and boundary conditions  
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( )
(1) ,

( )
( ) ,

n
n n

n
n n

k

dT
T t

d

dT
T k

d
æ æ

  (3.3.14) 

which follow from equation (3.1.22) and conditions (3.3.1) in view of 
(3.2.2) and (3.3.2). Solving (3.3.13) with respect to its left-hand side yields 
the following integral equation: 

 ( ) n n
n n nT A B

1 ( )1 ( , ) sgn( )
4 ( )

n
n
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d

n
 

 
1 22

2 2
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dn d
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,   (3.3.15) 
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where functions ( , )n  are given by formula (3.2.44). We can substitute 

(3.3.15) into (3.3.14) to eliminate the constants of integration nA  and nB  in 

order to obtain the following: 

 22 21 11 12( )
n n n n

n n n
n n

l l l l
T t
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( ) ( ) ( , ) ,n n
k

nW T d   (3.3.16) 

where  
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k d
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ln ( )

( , )sgn( ) r
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dn
d   (3.3.17) 
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 21 1 2 22 1 2( ) , ( )n n
n nl d k k l d k kæ æ æ æ , 

 11 22 12 21

ln ( )1, ( ) r
n n

d
l l l l d n

d
. 

A solution to integral equation (3.3.16) can be given in an explicit form  

 ( ) ( ) ( ) ( )n n n n n nT t t w ,   (3.3.18) 

where  

  
1

22 21 22 21 ( , )1( ) ,n n
n

n n
n

n k

t l l l l d  

        
1

11 12 11 12
1( ) ( , ) ,n n n n

n
n k

n dl l l l  (3.3.19) 

 
1

( ) ( ) ( ) ( ) ,,n n n n
k

w W dW  

and the resolvent kernel can be evaluated as 
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  1

0

( , ) ( , )m
n n

m
,  (3.3.20) 

where 

  

1

1
1 1

( , ) ( , ),

( , ) ( , ) ( , ) , 1, 2,...

n n

m m
n n n

k

t t dt m

 (3.3.21) 

3.4.  Specific material properties and solutions 

3.4.1. Trivial resolvent kernels 

Similar to the plane problem in the Cartesian coordinate system 
considered in Chapter 2, the major challenge in the analysis of stresses, 
displacements, and temperature in an inhomogeneous orthotropic ring lies 
in the evaluation of resolvent kernels (3.2.22), (3.2.60), (3.3.11), and 
(3.3.20). Thus, it is reasonable to analyze the cases where the latter 
functions are either absent or have a relatively simple form.  

To eliminate resolvent kernels (3.2.22) and (3.2.60) respectively for the 
axisymmetric and angle-dependent parts of the stresses, it is enough to 
make sure that the corresponding kernels (3.2.19) and (3.2.57) of integral 
equations (3.2.18) and (3.2.56) equal zero for all possible values of their 
variables. From (3.2.19), we see that 0 ( , ) 0  if  

  2
3

( )
( )

d
d . (3.4.1) 

In view of (3.2.57), kernel ( , ) 0n  can be eliminated as long as 

( ) ( ) 0n n . The latter condition in conjunction with (3.2.55) and 

the obvious restriction that the material properties must be independent of 
the Fourier harmonic number n  yield the following relations: 
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2 1
22

3
2 2

1 2

( ) ( ) 12 ( ) 0,
( )

( )1 12 ( ) ,
( )

1( ) ( ) ,
( )

r

r

r

d
d G

d
d G

G

 (3.4.2) 

along with one more condition 

 32
2

( )( )1 0
dd

d d
,  (3.4.3) 

which is satisfied in view of  (3.4.1). Conditions (3.4.1) and (3.4.2) imply 
that 

  1 2
1( ) ( )

2 ( )rG ,  (3.4.4) 

or, in view of (3.1.18), 

 11 22 12
1( ) ( ) ( )

2 ( )r
a a a

G ,  (3.4.5) 

and 

 1 0
( )r

d
d G .  (3.4.6) 

Condition (3.4.6) implies that shear modulus ( )rG  is a constant (i.e., 

0( ) constrG G ), which modifies condition (3.4.5) as follows:  

 11 22 12
0

1( ) ( ) ( ) .
2

a a a
G

  (3.4.7) 
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Condition (3.4.7) when considered with expressions (3.1.2) for the 
case of plane stress imposes the following restrictions on the elastic 
moduli: 

 0

( )( )
2 const

1 ( ) 1 ( )r

r
r

r

EE
G G . (3.4.8) 

As we can see from the latter formula, if constrE , then necessarily 

constr , and vice versa. The same conclusion can be drawn for the 

pair of moduli E  and r .  

For the case of plane strain, conditions (3.4.7) and (3.1.2) yield 

 
( )

1 ( ) ( )( ( ) ( ))
r

r rz z zr

E

 

 

( )

1 ( ) ( )( ( ) ( ))r z zr z

E

02 2 constrG G .  (3.4.9) 

 

3.4.2.  Isotropic and transversely isotropic materials 

As can be concluded from expressions (3.1.4) – (3.1.6), conditions 
(3.4.5) are always valid for transversely isotropic and isotropic materials. 
In both cases, the axially symmetric part of the total stress at 0 0e   can 

be derived using (3.2.31), where 

 
1

10 0 0
0

( )
( ) ( ) ( , ) ( )

k

fP kE k k d
a

0 00 ( , ) ( ) ( , ) ( , )
k

k E k d ,  
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 20
0

( )
( ) ( ) ,

fP E
a

1

0 0 0
0

( )
( ) ( ) ( ) ( ) ( )

k

fE T d
a

 

 0 00( ) ( ) ( ) ( ) ( ) ( , )
k

T E T d , (3.4.10) 

 0( ) 1 ( ) ( , ) ,
k

f E d

0

1

0 ( ) ( ) ( ) ( , ) ,E E d  

 
1

0 ( ) ( )
k

a E f d .  

In this case, the integral kernel given in (3.2.19) takes a form by which the 
resolvent kernel given in (3.2.22) is originated in accordance with (3.2.23), 
as follows: 

 
20

1 1( , )
2 ( )

d d
d G .  (3.4.11) 

Moduli ( )E  and ( )  are represented by expressions (3.1.5) for 

transversely isotropic materials and using (3.1.6) for isotropic materials. 
The axisymmetric components of the radial and circumferential stresses 
have the form of (3.2.28) with coefficients (3.2.29) as computed using 
(3.4.10). The component for shear stress given in (3.2.11) does not change 
its appearance.  

The angle-dependent components of the total stress (3.2.58) where the 
coefficients (3.2.59) are expressed by 
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k

kk dP
n dr G

 

2( 1) 2( 1)1 ,
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  (3.4.12) 
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n n

k

a E d  

( ) ( ) ( , )n n
n n

k

b E d . 

Integral kernel (3.2.57) has the form 

2( 1)1( , ) ( 1)
4 ( )

n n n
n

d n
d G  

 2( 1)( 1) n n nn d ,  (3.4.13) 

and constants nA  and nB  for 1n  are given by expressions (3.2.62) with 

the following coefficients: 

  2 2
1 1 2 1 2( 1)n n
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b n E b d . 

Here, ( , )n k  is given by (3.2.44) and resolvent kernel (3.2.60) is 

computed by means of the formulae (3.2.61) with account for the kernel 

(3.4.13).  Constants 1A  and 1B  are given by (3.2.64) with coefficients 

(3.2.65) expressed as follows:  

 0 3 1 1
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k p dF
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 (3.4.15) 

2
1 1 1( ) ( ) ( ) ( ) ( )

k

d kk k T k k T f
d

  

 EBSCOhost - printed on 2/14/2023 2:18 PM via . All use subject to https://www.ebsco.com/terms-of-use



Plane Problems for Radially-Inhomogeneous Elastic Annuli 217 

 1 1 1
1

1(1) (1) ( ) ( ) ( ) .dT T f
d

  

The angle-dependent parts of stresses can be computed by substituting the 
found total stress into expressions (3.2.51).  

If the shear modulus meets condition (3.4.6), kernels (3.4.11) and 
(3.4.13) are equal to zero which allows for simplification of expressions 
(3.4.10) and (3.4.12).  

If all the material properties in expressions (3.1.5) and (3.1.6) are 
constant, then the components of total stress are as follows: 
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( ),
1

( ) ( ),
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1,2; 1, 2,3,...,

k
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n n n n
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EA B T

n

 (3.4.16) 

where constants nA  and nB  , 1n , have the form 

2 2
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and constants 1A  and 1B  take the form 
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The expression for the stress-tensor components in this case can be 
found as follows: 

2
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3.4.3.  Michell’s potential 

The in-plane stress tensor components in a homogeneous isotropic ring 
can be determined using the following formulae: 

2
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( ) ( )1 1( ) ,rr
W W
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  (3.4.21) 
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where ( )W  is biharmonic Michell’s potential [26] 

2
0 0 0 0 0( , ) ln lnW a b c d a  

1 1
1 3 11 1
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n
a b c d n  

 2 2 2 2 2 2
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sinn n n n
n n n n

n
a b c d n ,  (3.4.22) 

where 0 0 0 0, , , ,a b c d 0' ,a ,i
na , ,i i i

n n nb c d  ( 1,2...,n  1,2)i  are arbitrary 

constants which can be determined from additional conditions. 
Substituting (3.4.22) into (3.4.21) allows for expression of the stress tensor 
components in the following form: 
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It can be shown that the stresses given by (3.4.23) coincide with those 
given by (3.4.19) and (3.4.20) in view of (3.2.2) disregarding the 
temperature under the following relations: 
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 1 1, , 1, 2.
4( 1) 4( 1)n n n nb B d A

n n
 

The integral of a biharmonic equation in polar coordinates was first 
given in its most general form in [70] and later translated into English 
[71]. It is worth noting that the completeness and feasibility of the 
solutions based on biharmonic potential has been the subject of discussion 
in a series of comments [31, 114, 334] on the paper [241]. From this 
standpoint, the solution constructed here via direct integration method 
appear to be a superior approach, due to the fact that it deals with physical 
functions and does not call for increments of differential order of the 
governing equations and therefore does not required additional unfeasible 
terms to be dealt with through the imposition of additional conditions 
pertaining to feasibility.   

In the next section, we consider various applications of the proposed 
solution for use in analyzing a number of important cases related to force 
and thermal loadings.  
 

 
Figure 3.1. Loading scheme of diametrically-compressed annular domain 

3.4.4.  Special cases of loading 

Consider the case where the effect of temperature is disregarded (i.e., 
0T ) and the external force loading (3.2.1) is given by  
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1 1 2

0 0
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( ) ( ) ( ) 0,

1 1, , ,
( ) 2 2

0 , elsewhere.

p q q

pp

 (3.4.25) 

In (3.4.25), 0,1, 0 0, / 2 , and constp  is a uniform pressure 

in the dimension of stress. A loading scheme for (3.4.25) is shown in 
Fig. 3.1.  

In the case of homogeneous isotropic material, the stress field 
represented by (3.4.19) and (3.4.20) for the loading given in (3.4.25) can 
be expressed as follows [291]:  
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Figure 3.2 presents the full-field distribution of dimensionless radial 
stress ( , ) /rr p  for various inner radii 0.25;0.50;0.75k  where 

0 / 4 . In annulus sectors corresponding to the loaded arches of the rim, 

this stress is naturally compressive near the loaded surface (considering the 
boundary conditions). However, in the same sectors, the radial stress is 
tensile in zones near the inner surface, and the size of the zones and stress 
magnitude grow with an increase in the value of k . This produced high 
stress gradients versus a ring wall of reduced thickness. On the inner 
surfaces, the stress is equal to zero in accordance with the imposed boundary 
conditions (3.2.1) and (3.4.25).  
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Figure 3.3 illustrates the effect of narrowing the loading area in the radial 
stress. The case when angle 0  is comparatively small is of considerable 

importance, due to its wide applicability in materials science (e.g., 
measurement of tensile strength and toughness) and engineering (e.g., 
diametrical compression of rollers and tubes or chain links under tension). 
The problem of diametric compression of circular and annular disks is the 
basis of the so-called “Brazilian experiment”. This dominant indirect 
measurement technique by which to assess the tensile strength of brittle 
materials [10, 45] generally involves a cylindrical specimen resting upon a 
horizontal flat and rigid support under the effects of compression by an 
upper pressure platen. In terms of stresses, the problem is governed by the 
case when the specimen is compressed by two equivalent forces applied to 
opposing places along the periphery. Due to the symmetry associated with 
the diameter passing through the centers of the loaded parts of the boundary 
and in the perpendicular direction, there is no particular need to fix the 
specimen at the top or bottom. This simplifies both the experimental and 
theoretical treatment. In some cases, however, the top and bottom pressure 
platens are substituted with curved jaws [144], which can alter the loading 
profile. Nonetheless, the Saint-Venant principle [282] stipulates that the 
actual profile of loading affects the stress-strain state of the specimen in the 
vicinity of the zones of the rim under load. These zones are comparatively 
small; therefore, the stress-strain field in the specimen is the same for all the 
statically-equivalent loadings (i.e., loadings of the same resultant force and 
moment [282]) at a given distance from the loaded zones. An exhaustive 
review of the existing literature on the diametrical compression of cylinders 
and discs has been presented in a recent monograph [105], including some 
new results. In [291], we discussed the application of the direct integration 
method to the analysis of stresses and displacements in a thin isotropic and 
homogeneous disk under diametric compression, and compared the results 
with the photoelastic experiment. The two sets of results were in perfect 
agreement (Fig. 3.4).   
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 a) b) 

    
 c) 
Figure 3.2. Full-field distributions of dimensionless radial stress in diametrically-
compressed isotropic homogeneous ring of inner radius: a) 0.25k , b) 0.50k , 
and c) 0.75k , when 0 / 4  (adapted from our paper [291])  

 

   
 a) b) 
Figure 3.3. Full-field radial stress in diametrically-compressed isotropic 
homogeneous ring with inner radius 0.50k : a) 0 / 10  and b) 0 / 40  

(adapted from our paper [291]) 
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 a) b) 
Figure 3.4.  a) Theoretical predictions of  maximum shear stress  

1 2 1 2

max 1 1 2

2 1 2

, 0,
1 , 0, 0,
2

| |, 0, 0,

  where  
2

2
1,2 2 2rr r ,  

and b) photoelastic fringe patterns in an annular disk of inner radius 0.50k  
subject to loading (3.4.25) under two different compressive force values when 

0 / 40  (adapted from our paper [291]) 

 

                   
 a) b) 
Figure 3.5.  Full-field elastic displacements in annular disk with inner radius 

0.50k  subject to loading (3.4.25) when 
0 / 40  (adapted from our paper 

[291]) 
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 a) b) 
Figure 3.6. Effect of material inhomogeneity on radial stresses in isotropic annulus 
with inner radius 0.50k  under constant Poisson’s ratio where 

0 , constE  and 

0 / 4  in (3.4.24) and variable Young’s modulus: a) 
0( ) exp( )E E  and b) 

0( )E E  (adapted from our paper [298]) 

 
We also computed the elastic displacement corresponding to stress field 
(3.4.26) under condition of plane stress [291], as follows: 
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Figure 3.5 presents the numerical analysis results of elastic 
displacements (3.4.28). 

If an isotropic elastic ring exhibits radial inhomogeneity, the stress field 
can be computed using (3.4.10) – (3.4.15). Although the stresses computed 
for this case qualitatively resemble the stresses for the homogeneous case, 
there is a quantitative difference, as shown in Fig. 3.6. 

Further details on the analysis of stress and displacement in 
homogeneous and inhomogeneous elastic annuli under the load described in 
(3.4.25) can be found in [291, 294, 298]. 
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Consider the case where 0T  and the external force loading (3.2.1) is 
given by (see Fig. 3.7) 

 
1 1 2

2 0 0

( ) ( ) ( ) 0,

1, , ,
2 2

3 3
( ) , , ,

2 2
0, elsewhere.

p q q

p P k

  (3.4.30) 

Here, in order to fulfill the condition of equilibrium, 

0

sin / 2

2sin / 2 cos / 2
k .  In the case where , 0

1
2cos / 2

k  , 

and if 0 , then 0

sin / 2

2sin / 2
k . 

 

 
Figure 3.7. Scheme of loading given in (3.4.30) 

 
Using analytical solution (3.4.19) and (3.4.20), we can express radial 
stress in the case of the loading given in (3.4.30) in the following form: 
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Note that when 0  and , the term 

0
2 1 2 1 2 1sin 2 sin cos

2 2 2
n n nk  is zero, such that formulae 

(3.4.31) correspond to the case of an annular plate compressed by the 
diametrical forces presented in (3.4.26). 

The solution (3.4.31) is discussed in our recent paper [292]. These 
findings are in strong agreement with photoelastic measurement results 
(see Fig. 3.8). 

Consider computation of thermal stresses in annular domain subject to 
a uniform temperature distribution  on its inner circumference  

and the temperature  on the outer circumference . In the 

case of homogeneous isotropic material properties, a solution to the heat-
transfer equation (3.1.22) can be given in the following form: 

 .  (3.4.33) 

Distributions of temperature (3.4.33) and thermal stresses (3.2.2) with 
components given by formulae (3.4.19) and (3.4.20) are shown in Fig. 3.9. 
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 a) b) 

 
 c) 
Figure 3.8. Theoretical prediction of (left sides) maximum shear stress, based on 
(3.4.31) and (right sides) photoelastic fringe patterns in homogeneous isotropic 

ring of inner radius 0.5k  under (3.4.30) where / 36 : a) / 6   , 

b) / 2 , and c) 5 / 6  (adapted from our paper [292]) 
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 a) b) 

 
 c) d) 
Figure 3.9. Dimensionless distributions of a) temperature (3.4.33) and 
corresponding thermal b) radial, c) circumferential, and d) shear stresses in an 
isotropic homogeneous annular domain of inner radius 0.5k  (adapted from our 
paper [292]) 
  

If assuming the thermal loading of the inner and outer circumferences 
of an isotropic annulus to be ( , ) constT k  and  

(1, ) 1 cos 2T , respectively, the temperature field for the case of 

constant heat conduction coefficient takes the form 

 
4 4

4 2

( , )
1 cos 2

(1 )

T k
k

.  (3.4.34) 

The distribution of temperature (3.4.34) is shown in Fig. 3.10a. If all the 
elastic moduli of the annular domain are constant, temperature (3.4.34) 
does not induce any thermal stresses. If, however, all or some of the elastic 
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moduli depend on the radial coordinate (for example, ( ) exp( ) , 

const  and const ), then thermal stresses can arise even for the 

harmonic temperature distribution (3.4.34) (see Fig. 3.10b,c,d). The effect 
of inhomogeneity, which in the considered case is verbalized by parameter 

 is essential, which can be seen from Fig. 3.11. 

 

    
 a) b) 
 

    
 c) d) 
Figure 3.10. Dimensionless distributions of a) temperature (3.4.34) and 
corresponding thermal b) radial, c) circumferential, and d) shear stresses in an 

isotropic annular domain of inner radius 0.5k with the coefficient of linear 

thermal expansion ( ) exp(2 )  
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 a) 

 

 
 b) 
Figure 3.11. Dimensionless radial stress for annuli of different inner radius with 
constant elastic moduli and variable coefficient of linear thermal expansion 

( ) exp( ) , where a) 2  and b) 2  
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 a) 

 

 
 b) 
Figure 3.12. Dimensionless radial a) and circumferential b) stress distribution in an 

isotropic inhomogeneous ring of inner radius 0.5k  with 0.3 , 
*( ) exp( )E E , ( ) exp( )G G , ( ) exp( ) , where 1 – 

2, 2;    2 – 2, 2;  3 – 2, 2;   
4 – 2, 2;    
 
The effect of simultaneous dependence of the linear thermal expansion 
coefficient and the Young and shear moduli on the radial coordinate is 
illustrated in Fig. 3.12 
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CHAPTER FOUR 

AXISYMMETRIC THERMOELASTICITY  
OF INHOMOGENEOUS SOLIDS 

 
 
 

4.1.  Formulation of thermoelasticity problems 

Consider an isotropic elastic space 0 {( , , ) : 0 ,z
[0,2 ),| | }z , half-space 1 {( , , ) : 0 , [0,2 ),z
0}z , and layer 2 {( , , ) :z 0 ,  [0,2 ),  | | 1}z  within 

a dimensionless cylindrical-polar coordinate system  ( , , )z . Assume 

that the force and thermal loadings of the considered solids are symmetric 
about the z -axis. The elastic equilibrium of these solids can be expressed 
using equations (3.1.11), which take the following form under the 
foregoing assumption of axial symmetry in the absence of body forces: 

  
( ) ( )

, 0rr rz rz zz
z z . (4.1.1) 

The Cauchy equations (3.1.13) for the axisymmetric case can be written as 
follows: 

 , , , .r r z z r
rr zz rz

u u u u u
z r z  (4.1.2) 

By eliminating the elastic displacements from the later equations, the 
strain-compatibility equations can be obtained in the following forms: 

 
2

2
, 0rz zz

rr zz
. (4.1.3) 

Assume that in the constitutive equations 
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,

,

, ,

rr rr zz

rr zz

zz zz rr rz rz

E ET

E ET

E ET G

 (4.1.4) 

the Young and shear moduli, ( )E E z  and ( ) / (2 2 ( ))G E z z , the 

Poisson ratio, ( )z , and the coefficient of linear thermal expansion, 

( )z , are arbitrary functions of z . 

By making use of the constitutive equations (4.1.4), the strain-
compatibility equations (4.1.3) can be given in terms of stresses: 

 ( , ) ( )( ( , ) ( , )) ( ) ( ) ( , )rr zzz z z z z E z T z  

 (1 ( )) ( , ) ( , ) 0,rrz z z   

 
2

2

( , ) ( )
( , ) ( , ) ( ) ( , )

( ) ( ) rr zz

z z z z z T z
E z E zz

 (4.1.5) 

 
1 ( )

2 ( , )
( ) rz

z zz E z
 

 
( , ) ( )

( ( , ) ( , )) ( ) ( , ) 0.
( ) ( )

zz
rr

z z z z z T z
E z E z

 

Boundary 0z  of half-space 1  is subjected to external force 

loadings:  

 ( ,0) ( ), ( ,0) ( )zz rzp q ,  (4.1.6) 

where ( )p  and ( )q  are given functions and lim ( ) lim ( ) 0p q .  

Limiting planes 1z  of layer 2  are exposed to normal and shear 

forces: 
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1 2

1 2

( ,1) ( ), ( , 1) ( ),

( ,1) ( ), ( , 1) ( ),

zz zz

rz rz

p p

q q
  (4.1.7) 

where ( )p  and ( )q  are given functions and 

lim ( ) lim ( ) 0p q , 1,2 .  

The axisymmetric steady-state temperature field ( , )T z  distributed 

within the considered inhomogeneous solids k , 0,1, 2k , material 

properties of which that vary with axial coordinate z , can be determined 
from the following heat-transfer equation: 

 
( ) ( , ) ( , )

( ) ( , )
z T z T zz w zz z

, (4.1.8) 

where ( , )w z  is the density of internal heat sources and ( )z  is the heat 

conduction coefficient.  
For inhomogeneous space 0 , this heat-transfer equation must be 

solved under the condition that the temperature vanishes when 
2z . For half-space 1 , a solution to this equation must be 

constructed under the following general thermal condition of the limiting 
plane 0z :  

 0 1 0
0

( , )
( ,0) ( )

z

T zT T
z .  (4.1.9) 

Finally, a solution to the same heat-transfer equation in layer 2  is 

constructed with the following conditions imposed on the limiting plane 
1z :  

 

11 12 1

21 22 2

( , )
( , ) ( ), 1,

( , )
( , ) ( ), 1.

T zT z T z
z

T zT z T z
z

 (4.1.10) 

Constants 0  and 1  in (4.1.9) and 11 , 12 , 21 , and 22  in (4.1.10) 

indicate the type of boundary condition, similarly to (2.4.52). 
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4.2.  Governing equations in terms of stresses 

To reduce compatibility equations (4.1.5) to the governing equations 
for the key functions, we introduce the total stress using the following 
formula:  

 
( , ) ( , ) ( , ) ( , )rr zzz z z z .  (4.2.1) 

Note that total stress ( , )z  introduced by (4.2.1) coincides with the first 

invariant of the stress tensor in the cylindrical polar coordinate system 
[26]. Now implementing the first equation in (4.1.1) and expression (4.2.1) 
allows us to rewrite the first equation in (4.1.5) as follows: 

 
( , ) 1 ( ) ( , ) ( ) ( ) ( , )zzz z z z E z T z

( , )
1 ( ) 0rz z

z
z

.  (4.2.2) 

Integration of the second equation in (4.1.1) over the radial coordinate 
yields the following formula: 

 
0

( , )
( , ) zz

rz
z

z d
z

.  (4.2.3) 

In view of this, equation (4.2.2) takes the following form: 

 

2

2
0

( , ) ( , )zz zzz z
d

z

( , ) ( ) ( ) ( , )
1 ( )

z z E z T zz
.  (4.2.4) 

Differentiating equation (4.2.4) by the radial coordinate, we arrive at the 
first governing equation: 

   1 1( , ) ( , ) ( ) ( ) ( , )
1 ( )zz z z z E z T zz

, (4.2.5) 

where 
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2

2

1

z
.  (4.2.6) 

Equation (4.2.5) allows for expressing the axial stress ( , )zz z  in 

terms of total stress ( , )z  given by formula (4.2.1). To derive the second 

governing equation for these two functions, we use (4.2.1) and (4.2.3) to 
represent the second equation in (4.1.5) in the following form: 

 
2

2
2

( , ) ( )
( , ) ( , ) ( ) ( , )

( ) ( ) rr zz

z z z z z T z
E z E zz

 

 
0

( , )1 ( )
2

( )
zz zz d

z E z z
 

 
1 ( ) ( )

( , ) ( , ) ( ) ( , )
( ) ( )zz

z zz z z T zE z E z
. (4.2.7) 

Note that the first equation in (4.1.5) can be presented in an alternative 
form to that given in (4.2.2), as follows: 

 
21 ( ) ( , )rrz z

1 ( ) ( , ) ( , )rrz z z

2 ( , ) ( , )rr z z  

 ( ) ( , ) ( ) ( ) ( , )zzz z z E z T z .  (4.2.8) 

Integrating this over the radial coordinate from 0 to  yields 

 
2 ( , ) ( ) ( , ) ( , ) ( ) ( ) ( , )rr zzz z z z z E z T z  

 
0

1 ( ) ( , ) 1 ( ) ( , )zzz z z z
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2 ( ) ( ) ( , )z E z T z d .  (4.2.9) 

Applying differential operator 
2

2

1
( )E zz

 to equation (4.2.9), we obtain 

 
2

2
2

( , ) ( )
( , ) ( , ) ( ) ( , )

( ) ( ) rr zz

z z z z z T z
E z E zz

 

 
2

2
0

1 ( )
( , )

( )
z z

E zz

1 ( )
( , ) 2 ( ) ( , )

( ) zz
z z z T z dE z

.  (4.2.10) 

Comparing the left-hand sides of equations (4.2.7) and (4.2.10), we arrive 

at the following equation: 

 
2

2
0

1 ( )
( , )

( )
z z

E zz

1 ( )
( , ) 2 ( ) ( , )

( ) zz
z z z T z dE z

 

 
0

( , )1 ( )
2

( )
zz zz d

z E z z

1 ( ) ( )
( ) 0

( ) ( )zz
z z z TE z E z

.  (4.2.11) 

Dividing equation (4.2.4) by ( )E z , we obtain  

 

2

2
0

( , ) ( , )

( ) ( )
zz zzz z

d
E z E z z

( , )
( ) ( , )

1 ( ) ( )
z z T zz E z

.  (4.2.12) 
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Summing up equations (4.2.11) and (4.2.12), the following equation can 

be derived 

 
1 ( )

( , ) 2 ( ) ( , )
( )

z z z T zE z

2

2
0

1 ( )
( , ) 2 ( ) ( , )

( )
z z z T z d

E zz
 

 
2

2
0

1 1 ( , )
2 ( ) z

d z d
G zdz

.  (4.2.13) 

Finally, differentiating this by the radial coordinate yields the second 
governing equation: 

 
1 ( )

( , ) 2 ( ) ( , )
( )

z z z T zE z

2

2

( , ) 1
2 ( )

zz z d
G zdz

.  (4.2.14) 

Here,  is given in (4.2.6). 
This second governing equation determines total stress ( , )z  in 

terms of axial stress ( , )zz z . Thus, the two key functions can be 

determined entirely from the governing equations (4.2.5) and (4.2.14) 
within the context of the corresponding axisymmetric boundary conditions 
for considered inhomogeneous solids and the temperature field computed 
from the heat-conduction problem (4.1.8) and the relevant thermal 
vanishing or boundary conditions. Shear stress ( , )rz z   can then be 

calculated using formula (4.2.3). Radial stress ( , )rr z  can be 

determined from the first equation in (4.1.1), which in view of (4.2.1) 
takes the following form:  

 
( , )

2 ( , )rr
rr

z
z

( , )
( , ) ( , ) rz

zz
z

z z
z

.  (4.2.15) 
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Finally, circumferential stress  can be computed using the formula 

 
( , ) ( , ) ( , ) ( , )rr zzz z z z , (4.2.16) 

which follows from the expression for total stress given in (4.2.1). 
To separate the variables in equations (4.2.5) and (4.2.14), we 

represent the stress-tensor components and temperature using the inverse 
Hankel integral-transform [228, 305] as follows:  

 0 1
0

1( , ) ( ) ( ) ( )rr rrz s J s J s z
s

1
1 ( ) ( ) ,J s z dss

0 1
0

1( , ) ( ) ( ) ( )z s J s J s z
s

 

 

1

0
0

1 ( ) ( ) ,

( , ) ( ) ( ) ,

rrJ s z ds
s

z s z J s ds

  (4.2.17) 

 0
0

( , ) ( ) ( ) ,zz zzz s z J s ds
 

 

1
0

0
0

( , ) ( , ) ( ) ,

( , ) ( ) ( ) ,

rz rzz s z J s ds

T z sT z J s ds

 

where 0J  and 1J  are the zero- and first-order Bessel functions of the first 

kind, s is the transformation parameter, and the overlined functions are the 
unknown transformants with a parametric dependence on s. 
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In view of (4.2.17), the governing equations (4.2.5) and (4.2.14) take 
the following forms: 

 
2

( ) ( ) ( ) ( ) ( )
1 ( )zz

sz z z E z T z
z , (4.2.18) 

and 

 
2

2

( )1 ( ) 1( ) 2 ( ) ( )
( ) 2 ( )

zz zz dz z T z
E z G zdz

. (4.2.19) 

Here, 

 
2

2
2

d s
dz

.  (4.2.20) 

Similarly, equations (4.1.1) and (4.2.1) can be transformed as follows: 

 
( )1( ) zz

rz
d z

z
s dz

,  (4.2.21) 

 
( )1( ) rz

rr
d z

z
s dz

,  (4.2.22) 

and 

 ( ) ( ) ( ) ( )rr zzz z z z .  (4.2.23) 

Below we consider the application of the proposed solution strategy to 
problems of thermoelasticity in inhomogeneous elastic space 0 , half-

space 1 , and layer 2 .  

4.3.  Thermal stresses in an inhomogeneous elastic space 

For inhomogeneous space 0 , a solution to equation (4.2.18) can be 

derived as: 

( )
( ) 2 ( ) ( ) ( ) exp | | .

2 1 ( )zz
sz G T s z d  (4.3.1) 
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As we can see, this solution vanishes at 2z .  
A solution to equation (4.2.19) with respect to the total stress mapping 

function can be obtained as follows: 

 
( ) ( )

( ) 2 ( )
1 ( )

z E zz T zz
 

 
2

2

( ) 1( ) exp | |
( )4 1 ( ) zz

E z d s z d
Gs z d

. (4.3.2) 

If we substitute (4.3.1) into (4.3.2) and change the order of integration, 
we derive the following integral equation: 

  0 0( ) ( ) ( ) ( , ) ,z z z d   (4.3.3) 

where 

 
20

2( ) 1( , )
8( ( ) 1)( ( ) 1) ( )

E z dz
z Gd

exp | | | |s z d ,  (4.3.4) 

 0

2 ( ) 1( ) ( ) ( ) ( ) ( ) ( )
( ) 1 8
E zz z T z G T
z

 

 
2

2
1 exp | | | | .
( )

d s z d d
Gd

 (4.3.5) 

A solution to integral equation (4.3.3) can be computed using the 
resolvent-kernel formula, as follows: 

 0 0 0( ) ( ) ( ) ( , ) ,z z z d  (4.3.6) 

where 
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 0
0 1

0

( , ) ( , )n
n

z z   (4.3.7) 

and  

 

0
1 0

0 0 0
1 1

( , ) ( , ),

( , ) ( , ) ( , ) , 1, 2,...n n

z z

z z t t dt n

 (4.3.8) 

The use of solution (4.3.6) and expression (4.3.5) allows us to write the 
Hankel mapping function for total stress in isotropic inhomogeneous space 

0  in the form of an explicit expression of temperature: 

 0

( ) ( )
( ) 2 ( ) ( ) ( , )

1 ( )
z E zz T z T z d

z
, (4.3.9) 

where 

 00

( ) ( )
( , ) 2 ( , )

1 ( )
Ez z  

 
2

2

( ) ( ) 1
4 ( )
G d

Gd

( )
exp | | | |

1 ( )
E z s zz

 

 0

( )
exp | | | | ( , )

1 ( )
E s z d d . (4.3.10) 

Inserting (4.3.9) into (4.3.1) yields 

 
( ) ( )

( ) ( ) exp( | |)
2 1 ( )zz

Esz T s z  

 EBSCOhost - printed on 2/14/2023 2:18 PM via . All use subject to https://www.ebsco.com/terms-of-use



Axisymmetric Thermoelasticity of Inhomogeneous Solids 251 

 0 ( , )
exp( | |) .

1 ( )
s z d d   (4.3.11) 

Using (4.2.21) in conjunction with (4.3.11) allows us to derive the 
following expression for shear stress: 

 
( ) ( )

( ) ( ) exp( | |)sgn( )
2 1 ( )rz

Esz T s z z  

 0 ( , )
exp( | |) sgn( ) .

1 ( )
s z z d d  (4.3.12) 

Finally, implementing (4.2.22) with (4.3.12) yields 

 0 ( , )( ) ( ) 2( ) ( ) ( )
1 ( ) 2 1 ( )rr

zz E z sz T z Tz s z

( ) ( )
exp( | |)

1 ( )
E s z  

 0 ( , )
exp( | |) .

1 ( )
s z d d   (4.3.13) 

Circumferential stress can be computed using (4.2.23), (4.3.11), and 
(4.3.13) as follows: 

 0

( ) ( ) ( )
( ) ( ) ( ) ( , )

1 ( ) 1 ( )
z E z zz T z T z d

z z
. (4.3.14) 

Computing the stresses in the physical domain requires that we 
substitute the Hankel images of the stresses represented by (4.3.11) – 
(4.3.13) into the inverse transform formulae in (4.2.17). 
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4.4.  Thermal stresses in an inhomogeneous elastic half-space 

For inhomogeneous half-space 1 , equations (4.2.18) and (4.2.19) 

must be solved under conditions (4.1.6). Using the second equation in 
(4.1.1) allows us to transform the condition for the shear stress represented 
by (4.1.6) into the one for normal stress, as follows: 

 
0

( , ) ( ( ))1zz

z

z q
z

.  (4.4.1) 

In the mapping domain of the Hankel transform (4.2.17), condition (4.4.1) 
along with the first condition in (4.1.6) take the following form: 

  
0

( )
(0) , ,zz

zz
z

d z
p sq

dz
  (4.4.2) 

where 

 0 1
0 0

( ) ( ) , ( ) ( )p p J s d q q J s d . (4.4.3) 

A solution to equation (4.2.18) under the first condition in (4.4.2) can 
be given as follows: 

 ( ) expzz z p sz  

 
0

( ) ( ) ( ) ( )
2 1 ( )

E Ts

exp | | exp ( )s z s z d .  (4.4.4) 

Submitting (4.4.4) to the second condition in (4.4.2) yields the following 

integral condition: 

 
0

( ) ( ) ( ) ( )
exp

1 ( )
z z E z T zs sz dz p q

z
. (4.4.5) 
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Within the context of condition (4.4.5), the integral in expression for 
normal stress (4.4.4) can be presented in a simplified form, as follows: 

 ( ) exp
2zz

q pz sz

0

( ) ( ) ( ) ( )
exp | |

2 1 ( )
E Ts s z d . (4.4.6) 

A solution to equation (4.2.19) with respect to the Hankel mapping 
function of the total stress can be given as follows: 

 
( ) exp ( ) ( )

( ) 2 ( )
1 ( ) 1 ( )

E z sz z E zz A T z
z z  

 
2

2
0

( ) 1( ) exp | |
( )4 1 ( ) zz

E z d s z d
Gs z d

. (4.4.7) 

Substituting (4.4.6) into (4.4.7) yields an integral equation of the second 
kind: 

 1

( )exp
( ) ( ) ( )

1 ( )

E z sz
z A p q z

z

11
0

( ) ( ) ( , )z z d .  (4.4.8) 

Here, 

 
2

1 2
0

( ) 1( ) exp | |
8(1 ( )) ( )

E z dz s z d
z s Gd

,  
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0
1

2

2

1
0

( ) 1( , )
8( ( ) 1)( ( ) 1) ( )

exp | | | | ,

2 ( ) 1( ) ( ) ( ) ( ) ( ) ( )
( ) 1 8

E z dz z Gd

s z d

E zz z T z G Tz

 (4.4.9) 

 
2

2
0

1 exp | | | |
( )

d s z d d
Gd

, 

and A is a constant of integration. The resolvent-kernel solution to the 
integral equation (4.4.8) can be given as 

 1 1 1( ) ( ) ( ) ( ) ( )z A z p q z z ,  (4.4.10) 

where 

 1
0

1

( ) exp ( )exp
( ) ( , ) ,

1 ( ) 1 ( )

E z sz E s
z z d

z

1 1 1 1
0

( ) ( ) ( ) ( , ) ,z z z d  

 1 1 1 1
0

( ) ( ) ( ) ( , ) ,z z z d   (4.4.11) 

 

1 1
1 1 1 1

1 1 1
1 1

0

0

( , ) ( , ), ( , ) ( , ),

( , ) ( , ) ( , ) .

n

n n

n
z z z z

z z t t dt

 

Constant A can be computed by substituting (4.4.10) into the integral 
condition (4.4.5), which yields 
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 1 1
1( ) ( ) ( )bz p z z

a

1 1 1 1
1( ) ( ) ( ) ( )b cq z z z z

a a
.  (4.4.12) 

Here, 

 1

0

( )
exp ,

1 ( )

z
a s sz dz

z

1

0

( )
exp ,

1 ( )

z
b s sz dz

z
 

 1

0

( )
2 ( ) ( ) ( ) exp

1 ( )

z
c s z G z T z sz dz

z
. (4.4.13) 

If we substitute (4.4.12) into (4.4.6), we can derive transversal stress in 
the following form: 

 ( ) exp
2zz
pz sz

1 1

0

( ) (1 ) ( )
exp | |

1 ( )

a bs s z d
a

 

 exp
2
q sz

1 1

0

( ) (1 ) ( )
exp | |

1 ( )

a bs s z d
a

 

 1 1

0

( ) ( ) ( ) ( ) ( )

2 1 ( )

a E T cs
a
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exp | |s z d   (4.4.14) 

It can be shown through direct computation that  

 1 1

0

( ) (1 ) ( )
exp 1

1 ( )

a bs s d
a

, 

 1 1

0

( ) (1 ) ( )
exp 1

1 ( )

a bs s d
a

,  (4.4.15) 

 1 1

0

( ) ( ) ( ) ( ) ( )
exp 0

2 1 ( )

a E T cs s d
a

. 

Equalities (4.4.15) ensure the axial stress (4.4.14) satisfies the boundary 
conditions (4.4.2). 

Substituting (4.4.14) into (4.2.21), we can determine the shear stress as 
follows: 

 1 1

0

( ) (1 ) ( )
( ) exp

2 1 ( )rz
a bp sz sz

a

exp | | sgn( )s z z d  

 1 1

0

( ) (1 ) ( )
exp

2 1 ( )

a bq ssz
a

exp | | sgn( )s z z d  

 1 1

0

( ) ( ) ( ) ( ) ( )

2 1 ( )

a E T cs
a

exp | | sgn( ) .s z z d   (4.4.16) 
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Similarly, implementing (4.4.16) in conjunction with (4.2.22) yields 
the following equation for radial stress: 

 1 1( ) (1 ) ( ) exp
( )

1 ( ) 2rr
a z b z a szpz

a z
 

 1 1

0

( ) (1 ) ( )
exp | |

2 1 ( )

a bs s z d  

 1 1( ) (1 ) ( ) exp

1 ( ) 2

a z b z a szq
a z

 

 1 1

0

( ) (1 ) ( )
exp | |

2 1 ( )

a bs s z d  

 1 1

0

( ) ( ) ( ) ( ) ( )

2 1 ( )

a E T cs
a

exp | |s z d  

 1 1( ) ( )( ) ( )
( )

1 ( ) (1 ( ))

a z c zz E z T z
z a z .  (4.4.17) 

Finally, circumferential stress can be found using (4.2.23) in conjunction 
with (4.4.12), (4.4.14), and (4.4.17), as follows: 

    1 1
1( ) ( ) ( )bz z z p

a

1 1
1( ) ( )bz z q

a
 

 1 1

( ) ( ) ( )
( ) ( ) ( )

( ) 1 ( )
z E z zcz z T z

a z z
. (4.4.18) 

Using the Hankel representations given in (4.2.17) in conjunction with 
(4.4.12) and (4.4.16) – (4.4.18) allows for the construction of stress-tensor 
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components in an inhomogeneous elastic half-space due to force loadings 
(4.1.6) and a steady-state temperature field.  

4.5.  Thermal stresses in an inhomogeneous elastic layer 

For isotropic transversely-inhomogeneous layer 2 , solutions to 

equations (4.2.18) and (4.2.19) must be found under boundary conditions 
(4.1.7). The conditions for shear stress can be replaced with the following 
conditions for the derivatives of normal stress: 

 

1

1

2

1

( , ) ( )1 ,

( , ) ( )1 .

zz

z

zz

z

z q
z

z q
z

 (4.5.1) 

These conditions are derived on the basis of the second equation in (4.1.1). 
In view of the Hankel transform represented by (4.2.17), we can set the 
conditions in the mapping domain as follows: 

    1 2
1 1

( ) ( )
,zz zz

z z

d z d z
sq sq

dz dz
.  (4.5.2) 

Similarly, boundary conditions (4.1.7) for normal stress appear as 

    1 2(1) , ( 1)zz zzp p .  (4.5.3) 

Here, 

    

0
0

1
0

( ) ( ) ,

( ) ( ) , 1, 2.

p p J s d

q q J s d

  (4.5.4) 

A solution to equation (4.2.18) under boundary conditions (4.5.3) can 
be derived as follows: 
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1

1
1

( ) ( ) ( ) ( )
( ) sinh (1 )

1 ( )zz
E Tz p s s d  

 2

sinh (1 ) sinh (1 )
sinh 2 sinh 2

s z s zp
s s

1

( ) ( ) ( ) ( )
sinh ( )

1 ( )

z E Ts s z d . (4.5.5) 

For solution (4.5.5) to meet conditions (5.4.2) requires that the following 
integral conditions be satisfied: 

    

1

1

1 2 1 2

1

1

1 2 1 2

( ) ( ) ( ) ( )
sinh

1 ( )

cosh sinh ,

( ) ( ) ( ) ( )
cosh

1 ( )

sinh cosh .

z z E z T z szdz
z

p p q q
s s

s s

z z E z T z szdz
z

p p q q
s s

s s

  (4.5.6) 

These conditions allow us to derive the following: 

    
1

1

( ) ( ) ( ) ( )
sinh (1 )

1 ( )
E Ts s d

1 2 2cosh 2 sinh 2p p s q s .  (4.5.7) 

Under this formula, (4.5.5) can be simplified as follows: 

     2 2( ) cosh (1 ) sinh (1 )zz z p s z q s z

1

( ) ( ) ( ) ( )
sinh ( )

1 ( )

z E Ts s z d .  (4.5.8) 
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A solution to equation (4.2.19) with respect to its left-hand side can be 
given as 

    
1 ( )

( ) 2 ( ) ( ) cosh sinh
( )

z z z T z A sz B szE z
 

 
2

2
1

1 1( ) sinh ( )
2 ( )

z

zz
d s z d

s Gd
,  (4.5.9) 

where A and B are arbitrary constants. 
Substituting (4.5.8) into (4.5.9) yields (after some algebra) the 

following Volterra integral equation of the second kind: 

 2

( ) cosh ( )sinh
( ) ( )

1 ( ) 1 ( )
E z sz E z szz A B p p zz z

2
1

( ) ( ) ( ) ( , )
z

q q z zz d ,  (4.5.10) 

where 

 
2

2
1

( )1 1( )
2 1 ( ) ( )

zE z dp z
s z Gd

sinh ( )cosh (1 )s z s d , 

 
2

2
1

( )1 1( )
2 1 ( ) ( )

zE z dq z
s z Gd

sinh ( )sinh (1 )s z s d , 

 
( )

( ) 2 ( ) ( )
1 ( )

E zz z T zz
  (4.5.11) 

 
2

2
1

1 sinh ( )
( )

z
d s z

Gd
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1

( ) ( ) ( )sinh ( )G T s d d , 

 
( )

( , )
2 1 ( ) 1 ( )

E zz
z

2

2

1 sinh ( )sinh ( )
( )

z
d s z s d

Gd
. 

A resolvent-kernel solution to equation (4.5.10) can be given in the 
following form: 

 2 2( ) ( ) ( ) ( ) ( ) ( )A Bz Af z Bf z p P z q Q z z , (4.5.12) 

where 

 
( )

( ) cosh
1 ( )

A E zf z szz

1

( )
cosh ,

1 ( )
( , )

z E s z d

( )
( ) sinh

1 ( )
B E zf z szz

 

 
1

( )
sinh ,

1 ( )
( , )

z E s z d   (4.5.13) 

 
1

( ) ( ) ( ) ,( , )
z

P z p dz p z   

1

( ) ( ) ( ) ,( , )
z

Q z q dz q z    
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1

( ) ( ) ( ) ( , )
z

z dz z . 

The resolvent-kernel is given as 

 1
0

( , ) ( , ),n
n

z z   (4.5.14) 

where 

 
1

1 1

( , ) ( , ),

( , ) ( , ) ( , ) , 1, 2,...
z

n n

z z

z z t t dt n

 (4.5.15) 

Substituting solution (4.5.12) into the integral conditions (4.5.6) allows 
us to determine constants A and B in the following form: 

  1 22 2 12 2 11 1 21, ,
b a b a b a b a

A B  (4.5.16) 

where 

 
1 1

11 21
1 1

sinh cosh( ) , ( ) ,
1 ( ) 1 ( )

A Asz sza f z dz a f z dz
z z

 

 
1 1

12 22
1 1

sinh cosh( ) , ( ) ,
1 ( ) 1 ( )

B Bsz sza f z dz a f z dz
z z  

 1 2 1 2
1 cosh sinh

p p q q
b s s

s s
 

 
1

2 2

1

( ) ( ) ( ) ( ) ( ) ( )
sinh

1 ( )

p P z q Q z z z E z T z
szdz

z
, (4.5.17) 

 1 2 1 2
2 sinh cosh

p p q q
b s s

s s
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1

2 2

1

( ) ( ) ( ) ( ) ( ) ( )
cosh

1 ( )

p P z q Q z z z E z T z
szdz

z
,  

 11 22 12 21.a a a a  

Inserting (4.5.16) into (4.5.12) yields 

   1 1 2 2 1 1 2 2( ) ( ) ( ) ( ) ( ) ( )z p P z p P z q Q z q Q z z , (4.5.18) 

where 

 12 22
1

sinh cosh
( ) ( )Aa s a s

P z f z
s

21 11cosh sinh
( )Ba s a s

f z
s , 

 12 22
2

sinh cosh
( ) ( ) ( )Aa s a s

P z P z f z
s

21 11cosh sinh
( )Ba s a s

f z
s  

 
1

22 12

1

sinh cosh( )
( )

1 ( )
Aa s a sP f z

11 21cosh sinh
( )Ba s a s

f z d , 
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22 12
1

11 21

22 12
2

11 21

sinh cosh
( ) ( )

cosh sinh
( ),

sinh cosh
( ) ( ) ( )

cosh sinh
( )

A

B

A

B

a s a s
Q z f zs

a s a s
f z

s

a s a s
Q z Q z f z

s

a s a s
f z

s

  (4.5.19) 

 
1

22 12

1

sinh cosh( )
( )

1 ( )
Aa s a sQ f z

11 21cosh sinh
( )Ba s a s

f z d , 

 
1

1

( ) ( ) ( ) ( )
( ) ( )

1 ( )
E Tz z

22 12sinh cosh
( )Aa s a s

f z  

 11 21cosh sinh
( )Ba s a s

f z d . 

In view of the explicit expression (4.5.18), transversal stress can be 
determined using (4.5.8) as follows: 

 1 1 2 2( ) ( ) ( )z z
zz z p P z p P z

1 1 2 2( ) ( ) ( )z z zq Q z q Q z z ,  (4.5.20) 

where 
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 1
1

1

( )sinh ( )
( )

1 ( )

z
z P s z

P z s d ,    

 2
2

1

( )sinh ( )
( ) cosh (1 )

1 ( )

z
z P s z

P z s z s d , 

1
1

1

( )sinh ( )
( )

1 ( )

z
z Q s z

Q z s d ,    

2
2

1

( )sinh ( )
( ) sinh (1 )

1 ( )

z
z Q s z

Q z s z s d , (4.5.21) 

 
1

( ) ( ) ( ) ( )
( ) sinh ( )

1 ( )

z
z E Tz s s z d . 

Now, we can use (4.2.21) – (4.2.23) to determine radial, circum-
ferential, and shear stresses in the Hankel mapping domain, as follows:  

 1 1 2 2( ) ( ) ( )r r
rr z p P z p P z

1 1 2 2( ) ( ) ( ),r r rq Q z q Q z z   

 
1 1 2 2

1 1 2 2

( ) ( ) ( )

( ) ( ) ( ),

z p P z p P z

q Q z q Q z z
  (4.5.22) 

 1 1 2 2( ) ( ) ( )rz rz
rz z p P z p P z

1 1 2 2( ) ( ) ( )rz rz rzq Q z q Q z z . 

Here, 

 
( ) ( )1 1( ) , ( ) ,

z rz
rz rdP z dP z

P z P z
s dz s dz
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( ) ( )1 1( ) , ( ) ,
rz z

r rzdQ z dQ z
Q z Q z

s dz s dz  

 
( ) ( )1 1( ) , ( )

rz z
r rzd z d zz z

s dz s dz ,  (4.5.23) 

 ( ) ( ) ( ) ( ),r zQ z Q z Q z Q z

 ( ) ( ) ( ) ( ),r zP z P z P z P z  

 ( ) ( ) ( ) ( ).r zz z z z  

Using the Hankel representations given in (4.2.17) in conjunction with 
(4.5.20) and (4.4.22) allows for the construction of stress-tensor components 
in an inhomogeneous elastic layer due to force loadings (4.1.7) and the 
steady-state temperature field. 

4.6.  Displacement determination 

4.6.1.  Integration of Cauchy equations 

To determine elastic displacements ru  and zu  from the Cauchy 

equations (4.1.2), the displacements can be represented using the Hankel 
integrals [147]:  

 

1
0

0
0

( , ) ( ) ( ) ,

( , ) ( ) ( ) .

r r

z z

u z su z J s ds

u z su z J s ds

 (4.6.1) 

These expressions combined with the first and second equations in 
(4.1.2) give us  

 2
0

0

( , ) ( , ) ( ) ( )rr rz z s u z J s ds .  (4.6.2) 
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We substitute the first and second equations of the constitutive law 
represented by (4.1.4) into (4.6.2), while taking into account the stress 
representations given in (4.2.17). This gives the following expression for 
radial displacement in the Hankel mapping domain: 

 
1 ( ) 1( ) ( ) ( ) 2 ( ) ( )

( ) 2 ( )r zz
zsu z z z z T zE z G z

. (4.6.3) 

Similarly, using expressions (4.2.17) and (4.6.1) together with the fourth 
Cauchy equation in (4.1.2) and the constitutive equation for the shear 
stress in (4.1.4) yields the following expression for axial displacement: 

 
( ) 1( ) ( )

( )
r

z rz
du z

su z z
dz G z .  (4.6.4) 

We can use (4.6.3) and (4.6.4) to determine elastic displacements in 
terms of stress-tensor components. These components were presented in 
the foregoing sections in the form of Hankel integrals (4.2.17) along with 
(4.3.11) – (4.3.13) for considered space 0 , (4.4.13), (4.4.16) – (4.4.18) 

for half-space 1 , and (4.5.20) and (4.4.22) for layer 2 . Thus, the 

displacements can be expressed explicitly through the temperature field in 
the corresponding elastic solids along with the force loadings applied to 
the boundary of half-space 1  and layer 2 . In the presentation of 

boundary conditions in terms of displacement, expressions (4.6.3) and 
(4.6.4) provide a perfect tool for establishing a one-to-one relationship 
between the boundary tractions and boundary displacements for the 
corresponding inhomogeneous elastic solids. 

4.6.2.  Axisymmetric elastic displacements in  
an inhomogeneous space 

To compute the radial elastic displacement in inhomogeneous elastic 
space 0 , we substitute (4.3.9) and (4.3.11) into (4.6.3) to obtain 

 
( ) ( )1( ) ( ) exp( | |)

4 ( ) 1 ( )r
Eu z T s z

G z
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 0
0

( , )1 ( )2 ( , ) exp( | |)
1 ( ) 1 ( )

z z s z d d
s z

. (4.6.5) 

In view of this, combining (4.6.4) with (4.3.12) yields 

 
( ) ( ) sgn( )1 1( ) ( )

4 1 ( ) ( ) ( )z
E s zdu z Ts dz G z G z

 

 0

1 ( )4exp | | ( , )
( )

zs z zs z E z
  

 0 ( , ) sgn( )1
1 ( ) ( ) ( )

s zd
dz G z G z

exp | |s z d d .  (4.6.6) 

Function 0 ( , )z  in (4.6.5) and (4.6.6) is given by (4.3.18). 

Displacement in the physical domain is computed by substituting 
(4.6.5) and (4.6.6) into the Hankel formulation in (4.6.1). 

4.6.3.  Axisymmetric elastic displacements in  
an inhomogeneous half-space 

The radial displacement in inhomogeneous elastic half-space 1  can 

be computed by substituting (4.4.10) and (4.4.14) into (4.6.3), which 
yields the following formula: 

 ( ) ( ) ( ) ( )r r r ru z pP z qQ z z .  (4.6.7) 

Here, 

 1 1

1 ( ) 1( ) ( ) ( )
( )r

z bP z z zsE z a
 

 1 exp
4 ( )

szsG z
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1 1

0

( ) (1 ) ( )
exp | |

1 ( )

a bs s z d
a

, 

 

1 1

1 1

0

1 ( ) 1( ) ( ) ( )
( )

1 exp
4 ( )

( ) (1 ) ( ) ,
exp | |

1 ( )

r
z bQ z z zsE z a

sz
sG z

a bs s z d
a

 (4.6.8) 

 1 1

1 ( ) 2( ) ( ) ( ) ( ) ( )
( )r

z cz z z z T zsE z a s
 

 1 1

0

( ) ( ) ( ) ( ) ( )1
4 ( ) 1 ( )

a E T c
aG z

exp | |s z d . 

Implementing (4.6.4) in conjunction with (4.6.7) and (4.4.16) allows us 
to determine axial displacement as follows: 

 ( ) ( ) ( ) ( )z z z zu z pP z qQ z z .  (4.6.9) 

Here, 

( ) exp1 1( )
2 ( )

r
z

dP z sz
P z

s dz G z s
 

1 1

0

( ) (1 ) ( )1
1 ( )

a b
a

exp | | sgn( )s z z d , 
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 1 1

0

( ) exp1 1( )
2 ( )

( ) (1 ) ( )1
1 ( )

exp | | sgn( ) ,

r
z

dQ z sz
Q z

s dz G z s

a b
a

s z z d

 (4.6.10) 

( )1( ) r
z

d z
z

s dz
 

1 1

0

( ) ( ) ( ) ( ) ( )1
2 ( ) 1 ( )

a E T c
aG z

exp | | sgn( )s z z d . 

Functions 1( ) , 1( ) , and 1( )  are given in (4.4.11); and constants 

a , b , and c  are described in (4.4.13).   
To compute displacement in the physical domain, we use the Hankel 

formulae in (4.6.1) together with (4.6.7) and (4.6.9).  
The expressions given in (4.6.7) and (4.6.9) are explicit representations 

of the elastic displacements in half-space 1  in terms of force loadings 

(4.1.6) on its plane limiting surface 0z . This fact allows for simple 
analysis of various types of boundary condition. Consider, for example, 
the case when the boundary displacements are imposed on surface 0z : 

 0 0( ,0) ( ), ( ,0) ( )r r z zu u u u .  (4.6.11) 

Here, 0 ( )ru  and 0 ( )zu  are given functions for which the Hankel 

integrals (4.6.1) exist. Then, formulae (4.6.7), (4.6.9), and (4.6.11) provide 
the following system of equations: 

 

0

0

(0) (0) (0),

(0) (0) (0).

r r r r

z z z z

u pP qQ

u pP qQ
  (4.6.12) 
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These equations make it possible to determine the normal and shear forces 
at the boundary in terms of boundary displacements: 

 

0 0

0 0

(0) (0) (0) (0)
,

(0) (0) (0) (0)

(0) (0) (0) (0)
.

(0) (0) (0) (0)

z r r r z z

r z z r

r z z z r r

r z z r

Q u Q u
p

P Q P Q

P u P u
q

P Q P Q

 (4.6.13) 

Now, we substitute (4.6.13) into (4.4.10), (4.4.16) – (4.4.18), (4.6.11), 
and (4.6.7) and (4.4.22) to determine the elastic stresses and displacements 
using the boundary displacements given in (4.6.11).  

The case of mixed boundary conditions can be treated similarly. If, for 
example, the boundary 0z  of half-space 1  exists under conditions of a 

sliding support, then the transversal displacement and shear stress are zero 
[149]: 

 0( ,0) ( ) 0, ( ,0) ( ) 0.rz z zq u u  (4.6.14) 

The system of equations (4.6.12) can be used to determine the two 
unknown functions at the boundary (i.e., normal traction and radial 
displacement), as follows: 

 0(0) (0) (0) (0) (0)
,

(0) (0)
z z r r z

r
z z

P P
p u

P P
. (4.6.15) 

Inserting p  and q  presented in (4.6.14) and (4.6.15) into (4.4.14), 

(4.4.16) – (4.4.18), (4.6.11), and (4.6.7) and (4.4.22) allows us to determine 
the elastic stresses and displacements in inhomogeneous elastic half-space 

1  under the sliding support of its boundary. 

4.6.4.  Axisymmetric elastic displacements in a  
transversely-inhomogeneous layer 

Elastic displacements in layer 2  can be determined from formulae 

(4.6.3) and (4.6.4) in conjunction with (4.5.18), (4.5.20), and (4.5.22), as 
follows: 
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1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

( ) ( ) ( )

( ) ( ) ( ),

( ) ( ) ( )

( ) ( ) ( ),

r r
r u u

r r r
u u u

z z
z u u

z z z
u u u

u z p P z p P z

q Q z q Q z z

u z p P z p P z

q Q z q Q z z

  (4.6.14) 

where 

 
1 ( ) 1( ) ( ) ( ),

( ) 2 ( )
r z
u

zP z P z P zsE z sG z
 

 
1 ( ) 1( ) ( ) ( ),

( ) 2 ( )
r z
u

zQ z Q z Q zsE z sG z
  

 
1 ( ) 1( ) ( ) ( ) 2 ( ) ( ),

( ) 2 ( )
r z
u

zz z z z T zsE z sG z
 (4.6.15) 

 

( )1 1( ) ( ),
( )

( )1 1( ) ( ),
( )

r
z rzu
u

r
z rzu
u

dP z
P z P z

s dz sG z

dQ z
Q z Q z

s dz sG z

 

 
( )1 1( ) ( )

( )

r
z rz
u

d zz z
s dz sG z

,   1,2 .  

Displacements in the physical domain are computed using (4.6.14) in 
conjunction with the Hankel formulae given in (4.6.1).  

The explicit expressions given in (4.6.14) for the elastic displacements 
through the force loadings (4.1.7) make it possible to establish a one-to-
one relationship between boundary displacements and boundary tractions. 
Assume the boundary displacements to be imposed on the limiting planes 

1z  of layer 2 :  
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( ,1) ( ), ( ,1) ( ),

( , 1) ( ), ( , 1) ( ),

r r z z

r r z z

u u u u

u u u u
 (4.6.16) 

where ( )ru  and ( )zu  are given functions whose Hankel integrals 

(4.6.1) exist. Substituting (4.6.14) into (4.6.16), while taking into account 
(4.6.1) yields the following system of equations:  

 

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

(1) (1)

(1) (1) (1),

( 1) ( 1)

( 1) ( 1) ( 1),

(1) (1)

(1) (1) (1),

( 1) ( 1)

( 1)

r r
r u u

r r r
u u u

r r
r u u

r r r
u u u

z z
z u u

z z z
u u u

z z
z u u

z
u u

u p P p P

q Q q Q

u p P p P

q Q q Q

u p P p P

q Q q Q

u p P p P

q Q q Q ( 1) ( 1).z z
u

  (4.6.17) 

These equations establish one-to-one relationships between the four 

displacement components ( )ru  and ( )zu  and four force-loading 

components p  and q , 1,2 , on the limiting planes 1z  of layer 

2 . Thus, in situations where there is a need in solving a thermoelasticity 

problem with boundary conditions in terms of displacements (4.6.16), 
equations (4.6.17) can be used to determine the unknown boundary 
tractions p  and q , 1,2 , and then implement them for the 

determination of stresses (4.5.20) and (4.5.22), and displacements (4.6.14). 
The same strategy can be used in the case of the mixed-type boundary 
conditions. If, for example, the limiting planes of layer 2  are under the 

conditions of a sliding support 
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1

2

( ,1) ( ) 0, ( ,1) ( ) 0,

( , 1) ( ) 0, ( , 1) ( ) 0,

rz z z

rz z z

q u u

q u u
 (4.6.18) 

then system of equations (4.6.17) yields 

 

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

(1) (1) (1),

( 1) ( 1) ( 1),

(1) (1) (1),

( 1) ( 1) ( 1).

r r r
r u u u

r r r
r u u u

z z z
u u u

z z z
u u u

u p P p P

u p P p P

p P p P

p P p P

  (4.6.19) 

Solving third and fourth equations in (4.6.19) with respect to the as-yet 
unknown functions p , 1,2 , gives the following boundary tractions: 

 

2 2
1

1 2 1 2

1 1
2

1 2 1 2

( 1) (1) (1) ( 1)
,

(1) ( 1) ( 1) (1)

(1) ( 1) ( 1) (1)
.

(1) ( 1) ( 1) (1)

z z z z
u u u u
z z z z
u u u u

z z z z
u u u u
z z z z
u u u u

P P
p

P P P P

P P
p

P P P P

 (4.6.20) 

The tractions can now be used in conjunction with 1 2 0q q  to 

determine the stresses (4.5.20) and (4.4.22), as well as displacements 
(4.6.14) for inhomogeneous elastic layer 2  under the condition of sliding 

support (4.6.19) along its boundaries 1z . 

4.7.  Axisymmetric steady-state temperature field  
in inhomogeneous elastic solids 

To determine the temperature field in inhomogeneous space 0 , half-

space 1 , and  layer 2 , we use the heat-transfer equation (4.1.8) under 

the following conditions: vanishing temperature and heat-source density at 
2z  for space 0 ; vanishing temperature, heat-source density at 
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z , and condition (4.1.9) for half-space 1 ; and conditions (4.1.10) 

for layer 2 . We can apply the Hankel representation for temperature 

given in (4.2.17) to transform equation (4.1.8) as follows: 

 
2

2
2

( ) ( ) ln ( ) ( )
( )

( )
d T z w z d z dT zs T z

z dz dzdz
, (4.7.1) 

where ( )w z  is the Hankel image of the heat-source density: 

 0
0

( , ) ( ) ( )w z w z J s ds .  (4.7.2) 

Clearly, equation (4.7.1) is similar to (2.2.62), which presents the heat-
transfer equation in the Fourier mapping domain for plane problems of 
thermoelasticity. For the latter, we set x y  and change the 

variable from y  to z . Thus, solutions of equation (2.2.62) for plane 0D , 

half-plane 1D , and strip 2D  can be adopted here as solutions to equation 

(4.7.1) in the mapping domain of transform (4.2.17) for space 0 , half-

space 1 , and layer 2 . 

A solution to equation (4.7.1) for space 0  can be obtained using 

(2.2.66) as follows: 

 SP SP SP ( ,) ( ) ( )( )T zz w z w d ,  (4.7.3) 

where 

 SP

( )
exp | |

( )
1( )
2

w z w s z
s

d ,  (4.7.4) 

and 

 SP
SP 1

0

( , ) ( , )n
n

z z ,   (4.7.5) 
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SP
1 SP

SP SP SP
1 1

( , ) ( , ),

( , ) ( , ) ( , ) ,n n

z z

z z d

  (4.7.6) 

 SP

ln ( )1 sgn( )
2

( , )
ds z

s
z

d

2

2

ln (
ex |

)
p |s zd

d
. (4.7.7) 

To solve equation (4.7.1) under boundary condition (4.1.9) for half-
space 1 , we adopt solution (2.3.88) in the following form: 

 0
0 HS HS( ) ( ) ( )T z T t z w z ,  (4.7.8) 

where 

 

HS HS H

0
HS HS

H

0

S S
0

1( ) exp( ) exp( ) ( ,

( ) ( ) (

) ,

) ( , ) ,w

t z

z W z W z d

sz s z d
æ

 (4.7.9) 

and 

 

HS
0

0 1 0 0 1 0

0
0

( )1( ) exp( | |)
2 ( )

exp( ( )) ,

| | , | | ,

( )1 .
(0) z

wW z s z
s

s z d

s s

d z
dz

æ
æ

æ æ æ æ

æ

 (4.7.10) 
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The resolvent-kernel in this case has the following form: 

 HS
HS 1

0

( , ) ( , )n
n

z z ,   (4.7.11) 

where 

 HS
1 HS( , ) ( , ),z z

HS HS HS
1 1

0

( , ) ( , ) ( , )n nz z d , 1, 2,...,n    

 
2

HS 2

ln ( )1( , )
2

dz
s d

exp( | |) exp( | |))s z s zæ
æ

 (4.7.12) 

 
ln ( )1 exp( | |) sgn( )

2
d s z z

d

exp( ( ))s zæ
æ

. 

Finally, the Hankel mapping function for the temperature in elastic 
transversely-inhomogeneous layer  2  can be found using (2.4.68), 

leading to the following equation: 

 1 1,LR 2 2,LR LR( ) ( ) ( ) ( )T z T z T z w z .  (4.7.13) 

Here, 

 22 c 21 s
1,LR

( ) ( )
( ) ,

z z
z

11 s 12 c
2,LR

( ) ( )
( ) ,

z z
z  
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 LR

1

c
1

(( ) cosh cosh ,, )z sz s z d

R

1

s
1

L( ) sinh sinh ( , )z sz s z d , 

 
1

LLR L L
1

RR R( ) ( ) ,( ( )) z dw z w z w , 

 
1

LR
1

( )1( ) sinh | |
2 ( )

ww z s z
s

  

 22 11 sinh (1 )s

22 12
1

ln ( )
cosh (1 ) sinh (1 )

z

d zs s s
dz

 

12 21 12 22

1

11 21 11 22

1

sinh (1 ) cosh (1 )

ln ( ) coshsinh (1 )

sinh (1 ) cosh (1 )

ln ( )
sinh (1 )

z

z

s s s

d z szs
dz

s s s

d z s
dz

 (4.7.14) 

 

21 11 21 12

1

sinh (1 ) cosh (1 )

ln ( ) sinhsinh (1 ) ,
z

s s s

d z szs d
dz

, 
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 11 11 12 12
1

ln ( )
cosh sinh ,

z

d z s s s
dz

 

 12 11 12 12
1

ln ( )
sinh cosh ,

z

d z s s s
dz

  

 21 21 22 22
1

ln ( )
cosh sinh ,

z

d z s s s
dz

 

 22 21 22 22
1

ln ( )
sinh cosh ,

z

d z s s s
dz

11 22 12 21 . 

The resolvent-kernel takes the form of the series 

 LR
LR 1

0

( , ) ( , )n
n

z z   (4.7.15) 

of the following recurring kernels: 

 

LR
1 LR

1
LR LR LR

1 1
1

( , ) ( , ),

( , ) ( , ) ( , ) , 1, 2,...,n n

z z

z z d n

 (4.7.16) 

where 

 
2

LR 2
1( , )
2

ln ( )
sinh | |

d s z
d

z
s

 

 22 11 22 12sinh (1 ) cosh (1 )s s s

1

ln ( )
sinh (1 )

z

d z s
dz
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12 21 12 22

1

sinh (1 ) cosh (1 )

ln ( ) coshsinh (1 )
z

s s s

d z szs
dz

 

 11 21 11 22sinh (1 ) cosh (1 )s s s

1

ln ( )
sinh (1 )

z

d z s
dz

 

 

21 11 21 12

1

sinh (1 ) cosh (1 )

ln ( ) sinhsinh (1 )

ln ( )
cosh ( )sgn( )

z

s s s

d z szs
dz

ds s z z
d

 (4.7.18) 

 

22 11 22 12

1

cosh (1 ) sinh (1 )

ln ( )
cosh (1 )

z

s s s

d z sdz

12 21 12 22cosh (1 ) sinh (1 )s s s  

1

ln ( ) coshcosh (1 )
z

d z szs
dz   
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11 21 11 22

1

cosh (1 ) sinh (1 )

ln ( )
cosh (1 )

z

s s s

d z s
dz

  

 

21 11 21 12

1

cosh (1 ) sinh (1 )

ln ( ) sinhcosh (1 ) .
z

s s s

d z szs
dz

 

To compute temperature in the physical domain, we use formulae 
(4.2.17) and (4.7.2) in conjunction with (4.7.3) for space 0 , (4.7.8) for 

half-space 1 , and (4.7.13) for layer 2 .  

This makes it possible to utilize the analogy between the plane and 
axisymmetric heat conduction solutions to represent axisymmetric thermal 
fields in the considered inhomogeneous solids. These representations are 
in the form of explicit dependencies on thermal loadings, either in interior 
points (i.e., internal heat sources) or at the boundaries (i.e., boundary 
temperature, heat flux through the surface, or complex conditions of heat 
exchange). Computational accuracy depends on evaluations of the 
resolvent-kernels given in (4.7.5), (4.7.11), and (4.7.15).  

4.8.  Stress analysis and special cases of inhomogeneity 

The axisymmetric stress-tensor and displacement-vector components 
constructed above in the form of explicit dependencies on the steady-state 
temperature field (for inhomogeneous elastic space 0 ) and the steady-

state temperature field and force loadings imposed on the boundary (for 
inhomogeneous elastic half-space 1  and layer 2 ). Under the 

assumption that the temperature field is known, the computational 
accuracy of these components depends on the evaluation of resolvent 
kernels 0 ( , )z , 1( , )z , and ( , )z . These are presented 

respectively by formulae (4.3.7), (4.4.11), and  (4.5.14) as infinite series of 
corresponding recurring kernels originated by the kernels  (4.3.4), (4.4.9), 
and (4.5.11) of the integral equations (4.3.3), (4.4.8), and (4.5.10) for total 
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stress in the mapping domain of the Hankel transform (4.2.17). These 
kernels depend on the material properties and in some cases can be 
evaluated analytically. However, when analytical evaluation presents a 
challenge, these series can be truncated for practical purposes to be 
represented by corresponding finite sums of initial terms.    

As can be seen from the corresponding expressions for the integral 
kernels (4.3.4), (4.4.9), and (4.5.11), they can be zeros for certain 
inhomogeneous materials, for which  

 0

0

( )
( )

2(1 ( )) 1

GE zG z
z a z , (4.8.1) 

where 0G  is a constant in the dimension of stresses and 0a  is a 

dimensionless constant ensuring that the material moduli remain within 
the physical constraints implied by the mathematical model for the entire 
range of variation of coordinate z. 

For inhomogeneous elastic space 0 , the condition of positivity for 

the shear modulus (i.e., ( ) 0G z ) for ( , )z  implies 0 0a  and 

0 0G . This yields 

 0( ) 2(1 ( ))E z z G   (4.8.2) 

or 

 
0

( )
( ) 1

2
E zz

G .  (4.8.3) 

Thus, if the Young modulus and the Poisson ratio in isotropic 
inhomogeneous space 0  meet conditions (4.8.2) or (4.8.3), i.e., ( )E z
varies proportionally to 1 ( )z  for ( , )z , then resolvent kernel 

0 ( , )z  given by (4.3.7) equals zero. Furthermore, corresponding stress-

tensor components (4.3.11) – (4.3.14) can be obtained explicitly as 
follows: 

 0

1 ( )
( ) ( ) ( ) exp( | |)

1 ( )zz z sG T s z d , 
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0

0

1 ( )
( ) 2 ( ) ( )

1 ( )

1 ( )
( ) ( ) exp( | |) ,

1 ( )

1 ( )
( ) 2 ( ) ( ),

1 ( )

rr
zz G z T z
z

s T s z d

zz G z T z
z

 (4.8.4) 

 0

1 ( )
( ) ( ) ( )exp( | |) sgn( )

1 ( )rz z sG T s z z d , 

or 

 0
0

( ) ( )
( ) ( )exp( | |)

( ) 4zz
Ez sG T s z dE G , 

 0
0

( ) ( )
( ) 2 ( )

( ) 4rr
z E zz G T zE z G

 

 
0

( ) ( )
( ) exp( | |) ,

( ) 4
Es T s z d

E G
  (4.8.6) 

 0
0

( ) ( )
( ) 2 ( ),

( ) 4
z E zz G T z

E z G  

 0
0

( ) ( )
( ) ( )

( ) 4rz
Ez sG TE G

exp( | |)sgn( )s z z d . 

At the same time, feasible material moduli satisfying (4.8.2) or (4.8.3) are 
required to assume finite values at z . Moreover, due to the 
restrictions of the elasticity model, the Poisson ratio varies within the 
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following constraint: 1 ( ) 1 / 2z , ( , )z . Thus, in view of 

(4.8.3), we obtain the following:  

 00 ( ) 3E z G .  (4.8.7) 

For example, if we designate that    

 0( ) 2 exp( | |) 1 sgn( )E z m z z G ,  (4.8.8) 

or, in view of (4.8.3),  

 1( ) exp( | |) 1 sgn( )
2

z m z z ,  (4.8.9) 

then the condition given in (4.8.7) is satisfied and the limit values of ( )E z  

and ( )z  at z  are constant. When the material moduli are 

represented by (4.8.8) and (4.8.9), inhomogeneous elastic space 0  

comprises two homogeneous half-spaces with dissimilar material 
properties (“material A” and “material B”), which are connected via a 
transversally-inhomogeneous intermediate layer with smoothly-varying 
properties from one interface to another (Fig. 4.1). 
 

 
Figure 4.1. Young’s modulus (4.8.8) of inhomogeneous elastic space 0  for 

1m  
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a) b) 

Figure 4.2. a) Young’s modulus (4.8.8) and b) Poisson’s ratio (4.8.9) of 

inhomogeneous elastic space 0  for 1 / 3;1;3m  

 
Parameter m  in (4.8.8) and (4.8.9) makes it possible for us to control 

the width of the intermediate inhomogeneous layer and the “steepness” of 
the variation in the material properties across it (see Fig. 4.2). If 0m , 

then 0( ) constE z E  and 0( ) constz , and the inhomogeneity of 

elastic space  0  is indicated only by the z-dependence of the coefficient 

of linear thermal expansion. Then, 

 0

0

( ) ( ) ( ) exp( | |)
2 1zz

Esz T s z d , 

 0

0

( ) ( ) ( )
1rr

E
z z T z

( ) ( ) exp( | |) ,
2
s T s z d  (4.8.10) 

 0

0

( )
( ) ( ),

1

z E
z T z

0

0

( ) ( ) ( ) exp( | |) sgn( )
2 1rz

Esz T s z z d . 
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Expressions (4.8.10) can be regarded as a benchmark analytical solution 
for capturing the thermal effect of the variable linear thermal expansion 
coefficient ( )z . 

Finally, if in (4.8.10) coefficient 0( ) constz , then the isotropic 

elastic space  0  can be regarded as homogeneous. 

 

     
 a) b) 

     
 c) d)   

Figure 4.3. Full-field distributions of a) temperature  0 0( , ) /T z w  and total 

stress 0 0 0 0( , ) / ( )z G w  for b) 0m  (homogeneous material), c) 1 / 3m   

and d)  1m  in (4.8.8) and (4.8.9) 

 
Consider computation of the thermal stresses (4.8.4) for space 0  

using material moduli (4.8.8) and (4.8.9) and a constant coefficient of 
linear thermal expansion, 0( ) constz , under a temperature 
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imposed by internal heat sources of density 0( , ) exp( ) ( )w z w z  

acting in plane 0z  and exponentially decaying when moving away 
from the symmetry axis for the case of constant heat-conduction 
coefficient 0( ) constz . Here, 0 constw  and ( )z  is the Dirac 

delta-function. We compute temperature 0 0( , ) /T z w  as a solution to 

heat-conduction equation (4.7.1) in the physical domain of transfer 
(4.2.17). This is depicted in Fig. 4.3a. The effect of material 
inhomogeneity (3.8.8) and (3.8.9) in total stress 0 0 0 0( , ) / ( )z G w  is 

illustrated in Fig. 4.3. Total stress in the case of homogeneous material 
0m  is proportional to the temperature; therefore, the distribution of 

stress in Fig. 4.3b echoes that of temperature in Fig. 4. 3a. It is also 
symmetric about the plane 0z , which is not the case for 
inhomogeneous materials where 1 / 3m  (Fig. 4.3c) and 1m  
(Fig. 4.3d). Similar analysis can be applied to the case where the linear 
coefficient of thermal expansion depends on the axial coordinate. 

For inhomogeneous elastic half-space 1 , the condition that the shear 

modulus is positive and described in the form (4.8.1) implies that 0 0G  

and 0 0a . Thus, the type of inhomogeneity covered by formula (4.8.1) 

can be referred to as “Gibson soil” (see formula (1.2.5) in Chapter 1). In 
this case,   

 0
0

1 ( )
( ) 2

1
zE z G

a z  (4.8.11) 

and 

 0
0

( )
( ) 1 1

2
E zz a z

G . (4.8.12) 

The physical constraints on Poisson’s ratio impose the following 
limitations pertaining to variations in the elastic moduli: 

 0 00 1 ( ) 3a z E z G .  (4.8.13) 

The stress-tensor components (4.4.14), (4.4.16) – (4.4.18) in this case 
take the following form: 
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 ( ) exp
2zz
pz sz

2
0

( )
exp | |

1 ( )

Es s z d
a

 

 
2

0

( )
exp exp | |

2 1 ( )

q Essz s z d
a

 

 
2

0

exp( ) 1 ( ) ( ) ( )

2 1 ( )

c s a Ts
a

exp | |s z d , 

 

2

2
0

( )
( ) exp

2 1 ( )

( )
exp | |

2 1 ( )

rr
p E zaz sz
a z

Es s z d

 

 
2

( )
exp

2 1 ( )

q E za sz
a z

2
0

( )
exp | |

2 1 ( )

Es s z d  

 
2

0

exp( ) 1 ( ) ( ) ( )

2 1 ( )

c s a Ts
a

exp | |s z d   (4.8.14) 

 
2

( ) ( ) ( )exp( )
( )

1 ( ) 1 ( )

z E z E z szcT z
z a z
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    ( ) exp( )
p q cz sza

2

1 ( ) ( ) ( )
( ) ( )

( ) 1 ( )

z z E zz T zz z
, 

 ( ) exp
2rz
pz sz

2
0

( )
exp | | sgn( )

1 ( )

Es s z z d
a

 

 exp
2
q sz

2
0

( )
exp | | sgn( )

1 ( )

Es s z z d
a

 

 
2

0

exp( ) 1 ( ) ( ) ( )

2 1 ( )

c s a Ts
a

exp | | sgn( )s z z d , 

where 

 

2
0

0

( )
exp 2 ,

1 ( )

( ) ( )
( )exp

1 ( )

E za s sz dz
z

z E zc s T z sz dz
z

 (4.8.15) 

and the Young modulus and Poisson ratio are related via (4.8.11) or 
(4.8.12). 

It is important to note however that in view of expression (4.8.11), the 
Young modulus breaks the lower limit set in (4.8.13) for z , due to 
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the fact that the Poisson ratio is limited in terms of variability, and thus  
( ) 0

z
E z . However, if we focus on the local near-boundary effects in 

an inhomogeneous elastic half-space, then the assumption of Gibson soil 
(as represented by (4.8.11)) can be accounted for in the analysis of elastic 
and thermoelastic properties. 

Consider, for example, the case of constant Poisson’s ratio 

0( ) =constz  and introduce a constant 0 0 02(1 )E G . Under these 

assumptions and within the context of equation (4.8.11), the Young 
modulus takes the following form: 

 0

0

( )
1

E
E z

a z .  (4.8.16) 

If 0 0a  in equation (4.8.16), then only the inhomogeneity in the material 

is affected by the coefficient of linear thermal expansion, while all the 
other material moduli are constant.  

Figure 4.4 illustrates the effect of this type of inhomogeneity in the 
axial stress, when the limiting surface 0z  of half-space 1  suffers from 

the action of locally-uniform normal pressure (4.1.6), where  

 0 , 1,
( ) ( ) 0

0, 1,
pp q   (4.8.17) 

at a temperature of zero ( , ) 0T z . Here, 0p  is a constant in the 

dimension of stresses. Due to the absence of temperature, the effect of the 
linear thermal expansion coefficient is disregarded, such that setting 

0 0a  in (4.8.16) means that the material is homogeneous. As seen in 

Figure 4.4, material inhomogeneity in this case has only a quantitative 
impact, while the qualitative behavior of stresses remains similar. 
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a)                                                    b)  

Figure 4.4. Full-field distributions of axial stress 0/zz p   in half-space computed 

using (4.8.14) and (4.2.17) for loading (4.8.17) and Young’s modulus (4.8.16) for 
a) 

0 0a  (homogeneous material) and b)  0 1a  (inhomogeneous material) 

 
The validity of assumption (4.8.1) in the case of inhomogeneous elastic 

layer 2  implies that 0 0G  and 0| | 1a . Thus, the conditions presented 

in (4.8.11) – (4.8.13) hold for the full range of axial coordinates within 
[ 1,1] . The stress-tensor components in this case take the form given in 

(4.5.20) and (4.5.22) with coefficients represented using (4.5.19) as 
follows: 

 1
0

1( ) sinh (1 )cP z I s z
s

0

( )
sinh (1 ) cosh (1 )

1 ( )s
E zI s z I s z z

, 

 2
0

1( ) sinh (1 )cP z I s z
s

0

( )
sinh (1 ) cosh (1 )

1 ( )s
E zI s z I s z z

, 

 EBSCOhost - printed on 2/14/2023 2:18 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chapter Four 292

 

1
0

0

1( ) sinh (1 )

( )
cosh (1 ) cosh (1 ) ,

1 ( )

s

c

Q z I s z
s

E zI s z I s z
z

  (4.8.18) 

 2
0

1( ) sinh (1 )sQ z I s z
s

0

( )
cosh (1 ) cosh (1 )

1 ( )c
E zI s z I s z z

, 

 
( )

( ) 2 ( ) ( )
1 ( )

E zz z T zz

1

0 1

( ) ( ) ( )1 sinh ( )
1 ( ) s

E T I s z  

 0cosh ( ) cosh ( )cI s z I s z d , 

where 

 

1

0
1

1

0
1

1
2 2 2

0 0 0 0
1

( )sinh 2
,

1 ( )

( )cosh 2
,

1 ( )

( )
, .

1 ( )

s

c

s c

E z szI G dzz

E z szI G dz
z

E zI G dz I I Iz

 (4.8.19) 

Let us consider the case where (4.8.1) does not hold. Assume that the 
material properties of half-space 1  are given in the following form: 
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0 1 0

0 1 0 0

( ) 1 exp( ) ,

( ) 1 exp( ) , ( ) 0.3.

E z E z

G z G z z
 (4.8.20) 

Here, 0 0 0/(2 2 )G E  and 1 1  and 0 0  are dimensionless 

parameters. The material properties in (4.8.20) represent the case where 
the deposit of the half-space, which is distant from its surface 0z , is 
homogeneous in terms of a constant Young’s modulus and shear modulus 
(i.e., 0E  and 0G ). When approaching the surface 0z , elastic moduli 

(4.8.20) increase to their maximum values at 1 0 , or decrease to the 

minimum at the surface where 1 0 . Parameter 0  describes the growth 

(decrement) value of the elastic moduli when approaching the surface. 
When 0 1 0 , half-space 1  is homogeneous. If we assume that the 

half-space is loaded with local pressure (4.8.17) at zero temperature, then 
keeping only three terms in the series (4.4.11) makes it possible to 
compute the stresses within 0.1% . The effect of inhomogeneity in the 
axial and radial stresses is illustrated in Fig. 4.5 (see [289] for more detail). 

     
a)  b)   

Figure 4.5. Depth variation of the axial (a) and radial (b) stresses on symmetry axis 

0  of elastic half-space 1  due to force loading (4.8.18) when 0 1  and 

1 0;1;5  in (4.8.20) (adapted from our paper [303]) 

 
To verify the accuracy of the proposed solution, we consider the 

computation of stresses in elastic layer 2  in which the Young modulus 
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and shear modulus are exponential functions of the thickness coordinate 
and Poisson’s ratio is constant: 

 0
0 0

( ) ( )
exp( ), ( ) 0.3

E z G z z z
E G .  (4.8.21) 

Here, 0 0 0/ (2 2 )G E  and  is a real number. When we disregard the 

effects of temperature, the case where 0  in (4.8.21) corresponds to a 
homogeneous material. Then formulae (4.5.20) and (4.5.22) do not involve 
the resolvent kernel and present the exact solution to the problem. 

 
a) b) 

 
c) d) 

Figure 4.6. Full-field distributions of dimensionless a) axial, b) radial, c) 
circumferential, and d) shear stresses due to force loading (4.8.22), normalized by 

0p  in homogeneous layer, when 0  in (4.8.21) (adapted from our paper 

[303]) 
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In Fig. 4.6, the full-field distributions of the dimensionless stress-

tensor components due to the force loading (4.1.7), where 

 2
1 2 0 1 2( ) ( ) exp( ), ( ) ( ) 0p p p m q q , (4.8.22) 

components in homogeneous ( 0 ) layer 2  are depicted.  Due to the 

locally-distributed loading (4.8.22), the stress fields are local in character, 
gradually vanishing with an increase in the radial coordinate. Due to the 
equality of the non-zero normal tractions 1 2p p   and the homogeneity of 

the material, normal stresses are symmetric about the mid-plane 0z  and 
attain the maximum negative values on boundaries 1z  at the central 
point 0 . Axial stress (a) precisely satisfies the boundary conditions 

(4.1.7) with the normal tractions represented by (4.8.22). The stress is 
compressive within the zone of distribution 2  and vanishes beyond 

this zone. Radial stress (b) is positive in the central area 1 / 2  and 

| | 1 / 2z  and is negative for the same range of  when 1 / 2 | | 1z . This 

stress is also positive in the near-surface area for 1 / 2 3 . 

Circumferential stress (c) is negative in the near-surface area 1 / 2 | | 1z , 

0.8  and positive elsewhere. Shear stress (d) is antisymmetric about the 

mid-plane 0z  and reaches its maximum values in the regions 

0.36 0.38  and 0.76 | | 0.78z . This stress exactly satisfies the 

homogeneous boundary conditions given in (4.1.7) and (4.8.22). 
Under the assumption of elastic moduli in the form of (4.8.21), it is 

possible to construct a closed-form analytical solution even for 0  
[303]. If we substitute the material properties (4.8.21) into (4.5.18) and 
(4.5.19) and eliminate total stress, we derive the following fourth-order 
ordinary differential equation for axial stress: 

 
4 3

2
4 3

( ) ( ) ( )
2zz zz zzd z d z d z

s
dzdz dz

 

 
22

2 2 2 20
2

0

( )
2 ( ) 0

1
zz

zzz
d z

s s s z
dz

. (4.8.23) 
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A solution to this equation for layer 2  can be found in the following 

form: 

 
4

1

( ) exp( ),zz z C z   (4.8.24) 

where  are the roots of the characteristic equation  

 4 2 2 2 3 2 2 20

0

2 2 0
1

s s s s . (4.8.25) 

These roots can be presented as follows: 

 

2 2 0
1

0

2 2 0
2

0

2 2 0
3

0

2 2 0
4

0

1 4 4 ,
2 1

1 4 4 ,
2 1

1 4 4 ,
2 1

1 4 4 .
2 1

s is

s is

s is

s is

  (4.8.26) 

Constants of integration C  can be determined by inserting (4.8.24) into 

boundary conditions (4.1.7) and (4.8.22).  
The axial stress computed using formulae (4.8.23) and (4.2.17) for 
0  (homogeneous material) and 1 (inhomogeneous material) at 
0  is depicted in Fig. 4.7. Qualitatively, distribution of this stress-

tensor component is similar for both cases; however, axial stress in not 
symmetric around the plane 0z  in the case where 1 due to 
inhomogeneity. The same conclusion holds for all the stress-tensor 
components.  
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Fig 4.7.  Distributions of axial stress across layer at 0  for 0  and 1 

in (4.8.21) (adapted from our paper [301]) 
 
Table 4.1. Comparison of solution (4.5.11) computed for approximate 
resolvent kernel (4.5.14)  with three initial terms and the exact  
solution (4.8.24) for exponentially-inhomogeneous material (4.8.21) 
[303] 

 
z Solution (4.8.24) Solution (4.5.11) (%) 

-0.9 -0.833 -0.842 1.13 
-0.5 -0.537 -0.550 2.47 

0 -0.337 -0.339 0.39 
0.5 -0.459 -0.457 0.41 
0.9 -0.781 -0.763 2.23 

 
To verify solution (4.5.18) for the case of inhomogeneous material 

(i.e., (4.8.21)) where 1, we compare it with the exact solution 
represented in (4.8.24). For the material properties (4.8.21), the kernel 
(4.5.11) takes the following form: 

 
2

0

exp( ) exp( ) exp( )
( , ) cosh ( )

1 2
z zz s z  

 
exp( ( 2 ) ) exp( ( 2 ) )

exp( ( ))
4( 2 )

s z s s zs
 

 
exp( ( 2 ) ) exp( ( 2 ) )

exp( ( )) .
4( 2 )

s z s s zs
 (4.8.27) 
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This expression can be used to compute recurring kernels (4.5.15) and use 
the truncated series (4.5.14) in order to compute the resolvent-kernel at a 
satisfactory level of accuracy. Table 4.1 presents values of stress 0/zz p  

calculated for 1 at 0  using exact solution (4.8.24). It also presents 

the resolvent solution given in (4.5.11) with resolvent kernel (4.5.14) 
containing three ( 3N ) constituents computed using the first iterative 
kernel (4.8.27). Clearly, the three terms in (4.5.14) are enough to compute 
the axial stress within 2.5% of relative error. Using four terms reduced the 
error to within 1 %. This kind of convergence can be explained using the 
theory of Volterra integral equations of the second kind. According to this 
theory, a resolvent-kernel solution can be constructed using Picard’s 
successive approximation method. The efficiency of this method depends 
strongly on the initial approximation, which, in our case, is the solution of 
the original integral equation with ( , ) 0z .   

In Fig. 4.8 [303], the distribution of axial stress in layer 2  can be 

attributed to force loading (4.1.7) and (4.8.22) based on the following 
elastic moduli: 

 
0 0

( ) ( )
(2 ) ,

E z G z z
E G

 0
0 0

0

( ) 0.3,
2(1 )

E
z G ,  (4.8.28) 

where 0;1;2  at 0  versus thickness coordinate z. In the case where 

2 , stress is computed by setting 4N  in formula (4.5.14). From a 
qualitative perspective, behavior of the stress is similar to the above case. 
For a homogeneous material ( 0 ), stress is symmetric about the mid-
plane 0z . Decreasing  moves the local minimum (which is at 0z  
for homogeneous material) of the compressive axial stress in the direction 
of increment of the Young and shearing moduli (see Fig. 2). At the same 
time, the absolute value of local minimum of this stress decreases slightly 
with an increase in . 
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Fig. 4.8. Distributions of axial stresses across layer at 0  for 0;1;2  in 

(4.8.28) (adapted from our paper [303]) 
 

Let us consider the computation of temperature and thermal stresses in 
inhomogeneous layer 2  with the following properties: 

 

1 2

0 0 0

0
0

( ) ( ) ( )
(2 ) , (2 ) ,

( )
exp( ), ( ) 0.3,

l lE z G z zz z
E G

z kz z

  (4.8.29) 

where 0 0 0/ (2 )G E , 1l , 2l , and k are real numbers and 0E , 0 , 

and 0  are constants of corresponding dimensions. The layer is free of 

force loadings, as follows: 

 1 2 1 2( ) ( ) ( ) ( ) 0p p q q .  (4.8.30) 

It is also subjected to local heating, as follows: 

 
1 2

2
1 2 0

( , ) ( ), ( , ) ( ),

( ) ( ) exp( ),

T h T T h T

T T t m
  (4.8.31) 

where 0t  is a constant in the temperature dimension and m  is a positive 

real number.  
Full-field distribution of dimensionless temperature 0( , ) /T z t  

computed using (4.2.17) and (4.7.13) for 0k  in (4.8.29) is shown in 
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Fig. 4.9. In this case, the temperature is symmetric about mid-plane 0z  
and reaches its maximum on the limiting surface. 

 
Fig 4.9. Full-field distribution of dimensionless temperature 0/T t  computed 

using formula (4.7.13) for homogeneous layer subjected to local heating (4.8.31) 
(adapted from our paper [303]) 
 

The effect of material inhomogeneity ( 0k ) on temperature is 
illustrated in Fig. 4.10. Clearly, increases in parameter k  shift the local 

minimum with coordinates min(0, )z  towards the side 1z  

( min 0.11z  for 1k  and min 0.22z  for 2k ), which can be 

explained by the fact that the heat-conductivity is lower for a lower value 
of z. It is also clear that the local minimum is slightly greater for 1, 2k  

than for 0k . The maximum deviation is within 1 % for 1k  and  8 % 
for 2k . 
 

 
Fig. 4.10. Distribution of dimensionless temperature field 0/T t  at 0  as a 

function of the value of parameter k  in (4.8.29) (adapted from our paper [303]) 
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Note that in the case where 1 2 0l l k  in (4.8.29), the harmonic 

temperature field (4.7.13) does not induce thermal stresses (see, e.g., 
[145]) in the layer with free limiting planes, as established by conditions 
(4.8.30). However, if 2l  or k  in (4.8.29) are not zero, then the stresses 

occur necessarily.  
 

 
a) b) 

 
c) d) 

Fig. 4.11. Full-field distributions of dimensionless stresses a) 0 0 0/ ( )zz E t , b) 

0 0 0/ ( )rr E t , c)
0 0 0/ ( )E t ,  d) 0 0 0/ ( )rz E t  due to the temperature field 

(4.7.13) under the effects of thermal loading (4.8.31) in layer with material 
properties (4.8.30), where 1 2 0, 1l l k  (adapted from our paper [303]) 

Figure 4.11 presents the full-field distributions of the dimensionless 
thermal stresses computed for the case where . The 1 2 0, 1l l k
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normal stresses change from tensile to compressive as a function of 
thickness due to variations in the linear coefficient of thermal expansion. 
Note that the maximum radial and circumferential stresses are ten orders 
of magnitude higher than the maximum axial and shear stresses. 

Thus, the direct integration method can be used to reduce problems of 
elasticity and thermoelasticity to two governing equations pertaining to 
total and axial stresses. These equations can be derived from the 
compatibility equations and the relations connecting the stress-tensor 
components (obtained through the integration of equilibrium equations). 
The governing equations are then reduced to the solution of an integral 
equation of the second kind with accompanying integral conditions. We 
use the resolvent-kernel technique to suggest an explicit functional 
solution to the latter equation. Note that the resolvent kernel is expressed 
only in terms of material properties; i.e., it does not depend on the loading 
factors. The resolvent kernel is presented using an infinite series of 
kernels, which can be truncated to provide an approximate formula for 
practical computation. Sufficient accuracy can be achieved using even a 
small number of summands. The efficiency of this approach depends on 
the selection of the initial kernel. If the shear modulus is inversely 
proportional to a linear function, then the kernel of the integral equation is 
equal to zero and, such that solution appears to be an exact analytical 
solution.  

The fact that the solution is given in the form of explicit analytical 
expressions through the given boundary tractions makes it possible to 
establish a one-to-one relationship between the tractions and the boundary 
displacements for an arbitrarily inhomogeneous layer. This makes it 
possible to apply the proposed solution procedure to the analysis of 
various types of boundary condition involving stresses, displacements, or a 
combination of the two. 
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