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Preface

The book is dedicated to the study of elliptic problems when a lack of compactness oc-
curs. This research area has been intensively developed in recent years also in connec-
tion with nonlinear phenomena that naturally arise in General Topology, Geometric
Analysis, Functional and Convex Analysis, Game Theory, Mathematical Economics,
and other branches of pure and applied sciences. Fundamental works in the field are
due, among others, to T. Aubin [18], H. Brézis [47], L. Nirenberg [197], ]. Serrin [230],
and N. Trudinger [241].

The main mathematical interest lies in the fact that some classical results of Func-
tional Analysis, mainly based on variational arguments, cannot be directly used for
problems with a lack of compactness, and new techniques have to be produced. For
instance, following the seminal ideas due to H. Brézis and L. Nirenberg [50], P.-L. Lions
[160], and R. Palais [202], the presence of symmetries allows us to obtain the existence
of solutions preserving the geometrical nature.

The aim of the monograph is to present some of these techniques, together with
their applications to elliptic problems with a variational structure. The current litera-
ture on these abstract tools and on their applications is therefore very interesting and
quite large. We refer to the recent outstanding monograph of A. Ambrosetti and A. Mal-
chiodi [11], as well as to the references therein. The book is addressed to researchers
and postgraduate, as well as graduate students, for a comprehensive introduction to
the existence theory for elliptic partial differential equations with a lack of compact-
ness, and can serve as a textbook. The extensive reference list and index make it as a
reference book.

This monograph would never have been written without the encouragements of
V. D.Radulescu, but with great pleasure we thank also some other dear friends and col-
leagues as R. Aftabizadeh, A. Ambrosetti, M. F. Bidaut-Véron, L. Boccardo, M. Chipot,
]J.1. Diaz, A. Farina, G. Fusco, N. Fusco, N. Garofalo, F. Gazzola, E. Lanconelli, A. Mal-
chiodi, P. Marcellini, J. Mawhin, G. Mingione, E. Mitidieri, F. Pacella, P. Rabinowitz,
D.D. Repovs, G. Restuccia, B. Ricceri, M. Rigoli, S. Salsa, C. Sbordone, X. Tang, G.
Tarantello, S. Terracini, L. Verén, R. Xu, F. Zanolin, and B. Zhang.

We are particularly grateful to our forever friend V. D. Radulescu for his unfail-
ing support and for never abandoning us in difficult times. Special thanks go to
N. Schedensack from De Gruyter for her constant and kindest help at all stages of the
editing process.

July, 2020 Giovanni Molica Bisci and Patrizia Pucci

https://doi.org/10.1515/9783110652017-201
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Introduction

The book tries to be an up-to-date unified exposition for a series of nonlinear prob-
lems with a lack of compactness via critical point theory, obtained by ourselves or
by direct collaboration with other coauthors. For an extensive bibliography of the pi-
oneering papers on variational Dirichlet second order elliptic problems with critical
exponents and on the Yamabe equation, we refer to the seminal review article [47] due
to H. Brézis.

Much of the impressive advance has been recently performed in this field, though
many problems still remain open. The close relationship between analysis and geom-
etry allows the use of methods which simplify many arguments and proofs. The main
theorems are entirely self-contained and given in detail, since we desire to make the
book accessible to a large audience, including graduate and postgraduate students,
and researchers in the field of partial differential equations.

We assume the reader to have a standard background in nonlinear analysis, in-
cluding Sobolev spaces and a first course of functional analysis. A useful assortment
of classical results and techniques can be found in [119, 151, 214].

The monograph is divided into three parts. In the first part of the book, the exis-
tence of solutions for elliptic equations in RV with nonstandard growth is studied.

Chapter 1 concerns the existence theorems for a quasilinear elliptic equation
in RY, involving general operators with nonstandard growth, as well as critical non-
linearities. Problems with nonstandard growth have been largely studied in the liter-
ature. Existence and qualitative properties of solutions already appear in the famous
well-known papers of the theory. For instance, in the setting of the Calculus of Vari-
ations, an extensive treatment has been provided starting by the seminal papers of
P. Marcellini [168-170], and V. V. Zhikov [259], and more recently by G. Mingione and
his collaborators; see, among others, the papers [28-30, 66, 67, 73, 74, 176] and the
references therein.

The quasilinear elliptic equations in RV considered along Chapter 1are of the form

~div(A(|Vu))Vu) + B(Ju)u = Af (u) + |u|q*72u, (I.1)

where q* is the critical exponent related to g, with 1 < g < N, while A is a real positive
parameter. Furthermore, A and B are strictly positive and continuous in R*, while t —
tA(t), t +— tB(t) approach 0 as t — 0% and are of class CY(R"). For further natural
technical assumptions, we refer to Section 1.1. General elliptic operators of type A take
inspiration from [96, 100] and from Chapter 5 of the monograph [214] due to P. Pucci
and J. Serrin.

The presence of the critical nonlinearity, as well as the fact that (I.1) is set in the
whole RV, produces new interesting nonlinear phenomena. On the other hand, equa-
tions of type (I.1) arise in a quite natural way in many different applications, such
as continuum mechanics, phase transition phenomena, population dynamics, and

https://doi.org/10.1515/9783110652017-202
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Xl —— Introduction

game theory, as they are the typical outcome of the stochastic stabilization of Lévy
processes.

The main existence result given in Theorem 1.1.1 applies well to problems in RY
like the following:

—div<L> -Au+u+ v = Af (u) + |u|4*_2u,

V1 + |[Vul?

involving the Minkowski mean curvature operator; see W. M. Niand J. Serrin [194-196],
as well as L. A. Peletier and J. Serrin [204]. The extension of Theorem 1.1.1 in several
directions and into the vectorial case has been given in [100]. However, even Theo-
rem 1.1.1 extends and complements the results of [31, 33, 54, 55, 158], and of the refer-
ences therein.

In Section 1.2 it will be shown that the energy functional I associated to (I.1) has
the geometric features to get the existence result via the famous mountain pass theo-
rem due to A. Ambrosetti and P. Rabinowitz [12]. On the other hand, Section 1.2 con-
tains also preliminary results of independent theoretical interest, for example, as in
Lemma 1.2.1.

Section 1.3 is devoted to the proof of the existence Theorem 1.1.1 for (I.1), which
relies on a direct intriguing alternative of Lions type presented in Proposition 1.3.1.

In Chapter 2 the following equation in R is considered:

ulP~2u
|x|P

—Apu — Ayu + [ulP2u + [uN 2u = Aooud™ + yg(x,u) (1.2)
wherel < p < N,N > 2,1 < q < N, u, = max{u, 0}, and h is a positive function of
class LG(IRN ), with 8 = N/(N - gq), while A > 0, y > 0, and o is a real parameter. The
function g is of exponential type and is assumed to satisfy certain natural structural
properties; see Section 2.1.

Equations in the whole R", involving elliptic operators with standard N-growth,
as well as critical Trudinger—Moser nonlinearities, have been studied in the literature.
Existence and multiplicity results are obtained by using different methods and tech-
niques; see, among others, the papers [5-7, 82|, as well as [3, 4, 75, 83] and the refer-
ences therein.

In Section 2.2 we give a brief and self-contained introduction to the variational
setting for equation (I.2) and to some technical lemmas that are crucial in order to get
solutions on the Sobolev space

w = wP®RY) n W RY),
endowed with the norm

llull = lullwre + lully,
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where [|ul| e = (||u||g+||Vu||g)1/p foreveryu ¢ W**(RY)and || o denotes the canonical
L(RY) norm for any @ > 1; see Lemmas 2.2.1and 2.2.2.

On account of the preliminary results recalled above, Section 2.3 is completely de-
voted to the proof of the main Theorem 2.1.1. The aforementioned proof combines new
and classical tools in Nonlinear Analysis, such as a Brézis-Lieb type lemma for ex-
ponential nonlinearities, a Trudinger—Moser inequality, and the Ekeland variational
principle; see Lemmas 2.2.3 and 2.3.3.

Chapter 3 continues the study of quasilinear elliptic equations in RY with non-
standard growth. More precisely, Chapter 3 deals with the existence of nontrivial so-
lutions for Kirchhoff equations in RN whose form is given by

M(lul ) (-Apu + [uP~2u) + M(Julld,, ) (~Agu + [ulw) )
= Afou) + [ul? 2,
where2 < p < g < Nand g* = Ng/(N - q). The parameter A in (&) is strictly positive
and the Kirchhoff term M : R} — R], as well as the function f : RY x R - R, verify
some natural and mild hypotheses; see Section 3.1.
The prototype for the function M proposed by Kirchhoff in 1883, namely

M@)=a+bot’", ab=0, a+b>0, 0>1, (L4)

is clearly monotone. Along this direction, several authors studied the existence of so-
lutions of Kirchhoff equations assuming that M is nondecreasing in R ;. However, from
a mathematical point of view, it is interesting to treat cases in which this monotonic-
ity condition is relaxed. Hence, the main assumption (.#) in Chapter 3 does not force
the Kirchhoff term M to be monotone; see condition (.#) in Section 3.1. Let us refer to
other two main contributions [175, 253], besides [71], in which M is not monotone, and
to the references therein.

The so-called degenerate Kirchhoff problems, that is, when the continuous func-
tion M is zero in 0 and positive in R*, are extremely interesting and delicate. Recently,
in [21, 63] the degenerate case was covered, as well as in [23, 26, 254], but the involved
Kirchhoff term M was assumed to be nonnegative and nondecreasing as in (1.4).

The main Theorems 3.1.1 and 3.1.2 generalize, in different and nontrivial ways, to
the Kirchhoff setting the results contained in [1, 14, 15], while extend and complete the
existence result given in [38, Theorem 1.1]. Moreover, Theorem 3.1.1 deals with both the
degenerate and nondegenerate Kirchhoff equations, while Theorem 3.1.2 treats only
the nondegenerate case not covered in Theorem 3.1.1; see Sections 3.2 and 3.3.

The proof techniques should therefore overcome the nonlocal structure of prob-
lem (I.3) due to the presence of the Kirchhoff term M, as well as the intrinsic lack of
compactness that the domain RY naturally produces. It is worthy to emphasize the
great interest in stationary Kirchhoff problems in closed Riemannian manifolds; see
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[124, 126] and the references therein. In Chapters 6 and 9 Kirchhoff problems on Rie-
mannian manifolds are considered. Some special cases of the above results are worth
specific note.

In the second part of the book, the existence of multiple solutions has been treated
via a group-theoretical invariance in the Hilbertian framework for different problems,
in which the settings are responsible for the loss of compactness.

Chapter 4 deals with the one-parameter critical elliptic equation in RY given by

“ A+ u = Aw(0lul™ 2u - hoolul? 2w, (L.5)

where A > 0 is areal parameter, 1 < m < 2%, and the main coefficients h and w combine
each other and verify suitable summability conditions in order to overcome the loss of
compactness. Equations of this type in bounded domains have been largely studied in
the literature, and we refer for historical comments, as well as for preliminary results
on weighted Lebesgue spaces, to Section 4.1.

Section 4.2 is devoted to the proof of Theorem 4.1.1 in the difficult case 1 < m < 2*
using a strategy which first appears in [217]. When 1 < m < 2, multiplicity is obtained
for (1.5) via the genus theory.

Finally, in Section 4.3 at the core of the new approach based on a symmetric group
theory, first developed in the pioneering paper [36] due to T. Bartsch and M. Willem, we
prove Theorem 4.3.1; see also [148]. In recent years, these techniques have been suc-
cessfully applied to several elliptic problems set in the Hilbertian space H'(R"). Re-
grettably, the extension to equations driven by the general p-Laplacian operator, p > 1,
seems not yet completely understood. Among others, we cite the papers [146, 172].

Chapter 5 is concerned with solutions of a scalar field equation settled on a strip-
like domain of the Euclidean space R". More precisely, the general form of the main
problem is given by

{—Au =Mooy, u) inOxRV™, (1.6)

u=0 on 30 x RN,

where A is a positive real parameter, f : O x R¥"™ x R — R is a suitable continuous
nonlinear term, and O x RV "M isa strip-like domain in RY , in which O is a bounded
open setin R™, withm >1and N > m+2.

The existence and multiplicity theorems proved in Chapter 5 represent a more
precise form of some results that have already appeared in the recent literature; see,
among others, the papers [140, 141, 148, 151]. To overcome the lack of compactness in
order to prove the existence of solutions, we make use of a sort of flower-shape geom-
etry for symmetric subspaces of the Sobolev space H(l)(O x RN™™) constructed in [79]
and mainly inspired by the results contained in [141] and [144].

From a purely mathematical point of view, Theorem 5.2.1 furnishes an accurate
description of the number of block-symmetric solutions for (D,) that are not cylindri-
cally symmetric when the dimension N is either N = m + 4 or N > m + 6. Recently, a
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hemivariational inequality problem, via nonsmooth analysis arguments, was treated
in [141]; see also [90] for related topics. When the nonlinearity of [141] is regular, the
problem reduces to (I.6). However, Theorem 3.1 in [141] gives the existence of only
cylindrically symmetric solutions. It is worth noting that the main conclusion of The-
orem 5.2.1 remains valid for the hemivariational problem treated in [141] by using the
W. Krawcewicz and W. Marzantowicz principle for locally Lipschitz functionals estab-
lished in [139]. Moreover, to the contrary of Theorem 3.1 in [141], Theorem 5.2.1 has
been achieved thanks to Propositions 5.1.3 and 5.1.4, which are derived from a careful
analysis of the classical compactness argument due to P.-L. Lions in [160, Théoréme
I11.2]; see Section 5.1 for a detailed discussion on this topic.

Subsequently, in Section 5.3, the classical fountain theorem provides not only a
finite number of infinitely many cylindrically symmetric solutions, but also cylindri-
cally nonsymmetric solutions in certain dimensions. The main Theorem 5.3.1 can be
viewed as a refined version of a classical existence result proved by T. Bartsch and
M. Willem in [36] for Schrédinger equations. Again, the existence of infinitely many
cylindrically symmetric solutions for hemivariational inequalities has been proved in
Theorem 3.2 of [141], by using a suitable version of the fountain theorem valid for non-
smooth functionals. Inspired by [140, 141], in Theorem 5.3.1 the existence of a precise
number of sequences of symmetric solutions with no cylindrical structure has been
proved, completing somehow the picture.

In both Theorems 5.2.1 and 5.3.1, a crucial role in our approach is played by a care-
ful algebraic analysis of some symmetric structures defined by the natural action of
the group O(N - m) = {L,} x O(N — m), where I, is the identity matrix of order m, over
the Sobolev space Hy(O x RY™™); see Section 5.1.

Chapter 6 deals with elliptic equations on the unit sphere $V — RV*!, with N > 2,
endowed by the induced Riemannian metric and involving a possibly critical nonlin-
ear term. In this chapter we first consider the polyharmonic problem on the unit sphere

D™y = [u»2u inSV,
N (L.7)
uecH™SY), N>2m,

where m and N are two positive integers, with m > 2, 2, = 2N/(N - 2m), D™ is the
polyharmonic operator on the sphere defined by

m 1 .
gm _ g(_Ah + Z(N - 2k)(N +2k - 2)1dL2(SN)>’
=1

and Ay, denotes the usual Laplace—Beltrami operator on sN.

In Section 6.2 the existence of sequences of sign-changing solutions, which are
mutually symmetrically distinct, is attained, and a lower estimate of the number of
these sequences is also given; see Theorem 6.2.1. To this aim, some fine properties of
certain symmetric subspaces of the Sobolev space H m($N) are studied in Section 6.1
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via a group-theoretical analysis of the natural action of the orthogonal group O(N +1)
on the sphere $". The main result given in Theorem 6.2.1 is crucially based on the ab-
stract tools developed in [144, Proposition 3.2]. Theorem 6.2.1 ensures that the critical
polyharmonic equation (I.7) admits al least

sy = [N/2] + (DN -1

sequences of infinitely many finite energy nodal solutions, which are unbounded in
H™($Y) and mutually symmetrically distinct.

Critical polyharmonic problems have been intensively studied in the mathemat-
ical literature also in connection with the famous results obtained by H. Brézis and
L. Nirenberg in [50] for the semilinear critical Dirichlet eigenvalue problem. Among
others, we mention here the paper [213] due to P. Pucci and J. Serrin dedicated to criti-
cal polyharmonic Dirichlet eigenvalue problems in the Euclidean ball. Paper [213] has
served as inspiration for subsequent research in different directions; see the mono-
graph [115] as a general reference on this subject.

Along this direction, inspired by Y. Ding [80], T. Bartsch, M. Schneider, and T. Weth
in [35] show for the critical polyharmonic equation

A"y = uf»2u inRY,
{( ) |ul L)

ue D™RY), N>2m,

the existence of a sequence of infinitely many finite energy nodal solutions which
are unbounded in the Beppo Levi space D™*(R"). A more precise version of Theo-
rem 6.2.1, obtained in [185], ensures that the critical polyharmonic equation (I.8) ad-
mits at least an asymptotically exponential number of sequences of infinitely many
finite energy nodal solutions which are unbounded in P™*(R"). A general result valid
for a wide class of O(N + 1)-invariant variational problems that correctly encode also
the critical polyharmonic equation (I1.8) has been recently proved by W. Marzantowicz
in [174], via the intrinsic linking between orthogonal Borel subgroups in O(N + 1) with
partial and orthogonal flags in RV*!. Theorem 6.2.1, on the contrary of the Marzantow-
icz result, is based on some explicit symmetric structures defined through the action
of the orthogonal group on the unit sphere S". Indeed, this action naturally arises in
the theory of Lie groups of transformations.

Actually, elliptic equations on the unit sphere are relevant to the theoretical point
of view also in connection with the study of the following parametrized Emden-
Fowler (or, Lane-Emden) equation:

— Au = AT Pwix/IxDf (X u),  x e RN {o), (L9)
wheres € R, with1-N <s < 0, and

we A+($N) = {w e L®(sV) - essNinfw > 0}.
s

printed on 2/10/2023 3:36 PMvia . Al use subject to https://ww.ebsco.confterms-of-use



Introduction =— XVII

Existence results for (I1.9) have been established recently in [42, 150, 151] via varia-
tional methods. The key transformation of M. F. Bidaut-Véron and L. Véron in [39] re-
duces (1.9) to

- Apyv+av = Aw(o)f(v), o€ sV, a=s(1-s-N)>0. (1.10)

Equations of type (1.10) have been largely studied, and we refer to the pioneering pa-
pers [68] of A. Cotsiolis and D. Iliopoulos and [244] by J. L. Vazquez and L. Véron. See
also [151, Chapters 9 and 10] for an intensive treatment of this argument. Along this
direction, in Theorems 6.2.4 and 6.2.5, we establish existence of infinitely many ar-
bitrarily small solutions of (1.9) via (I.10). Furthermore, the main variational idea is
based on the general approach proposed by B. Ricceri in [226]. This method was first
applied in problems similar to (1.9) by J. Saint Raymond in [228].

A persisting assumption on the current literature dedicated to the existence of
infinitely many solutions for a large class of problems driven by a second order elliptic
operator is expressed by

— 00 < lim infm < limsup Fo = 00, (I.11)
t—L 2 t—L t2
where either L = 0" or L = co; see, among others, the papers of F. 1. Njoku, P. Omari,
and F. Zanolin [198], F. Obersnel and P. Omari [199], as well as P. Omari and F. Zanolin
[200, 201]. On the contrary of the above results, in Theorems 6.2.4 and 6.2.5, condi-
tion (I.11) is not required any longer, and the primitive F is supposed to have a more
general oscillating behavior near the origin or at infinity, including the case

lim sup Ilzt) < 00.
t—L t

Weaker forms of (I.11) are analyzed in Chapters 8 and 9, in which the existence
of infinitely many solutions for a wide class of elliptic problems on homogeneous
Hadamard manifolds is presented. The last Section 6.3 of Chapter 6 is dedicated to
elliptic problems on the unit sphere involving a critical nonlinear term. It is worth
mentioning that in [126] E. Hebey investigates existence and compactness properties
of stationary Kirchhoff equations settled on general compact manifolds.

The main Theorem 6.3.3 is peculiar of stationary nondegenerate Kirchhoff equa-
tions on the sphere sY when N > 4. For instance, an analogous result cannot be
achieved for Dirichlet problems on bounded Euclidean domains. In the spirit of the
conclusions contained in [126], a direct and meaningful consequence of Theorem 6.3.3
ensures that the critical Kirchhoff equation

(@ + blul®)(~Dpu + u) = Au"2u + ju* 2u insV,

in which g € (2,2*) and
1/2

= ([ oy + [ ubao,)

sV sV
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has at least 3s solutions, provided that N > 4,

2
flull

N4
na o 2N —4)5 ~
ueH'(sV)\(o} ull2.”

azb> R
2

s (112)

where

and A > 0; see Corollary 6.3.4.

The variational analysis we use to prove Theorem 6.3.3 and its consequences is
based on some fine topological results obtained in [225, 226] and makes use of an in-
teresting technical approach developed in [89]. More precisely, a condition like (I.12)
has been introduced in [89] in order to recover the weak lower semicontinuity prop-
erty of the energy functional associated to a stationary Kirchhoff problem defined on a
bounded Euclidean domain in the presence of a critical nonlinear term. The restriction
on the dimension required in Theorem 6.3.3 is sharp. Indeed, it cannot be improved
for symmetry reasons and coerciveness arguments.

The theorems of Sections 6.2 and 6.3 are obtained by the preliminary abstract
results contained in Section 6.1 and partly inspired by [144] and the monograph [151,
Chapter 10].

The third part of the book is dedicated to non compact problems arising from ge-
ometry.

Chapter 7 deals with subelliptic problems on Carnot groups. In sub-Riemannian
structures, when a lack of compactness occurs, the problems are fairly intriguing and
have been intensively studied in recent years by many authors. For instance, in the
case of subelliptic problems defined on stratified Lie groups, we refer to the papers
of L. D’Ambrosio and E. Mitidieri [70], N. Garofalo and E. Lanconelli [113], S. Maad
[163, 164], 1. Schindler and K. Tintarev [229], K. Tintarev [240], and to the references
therein.

In particular, when a domain Q of a Carnot group G is not bounded, the Folland-
Stein space H W(l)’z(Q) fails to be compactly embedded into suitable Lebesgue spaces.
This lack of compactness produces several difficulties to apply variational methods.
In order to recover compactness in the unbounded case, a persisting assumption in
the above cited papers is the strong asymptotical contractiveness condition on Q, in-
troduced in [163]. In the Euclidean framework, we refer to the pioneering paper [77]
due to M. A. Del Pino and P. L. Felmer. However, a strongly asymptotically contractive
domain Q is geometrically thin at infinity.

In the presence of symmetries, subelliptic problems, in which the domains are
possibly large at infinity, can be successfully treated under the more general geomet-
rical requirement (#), introduced recently in [27]; see Lemma 7.1.1. More precisely,
in Section 7.2 we work with a topological group T, acting continuously on HWé’z(Q),
such that the T-invariant closed subspace HW&ZT(Q) can be compactly embedded in
suitable Lebesgue spaces.

Assuming the left invariance of the standard Haar measure u of the Carnot group
G, with respect to the action of the group * : T x HW *(Q) — HW}?(Q), as discussed
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in Chapter III § 2 No 4 of N. Bourbaki [46] and Chapter 7 § 1 No 1 of N. Bourbaki [45],
variational methods can be applied to the energy Euler-Lagrange functional associ-
ated to the main problem of Chapter 7; see Lemma 7.2.1, as well as Theorems 7.2.2, 7.2.3,
and 7.2.6.

The main existence and multiplicity results cover the case of Dirichlet problems
driven by a nonlinear subcritical continuous term f that is superlinear at zero and ei-
ther superlinear or sublinear at infinity; see respectively Theorems 7.2.2 and 7.2.6. Sim-
ilar variational approaches have been extensively used in several contexts, in order to
prove multiplicity results, such as elliptic problems on either bounded or unbounded
domains of Euclidean spaces, elliptic equations involving the Laplace—Beltrami op-
erator on compact Riemannian manifolds without boundary, and, more recently, el-
liptic equations on the ball endowed with Funk-type metrics; see [142, 152, 153, 155],
[150] and [154], respectively. Moreover, Theorem 7.2.3 inspired by [222] emphasizes the
role of the celebrated Ambrosetti—-Rabinowitz condition in order to obtain direct multi-
plicity results. Elliptic problems on unbounded domains appear fairly involved, since
the Palais—-Smale condition of the associated Euler-Lagrange functionals does not
hold at any level, but just below suitable thresholds; see, among others, the papers
[44, 162, 185, 189, 207]. In Section 7.3 we overcome these difficulties adopting several
strategies already used in different contexts.

The theoretical arguments presented above are successful for proving existence
of weak solutions for subelliptic problems defined on a special class of (unbounded)
domains of the Heisenberg group HY = CV x R, N > 1. More precisely, let us consider
Y1, ¥, : R§ — Rthatare bounded on bounded sets, with i, (t) < ,(t) forevery t € R;.
Define

Qy ={o e H 10 = (z,t), with y(Iz]) < t < h,(lzD)}, (L13)

N
where |z| = \Y i Iz;]%

If the functions ; and i), are bounded, the domain Q is strongly asymptotically
contractive, and the whole space H WS’Z(Q,I,) is compactly embedded in L"(le) for ev-
ery g € (2,2%); see [27, 169], as well as [113, 229]. Otherwise, thanks to the Rubik-cube
geometry, Lemma 7.1.1 recovers the compact embedding above.

The attempt to develop a Rubik-cube technique on the Heisenberg group is very
recent; the first result in this sense has been proved in [27]. Following [27], a detailed
description of some symmetric subgroups of U(N) and variational arguments allow
us to obtain further multiplicity results; see, for instance, Corollary 7.2.5. In this spirit,
Section 7.3 is devoted to an application of an abstract critical point theorem due to P.
Rabier in [219] in problems settled on strip-like domains Qy ¢ H"; see Theorem 7.3.1.
Multiplicity results can be directly derived for a wide class of nonlinear problems from
Theorem 7.3.1.

Good references on the arguments treated in Chapter 7 are the monographs [43,
151] and the papers [70, 245], as well as their bibliographies.
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Chapter 8 treats elliptic problems on homogeneous Hadamard manifolds, i.e.,
Riemannian manifolds which are complete, simply connected, with everywhere non-
positive sectional curvature, and with a transitive group of isometries. The existence
or nonexistence of solutions for elliptic problems defined on an Hadamard manifold
M = (M,g) is a topic in Differential Geometry that dates back to the 1970s. In the
last years, several questions have been studied in this setting in connection to sharp
isometric inequalities; see [122, 123].

Among these intriguing geometric implications, conditions on the sectional cur-
vature produce meaningful compact embeddings of certain Sobolev spaces associated
to M into Lebesgue spaces; see L. Skrzypczak and C. Tintarev [232, Theorem 1.3 and
Proposition 3.1]. The compactness properties are essential to apply the critical point
theory to the energy functionals associated to the problem on M in question.

In Section 8.1 we recall some well known concepts in Riemannian geometry. In the
presentation we are as concise as possible, in order to correctly introduce the main
problem. We refer, for example, to [18-20, 122, 123] for a detailed derivation of the
geometric quantities, their motivations, and applications.

The heart of Chapter 8 is the problem
{—Agu +u=w(0)[f(w) +Afw)] in M, (114)

u=>0in M, ueH;(M), '

treated in Section 8.3. In (1.14) the symbol A, denotes the classical Laplace-Beltrami
operator on an N-dimensional homogeneous Hadamard manifold M, with N > 3, Ais
areal parameter, w : M — Ris a suitable symmetric positive potential, f : R§ — Ris
a continuous function oscillating near the origin or at infinity, and f : R — R is any
continuous function, with f(0) = 0.

The existence part of the main results given in Theorems 8.3.1 and 8.3.2 is mainly
based on minimization techniques on a truncated problem and on a nonsmooth ver-
sion of the Palais principle due to J. Kobayashi and M. Otani in [138], which is valid
for Szulkin-type functionals defined on reflexive Banach spaces; see Theorem 8.2.1 of
Section 8.2 and Theorem A.2.2 in the Appendix. Even if the variational methods for
proving Theorems 8.3.1 and 8.3.2 are classical, the interest of such a more general ap-
proach goes much beyond their proofs because it seems to be flexible and useful for
other purposes.

For instance, in connection with the main theorems, some results have been
proved for elliptic problems on Cartan—-Hadamard manifolds with poles in [88, The-
orem 4.1] and, in presence of symmetries, for Schrodinger-Maxwell systems on
Hadamard manifolds in [91, Theorem 1.3]. It is easily seen that similar versions of
Theorems 8.3.1 and 8.3.2 can be proved for Schrodinger-Maxwell systems of the form

{—Agv +V+eve = Aw(o)[f(v) + Af(v)] in M,
~Dgp + P = gV in M,
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where M is a homogeneous Hadamard manifold of dimension N, with3 < N < 5,
f,w,fare as before, and e, g > 0 are positive constants; see [91, Remark 1.5].

A crucial tool used along the proof of Theorems 8.3.1 and 8.3.2 is the existence of
a suitable topological group ¢ acting on the Sobolev space H;,(/\/l) and such that the
%-invariant closed subspace Hglq)g(/\/l) is compactly embedded in suitable Lebesgue
spaces; see Proposition 8.1.1 in Section 8.1.

As it is well known that the Poincaré ball model is a significative example of a
homogeneous Hadamard manifold, which is noncompact and of infinite Riemannian
measure. In the last Chapter 9, in connection with the results proved in Chapter 8
and taking the advantage of the intrinsic nature of the hyperbolic geometry, elliptic
problems on the Poincaré ball model are studied; see [111, 167, 182], as well as [218,
233, 234] for related topics and methods.

More precisely, we investigate the existence of multiple solutions for Kirchhoff
problems whose simple prototype is given by

—<a +b J |VHu|2dy>AHu — w(o)fw) inBY,
o (L15)

u e H(BY),

settled on the Poincaré ball model BY, with dimension N > 3, and positive real param-
eters A, a and b. Here, Ay denotes the Laplace—Beltrami operator on BY, the potential
w e LY(BY) nL®(B") is a nontrivial nonnegative radially symmetric function, and f is
a continuous function.

To the best of our knowledge, no results comparable to the theorems of Chapter 9
are available in the literature concerning Kirchhoff problems on curved structures. The
proof of Theorem 9.2.1 is based on critical point arguments similar to that carried out
by several authors in different contexts; see, among others the papers [16, 17, 184] and
references therein. However, the noncompact hyperbolic setting presents additional
difficulties with respect to the aforementioned cases, and suitable geometrical and
algebraic tools need to be adopted in order to get existence.

For instance, a crucial step in the main approach is the continuity of the super-
position operator due to M. Marcus and V. Mizel [171, Theorem 1, p. 219] given in the
hyperbolic context instead of the classical Euclidean setting; for additional comments
and remarks in the Riemannian framework, see also [123, Proposition 2.5, p. 24]. The
continuity of the superposition operator replaces the nonsmooth analysis method
used in Chapter 8. Indeed, direct minimization gives the existence of constrained
local minima of the associated energy functional J; on appropriate weakly closed
subsets (Cff)k C H%(IBN ), which are actually local minima of J, in the entire sym-
metric Sobolev space H{;(IBN ) thanks to the Marcus—Mizel property, and so solutions
of (I.15) by the symmetric criticality principle of R. Palais.
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Theorem 9.2.1 covers nonlinearity models f for which the potential F satisfies

lim inf @ = —00,
t—0+  t2
i.e., condition (I.11) is violated, and so the results contained in Chapter 8 cannot be
applied; see also Theorem 9.2.5 in which

F(t)

lim sup - € R* U {oco}.

t—0*
Theorem 9.2.4 gives a suitable hyperbolic version of Theorem 7.2.3 of Chapter 7 and
shows how assumption (I.11) implies the existence of a nontrivial solution of (I.15); see
also Theorem 9.3.3 for a general version of Theorem 9.2.4 valid for Kirchhoff problems
defined on homogeneous Hadamard manifolds. Finally, the existence established
in Theorem 9.3.2 continues to hold also in the presence of small subcritical perturba-
tions as shown in Theorem 9.3.4. Comments and open problems are presented at the
end of Chapter 9.

Appendix A is dedicated to the celebrated principle of symmetric criticality of R.
Palais intensively used along Parts II and III of the book. The origin of the principle
is rather unclear, and its first implicit use seems to be due to H. Weyl [246] around
1950, and later in 1975 by S. Coleman [65] in a more explicit form. In 1979, for smooth
symmetric functionals, the general criterion was rigorously formulated by R. Palais in
his celebrated paper [202]. A simple version of the Palais principle reads as follows:
Let ¢ be a compact Lie group which acts linearly on a real Banach space X and let I be
a ¢-invariant functional on X, then

{I'(u) = 0 in Fixy (X) STW=0inX

u € Fixg(X)
where Fixy (X) is the closed subspace of 4-symmetric points of X defined by
Fixy(X) ={uecX:gu=uforeveryg c 4}.

Theorem A.1.1 is the general version of the Palais result due to J. Kobayashi and M.
Otani in [138]. Successively, Theorems A.1.2 and A.1.5 treat two special meaningful
cases of Theorem A.1.1. The first, whose original version is due to R. Palais himself
in [202, Proposition 4.2], deals with the so-called compact case, while the latter con-
cerns the isometric case.

Roughly speaking, if I is a C! functional on a Banach space X, then a good strategy
to search its critical points is to find a suitable topological group ¢, acting either con-
tinuously or isometrically on X, and such that the functional I is invariant with respect
to the action of ¢ on X. Hence, if I restricted to Fix,, (X) admits a critical point u, then
u is also a critical point of I in the entire space X thanks to the symmetric criticality
principle.
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The appendix ends with Theorem A.2.2, which is a significant version of Theo-
rem A.1.2 and is applicable to the so-called Szulkin functionals that are sums of a C!
functional and of a proper convex lower semicontinuous functional. For further de-
tails, we refer to the celebrated paper [239] of A. Szulkin.

The techniques which we discuss and describe in this book go far beyond all the
equations we study, and the methods used here can be applied to other classes of
elliptic equations, Hamiltonian systems, as well as hemivariational inequalities. Many
of the proofs and derivations are new and, though difficult, make the subject available
to a general reader.

The conclusions also raise, and leave open, a number of other intriguing ques-
tions. Some of them are briefly presented at the end of every chapter. Finally, the bibli-
ography is far from being complete, and we just listed papers we closely use. Naturally,
we apologize for possible omissions.
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Lessi cosi di tutto un po’, disordinatamente;
ma libri, in ispecie, di filosofia. Pesano tanto:
eppure, chi se ne ciba e se li mette in corpo,
vive tra le nuvole.

Luigi Pirandello
from Il fu Mattia Pascal

This chapter deals with existence of nontrivial solutions for critical quasilinear equa-
tions driven by general (p, q) elliptic operators of Marcellini’s type.

The importance of studying problems involving (p, q) operators, or operators with
nonstandard growth conditions, begins with the pioneering papers of P. Marcellini
[168], see also [169, 170], and V. V. Zhikov [259]. Since then the subject has been draw-
ing increasing attention to the existence, regularity, and qualitative properties of so-
lutions of different problems.

We refer to [66, 67, 176] for historical details and a wide list of recent contributions
along with [110].

1.1 The quasilinear equation (£)

In this chapter, we study the existence of solutions for a quasilinear elliptic equation,
involving general (p, q) elliptic operators, as well as critical nonlinearities. Since the
study of the scalar equation is fairly involved, we refer the interested reader to the
proofs of the vectorial case contained in the original paper [100], where these opera-
tors and problems were introduced. More precisely, we consider the equation in RN
written as

~div(A(|Vul)Vu) + B(Jul)u = Af (u) + ul? 2, (€]

where q* is the critical exponent related to g, with 1 < g < N, while A > 0 is a real

parameter. We require the following condition:

(Cy) A and B are strictly positive and continuous in R*, with tA(t) — 0 and tB(t) — 0
ast — 0%,

Let us introduce for simplicity the functions .A and B as the potentials, which are 0 at
0 and obtained by integration from

A'(t) = tAt), B'(t)=tB(t) forallt e R,

where tA(t) and tB(t) are defined to be O at O thanks to (C;). Taking inspiration from
[96, 100, 214], we furthermore require

https://doi.org/10.1515/9783110652017-001
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(C,) There exist constants ay, ag, by, by, a;, ay, by, by all strictly positive, and there are
exponents p and q, with1 < p < q < N, such that for all t € R},

aot’ !+ atit < A'(t) < apt? T+ apt?

bot’ ™ + bitT < B'(t) < bot? ! + byt

Moreover, we assume that
(C5) There exist constants 6 and 9, with q < min{6, 9} < q*, such that

OA() > tA'(t), 9B(t) >tB'(t) forallt € R}
holds. Moreover, there exists a constant ¢ >0 such that forall ¢, n € RN s

(A(IEDS = A(Inn) - (§ =) = cglé —nl”. (1.1

Note that (1.1) holds whenever A is of the form A(t) = A;(t) + t?/g, t € R}, where
q > 2, A, is convex and of class Cl(IRg), with A4;(0) = 0. Indeed, (1.1) follows at once
by convexity and by the famous Simon inequality, see Lemma 2.1 of [231]. For more
general considerations we refer to [100].

Condition (C,), together with (C;), yields that
Alt) < tA'(t) <A1, B <tB'(t) < IB(t)

forallt € R.

We just present few examples which illustrate the general equations covered un-
der the assumptions (C;)-(C;) and refer to [100] for general systems. In the examples
we tacitly suppose that 1 < p < gand 2 < g < N, without mentioning.

Similarly, for A(t) = B(t) = t’/p + t1/q, t € Rj, with1 < p <2 < g < N, one has
ag=ay=a;=0;=by=by=b;=b;=1,0=9=gq,and c; > 0 comes from convexity
and the famous Simon inequality, as noted above. Hence (£) becomes

—Ayu—Agu+ ulP~2u + [l %u = A @) + ul?

where from here on Agu = div(|Vu|?~2Vu) for any p>1

IfA() = VI+£2-1+t*/4and B(t) = ?/2 + t*/4, t € R}, with 2 = p < q = 4, then
ag=by=by=0ay=a,=by=b;=1,0a=1/2,0=9=4,9g" =4",¢c, > 0in (1.1).
Now (&) reads as

. Vu 3 4*-2

—dlv(—> —Au+u+u =Af(w)+ [ul” u
Vit v/

Taking A(t) = tarctant —log V1 + t2 + t*/4 and again B(t) = t*/2 + t*/4, t € R}, we get

2=p<q:4,ao=b0=b1=a0:a1260=b1:1,a1:2/3,9:3=4,q* :4*,C4>O

is the constant above, and (£) reduces to

. [ arctan |Vu
dw(#

Vu> -Au+u+ w = Af (u) + |u|4*_2u.
[Vul
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For other examples, we refer to [100].
The parameter A in (£) is strictly positive and f is a continuous function while F(t) =

fé f(r)dr satisfies the subcritical growth conditions

(F) F20inR,f(t) = 0 forall t < 0. Furthermore, there exist m and v such that1 < p <
qg<m<q*, max{0,9} < v < q*, and for every € > O there exists C, > O for which
the inequalities

If(t)] < gelt|”™ + mC,|t|™"  foranyt e R (1.2)
and
0 <VF(t) < tf(t) forallt e R
hold, where 0, 9 are given in (C5).

The symbol Dl’q(IRN ) denotes the completion of Cg° (IRN ), with respect to the norm
IVulg = (LRN IVqudx)l/ 9, Moreover, Cqr >0is the best Sobolev constant, for which

lully < cgIVull, forallu e D*I(RY). (13)
The natural space for finding solutions of (€) is
w = w?(RY) n wH(RY),
endowed with the norm
lull = lully + lulpra,

where [lullye = llull, + [Vul,, forallu € W (RY), and | - l, denotes the canonical
L(RN) norm for any p>1

Theorem 1.1.1. Suppose that A and B satisfy (C;)—(C3) and (F) holds. Then there exists
A" > 0 such that equation (£) admits at least one nontrivial solution uy in W for all
A > A*. Moreover,

lim [y, =0 (1.4)
A—o00

holds.

It is interesting to point out that for the basic equation (£) the proof follows a direct
argument presented in Proposition 1.3.1. Moreover, the threshold A* is just obtained in
the key Lemma 1.2.4, on which Theorem 1.1.1 is strongly based. Thus, we thought to
present the model equation (£), since it appears still interesting in applications and,
moreover, since the existence argument is fairly elegant. Indeed, the proof relies on
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the alternative Proposition 1.3.1 of Lions type. However, even Theorem 1.1.1 and its ex-
tension to the vectorial case given in the original paper [100] continue to improve or
complement previous results for the quasilinear (p, ) scalar or vectorial problems; cf.,
e.g., [31, 33, 54, 55, 158] and the references therein.

Indeed, Theorem 1.1.1 extends previous results in several directions also for the
mild growth conditions on the main elliptic operator A, which exhibits a (p, q) growth
by (C,). This is more evident from the fact that the solution space W has a strong de-
pendence on (p, q), since we consider existence of entire solutions. Usually (p, q) prob-
lems are settled in bounded domains Q of RY , so that the natural solution space is
W= W(l)’p Q@n W(l)’q(Q) = W(l)’q(Q). In this chapter the situation is much more delicate.

Equation (€) has a relevant physical interpretation in applied sciences, as well as
a mathematical challenge in overcoming the new difficulties intrinsic to (£). For addi-
tional physical motivations, we mention [58]. The presence of the critical nonlinearity,
as well as the fact that (£) is studied in the entire space RN , cause, roughly speaking,
a double loss of compactness, which produces new challenging complications. The
interest in equation (&) is twofold. On the one hand, (£) is quite challenging from an
analytical point of view since the (p, q) operator is not homogeneous and, because of
the lack of compactness, several technical difficulties arise when applying the usual
methods of the theory of elliptic equations. On the other hand, (£) has a relevant phys-
ical interpretation in applied sciences. In other words, if u denotes a concentration of
a chemical substance, (£) derives from a general reaction—diffusion equation

u, = div(|Vul’2vu + [Vu|? V) + g(u), (1.5)

which arises not only in physics, but also in biophysics, in plasma physics, in chemical
reaction design, and in models of elementary particles. In most cases, g is of polyno-
mial type, but for the von Karman model this nonlinear term has critical growth at
infinity.

1.2 Existence of weak solutions for (£)

In this section, for simplicity, we assume, without further mentioning, that the struc-
tural assumptions required in Theorem 1.1.1 hold.
We say that a function u € W is a (weak) solution of equation (&) if

J A(|Vul)Vu - Vepdx + J B(Jul)updx

RN RN

=1 Jf(u)(pdx + i* j |u|q*_2u(pdx
RV 1 RY

forany p € W.
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Clearly, the (weak) solutions of (£) are exactly the critical points of the Euler-
Lagrange functional I = I, associated with (£), where I : W — Ris given forallu ¢ W
by

I(u) = J' A(|Vul)dx + J B(|lul)dx - A J Fu)d —% J u|? dx,

RN RN RN RN

which is well defined and of class C'(W) by (C,) and (F).

It will be shown here that the functional I has the geometric features to get the ex-
istence of a Palais—Smale sequence at special levels via the mountain pass theorem of
Ambrosetti and Rabinowitz. Taking inspiration from [100], we prove some preliminary
properties. Combining the classical results in Sobolev space theory, we easily get the
next lemma.

Lemma 1.2.1. The embedding W — L“’(]RN ) is continuous for all p € [p,q*], and
lull, < collul  forallu e W, (1.6)

where ¢, depends on g, N, p, and q.
Ifp € (1,q%), then the embedding W —— Li“;c(]RN ) is compact.

Before showing the geometrical mountain pass structure of I, let us note that for
any € > 0 condition (F) gives the existence of C, > 0 such that

|F(t)| < elt]? + C|t|™ forallt e R 1.7
holds. For simplicity in notation, in what follows we put
a = min{ay, by, a;, by}, @ = min{a,, a;}, (1.8)

while a = max{ay, by, a4, by}. Clearly, 0 < a < a by (C,).

Lemma1.2.2. Fix any A > 0. Then there exists a nonnegative function e € C‘C’O(]RN ),
independent of A, such that I(e) < 0, |le]l > 2 and |le];+ > 0.

Furthermore, there exist numbers j = j(A) > O and p = p(A) € (0,1] such that
I(u) > j for any u € W, with |lull = p.

Proof. FixA > 0. Letu ¢ C(‘_.’O(IRN) be such thatu > 0in RY, |ju| = 1, and lully- > O.
Therefore, by (C,), (F), and the definition of a given in Section 1.1, we have as t — oo,

a, t4
I(tw) < —t7 — —Jlulll. — ~co,
p q

sincel < p < g < q¢*, asassumed in (C;). Hence, taking e = 7,u, with 7, > O sufficiently
large, we obtain at once that e > 0 in RN, lel = 2, I(e) < 0, and lellq- > 0, as stated.
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Moreover, for the second part of the lemma, we note that forallu € W,

-1
Nl < 297 ], + Nl 3-

Hence, (C,), (1.8), and (1.6) imply that for all u € W, with |ul| <1,

a a m 1 .
10 = Sy, + Sl A [ etax -2 [ coturmax - —
RN RN
;
Ao nd q qy,,19 my om_ Cat g
> S Il + ) Aecflul? = AC ™ - 5

*

A 1-qy, 14 qy,,19 my m CZ* q
> =27 ull* = Aecglull® = AC cpllull™ — —=—ul® ,
q a em q*

since1 < p < g < m < q*. Therefore, we are able to fix £ > 0 so small that

K= 21_‘12 —/\ecg > 0.

Hence, there exists p € (0,1] such that

-
.

max y(t) = y(p) >0, wherey(t) = kt? - AC,cp,t™ - i*tq ,

te[0,1] q

since g < m < ¢* and due to the choice of €. Consequently, I(u) > y(p) = jforallu € W,
with |lu|| = p, as desired. This concludes the proof. O

From the proof of Lemma 1.2.2 it is evident that e = Tyu is selected at some A, > 0,
that is, Ty = 1¢(Ap), then I(e) < 0 for all A > A,. Moreover, |le| > 2 > pforallA > Ay,
since p = p(A) € (0,1].

We recall in passing that, if X is a real Banach space, a c! (X) functional J satisfies
the Palais—Smale condition at level ¢ € R ifany Palais—Smale sequence (i), atlevelc,
briefly (PS), sequence, such that

Ju) —c and J'(u) -0 inX ask— oo, (1.9)

admits a convergent subsequence in X.

Now, for fixed A > 0, thanks to the geometry given in Lemma 1.2.2, we introduce
the special levels of I by

¢, = inf max I(y(t)), 1.10
A yerl te[0,1] (Y( )) ( )

where I' = {y € C([0,1],W) : y(0) = O, I(y(1)) < 0}. Obviously, c; > O thanks to
Lemma 1.2.2, since in particular |le|| > p. We introduce an asymptotic condition for the
level c,. This result was already observed in the scalar case in [96], cf. Lemma 2.2 and
Remark 2.3, and the vectorial case in [100], and will be crucial to overcome the lack of
compactness due to the presence of the critical nonlinearities.
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1.2 Existence of weak solutions for (§) =—— 9

Lemma 1.2.3. One has

lim C) = 0.
A—0c0

Proof. FixA > 0. Let e be the nonnegative function determined in Lemma 1.2.2. Since
the functional I satisfies the mountain pass geometry at O and e, there exists t; > 0
verifying I(fje) = max;. I(te). Therefore, (I '(tie), €) = 0. Thus,

JAmwmmwﬁ&+memmﬁﬂ
RN RN
=A J f(te)edx + t/‘{*‘1||e||g: (1.11)
]RN
> tf el
by (F), since A > 0.

We claim that {t;},( is bounded in R. Indeed, from (C,), putting A = {A > 0 :
tillell = 1}, we derive that

jAmwmﬁwﬁu+jmmm$#mXaﬁwq (112)
RN RN
forany A € A, since 1 < p < q. Therefore, (1.11) and (1.12) imply that

allel? > t] _qllellg* forany A € A,

which yields that {t;},c, is bounded, since |le| ¢ >0 by Lemma 1.2.2. It follows at once
that {t;},.¢ is bounded. This proves the claim.

Fix now a sequence (A;); ¢ R" such that ; — oo as k — co. Obviously, (t), )y is
bounded. Thus, there exist a t, > 0 and a subsequence of (A; ), still denoted by (A;)y.,
such that t) — to as k — co. By the continuity of A" and B’ in Ry, as stated in (C,),
combined with (1.11), there exists C > 0 such that, for any k € N,

Mjﬂmmﬂ+%*mgsc (1.13)
]RN
We assert that £, = 0. Otherwise, (F) and the dominated convergence theorem yield,
as k — oo,

Jf(f/\ke)e dx — If(toe)edx > 0,
RN RN

by (F) and the fact that e is nonnegative, with |le[l,- > 0, as constructed in Lemma 1.2.2.
Therefore, recalling that A, — oo, we get at once that

I}Lrgo<Ak J f(ty e)edx + t/‘{:_1||e||q*> = 00,

RY
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10 —— 1 Critical quasilinear equations of Marcellini’s type

which contradicts (1.13). Thus ¢, = 0O and t; — 0 as A — oo, since the sequence (),
is arbitrary.
Now the path y(t) = te, t € [0,1], belongs to T, so that Lemma 1.2.2 and (C,) give

G oaep
0<q < rrtlZanI(y(t)) <I(te) < p||e|| th -0

as A — oo, since e does not depend on A. This completes the proof of the lemma. O

Lemma 1.2.2 and the mountain pass lemma yield that the set of Palais—Smale se-
quences of I at the level ¢, given in (1.10) is nonempty. Now we are ready to prove
crucial properties of the Palais—Smale sequences of I at the special level c,.

Lemma 1.2.4. Let (), ¢ W bea (PS)CA sequence of I for all A > 0. Then,

(i) up to a subsequence, u, — uy in W as k — oo;

(ii) there exists A* > 0 such that the weak limit u, is a solution of () for allA > A*;
(iii) the set {uy} 55+ has the asymptotic property (1.4).

Proof. Let (u), ¢ Whea (PS)CA sequence of I for any A > O such that
Iw) —»c, and I'() -0 inW'ask — co. (1.14)

By (C3) and (F), we get
1 1
) = () = [ AQVud)ax - o [ A9 9 Pdx
RN RN
1
+ j B(Juy|)dx - - J B(luy )y [2dx

RN RN
(1.15)

1 1 1 *
- (P = S s (5 - Yt
IRN

1 1 1 1
> (5 - ;) J A (1Y) Vil dx + <§ - ;) J B (Jugl)lugldx,

RN RN

since ¢ < max{0,9} < v < ¢* by (F) and (C3). Then, thanks to (1.14) and (C,), there
exists d; > O such that, as k — oo,
e+ dallugell +0(1) = el + Il ), (1.16)

where

= a<m - %) (1.17)

and ¢ > 0 by (1.8), (C,), and (F). We claim that (i), is bounded in W.
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1.2 Existence of weak solutions for (§) =— 11

Assume for a contradiction that |u, || — co as k — co. Then, passing if necessary
to a subsequence, still labeled by (u;);, it has norm diverging as n diverges. Then,
we could have either exactly one Sobolev norm diverging, say || - [|y1.», or both norms
diverging. In the first case, as k — oo,

lugllwe + g llwra

0<¢<d 10 1 7 +0(1)
uk Wl,p + uk Wl,q
luellwer  Nugllpra
= dA(u e e, )
uk Wl,p uk Wl,p

< dyllu b, + 0(1) = o(1).

Again this gives the required contradiction and proves the claim.
Finally, in the second case, as k — oo,

lugllwee + Nt llypra
_— = 1)

0<¢é< dA D q
Il + Tl
u 1, u 1,
gdA<" k”;VP . [ k"ZV q>+0(1)
el Mgl

< dy(luglly T, + gl f,) + 0(1) = 0(1).
Consequently, the claim is proved in all the possible cases.

Thus, since (1), is bounded in the reflexive Banach space W, there exist u; € W,
nonnegative numbers 1,, §,, and bounded nonnegative Radon measures y and w on
RY , by virtue of Proposition 1.202 of [107], such that, up to a subsequence still denoted
by (u;), we have

uk - uA in W: ||uk||€vl,p 31/1,11
. © N . N
W -y inky (RY), w—wa.einR",

+ el — 1o

luy| < gg a.e.in RV, for some g € L9(Bg) and all R > 0,

« (1.18)
Ity = upllg. — 83

wel? 2 — uy? 2wy in L7794 (RY),

alVu9dx = pin M(RY), |l dx = win M(RY),

with g € [1,g"), by (1.6) and Lemma 1.2.1. Let us recall that @ is the key positive number
introduced in (1.8). This completes the proof of (i).

Theorem 2 of [134] can be applied thanks to (1.18). Therefore, there exist two non-
negative numbers y, and w,, at most countable set J, three families of points {xj}jE J
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12 — 1 Critical quasilinear equations of Marcellini’s type

and of nonnegative numbers Mitier and {wilies such that
_ q )
w-MIM+%%+%%%,
j

u = alvVuy|%dx + pobo + Zyjtﬁxi, a)g/q* < }%, (1.19)
jel

w]’.]/q* < % forallj e,

where 8, and 5Xi are the Dirac functions at the points 0 and x; of RY, and

alvul?
S= in T (1.20)
ueD™(®RY) fullg.
u#0
From (1.15)-(1.18), we derive the main formula
P q 1 1 q
cx +0(1) = eflugliyy + g + {5 - T luall (1.21)
as k — oo.
First we assert that

lim 1, = 0. 1.22)

A—00

Otherwise, limsup,_,,, 74 = ¢ > 0. Hence there is a sequence j — A; T oo such that
1y, > 1as j — oo. Then, letting j — oo, we get from (1.21) and Lemma 1.2.3 that

0>¢1>0.
This contradiction proves the assertion (1.22). Moreover,
Al + 31, < 1,
since u;, — u, in W, so that (1.6) and (1.22) imply that

lim ||u;]l,« = lim |lu,|| = O. 1.23
lim gl = lim (1.23)

Fix a test function ¢ € C3° (RN) such that 0 < ¢ < 1, ¢ = 1in the closed ball B,
of center 0 and radius 1, while ¢ = 0 in Bg, where B, is the closed ball of center O and
radius 2, and |Vg||,, < 2.Takee > 0 and put ©:;(X) = p((x—x;)/€), x € RY, for any fixed
j € J, where {X;}jes is introduced in (1.19), and PeoX) = @(x/e), x € RrY. Fixj e Ju{0}.
Then @, juy, € W and so (I' (uy), ¢ juy) = 0(1) as k — oco. Therefore, as k — oo,

o(1) = J A(IVuy ) uy Vuy - Voo, jdx

RN
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1.2 Existence of weak solutions for (£) = 13

+ [ DAV IV + Byl Pl (1.29)
]RN
-A J O if (W upedx — J §Ds,j|uk|q*dx-
RN RY

Thus, by (C,), the Holder inequality, and a change of variable,

lim sup
k—o00

j A(IVug)uy Vuy - Voo sdx
N

<lim sup{ j {aol Vit P~ el - 1901 + aq Vi [ g | - |V<as,,-|}dx}
k=0 B(x]-,Zs)

1/p
sliinsup{aoHVukllg_l( J |ukV<p£,j(x)|pdx>

B(x,2¢)
1/q
g-1 q
+ay[Vugllg < J | Vepe ()] dx) ]’
B(x,2)
1/q

1/p
p q
scoa()( J [ur Ve, ;(x)] dx) +c1a1< J [ur Ve, ;(0)] dx>
B(x;,2¢) B(x;,2¢)

.o\ . Ve
sc(p{coa()( J [u P dx) +c1a1< I [uy|? dx) }

B(x;,2¢) B(x;,2¢)

where ¢ = supgen [Vuglly ™, ¢1 = supgen IViel§ ™, and ¢, = ([, Vo)V dy)"™". Con-
sequently,

lim lim sup’ J A(IVuy)w Vuy - Voo sdx| = 0. (1.25)
N

e-0" koo

Clearly, by (C,), the properties of ¢, and (1.18), as k — oo,
0< J <p£,]-B(|uk|)|uk|2dx < J (boluglP + bylu|?)dx
RN B(x]-,2£)

- j (bolupg P + byluy|9)dx,
B(x;,2¢)

sincel < p < g < q*. In conclusion,

lim klim J (pg)jB(Iukl)luklzdx =0. (1.26)

£—-0" k—
RN
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14 — 1 Critical quasilinear equations of Marcellini’s type

Likewise, by (F) and (1.18), as k — oo,
0< j e f (Uuedx < J (qlgl? + m Cylug ™)l
RY B(x;26)
N J (qluy)? + m Cyluy ™) dx,

B(x;,2¢)

sincel < p < q <m < q*. Therefore,

lim lim J @ if (Wudx = 0. (1.27)
£—-0" k—oo 4 >
R

In conclusion, (C,), (1.8), (1.24)—(1.27) give the crucial formula for all j € Ju{0}, namely
J Pejdp+0(1) < J e jdw (1.28)
RN RN

ase — 0",
By Lemma 1.2.3, there exists A* = A*(N, g, w) > 0 such that

o < (% - q-ﬂ)sN/q forall A > A*. (1.29)

We divide the proof in two parts. First, (1.19) and (1.28) yield S a);?/ 7 < Y; < wj for all

j € J. Assume by contradiction that w; > 0 for somej € J. Then, w; > SN, and so (1.21)
implies

1 1 * 1 1
D> (- > (5 -0 ) [ oesd
C/\+0()><v q*>||uk" <V q*>N<p£,]w
R

as k — co. On the other hand, as k — co and € — 0", we have

c,\2<1—i*>wjz<l—i*>smq>0,
vV q v q

which is an obvious contradiction by (1.29). Hence, w; = Oforallj ¢ J and for all
Az A%

Similarly, when the center of the ball is 0, then (1.19) and (1.28) give Swg/ 7 < Mo <
wq. Assume by contradiction that w, # 0. Then, w, > SN4. As above, by (1.21) we
obtain, as k —» co and € — 0%,

CA2<1—%>w02<l—i*>SN/q>0,
v q vV q

which is again a contradiction by (1.29). Therefore, w, = 0 and so u, = 0 forallA > A*.

EBSCChost - printed on 2/10/2023 3:36 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



1.2 Existence of weak solutions for (§) = 15

In summary, we have shown that there exists A* > 0 such that forall A > A*,
|7 dx = w =yl dx  in M(RV)

as k — oo, by (1.18) and (1.19). In particular, for all ¢ € CZ’O(IRN ),

lim J Plug | dx = J Pluy|? dx. (1.30)
kaoo]RN o
Take R > 0 and ¢ € C°(RY) such that 0 < ¢ < 1in RV, ¢ = 1in By, ¢ = 0in BS;
and Vol < 2. Now by (1.1) of (C3) we have

Cq J |Vuy, — Vuy |1dx
By
< [ AVl va - A1) V) - (it - Vi)

Br (1.31)

< J (A(IVug )V — A(IVuy ) Vuy) - (Vuy — Vuy)e dx

IRN
= J PA(|Vuy|)|Vuy |dx - J PA(|Vuy )V - Vuydx + o(1)
RN RV

as k — oo by (1.18). Cleatly,
(I'(w), puy) — (I' (), up) = 0(1) ask — oo
and
J PA(IVi NIV * - Vi - Vg hex = (I' (wy), puge) — (I' (uy), oy )
]RN
- J A(IVu ) (g, — uy)Vuy - Vodx — J ©B(Ju uy (uye — uy)dx
RY RY
+2 | pu)u - udx
IRN
+ J (pluqu*dx— J (pluqu*_zuku/\dx.
RN RN

By (C,) and the Holder inequality,

1/p
‘ J A(IVu]) (w = u) Vi - Vopdx| < Z{aollvuklli’l< J [ = “A|pdx>
RN B

. 1/q
+ag [Vl 3™ < J luy - uﬂlqu> }
Bar
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16 —— 1 Critical quasilinear equations of Marcellini’s type

which yields by (1.18) that

klim J A(IVuy ) (g — up)Vuy - Vodx = 0. (1.32)

RN

Similarly, again by (C,) and the Holder inequality,

1/p
l J OB(Ju g (uye — up)dx| < {bollukllg_1< J |y — uAlpdx>

RY Bar

) 1/q
+mwm3(jnq—mﬂm) }

which yields by (1.18) that

klim J @B(|ug )y (e — uy)dx = 0. (1.33)

RN

Likewise, by (F), the H6lder inequality, and (1.18), as k — oo,

0< J of () (wye — up)dx

]RN
< w7 g — wy| + m Cylug ™y — uy|)dx
[ otanad® =yt m ™~ ) 30
By
1/q 1/m
< C{(J Iuk—uAqux> + <j Iuk—uAlmdx> } -0,
B

2R 2R

|m—1

where C = qsupgen lul? + m C; supyen llul < oo,sincel <p<g<m<q’.

Finally, as k — oo,

J (pluqu*dx - J (pluqu*_zuku/\dx -0, (1.35)

RN RN

by (1.18) and (1.30). Thus, combining (1.31)—(1.35), we have

Cq J IVuy — Vuy|%dx < o(1) ask — oo.
By

Consequently, Vu; — Vu, in [Lq(BR)]N forall R > 0, since ¢; > 0 by (C5). Therefore,
up to subsequence, not relabeled, we get that

Vu, — Vu, a.e.inRY, (1.36)
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1.2 Existence of weak solutions for () = 17

and for all R > O there exists a function hg € LY(Bg) such that |V | < hg a.e. in By
and for all k € IN.
Fix ¢ in C?"(]RN ) and let R > 0 be so large that supp ¢ ¢ Bg. By the above con-
struction and (C,), we have a. e. in By that
|A(IVu )V - V| < (aol Vi P!+ aq | Vg |77 V|
< (C‘ohlz_1 + a1hz_l)|v¢| =D,
where b € Ll(BR). Therefore, the dominated convergence theorem gives at once as
k — oo that
J A(IVuy ) Vuy, - Vpdx = J A(IVuy )V - Vpdx
RN By
- JA(IVuAI)VuA-V¢dx.
]RN
Similarly, using again (C,) and (1.18), we have a. e. in By that
[B(luil )| < (bogh " +b1gf Il = g € L'(Bg),
and so the dominated convergence theorem gives, as k — oo,
j B(Iukl)uk(],')dx - J B(|UA|)UA¢dX,
RN RN
while by (F),
f)@] < (@hud® ¢ +m Cilu " )il < & € L'(By),
so again by the dominated convergence theorem, as k — oo,
J Fu)ddx — J Fuy)px.
RN RN
Finally, since (I' (u;), ) = o(1) as k — oo, we have
J AV |)Vuy, - Vpdx + J B(Juy uy pdx
RN RN
=1 J fu)pdx + i* J Iuqu*_zuk¢dx +o(1).
RN 1 RN
Thus, letting k — oo, using the above arguments and (1.18), we get at once that
J A(IVu,)Vuy - Vbdx + J B(luyuy¢pdx
RY RY

=2 Jf(u,\)(,bdx+q—1* J Iu/\lq*’zu,\qbdx

RN RN

(1.37)
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for all ¢ in C§°(]RN).

Now fix ¢ in W. Then the sequence (¢;); in C‘C’O(IRN), defined by ¢y = G (px * @),
where (py)y, is a sequence of mollifiers and (), is a sequence of cut-off functions, has
the properties that ¢, — @ in W = WP(RY) n W™(R) and ¢, — ¢, V¢, — Vo a.e.
in RN as k — oo. Of course, (1.37) holds along (¢b; ), for all k. Passing to the limit as
k — oo under the sign of integrals, by the dominated convergence theorem, we obtain
the validity of (1.37) for all ¢ € W. In conclusion,

(I'(up), ) =0 forallp e W, (1.38)

that is, u, is a solution of (€) for all A > A*. This completes the proof of (ii).

Finally, (1.4), and so (iii), is a direct consequence of (1.23) and (ii). O

1.3 Proof of Theorem 1.1.1

Let us finish the chapter with a result of independent interest, which implies useful
consequences.

Proposition 1.3.1. ForanyA > Olet (), ¢ W be a (PS),, sequence of I such thatu, — O
in W as k — co. Then, either

@ uy,—0inW,or

(ii) there exists R > 0 and a sequence (y; )y C RY such that

lim sup J [uy[Pdx > 0.
k—o00
Br(yi)

Moreover, (y,)y, is not bounded in RN,

Proof. If (ii) does not occur, then for all R > 0,

lim sup j lu [Pdx = 0.
k—>ooy€]RN
Br(y)

Therefore, u;, — 0in Lf(RY) as k — oo for all p € (p,q") by Lemma .1 of [161], since
(Uy)y is bounded in ¥ (]RN ), while (Vu, ), is bounded in [Lq(]RN )]N . Consequently, by
(F)and (1.2), as k — oo,

0< Jf(uk)ukdx < j(qluqu +mCylu|™)dx — 0,
]RN ]RN

sincel <p<qg<m<q*.Now, (), ¢ Wisa (PS)., sequence of I, so that, arguing
as in the proof of Lemma 1.3.1, passing to subsequences if necessary, and using the
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notation in (1.18), we find as k — oo that

j A(IVuy ) Vuy [2dx + j B(lug g Pdx = ug |9 + o(1) = 6 + 0(1).

RN RN

Therefore, by (C5), (1.8), and (1.23), as k — co and A — oo,

allul

b+ gl < JA(IVukI)IVukIde

wa
]RN

N J B(lug )t [2dx + 04 (1) = 0 (D).
]RN

Thus, |u; || — 0 as k — oo, as required. In conclusion, (i) holds.

Assume now that (ii) is verified and suppose by contradiction that (y; ), is bounded
inRY. Consequently, there exists M > 0so large that Bg(y) ¢ By, forall k. Now, u, — 0
in Li‘;C(lRN) forall p € [1,q*). Therefore,

0 = lim j luy [Pdx > lim sup J lu [Pdx > 0,
k—00 k—00
By Br(yi)

which gives the required contradiction. In conclusion, (y; ); is not bounded in RV, O

All the results proved up to now in the chapter continue to be valid when f is a
Carathéodory function and satisfies (F) when we request (1.2) in the form

If(x, t)] < gelt|®™ + mC,|t|™" fora.e.x e RN andallt € R,

with g < m < g*. In the last part of Section 1.3 we need that f does not depend on x. Let
us now conclude the chapter with the proof of Theorem 1.1.1 based on Proposition 1.3.1.

Proof of Theorem 1.1.1. By Lemmas 1.2.2-1.2.4, for any A > O the functional I has the
geometry of the mountain pass lemma, so that it admits a (PS)CA sequence (u); of I,
which, up to a subsequence, weakly converges to the limit u; € W. The weak limit
uy € Wis acritical point of I forall A > A*, with A* > 0, as asserted in Lemma 1.2.4(ii).
Assume by contradiction that u, = 0. Of course, (u;); cannot converge strongly to
0 in W, since otherwise I'(u;) = 0 and 0 = I(u;) = ¢; > 0 by Lemma 1.2.2. Therefore,
Proposition 1.3.1 implies that there exist R > 0 and a sequence (y; ), € R" such that

lim sup J lu[Pdx > 0. (1.39)
koo Br(yi)

Now, the new sequence (uy)y, with &, = wi (- +yy), is again a (PS),, sequence of I, since
I(%;) = I(uy) and, moreover, I'(ii;) — 0 as k — oo in W'. Indeed, for all ¢ € W, with
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lpll = 1, putting @(z - y;) = ¢4 (2), z € RV, we have

’ J A(IVi )V, - Vodx + J B(|t )t pdx - A Jf(ﬁk)(pdx
]RN

RN RN

1 gt -2~
s J 1717 2 dx

]RN
= ‘ J A(IVukI)Vuk . V(pde + J B(Iukl)uk<pkdz -A J f(uk)(pkdz
IRN ]RN IRN
1 .
- q—* J Iuqu Zukgokdz
RN

= ('@, 10| < I @l Nl = 11 oy

since 1 = |||l = llgill. Therefore, as k — co,

I @y = su£|<1’<ﬁk),<o>| <" @)l = o(D).
[
llpll=1

Consequently, (i), weakly converges to some #, in W by Lemma 1.2.4. Furthermore,
by (1.39),

0 < limsup J [u[Pdx = lim J 4, [Pdz = J |t P dz.
k—oco k—o0
Br(vi) Bg Bg

Hence, iy # 0. Finally, (1.4) follows straight from Lemma 1.2.4(iii). This completes the
proof. O

Comments on Chapter 1

For the sake of completeness, we point out that the results presented in this chapter
could be also investigated for a larger class of elliptic equations where the leading
term is governed by some differential operators such as those considered in [28-30].
For instance, in [28] a class of nonautonomous functionals characterized by the fact
that the energy density changes its ellipticity and growth properties according to the
point has been considered. The results contained in [28] are the borderline counter-
part of the classical cases valid for functionals with (p, q) growth. However, in order to
get Theorem 1.1.1 for this wide class of equations, some different technical approaches
need to be developed in suitable Musielak—Orlicz spaces in which a Lions type result
as Proposition 1.3.1 can be recovered; see, for instance, the recent paper of F. Cola-
suonno and M. Squassina [64] in bounded domains. A noteworthy difference with re-
spect to the classical elliptic case given in [134, Theorem 2] is that, in order to handle
this kind of problem, some new concentration compactness arguments in weighted
Orlicz spaces seem to be essential. This analysis allows proving a variety of existence
results which are outside the scope of the book.
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2 On (p, N) Laplacian equations in R" with
exponential nonlinearities

M’illumino
d’immenso

Giuseppe Ungaretti
Mattina

This chapter deals with the existence of nontrivial solutions for (p, N) equations in RY
with critical exponential growth. The main features and novelty of the chapter are the
(p, N) growth of the elliptic operator, combined with the triple lack of compactness,
as we shall note below. As explained in Chapter 1, also (£y) has a relevant physical
interpretation in applied sciences, as well as a mathematical challenge in overcoming
the new difficulties intrinsic to (£y). Furthermore, equations with Hardy potentials
arise from many physical contexts, such as molecular physics, quantum cosmology,
and linearization of combustion models. But from the mathematical point of view,
the main reason of interest in Hardy potentials lies in their criticality. In other words,
the noncompactness of the embedding Dl’p(]RN ) — LW(]RN ,1x™®dx), p > 1, even lo-
cally in any neighborhood of zero, leads to other difficulties and, more importantly, to
a new phenomenon concerning the possibility of a blow-up. Finally, the presence of
the Hardy terms and critical nonlinearities, as well as the fact that (£y) is studied in
the entire space RV, cause, roughly speaking, a triple loss of compactness which pro-
duces new interesting complications. In particular, let u denote the concentration of a
chemical substance in (1.5). Then, even if usually the right-hand side of (1.5) has poly-
nomial growth with variable coefficients, in the Liouville-Bratu—Gelfand and Frank-
Kamenetsky models the right-hand side of (1.5) has exponential growth at infinity.

2.1 The environment and existence results
In this chapter we study the following equation in R":

ulP~2u

T AhCOuI™ + yg(x, ), (€9)

—Apu— Ayu + [ulP2u + ulN 2u

wherel <p <N < oo, N >2,1< g < p,u, =max{u, 0}, and h is a positive function

of class Lo(]RN), with 8 = N/(N - q), while A > 0, y > 0, and 0 is a real parameter. The

function g is of exponential type and is assumed to satisfy

(H,) g admits partial derivative inu and 0,8 is a Carathéodory function, witho,g(-, t) = 0
for allt < 0, and such that there exists a, > O with the property that for all € > 0
there exists x, > O such that

1

0,806t <euM !+ Kg(e%tN —Sy_a(dg, 1))

https://doi.org/10.1515/9783110652017-002
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22 — 2 On (p,N) Laplacian equations in RN with exponential nonlinearities

fora.e.x e RN and allt € R}, where R} = [0, c0),

N N-2 a) th’
N'=—— and Sy_(a,t)= LU
No1 N-2(@, t) ];) i

(H,) There exists a number v > N such that 0 < vG(x, t) < tg(x,t) fora.e x € RY and
any t € RY, where G(x, t) = jég(x, T)dT fora.ex € RN and all t € R.

A canonical prototype of a function verifying assumptions (H;)—(H,) is given by g(t) =
t Jr(et2 —1), t € R, in the simplest case N = 2. Indeed, the associated partial derivative
0,8 of g verifies (H;) with ay > 1. Moreover, its primitive G(t) = (et2 -1-19)/2,t € R},
and G(t) = 0, u € Ry, satisfies (H,), withv = 4 > 2 = N. Similarly, in the general case

N > 2, the example becomes g(t) = tV et — Sy_,(1,t,)). Again ;g verifies (H,) with
ay > 1, and the primitive G of g satisfies (H,), with v = 2N.

Of course, any function g(x,t) = a(x)¢(t), where ¢ is of the exponential type
presented above and a € L°°(IRN ), with essinf, v a(x) > O, continues to satisfy
(Hy)~(Hy).

Note that (H;) implies a similar exponential growth condition on g. Indeed, fix
€ > 0. Then by (H,) there exists x, > 0 such that fora.e. x € RN and allt € R,

0;8(x, tt)ttdr

N

1 1
d
g, t) = | —gx, tt)dr =
oj a J 1)

— N,
<eu™ i (e - Sy(ag. 1))

as stated.
The natural space for finding solutions of (€y) is

w = WP @®RY) n wN(RY),
endowed with the norm
lull = lullwre + lull g,
where [ullyo = (Jull§ + [Vull)"¢ for all u € W*¢(R") and | - ||, denotes the canonical
Lp(]RN ) norm for any g > 1. Furthermore, we also set
), = J h(x)lul9dx forallu e LN(RY).
RN

A crucial role is also played by the best Hardy constant #,, = [(N - p) /plP in WHP(RN),
given by

o vul » dx \P
Hy= inf —=  luly =<J|U(X)| _> :
uew™ (RY) [lullf, ! X

u£0 P RN

For a proof, we refer to Lemma 2.1 of [112].

EBSCChost - printed on 2/10/2023 3:36 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



2.2 Sobolev space framework and preliminary lemmas =—— 23

In the literature, there are very few contributions devoted to the study of expo-
nential nonlinear problems driven by operators with nonstandard growth conditions.
A (p, N) equation similar to (€y) first appeared in [255], but set on a bounded domain Q
and with g exactly equal to an exponential function. The authors of [255] were able to
get an existence result via a suitable minimax argument, which strongly relies on the
requirement that Q is bounded. More recently, the existence of one solution for critical
exponential problems, set on bounded domains Q and driven by a general (p, N) oper-
ator, was given in [97], via the Nehari manifold approach. Finally, in [102] the existence
and multiplicity results for equation (€y) were proved in the case o = 0.

For equations in the entire space, involving elliptic operators with standard
N-growth, as well as critical Trudinger—-Moser nonlinearities, we refer to [5-7, 82]
for the existence results, to [3, 4, 75, 83] for the multiplicity results, and to the ref-
erences therein. In the nonlocal fractional framework, we refer instead to the very
recent papers [178, 251]. Singular equations have been also studied in [116, 186] and
the references therein.

Let us first prove the existence of a nontrivial nonnegative solution for (£y).

Theorem 2.1.1. Let1<p <N < ooand1 < g < N. Let h be a positive function in LORY),
with @ = N/(N - q). Suppose that g verifies (H,)—(H,). Then, for any 0 € (-oo, Hp)
there exists A = A(0) > O, independent of y € (0,1], such that for all A € (0,A) there
exists y* = y*(0,A) € (0,1] with the property that (£y) admits at least one nontrivial
nonnegative solution u, , in W for all'y € (0,y"). Moreover,

Lim gyl =0 2.2)
holds true.

The proof of Theorem 2.1.1 is based on an application of the Ekeland variational
principle. Theorem 2.1.1 somehow extends in several directions Theorem 1.1 of [5], The-
orem 1.4 of [72], Theorem 1 of [82], Theorem 1.2 of [97], Theorem 1.2 of [255] and Theo-
rem 1.1 of [102]. For the multiplicity results when ¢ = 0, we refer to [102].

2.2 Sobolev space framework and preliminary lemmas

In this section we briefly recall the variational setting for equation (£y) and the techni-
cal lemmas for the separable reflexive real Banach space W, which we use throughout
the chapter.
We say that u € W is a (weak) solution of problem (&) if
J ((1VulP 2 + vulM2)Vu - Vo + (ulP~? + [ulN )upldx - o J |u|p_2ugo|d—|);
RN RN X
=2 J h(xu? " pdx +y J g(x, u)pdx

RN RN
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24 — 2 On (p,N) Laplacian equations in RY with exponential nonlinearities

forany ¢ € W.
Clearly, the (weak) solutions of (£y) are exactly the critical points of the Euler-
Lagrange functional I = I,y associated to (£y), where I : W — R s given by

1 D 1 N o D q
10 =l + 5l =l = Al I,y j GOx, wydx.
RN

The functional I is well defined and of class C!(W) by the structural assumption (Hy).

Indeed, the model function g(t) = tiv ‘1(etf —Sy_y(1,t,)) clearly satisfies (H;), with
ay > 1, and so (2.1). In order to show the validity of (H,), let us consider the function

1
®(O) = G - 580, te R,
where, by integration by parts, the primitive G of the model function is given by
2N ‘

5 (NN LN 5 YN
G(t) = — —J—( >dv.
2N, &, K ] 2N\ &, K

Thus, by direct derivation in R*,

, N-1 Z tkN'—N t2N Z tkN'—N ! tZN Z tkN'—N !
v g S (2 55
N1 k! 2N\, &, k! 2N\, 54 k!

tkN’ -N t2N tkN "N\
Y Seow (2 )
k=N-1 k! 2N k=N-1 k!

tZN tkN’—N !
ﬁ( K ) <0
k=N-1

which implies that ®(t) < 0 in R{, since ®(0) = 0. This proves (H,), with v = 2N.
By the classical results in Sobolev space theory, we have the following first em-
bedding.

Lemma 2.2.1. The embedding W — LP(RY) is continuous for all © € [p,p"1UI[N,00),
and

||u||(J < cpllull forallue W,

where Co depends on g, p, and N.

Clearly, p* > N, whenever (N/2) < p < N. By Proposition A.6 of [24], we know that
the Banach space LYRY, h) = (LIRY, h), | - llg,n) is uniformly convex. Furthermore,
combining some ideas of Lemma 2.3 of [24], Lemma 2.2 of [25], Theorem 2.1 of [250],
and Lemma 2.1 of [52], in Lemma 2.2 of [102] the next technical result was proved. For
the sake of completeness, we report the proof.
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Lemma 2.2.2. The embedding LN(]RN) — Lq(]RN, h) is continuous and
lullyp < IR “Nully  for allu € LN(RY).

Furthermore, the embedding W™N (RY) << LI(RN, h) is compact.
Proof. By the Holder inequality, for all u € o (]RN ),

1N

1/6q
< <J he(x)dx> - <j |u|Ndx> ,

RN RN

that is, the first embedding holds.
To prove the second part of the lemma, we need to show that if uy; — uin
whN (]RN ), then [lu; — u]| ah — 0as k — oo. Thanks to the Holder inequality,

1/6
j h(x)luk—ulqusM< j h"(x)dx) - o(1)

RN\Bg RN\Bg

as R — oo, where h ¢ LG(]RN) by assumption and [lu; — ull% =M < oo forall k € N.
Hence, for all € > 0 there exists R, > 0 so large that .[]RN\BR h(o)|lwy, — ul?dx < g/2.

Fix € > 0 and a subsequence (ukn),, C (ug)g. Since U, —u in LV(BRS) forallv €
[1,N), we can assume, up to a further subsequence, that ; — u a.e. in By . Thus
h()|lu,-ul? — Oa.e.in By, . Furthermore, for each measurable subset E € B , by the
Holder inequality we have

1/0
[ Hoony, - uttax < M(j h"(x)dx)
E

E

Hence, we obtain that (h(x)lukn - ul?),, is equiintegrable and uniformly bounded in
Ll(BRE), since h € LY(RY). Then, the Vitali convergence theorem implies

lim J h(X)|u, —ul?dx =0,
n—oo n
BR

£

and so u;, — uinL? (Bg,»h), since the sequence (u; ), is arbitrary. Consequently, there
exists k, € IN such that JB h(O)|w, — ul?dx < g/2 for all k > k. In conclusion, for all
Re

k = kg,

g —ull? ), = J h(O)|uy — ul?dx + J h(O)luy, — ul?dx < &,

]RN \BRS BRE

as required. O
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26 —— 2 On(p,N) Laplacian equations in RN with exponential nonlinearities

We end the section by stating Lemma 2.4 of [3] in the form we use several times in
what follows.

Lemma 2.2.3. Let (u;); be a sequence in WI’N(]RN) such that

N N
sup lullyn < -

a
keN 205’
where ay = Nwll\ﬂ’ ) and wy_1 1s the (N - 1)-dimensional measure of the unit sphere
sN-1 of RY. Then forallm € (ay/2ay, ay/ag) and all @ > ay and | > 1 so small that
lam < ay it results that

sup J(ealu"lN — Sy_o(a, uk))ldx =C,,

keN
]RN

where C,, = C,,(m, a, 1) is a nonnegative number.

2.3 Proof of Theorem 2.1.1

In this section, for simplicity we assume, without further mentioning, that the struc-
tural assumptions required in Theorem 2.1.1 hold.

We start proving the geometric properties of the functional I, necessary to apply
both a minimization argument and the mountain pass lemma.

Lemma 2.3.1. Any solutionu € W of (£y) is nonnegative in R for all o < Hy, allA > 0
andy > 0.

For any fixed 0 < H, there exists p € (0,1] and two positive numbers A, and j,
depending on p, such that I(u) > j for allu € W, with |u| = p, and for all A € (0,A,] and
y > 0.

Furthermore, for all 0 < H,, A € (0,A,] and ally € (0,1], there exist in Ep, where
Bp ={u e W: |lul < p}, asequence (uy), of nonnegative functions and some nonnegative
functionu,,, such that for allk € N,

lwell <p,  mga, <Iw) <mga, +
k oAy k oAy k 2.3)

U — Ugp, W, U > Uy, ae.inRY and I'(y) -0
as k — oo, where
Mg, = inf{I(w) :u €B,} <0.
Proof. Leto < H,, A > 0and y > O be fixed and let u be any solution of (£y) in W.

Putting u = u, — u_, we have that both u, and u_ are in W and that

j {(VuP=2 + vulN ) Vu - Vu_ + (ulP? + [N 2)uu_}dx
]RN

4

= I,

N
= lu_lign-
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2.3 Proof of Theorem 2.1.1 = 27

Thus, by the definition of solution for (£y) and (H;), we get

p
wp

p
wir

p

> I,

N p o _0+
=M1, = il = ollu_IIsz lelu_ll

taking as a test function ¢ = u_ € W. Hence,u_ =0 a.e.in RY. Thus u is nonnegative
inRY , as stated.
Fix € > 0. Then there exists k, > 0 by (2.1) such thatas t — 0,

N-1

0
mt + O(t)

tHVg(x, t)<e+k,

In other words, lim sup;_,o+ N g(x,t) < € and, since € > 0 is arbitrary, this implies at
once that

lim £V g(x,t) =0 uniformlyin x € RY. 2.4)
t—0*

For the second part of the lemma, fix € > 0. Thus by (2.4), there exists § = 6(¢) > 0
such that

G(x, t) < JEVtN fora.e.x e RV and all t € [0,6]. (2.5)

Take now s > 1and a > a,. Then by (2.1), there exists k, = k(ay,s,€) > 0 such that for
a.e.x e RV andall t € [§,0),

GOt <& (™ — Sy b)) 2.6)
In conclusion, (2.5) and (2.6) yield
G t) < 1£v i, 50— Syat) 27)

fora.e. x € R and all t € R} Furthermore, for any a < ay, where ay is defined in
Lemma 2.2.3, then Lemma 1 of [82] gives the existence of a constant C, = C,(a,N,1)
such that

J(e“'V'N Sy (@v)dx<C, forallv e W,with|v] < 1. 2.8)

RN

Following somehow [75], for > 1, we apply the Holder inequality and find

Iy = J |u|s(ea|ulN ~ Sn_a(a, u))dx
]RN
N ’ 1/@’
< ||u||§p< j ™ sy (@ w)” dx) .

RN
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28 —— 2 On(p,N) Laplacian equations in RN with exponential nonlinearities

For B > (', Lemma 2.3 of [4] yields for allu € W, with O < |lu|| < 6, that

= J(ealulN’ - SN_z(a,u))p,dx < J (eﬂ”""'N, — Sy_o(Bat, u))dx

RN RY

N’ N’ !
. j(eﬁar /™ _ g (Bar™', Jul/ull))dx.
]RN

We choose 6 € (0,1] so small that ,Ba6N "< ay and, applying (2.8) with a = Ba&N ’, we
get

T, < Wi, V¢ < CY¥'jul, forallu e W, with Ju < 6. 2.9)

Fixo < H,,A > 0,andy ¢ (0,1]. Taking s > N for later purposes, by Lemma 2.2.1, (2.7),
and (2.9), we obtain

0y

Hp

1 1. N A
100 2 2 (1= 2 Wl + s = %l I

€ N - Al
-y Uiy = vR:Ca® lulg,

g A
> (1 . —*)(nuu%l,p ) - Sl I

Hy

Z| -

E N = Al
- NllullN ~K:Cy % ullg,
1 1—N< g, ) ] N A q s
>—|2 1-—= ) —¢|lul™ - =lhlglul* - C,lul’,
N[ n flul qII llgllull olull
forall u € W, with |lu| < 6, where C,, = fch,l,/" c5, and ¢y, is given in Lemma 2.2.1,
when p = sp. Choose ¢ = 2N (1-0,/Hp) and consider the function

1m0ty v ¢ ©, 1€[0,8].

l‘b(T) = 21+NN T ©

Then i admits a positive maximum ; in [0, 6] at a point p € (0, 48], since s > N and

6 < 1. Consequently, for all u € W, with |Ju|| = p, we obtain

1-0,/H,
2NN

A
pN - g Ihlap = C,p° = wip) = 5 > 0.

Q(l - U+/Hp) N-q
2N N|ihllg

I(u) >

forallA € (0,A,], with A, = ,
as stated.
Fix A € (0,A,] and a nonnegative function u € C3° (]RN ), with |lu]| = 1. Thus

N

1 o_ A
I(tu) < =7 + —|lulf, 77 - —‘rqllullgh <0
p p 4 q ’
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for all T € (0, 1] sufficiently small, since1 < g < p < N. Hence,
Mg, = inf{I(w) : ueB,} <O0.

Then, by the Ekeland variational principle in Ep and the first part of the lemma, there
exists a sequence (4 € B, such that

1
ma,,\,y < I(uk) < ma)/\,y + —

X and I(u) = I(y)- %Ilu -y (2.10)

forall k € N and for any u € Ep. Fixing k € N, for allw € Sy, where Sy = {fu e W :
|ull = 1}, and for all T > 0 so small that u; + Tw € Fp, we have

I(u +Tw) - I(uy) = —%

by (2.10). Since I is Gateaux differentiable in W, we get

I(u + Tw) - I(wy) . _l
T Tk

(I'(wy), w) = lim
7—0

for all w € Sy,. Consequently, |{I'(u), w)| < 1/k, since w € Sy is arbitrary. Therefore,
1 ’(uk) — 0in W' as k — oo and, clearly, up to a subsequence, the bounded sequence
(ug )i weakly converges to some u,, , € Ep and uy — Uy, a.e.in RY. Furthermore, we
assume w. 1. 0. g. that (), weakly convergestou,, - € B,in Wandu,_ — u,; _a.e.
in RV, since u; — Ugy @€ in RY implies at once that Ur = Upyand iy — Uy,
a.e. in RY. Moreover, as k — oo,

o(1) = —(I'(w), u ) = - J (VP2 + [V N 2) Vg - Vg
]RN

5 N-2
+ (P + g™ wgeuy _dx - 0||uk,_||§{p

0 N
> (1= 2 Yo W + it B
Hp

Therefore, () strongly converges to 0in W and uy_ — Oa.e.in RV. Thusu,,;_ =0

a.e.in RV, In particular, Ugpy 2 01in RY. Consequently, without loss of generality, we
can assume that uy, = u; ,, since u, _ — 0in W. This completes the proof of (2.3). O

Lemma 2.3.2. The weak limit u = u,, , of the sequence constructed in Lemma 2.3.1is a
solution of (Ey) provided that o < H,,y € (0,1], and A € (0,1), where A = minf{A,, Ay},
A, is given in Lemma 2.3.1, and A, is well defined by

(N-g)/N'

(v-N)q ( Ay )
Ay = >0, 211
0= Nlhlpv - )\ 2V ig, 21)

wherel < q < N <v by (H,).
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Proof. Fixo < H,,y €(0,1],and A € (0,7), as in the statement.

Lemma 2.3.1 gives the existence of the sequence (i), of nonnegative functions
in Ep and of a function u,, ,, which for brevity will be denoted simply by u, unless
otherwise specified, satisfying (2.3). Consequently,

w, — uin IP(RY, |x|P),
w - uinL¥ (RY), @ € [1,00), .12)
u, < ggpa.e. in R, for some gz € LN(Bg) and allR > 0,

hold. Take R > O and ¢ € CSO(IRN) suchthat0 <@ <1inRY, p =1inBzand ¢ = 0 in
B;R. By convexity, we have

(|Vuk(x)|p72Vuk(x) - |Vu(x)|p72Vu(x)) (V) - Vu(x)) 20 a.e.inRY

for any k € IN. Thus, the well known Simon inequality, see Lemma 2.1 of [231], with
N > 2, yields the existence of cy > 0 such that

cy J [V - vulNdx < J(IVukIN_ZVuk - IVuIN_2Vu) - (Vy — Vu)dx
Bg By
< j(quklp_ZVuk — |VulP2Vu) - (Vuy, — Vu)dx
Bg
+ J(IVukIN_2Vuk - IVuIN_2Vu) - (Vuy, — Vu)dx
By
< J (IVuy P2V, — [Vul’2Vu) - (Vi — Vu)pdx
IRN
+ j (Vi N2V, — [VulN2Vu) - (Vi - Vu)pdx.
IRN
Therefore, as k — oo,
N D N
cy leuk - Vul'dx < .[ o(|IVu P + |V |V )dx
B N
§ R (2.13)
- J (Vi [P~ + [V [N %) Vayy, - Vudx + o(1),
]RN
since y;, — uin W. Clearly, (2.3) gives
(I' (), pug) — (I'(wy), u) = 0o(1) ask — oo,
where

J(p(qukF’ + IVuklN)dX - J ‘P(IVu,<|’”2 + IVukIN’z)Vuk -Vudx

RN RN
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2.3 Proof of Theorem 2.1.1 = 31

= (I'(ug), puy ) — (I' (wy.), pu)

- J (VP2 + Vi IV 72) (uy, — u) Vg, - Vopdx (2.14)
]RN

- J o™ +uy )y —wdx + 0 J ol - u)g—l);
RY RN

+A J (ph(x)uzfl(uk —u)dx +y J ©g (¢, u) (U — u)dx.
RV RV

By the Holder inequality,

l J (Vi P72 + Vi V%) (uye - w) Vg - Vepdx

RN

1/p
S Ty

BZR
1N
+ ||Vuk||§§‘1<J |y, — uINdx> }
BZR
which yields by (2.12) that
klim J (VP2 + Vg N 72) (uy, — u) Vi, - Vodx = 0. (2.15)
—00

RN

Similarly, again by the Holder inequality,

1/p
I J o +u ) (wy — wydx| < ||uk||5_1< J |y — ulpdx>

RN By
N
([ - ulax)
B
which implies that
klinolo J q)(ui*l +uy )y - uydx = 0. (2.16)
IRN

Furthermore, taking p, with 1 < p < g < N, and applying the Holder inequality, with
p',pand q = pp/(p - p), we find

1/q
p-1 q
D] Ml ity [ b - i)
RN B

o i
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32 — 2 On(p,N) Laplacian equations in RY with exponential nonlinearities

Thus, (2.12) gives

. — dx
klir{)lo J ouy Y - u)W =0. (2.17)
]RN

Likewise, by the Holder inequality, as k — oo,

1/q
[ ohoout - wax| < ([ roonu - e

RN Bor
1/N
< cq||h||;/‘1< j luy, - uINdx> (2.18)
Byr
— 0,

where C; = supyen ||uk|lg_h1 < 0o by Lemma 2.2.2, since (u;), is bounded in W.
Using the notation of Lemma 2.3.1, thanks to (2.3), (H,), the fact thaty € (0, 1], and
Lemma 2.2.2, we get, as k — oo,

1
0> Mopy = I(wy) - ;<I,(uk), uk> +0(1)
1 1 o 1 1 N
> (1—9 - ;)(1 - H_;>”uk||€v1,p + <N - ;)IIukMWIW
1 1
A2 =5 il + 000

Consequently, since o < Hp, as k — oo,

1 1 N 1 1
(37 = 3 Ml =22 = 5 Yl +0) <0,

so that
N/(N- N-1
imoup g <[ VI =0 " (o)
PR wH = (v-N)g N'Hg

since A < Ay, with A, given in (2.11). Therefore, passing to a subsequence, if necessary,
which is still labeled (u;); for simplicity,
a N-1
sup lu I < <—N> . (2.19)
kelIEI) klwy N *10(0
By (2.19), we fix m € (ay/2a,, ay/ay), a > ay, and I > 1 close to 1, with lam < ay. Now,
by (2.1) there exists & = k(a,,1) > 0 such that fora.e. x € RN and all t € R{,

g0t < N k(e — Sy y(art)). (2.20)
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2.3 Proof of Theorem 2.1.1 = 33

Hence, the Holder inequality and (2.20) yield

< J [y !+ f((e““f = Sy_o(a, u)) | (e — wydx

|J g0 1) (g — w)dx

RN By
1N
< ||uk||%*1< j g - uINdx>
BZR
) o N , v
+ K< J(e k= Syoa(auy)) dx) ( J luy — ul dx)
RN B

Thus, forall k € N,

1N
| [ ostug - wax < di( [ - ut'ax)

RN Bor

e (2.21)

+d2<J Iuk—ulldx> ,

B

with d; = supgep luelly * < 0o, since () is bounded in W, while
, 1yl
_ al !
d, = Ksup< J(e K — Sy_o(a,uy)) dx) < 0o

kelN

by Lemma 2.2.3, thanks to the choices of the exponents a and 1.
Thus, combining (2.13)-(2.18) and (2.21), we obtain

cN J [V, — VulNdx <o(l) ask — co.
By

Consequently, Vu;, — Vuin iy (BR)]N forall R > 0. Therefore, up to subsequence, not
relabeled, we get that

Vy, —» Vu a.e.in RrY, (2.22)

and for all R > O there exists a function hy € L (Bg) such that [Vu,| < hp a.e.in By
and for all k € N.

Fix ¢ in C‘CX’(IRN ) and let R > O be so large that supp ¢ c Bg. By the above con-
struction, we have a. e. in By that

(Vi P2 + [V V%)V - V| < (RS + by )Vl = b,
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34 — 2 On(p,N) Laplacian equations in RY with exponential nonlinearities

where h € Ll(BR). Therefore, as k — oo, the dominated convergence theorem gives at
once

J (Vi P72 + (Vg N )V, - Vpdx = J(lwklp* + [V V) Vg - Vepx
RN By
- J (IVuP 2 + [VulN )Vu - Vopdx.

RN

Similarly, using (2.12), we have a. e. in By that
7+ )| < (eh ' +gy Il =g € L'(By),

and so the dominated convergence theorem gives, as k — oo,

J W+ pdx — J W+ WV dx.

RN RN
Using (2.3), we have a. e. in By that

p-1

¢

X =f € L'(By).

p-1
<
S8R |[xp

Therefore, again the dominated convergence theorem yields

p-1 -1
u up
k
Jhw¢ﬂ—»JhP¢ﬂ,
RN RN

while, since h € LY(RY) and again by (2.3),
[hCoul™'¢| < & € L'(B),

so by again the dominated convergence theorem, as k — oo,

J h(x) uﬁ_ltpdx - J h(x) u? px.

RN RN
In the same way, by Lemma 2.2.3, (2.19), (2.20), and (2.3),
g0 u )| < $ € L'(Bg).

Thus, the dominated convergence theorem applies and gives, as k — oo,

J 8w )pdx — J gx, u)pdx.

RN RN
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2.3 Proof of Theorem2.1.1 = 35

Finally, since (I' (u;), ) = o(1) as k — oo by (2.3), we have

Wl
J (Vg P2 + [V [N ) Vuy -Vepdx + J (ui_l +u) pdx - o J k—pd)dx
RN RN RN a
=1 J h(x) uZ’lcl)dx +y J g(x, u )pdx + o(1).
RN RN

Thus, letting k — oo, using the above arguments, (2.3), and (2.12), we get at once that

J (IVuP~? + [VulN ) Vu - Vopdx

]RN
1. N-1 u!
+ J(up +u )pdx -0 J W(j)dx (2.23)
RN RN
=1 J h(x)u? ' pdx +y .[ g(x, u)ddx.
RY RY
for all ¢ in C?"(]RN ).

Fix ¢ in W. The sequence (¢y); in C?O(]RN), defined by ¢, = (o * @), where
(o1)x is a sequence of mollifiers and (), is a sequence of cut-off functions, has the
properties that ¢, — @in W = W (R¥)nW™ (RY) and, up to subsequences, ¢, — ¢,
V¢, — Vpa.e.inRY ask — oo, and there exist functions 1 € LP(RY) and i € LN (RV)
such that |¢y| < 1, [Vl < ¥, and || < P, V| < P a.e. in RV and for all k. Of
course, (2.23) holds along (¢;); for all k € N. Passing to the limit as k — oo under
the sign of integrals, by the dominated convergence theorem, we obtain the validity
of (2.23) for all ¢ € W. In conclusion,

(I'(u),p) =0 forallgp e W. (2.24)

Hence u is a solution of (£y). O

Before completing the proof of Theorem 2.1.1, let us present a lemma of Brézis
and Lieb type for exponential nonlinearities, as given for the first time in the original
paper [102]. Here, we use assumption (H;) in its full strength for the first time.

Lemma 2.3.3. Let (), be a sequence in W and let u be in W such that w, — uin W,
lugllyiy — €y, U — ua.e.in RY, Vu, —» Vua.e.inRY, and

N’ an
sup [ugllpyw < ——— (2.25)
eN w 2N’+1a0

hold true. Then,

klim J |lg 06 wuy — g0 u — wy) (U — wy) — g(x, wyuldx = 0.
IRN
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36 —— 2 On(p,N) Laplacian equations in RY with exponential nonlinearities

Proof. Arguing similarly as for (2.7) and using (2.4), fore = 1, a > &y, and any s > 1,
there exists k = k(s, ay,1) > 0 such that

N’
0o t) < 1V + k1T Sy (alt)),
g (e = SyaleI6) 026

— ~ — N,
0,806t < [N+ & [t (e — Sy (e It]))

fora.e.x e RN and all ¢t ¢ R{. The validity of (2.26) in the entire R holds with obvious
changes, since 9,g(x,-) = 0in R;, for a.e. in RY. From these inequalities, with s = 1,
foranya, b € R,

1

d
6[ g [g(x,a + Th)(a + Tb)]dT

lg(x,a+b)(a+b) -gx,a)al =

1
J[aug(& a+th)b(a +th) + g(x,a + th)|dt
0

1
<2 j[la + bV b
0

+ k|b|(e” la+ebl" _ Sy_o(a, la +Th)))]dr
1
< J[ZN—2(|a|N—1|b| + TN—1|b|N)
0

NI
+ &k|b|(e* 1 TPDT _ g (a,]al + 7|b]))]dr.
Hence, forany a, b € R,

lg(x.a + b)(a + b) - gx, @)l < 2" (lal" " |b] + |bI")
! (2.27)
+ 2%|bI(e 0" _ s (o lal + [BI)).

From the last step, using the Young inequality, for any € > O there exists C, > 0 such
that

|g(x,a+b)(a+b)-gx,a)al < ZN_I(elaIN + CglbIN)
+ 2k|b|(e2 1) g (a,lal + |B])).
By (2.27), with a = u;, — u and b = u, putting v = uy — u, we get

506 Vi + Wi +w) — g6 vivie < 2 (vl + ul™)
(2.28)

NI
o ([viel+lul)

+ 2klul(e - Sy_o(a, [vi| + [ul)).
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2.3 Proof of Theorem 2.1.1 = 37

From this fact, setting f, (x) = |g(x, vi +u)(vi +u) —-g(x, vi vy, — 8 (x, w)u|, we easily obtain
500 < 2 M Nl + Y+ D)l + 2k(ulQy + 2k[ulQ, (2.29)

N’ N’
o (Ivel+lu) alul

where Q;, = - Sy_o(@, |vi| + lul)and Q = ¢
Q; — Qa.e. inIRN, sincev; — Oa.e. in RV,

Now, by the structural assumptions on (1) and the Brézis and Lieb lemma, we
have

— Sy_o(a, |ul). Of course,

N N N N
Vil = gl = lullgan +0(1) < fluglign +o(1)

as k — co. Thus,

N-1
imsup . = Jim vl = 3 = sup i < (- )

by (2.25). Hence there exists J such that

v ay N-1

sup Il < (m)
Of course, (2.25) implies at once that
N-1
Il < €Y < sup gl < (“—N)

keN N +1a0

Hence, we have
N ay N-1 ay N-1
skli}onlvkl + [ulf| o < ZN(M> < <E> ) (2.30)

Thanks to (2.30), we can apply Lemma 2.2.3 to the sequence (|v| + |ul)y;, with fixed
m € (ay /200, ay/ag), & > &g, and I, where 1 < 1 < N' is so close to 1 that lam < ay. Fix
any measurable set E in RV Then, by (2.29) and the Holder inequality, we have for all
k > J that

1/N

J fr()dx < 2”‘1||vk||%‘1<j ulN dx> + (21 +1) J [ulN dx
E E E
, 1y
2k + 1) [ 1 ax) 231)
E
1/N U
< CQ{(J IulNdx> + j IulNdx+ <J Iull,dx> }
E E E
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38 — 2 On(p,N) Laplacian equations in RY with exponential nonlinearities

where Co = 2V supgen IVilly " + 27" + 1+ 2k(supgey Qi + 1QN) < o, since (),
is bounded in W and (Qy )y is bounded in Ll(]RN ) by Lemma 2.2.3 and the choices of
the parameters taken above. Hence (f; )~y is bounded in LYRY) by Lemma 2.2.2, since
ueWandl! >N.

Clearly, (2.31) implies at once that the sequence (f} ),y of LY(RY) verifies the two
properties of Vitali. Indeed, fixing € > 0, it is enough to choose § = §(¢) > 0 so small
and R = R(g) > 0 so large that for all measurable sets U, with |U]| < 6,

1/N ) yr
CQ{(J IuINdx> + J IuINdx + (J Iull dx> } <E§,
U U U
1/N ) 1y
CQK j IuINdx> + J IuINdx+< J Iull dx) ]» <E.

RN\By RM\By RV\By

Finally, v, — Oa.e.in RV andsof, — Oa.e.in RY by (H,). An application of the Vitali
criterion, Corollary 4.5.5 of [40], gives the assertion. O

Proof of Theorem 2.1.1. Fix 0 < H,,y € (0,1], and A € (0,7A), as in the statement
of Lemma 2.3.2. Let () be the sequence constructed in Lemma 2.3.1and u = u,,, its
weak limit in W. In particular, by (2.3), (2.12), (2.22), and (2.24), up to a subsequence,
there exist nonnegative numbers ps Ens Chs and 6 such that

w —uinW, w —uin (RN, |x|?), I'w)=0in W',

Vu, — Vuand u;, — ua.e.in RY,

Vi P2V, — [VuP2vu in [P (RV)]Y,
Vi N2V, — (vuV2vu in IV (®RY)), 2.32)
o = &0 Tuilyss = &y, gl — €

J g uudx — 8, w —»uinLf (RY), g€ [1,00),
]RN

U < Ppa.e.in RN for some ypy € LN(Bg) and all R > 0.

Moreover, (2.1), implied by (H;), (2.32), and the Fatou lemma yield
lim inf J g(x, up)udx = J g(x, u)udx. (2.33)
k—o00 o o

Thus, Lemma 2.2.2, (2.32), and (2.33) give, as k — oo,

o(1) = {1'w, e~ ) = Iy, [ Vg2V - Vude ~ [ e

RN RN
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2.3 Proof of Theorem2.1.1 —— 39

+ IIukII%m - J IVukIN_ZVuk - Vudx - J u],:’_ludx

RN RN
up—l
D k
_ O'|:||uk||Hp - j Wudx]
]RN
-2 I h(x)uz_l(uk —wdx -y J 06 u) (g, — u)dx
RY RY

N N
2 by = lultyy,, + €y = Il — (e — uly, )

-y J (806w )y — g(x, wu]dx + o(1).
]RN
Now (2.32), Lemma 2.3.3, and the Brézis and Lieb lemma give

el — et = ul,, = [l +0(D),

gy = Nege = ullyan = Nl +0(D),
IIMkllf}P = lluy - ullﬁp = IIHIIﬁp +o(1),
j (80w )uy — g(x, wuldx = J 806w —w)(yy — wdx + o(1)
RY RN
as k — oo. From this, the argument above yields the main formula

p
wp

RY (2.34)
+ lim Jluy — ulljy — o im Juy - ull?, .
k—o0 k—o0 4

y lim J g6 u — w)(uy —wydx > lim |y — u||
k—oo k—00

Arguing as in (2.7), we obtain that for any m € (ay/2a,, ay/ay), @ > ay, with a, given
in (H;), s > N, and | > 1 sufficiently small such that lam < ay, there exists a positive
constant C* = C*(m, a, s, 1) such that

N/
sup J Iy — ul* (e — Sy (a, uy — u))dx
SIS
R (2.35)
< C” sup llug — ull}y < oo
keN

is satisfied, as long as sl’ > N. Finally, by Lemma 2.3.3 and (2.32),

sup J 806w — w(yy — w)dx < oo. (2.36)
k>J
]RN

Then, by the Holder inequality, we obtain for all k > J that

J g~ ul* (@~ Sy w — w))dx

RN
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40 — 2 On (p,N) Laplacian equations in RY with exponential nonlinearities

, 11
_yv 1
< fluy - u||§,,< j (e _ Sy (a,uy — u) dx)
]RN

S
< C*llug — ullgy.

From this last fact and (2.34), we get, as k — oo,

.~ g 1
CTykllw — ullgy +0(1) = (1 - H—p )lluk = Ul + 5 i - ullfyux- (2.37)

The continuity of the embedding W™ (RY) — L' (RY) gives
*_ o~ S 1 N
Cykluy —ullgy +0(1) 2 2C—N||uk — ullgp.

sl

Passing eventually to a further subsequence, we assume that there exists ¢, > 0 such
that

tim e~ ulg = ¢,
We assert that ¢, =0. Otherwise,

. 1
A —— 2.38
Y2 e ek (2.38)

Let us define

. |infly €(0,1] : ¢, >0}, if thereexistsy € (0,1] such that¢, > 0,
1, iffy =0forally € (0,1].

We claim that y* > 0 if there exists y € (0,1] such that £, > 0. Otherwise, there exists
a sequence (yj )i, with ¢, > 0, such thaty; — 0 as k — co. Thus, (2.38) implies that

S—N

Vit~ z¢>0.

This is an obvious contradiction, since {£,},¢(;; is uniformly bounded above by the
embedding theorem. Indeed, (u;); < Bp, uce Bp and p, given in Lemma 2.3.1, is inde-
pendent of y.

Hence, ¢, = 0 forany y € (0,y"). Therefore, for all y € (0,y"),

lim |lu —ulgy =0,
k—o0

which, together with (2.37), gives at once that uy — uask — coin W forally € (0,y™).

In conclusion, for fixed 0 € (-oco,H,) and A € (0,2), and for any y € (0,1],
Lemma 2.3.1 and the Ekeland variational principle give the existence of a (PS)mW se-
quence (uy); in W of I. Moreover, the argument above shows the existence of y* =
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2.3 Proof of Theorem 2.1.1 = 41

y*(0,4) > 0 such that, up to a subsequence, (u;), strongly converges to u = u, Ay in
W, withmg,, = I(us,) <0 < ;< I(v)forallv € dB,. Consequently, u,,, € B,, so
that I’ (ua),\,y) = 0. In other words, u, Ay is a nontrivial nonnegative solution of (£y) for
anyy € (0,y").

It remains to show (2.2). First, we recall that the nonnegative solution Uspy € Bps

with p > 0 independent of A as asserted in Lemma 2.3.1. Hence, {u,,,}, c(o 1s uni-
formly bounded in W. Thus, by (2.3) and (H,), we have
1 1 o, » 1 1 N
maay 2 (55 )1 5 st + (57 = o s
1 1 q
A2 5 Ml + o)
11 o, » 1 1 N
2 <I_7 - ;)(1 - H—p>||ug,/1,y||w1,p + <ﬁ - ;)”UG,A,y"WLN - ACy,
where
1 1
G = (2= 2 )ity sup hugsyl < co.
q Vv A€(0.0)
We first assert that
%in(l) lugpyllwee = 0. (2.39)

Otherwise, lim sup,_,q [ug, lw» = v, > 0. Hence there is a sequence j — A; T co such
that ||ua’,1j’y||w1,p — ¢,asj — oco.Then, lettingj — oo, we get from (2.3) and Lemma 2.2.2
that

1 1 o
0 > limsupm z<___><1__+>gp>0’
1—0 ohy p v ’Hp p

which is the desired contradiction, proving (2.39). Similarly,
}EI(l) lugpyllyrv = 0. (2.40)

Otherwise, limsup,_,q Uy, lyw = €y > 0. Hence there is a sequence j — A; T oo
such that ||uo),1]_)y||W1,N — ¢y asj — oo. Then, letting j — oo, we get from (2.3) and
Lemma 2.2.2 that

. 1 1\ N
0> limsupm >l =--)&y >0,
A)Op oAy <N v>N

which is the desired contradiction, proving (2.40). Of course, (2.39) and (2.40) imply
at once the validity of (2.2). O
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Comments on Chapter 2

A substantial progress for Moser-Trudinger inequalities on Riemannian manifolds
has been achieved in the last years. For instance, in the compact case, the study of
these inequalities started with the pioneering works due to T. Aubin [18], P. Cherrier
[59], and L. Fontana [108]. In the presence of lack of compactness, Sobolev inequali-
ties are more delicate and the different geometric notions of curvature play a crucial
role in this case. For instance, inspired by the above cited paper [156] and by using
some fine estimates on the density function of the volume form, Q. Yang, D. Su, and
Y. Kong in [256] proved that on a complete, simply connected N-dimensional Rieman-
nian manifold with negative sectional curvature there exists a constant ky(M) > 0
such that

NI
sup J (M~ sy (B, lul))dog = ky(M)
uew™ (M)
lull v <1

foreveryf € [O, Nw%flf DA challenging problem is to extend Theorem 2.1.1 when (€y)
is set on a noncompact Riemannian manifold M; see Chapter 8 for related results.
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3 Critical Hardy-Kirchhoff equations in RY

Ognuno sta solo sul cuor della terra
trafitto da un raggio di sole:
ed é subito sera.

Salvatore Quasimodo
Ed é subito sera

This chapter deals with the existence of nontrivial solutions for stationary critical, pos-
sibly degenerate, Kirchhoff (p, g) equations in RY. For clarity, the results are presented
in the scalar case, and we refer to [101] for the extension into the vectorial as well as
fractional framework. The main difficulties arise because of the (p, g)-Laplacian oper-
ator, the double lack of compactness, as well as the fact that the Kirchhoff equation
can be degenerate, that is, M(0) = O.

Lately, great attention has been drawn to the study of nonlocal elliptic problems
that lack compactness. These models arise in a quite natural way in many different ap-
plications, and we refer to [210] for details. In the fractional setting we cite the recent
monograph [188], the extensive paper [81], and the references cited there for further
comments. More recently, the study has been extended to problems involving frac-
tional (p, q) elliptic operators, see [1, 14, 15, 38, 101].

3.1 The stationary Kirchhoff framework

In this chapter, we study the existence of nontrivial solutions for possibly degenerate
Kirchhoff equations involving the (p, g)-Laplacian as well as critical nonlinearities. For
the sake of clarity, we present the results in the scalar case. More precisely, we consider
the following equation in R":

M(lul ) (-Apu + [uP~2u) + M(Julld,, ) (~Agu + [ulw)

. (&)
“ o) + lul? 2w, M

where2 <p < g <Nandq* = Ng/(N - q).
The natural solution space is W = W (RY) n W4(RY), with the norm

llull = lullyre + lullpra-

The space W is a separable reflexive Banach space.
Throughout the chapter, we suppose for the Kirchhoff coefficient that
(#) M : R — R is a continuous function such that
(M,) thereexists 0 € [1,p” /p), yielding M(t)t < 0./ (t) for allt € R}, where . (t) =
jé M(t)dr,
and either

https://doi.org/10.1515/9783110652017-003
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44 —— 3 Critical Hardy—Kirchhoff equations in RV

(My) inf,cgs M(t) = a >0,

or M(0) = 0 and M verifies both properties:

(M,) for any T > O there exists m = m(t) > O such that M(t) > mforallt > 7,
(Ms) there exists a positive number c > 0 such that M(t) > ¢ {91 forallt € [0,1].

Usually, the existence of solutions of Kirchhoff problems is obtained when M is also
nondecreasing in le. For more comments, we refer, e. g., to [105, 211, 216]. However,
the entire condition (.#) does not force M to be monotone as the example of M(t) =
1+ t)k +(1+ t)‘l fort € R}, with 0 < k < 1, shows; see Figure 3.1 below. For details,
we suggest looking at [22, 215].

M(t)
= 99/100

(0,2) k=3/10

Figure 3.1: The behavior of M(t) for different values of k.

Let D"?(RY) be the Banach space defined in Section 1.2 so that (1.3) continues to hold
when p = p.
The parameter A in (&) is strictly positive and the perturbed subcritical term f :
RY x R — R verifies
(F) f is a Carathéodory function. For a.e. x € RY, F(x,-) > 0in R*, where F(x,t) =
jé f(x,s)ds. Furthermore, there exist r and y such that0q <r < q*,0q <y < q*, and
for every € > O there exists C, > O for which the inequalities

[f(x,t)| < e0g|t1® +rC |t foranyt e R
and
0 <VF(x,t) < f(x,t)t forallt € R

hold fora.e.x € RY.

The definition (F) makes sense since 6 < p*/p < ¢*/q.
For critical equations in RY, driven by the fractional p-Laplacian, we refer the
reader to [25, 32, 52, 81, 98, 99, 101, 211, 216] and the references therein for the study of
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equations with critical nonlinearities. In the vectorial case very few contributions are
in the case of RY, e. g., [13, 100, 101, 103, 104, 159, 177], while in bounded domains we
mention [57, 92, 93, 120, 121, 173, 179, 180, 249] and the references therein.

Let us recall that Kirchhoff problems, with Kirchhoff function M, are said to be
nondegenerate if (M;) holds, and degenerate if M(0) = 0 and O is the unique zero of
M. From a physical point of view, the fact that M(0) = O means that the base tension
of the string is zero and M measures the change of the tension on the string caused by
the change of its length during the vibration. The presence of the nonlinear coefficient
M is crucial to be considered when the changes in tension during the motion cannot
be neglected. For example, the existence of solutions for nondegenerate fractional
Kirchhoff stationary problems is treated in [104, 105, 159], and for degenerate problems
this problem is considered in [22, 52, 98, 99, 216, 249] and the references therein.

The main novelty of (£,,) is that it involves elliptic operators with (p, g) growth, as
well as critical nonlinearities. In this last direction, we recall the recent works [1, 14,
15, 38], devoted to the study of critical (p, q)-fractional problems with M = 1, namely
without the Kirchhoff coefficient. To overcome the lack of compactness, the authors
in [1, 14, 15, 38] exploited suitable concentration compactness arguments which seem
not to work in the presence of a general Kirchhoff coefficient M # 1. For this reason,
following [101], we tried to adopt the method which was introduced in [22] and was fur-
ther improved successfully in [52, 98, 99, 104, 211] for different contexts. Here we use
a tricky step analysis which allows us to handle the nonlocal nature and the double
loss of compactness of (£,;). Actually, this approach has been useful also to provide
the existence of solutions for critical fractional Kirchhoff problems, as in [22, 101, 211].
However, it should be noted that in [52, 98, 99, 104] the presence of fractional Hardy
potentials does not allow us to use the strategy in the degenerate Kirchhoff setting. In
the critical (p, q)-fractional Kirchhoff equation (&), the application of the tricky step
analysis is fairly delicate because of the double structure of the norm ||-| in W. Indeed,
we have to split the study on the behavior of the Palais—Smale sequences in different
cases, examining all the possible situations as the norms | - ||» and || - [y« approach
zero, due to the degenerate nature of (£,;). However, the scheme provides us with a
positive answer to the question of solution existence for (&).

Theorem 3.1.1. Suppose that M verifies (.#) and f fulfills (F). Then there exists a thresh-
old A* > 0 such that (&) admits at least one nontrivial solution uy in W for all A > A*.
Moreover,

lim [yl =0 (ER))]
A—o00

holds.

We now study (&) under the sole assumption (174;) on the positive continuous
Kirchhoff function M, which is an addition to Theorem 3.1.1, when (&) is nondegen-
erate.
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Theorem 3.1.2. Suppose that the positive continuous Kirchhoff function M verifies (M,)
and f fulfills (F), with 8 = 1 and the exponents v and r satisfying

q<v<q', q<r<q*, qMO)<va. (3.2

Then for any € € (M(0), av/q) there exists A* = 1*(€) > O such that (&,;) admits at least
one nontrivial solution uy in W for all A > A*. Furthermore, (3.1) continues to hold.

Clearly, the requirement (3.2); is automatically satisfied whenever M(0) = a, due
tov > g by (3.2);. The assumption M(0) = a, together with standard nondecreas-
ing monotonicity of M, was assumed in [105, 211], as well as in numerous papers. A
very interesting open problem is to construct a nontrivial solution u, of (£;;) when
va < gM(0) and the growth condition on M stated in (M;) does not hold; in other
words, when both Theorems 3.1.1 and 3.1.2 cannot be applied. For the already men-
tioned Kirchhoff function

M) =1+ +1+07", teR, ke(0,1)

we have M(0) = 2and a = K (k“)(l + k) < 2. Furthermore, if k is so small that
k +1 < v/q, then M verifies all the assumptions of Theorem 3.1.1, with 6 = k + 1. While
if k € (0,1) is sufficiently large, then g M(0) = 2q < va, since g < v by (3.2), and M
satisfies all the hypotheses of Theorem 3.1.2. It is therefore evident that Theorem 3.1.2
is applicable even when neither M is increasing in R§, nor M(0) = a.

The two Theorems 3.1.1 and 3.1.2 extend, in different and nontrivial ways, to the
Kirchhoff setting described in Theorem 1.2 of [1], Theorem 1.1 of [14], Theorem 1.1 of [15],
while extending and completing the existence result given in Theorem 1.1 of [38].

For the generalization of the previous results to a general framework as well as to
the vectorial case, we refer the interested reader to the original paper [101].

3.2 Proof of Theorem 3.1.1

For the relevant definitions and notations related to the separable reflexive real Ba-
nach space W, we refer to [52, 56, 100, 101, 103, 215, 216]. In this section, we first as-
sume, without further mentioning, that the hypotheses required in Theorem 3.1.1 are
satisfied.

Lemma 3.2.1. Let (), and u be in W and such that u;, — u weakly in W, and u;, — u
a.e.inRY, Then,

J FOGu) (g —w)dx — 0 (3.3)

RN

as k — oo.
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Proof. By (F), with € = 1, the Holder inequality gives, for a suitable constant C > 0,

‘ J FOou) (g —wdx| < J {quuklaq’lluk —ul + 7 Cyluy "My - ul}dx

RN RN

< C(lluy — ullgg + llug —ull,) — 0

as k — oo, by Theorem 2.7 of [100], since 2 < p < 0p < g < r < ¢* by (M;) and (F).
This proves (3.3). O

We say that u € W is a (weak) solution of (&) if

ML, ) s @)y + MO ) 4 9) e
- [ Fxwgx+ qi [ 17 2upax

RN RN
for any ¢ € W, where

W @)wre = (VL VP, + (U 9) s (U @) yia = (VUL VP + (U, )y
(Vu, Vo), = J [VuP~?vu - Vodx, (U, @), = J \Vul??vu - Vodx,

RN RN
(@), = j P 2updy, (@), = j ul"updx.
RN RN

Indeed, the simplified notation is reasonable, since (u,-)y», (U,-)y1¢ are linear
bounded functionals on W forallu € W.

Clearly, the entire (weak) solutions of (&) are exactly the critical points of the
Euler-Lagrange functional I : W — R, I = I, associated to (&), given for allu € W
by

1 1 1 *
1) = A () + = () A | Fowde - -l
)4 q RN qs

which is well defined and of class C}(W) by (F) and the continuity of M.

We start by showing that the functional I has the mountain pass geometric fea-
tures to guarantee the existence of the Palais—Smale sequence at special levels. The
proof of this behavior is quite standard, but we give it for completeness.

Lemma 3.2.2. Thereexistse € C?O(IRN) suchthatlI(e) < O, ||e||leyp > 1, and "e”Www >1
forallA > 0.

Furthermore, for all A > 0 there exist j = j(A) > 0 and p = p(A) € (0,1] such that
I(u) > j foranyu € W, with |u|| = p.
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Proof. Now, letu € CSO(]RN ) be such that |[u]| = 1. The assumption (M) implies that
M (t) < (//l(l)te forallt>1 and .Z(t) > //l(l)ta forallt € [0,1]. B.4)

Thus, by (F) and (3.4), we have for all A > 0,

tq* N
Itu) = I;///(utunwlp) A(Neul?,,) - A j Fox e~ ul,
]RN
t9P teq tq* "
< ///(1)(— + —) - —*||u||q* — —00, (3.5)
P 4 g 1

ast — -oo, since Op < p* < ¢* and 6q < q*, since (p*/p) < (q¢*/q) by (M,). Hence,
taking e = Tyu with 7, > O sufficiently large, we obtain at once that IIeIIWWm > 1,
"e"Wqu >1,and I(e) < O forall A > O, as stated.

For the second part, note that (F) gives for any € > 0 the existence of C, > 0 such
that

0<F(x,t)<et®+Ct” forall (x,t) e RN x R (3.6)

holds. Hence, fixing A > 0, (1.3), (1.6), and (3.4) imply that for all u € W with [lu| < 1,
M (1) (1)

Iw) > —|lu IIWw —II IIW“, —/lellull = AC¢llully - |Iu||q
MO g\, o C":
q q Tt q q
> <W - Aechg ™ - AC.cul” - -
From this, we choose € > 0 sufficiently small so that
(1)
my = 9 1 /1
q2°
Clearly, there exists p € (0,1] such that
¢l .
rr}g)f]y (t) = y(p) > 0, where y(t) = myt¥ —AC.ct’ — qq—*tq ,
t

since 8g < r < g*. Consequently, I(u) > y(p) = ; for allu € W, with [u| = p, as desired.
This concludes the proof. O

Now we discuss the compactness property for the functional I, given by the
Palais—Smale condition at a suitable level. For this, we fix A > 0 and set
¢, = inf max I(y(t)), T ={y e C([0,1];W):y(0)=0, I(y(1)) < O}. (3.7)
yel' te[0,1]
Obviously, c; > 0 thanks to Lemma 3.2.2, since in particular |le|| > p. Before proving
that I satisfies the Palais—Smale condition at level c;, we introduce an asymptotic con-
dition for the level c,. This result will be crucial to overcome the lack of compactness
and was first used in [96] for the (p, g)-Laplacian critical equations.
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Lemma 3.2.3. One has
li =0.
e

Proof. Fix A > 0. Let e be the function determined in Lemma 3.2.2, which is indepen-
dent of A > 0. Since I satisfies the mountain pass geometry at O and e, there exists
ty > 0 verifying I(t;e) = max,.q I(te) for all A > 0. Therefore, (I'(t,e),e) = 0. Thus,

EM(Igell ., el ., + 6 M(lteld ) lell?

wip wbp wha whe
-1 : -1 : 3.8
-1 [ Foctereds + ¢ el > ¢ el G.8)
]RN

by (F), since A > 0.

We claim that {f;},.o is bounded in R. Put A = {A > 0 : £; = 1}. If A = @, we are
done. So consider the case A # 0. Now, from (M), (3.4), the fact that "e"Www >1land
also ||e||WWm > 1, we derive that

EM(Igel® ., )lells ., + tiM (el llell?

wie /1= lytp wra/ 1=yt
< 0{.2(lItreltys,) + -2 (Itrely.,)} (39)

< 0.4 (D)t e
forany A € A, sincel < p < g and 6 > 1. Therefore, (3.8) and (3.9) imply that
0.71)e)? > tz*_eqllellg: foranyA € A,

which yields that {t;} ¢, is bounded since 6q < g*, as already noted above. It follows
at once that {t,},-¢ is bounded. This proves the claim.

Fix now a sequence (A;); € R* such that A — oo as k — co. Obviously, {t), }; is
bounded. Thus, there exist a t, > 0 and subsequence of (A;);., still denoted by (A;)y.,

such thatt) — t,. By the continuity of M, also {M (tfi ||e||§v1,p )} and {M (t/‘{k ||e||a/1,q )}, are

bounded, and so by (3.8) there exists C > 0 such that, for any k € N,
A J footyeedx+tf Meld < C. (3.10)
IRN

We assert that ¢, = 0. Otherwise, (¥) and the dominated convergence theorem yield

J fx, t,lke)e dx — J flx, toe)edx > 0 (3.11)

RN RN

as k — oo. Recalling that A; — oo, we get

. q"~lyond’ | =
lim [Ak [ £, eredxr e ||e||q*] - oo,

RV
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which contradicts (3.10). Thus ¢, = 0O and £, — 0 as A — oo, since the sequence (4;);
is arbitrary.
Now the path y(t) = te, t € [0,1], belongs to I, so that Lemma 3.2.2 gives

1 1
0< Cy < Il;lz%XI(y(t)) < I(t,\e) < E‘%("t/le”%/l’p) + Eﬂ(nlje"%’m).

Moreover, .# (||tAe||§VLp) — Oand .# (||l‘A€||3,,1,q) — 0as A — oo, by the continuity of
# and the fact that e does not depend on A > 0. This completes the proof of the

lemma. O

Now we are ready to prove the compactness property of I at the special level (3.7)
for A sufficiently large. To this aim, we use somehow an argument which first ap-
peared in [22]. This method has been adopted during the years, after several improve-
ments and refinements, in different problems where the lack of global compactness
was present; see [52, 98, 99, 104, 211].

Lemma 3.2.4. Any (PS)CA sequence (u); of I is bounded in W for all A > 0. Moreover,
there exist uy € W, nonnegative numbers ¢, £,, 6, such that, up to a subsequence, still
denoted by (u ).

p
w

w -y inLf (RY), w—upaeinkY,

uk - u}l in W’ "uk" 1,p - ep: ”uk”aﬂ”l - eq:

Ul < ggpa.e.in RY, for some gr € L°(Bg) and allR > O, (3.12)
we—uyin LY (RY),  glds - 6,
el 2w — g9 2wy in LT @DRY),
hold for all p € [1,q™). Finally, up to further subsequence, if necessary, not relabeled,
Vu — Vuy a.e.inRY (3.13)

is valid.

Proof. FixA > 0and let (u;), ¢ Whea (PS)CA sequence of I. Assume for contradiction
that (u), is not bounded in W. Then, going to a subsequence, still called (i), for
simplicity, either
lim [ullyre = 0o,  lim [Jugllyre = oo,
k—00 k—00

(3.14)
lullwer =1, lwliypne =1 forallk,

or

lim [ullye = 00,  supllullyue < 0o,  lullye =1 forallk (3.15)
k—00 keN

is valid.
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Assume first that (3.14) holds. If M(0) = 0, then by (M,), with T = 1, there exists
m > 0 such that

(||uk||W1P)>m and M(|lw)?,,)=m forallk. (3.16)

wta

Clearly, inequalities (3.16) continue to hold also in the nondegenerate case, that is,
when (1\7[;) is true, by taking m = a. Furthermore, from (M;) and (F) in both cases it
follows that

1 1
I(uk)—;<l’(uk),uk>zl—j Al = - Ml iy

1
=t (ugly) = Ml ety

1
q
1
+<; _ )uuku

1 1
(- ;> (Bt e,

1
+ <E - —>M(”uk||wlq)"uk|lwlq’

since p6 < g6 < v < ¢*. Hence, by (1.9) there exists 8, such that as k — oo,

c + Ballull + 0(1) = afliwgel,, + luelifg} @ >0,

< 1 1 ) m, in the degenerate case, (3.17)
X
qgd v

a, inthe nondegenerate case,

where m is given in (3.16), while a is the positive constant in (]\7[;). Therefore,

lugllwre + lugllp:
0<aspy =W 1 o(1) < By(lluglyb, + gl f,) + 0(1)
IIUkIIWI,, + IIMkIIWm
as k — oo. This is impossible by (3.14), since a > 0 is a fixed number.
It remains to consider the case when (3.15) holds. Arguing as above, we now get

lugllwre + g llwra

0O<as<p, +0(1) = By ”uknwlp +0(1)

Il
as k — oo. Again this cannot occur by (3.15). The claim is now completely proved,
since the other alternative can be handled in the same way.

Clearly, (3.12) follows at once by the fact that W is a reflexive Banach space, by (1.6)
and by Lemma 1.2.1.

It remains to prove (3.13). To this aim, we have to distinguish three cases for the
possibly degenerate nature of (£,). The case ¢, = ¢, = 0 cannot occur, otherwise
U, — 0 =u;in Wandso 0 = I(u,) = c; > O gives the required contradiction. Hence
either £, > O or £, > 0.
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We mimic the argument given in the proof of Lemma 2.3.2. Take R > O and ¢ €
CS"(]RN) suchthat0 <@ <1inRY, o =1inByand ¢ = 0in BSy. By convexity, we get

(|Vuk(x)|p_2Vuk(x) - |Vu,1(x)|p_2Vu(x),1) (Vi (x) - Vi (x)) 20 a.e.inRY

forany k € N and for p € {p, g}.
Let us first suppose that £, > 0. Thus, the well known Simon inequality, see
Lemma 2.1 of [231], with p > 2, yields the existence of ¢p > O such that

oMl [ 1V = Vg

By
< M(lwl? ) J(|Vuk|1"2wk — IV P2V - (Vg — Vuy)dx
By
< M(lwl?,,) J o(IVu P2V — [V P2V - (Vi — Vuy)dx
]RN
+ M(ll?,,) J (1Y 192Vt — [Vagy|92Vaty) - (Vg — Vary)dix.
]RN

Therefore, as k — oo,

coMllly,) [ 1V - vy P

By

< [ @Ml )1l + M (Il ) e
W (3.18)

- [ olMQlly, v
IRN

+ M(IlukII%l,q)IVuqu_z}Vuk - Vuydx + o(1).

Clearly, (1.9) and (3.12) give
(I'(w), puy) — (I' (), pu) = o(1) ask — oo,
that is,

j PIM(lw 71, IVet? + M (Il ) 19| T} dx
]RN
- J oMl )1V + M) Vgl T2V - Vupdx
]RN
= (I (), uge) — (I' (W), pu) — J{M(IlukIIJ;’,,I,,,)IVuklp’2

RN
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+ Ml ) IVugl T2} - up) V- Vopx (3.19)

- [ oMl
IRN
+ Ml 1) a0 g = )l

+A J of 0w ) (W — up)dx + J <p|uk|q*dx— J (pluqu**zuku/\dx.

RN RN RN

By the Holder inequality,

‘ j M2 IVl + Mgl )1V} g — up) Vi - Vepdx

Wi wia
]RN
1/p
< 19y 192ty [ - P )
Bor
1/q
s uwkug‘l( [ - uﬂqu) }
BZR
where my, ; = max{sup; M (IIukllﬁw), supy M (||uk||?4,1,q)}- This yields by (3.12) that

wte wa
RN (3.20)

x (U — uy)Vuy - Vpdx = 0.

tim [ (Ml ) 1920+ Mgl ) 9t}

Similarly, again by the Holder inequality,

I J M (el 1, P2 + Mg I U~ b (e — )l
]RN

) 1/p . 1/q
sm,,,q{uukn;‘(j|uk—uA|”dx) +||uk||g‘(j|uk—uA|‘de) }

B B

which implies that

lim j oM (g P, P2
k—o00 w
s (3.21)

+ Ml Jud gy — wy)dx = 0.
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Likewise, by (F) and the Holder inequality, as k — oo,

0< J of 0w ) (W — uy)dx

IRN
< J P(0qluy ™ g — wzl + 1 Gyl g — wyl)dx (3.22)
By )
1/6q 1/r
< c{( J g - uAlequ> . ( J g - u/\|’dx> } =0
BZR BZR

where C = 6q sup; IIukllgg_1 + r C; supy ||uk||;‘1 < oo by Lemma 2.2.2, since (i ); is
bounded in W. Finally, as k — oo,

J (pluqu*dx - J (pluqu*_zuku/\dx -0, (3.23)

RN RN

by (3.12). Thus, combining (3.18)-(3.23), we obtain

cpM(IIuklliva) J [Vuy, — Vuy [Pdx < o(1) ask — oo,
By

which implies at once that
Vu, — Vu, in [LP(BR)]N forallR > 0,

since M(||uk||€,,1,p) - M(fg) > 0 by (M,) when M(0) = 0 and by (1\7[;) in the nondegen-
erate case. Therefore, up to subsequence, not relabeled, we get (3.13).
It remains finally to consider the case in which ¢, > 0. Again, the well known

Simon inequality, with g > 2, yields the existence of ¢, > 0 such that

cM(lwel.,) j IV, — V| 7dx

By

< M(lwl?,.,) J(IVuqu_2Vuk — [Viy |7?Vuy) - (Vuy, — Vg )dx

Bg

< M(lwl? ) j o(IVu P2V — [Vuy P2V - (Vi — Vuy)dx
]RN
# M(lugl,) [ (V™9 = 1V,19200) - (Vg - V)

RN
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Therefore, as k — oo,

Mt .0 J [Vuy, — Vuy|%dx

Br

< j PIM (e )IVl? + M (gl ) V2| T} dx

Y (3.24)
- [ ottt v

]RN
+ Mg,V T2}V - Vigdx + o(1).

Again, (1.9) and (3.12) give (3.19)-(3.23). Thus, combining (3.19)-(3.23) with now (3.24),
we get

ch(||uk||§/1,q) J [Vuy — Vuy|%dx < o(1)  ask — oo,
By

which implies at once that
Vu, — Vu, in [L9(Bp)]" forallR > 0,

since M(Ilukllaﬂﬂ) — M(Eg) > 0 by (M) when M(0) = 0 and by (M) in the nondegen-

erate case. Therefore, up to subsequence, not relabeled, we get also in this case (3.13).
O

Lemma 3.2.5. There exists A* > O such that for any A > A* the functional I satisfies the
Palais—Smale condition at level c,.

Proof. Fix A > 0 and let (u), ¢ W be a (PS),, sequence of I. Thus, up to a subse-
quence, still called (uy),, there exists u; € W such that (3.12) and (3.13) hold thanks to
Lemma 3.2.4. By (M), (F), (1.9), and (3.12), we also have

1 1 *
Dx(--— & 3.25
r+o) = (3 - = i (3.25)

as k — oo. In particular, by (3.12), (3.25) and the Brézis and Lieb lemma in [49], letting

k — oo, we get
1 1
a=|--—=
A (v q*>(

On the other hand, (1.9), (3.3), (3.12), and (3.13) imply that, as k — oo,

. . 1 1 .
q q q
e+ ||uA||q*) > <‘—/ "7 )t’A . (3.26)

o)) = (') g~ 3) = Mgl g2, = MOt 2, ) 0t 1) o

+ MOl 1)ty — Ml ) s )
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[ o Pt = e - A [ £ w0t - )
RN RN
= M(&)(e) — luallh,.,.) + M(e2)(eg ~ luallge,)
— . + lapl + 0(1).

Thus, (3.12), (3.13), Theorem 2.7 of [100], and the Brézis and Lieb lemma yield the cru-
cial formula

M(£5) im fluy = I, + M(£G) i fly = 1,
) R (3.27)
= klgrolo g = uplly. = 65 -
On the other hand, by Lemma 3.2.3, there exists A* > 0 such that forallA > 1%,
min{(ms8)4/@ -9 (¢ s)? /@0y
1 1
) < (; - q_*> in the degenerate case, (3.28)

@S)? @ ~?  in the nondegenerate case,

where mis the number depending on T = 1selected as in (M,), c is the positive constant
in assumption (M3) in the degenerate case, while a is given in (M;) in the nondegener-
ate case. Finally, S is the best constant of the Sobolev embedding for Wl’q(]RN ), given
by

q
S= in W > o0. (3.29)
uew @) [ullg.
u#0

[l

Since (&) could be degenerate, that is, the Kirchhoff function M could be possibly
0 at 0, we split the proof in two steps.

Step 1. The Kirchhoff function M verifies M(0) = 0, (M;), (M,), and (M5).

Due to the degenerate nature of (&), several situations must be considered, and
we divide the proof of the current step into further three cases; we shall show that the
first two cannot occur.

Casel. ¢, =0, but £, > O for a fixed A = A*.

Of course, u; — O strongly in WP (RV). Thus (3.12) implies that u, = 0in W.
Therefore, the crucial formula (3.27) becomes

M(ed)ed = 87 (3.30)
We claim that §, = 0. Otherwise, §; > 0 and (3.29) and (3.30) imply

8979 > sm(ed). (331)
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Since we do not know the exact behavior of M, we distinguish two situations.
If ¢, > 1, then (M,) gives m > 0, corresponding to 7 = 1, such that M (63) > m.
Hence, (3.31) yields

877> ms. (3.32)

While if ¢, € (0,1), then 87 7 > ¢ 5670V > ¢ %61 by (3.31), (Ms), and (3.29). This
gives

89 7% 5 cs?, (3.33)
since 8, > 0 by contradiction. By combining (3.26), (3.32), and (3.33), we have

1 1 *
C 2 <— - —*>€z
v g

> <% - q_1*> min{(ms)q*/(q*—q)’ (Cse)q /(q —eq)})

(3.34)

which is impossible by (3.28). Thus §, = 0, as claimed.
But §; = 0 denies the validity of (3.30), since ¢, > 0 implies M (EZ) > 0 by (M,).
Therefore, Case 1 cannot occur, as stated.

Case 2. ¢, > 0 but ¢, = 0 for some fixed A > 0.

Itis obvious thatu; = 0in W and thatu;, — O stronglyin L7 (RN). Therefore, (3.27)
yields at once the required contradiction

P\ pP _
M(&)e = o,

since ¢, > 0 and so M(fg) > 0 by (M,).
In conclusion, we have to consider only

Case 3. ¢, > 0 and ¢, > O for some fixed A > A*.

Let us prove that (1), up to a possibly further subsequence, converges strongly
to uy in W. Arguing as above, we assert that §; = 0. Otherwise, §, > O so that (3.27)
and (3.29) give (3.31) again, and we can proceed as in Case 1. Let us distinguish two
situations. If ¢, > 1, then (M,) gives m > 0, corresponding to 7 = 1, such that M (Eg) >
m. Hence (3.31) yields again (3.32). While if ¢, € (0,1), then (3.12), (3.29), (3.31), (M3),
and Theorem 2.7 of [100] imply

- 0-1
87 > SM(£1)87 > c S 5561

0-1
= ¢S8! (lug —wplfg + lplld )" +0(1) (3.35)
2 ¢S 87wy —up |97, + 0(1) 2 ¢ S°857 + 0(1)
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58 —— 3 Critical Hardy—Kirchhoff equations in RV

as k — oo. Consequently, (3.33) is valid again. Therefore, (3.26), (3.32), and (3.33) give
once more (3.34), which contradicts (3.28). Thus &, = 0, as claimed. Hence,

lim ||uk - uA”q* = 5A =0.
k—00

Clearly, (3.27) yields that u;, — u, in W as k — oo, due to M(Zg) > 0and M(L’g) > 0 by
(M,) and the fact that Ef,’ > 0and Eg > 0. This completes the proof of Step 1.
Step 2. The Kirchhoff function M satisfies (M) and ().

In this case, the proof of Step 1 simplifies further. Indeed, the argument produces
the main formula (3.27), and so (3.29) gives at once

67 > SM(e9)8? > as 6

by (M,). Hence §; = 0 by (3.26) and (3.28). Hence, we may finish the proof of Step 2
proceeding as at the end of Case 3. This completes the proof. O

Proof of Theorem 3.1.1. Lemmas 3.2.2 and 3.2.5 guarantee that there exists A* > 0 such
that for any A > A", the functional I satisfies all the assumptions of the mountain pass
theorem at the level c,. Hence, there exists a critical point u; € W of I at level c;,.
Clearly, u, + 0, since I(u;) = ¢; > 0 = 1(0).

Furthermore, from (M;) and (F),

1 1
6> (o5 - 3 MU, Nl
)4 (3.36)

1 1
+ (q—e - ;>M(I|uA”%/Lq)nu/lngvl’q’

which yields (3.1) in the nondegenerate case by virtue of Lemma 3.2.3 and (1\7[;).
In the degenerate case, we argue as follows. Suppose first that

lim sup |[uylye = w, > 0.
A—00

Hence there is a sequence j — A; T co such that ||u,1}_||W1,p — wy asj — oo. Then (3.36)
gives

1 1
0y 2 (g =3 IO B iy

Lemma 3.2.3 as j — oo yields

by (M,). This contradiction proves that

lim fluyllye = O. (3.37)
A—0c0
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We assert that
lim [luyllyre = O. (3.38)
A—oo

Otherwise, limsup,_,, lually1e = w, > 0. Hence there is a sequence j — ; T co such
that "uyl_le,q — w, asj — oo. Then, (3.36) gives

1 1 q q
6, > (75 5 MOy 1l .

Lemma 3.2.3asj — oo yields

1 1 g
0> (E - ;)M(wq)wq >0,
again by (M,). This contradiction proves (3.38). Of course, (3.37) and (3.38) imply at
once the validity of (3.1). O

3.3 Proof of Theorem 3.1.2

We conclude this chapter proving the result stated in Theorem 3.1.2 for the nondegen-
erate case. For this, we need a truncation argument, as in [98, 99, 104, 105] and the
references therein, in order to control the growth of the elliptic part of (£;). From now
until the end of the section, we require all the assumptions of Theorem 3.1.2.

Proof of Theorem 3.1.2. Take € € R, with 0 < a < M(0) < € < av/q, which is possible
by (3.2). Putforall t € R,

M(t) = {M(t)’ MO <e so that
g, ifM(t) > ¢, (3.39)

M,(0) = M(0), minM.(t) =a,
teRy

and let .Z_.(t) = f(; M_(1)dt. Consider the auxiliary equation in RY such that

Ml )(=Bpu -+l ) + Ml ) (~Agu + [l %) (.40)
= Ao u) + ul? . ’

We are going to solve (3.40), using the proof of Step 2 of Theorem 3.1.1, but replacing
the Kirchhoff function M with M,.
Clearly, (3.40) can be thought as the Euler-Lagrange equation of the C! functional

1 1 1 *
00 = e (ly,) + o Aelfyn) =2 j Foowde ~ -l

RN
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60 —— 3 Critical Hardy—Kirchhoff equations in R¥

for all u € W. For the functional I, Lemmas 3.2.2 and 3.2.3 continue to hold. Indeed,
for Lemma 3.2.2 it is enough to observe that (3.5) is now replaced by

o\ 9
L(tw) < s(— . —> - S - —oo
p q d

*

ast — oo, since p < g < q*. Similarly, also Lemma 3.2.3 can be proved in a simpler
way. Indeed, t; > 0, so that (3.9) becomes

e(tfllel ., +tlel? ) = EM(Itrell ., el

wir wha we /1=yt
+ tIM(Itreld . )lell? .,

for any A > 0. This and (3.8) imply at once that {t;},,, is bounded in R. The rest of the
proof is unchanged. Hence Lemmas 3.2.2-3.2.4 are valid, and it remains to prove the
main Lemma 3.2.5 for I,.

Proceeding as in the proof of Claim 1 of Lemma 3.2.5, by (1\7[;) now (3.17) becomes,
asn — oo,

a &

>0, (3.41)
1%

o+ Bl +0(1) = afllg I, + g lf )

since € < av/q, while the other key formulas hold true with no relevant modifications.
Thus, arguing as before in Step 2 of Lemma 3.2.5, we find that for all € € (M(0), av/q)
there exists a suitable A = A(¢) > 0 such that (3.40) admits a nontrivial solution u €W,
with I(wy) = c,. Hence, (3.41) implies that for all A > A,

4

o = allulf,., + Il ),

so that (3.1) follows at once by Lemma 3.2.3.
Fix € € (M(0),av/q). By (3.1),

a < M(0) = M.(0) = Alirf)lo max{M, (llupllww ), Mc(lugliyra)}-

Therefore, there exists A* = 1*(g) > A such that
a < max{M,(luallyr ), Mc(lupllyra)} < € forallA > A*.

In conclusion, for all € € (M(0), av/q) there exists a threshold A* = 1*(¢) > 0 such that
forall A > A* the solution u, of (3.40) is also a solution of (&). O

Comments on Chapter 3

Equation (&) possesses some interesting features: it is governed by two operators
and contains a critical term. Problems in which both the p and g Laplacians appear,
set also in unbounded domains, have been recently considered in the literature but,
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3.3 Proof of Theorem3.1.2 =— 61

as far as we know, no problem like (&) with either p or g variable has been examined.
A very interesting area of nonlinear analysis lies in the study of elliptic equations in-
volving anisotropic elliptic operators. Recently, great attention has been focused on
these problems; see, among others, the paper [8] and the references therein. From the
variational viewpoint, several intriguing difficulties naturally arise in this new set-
ting. For instance, a precise formulation of the concentration compactness principle
in spaces with variable exponent need to be investigated; see [109]. We also refer to
the monographs [221] for a theoretical account on these spaces. The extension to this
new setting will be an object of future studies.
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Part Il: Existence of multiple solutions via
group-theoretical invariance in the Hilbertian
setting
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4 Multiple solutions for critical equations in RY

Se non dovessi tornare,

sappiate che non sono mai

partito.

Il mio viaggiare

é stato tutto un restare

qua, dove non fui mai.

Giorgio Caproni

Biglietto lasciato prima di non andar via

In [9] A. Ambrosetti, H. Brézis, and G. Cerami studied the existence and multiplicity of
solutions for semilinear elliptic Dirichlet problems in bounded domains, analyzing the
combined effects of concave and convex nonlinearities with respect to a real parame-
ter A. Later, S. Alama and G. Tarantello in [2] dealt with a related semilinear Dirichlet
problem in a bounded domain, with weighted nonlinear terms. The competing nonlin-
ear terms combine each other, with the first being subcritical and the latter critical or
supercritical. Here, following [24, 217], we prove the existence of a critical valueA* > 0
with the property that (£,) admits nontrivial nonnegative entire solutions if and only
if A > A*. Furthermore, if (£,) possesses a nontrivial nonnegative entire solution for
some A > 0, then (£;) admits at least two nontrivial nonnegative entire solutions. In
the last section a multiplicity result has been proved in the presence of symmetries.

4.1 Nonnegative entire solutions

In this chapter we study the following one-parameter critical elliptic equation in RV

2N

— Au+u = W)™ U - O Py, N =3, 2 = N3

)

where A € R and the main coefficients verify
(H1) (i) The exponent mis such that 1 < m < 2%;

(i) 0<heLl®®RY),0<wel?/@™®RN), andw # 0.
(H,) The coefficients h and w are related by the condition that
w(w/R)m V@ =M 12 (RN

4.1
[ww/R)™m V@~ e R “D
hold, where 2*' is the Holder conjugate of 2*.

Note that the requirement that h € L (R") stated in (H,)-(ii) implies that the potential
w e L2/@ RNy under condition (74,).

https://doi.org/10.1515/9783110652017-004
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66 — 4 Multiple solutions for critical equations in RY

Equation (&) is a semilinear elliptic problem involving a Sobolev critical nonlin-
earity with combined effects. For quasilinear problems of this kind, we just quote, for
example, [24, 53, 209, 217] and the comments and references therein.

Clearly, (£,) has a variational nature and the underlying functional I = I, is well
defined in H'(RY) = W™(RY), which is the solution space of (£,) and is given by

1, -2 A 1 2*
I(w) = Ellull - Ellullm,w + 2—*||u||2*’h, (4.2)
where || - || = || - [|;n. We combine the main results in the following statement.

Theorem 4.1.1. Let (H;)—(H,) hold.

(i) There exists A, > O such that (£,) has at least one nontrivial nonnegative entire
solution for all A > A, and has no nontrivial nonnegative entire solutions for A < A,;

(i) If2 < m < 2%, then there exists A, > 0 such that (£;) admits at least one nontrivial
nonnegative entire solution if and only if A > A, ;

(iii) Furthermore, if (£,) has a nontrivial nonnegative entire solution for some A > 0, then
(&) admits at least two nontrivial nonnegative entire solutions;

(iv) Finally, for all A > 0 equation (£,) has at least two nontrivial nonnegative entire
solutions, and if 1 < m < 2 then (£,) possesses infinitely many solutions (u; );, whose
negative critical values ¢, = I(uy) tend to 0 as k — oo, where I is the underlying
functional of (£,), given in (4.2).

It is worthwhile to see that

J, w2 /27 -m]

_ +
m dx =7 e R (4.3)

RN

implies that (4.1) holds. Indeed, the Holder inequality, with 2" - 1)m/(2" - m) and
m'/2*', where 2*' and m' are the Holder conjugates of 2* and m, respectively, gives
(m-1)/(2"-m) y2*' >

[[(3) - | ()

RN RN

2*! 2*/ !
< Wl i > ™

' m'

1/Q2*-m)
] dx

Therefore property (4.1) holds by virtue of assumption (4.3), since w € 1/ (2*"'")(1RN )
and 1 < m < 2% by (H,)-(@i).

Throughout the chapter we require condition (H,), without further mentioning.
Since we are interested in weighted Lebesgue spaces, denoting by w a generic weight
on RY of class Llloc(]RN), we put for any p, with 1 < p < oo,

L*(RY,w) = {u: RY - R measurable : w"¢|u| ¢ Lf(RV)},
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endowed with the norm IIMIIWU = Ile/ ‘Oullp. In particular, the next result summarizes
the main properties of the weighted spaces L’"(]RN ,w)and > (IRN , h) we are interested
in. By Proposition A.6 in [24], we have

Lemma 4.1.2. Let the weights w, h be of class L}, .(R"), and let m be a finite Lebesgue
exponent strictly greater than 1. Then L™®RN, w) and L* (RN, h) are separable uniformly
convex Banach spaces.

By standard Sobolev theory we have

Lemma 4.1.3. The embeddings H 1(IRN ) — D1’2(IRN ) — 2 (]RN ) are continuous, with
IVull, < lull for all u € H'(RY),

llull, < cy<IVull, forallu e Dl’z(]RN). (4.4)

Forany R > 0 and x, € RY, the embedding H'(R") << L¥(By(x,)) is compact for
all p, with1 < p < 2*.

Lemma 4.1.4. Ifeither (H,) or2 < m < 2* is satisfied, then the embedding H'(RY) <<
L™RYN, w) is compact.

Proof. We divide the proof into two parts.

(i) Assume that (H,) is satisfied. Again w € L;ﬁ(RN ) by (#H,)-(ii). Let us recall the
following elementary inequality: for every k; > 0, k, > 0 and a, 8, with O < a < B3, there
exists C,p = ﬂ,%“(%)“/(ﬂ*"‘) € (0,1) such that

k a/(B-a) k a/(B-a)
kyltl® — koIt < Caﬂk1<ll> k1<kl> (4.5)
2

forallt € R. Hence, taking k; = w, k, = 1/2, a = m -1, = 2" - 1in (4.5), we get, for

allu € H\(RY),
i, = | <w|u|’"‘1 - %|u|2*‘1>|u|dx w3 [ ax

RN RN
<C J @D/ =)y + -||u||2
J 4.6)
1
< Glwllys jae—myllullys + §||u||2*
1
< Cicp || Vull, + §||u||2*

by (4.4), where C; = 2m-D/@"=m) Therefore, for anyv € H'(RY), v # 0, putting u =
v/lvland C,y = Cicy»#, we have

: I

2

9*

v
dx<C HV—
71 vl

v
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68 —— 4 Multiple solutions for critical equations in RY

v 1 v z
<C Hv_ o1 j
71l " 2 ) [ivle
]RN
SCW+1.
Hence,
v " i \" v "
= [l (Y ol
IVl IVl vl
RN RN

s( Ivi ) (Cyp +1).

1V,

Thus [Vl < (Cyr +1)1/’" [vl, and so H! (IRN) is continuously embedded into L™ (]RN, w).
It remains to prove that the embedding is actually compact. To this aim, let u;, — u

in HY(RY). Again, up to a subsequence, still denoted by (ug)x> we have ;. — ua.e.in

RY by Lemma A.10 of [24]. We claim that for all € > O there exists K = K(g) such that

j wly, —u|"dx <& forallk > K. 4.7
IRN
Sinceu;, — uin Hl(IRN), one has ||uk—u||§: < Mforallk = 1,2,... and a suitable positive
constant M. Fix € > 0. By (4.5), as in the proof of (4.6), taking k; = w, k, = £/2M,

a=m-1,=2"-1,weget, forallk=1,2,...,

J wlwy, —ul™dx < j CSWQ*_D/Q*_'")Iuk — u|dx

RN RN
£ 2
+ M J [y —ul” dx (4.8)
]RN
* *_ g
< J Cow@ V@M uldx + >
IRN

where C, = M g)M=D/@-m) e assert that (w@ ~/ (2*‘m)|uk - ul);, is uniformly inte-
grable in RV, Indeed, for any measurable subset U c RY , we have

1-1/2*
Jw(z DI uldx < (J w? /@ 7m)dx> lluy — ull-.

From the last inequality we get at once the assertion. Hence the Vitali convergence
theorem yields

lim j Cow(w/R)™ V@ M yjdx

RV
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_ J Tim Coww/B) ™y~ uldx = 0.
—00

RN

Thus there exists K = K(g) such that

j Cemtow/R) "D E g — uldx < £

RN

for all k > K. In conclusion, the claim (4.7) is valid by (4.8). Therefore, the embedding
HY(RY) —>— L™(RY,w) is compact.

(iif) Assume 2 < m < 2*. Similarly, H{(RY) —<— L™(RY,w) is compact. It is simply
enough to replace in the main argument w? ~%/@-m by w. Indeed, forallu € HY(RY),
the Holder inequality and (4.4) give

m m m m
j wlul"dx < [Wllas jas—my lllys < G+ Wl ey I VUL,
]RN

m m
< 6o Wiy jos oy ™.

Thus, ||l < - ||w||§{,’/"(2*7m) |lul for allu € HY(RY), that is, the embedding H}(RY) —
Lm(]RN ,w) is continuous. Let us prove that it is actually compact. Fix (u; ), u € H 1(]RN )
and assume thatu, — uin H L(RY). Then, up to a subsequence, still denoted by ()i,
we get that up — ua.e.in RN as k — oo. Moreover, there exists a constant M > 0
such that [lu,| + [lull < M. We claim that uy — uin L™(RN,w). Fix ¢ > 0. There exists
6 = 6(¢) > 0and r = r(e) > 0 such that for any measurable subset U ¢ RY, with

Ul <6,

2° /(2" -m)

>

2*/(2* -m)
Jw dx < [(Mcz*)m}

Lo 2" /(2" -m)
J w? @M gy < [

RY\By

W] forallR>r,

since w € L2/@-M(RM), Consequently, we have for any measurable subset U ¢ R",

with |U] < 6,
@ -m)/2*
leuk —u|Mdx < <J w? /@ _m)dx> luy — uly: <&,
U U
@ -m)/2*
J wluy — u|™dx < < j w? /@ _m)dx> luy —uly: <€
RN\B, R¥\B,
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forallR > r. Therefore, the fact that w|u; —u| — Oa.e.in RY and the Vitali convergence

theorem yield
lim J wly, - ul™dx = 0,
k—00
IRN
that is, u, — uin L™RN,w), as claimed. This completes the proof. O

Lemma 4.1.5. Ifu € H'(RV)\{0} and A € R satisfy

Nl + ull3- , = Allul (4.9)

m

m,w>

then A > 0. Moreover,

(i) if (H) is valid, then [[ull,, < Kk AU22/& -mm,

(i) if2 < m < 2" is satisfied, then A" @™ < |[ully.»

and the positive constants k, and k, are independent of u.

Proof. Letu € H'(RV)\{0} and A € R satisfy (4.9), then A > 0, since u # O.
(i) Assume that (H,) is verified. By (4.5) and (4.9), we have

1 * 1 *,
Il + St = | [Aw|u|’" t— Shlul® 7 luldx
RN
<C j Aww/R) DI = gy
RN
< CA® VT (w i) DIl

< Cz/\(z*—l)/(z*—m)nvu"z < CA(z*—l)/(z*—m) llull,

(4.10)

where C = C;c,r #/, C; = 2 D/@ "M a5in (4.6). Thus
Jull < CA® /@ m) (4.11)

By (4.9), since A > 0, we finally get, thanks to (4.10) and (4.11),

2 2 1o
il < (Z ful’ + Enunz*,h])

*_ *_ _ 1
< (2C2A2(2 1)/(2*-m) 1) /m

1/m

_ KlA(m—2+2*)/(2*—m)m’

where x; = 2CH)Y™,

(i) Assume that 2 < m < 2*. Then Lemma 4.1.4 and (4.9) imply that

1/2 2
Netlly < Crlltll < Cpdullz2,
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where C,, > 0 is the constant of the embedding H 1(IRN ) — Lm(IRN ,w). In conclusion,
sinceu # Oand 2 < m < 2%, we get [[ull,,, > 1AM where k, = Cﬁ{(z""). This
completes the proof. O

We say that u € H'(RY) is a (weak) entire solution of (&) if

wv) =21 J wlu™ %uvdx - J Rlul® 2uvdx
RN RN

for all v € H'(RY). Hence the entire solutions of (&) correspond to the critical points
of the energy functional I : H'(RY) — R, defined by

1. 5 Ayom 1. o
I(u) = Ellull - Ellullm,w + 2—*||ullz*,h

for all u € H'(RM).
If (&;) admits a nontrivial entire solution u € HYRN), then (4.9) holds and so A > 0
by Lemma 4.1.5. From now on we consider only the case A > 0.

Lemma 4.1.6. Assume that (H,) holds.

(i) The functional I is coercive in Hl(]RN) and any sequence (u) in Hl(IRN), with
(I(u)y bounded, admits a weakly convergent subsequence in H 1(]RN );

(i) Forafixed A > 0, all the critical points of I are uniformly bounded in H'(RY).

Proof. (i) By (4.5), arguing as in (4.6) and using the same notations, we get, for all
u e H(RY),

1.0 [A, m 1 > 1 2
I(u) = §||u|| - [E”U"m,w - ﬁ"ll”z*,h + ﬁ””"z*,h

1.2 1 > I[ W omi1 h oy

> —|lull” + ull5s » — A—|u - ——|u - |luldx
2|| Il 2.2*" 12+ n ml | 2-2*| | 7]

]RN

1 1 * _ .

> E||u||2 + ﬁnun;ﬁ -G J Aw(Aw/R) ™D/ =M 1 dx

]RN

1,2 1 2 1.2

> —lull” + —|lull5« », — C»- IVull, = =|ull” = C |lull,
2|| [ L ull: , = Cy IVl 2|| || wllull

with C,, = Cic»# by Lemma 4.1.3. Thus I is coercive in HY(RY).

(ii) FixA>0Oandlet Sy = {u € Hl(]RN) : uisa critical point of I}. Clearly, every u € S,
is a solution of (£;) and so satisfies (4.9). Hence Lemma 4.1.5(i) is valid. In conclusion,
8, is bounded in L™®RY,w), and so in H'(R") and also in L2 (RY, h) by (4.9). This
completes the proof. O

Lemma 4.1.7. Assume (H,) holds. ThenI is of class C*(H'(RY)) and sequentially weakly
lower semicontinuous in H'(RN). Hence, if u;, — u in H'(R"), then

I(u) < liminfI(uy).
k—o00
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72 —— 4 Multiple solutions for critical equations in RY

Proof. Clearly, I is of class C Y H 1(IRN )). Hence it remains to show that I is sequentially
weakly lower semicontinuous in H 1(IRN ). To this aim, fix (u; ), uin H 1(]RN ), withuy, —
uask — oo.

Since (#,) is satisfied, and due to the fact thatA > O,

1 1 -
lim inf1() > lim inf<—||uk||2 + —||uk||§* h) ~ M im sup [lugl™ ,
k—o0 k— * » m oo N
A
—||u|| + —Ilullz* “m Il = I (W),

by Lemma 4.1.4. Therefore I is sequentially weakly lower semicontinuous in H'(RY).

O

Let .7 : H(RY) — R be defined by

S (u) = —IIu|| +—|IuII2*

forallu € Hl(IRN )and let .#' : Hl(]RN ) — H‘l(IRN ) be its derivative operator, where
H ‘1(]RN ) is the dual space of H l(]RN ). Moreover, .#' can be represented as

(7' W),v) = wv)+ J hlulz*_zuvdx

]RN
forallu,v e Hl(]RN).

Lemma 4.1.8.
(@) ' H(®RN) - HY(RY) is a continuous, bounded, strictly monotone operator;
(il) .7 is a mapping of type (S,), i.e., if w, — uin H'(RY) and

lim sup (&' (w) - .#' (W), u; — u) <0,
k—oo
thenu, — uin Hl(]RN);
@ity 7" : H(RY) > H(RY) is a homeomorphism.

Proof. (i) This is an obvious statement thanks to the representation of .#'.

(ii) Property (S,) for .#' is a direct consequence of convexity and the fact that the set-
ting is Hilbertian.

(iii) The strict monotonicity of .#' implies that .#' is an injection operator. Clearly,

2 2"
(7' (w),u) lim g L
ll—co  [lull lull =00 lull

>

so that .#' is coercive in H 1(]RN ). Hence .#' is a surjection in view of the Minty-
Browder theorem, see Theorem 26A of [258]. Thus .#' has an inverse operator (. "t
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H ’I(IRN ) — Hl(]RN ) and the continuity of (.#' )~! is sufficient to ensure that .#’ is a
homeomorphism.

To this aim, fix (), f € H'(RY), with f;, — f in HY(RY). Put uy, = (#")7}(f,) for
allkand u = (#')7\(f). Then .#’ () = f;, .#'(u) = f, and () is bounded in H'(RY),
since .7 is coercive in H'(R"). Without loss of generality, we assume that u;, — u., in
HY(RY) for some u_, € H(RY). Consequently, as k — co,

(A (W) = I (U)s g — uey) = (I (W) — 7" (W), wye — ug, )
+ (I W) = I (Ugo) Uy — U )
= (fie —Frug —Upo) + (I (W) = 7 (o) Uy — Uy)
=o(1),

since f, — f in HY(RY) and u;, — u,, in H'(R"). Therefore, u, — u,, as k — oo by
the (S,) property of .#'. But f, — f in H}(R") and .#" is continuous in H'(R"), so that
I (uy) = limy_, o, &' (uy) = limy_ ., fi, = f = .#'(u). Since .#" is bijective, we conclude
that u., = u. Hence (.#' )"l is continuous, and this completes the proof. O

Lemma 4.1.9. If (#,) holds, then I satisfies the (PS) condition, namely, (uy);, < H 1(1RN ),
with I(w,) — cand I'(w,) — 0'in HYRN), admits a convergent subsequence in X.

Proof. Fix ¢ € Rand (i), ¢ H(RY) such that I(u;) — cand I'(u;) — 0 in H\(RY).
Then (1), is bounded in H'(RY), due to I being coercive in H'(R") by Lemma 4.1.6
and (#,). Thus (y; ), has a weakly convergent subsequence, still denoted by (u; )y, to
some u € Hl(IRN).

By Lemma 4.1.4 and (H,), the embedding H (RY) > L™(RY, w) is compact, so
that I, (w;) — I,(u) in H(RY), where I, (u) = [lul\.,,/m. Consequently, since (#') " is
continuous from H™'(RY) to H'(R") by Lemma 4.1.8, it follows that u, — (.#") oI ()
in H((RY), and we are done. O

ForallA > Oand (x,u) € RY x R, put
206U = —u + Awlu™ u - hlul® u.

Lemma 4.1.10. Assume that (#,) holds. Then g;(-,u) € Llloc(]RN) along any u € Hl(]RN).

Proof. FixA>0,ue¢ Hl(IRN), and R > 0. Clearly,

J luldx = cg < oo,
B

j hlu® dx < 1kl j(lulz* +1)dx < [Ihlloo (Iul2: + |Bgl).
By Bp
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By Lemma 4.1.4 and (H,),

A J wlu™ dx < A J w(lu™ +1)dx < A<||u||$’w + j wdx>
By By By

< AC(IIuIIm + J wdx),

Bp

where C = max{l, C,,,}. Hence, summarizing the above inequalities, we obtain

J]gA(X, u)|dx < co.
B

Thus g, (- u) € Lj,.(RY) foru ¢ H(RY). O

From now on we assume also condition (#,), without further mentioning. Let us
introduce the crucial value
3 . 1 2 1 2* .
A= inf - ul®+ —lulypr = inf ().
2 2 ’ ueH!' (RV)

ueH' (RV)
I, (w)=1 I,(w=1

We claim that A > 0. Indeed, for any u € HY(RY), with I,(w) = 1, one has |lull,, =
m/™ > 1. By Lemma 4.1.4 and (#,), there exists a constant C,,, > 0 such that |ul|,,,, <
C,llull for any u € H'(RY). Thus |lu]l > 1/C,, for any u € H'(RY), with I,(u) = 1. Thus
Su) =C>0forallu € Hl(]RN), with I[,(u) = 1. Thus A > C > 0, and the claim is
proved.

Lemma 4.1.11. For all A > A, there exists a global nontrivial nonnegative minimizer e €
H'(RN) of I, with I(e) < 0.

Proof. By Lemma 4.1.6 and (#,), the functional I is coercive in H'RY), and Lem-
ma 4.1.7 gives that I is sequentially weakly lower semicontinuous in H'(RY). Hence
for all A > O there exists a global minimizer e € H 1(IRN ) of I, that is,

I(e) = inf I(v).
veH'(RY)
Clearly, e is a solution of (&). The definition of A yields that inf, g gy I(v) < O for
allA > A. Thus e # 0. In conclusion, for any A > A, equation (&,) has a nontrivial

solutione ¢ H 1(IRN ) such that I(e) < 0. Finally, we may assume e > 0 a. e. in RY, since
le| € Hl(]RN) and I(e) = I(|e|). O

Put £ = {A € R : (&) admits a nontrivial nonnegative entire solution}. Lem-
ma 4.1.11 assures that £ is nonempty. Set

A, =sup{A : (£,) admits only the trivial solution for all u < A},
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A =inf{d : A e &}
Clearly, A, > 0andA,, > 0byLemma 4.1.5.

Theorem 4.1.12. For all A > A, ., equation (£,) admits a nontrivial nonnegative entire
solution u, € H'(RN). Moreover, A, =A,,.

Proof. Fix A > A,,. By definition of 4, ,, there exists p € (A,,,A) such that I, has a
nontrivial critical point uy, € H 1(IRN ). We assume, without loss of generality, that u, >
0 a.e. in RY, since |uu| is also a solution of (5)11' Of course, uy, is a subsolution for
(€);. Only in this proof we denote explicitly the dependence of I on the parameter A.
Consider the following minimization problem:

: _ 1Ny .
vler}\f/[IA(v), M={veH(R"): v=u,}

First note that M is closed and convex, and in turn also weakly closed. Moreover, I
is coercive in M, being coercive in H'(RY) by Lemma 4.1.6. Finally, I 1 is sequentially
weakly lower semicontinuous in H YRN) and so in M by Lemma 4.1.7. Hence, Corol-
lary 3.23 of [48] assures that I) is bounded from below in M and attains its infimum
in M, i. e., there exists u; > u, such that I (wy) = inf ¢ o [(v).

We claim that u, is a solution of (£),. Indeed, take ¢ € Cg° (]RN )and £ > 0. Put

¢ =max{O,u, —uy —€p} >0 and v, =u +&p + @,
so that v, € M. Of course,
0 < (R, ve = w) = (), @) + (T, @),
and in turn
(3. 0) = = (), 0,). 4.12)
Define
Q. ={xe RrY . Up(x) + e(x) < uy(x) < u (%)}

Clearly, Q, < supp ¢. Since u,, is a subsolution of (£), and ¢, > 0, it turns out that
(I(w,), @) < 0. Hence, we have

<I/{(u/1)> (p£> = <I/{(uy)’(P£> + <I/{(u/1) - I/{(uy)’ 4’5)
< J(VuA = Vu,) - V(u, —uy - ep)dx

QE

* J(u/\ —u) (U, —uy — ep)dx (4.13)
QE

B J(f(x’ ) = f06 ) (y, — -~ ep)dx,
QE
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where f(x,v) = Aw|v|™ 2y - hlvlz**zv. Clearly,

J(VuA - Vuy) . (Vuy - Vuy)dx = - J [Vu, - Vuylzdx <0,
QS QE

while, since 0 < U, —Uy—EP =, — Uy + £lyp| < glg|in Q,, we get

H(u/\ —uw)(uy, —uy —ep)dx| < J lup — uy,l(uy, — uy — ep)dx

€ €

<€ J [uy - uyl - epldx,
Qz

and similarly,

H(f(x, w) - foow)) (W, —uy - ep)dx| < e J[f(x, W) - fOu,)| - lpldx.

€ €

Therefore, (4.13) yields

T, 00) <& [ wooa,

Q,

€

where i = (Vuy - Vuy) - Vo + (luy - uy| + fGuy) - fx, uy)I)I(pI. We claim that ¢ €
L'(supp ¢). Indeed, Vu, and Vu, are in [L*(R")]", while u, and u, are in Lj, (R").
Finally, also |f(x,uy) - f(x,u,)| is in L}, .(R"), since

£ 06 10) = £ w,)| < AW (g™ + 1ty ™) + RGO (g™~ + 7).

Thus,

lim J YOOdx = 0,
6—>OJ’Q

since |Q,] — 0ase — 0".In conclusion, (I;(uy),9.) < o(¢) as e — 0%, so that
by (4.12) it follows that (I;(u;), @) > o(1) as € — 0*. Therefore, (I}(u;), @) > O for
all g e CP(RY), thatis, (I;(wy), @) = O forall g € C°(RY). Since H'(RY) = C*(RV) "'”,
we obtain that u, is a solution of (£),. Finally, u, is nontrivial and nonnegative, since
Uy 2 Uy,

The first part of the statement shows that A, > A, Suppose by contradiction that
A, > A,.Then (£;) cannot admit a nontrivial solution u € H YRNYif A < A,,, since this
would contradict the minimality of A, . Hence, forall A € [A,, A, ) the unique solution
of (£,) is u = 0. But this is again impossible since it would contradict the maximality
of A,. Hence A** = 1*. O
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Theorem 4.1.13. Assume (H,)—(H,) and let 2 < m < 2*. Then (€,) admits a nontrivial
nonnegative entire solutionu € H(RY) and so A, > 0.

Proof. Let (A ), be a strictly decreasing sequence converging toA, and let u; in H RN
be a nontrivial nonnegative entire solution of (¢, ). Then forallv € H {RN),

J(Vuk,Vv)dx = J grvdx, (4.14)
RN RN
where g, = —w + Awul™ — hu? ! for all k.

By (4.9) and the monotonicity of (), we obtain

2 2" m
e l” + Negllz- = Al < Cs

where C = K{")lf(z*_l)/ <2*_m), thanks to Lemma 4.1.5-(i) by (4.1) in (#,). Therefore, the
sequences ([lugl) and (llugll,+ ) are bounded. Hence, (g ) is bounded in Llloc(IRN),
since also (A;) is bounded. Moreover, by Lemma 4.1.4, it is possible to extract a sub-
sequence, still denoted (i), satisfying

w, — uin H'(RY), w — uin L"(RY, w),

U, — uin o (RN, h), u, - ua.e.inRY, (4.15)

Vi, — vuin [LX(RY)]",

for some u € H'(R"). We claim that u, which is clearly nonnegative in R" by (4.1), is

the solution we are looking for.
Indeed, for allv € HY(RY),

J(Vuk,Vv)dx — J(Vu, Vv)dx, J wvdx — J uvdx (4.16)
RN RN RN RN

as k — oo by (4.1). Again, for all v € H'(R"),

J wluy | 2w vdx — j wlu|™ 2uvdx,
RN RN
J thkI2 _zukvdx - j h|u|2 “2yvdx,

RN RN

(4.17)

as k — oo by (4.1) and Lemma 4.1.4. In conclusion, passing to the limit as k — oo
in (4.14), we get by (4.16)-(4.17) that u is a nonnegative entire solution of (& ).

We claim that u # 0. Indeed, since u, — uin H (RN by (4.1), Lemma 4.1.4 yields
in particular that |lull,,, = limy_,, llugll;,.,. Moreover, Lemma 4.1.5(ii) applied to each
u, # 0 implies that [[uyll,,, > KZA}(/ @ > 1AM since A, N A, and 2 < m. Con-
sequently, [[ull,,, = KZ/\i/ @=m 5 0. Hence u is nontrivial and nonnegative by (4.1).
Lemma 4.1.5 yields now that A, > 0. O
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4.2 Proof of Theorem 4.1.1

Thanks to the preliminary key results of the previous section, we are now able to prove
Theorem 4.1.1. However, for the sake of clarity, we shall divide the proof in two parts.
The first contains (i)—(iii), and the latter shows (iv).

First part of the proof of Theorem 4.1.1. (i) Theorem 4.1.12 says that there exists A, > 0
such that (&;) has at least a nontrivial nonnegative entire solution for A > A, and (&)
has no nonnegative entire solution for A < A, by definition of A, .

(if) Lemmas 4.1.5 and 4.1.11 as well as Theorems 4.1.12 and 4.1.13 show the existence
of A, > O such that (£;) admits at least a nontrivial nonnegative entire solution if and
onlyifA > A,.
(iii) Let (£,) possess a nontrivial nonnegative entire solution u; € H I(IRN ). We claim
that (£,) admits at least two nontrivial nonnegative entire solutions.

To this aim let us consider

— Au+u+ Rl 2u = Awle™ (4.18)
where u* = max{y,0}. The embedding H'(R") —<— L™(H",w) is compact by
Lemma 4.14 and (#,). Thus, recalling that I,(u) = ||u||$,w/m, we have that I‘;, :

H'®Y) —» @™RY,w))' is compact, i.e., if uy — uin H(RY) then I,w) — I,
in (L™(H", w))'.

Now .7’ : H{(RY) - H}(RY) is a homeomorphism by Lemma 4.1.8(iii). Hence u
is a solution of (4.18) if and only if u is a solution of the operator equation u = (' ylo
I,(u*). Let § € [0,1] and consider

u=(s")" oI, (uh). (4.19)

Define G : [0,1] x H(RY) — H'RY) by G(6,u) = (&) o I}, (u*) for all (6,u) €
[0,1] xH 1(1RN ). Thus G is continuous and compact. Lemma 4.1.6(ii) yields that all the
solutions of (4.19) are uniformly bounded in H(R"), so that there exists R > 0 suffi-
ciently large such that (4.19) has no solutions on 0Bz ¢ H'(RY). Therefore,

degLs(I - G(l, '), BR’ 0) = degLs(I - G(O, '), BR’ 0) = 1

Since (4.18) has the trivial solution zero and the nontrivial nonnegative entire solu-
tion u;, then (4.18) has another nontrivial entire solution u, € H 1(IRN ).

We claim that u, is nonnegative. Suppose the contrary. Put u; = max{-u,, 0}. Then
u, eH YRN) and take u; as a test function. Therefore by (4.18),

0=A | whiol"uguzax = | - |-, < .
]RN

In conclusion, |u; | = 0, that is, u;, = 0, as required. Thus u, is nonnegative. Finally,
u, is a nontrivial nonnegative solution of (&;). O
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It remains to prove (iv) of Theorem 4.1.1. Before doing it, let us present some in-
troductory properties. Since H'(RY) is separable and clearly reflexive, there exist two
sequences (g;); C Hl(]RN) and (e]-* )j € H‘l(IRN) such that

H'(RY) = s5pan {e,j=12..} H'(®RY) = span”’ {ef,j=12...},

and < ef,e; >= 6;,1,j = 1,2,..., where < -,- > is the dual pairing between Hl(]RN) and

i°*%j 1]3
its dual space H(RY), while 8;; denotes the Kronecker symbol and " isthe closure
of a subset of H~}(RY) with respect to the weak-star topology on H “L(RY). For brevity,

we put
k 00
X; = spanf{e;j}, Yy = @X-, Zy = @X] (4.20)
j=1 j=k

Let us state for completeness a useful corollary of the general Lemma 5.1 proved in
[217], which we state in our context.

Lemma 4.2.1. Let @ : H'(RY) — R be sequentially weakly continuous in H*(RY), with
®(0) = 0. Fix R > 0 and put

Bi = sup{®) : lul <R, ueZz}

for allk. Then B, — 0 as k — oo.

Last part of the proof of Theorem 4.1.1. (iv) Fix A > 0 and recall that by assumption
1<m<?2 (4.21)

holds.

The functional I is weakly lower semicontinuous in H LRrRM) by Lemma 4.1.7 and
also coercive in H'(RY) by Lemma 4.1.6(i). Hence, by Lemma 4.1.11, the functional I
attains its infimum at some nontrivial nonnegative function e € H 1(]RN ) and, clearly,
e is a solution of (£;), with I(e) < 0.

By Theorem 4.1.1(iii), equation (£;) admits at least two nontrivial nonnegative en-
tire solutions in H' (]RN ).

Thanks to the fact that in this case 1 < m < 2, we claim that (£;) has a sequence of
solutions (+u; ), such that I(+u;) < 0 and I(zu;) — O as k — oo.

The functional I is even in H'(RY). Moreover, I is coercive in H'(RY) by Lem-
ma 4.1.6(i) and I satisfies the (PS) condition in H 1(IRN ) by Lemma 4.1.9. Using Defi-
nition 5.1 on page 94 of [238], we denote by y(B) the genus of B € ¢, where

% = {B c H(R)\{0} : Bis compact and B = -B},

G ={Be% : yB) =k}, csziené sugl(u), k=12,...
k ue
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Thus
—OO<C1SC2S"'SC](SC]<+1S"'.

We assert that ¢, < O for every k.

Fix k € N and choose a k-dimensional linear subspace Fj of C‘C’O(]RN ). Since all
the norms on F are equivalent, there exists p; € (0,1) such that ¢ € F; and ||l < pi
implies that |l¢|l, < 6 < 1. Put

5,(;k) ={u e Fy : ull = pil.

. =
From the compactness of Sg;) and the fact thatw > 0in Q, for all k there exist constants
0> i > O such that forall ¢ ¢ S(’;),

1 1
L= j wipl"dg > jw(qmor"dq >0, and .7(p) <1,
RN Q

Therefore, for ¢ € Sg;) and t € (0,1),
I(tp) = 7 (tp) - AL, (tg) < (£ + ) ~ A6, ™.
Since 1 < m < 2 by (4.21), for all k there exist t, € (0,1) and & > 0 so small that for all
® €S0,
I(typ) < —g, < 0, thatis, I(u) < -g <0
forallu € Sg‘;k. Finally, y(Sg‘;k) =k, so that ¢, < —g, < O for all k and the assertion is
proved.

By the genus theory, see, for instance, Theorem 4.2. and the remark on page 97
of [238], each ¢, is a critical value of I. Hence there is a sequence of solutions (+uy)
such that I(+u;) < 0. It only remains to show that ¢, — 0 as k — co.

Since I is coercive in H 1(]RN ) by Lemma 4.1.6(i), there exists a constant R > 0 such

that I(u) > 0 for all u, with [u| > R. Fix k and let Y}, Z be as in (4.20). Take B € %}, so
that y(B) > k. Therefore, according to the properties of genus, BN Z; + 0. Put

Bi = sup{AL, () : u € Z, |ull <R}

Thus ; — 0 as k — oo by Lemma 4.2.1, since I, is sequentially weakly continuous in
Hl(]RN) by Lemma 4.1.4. If u € Z; and |lu| < R, then

Iw) = 7 () - AL, (w) > -AL,(u) > —f4.

Hence sup,pI(u) > —f4, and so 0 > ¢, > —f. This implies at once that ¢, — 0 as
k — oo. O
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4.3 Sign-changing multiple solutions

We study now the existence of multiple solutions (radial and nonradial) for (€,) as-
suming that the weights h and w are radial in RY and possibly higher dimensions.
More precisely, we are going to prove

Theorem 4.3.1. Let N > 3. Suppose that (H,) holds and that w and h are radial in RY.
Then, there exists A > 0 such that for all A > A equation (€ ) admits a nontrivial nonneg-
ative radial solution and {y sign-changing solutions, with mutually symmetric different
structures, where

0, if N =3,
= 4,22
b {<—1)N+ (N3] ifN > 4. (4.2

All the {y sign-changing solutions have negative energy.

Clearly, (; = O, as we shall see in the construction of the symmetries and [ -]
in (4.22) denotes the integer part of a real number.

We make use the group-theoretical construction given in [148, Section 2.2]. More
precisely, let either N = 4 or N > 6 and consider the subgroup Hy; ¢ O(N) defined by

1 ON/2) x O(N/2) ifi = 42,
O(i+1)xON-2i-2)x0(+1) ifi+ %,

foreveryi € Jy = {L,...,{y}, where {y is introduced in (4.22). Let us introduce the
involution ny, :RY — RN as follows:

(x3,X7) ifi = #, X =(x,x3) € RN« RN/2,
g, () = ) ) ;

(X3,%,%7) ifi# #, X = (x;, X, x3) € R RVN7272 5 RIFL

for every i € Jy. By definition, ny, . ¢ Hy;;, as well as
-1 2 .
Ny Ay, = Hyp and  ng, = idgy,
for every i € Jy. Moreover, for every i € Jy, let us consider the compact group
HN’rli = <HN,i’ rlHNj>, that iS, HN”li = HN,i U (’THN,iHN,i)’

and the action &; : Hy,, x HYRY) - H(RY) of Hy,, on HYRY), given by

u(g~'x) ifg e Hy;,

1 . 4.23
—u(t 1)1H}V)ix) ifg = Nm,,T € Hy, \Hy;, T € Hy, (4.23)

g & u(x) = {

fora.e.x € RN.
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Note that &; is defined for every element of Hy ,, . Indeed, if g € Hy , , then either
g € Hyjorg =ny, 7 € Hy, \ Hy; with 7 € Hy ;. Moreover, set E; = FiXHNn- (HY(RY)Y),
that is, 1

E={ucH'R"): go;u=uforallg ¢ Hy, }

for everyi € Jy.

Fix i € Jy. Every nonzero element of the space E; changes sign in RY. Indeed, if
u € E;\ {0}, then u(x) = —u(g; 1) for every x € RY thanks to the HN,,li-invariance ofu
and to (4.23). Consequently, u should change sign in RY ,sinceu # 0.

Finally, forallu € H 1(IRN )and fora.e.x € RY .

g®yux) = u(g‘lx) for all g € O(N). (4.24)

Then, putting E, = {u € H'(R") : g®,u = uforallg € O(N)}, we get that E, =
H,.4(R") and the following facts:

if N=4orN > 6, then
E;nEy,={0} foreveryice Jy; (4.25)

if N=6o0rN > 8, then
E;nE;={0} foreveryi,j e ]y, withi#j. (4.26)

We refer the interested reader to [148, Theorem 2.2] for details.

Naturally, F, iswell defined alsowhen N = 3and N = 5. In conclusion, the number
{y in (4.22) is well defined only when either N = 4 or N > 6, but we extended the
definition of {y forall N > 3, putting {y = O and Jy = 9, when N = 3and N = 5. Finally,
setJy = Jy U {0} and G; = Hy,, if i € Jy, while G, = O(N).

Let us introduce for all i € Jy the new crucial values

3 o 1 2 1 2" s
%= inf {SI s S| = inf .
I,(w=1 I,(w=1

We claim that Xl- > 0. Indeed, for any u € E;, with I,,(u) = 1, then [ul,,,, = m/™ > 1. By
Lemma 4.1.4 and (#,), there exists a constant C,,, > O such that |ul|,,,,, < Cp,llull for any
u € E;. Thus lul| = 1/C,, for any u € E;, with I,,(u) = 1. Therefore, .#(u) > C > O for all
u € E;, with I, (u) = 1. Thus A; > C > 0, and the claim is proved.

Proof of Theorem 4.3.1. Suppose N > 3 and let us first claim that for all A > A, where
A=max{A; : i€Jyh

there exist a radial nonnegative minimizer e, € Hy4(R") of I in E, = H,4(R") and ¢y

sign changing minimizers e; € E; of I in E; for alli € ], with I(e;) < O for alli € Jy.
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Indeed, by Lemma 4.1.6 and (#,), the functional I is coercive in E;, and Lem-
ma 4.1.7 gives that I is sequentially weakly lower semicontinuous in H'(R"), and so in
E;. Hence for all A > O there exists a global minimizer e; € E; of I in E;, that is,

I(e;) = JgEf, I(v).

Clearly, e; is a critical point of I|g, in E; for all i € Jy- The definition of A yields that
inf g I(v) < OforallA > A. Thus e; # Oforalli € Jy. The radial case j = O can be
treated exactly as in the proof of Lemma 4.1.11, since e, € H4(RY) gives at once that
legl is still in rad(]RN ). Finally, the constructed 1+ ¢y minimizers are distinct by (4.25)
and (4.26).

The functional I is even in H'(RY), so that (4.23) and (4.24), as well as the fact that
hand w are radial in RV , imply that I(g®;u) = I(u) for every g € G;, eachu € E;, and all
ie ]'N. Therefore, I is G;-invariant on H 1(]RN ). Indeed, G; acts isometrically on H 1(IRN ).

J <%w(x)|g ®; u(x)|m -

Moreover,
e
>dx
]RN

A 1.\ym h
= J(Ew(xﬂu(g B - x )|u(g | )dx
]RN
A m
= j(—W(y)Iu(y)I (y)lu(y)l )
m
]RN
if either g € G; = Hy . fori e Jyorg € Gy = O(N) for N € {3, 5} thanks to (4.23)
and (4.24), while

j (%W(X) lg & u)|” - (X)

RN

g & ucol’ )

A -1\ _h 1=
- J(Ew(x)lur iy X )>| _%W(r iy X 0 dx

RN

= J(%W(y)lu(y)lm h(’/)lu(y)l )

]RN
ifg = np,,7 € Hy,, \ Hy, fori € Jy thanks to (4.23).
By the principle of symmetric criticality due to R. Palais in [202], see also Theo-
rem A.1.2, the critical pointse;, i € Ji Vs Of I| E in E; are also critical points of I in H 1 (]RN ).
In summary, we have shown the needed multiplicity result. O

Comments on Chapter 4
Elliptic problems in bounded domains involving concave and convex terms have been
studied extensively since the work [9]; see, among others, the paper [248] and the refer-
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ences therein. The combined effect of concave and convex nonlinearities on the num-
ber of positive solutions for semilinear elliptic equations in the entire space R and
involving sign-changing weight functions is an argument of genuine mathematical
interest. Some results in this direction are obtained in Theorems 1.1 and 1.2 of [248]
by using the Nehari manifold method and some classical theorems due to B. Gidas,
W. M. Ni, and L. Nirenberg [117]. An interplay between symmetries results and classi-
cal straightforward minimization arguments seems to be fruitful in order to get new
multiplicity results for elliptic problems governed by sign-changing weight functions.
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5 Weak solutions of a scalar field equation

Lo spirito ha bisogno del finito
per incarnare slanci d’infinito.

Maria Luisa Spaziani
from Lo spirito ha bisogno del finito

In this chapter we study the multiplicity of solutions for a class of Dirichlet eigenvalue
problems defined on strip-like domains of the Euclidean space RY, with N > 3. The
first main result presented in Section 5.2 is based on an abstract critical point theo-
rem for smooth functionals and establishes the existence of multiple solutions which
are not cylindrically symmetric for certain eigenvalues. Afterwards, in Section 5.3, the
classical fountain theorem provides not only a finite number of infinitely many cylin-
drically symmetric solutions but also cylindrically nonsymmetric solutions for special
dimensions.

In both cases a crucial role in our approach is played by the principle of symmet-
ric criticality for smooth functionals and by a group-theoretical approach on certain
subgroups of the orthogonal group O(N) in R¥ developed in Section 5.1.

The theorems presented here represent a more precise form of some results al-
ready known on the same subject contained in [140, 141, 148, 151].

5.1 Sobolev spaces with symmetry on strip-like domains

In this section we give some preliminaries and introduce suitable group-theoretical
arguments that will be fundamental in the approach used along this chapter. In the
sequel O is a bounded open set in R™, m > 1, with a smooth boundary 00, and finally
O xRN is the main strip-like domain in RY, with N > m+2. A point (x,y) € OxRN™
is of the form (xq,..., X V1> - - -» YN—m); See Figure 5.1 below.

Y
RN-m (z,y)e—7"
. o .- -7

----------- Figure 5.1: A strip-like domain O x R in RV,

https://doi.org/10.1515/9783110652017-005
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Furthermore, H(l,((’) x RN ™ denotes the usual Hilbert space endowed with the inner
product

W,v) = ” Vu - Vv dxdy
OxRN-™

and the induced norm

1/2

= ([ wulaxay)

OxRN-m

while Lf (O x RN ™), with g € [1, 00], is the classical Lebesgue space, having the norm
defined by

o eguv-m ul® dxdy)'e, if p € [1,00),
lull, =
inflc>0:|ul<ca.e.inOxR¥™}, ifp=oco.

Since the embedding Hy(Ox RN ™) < L¥(Ox RN™™) is continuous for any p € [2,2*],
there exists ¢, > 0 such that

lull, < cyllull  foranyu e Hy(O x RrRY™), (5.1)

Let (O(N — m),-) be the orthogonal group in RN-™

and consider the group
O(N - m) = {I,,} x O(N — m),

where I,,, is the identity matrix of order m. The natural multiplication in 5(N —m) maps
any pair (g, 8,) into

818 =lInx(88) foranyg =1l,xg, & =1lnxg €ON-m).

Clearly, every & € O(N — m) can be identified canonically with the element of O(N)

given by
_ (I, 0>
= o)

for some g € O(N — m). Taking into account the above remark, it is easily seen that
every group O(N — m) is isomorphic to a subgroup of O(N).

Let + : (R™ xRV ™) x (R™ x RV ™) — R™x R¥ ™ be the natural addition law given
by

6y) +(xLy) = (x+y,x" +y') forall (x,y), (x',y') e R" x RN "™,
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The next lemma states that the group O(N—m) acts continuously and left-distributively
on (R™ x R¥N"™, +) by the map

#:O(N-m)x R"x RV — R™ x RV ™,
defined by

(§’ (X:Y)) I—>§ * (X>)’) = (X>§}’)

for every g € O(N —m) and (x,y) € R™ x RV™"™,

Lemma 5.1.1. The group O(N —m) acts continuously R™ x RN"™ by «, i. e., the following

conditions hold:

(©) (L xIy_p) * (6,Y) = (x,y) for every (x,y) € R x RN ™,

(82) (818y) = (x,¥) = 8y = (8, = (x,y)) for every pair of elements g,,8, € O(N —m) and for
all (x,y) e R™ x RN-™,

Furthermore the action = is left-distributive, that is,

(@) &+ (6y) + () = % (xy) +8 = (X,Y) for every g € OWN — m) and all
6 y), (X, y") e R™ x RN ™,

Proof. Conditions (g;) and (g,) come directly from the definition of . On the other
hand, the natural action law of the group O(N — m) on (]RN M 4) is left-distributive, so
that

g+ () +(x,y)) =8+ (x+x'y+y')
=(x+x,gy+y") = (x+x',gy +gy")
=068y +(x.gy) =8+ 6y +8* (X,Y)

for every g € O(N — m) and (x,y), (x',y") € R™ x R¥"™, Hence, also condition (g;) is
easily verified. O

Aset Q ¢ R™ x RN is said to be O(N — m)-invariant if ON — m) * Q = Q, i.e.,
gx(x,y) € Qforeveryg € 5(N —m). Moreover, if Q is 5(N —m)-invariant, theng*Q = Q
forevery g € O(N - m) by (g;) and (g,). Of course, a strip-like domain O x RN is
5(N — m)-invariant.

The natural induced action

t: O(N —m) x Hy(O x RN™) = Hy(O x RN™)

of the group O(N — m) on H(l)(O x RN"™) maps any pair (g, u) into the function gu
defined pointwise by setting for a. e. (x,y) € O x RN"™,

gtu(x,y) = u(x,g"ly) ifg=1,xg, g€ ON-m), (5.2)
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i. e., in a more direct form,

stutey) =u@' = ()

fora.e. (x,y) € O x RN"™,

Lemma 5.1.2. The group O(N - m) = {I,,} x O(N — m) acts isometrically on the Sobolev
space Hé((? x RN"™) by (5.2).

Proof. Fixu € Hy(O x RV™). It is enough to show that
Igtull = lull forallg =1, xg, g € OIN - m), (5.3)

where the operation § : O(N —m) x Hy(O x RY™) — H(O x RN "™) is given in (5.2). In
order to prove (5.3), it is enough to check that

” |Vv|2dxdy= U |Vu|2dxdy, (5.4)

OxRN-m OXRN-m
where v(x,y) = u(x,g‘ly) fora.e. (x,y) € O x RY™. Since
\T _
Wxy) = (8 Vu(x,g7'y),
where (1) denotes the transpose of %, relation (5.4) becomes
1T _ \T _
[| @ vutes™y)- @ vutes )ty = [ vuraxay,
OxRN-m OxRN-m
that is,
~—1/~-1\T -1 -1 _ 2
” g (8) Vulxgy) Vu(x,g y)dxdy = ” |Vul|“dxdy. (5.5)
OxRN-m OxRN-m

Since g € O(N — m), taking into account that

. (1L, O ) T ( I, O )
= _ and = N R 5.6
g ( 0 gt (&) 0 (g yr (5.6)
we have g7 '(g )T = Iy. Then, by (5.5) and (5.6), claim (5.3) is proved. O

From now on the symbol E, = FiXO(N_m) (Hé(O x RN ™)) denotes the elements of
H} (O x RN"™) which are fixed with respect to the action # of the group O(N — m) on
the space Sobolev space H(l)(O X ]RN*’”), i.e.,

Ey={ueHy(OXxRY™): gtu=u, g € ON - m)}. (5.7)
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Clearly, E, = Fixa(N_m)(H(l)((’) x RV ™) is a closed subspace of the main space H(IJ(O X
RY"™) and it is exactly the space Hy .,;(O xRN ™) of cylindrically symmetric functions
defined by

Hy (0 x RY™™) ={u € Hy(O x RV™) : u(x,y) = u(x,y') fora.e.

cyl
] N-m ! (5.8)
6y, (x,y") € Ox R" ™ such that |y| = |y'|}.

Of course, by (5.1), the Sobolev embedding

Hy (0 x RN™) 5 L2(0 x RY ™) (59)
is continuous for any g € [2,2"]. Moreover, by the celebrated paper of M. Esteban and
P.-L. Lions [85], the Sobolev embedding
Hy () (O x RN™™) s IP(0 x RV ™) (5.10)
is compact for any g € (2,2%).
Leteither N=m+40rN > m+6.PutJy,, =1{1,..., 0y} ¢ N, where

N-m-3
2

Gy = (DN 4 [ : (5.11)
Clearly, the set of indices Jy ,,, is nonempty, since either N = m+ 4 or N > m + 6.

By grouping together the N — m variables of the unbounded part of the strip in
blocks of at least two variables, we easily see that there are {y ,, > 1 subgroups of
O(N — m) given for every i € Jy ,, by

{ O((N - m)/2) x O((N — m)/2), ifi = 52,
Nm,i =

Oi+1)xON -m-2i-2)x 0 +1), ifi+ 0=
Hence subgroups Hy, ,,, ; define the subgroups
Hy i = {Iy} x Hy i € O(N —m)

for every i € Jy ,,. On account of the group isomorphism

= ~ I, O
HN,m,i9g=megH< (’)" g)eO(N),

every group H, N.mi can be identified as a subgroup of O(N).
Note that the sets & = Fixg (HA(O x RN™™)), where

&={uecH)(OxR"™) : gtu=uforallg € Hy n;},
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are the subspaces of block-radial functions and each &; is compactly embedded into
LP(O x RN™™) for every © € (2,2), see [160, Théoréme III.2]. Regrettably, this is not
enough to get the multiplicity result, since the {y ,, subspaces &; are not mutuaily dis-
joint. Thus, for any i € Jy ,,, we define the involution 1y ,,; : RN ™ — RY ™™ as follows:

3 y1)s ifi= W and
y=01Yy3) € RW-M/2 o RIN-m)/2,
NN m,i(y) = o
()’3,)/2,)/1), lfl ?E _Tm_ and
y = (YI’Y2>)/3) c IR1+1 % IRN—m—21—2 - ]R]H,
and we set

Ny, = Im X 1N,mji-
It is easily seen that for any i € Jy ,,,
Ny, € ON =), g =idoqvn,
Nay . ¢ Hy ms nﬁN)m,iHN,m,i Uﬁ;m’i = Hym»
where
rl}AIN’m,iHN,m,i fljgjvym’i ={ng,, 8 '11:{1]’,"#_ : § € Hym)-
Finally, for every i € Jy ,,, we consider the compact subgroup of O(N -m)
Hymn, = Hymio g, )

where (H, N.m,i> T, ) denotes the subgroup generated by the subgroup H. N.mi and the

element Mg, . € O(N - m) \ITIN,,,,,I-, that is,

HN,m,m = HN,m,i U (rZHN’m)iHN,m,iL
and the action
®; : Hy mp ¥ Ho(O x RV ™) = Hy(O x RV™)

of H N,myy; O H{ (O x RN™™) is given by setting

u(x,g'y) if g = T, x g in Hy pn»
g uGY) = U0 T Myy) I8 = Iy X1y T in (5-12)

Hy g \ Hymi> T € Hy >
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fora.e. (x,y) € O x RV"™,
Bearing in mind (5.2) and fixing i € Jy ,,, the action &; can be written as follows:

gtulxy) ifg € Hym
geuy) = 1-(ng, DuCy) ifg=ng 7 e€Hymy \Hym,

and 7 € Hy

fora.e. (x,y) € O x RV"™,

Let us note that &; is defined for every element of Hy ,,, . Indeed, if g € Hy . »
then either g € Hy ;; 01§ = Iy X Ny ;T € Hy mpp, \ Hymi» With T € Hy .

We are now ready to introduce E; = FiXﬁN,m,n,- (H(l)((’) x ]RN—m)) for any i € Jy m»

which is the set of the functions of H(l)((’) x RN ~™) fixed with respect to the action ®; of
the group H Nomo that is,

Ei={ucHy(OxR"™): g@;u=uforanyg e HN,m,m}' (5.13)

It easily seen that each set E; is a nontrivial closed subspace of H(l)((’) x RNV-™), We first
prove that E; for each i € Jy ,, is compactly embedded in the Lebesgue space LY (O x
RY™™) for any p € (2,2") and then show some geometrical properties of E;.

Actually, as we shall see below, the compactness result (5.10) continues to hold if
H(l)’cyl(o x RN™™) is replaced by E;. Let us recall that throughout the chapter, in all the
properties involving Jy ,,, we tacitly handle with the case m > 1, and either N = m+4 or
N > m + 6. Therefore, the action ®; and the subspace E; are defined in (5.12) and (5.13),
respectively.

Proposition 5.1.3. Foreachi ¢ Jy ,,, the embedding E; — L¥(O x RY ™) is continuous
forany p € [2,2%] and compact for any p € (2,2).

Proof. Fixi € Jy,,. The space &; is continuously embedded in L¥(O x RN™™) for any
@ € [2,2"] and is compactly embedded in L®(Ox RN~™) for any p € (2,2*) by Théoréme
I11.2 of [160]. Hence, the embedding E; — Lf(O x RY™™) is also continuous for any
© € [2,2"] and compact for any p € (2,2%), since fIN)m)i C ITIN’m,m, the first relation
of (5.12) that defines the action &; implies that E; is a subspace of the space of block-
radial functions &;. This completes the proof. O

Now, we prove a sort of flower-shape geometry for the configuration of the sub-
spaces E;, as stated below.

Proposition 5.1.4. The following statements hold true:
(i) Ifeither N=m+40rN>m+6,thenE;n Hé,cyl(o X ]RN‘”') = {0} foranyi € Jy s
(it) If either N =m+6o0rN > m+ 8, then E; N E; = {0} for any i,j € Jy ,, withi #j.
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Proof. (i) Leteither N = m+4o0orN > m+ 6. Fixi € Jy,, and letubein E; N H&Cyl((? X
RY ™. Since u is H, N)m)m-invariant, taking into account (5.12), we have

u(x,y) = -u(x, n,(,l,m’,-y) (5.14)

fora.e. (x,y) € O x RN"™,

Moreover, since u is radial in the second component, i. e., u(x,y) = u(x,y') if ly| =
ly'l, and |y| = Inx,l’m’iyl for every y € RV™™, then (5.14) yields that u(x,y) = —u(x,y) for
a.e. (x,y) € O x R¥ ™ and so u must be identically zero in © x RV"™,

(if) Let either N = m+ 6 or N > m+8so that {y ,, > 2. Then, fixi,j € Jy ,,, with i < j, and
u € E;nE;. It can be easily seen that the function u is both Hy ,, ;- and Hy ,, -invariant.
Therefore, u is also (Hy y;, Hy mj)-invariant, where (Hy p,;, Hy ;) denotes the sub-
group of O(N — m) generated by Hy ,,; and Hy , , that is,

u(xy) = u(x, g;'y)

for every g;; € (Hy m;, Hym;) and for a.e. (x,y) € O x RN"™, Now, as proved in The-
orem 2.2(ii) of [148], the group (Hy m,i» Hu mj) acts transitively on the sphere gh-m-1,
Hence, for any (x,y) € O x RV"™,

(Hy,mp> Hymj) 6 y) = 1 x [y sV
Hence, the function u is cylindrically symmetric, and we can apply (i), obtaining that
u is identically zero in © x R¥N™™, This concludes the proof. O

For additional comments and remarks concerning the theoretical methods re-
called in this section, we refer to [79] and references therein.

In the next part of the chapter, we shall present two cases which are comple-
mentary and describe the existence of solutions with block-cylindrical symmetries.
Namely, the first treats nonlinear terms f which are sublinear at infinity, and the latter
handles the case when the nonlinearities are superlinear at infinity.

5.2 Finitely many solutions

The main purpose of this section is to use the group-theoretical properties presented
in Section 5.1 to treat eigenvalue problems on strip-like domains. The main approach
is based on a critical point result proved in [223], which will be combined with the
principle of symmetric criticality for smooth functionals, establishing the existence of
at least three distinct not cylindrically symmetric solutions for an eigenvalue Dirichlet
problem, lacking compactness.

Let O be a bounded open set in R™ with a smooth boundary 90 and let © x RN ™
be a strip-like domain in RN ,withm > 1, and either N=m+40rN>m+6.
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We shall deal with a multiplicity result for the elliptic Dirichlet problem given by

—Au=Af (6, y,u) inOxRV™
{ dadd (Dy)

u=0 on 30 x RN ™,

where A is a positive real parameter and f is a nonlinear term. Assume that
(k) f:0x R¥"™ xR — Ris continuous and there is p € (2,2*), with the property that
for every € > O there exists k, > O such that

If,y,0)| < elt] + K |tP ! for every (x,y,t) € O x RN ™ x R;

(ky) f(,- t)is cylindrically symmetric for all t € R, thatis, f(x,y,t) = f(x, |y|, t) for every
(x,y) € Ox RN-™,

(k3) f(x,y,-)iseveninRR for every (x,y) € O x RN,

(k,) there exist positive numbers q € (0,2), q € [2,2"*] and measurable functions a €
LY @=D(© x RN"™) and B € L(O x RN"™) such that

t
F(x,y,t) < a(,y)|t|? + B(x,y), where F(x,y,t) = Jf(x,y,s)ds
0

forevery (x,y,t) € O x RN"™ x R;
(ks) there are positive numbers r and t, such that F(x,y,t) > O for all (x,y,t) in O x
B(0,7) x [0,¢ty], and F(x,y, t,) > O for every (x,y) € O x B(O,r).

The function

|elP 2t

f(X,y, t) = W COoS |t|p,
and its potential
sin [t]P
Fix,y,t) = —————
p(1+ [yN-m)2

satisfy conditions (k;)-(ks) in O x RN "™ x R, with m > 1, either N = m+4 or N > m+6,
g=1,a=0,and B(x,y) = (1+ |y|N‘"')‘2. Of course, a subcase is when f(x,y, t) = f(t) =
|t|P~%t cos |t|P. A simple prototype is given in Figure 5.2.

The main result of this section reads as follows.

Theorem 5.2.1. Let O be a bounded open set in R™ with a smooth boundary 00 and let
O x RN"™ be a strip-like domain in RN, with m > 1, and either N =m + 4 or N > m + 6.
Let f satisfy (ky)-(ks). Then, for every i € ]y ,, there exist an open interval \; ¢ R" and a
number o; > 0 such that for each A € A, there are at least three distinct not cylindrically
symmetric solutions of (D,), whose norms are strictly less than o;.
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0
Gr(f) \}

Figure 5.2: The function f(t) = /||t cos v/|t|> with p = 5/2.

Theorem 5.2.1 furnishes a precise information on the number of solutions of prob-
lem (D,) with different symmetry structure; see the above special example of f as well
as Example 3.1 in [141].

The main abstract tool in order to prove Theorem 5.2.1 is the next critical point
result valid for smooth functionals defined on separable reflexive Banach spaces; see
[223] for a detailed proof.

Theorem 5.2.2. Let X = (X,| - |) be a separable reflexive Banach space, let Q, I be

functionals belonging to C'(X), and let £ < R be a real interval. Suppose that

(i) Q is weakly sequentially lower semicontinuous in X and I is weakly sequentially
continuous in X;;

(ii) forevery A € X the functional T, = Q + Al satisfies the (PS) condition and is coercive,
that is,

lim Z)(u) = oo;
lull—c0

(iii) there exists a continuous concave function € : £ — R such that

sup inf(Z, (u) + £(A)) < inf sup(Z, W) + £(A)).
Aex UeXx ueX ey

Then there are an open interval A € ¥ and a number ¢ > 0 such that for each A € A
the functional T has at least three distinct critical points in X with norms strictly less
than o.

The existence of cylindrically symmetric solutions for hemivariational inequality
problems has been studied in Theorem 3.1 of [141] by using an abstract critical point
theorem similar to Theorem 5.2.2 but for nonsmooth functionals. In the case of strip-
like domains, the space of cylindrically symmetric functions has been the main tool in
the investigation, due to the presence of compact embeddings into classical Lebesgue
spaces. Inspired by the analysis given in [140, 141, 148, 151] and using the compact
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embedding result proved in Proposition 5.1.3 of Section 5.1, in Theorem 5.2.1 we are
interested in the existence of multiple not cylindrically symmetric solutions for prob-
lem (D,). We emphasize that the main conclusion in Theorem 5.2.1 remains valid for
the hemivariational problem treated in [141], using the Krawcewicz and Marzantowicz
principle for locally Lipschitz functionals, established in [139]. More general versions
of Theorem 5.2.1 in the nonsmooth case can be obtained by using the results contained
in [90].
Fix A > 0 and consider the energy functional I, : H(l)(O x RV"™) — R given by

L) = O(u) + AY(u), (5.15)
where
10 1 2
ow =3l =3 || wurdxay
OxRN-M
and

Y(u) = - U F(x,y,u)dxdy,

OxRN-m

for every u € Hy(O x RN™™).
Now, leti € Jy ,. Theorem 5.2.2 can be applied to the energy functional 7, ; : E; —
R defined by
Z)j(u) = @lg,(u) + A¥|g, (u)
for every u ¢ E;, by choosing

X:Ei, Q:chEi’ I:\PlEi’ Z:]R(Jr)

From now on, for the sake of simplicity, we fix i € Jy ,, and write Z, instead of 7, ; and
X in place of E;. In order to prove Theorem 5.2.1, we show here the following semicon-
tinuity property.

Lemma 5.2.3. Thanks to (k;), the functional
uw— I(u) forallueX

is sequentially weakly continuous on X. In particular, if uj — ug, in X then

” FOoy, w) Uy — ug,)dxdy — 0 (5.16)
OxRN-™

as k — oo.
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Proof. Fix (x,y) € Ox R¥"™ and t;,t; € R. By the Lagrange mean value theorem, there
exists 6 € (0,1) such that

F,y,t) —F(x,y,6) = f(x,y,0t; + (1 - O)t,)(t; - t,).
Hence, by (k;), for every € > 0 there exists k. > 0 such that

[F(y,t) = F,y, 6)| < [e(lty] + [t,])

) ) ) (5.17)
+ 2775, (1P + 1P )]G - ),

Let (uy); € X converge weakly to an element u,, € X. By (5.17) and the Holder inequal-
ity, it follows that

o - Tl <[] 1P - Fauldxdy
OxRN-m
< J’J' (e(ug] + [ugs ) + Collug P71 + [P ™)) luy, — u, |dxdy
OxRN-m
< E(lluelly + e ll) ety = Ugg 2
+ Cellugly™ + Mo 5™ty = gl
where C, = 277k,
Now, X is compactly embedded in LP(O x R¥~™) by Proposition 5.1.3 since p ¢
(2,2"). Thus [luy - u,ll, — 0as k — oo, since uy — u,, in X. Consequently,

lim sup|I(uy) - I(uy,)| < €C, (5.18)
k—oo

where C = sup; (lugll, + lug ) lug —ull, < 00, since (uy)y is bounded in X. Thus, since
€ is arbitrary, (5.18) gives that I(u;) — I(u.,) as k — co. This shows the first part of the
lemma.

To show (5.16), fix (u;); ¢ X weakly convergent to an element u, € X. Repeating
again the argument above, (k;) implies

‘ ” fOoy, u) Uy — ug,)dxdy| < ” (&l +Kg|uk|p_1)|uk - U, |dxdy

OxRN-™ OxRN-™
< ellullallug — ugoll

-1
+ Kl g = ool

that is, by Proposition 5.1.3,

lim sup “ FOGY, u) Uy — ug,)dxdy| < eC.
k—o0 OxRN-m
Thus, since ¢ is arbitrary, the above inequality gives at once (5.16). O
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We notice that the proof of Lemma 5.2.3 for functions with cylindrical symmetries
directly follows by classical arguments due to M. Esteban and P.-L. Lions. Indeed, by
(ky), it follows that F(x,y,t) = o(t?) as t — 0 and F(x, y,t) = o(tz*) ast — oo for a.e.
x,y) € Ox RN, Arguing as in the proof of Corollary 3 of [85], it easily seen that
I(uy) — I(uy,); see also [84, Lemma 4, p. 368].

Proof of Theorem 5.2.1. Fixi € Jy ,, and let us divide the argument into four steps.

Step 1. Q is weakly sequentially lower semicontinuous and I is weakly sequentially con-
tinuous in X.

The statement follows from Lemma 5.2.3 and a standard reasoning applied to the
functional Q.

Step 2. For every A € A, the functional 7, = Q + Al fulfils the (PS) condition and

lim Z;(u) = co.
lull—o00

Fix A € A. First, (k,), the Holder inequality, and (5.1) give

Zy(w) = Qu) + AL (u)
1
> 2l - A jj a6, y)luldxdy - A ﬂ Blx,y)dxdy
OxRN-™M OxRN-M

1. -
> 5||u|| = Acllatll (g Iull? = AllBlly,

foreveryu € X. Since g € (0, 2), one gets 7 (u) — oo as [lu|| — oo, thatis, Z, is coercive.
Moreover, 7, satisfies the (PS) condition at level ¢ € R, that is, for any sequence
(ug)y in X such that

Tiw) —c¢ and Zj(w)— 0 inX' (5.19)
as k — oo, there exists u., € X such that, up to a subsequence,
lug —uell = O (5.20)

ask — oo.

First of all, we notice that the coerciveness of the functional 7, implies that the
sequence (i), is bounded in X, and consequently in LP(O x RY ™). Since X is a re-
flexive space, we also get that, up to a subsequence, still denoted by (1 ), there exists
U, € X such that, thanks also to Proposition 5.1.3,

w, > u,, weaklyinX, u, —u, a.einOxR'™,

. (5.21)
U — Uy, IMIP(OxR'™), pe(2,27),
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as k — co. Now
(D (W), Uy — Ugo) = (T3 (W), Ug — U ) + ” FOGYy,w)(uy —uy)dxdy  (5.22)
OxRN-™

for every k € N.
Of course, taking into account that (u;); is bounded in X, by (5.19) it follows that

(T2 (i) e = oo )| < T3 Ity = Ul = O (5.23)
as k — oo. In conclusion, (5.16), (5.22), and (5.23) yield, as k — co,
=l = [ Vi Ve - o)y + ot
OxRN-M
= (@' (W), uy — ug,) — 0,
which is (5.20).

Step 3. There exists a continuous concave function ¢ : £ — R satisfying

sup 1nf(I,1(u) +L)) < 1nf sup(IA(u) +2)). (5.24)
Aex ueX

First of all, we prove that the structural assumptions on the nonlinear term f give
the existence of a parameter p € (0, 1] and of a nontrivial function Up; in X such that

I(uyy) = Ylx(uy;) = - ” F(x,y,u,;)dxdy < 0. (5.25)
OxRN-M
Inspired by the construction given in [148], letr > 0 be as in (ks) and fix r; and r,, with
0<(B+4V2r<ry<r.
For any g € (0,1], set

Spi=1ye RY™ . y satisfies (5.27)}, (5.26)
where
rn+3n 2 2_ 2fNhh—n 2 e. N-m-2
<Iy1|— 7 >+Iy3| sg( 4 ) 1f1=T,
(vs1- %3”) Finf <ot 2" )2 5.27)
and ly,| < o2 ifi s 02,
with
i {(YD)@,) e RN-m/2 o gN-m)/2 if i = Nom-2, 28
V1Y y3) € RF x RN 272 5 RIFL i ¢ o2
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Now, let ¢, > O be as in (ks) and define the function v,; : O x RN _ R as follows:

2 +
n-or r, + 3r r,—r
Vg,i()/): [( 24 l_max{\/<|y1|_%> +|Y3|2,Q 24 1})
r—r Iy + 3r 2 r_r +
_< 24 1_maX{\j<|y3|_ 2 i 1> +|}/1|2:Q 24 1}) :|

- nor\ 16t
non T ;
y < . max{l)lzLQ 4 }) (r,—-1)21-0?%

where y is as in (5.28).

Let w and Q be open sets in R™, with Lebesgue measure |w| > 0and w cc Q cc O.
Then, let us fix a nonnegative function ¢ € C3°(0), with suppe c Q, ¢ = 1on w and
ol = 1. Define

Uy i(6.Y) = OV, (y) for (x,y) € O x RN ™. (5.29)

Direct computation ensures that u,; € H 10 x RN™™). Moreover, since suppy,; is a
compact subset of OxRY ™, one gets Uy € H(I)((’) xRN"™) by [48, Lemma 9.5). Actually,
uy; € X, since uy; € H(O x RN™™), and U,; is ®-invariant by (5.12), arguing as in the
proof of Theorem 1.1(iii) of [148]. More precisely, we have

suppuy; € O xS;; S {(xy) € O x RN <yl <1y} (5.30)
upi(6Y)| =ty for (,y) € w xSy, upilloo < to. '

Since |u, ;06 y)| = 1)V, (NI < v,y (V) € [0, 8] for (x,y) € O x RY"™ and in force of
(k3) and (ks), we have

F(x,y,up;(x,y)) 20 fora.e.(x,y) € OxSy;. (5.31)

Finally, 0 < r; < 1, < r so that, by (5.29), (5.30), and (5.31), we get

I(ug,i) = — JJ F(X, Y, ug)i)dxdy = - JJ F(Xa Y, ug,i)dXdy

OxRN-m OX(SQ,,'U(SLI'\SQJ))

= ” F(x,y,up;)dxdy - ” F(x,y,u,;)dxdy
OxSy; Ox(S1,:\Sp,1)

< - JJ F(X, Y, ¢t0)dxdy - JJ F(X) Y, uQ,i)dXdy
OxS,; Ox(8,1\S,1)

<- ” F(x,y, pty)dxdy < — ” F(x,y, ty)dxdy < 0,
OxS,; WXS,

i. e., inequality (5.25) is verified.
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Now, let us define the function y : ]Rg — Rby

Xx(s) = sup ”’ F(x,y,uw)dxdy,
Q(u)<s
ueX OxRN-m

for every s € R{. By (k;) and direct integration, we get that for all € > 0 there exists
K. > Osuch that |[F(x,y,t)| < et? +x,|t|P for every (x,y,t) € Ox RY"xR. Consequently,

14
2

0 <x(s) < 2ec5s + 2K hs?,

for every s € R{. Henceass — 0%,

p_
2

0< )% < 2ecs + 2Px(e)chs? ! ~ 263,

since p > 2. Therefore, since € > 0 is arbitrary, we get

lim X©) _ ¢ (5.32)
s—0" S

Inequality (5.25) gives at once that u,; # 0 and there exists a number 1 such that

<n ” F(x,y,u,;)dxdy.

~ Tugal?
u .
o OxRN-m

On the other hand, by (5.32), there exist numbers s, € (O, IIuQ,iIIZ/Z) and p, > O such

that
2 ol (1)
X(S0) <po < iz ” FOuy, up)dxdy = ———28, (5.33)
N il ’ Quy,;)
OxRN-™
Hence, the choice of s, yields
Po < ” F(x,y,up;)dxdy, thatis, py +I(uy;) < O. (5.34)

OxRN-m

Define £ = R{ and ¢ : £ — R by £(A) = poA. We claim that such ¢ satisfies (5.24). The
real function

PIEW I in)g(IA(u) +pod), () = Qu) + Al (w),
ue.
is upper semicontinuous on . Relation (5.34) implies that

lim inf(Z,(u) + poA) < lim {Q(u,;) +A(pg + I(1,))} = —0o0.
A—oo ueX A—o00 ’ ’
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Thus, the Tonelli-Weierstrass Theorem 1.2 of [238] guarantees the existence of an ele-
ment A € £ such that

sup 1nf{IA(u) +pod} = in}g{Q(u) +Alpo + I(w))}. (5.35)
Aex ueX ue.

Moreover, I(u) > —p, for every u € Q‘l((—oo, Sol), since x(sy) < po. Hence,

So < inf Q). (5.36)
Iw)z—p,

On the other hand,

inf sup(Zy () + poA) = inf{Q(u) + sup Aoy + I(u))}
ueX jex ueX

= inf Q(w).

I(w)2-poy

Therefore, relation (5.36) can be written as

So < inf sup(Zy(u) + pod). (5.37)
ueX )ex

There are two cases to be considered in (5.35).

Case 1. IfA € [0, So/Pg)s then, recalling that 0 € X and (5.37), we get

sup 1nf(I,1(u) +poA) = 1nf(Q(u +A(py + 1))
Aez ueX

< Apy < So < inf sup(Z, (u) + poA),
ueX Aex

that is, we get the validity of (5.24).

Case 2. If A < [so/pg, 00), then by (5.33),

sup 1nf(IA(u) +poh) = 1nf(Q(u) +A(pg +1(w)))
Aex ueX
< Qupy) + /t(po +1(up))
< Q) + 2 (pg + ()
Po

S
= QMupy) + p—‘;I(uQ,» +50

< 8o < inf sup(Zy (W) + poh),
ueX )ex

that is, (5.24) holds. This completes the proof of Step 3.

Step 4. Every critical point of Z, weakly solves (D,) in Hé(O x RN-™),
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Clearly, I, is evenin H, Lox RN ™) by (k3). Furthermore, I; (8 ®; u) = I, (u) for every
ge Hqu andu € Hl(Ox]RN ™), where @; is defined in (5.12), i. e., the functional I is
HN mypy,-invariant on H1 (OxRN"™), Indeed, HN myy, acts isometrically on H1 (OxRN-™)
by (5.12), taking into account that O(N m) acts isometrically on H, 1((9 x RV- ™ by
Lemma 5.1.2. Moreover, (k;), (k;), and the fact that the strip-like domain O x RN ™ is
6(N — m)-invariant give

” F(x,y,8 ®; u)dxdy = ” F(x,y,u(x,gily))dxdy

OxRN-™ OxRN-m

= ” F(x,gz,u(x,z))dxdz
OxRN-™

= ” F(x,z,u(x, 2))dxdz

OxRN-m

ifg = I, xg € Hy n;» and

” F(x,y,8 & wdxdy = J F(x,y, —u(x,7"'ng, y))dxdy
OxRN-M OxRN-

F(x, Ny m,iT2, U(x, 2))dxdz

F(x,z,u(x,z))dxdz,

ifg = Iy X Ny T € HN,m,m \I?IN)m’l- and 7 € Hy ;.

By the principle of symmetric criticality, Theorem A.1.5, the critical points of the
restriction 7, in X are also critical points of the energy functional I; in H(l)(O x RN-™),
Then, Theorem 5.2.2 guarantees that for every i € Jy ,,, there are an open interval A; c
¥ = R} and a number o; > 0 such that for each A € A; there are at least three distinct
not cylindrically symmetric solutions of problem (D,), whose norms are strictly less
than g;. This completes the proof of Theorem 5.2.1. O

5.3 Infinitely many solutions

In this section we study, as an application of Proposition 5.1.4, the existence of a fi-
nite number of infinitely many solutions without cylindrical symmetry for a Dirichlet
problem defined on a strip-like domain O x RN M withm > 1, and either N = m+ 4
or N > m + 6, provided that the nonlinear term verifies suitable hypotheses. Indeed,
we treat nonlinearities which satisfy special forms of (k;)—(k;) and (ks), but which are
superlinear at infinity. More precisely, we shall deal with infinitely many solutions of
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the semilinear elliptic Dirichlet problem

{ —Au=w,y)fw) inOxRV™, D)
u=0 ondOxRV™, v

under the following assumptions on the weight w and reaction term f:
(hy) f: R — Ris a continuous function and there is an exponent p € (2,2"), with the

property that for every € > O there exists k., > O such that
()] < elt] + w ltP™!
foreveryt e R;
(hy) w e L{Ox RY"™) 0 L®(O x RN™) is cylindrically symmetric, that is, w(x,y) =
w(x, ly]) fora.e. (x,y) € O x RN"™ and
wx,y) =wy >0

fora.e. (x,y) € O x RN"™,
(h3) fisoddinRR;

(h,) thereexistv >2andt, > 0 such that
t
0 < VF(t) < f(t)t foranyt, with|t| > t,, where F(t) = Jf(s)ds.
0
A model function verifying (h;)—(h,) is w(x, y)(Iulp‘zu +|ulP2u), where 2 < p<p<2t,

vV = g, t, is any positive number, and w € LY(© x R¥"™) n L®(O x RN ™) is a positive
cylindrically symmetric function in y satisfying (h,); see the Figure 5.3.

Figure 5.3: The case f(t) = [t|Y°u + |u|*°u, with = 11/5.

Problem (D,,) has a variational nature and its Euler-Lagrange functional I is given by

I(w) = %Ilull2 - ” w(x,y)F(wdxdy, u e Hy(O x RN
OxRN-m

(5.38)
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Clearly, under the main assumptions on the nonlinear term f, the functional I is well
defined in H(l)(O x RV and is of class Cl(H(l)(O x RN™™)). Furthermore, the critical
points of I are exactly the solutions of problem (D,,) in Hé(O x RN-™),

As in Section 5.2, the difficulty in working with the functional I is the lack of com-
pactness. Using the compactness result given in Proposition 5.1.4, it is possible to find
suitable subspaces of Hj(O x RY"™), compactly embedded into Lf(O x R¥N™™) for all
€22

As done in Sections 4.3 and 5.2, let us put Jy ,, = {1,..., {y .}, where

(5.39)

_ (_1\N-m
Gum = "+ [0

N-m-3 ]
when either N-m = 4 or N —m > 6. We extend the definition of ¢y ,, and of ]y, for all
N -m >3, putting {y ,, =0and Jy,,, =9, when N -m=3and N -m = 5.

With the above notations, we can now state the main result assuming, without
further mentioning, that conditions (h;)-(h,) hold.

Theorem 5.3.1. Let O be a bounded open set in R™ with a smooth boundary 80 and
let © x RN™™ be a strip-like domain in RN, withm > 1and N - m > 3. Then, prob-
lem (D,,) admits at least one cylindrically symmetric unbounded sequence (uf(o)) « Of so-
lutions in Hé(O x RN"™) and {n.m unbounded sequences (u}(i))k, i € Jym» Of solutions in
Hé(O x RN™™), with symmetric mutually different structure and being not cylindrically
symmetric.

The main variational tool to prove Theorem 5.3.1 is the classical critical point re-
sult, the fountain theorem for even smooth functionals, established originally by T.
Bartsch in Theorem 2.5 of [34].

Theorem 5.3.2. Let H be a Hilbert space and (e;); ¢ H be an orthonormal sequence. Set

n (o]
H,=(PRe; and H; = PRe;,
j=1 j=n

for every n > 1. Consider a C'-functional T : H — R which satisfies the following prop-
erties:
(j;) ZiseveninH;

(2) bi_1 = sup,so infuerL Z(u) — oo as k — oo;

(j3) inf,.q SUPuer; I(u")u"z 0 for every k € IN;

(i) the (PS), condition holds for all ¢ > 0.

Then the functional T possesses an unbounded sequence of critical values (cy ). In fact,
foreach k = 1, with b, > 0, there exists a critical value c; > b, which can be character-

ized as

¢ = inf sup Z(y(w)),

Y€lk ueB,
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where
By ={ueH, : |ul <n}
with ry large enough, so that Z(u) < O for every u € Hy, ||lu|| = r, and
T={y:By - H :yisodd, yu) = uif |ul| = r}.

Theorem 5.3.2 is even available when (j;) is replaced by the requirement that 7 is
G-invariant with respect to a compact Lie group G, which acts transitively on H, as
shown in Chapter 3 of [247].

As mentioned above, the functional I defined by (5.38) does not satisfy the (PS).
condition (j,) if the subspaces are not chosen carefully. Thus, we have to search for
suitable subspaces of H(l)(O x RN ~™) such that the restrictions I on them satisfy (j,).
The next steps will give us a guess on how to construct such subspaces.

We notice that the existence of infinitely many axially symmetric solutions for
hemivariational inequalities has been proved in Theorem 3.2 of [141], by using a nons-
mooth version of the fountain theorem recalled above. By exploiting some ideas con-
tained in [140, 141], in Theorem 5.3.1 we are able to prove the existence of a precise
number of sequences of solutions with different symmetries. The main result remains
valid for the hemivariational problem studied in [141] and it can be viewed as a more
precise form of the existence theorem proved in the classical paper [36].

Proof of Theorem 5.3.1. Let m > 1and N — m > 3. First of all, we shall apply Theo-
rem 5.3.2 to the functional Z : H — R, H = Hy;(O x RY™), Il ougv-my = Z. Of
course, 7 satisfies (j;) since the potential F is even as a consequenc)ey of (h3).

Now, let (e;), < H be an orthonormal basis of H and, using the notation of The-
orem 5.3.2, the next preparatory lemma follows directly by the compact embedding
in (5.10).

Lemma 5.3.3. Forany g € (2,2"),

lul,
My = sup ——- — 00
uerr | llull
u#0
as k — oo.
Proof. First of all, by construction
l[ull, llull,
0 <Mgyy =SUp——= < = sup —-, k=2
uer* [lul uer: llull
u#0 u#0

i.e., the real sequence (i), given in the statement is positive and nonincreasing. Sup-
pose, arguing by contradiction, that y, — p., > 0 as k — oo. Then, there exists a
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106 —— 5 Weak solutions of a scalar field equation

sequence (uy); < H, such that u; € Hki_l, luell = 1 and ||uk||p > U, /2 for all k. By
definition of HkL_l, this implies that u, — O in H along a subsequence. Indeed, the
sequence (u;); is bounded in H, thus, by reflexivity, there exists u., € H such that, up
to a subsequence, still denoted by (uy )y, Uy — U, in H. Any ¢ € H can be represented
by its Fourier series, that is, ¢ = Z]‘.fl cje;. Hence, for every k > 2 we have

(U @) = ch(uk,ej) -0
j=k

as k — oco. Thus u; — 0in H as claimed. Now, as proved by M. Esteban and P.-L. Li-
ons in [85], the separable Hilbert Sobolev space H = H(l)’cyl((’) x RN ™) is compactly
embedded in L°(O x RN™™) for all © € (2,2"). In conclusion, u;, — 0in L¥(O x RVN™)
as k — oco. This is impossible and completes the proof. O

With the above notations and assumptions, we prove the following facts:
Claim 1. The functional 7 satisfies condition (j,).
By (h,), for every € > 0 there exists a constant x, > 0 such that
IF(0)] < eltl® + It (5.40)
for every t € R. Thus, for a fixed k > 2and u € Hkl_l, it follows that

T = Sl - ” w(x, y)Fw)dxdy

OxRN-m

1.2 2
= Sl = Iwlloo (el + xc ulty)

1
> 1?5 - el ) - Kl
Now, we choose € = (p - 2)/4p||wll s, and so

(0]

1
Pk="T——"35,5
(DK )P
as k — oo by Lemma 2.3.2. Hence, for all u € Hkl_l, with |ul| = p, we have

1 1\1
W= (- -—|=.
W (4 2p>pi
Therefore,

by = in{ Z(u) > oo as k — oo,
k-1
llull=px

i. e., condition (j,) holds.
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Claim 2. The functional Z satisfies condition (j;).
To prove Claim 2, we first show the next property.
Lemma 5.3.4. The primitive F of the nonlinear term f satisfies the inequality
wOGY)F() 2 colt]” = w(x,y)Fe,,
fora.e. (x,y) € O xR""™ and any t € R, where ¢, = Wty F(t,) > 0 and F,, =
MaXs<, |E(t)].

Proof. Lett, > 0beasin (h,). A direct computation yields at once that

F(t,
F(t) > %tv forany t € R, with t > ¢t

0

and F(t,) > 0. Hence, since F is even in R by (h;), we get F(t) > ¢,lt|" forany t € R,
with [t| > ¢, > 0, where &, = t,"F(t,) > 0. Clearly, by continuity, |F(t)| < F,, for any
t € R, with [t| < t,. Hence, the stated estimate holds at once by (h,). O

Since w € L}(O x R¥"™) by (h,), thanks to Lemma 5.3.4, we have
1
I(u) < Ellull2 = collully = Foolwlly (5.41)

for every u € H. Now, taking into account that Hy is a finite-dimensional space, all the
norms are equivalent on it. Therefore, v > 2 implies

lim supZ(u) — —oo.
r—o00 ueH,
llull=r
This proves the claim.
Claim 3. The functional 7 satisfies condition (j,).

To this aim, for any ¢ > 0 fix a (PS),. sequence (u; ), in H of Z. Let us first show that
(uy) is bounded in H.
For any k € N there exists k > 0 such that

|Zu)| <k and |2’ ()|l < x. (5.42)

Moreover, by (h;) and so (5.40), applied with € = 1, we have
1
] wen(Fa - 2 e Jaxay
OxRN"n{|u|<to}

2 D t(z) K1 _z
< 0+K1t0+7 6 Iwll, = .
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108 —— 5 Weak solutions of a scalar field equation

Hence, thanks to (h,), we get

Zlw) - (T ) > (5 - 3 el

— wen(Fe - Lo Jaxay.

OXRN My <t}
Therefore, we obtain

T(uy) - %(I’(uk), uy) > <% - %)llukn2 - k. (5.43)

As a consequence of (5.42), we also have
1,
Z(wy) - ;(I (W), uge) < k(1 + lugl),
so that, using (5.43), we find a suitable constant ¢ > 0 such that
g l? < c(1+ g )

for any k € N. Hence, (u;); is bounded in the Hilbert space H and so there exists a
subsequence, still denoted by (u;);, weakly converging to some u,, € H.

Now, let € > O be fixed. Then, by (h;) there exists a corresponding k. > 0 such that
the Holder inequality, as well as the fact that [, + [[u is uniformly bounded in k,
gives

oollp

‘ “ w06 Y)(f (i) = f(Ueo)) (U — Ugo)dxdy

OxRN-m

2
< elwl, ﬂ (] + I, ) dxdy
OxRN-m

-1 -1
+ Ko Wl U (P~ + [ugo Py — g, ldxdy
OXRN-m
2 2 -1 -1
< IWlloo [28 (Mgl + o 1) + 166 (leagelp ™ + ™)l = ol

< C(2 + Ky — gy ),

and the right-hand side approaches 2Ce as k — oo by (5.10). This gives at once

” w0, (F () = f (U)W — U, )dxdy — O

OxRN-™

as k — oo, since € > 0 is arbitrary. Hence, as k — oo,

e = oo I” = (T (i) = ' (o), Uy = U
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+ “ wOGY)(f (W) — f(Ugy)) (U — Uy, )dxdy
OxRN-m
=o(1),

by (5.42) and the fact that u;, — u, in H. The claim is proved.

In conclusion, Z satisfies all the assumptions of Theorem 5.3.2 and so possesses
an unbounded sequence of critical points in H = H(l),cyl(O x RN™™),

Clearly, (5.2) gives that I(u) = I(u) for every g € O(N — m) and any u € H(l)(O X
RY™), i.e., the functional I : H(l)(O x RN™™) — Ris O(N — m)-invariant. Indeed, O(N —
m) acts isometrically on H(l)((’) x RN-™) by (5.2), as proved in Lemma 5.1.2. Moreover,
O x RN is O(N — m)-invariant, as a strip-like domain. By (h,) and (hs),

” w(x,y)F(gtu)dxdy = ” w(x,y)F(u(x,g_ly))dxdy

OxRN-m OXRN-m

= ” w(x, 8z)F (u(x, z))dxdz

OxRN-m

= ” w(x, 2)F(u(x, z))dxdz,

OxRN-™

ifg =1, xgecON-m),geON-m).

By the principle of symmetric criticality, Theorem A.1.5, the critical points of the
restriction Z are also critical points of the energy functional I. Then, by virtue of The-
orem 5.3.2, problem (D,,) admits at least one unbounded sequence (1 ); of solutions
in H(l)(O x R¥"™) with cylindrical symmetry.

Now, assume that either N = m + 4 or N > m + 6. We apply Theorem 5.3.2 to each
E; and to the corresponding functional Z; on E;j, given by

I,-(u)=%||u||2— ” w(x,y)F(u)dxdy, ueE,

OxRN-m

foreveryi € Jy .

Repeating a similar argument as in the cylindrical case, we state that for everyi €
Jn m» the functional Z; admits at least one unbounded sequence (u}(") )i of critical points
in E;. Since f is an odd function by (h;), the main energy functional I, defined in (5.38),
is even. Thus, I is H Nm;-invariant, when the action of H N,mp, O11 Hé (OxRN™™) is given
by (5.12). Indeed, H, Ny, aCts isometrically on H(O x RN"™) by (5.12), since O(N — m)
acts isometrically on H(l)((’) x RN ~™) by Lemma 5.1.2. Moreover, (h,), (h;), and the fact
that © x RY ™ is O(N — m)-invariant yield

” w(x,y)F(g & u)dxdy = ” w(x,y)F(u(x,g_ly))dxdy

OxRN-m OxRN-™

EBSCChost - printed on 2/10/2023 3:36 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



EBSCChost -

110 —— 5 Weak solutions of a scalar field equation

= ” w(x, 8z)F(u(x, z))dxdz

OxRN-™

= ” w(x, 2)F(u(x, z))dxdz

OxRN-m

ifg =1, xg € Hym; 8 € Hy ;> and

” w(x,y)F(g & w)dxdy = ” w06 Y)F(-u(x, Ty, y))dxdy
OxRN-™ OxRN-™

= ” WX, Ny miT2)F (u(x, 2))dxdz

OxRN-M

= ” w(x, 2)F(u(x, z))dxdz,

OxRN-™

ifg =T, x NMNm,iT € HN,m,qi \HN,m,i! and T € Hy -

The principle of symmetric criticality, Theorem A.1.5, implies that the critical
points of Z; are also critical points for the functional I, therefore, solutions of prob-
lem (D,,).

Summing up the above facts, on the basis of Proposition 5.1.4, problem (D,,) ad-
mits at least one cylindrically symmetric unbounded sequence (u}(o)) « of solutions in
H)(O x RY™) and {y ,,, unbounded sequences (u\"),, i € Jy , of solutions in Hy(O x
RY"™), with symmetric mutually different structure and being not cylindrically sym-
metric. This concludes the proof of Theorem 5.3.1. O

Comments on Chapter 5
In the last years many papers deals with different aspects of problems similar to (D,,,).
Special kinds of oscillations at infinity produce infinitely many solutions for a wide
class of elliptic problems in the Euclidean setting as proved in [200, 201]. These results
suggest to study elliptic or semilinear elliptic equations on strip-like domains under an
appropriate assumption on f at infinity. As we shall see in Chapter 9, in the multiplicity
Theorem 9.2.1 there are two key tools,

lim inf F©O > —00

t—o* 2

and Theorem 1 of [171], that is, the continuity of the superposition operator defined
in (9.14). An interesting open question is the study of (D,,) when

lim inf@ =
t—0* tz

However, to get a multiplicity result under this new assumption, the continuity of the
corresponding superposition operator remains essential.
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6 Elliptic equations on the sphere

Sento i miei passi passare...
In questo infinito oggi

sono l'oggi che va

senza andare.

Antonella Coletti
Attimi

The chapter deals with the existence of infinitely many sign-changing solutions of
higher order elliptic problems settled on the unit sphere SV — R¥*!, N > 2, and
involving a possibly critical nonlinear term. Here sV is endowed with the induced Rie-
mannian metric h. To overcome the lack of compactness, symmetry properties on the
Sobolev space H™(SV) are carefully studied in Section 6.1 via a group-theoretical ar-
gument. Thus the existence of sequences of sign-changing solutions, which are mu-
tually symmetrically distinct, is attained, and a lower estimate of the number of those
sequences is also given; see Theorem 6.2.1 in Section 6.2.

Then, in Theorems 6.2.4 and 6.2.5, we use the reduction method to the unit sphere
in order to prove the existence of infinitely many solutions for some parameterized
Emden-Fowler equations that naturally arise in astrophysics, conformal Rieman-
nian geometry, and in the theories of thermionic emission, isothermal stationary gas
sphere, and gas combustion.

In the last Section 6.3, the existence of multiple symmetric solutions for a critical
stationary nondegenerate Kirchhoff problem on the unit sphere is proved under min-
imal assumptions on the forcing nonlinear term, provided that a combination of the
Kirchhoff coefficients a and b is sufficiently large with respect to the critical Sobolev
embedding constant; see Theorem 6.3.3. This result is peculiar of Kirchhoff problems
on the Euclidean sphere.

The abstract approach we use to prove Theorem 6.3.3 is inspired by [226] and by
the recent paper [89]. For instance, some fine topological properties of the energy func-
tional associated to the main problem are obtained using abstract tools introduced
in [225, 226] and recalled in Theorems 6.3.1 and 6.3.2. Finally, a key role along the
proofis played by a compact argument given in Theorem 6.1.2 and by Proposition 6.1.3.
See [144] and the monograph [151, Chapter 10] for a nice detailed discussion on the
subject and on related topics.

6.1 Group actions on Sobolev spaces

Let m be an integer and N > 2m. In what follows, H™(S") denotes the classical Hilbert
Sobolev space consisting of functions on sN with weak derivatives of order DY |a| < m,
in LZ(SN ). Due to the usual role of the critical exponent, the Sobolev space Hm(SN )

https://doi.org/10.1515/9783110652017-006
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112 — 6 Elliptic equations on the sphere

cannot be compactly embedded into the Lebesgue space L% ($V), where as usual 2y =
2N /(N - 2m). In order to prove the main existence results of the chapter, we recover
compactness on suitable symmetric subspaces of H™(S"), which are compactly em-
bedded into L9(SV), even when g is supercritical. Such properties have been observed
in specific contexts by several authors, see [129, 144, 185] and the references therein for
related topics. This approach is fruitful in the study of a wide class of variational ellip-
tic problems in the presence of a suitable group action on the Sobolev space, thanks
to the principle of symmetric criticality given in the Appendix.

In this section we describe in detail the construction of sy subspaces Hg'lfv,.i (sV) of

the Sobolev space H™(S") related to certain subgroups GIT\;'J. of the orthogonal group
O(N +1). The main useful tool of the chapter, and in particular to prove Theorem 6.2.1,
is the geometrical profile of the subspaces H(’;"Tl. ($V) defined in Proposition 6.1.3.

N,i

In this last part of the section, we take sy = [N/2] + (—1)N *1 _ 1, which is well
defined if N > 4. In this case, for everyi € Jy = {1,...,5y},
Oi+1)xON-2i-1)x0@+1), ifi+ 1%
0G+1)x 0@ +1), ifi =22,
Furthermore, Gf\; denotes the group generated by Gy ; and Gy ; whenever i, j € Jy and

i # j. The following result, proved in Proposition 3.2 of [144], will be crucial in the
sequel.

Proposition 6.1.1. Let N > 4. Foreveryi,j € Jy, withi # j, the group Gx acts transitively
on sV , 1. e., there exists g, € $Y such that Gﬁao =sV.

FixN > 4andi € Jy. Let1; : S¥ — S be the involution function associated to Gy ;
and defined for all 0 = (07, 0,,03) € sY by

(03,05,09), ifi# =land 0,05 € R, 0, e RV*,
7;(0) = .
(03,00), ifi= 1% and 0,,05 € R,
By construction,
-1 2.
Ti ¢ GN,i’ TiGN,iTi = GN,i and Ti = ldSN.

Let us present explicit forms of some groups Gy ; and of related functions 7;, as sum-
marized in Chapter 10 of [151]. For instance, if N = 11, then s;; = 5 and the groups and
the involution functions are:

(@ Gyq = 0(2) x 0(8) x 0(2), 1,(04,0,,03) = (03,05, 0y) for 07,05 € R* and 0, € R,

wheni = 1;
(b) Gyp = 0(3) x 0(6) x 0(3), T,(0y, 05, 03) = (03,0,,07) for 01,03 € R3 and 0, € RS,
wheni = 2;

EBSCChost - printed on 2/10/2023 3:36 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



EBSCChost -

6.1 Group actions on Sobolev spaces =—— 113

(€) Gp3 = 0(4) x 0(4) x O(4), 15(04, 05, 03) = (0,,04,03) for 0y, 0,,03 € R* wheni = 3;

(d) Gy = 0(5) x 0(2) x O(5), 14(01,0,,03) = (03,0,,07) for 07,03 € R® and 0, € R?,
wheni = 4;

(e) Gy =0(6) x 0(6), T5(01,0,) = (05, 07) for 0,0, € R®, wheni = 5.

As in [144], we fix N > max{4, 2m} from now on, if not otherwise stated. For alli € J
let ®; be an action of the compact group

Gl = (G Ty) C OV +1) (6.1)

on the Sobolev space H™(SV).
More precisely, we consider the action &; : G;} xH msNy - H™(SY), (&, u) — gdu,
which is defined pointwise for a. e. o € $" by

ug o), ifg € Gy

(g&u)(0) = { (6.2)

—u(g_l‘ri_lo), lfg = Tig € GI‘I\—]i,i \ GN,l" g S GN,i'

This can be done by the properties of 7;. Therefore, &; is well defined, linear, and con-
tinuous.
Let us consider for every i € J the subspace H g’ri ($N) of H™(SY) given by
N,i

E; = HZ’;J(SN) =fuecH™(SV) : gdu=uforallg e Gy}

Clearly, E; = Hg‘q (V) contains all the functions u € H™(S") which are symmetric with
N,

respect to the action &; of the compact group G;;' ;- Moreover, for every i € Jy we also
introduce

& :Hé"Ni(SN) ={ueH™S") : ge;u=uforallg € Gy},

where the action ; : Gy ; x H™SY) > H™(SV) of the compact group Gy,;on H™(SY),
(8,u) — g®;u, is defined pointwise for a.e. o € sV by

(g&u)(0) = u(g™'o). (6.3)

Note that every u € E; \ {0} has no constant sign. Indeed, u(o) = —u(r; 1) for every
o € SV, since u is Glf})i-invariant by (6.3). The conclusion then follows immediately
from the fact that u is not zero.

For the sake of clarity, let us recall Lemma 3.2 of [35] in the form we shall use later.

Proposition 6.1.2. Let G be a closed topological subgroup of the orthogonal group
ON +1)andlet-: GxH m(SN ) > H ’"(SN ) be the natural action of the topological group
G on the Hilbert Sobolev space H™(S"). Set

HMSY) = {ue HM(SV) : gu=uforallg ¢ G}.
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Let

N = min dim(Go)
oeSN

be the minimal dimension of the orbits in S, where the orbit Go of an element o € SV is
given by

Go ={go : forallg € G},
and go is the natural multiplicative action. Then the Sobolev embedding
Hg(s") — L(s")

is compact for every q € [1,q;), where

m(N-Ng)
g = N_NG_ZGm if N >2m+ Ng,
0 ifN <2m+ Ng.

IfN > 2m + Ng, then the space H(’;"(SN ) is continuously embedded in L (SV).

If G is a connected algebraic group, which acts on a variety Y (not necessarily
affine), then for each y € Y the orbit Gy is an irreducible variety, that is, Gy is open
in its closure. Moreover, its boundary, dGy = Gy \ Gy, is the union of orbits of strictly
smaller dimension. Finally, in this case orbits of minimal dimension are closed.

By Proposition 6.1.1, arguing as in the proof of Theorem 3.1 of [144], the next result
holds.

Proposition 6.1.3. Let N > 2m, with m > 1. Then the following statements hold for any

fixedie]y:

(i) the Hilbert Sobolev space &; = H{;"N’E(SN ) is compactly embedded into L4(SN), when-
ever q € [1,q;), where

g - 159\2’;[1_)1 ifN>2m+1,
! 00, ifN=2m+1;

(ii) & n & = {constant functions on SN} foreveryj e Iy, Withj # i;

(iit) E; N E; = {0} for every j € Jy, withj # i.

Proof. Part (i). A careful analysis of the definition of Gy ; shows that the Gy ;-orbit of
every point o € SV has at least dimension 1, i. e., dim(Gy ;0) = 1for every o € sV, and

Ng

v, = min dim(Gy;0) > 1.
0€S
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Hence, by Proposition 6.1.2, the space &; is compactly embedded into LY(SN) for every
g € [1,g]). Since N > 2m, one has

qi*>2:”:N—2m

and & c E;, so that the embedding
& —— Ln(s")
is compact for every i € Jy.

Part (ii). Fixj € Jy, withj # i, and u € &n¢;. Since uis both Gy ;- and Gy j-invariant,
then u is also Gﬁ-invariant, i.e., u(go) = u(o) forevery g € Gf\j and o € SV. According
to Proposition 6.1.1, the group Gﬁ acts transitively on the sphere SV, i. e., Gg-a = N for
each o € V. Thus, u is a constant function.

Part (iii). Fix j € Jy, withj # i, and u € E; n E;. The second relation of (6.2) shows
thatu(o) = ~u(t;'0) = -u(ty '0) forevery o € S$V. But, Part (i) shows that u is constant.
Thus, u must be identically zero in sV, O

Finally, following [151], we construct explicit functions belonging to E; that will
be useful in the sequel. To this aim, we say that aset D ¢ $" is GIT\;' ;-invariantif gD < D
forevery g € G]T\;' i

Proposition 6.1.4. Let N > 2mand m > 1. Leti € ]y be fixed. Then there exist a number
C;i>0anda G]T\;',i-invariant set D; ¢ SV, with Vol,(D;) > 0, and a function v € E; such
that

D) IVle <1

(ii) |Vpvly < C; a.e.in S

(iii) |v| = 1in D;.

An explicit function v : SV — R fulfilling all the requirements of Proposition 6.1.4
is given by

v(0) = 1% sgn(|oy| — |os]) max{0, m(0y, 05)}, with
R-r R-
m(0y,03) = min{Tr, Tr - 9)?(01,03)},

R+ R+3r

4

8

where R > r, and 0 = (0,,05,03) € SV, with 0},05 € R™, 0, ¢ RV"%"1, whenever
i+ (N-1)/2,and o = (0,,03) € SV, with 0;,05 € RVN*D/2 whenever i = (N - 1)/2. The

GIT\;' ;-invariant set D; ¢ SN can be defined as

M(0y,03) = max{lloll + o3

3r
‘, oyl — o]

D, = {0 e sV . Moy, 04) < R;r}.
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The above construction can be found in [144]. See also [151, Chapter 10] for additional
remarks.

6.2 Geometrically distinct sequences of solutions

In this section we first consider the polyharmonic problem on the sphere

©m — 2:‘"*2 : SN,
{ v =|u| u in (6.4)

ueH™"(SY), N>2m,
where D™ is the polyharmonic operator given by
& 1
o - H(—Ah + (N - 20N + 2 - 2)isz(§N)>,

k=1

and A, denotes the usual Laplace—Beltrami operator on sV,
We present here for simplicity a meaningful consequence of Theorem 1.1 in [185].

Theorem 6.2.1. Let m and N be two positive integers, with N > 2m > 4. Set
sy = [N/2] + ()N -1

Then, the critical polyharmonic equation (6.4) admits at least sy sequences of infinitely
many finite energy nodal solutions, which are unbounded in H™(S") and mutually sym-
metrically distinct.

SN

N/2]-2 N=2k keN

N"/\N\
NM

Val N

: { [N/2]  N=2k+1
EER S

Figure 6.1: Number s, of sequences of solutions (5 < N < 28).

Figure 6.1 above shows the behavior of the number sy of sequences of solutions when
the dimension N is small. We study (6.4) from the point of view of the O(N + 1) sym-
metry theory, as in [35, 144, 174]. This approach presents new and challenging fea-
tures in the higher order case. For instance, A. Maalaoui and V. Martino in [165] and A.
Maalaoui, V. Martino, and G. Tralli in [166], motivated again by the original paper of
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6.2 Geometrically distinct sequences of solutions =—— 117

W. Y. Ding, establish the existence of sign-changing solutions for the Yamabe problem
on the Heisenberg group HY = cV xR

Finally, for the sake of completeness, we cite the paper [145], in which A. Kristaly
proves a more general multiplicity existence theorem of sign-changing solutions for
the fractional Yamabe problem on the Heisenberg group H" via a nonlocal version
of a compactness result due to W. Y. Ding, E. Hebey, and M. Vaugon on the Cauchy-
Riemann unit sphere $*'*! and an algebraic-theoretical approach on suitable sub-
groups of the unitary group U(N + 1).

For the sake of clarity, we present a consequence of Theorem 6.2.1, when m = 2,
that is, when the biharmonic operator in equation (6.4) reduces to the celebrated
Paneitz operator, introduced by S. Paneitz himself in [203] for smooth Riemannian
manifolds. For further details in this context, we refer to [127], as well as to the mono-
graph [115] and to the references therein. More precisely, in the case m = 2, the operator
©2 has the form

N, - ahy + aidpgn),

where a = (N? = 2N - 4)/2 and a = N(N? - 4)(N - 4)/16. Thus, a > 0 and a > 0 for all
N > 4.
Corollary 6.2.2. Let N > 4. Then, the critical Paneitz equation

Aiu -alpu+au= Iuls/(N*“)u insy,
admits at least sy sequences of infinitely many finite energy nodal weak solutions ug) €
HZ(SN), i=1,...,sy, which are unbounded in HZ(SN) and mutually symmetrically dis-
tinct.

More precisely, for each i the unbounded sequence (u,((i))k lies in the subspace
Hé;v,.i s) of the GIT\;"i-invariant functions of H 2(sNy, with respect to the action

& : Gy, xH'(S") - H*(S"), (g.,v) — g8,
defined pointwise by

ug'o), ifg € Gy,

-1_-1

(g®u)(0) = { ) _ . }
1 —u(g~'t;'0), ifg=18 € Gy \Gy; § € Gy

where GIT\;')]. is the compact group of O(N + 1) generated by the compact subgroup

N,i

O(i+1)x O(N-2i-1)x 0 +1), ifi+ 2,
0@ +1) x O(i + 1), ifi =1,

of O(N + 1) and by an involution t; : $N — SN, with the properties that

7, ¢ Gy, TiGy;T; = Gy; and 7} =idgy
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for every i = 1,...,sy. The mutual symmetry difference comes from the fact that
HZ, (™) an;T,. (SM) = {0} for alli, j € Jy, withi # j.
N,i

N,j

The Hilbertian structure of H™(S") is given by the scalar product

ISN (AfuAfv + uv)daoy, ifm = 2k,

<u, V>Hm(§N) = { (6.5)

jSN(VhA’};u : VhA’;lv +uv)doy, ifm=2k+1,

foreveryu,v €e H m($N). We denote by |- | mm(svy the norm induced by the scalar product
in (6.5).

In order to handle the variational formulation of problem (6.4), we introduce a
different Hilbertian norm | - ||, on the Sobolev space H ’"(SN ), which is equivalent to
the norm | - |gmgv. This equivalence will be more readable if we express (6.5)in a
convenient form given in terms of the Fourier coefficients of the functions u and v. To
this aim, let L*(S$") be the standard Lebesgue space of square summable functions on
$Y endowed by the natural inner product

(Wv)pny = J uvday, foreveryu,v e LZ(SN).

SN

Clearly, L*(S") can be decomposed as a direct sum of the orthogonal eigenspaces con-
nected with the eigenfunctions of -A; on H 1(sNy, that is,

LA(sV) = é K,, (6.6)
£=0

where for every £ € N, = N U {0} the ¢th eigenspace K, = Ker(-4, — A,idpzgv)) is
generated by the ¢th degree orthonormal (real valued) spherical harmonics Yi,, with

j=1,...,c,and
c _<€+N>_<€+N—2)
N N J

More precisely, the ¢th graded component of L?(S") is generated by harmonic poly-
nomial maps P : R¥*! - R restricted to SV that are homogeneous of degree ¢. More-
over, the representation of the orthogonal group O(N + 1) on the linear space K, is
irreducible, in the sense of the representation theory, see Chapter IV of the celebrated
monograph [235] due to E. M. Stein and G. Weiss.

By (6.6), every function u € L%(SY) admits a unique Fourier decomposition

18

u= Z (e, j)Y), 6.7)
j=1

¢=0
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6.2 Geometrically distinct sequences of solutions = 119

where U(¢, j) denotes the Fourier coefficient of u given by
u(e.f) = (w Y}) vy

forevery ¢ € Nyandj=1,...,c,. In other words, (6.7) has the expected expression

o C . .
u= Z Z<”’ Yé>L2(SN)Yé

£=0j=1

for every u € LZ(SN ). Accordingly to (6.7), we can rewrite the inner product given
in (6.5) as

o0 Cp
(U, V) m(gny = Z(b;" +1) z u(e,j)v(e,j) foreveryu,v e H"(S"), (6.8)
=0 j=1

where b, = £(¢ + N — 1) denotes the ¢th eigenvalue of -A, in H(S"), that is,
~AY) =b,Y) insY (6.9)

forallj =1,..., c,. Moreover, as it is well known, by (6.8) the inner product on H ”’(SN ),
defined for every u, v e H™(SV) by

[} Ce ].—‘(ﬁ +m+¥)
Wy, = Y y(N,m) Y U )v(L,j), yN,m)=—2———, (6.10)
;, ,:zl (Y -m+e)
induces the norm
. o , 1/2
wm=(§huwmozmww|) for every u € H"(s"),
£=0 j=1
which is equivalent to || - || m sY)-
Now, we claim that
D"Y) = y,(N,m)Y) (6.11)

forevery £ €e Nyandj=1,...,c,. Fix¢ € Nyandj = 1,...,c,. Then, by (6.9) and (6.10),
. m 1 .
@mYé = H(—Ah + Z(N - 2]()(N + Zk - 2)1dLZ($N)>Yé
k=1

- ﬁ(be + %(N _2K)(N + 2k - 2))Yg;
k=1

= ye(N,m)Y’,
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as claimed.
Let us now prove that

Ww,vy, = J (D™u)vdoy,
SN

for every u,v € H™(SV). To see this, fix u,v € H™(SV). By (6.7), clearly,

J (D"u)vdoy, = Z z ue,j) J ’D'"Yi;)vdoh.

o £=0j=1 o
On the other hand, (6.11) yields

J(@mYé)vdoh =y,(N,m) j Yévdoh.

sV sV
Thus
[o'e} Cp )
J(@mu)vdah =3 e m) Y e, ) J Yivda,
o ¢=0 = o
By (6.6), it follows that
. o G — LT
J Yyvdo, = ) Y ¥(Z.)) j Y,Y.doy,
gN 2=07j=1 gV

G,

Y V(E.))65,6;; = V(L.)).
0j=1

Mg

oSl
Il

Then, (6.13) and (6.14) give

j(@ u)vdoy, = z YN, m)Zu(é’ nve, ),

SN ]1

i.e., (6.12) is verified.

(6.12)

(6.13)

(6.14)

In conclusion, we have shown that problem (6.4) has a variational nature. Conse-

quently, we say that a function u € H™(S") is a solution of (6.4) if

w ), = j P updo,
SN

for every @ ¢ H™(S).
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Proof of Theorem 6.2.1. As already noted, (6.4) has a variational nature and its Euler—
Lagrange functional 7 is given by

T = %nuui - j uPida, u e H™(sY). 615)

sN

The functional 7 is well defined in H m(SN ) and is of class C}(H m(SN )). Moreover, for
eachu € H™(SV),

(T, @) = ), - j P updo, (6.16)
§N

for every ¢ € H™(SV). Hence, the critical points of .7 in H™(S") are exactly the solu-
tions of (6.4).

Let G be a topological group. We say that u € H(’;"(SN ) is a solution of (6.4) only in
the Hg(SN ) sense if

(7. 0) =), - | Wl updo,
SN

forany ¢ € HZ‘(SN). Then, u € Hg’(SN) is a solution of (6.4) in the whole space H™(SV),
that is, in sense of definition (6.16), if the symmetric criticality Theorem A.1.5 of Palais
holds. For details and comments, we refer to Section 5 of [52].

We emphasize that the invariance of .7, with respect to translations and dilations,
implies that the functional .7 does not satisfy the Palais—Smale condition. However,
as observed in Proposition 3.1 of [35], the symmetric mountain pass theorem in addi-
tion to the principle of symmetric criticality of Palais yield the following critical point
result.

Theorem 6.2.3. Let G be a compact topological group. Let
o :GxH™(SY) - H"(SY), (g.w)m—gou
be a linear and isometric action of G on H™(S") and denote by
HMSY) = {ue H™(SV) : gou=uforallg € G}

the subspace of H™(S") containing all the symmetric functions with respect to the
group G. Let J be the energy functional associated to (6.4) and assume that

(i) J is G-invariant;

(ii) the embedding HY(SV) — L?n(SV) is compact;

(iii) H(SY) has infinite dimension.
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Then, the functional ;7 admits a sequence of critical points (u;); C Hg’(SN ) such that
J |uk|2;"d0h — 00
SN

as k — oo.

Let J be the energy functional associated to (6.4) and given in (6.15). Fixi € Jy
and consider the compact group

Ti
Gy, c ON +1),

given in (6.1), and let &; : G;}i x H™(SN) — H™(SM) be the action defined in (6.2).
Thanks to the definition of &;, the functional 7 is GIT\;' l.-invariant, that is,

J(g&u) = J(u)
for every (g, u) € G]T\;')l. x H™(SV). Then, the subspace
E ={ueH™(S") : gdu=uforallg e Gyt

of H™(S"), which consists of G]Tvi ;-invariant functions, has infinite dimension.
Since dim(G]T\;'l.o) > 1for every o € SV, one gets g; > 2. Thus, Proposition 6.1.2
ensures that the embedding

E; —>— L% (SN)

is compact.
Hence, by Theorem 6.2.3, the functional 7 admits a sequence of critical points
(u}(’))k inE; = Hg’f,. ($") such that
N,i

N 2F
J]ui’)l "doy, — co, ask — oco.
sN

The symmetric criticality Theorem A.1.5 implies that (6.4) admits a sequence (ug)) K C
H™(SY) of solutions satisfying

||u§(i) |, > 00 ask— co. (6.17)
Consequently, Proposition 6.1.3(ii) gives that (6.4) admits at least
sy = [IN/2) + ()" -1

sequences (ug)) «CH m(sN) of solutions satisfying (6.17). The remarks on the structure
of the symmetric Sobolev spaces E; yield that the solutions u,(f) for every k € N and
i € Jyy are sign-changing. This completes the proof of Theorem 6.2.1. O
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Since the appearance of the celebrated paper of W. Y. Ding [80] on the confor-
mally invariant scalar field equation in RY, concerning the existence of infinitely many
conformally inequivalent sign-changing solutions, with finite energy, the method of
pulling back the problem into the unit sphere $" of R¥*! by means of a stereographic
projection (see Figure 6.2) and then into its variational formulation has seen extensive
use in the literature for different problems involving critical nonlinearities in the sense
of Sobolev.

R'_

Figure 6.2: The stereographic projection m : $2\ (N} - R2,

In other words, the case of N > 2 = 2m, that is, m = 1, reduces equation (6.4) into

N(N -2 _
—Ayu + g u= |u|4/(N Dy insV.
The search of positive solutions is the well known Yamabe problem, which arises from
the conformal geometry. For details we refer to Chapter 7 of the monograph [10].
For instance, inspired by [80], T. Bartsch, M. Schneider, and T. Weth in [35] showed

for the critical polyharmonic equation

(=D)™u = [u>2u inRY, ueD™(RY),

N (6.18)
N>2m, 2! = ,
m N-2m

the existence of a sequence of infinitely many finite energy nodal solutions which are
unbounded in the Sobolev space Dm’z(IRN ).
The polyharmonic operator (-A)™ that appears in (6.18) is the most popular pro-

totype of an elliptic operator of order 2m, formally given by
aZm

(-A)" = ()" m!

. i) ! oyt Iy’
jubetgy=m J1120 N OX - Ox g
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For m > 2, polyharmonic functions have interesting applications in physics. Airy func-
tions, which appear in optics, quantum mechanics, electromagnetics and radiative
transfer, are biharmonic functions.

In this spirit, starting from the pioneering paper [35] and encouraged by a wide
interest in the current literature on polyharmonic problems, in [185] the existence of
at least a finite number of sequences of infinitely many finite energy nodal solutions
which are unbounded in the Beppo Levi space P™*(R") has been proved. Finally, we
recall that every nontrivial nonnegative solution u € P™*(RY) of (6.18) is positive in
R" and has the form

N-2m N-2m

Ug g (X) = e U((x-¢&)/e), whereU(x) = Pm"’T",(l +IxH) 7,

£>0,& e RV and P,y = [The_,(N + 2K).

See the quoted paper [35] for additional remarks and comments. For historical
details and a wide list of recent contributions on semilinear problems involving the
biharmonic or polyharmonic operator as the principal part, we refer to the modern
excellent monograph [115] and the references therein.

More recently, in [174] the author describes a group-theoretical scheme, which
arises in previous papers on O(N + 1)-invariant variational problems, as a method to
show the existence of several geometrically different sequences of solutions, distin-
guished by their symmetry properties. The special topological compact groups G; ¢
O(N +1),i=1,...,ky, constructed in [174] via an abstract approach, can be applied
to H™(S") in order to find a finite family {HZE(SN )}, of subspaces Hg:(SN ) ¢ H™(sV)
such that H'(S" )an;(SN ) = {0}and (O(N+1)u)nHE (S") = @ foreveryu ¢ Hg}(ssN N\ {0}
and i # j. The theoretical procedure of [174], the Palais symmetry Theorem A.1.5, and
Proposition 6.1.3 ensure that equation (6.18) admits at least xy geometrically differ-
ent sequences of solutions distinguished by their symmetry properties. This result is
summarized in Theorem 4.8 of [174] in a more general form, in which W. Marzantow-
icz studies the intrinsic linking between orthogonal Borel subgroups in O(N + 1) with
partial and orthogonal flags in RV*!. The key tool is the use of the number of the unre-
stricted partitions of the Euclidean dimension N +1. A consequence of the Marzantow-
icz approach is given in Theorem 1.1 of [185], to which we refer the interested reader.

Let us now prove an existence result for special Emden—Fowler problems by using
the reduction to the unit sphere. Let s be a fixed constant, with1- N < s < 0, and
suppose f : R — R is a locally Lipschitz continuous function, or more generally,
locally Holder continuous, and w is a smooth and positive function on the unit sphere
$N. Consider the parameterized Emden—Fowler equation

— Au = A 2w/ IxDF(1X175u),  x e RV {o). (6.19)

Existence results for (6.19) has been established recently in [42, 150, 151], via vari-
ational methods. Using the key transformation as M. F. Bidaut-Véron and L. Véron
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in [39], we shall reduce (6.19) to
—Ayv+av =Aw(0)f(v), oeSY, a=sl-s-N)>o0. (6.20)

Equations as in (6.20) have been largely studied, and we refer to the pioneering pa-
pers [68] of A. Cotsiolis and D. Iliopoulos and [244] by J. L. Vazquez and L. Véron.
Moreover, (6.20) perfectly fits the scope of the chapter.

For the main results of (6.19), let us introduce

A, (SV) = {weL®(s") : essinfw > 0}
s

and on the Hilbert Sobolev space H 1(SN ) the norm

1/2
il = (j V,vI2doy, + a j |v|2d0h> ,

sV sV
which is equivalent to | - [z gv given in (6.5).

Theorem 6.2.4. Let N > 3andlets € R,withl1-N < s < 0. Letw ¢ A+(SN) and
f : R — R be a locally Lipschitz continuous function, with f(0) > 0, and such that for
some q € (1,2%),2* =2N/(N - 2),

10
SUup ——— <@
ek 1+ (40

Assume that
(i) There are two real sequences (&) and ({);, with O < &, < {, and such that

F(&) = sup F(t), lim & = oo,
tel&ed] k—co

(iy) Fy =limsup;_,q, % € R" U {oo}.

Then, for every

sN)

A>A A = 2Foo”W||L1( lfFoo e R",
0 if Foy = o0,

equation (6.19) admits a sequence (uy,); of nonnegative classical solutions such that the
function | - |Su;, € HY(SY) for every k € N and

tim [ (9t~ w)l + [~ )doy = co.

SN
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Proof. The solutions of (6.19) are being sought in the particular form
ux) = r*v(o), (6.21)

where (r,0) = (x|, x/|x]) € R* xS are the spherical coordinates in the space R¥*1\ {0}
and v is a smooth function defined on S" . This type of transformation comes from [39],
where the asymptotics of a special form of (6.19) has been studied. Thanks to (6.21) and
taking into account that

Au = r_N% (rNg(rsv)> +1° %A
= (~a+ MV, a=s(1-s-N)>0,
equation (6.19) reduces to (6.20). Set for every o ¢ sV,

fo.0) = {W(G)f(t) ift >0,
w(o)f(0) ift <0,

and consider the equation
- Ay +av =Af(o,v), 0c¢€ sV, ve HI(SN). (6.22)

Put for every v € H\(SV),

v(o)
o) = %Ilvll2 and () = J( j f(o, t)dt)doh.
0

sN

Standard arguments ensure that the solutions of (6.22) are the critical points of the
energy functional

L) = %d)(v) -W¥(v) forallveH'(SY).

Owing to the compact embedding of H!(SV) into the Lebesgue spaces L?(S"), with S
[1,2"), the functional J; is well defined and sequentially weakly lower semicontinuous
and continuously Gateaux differentiable in H'(S"). For every k € N define

Ey={veH'(S") : 0<v<{aeinS').

Following the arguments used in [181, Theorem 3.1] it is possible to prove that there
exists vy € Ey such that J;(vy) = inf, g, Jy(v) = my for every k € N.

Now, let us prove that liminf,_, ., m;, = —co. Assume first that F,, < oo in (i,).
Since
avol,(sY
As A, = VO(ST)
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clearly,

1 Folwlpey

< .
24 aVol,(SN)
Let L € R" be such that

1 Foo"W"Ll(SN)
— <L< —m——.
21 aVol,(SN)

Then, there exists a sequence (17;); ¢ R* such that

N
lim n, =00 and Fln) > avol, (™)

(6.23)

for every k € N by (i,). The sequence (1), with the property (6.23), clearly, exists also
in the case F, = co and A, = 0 as a direct consequence of (i,).

Let us choose a subsequence ((kj )j of (§)y such that nj; < (k,. for every j € N. Thus,
the function v; = n; in $N belongs to Ey. This implies that for every j € IN,

i) = 10;) -~ FOy)
)12 Vj(U)

< Jravoly(s") - Jw(a)( J f(t)dt)doh

sV 0

2

1 1
< ?'aVolh(SN)<ﬁ —L) <O0.

Thus, lim]-_,oo Ja(v;) = —co. Moreover, since

m = Vlergi W) < i),

the previous inequality implies that lim;_, ., my, = —co.

Let us prove that the sequence of local minima (vk]_)j must be unbounded in
HY(SY). Otherwise, there would be a subsequence, still denoted by (Vki)i’ weakly
convergent to some function v, € H 1(SN ). Then,

J1(vs,) < liminf];(v; ) = —co,
jooo 7
which is the desired contradiction. The assertion is proved.

Finally, the solutions of (6.22) are classical since the nonlinear term f is a locally
Lipschitz continuous function. O
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Put

2Kk +2)! -1

a 2Kk +2)! +1
KT 4+ 1)!

and by = 4(k +1)!

>

for every k > 1. Moreover, let f : R — R be the function defined by

((k+ 1)1 - k!z)% ift € Upsrlar bl
f6) = by o

0 otherwise,

where g; : [a;, bi] — Ris given by

B 1 ki(k +2)\’
8i0) = \j16(k+1)! B (t_ 2 ) » telaphd

for every k € N; see Figure 6.3.

Bk +2)
2

k(i)

g(m) M=

ajy Mk b @kt Mer1bgi

Figure 6.3: The sequence (g ).

More precisely, (g;)i is a sequence of semicircles with decreasing radii and supported
on the intervals [ay, b;] for every k € N.
As noted in [41, Example 4.1], a direct computation ensures that

F
lim sup 9 =F,=4.
t—0* t

Moreover,

F(by)= sup F(t) foreveryk e N.

telbit,]
Then, Theorem 6.2.4 asserts that
—Au = AlxIT2w(x/IxXDF(IxI75u),  x e RN\ {o},

81wl 1 v,

that | - |u;, € HY(S") for every k ¢ N and
K

admits for every A > a sequence (u;); of nonnegative classical solutions such

tim [ (9t~ w) + [l )dory = co.

sN
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We end the section proving the existence of infinitely many arbitrarily small solutions
of problem (6.19). In this case, global growth conditions on the nonlinear term f are
not required any longer, but the potential F is supposed to have an oscillating behavior
near the origin expressed by condition (j,) below. The statement of the result is as
follows.

Theorem 6.2.5. Let N > 3andlets € Rwith1-N < s < O.Letw € A+(SN) and let

f : R — R be a locally Lipschitz continuous function, with f (0) = 0. Assume that

(j1) There are two real sequences (&), and (), with 0 < & < ( for every k € N and
such that

F(§) = sup F(t), lim § =0;
te[§,G] k—co

() Fo = limsup,_,o+ % € R* U {co}.

Then, for every

Li(sN)

A>A*, A= 2l fFo € R,
0 ifFOZOO,

equation (6.19) admits a sequence () of nonnegative classical solutions such that the
function | - |~y € HY(SN)y n L®(SN) for every k € N and

lim ||| - [Puy, = lim J(|V(|x|_suk)|2 + ||x|_suk|2)d0h =0. (6.24)
k—oo k—oo :
S

Proof. Since the term f is continuous, fixing ¢, > 0, there exists k > 0 such that
[w(o)f(t)| <k forall (0,t) € SV x [0, t,].

Without loss of generality, we suppose that {; < ¢, for every k € N.
FixA > A" and define f : R — R by

f(ty) ift>¢,,
f(t)y=1 f(t) ifo<t<t,
0 ift <O0.
Whence, fora.e. o € sV and t € R, it turns out that
lw(o)f(t)] < k. (6.25)

Now, consider the equation

Ay +av = Aw(0)f(v), oeSY, veH(SY), (6.26)
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130 — 6 Elliptic equations on the sphere

and set
L) = %d)(v) -W¥(v) forallveH'(sY),

where

v(o)
D(v) = %IIVII2 and ¥(v)= Jw(a)( j f(t)dt)doh,

sy 0

foreveryv e H 1($N ). Clearly, the solutions of (6.26) are the critical points of the func-
tional J;. Owing to (6.25) and the compact embedding of H($Y) into LE(SY), with
© € [1,2%), the functional J, is well defined and sequentially weakly lower semicon-
tinuous and continuously Gateaux differentiable in H 1(sV). Moreover, taking into ac-
count (6.25) and (j;), by using direct minimization arguments, J; admits a local mini-
mum v, that belongs to the set

E,={veH (S"): 0<v<{aeins'}

for every k € IN. More precisely, every v, assumes its values in the interval [0, & ] except
for a null measure subset of V. In fact, fix k € N, define the function g; : R — R by

tfk ift>fk,
=1t ifo<t<é,
0 ift<0,

and consider the superposition operator Tj : H IsM) — HY(S$") such that v Tyv,
where

Tv(0) = 0 (v(0)) a.e.in SV

for every v € H'(SV); see Figure 6.4.

O

Gr (o)

Figure 6.4: The graph Gr(p,) of the function g.
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6.2 Geometrically distinct sequences of solutions = 131

Moreover, Tv € HI(SN ) for every v € Hl(SN )- Indeed, since gy, is Lipshitz continuous,
with g, (0) = 0, one gets Tjv € Hl(SN) for every v € Hl(SN). More precisely, T;v € Ey
for every k € IN. Now, set v; = T;v; and let

X ={oeS" : vi(0) ¢ [0,&]}.

If the Riemann measure Vol,(X;) = 0 our conclusion is achieved. Otherwise, suppose
that Vol, (X)) > 0. Then, & < vi(0) < {, as well as

vi(0) = Tyvi(0) = §;

for a. e. 0 € X;.. Now, (j;) gives

Vi (0) t & Vi (0)
j f(H)dt < sup jf(s)dgzj F(Odt = J f(t)dt
5 tE[fk)(k]O 5 5

for a. e. 0 € X;.. Moreover,

il — vl = a j(|vk|2 ~ vP)da, + j(lvhvkﬁ _ Vyvil)do,

sV sN
2 2 2
=a J(.{k - vk)dag - J [Vpvi|“doy
Xi Xy
2 2
<-a J Vi — &il"dog - J IVavic = Vavil“dog
Xy Xy
2 2
= - J | Vi — Vkl dO'g - j |Vth - Vthl dO'g
SN SN
2
= —llvic = viell™.

The above inequalities ensure that

Vi
Javid =1avi) = %(Ilvkll2 = vil?) - J w(o)(j f(t)dt)dog
sV Vk
1 \
< _ﬁ”Vk - Vk||2 - J W(0)<J f(t)dt)dog
X Vi

<l wil?
Since v, € E;, it follows that J;(vy) = J;(vi). Then

Ivi = vill> =0 forallk,
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132 — 6 Elliptic equations on the sphere

that is,

2 2 2
"Vk—Vk" = JlV( Vk—Vk)l d0g+ J(Xl Vk—VkI dOg =0.
X X

Since Vol,(X;) > 0, one gets v, = v a.e. in sV. Hence Ve € [0,¢]a.e in sV, as
claimed. Now, following the arguments used in [181, Theorem 3.2], the function v, is a
local minimum point of functional J; in the Sobolev space H 1(sN) for every k € N. Set
my = inf,cp, JA(v) = J1(vi). By (6.25), we get for every v € E,

v(o)
L) = %CD(V) -Yv) > - J w(o)( J f(t)dt)dah > —KVOlh(SN)(k.
sN 0

Then, since —kVol,($") < m; < 0, it follows that
lim my = lim inf J;(v) = 0.
k—oo k k—oo V€]Ek ]A( )

Moreover,

vi(0)
%(D(Vk) = \P(Vk) +]A(vk) < j W(U)( J f(t)dt)doh + My,
sV 0
< KVOlh(SN)(k + M.

Hence, the last inequality yields
lim [lvi || = 0. (6.27)
k—o0

To obtain the conclusion, it is enough to prove that such local minima are pairwise
distinct. Assume first that F, < co in (j,). Since A > A*, we get

§ avol,(SV)
07 Alwlipigyy

Hence, there exists a sequence (17;); ¢ R* such that

N
lim n, =0 and Fou) > avoly(S7)

k—o0 rli ZAHW"Ll(SN)

(6.28)

for every k € IN. The sequence (1), with the property (6.28) exists also in the easier
case Fy = co and A* = 0 as a direct consequence of (j,). Let k, € IN be so large that
Nk, < $k- Thus, the constant function n; belongs to H 1($") and this implies that

D) < Jj(ny,)  forevery k e N.
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Moreover,

F(ni,)  aVol,(s")
2 AWl
ko L(sY)

Consequently, J;(v;) < 0 for every k € N. Then, the sequence (v;); has a subsequence,
still denoted by (v})y, of pairwise distinct elements that solve (6.26). On the other
hand, |[vi |, < t, for every k € IN. Thus, (v;); is a sequence of solutions of (6.26) and,
thanks to (6.21), as in the proof of Theorem 6.2.4, also solutions of (6.19). The proof is
complete on account of (6.21) and (6.27). O

We observe that a similar variational approach with respect to that used here in
order to prove Theorems 6.2.4 and 6.2.5 has been used in [17], where the existence of
infinitely many solutions for elliptic Neumann problems on bounded domains was
studied.

Put

1

and bk = F,

1
k'k
forevery k > 2, and let f : R — R given by

ay =

2 2 t-b, . ag+hb
4B = D}, ) B if by, < f < BB

(a—by.1)?
— 2 2 a,—t se Qptby,
f(O) = 4(b; - b oy i <tsap
0 otherwise.

An easy description of the behavior of f is given below; see Figure 6.5. More precisely,
the graph of the function f is given by a sequence of triangles with decreasing height
and supported on the intervals [by,4, a;], for every k > 2.

= G T
2
sl =2
f(zr11)
i bk+2: Qjr1 bry1 2k a

Figure 6.5: The structure of the function f.

As noted in [86, Example 2.4], a direct computation ensures that

F(t)
-

lim inf FO =1 and limsup

F =
t—0" t2 t—0* 0

printed on 2/10/2023 3:36 PMvia . Al use subject to https://ww.ebsco.confterms-of-use



EBSCChost -

134 — 6 Elliptic equations on the sphere

Moreover,

F(ay,;) = sup F(t) foreveryk>2.

[E[akﬂ’bkﬂl

Then, Theorem 6.2.5 asserts that
~Au = AP 2w/ IxDF(IX ), x e RV {o},

admits for every A > 0 a sequence (i), of nonnegative classical solutions such that
|- 7w, € HY(SY) n L°(SY) for every k € N and (6.24) holds.

6.3 Stationary Kirchhoff critical equations on the sphere

Motivated by a wide interest in Kirchhoff equations on manifolds, in this section we
apply Theorem 6.1.2 and Proposition 6.1.3 to get multiple symmetric solutions for sta-
tionary Kirchhoff critical problems on the unit sphere sV.

Existence of a smooth positive solution of nonlinear critical problems on the unit
sphere are related to the celebrated Yamabe and Nirenberg problems; see [252], as well
as [197]. Celebrated results for nonlinear critical problems on the unit sphere, as those
obtained by T. Aubin in [20], A. Cotsiolis and D. Iliopoulos in [68], E. Hebey in [122],
J. L. Kazdan and F. W. Warner in [136], ]. L. VAzquez and L. Véron in [244], are contained
in the remarkable survey [157] due to J. M. Lee and T. H. Parker.

To prove the main theorem of the section, we recall two abstract results. The first
is settled on Banach spaces. Let X be a real Banach space. We indicate by Wy the class
of all functionals I : X — R with the property that if u;, — uin X and

liminfI(uy) < I(u),
k—o00

then u; — uup to a subsequence. With the above notation, the following result holds.

Theorem 6.3.1. Let X be a separable reflexive real Banach space. Assume that Q, P :
X — R are two sequentially weakly lower semicontinuous functionals and that Q € Wy,
with

| 1"1m (Q) + P(w)) = oo.

ujj—oo

Then, any strict local minimum of the functional Q + P in the strong topology is such also
in the weak topology of X.

For a simple detailed proof, we refer to [226, Theorem C]. The second tool is given
in the framework of topological spaces. More precisely, the next existence result is
proved in [225, Theorem 4], in which Z; = (=00, () for any real number ¢.
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Theorem 6.3.2. Let X = (X,1x) be a Hausdorff topological space and let Q, P
X — R be two sequentially lower semicontinuous functionals. Assume that there is
¢ > inf,.x Q(u) such that the set Q‘l(Z() is compact and first countable. Finally, if
uq € X is a strict local minimum of Q such that

15161; Q(u) < Qug) < ¢,

then there exists 6 > 0 such that for each 9 € [0, 8] the functional Q + 9P admits at
least two T-local minima lying in Q‘l(ZC), where 1, is the smallest topology on X which
contains the topology Ty and the family of sets {Q"l(Zf)} feR-

Put Z = {f € C(R) : fisoddand suptem% < co for some g € (2,2%)}. Let S be
the positive constant given by

2
S _ "u”Hl(SN)
uer'(s¥y  llull3,
u#0

From here on, with abuse of notation, but for simplicity, we denote | - [|gigv) by Il - [I.
The main result involves the key number
sy = IN/2 + (D" -1
introduced in Theorem 6.2.1.
Theorem 6.3.3. Let N > 4 and let w, w € L®(S") be two radially symmetric weights,

with essinfgv w > 0. Let a, b be two positive real numbers, with

AN - 4)'7
N-4 _ 2
a2b>¥

m Z)Msﬂ . (6.29)

Suppose that f € & satisfies

(ky) lim,_o- £2 <0;

(ky) F(ty) > O for some t, > O.

Then, there exists A* > 0 such that for each compact interval [a, ] C (1%, 00) there is
r > O with the property that for every A € [a, B] and for every f € & thereis 9* > 0 such
that the Kirchhoff critical equation

(a + bllul?)(~Dyu + u) = [ul* ~u + Aw(o)f () + Iw(o) Fu) in SV (6.30)

has at least 3sy solutions whose norms are strictly less that r for every 9 € [0,97].

Proof. Letus fixi € Jy and consider the energy functional ¥ : H 1 (V) - R given by
N,i

Y(u) = J w(o)F(u)doy,.

SN
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136 —— 6 Elliptic equations on the sphere

By Proposition 6.1.3, the Sobolev space HG (SN ) is compactly embedded into L°(SV),
whenever P €1, ql) gi = N -2)/(N - 3) Of course, 2* < ¢/, so that from E;
(SN ) C & = HG (SN ) — 2 (SV) it follows that the embedding E; — > (SN )

is compact Clearly, the above compactness property ensures the sequentially weak
continuity of the smooth functional V. Set

Ddu) = —||u|| + —||u|| - —||u||2* foreveryu € E; = Hé;l,-.(SN).

Let us consider the real function ¢ : Rj — R defined by

o*

ot) =2 + gt - 52*2 272 foreveryt e R},

see Figure 6.6. The minimum of ¢ is attained at m,, > 0, where

2*b Sﬁ -4
= [ — 2
Mo (ze*—Z) > ’

and 2" < 4 since N > 4. By (6.29), it follows that

p(my,) = 1((1 - ZN: b*ﬁ%) > 0.
N-

2 NN=z SNL—4
Thus ¢ is positive in R}, and
D(u) > (p(m¢)||u||2 foreveryu ¢ Hcl;ri (SN). (6.31)
N,i
Since f € %, by (k;) it follows that
lim sup Yw <0. (6.32)
u—0 u)
a b, S,
LR L
e(my)
o my t

Figure 6.6: The graph of the function ¢.
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6.3 Stationary Kirchhoff critical equations on the sphere =—— 137

To prove (6.32), fix e > 0. Then, since F is odd, (k;) yields the existence of a §, > 0 such
that

F(t) < Wt for every t, with |t| < 6. (6.33)

Let us divide the argument in two cases

Since g € (2,2%), one gets that t —
Therefore, there is m, > 0 such that

mq 1 is bounded for every t € R with [t| > §,.

F(t) < LN Flth forevery t € R. (6.34)

Wlleo

Thus, for u € H.,, ($V),
GN,i

Y(u) < J w(o)[

SN

< J [suz + %w(o)lulq

sN

v+ —Iulq]dah
q

€
IWlleo

dO'h (635)

2
< ellull® + mec] Iwlloo lull?,

where ¢; ; > 0 is the best embedding constant in E; = H(l;r,. ($V) — L9(sY), thanks to
N,i

Proposition 6.1.3. Thus, (6.31) implies that for every u € E; \ {0}, E; = Hér,. sV,
N,i

Y _ ellull® + mgcd [wlloo lul?
D) ~ D(u)
< @(my) (e + mecl Wl lull ™).

Consequently, since g > 2,

Y ¢
lim —_— .
TP o) = pim,)

Since € > 0 is arbitrary, the above relation immediately gives (6.32).
By (6.32), the energy functional 7;, : Hy, ($Y) - R, defined by
Nii

Tia(u) = d(u) -A¥(u) foreveryu e H., (SN),
N,

has a strong local minimum at zero for every A > 0. Moreover, the function 7 is
bounded from below and coercive on Héf,. ($V)since N > 4. Indeed, by (6.35), it follows
N,i

that

T > (— —e)nuu . —||u|| - S Tl =
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138 — 6 Elliptic equations on the sphere

foreveryu e H(l;ri (SM). Hence, sinceq € (2,2*)and N > 4, the above inequality ensures
N,i
that

lim \71'/1(“) = 00,
lull 00~

as claimed.
Now, we claim that the global minimum of .7; ; in H ér,. ($") is nonzero. Indeed, by
N,i

(kp) there is a strict decreasing sequence (f); € (0,1) such that

lim —F(gk )

k—o0

=Fy<0 and lim £, =0.

k—o0

Moreover, F(t,) = F(-t;) for every k € N, since f € Z.LetD; sN be G;;i-invariant
and let C; > O be as in the statement of Proposition 6.1.4. Fix

Voly(D;)

¢ > —-Fymaxil,
0 X{ Vol, (SV)

} ¢ R, (636)

Since F is even, then (k;) implies that there exists g > 0 such that
F(t) > —¢t* foreveryt € (—p,p). (6.37)

Letvy = trv € Hgn (SV) be the function from Proposition 6.1.4 corresponding to the
N,i
value t; > 0. Then

Tiavg) < Kit,f -A J F(vy)doy, — A J F(vy)doy,

D; SN\D;
with
K= c 1)vO1h(sN)<a L 1)vO1h(sN)>,

where the constant C; is given in Proposition 6.1.4(ii). Moreover, Proposition 6.1.4(iii)
yields

| Fwode, = Fieovol, oy,
D;

On the other hand, due to relation (6.37) and Proposition 6.1.4(i), we have

J F(vydoy > -¢ J vi(0)doy, > —eVol,(SV)th.

SV\D; SV\D;
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Hence

\71-)/1(Vk) < t]2<|:Ki - A(%VOI},’(DJ + EVOlh(SN))]
k

By (6.36) and taking A > A, where

A= al
7 F,Vol,,(D;) + £Vol,,($V)’

there exists k such that

Tiavp) < t]g([lci —A<¥Volh(Di) + €Volh($N)>] <0.

k

Consequently,

inf  J,w) < J;(v;) <0,
uelei M) 1,}(( ) 1,}[( k)
Oni

which proves the claim.

On account of Theorem 6.3.1, the trivial function v, = O turns out to be a local
minimizer of 7; , in the weak topology of H ., (S").

N,
Now, let us fix [a,8] ¢ (A, 00) and { > 0. Since J;, is coercive on Héri (M), it
N,i
—_—Ww

follows that the weak closure of the sublevel .71.;11(2(), namely JJ(Z() , is compact

and metrizable with respect to the weak topology. Moreover, let > 0 be such that

U 7@ B,

Aelap]
where
By ={ue Hé;],.’i(sN) :ull < 1.
Let r > n be such that
U Zid(~oo,c* +2]) ¢ B, (6.38)
Aelaf]

where ¢* = sup,ep W(u) + Bsup,ep, V().
Now, let the functional Y : Héf,. ($") - R be defined by
N,i

t
Y(u) = J w(o) F(u)day,, where F(t) = Jf(s)ds.
sV 0
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Since f € Z, it follows that Y € Cl(Hcl;Ti (SN )). Furthermore, the derivative Y’ of Y
N,i

is a compact operator since the Sobolev space H (sY)is compactly embedded into
N,i

L°(S") for every p € [1,2*] by Proposition 6.1.3. Let ¢ € C'(R) be a bounded function
such that

¢t)=t forevery te [—

,sup|Y(u)|].
ueB,

Define Y = ¢ - Y. Clearly, Y is a C' functional with compact derivative and such that
Y = YinB,.
Denote by 7 the smallest topology on H ($") containing the weak topology
b N.i
and the family {7} (Z¢)}seg-
An application of Theorem 6.3.2 to the functionals Q = J;,, P = -Y,and X =
H G (SN ), endowed with the weak topology, gives the existence of some §; > 0 such
Nii
that for every 9 € [0,6;] the functional J;, — 9Y has two local minimizers u;, u, €
Hg ($Y)inthet, . topology, with
N,i 1,

Uy, Uy € Ji) (%) € B, € B,.

Since the topology T 7., 1s weaker than the strong topology, the functions uy, u, are
local minimizers of 7; , — 9Y.

Let us denote by 9 = min{§;, } Due to the compactness of embedding of

SUP¢e ¢(t
G ; (SN ) into LE(SV) for every p € [1,2], it is easily seen that the functional 7; , - 9Y

ver1ﬁes the (PS) condition thanks to the compactness arguments given in [89]; see also
[257, Example 38.25] for classical results.

The Pucci and Serrin Theorem 1in [212] ensures that the functional .7; , -9Y admits
a critical point u; € HGIrv,-i (SN ) such that

(Jip - 9D)(us) = inf ts%p](J i = INY(W©),

whereT = {y € C([0,1],H o (SN)) : ¥(0) = yuy and y(1) = w,}. Now, if y(t) = tu; +(1-t)u,,
with t € [0,1], theny €T and

y(t) € Brz forevery t € [0,1].
Thus, it follows that

(Jia—9N)(u3) < sup (Jip - INF@) < c* + 9" supp(t) < c* +1.
te[0,1] teR

Since

(Jia-9N(s) <c” +1+ 9" supp(t) < c* +2,
teR
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by (6.38), we have u; € B,. Hence Y(y;) = Y(u;), with i € {1,2,3}.
Consequently, the functions vy, u,,u; € Hgr (SV) are critical points of the func-
N,i
tional 7;, - 9Yin H, i (S ).
Since f and g are odd functions, the energy functional Z;,

) =du) -1 J w(o)F(uw)doy, - 9 J w(o)F(w)doy,

sV sV

D) = %Ilullz = lul* - —||u||2* for every u € H'(SV),

is even. Thus, for every i € Jy the functional 7, is Glr\;)i-invariant, since G;;')l. acts isomet-
rically on H'(S"), by virtue of (6.2).

Moreover, thanks to the symmetry assumptions on f, f, w, and w, it is easily seen
that the functional N g : H'(S") — R, given by

Nyg(u) = A j w(@)F(u)day, + 9 J wW(0)F(w)day,
sy sy
is G\ -invariant.
Hence, the symmetric criticality Theorem A.1.5 yields that the critical points
of J;4 — 9Y are also critical points for the functional 7, and so solutions of equa-

tion (6.30).
Thus, for everyi € Jy the functional 7; , —9Y admits at least three distinct solutions
(u(’))f{ JinE; = o (SN) provided that A > A;.

Now, it remalns to count the number of distinct solutions of the above type. More
precisely, on the basis of Proposition 6.1.3, there are at least sy subspaces H (sY) ¢
N,i

whose mutual intersections contain only the zero function. Pu
H'($") wh tual intersecti tain only th function. Put
A" =max{A’ :ie]Jy} and 9" =min{9; : i€y}

Each Hx (SN ) c H 1(SN ) contains three distinct pairs of nonzero solutions of (6.30),
N,i
whenever

A>A" and 9<9°.

This concludes the proof. O
A meaningful consequence of Theorem 6.3.3 is the next multiplicity result.

Corollary 6.3.4. Let N > 4 and let a,b € R" satisfy (6.29). Furthermore, let q € (2,2).
Then, for every A > O the stationary Kirchhoff critical equation

(a+ b||u||2)(—Ahu +u) = Aul?%u + Iulzt_zu insV

has at least 3sy solutions.
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In Corollary 6.3.4 the threshold A* in Theorem 6.3.3 is zero. Clearly, in this case
F(u) = |u|?/q with g € (2,2"). Consequently, F, = lim,_, - % = 0. Fix Ay > O and take

max{k; : 1 € Jy}
AoVol, (SY)

Put

* Ki

A= W for everyi € Jy.

Thus, (6.36) holds and the conclusion is achieved.

Comments on Chapter 6

The method introduced in [172] allowed W. Marzantowicz to obtain also nice informa-
tion on the number of the solutions of critical problems on the sphere via suitable
algebraic methods mainly based on the classification of the Borel subgroups of the
orthogonal group. Now, very little it is known about the existence, multiplicity and
blow-up of nodal solutions for the supercritical problem on the Euclidean sphere. For
instance, some new symmetry results for positive solutions of elliptic problems in the
whole space R¥*! and on the sphere SV have been studied in [51]. The proofs of the
results contained in [51] are proved through the stereographic projection and they are
essentially based on the moving plane method and rearrangement techniques. The
methods in [172] and the above theoretical results seem to be useful to obtain the ex-
istence of an infinite number of nodal solutions of elliptic equations involving criti-
cal exponents; see, among others, the paper [95] and the references therein. Further-
more, Ding-type results and the Hebey-Vaugon compactness properties can be used
in the study of equations similar to (6.18) in a fractional Heisenberg setting. We re-
fer to [27] and to Chapter 9 for related equations in the Heisenberg group. Moreover,
in the framework of complete Riemannian manifolds, some reduction methods also
apply and have been combined with the Lyapunov-Schmidt arguments in order to ob-
tain sequences of positive and sign-changing solutions of supercritical equations; see,
among others, the paper [94]. The above remarks motivate the idea that the methods
developed in this chapter can be successfully applied to different classes of problems
having Riemannian and subelliptic structures.
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7 Subelliptic problems on Carnot groups

Bacio che sopporti il peso
della mia anima breve

in te il mondo del mio discorso
diventa suono e paura.

Alda Merini
Bacio

The chapter deals with the existence of solutions for a wide class of eigenvalue subel-
liptic critical problems in possibly unbounded domains Q of a Carnot group G via the
symmetric criticality principle of Palais, together with variational arguments based on
certain recent compactness results due to Z. Balogh and A. Kristaly in [27]. In this way,
we do not have to require any longer the strong asymptotical contractiveness condi-
tion on the domain Q, which is a persisting assumption in the current literature.

More precisely, we study semilinear equations, when either the Ambrosetti—
Rabinowitz geometrical condition is satisfied or the nonlinear terms are monotone so
that the trick due to P. Rabier can be used. In the first case, the main variational tools
are the mountain pass theorem of A. Ambrosetti and P. Rabinowitz, the principle of
symmetric criticality of Palais, and a suitable flower-shape geometry on the horizontal
Sobolev space associated to the domain Q of G. In the latter case, following [219], the
existence of bounded Palais—Smale sequences for the energy functional associated
to the equation is obtained via a generalization of the quite classical approach due to
M. Struwe and L. Jeanjean, combined with a rescaling argument.

At the end of each section of the chapter, we present applications of the main
results on the meaningful subcase in which the Kohn-Laplace subelliptic problems
are settled on unbounded domains of the Heisenberg group H" . Indeed, in this special
framework, the geometrical group arguments are particularly expressive.

7.1 Basic theory on stratified Lie groups

In this section we briefly recall some basic facts on Carnot groups and the functional
Folland—-Stein space H Wé’Z(Q). A Carnot group G = (G, o) is a connected, simply con-
nected, nilpotent Lie group, whose Lie algebra & admits a stratification, i. e.,

.
k=1

where the integer r is called the step of G, while &, is the linear subspace of finite
dimension d; of & forevery k € {1,...,r}, and

[0, 8;] =&, forallk,withl<k<r-1, and [&;,®,]={0}

https://doi.org/10.1515/9783110652017-007
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In this context the symbol [&,, &, ] denotes the subalgebra of & generated by the com-
mutators [X, Y], where X € ; and Y € &;, and where the last bracket denotes the Lie
bracket of vector fields, that is, [X, Y] = XY - YX.

The left translation by 0; € G on G is given by ¢, (0) = 0; 0 for every 0 € G. Let
I'(TG) be the space of global sections of the tangent bundle TG on G. A vector field
X € I(TG) is left invariant if

X(pots) = (Xp) o &y

forany o € G and ¢ € C®(G).
Moreover, the Lie algebra & associated to G consists of left invariant vector fields
X on & and & is canonically isomorphic to the tangent space T,G. Let

-5
k=1

be the topological dimension of the Carnot group G.

The exponential map expg : & — G is given by expg(X) = yx(1), where yy is the
unique integral curve associated to the left invariant vector field X such that yx(0) = e,
where e is the neutral element of G. In other words, the curve yy is the unique solution
of the Cauchy problem

yx(t) = X(yx(®), yx(0)=e.

The curve yy is defined for any ¢ € R, since from the identity yx(t + s) = yx(s) yx(t) for
all s, t € R, itis clear that yy can be extended in the entire R.

Since G is nilpotent, connected, and simply connected Lie group, the exponential
map expg is a smooth diffeomorphism from & onto G.

Let (-, ), be a fixed inner product on the first graduated component &, of &, with
associated orthonormal basis B = {X;,X,,..., X4 }. From now on, we consider the ex-
tension of the inner product (., -), to the whole tangent bundle TG by group transla-
tion. The corresponding norm is denoted by || - |y. A left invariant vector field X € & is
said to be horizontal if

X(0) € span{X;(0),... ,Xdl(a)}

for every 0 € G. Indeed, &, is considered to be the horizontal direction, while the
remaining layers &,, ..., ®, are viewed as the vertical directions. In particular, the last
layer &, is the center of the Lie algebra, and the horizontal direction G, generates in
the sense of Lie algebras the whole &. More precisely,

& =6, [6,[6,,...[6,6]--]]]

k times

forallk=2,...,r.

printed on 2/10/2023 3:36 PMvia . Al use subject to https://ww.ebsco.confterms-of-use



7.1 Basic theory on stratified Lie groups =— 147

Since the map expg is bijective, for every element o ¢ G there exists a unique
vector field X = 7 x, X, + fo:d1 +1 %X}, € ® such that

d, d
0 = expg(X) = expG<ZXka + ) ka,'<>,
k=1 k=d;+1

where {X; ,,,..., X } are vertical vector fields that extend 5 to an orthonormal basis
B* of &.

Now, observe that & = RY. Thus, we often identify every element 0 € G with its
exponential coordinates (xy,...,Xq,>Xg, 41>+ - Xq) € R? in connection to the basis B*
of &.

More precisely, it is possible to identify the Carnot group (G, o) with (R, x), where
the expression of the group operation * is given by

xxy =00 0(y) forallx,yeR?

and is explicitly determined by the Baker—Campbell-Hausdorff formula.

Whenever we are in the presence of a stratification, it is possible to define a one-
parameter group {A},., of dilatations of the algebra. More precisely, for a fixed real
number 7 > 0 and all X € &;, we set A,(X) = nkX and extend the map A, to the whole
& by linearity.

Furthermore, the family {Arl}n>0 induces a family {6,1},1>0 of the group automor-
phisms on G by the exponential map such that the diagram in Figure 7.1 is commuta-

tive.
epol r
G -——&=0Pes,
i k=1
6’/ : An
i .
|
G 6= &y,
€XPg k=1 Figure 7.1: The automorphism 4.

The homogeneous dimension Q of G, attached to the automorphisms {6, },,., is defined
by

r
Q=) kdim® =d, +2d, +--- +rd,.
k=1

In particular, the above definition of Q and the fact that {5, } .., is a family of automor-
phisms on G imply that the Jacobian determinant of the dilation §, is constant in o
and given by n%.
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Moreover, let u denote the push-forward of the d-dimensional Lebesgue measure
A4 on & via the exponential map. Then, du defines a biinvariant Haar measure on G
and

du(o - 8,) = n%du(o).

Since G can be identified with (R, x) by using the exponential map, if E ¢ G is a mea-
surable subset, its Haar measure y is explicitly given by u(E) = A;(o"*(E)). Therefore,
the same notation will be used for both measures.

Take 0, 0, € G and let HT; , (G) be the set of piecewise smooth curves y, such
thaty:[0,1] - G, y(t) € &, a.e. t € [0,1], (y(0),y(1)) = (0y,0,) and

1

[Irolyde < co.
0

Since HT; 5, (G) # 0 by the celebrated Chow—Rashevskii theorem in [60], it is possible
to define the Carnot-Carathéodory distance on G as follows:

1
dectoyo) = inf [l
0

01,02
The metric d is left invariant on G and for every n > 0,
dcc(5q(01)> 5r1(02)) =1ndcc(01,07)

for every 0y,0, € G.

The Euclidean norm | - | induces two homogeneous pseudonorms | - | on ® and
| - |g on the group G via the exponential map. Indeed, for X ¢ &, with X = Z,r(:l X
where X, € &, define a pseudonorm on & as follows:

2r!

r
|X|@ _ (Z |Xk|2r!/k>

k=1

The induced pseudonorm on G has the form
ol = |expg (0)|s forallo € G

and is usually known as the nonisotropic gauge. It defines a pseudodistance on G given
by

d(O’l, 02) = |02_1 o 0'1|G fOI’ all 01, 02 € (G,

which is equivalent to the Carnot—Carathéodory distance d-. on G.
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Thus, Carnot groups are endowed with the intrinsic Carnot—Carathéodory geom-
etry. The adjective “intrinsic” is meant to emphasize a privileged role played by the
horizontal layer and by group translations and dilations. It is worth stressing that
the Carnot—Carathéodory geometry is not Riemannian at any scale. In fact, Carnot
groups can be seen as a particular case of more general structures, the so called sub-
Riemannian spaces.

The most basic second-order partial differential operator in a Carnot group G is
the sub-Laplacian, or equivalently, the horizontal Laplacian in G, given by

d

2

Ag = ) X;.
k=1

We shall denote by Dg; = (X;, ..., X, ) the related horizontal gradient and set | Dgully =
(I8 X)),

0bv1ously, Euclidean spaces are commutative Carnot groups, and, more precisely,
the only commutative Carnot groups. The simplest example of a Carnot group of step
two is provided by the Heisenberg group H" of topological dimension d = 2N + 1 and
homogeneous dimension Q = 2N +2, that is, the Lie group whose underlying manifold
is R?N*1, endowed with the non-Abelian group law

N
0100, = <z+z',t+ t'+2) (yix _Xi,Vi’)>

i=1

for all 0, 0, € HY, with 0, = (Z,t) = (X0, XppoVo-- Vo b), 05 = (2, t)
(X}, X\ Y1 - > Yo t'). The vector fields, forj=1,...,N,
0 0 ) 0 0

p A VT AN U A/
A FTA T

constitute a basis B* for the real Lie algebra §) = & of left invariant vector fields on HN.
The basis B* satisfies the Heisenberg canonical commutation relations for position
and momentum [X;, Yyl = —46,.ka/at, all other commutators being zero.

Ifue C2(]HN ), then the horizontal Laplacian in HY of u, called the Kohn—Spencer
Laplacian, is defined as follows:

N
Agpvu =Y (X7 + Y )u
j=1

ra 0 0 LU
=Y(= +4 = u+ sz,
]._Zl<ax].2 ay2 " Voot - fayjat>“+ e

and Ay is hypoelliptic according to the celebrated Theorem 1.1 due to L. Hé6rmander
in [131].
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In order to study the variational problems considered in the next sections, we need
to introduce suitable solution spaces. To this goal, let Q be a nonempty open subset
of G. The Folland—Stein horizontal Sobolev space H Wcl)’z(Q) is the completion of C§°(Q)
with respect to the Hilbertian norm

1/2
Jull = (j IDut3dy+ | |u|2du) ,
@ @ (71)
@) = J<DGM’ D)o dp + J updy.
Q Q

Of course, if Q = G, then HW"(G) = HW}?(G), where HW"*(G) denotes the hori-
zontal Sobolev space of the functions u € L%(G) such that Dgu exists in the sense of
distributions, and [|Dgullg is in L*(G) endowed with the Hilbertian norm (7.1).

The embedding

HW(Q) — LF(Q)

is continuous for any g € [2,2"]; see G. B. Folland and E. M. Stein [106]. Furthermore,
by [114, 132, 243] we know that, if Q is a bounded open set of G, the embedding

HWE(Q) —— LF(Q)

is compact for all g, with 1 < p < 2*.

Let (G, ) be a Carnot group, and (T, -) be a closed topological group, with neutral
element jr. The group T is said to act continuously on G, if there exists a map = :
T x G — G such that the following conditions:

(Ty) jp+o=oforeveryo € G;

(T)) 11%(1y%0)=(1,-7,) * 0 foreveryt,, 1, € Tand o € G,

hold. In addition, the action * is said to be left distributed if

(T3) T*(01°0,) =(T*0y) (T *0,) foreveryt € T and 0,,0, € G

is satisfied. A set Q ¢ G is T-invariant, with respect to *, if T = Q = Q.

We assume that T induces an action § : T x HW}*(G) — HW}*(G), defined for
every (t,u) € T x HWé’z((G) by

(thu)(o) = u(f1 x0g) forallo e G. (7.2)
The group T acts isometrically on H Wé’Z(Q) if
Igull = lull  forall (r,u) € T x HW *(G).
Let

HWy7(Q) = {u € HW3*(Q) : Tfu = uforall T € T}
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be the T-invariant subspace of H Wé(Q). Clearly, H W(l)’)ZT(Q) is closed, since the action ¢
of Ton H Wé’z(Q) is continuous.

Hereafter we shall frequently use on G the Carnot-Carathéodory distance d :
G x G — R§ and the natural Haar measure y on G. In the next definition “lim inf” is
the Kuratowski lower limit of sets.

Let Q be a nonempty open T-invariant subset of G, with a nontrivial boundary 0Q,
and assume that

() For every (0y)i € G such that

klim dcc(e,0p) =00 and y(likm inf(oy, » Q)) >0,

where 0y - Q = {0}, o 0 : 0 € Q}, then there exist a subsequence (03); of (o), and a
sequence of subgroups (T, ); of T, with cardinality card(T,, ) = co, having the property
] ]
that for all 7y, T, € T, , With T, # T, it results

J

lim inf dec((1; * 0y) 0 0, (T, * 03 ) © 0) = 00.
j—00 0€G i j
A domain Q of G, for which condition () holds, is simply called an # domain.

The following compactness result is due to Z. Balog and A. Kristaly and is given
in [27, Theorem 3.1].

Lemma 7.1.1. Let G = (G, °) be a Carnot group of step r and homogeneous dimension
Q > 2, with neutral element denoted by e. Let T = (T, -) be a closed infinite topological
group acting continuously and left distributively on G by themap = : TxG — G. Assume
furthermore that T acts isometrically on HW}(G), where the action { : T x HV*(G) —
H Wé’z((G) is defined in (7.2). Let Q be a nonempty T-invariant open subset of G, satisfying
condition (7). Then the embedding

HW;7(Q) —— LF(Q)
is compact for every g € (2,2%).

A direct application of Lemma 7.1.1 gives a compactness result for suitable Sobolev
spaces associated to a class of unbounded domains of the Heisenberg group HY =
CVxR,N > 1.

More precisely, leti;, i, : R§ — Rbe two functions that are bounded on bounded
sets, with 1;(t) < P, (t) for every t € R. Define

Qy ={oeH" :0 = (z.t) with Py (1z]) < t < h,(lzI)}, (7.3)

where |z| = Zfil |z;12; see Figure 7.2 below.
Let UN) = U(N) x {1}, where

U(N) = {T € GLIN; C) : (12,72 o = (2,2 ) forallz,z' € €V},
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Figure 7.2: A strip-like domain Q.

that is, U(N) is the usual unitary group. Here (.,-) -v denotes the standard Hermitian
product on ", in other words, (z,z’)CN = 22’21 Zy z_,’< .

Hence, U(N) is the unitary group endowed with the natural multiplication law
-: U(N)xU(N) — U(N), which acts continuously and left distributively on HY by the
map * : UN) x HY — HY, defined by

Tx0=(1z,t) forallT =(1,1) e UWN)andallo = (z,t) € HY,

thanks to [27, Lemma 3.1]. Taking T = U(N), we get that Ql/, is U(N)-invariant and an
‘H domain, as shown in the proof of Theorem 1.1 of [27]. Moreover,

HWg ) (Qyp) = {u € HWG*(Qy) : u(z, 1) = u(lzl, t) for all (z, £) € Qu},

that is, H WéfU(N)(le) =H W(l)iyl(Ql/,) is the space of cylindrically symmetric functions
of HW?(Qy).

Finally, U(N) acts isometrically on the horizontal Folland—Stein space H Wé‘z (]HN ),
where the action § : U(N) x HWcl)’z(]HN ) — HWcl)’z(]HN ) is defined for every (7,u) in
U(N) x HW)*(HY) by

(Ttw)(0) = u(t'z,t) forallo = (z,t) e HY, (74)

in view of [27, Lemma 3.2].
Thus, let T € U(N) be the subgroup of the form

11
T=UN)x--xUNp)x{l}, N=)Y N, with Ny>1and¢21,
k=1

and consider the Sobolev space
HWy7(Qy) = {u € HWy*(Qy) : u(z, t) = u(1zy], 123, .., 2], £), 2 € CF.

On account of the above results, since Q¢ is a T-invariant open subset of HY, Theo-
rem 1.1 in [27] ensures that the next special case of Lemma 7.1.1 holds.

EBSCChost - printed on 2/10/2023 3:36 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



7.1 Basic theory on stratified Lie groups =— 153

Lemma7.1.2. Let N > 1and let Q be a strip-like domain of HY, as given in (7.3). Then
the following embedding:

HW3(Qy) = LF(Qy)
is compact for any p € (2,2%).

Inspired by Section 4 of [27], we introduce the main definitions and notations
necessary to state the key compactness Proposition 4.1 of [27] and stated here in
Lemma 7.1.3 and Proposition 7.1.4. From here until the end of the section, we assume
that N > 2, unless state differently, and put /iy = {1,...,[N/2]}.

For everyj € Jy, consider the subgroup TNJ- c U(N), defined by

[ <o), ifj = N/2,
NI UG) x UKN = 2) x UG, ifj # NJ2,
and the matrix

[/ 0 1
( e ) ifj = N/J2,
]ICN/Z 0

wj =1 0 0 Iy
0 Iz O |, ifj#N/2.
Ig 0 O

By definition, w; € U(N) \ Ty, as well as
1 2 .
wiTyjw;" =Ty; and wj =ides

foreveryj € Jy.
Let T;fj be the subgroup of U(N) generated by w; and TN,]- = Ty x {1}, that s,

v - P
Ty; = Tyjwj) = Ty; Vw;Ty;

foreveryj e Jy.
Define the action Ty/.iHW}?(Qy) — HWg*(Qy) of Ty, on HW}*(Qy) given by

R Rt T
—-(@n)fu)(0), T=wTe TN;. \ Ty, with T € Ty,

for every o € Q.
The action | is defined on the whole subgroup T;\‘;’] Indeed, if T € T:;’], then either

=~ _ W =  ~a~ 7 & L~
T=Tc¢ TN,]. OrT=wT € TN’]. \ TN’]-, with T € TNJ-. Moreover, set

E= Hwéfﬁ.(%) = {u e HW;*(Qy) : Thu = uforall 7 € T,‘;’{j}
Pl
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for everyj € Jy.
By Lemma 7.1.2, since H w2, (Q¢) c HW2 (le)’ the following compactness re-
O,TNf]. 0,Ty;

sult holds.

Lemma 7.1.3. The embedding
1,2

is compact for any p € (2,2%) and every j € Jy.

The next result provides precise information on the mutually symmetric differ-
ences for the spaces of T;”'j-invariant functions in H W(l)’z(Qw).

Proposition 7.1.4. The following statements hold true:
() EjnHWy?,(Qy) = {0} for everyj € Jy;
(ii) IfN > 4, then
E; N E; = {0}
foreveryj,k € Jy, withj # k.

The geometrical meaning of Proposition 7.1.4 is clearly expressed in Figure 7.3.

1,2
~[N /2] 1,2
HO-,T\L\\A\/,TQ(Q”) HO,Cyl(Q’U)
1,2 1,2
Ho g, (Sk) Hy 7, ()
L 3
1,2 1,2
Hy () Hy 72, ()
1,2 1,2 Figure 7.3: The flower-shape geometry given by
Ho’f-:»\iﬂ(ﬂ@,) HO?(%(Q‘)

Proposition 7.1.4.

From now on in this chapter, unless otherwise specified, we assume that:

> G = (G,») is a Carnot group of step r and homogeneous dimension Q > 2, with
neutral element denoted by e;

> T = (T,-)is a closed infinite topological group acting continuously and left distribu-
tivelyon G by themap = : T x G — G;

> T = (T,-) acts isometrically on the Hilbert Sobolev space H W(l)’z((G) by the action t,
where { : T x HWY*(G) — HW(G) is defined in (7.2).
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7.2 Semilinear problems on unbounded domains of Carnot groups

We are ready now to study the existence of solutions of the nonlinear eigenvalue subel-
liptic problem

{—A(Gu +u=Aw(0)f(w)inQ, (7.6)

u=0o0no0oQ,

where Q is a H domain of a Carnot group G with boundary 0Q. For our purpose, we as-
sume that the right-hand side of equation (7.6) is a function f verifying the conditions:
(f1) f € C(R) and for some q € (2,2;),

IfF (@)l

ter\jo} |t] + [t]971

>

where 25 is the critical Sobolev exponent given by 25 =20/(Q-2);

(fy) f(&) = o(|t]) as |t| — 05

(f3) There exists v > 2 such that 0 < VF(t) < tf(t) forany t € R\ {O}, where F(t) =
[ f(s)ds.

Moreover, we require
(w) w e LYQ)nL®(Q) with essinf, w > 0;
(Cy) The functional ¥ : HW}*(Q) — R given by

Y(u) = JW(U)F(u)dy foreveryu e HW&’Z(Q)
Q

is T-invariant, that is, ¥(tfu) = ¥Y(u) for every (t,u) € T x HW(I)’Z(Q).

The next lemma is based on well-known tools in abstract group measure theory. The
result shows when the key assumption (Cy) is satisfied, imposing some additional
conditions on the weight w and on the Haar measure on G.

Lemma 7.2.1. Suppose that the action * of the group T on the Carnot group G satisfies
conditions (T;)—(T3). Assume furthermore that the natural Haar measure y, defined on
G, is left = invariant, that is, for all measurable subset E of G and forallT € T,

U(T * E) = u(E),

wheretT «E = {T 0 : 0 € E}.Iff € C(R) is a subcritical function and w € LYQ)NL®(Q)
is T-invariant, that is, w(t * 0) = w(o) for every T € T and 0 € G, then the functional ¥
satisfies (Cy).
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Proof. Fixte Tandu € HW(l)’Z(Q). Then, putting s 0 =4, we get by (T;)—(T3) that

W(Tiu) = jw(o)F((ruw(o))duw) = jw(a)F(u(r‘1 * 0))du(0)
Q Q
- J Wt + 6)F(u(®))du(t * &)
T%Q

- jW(c})F(u((f))dy(fI) = Y(w),
Q

since Q and w are T-invariant by assumption, and the left * invariance of the measure
u implies that

du(t = 0) =du(6) forallg € G,

which is exactly [45, formula (10)]. This shows that ¥ is T-invariant, that is, ¥ satisfies
(Cy), concluding the proof. O

In the first result of this section, we consider the semilinear equation (7.6) when f
satisfies the superlinear condition given in (f;). The main tools are given by the moun-
tain pass theorem of [12], and the algebraic tools developed in Section 7.1.

Theorem 7.2.2. Let Q be a nonempty T-invariant open subset of G, satisfying condition
(o), and let A be a positive parameter. Assume that (f;)—(f3), (w), and (Cy) hold. Then,
for any A > 0 problem (7.6) admits a nontrivial T-invariant solution u, € HWé’Z(Q). In
addition, if f is odd, then (7.6) admits a sequence of nontrivial T-invariant solutions for
any A > 0.

Proof. Problem (7.6) has a clear variational structure. Indeed, its solutions can be
found as critical points of the underlying energy functional defined for all u ¢
HW,?(Q) by

T,w) = %uuu2 2 j WO Fw)dp,
Q

where || - | is the standard norm on H Wé’z(Q) introduced in (7.1).

Since the problem is settled on the domain Q, possibly unbounded, no com-
pact embeddings can be used for the whole Folland—Stein horizontal Sobolev space
H Wé’z(Q). In order to find a solution of (7.6), we shall work with H W(l)”zT(Q), where T is
defined above, in order to recover compactness. It is clear from Lemma 7.1.1 that the
crucial role is played by 73, which is the restriction of Z, to the space H W(l)’)zT(Q), i.e.,

W) = )l gz ) W, u € HWGT(Q). (77)
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First of all, let us show that 7; possesses the geometric mountain pass structure. By
continuity and conditions (f;) and (f,), it is clear that for any € > O there exists M =
M, > Osuchthatforanyt e R,

If(0)] < elt] + M |t|7!

and, consequently,
M
[FO] < S’ + L (78)

Now, let us proceed by steps.

Step 1. There exist p > 0 and j, > O such that 7,(u) > j, for any u € HWé”zT(Q), with
lJull =

Let u be a function in HW12 7(Q). On account of (7.8) and the positivity of A, we
easily get that for any € > 0,

1 2 eA 2 MA
Ta(w) = Sl = Wty = == Wl
1 M.Ac?
> 51— eAcglaloo Il = == Wilo

q

Ac
e%q -2
Wl ool

1
= ul*| 5 (1 - eAcsIwileo) -

where Cos with p € {2,g}, is the Sobolev constant of the continuous embedding
Wy7(Q) — LF(Q).
By choosing € > 0 small enough to have e/\c%llwlloo < 1, we get that there exist
suitable positive constants k and k such that

inf  7u) = pi(k - kp??) = >0,
eHW}7(Q)
llull=p
provided p is sufficiently small.
Step 2. There exists a functionu € HWé:zT(Q) such that |[ul| > p and 7 (u) < Jp:
First of all, note that as a consequence of (f;) and (f,), we easily have that there
exist two positive constants a; and a, such that

Fit) 2z qy|t|" —a, foranyt e R.

Letu € HW”(Q) be such that lu| = 1and let s > 0. Moreover, let w, > 0 be such
that essinfo w > w,. Bearing in mind that A > O and w ¢ L}(Q) n L®(Q), the above
superquadratic condition immediately yields

2
S
Titsw = S hul” - [ w(o)F(su)d
Q
s’ Vi
<> — Aaywos” lulll + Aasllwll; .
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Since v > 2, passing to the limit as s — oo, we get that 7, (su) — —oo, so that the claim
follows taking u = su, with § sufficiently large.

Thanks to Lemma 7.1.1, arguing as in the proof of Claim 3 in Chapter 5, Section 5.3,
it is possible to show that the functional 7, satisfies the Palais-Smale condition at
any level ¢ € R. Hence, by Steps 1 and 2, the mountain pass theorem ensures the
existence of a nontrivial solution uy € H W(I)ZZT(Q) which is a critical point for the energy
functional 7. Thus, u, is a constrained critical point of Z; on H Wé:zT(Q). It remains to
prove that H W(l)jo(Q) is a natural constraint for Z,. To achieve this goal, we notice that
T acts isometrically on HWé’z((G), where the action f : T x HWCI)’Z((G) - HWé’z((G)
is defined in (7.2). Thus, thanks to assumption (Cy), the functional Z, is T-invariant,
that is, Z)(tfu) = Z;(u) for every u ¢ HWé’Z(Q). The principle of symmetric criticality,
Theorem A.1.5, ensures that u, is a critical point of Z), i.e., u; € H W(l)’z(Q) is a solution
of problem (7.6).

Finally, in the case of f being odd, as usual when dealing with even functionals,
we apply the classical symmetric version of the mountain pass theorem to the energy
functional 7. Similar geometrical arguments as in Steps 1 and 2 and Theorem A.1.5
give that for any A > O problem (7.6) admits a sequence of nontrivial T-invariant solu-
tions in HW,*(Q). The proof is now complete. O

Now, we prove that, for small values of the parameter, problem (7.6) admits at
least two solutions requiring that the continuous term f satisfies only (f;) and the new
condition
(f{) For some q € (2,2;),

If (6)]
Cr=sup ———— <
(e W

An application of the principle of symmetric criticality and suitable variational meth-
ods give the following result.

Theorem 7.2.3. Let Q be a nonempty T-invariant open subset of G, satisfying condi-
tion (#), and let A be a positive parameter. Assume that w € L'(Q) n L®(Q) with
essinfow > 0, and let f € C(R) verify assumptions (f{) and (f3). Finally, suppose that
(Cy) holds. Then, there exists A, > 0 such that, for every A € (0,A,), problem (7.6) admits
at least two solutions in H Wé’)zT(Q).

To prove Theorem 7.2.3, we shall use the next critical point result.

Theorem 7.2.4. Let X be a reflexive real Banach space, and let ®,¥ : X — R be two
continuously Gateaux differentiable functionals such that

— @ is sequentially weakly lower semicontinuous and coercive in X;

- Wis sequentially weakly continuous in X.
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Assume further that for eachn > 0 the functional ], = n®-¥ satisfies the (PS) condition
for all c € R. Then, for each p > infy ® and each

A Supveqyl(zg) ‘I/(V) - \P(u)
n> 1r_11f
ued1(,) 0-du)

>

where £, = (—00, ), the following alternative holds: either the functional ], has a strict
global minimum which lies in dD‘l(ZQ), or ], has at least two critical points one of which
lies in ®'(5,).

The above critical point result comes from a joint application of the classical the-
orem due to P. Pucci and J. Serrin in [212] and of a local minimum result obtained
in [224]; see [222, Theorem 6] for a detailed proof.

Proof of Theorem 7.2.3. Fix A > 0 and consider the energy functional 7, : HW'7(Q) —
R defined for every u € HW7.(Q) by

Tyw) = %uuu2 - [ wioF@dn
Q

where n = 1/2A. We shall prove that 7, satisfies the assumptions of Theorem 7.2.4, with
X = HW;7(Q),

D) = ul>, Pu) = Jw(a)F(u)dy, ueX.
Q

Then, @ is sequentially weakly lower semicontinuous and coercive, and ¥ is se-
quentially weakly continuous in HWé:zT(Q), thanks to the compact embedding in
Lemma 7.1.1. Arguing as in the proof of Step 2 of Theorem 7.2.2, it easily seen that there
exists u € HWé:ZT(Q) such that Jy(su) — —oo as's — co. Moreover, since (f]) and (f)
hold, standard arguments ensure that the functional 7, satisfies the compactness

(PS). condition for all ¢ € R. In order to conclude the proof, fix g > 0, let

1 —_

2c (iuwu v ) @"/“)
A* f 2 q 00! >

Ve

andtakeA € (0,1, ), where Cos with g € {2, g}, is the Sobolev constant of the continuous
embedding HWé’)ZT(Q) — LP(Q). We claim that ¢(p) < = 1/2A, where

©=- inf SUPyeq1(z,) Yv)-¥Y)
Y= iy 0 -0

and Z, = (-00,0). Clearly, the identically zero function O is in Q‘,)’l(ZQ), and ®(0) =
¥(0) = 0. Consequently,

) (SUpyep1z,) Y(V)) —¥(W)  sup,epz,) ¥(V)
(@) = inf 2 < -
ued1(z,) 0- P Y

=x(0).
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By using (f}), it follows that

[wiorrwdn = ¢ty + P i)
Q

cl
< Cf<CzIIWIIzIIV|| + EqIIWIIOOIIVIIq>

for every v € X. We deduce that

cl
sup Jh(G)F(v)d}l < Cf<C2||W||z\/§ + —qllwlloqu/2>-
ved(z,) q

This implies that

© = (21wl + w2 ) < 2

o) < (—w + = w0 ><—:,

as claimed. Hence, Theorem 7.2.4 ensures the existence of two solutions in H Wé’)ZT(Q)
which are critical points for the energy functional 7, . Similar arguments as in the proof
of Theorem 7.2.2 give that for A € (0,A,), problem (7.6) has at least two solutions in
HWA(Q). O

A careful analysis of the proof of Theorem 7.2.3 shows that the main conclusion
holds true, provided that

Ae(O isup Ve q;l>,

2Cs 00 ge,|wl, + cliwll,e

see Figure 7.4.

The Rubik-cube technique, developed in [27, Theorem 1.2] and applied to the sub-
groups Tﬁ;’] c U(N), defined in Section 7.1, allows us to obtain a more precise version
of Theorem 7.2.3 in the Heisenberg setting, thanks to Lemma 7.2.1 and Proposition 7.1.4.

A
q Ve
#(0) = <_> — 1
2C1) qesl|wll, + cfllw]] 0%
A=A
Gr(¢)
o 4

Figure 7.4: The maximal interval (0,4, ).
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Corollary 7.2.5. Let Qy ¢ HY be as in (7.3) and let w € Ll(Ql/,) n L°°(Q,l,) be a cylindri-

cally symmetric function with ess info w > 0. Furthermore, let f € C(R) verify (f{) and

(f3). Let T = U(N;) x --- x U(N,) x {1}, where N = Zi;l Ny, with Ni, > 1and € > 1. Then,

the following properties hold:

(i) There exists A, > O such that for every A € (0,7,),

{—A]HNu +u = Aw(0)f (u) in Qy, 79)
u=00n0Qy,

has at least two solutions localized in
HWy7(Qy) = fu e HWG*(Qy) : u(z,t) = u(lz, |zl |z], t)},

wherez, € CM forallk =1,...,¢.

(ii) Inaddition, if the function f is odd, there exists Ay > O such that for every A € (0, )
problem (7.6) admits at least 2([N /2] + 1) solutions in H W(l)’z(Q¢) with mutually sym-
metric different structures.

Proof. (i) This is a direct consequence of Theorem 7.2.3. Indeed, Q,, is U(N)-invariant
and an H domain, as shown in the proof of Theorem 1.1 of [27]. Hence Qy isanonempty
T-invariant open subset of H", satisfying condition (.%#); see Section 7.1 and Lem-
mas 3.1 and 3.2 in [27] for additional comments and remarks. Moreover, since T acts
isometrically on H Wé’z(Ql/,) by (7.4), condition (Cy) is easily verified, sincew € L (Ql/,)n
L*(Qy) is cylindrically symmetric. Then, Theorem 7.2.3 gives the existence of A, > 0
such that for every A € (0,7, ) problem (7.9) admits at least two solutions in H Wé’z(le),
localized in the symmetric space H W(I)ZZT(QII,).

(ii) Part (i), with T = U(N) = U(N) x {1}, ensures that there exists A, > 0 such that, for
every A € (0,A,), problem (7.9) admits at least two solutions in H Wé’z(Qll,), localized in
the symmetric space H Wé’iy](ﬂw), and the proof is complete when N = 1.

Now, let N > 2. Since f is odd, the energy functional I, H Wé’z(Ql/,) — R given by

1
Ty(w) = Il - j w(OFWdy, e HW5*(Qy),
Qy

is even. Thus, 7, is T;’Zj-invariant foreveryj e Jy = {1,..., [N/2]}, since Tl‘\‘;’) actsisomet-

rically on H W(l)’z(Q,/,) by virtue of (75), and w ¢ Ll(Ql/,) n L°°(Ql/,) is cylindrically sym-

metric. Hence, the symmetric criticality Theorem A.1.5 yields that the critical points of

the restrictions of 7, to H W;’ZT,U]. (le) are also critical points for the functional Iy and
Ty

so solutions of (7.9).
Then, arguing as in the proof of Theorem 7.2.3, Theorem 7.2.4 ensures that for every
j € Jy there exists AY such that the restriction of the functional 7, to the symmetric
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space E; admits at least two distinct solutions (u,((j))i:1 inkj = HW;‘ZTMI. (le)’ provided
- ? N,]
that A € (0,A%).
It remains to count the number of distinct solutions of the above type. More
precisely, on the basis of Proposition 7.1.4, there are at least [N/2] subspaces E; =

H W;’ZT%' (Ql/,) cH Wé’z(Ql,,) whose mutual intersections contain only the zero function.
Ty

Put
Ao = min{A,,AY :j € Jy .

For every A € (0,A,), problem (7.9) admits at least 2([N/2] + 1) solutions in H W(l)’z(le)
with mutually symmetric different structure. This concludes the proof. O

If the functions ¥, and , are bounded, the domain Qy, is strongly asymptotically
contractive, and the whole space H Wé’2(Q¢) is compactly embedded in L"(Ql/,) for ev-
ery p € (2,2,), where 2;, = 2(N +2)/N. We refer to [27, 169] for further details. In such a
case, Theorem 7.2.5 follows by using the embedding result proved by N. Garofalo and
E. Lanconelli in [113]. See also I. Schindler and K. Tintarev [229].

We end the section by analyzing problem (7.6) when the nonlinear term f has a
sublinear growth at infinity, thus condition (f;) fails. In this case we assume that the
nonlinearity f € C(R) verifies the following assumptions:

(hy) f(t) =o(|t]) as |t| — 05
(hy) f(&) = o(|t]) as |t| — oo.

The next multiplicity result holds.

Theorem 7.2.6. Let Q be a nonempty T-invariant open subset of G, satisfying condition
(), and let A be a positive parameter. Assume that w € L}(Q)nL*®(Q) with ess info w >
0 and let f € C(R) verify assumptions (h,) and (h,). Finally, suppose that (Cy) holds and
sup,,. HW!2.(0) Y (u) > 0. Then, there exists A* > 0 such that for every A > A* problem (7.6)

admits two nontrivial T-invariant solutions in H Wé’z(Q).

Proof. Since lim,_,o ¥(u)/ [ull> = 0, the energy functional 7, given in (7.7) has a local
minimum at zero. Taking into account that lim,,_,., ¥(u)/ lul> = 0, the functional
Jy is also coercive, bounded from below in H Wé:zT(Q), and satisfies the Palais—Smale
condition. Thus 7, has a global minimum in H Wé:ZT(Q) with negative energy level for
A sufficiently large. Consequently, the Pucci and Serrin Theorem 1 in [212] gives a third
critical point of 7 in HW(l)zzT(Q) for 7. Finally, similar arguments as in the proof of
Theorem 7.2.2 ensure that for A > A* problem (7.6) has at least two nontrivial solutions
in HW3*(Q). O

A more general version of Theorem 7.2.6 can be obtained by arguing as in the
proof of Theorem 9.3.2 in Chapter 9, employing the critical point result given in Theo-
rem 9.3.1. However, Theorem 7.2.6 continues to hold even in presence of a sufficiently
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small nonlinear subcritical perturbation term. Theorem 1.2 of [27], besides other prop-
erties, has already shown this extension, but in the Heisenberg setting.

7.3 Dirichlet problems on strips of the Heisenberg group

In this section we turn back to (7.9) when A = 1. More precisely, we treat

{_A]HNu +u=w(o)f(u) in Qy, (7.10)

u =00n0oQy,
when the nonlinear term f € C(R) verifies:
(k) Forsomeq € (2,2;),

>

If ()l
Cr=sup——— <
e ST
(k) F,.(t) = o(|t|*) as |t| — O, where F, = max{F, 0};
(k3) Fis bounded from below on ]RS and there exists a sequence (t;), ¢ R" such that

F(ty)

lim —X. =

k—00 tl%

>

(ky) f(t)t = 2F(t) forevery t € R;
(ks) There exist a constantv > 2 and k € R such that

f(t)t =vF(t) foreveryt € Rsuch that F(t) > k.

Before stating the main result, let us introduce some preliminaries. Following [27],
we construct a special test function belonging to HWé:zT(Q¢) which will be useful for
the proof of Theorem 7.3.1. Let N > 2and let w ¢ Ll(le) N L*(Qy) be a cylindrically
symmetric nonnegative function as in (7.10). Assume that there exists an open set Q ¢

Qy such that
essf2 infw > 0, (711)
and set
0= J fT+ah
TeU(N)
Since w is cylindrically symmetric,
essinfw = essinfw > 0. (712)
Q o)
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Furthermore, we can find (2, t,) € Q, and R such that
0 <R <2lzl(V2-1), (7.13)
and
Ap={oeH" : 0=(z0), with ||lz] - |z <R, |t - to] <R} c Q. (714)

Of course, Apg € Ag C Qand U(Apg) > O forevery g € (0,1]. Introduceee; : COxCUxR —
R, defined by

2

. 2 R _
&z 51) = E\j<'z'2 el + 5 ) Pt

where z, t, and R > 0 are from (7.13) and (7.14). Set g € (0,1), and consider Vpj € Ej =
1,2
H WO)T:,’} (le) defined by

((1 - max{e;(z, 25, 1), 0}) — (1 - max{e;(z;,2, ), 0}),)

(Zf) = 1
V(2. t) s (7.15)
ifj=2Nandz = (z;,2,) € € x T, as well as
1-max{e;(z;, 23, ), - (1 - max{e;(z3, 2y, t),
Vos(D) = (( {ej(z1,23,1),01), — ( {ej(z3,21,1),0}),) (716)

(1-0)?
><<1 —max{zlz | })
R*2 >0 .

ifj=2Nandz = (z},2,,23) € d x c® x . For every g € (0, 1], we set:

S{, ={(z1, 25 t) € CxOxR: ej(z, 2, t) <0V ej(z, 2, t) < o} if N = 2j,

S’L; = {(zl,zz,t) el xC"IxCTxR:

R) . .

ej(z1,23,t) <0V ej(z3,2,t) <, and |z,| < QE if N # 2j.

Moreover, the follpwing relations hold:
(j1) supp(vy)) = S

() Wojlloo < 15

(3) Vp; =1in§),.

Theorem 7.3.1. Let Q,, ¢ HY be as in (7.3) and let w € LI(QII,) n L°°(Ql/,) be a radially

cylindrically nonnegative function such that (7.11) holds on some nonempty open set Q ¢
le. Finally, let f € C(R) verify (k;)—(ks). Then,
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(i) Problem (7.10) has at least one solution in H Wé’z(Ql/,) localized in
HWH(Qy) = {u € HWG*(Qy) = u(z,0) = u(lz |, |z, 1z, )},

wherez, € CM forallk = 1,..., €.
(it) Iff is also odd, problem (7.10) admits at least [N /2] + 1 solutions in HW&’Z(QI#) with
mutually symmetric different structures.

A key point in the proof of Theorem 7.3.1 is to show the existence of a bounded
Palais—Smale sequence at some mountain pass level. More precisely, we shall use the
following abstract result proved in [219].

Theorem 7.3.2. Let X be a reflexive real Banach space, and let ®,¥ : X — R be two C'
functionals. Set

Jw) = ®(u) -¥Y(u) forallucelX.

Assume that
(i;) @ is homogeneous of degree p > 1 and coercive;
(iy) There exist uy,u, € X such that

max{J(w,),J(u,)} < ¢,
where ¢ = inf,cp max;c (o J(y(¢)) and
T ={y € C([0,1],X) : y(0) = uy and y(1) = up};

(i3) The functional L(u) = Y (u)u — p¥(u) = 0 for every u € X;
(i) L(u) — oo as ¥(u) — oo.
Then the functional ] admits a bounded (PS) sequence at level c.

Proof of Theorem 7.3.1. Let us consider the energy functional 7 : HWé’z(Ql,,) — R de-
fined for everyu € H Wé’z(Ql,,) by

ﬂW=%WV—JM®Hmw. (717
Qy

(i) We shall prove that the restriction of Z to HWé’)ZT(Qw), namely 7, satisfies the as-
sumptions of Theorem 7.3.2, with X = HW;7.(Qy),

@ = Sl e = [woF@ds ueX.
Q
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Clearly, @ and ¥ are smooth, with @ homogeneous of degree 2 and coercive on X. Let
us claim that (i,) holds true. By (k;), we know that |F(¢)| < Cf(|¢| + [t|9), so that

0 < F,(t) < Cp(It] + 1]9). (7.18)
Now, we shall prove that
T > 7l (719)
in some neighborhood of zero in X. Since 7(0) = 0 and
7w > 7,60 = 31l - [ W, (d,
Qy

it is enough to show (7.19) for 7, instead of 7. By (k;), for any € > O there exists §, > 0
such that

O0<F,.(t)< eltl2 for every t, with [t| < §,.
Thus, (7.18) yields the existence of a positive constant M, such that

0<F.(t)<elt+M,t|]? foreveryt e R.
Hence

0< J W(O)F, (Wdp < Wl (ellull3 + M llul)
Qy

2
< Wlloo (llull” + cuM[lull?).

Letus fix { € (4,00)and lete = . The above inequality ensures that

1
e lwlle,

1
7. = Sl - [ wloF, (dy
Qy
1
> Il - ecolWloo Il — cqMIwiloo hul®

2[1 1 q-2
= Jul [5 - ¢ - MWl

provided that [[ull < (5o ("w” ) . This proves the validity of (7.19).

Setp € (0,1) and consider the truncation function u, € HW1 yl(Ql/,) c HW (le)
given by

_ 1 1zl = |zoll [1t] = It }) _
ug(a)—1_0<1 max{ R , R ,0 R 0—(z,t)eQ¢,.
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With the above notation, we have:
() supp(u,) = Ag;

() Mgl < 15

(jg) U, = lin App.

Now, the function F is bounded from below on IRZ; by (k3), and there exists a sequence
(t)x € R* such that

F(t,
lim # = co. (7.20)
k—oo  tp

Then, (j})—(j3) imply that
W(teu,) = j W(G)F(tkug)dy = J W(G)F(tkug)dy
Qy A

=F(t) J w(o)du + J w(o)F(tkug)d,u.
Apr Ap\Agr

> F(t) J w(o)du + inf F(t) J w(o)du.
]R+
Agp © A\Ag

Since u(Ayg) > 0, formulas (7.12) and (7.20) give

Y(t,u,)
lim o
k—o00 [’,%

Consequently,

NIAR
T (txuy) = D(teu,) — V(o) = i

— 6 (tauy) | < O (7.21)

for every k € N sufficiently large. Therefore, condition (i,) is verified taking u; = 0,
u, = tyu, and k large enough. Indeed, (719) and (7.21) give, for some k sufficiently
large,

max{7 (), J (tiup)} =0 < ¢ = ;2{ max J (v(®),

with T = {y € C([0,1], HWy7(Qy)) : y(0) = u; and y(1) = tru,}. Now, (k;) yields that

W (u)u - 2¥(u) = J w(0)[fu - 2F(u)]du = 0,
Qy

i.e., (i3) holds true.
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Finally, we prove (i,). Let (u;), ¢ H W(l)’)ZT(Q,/,) be a sequence such that ¥(i;) — co
as k — oo. Fix k € N and set

Q,={o€Qy : Flu(0) <x} and Q= {oeQy:F(y(0))=x},

where k is given in (k;). Then, since w is nonnegative in Ql,,, it follows that

W) = J w(0)F (u)dp + J w(0)F(u;)du

- +
&, @

< klwly + j W(0)F (uy)dy.

o
Hence
lim j w(0)F (uy,)du = oo. (7.22)
k—o0

A
@

Now, (k,) and (ks) yield

WV (u)uy — 2% () = J w(0) [f (w)uy — 2F (wy) ] du

@

+ J w(0) [f (W )uy — 2F ()| du
o

>(v-2) J w(0o)F(u)du,
@

which, together with (7.22), gives
lim (W' (w )y - 2%¥(yy)) = oo,
k—oo

sincev > 2.
Therefore, an application of Theorem 7.3.2 yields the existence of a bounded se-
quence (uy), in H W(l)”zT(le) such that

Ju) —»c>0 and "jl(uk)"(HWé’ZT)’ -0, (7.23)

as k — oco. We prove now that there exists u,, ¢ HWé’ZT(Ql/,) such that, up to a subse-

quence,

luy — ugll = 0 (7.24)

printed on 2/10/2023 3:36 PMvia . Al use subject to https://ww.ebsco.confterms-of-use



EBSCChost -

7.3 Dirichlet problems on strips of the Heisenberg group =— 169

as k — co. Since HW(l)’)ZT(Ql,,) is reflexive, up to a subsequence, still denoted by (u;)y,

there exists u,, € H Wé:zT(Ql/,) such that, thanks also to Lemma 7.1.2,

U — Uy, weaklyin HWézzT(Ql/)), U > Uy, a.e.0in Qy, (725
U — Uy 0 L(Qy), @ € (2.2), '

as k — oco. Now

(D (W), ug — Ugo) = (T (W), g — Uy ) + J w(0)f (up) (U — Ugo)du (7.26)
Qy

for every k € IN.
Of course, taking into account that (u;); is bounded in HW(I)”ZT(QII,), by (7.23), it
follows that

(T (W), ug —uge) = 0 (7.27)

as k — oco. On the other hand, since w ¢ LI(Q,/,) n LOO(QII,), the Holder inequality and
(k;) imply that

’ J w(0)f (W) (U — U, )dp| < Cy J w(o) (1 + [ug]? )y — uy, |du
Qy Qy

-1
< Cr(Iwllg + IWlloo Nl legge = o lgs

that is, by (7.25),

J W) ()t = )t — O (7.28)
Q

as k — oo. In conclusion, (7.26), (7.27), and (7.28) yield, as k — oo,
g = U I = (U g — Uy +0(1) = (D (), uy —uy,) — 0,

which is (7.24).

As a consequence, 7 (u,) = c and 7' (u,,) = 0, that s, u,, in HWé:ZT(Ql/,) is a non-
trivial critical point of 7. Now, exactly as in the proof of Corollary 7.2.5, the functional
T given in (7.17) is T-invariant. The principle of symmetric criticality, Theorem A.1.5,
ensures thatu,, € H W(I)ZZT(QII,) is a critical point of Zin H Wé’z(Ql,,), i.e., uy, isasolution
localized in H W(l)”zT(le) of problem (7.10) set in H Wé’Z(Q,/,).

(if) Part (i) ensures that the problem (7.10) admits at least one nontrivial solution
in HWé’z(le), localized in the symmetric space HW(l)iyl(Ql,,), and so for N = 1 we are
done.
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Letnow N > 2 and fix j € Jy. Arguing as in part (i), it is possible to prove that
the restriction 79 of the functional 7 to the symmetric space E; verifies assumptions
(i})—(i3) of Theorem 7.3.2. In particular,

; 1
TP = Zuunz, (7.29)

in some neighborhood of zero in E;. Furthermore, 79 verifies also (i). Indeed, by (k3),
the function F is bounded from below on R] and there exists a sequence (t;);, ¢ R"
such that (7.20) holds. Let us consider the symmetric function Voj € E given in (7.15)
and (7.16). Then, since F is even, (j;)—(j3) give

W(tyvy ) = J w(o)F(tv, ])dy jw(a)F(tka,j)dy
Oy s
=F(t) J w(o)du + J W(0)F(ty|v,;l)du
S, SI\S}
> F(t) Jw(o‘)dy +inf F(t) J w(o)du.
. Ry J
A S\S)

Since p(SJé) > 0, then (7.12) and (7.20) imply that

Y(t,v,;
m — e o)) =
k—o00 tl%
Consequently,
Ivgl*
Tty = 6 — 5 W(tvy) | <O (7.30)

for every k € N sufficiently large. Therefore, (i,) is verified taking u; = 0, u, = t;v,,
and k large enough. Indeed, (7.29) and (7.30) yield for some k sufficiently large

) Dgoq, . _ V)
max{7"” (u), J” (tpv,))} =0 < c = 1y1€1ftren[g)1<]j (y®),

with
T ={y € C([0,1],E)) : y(0) = 0and y(1) = t;v,}.

Therefore, Theorem 7.3.2 ensures the existence of a bounded sequence (uk))k ink; such
that 79 (uk ) — ¢ > 0and (79 (uk)llEl_, — 0as k — oo. Thus, arguing as in part
(i), there exists u(j) € E which is a nontrivial critical point of 7 ). Now, since fis
an odd function, the energy functional Z given in (7.17) is even and T ’) -invariant. In
conclusion, Proposition 7.1.4 and Theorem A.1.5 imply that problem (7.10) admits at
least [N/2] + 1 solutions in H W(l)z(Q¢) with mutually symmetric different structures.
The proof is now complete. O
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Theorem 7.3.1 can be applied to the following model problem in Q,, ¢ HY,N > 1:

1 1
-A u+u:2wou3<2+3u2<sin—+1>—cos—>inQ ,
Y (@) u? u? v (7.31)

u=0o0n an/,,

where w € Ll(Ql/,) n L°°(le) is a cylindrically symmetric nonnegative function such
that (7.11) holds on some nonempty open set Q ¢ Q. Indeed, since

1
F(t) = t6<sin 2 + 1> +t* foreveryt e R,

direct computations ensure that all the assumptions of Theorem 7.3.1 are verified; see
Figure 7.5. Consequently, part (ii) of Theorem 7.3.1 implies that problem (7.31) admits at
least [N/2] + 1 solutions in H Wé’2(9¢) with mutually symmetric different structures.

<

Gr(f)
Gr(F)

Figure 7.5: The graphs of the functions F and F' = f.

The above result can be viewed as an extension of the classical Theorem 4.1 proved by
P. Rabier in [219] to problems settled on strip-like domains Q¢ HN.

Comments on Chapter 7
In [62, Theorems 1.1 and 1.2], G. Citti studies the critical semilinear problem

—Agvu + a(o)u = f(o,u) + u% in Q,
u>0inQ, (7.32)
u=0o0noQ,

where Q is a smooth bounded domain of the Heisenberg group H", a ¢ L*(Q), and
f : QxR — R denotes a suitable subcritical continuous function. The main ingredient
in the proof of Theorems 1.1 and 1.2 in [62] is the explicit profile decomposition of the
Palais—Smale sequences d la Lions. The extension to the Heisenberg context is due to
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D.Jerison and J. M. Lee [133]. An interesting open problem is to obtain the results of [62]
for critical problems in strip-like domains Q,, of HY. Certainly, a key point in the new
approach will be played by some local weakly lower semicontinuity properties and
direct minimization arguments; see [189, 190] for related topics.
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Hadamard manifolds

Taci. Su le soglie

del bosco non odo

parole che dici

umane; ma odo

parole piit nuove

che parlano gocciole e foglie
lontane.

Gabriele D’Annunzio
from La pioggia nel pineto

In this chapter, using variational methods, we study the following elliptic problem:
—Agu +u = w(0)[f(u) + Af(w)] in M, @)
uz0in M, ueHUM), !

where A, is the classical Laplace-Beltrami operator on an N-dimensional homoge-
neous Hadamard manifold M, with N > 3. In this context, A is a real parameter,
w : M — Ris a suitable symmetric positive potential, f : R — R is a continuous
function oscillating near the origin or at infinity, and f : R} — R is any continuous
function, with f(0) = 0.

Problem (P,) may be also viewed as a prototype of pattern formation in biology
and is in relationship with the steady state problem for a chemotactic aggregation
model introduced by E. F. Keller and L. A. Segel [137]. Moreover, (P,) also plays an im-
portant role in the study of activator inhibitor systems describing biological pattern
formations, as proposed by A. Gierer and H. Meinhardt in [118]. Problems of this type,
as well as the associated evolution equations, describe super diffusion phenomena.
Such models have been studied by P. G. de Gennes [76] to describe long range van der
Waals interactions in thin films spread on solid surfaces.

Through variational and topological methods, we show that the number of so-
lutions of (P,) is influenced by the value of the real parameter A. More precisely, a
variational construction enforces the use of the principle of symmetric criticality for
nonsmooth Szulkin-type functionals defined on certain symmetric subspaces of the
Sobolev space H;,(M).

The results presented here extend some recent contributions, obtained for equa-
tions driven by the Laplace operator on the Euclidean space [143], and Schrodinger—
Maxwell systems on Hadamard manifolds [91]. See also the results proved in [87, 147,
149], where competition phenomena are investigated for different classes of elliptic
problems.

https://doi.org/10.1515/9783110652017-008
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8.1 Elements of analysis on Riemannian manifolds

In this section we briefly recall some notions from Riemannian geometry needed in the
sequel and then illustrate the functional framework we shall move into. We refer the
reader to the classical sources [18-20, 122, 123] for detailed derivations of the geometric
quantities, their motivations, and further applications.

Let M = (M,g) be an N-dimensional Riemannian manifold, with N > 3; see
Figure 8.1 below. Let g;; be the components of the metric g. Denote by T,.M the tangent
space at 0 € M and by TM = J, 4 Ty M the tangent bundle. Let d, : M x M — Ry
be the usual distance function associated with g. Denote by

Bg(0p,1) = {0 € M : dg(0¢,0) <}

and B_g(ao, r) = {0 € M :d,(0y,0) < r} the open and closed geodesic balls centered at
0y € M and of radius r > 0, respectively.

Figure 8.1: An abstract Riemannian manifold M = (M, g).

If C2°(M) denotes, as is customary, the space of real-valued compactly supported
smooth functions on M, set

12

ol = (j Vool + | |<o|2dag) 81)
M M

for every ¢ € CZ°(M), where V,¢ is the covariant derivative of ¢ and do, is the Rie-
mannian measure on M, related to the Lebesgue measure dx in RY by the formula
dag =+8dx,g= det(gi,-). Put

Voly(Q) - [ do
Q
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for every bounded measurable set QO ¢ M. For any fixed system of local coordinates
(X1, ..., xy), the gradient V, ¢ can be represented by

Io k09
V2p), = — 2 Tk
( 8 )U aXian Y an

where

(%)

P 2\ox o oxg

are the usual Christoffel symbols and g'* are the elements of the inverse matrix of g. In
the last two chapters of the book, Einstein’s summation convention is tacitly adopted.
The Laplace-Beltrami operator A, is the differential operator A,¢ = div(V,¢) whose
local expression is

i 82(p x 0 1 0 km O
)
s =8 \oxox, ~ Tow ) T Vg ox Ve o

The space Hgl(./\/l) is defined to be the completion of CZ°(M), with respect to the
norm (8.1), and it turns out to be a Hilbert space equipped with the inner product

u,vy = J (Vgut, Vov)odog + J uvdog (8.2
M M

for every u, v € Hy(M).

A Riemannian manifold M = (M, g) with a transitive group of isometries is said to
be a Riemannian homogeneous space. An Hadamard manifold is a Riemannian mani-
fold which is complete, simply connected, and with everywhere nonpositive sectional
curvature. The Cartan-Hadamard theorem guarantees that every Hadamard manifold
M is diffeomorphic to RY, N = dim M, in striking contrast to the Meyer theorem,
which states that any complete Riemannian manifold M of strictly positive Ricci cur-
vature is compact. Besides the Euclidean space, there exist other interesting geometric
objects having the structure of an Hadamard manifold. An Hadamard manifold that
is also a homogeneous space is said to be a homogeneous Hadamard manifold.

From now on, we always assume that M = (M, g) is an N-dimensional homoge-
neous Hadamard manifold, with N > 3.

Referring to D. Hoffman and J. Spruck [130], the Sobolev embedding H;(M) —
Lf(M) is continuous but not compact for every g € [2,2°], where, as usual, 2* =
2N /(N -2) denotes the critical Sobolev exponent. In the light of this result, we indicate
by ¢, the positive constant

lull,

c,= sup — <oo,
ueti (Mo} Ul

I - ll, denoting as usual the L¥-norm on M.
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Since the main problem is settled in a noncompact framework, we shall adopt
a group-theoretical approach to identify suitable symmetric subspaces of Hgl(M) for
which the compactness of the embedding in L (M) can be regained, when g € (2,2%).
Denote by Isom, (M) the group of isometries of (M, g) with the natural composition
law and let ¢ be a subgroup of Isom, (M).

We say that u : M — Ris ¢-invariant if u(r(c0)) = u(o) foreveryo e Mandrt € 4,
and set

Fixy(M) = {0 e M :7(0) = o forall 7 € 4}.

The natural action ®y : ¢4 x Hgl(/\/l) - HSI,(M) of the group ¢ on the Sobolev space
H;(M) is defined, as usual, by

T®y u(0) = u(t (o)) forallTe ¥, ue Hsl,(/vl), o€ M. (8.3)
As a next step, denote by
Hg@,g(M) ={ue H;(M) :T®y u=uforallt e ¢}

the subspace of the ¢-invariant functions of H;(M). A recent embedding result d la
Lions due to L. Skrzypczak and C. Tintarev is decisive in our next arguments. We state
it below in a convenient form.

Theorem 8.1.1. Let M = (M, g) be an N-dimensional homogeneous Hadamard mani-
fold, with N > 3. If 4 is a compact connected subgroup of Isomg (M) and Fixg (M) is a
singleton, then the embedding

Hy (M) —— Lf(M)
is compact for any g € (2,2%).

See [232, Theorem 1.3 and Proposition 3.1], as well as [91] for related results.

We conclude this section by constructing a special function which will be useful
in the proof of our main theorems. Let a, b be two positive numbers, with a < b. Define
the annulus domain Aﬁ(oo) centered at o, € M as

Alog)={oeM:b-a< d,(09,0) < a+ b}.
Moreover, it is useful to recall here that for every fixed o, € M, the eikonal equation
|Vedq (00, )| =1 (8.4)
is satisfied a. e. in M \ {0,}. Now, take r, p, with 0 < r < p, and put

0 ifo e M\ A(ay),
Vp’,(O') = 1 p lfU € Af/z(o-o)’ (8.5)
LG DDLY if g € A () \ A ,(T0)

for every o € M; see Figure 8.2 for details.
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'\
A 5(o0) T oy
r/2 a0 _—=\® \p+n/2,7
L 2 “/)—1'/2
4

M\ Al(00)

Figure 8.2: The annulus-type domain of the test function v, ..

Itis clear that supp Vpr C A’,) (o) and ||vp,,||OO = 1. By the definition of Vor and exploiting
also (8.4), we have

2 2 2
Mol = [ Sgupldog+ [ v, o

AL (0p) Al (o)
= J Ingp’,Iszg + J |vp,,|2d0g
A2 () A2 (00)
+ J Ingp,,Izdag + J |vp,,|2d0g
A (09)\A7,(05) AL (Go)\AL,(05)
< Vol, (A% (ay)) + f—z J |Vg(r — |dg (09, 0) —P|)|2d‘7g
AL (Go)\AY,(05)

4 2
= Volg (A7 (ay)) + 3 J |Vg|dg (09, 0) - p|| dog
A7 (G)\A ,(00)

4
= Voly (A0 (0p)) + r—2Volg(A’,’(00) \ 47 ,(09))
4
< (1 N r_2>vO1g(A¢(ao)).
For any t > 0, we define the function

W=ty (8.6)

where Vor is given in (8.5). It is clear that v’? " > 0 in M. Moreover, if ¢ is a compact,
connected subgroup of Isomg (M), with Fix, (M) = {0y}, then v’t’ T e Hglg’g(/\/l). Finally,
Ve llo = t and

M < (1+ 5 Vol (azcoo)e (57
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We also introduce the truncation function ¢, : R; — R defined as

¢y (6) = min{n, t} (8.8)

for any t > 0, where 7 is the positive constant given in assumption (8.12). Note that o
is a continuous function in Ry.

8.2 An auxiliary elliptic problem on manifolds

In order to solve (P,), in this section we introduce the auxiliary equation

{—Agu +u=w()f(u) inM, (8.9)

u>0 inM, ue H;,(M).

Here, we assume that f : R — R is a continuous function satisfying the following

conditions:
f(0)=0; (8.10)
There exists M > O such that |[f(t)| < M for every t € R(; (8.11)
There are 6, n, with0 < 6 < n, such that f(t) <O for any t € [8,1]. (8.12)

In the sequel, taking into account that (8.10) holds, we extend the function f on the

whole real line by taking f(¢t) = O for every ¢ < 0. For the potential w, we assume

(W) w: M — Ris in L'(M) n L2(M); it is positive, continuous, and radially symmetric
with respect to oy € M, i. e., there exists ) : ]Rg — R such that

w(0) = Y(dg(0y,0)) forevery o € M. (8.13)

In this section we prove the existence of a nonnegative solution for (8.9). Since equa-
tion (8.9) is variational, let us introduce the associated energy functional &,
Hy(M) — R defined by

Eaux(®) = 1l - | WP @) do, (8.14)
M

where F(t) = fé f(s)dsforanyt € R.

Due to the embedding properties of the space H;(M) into the Lebesgue spaces,
it is easy to see that £, is well defined. Indeed, the mean value theorem, (8.11), the
Holder inequality, and (w) yield

J w(0)|F(w)|dog < MIwl,llul, < 0o
M
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for every u ¢ HSI,(M). Moreover, standard arguments show that &,,, is of class
C'(Hg(M)).

Now, according to the notations of Section 8.1, if ¢ is a compact connected sub-
group of Isom, (M) such that Fixg (M) = {0y}, we denote by

Hy o(M) = {u € Hy(M) : 1(u) = uforall T € 4}

the subspace of ¥-invariant functions of Hgl(/\/l) and by €ﬁx the restriction of &, to
Hy ,(M).

In order to find nonnegative solutions of (8.9), we look for nonnegative critical
points of the functional £2 . At this purpose, we introduce the set W, (M) defined as
follows:

Wy(M) = {u € Hy(M) : lullg <11},
and also set
W,/ (M) = Wy(M) 0 Hy (M),

where 7 is the positive parameter given in (8.12); see Figure 8.3 below.

Figure 8.3: The subset W,;g (M).

The main result of the section is given in the following theorem.

Theorem 8.2.1. Let M = (M,g) be a homogeneous Hadamard manifold of dimen-

sion N > 3 and let 4 be a compact connected subgroup of Isomg(M) such that

Fixy (M) = {0o}. Furthermore, let f : R} — R be a continuous function satisfying

conditions (8.10)—(8.12) and let w : M — R verify condition (w). Then,

@) 5;?” is bounded from below on Wf (M), with infimum attained at some uf €
W, (M);

(ii) uf € [0,68] a.e. M, where § > 0 is given in (8.12);

(iii) uf is a nonnegative solution of (8.9).
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Proof. The proofis similar to that of [91]; for completeness, we provide its main steps.

(i) Clearly, the set an (M) is convex. Moreover, Wff (M) is closed in Hgg,g(/\/l).
Indeed, if (ufk),< in Wf (M) is such that ufk — ufoo in H(;,g(/\/l) as k — oo, then we
claim that ufoo € Wff (M). Of course, ufoo € Hglq’g(./\/l). Furthermore, by assumption
(uzk)k is bounded in L®(M). Since L®(M) is the dual space of L'(M), which is a

Y 2 u? inL®(M) as k — oco. Hence,

separable Banach space, one has u, ; oo

<

12 i, 2 el

that is, uioo € Wff (M), which proves the claim.
Consequently, since Wff (M) is convex and closed in Hglg g(M), we get that
W,” (M) is weakly closed in Hy, ,(M).

Now, let us prove that £7 is sequentially weakly lower semicontinuous in

Hclﬁ g(M). This follows at once if we prove that the functional
W) = J w(o)F(u)da,
M

is sequentially weakly continuous in H(lg,g(/\/l). Otherwise, there exists (u;); in
Hglg,g(M) which converges weakly to some u,, and such that, for every k € N,

¥ () — ¥(u)| 2 &,

for some appropriate g, > 0. Clearly, (u;); converges strongly to u,, in L (M) for all
© € (2,2") by Theorem 8.1.1. Now, fix p € (2,2"). Then the mean value theorem, the
Holder inequality, (8.11), and (w), together with the above inequality, give that

0 <o <M | WOl teoldog < MWl - o]
M

©>

thanks to (w), since 1 < p’ < 2. But the right-hand side tends to zero as k — co, which
is the desired contradiction.

Moreover, (8.11) and the definition of F yield that the functional éfflx is bounded
from below on W,Cf (M). Indeed,

Eane () = %Ilull2 - J w(0)F(u) do,
M

> - [ wo)F W) dog > -M | wioluld,
M
2 -nMilwll;

foranyu € Wf(/\/l).

EBSCChost - printed on 2/10/2023 3:36 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



EBSCChost -

8.2 An auxiliary elliptic problem on manifolds =— 181

aux

Let us denote by m,lg the infimum of £7_ on Wg(/\/l), that is,

m? = ot £2 () > -co. (8.15)
n

It is easily seen that for every k € IN there exists u;fk € W,(f (M) such that

G _ g 1
m, aux(uﬂk) my + . (8.16)

Also, since uffk € Wf (M) and thanks to (8.11), we get

1 2
Sl = [ WP i )dor + £y (ui)
M

1
<nMlwl, + £ (u fk) <nMiwl; + mf T

<nMiwly + mn +1

for every k € N. Thus,

sup||uffk|| <k, wherek = \/Z(r]MIIWII1 +m7 +1).
k

Then, the sequence (ufk)k is bounded in Hglg)g(/\/l) and so, up to a subsequence, still
denoted by (uik)k,
uy =y in Wy (M) (8.17)
as k — oo for some ung € Wg(/\/t)
Now, let us show that un is the minimum of £7_ in Wf (M) we are looking for. Of
course, u;‘f € W, (M), since W,f (M) is weakly closed in Hglg gM). Thus, by (8.15),
£

aux

() 2m. (8.18)

On the other hand, thanks to (8.16), (8.17), and the sequential weak lower semiconti-

nuity of £7_, we obtain that

G 9
mrl > hkmmeaux( D>l (u 0 )

Therefore, (8.18) yields that €aux(u(¢) = which, together with (8.15), concludes the
proof of statement (i); see Figure 8.4.
(i) Let 8 be as in (8.12) and define

Uy)={o e M :uy ¢[0,6]}.
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Figure 8.4: The minimization of £, on an (M).

Assume by contradiction that Volg(U (wff )) > 0.Let ¢ : R — R be the function given
by

¢(t) = min{t,, 6},

where t, = max({t, 0}. Also, set uf =¢o uf, that is,

5 if uf (0) > 6,
uf(a) = uf(o) ifo < uf(a) <,
0 if uf(a) <0

fora.e.o € M.
Since ¢ is a Lipschitz function and ¢(0) = 0, by [122, Proposition 2.5, p. 24], it
follows that uf € H;(M). We claim that uf € H}%g(/\/l). Indeed,

T®y Uy (0) = U, (T7(0)) = (pouy )(77(0))
= (uy (t7(0))) = P(uy ()

= u, (0)

for all T € 4. Moreover, 0 < qu < 6 a.e. M. Consequently, urlg € Wrz’ since § < n by
assumption (8.12).
We introduce the sets

Ul(uf) ={oceM: uf(a) <0} and Uz(uf) ={oeM: uf(o) > 6}.
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Thus, Uu)) = Uy(uy)) U Up(uy) ) and u; = u a.e.in M\ U(,)), while u; = Oa.e.in

Ul(u,(f) and uff =da.e.in Uz(u,(f). Thus,
@ g gy 1., @2 92
(uq )_ gaux(uq ) = E(Hun “ - "url N

o )
- j W) (F(u) - F(u))do

aux

M
1 %
-2 j (v |do,
U@?) (8.19)
1 @2 @2
3 | Qo - Py
Uy)
- j WO)(F(u!) - F(u))do,.
Uy)
Moreover,
@2 @2 @2
J (luy " = |y [ )dg = - J luy | dog
Uuy) Up(u)
, 12 (8.20)
+ (6"~ [uy, | )dog < 0.
Uz(”?)
Since f(t) = 0 for every t < 0 by definition, we get
(8.21)

w(o)(F(uy) - F(uy ))dog = 0.
U](u;'lq)
Thanks to the mean value theorem, for a.e. o € Uz(uf) there exists a number 6(0) €
[8,u (0)] < [8,n] such that
F(u; (0)) - F(u (0)) = F(8) ~ F(u (0)) = £(6(0))(8 - 1 (0))

Thus, taking into account (8.12) and the definition of Uz(u,lg), we have

j w(a)(F(u,‘?) —F(uf))dag = J w(o)f (0)(6 - uf)dog >0. (8.22)
Uw?) Uw?)

Hence, by (8.21) and (8.22), we get that

J WO)(F(u?) - F(u))dog > 0.

U(u,‘;”)
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As a consequence, (8.19) and (8.20) yield

9
gaux

(u7) = Emmx (1) < 0. (8.23)

On the other hand, it is apparent that
fore, (8.23) gives

Szx(uf) > S;ix(uf), since ung € Wf(M). There-

(uy) =x

9
n aux(u )

9
2 n

aux

Since all the integrals on the right-hand side of (8.19) are nonpositive, it is easy to see
that every integral in (8.19) should be zero. In particular,

J WO)(F(u?) - F(u))dog = 0. (8.24)
M

Also, note that the integrals on the right-hand side of (8.20) are both nonpositive.
Thus, (8.24) gives

j [ 'do - j (!} - 8)dog = o.

Ur () Uy )

The definitions of Ul(ung) and Uz(uf) provide Volg(Ul(ung)) = Volg(Uz(ung)) = 0, that
is, Volg(U(uf)) = 0. This is impossible and proves (ii).
(iii) We divide the proof in two steps.

Step 1. (€, Uy ) u— ;) > 0 for every u € W, (M).
Let "an be the indicator function of the set W,(M), i.e.,

0 ifueW, (M),

Y, 10 :{ oo ifu ¢ Wy(M).

The functional ],I : HSI,(M) — R U {oo}, given by

]q =Caux T ¢Wn>

is of Szulkin's type, since €, is of class C'(Hy(M)) and ¥y, is convex, lower semi-
continuous, and proper, as W, (M) is closed and convex in H;(M). Now, Wf M) =
W, (M) N Hy (M), so that the restriction of Py, to H, (M) is precisely the indicator
function ll’w,;ﬁ of the set W:f (M), i.e.,

0 ifue Wf(M),

Ywy W) = { co ifu¢ W) (M.
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By (i), the function u,l is a minimum of é‘(ﬁx in Wg(/\/l). Hence, uf a local minimum

of the Szulkin functional j,l : Hg gM) = RuU{co} defined by
g g
jn = Equx * lpr'
Proposition A.2.1 yields that uf is a critical point of j,lg in ng,g(/\/t), that is,

0 € (Equ) (g )+ Ayyr () 0 (Hig (M),

where 0y« stands for the subdifferential of the convex function ¥«
In order to apply the Palais principle recalled in Theorem A.2.2, the functionals
Equx and l’[)Wn need to be ¢¥-invariant. Let us prove that &, is ¥-invariant. To show

this, letu € H;(M) and 7 € ¢ be fixed. Since T € ¢ is an isometry, on account of (8.3),
we get the chain rule as follows:

Vo (T @ 1)(0) = DT,14)Vou(t ' (0)), (8.25)

fora.e. 0 € M, where DT1(g) : Ty (M) — T,(M) denotes the differential of 7 € ¢
at the point 7Y0). Setting y = 77Y0), it follows that

Ir @y ul? = J |V, (7 @y w)(0)|dag + J (7 &y w)(0)| da

M M

J|Vgu T (a) 1(0yd0g + J|u(‘r"l(0))|2dag (8.26)
M M

J|V u(y)| dog(y) + J|u(y)| dog(y)

M
= ul’,

where we have made use of (8.25) and of the fact that the map D71, is inner product
preserving.

Moreover, since the weight w is radially symmetric with respect to the point o €
M, thanks to (8.13), fora.e. 0 € M and 7 € ¢, we have

w(7(0)) = P(dg(00, 7(0))) = ¥(dg(7(09), 7(0))) = P(dg (0, 9) = W(0),

and consequently,

(t®g u)(0)
jw(o)< j f(t)dt)
0

M

@)
w(o)( j f(t)dt)dag

0

)
)

w(y)( j f(t)dt)dog(w.
0
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Therefore, recalling (8.26), we obtain that for every t € ¢ and u € H;,(M),

1 (e, u)(0)
Eaun(T @ 1) = 5T 8 ul” - | w(a)( | f(t)dt)dog = EpunW),
M 0

which proves the claim.
Moreover, due to the fact that the set W, (M) is ¢-invariant, the functional l/)Wﬂ is

¢-invariant as well. Since Hglg’g(/\/t) is exactly the closed subspace of the ¥-symmetric
points of H;(M), from Theorem A.2.2 we obtain

0 € &) + 0y () in (Hy(M))',
Consequently, for every u € W, (M), we have
(Eaux ) )t =) = (a0 o =10 ) + oy (W) = Py, () = 0,
which is exactly what is claimed in Step 1.

Step 2. uf is a solution of (8.9), that is,

{(U;‘f,fp) = JM W(a)f(ungyp do, foranyg e H;(M),
u; € Hy(M).

Step 1 ensures that

(uf, u- uf) - J w(o)f(uf)(u - uf)dag >0 (8.27)
M

for every u € W, (M). Let us define the truncation function ¢ : R — R given by
¢(t) = sgn(t) min(|¢|,n) for every t € R.

Fix £ > 0 and ¢ € Hg(M) arbitrarily; see Figure 8.5.

Figure 8.5: The truncation function ¢.
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Since ¢ is Lipschitz continuous, Up = ¢o (ung +&@p) belongs to H;,(M), see E. Hebey
[122, Proposition 2.5, p. 24]. Set

{uf tep<-nl={oceM: uf(a) +e9(0) < -n},

{|qu +epl<nt={oeM: |ung(0) +ep(0)| < n},
{n< uf tepl={oeM:n< uf(o) +ep(0)}.
The explicit expression of ug is
-n, ifoe {uf +&p < -n},
up(0) = uf(o) +ep(o), ifoe{-nc< uf +ep <nl,
n, ifoe{nsuf+e<p}.
Therefore, up € Wy(M). Taking u = ug as a test function in (8.27), we easily have

0<- J {IVuf|2+uf(n+uf) —w(a)f(uf)(n+uf)}dag

{w? +ep<-n}

iy J {(Vu,(f, V), + uf(p - w(a)f(u:f)(p}dtfg
(I +egl<n}
@2 12 17 [¢ <
B J (Vi) |” =y (n-uy) ) + w(o)f (uy )(n - u;) )}do,.
{n=u;? +ep}

Hence, it follows that
8{<uf,<p> - J w(o)f(uif)fpdog}
M

> J (Vung,VqJ)gdUg
{uf +ep<-nuinsuy? +ep}
2
N j i do,
U +ep<-niuin<u? +ep}

- J {w(o)f(uff) - uf}(n + uf +£p)do,

{uf +ep<-n}
9 < 9
- J w()f (u, ) —uy }-n +uy, +ep)do,
{n=u;? +ep}
> I (vu? Vo) do
= n’ g8
{uf +ep<-mjuinsuy +ep}

- J {w(o)f(uf) - u:f}(n + u,(f +£@)dog

{w? +ep<-n}
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- J {w(o)f(uf) - uf}(—n + uf +&p)dog.

{n=u +ep)

Since uf € [0,8] c [-n,n] a.e. in M, we have
WO (u ) - uy o +uy +ep)da,
{uf‘f+szp<—n}

<-€ J [Mw(o) + uf](p(o)dog

{u? +ep<-—n}
and
J {W(o)f(uf) - uff}(—rl + uf +ep)dog < eM j w(0)pdoy.
{r]guff +e@} {r[suff +e@}
Using the above estimates and dividing by € > 0, we obtain
@ @ @
(U ) - J w(0)f (u, )pdo, > J (Vu, , Vo) dog
M {7 rep<—niuinsuy +ep}

+ J [Mw(o) + u,lg](p(o)dag

) +ep<-n}

-M J w(0)<pd0g.

{n=uy +eq}
Now, taking into account that uf € [0,6] a.e. in M and § < n by (8.12), we get
Volg({uf +ep<-n}) -0 and Vol ({n< uf +ep}) -0

as € — 0". Consequently, the above inequality reduces to

(Vu;l@,V(p) - J w(a)f(u;lq)(pdag > 0.
M

Replacing ¢ by —¢, we obtain the reverse inequality. Therefore, uf is a solution

of (8.9). This completes the proof of Step 2 and of the theorem. O

8.3 Competition phenomena for elliptic equations

Let us turn back to (P,) and study the number and the behavior of its solutions, when
Ais areal parameter, f : R — R is a continuous function oscillating near the origin
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or at infinity, and f : ]Rg — R is any continuous function, with f(0) = 0. We again
assume that the potential w : M — R satisfies condition (w) as before. The analy-
sis is based on variational and topological techniques in addition to the preliminary
results presented in Sections 8.1 and 8.2. The main theorems of the section cover two
distinct cases, that is, when the nonlinearity f oscillates near the origin or at infinity,
respectively.

Oscillation near the origin
In this case we assume the following conditions on f:

feC(RY):; (8.28)
There is (s;); in R", with klim Sk = 0and f(sy) < 0forany k € N; (8.29)
—00
—o00 < liminf F® < limsup F® = 00. (8.30)
t—0* 12 t—0* 2

Theorem 8.3.1. Let M = (M, g) be a homogeneous Hadamard manifold of dimension
N > 3 and let 4 be a compact connected subgroup of Isomg (M) such that Fixg (M) =
{oo}. Let f : R§ — R be a function verifying (8.28)—(8.29) and w : M — R a potential
satisfying (w). The following facts hold:

(i) IfA = O there exists a sequence w?:°

ox & € H;(M) of distinct ¢-symmetric solutions
of (Py) such that
; G0 _ 1 @0 _
Jim gl = lim ugy |, = O- (831)

(i) Iffe C(]Rg), with f(0) = O, then for every j € N there exists /l]9 > O such that (P,) has
atleastj distinct 4-symmetric solutions in Hgl, (M) whenever A € [-A°, /119]. Moreover,
denoted by (uf;")’;zl C H;(M) the j distinct 4-symmetric solutions of (P,), then

lugM<1/i and |ugi|, <1/i foreveryi=1,....j, (8.32)

provided that A € [—/1]9,/1]9 1.

Proof. Since the nonlinear terms f and f are continuous, on account of (8.29), there
are positive real sequences, (8;)r> M)k, and (A, ), such that

lim 6, = lim 1, = 0; (8.33)
k—o0 k—oo
for every k € N, one has 1,1 < 8y < S, <1 <land (8.34)
f(t) + Af(t) < O for every t € [6;, 1] and A € [—Ay, Ay ]. (8.35)

Bearing in mind the notation given in (8.8), let us consider the real functions fi, f; :
R{ — R given by

i) = f(y, (0) and £(8) = (b, (8)) (8.36)
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for every t € R and k € N, where ¢y, is defined in (8.8). Now, f;(0) = f;(0) = O for
every k € N. Indeed, f(0) = 0 by assumption, and (8.29) implies that also f(0) = 0.
Thus, for every k € N, we extend continuously the functions f; and f; to the whole
real line, taking f; (t) = f;(t) = 0 for every t < 0. Hence, for every k € IN, the explicit
expressions of f; and f; are

fl)  ift > ny, fq)  ift > nge
fi®=1f@t) ifo<t<m, and f)=ft) ifo<t<n,
0 ift <0, 0 ift <0,

see Figure 8.6 below.

Fm) +---
Gr(fr)

Fmmm

Figure 8.6: The truncation function f;.

Fixk e Nand A € [-A, A]. Let f ) : R — R be the function defined by

t
Fa® =fil®) +Af(6) and  Fi(t) = J Fia(s)ds (8.37)
0

forall t € R. Let us put for simplicity

Eaw) = %nun2 - j w(0)F (u) do, (8.38)
M

forallu ¢ H;(M), cf. (8.14). Clearly, &, is the energy functional associated to (8.9),
when f = f; ;. The function f, ) verifies all the assumptions of Theorem 8.2.1.

Hence, as a consequence of Theorem 8.2.1, there exists a ¢-symmetric function
uz,’(" € WZ (M) such that

min 5@(11):5@(140‘?’;’?) and uogi,fe[o,(sk] a.e.in M, (8.39)

4
uew,? (M)
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where the functional Eff - Hy ¢M) — Ris given by
1
EHW = P’ - | wioIFi doy, (8.40)
M

and uf;{" is a nonnegative solution of

{—Agu +u=wO)fi (W) inM, (8.41)

uz0in M, ue H;(M).

The definition of qbn , (8.37), and the fact that u < 6, < N a.e.in M by (8.34)
and (8.39) yield

Fia(ug?) = £(y, (ug ) + Af(y, (g )
f(uok)+/1f(uok) a.e.in M.

Thus, the above relation ensures that Uy ,’(A is a nonnegative solution not only of (8.41)
but also of (Py).

(i;) Assume A = 0. We have to prove that there are infinitely many distinct elements in

the sequence (uo i )k such that (8.31) holds. In order to see this, we first claim that
Sko(uok ) <0 forevery k e N. (8.42)

The right-hand side of (8.30) implies the existence of some ¢, > 0 and ¢, € (0,1,) such
that

F(t) > - €0t2 for every t € (0,¢,). (8.43)

Set 0 < r < p and choose L, > 0 so large that

o (1) M)

inf oeh’ (0,) w(o) r? VOlg(Ae(OO))
where A?(0,) is the annulus type domain given by
A(gp) ={o € M : p—1<de(00,0) <p+T};s

see Figure 8.7.
Moreover, taking into account the right-hand side of (8.30), there is a sequence
(t)x in (0, ¢p) such that lim;_,, t, = O and

F(ty) > Loty (8.45)

for k € N. Since lim;_,., 6; = 0, we choose a subsequence of (§; ), still denoted by
(61)x> such that

te < 6; (8.46)

for every k € IN.
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4 \\/‘o—
,’\\P‘T Y
~ - )
Ss . '
w‘\ _ Se” d (0-07‘\0-)
\__,f’ (o)) ;
- pxd_/r y
\ ’
< ,
e o’
~ Al(o0)

Figure 8.7: The annulus type domain A? ().

Ly

Af(00) \ Ay 5(00)

[ S W
= E e e — e ————

M\ Alp)

A7 5(00)

L

Figure 8.8: The truncation function ufk".

Now, consider the ¢-invariant function defined in (8.6) with s = ¢, that is,

0 if o e M\ AL (0y),
W) =1 & if o € A7 ,(0p), (8.47)
%v—@w@m—m if 0 € A7(00) \ 47,(00),

for every 0 € M; see Figure 8.8. Then, u € H%g(/\/t) and ||u oo = te < 6 < Mi
by (8.30) and (8.46). Hence, utk" € Wfi(/\/l) and 0 < tk <t s O < M a.e.in M.

Consequently,
uf;’(a) u ’(a) uy '(a)
[ ot [ o= | foa
0 0 0

for a. e. 0 € M. Thus, by (8.7), for every k € N we have

&) = 34T - J W(O)Fio(f)) dog

WP | wiorda,

,/2(00)
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_ j W(O)F( & )do,

A (0o)\A (05
1 2
< {(5 + ﬁ)VOIg(A/;(O-O))

—LOVolg(A/f(ao)) inf w(0)+€OIIW||1}tk,

oeA? y(00)

thanks to (8.43), (8.45), and using the fact that u’t’k’r < N < Ny, due to (), being de-
creasing by (8.29). Then by (8.44), we get that

glfo(ult’;f) <0 foreveryk e N.

Then, using also (8.39), we obtain for all k € N,

gO)_

glfo(“o,k min & o) < & ol pr) <0, (8.48)

eW“’(M)

which proves (8.42). Inequality (8.48) also guarantees that uf,’(o #0in M, as E,Z’fo(o) =0.
Now, we claim that

hm & (ufko) 0. (8.49)

Indeed, for k € N, the definition of F; ,, the fact that F}(0) = 0, (8.39), (8.34), and the
mean value theorem give

0,20 > - j W(O)F (4 0)do,
M
- J w(0)F(ugy) do,

M (8.50)

> —tn%gx If(0)| J W(a)|uogi,’<0|d0g
M

> — t 6.
> trgl[g)lcllf( )| 1wl 8¢

Since lim;_,, 6; = 0 by (8.33), the above inequality and (8.48) lead to (8.49), and so
the claim is proved. Due to (8.36) and (8.39), we notice that

E,fo(uogi;{o) = 51%(%%’(0) for every k € N.

Combining the above relation with (8.42) and (8.49), we deduce that the sequence
(uogi,’?) « contains infinitely many distinct elements, that is, (P;) has infinitely many dis-
tinct ¢-symmetric solutions.

Finally, it remains to prove relation (8.31). Since ||ug’0 loo < O fork e N sufﬁciently

large by (8.39), and lim, _,, 6; = 0, we easily get that lim,_, ||u0 h ||
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For the latter limit in (8.31), note that

1 (7R 2 (72
SN < [ woIFio(ug)do
M
= J w(o)Fk(uOk )dog (8.51)
M
< max If (O] Iwll; 8

thanks to (8.28), (8.39), and (8.42).
Thus, by (8.33), inequality (8.51) yields

Jim g = 0
—00

which concludes the proof of (i;).

(i,) It remains to prove that for any j € IN equation (P,) admits at least j distinct solu-
tions, namely (ug;" )’1::1 cH ;(M), which verify (8.32), provided that A is suitably small.

Fix j € IN. Let (9;), be a real sequence such that 9, < 0 and lim;_,, 9, = 0. Up to
a subsequence, still denoted by (9;);, we may assume that for all k € N,

'9k < Eko(u()k ) < gk O(Ut ) < l9k+1, (8.52)

where the function u " is given in (8.47) and

1 1
6, < = min{l, } (8.53)
Kk 2klwil;(max,e (o) [f (O] + max,c(o. IF(E)])

For every k € N, set

I §
10
Iwlly(maxepo.q If (O] +1)

EX W% -9
and A/ = k0 0k , ) (8.54)
[wlly(max;e(o,q) [f(E)] + 1)

Define

A} = min {1 A LAY
iefl,...j}

Clearly, /t]p is positive on account of (8.52) and (8.54).
From now on we fixi € {1,...,j}and A € [—AQ,A)Q]. We claim that

9y < 5,%,1(uff;f) < it (8.55)
Indeed, by (8.39), the definition of A, and (8.34), it follows that

4.1

Eug) < ERW) = LN = A | wlo) Fe(f)dog < 8. (8.56)

L—
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On the other hand, since ug”l € Wg(/\/t), bearing in mind the definition of }l and
recalling that & 0(uO X %)= miny ey pq Ex () by (8.48), we obtain
0\, f X

5kA(“ogkA) 51}/((“({)41?) J W(O)Fk(uogk}l) dog

=& J w(0) Fi(u dog (8.57)
M
> l9k,
on account of (8.34).
Thus, by (8.56) and (8.57), the claim (8.55) is verified. Hence in particular,
G GA G A G2 @A
Enlugy) < 6‘2,1(1102 )< <& 1Jt(”0; ) <& A(“o, ) (8.58)
forallA e [- }lo,}lo] Clearly, € W2 (M), so that
Sk’o(uOk )= (u M) foreveryi e {1,...,j}. (8.59)
Therefore, (8.58) and (8.59) yield
51/1(“01 ) < 51/1(“0%5}‘) 51/1(“?;/11) < 51A(”0g;}l) (8.60)

for every A € [—/19,/1]9].

Inequalities given in (8.60) ensure that (u )1 e H;(M) are j distinct ¥-sym-
metric solutions of (P).

It remains to show that (8.32) holds. It is clear that (8.39) and (8.53) give

||u || < 6; <—

for everyi € {1,...,j} and A € [-A?, /1]9]. In order to prove the second relation in (8.32),
let us start by observing that

ey = g <9y <0 (8.61)

foreveryi e {1,...,j}andA € [-A2, /1]9]. Due to (8.61), thanks to the mean value theorem,
it follows that

S < [ weoFi(ug)dog
M
J w(o)F;( ”o: )dog + A J w(o) F; (uogl’l)d(fg (8.62)
M M
<L
212

since A < /1]9 < min{l, A;} and thanks to (8.34), (8.39), and (8.53). The proof is now
complete. O
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A model for f in Theorem 8.3.1 is given by

Vi3 +sinVE) if ¢ >0,

0 ift<o, (863)

£t) = {

and whose graph is given in Figure 8.9. Note that f is continuous in Rj and

%t\/f+2(2\/?sin VE+(2-t)cos Vi) if t>0,

F(t)z{o if t<0.

Gr(f)

Figure 8.9: The local behavior of f in (8.63) at zero.

Oscillation at infinity
This subsection is devoted to the study of (P;) when f oscillates at infinity. In order
to prove Theorem 8.3.2 below, we follow more or less the techniques of the previous
oscillatory case at 0. However, for completeness, we give all the details.

Precisely, we prove the main result under the following assumptions on the func-
tion f:

feC(R]) and f(0)=0; (8.64)

Thereis (), ¢ RY, with klim s = coand f(s;) < O for every k € IN; (8.65)

—00 < liminf F® < lim sup F® = 00. (8.66)
t—oo t2 t—o00 tz

In this setting, the multiplicity result for (P,) is:

Theorem 8.3.2. Let M = (M,g) be a homogeneous Hadamard manifold of dimen-
sion N > 3 and take ¢ to be a compact connected subgroup of Isomg(M) such that
Fixy (M) = {0y} Let f : R§ — R be a function verifying (8.64)—(8.66) and w : M — R
is a potential satisfying (w). Then, the next facts hold:
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(j1) IfA = 0, there exists a sequence (uog;’(,)()k C HSI,(M) of distinct 4-symmetric solutions
of (Py) such that

kli_g)lo ||ui‘i”(,)(||00 =0. (8.67)

Gy) If f e C(IRS), with f(0) = O, for everyj € N there exists /\]90 > 0 such that for all

G

Ae [—Afo,)l]‘?o] equation (Py) has at least j distinct 4-symmetric solutions (uy; )’i:1

in H;(M) such that
||u:‘i’}|| >i-1 foreveryi=1,...,]j. (8.68)

Proof. The left-hand side of (8.66) ensures that there exist £, > 0 and ¢,, > 0 such
that

F(t) > —t’ootz for every t € (G, 00). (8.69)

Set 0 < g < p and choose L, > 0 so large that

Lm>;[<l+£>+€ & (8.70)

infyepp (00 WO) L\2 7 02) " " Voly(4h(0p)) I

where Ag(ao) is the usual annulus type domain. Taking into account the right-hand
side of (8.66), there is a sequence (f);, ¢ R" such that lim;_,, t;, = co and

F(ty) > Loty fork e N. (8.71)

Since limy_, o, S = 0o, by (8.65), there is a subsequence (s, )i Of (si); such that ; <
Sm, for every k € N. By (8.65) and the continuity of f and f, there are positive real
sequences (6, )k, (M), and (A;), such that

klim 6 = klim N = 003 (8.72)
for every k € N it results § <'s,, <1y < 64y and (8.73)
ft) + Af(t) < O for every t € [6, ;) and A € [-A, A ]. (8.74)

Arguing as in the proof of Theorem 8.3.1, we define f;, f; : R{ — R given for every
k € N by

fi® =f(¢y, (1) and  fi(t) = f(¢,, (). (8.75)
Clearly, £, (0) = f;(0) = O for every k € IN, since f(0) = f(0) = 0 by assumptions (8.28)

and (j,). Thus, for every k € N we extend continuously the functions f; and f; to the
whole real line, putting f; () = f;(t) = O for every t < O.
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Fix k € Nand A € [-A;, A;]. Define f; ) : R§ — R by

t
Fal® =fu®) +Af () and F(t) = j Fa(s)ds. (8.76)
0

Also, in what follows we denote by S,f , the functional defined in (8.40), with now
Fy ) given in (8.76). Cleatly, &, is the energy functional associated with (8.9), where
f = fx- The function f} , verifies all the assumptions of Theorem 8.2.1. Hence, Theo-
rem 8.2.1 yields the existence of a ¥-symmetric function uZ{}( in Wfi (M) such that

G GA .
min & ,(u) =& , €[0,6,] a.e.in M, 8.77
uEW‘q(M) k/‘( )= k ( ook) ook ( k] ( )
and so ui”}( is a nonnegative solution of

{ —Agu +u =w(O)f i (1) in M, (8.78)

u=0 inM, ueHyM).

The definition of ¢, , (8.76), and the fact that uZ’j}( < 6, < N a.e. in M by (8.73)
and (8.77) yield

FiaZh) = F(ey, ZH)) + Af(y, uZA)) = FuZ) + AF(uZ)

a.e. in M. Thus, the above relation and (8.77) ensure that ufi”}( is a nonnegative solu-
tion not only of (8.78), but also of (P;). We are now in a position to prove the theorem.

(j;) Assume A = 0. We claim that

lim &, (uZ9) = -o. (8.79)
k—oco
Fix k € N. With the usual notation, take
0 if o e M\ AL (0y),
W) =1 t if o € A7 ,(0p),

2 (r — 1dg(00,0) - pl)  if 0 € AP (0,) \ A2 (00,

fora.e.o e M. Then, " e Hw (M) and
&) = ST - j WOF () do

<(5+ ;)VOlg(A’,’(cro))ti P | wioyds,

A7,(00)
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- J w(0)F (L )doy
CHEMV ARG
- J w(0)F (L )doy

(A7 (00)\A7 5 (0 )N{UE <600}
1 2
< {(5 + r—z)Volg(A‘r’(ao))

~ L, Voly(A(0p)) inf W(0)+EOOIIWII1}tzf

0€A; (o)

+wlly tg(l)acx]IF(t)ltk,

on account of (8.7), (8.69), and (8.71).
Therefore, since lim, _, , t; = co and (8.70) holds, we have

lim £7(u?") = —oo.
k—oco k
Recalling that £ %) < &% (") for all k, the claim (8.79) is immediately verified.
Now, (8.79) yields that the sequence (uog;’,?()k C Hgl(/\/l) contains infinitely many
distinct solutions of (P,). Otherwise, the sequence (ui‘i’?{) x C Hgl,(M) contains only a fi-
nite number, say k,, of distinct solutions {ui’?{}i‘il of (Py). This is impossible by (8.79).
Finally, it remains to prove relation (8.67). Arguing again by contradiction, as-
sume that there exists a subsequence (ui’?{ )n Of (ui’i)k such that for some M > 0,

””Z’,(;(" loo <M foreveryn and (uZ’iﬂ)n c Wfli(M) for some K € IN.

Thus, since S,i‘f 0= 5;{ o On W,;‘i (M) for every k, > K, by (8.73) and (8.75), and for
Nk, > Mx> we get

glgio(ui’%) T e n,%i?/\/l) gf’o(u) B uemg,g?M) giio(u)
= ueVIV%ir(lM) Ejo (1) = ‘SZ’O(uz”’(’)‘")
. ueVI%?M) Exo(u) = Eo(Uonk)
Consequently,
{028, = Eoul) foreveryn e .80

On the other hand, the sequence (S,fo(ui",)())k is nonincreasing. Indeed, by (8.75)
and (8.78), it follows that

4 94,0 _ . 9
gk+1,0(uoo,k+1) - min gk+1,0 (u)
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IA

. 4
min & (w)
ueW,i(M) k+1,0

. e
min S,fo(u)
uewZ (M) 7

G <,0
gk,O (Woo,k)'

Thus, by (8.80) there exists k, € N such that

E,fo(ui’f,)() = Slfo(ui’%) for every k >k,

which clearly contradicts (8.79). This fact concludes the proof of (j;).

(j,) Fixj € N and A. Let (ui’j})’%zl C H;(M) be the critical points of Sfj, i=1,...,j,
constructed in (8.77).
Let (9;) be a real sequence such that 9 < 0, lim;_,, 9y = —0co, and

It < EouZ) < S,fo(u’t’k") <9 and &=k (8.81)

00,k

for all k, where the function ufk’r is given in (8.47).
Fix k € N and set

G ( PT
! l9](+1 - gk,O(utk )

7 Iwly (maxe (o F O] + Dy’

G . G0
ErolUgar) = i

" Iwl(maxco,, IFOI+ Dy

n

k (8.82)

Define

A% = min {1,A;, A A
)" = i, }{ pALA'}

Clearly A]fx’ is positive by (8.81) and (8.82). Now, for every i € {1,...,j} and A ¢
[-AS°, Af"], we claim that

i < ELWIM <9, (8.83)

00,1

Indeed, by (8.77), the definition of A/, and (8.73), it follows that

g5 < E5(LT) = £ () - A j w(o) Fi(")doy < 9, (8.84)
M
since ¢; < s, by construction.

On the other hand, since uf)i’l € W,f (M), by the definition of A" and by (8.77)
when A = 0, we have

S~ 4 [ i

00,1 i 00,i
M
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- 4050 -1 [ wio) 7 (Lo, ®29
M
> 9

i+1>

since again t; < s, .
Thus, by (8.84) and (8.85), inequality (8.83) is verified for every i € {1,...,j} and
A€ [-A7°,A°]. Hence

EaW) < 8L ) < - < EAUL) < ELUE) < 0. (8.86)
In particular, ui’} € Wfi (M) implies that
Sg(u:i’f}) = SM(u‘“) forevery i € {1,...,j}.
Therefore, (8.86) gives

G GA < G GA G GA
g]A( ) < 5 ( ooj]!—l) <-ee< ‘%,A(uoo, ) < 6]/1(“00,1) <0 (8'87)

forevery A € [—/\90,)[]9"].

Consequently, (8.87) implies that (uogif/l)]z:ﬂ C Hgl(/\/l) are j distinct ¥-symmetric
solutions of (Py).

It remains to show that (8.68) holds. Fix A ¢ [—AW,A}?"]. The conclusion is valid
fori = 1.Indeed, é’ (u ) < 551(0) = 0 gives that ||uf;’ﬁlloo > 0. Let us claim that

||u;i’}|| > 68, foreveryi=2,...,j. (8.88)

Otherwise, ||u€“|| < 6;_; for some i ¢ {2,...,j}. Hence, ug’\ € W,il(M), since

6i_1 < Mi_z- Then, (8.75) and (8.77) yield that

@ (7P . i G 9GA
gi—l,/\(uoo,i—l) = Inin & 1/\(“) < 51 u\( A) = 51',/1(“00,1')-
uew (M)

This contradicts (8.86), and so the claim (8.88) is proved.
Furthermore, (8.68) follows from (8.88) by (8.81), and the proof is now com-
plete. O

A continuous prototype of f, with oscillations at co, is given by
ft) = t%(y +sint?), teR],

wherea > 1,8 > 0,y € (0,1), and |a — 8] < 1. Direct calculations show that f satisfies
assumptions (8.64), (8.65), and (8.66) of Theorem 8.3.2.
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Comments on Chapter 8

Theorems 8.3.1 and 8.3.2 apply to the N-dimensional Euclidean space endowed by
the standard metric under the natural multiplicative action of the orthogonal group
O(N). In such a case, Theorems 8.3.1 and 8.3.2 reduce to the results proved in [143].
Moreover, thanks to the famous compact embedding theorems due to P.-L. Lions [160]
and W. A. Strauss [236], the main results remain valid in the presence of block-radial
symmetries under the natural action of the direct product group T = Hi(:l O(N;) on
R", whenever 211;:1 N, = Nand N, > 2forevery k = 1,...,j, withj > 1. In this
framework, Theorems 8.3.1and 8.3.2 ensure the existence of T-symmetric solutions for
problem (P,) settled in the Euclidean case, provided that the real parameter A is suf-
ficiently small. Furthermore, an interesting open problem is to consider equations on
unbounded domains of a complete noncompact Hadamard manifold M involving sin-
gular and critical Sobolev nolinearities; see [191, 193] for related topics. After settling
the compactness issue by means of a group-theoretical argument as in Theorems 8.3.1
and 8.3.2, the main perspective is to apply minimization arguments on a Nehari man-
ifold decomposition to establish the existence and multiplicity of solutions. In order
to handle this kind of problems, the fibering method introduced by S.1. Pohozaev in
the seminal papers [205, 206] seems to be essential.
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Lo duca e io per quel cammino ascoso
intrammo a ritornar nel chiaro mondo;
e sanza cura aver d’alcun riposo,
salimmo su, el primo e io secondo,
tanto ch’i’ vidi de le cose belle

che porta ’l ciel, per un pertugio tondo.
E quindi uscimmo a riveder le stelle

Dante
Inferno XXXIV, 133-139

Hyperbolic geometry was created in the first half of the nineteenth century in the midst
of attempts to understand Euclid’s axiomatic basis for geometry. In this theory there
are different models for the hyperbolic space HY. Each representation has its own met-
ric, geodesics, isometries, and related properties. In order to understand the relation-
ships among these models, it is helpful to know the geometric properties of the con-
necting maps. Two of them are the central projection and the stereographic projection
from a sphere to a plane; see, e. g., the monograph [37] and references therein.

Recently, some eigenvalue problems in the hyperbolic space framework have been
studied; see, for instance, the papers [111, 167, 182], as well as [218, 233, 234]. Motivated
by this wide interest in the current literature, in this chapter we deal with the following
Kirchhoff problem:

_ <a +b J IVHulzdy>AHu — Ww(@)f@) inBY,
% ()

ue H'(BY),

settled on the Poincaré ball model BY , with dimension N > 3, which is a noncompact
manifold of infinite Riemannian measure. The real parameters A, a, and b are positive,
Ay denotes the Laplace-Beltrami operator on B". The potential w is nontrivial non-
negative of class Ll(IBN n LOO(IBN ) and radially symmetric, f is a continuous function.
The main results of the chapter may be seen as an extension of multiplicity theorems
for different nonlinear elliptic problems obtained in [182, 187].

9.1 The Poincaré ball model BY

In this section we briefly recall some notions of the hyperbolic geometry needed in the
sequel and then illustrate the functional framework we shall use. We refer the reader
to the book [37] for detailed derivations of the geometric quantities, their motivations,
and further applications. As it is well known, there are several models for the hyper-
bolic space HY, for instance, the Poincaré ball BY. In particular, the Poincaré disk,

https://doi.org/10.1515/9783110652017-009
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204 —— 9 Kirchhoff problems on the Poincaré ball model

also called the conformal ball, is a model of two-dimensional hyperbolic geometry in
which the points of the geometry are inside the unit disk, and the straight lines consist
of all segments of circles contained within the disk that are orthogonal to the bound-
ary of the disk, plus all diameters of the disk; see Figure 9.1.

01
B2
Figure 9.1: The Poincaré disk model.

To be specific, let us set

N

BY = {0 = (XX ...,xy) € RY : 0] <1},

endowed with the Riemannian metric given by

4 N ..
8i = qjopptr C€BL =L N,

where |-| and 6;; denote the Euclidean distance and the usual Kronecker delta function,
respectively. For every i,j=1,...,N, set

g"f = (gi].)*1 and g = det(gy).

In this setting, the Laplace—-Beltrami operator Ay is locally defined as follows:

Now, as usual, let
N

du = \/gdx = —————dx

W= VB =

be the Riemannian volume element in BY, where dx denotes the standard Lebesgue
measure in the Euclidean space RYN. Hence, if

o]
dH(U) = 2 I
0

dt _ log 1+ |o|

.1
1-¢2 1-|o| ©1)
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denotes the geodesic distance of ¢ € BY from the origin 0y € BY, adirect computation
ensures that the operator Ay has the more convenient form

N
By = (1~ loP) Za—z S Y s
1

1 =1

Finally, if (p, 6) are the polar geodesic coordinates in BY \ {0}, then in BY \ {0},
ds® = dp” + (sinh p)*d6
and

0 1
A N —1) coth + ———Ay,
H = 0p a2 Jco Qa (sinh p)? 0
where Ay is the Laplace—Beltrami operator on the sphere sV RV,
The hyperbolic distance in the Poincaré ball is given by the formula

g — o 12
dy(0y,0,) = al‘CCOSh(l + IOZZ 0y _ ))
(1-10¢19)(A ~|o3]%)
for every 0,0, € BY.
For any r € (0,1), let us denote by

B, ={xeR" : x| <r}
the open Euclidean ball of radius r centered at O ¢ RN , while
B,={0e¢ BY : dy(o) < p}
means the geodesic ball of radius p > 0 centered at g, € BV, Hence,

1+r
B, =By, p(r)= log —

See [218] for additional comments and related facts.

Let TU(IBN ) be the tangent space at 0 € BY endowed by the inner product -, -),
and by T(BY) = |J,cpv T,(B") the tangent bundle on BY. When no confusion arises,
ifX,Y € TU(]BN ), we simply write |X| and (X, Y) instead of the norm |X|, and inner
product (X, Y),, respectively. Let C‘C"’(]BN ) be the space of real-valued compactly sup-
ported smooth functions on BY. The space H'(B") is defined to be the completion of
C?O(IBN ) with respect to the Hilbertian norm

(. )y = J Ve, Vgd) + pd)dyu,
IBN

1/2 9.2)
Il = ( [ (vaor + I¢I2)du) ,

BN
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for every @, ¢ € C‘C’O(]BN ), where Vj; is the covariant derivative and dyu is the Rieman-
nian measure on BY. In a direct form,

2 2
1- o) 1- 1o
Vy = ( 2|0| ) V and |Vjul= ( 2|0| ) [Vul,

where V denotes the Euclidean gradient.

As in Chapter 8, referring again to D. Hoffman and J. Spruck [130], the Sobolev
embedding H l(lBN ) — LKJ(]BN ) is continuous for every g € [2,2*], but not compact. As
a biproduct of the results contained in [69], the bottom of the spectrum of —Aj in BY
is given by

. vul3 (N -1)?
Al = Al(_AH) = lnf w = u) (9.3)
ueH'BY)\[0} [lull5 4
see also [167] for related topics and direct applications. Consequently, from now on we
endow H 1(]BN ) with the equivalent Hilbertian norm

tat = ([ 9un)

BN

12

The following result will be crucial in the sequel.

Proposition 9.1.1. Letp : R — R be a Lipschitz continuous function and u € H*(BY). If
poluc€ LZ(IBN), thengou € Hl(]BN) and

[Vg(eow)| =o' W) IVgul a.e.in BY.

In particular, |u| € Hl(lBN) and |Vylul| a.e. in ]BNfor allu € Hl(]BN).

Proposition 9.1.1 is a corollary of [123, Proposition 2.5, p. 24], and we refer again
to [123] for its proof. The result is valid even when B is replaced by a smooth complete
Riemannian manifold.

Since (K)) is settled in the entire noncompact space BY, in the next section we
shall adopt a group-theoretical approach to identify suitable symmetric subspaces of
HY(BY) for which the compactness of the embedding into L (BV), p € (2,2%), can be
regained.

Let N > 3 and define the family of subgroups of the special orthogonal group
SO(N) given by

¢
F = {ggsom 9 =[SOy, €N,
j=1
, (9.4)
withN; 22, j=1,...,¢ and ) N; :N]»,
j=1
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where SO(N;) denotes here the special orthogonal group in dimension N; for every
j=1,...,¢.Now, take ¢ ¢ % and let- : 4 x BY — BY be the natural multiplicative
action of the group ¥ on BY. Fix ¢ ¢ .#, where .7 is the family defined in (9.4). The
action @y, : ¢ x H'(BY) — H'(B") of the subgroup ¢ on H'(B") is given, as usual, by

ge, u(0) =u(g o) fora.e.o B, (9.5)
for every g € ¥ and u € H'(BY). Denote by
Hy(BY) = {u e H'(BY) : g@, u=uforevery g ¢ %}

the subspace of ¢¥-invariant functions of H 1(IBN ).
The next compact embedding result is a particular case of Theorem 8.1.1 given in
Chapter 8.

Theorem 9.1.2. Let BY be the N-dimensional homogeneous Poincaré ball. Then the em-
bedding H{(BY) — Lf(BY) is continuous for every © € [22").If4 € Z, then the em-
bedding Hglg(lBN ) > L(BY) is compact for any p € (2,2).

Now, let us introduce the notations in the hyperbolic variational setting in order
to apply the symmetric criticality principle, Theorem A.1.2. For details and comments,
we refer to the Appendix, as well as [78] and [63, Section 5]. See also [183, 208] for
related topics and results.

A group s = (, =) acts continuously on the real Hilbert space H'(B") by an
application (7,u) — T ® 4 u from 7 x Hl(IBN) to Hl(IBN) if ® ;- is continuous on 7 x
H 1(]BN ) and satisfies for every u € H 1(]BN ),

(i) id 4 @ u = u;
(i) (T1 % Ty) @0 U =T, ® 4 (T, ®,p u) forevery 1,17, € H;
(i3) u = T @4 uis linear forevery T € .

According to the above definition, a group ¥ € % acts continuously on the Hilbert
Sobolev space H 1(IBN ) via the map @, given in (9.5). Finally, as is customary, set

Fixg, (H'(B)) = {u e H(BY) : T®@ u = uforevery r € ¢}.
A functional I : H 1(]BN ) — Ris said to be ¥-invariant if
I(t ey u) =1(u)

foreveryu ¢ H(BY) and g € .

printed on 2/10/2023 3:36 PMvia . Al use subject to https://ww.ebsco.confterms-of-use



208 —— 9 Kirchhoff problems on the Poincaré ball model

9.2 Existence results

Lately, E. Hebey in [126] investigated the existence and compactness properties of the
problem

6o
- (a +b J IVgu|2d0g> Agu+h(o)u = ui™tin M,
(9.6)

u>0in M,

where M = (M, g) is an N-dimensional, N > 3, compact manifold, a, b, and 6, are
positive real parameters, h € C} (M), g € (2,2%), and 2* is the critical Sobolev expo-
nent.

In particular, to prove existence of at least one C? solution of (9.6), in [126] E. Hebey
required the coercivity of the operator

in addition to the technical assumption g # 2(1 + 6,). Since the manifold M is com-
pact and without boundary, the constant functions can be used in order to show the
mountain pass geometry of the associated energy functional

o1 2
I,(w) = 30+ 0y)b <a + b/\[{ [Vgul d0g>

where u, = max{0,u}. Moreover, due to the subcritical assumption on the forcing
nonlinear term, standard arguments ensure the validity of the Palais—Smale compact-
ness condition. The classical Ambrosetti-Rabinowitz theorem yields the existence of
at least one nontrivial solution; see also [124, 125, 128] for Kirchhoff problems on Rie-
mannian manifolds involving a critical term.

Equation (9.6) is a reasonable generalization of the most studied subcritical ellip-
tic problems, which naturally arise in different branches of mathematics.

Motivated by this wide interest in the current literature, the purpose of the present
chapter is to study the existence of solutions for a stationary Kirchhoff equation set on
the Poincaré ball model BY.

A solution of (K}) is any function u € H BNy nL®(BY) such that

146, 1 " 2d 1 qd
+§J (o)u og—c—lju+ Og,
M M

(v [ 19ulde) [ T Tpprod -1 [ wiorapdu =0
BN BY BN
for every ¢ € Hl(]BN).
Throughout the chapter we assume the following condition on the weight w:
(w) w € LYBY) n L®(B) is a nontrivial nonnegative function, which is radially sym-
metric with respect to the origin o, € BN.
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In this section we present the main result for the introductory equation (K;) and some
further generalizations.

Theorem 9.2.1. Let w satisfy (w) and let f : R — R be a continuous function verifying
(f) There are two real sequences (&,); and (), such that

lim ¢ =0, 0<§ <G, F(§) = sup F(t)
k—co tel&di]

foreveryk € N;

(f,) There exist a constant M > 0 and a sequence (1) ¢ R*, with
F

(M) — o

li =0, i d inf F(t) > -MF
A0 I, T moo and g, PO = ~MEY

forevery k € N.
Then, for every ¢ € %, where .7 is defined in (9.4), and for each A > 0, there exists a
sequence (uf)k cH 1(]BN ) of nontrivial nonnegative ¢-invariant solutions of (K,) such
that

Jim | = Jim [u ], = 0.

The approach of the proof of Theorem 9.2.1 is based on variational techniques. In
the sequel, we shall describe it briefly. More precisely, it is well known that H'(BY)
is not compactly embedded into Lf(BY), © € (2,2%), due to the unboundedness of
the hyperbolic space. However, by a Lions-type result, the fixed point space of H LBY)
under the action of 4 € .#, denoted by Hglq(]BN ), is compactly embedded into L“’(IBN )
when g € (2,2%); see L. Skrzypczak and C. Tintarev [232].

Instead of (K;), we study the auxiliary variational equation (9.11) whose solutions
also solve the original equation (X)) in the weak sense. If I, is the C! energy func-
tional associated to (9.11), thanks to a compactness result in [232], the restriction of I,
to Hy, (BY), denoted by I, ,, is weakly sequentially lower semicontinuous in Hy, (B")
and the critical points of I , are critical points of I in H 1(BY) as well, due to the prin-
ciple of symmetric criticality, Theorem A.1.2.

The crucial step in the proof argument is the construction of an appropriate
sequence of weakly closed subsets (Cff),< of H(}q(IBN ), so that the constrained local
minima of I, , on each ¢ are actually local minima of I, 2 on HY (BY). Hence, the
constrained critical points are ¢-invariant solutions of (K;). Subsequently, a suitable
subsequence of critical points of I , can be extracted from the aforementioned con-
strained local minima and satisfy (9.27). We emphasize that the crucial step described
above can be achieved thanks to the continuity of the superposition operator due
to M. Marcus and V. Mizel [171, Theorem 1, p. 219] settled in the hyperbolic context
instead of the classical Euclidean framework; see also [123, Proposition 2.5, p. 24] for
additional comments and remarks in the Riemannian framework.
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The main Theorem 9.2.1 complements some results obtained on bounded Eu-
clidean domains, where the elliptic problems with oscillatory nonlinearities have
been considered. For instance, among others, Dirichlet problems were studied by G.
Anello and G. Cordaro in [16] and G. Molica Bisci and P. Pizzimenti in [184], while
Neumann problems have been considered again by G. Anello and G. Cordaro in [17].
We point out that some almost straightforward computations in [16, 17] are adapted
here to the hyperbolic setting. Anyway, due to the noncompact framework, the ab-
stract procedure, as well as the setting of Theorem 9.2.1, is different from the results
contained in [16, 17], where elliptic problems on bounded smooth domains have been
studied.

Furthermore, in [200] P. Omari and F. Zanolin prove the existence of infinitely
many solutions of the Dirichlet problem

{ -Au=Af(u) inQ,

9.7
Ulg = O, (9.7)

on a bounded domain Q ¢ RY, with a smooth boundary 0Q, under the main assump-
tion

lim inf F® =0 and limsup Fo = 003 (9.8)

tso0t t2 t—0* t2

see also [171, 198, 199, 201] for related topics. Most papers treat odd nonlinearities f in
order to apply different variants of the classical Lusternik-Schnirelmann theory. Only
a few papers deal with not necessarily odd nonlinearities. Among them, let us cite
[16, 200, 226, 228], which are more related to the treatment of the current chapter. We
refer the interested reader to the results due to G. Molica Bisci in [181], where a simi-
lar multiplicity property has been established for equations settled on the Euclidean
sphere sN <, RN *1 endowed with the Euclidean induced metric; see Chapter 6.

The Laplacian case was also studied using different methods, and the existence
of infinitely many solutions, with the property that the L?>-norm of their gradient go
to infinity, was proved by O. Kavian in [135] and M. Struwe in [237, 238]; see also the
classical book of P. Rabinowitz [220].

The noncompact hyperbolic setting presents additional difficulties with respect
to the aforementioned cases, and suitable geometrical and algebraic tools need to be
exploited in order to get the main results. For instance, a crucial ingredient used along
the proof of Theorem 9.2.1 is based on a careful analysis of the energy level on (Cff) X
of some ¥-invariant functions vfn e H'(B") given in (9.22).

Proof of Theorem 9.2.1. FixA > 0 and ¢, > 0. Since f is continuous, there exists x > 0
such that |f| < x in [0, ty]. Moreover, (f;) and (f,) yield that f(0) = 0. Indeed, by (f;),
the function F attains its maximum in [, {;] at the point .. Then

&+t
o1
lim < J f(s)ds = f(&) <O.
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Hence lim_,, f(&) = f(0) < 0, since f is continuous. On the other hand,

im F0 _
k—o00 rlk

00, (9.9)

where (17;) is the sequence given in (f,). We claim that f(0) > 0. Otherwise, f(0) < 0
and by continuity f < 0 on some interval (0, §), 6§ > 0. Consequently, F < 0 in (0, §).
Now 17;, — 0" as k — co by (fy), so that

lim F(sz) <0.
k—00 rlk

Clearly, this contradicts (9.9). In conclusion, the claim is proved, and so f(0) = 0.
Without loss of generality, suppose that max{n;,{;} < t, for every k € N, and
define the truncated (continuous) function f : R — R as follows:

f(ty) ift>t,,
fity=14 f@t) ifo<t<ty,
0 ift <0.

Thanks to (f;)-(f,) and (w), the energy functional J, : H'(B") — R given by

u(o)
_l a 2 b 4
L) = Z<5llull + leull )— Jw(a)( ! f(t)dt)dy (9.10)

BN

is well defined and of class C'(H (BY)) by the continuous embedding result, Theo-
rem 9.1.2. Let us consider the auxiliary equation

- <a +b J IVHulzdy>AHu =Aw(o)f(u) in BY,
]BN (9.11)

u e H,(BY).
Set forallu € H(lg(IBN),
1
Jga(w) = Z(D(u) -¥Y(u), (9.12)

where

u(o)
b
O(u) = gllullz+ leull“ and Y(u)= Jw(a)( J f(t)dt)dy.
0

BN

Let us fix ¢ € (2,2%). Since f is bounded, w ¢ LY(BY) n L®(B"), and the embed-
ding of HQ(IBN ) into Lq(]BN ) is compact, then Jy ; is well defined, sequentially weakly
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212 — 9 Kirchhoff problems on the Poincaré ball model

lower semicontinuous, and continuously Gateaux differentiable in the Sobolev space
ng (IBN ). Hence, the solutions of (9.11) are exactly the critical points of the C ! functional
Jo 2 Indeed, a solution of (9.11) is any function u € H(lg(]BN ) such that

<a +b J IVHulzdy> J (Vyu, Vge)du — A J w(o)f(u)pdu =0
BN BN BY
for every ¢ € Hclg(lBN ). Fix k € N and define
C/ ={ueH,(BY) : 0<u<yae inB"

Step 1. The functional J ; is bounded from below on C,(f and its infimum on C,(f is
attained at some u} ¢ Cy .

Since €/ is closed and convex in H, (B"), we have that C;/ is weakly closed in
H,(BY). Moreover, for every u € C/,

Jgaw) > =¥ (W) > -x|wll; g, (9.13)
since in C/ one has
u(o)
Y(u) < J w(0) j f(t)dt|du < J w(o)udu < x||wl;&.
BN 0 BY

Let mkg = infueckg Jy 2(). For every j € IN, there exists v; € Cf such that
9 g 1
my, S]g’/l(Vj) <my + ;

Hence, it follows that

D)) = A[¥) + ,(v))]

u(o)

S/l[ JW(O)< J f(t)dt)dy+mkg+]l]

BY 0

< Axlwlly G + mil +1).

Then (vp); is bounded in Hgg(IBN ). This implies that there exists a subsequence (v]-n)n
weakly convergent to some uj € C{, as C is weakly closed. Now, the weak sequen-
tially lower semicontinuity of J , yields that

@ . G PR %
my = inf J, () <Jg(w') <liminfJg (v, ) = my.
ueC? n—oo "

Hence ]g),\(ukg) = m as claimed.
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Step 2. Fix k € IN. We claim that ukg € [0,&]ina.e. BY,
Indeed, define g; : R — R as follows:

§ it > &,
Qk(t) = t ifo<t< '{ky
0 ift<oO,

and consider the superposition operator T}, : H%(]BN ) — Cff such thatu — T;u, where
for every u € Hy (BY),

Tu=gou a.e inB". (9.14)

We assert that T; is well posed. Fixu € H}g(lBN ). Since gy is Lipschitz continuous, with
0,(0) = 0, we have T,u € H'(B") by Proposition 9.1.1. Furthermore, for all g € ¢,

g &y Tyu(o) = Tru(g'0) = (o cw)(g '0)

= 0, (u(g'0)) = oy (u(0))
= Tiu(o)

fora.e.o e BY by (9.5). In other words, Tyu € C,ff C HQ;(IBN ), as asserted.
Now, set v/ = Tyu and let

X7 ={oeBY :uf (0) ¢ [0,&]}.

If the Riemann measure VolH(X,if ) = 0, the claim of Step 2 is proved. Otherwise, sup-
pose that VolH(Xff) > 0. Then,

& < ukg <G vf = Tkuf =¢, a.e.in X,Cf (9.15)

On the other hand, assumption (f;) gives

u;(zq(tf) s Vk (0)
J f(t)dt < sup jf(t)dt_j F(t)dt = J f(t)d
o Sé[fk)(klo o

fora.e. o € X/ . Therefore,

Z 1(a, 42 b, @
Taad) = Toad) = 3 (ST + 201

_]JN w(o)( J f(t)dt)dy

1(a, 42 b, .4
- 2 (S0P Zn )
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%
Uy

+ J w(o)( J F(t)dt)d;u
BY 0
1(a 2 b 2\
% @
< ‘Z(E J Ve [y + Z( J V| dﬂ) )
X x¢
v‘ﬁ
k
- J w(o)( J f(t)dt)dy
X7 w!
2
1(/a @2 b 2
< ‘i(i I Ve [y + Z( J e dﬂ) )
x¢ béd

k k

since IVHV,C‘fI = 0a.e. in Xff. Moreover, ]g,/\(vf) > ]g,,\(ukg), thanks to the fact that
vff € Cff. Hence,

2
Ivi -] =o,
that is,

[ @12 G @\ 2 @2
¢ = I = [ 190 = uf)Peu= [ Viid P = 0.
BY X

Moreover, ukg = vf €[0,¢]a.e.in BY, since VolH(ng ) > 0. Thus, the claim is proved.

Step 3. The function u;‘f is a local minimum point of Jo , in H(lg(IBN ) for every k € IN.
Fix k € Nand u € Hy (B"). Let

Zygy=1{o¢ BY : u(0) ¢ [0,&]}
and let T; be the operator defined in (9.14). Set
& if u(o) > ¢,
vi(0) = Tiu(o) = {1 u(o) if 0<u(o)<é,

0 if u(o) <0,

for a.e. o € BY. The definition of T} yields

u(o)
j F(B)dt = 0,

Vi (0)

ifog e BY \ Zy i Furthermore, if 0 € Zy , then the following alternatives hold:
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(a) Ifu(o) <0, then

u(o) u(o)
J f(t)dt = J F(t)dt = 0.
v (0) 0
(b) If & < u(o) < ¢, then
u(o) u(o) vi(0)
j F(O)dt = J Flb)dt - J f(t)dt
Vi (0) 0 0
u(o) &k
- J f(t)dt—Jf(t)dt
0 0
u(o) S
- J F(O)dt - sup Jf(t)dt
o SE[‘fk’(k]O
<O0.
(c) Ifu(o) > ¢, it follows that
u(o) u(o) u(o)
j Flb)dt = J F(Odt < J F(b)dt| < k(u(o) - &).
vi(0) &k &
Hence, the constant
K & -4k

C= su
Wieo 220 (€ - &)1

is finite and

u(o)
| fode < Ciwlofuco) - v’

vi(0)

a.e.in BY. Then,

u(o)
| w(a)( | f(t)dt)dy < Celu - vy,

BN Vi (0)
where

Ivl,

C, =
verrt, @\o} VI
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Therefore, forall u € H}(;(IBN )s

= (s ) (S By
Ty a) ~Jog AVi) = A( Sl + 7l Sl + 7wl

A
u(o)
- Jw(o)( j f(t)dt)dy
BY vi(0)
2
- o [ e ([ rvura)
z¥ zy
u(o)
- Jw(o)( J f(t)dt)dy
BV vi(0)
b 2
JWH(” voldu+ = < JWH(U Vi) dﬂ)
JBN BY
u(o)
- Jw(o)( J f(t)dt)dy
BY vi(0)

2 Sl + =il ~ Cellu - vl
Since vy, € Cy g, it follows that Jo; 4 (v;) = ]g’/\(uf). Therefore,
Jar 2 @) > Jog s ) + T = v (M ol vel? - G- vl 2)

@ 2 a -2
> Jgaluf) + b= vel?( 35 - Celllu - 1)

forall u e Hglg(]BN ). The operator T; : Hglg(lBN ) — C,(f is continuous on account of
Proposition 9.1.1 and [171, Theorem 1, p. 219]. Hence, fixed B € (0, a), where

~ ( a )1/ (g-2)
= - ,
4ACcy

there exists § € (0, ] so small that ||Tkukg —Tiu|<a-B<a-6foreveryu e Hgg(IBN),
with ||u — ukg | < 6. Therefore,

= viel < Jlu=uf | + i = v
= u-uf | + | Tt - Tru| <

foreveryu € Hglg(lBN ), with [lu-u; 9\ < 6. Consequently, ifu € H@(IBN yand |lu— uf | <6,
then

12 2

u-v < ,
It = vid 4ACcd
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since g > 2, and so
17 a 19
Jag 2 (W) = Jog g (U ) + 4—)["“ ~vil? = Jg (),
that is, ukg is a local minimum of J ; in H;(]BN ), as desired.
Step 4. If

my = inf Jy (), (917)

¢
ueCy

then limy_,o, m{ = lim;_, [luf | = 0.

Since ukg € Ckg and mf = ]g,,‘(ukg), then

O(uy ) = A(¥(wy) +Jy 2 (1))

u(o)
2/\( J w(o)( J f(t)dt)dy + mf) (9.18)
N 0

B
< (Wl g + m).

Now (9.13) holds and
— KWl <my = inf Jy,(w) <0, (9.19)
ueCy
taking into account that the identically zero function u, = 0 belongs to Ckg and that
Jo 2(0) = 0. By (9.19), since §; — 0 as k — oo, it follows that
lim m = o0. (9.20)
k—o0
Hence, inequality (9.18) yields
Jim [uf | = 0.

Step 5. Let mf be given as in (9.17). Then mf < O for every k € N.

To prove this, let us fix k € IN. We introduce a class of functions belonging to
H};(]BN ) that will be crucial along the proof of the main step.

Since w € L®(BY) \ {0} is nonnegative in B, there are positive real numbers p, r,
mg, with p > r, such that

ess pinf w=mgy > 0. (9.21)
A’

Furthermore, for every a, b, with 0 < a < b, define the following annular domain:

A ={oeBY : b-a<dy(o)<a+bh},

a:
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where dy is the geodesic distance of the point o € BY from the origin g, of BY,
introduced in (9.1).
With the above notations, fix € € (0, 1) and set v;,, e H(BY) given by

0 ifo e BV \ 47,
V;,,(U) =41 ifo e A2, (9.22)

e (= 1log(FHe) —pl)  if o € A7\ A7,

for every o ¢ BY. Since the group ¢ is a compact connected subgroup of the isom-
etry group Isomy (B") such that Fix, (BY) = {0o}, the function v5 e H'(BY), given
in (9.22), belongs to ng (BY). Direct computations yield

(1) supp(vs,) C A7;

U2) ||Vf,,r||Oo <1

(j3) v,,(0) = 1forevery o e AL

Moreover,

2 2 2 2
||v;)r|| < j|VHv;§’r| du + J|v/§)r| du = leHVIi)rI du

A A A
e 2 e 2 e 2
v [ Paws [ (v, P [ 1, P
AL AN, ANAL
1
sVolH(A’r’)+m J |VH(r—|dH(0)—p|)|2dy (9.23)
ATNA
1 2
= Voly(4)) + s | [Vulduto) ~plf'dn
v
1
= Voly(47) + mVCﬂH (A7\ AZ,)

1 4
< <1 + m)VOlH(Ar))

where Vol denotes the Lebesgue volume on BY.
Setg, : (0,1) — R* to be the real function defined by

Voly (AL,

——=— £¢€(0,1).
Voly (47 \ A%,

gy(g) =

Clearly, if ¢ — 0%, then gy(e) — 0, as well as gy(e) — oo if € — 17. Thus, there exists
& € (0,1) such that

Voly(4z,)
Voly (A7 \ A7 ;)
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where M > 0 is given in condition (f;).
By the former condition of (f;), there exists j, € N such that n; < ¢ and

1
M+1
Hdt > —————d(nv°) foreveryj > j,. 9.24
Jf( ) AmOVolH(Ag r) ()’l] p,r) Y] =)o ( )
0 0

On account of (j;)—(js), the latter condition of (f,) and (9.21) yield

1 nvp0.(0)
\If(njv;?,)z J w(o)(Jf(t)dt)dy+ I w(a)( J f(t)dt)dy
AL 0 ANAD 0
nj t
>myg J (Jf(t)dt)dy + J tEi[l(’)l)ﬁj](Jf(S)dS)d}l
A, 0 ANAL, 0
mj n;
2 mo( J (jf(t)dt>dy—M J (jf(t)dt)dy)
2or 0 VNN
Voly(42,) ¢
= mo% [ e
0

Consequently, recalling (9.24) and that d)(njvf,?,) > 0, we have
p nj &
VOIH(Aaor) mg Jf(t dt < \I"(njvp?r)

M+1  onvy) T oV

1<
A
0

for every j > j,. Whence qjv;f’, e ¢ and ]g,,l(qjv;f’,) < O0forj = jo. Thus, m =

infycco Jog 2 () < O as claimed.

Now, taking into account that [lull,, — 0 as k — oo, there exists a subsequence
of (ukg) k C H%(]BN ), still denoted by (u;);, of pairwise distinct elements, with

0<|uf|,, <to foreveryk e N, (9.25)

that weakly solve problem (9.11). Since the fixed point set of H'(BY) under the ac-
tion of the group ¢ is exactly H%(]BN ), the symmetric criticality principle recalled in
Theorem A.1.2 ensures that (uk%)k C Hl(]BN ) is a sequence of critical points for the
C!-functional J ', for which (9.25) holds, i. e., (u;f) «CH IBY)isa sequence of solutions
for problem (K}). O

We claim that the functional J, defined in (9.10) is ¢¥-invariant, so that the key
Theorem A.1.2 can be applied. To prove the claim, fix u € H(BY) and g € %. Since
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g € 4 < SO(N) is an isometry, on account of (9.5), we have the following the chain
rule:

Vi (g ®y u)(0) = DggAUVHu(gfla) (9.26)

fora.e. o € BY, where Dgg_lg : g—lo(]B )y —> T (]BN ) denotes the differential of g € ¥
at the point g 'o. Setting y = g\, we get

g &y ul? = j 1V,4(8 & 1)(0)|2dp(0)

]BN
— [ 1Vt(70) g1, d() = [ [Fiquy); )
BN BN

= Jlull?

and

2
lg @ ull* —( |vH(g@g W) d;«a))

2
( |VHug 0)| dy(o))

2

( IVHu(y>| du(y)>

= I|u|| ,

thanks to (9.26) and to the fact that the map Dg,-1, is inner product preserving. More-
over, since w € L'(BY) n L®(B") is radially symmetric with respect to the origin
0y € BY, we obtain

(g4 u)(0) u(g”'o)
JW(O)( J f(t)dt)dy(a) = Jw(o)( .[ f(t)dt)dy(a)
BY 0 BY 0
uy)
= J W(y)< J f(t)dt>du(y).
BN 0

Thus, we conclude that

(@4 u)(0)
ig @y 1) = ;0E 8y 0) - | w(o)( | f(t)dt)du - T,
0

IBN
which proves the claim.

The next is a direct consequence of Theorem 9.2.1.
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Corollary 9.2.2. Let w satisfy (w) and let f : R — R be a continuous function such that
(i) There are two real sequences (&) and (), such that

lim § =0, 0<&<¢, F(&) = sup F(t),
k—oo tel0,G]

foreveryk € N;

(ii) —oco < lim 1anO+ Y]

E(@©) _
A

hold. Then, for every % € . and A > O there exists a sequence (uf)k C Hl(]BN ) of
nontrivial nonnegative 4-invariant solutions of (K,) such that

t < lim sup;_,o+

Jim [uf | = Jim [ ], = 0 07

Proof. If (i) holds, condition (f;) is automatically verified. On the other hand, (ii) im-
plies (f;). To prove this, assume that condition (ii) holds. Since lim sup;_,+ F@t)/t? =
0o, there exists a sequence (1), ¢ R* such that

lim n, =0 and limsup (rlk)
k—oo k—o0 nk

Moreover, liminf;_, o F(t)/ 2 > 00, so that there exist positive real numbers M and §
such that F(t) > —-Mt? for every t € (0,6). Since lim;_,., n; = O, there is p € N such
that i, € (0,0) and F(1,) > —MF(n,) for every k > . Thus, condition (f5) is verified as
claimed. O

The following model equation in BY, N > 3, illustrates how Theorem 9.2.1 can be
applied:

~ ol

_ <a + bIBJN Vgul® dH)AHu = "( ) f B, (9.28)

u e H'(BY),

where f : R — R is the function defined by

f(o) =

15\/_sm 3\3/—cos ift>o0,
if t <0.

Owing to Theorem 9.2.1, for every ¢ € . and A > 0, there exists a sequence (uk )k C
H(B) of nontrivial nonnegative ¥-invariant solutions of (9.28) such that

Jim [ | = Jim [ |, =
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Now, a direct computation ensures that the potential F of f is given by

9v¢° sin %f ift >0,
F(t) = ! (9.29)
0 ift <o,
so that
lim inf Lt) = —00;
t—0* tz
see Figure 9.2 below.

0 \_/ t

Figure 9.2: The graph of the potential F.

Thus, Corollary 9.2.2 cannot be applied in this case; see also [16, Example 3.1] for ad-
ditional comments and remarks. However, in the next result we show how assump-
tion (ii) of Corollary 9.2.2 implies the existence of a nontrivial solution of (K;) on the
Poincaré ball model BY. The main tool used along the proof of this existence theorem
is given by a variational principle obtained by B. Ricceri in [226] and recalled in the
convenient form below; see [41, Theorem 2.1].

Theorem 9.2.3. Let X be a reflexive real Banach space, and let ®,¥ : X — R be two
Gdteaux differentiable functionals such that

— @ is continuous, sequentially weakly lower semicontinuous and coercive in X;

—  Wis sequentially weakly upper semicontinuous in X.

For every r > infy @, put

(= inf (supyea(s,) Y(v)) - ¥(u)
P = ued1(z,) r—o)

>

where £, = (-0, 7).
Then, for eachr > infy @ and each A € (0,1/¢(r)), the functional J, = ®-AY admits
a global minimum in ®'(%,), which is a critical point (local minimum) of J, in X.
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The main result reads as follows.

Theorem 9.2.4. Let w satisfy (w) and let f : R — R be a continuous function verifying
(ii) and the growth condition

C=sup — —— FOl < 00, (9.30)

ter 1+ [t]971

for some q € (2,2%). Then, for every 4 ¢ .Z there exists A* > 0 such that, for every
A € (0,X%), problem (K;) admits a ¢-invariant solution uf e H'(B") and

2N—2

. @ 2
All,lg‘r J|VUA (X)| de =0.

1
Proof. Following [192], the main idea of the proof consists in applying Theorem 9.2.3
to the energy functional
TpW) = DW) = AWl gy W), u € Hy(BY),

where

D) = guun2 + gnuu“ and ¥(u) = j w(0)F(u)dp.
]BN

Then, the existence of one nontrivial ¥-symmetric solution of (K,) follows from The-
orem A.1.2.
The functionals ® and ¥| HL, (BY) have the regularity required in Theorem 9.2.3.

Moreover, it is also clear that @ is strongly continuous, coercive in HQ(]BN ), and

ueHi}?(fIBN)CD(u) =
Now, set
* q t
= Crey R ( \/_”W”q 24/2¢ qaqllgwuw - 1>> (931
where ¢’ = /(g - 1), and
IIMIIq

C, =
a ueHY, (BY)\(0 ||u||

Fix A € (0,A). By (9.31), there exists > O such that

t *

A<A* (D) = PR <A
4/2 w
g q\f Iwly + Z-e s a1

(932)
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Setr € R" and £, = (oo, 7). Consider the function y : R" — R} given by

Supueqyl(zr) \Ile% (IBN) (u)

x(r) =

The growth condition (9.30) yields

C
Pl vy W) < Cr J w(o)|uldu + Ef J w(o)|u|?du.
BY BY

Moreover,
2r 1 N .
||u||H§q(]BN) < = for every u € Hy(B"), with ®(u) < r,

which yields, by the Sobolev embedding Theorem 9.1.2,

-1 q/2
[2r cl o
‘PlH;i(BN)(u) < Cfcq<||w||q, = + qT"W"oo<E> )

forallu € Hy(BY), with ®(u) < r. Hence

-1 qa/2
2r 2r
U Wl a0 = Gyl | 5 4 qT'“””w(z) )

ued1(3,)

Therefore, the above inequality immediately gives

2 Qla)?*c! i
<C b B 1) .
X0 fcq(uwuq Vot e ler 933)
for every r > 0. Evaluating inequality (9.33) at r = £* and recalling (9.32), we have
] 2Iwly QP 1
tzch<\jj 4 4 _|w tqz>=—_. 9.34
X(&) < Crey 2 7 7 Wil @ (9.34)

Now, put Xz = (oo, 2) and note that the identically zero function 0 is in @71(232), and
®(0) = ¥(0) = 0, since clearly O € H%(IBN ). Consequently,

o= in SPreori Y@ () - ¥l 0
ued'(%;) 2 - D)
SUDyep(z,) ‘{’|H§9(BN)(V) _

< -x(®).

t2

Thus, (9.34) gives

(9.35)
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Then

Ae (04" (D) < (0,1/9(F)).

The main critical point Theorem 9.2.3 ensures that there exists a function uf € @71(222)
such that

@' (uy) _/\(\II|H%(BN)),(M;4) =0,

and, in particular, uf is a global minimum of the restriction of the functional 7, to the
sublevel ®7'(Zp).

Now, we have to show that the solution u; found above is not the trivial (identi-
cally zero) function. If f(0) # 0, then it easily follows that uf #0in H{; (]BN ), since the
trivial function is not a solution of (Kj).

Let us consider the case when f(0) = 0. Clearly, uff is a critical point of 7, in
HL,(BY) and has the property that

o) <?,  J(uf)< T foranyu e Hy(BY), with d(u) < . (9.36)

Moreover, uf is a solution of (Kj;), due to the ¢-invariance of the functional J, and
Theorem A.1.2. In this setting, in order to prove that uf #0in HQ(]BN ), we first claim
that there exists a sequence of functions (v ); in Hgg(]BN ) such that

\PlHl (]BN)(VI()
limsup —% — — = co0. (9.37)
k—»oop q)(vk)

By the assumption on the limsup in (ii), there exists a sequence (t;), ¢ R" such that
t, — 0" as k — oo and

F(t
lim # = 0. (9.38)
k—o0 tk

Thus for any M > 0 and k sufficiently large,
F(ty) > Mt;. (9.39)

Definev; = tk forany k € N. Then, v;, € Hg(]BN) forany k € NN, since vp € Hg(lBN)
Furthermore, taklng into account the algebraic properties of the functlons , stated
in (j;)—(j3), since F(0) = 0, and using (9.39), we can write

Pl i) [y WOF©) dp+ [0, 40 w(OF () dp
D) D)
j o WOF(t) dp+ [0, 0 WOF(tv,,) dp
D(vi)

(9.40)
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M Voly (A2)t; + JAf\A{;, F(tyv,,) dp

>w,
at? bt}
e 12 o L he 14
V12 + ZEIVE
for k sufficiently large. Now we have to distinguish two different cases.

F
0 = o,

Case 1. Suppose that lim;_, -+
Then, there exists p;; > O such that for any ¢, with 0 < ¢ < py,
F(t) > Mt*. (9.41)

Since i —» 0" and 0 < v;, < 1in BY, one gets v, = tevy,, — 0" ask — oo uniformly
in BY. Hence, 0 < Vi < pyin BY for k sufficiently large. As a consequence of (9.40)

and (9.41), we have

P \42
Yo MVoly (A2t + [ 4o\ 40 F(tiV5,) du

o at? bt
Vi S 2 + ZE v 1

M VOIH (Agr) + J-Ae\Agr |V;,T|2 d]"l

=Wy
SIS+ un lIvs |
2Wp,r 4 VWpr

for k sufficiently large. Thus,

p W) | MVORAE) + v, I du
imsup > .

= Wo
koo, D)) e, 12

This gives (9.37), since M > 0 is arbitrary. The claim is so proved.

Case 2. Suppose that liminf, o 52 = ¢ ¢ R.

Then, for any € > O there exists p, > 0 such that for any ¢, with 0 < ¢ < p,,

F(t) > (£ - e)t’. (9.42)

Arguing as above, we can suppose that 0 < v, = tkv;), < pein BN for k large enough.
Thus, by (9.40) and (9.42), we get

2
Y MVoly (A2t + [ 4o, o F(tiy,)du

> w,
(v, aty bty
Wi 5 ||Vl§,r”2 + 7 "Vz,r”l'

MVoly(A2) + (€ =€) [ o IV5,dn

> W,

>

apve |2+ 2 pye 4
MV =+ 7V

provided that k is sufficiently large. Choosing M > 0 large enough, say

M > max{o,—ip J |v/‘§r|2 d;u},
Vol (A7, ’
vy

r \er
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and € > 0 so small that
2 Vol (4%) 2
€ J |y, |” du <MT” +e J ol dw
ADNAZ, ADNAZ,

we get at once

Y(vy) . Wo

p €2 e 2

ANAL ANAL
woM Voly (4%)
2

>

>

alve 2 + 2 e o
pr 2 Wpr

for k € N large enough. Hence

p
lim sup Y(vy) > Wo VOIH([isr)
PP D) ©  2alve, |

This gives again (9.37), since M is arbitrary.
Now, [[vll = t; ||v;’r|| — 0 as k — oo, so that for large enough k,

a 2. b 4 o
—|Viell™ + =|lv <t
2|| il 4|| il

Thus v, € @71(232) and J3(vy) = D(vy) - AY| H;(BN)(V,() < 0 provided that k is large
enough, thanks to (9.37) and the fact that A > 0. Consequently,

TuY) < i) < 0 = 7,(0),

since uff is a global minimum of the restriction of 7, to ®'(Zz) by (9.36). Therefore,

uff #£0in Hglg(]BN ). Thus, uf is a nontrivial solution of (K;) for any A € (0,A*).
Finally, we prove that lim;_,- ||uff | = 0. To this end, let us fix A € (0,A*(f)). By
construction,

a 2 b 4
o) = S I+ L1 <P,

that is,

gy [2;
uy | <\=t.
<\
/2
2 - (2\" .
M; :cqcf<\/a||w||q,t+ (E) c 1||w||00tq>.

Set
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The growth condition (9.30) yields

I J w(o)f (uf )i du| < Cf([ w(o)|uy |du + J w(o)]uﬂqdy)

BN BY BY
< Cr(Iwllg uy [l + Wloo 1y 19) (9.43)

< Mf’

since g € (2,2%). Now uf is a critical point of 73, so that (J,{ (uff),(p) = 0 for any
Qe H;(]BN) and every A € (0,A*(¢)) . In particular, (.ﬂ(uf), uf) =0, that s,

(@ @)l =1 J w(o)f (i dy (9.44)
]BN
for every A € (0,A*(f)), where
2 2

(@' ()} = (a+ bty |

Then it follows, by (9.43) and (9.44), that
0= Ju I = (@' ) = A [ wioIfuf u e < 20
IBN

for any A € (0,A* (%)) . We get lim,_, o+ ||uff [ = 0, as claimed. This completes the proof
of the main result. O

Theorem 9.2.4 can be applied to the prototype problem

1-1of?

4
- <a +b J |Vgul® dy)AHu = )l( ) (Ju"%u + ul*2u) inBY,

B
ueH' (B,

wherel < r < 2and?2 < s < 4, and ensures that forevery ¥ € .# there existsA* > 0such
that forevery A € (0,A*) the above equation admits at least one nontrivial -symmetric
solution u € H'(B*). Moreover,

. G _
lim u’| = 0.

A simple case is displayed in Figure 9.3.
The next result below can be viewed as a natural counterpart of Theorem 9.2.1.

Theorem 9.2.5. Let w satisfy (w) and let f : R — R be a continuous function such that
(f1) holds in addition to
(@) liminf, . £2 = 0;
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Gr(f)

Figure 9.3: The model case f(t) = [t| /%t + |t|t.

(b) Fy = limsup,_o+ £ € R* U {oo}.
Then, for every ¢ € % and A > O sufficiently large, there exists a sequence (uf)k C
H 1(IBN ) of nontrivial nonnegative ¢-invariant solutions of (K,) such that

Jim [ | = im [ |, = 0.
—00 —00

Proof. The first steps of the proof are similar to the arguments of the proof of Theo-
rem 9.2.1. The essential difficulty to apply the variational method to study (Kj) is due
to the fact that the Sobolev compact embedding fails on the whole space.

To be precise, the embedding from H'(B") into L*(B") in not compact when g ¢
(2,2"), since BY here is equipped with the Poincaré metric, and so it is a complete
noncompact Riemannian manifold.

On the other hand, from Theorem 9.1.2 of L. Skrzypczak and C. Tintarev [232], the
¢-invariant subspace Hglg(lBN )of H 1(]BN ) is compactly embedded into L@(]BN ), when-
ever p € (2,2%). Therefore the proof can be sketched as follows. At any subset C,Cf,
the functional J,, given in (9.12), attains its infimum at some point uf. Then, it is
possible to prove that ukg is a local minimum point of J; ; on the symmetric subspace
H%(]BN ). This partial result is intuitively obvious, since its analogy in basic calculus
depends heavily on (f;). From the Palais Theorem A.1.2, every ukg is actually a critical
point of the smooth functional J, on the entire H 1(IBN ).

A careful analysis of the energy levels

1% .
my, = inf J, (u)
k ueCy #A
gives that lim;_, ., mkg =limy_, ||ukg|| =0.
To obtain the conclusion, it is enough to prove that such local minima (ukg)k are

pairwise distinct. From now on, technical details and methods are different compared
to the proof of Theorem 9.2.1. We first claim that

mkg = inf Jg (w) =]§¢,A(ukg) <0
ueC?
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for every k € IN. Indeed, fix p, r, withp > r > 0, and € € (0,1). Let v . be the function
given in (9.22) and take k so that

Fo [, w(0)dy
0<Kxy< < S (9.45)
Jiag, w5, Py

which is possible by (b). Clearly, the right-hand side of (9.45) is trivially satisfied when
Fy = 00. By (a), there exists § > 0 such that

F(t) > -t (9.46)

foreveryt € (0, 6). Thanks to (b), there is a sequence (sj); € R" such that hm]_m sj=0
and

F(s;) F
lim —2] = lim sup @ =Fy > 0. (9.47)
j—oo s t—0* t
Now, for anyj € N, set
v‘s’j’r = sl-v;,r. (9.48)

Observe that

(9.49)

for every j € N sufficiently large.
Fix k € Nand j € N sufficiently large so that s; < § < , by (9.49). Hence, thanks
to (9.46),

pr SIZ b e 2
Joa02) < 3 (a+ 2 )i
_ <F(sj) j w(o)du + j w(0)F( Vls’;’)dy>
A ANAT,
S;

< (a2 )l

—(F(s,~> | wordi-xos] | w(a)lv,i,,lzdu)

2
]

AL, AD\AL,
2
Si[fa b 2
<2[(5+ 2 )l
(]) e |12
-A = Jw(o)dy Ko J w(0)|vp)r| du|.
s AN
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Now, (9.46) allows us to take
£ ”2

b I
A> <— + —) PR
2 4)F, IA’; w(o)du - K, IA;;\A@ w(o)|v,|%du

so that there exists j, € N such thats; < {, and

(57wl

&2
Sjo
A

(]0 e 2
< w(o)dy—x0 J w(0)|vp,r| dy)] <0

ANAG

Jyg A(V5 )

Thus, the test function vé’}or belongs to C’ and ]g,,\(vgi’;) < 0. Hence,
m = inf Jy ) = Ty (i} ) < Jog p (V2 ') <0,
ueC?

as claimed.

Thanks to (9.20), there exists a subsequence of (uf)k, still denoted by (uf)k, of
pairwise distinct elements that weakly solve the truncated equation (9.11) and such
that

0 < Juf|l, < to (9.50)

for every k € N.

Since the fixed point set of H'(BY) under the action of the group ¢ is exactly
Hg(]BN ), the symmetric criticality principle, recalled in Theorem A.1.2, ensures that
(uk )k C H' (IB ) is a sequence of critical points for the C'-functional J ', for which (9.50)
holds, i. e., (uk )k € Hl(]BN) is a sequence of solutions of (K}). O

A concrete application of Theorem 9.2.5 is given by the following example. Let
(ap)k> (by) be two positive real sequences such that by, < a; < by for every k > k,
and some k;, € N. Assume that

. . by
lim by =0 and lim — =oo0.
k—oo k—oo Q.
Moreover, let ¢ ¢ C1([0,1]) be a nontrivial nonnegative function such that ¢(0) =
¢(1) =0andlet ¢ : R — R be defined by

-b +1 i
$(6) = { PG) if ¢ € Ui, [Brvn @, (9.51)
0 otherwise.

Furthermore, let

Illoo [, w(o)du
0 <Ky < i (9.52)

JA?\A@, w(o)IVy,12du
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where w is a nontrivial nonnegative potential, verifying (w). The functlon . is given
in (9.22), and the annulus-type domains A and A%, are defined as in the proof of The-

orem 9.2.1. By Theorem 9.2.5, for every ¢ € .# and for all A > O sufficiently large, there
exists a sequence (uk ) CH 1(]BN ) of nontrivial nonnegative ¥-symmetric solutions of

- <a +b J IVHuIZdy>AHu = Aw(0)u[2¢u) + ugp'(u)] in BY,
B (9.53)

ueH(BY)
such that
. @ . @
lim [ | = Tim i |, =
—00 —00
In (9.53), the function ¢ is defined in (9.51) and f(¢) = t[2¢(t) + t' (t)]. More precisely,

a careful analysis of the proof of Theorem 9.2.5 and inequality (9.23) ensure that the
main conclusion holds provided that

a b Vol (49) 1
>\ = + 5 1+ 55 )
2 1@lloo o W@ =Ko [4o\ 0 W(OINVS, PP\ (1=€)%r

where k,, is the constant given in (9.52). We emphasize that Theorem 9.2.1 cannot be
applied to (9.53), since in this case F(t) = tqu(t) and so

lim sup % =limsup ¢(t) = ¢l >0, while hm 1nf¥ hm 1nf¢(t)
t—0*

t—0*
In particular, we can take for all k > 2,

1

—, b L and (t)—Mel'eﬁ
Kk kT P =

ay = k|,

for t € (0,1), with @(0") = ¢(17) = 0, and where M is a positive constant sufficiently
large; see Figure 9.4.

o(t) = My (% )

ay, — bjy1
1

o(t) = Metet(t—1)

_____ A Figure 9.4: The function ¢ in [by,,, a,] for different
b1 @ values of M.
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9.3 Perturbed Kirchhoff-type problems

The last part of the chapter is devoted to the sublinear case, in which we assume that
the nonlinearity f : R — R is continuous and verifies the assumptions:

(hy) f(t) = o(|t]), as |t| — O;

(hy) f(t) = o(|t]), as |t] — oo

(h3) There exists t, € R such that F(t,) > 0.

Clearly, (h,) means exactly that f is sublinear at infinity. Moreover, due to (h;) and (h,),

the number
fF (o)l
= 54
KA AT (.54)
is well defined and positive. We consider the perturbed form of (K,), namely,
- <a +b J IVHuI2 dy)AHu = Aw(o)f (u) + 9w(o)f(u) in BY,
BY (KA,s)

u e H'(BY),
where w and f are of special type. To prove the existence result for (K} ), we shall use
the next general abstract theorem due to B. Ricceri in [226], where, according to the
definition given in Section 6.3, the set Wy is the class of all functionals I : X — R,
with the property that v, — uin X and liminf;_, /() < I(u) implies that wy — uup
to a subsequence.

Theorem 9.3.1. Let X be a separable reflexive real Banach space. Assume that

- ®:X — Ris a coercive, sequentially weakly lower semicontinuous C'-functional
on X, belonging to Wy;

— @ is bounded on each bounded subset of X and its derivative admits a continuous
inverse on the dual space X' of X;

- ¥Y:X—>Ra Cl-functional, with compact derivative;

— @ has a strict local minimum in ug, with ®(uy) = Y(u,) = 0;

- @ <Y,where

. Y(u) ., ¥(u) }
= max{0, limsup —=, limsup —— ¢,
0 { il D) w T D)

X = sup{% : u € X and O(u) > O}.

Then, for each compact interval [A,A;] < (1/x,1/0), there exists a number n > 0, with
the property that for every A € [A;,A,] and every C'-functional Y : X — R, with compact
derivative, there exists 6 > O such that for each 9 € [-6, 6], the equation

O - -9Y =0

admits at least three solutions in X whose norms are strictly less than 1.
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In order to apply Theorem 9.3.1to (K} o), let us introduce

W, = {f € C(R) - IfOL oo},

ter\{0} [t] + [¢]971
where g € (2,2%).

Theorem 9.3.2. Let w and w satisfy (w) and let f : R — R be a continuous function
verifying (hy)—(h3). Let f € Y, for some q € (2,2"). Then, the following assertions hold:
(ky) (Kjo) has only the identically zero solution whenever

(N —1)?

O0<A<a ,
4crlwll oo

where ¢; is given in (9.54);

(k,) Forevery¥ e Z, there exists \* > 0 such that for every A > A* there is §, > 0 with
the property that for every 9 € [-6;,6,] equation (K, ) has at least two distinct
nontrivial ¢-symmetric solutions in H I(IBN ).

Proof. The underlying energy functional .7, : H'(BY) — R is defined by

Tiw) = §||u||2 + Zuun“ -A j w(o)F(u)dyu - 9 j w(0) F(w)du

IBN IBN
foreveryu € HYBY), where forall t € R,

t

t
F(t) = jf(s)ds and F(t) = jf(s)ds.
0 0

By Theorem 9.1.2, the functional 7, is well defined and of class C'(H!(B")); moreover,
its critical points are exactly the solutions of (K} o).

(k;) Suppose by contradiction that there exists a solution u € HYBY) \ {0} of Ky o)-
Thus, taking as test function ¢ = u,, we have

allugl® < (a+ bllugl?)lugl® = A j w(0)f (ug)uody

BN

2
crlwll o lluo ™.

P
(N -1y
Therefore, bearing in mind the assumption on A, since a > 0, we get

4Cf

2 2
m"uo” < lupll%,

2
lupl” < Alwllo

which is an obvious contradiction. Hence u, = 0.
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(ky) Let ¢ € 7. Let us apply Theorem 9.3.1 with the choices X = Hglg(lBN ) and
a 2 b 4
D) = - - ,
(u) > flul® + % llull

Y(u) = J w(o)F(wdy, Y(u) = j w(o) F(u)du

BY BY

forallu € HY (BY).

As a norm-type functional, @ is coercive and sequentially weakly lower semicon-
tinuous in Hglg (BY). Moreover, @ belongs to Wht (V) and is bounded on each bounded
subset of HQ(IBN ). We claim that its derivative @' admits a continuous inverse on the
dual space (Hy (BY))'.

To this aim, we identify (Hglg(]BN )" with Hglg(]BN ). Since the Kirchhoff function
K(t) = a + bt is nondecreasing in RJ, with K(0) = a > 0, then the real function
t— tla+ btz), with t € IRg, is increasing and onto in its domain, and so there exists a
continuous function g : R{ — R such that

g(t(a+bt?)) =t foreveryt e R}, (9.55)
Let T : Hy(B") — HL (B") be the operator defined by
gdivibv
T0) = = fv#0,
0 ifv=0

for every v € Hy, (BY).
Since g is continuous and g(0) = 0, the operator T is continuous in Hilq (IBN ). More-
over, K(|u|®) > 0, and (9.55) yields for each u € H;(]BN) \ {0},

g (ul®)lull)

T(®' (W) = T(K(Jul*)u) = m1<(||un2)u
Jul )
= —K = .
KRG = u

Thus the derivative @' has a continuous inverse on Hglq (BY), as claimed. Furthermore,
since Hy, (B") is a closed subspace of H'(B") and the embedding H, (B") — L*(B")
is compact for every p € (2,2") in force of Theorem 9.1.2, the functionals ¥ and Y have
compact derivatives.

Now, we claim that

YW | Y

im = lim = 9.56
lul—0 @)  ful—oco D(u) (9:56)

Due to (h;) and (h,), for every € > O there exists §, € (0,1) such that
0<|f(t) < ”Wg” |t| for every t, with either |t| < 6, or |t| > 5;1. (9.57)

printed on 2/10/2023 3:36 PMvia . Al use subject to https://ww.ebsco.confterms-of-use



EBSCChost -

236 —— 9 Kirchhoff problems on the Poincaré ball model

Let g € (2,2). It is clear that the real function t — tl’qf (t) is bounded on [68,5;1].
Therefore, for some g, > 0, we have

0<|f(t)] < | —=|t| + m,|t|7" foreveryt € R. (9.58)

Thus, for every u € Hy (BY),

0<|¥)< J w(0)|F(w)|du
IBN

< Jw (")[zu it %'”'q]d’“‘

]BN
g2 Me q
< J[zu + 7 w(o)|u| ]dy

BY

€ 2 mg q q
< §||ll|| + 7Cq||W||oo||u|| ,

where cq > 0Ois the best embedding constant in Hgg(]BN ) — Lq(lBN ). Thus, for every

u € Hy (BY) \ {0},

YWl _2¥YW)l| _ e me 4 -2
< < < = + 2=l W g lull 2.
P~ alul*> “a aq?

Since g > 2 and € > 0 is arbitrarily small, the first limit in (9.56) follows at once.
Let € € (1,2). Since f € C(R), there also exists a number M, > O such that

If(l‘

0< <M, foreveryt ¢ [§,, 5.'],
where 8, € (0,1) is from (9.57). The latter relation, together with (9.57), gives that
0<|f(t) < ” |t| +M, t|° foreveryt € R.

Similarly as above, we get

£ M

0 < [Y@)| < Zlull® + =Ewll = Jlul’. (9.59)

2 4 ¢

For every u € Hy,(B") \ {0}, we have
< [ (u) 2I‘I’(u)l e M,

100 < e Sat —€IIWII 2 full

Since € > 0 is arbitrary and ¢ € (1,2), taking the limit as |u| — oo in H;(IBN ), we
obtain the second relation in (9.56).
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Moreover, u, = 0 is a strict global minimum point of the functional @, ®(u,) =
Y (u,) = 0, and (9.56) obviously yields

o= max{O lim sup P 11 ‘P(u)} =

p
lul—co @)’ D(u)
Hence it is enough to show that

Y(w)

. 1 N +
oW :ueHy(B )\{O}]» eR". (9.60)

g
Let t, € R be the number given in (k). Since w € L*(B") \ {0} is nonnegative in B,

there are positive real numbers p, r, and w,, with p > r, such that condition (9.21)
holds.

Fix € € (0,1) and consider the function v . € Hg(]BN ) given by

vf),, = toV;,r in BY, (9.61)

where v . is defined in (9.22). Direct computations yield
() supp(vp,,) c A7

(72) ||Vf,,r||oo <ltols

(73) v5,(0) = 1 for every o € Al

The above properties and the assumptions on the weight w imply that

‘If(vf),,) = J w(o)F(vz,,)dy = J w(o)F( vf,’,)dy

BY AP
= J w(0)F( v;),)dp + J w(o)F(v;),)dy
AL, AD\AL,

> WoF(ty)Voly(42) — Wl ﬂ?tﬁlF(t)lvo}H(Ae \A2).

We claim that there is g, > 0 such that ‘If(vf,‘f,) > 0. Indeed, setg, : (0,1) — R be the
real continuous function defined by

Voly(42)

€€ (0,1).
Voly (A7 \ A7,

gy(‘g) =

Clearly, gy(s) — oo ife — 17. Hence F(t,) > 0 by assumption (hs), and thereis g, > 0
such that

Vol (A7 ,) maxi i, [F ()]

) = Yo az,y M)
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Thus ‘{’(vf,f’,) > 0 as affirmed. Consequently, (9.60) immediately holds by (9.56), and
the number
A = inf{% Tu€ HQ(IBN) and Y(u) > 0]» < 00 (9.62)
W(u)

is well defined. Moreover, A* = y .

Applying Theorem 9.3.1, for every A > A* there exists §; > O such that for each
9 € [-6,, 6,] the functional 7, restricted to H}g(lBN ), has at least three critical points,
as desired.

Since J, is ¢-invariant with respectto®y, : ¥ xH BY) - H'(BN), defined in (9.5),
the symmetric criticality Theorem A.1.2 implies that the critical points of 7; | HL, (BY) AT€
also critical points of 7, in H 1(BY), and so ¥-symmetric solutions of (K 1.9)- O

In any case we can produce a concrete bound for A*. Indeed,

a 2 b 4
o) = SV + 21,

and so (9.23) gives

1 >2vO1§I(A¢) 2
(1-gp)?r? 2

cD(vf,?,) < <1 +

e(as B1s LY vary )
27 (-goyr2) THETIO)

Thanks to the above inequality, a careful analysis of the proof of Theorem 9.3.2 ensures
that the main conclusion in (k,) holds true, provided that

taVolgy (A7) (1 + = o Zrz)z(a+ 1+ 18)2r2)2V01H(Ap)t0)
Z(WOF(tO)V()lH(Asor) IWlloo maxyqe | [F(0)[Voly (A7 \ A7)

Theorem 9.3.2 can be applied in particular to the equation

- (a +b J IVHuI2 dy)AHu = Aw(o) log(1 + uz) in BY,
i (9.63)

ueH(BY),

where w satisfies (w); see Figure 9.5. Hence, for every ¢ € .# there exists A* > 0 such
that for every A > A* equation (9.63) has at least two nontrivial distinct ¢-symmetric
solutions in H 1(]BN ). Theorem 9.3.2 gives furthermore more precise information, that
is, it asserts that the number of solutions is stable with respect to small subcritical
perturbations.

In the last results of the section, we turn back to equations settled on a homo-
geneous Hadamard manifold M of the type treated in Chapter 8. More precisely, we
present an analogue of Theorems 9.2.4 and 9.3.2 in this general framework.
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Gr(f)

Gr(f/t)

Figure 9.5: The model case f(t) = log(1 + tz).

Theorem 9.3.3. Let M = (M, g) be a homogeneous Hadamard manifold of dimension
N > 3 and let 4 be a compact connected subgroup of Isom, (M) such that Fixg, (M) =
{o,}. Let w satisfy condition (w) of Chapter 8 and let f : R — R be a continuous function
satisfying the growth condition

If @)l
su ,
e 1+ [E]T
for some q € (2,2") and such that
—00 < liminf@ < limsup FO =00
t—0+ 2 t—0* t?

Then, there exists I* > 0 such that for every A € (0,1*) the equation

{(a + b||u||2)(—Agu +u) =Aw(o)f(u) inM, )
uce H;(M), 1
admits a ¢-invariant solution uf e HY(M) and
lim u | = 0.
Lim fugy |
In the sublinear case for the perturbed form of (P,), namely
(a+ b||u||2)(—Agu +u) = Aw(o)f (u) + w(o)f(u) in M, ®0)
ue H;,(M), A

we get the next result.

Theorem 9.3.4. Let M = (M, g) be a homogeneous Hadamard manifold of dimension
N > 3 and let 4 be a compact connected subgroup of Isomg (M) such that Fix, (M) =
{o,}. Let w and w satisfy condition (w) of Chapter 8, let f € C(R) be a function verifying
(hy)—(hs3), and let f € W, for some q € (2, 2%). Then, the following assertions hold:
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(ki) Equation (P, o) has only the trivial solution, whenever

a If (0)]

u
<————, whereC; =max—— and ¢,=  sup I ||2;
5 CrIwll 0 |t| weriM\o) Ul

(ky) There exists A* > 0 such that for every A > A there is 6, > O with the prop-
erty that for every § € [-6,, 6;] equation (P, g) has at least two nontrivial distinct
@-symmetric solutions in Hgl,(M).

Comments on Chapter 9

An interesting open problem is to extend the methods used to prove the main results
of Chapter 9 to the case of degenerate Kirchhoff equations in order to obtain a hyper-
bolic version of some classical results due to O. Kavian [135], M. Struwe [238, 237], and
P. Rabinowitz [220]. More generally, inspired by the heuristic ideas contained in the
entire book, in our opinion, a careful analysis of the symmetries on Sobolev spaces as-
sociated either to manifolds or to sub-Riemannian structures seems to be a very rich
and fruitful theoretical argument in studying existence results and multiplicity phe-
nomena arising from different branches of pure and applied mathematics.
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A Appendix — the symmetric criticality principle

An important approach for studying properties of the solution space of nonlinear
equations is to restrict attention to manifolds that admit a specified group of sym-
metries. Viewing these issues strictly from the point of view of action of smooth
functionals, R. Palais proved in his celebrated work [202] the so-called principle of
symmetric criticality, briefly (SC) principle.

The validity of Palais’ principle has a powerful impact on applications to nonlin-
ear problems of mathematical physics which are set on noncompact manifolds, and
whose associated energy functionals are invariant under the action of suitable groups
of isometries.

For instance, this approach, used previously in the context of transverse symme-
try group actions, provides a generalization of the well known unimodularity condi-
tion that quite naturally arises in spatially homogeneous cosmological physical mod-
els.

In this appendix we shortly recall the (SC) principle and some of its extensions for
general energy functionals, possibly nonsmooth, associated to variational problems.
We refer to the brilliant and detailed discussion on the subject given by J. Kobayashi
and M. Otani in [138].

A.1 The principle for C' functionals

Most of the results in this section are essentially contained in [138, 202] and in [151,
Part I, Chapter I]. However, we recall them for the sake of completeness.

Let X be a Banach space and let X' be its dual. As usual, we denote by | - | and
|- llx the norms on X and X', respectively. Moreover, (-, -) stands for the duality pairing
between the spaces X and X'.

Let (¢, ) be a group, e its identity element, and let 7 be a representation of ¥ over
X, that is, (g) : X — X is a linear bounded operator from X into X for each g € ¥,
such that the following properties hold:

(i) m(e) =idy;

(i) m(g18,)u = 1(gy)(71(gy)u) for every 84,8, € Y andu € X,

where, as is customary, 7(g)u denotes the image of u € X trough the linear bounded
operator 71(g).

This representation 77 of ¢ over X induces a canonical representation rry: of ¢ over
the dual space X' of X, that is, y/(g) : X' — X' is a linear bounded operator from X'
into X' for each g € ¢ such that
(i*) myi(e) =idys;

(ii*) my(gg)v* = m(g)(m(g,)v*) for every g,,8, € 4 andv* € X/,

https://doi.org/10.1515/9783110652017-010
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242 — A Appendix - the symmetric criticality principle

where the functional 71y, (g)v* € X' is defined by duality
(g (V™ u) = (v, (g u) (A1)

foreveryu € X.
In order to simplify the notations, forg € ¢, u € X, and v* ¢ X', we put

gu=mn(@u and gv* =my(g)V".

A functional I : X — R is said to be ¢-invariant if I(gu) = I(u) for every u € X and
g € ¥9.AsubsetS ¢ X is called ¢4-invariant if

gS={gu:ueS}cS.
Let us define the subspace of ¥-symmetric points of X given by
Fixg(X) = {u € X : gu = uforevery g € ¢}.
Analogously, let
Fixgy(X') = {v" €X' : gv" =v" forevery g € ¥},

be the subspace of ¢-symmetric points of X'.
By (A.1), it follows that

V' € Fixy(X') &= v* : X — R is Z-invariant.

Moreover, Fix, (X) and Fix, (X') are linear closed subspaces of X and X', respectively,
since for every g € ¢ the operators 71(g) and 7y, (g) are linear and bounded. Conse-
quently, Fixy, (X) and Fixg, (X ") are Banach spaces with their induced norms. Set

Cy(X)=1{I:X - R : I € C'(X) and %-invariant},
(Fixy (X)) = {v* € X' : (v*,u) = 0 for every u € Fixy (X)}.
We have the following result that represents the (SC) principle for smooth func-
tionals in its abstract and general form.

Theorem A.1.1. The following facts are equivalent:
(iy) IfI € C;(X) and (IlFng(X))’(u) =0, thenI'(u) = 0;
(iy) Fixy(X") n (Fixy(X))* = {O}.

Proof. (i;) = (i,) Suppose by contradiction that Fixe (X") n (Fixe (X ))* # {0} and let v*

be a nontrivial element of Fix, (X') N (Fixe (X))*. Define Iy, by Iy (u) = (v*, u) for all
u € X. Itisclear that Iy, € C;(X) and (Iy))' = v* # 0, so Iy has no critical points in X.

EBSCChost - printed on 2/10/2023 3:36 PMvia . All use subject to https://ww.ebsco.conlterns-of-use



EBSCChost -

A.1 The principle for C! functionals —— 243

On the other hand, v* € (Fixy (X))" implies that v* | (x) = 0. Thus (Iy IFix, @) W) =
0 for every u € Fixy(X), and this contradicts (i;), as required.

(i) = (i) Let uy € Fixy(X) be a critical point of restriction I IFixg 0 and let us prove
that I' (uy) = 0. Since I(uy) = Ilpix, (x)(Uo) and I(ug + u) = Ilpiy, (x)(Uo + u) for every
u € Fix4,(X), we obtain

(I'(uo) u) = {Tlpix,, %)) Uo)» Wix,, x)

for every u € Fixy(X), where (., )Fixyy (X) denotes the duality pairing between Fix, (X)
and its dual (Fix,(X))'. This implies that I' () € (Fix(X))". On the other hand, the
¢-invariance of functional I yields

('), v) = }in& I(gu + tv) - I(gu)

t
1
i [ 87V) - TW) (I'w),g™v)
t—0 t
= (gl'(w),v)

for every g € ¥ and u,v € X. This means that I’ is ¢-equivariant, that s, I' (gu) = gI' ()
for every g € ¢ and u € X. Since u,, € Fixy(X), we obtain gI' (uy) = I' (u,) for every
g € ¢, thatis, I'(uy) € Fixy(X'). Hence I'(uy) € Fixg(X') n (Fixy(X))" = {0} by
assumption. Therefore I' (uy) = 0, as required. O

In the sequel, we are interested in finding conditions in order to recover the re-
quirement Fixy (X') N (Fixy (X))* = {0}, so that the (SC) principle is available by The-
orem A.1.1. To this aim, we consider two different settings: the so-called compact case
and the isometric case.

The compact case
We recall that for each u € X there exists a unique element v € X such that

v*,v) = J(v*,gu)dy for every v* € X', (A.2)
9

where dy is the normalized Haar measure on ¢; see [227, Theorem 3.27]. Hence u +
v = Au defines an operator, and Au is actually in Fix,, (X) by formula (20) on page 68 of
Theorem 2.5.13 of [242]. In conclusion, A : X — Fix,(X), and A is called the averaging
operator on the group 4.

We are now in position to deal with the (SC) principle in the compact setting whose
original form has been given by R. Palais in [202, Proposition 4.2].

Theorem A.1.2. Let 4 be a compact topological group. Assume that the representation
7 of 4 over X is continuous. Then Fix, (X') n (Fixy, (X)) = {0}
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Proof. Suppose by contradiction that Fix X" n (Fixy (X)* # {0} and take v* # 0O
in Fix, (X") n (Fixy(X))". Define the hyperplane

H, ={ueX:{v:u)y=1}

Clearly, H,- is a nonempty, closed, and convex subset of X. Since v* € Fixy(X'), on
account of (A.2), for any u € H,- we have

(v*, Au) = j(v*,gu)dy = J(gilv*,u)dy (A3)
g 9
= J(v*,u)dy ={v",u) jdy ={vu) =1
% %

On the other hand, v* € (Fixy (X))*. Consequently, (v*,Au) = O forany u € H,.. This
contradicts (A.3) and completes the proof. O

The isometric case
Let X be a reflexive real Banach space. We say that the group ¢ acts isometrically on X
if ||gu|l = |lull for every u € X and g € ¢. The following preparatory results hold.

Lemma A.1.3. If ¢ acts isometrically on X, then ¥ acts isometrically on the dual
space X', thatis, |gv*|x = IV*|x foreveryv* ¢ X' and g € 4.

Proof. Letv* € X' and g € 4. We first prove that [|gv* |y < [v*|x . Indeed, since ¢ acts
isometrically on X, it follows that

lgv* |l = sup|(gv*,u)| = sup|(v*, g 'u)|
[[ull=1 [lull=1

-1
« §u

p <V ’,—>
llg~ul

flufl=1

lull, g™yl = ful

< sup||[v* [ lull = |v* ] -
lull=1

On the other hand, we also have

vl = g™ (vl = lsup|<g’1(gV*)»u>| = sup|(gv", gu)|

[ull=1 Jlull=1
= sup <gV*, ﬁ> lull < sup lgv™ ||y llull = [|gv* | x-
ul=1 llgull Jul=1
Thus, [lgv* |y = [v*lx foreveryv* € X' and g € ¢, as desired. O

Let F : X — 2* be the duality map defined for all u € X by
Fu) = {v* €X' : |v*|y = lull and |v* |3 = (v*,u)},

and let R(F) < X' be the range of the multifunction F.
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Lemma A.1.4. Assume that the group ¢ acts isometrically on X. Then, the fiber F~'(v*)
is a 4-invariant set for every v* ¢ Fix4(X') n R(F), i.e., gFl(v*) ¢ FY(v*) for every
ge9.

If X is also strictly convex, then F _1(Fng (X")) is a subset of Fix (X).

Proof. Letv* € Fixy(X') n R(F) and take u € F~'(v*), where
F'0v") = {we X Jull = vy and (v",u) = V")

We claim that gu € F~}(v*). Indeed, since u € F~(v*) Lemma A.1.3 yields that ||gu| =
lull = [v*|lx . Moreover, since v* € Fixe (X') N R(F) and u € F~'(v*), we also have

* -1 % * 12
(vi.qu) = (g7v"u) = (Vo) = v [y

Thus gF ' (v*) c F}(v*) for every g € 9.

By Theorem 3.4 on page 62 of [61] the reflexivity of X ensures that F is surjective,
thatis | J,cxF(u) = X'. Assume now that X is also strictly convex. Then by Corollary 1.9
on page 46 of [61], the duality map F is strictly monotone, and so injective. Hence F ! is
a single-valued function from X’ onto X. Therefore the first part of the lemma shows at
oncethatgF ' (v*) = F}(v*) foreveryv* € X'and g € ¢, 1. e., F ! (Fixy (X)) € Fixg (X),
as stated. |

Theorem A.1.5. Let X be a reflexive and strictly convex real Banach space and let 4 be
a topological group that acts isometrically on X. Then

Fixy (X') n (Fixe (X))" = {0}.

Proof. Assume by contradiction that Fix,(X') n (Fixy(X))" # {0} and let v* ¢
Fixy, (X') N (Fix, (X))* \ {0}. In particular, v* € Fixy, (X') implies that F~'(v*) € Fixy(X)
by Lemma A.14. But v* € (Fixy (X))* gives [v* |y = (v*,F'(v*)) = 0, which is the
desired contradiction. O

A.2 Extensions to nonsmooth functionals of special forms

Let X be a reflexive real Banach space and let £ : X — R be a functional of class C'. As-
sume that ¢ : X — RuU{oo} is a proper, convex, and lower semicontinuous functional.
Then, according to [239], we say that J = £ + 1 is a Szulkin-type functional.

An element u € X is named a critical point of | = £ + P if

('w),v-u) +Pp(v) -Pp@u) =0 foreveryv e X. (A4)

The number J(u) is a critical value of J.
Foreveryu € D(p) = {v e X : p(v) < oo}, the set

o) = x" €X' : Pp(v) - Pp) = (x*,v - u) for every v € X}
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is called the subdifferential of 1 at u. An equivalent formulation for (A.4) is
0ec&'(w+opu) inX.

Proposition A.2.1. Every local minimum point of ] = £ +  is a critical point of ] in the
sense given in (A.4).

Proof. Letu € X be alocal minimum point of the functional J, so in turn u € D(y). Due
to the convexity of Y, for every ¢t > 0 small enough,

o< J=tu -; tv) -Jw) _ EQu+tlv —tu)) —e@ ) - P(w)
for every v € X. Letting t — 0", we get (A.4), as claimed. O

Although a slightly more general version is proved by J. Kobayashi and M. Otani
in [138], we recall the following form of the principle of symmetric criticality for Szulkin
functionals used in Chapter 8.

Theorem A.2.2. Let] = £+ : X — R U {oo} be a Szulkin-type functional, where
X is a reflexive real Banach space. Assume that a compact group ¢ acts linearly and
continuously on X, and that the functionals £ and ) are ¢-invariant. If there exists u € £,
where X denotes the subspace of 4-invariant functions of X, such that

0 € (€ly) (W) +o(ls)(w) in ¥,
then
0 €& +opu)inX’,

i.e., uis a critical point of ] in the sense given in (A.4).

The proof of Theorem A.2.2 is quite involved, it combines in an ingenious way var-
ious methods and notions from convex and functional analysis. The proof is, however,
given in details in [138, Theorem 3.16].
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List of symbols

The following symbols are frequently used throughout the manuscript:

]R(J; IR(J; = [0, 0);

R* R" = (0,00);

RN standard N-dimensional Euclidean space;

sV unit sphere in RM*! endowed by the induced Euclidean metric;

O xRN-™ strip-like domain in RY;

G Carnot group G = (G, ») endowed by the operation o;

(] Lie algebra associated to the Carnot group G;

HY Heisenberg group HY = C x R;

Qy strip-like domain in Heisenberg group H";

HY N-dimensional hyperbolic space;

BY Poincaré ball model of the hyperbolic space H";

M Riemannian manifold M = (M, g) endowed of the metric g;

O(N) orthogonal group in dimension N;

SO(N) special orthogonal group in dimension N;

U(N) unitary group in dimension N;

M(]RN ) space of R-valued Lebesgue measurable functions in RY;

LP(RN) Lebesgue L¥ space of R-valued functions in RY, with © € [1,00];

LYO C(]RN ) space of the locally L¥ summable of R-valued functions in RY, with
@ € [1,00);

LE(RY, x| ®dx) space of the L® summable weighted functions in RY, with respect to
the weight |x|® and with g € (1, N);

C 1(le) space of R-valued functions continuously differentiable in R;

W (RN) Sobolev space of weakly differentiable R-valued functions in RY with
L¥ weak derivatives;

HY(RM) Hilbertian Sobolev W2 space of R-valued functions defined over R";

Hrlad(]RN ) subspace of H'(RY) of O(N)-invariant functions;

HY(RY) dual space of H'(IRV);

H' (O xRN™)  Hilbertian Sobolev W? space of R valued functions defined over O x
]RN —m;

Hg) (O x RY ™ subspace of H 1 ((’)xIRN ™ of functions with null trace at the boundary
of O x RN,

wke(sN) Sobolev space of the k times weakly differentiable functions in $V
whose derivatives up to order k are L¥ summable over sV ;

H ”’(SN ) Hilbertian Sobolev W™?2 space of R valued functions defined over sN;

Hg’(SN ) subspace of H™(S) of G-invariant functions;

HW'(Qy) Hilbertian Sobolev HW? Folland-Stein space of R-valued functions
defined over le;
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248 — List of symbols

1,2
HW(Qy)

1,2
HW2(Qy)
1,2
HW e, @)

k|
Wy (M)

Hg(M)

Hy (M)
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subspace of H WI’Z(QII,) of functions with null trace at the boundary
of Ql/,;

subspace of H Wcl)’z(Ql/,) of T-invariant functions;

subspace of H Wé’z(Ql/,) of T;’,}fj-invariant functions;

Sobolev space of the k times weakly differentiable R-valued functions
on the manifold M = (M, g) whose derivatives up to order k are L¥
summable over M;

Hilbertian Sobolev ng’z space of R valued functions defined over the
manifold M;

subspace of Hgl,(/\/l) of ¢¥-invariant functions.
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