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Preface
The book is dedicated to the study of elliptic problemswhen a lack of compactness oc-
curs. This research area has been intensively developed in recent years also in connec-
tion with nonlinear phenomena that naturally arise in General Topology, Geometric
Analysis, Functional and Convex Analysis, Game Theory, Mathematical Economics,
and other branches of pure and applied sciences. Fundamental works in the field are
due, among others, to T. Aubin [18], H. Brézis [47], L. Nirenberg [197], J. Serrin [230],
and N. Trudinger [241].

Themainmathematical interest lies in the fact that some classical results of Func-
tional Analysis, mainly based on variational arguments, cannot be directly used for
problems with a lack of compactness, and new techniques have to be produced. For
instance, following the seminal ideas due toH. Brézis andL.Nirenberg [50], P.-L. Lions
[160], and R. Palais [202], the presence of symmetries allows us to obtain the existence
of solutions preserving the geometrical nature.

The aim of the monograph is to present some of these techniques, together with
their applications to elliptic problems with a variational structure. The current litera-
ture on these abstract tools and on their applications is therefore very interesting and
quite large.We refer to the recent outstandingmonographofA. Ambrosetti andA.Mal-
chiodi [11], as well as to the references therein. The book is addressed to researchers
and postgraduate, as well as graduate students, for a comprehensive introduction to
the existence theory for elliptic partial differential equations with a lack of compact-
ness, and can serve as a textbook. The extensive reference list and index make it as a
reference book.

This monograph would never have been written without the encouragements of
V. D. Rădulescu, butwith great pleasurewe thankalso someother dear friends and col-
leagues as R. Aftabizadeh, A. Ambrosetti, M. F. Bidaut-Véron, L. Boccardo, M. Chipot,
J. I. Díaz, A. Farina, G. Fusco, N. Fusco, N. Garofalo, F. Gazzola, E. Lanconelli, A. Mal-
chiodi, P. Marcellini, J. Mawhin, G. Mingione, E. Mitidieri, F. Pacella, P. Rabinowitz,
D. D. Repovš, G. Restuccia, B. Ricceri, M. Rigoli, S. Salsa, C. Sbordone, X. Tang, G.
Tarantello, S. Terracini, L. Verón, R. Xu, F. Zanolin, and B. Zhang.

We are particularly grateful to our forever friend V.D. Rădulescu for his unfail-
ing support and for never abandoning us in difficult times. Special thanks go to
N. Schedensack from De Gruyter for her constant and kindest help at all stages of the
editing process.

July, 2020 Giovanni Molica Bisci and Patrizia Pucci

https://doi.org/10.1515/9783110652017-201
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Introduction
The book tries to be an up-to-date unified exposition for a series of nonlinear prob-
lems with a lack of compactness via critical point theory, obtained by ourselves or
by direct collaboration with other coauthors. For an extensive bibliography of the pi-
oneering papers on variational Dirichlet second order elliptic problems with critical
exponents and on the Yamabe equation, we refer to the seminal review article [47] due
to H. Brézis.

Much of the impressive advance has been recently performed in this field, though
many problems still remain open. The close relationship between analysis and geom-
etry allows the use of methods which simplify many arguments and proofs. The main
theorems are entirely self-contained and given in detail, since we desire to make the
book accessible to a large audience, including graduate and postgraduate students,
and researchers in the field of partial differential equations.

We assume the reader to have a standard background in nonlinear analysis, in-
cluding Sobolev spaces and a first course of functional analysis. A useful assortment
of classical results and techniques can be found in [119, 151, 214].

The monograph is divided into three parts. In the first part of the book, the exis-
tence of solutions for elliptic equations in ℝN with nonstandard growth is studied.

Chapter 1 concerns the existence theorems for a quasilinear elliptic equation
in ℝN , involving general operators with nonstandard growth, as well as critical non-
linearities. Problems with nonstandard growth have been largely studied in the liter-
ature. Existence and qualitative properties of solutions already appear in the famous
well-known papers of the theory. For instance, in the setting of the Calculus of Vari-
ations, an extensive treatment has been provided starting by the seminal papers of
P. Marcellini [168–170], and V. V. Zhikov [259], and more recently by G. Mingione and
his collaborators; see, among others, the papers [28–30, 66, 67, 73, 74, 176] and the
references therein.

Thequasilinear elliptic equations inℝN considered alongChapter 1 are of the form

−div(A(|∇u|)∇u) + B(|u|)u = λf (u) + |u|q
∗−2u, (I.1)

where q∗ is the critical exponent related to q, with 1 < q < N, while λ is a real positive
parameter. Furthermore, A and B are strictly positive and continuous inℝ+, while t 󳨃→
tA(t), t 󳨃→ tB(t) approach 0 as t → 0+ and are of class C1(ℝ+). For further natural
technical assumptions, we refer to Section 1.1. General elliptic operators of typeA take
inspiration from [96, 100] and from Chapter 5 of the monograph [214] due to P. Pucci
and J. Serrin.

The presence of the critical nonlinearity, as well as the fact that (I.1) is set in the
wholeℝN , produces new interesting nonlinear phenomena. On the other hand, equa-
tions of type (I.1) arise in a quite natural way in many different applications, such
as continuum mechanics, phase transition phenomena, population dynamics, and

https://doi.org/10.1515/9783110652017-202
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XII | Introduction

game theory, as they are the typical outcome of the stochastic stabilization of Lévy
processes.

The main existence result given in Theorem 1.1.1 applies well to problems in ℝN

like the following:

−div( ∇u
√1 + |∇u|2

) − Δ4u + u + u
3 = λf (u) + |u|4

∗−2u,
involving theMinkowskimeancurvature operator; seeW.M.Ni and J. Serrin [194–196],
as well as L. A. Peletier and J. Serrin [204]. The extension of Theorem 1.1.1 in several
directions and into the vectorial case has been given in [100]. However, even Theo-
rem 1.1.1 extends and complements the results of [31, 33, 54, 55, 158], and of the refer-
ences therein.

In Section 1.2 it will be shown that the energy functional I associated to (I.1) has
the geometric features to get the existence result via the famous mountain pass theo-
rem due to A. Ambrosetti and P. Rabinowitz [12]. On the other hand, Section 1.2 con-
tains also preliminary results of independent theoretical interest, for example, as in
Lemma 1.2.1.

Section 1.3 is devoted to the proof of the existence Theorem 1.1.1 for (I.1), which
relies on a direct intriguing alternative of Lions type presented in Proposition 1.3.1.

In Chapter 2 the following equation in ℝN is considered:

−Δpu − ΔNu + |u|
p−2u + |u|N−2u − σ |u|

p−2u
|x|p
= λh(x)uq−1+ + γg(x, u) (I.2)

where 1 < p < N, N ≥ 2, 1 < q < N, u+ = max{u, 0}, and h is a positive function of
class Lθ(ℝN ), with θ = N/(N − q), while λ > 0, γ > 0, and σ is a real parameter. The
function g is of exponential type and is assumed to satisfy certain natural structural
properties; see Section 2.1.

Equations in the whole ℝN , involving elliptic operators with standard N-growth,
as well as critical Trudinger–Moser nonlinearities, have been studied in the literature.
Existence and multiplicity results are obtained by using different methods and tech-
niques; see, among others, the papers [5–7, 82], as well as [3, 4, 75, 83] and the refer-
ences therein.

In Section 2.2 we give a brief and self-contained introduction to the variational
setting for equation (I.2) and to some technical lemmas that are crucial in order to get
solutions on the Sobolev space

W = W 1,p(ℝN ) ∩W 1,N (ℝN ),

endowed with the norm

‖u‖ = ‖u‖W 1,p + ‖u‖W 1,N ,
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where ‖u‖W 1,℘ = (‖u‖℘℘+‖∇u‖℘℘)1/℘ for everyu ∈ W 1,℘(ℝN ) and ‖⋅‖℘ denotes the canonical
L℘(ℝN ) norm for any ℘ > 1; see Lemmas 2.2.1 and 2.2.2.

On account of the preliminary results recalled above, Section 2.3 is completely de-
voted to the proof of themain Theorem 2.1.1. The aforementioned proof combines new
and classical tools in Nonlinear Analysis, such as a Brézis–Lieb type lemma for ex-
ponential nonlinearities, a Trudinger–Moser inequality, and the Ekeland variational
principle; see Lemmas 2.2.3 and 2.3.3.

Chapter 3 continues the study of quasilinear elliptic equations in ℝN with non-
standard growth. More precisely, Chapter 3 deals with the existence of nontrivial so-
lutions for Kirchhoff equations in ℝN whose form is given by

M(‖u‖pW 1,p)(−Δpu + |u|p−2u) +M(‖u‖qW 1,q)(−Δqu + |u|q−2u)
= λf (x, u) + |u|q

∗−2u, (I.3)

where 2 ≤ p < q < N and q∗ = Nq/(N − q). The parameter λ in (ℰM) is strictly positive
and the Kirchhoff term M : ℝ+0 → ℝ

+
0, as well as the function f : ℝN × ℝ → ℝ, verify

some natural and mild hypotheses; see Section 3.1.
The prototype for the functionM proposed by Kirchhoff in 1883, namely

M(t) = a + bθtθ−1, a, b ≥ 0, a + b > 0, θ ≥ 1, (I.4)

is clearly monotone. Along this direction, several authors studied the existence of so-
lutions of Kirchhoff equations assuming thatM is nondecreasing inℝ+0. However, from
a mathematical point of view, it is interesting to treat cases in which this monotonic-
ity condition is relaxed. Hence, the main assumption (M ) in Chapter 3 does not force
the Kirchhoff termM to be monotone; see condition (M ) in Section 3.1. Let us refer to
other twomain contributions [175, 253], besides [71], in whichM is not monotone, and
to the references therein.

The so-called degenerate Kirchhoff problems, that is, when the continuous func-
tionM is zero in 0 and positive inℝ+, are extremely interesting and delicate. Recently,
in [21, 63] the degenerate case was covered, as well as in [23, 26, 254], but the involved
Kirchhoff termM was assumed to be nonnegative and nondecreasing as in (I.4).

The main Theorems 3.1.1 and 3.1.2 generalize, in different and nontrivial ways, to
the Kirchhoff setting the results contained in [1, 14, 15], while extend and complete the
existence result given in [38, Theorem 1.1]. Moreover, Theorem 3.1.1 dealswith both the
degenerate and nondegenerate Kirchhoff equations, while Theorem 3.1.2 treats only
the nondegenerate case not covered in Theorem 3.1.1; see Sections 3.2 and 3.3.

The proof techniques should therefore overcome the nonlocal structure of prob-
lem (I.3) due to the presence of the Kirchhoff term M, as well as the intrinsic lack of
compactness that the domain ℝN naturally produces. It is worthy to emphasize the
great interest in stationary Kirchhoff problems in closed Riemannian manifolds; see
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XIV | Introduction

[124, 126] and the references therein. In Chapters 6 and 9 Kirchhoff problems on Rie-
mannian manifolds are considered. Some special cases of the above results are worth
specific note.

In the secondpart of the book, the existence ofmultiple solutions has been treated
via a group-theoretical invariance in the Hilbertian framework for different problems,
in which the settings are responsible for the loss of compactness.

Chapter 4 deals with the one-parameter critical elliptic equation in ℝN given by

− Δu + u = λw(x)|u|m−2u − h(x)|u|2
∗−2u, (I.5)

where λ > 0 is a real parameter, 1 < m < 2∗, and themain coefficients h andw combine
each other and verify suitable summability conditions in order to overcome the loss of
compactness. Equations of this type in bounded domains have been largely studied in
the literature, and we refer for historical comments, as well as for preliminary results
on weighted Lebesgue spaces, to Section 4.1.

Section 4.2 is devoted to the proof of Theorem 4.1.1 in the difficult case 1 < m < 2∗

using a strategy which first appears in [217]. When 1 < m < 2, multiplicity is obtained
for (I.5) via the genus theory.

Finally, in Section 4.3 at the core of the new approach based on a symmetric group
theory, first developed in the pioneeringpaper [36] due to T. Bartsch andM.Willem,we
prove Theorem 4.3.1; see also [148]. In recent years, these techniques have been suc-
cessfully applied to several elliptic problems set in the Hilbertian space H1(ℝN ). Re-
grettably, the extension to equations drivenby the generalp-Laplacian operator,p > 1,
seems not yet completely understood. Among others, we cite the papers [146, 172].

Chapter 5 is concerned with solutions of a scalar field equation settled on a strip-
like domain of the Euclidean space ℝN . More precisely, the general form of the main
problem is given by

{
−Δu = λf (x, y, u) in𝒪 × ℝN−m,

u = 0 on 𝜕𝒪 × ℝN−m,
(I.6)

where λ is a positive real parameter, f : 𝒪 × ℝN−m × ℝ → ℝ is a suitable continuous
nonlinear term, and 𝒪 × ℝN−m is a strip-like domain in ℝN , in which 𝒪 is a bounded
open set in ℝm, withm ≥ 1 and N ≥ m + 2.

The existence and multiplicity theorems proved in Chapter 5 represent a more
precise form of some results that have already appeared in the recent literature; see,
among others, the papers [140, 141, 148, 151]. To overcome the lack of compactness in
order to prove the existence of solutions, we make use of a sort of flower-shape geom-
etry for symmetric subspaces of the Sobolev space H1

0(𝒪 × ℝ
N−m) constructed in [79]

and mainly inspired by the results contained in [141] and [144].
From a purely mathematical point of view, Theorem 5.2.1 furnishes an accurate

description of the number of block-symmetric solutions for (Dλ) that are not cylindri-
cally symmetric when the dimension N is either N = m + 4 or N ≥ m + 6. Recently, a

 EBSCOhost - printed on 2/10/2023 3:36 PM via . All use subject to https://www.ebsco.com/terms-of-use



Introduction | XV

hemivariational inequality problem, via nonsmooth analysis arguments, was treated
in [141]; see also [90] for related topics. When the nonlinearity of [141] is regular, the
problem reduces to (I.6). However, Theorem 3.1 in [141] gives the existence of only
cylindrically symmetric solutions. It is worth noting that the main conclusion of The-
orem 5.2.1 remains valid for the hemivariational problem treated in [141] by using the
W. Krawcewicz andW. Marzantowicz principle for locally Lipschitz functionals estab-
lished in [139]. Moreover, to the contrary of Theorem 3.1 in [141], Theorem 5.2.1 has
been achieved thanks to Propositions 5.1.3 and 5.1.4, which are derived from a careful
analysis of the classical compactness argument due to P.-L. Lions in [160, Théorème
III.2]; see Section 5.1 for a detailed discussion on this topic.

Subsequently, in Section 5.3, the classical fountain theorem provides not only a
finite number of infinitely many cylindrically symmetric solutions, but also cylindri-
cally nonsymmetric solutions in certain dimensions. The main Theorem 5.3.1 can be
viewed as a refined version of a classical existence result proved by T. Bartsch and
M. Willem in [36] for Schrödinger equations. Again, the existence of infinitely many
cylindrically symmetric solutions for hemivariational inequalities has been proved in
Theorem 3.2 of [141], by using a suitable version of the fountain theorem valid for non-
smooth functionals. Inspired by [140, 141], in Theorem 5.3.1 the existence of a precise
number of sequences of symmetric solutions with no cylindrical structure has been
proved, completing somehow the picture.

In both Theorems 5.2.1 and 5.3.1, a crucial role in our approach is played by a care-
ful algebraic analysis of some symmetric structures defined by the natural action of
the group Ô(N −m) = {𝕀m}×O(N −m), where 𝕀m is the identity matrix of orderm, over
the Sobolev space H1

0(𝒪 × ℝ
N−m); see Section 5.1.

Chapter 6 deals with elliptic equations on the unit sphere 𝕊N 󳨅→ ℝN+1, withN ≥ 2,
endowed by the induced Riemannian metric and involving a possibly critical nonlin-
ear term. In this chapterwefirst consider thepolyharmonic problemon theunit sphere

{
Dmv = |u|2

∗
m−2u in 𝕊N ,

u ∈ Hm(𝕊N ), N > 2m,
(I.7)

where m and N are two positive integers, with m > 2, 2∗m = 2N/(N − 2m), D
m is the

polyharmonic operator on the sphere defined by

Dm =
m
∏
k=1
(−Δh +

1
4
(N − 2k)(N + 2k − 2)idL2(𝕊N )),

and Δh denotes the usual Laplace–Beltrami operator on 𝕊N .
In Section 6.2 the existence of sequences of sign-changing solutions, which are

mutually symmetrically distinct, is attained, and a lower estimate of the number of
these sequences is also given; see Theorem 6.2.1. To this aim, some fine properties of
certain symmetric subspaces of the Sobolev space Hm(𝕊N ) are studied in Section 6.1
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XVI | Introduction

via a group-theoretical analysis of the natural action of the orthogonal group O(N + 1)
on the sphere 𝕊N . The main result given in Theorem 6.2.1 is crucially based on the ab-
stract tools developed in [144, Proposition 3.2]. Theorem 6.2.1 ensures that the critical
polyharmonic equation (I.7) admits al least

sN = [N/2] + (−1)
N+1 − 1

sequences of infinitely many finite energy nodal solutions, which are unbounded in
Hm(𝕊N ) and mutually symmetrically distinct.

Critical polyharmonic problems have been intensively studied in the mathemat-
ical literature also in connection with the famous results obtained by H. Brézis and
L. Nirenberg in [50] for the semilinear critical Dirichlet eigenvalue problem. Among
others, we mention here the paper [213] due to P. Pucci and J. Serrin dedicated to criti-
cal polyharmonic Dirichlet eigenvalue problems in the Euclidean ball. Paper [213] has
served as inspiration for subsequent research in different directions; see the mono-
graph [115] as a general reference on this subject.

Along this direction, inspiredbyY.Ding [80], T. Bartsch,M. Schneider, andT.Weth
in [35] show for the critical polyharmonic equation

{
(−Δ)mu = |u|2

∗
m−2u in ℝN ,

u ∈ 𝒟m,2(ℝN ), N > 2m,
(I.8)

the existence of a sequence of infinitely many finite energy nodal solutions which
are unbounded in the Beppo Levi space 𝒟m,2(ℝN ). A more precise version of Theo-
rem 6.2.1, obtained in [185], ensures that the critical polyharmonic equation (I.8) ad-
mits at least an asymptotically exponential number of sequences of infinitely many
finite energy nodal solutionswhich are unbounded in𝒟m,2(ℝN ). A general result valid
for a wide class of O(N + 1)-invariant variational problems that correctly encode also
the critical polyharmonic equation (I.8) has been recently proved byW. Marzantowicz
in [174], via the intrinsic linking between orthogonal Borel subgroups in O(N + 1)with
partial and orthogonal flags inℝN+1. Theorem 6.2.1, on the contrary of theMarzantow-
icz result, is based on some explicit symmetric structures defined through the action
of the orthogonal group on the unit sphere 𝕊N . Indeed, this action naturally arises in
the theory of Lie groups of transformations.

Actually, elliptic equations on the unit sphere are relevant to the theoretical point
of view also in connection with the study of the following parametrized Emden–
Fowler (or, Lane–Emden) equation:

− Δu = λ|x|s−2w(x/|x|)f (|x|−su), x ∈ ℝN+1 \ {0}, (I.9)

where s ∈ ℝ, with 1 − N < s < 0, and

w ∈ Λ+(𝕊
N ) = {w ∈ L∞(𝕊N ) : ess inf

𝕊N
w > 0}.
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Existence results for (I.9) have been established recently in [42, 150, 151] via varia-
tional methods. The key transformation of M. F. Bidaut-Véron and L. Véron in [39] re-
duces (I.9) to

− Δhv + αv = λw(σ)f (v), σ ∈ 𝕊N , α = s(1 − s − N) > 0. (I.10)

Equations of type (I.10) have been largely studied, and we refer to the pioneering pa-
pers [68] of A. Cotsiolis and D. Iliopoulos and [244] by J. L. Vázquez and L. Véron. See
also [151, Chapters 9 and 10] for an intensive treatment of this argument. Along this
direction, in Theorems 6.2.4 and 6.2.5, we establish existence of infinitely many ar-
bitrarily small solutions of (I.9) via (I.10). Furthermore, the main variational idea is
based on the general approach proposed by B. Ricceri in [226]. This method was first
applied in problems similar to (I.9) by J. Saint Raymond in [228].

A persisting assumption on the current literature dedicated to the existence of
infinitelymany solutions for a large class of problems driven by a second order elliptic
operator is expressed by

−∞ < lim inf
t→L

F(t)
t2
≤ lim sup

t→L

F(t)
t2
=∞, (I.11)

where either L = 0+ or L = ∞; see, among others, the papers of F. I. Njoku, P. Omari,
and F. Zanolin [198], F. Obersnel and P. Omari [199], as well as P. Omari and F. Zanolin
[200, 201]. On the contrary of the above results, in Theorems 6.2.4 and 6.2.5, condi-
tion (I.11) is not required any longer, and the primitive F is supposed to have a more
general oscillating behavior near the origin or at infinity, including the case

lim sup
t→L

F(t)
t2
<∞.

Weaker forms of (I.11) are analyzed in Chapters 8 and 9, in which the existence
of infinitely many solutions for a wide class of elliptic problems on homogeneous
Hadamard manifolds is presented. The last Section 6.3 of Chapter 6 is dedicated to
elliptic problems on the unit sphere involving a critical nonlinear term. It is worth
mentioning that in [126] E. Hebey investigates existence and compactness properties
of stationary Kirchhoff equations settled on general compact manifolds.

The main Theorem 6.3.3 is peculiar of stationary nondegenerate Kirchhoff equa-
tions on the sphere 𝕊N when N > 4. For instance, an analogous result cannot be
achieved for Dirichlet problems on bounded Euclidean domains. In the spirit of the
conclusions contained in [126], a direct andmeaningful consequence of Theorem6.3.3
ensures that the critical Kirchhoff equation

(a + b‖u‖2)(−Δhu + u) = λ|u|
q−2u + |u|2

∗−2u in 𝕊N ,

in which q ∈ (2, 2∗) and

‖u‖ = (∫
𝕊N

|∇hu|
2dσh + ∫

𝕊N

|u|2dσh)
1/2
,
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has at least 3sN solutions, provided that N > 4,

a
N−4
2 b > 2(N − 4)

N−4
2

(N − 2)
N−2
2 S

N
2

, where S = inf
u∈H1(𝕊N )\{0}

‖u‖2

‖u‖22∗ , (I.12)

and λ > 0; see Corollary 6.3.4.
The variational analysis we use to prove Theorem 6.3.3 and its consequences is

based on some fine topological results obtained in [225, 226] and makes use of an in-
teresting technical approach developed in [89]. More precisely, a condition like (I.12)
has been introduced in [89] in order to recover the weak lower semicontinuity prop-
erty of the energy functional associated to a stationary Kirchhoff problemdefined on a
boundedEuclideandomain in the presence of a critical nonlinear term. The restriction
on the dimension required in Theorem 6.3.3 is sharp. Indeed, it cannot be improved
for symmetry reasons and coerciveness arguments.

The theorems of Sections 6.2 and 6.3 are obtained by the preliminary abstract
results contained in Section 6.1 and partly inspired by [144] and the monograph [151,
Chapter 10].

The third part of the book is dedicated to non compact problems arising from ge-
ometry.

Chapter 7 deals with subelliptic problems on Carnot groups. In sub-Riemannian
structures, when a lack of compactness occurs, the problems are fairly intriguing and
have been intensively studied in recent years by many authors. For instance, in the
case of subelliptic problems defined on stratified Lie groups, we refer to the papers
of L. D’Ambrosio and E. Mitidieri [70], N. Garofalo and E. Lanconelli [113], S. Maad
[163, 164], I. Schindler and K. Tintarev [229], K. Tintarev [240], and to the references
therein.

In particular, when a domain Ω of a Carnot group𝔾 is not bounded, the Folland–
Stein space HW 1,2

0 (Ω) fails to be compactly embedded into suitable Lebesgue spaces.
This lack of compactness produces several difficulties to apply variational methods.
In order to recover compactness in the unbounded case, a persisting assumption in
the above cited papers is the strong asymptotical contractiveness condition on Ω, in-
troduced in [163]. In the Euclidean framework, we refer to the pioneering paper [77]
due to M. A. Del Pino and P. L. Felmer. However, a strongly asymptotically contractive
domain Ω is geometrically thin at infinity.

In the presence of symmetries, subelliptic problems, in which the domains are
possibly large at infinity, can be successfully treated under the more general geomet-
rical requirement (H ), introduced recently in [27]; see Lemma 7.1.1. More precisely,
in Section 7.2 we work with a topological group T, acting continuously on HW 1,2

0 (Ω),
such that the T-invariant closed subspace HW 1,2

0,T (Ω) can be compactly embedded in
suitable Lebesgue spaces.

Assuming the left invariance of the standard Haar measure μ of the Carnot group
𝔾, with respect to the action of the group ∗ : T × HW 1,2

0 (Ω) → HW 1,2
0 (Ω), as discussed
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in Chapter III § 2 No 4 of N. Bourbaki [46] and Chapter 7 § 1 No 1 of N. Bourbaki [45],
variational methods can be applied to the energy Euler–Lagrange functional associ-
ated to themain problemof Chapter 7; see Lemma 7.2.1, aswell as Theorems 7.2.2, 7.2.3,
and 7.2.6.

The main existence and multiplicity results cover the case of Dirichlet problems
driven by a nonlinear subcritical continuous term f that is superlinear at zero and ei-
ther superlinear or sublinear at infinity; see respectively Theorems 7.2.2 and 7.2.6. Sim-
ilar variational approaches have been extensively used in several contexts, in order to
prove multiplicity results, such as elliptic problems on either bounded or unbounded
domains of Euclidean spaces, elliptic equations involving the Laplace–Beltrami op-
erator on compact Riemannian manifolds without boundary, and, more recently, el-
liptic equations on the ball endowed with Funk–type metrics; see [142, 152, 153, 155],
[150] and [154], respectively. Moreover, Theorem 7.2.3 inspired by [222] emphasizes the
role of the celebratedAmbrosetti–Rabinowitz condition in order to obtaindirectmulti-
plicity results. Elliptic problems on unbounded domains appear fairly involved, since
the Palais–Smale condition of the associated Euler–Lagrange functionals does not
hold at any level, but just below suitable thresholds; see, among others, the papers
[44, 162, 185, 189, 207]. In Section 7.3 we overcome these difficulties adopting several
strategies already used in different contexts.

The theoretical arguments presented above are successful for proving existence
of weak solutions for subelliptic problems defined on a special class of (unbounded)
domains of the Heisenberg groupℍN = ℂN ×ℝ, N ≥ 1. More precisely, let us consider
ψ1,ψ2 : ℝ

+
0 → ℝ that are bounded onbounded sets, withψ1(t) < ψ2(t) for every t ∈ ℝ+0.

Define

Ωψ = {σ ∈ ℍ
N : σ = (z, t), with ψ1(|z|) < t < ψ2(|z|)}, (I.13)

where |z| = √∑Ni=1 |zi|2.
If the functionsψ1 andψ2 are bounded, the domain Ωψ is strongly asymptotically

contractive, and the whole space HW 1,2
0 (Ωψ) is compactly embedded in L℘(Ωψ) for ev-

ery ℘ ∈ (2, 2∗); see [27, 169], as well as [113, 229]. Otherwise, thanks to the Rubik-cube
geometry, Lemma 7.1.1 recovers the compact embedding above.

The attempt to develop a Rubik-cube technique on the Heisenberg group is very
recent; the first result in this sense has been proved in [27]. Following [27], a detailed
description of some symmetric subgroups of 𝕌(N) and variational arguments allow
us to obtain further multiplicity results; see, for instance, Corollary 7.2.5. In this spirit,
Section 7.3 is devoted to an application of an abstract critical point theorem due to P.
Rabier in [219] in problems settled on strip-like domains Ωψ ⊂ ℍ

N ; see Theorem 7.3.1.
Multiplicity results can be directly derived for a wide class of nonlinear problems from
Theorem 7.3.1.

Good references on the arguments treated in Chapter 7 are the monographs [43,
151] and the papers [70, 245], as well as their bibliographies.
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Chapter 8 treats elliptic problems on homogeneous Hadamard manifolds, i. e.,
Riemannian manifolds which are complete, simply connected, with everywhere non-
positive sectional curvature, and with a transitive group of isometries. The existence
or nonexistence of solutions for elliptic problems defined on an Hadamard manifold
ℳ = (ℳ, g) is a topic in Differential Geometry that dates back to the 1970s. In the
last years, several questions have been studied in this setting in connection to sharp
isometric inequalities; see [122, 123].

Among these intriguing geometric implications, conditions on the sectional cur-
vature producemeaningful compact embeddings of certain Sobolev spaces associated
to ℳ into Lebesgue spaces; see L. Skrzypczak and C. Tintarev [232, Theorem 1.3 and
Proposition 3.1]. The compactness properties are essential to apply the critical point
theory to the energy functionals associated to the problem onℳ in question.

In Section 8.1we recall somewell known concepts in Riemannian geometry. In the
presentation we are as concise as possible, in order to correctly introduce the main
problem. We refer, for example, to [18–20, 122, 123] for a detailed derivation of the
geometric quantities, their motivations, and applications.

The heart of Chapter 8 is the problem

{
−Δgu + u = w(σ)[f (u) + λf(u)] inℳ,

u ≥ 0 inℳ, u ∈ H1
g(ℳ),

(I.14)

treated in Section 8.3. In (I.14) the symbol Δg denotes the classical Laplace–Beltrami
operator on an N-dimensional homogeneous Hadamardmanifoldℳ, with N ≥ 3, λ is
a real parameter, w :ℳ→ ℝ is a suitable symmetric positive potential, f : ℝ+0 → ℝ is
a continuous function oscillating near the origin or at infinity, and f : ℝ+0 → ℝ is any
continuous function, with f(0) = 0.

The existence part of the main results given in Theorems 8.3.1 and 8.3.2 is mainly
based on minimization techniques on a truncated problem and on a nonsmooth ver-
sion of the Palais principle due to J. Kobayashi and M. Ôtani in [138], which is valid
for Szulkin-type functionals defined on reflexive Banach spaces; see Theorem 8.2.1 of
Section 8.2 and Theorem A.2.2 in the Appendix. Even if the variational methods for
proving Theorems 8.3.1 and 8.3.2 are classical, the interest of such a more general ap-
proach goes much beyond their proofs because it seems to be flexible and useful for
other purposes.

For instance, in connection with the main theorems, some results have been
proved for elliptic problems on Cartan–Hadamard manifolds with poles in [88, The-
orem 4.1] and, in presence of symmetries, for Schrödinger–Maxwell systems on
Hadamard manifolds in [91, Theorem 1.3]. It is easily seen that similar versions of
Theorems 8.3.1 and 8.3.2 can be proved for Schrödinger–Maxwell systems of the form

{
−Δgv + v + evϕ = λw(σ)[f (v) + λf(v)] inℳ,
−Δgϕ + ϕ = qv2 inℳ,
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where ℳ is a homogeneous Hadamard manifold of dimension N, with 3 ≤ N ≤ 5,
f ,w, f are as before, and e, q > 0 are positive constants; see [91, Remark 1.5].

A crucial tool used along the proof of Theorems 8.3.1 and 8.3.2 is the existence of
a suitable topological group G acting on the Sobolev space H1

g(ℳ) and such that the
G -invariant closed subspace H1

G ,g(ℳ) is compactly embedded in suitable Lebesgue
spaces; see Proposition 8.1.1 in Section 8.1.

As it is well known that the Poincaré ball model is a significative example of a
homogeneous Hadamard manifold, which is noncompact and of infinite Riemannian
measure. In the last Chapter 9, in connection with the results proved in Chapter 8
and taking the advantage of the intrinsic nature of the hyperbolic geometry, elliptic
problems on the Poincaré ball model are studied; see [111, 167, 182], as well as [218,
233, 234] for related topics and methods.

More precisely, we investigate the existence of multiple solutions for Kirchhoff
problems whose simple prototype is given by

{{{
{{{
{

−(a + b ∫
𝔹N

|∇Hu|
2dμ)ΔHu = λw(σ)f (u) in 𝔹N ,

u ∈ H1(𝔹N ),

(I.15)

settled on the Poincaré ballmodel𝔹N , with dimensionN ≥ 3, and positive real param-
eters λ, a and b. Here, ΔH denotes the Laplace–Beltrami operator on𝔹N , the potential
w ∈ L1(𝔹N )∩L∞(𝔹N ) is a nontrivial nonnegative radially symmetric function, and f is
a continuous function.

To the best of our knowledge, no results comparable to the theorems of Chapter 9
are available in the literature concerningKirchhoffproblemson curved structures. The
proof of Theorem 9.2.1 is based on critical point arguments similar to that carried out
by several authors in different contexts; see, among others the papers [16, 17, 184] and
references therein. However, the noncompact hyperbolic setting presents additional
difficulties with respect to the aforementioned cases, and suitable geometrical and
algebraic tools need to be adopted in order to get existence.

For instance, a crucial step in the main approach is the continuity of the super-
position operator due to M. Marcus and V. Mizel [171, Theorem 1, p. 219] given in the
hyperbolic context instead of the classical Euclidean setting; for additional comments
and remarks in the Riemannian framework, see also [123, Proposition 2.5, p. 24]. The
continuity of the superposition operator replaces the nonsmooth analysis method
used in Chapter 8. Indeed, direct minimization gives the existence of constrained
local minima of the associated energy functional Jλ on appropriate weakly closed
subsets (CG

k )k ⊂ H1
G (𝔹

N ), which are actually local minima of Jλ in the entire sym-
metric Sobolev space H1

G (𝔹
N ) thanks to the Marcus–Mizel property, and so solutions

of (I.15) by the symmetric criticality principle of R. Palais.
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Theorem 9.2.1 covers nonlinearity models f for which the potential F satisfies

lim inf
t→0+ F(t)

t2
= −∞,

i. e., condition (I.11) is violated, and so the results contained in Chapter 8 cannot be
applied; see also Theorem 9.2.5 in which

lim sup
t→0+ F(t)

t2
∈ ℝ+ ∪ {∞}.

Theorem 9.2.4 gives a suitable hyperbolic version of Theorem 7.2.3 of Chapter 7 and
shows how assumption (I.11) implies the existence of a nontrivial solution of (I.15); see
also Theorem 9.3.3 for a general version of Theorem 9.2.4 valid for Kirchhoff problems
defined on homogeneous Hadamard manifolds. Finally, the existence established
in Theorem 9.3.2 continues to hold also in the presence of small subcritical perturba-
tions as shown in Theorem 9.3.4. Comments and open problems are presented at the
end of Chapter 9.

Appendix A is dedicated to the celebrated principle of symmetric criticality of R.
Palais intensively used along Parts II and III of the book. The origin of the principle
is rather unclear, and its first implicit use seems to be due to H. Weyl [246] around
1950, and later in 1975 by S. Coleman [65] in a more explicit form. In 1979, for smooth
symmetric functionals, the general criterion was rigorously formulated by R. Palais in
his celebrated paper [202]. A simple version of the Palais principle reads as follows:
Let G be a compact Lie group which acts linearly on a real Banach space X and let I be
a G -invariant functional on X, then

{
I󸀠(u) = 0 in FixG (X)
u ∈ FixG (X)

⇒ I󸀠(u) = 0 in X,

where FixG (X) is the closed subspace of G -symmetric points of X defined by

FixG (X) = {u ∈ X : gu = u for every g ∈ G }.

Theorem A.1.1 is the general version of the Palais result due to J. Kobayashi and M.
Ôtani in [138]. Successively, Theorems A.1.2 and A.1.5 treat two special meaningful
cases of Theorem A.1.1. The first, whose original version is due to R. Palais himself
in [202, Proposition 4.2], deals with the so-called compact case, while the latter con-
cerns the isometric case.

Roughly speaking, if I is a C1 functional on a Banach spaceX, then a good strategy
to search its critical points is to find a suitable topological group G , acting either con-
tinuously or isometrically onX, and such that the functional I is invariantwith respect
to the action of G on X. Hence, if I restricted to FixG (X) admits a critical point u, then
u is also a critical point of I in the entire space X thanks to the symmetric criticality
principle.
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The appendix ends with Theorem A.2.2, which is a significant version of Theo-
rem A.1.2 and is applicable to the so-called Szulkin functionals that are sums of a C1

functional and of a proper convex lower semicontinuous functional. For further de-
tails, we refer to the celebrated paper [239] of A. Szulkin.

The techniques which we discuss and describe in this book go far beyond all the
equations we study, and the methods used here can be applied to other classes of
elliptic equations,Hamiltonian systems, aswell as hemivariational inequalities.Many
of the proofs and derivations are new and, though difficult, make the subject available
to a general reader.

The conclusions also raise, and leave open, a number of other intriguing ques-
tions. Some of them are briefly presented at the end of every chapter. Finally, the bibli-
ography is far frombeing complete, andwe just listed paperswe closely use. Naturally,
we apologize for possible omissions.
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1 Critical quasilinear equations of Marcellini’s type
Lessi così di tutto un po’, disordinatamente;
ma libri, in ispecie, di filosofia. Pesano tanto:
eppure, chi se ne ciba e se li mette in corpo,
vive tra le nuvole.

Luigi Pirandello
from Il fu Mattia Pascal

This chapter deals with existence of nontrivial solutions for critical quasilinear equa-
tions driven by general (p, q) elliptic operators of Marcellini’s type.

The importance of studying problems involving (p, q) operators, or operators with
nonstandard growth conditions, begins with the pioneering papers of P. Marcellini
[168], see also [169, 170], and V. V. Zhikov [259]. Since then the subject has been draw-
ing increasing attention to the existence, regularity, and qualitative properties of so-
lutions of different problems.

We refer to [66, 67, 176] for historical details and awide list of recent contributions
along with [110].

1.1 The quasilinear equation (ℰ)

In this chapter, we study the existence of solutions for a quasilinear elliptic equation,
involving general (p, q) elliptic operators, as well as critical nonlinearities. Since the
study of the scalar equation is fairly involved, we refer the interested reader to the
proofs of the vectorial case contained in the original paper [100], where these opera-
tors and problems were introduced. More precisely, we consider the equation in ℝN

written as

−div(A(|∇u|)∇u) + B(|u|)u = λf (u) + |u|q
∗−2u, (ℰ)

where q∗ is the critical exponent related to q, with 1 < q < N, while λ > 0 is a real
parameter. We require the following condition:
(C1) A and B are strictly positive and continuous in ℝ+, with tA(t) → 0 and tB(t) → 0

as t → 0+.

Let us introduce for simplicity the functions𝒜 and ℬ as the potentials, which are 0 at
0 and obtained by integration from

𝒜󸀠(t) = tA(t), ℬ󸀠(t) = tB(t) for all t ∈ ℝ+0 ,

where tA(t) and tB(t) are defined to be 0 at 0 thanks to (C1). Taking inspiration from
[96, 100, 214], we furthermore require

https://doi.org/10.1515/9783110652017-001
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4 | 1 Critical quasilinear equations of Marcellini’s type

(C2) There exist constants a0, a0, b0, b0, a1, a1, b1, b1 all strictly positive, and there are
exponents p and q, with 1 < p < q < N, such that for all t ∈ ℝ+0,

a0t
p−1 + a1t

q−1 ≤ 𝒜󸀠(t) ≤ a0t
p−1 + a1t

q−1,

b0t
p−1 + b1t

q−1 ≤ ℬ󸀠(t) ≤ b0t
p−1 + b1t

q−1.

Moreover, we assume that
(C3) There exist constants θ and ϑ, with q ≤ min{θ, ϑ} < q∗, such that

θ𝒜(t) ≥ t𝒜󸀠(t), ϑℬ(t) ≥ tℬ󸀠(t) for all t ∈ ℝ+0

holds. Moreover, there exists a constant cq > 0 such that for all ξ , η ∈ ℝN ,

(A(|ξ |)ξ − A(|η|)η) ⋅ (ξ − η) ≥ cq|ξ − η|
q. (1.1)

Note that (1.1) holds whenever 𝒜 is of the form 𝒜(t) = 𝒜1(t) + tq/q, t ∈ ℝ+0, where
q ≥ 2, 𝒜1 is convex and of class C1(ℝ+0), with 𝒜1(0) = 0. Indeed, (1.1) follows at once
by convexity and by the famous Simon inequality, see Lemma 2.1 of [231]. For more
general considerations we refer to [100].

Condition (C1), together with (C3), yields that

𝒜(t) ≤ t𝒜󸀠(t) ≤ θ𝒜(t), ℬ(t) ≤ tℬ󸀠(t) ≤ ϑℬ(t)

for all t ∈ ℝ+0.
We just present few examples which illustrate the general equations covered un-

der the assumptions (C1)–(C3) and refer to [100] for general systems. In the examples
we tacitly suppose that 1 < p < q and 2 ≤ q < N, without mentioning.

Similarly, for 𝒜(t) = ℬ(t) = tp/p + tq/q, t ∈ ℝ+0, with 1 < p < 2 ≤ q < N, one has
a0 = a0 = a1 = a1 = b0 = b0 = b1 = b1 = 1, θ = ϑ = q, and cq > 0 comes from convexity
and the famous Simon inequality, as noted above. Hence (ℰ) becomes

−Δpu − Δqu + |u|
p−2u + |u|q−2u = λf (u) + |u|q

∗−2u,
where from here on Δ℘u = div(|∇u|℘−2∇u) for any ℘ > 1.

If𝒜(t) = √1 + t2 − 1 + t4/4 and ℬ(t) = t2/2 + t4/4, t ∈ ℝ+0, with 2 = p < q = 4, then
a0 = b0 = b1 = a0 = a1 = b0 = b1 = 1, a1 = 1/2, θ = ϑ = 4, q∗ = 4∗, c4 > 0 in (1.1).
Now (ℰ) reads as

−div( ∇u
√1 + |∇u|2

) − Δ4u + u + u
3 = λf (u) + |u|4

∗−2u.
Taking𝒜(t) = t arctan t − log√1 + t2 + t4/4 and again ℬ(t) = t2/2 + t4/4, t ∈ ℝ+0, we get
2 = p < q = 4, a0 = b0 = b1 = a0 = a1 = b0 = b1 = 1, a1 = 2/3, θ = ϑ = 4, q∗ = 4∗, c4 > 0
is the constant above, and (ℰ) reduces to

−div(arctan |∇u|
|∇u|

∇u) − Δ4u + u + u
3 = λf (u) + |u|4

∗−2u.
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1.1 The quasilinear equation (ℰ) | 5

For other examples, we refer to [100].
The parameter λ in (ℰ) is strictly positive and f is a continuous functionwhile F(t) =

∫
t
0 f (τ)dτ satisfies the subcritical growth conditions
(F) F ≥ 0 in ℝ, f (t) = 0 for all t ≤ 0. Furthermore, there exist m and ν such that 1 < p <

q < m < q∗, max{θ, ϑ} < ν < q∗, and for every ε > 0 there exists Cε > 0 for which
the inequalities

󵄨󵄨󵄨󵄨f (t)
󵄨󵄨󵄨󵄨 ≤ qε|t|

q−1 +mCε|t|
m−1 for any t ∈ ℝ (1.2)

and

0 < νF(t) ≤ tf (t) for all t ∈ ℝ+

hold, where θ, ϑ are given in (C3).

The symbol D1,q(ℝN ) denotes the completion of C∞0 (ℝ
N ), with respect to the norm

‖∇u‖q = (∫ℝN |∇u|
qdx)1/q. Moreover, cq∗ > 0 is the best Sobolev constant, for which
‖u‖q∗ ≤ cq∗‖∇u‖q for all u ∈ D1,q(ℝN). (1.3)

The natural space for finding solutions of (ℰ) is

W = W 1,p(ℝN) ∩W 1,q(ℝN),

endowed with the norm

‖u‖ = ‖u‖W 1,p + ‖u‖W 1,q ,
where ‖u‖W 1,℘ = ‖u‖℘ + ‖∇u‖℘ for all u ∈ W 1,℘(ℝN ), and ‖ ⋅ ‖℘ denotes the canonical
L℘(ℝN ) norm for any ℘ > 1.

Theorem 1.1.1. Suppose that A and B satisfy (C1)–(C3) and (F) holds. Then there exists
λ∗ > 0 such that equation (ℰ) admits at least one nontrivial solution uλ in W for all
λ ≥ λ∗. Moreover,

lim
λ→∞
‖uλ‖ = 0 (1.4)

holds.

It is interesting to point out that for the basic equation (ℰ) the proof follows adirect
argument presented in Proposition 1.3.1. Moreover, the threshold λ∗ is just obtained in
the key Lemma 1.2.4, on which Theorem 1.1.1 is strongly based. Thus, we thought to
present the model equation (ℰ), since it appears still interesting in applications and,
moreover, since the existence argument is fairly elegant. Indeed, the proof relies on
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6 | 1 Critical quasilinear equations of Marcellini’s type

the alternative Proposition 1.3.1 of Lions type. However, even Theorem 1.1.1 and its ex-
tension to the vectorial case given in the original paper [100] continue to improve or
complement previous results for the quasilinear (p, q) scalar or vectorial problems; cf.,
e. g., [31, 33, 54, 55, 158] and the references therein.

Indeed, Theorem 1.1.1 extends previous results in several directions also for the
mild growth conditions on the main elliptic operator A, which exhibits a (p, q) growth
by (C2). This is more evident from the fact that the solution spaceW has a strong de-
pendence on (p, q), sincewe consider existence of entire solutions. Usually (p, q) prob-
lems are settled in bounded domains Ω of ℝN , so that the natural solution space is
W = W 1,p

0 (Ω) ∩W
1,q
0 (Ω) = W

1,q
0 (Ω). In this chapter the situation is much more delicate.

Equation (ℰ) has a relevant physical interpretation in applied sciences, as well as
a mathematical challenge in overcoming the new difficulties intrinsic to (ℰ). For addi-
tional physicalmotivations, wemention [58]. The presence of the critical nonlinearity,
as well as the fact that (ℰ) is studied in the entire space ℝN , cause, roughly speaking,
a double loss of compactness, which produces new challenging complications. The
interest in equation (ℰ) is twofold. On the one hand, (ℰ) is quite challenging from an
analytical point of view since the (p, q) operator is not homogeneous and, because of
the lack of compactness, several technical difficulties arise when applying the usual
methods of the theory of elliptic equations. On the other hand, (ℰ) has a relevant phys-
ical interpretation in applied sciences. In other words, if u denotes a concentration of
a chemical substance, (ℰ) derives from a general reaction–diffusion equation

ut = div(|∇u|
p−2∇u + |∇u|q−2∇u) + g(u), (1.5)

which arises not only in physics, but also in biophysics, in plasmaphysics, in chemical
reaction design, and in models of elementary particles. In most cases, g is of polyno-
mial type, but for the von Karman model this nonlinear term has critical growth at
infinity.

1.2 Existence of weak solutions for (ℰ)

In this section, for simplicity, we assume, without further mentioning, that the struc-
tural assumptions required in Theorem 1.1.1 hold.

We say that a function u ∈ W is a (weak) solution of equation (ℰ) if

∫

ℝN

A(|∇u|)∇u ⋅ ∇φdx + ∫
ℝN

B(|u|)uφdx

= λ ∫
ℝN

f (u)φdx + 1
q∗
∫

ℝN

|u|q
∗−2uφdx

for any φ ∈ W .
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1.2 Existence of weak solutions for (ℰ) | 7

Clearly, the (weak) solutions of (ℰ) are exactly the critical points of the Euler–
Lagrange functional I = Iλ associated with (ℰ), where I : W → ℝ is given for all u ∈ W
by

I(u) = ∫
ℝN

𝒜(|∇u|)dx + ∫
ℝN

ℬ(|u|)dx − λ ∫
ℝN

F(u)dx − 1
q∗
∫

ℝN

|u|q
∗
dx,

which is well defined and of class C1(W) by (C1) and (F).
It will be shown here that the functional I has the geometric features to get the ex-

istence of a Palais–Smale sequence at special levels via themountain pass theorem of
Ambrosetti and Rabinowitz. Taking inspiration from [100], we prove some preliminary
properties. Combining the classical results in Sobolev space theory, we easily get the
next lemma.

Lemma 1.2.1. The embedding W 󳨅→ L℘(ℝN ) is continuous for all ℘ ∈ [p, q∗], and

‖u‖℘ ≤ c℘‖u‖ for all u ∈ W , (1.6)

where c℘ depends on ℘, N, p, and q.
If ℘ ∈ [1, q∗), then the embedding W 󳨅→󳨅→ L℘loc(ℝ

N ) is compact.

Before showing the geometrical mountain pass structure of I, let us note that for
any ε > 0 condition (F) gives the existence of Cε > 0 such that

󵄨󵄨󵄨󵄨F(t)
󵄨󵄨󵄨󵄨 ≤ ε|t|

q + Cε|t|
m for all t ∈ ℝ (1.7)

holds. For simplicity in notation, in what follows we put

a = min{a0, b0, a1, b1}, ã = min{a0, a1}, (1.8)

while a = max{a0, b0, a1, b1}. Clearly, 0 < a ≤ ã by (C2).

Lemma 1.2.2. Fix any λ > 0. Then there exists a nonnegative function e ∈ C∞c (ℝ
N ),

independent of λ, such that I(e) < 0, ‖e‖ ≥ 2 and ‖e‖q∗ > 0.
Furthermore, there exist numbers 𝚥 = 𝚥(λ) > 0 and ρ = ρ(λ) ∈ (0, 1] such that

I(u) ≥ 𝚥 for any u ∈ W, with ‖u‖ = ρ.

Proof. Fix λ > 0. Let u ∈ C∞c (ℝ
N ) be such that u ≥ 0 in ℝN , ‖u‖ = 1, and ‖u‖q∗ > 0.

Therefore, by (C2), (F), and the definition of a given in Section 1.1, we have as t →∞,

I(tu) ≤ a
p
tq − t

q∗
q∗
‖u‖q

∗
q∗ → −∞,

since 1 < p < q < q∗, as assumed in (C3). Hence, taking e = τ0u, with τ0 > 0 sufficiently
large, we obtain at once that e ≥ 0 in ℝN , ‖e‖ ≥ 2, I(e) < 0, and ‖e‖q∗ > 0, as stated.
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8 | 1 Critical quasilinear equations of Marcellini’s type

Moreover, for the second part of the lemma, we note that for all u ∈ W ,

‖u‖q ≤ 2q−1{‖u‖qW 1,p + ‖u‖qW 1,q}.
Hence, (C2), (1.8), and (1.6) imply that for all u ∈ W , with ‖u‖ ≤ 1,

I(u) ≥ a
p
‖u‖pW 1,p + aq ‖u‖qW 1,q − λ ∫

ℝN

ε|u|qdx − λ ∫
ℝN

Cε|u|
mdx − 1

q∗
‖u‖q

∗
q∗

≥
a
q
{‖u‖qW 1,p + ‖u‖qW 1,q} − λεcqq‖u‖q − λCεcmm‖u‖m − c

q∗
q∗
q∗
‖u‖q

∗

≥
a
q
21−q‖u‖q − λεcqq‖u‖

q − λCεc
m
m‖u‖

m −
cq
∗

q∗
q∗
‖u‖q

∗
,

since 1 < p < q < m < q∗. Therefore, we are able to fix ε > 0 so small that

κ = 21−q a
q
− λεcqq > 0.

Hence, there exists ρ ∈ (0, 1] such that

max
t∈[0,1]

y(t) = y(ρ) > 0, where y(t) = κ tq − λCεc
m
mt

m −
cq
∗

q∗
q∗

tq
∗
,

since q < m < q∗ and due to the choice of ε. Consequently, I(u) ≥ y(ρ) = 𝚥 for all u ∈ W ,
with ‖u‖ = ρ, as desired. This concludes the proof.

From the proof of Lemma 1.2.2 it is evident that e = τ0u is selected at some λ0 > 0,
that is, τ0 = τ0(λ0), then I(e) < 0 for all λ ≥ λ0. Moreover, ‖e‖ ≥ 2 > ρ for all λ ≥ λ0,
since ρ = ρ(λ) ∈ (0, 1].

We recall in passing that, if X is a real Banach space, a C1(X) functional J satisfies
the Palais–Smale condition at level c ∈ ℝ if anyPalais–Smale sequence (uk)k at level c,
briefly (PS)c sequence, such that

J(uk)→ c and J󸀠(uk)→ 0 in X󸀠 as k →∞, (1.9)

admits a convergent subsequence in X.
Now, for fixed λ > 0, thanks to the geometry given in Lemma 1.2.2, we introduce

the special levels of I by

cλ = infγ∈Γ
max
t∈[0,1]

I(γ(t)), (1.10)

where Γ = {γ ∈ C([0, 1],W) : γ(0) = 0, I(γ(1)) < 0}. Obviously, cλ > 0 thanks to
Lemma 1.2.2, since in particular ‖e‖ > ρ. We introduce an asymptotic condition for the
level cλ. This result was already observed in the scalar case in [96], cf. Lemma 2.2 and
Remark 2.3, and the vectorial case in [100], and will be crucial to overcome the lack of
compactness due to the presence of the critical nonlinearities.
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1.2 Existence of weak solutions for (ℰ) | 9

Lemma 1.2.3. One has

lim
λ→∞

cλ = 0.

Proof. Fix λ > 0. Let e be the nonnegative function determined in Lemma 1.2.2. Since
the functional I satisfies the mountain pass geometry at 0 and e, there exists tλ > 0
verifying I(tλe) = maxt≥0 I(te). Therefore, ⟨I󸀠(tλe), e⟩ = 0. Thus,

∫

ℝN

A(tλ|∇e|)tλ|∇e|
2dx + ∫

ℝN

B(tλ|e|)tλ|e|
2dx

= λ ∫
ℝN

f (tλe)edx + t
q∗−1
λ ‖e‖

q∗
q∗

≥ tq
∗−1

λ ‖e‖
q∗
q∗ ,

(1.11)

by (F), since λ > 0.
We claim that {tλ}λ>0 is bounded in ℝ. Indeed, from (C2), putting Λ = {λ > 0 :

tλ‖e‖ ≥ 1}, we derive that

∫

ℝN

A(tλ|∇e|)t
2
λ|∇e|

2dx + ∫
ℝN

B(tλ|e|)t
2
λ|e|

2dx ≤ atqλ ‖e‖
q (1.12)

for any λ ∈ Λ, since 1 < p < q. Therefore, (1.11) and (1.12) imply that

a‖e‖q ≥ tq
∗−q

λ ‖e‖
q∗
q∗ for any λ ∈ Λ,

which yields that {tλ}λ∈Λ is bounded, since ‖e‖q∗ > 0 by Lemma 1.2.2. It follows at once
that {tλ}λ>0 is bounded. This proves the claim.

Fix now a sequence (λk)k ⊂ ℝ+ such that λk → ∞ as k → ∞. Obviously, (tλk )k is
bounded. Thus, there exist a t0 ≥ 0 and a subsequence of (λk)k, still denoted by (λk)k,
such that tλk → t0 as k → ∞. By the continuity of 𝒜󸀠 and ℬ󸀠 in ℝ+0, as stated in (C1),
combined with (1.11), there exists C > 0 such that, for any k ∈ ℕ,

λk ∫
ℝN

f (tλe)e dx + t
q∗−1
λk
‖e‖q

∗
q∗ ≤ C. (1.13)

We assert that t0 = 0. Otherwise, (F) and the dominated convergence theorem yield,
as k →∞,

∫

ℝN

f (tλke)e dx → ∫
ℝN

f (t0e)e dx > 0,

by (F) and the fact that e is nonnegative,with ‖e‖q∗ > 0, as constructed in Lemma 1.2.2.
Therefore, recalling that λk →∞, we get at once that

lim
k→∞
(λk ∫
ℝN

f (tλke)e dx + t
q∗−1
λk
‖e‖q∗) =∞,
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10 | 1 Critical quasilinear equations of Marcellini’s type

which contradicts (1.13). Thus t0 = 0 and tλ → 0 as λ → ∞, since the sequence (λk)k
is arbitrary.

Now the path γ(t) = t e, t ∈ [0, 1], belongs to Γ, so that Lemma 1.2.2 and (C2) give

0 < cλ ≤ max
t≥0

I(γ(t)) ≤ I(tλe) ≤
a

p
‖e‖qtpλ → 0

as λ →∞, since e does not depend on λ. This completes the proof of the lemma.

Lemma 1.2.2 and the mountain pass lemma yield that the set of Palais–Smale se-
quences of I at the level cλ given in (1.10) is nonempty. Now we are ready to prove
crucial properties of the Palais–Smale sequences of I at the special level cλ.

Lemma 1.2.4. Let (uk)k ⊂ W be a (PS)cλ sequence of I for all λ > 0. Then,
(i) up to a subsequence, uk ⇀ uλ in W as k →∞;
(ii) there exists λ∗ > 0 such that the weak limit uλ is a solution of (ℰ) for all λ ≥ λ∗;
(iii) the set {uλ}λ≥λ∗ has the asymptotic property (1.4).
Proof. Let (uk)k ⊂ W be a (PS)cλ sequence of I for any λ > 0 such that

I(uk)→ cλ and I󸀠(uk)→ 0 inW 󸀠 as k →∞. (1.14)

By (C3) and (F), we get

I(uk) −
1
ν
⟨I󸀠(uk), uk⟩ = ∫

ℝN

𝒜(|∇uk |)dx −
1
ν
∫

ℝN

A(|∇uk |)|∇uk |
2dx

+ ∫

ℝN

ℬ(|uk |)dx −
1
ν
∫

ℝN

B(|uk |)|uk |
2dx

− λ ∫
ℝN

(F(uk) −
1
ν
f (uk)uk)dx + (

1
ν
−

1
q∗
)‖uk‖

q∗
q∗

≥ (
1
θ
−
1
ν
) ∫

ℝN

𝒜󸀠(|∇uk |)|∇uk |dx + (
1
ϑ
−
1
ν
) ∫

ℝN

ℬ󸀠(|uk |)|uk |dx,

(1.15)

since q ≤ max{θ, ϑ} < ν < q∗ by (F) and (C3). Then, thanks to (1.14) and (C2), there
exists dλ > 0 such that, as k →∞,

cλ + dλ‖uk‖ + o(1) ≥ ℓ(‖uk‖
p
W 1,p + ‖uk‖qW 1,q), (1.16)

where

ℓ = a( 1
max{θ, ϑ}

−
1
ν
), (1.17)

and ℓ > 0 by (1.8), (C2), and (F). We claim that (uk)k is bounded inW .
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1.2 Existence of weak solutions for (ℰ) | 11

Assume for a contradiction that ‖uk‖ →∞ as k →∞. Then, passing if necessary
to a subsequence, still labeled by (uk)k, it has norm diverging as n diverges. Then,
we could have either exactly one Sobolev norm diverging, say ‖ ⋅ ‖W 1,p , or both norms
diverging. In the first case, as k →∞,

0 < ℓ ≤ dλ
‖uk‖W 1,p + ‖uk‖W 1,q
‖uk‖

p
W 1,p + ‖uk‖qW 1,q + o(1)

≤ dλ(
‖uk‖W 1,p
‖uk‖

p
W 1,p +
‖uk‖W 1,q
‖uk‖

p
W 1,p ) + o(1)

≤ dλ‖uk‖
1−p
W 1,p + o(1) = o(1).

Again this gives the required contradiction and proves the claim.
Finally, in the second case, as k →∞,

0 < ℓ ≤ dλ
‖uk‖W 1,p + ‖uk‖W 1,q
‖uk‖

p
W 1,p + ‖uk‖qW 1,q + o(1)

≤ dλ(
‖uk‖W 1,p
‖uk‖

p
W 1,p +
‖uk‖W 1,q
‖uk‖

q
W 1,q ) + o(1)

≤ dλ(‖uk‖
1−p
W 1,p + ‖uk‖1−qW 1,q) + o(1) = o(1).

Consequently, the claim is proved in all the possible cases.
Thus, since (uk)k is bounded in the reflexive Banach spaceW , there exist uλ ∈ W ,

nonnegative numbers 𝚤λ, δλ, and bounded nonnegative Radon measures μ and ω on
ℝN , by virtue of Proposition 1.202 of [107], such that, up to a subsequence still denoted
by (uk)k, we have

uk ⇀ uλ inW , ‖uk‖
p
W 1,p + ‖uk‖qW 1,q → 𝚤λ,

uk → uλ in L
℘
loc(ℝ

N), uk → uλ a. e. in ℝ
N ,

|uk | ≤ gR a. e. in ℝN , for some gR ∈ Lq(BR) and all R > 0,

‖uk − uλ‖
q∗
q∗ → δλ,

|uk |
q∗−2uk ⇀ |uλ|q∗−2uλ in Lq∗/(q∗−1)(ℝN),

ã|∇uk |
qdx ∗⇀ μ inℳ(ℝN), |uk |

q∗dx ∗⇀ ω inℳ(ℝN),

(1.18)

with℘ ∈ [1, q∗), by (1.6) and Lemma 1.2.1. Let us recall that ã is the key positive number
introduced in (1.8). This completes the proof of (i).

Theorem 2 of [134] can be applied thanks to (1.18). Therefore, there exist two non-
negative numbers μ0 and ω0, at most countable set J, three families of points {xj}j∈J
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12 | 1 Critical quasilinear equations of Marcellini’s type

and of nonnegative numbers {μj}j∈J and {ωj}j∈J such that

ω = |uλ|
q∗dx + ω0δ0 +∑

j∈J
ωjδxj ,

μ ≥ ã|∇uλ|
qdx + μ0δ0 +∑

j∈J
μjδxj , ωq/q∗

0 ≤
μ0
S
,

ωq/q∗
j ≤

μj
S
for all j ∈ J,

(1.19)

where δ0 and δxj are the Dirac functions at the points 0 and xj of ℝ
N , and

S = inf
u∈D1,q(ℝN )

u ̸=0

ã‖∇u‖qq
‖u‖qq∗ . (1.20)

From (1.15)–(1.18), we derive the main formula

cλ + o(1) ≥ ℓ{‖uk‖
p
W 1,p + ‖uk‖qW 1,q} + ( 1ν − 1

q∗
)‖u‖q

∗
q∗ (1.21)

as k →∞.
First we assert that

lim
λ→∞
𝚤λ = 0. (1.22)

Otherwise, lim supλ→∞ 𝚤λ = 𝚤 > 0. Hence there is a sequence j 󳨃→ λj ↑ ∞ such that
𝚤λj → 𝚤 as j →∞. Then, letting j →∞, we get from (1.21) and Lemma 1.2.3 that

0 ≥ ℓ 𝚤 > 0.

This contradiction proves the assertion (1.22). Moreover,

‖uλ‖
p
W 1,p + ‖uλ‖qW 1,q ≤ 𝚤λ,

since uk ⇀ uλ inW , so that (1.6) and (1.22) imply that

lim
λ→∞
‖uλ‖q∗ = limλ→∞

‖uλ‖ = 0. (1.23)

Fix a test function φ ∈ C∞0 (ℝ
N ) such that 0 ≤ φ ≤ 1, φ ≡ 1 in the closed ball B1

of center 0 and radius 1, while φ ≡ 0 in Bc2, where B2 is the closed ball of center 0 and
radius 2, and ‖∇φ‖∞ ≤ 2. Take ε > 0 andputφε,j(x) = φ((x−xj)/ε), x ∈ ℝN , for any fixed
j ∈ J, where {xj}j∈J is introduced in (1.19), and φε,0(x) = φ(x/ε), x ∈ ℝN . Fix j ∈ J ∪ {0}.
Then φε,juk ∈ W and so ⟨I󸀠(uk),φε,juk⟩ = o(1) as k →∞. Therefore, as k →∞,

o(1) = ∫
ℝN

A(|∇uk |)uk∇uk ⋅ ∇φε,jdx
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1.2 Existence of weak solutions for (ℰ) | 13

+ ∫

ℝN

φε,j{A(|∇uk |)|∇uk |
2 + B(|uk |)|uk |

2}dx (1.24)

− λ ∫
ℝN

φε,jf (uk)ukdx − ∫
ℝN

φε,j|uk |
q∗dx.

Thus, by (C2), the Hölder inequality, and a change of variable,

lim sup
k→∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

ℝN

A(|∇uk |)uk∇uk ⋅ ∇φε,jdx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ lim sup
k→∞
{ ∫
B(xj ,2ε)

{a0|∇uk |
p−1|uk | ⋅ |∇φε,j| + a1|∇uk |

q−1|uk | ⋅ |∇φε,j|}dx}

≤ lim sup
k→∞
{a0‖∇uk‖

p−1
p ( ∫

B(xj ,2ε)

󵄨󵄨󵄨󵄨uk∇φε,j(x)
󵄨󵄨󵄨󵄨
pdx)

1/p

+ a1‖∇uk‖
q−1
q ( ∫

B(xj ,2ε)

󵄨󵄨󵄨󵄨uk∇φε,j(x)
󵄨󵄨󵄨󵄨
qdx)

1/q
}

≤ c0a0( ∫
B(xj ,2ε)

󵄨󵄨󵄨󵄨uλ∇φε,j(x)
󵄨󵄨󵄨󵄨
pdx)

1/p
+ c1a1( ∫

B(xj ,2ε)

󵄨󵄨󵄨󵄨uλ∇φε,j(x)
󵄨󵄨󵄨󵄨
qdx)

1/q

≤ cφ{c0a0( ∫
B(xj ,2ε)

|uλ|
p∗dx)1/p∗ + c1a1( ∫

B(xj ,2ε)

|uλ|
q∗dx)1/q∗},

where c0 = supk∈ℕ ‖∇uk‖p−1p , c1 = supk∈ℕ ‖∇uk‖q−1q , and cφ = (∫B2 |∇φ(y)|
Ndy)1/N . Con-

sequently,

lim
ε→0+ lim sup

k→∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

ℝN

A(|∇uk |)uk∇uk ⋅ ∇φε,jdx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 0. (1.25)

Clearly, by (C2), the properties of φ, and (1.18), as k →∞,

0 ≤ ∫
ℝN

φε,jB(|uk |)|uk |
2dx ≤ ∫

B(xj ,2ε)

(b0|uk |
p + b1|uk |

q)dx

→ ∫
B(xj ,2ε)

(b0|uλ|
p + b1|uλ|

q)dx,

since 1 < p < q < q∗. In conclusion,

lim
ε→0+ limk→∞

∫

ℝN

φε,jB(|uk |)|uk |
2dx = 0. (1.26)

 EBSCOhost - printed on 2/10/2023 3:36 PM via . All use subject to https://www.ebsco.com/terms-of-use



14 | 1 Critical quasilinear equations of Marcellini’s type

Likewise, by (F) and (1.18), as k →∞,

0 ≤ ∫
ℝN

φε,jf (uk)ukdx ≤ ∫
B(xj ,2ε)

(q|uk |
q +mC1|uk |

m)dx

→ ∫
B(xj ,2ε)

(q|uλ|
q +mC1|uλ|

m)dx,

since 1 < p < q < m < q∗. Therefore,

lim
ε→0+ limk→∞

∫

ℝN

φε,jf (uk)ukdx = 0. (1.27)

In conclusion, (C2), (1.8), (1.24)–(1.27) give the crucial formula for all j ∈ J∪{0}, namely

∫

ℝN

φε,jdμ + o(1) ≤ ∫
ℝN

φε,jdω (1.28)

as ε → 0+.
By Lemma 1.2.3, there exists λ∗ = λ∗(N , q,ω) > 0 such that

cλ < (
1
ν
−

1
q∗
)SN/q for all λ ≥ λ∗. (1.29)

We divide the proof in two parts. First, (1.19) and (1.28) yield S ωq/q∗
j ≤ μj ≤ ωj for all

j ∈ J. Assume by contradiction thatωj > 0 for some j ∈ J. Then,ωj ≥ SN/q, and so (1.21)
implies

cλ + o(1) ≥ (
1
ν
−

1
q∗
)‖uk‖

q∗
q∗ ≥ ( 1ν − 1

q∗
) ∫

ℝN

φε,jdω

as k →∞. On the other hand, as k →∞ and ε → 0+, we have

cλ ≥ (
1
ν
−

1
q∗
)ωj ≥ (

1
ν
−

1
q∗
)SN/q > 0,

which is an obvious contradiction by (1.29). Hence, ωj = 0 for all j ∈ J and for all
λ ≥ λ∗.

Similarly, when the center of the ball is 0, then (1.19) and (1.28) give Sωq/q∗
0 ≤ μ0 ≤

ω0. Assume by contradiction that ω0 ̸= 0. Then, ω0 ≥ SN/q. As above, by (1.21) we
obtain, as k →∞ and ε → 0+,

cλ ≥ (
1
ν
−

1
q∗
)ω0 ≥ (

1
ν
−

1
q∗
)SN/q > 0,

which is again a contradiction by (1.29). Therefore,ω0 = 0 and so μ0 = 0 for all λ ≥ λ∗.
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1.2 Existence of weak solutions for (ℰ) | 15

In summary, we have shown that there exists λ∗ > 0 such that for all λ ≥ λ∗,

|uk |
q∗dx ∗⇀ ω = |uλ|

q∗dx inℳ(ℝN)

as k →∞, by (1.18) and (1.19). In particular, for all ϕ ∈ C∞c (ℝ
N ),

lim
k→∞
∫

ℝN

ϕ|uk |
q∗dx = ∫

ℝN

ϕ|uλ|
q∗dx. (1.30)

Take R > 0 and φ ∈ C∞0 (ℝ
N ) such that 0 ≤ φ ≤ 1 in ℝN , φ ≡ 1 in BR, φ ≡ 0 in Bc2R

and ‖∇φ‖∞ ≤ 2. Now by (1.1) of (C3) we have

cq ∫
BR

|∇uk − ∇uλ|
qdx

≤ ∫
BR

(A(|∇uk |)∇uk − A(|∇uλ|)∇uλ) ⋅ (∇uk − ∇uλ)dx

≤ ∫

ℝN

(A(|∇uk |)∇uk − A(|∇uλ|)∇uλ) ⋅ (∇uk − ∇uλ)φdx

= ∫

ℝN

φA(|∇uk |)|∇uk |
2dx − ∫

ℝN

φA(|∇uk |)∇uk ⋅ ∇uλdx + o(1)

(1.31)

as k →∞ by (1.18). Clearly,

⟨I󸀠(uk),φuk⟩ − ⟨I
󸀠(uk),φuλ⟩ = o(1) as k →∞

and

∫

ℝN

φA(|∇uk |){|∇uk |
2 − ∇uk ⋅ ∇uλ}dx = ⟨I

󸀠(uk),φuk⟩ − ⟨I
󸀠(uk),φuλ⟩

− ∫

ℝN

A(|∇uk |)(uk − uλ)∇uk ⋅ ∇φdx − ∫
ℝN

φB(|uk |)uk(uk − uλ)dx

+ λ ∫
ℝN

φf (uk)(uk − uλ)dx

+ ∫

ℝN

φ|uk |
q∗dx − ∫

ℝN

φ|uk |
q∗−2ukuλdx.

By (C2) and the Hölder inequality,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

ℝN

A(|∇uk |)(uk − uλ)∇uk ⋅ ∇φdx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 2{a0‖∇uk‖

p−1
p (∫

B2R

|uk − uλ|
pdx)

1/p

+ a1‖∇uk‖
q−1
q (∫

B2R

|uk − uλ|
qdx)

1/q
},
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16 | 1 Critical quasilinear equations of Marcellini’s type

which yields by (1.18) that

lim
k→∞
∫

ℝN

A(|∇uk |)(uk − uλ)∇uk ⋅ ∇φdx = 0. (1.32)

Similarly, again by (C2) and the Hölder inequality,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

ℝN

φB(|uk |)uk(uk − uλ)dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ {b0‖uk‖

p−1
p (∫

B2R

|uk − uλ|
pdx)

1/p

+ b1‖uk‖
q−1
q (∫

B2R

|uk − uλ|
qdx)

1/q
},

which yields by (1.18) that

lim
k→∞
∫

ℝN

φB(|uk |)uk(uk − uλ)dx = 0. (1.33)

Likewise, by (F), the Hölder inequality, and (1.18), as k →∞,

0 ≤ ∫
ℝN

φf (uk)(uk − uλ)dx

≤ ∫
B2R

φ(q|uk |
q−1|uk − uλ| +mC1|uk |

m−1|uk − uλ|)dx

≤ C{( ∫
B2R

|uk − uλ|
qdx)

1/q
+ (∫

B2R

|uk − uλ|
mdx)

1/m
}→ 0,

(1.34)

where C = q supk∈ℕ ‖uk‖q−1 + mC1 supk∈ℕ ‖uk‖m−1 < ∞, since 1 < p < q < m < q∗.
Finally, as k →∞,

∫

ℝN

φ|uk |
q∗dx − ∫

ℝN

φ|uk |
q∗−2ukuλdx → 0, (1.35)

by (1.18) and (1.30). Thus, combining (1.31)–(1.35), we have

cq ∫
BR

|∇uk − ∇uλ|
qdx ≤ o(1) as k →∞.

Consequently, ∇uk → ∇uλ in [Lq(BR)]N for all R > 0, since cq > 0 by (C3). Therefore,
up to subsequence, not relabeled, we get that

∇uk → ∇uλ a. e. in ℝN , (1.36)
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1.2 Existence of weak solutions for (ℰ) | 17

and for all R > 0 there exists a function hR ∈ Lq(BR) such that |∇uk | ≤ hR a. e. in BR
and for all k ∈ ℕ.

Fix ϕ in C∞c (ℝ
N ) and let R > 0 be so large that suppϕ ⊂ BR. By the above con-

struction and (C2), we have a. e. in BR that
󵄨󵄨󵄨󵄨A(|∇uk |)∇uk ⋅ ∇ϕ

󵄨󵄨󵄨󵄨 ≤ (a0|∇uk |
p−1 + a1|∇uk |

q−1)|∇ϕ|

≤ (a0h
p−1
R + a1h

q−1
R )|∇ϕ| = h,

where h ∈ L1(BR). Therefore, the dominated convergence theorem gives at once as
k →∞ that

∫

ℝN

A(|∇uk |)∇uk ⋅ ∇ϕdx = ∫
BR

A(|∇uk |)∇uk ⋅ ∇ϕdx

→ ∫

ℝN

A(|∇uλ|)∇uλ ⋅ ∇ϕdx.

Similarly, using again (C2) and (1.18), we have a. e. in BR that
󵄨󵄨󵄨󵄨B(|uk |)ukϕ

󵄨󵄨󵄨󵄨 ≤ (b0g
p−1
R + b1g

q−1
R )|ϕ| = g ∈ L

1(BR),

and so the dominated convergence theorem gives, as k →∞,

∫

ℝN

B(|uk |)ukϕdx → ∫
ℝN

B(|uλ|)uλϕdx,

while by (F),
󵄨󵄨󵄨󵄨f (uk)ϕ
󵄨󵄨󵄨󵄨 ≤ (q|uk |

q−1ϕ +mC1|uk |
m−1)|ϕ| ≤ G ∈ L1(BR),

so again by the dominated convergence theorem, as k →∞,

∫

ℝN

f (uk)ϕdx → ∫
ℝN

f (uλ)ϕdx.

Finally, since ⟨I󸀠(uk),ϕ⟩ = o(1) as k →∞, we have

∫

ℝN

A(|∇uk |)∇uk ⋅ ∇ϕdx + ∫
ℝN

B(|uk |)ukϕdx

= λ ∫
ℝN

f (uk)ϕdx +
1
q∗
∫

ℝN

|uk |
q∗−2ukϕdx + o(1).

Thus, letting k →∞, using the above arguments and (1.18), we get at once that

∫

ℝN

A(|∇uλ|)∇uλ ⋅ ∇ϕdx + ∫
ℝN

B(|uλ|)uλϕdx

= λ ∫
ℝN

f (uλ)ϕdx +
1
q∗
∫

ℝN

|uλ|
q∗−2uλϕdx (1.37)
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18 | 1 Critical quasilinear equations of Marcellini’s type

for all ϕ in C∞c (ℝ
N ).

Now fix φ inW . Then the sequence (ϕk)k in C∞c (ℝ
N ), defined by ϕk = ζk(ρk ∗ φ),

where (ρk)k is a sequence of mollifiers and (ζk)k is a sequence of cut-off functions, has
the properties that ϕk → φ inW = W 1,p(ℝN ) ∩W 1,q(ℝN ) and ϕk → φ, ∇ϕk → ∇φ a. e.
in ℝN as k → ∞. Of course, (1.37) holds along (ϕk)k for all k. Passing to the limit as
k →∞ under the sign of integrals, by the dominated convergence theorem, we obtain
the validity of (1.37) for all φ ∈ W . In conclusion,

⟨I󸀠(uλ),φ⟩ = 0 for all φ ∈ W , (1.38)

that is, uλ is a solution of (ℰ) for all λ ≥ λ∗. This completes the proof of (ii).

Finally, (1.4), and so (iii), is a direct consequence of (1.23) and (ii).

1.3 Proof of Theorem 1.1.1

Let us finish the chapter with a result of independent interest, which implies useful
consequences.

Proposition 1.3.1. For any λ > 0 let (uk)k ⊂ W bea (PS)cλ sequence of I such that uk ⇀ 0
in W as k →∞. Then, either
(i) uk → 0 in W, or
(ii) there exists R > 0 and a sequence (yk)k ⊂ ℝN such that

lim sup
k→∞

∫
BR(yk)

|uk |
pdx > 0.

Moreover, (yk)k is not bounded in ℝN .

Proof. If (ii) does not occur, then for all R > 0,

lim
k→∞

sup
y∈ℝN
∫

BR(y)

|uk |
pdx = 0.

Therefore, uk → 0 in L℘(ℝN ) as k → ∞ for all ℘ ∈ (p, q∗) by Lemma I.1 of [161], since
(uk)k is bounded in Lp(ℝN ), while (∇uk)k is bounded in [Lq(ℝN )]N . Consequently, by
(F) and (1.2), as k →∞,

0 ≤ ∫
ℝN

f (uk)ukdx ≤ ∫
ℝN

(q|uk |
q +mC1|uk |

m)dx → 0,

since 1 < p < q < m < q∗. Now, (uk)k ⊂ W is a (PS)cλ sequence of I, so that, arguing
as in the proof of Lemma 1.3.1, passing to subsequences if necessary, and using the
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1.3 Proof of Theorem 1.1.1 | 19

notation in (1.18), we find as k →∞ that

∫

ℝN

A(|∇uk |)|∇uk |
2dx + ∫

ℝN

B(|uk |)|uk |
2dx = ‖uk‖

q∗ + o(1) = δλ + o(1).
Therefore, by (C2), (1.8), and (1.23), as k →∞ and λ →∞,

a(‖uk‖
p
W 1,p + ‖uk‖qW 1,q) ≤ ∫

ℝN

A(|∇uk |)|∇uk |
2dx

+ ∫

ℝN

B(|uk |)|uk |
2dx + ok(1) = ok,λ(1).

Thus, ‖uk‖→ 0 as k →∞, as required. In conclusion, (i) holds.
Assumenow that (ii) is verifiedand supposeby contradiction that (yk)k is bounded

inℝN . Consequently, there existsM > 0 so large thatBR(yk) ⊂ BM for all k. Now,uk → 0
in L℘loc(ℝ

N ) for all ℘ ∈ [1, q∗). Therefore,

0 = lim
k→∞
∫
BM

|uk |
pdx ≥ lim sup

k→∞
∫

BR(yk)

|uk |
pdx > 0,

which gives the required contradiction. In conclusion, (yk)k is not bounded inℝN .

All the results proved up to now in the chapter continue to be valid when f is a
Carathéodory function and satisfies (F) when we request (1.2) in the form

󵄨󵄨󵄨󵄨f (x, t)
󵄨󵄨󵄨󵄨 ≤ qε|t|

q−1 +mCε|t|
m−1 for a. e. x ∈ ℝN and all t ∈ ℝ,

with q < m < q∗. In the last part of Section 1.3 we need that f does not depend on x. Let
us nowconclude the chapterwith the proof of Theorem 1.1.1 based onProposition 1.3.1.

Proof of Theorem 1.1.1. By Lemmas 1.2.2–1.2.4, for any λ > 0 the functional I has the
geometry of the mountain pass lemma, so that it admits a (PS)cλ sequence (uk)k of I,
which, up to a subsequence, weakly converges to the limit uλ ∈ W . The weak limit
uλ ∈ W is a critical point of I for all λ ≥ λ∗, with λ∗ > 0, as asserted in Lemma 1.2.4(ii).

Assume by contradiction that uλ = 0. Of course, (uk)k cannot converge strongly to
0 inW , since otherwise I󸀠(uλ) = 0 and 0 = I(uλ) = cλ > 0 by Lemma 1.2.2. Therefore,
Proposition 1.3.1 implies that there exist R > 0 and a sequence (yk)k ⊂ ℝN such that

lim sup
k→∞

∫
BR(yk)

|uk |
pdx > 0. (1.39)

Now, the new sequence (ũk)k, with ũk = uk(⋅+yk), is again a (PS)cλ sequence of I, since
I(ũk) = I(uk) and, moreover, I󸀠(ũk) → 0 as k → ∞ inW 󸀠. Indeed, for all φ ∈ W , with
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20 | 1 Critical quasilinear equations of Marcellini’s type

‖φ‖ = 1, putting φ(z − yk) = φk(z), z ∈ ℝN , we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

ℝN

A(|∇ũk |)∇ũk ⋅ ∇φdx + ∫
ℝN

B(|ũk |)ũkφdx − λ ∫
ℝN

f (ũk)φdx

−
1
q∗
∫

ℝN

|ũk |
q∗−2ũkφdx󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

ℝN

A(|∇uk |)∇uk ⋅ ∇φkdz + ∫
ℝN

B(|uk |)ukφkdz − λ ∫
ℝN

f (uk)φkdz

−
1
q∗
∫

ℝN

|uk |
q∗−2ukφkdz

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 󵄨󵄨󵄨󵄨⟨I
󸀠(uk),φk⟩

󵄨󵄨󵄨󵄨 ≤
󵄩󵄩󵄩󵄩I
󸀠(uk)
󵄩󵄩󵄩󵄩W 󸀠‖φk‖ =

󵄩󵄩󵄩󵄩I
󸀠(uk)
󵄩󵄩󵄩󵄩W 󸀠 ,

since 1 = ‖φ‖ = ‖φk‖. Therefore, as k →∞,
󵄩󵄩󵄩󵄩I
󸀠(ũk)
󵄩󵄩󵄩󵄩W 󸀠 = sup

φ∈W
‖φ‖=1

󵄨󵄨󵄨󵄨⟨I
󸀠(ũk),φ⟩

󵄨󵄨󵄨󵄨 ≤
󵄩󵄩󵄩󵄩I
󸀠(uk)
󵄩󵄩󵄩󵄩W 󸀠 = o(1).

Consequently, (ũk)k weakly converges to some ũλ inW by Lemma 1.2.4. Furthermore,
by (1.39),

0 < lim sup
k→∞

∫
BR(yk)

|uk |
pdx = lim

k→∞
∫
BR

|ũk |
pdz = ∫

BR

|ũλ|
pdz.

Hence, ũλ ̸= 0. Finally, (1.4) follows straight from Lemma 1.2.4(iii). This completes the
proof.

Comments on Chapter 1
For the sake of completeness, we point out that the results presented in this chapter
could be also investigated for a larger class of elliptic equations where the leading
term is governed by some differential operators such as those considered in [28–30].
For instance, in [28] a class of nonautonomous functionals characterized by the fact
that the energy density changes its ellipticity and growth properties according to the
point has been considered. The results contained in [28] are the borderline counter-
part of the classical cases valid for functionals with (p, q) growth. However, in order to
get Theorem 1.1.1 for this wide class of equations, some different technical approaches
need to be developed in suitable Musielak–Orlicz spaces in which a Lions type result
as Proposition 1.3.1 can be recovered; see, for instance, the recent paper of F. Cola-
suonno and M. Squassina [64] in bounded domains. A noteworthy difference with re-
spect to the classical elliptic case given in [134, Theorem 2] is that, in order to handle
this kind of problem, some new concentration compactness arguments in weighted
Orlicz spaces seem to be essential. This analysis allows proving a variety of existence
results which are outside the scope of the book.
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2 On (p,N) Laplacian equations inℝN with
exponential nonlinearities
M’illumino
d’immenso

Giuseppe Ungaretti
Mattina

This chapter deals with the existence of nontrivial solutions for (p,N) equations inℝN

with critical exponential growth. Themain features and novelty of the chapter are the
(p,N) growth of the elliptic operator, combined with the triple lack of compactness,
as we shall note below. As explained in Chapter 1, also (ℰN ) has a relevant physical
interpretation in applied sciences, as well as amathematical challenge in overcoming
the new difficulties intrinsic to (ℰN ). Furthermore, equations with Hardy potentials
arise from many physical contexts, such as molecular physics, quantum cosmology,
and linearization of combustion models. But from the mathematical point of view,
the main reason of interest in Hardy potentials lies in their criticality. In other words,
the noncompactness of the embedding D1,℘(ℝN ) 󳨅→ L℘(ℝN , |x|−℘dx), ℘ > 1, even lo-
cally in any neighborhood of zero, leads to other difficulties and, more importantly, to
a new phenomenon concerning the possibility of a blow-up. Finally, the presence of
the Hardy terms and critical nonlinearities, as well as the fact that (ℰN ) is studied in
the entire spaceℝN , cause, roughly speaking, a triple loss of compactness which pro-
duces new interesting complications. In particular, let u denote the concentration of a
chemical substance in (1.5). Then, even if usually the right-hand side of (1.5) has poly-
nomial growth with variable coefficients, in the Liouville–Bratu–Gelfand and Frank–
Kamenetsky models the right-hand side of (1.5) has exponential growth at infinity.

2.1 The environment and existence results

In this chapter we study the following equation in ℝN :

−Δpu − ΔNu + |u|
p−2u + |u|N−2u − σ |u|

p−2u
|x|p
= λh(x)uq−1+ + γg(x, u), (ℰN )

where 1 < p < N < ∞, N ≥ 2, 1 < q < p, u+ = max{u, 0}, and h is a positive function
of class Lθ(ℝN ), with θ = N/(N − q), while λ > 0, γ > 0, and σ is a real parameter. The
function g is of exponential type and is assumed to satisfy
(H1) g admits partial derivative in u and 𝜕tg is a Carathéodory function,with 𝜕tg(⋅, t) = 0

for all t ≤ 0, and such that there exists α0 > 0 with the property that for all ε > 0
there exists κε > 0 such that

𝜕tg(x, t)t ≤ ε u
N−1 + κε(e

α0tN
󸀠
− SN−2(α0, t))

https://doi.org/10.1515/9783110652017-002
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22 | 2 On (p,N) Laplacian equations inℝN with exponential nonlinearities

for a. e. x ∈ ℝN and all t ∈ ℝ+0 , where ℝ
+
0 = [0,∞),

N 󸀠 = N
N − 1

and SN−2(α0, t) =
N−2
∑
j=0

αj0t
jN 󸀠
j!
;

(H2) There exists a number ν > N such that 0 < νG(x, t) ≤ tg(x, t) for a.e x ∈ ℝN and
any t ∈ ℝ+, where G(x, t) = ∫t0g(x, τ)dτ for a.e x ∈ ℝ

N and all t ∈ ℝ.

A canonical prototype of a function verifying assumptions (H1)–(H2) is given by g(t) =
t+(et

2
− 1), t ∈ ℝ, in the simplest case N = 2. Indeed, the associated partial derivative

𝜕tg of g verifies (H1) with α0 > 1. Moreover, its primitive G(t) = (et
2
− 1 − t2)/2, t ∈ ℝ+0,

and G(t) = 0, u ∈ ℝ−0, satisfies (H2), with ν = 4 > 2 = N . Similarly, in the general case

N > 2, the example becomes g(t) = tN−1+ (e
tN
󸀠+ − SN−2(1, t+)). Again 𝜕tg verifies (H1) with

α0 > 1, and the primitive G of g satisfies (H2), with ν = 2N .
Of course, any function g(x, t) = a(x)ϕ(t), where ϕ is of the exponential type

presented above and a ∈ L∞(ℝN ), with ess infx∈ℝN a(x) > 0, continues to satisfy
(H1)–(H2).

Note that (H1) implies a similar exponential growth condition on g. Indeed, fix
ε > 0. Then by (H1) there exists κε > 0 such that for a. e. x ∈ ℝN and all t ∈ ℝ+0,

g(x, t) =
1

∫
0

d
dτ

g(x, τt)dτ =
1

∫
0

1
τ
𝜕tg(x, τt)τtdτ

≤ ε uN−1 + κε(e
α0tN
󸀠
− SN−2(α0, t)),

(2.1)

as stated.
The natural space for finding solutions of (ℰN ) is

W = W 1,p(ℝN) ∩W 1,N(ℝN),

endowed with the norm

‖u‖ = ‖u‖W 1,p + ‖u‖W 1,N ,
where ‖u‖W 1,℘ = (‖u‖℘℘ + ‖∇u‖℘℘)1/℘ for all u ∈ W 1,℘(ℝN ) and ‖ ⋅ ‖℘ denotes the canonical
L℘(ℝN ) norm for any ℘ > 1. Furthermore, we also set

‖u‖qq,h = ∫
ℝN

h(x)|u|qdx for all u ∈ LN(ℝN).

A crucial role is also played by the best Hardy constantℋp = [(N −p)/p]p inW 1,p(ℝN ),
given by

ℋp = inf
u∈W 1,p(ℝN )

u ̸=0

‖∇u‖pp
‖u‖pℋp

, ‖u‖ℋp
= (∫

ℝN

󵄨󵄨󵄨󵄨u(x)
󵄨󵄨󵄨󵄨
p dx
|x|p
)
1/p
.

For a proof, we refer to Lemma 2.1 of [112].
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In the literature, there are very few contributions devoted to the study of expo-
nential nonlinear problems driven by operators with nonstandard growth conditions.
A (p,N) equation similar to (ℰN ) first appeared in [255], but set on a bounded domainΩ
and with g exactly equal to an exponential function. The authors of [255] were able to
get an existence result via a suitable minimax argument, which strongly relies on the
requirement that Ω is bounded.More recently, the existence of one solution for critical
exponential problems, set on bounded domains Ω and driven by a general (p,N) oper-
ator,was given in [97], via theNeharimanifold approach. Finally, in [102] the existence
and multiplicity results for equation (ℰN ) were proved in the case σ = 0.

For equations in the entire space, involving elliptic operators with standard
N-growth, as well as critical Trudinger–Moser nonlinearities, we refer to [5–7, 82]
for the existence results, to [3, 4, 75, 83] for the multiplicity results, and to the ref-
erences therein. In the nonlocal fractional framework, we refer instead to the very
recent papers [178, 251]. Singular equations have been also studied in [116, 186] and
the references therein.

Let us first prove the existence of a nontrivial nonnegative solution for (ℰN ).

Theorem 2.1.1. Let 1 < p < N <∞ and 1 < q < N. Let h be a positive function in Lθ(ℝN ),
with θ = N/(N − q). Suppose that g verifies (H1)–(H2). Then, for any σ ∈ (−∞,ℋp)
there exists λ̃ = λ̃(σ) > 0, independent of γ ∈ (0, 1], such that for all λ ∈ (0, λ̃) there
exists γ∗ = γ∗(σ, λ) ∈ (0, 1] with the property that (ℰN ) admits at least one nontrivial
nonnegative solution uσ,λ,γ in W for all γ ∈ (0, γ∗). Moreover,

lim
λ→0+ ‖uσ,λ,γ‖ = 0 (2.2)

holds true.

The proof of Theorem 2.1.1 is based on an application of the Ekeland variational
principle. Theorem2.1.1 somehowextends in several directions Theorem 1.1 of [5], The-
orem 1.4 of [72], Theorem 1 of [82], Theorem 1.2 of [97], Theorem 1.2 of [255] and Theo-
rem 1.1 of [102]. For the multiplicity results when σ = 0, we refer to [102].

2.2 Sobolev space framework and preliminary lemmas

In this sectionwe briefly recall the variational setting for equation (ℰN ) and the techni-
cal lemmas for the separable reflexive real Banach spaceW , which we use throughout
the chapter.

We say that u ∈ W is a (weak) solution of problem (ℰN ) if

∫

ℝN

{(|∇u|p−2 + |∇u|N−2)∇u ⋅ ∇φ + (|u|p−2 + |u|N−2)uφ}dx − σ ∫
ℝN

|u|p−2uφ dx
|x|p

= λ ∫
ℝN

h(x)uq−1+ φdx + γ ∫
ℝN

g(x, u)φdx
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for any φ ∈ W .
Clearly, the (weak) solutions of (ℰN ) are exactly the critical points of the Euler–

Lagrange functional I = Iσ,λ associated to (ℰN ), where I : W → ℝ is given by

I(u) = 1
p
‖u‖pW 1,p + 1

N
‖u‖NW 1,N − σp ‖u‖pℋp

− λ‖u+‖
q
q,h − γ ∫

ℝN

G(x, u)dx.

The functional I is well defined and of class C1(W) by the structural assumption (H1).
Indeed, themodel function g(t) = tN−1+ (e

tN
󸀠+ −SN−2(1, t+)) clearly satisfies (H1), with

α0 > 1, and so (2.1). In order to show the validity of (H2), let us consider the function

Φ(t) = G(t) − 1
2N

tg(t), t ∈ ℝ+0 ,

where, by integration by parts, the primitive G of the model function is given by

G(t) = t
2N

2N
∑

k=N−1

tkN
󸀠−N
k!
−

t

∫
0

v2N

2N
( ∑
k=N−1

vkN
󸀠−N
k!
)
󸀠

dv.

Thus, by direct derivation in ℝ+,

Φ󸀠(t) = t2N−1 ∑
k=N−1

tkN
󸀠−N
k!
+
t2N

2N
( ∑
k=N−1

tkN
󸀠−N
k!
)
󸀠

−
t2N

2N
( ∑
k=N−1

tkN
󸀠−N
k!
)
󸀠

− t2N−1 ∑
k=N−1

tkN
󸀠−N
k!
−
t2N

2N
( ∑
k=N−1

tkN
󸀠−N
k!
)
󸀠

= −
t2N

2N
( ∑
k=N−1

tkN
󸀠−N
k!
)
󸀠

< 0,

which implies that Φ(t) ≤ 0 in ℝ+0, since Φ(0) = 0. This proves (H2), with ν = 2N .
By the classical results in Sobolev space theory, we have the following first em-

bedding.

Lemma 2.2.1. The embedding W 󳨅→ L℘(ℝN ) is continuous for all ℘ ∈ [p, p∗] ∪ [N ,∞),
and

‖u‖℘ ≤ c℘‖u‖ for all u ∈ W ,

where c℘ depends on ℘, p, and N.

Clearly, p∗ > N, whenever (N/2) < p < N . By Proposition A.6 of [24], we know that
the Banach space Lq(ℝN , h) = (Lq(ℝN , h), ‖ ⋅ ‖q,h) is uniformly convex. Furthermore,
combining some ideas of Lemma 2.3 of [24], Lemma 2.2 of [25], Theorem 2.1 of [250],
and Lemma 2.1 of [52], in Lemma 2.2 of [102] the next technical result was proved. For
the sake of completeness, we report the proof.
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Lemma 2.2.2. The embedding LN (ℝN ) 󳨅→ Lq(ℝN , h) is continuous and

‖u‖q,h ≤ ‖h‖
1/q
θ ‖u‖N for all u ∈ LN(ℝN).

Furthermore, the embedding W 1,N (ℝN ) 󳨅→󳨅→ Lq(ℝN , h) is compact.

Proof. By the Hölder inequality, for all u ∈ LN (ℝN ),

‖u‖q,h ≤ (∫
ℝN

hθ(x)dx)
1/θq
⋅ (∫

ℝN

|u|Ndx)
1/N
,

that is, the first embedding holds.
To prove the second part of the lemma, we need to show that if uk ⇀ u in

W 1,N (ℝN ), then ‖uk − u‖q,h → 0 as k →∞. Thanks to the Hölder inequality,

∫

ℝN \BR

h(x)|uk − u|
qdx ≤ M( ∫

ℝN \BR

hθ(x)dx)
1/θ
= o(1)

as R → ∞, where h ∈ Lθ(ℝN ) by assumption and ‖uk − u‖
q
N = M < ∞ for all k ∈ ℕ.

Hence, for all ε > 0 there exists Rε > 0 so large that ∫ℝN \BR h(x)|uk − u|
qdx < ε/2.

Fix ε > 0 and a subsequence (ukn )n ⊆ (uk)k . Since ukn → u in Lν(BRε ) for all ν ∈
[1,N), we can assume, up to a further subsequence, that ukn → u a. e. in BRε . Thus
h(x)|uk −u|q → 0 a. e. in BRε . Furthermore, for eachmeasurable subset E ⊆ BRε , by the
Hölder inequality we have

∫
E

h(x)|ukn − u|
qdx ≤ M(∫

E

hθ(x)dx)
1/θ
.

Hence, we obtain that (h(x)|ukn − u|
q)n is equiintegrable and uniformly bounded in

L1(BRε ), since h ∈ L
θ(ℝN ). Then, the Vitali convergence theorem implies

lim
n→∞
∫
BRε

h(x)|ukn − u|
qdx = 0,

and so uk → u in Lq(BRε , h), since the sequence (ukn )n is arbitrary. Consequently, there
exists k0 ∈ ℕ such that ∫BRε

h(x)|uk − u|qdx < ε/2 for all k ≥ k0. In conclusion, for all
k ≥ k0,

‖uk − u‖
q
q,h = ∫

ℝN \BRε

h(x)|uk − u|
qdx + ∫

BRε

h(x)|uk − u|
qdx < ε,

as required.
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We end the section by stating Lemma 2.4 of [3] in the form we use several times in
what follows.

Lemma 2.2.3. Let (uk)k be a sequence in W 1,N (ℝN ) such that

sup
k∈ℕ
‖uk‖

N 󸀠
W 1,N < αN

2α0
,

where αN = Nω
1/(N−1)
N−1 and ωN−1 is the (N − 1)-dimensional measure of the unit sphere

𝕊N−1 of ℝN . Then for all m ∈ (αN/2α0, αN/α0) and all α > α0 and l > 1 so small that
lαm < αN it results that

sup
k∈ℕ
∫

ℝN

(eα|uk |
N󸀠
− SN−2(α, uk))

ldx = Cm,

where Cm = Cm(m, α, l) is a nonnegative number.

2.3 Proof of Theorem 2.1.1

In this section, for simplicity we assume, without further mentioning, that the struc-
tural assumptions required in Theorem 2.1.1 hold.

We start proving the geometric properties of the functional I, necessary to apply
both a minimization argument and the mountain pass lemma.

Lemma 2.3.1. Any solution u ∈ W of (ℰN ) is nonnegative in ℝN for all σ < ℋp, all λ > 0
and γ > 0.

For any fixed σ < ℋp there exists ρ ∈ (0, 1] and two positive numbers λ∗ and 𝚥,
depending on ρ, such that I(u) ≥ 𝚥 for all u ∈ W, with ‖u‖ = ρ, and for all λ ∈ (0, λ∗] and
γ > 0.

Furthermore, for all σ < ℋp, λ ∈ (0, λ∗] and all γ ∈ (0, 1], there exist in Bρ, where
Bρ = {u ∈ W : ‖u‖ < ρ}, a sequence (uk)k of nonnegative functions and somenonnegative
function uσ,λ,γ such that for all k ∈ ℕ,

‖uk‖ < ρ, mσ,λ,γ ≤ I(uk) ≤ mσ,λ,γ +
1
k
,

uk ⇀ uσ,λ,γ in W , uk → uσ,λ,γ a. e. in ℝ
N and I󸀠(uk)→ 0

(2.3)

as k →∞, where

mσ,λ,γ = inf{I(u) : u ∈ Bρ} < 0.

Proof. Let σ < ℋp, λ > 0 and γ > 0 be fixed and let u be any solution of (ℰN ) in W .
Putting u = u+ − u−, we have that both u+ and u− are inW and that

∫

ℝN

{(|∇u|p−2 + |∇u|N−2)∇u ⋅ ∇u− + (|u|
p−2 + |u|N−2)uu−}dx

= −‖u−‖
p
W 1,p − ‖u−‖NW 1,N .
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Thus, by the definition of solution for (ℰN ) and (H1), we get

−‖u−‖
p
W 1,p − ‖u−‖NW 1,N = −σ‖u−‖pℋp

≥ −
σ+
ℋp
‖u−‖

p
W 1,p ≥ −‖u−‖pW 1,p ,

taking as a test function φ = u− ∈ W . Hence, u− = 0 a. e. in ℝN . Thus u is nonnegative
in ℝN , as stated.

Fix ε > 0. Then there exists κε > 0 by (2.1) such that as t → 0+,

t1−Ng(x, t) ≤ ε + κε
αN−10
(N − 1)!

t + o(t).

In other words, lim supt→0+ t1−Ng(x, t) ≤ ε and, since ε > 0 is arbitrary, this implies at
once that

lim
t→0+ t1−Ng(x, t) = 0 uniformly in x ∈ ℝN . (2.4)

For the second part of the lemma, fix ε > 0. Thus by (2.4), there exists δ = δ(ε) > 0
such that

G(x, t) ≤ ε
N
tN for a. e. x ∈ ℝN and all t ∈ [0, δ]. (2.5)

Take now s ≥ 1 and α > α0. Then by (2.1), there exists κ̃ε = κ̃(α0, s, ε) > 0 such that for
a. e. x ∈ ℝN and all t ∈ [δ,∞),

G(x, t) ≤ κ̃ε t
s(eα t

N󸀠
− SN−2(α, t)). (2.6)

In conclusion, (2.5) and (2.6) yield

G(x, t) ≤ ε
N
tN + κ̃ε t

s(eα t
N󸀠
− SN−2(α, t)) (2.7)

for a. e. x ∈ ℝN and all t ∈ ℝ+0 Furthermore, for any a < αN , where αN is defined in
Lemma 2.2.3, then Lemma 1 of [82] gives the existence of a constant Ca = Ca(a,N , 1)
such that

∫

ℝN

(ea|v|
N󸀠
− SN−2(a, v))dx ≤ Ca for all v ∈ W , with ‖v‖ ≤ 1. (2.8)

Following somehow [75], for ℘ > 1, we apply the Hölder inequality and find

ℐα = ∫
ℝN

|u|s(eα|u|
N󸀠
− SN−2(α, u))dx

≤ ‖u‖ss℘(∫
ℝN

(eα|u|
N󸀠
− SN−2(α, u))

℘󸀠dx)1/℘󸀠 .
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For β > ℘󸀠, Lemma 2.3 of [4] yields for all u ∈ W , with 0 < ‖u‖ ≤ δ, that

ℐ = ∫
ℝN

(eα|u|
N󸀠
− SN−2(α, u))

℘󸀠dx ≤ ∫
ℝN

(eβα|u|
N󸀠
− SN−2(βα, u))dx

≤ ∫

ℝN

(eβαr
N󸀠 (|u|/‖u‖)N󸀠 − SN−2(βαrN 󸀠 , |u|/‖u‖))dx.

We choose δ ∈ (0, 1] so small that βαδN
󸀠
< αN and, applying (2.8) with a = βαδN

󸀠
, we

get

ℐα ≤ ‖u‖
s
s℘ ℐ

1/℘󸀠 ≤ C1/℘󸀠a ‖u‖
s
s℘ for all u ∈ W , with ‖u‖ ≤ δ. (2.9)

Fix σ < ℋp, λ > 0, and γ ∈ (0, 1]. Taking s > N for later purposes, by Lemma 2.2.1, (2.7),
and (2.9), we obtain

I(u) ≥ 1
p
(1 − σ+

ℋp
)‖u‖pW 1,p + 1

N
‖u‖NW 1,N − λq ‖h‖θ‖u+‖qN
− γ ε

N
‖u‖NN − γκ̃εC

1/℘󸀠
a ‖u‖

s
s℘

≥
1
N
(1 − σ+

ℋp
)(‖u‖NW 1,p + ‖u‖NW 1,N ) − λq ‖h‖θ‖u+‖qN

−
ε
N
‖u‖NN − κ̃εC

1/℘󸀠
a ‖u‖

s
s℘

≥
1
N
[21−N(1 − σ+

ℋp
) − ε]‖u‖N − λ

q
‖h‖θ‖u‖

q − C℘‖u‖
s,

for all u ∈ W , with ‖u‖ ≤ δ, where C℘ = κ̃εC
1/℘󸀠
a css℘ and cs℘ is given in Lemma 2.2.1,

when p = s℘. Choose ε = 2−N (1 − σ+/ℋp) and consider the function

ψ(τ) =
1 − σ+/ℋp

21+NN
τN − C℘τ

s, τ ∈ [0, δ].

Then ψ admits a positive maximum 𝚥 in [0, δ] at a point ρ ∈ (0, δ], since s > N and
δ ≤ 1. Consequently, for all u ∈ W , with ‖u‖ = ρ, we obtain

I(u) ≥
1 − σ+/ℋp

2NN
ρN − λ

q
‖h‖θρ

q − Cγρ
s ≥ ψ(ρ) = 𝚥 > 0,

for all λ ∈ (0, λ∗], with λ∗ =
q(1 − σ+/ℋp)

21+NN‖h‖θ
ρN−q,

as stated.
Fix λ ∈ (0, λ∗] and a nonnegative function u ∈ C∞0 (ℝ

N ), with ‖u‖ = 1. Thus

I(τu) ≤ 1
p
τN + σ−

p
‖u‖pℋp

τp − λ
q
τq‖u‖qq,h < 0
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for all τ ∈ (0, 1] sufficiently small, since 1 < q < p < N . Hence,

mσ,λ,γ = inf{I(u) : u ∈ Bρ} < 0.

Then, by the Ekeland variational principle in Bρ and the first part of the lemma, there
exists a sequence (uk)k ⊂ Bρ such that

mσ,λ,γ ≤ I(uk) ≤ mσ,λ,γ +
1
k

and I(u) ≥ I(uk) −
1
k
‖u − uk‖ (2.10)

for all k ∈ ℕ and for any u ∈ Bρ. Fixing k ∈ ℕ, for all w ∈ SW , where SW = {u ∈ W :
‖u‖ = 1}, and for all τ > 0 so small that uk + τ w ∈ Bρ, we have

I(uk + τ w) − I(uk) ≥ −
τ
k

by (2.10). Since I is Gâteaux differentiable inW , we get

⟨I󸀠(uk),w⟩ = limτ→0
I(uk + τ w) − I(uk)

τ
≥ −

1
k

for all w ∈ SW . Consequently, |⟨I󸀠(uk),w⟩| ≤ 1/k, since w ∈ SW is arbitrary. Therefore,
I󸀠(uk) → 0 inW 󸀠 as k →∞ and, clearly, up to a subsequence, the bounded sequence
(uk)k weakly converges to some uσ,λ,γ ∈ Bρ and uk → uσ,λ,γ a. e. inℝN . Furthermore, we
assumew. l. o. g. that (uk,−)k weakly converges to uσ,λ,− ∈ Bρ inW and uk,− → uσ,λ,− a. e.
in ℝN , since uk → uσ,λ,γ a. e. in ℝN implies at once that uk,+ → uλ,γ,+ and uk,− → uλ,γ,−
a. e. in ℝN . Moreover, as k →∞,

o(1) = −⟨I󸀠(uk), uk,−⟩ = − ∫
ℝN

{(|∇uk |
p−2 + |∇uk |

N−2)∇uk ⋅ ∇uk,−

+ (|uk |
p−2 + |uk |

N−2)ukuk,−}dx − σ‖uk,−‖
p
ℋp

≥ (1 − σ+
ℋp
)‖uk,−‖

p
W 1,p + ‖uk,−‖NW 1,N .

Therefore, (uk,−)k strongly converges to 0 inW and uk,− → 0 a. e. inℝN . Thus uσ,λ,− = 0
a. e. inℝN . In particular, uσ,λ,γ ≥ 0 inℝN . Consequently, without loss of generality, we
can assume that uk = uk,+, since uk,− → 0 inW . This completes the proof of (2.3).

Lemma 2.3.2. The weak limit u = uσ,λ,γ of the sequence constructed in Lemma 2.3.1 is a
solution of (ℰN ) provided that σ < ℋp, γ ∈ (0, 1], and λ ∈ (0, λ̃), where λ̃ = min{λ∗, λ0},
λ∗ is given in Lemma 2.3.1, and λ0 is well defined by

λ0 =
(ν − N)q

N‖h‖θ(ν − q)
(

αN
2N 󸀠+1α0)

(N−q)/N 󸀠
> 0, (2.11)

where 1 < q < N < ν by (H2).
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Proof. Fix σ < ℋp, γ ∈ (0, 1], and λ ∈ (0, λ̃), as in the statement.
Lemma 2.3.1 gives the existence of the sequence (uk)k of nonnegative functions

in Bρ and of a function uσ,λ,γ, which for brevity will be denoted simply by u, unless
otherwise specified, satisfying (2.3). Consequently,

uk ⇀ u in Lp(ℝN , |x|−p),

uk → u in L℘loc(ℝ
N), ℘ ∈ [1,∞),

uk ≤ gR a. e. in ℝN , for some gR ∈ LN (BR) and all R > 0,

(2.12)

hold. Take R > 0 and φ ∈ C∞0 (ℝ
N ) such that 0 ≤ φ ≤ 1 in ℝN , φ ≡ 1 in BR and φ ≡ 0 in

Bc2R. By convexity, we have

(󵄨󵄨󵄨󵄨∇uk(x)
󵄨󵄨󵄨󵄨
p−2
∇uk(x) −

󵄨󵄨󵄨󵄨∇u(x)
󵄨󵄨󵄨󵄨
p−2
∇u(x)) ⋅ (∇uk(x) − ∇u(x)) ≥ 0 a. e. in ℝN

for any k ∈ ℕ. Thus, the well known Simon inequality, see Lemma 2.1 of [231], with
N ≥ 2, yields the existence of cN > 0 such that

cN ∫
BR

|∇uk − ∇u|
Ndx ≤ ∫

BR

(|∇uk |
N−2∇uk − |∇u|

N−2∇u) ⋅ (∇uk − ∇u)dx

≤ ∫
BR

(|∇uk |
p−2∇uk − |∇u|

p−2∇u) ⋅ (∇uk − ∇u)dx

+ ∫
BR

(|∇uk |
N−2∇uk − |∇u|

N−2∇u) ⋅ (∇uk − ∇u)dx

≤ ∫

ℝN

(|∇uk |
p−2∇uk − |∇u|

p−2∇u) ⋅ (∇uk − ∇u)φdx

+ ∫

ℝN

(|∇uk |
N−2∇uk − |∇u|

N−2∇u) ⋅ (∇uk − ∇u)φdx.

Therefore, as k →∞,

cN ∫
BR

|∇uk − ∇u|
Ndx ≤ ∫

ℝN

φ(|∇uk |
p + |∇uk |

N)dx

− ∫

ℝN

φ(|∇uk |
p−2 + |∇uk |

N−2)∇uk ⋅ ∇udx + o(1),
(2.13)

since uk ⇀ u inW . Clearly, (2.3) gives

⟨I󸀠(uk),φuk⟩ − ⟨I
󸀠(uk),φu⟩ = o(1) as k →∞,

where

∫

ℝN

φ(|∇uk |
p + |∇uk |

N)dx − ∫
ℝN

φ(|∇uk |
p−2 + |∇uk |

N−2)∇uk ⋅ ∇u dx
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= ⟨I󸀠(uk),φuk⟩ − ⟨I
󸀠(uk),φu⟩

− ∫

ℝN

(|∇uk |
p−2 + |∇uk |

N−2)(uk − u)∇uk ⋅ ∇φdx (2.14)

− ∫

ℝN

φ(up−1k + u
N−1
k )(uk − u)dx + σ ∫

ℝN

φup−1k (uk − u)
dx
|x|p

+ λ ∫
ℝN

φh(x)uq−1k (uk − u)dx + γ ∫
ℝN

φg(x, uk)(uk − u)dx.

By the Hölder inequality,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

ℝN

(|∇uk |
p−2 + |∇uk |

N−2)(uk − u)∇uk ⋅ ∇φdx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ‖∇φ‖∞{‖∇uk‖
p−1
p (∫

B2R

|uk − u|
pdx)

1/p

+ ‖∇uk‖
N−1
N (∫

B2R

|uk − u|
Ndx)

1/N
},

which yields by (2.12) that

lim
k→∞
∫

ℝN

(|∇uk |
p−2 + |∇uk |

N−2)(uk − u)∇uk ⋅ ∇φdx = 0. (2.15)

Similarly, again by the Hölder inequality,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

ℝN

φ(up−1k + u
N−1
k )(uk − u)dx

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ‖uk‖

p−1
p (∫

B2R

|uk − u|
pdx)

1/p

+ ‖uk‖
N−1
N (∫

B2R

|uk − u|
Ndx)

1/N
,

which implies that

lim
k→∞
∫

ℝN

φ(up−1k + u
N−1
k )(uk − u)dx = 0. (2.16)

Furthermore, taking ℘, with 1 < p < ℘ < N, and applying the Hölder inequality, with
p󸀠, ℘ and q = p℘/(℘ − p), we find

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

ℝN

φup−1k (uk − u)
dx
|x|p
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 󵄩󵄩󵄩󵄩1/|x|
󵄩󵄩󵄩󵄩L℘(B2R)‖uk‖p−1H (∫

B2R

|uk − u|
qdx)

1/q
.
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Thus, (2.12) gives

lim
k→∞
∫

ℝN

φup−1k (uk − u)
dx
|x|p
= 0. (2.17)

Likewise, by the Hölder inequality, as k →∞,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

ℝN

φh(x)uq−1k (uk − u)dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ‖uk‖

q−1
q,h (∫

B2R

h(x)|uk − u|
qdx)

1/q

≤ Cq‖h‖
1/q
θ (∫

B2R

|uk − u|
Ndx)

1/N
(2.18)

→ 0,

where Cq = supk∈ℕ ‖uk‖
q−1
q,h <∞ by Lemma 2.2.2, since (uk)k is bounded inW .

Using the notation of Lemma 2.3.1, thanks to (2.3), (H2), the fact that γ ∈ (0, 1], and
Lemma 2.2.2, we get, as k →∞,

0 > mσ,λ,γ = I(uk) −
1
ν
⟨I󸀠(uk), uk⟩ + o(1)

≥ (
1
p
−
1
ν
)(1 − σ+

ℋp
)‖uk‖

p
W 1,p + ( 1N − 1ν)‖uk‖NW 1,N
− λ( 1

q
−
1
ν
)‖h‖θ‖uk‖

q
W 1,N + o(1).

Consequently, since σ < ℋp, as k →∞,

(
1
N
−
1
ν
)‖uk‖

N
W 1,N − λ( 1q − 1ν)‖h‖θ‖uk‖qW 1,N + o(1) < 0,

so that

lim sup
k→∞
‖uk‖

N
W 1,N ≤ [λN‖h‖θ(ν − q)

(ν − N)q
]
N/(N−q)
< (

αN
2N 󸀠+1α0)

N−1
,

since λ < λ0, with λ0 given in (2.11). Therefore, passing to a subsequence, if necessary,
which is still labeled (uk)k for simplicity,

sup
k∈ℕ
‖uk‖

N
W 1,N < ( αN

2N 󸀠+1α0)
N−1
. (2.19)

By (2.19), we fixm ∈ (αN/2α0, αN/α0), α > α0, and l > 1 close to 1, with lαm < αN . Now,
by (2.1) there exists κ̃ = κ̃(α0, 1) > 0 such that for a. e. x ∈ ℝN and all t ∈ ℝ+0,

g(x, t) ≤ tN−1 + κ̃(eα t
N󸀠
− SN−2(α, t)). (2.20)
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Hence, the Hölder inequality and (2.20) yield

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

ℝN

φg(x, uk)(uk − u)dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ∫
B2R

[uN−1k + κ̃(e
α uN
󸀠

k − SN−2(α, uk))](uk − u)dx

≤ ‖uk‖
N−1
N (∫

B2R

|uk − u|
Ndx)

1/N

+ κ̃( ∫
ℝN

(eα u
N󸀠
k − SN−2(α, uk))

ldx)
1/l
(∫
B2R

|uk − u|
l󸀠dx)1/l󸀠 .

Thus, for all k ∈ ℕ,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

ℝN

φg(x, uk)(uk − u)dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ d1( ∫

B2R

|uk − u|
Ndx)

1/N

+ d2(∫
B2R

|uk − u|
l󸀠dx)1/l󸀠 ,

(2.21)

with d1 = supk∈ℕ ‖uk‖N−1N <∞, since (uk)k is bounded inW , while

d2 = κ̃ sup
k∈ℕ
( ∫

ℝN

(eα u
N󸀠
k − SN−2(α, uk))

ldx)
1/l
<∞

by Lemma 2.2.3, thanks to the choices of the exponents α and l.
Thus, combining (2.13)–(2.18) and (2.21), we obtain

cN ∫
BR

|∇uk − ∇u|
Ndx ≤ o(1) as k →∞.

Consequently, ∇uk → ∇u in [LN (BR)]N for all R > 0. Therefore, up to subsequence, not
relabeled, we get that

∇uk → ∇u a. e. in ℝN , (2.22)

and for all R > 0 there exists a function hR ∈ LN (BR) such that |∇uk | ≤ hR a. e. in BR
and for all k ∈ ℕ.

Fix ϕ in C∞c (ℝ
N ) and let R > 0 be so large that suppϕ ⊂ BR. By the above con-

struction, we have a. e. in BR that

󵄨󵄨󵄨󵄨(|∇uk |
p−2 + |∇uk |

N−2)∇uk ⋅ ∇ϕ
󵄨󵄨󵄨󵄨 ≤ (h

p−1
R + h

N−1
R )|∇ϕ| = h,
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where h ∈ L1(BR). Therefore, as k →∞, the dominated convergence theorem gives at
once

∫

ℝN

(|∇uk |
p−2 + |∇uk |

N−2)∇uk ⋅ ∇ϕdx = ∫
BR

(|∇uk |
p−2 + |∇uk |

N−2)∇uk ⋅ ∇ϕdx

→ ∫

ℝN

(|∇u|p−2 + |∇u|N−2)∇u ⋅ ∇ϕdx.

Similarly, using (2.12), we have a. e. in BR that

󵄨󵄨󵄨󵄨(u
p−1
k + u

N−1
k )ϕ
󵄨󵄨󵄨󵄨 ≤ (g

p−1
R + g

N−1
R )|ϕ| = g ∈ L

1(BR),

and so the dominated convergence theorem gives, as k →∞,

∫

ℝN

(up−1k + u
N−1
k )ϕdx → ∫

ℝN

(up−1 + uN−1)ϕdx.

Using (2.3), we have a. e. in BR that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

up−1k
|x|p

ϕ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ gp−1R

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ϕ
|x|p
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= f ∈ L1(BR).

Therefore, again the dominated convergence theorem yields

∫

ℝN

up−1k
|x|p

ϕdx → ∫
ℝN

up−1

|x|p
ϕdx,

while, since h ∈ Lθ(ℝN ) and again by (2.3),

󵄨󵄨󵄨󵄨h(x) u
q−1
k ϕ󵄨󵄨󵄨󵄨 ≤ G ∈ L

1(BR),

so by again the dominated convergence theorem, as k →∞,

∫

ℝN

h(x) uq−1k ϕdx → ∫
ℝN

h(x) uq−1ϕdx.

In the same way, by Lemma 2.2.3, (2.19), (2.20), and (2.3),

󵄨󵄨󵄨󵄨g(x, uk)ϕ
󵄨󵄨󵄨󵄨 ≤ H ∈ L

1(BR).

Thus, the dominated convergence theorem applies and gives, as k →∞,

∫

ℝN

g(x, uk)ϕdx → ∫
ℝN

g(x, u)ϕdx.
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Finally, since ⟨I󸀠(uk),ϕ⟩ = o(1) as k →∞ by (2.3), we have

∫

ℝN

(|∇uk |
p−2 + |∇uk |

N−2)∇uk ⋅∇ϕdx + ∫
ℝN

(up−1k + u
N−1
k )ϕdx − σ ∫

ℝN

up−1k
|x|p

ϕdx

= λ ∫
ℝN

h(x) uq−1k ϕdx + γ ∫
ℝN

g(x, uk)ϕdx + o(1).

Thus, letting k →∞, using the above arguments, (2.3), and (2.12), we get at once that

∫

ℝN

(|∇u|p−2 + |∇u|N−2)∇u ⋅ ∇ϕdx

+ ∫

ℝN

(up−1 + uN−1)ϕdx − σ ∫
ℝN

up−1

|x|p
ϕdx (2.23)

= λ ∫
ℝN

h(x) uq−1ϕdx + γ ∫
ℝN

g(x, u)ϕdx.

for all ϕ in C∞c (ℝ
N ).

Fix φ in W . The sequence (ϕk)k in C∞c (ℝ
N ), defined by ϕk = ζk(ρk ∗ φ), where

(ρk)k is a sequence of mollifiers and (ζk)k is a sequence of cut-off functions, has the
properties thatϕk → φ inW = W 1,p(ℝN )∩W 1,N (ℝN ) and, up to subsequences,ϕk → φ,
∇ϕk → ∇φ a. e. inℝN as k →∞, and there exist functionsψ ∈ Lp(ℝN ) and ψ̃ ∈ LN (ℝN )
such that |ϕk | ≤ ψ, |∇ϕk | ≤ ψ, and |ϕk | ≤ ψ̃, |∇ϕk | ≤ ψ̃ a. e. in ℝN and for all k. Of
course, (2.23) holds along (ϕk)k for all k ∈ ℕ. Passing to the limit as k → ∞ under
the sign of integrals, by the dominated convergence theorem, we obtain the validity
of (2.23) for all φ ∈ W . In conclusion,

⟨I󸀠(u),φ⟩ = 0 for all φ ∈ W . (2.24)

Hence u is a solution of (ℰN ).

Before completing the proof of Theorem 2.1.1, let us present a lemma of Brézis
and Lieb type for exponential nonlinearities, as given for the first time in the original
paper [102]. Here, we use assumption (H1) in its full strength for the first time.

Lemma 2.3.3. Let (uk)k be a sequence in W and let u be in W such that uk ⇀ u in W,
‖uk‖W 1,N → ℓN , uk → u a. e. in ℝN , ∇uk → ∇u a. e. in ℝN , and

sup
k∈ℕ
‖uk‖

N 󸀠
W 1,N < αN

2N 󸀠+1α0 (2.25)

hold true. Then,

lim
k→∞
∫

ℝN

󵄨󵄨󵄨󵄨g(x, uk)uk − g(x, u − uk)(u − uk) − g(x, u)u
󵄨󵄨󵄨󵄨dx = 0.
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Proof. Arguing similarly as for (2.7) and using (2.4), for ε = 1, α > α0, and any s ≥ 1,
there exists κ̃ = κ̃(s, α0, 1) > 0 such that

g(x, t) ≤ |t|N−1 + κ̃ |t|s−1(eα |t|
N󸀠
− SN−2(α, |t|)),

𝜕tg(x, t)t ≤ |t|
N−1 + κ̃ |t|s−1(eα |t|

N󸀠
− SN−2(α, |t|))

(2.26)

for a. e. x ∈ ℝN and all t ∈ ℝ+0. The validity of (2.26) in the entireℝ holds with obvious
changes, since 𝜕ug(x, ⋅) = 0 in ℝ−0 for a. e. in ℝ

N . From these inequalities, with s = 1,
for any a, b ∈ ℝ,

󵄨󵄨󵄨󵄨g(x, a + b)(a + b) − g(x, a)a
󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

∫
0

d
dτ
[g(x, a + τb)(a + τb)]dτ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

∫
0

[𝜕ug(x, a + τb)b(a + τb) + g(x, a + τb)]dτ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 2
1

∫
0

[|a + τb|N−1|b|

+ κ̃|b|(eα |a+τb|
N󸀠
− SN−2(α, |a + τb|))]dτ

≤ 2
1

∫
0

[2N−2(|a|N−1|b| + τN−1|b|N)

+ κ̃|b|(eα (|a|+τ|b|)
N󸀠
− SN−2(α, |a| + τ|b|))]dτ.

Hence, for any a, b ∈ ℝ,

󵄨󵄨󵄨󵄨g(x, a + b)(a + b) − g(x, a)a
󵄨󵄨󵄨󵄨 ≤ 2

N−1(|a|N−1|b| + |b|N)

+ 2κ̃|b|(eα (|a|+|b|)
N󸀠
− SN−2(α, |a| + |b|)).

(2.27)

From the last step, using the Young inequality, for any ε > 0 there exists Cε > 0 such
that

󵄨󵄨󵄨󵄨g(x, a + b)(a + b) − g(x, a)a
󵄨󵄨󵄨󵄨 ≤ 2

N−1(ε|a|N + Cε|b|
N)

+ 2κ̃|b|(eα (|a|+|b|)
N󸀠
− SN−2(α, |a| + |b|)).

By (2.27), with a = uk − u and b = u, putting vk = uk − u, we get

󵄨󵄨󵄨󵄨g(x, vk + u)(vk + u) − g(x, vk)vk
󵄨󵄨󵄨󵄨 ≤ 2

N−1(|vk |
N−1|u| + |u|N)

+ 2κ̃|u|(eα (|vk |+|u|)
N󸀠
− SN−2(α, |vk | + |u|)).

(2.28)
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From this fact, setting fk(x) = |g(x, vk +u)(vk +u)−g(x, vk)vk −g(x, u)u|, we easily obtain

fk(x) ≤ 2
N−1|vk |

N−1|u| + (2N−1 + 1)|u|N + 2κ̃|u|Qk + 2κ̃|u|Q, (2.29)

where Qk = eα (|vk |+|u|)
N󸀠
− SN−2(α, |vk | + |u|) and Q = eα |u|

N󸀠
− SN−2(α, |u|). Of course,

Qk → Q a. e. in ℝN , since vk → 0 a. e. in ℝN .
Now, by the structural assumptions on (uk)k and the Brézis and Lieb lemma, we

have

‖vk‖
N
W 1,N = ‖uk‖NW 1,N − ‖u‖NW 1,N + o(1) ≤ ‖uk‖NW 1,N + o(1)

as k →∞. Thus,

lim sup
k→∞
‖vk‖

N
W 1,N = lim

k→∞
‖vk‖

N
W 1,N ≤ ℓNN ≤ sup

k∈ℕ
‖uk‖

N
W 1,N < ( αN

2N 󸀠+1α0)
N−1

by (2.25). Hence there exists J such that

sup
k≥J
‖vk‖

N
W 1,N < ( αN

2N 󸀠+1α0)
N−1
.

Of course, (2.25) implies at once that

‖u‖NW 1,N ≤ ℓNN ≤ sup
k∈ℕ
‖uk‖

N
W 1,N < ( αN

2N 󸀠+1α0)
N−1
.

Hence, we have

sup
k≥J

󵄩󵄩󵄩󵄩|vk | + |u|
󵄩󵄩󵄩󵄩
N
W 1,N < 2N( αN

2N 󸀠+1α0)
N−1
≤ (

αN
2α0
)
N−1
. (2.30)

Thanks to (2.30), we can apply Lemma 2.2.3 to the sequence (|vk | + |u|)k≥J , with fixed
m ∈ (αN/2α0, αN/α0), α > α0, and l, where 1 < l ≤ N 󸀠 is so close to 1 that lαm < αN . Fix
any measurable set E inℝN . Then, by (2.29) and the Hölder inequality, we have for all
k ≥ J that

∫
E

fk(x)dx ≤ 2
N−1‖vk‖

N−1
N (∫

E

|u|Ndx)
1/N
+ (2N−1 + 1) ∫

E

|u|Ndx

+ 2κ̃(‖Qk‖l + ‖Q‖l)(∫
E

|u|l
󸀠
dx)

1/l󸀠
(2.31)

≤ CQ{(∫
E

|u|Ndx)
1/N
+ ∫

E

|u|Ndx + (∫
E

|u|l
󸀠
dx)

1/l󸀠
},
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where CQ = 2N−1 supk∈ℕ ‖vk‖N−1N + 2
N−1 + 1 + 2κ̃(supk≥J ‖Qk‖l + ‖Q‖l) < ∞, since (uk)k

is bounded inW and (Qk)k≥J is bounded in Ll(ℝN ) by Lemma 2.2.3 and the choices of
the parameters taken above. Hence (fk)k≥J is bounded in L1(ℝN ) by Lemma 2.2.2, since
u ∈ W and l󸀠 ≥ N .

Clearly, (2.31) implies at once that the sequence (fk)k≥J of L1(ℝN ) verifies the two
properties of Vitali. Indeed, fixing ε > 0, it is enough to choose δ = δ(ε) > 0 so small
and R = R(ε) > 0 so large that for all measurable sets U, with |U | < δ,

CQ{(∫
U

|u|Ndx)
1/N
+ ∫
U

|u|Ndx + (∫
U

|u|l
󸀠
dx)

1/l󸀠
} < ε,

CQ{( ∫
ℝN \BR

|u|Ndx)
1/N
+ ∫

ℝN \BR

|u|Ndx + ( ∫
ℝN \BR

|u|l
󸀠
dx)

1/l󸀠
} < ε.

Finally, vk → 0 a. e. inℝN and so fk → 0 a. e. inℝN by (H1). An application of the Vitali
criterion, Corollary 4.5.5 of [40], gives the assertion.

Proof of Theorem 2.1.1. Fix σ < ℋp, γ ∈ (0, 1], and λ ∈ (0, λ̃), as in the statement
of Lemma 2.3.2. Let (uk) be the sequence constructed in Lemma 2.3.1 and u = uσ,λ,γ its
weak limit inW . In particular, by (2.3), (2.12), (2.22), and (2.24), up to a subsequence,
there exist nonnegative numbers ℓp, ℓN , ℓH , and δ such that

uk ⇀ u inW , uk ⇀ u in Lp(ℝN , |x|−p), I󸀠(u) = 0 inW 󸀠,
∇uk → ∇u and uk → u a. e. in ℝN ,

|∇uk |
p−2∇uk ⇀ |∇u|

p−2∇u in [Lp
󸀠
(ℝN)]

N
,

|∇uk |
N−2∇uk ⇀ |∇u|

N−2∇u in [LN
󸀠
(ℝN)]

N
, (2.32)

‖uk‖W 1,p → ℓp, ‖uk‖W 1,N → ℓN , ‖uk‖ℋp
→ ℓH ,

∫

ℝN

g(x, uk)ukdx → δ, uk → u in L℘loc(ℝ
N), ℘ ∈ [1,∞),

uk ≤ ψR a. e. in ℝN for some ψR ∈ LN (BR) and all R > 0.

Moreover, (2.1), implied by (H1), (2.32), and the Fatou lemma yield

lim inf
k→∞
∫

ℝN

g(x, uk)udx ≥ ∫
ℝN

g(x, u)udx. (2.33)

Thus, Lemma 2.2.2, (2.32), and (2.33) give, as k →∞,

o(1) = ⟨I󸀠(uk), uk − u⟩ = ‖uk‖
p
W 1,p − ∫

ℝN

|∇uk |
p−2∇uk ⋅ ∇udx − ∫

ℝN

up−1k udx
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+ ‖uk‖
N
W 1,N − ∫

ℝN

|∇uk |
N−2∇uk ⋅ ∇udx − ∫

ℝN

uN−1k udx

− σ[‖uk‖
p
Hp
− ∫

ℝN

up−1k
|x|p

udx]

− λ ∫
ℝN

h(x)uq−1k (uk − u)dx − γ ∫
ℝN

g(x, uk)(uk − u)dx

≥ ℓpp − ‖u‖
p
W 1,p + ℓNN − ‖u‖NW 1,N − σ(ℓpH − ‖u‖pℋp

)

− γ ∫
ℝN

[g(x, uk)uk − g(x, u)u]dx + o(1).

Now (2.32), Lemma 2.3.3, and the Brézis and Lieb lemma give

‖uk‖
p
W 1,p − ‖uk − u‖pW 1,p = ‖u‖pW 1,p + o(1),

‖uk‖
N
W 1,N − ‖uk − u‖NW 1,N = ‖u‖NW 1,N + o(1),
‖uk‖

p
Hp
− ‖uk − u‖

p
Hp
= ‖u‖pHp

+ o(1),

∫

ℝN

[g(x, uk)uk − g(x, u)u]dx = ∫
ℝN

g(x, uk − u)(uk − u)dx + o(1)

as k →∞. From this, the argument above yields the main formula

γ lim
k→∞
∫

ℝN

g(x, uk − u)(uk − u)dx ≥ lim
k→∞
‖uk − u‖

p
W 1,p

+ lim
k→∞
‖uk − u‖

N
W 1,N − σ lim

k→∞
‖uk − u‖

p
Hp
.

(2.34)

Arguing as in (2.7), we obtain that for any m ∈ (αN/2α0, αN/α0), α > α0, with α0 given
in (H1), s > N, and l > 1 sufficiently small such that lαm < αN , there exists a positive
constant C∗ = C∗(m, α, s, l) such that

sup
k≥J
∫

ℝN

|uk − u|
s(eα|uk−u|

N󸀠
− SN−2(α, uk − u))dx

≤ C∗ sup
k∈ℕ
‖uk − u‖

s
sl󸀠 <∞

(2.35)

is satisfied, as long as sl󸀠 > N . Finally, by Lemma 2.3.3 and (2.32),

sup
k≥J
∫

ℝN

g(x, uk − u)(uk − u)dx <∞. (2.36)

Then, by the Hölder inequality, we obtain for all k ≥ J that

∫

ℝN

|uk − u|
s(eα|uk−u|

N󸀠
− SN−2(α, uk − u))dx
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≤ ‖uk − u‖
s
sl󸀠(∫
ℝN

(eα|uk−u|
N󸀠
− SN−2(α, uk − u))

ldx)
1/l

≤ C∗‖uk − u‖
s
sl󸀠 .

From this last fact and (2.34), we get, as k →∞,

C∗γκ̃‖uk − u‖
s
sl󸀠 + o(1) ≥ (1 − σ+ℋp

)‖uk − u‖
p
W 1,p + 12 ‖uk − u‖NW 1,N . (2.37)

The continuity of the embeddingW 1,N (ℝN ) 󳨅→ Lsl
󸀠
(ℝN ) gives

C∗γκ̃‖uk − u‖
s
sl󸀠 + o(1) ≥ 1

2cNsl󸀠 ‖uk − u‖
N
sl󸀠 .

Passing eventually to a further subsequence, we assume that there exists ℓγ ≥ 0 such
that

lim
k→∞
‖uk − u‖sl󸀠 = ℓγ .

We assert that ℓγ = 0. Otherwise,

γℓs−Nγ ≥
1

2cNsl󸀠C∗κ̃ = c. (2.38)

Let us define

γ∗ = {
inf{γ ∈ (0, 1] : ℓγ > 0}, if there exists γ ∈ (0, 1] such that ℓγ > 0,
1, if ℓγ = 0 for all γ ∈ (0, 1].

We claim that γ∗ > 0 if there exists γ ∈ (0, 1] such that ℓγ > 0. Otherwise, there exists
a sequence (γk)k, with ℓγk > 0, such that γk → 0 as k →∞. Thus, (2.38) implies that

γkℓ
s−N
γk ≥ c > 0.

This is an obvious contradiction, since {ℓγ}γ∈(0,1] is uniformly bounded above by the
embedding theorem. Indeed, (uk)k ⊂ Bρ, u ∈ Bρ and ρ, given in Lemma 2.3.1, is inde-
pendent of γ.

Hence, ℓγ = 0 for any γ ∈ (0, γ∗). Therefore, for all γ ∈ (0, γ∗),

lim
k→∞
‖uk − u‖sl󸀠 = 0,

which, together with (2.37), gives at once that uk → u as k →∞ inW for all γ ∈ (0, γ∗).
In conclusion, for fixed σ ∈ (−∞,ℋp) and λ ∈ (0, λ̃), and for any γ ∈ (0, 1],

Lemma 2.3.1 and the Ekeland variational principle give the existence of a (PS)mσ,λ,γ se-
quence (uk)k in W of I. Moreover, the argument above shows the existence of γ∗ =
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γ∗(σ, λ) > 0 such that, up to a subsequence, (uk)k strongly converges to u = uσ,λ,γ in
W , with mσ,λ,γ = I(uσ,λ,γ) < 0 < 𝚥 ≤ I(v) for all v ∈ 𝜕Bρ. Consequently, uσ,λ,γ ∈ Bρ, so
that I󸀠(uσ,λ,γ) = 0. In other words, uσ,λ,γ is a nontrivial nonnegative solution of (ℰN ) for
any γ ∈ (0, γ∗).

It remains to show (2.2). First, we recall that the nonnegative solution uσ,λ,γ ∈ Bρ,
with ρ > 0 independent of λ as asserted in Lemma 2.3.1. Hence, {uσ,λ,γ}λ∈(0,λ̃) is uni-
formly bounded inW . Thus, by (2.3) and (H2), we have

mσ,λ,γ ≥ (
1
p
−
1
ν
)(1 − σ+

ℋp
)‖uσ,λ,γ‖

p
W 1,p + ( 1N − 1ν)‖uσ,λ,γ‖NW 1,N

− λ( 1
q
−
1
ν
)‖h‖θ‖uσ,λ,γ‖

q
W 1,N + o(1)

≥ (
1
p
−
1
ν
)(1 − σ+

ℋp
)‖uσ,λ,γ‖

p
W 1,p + ( 1N − 1ν)‖uσ,λ,γ‖NW 1,N − λCh,

where

Ch = (
1
q
−
1
ν
)‖h‖θ sup

λ∈(0,λ̃)
‖uσ,λ,γ‖ <∞.

We first assert that

lim
λ→0
‖uσ,λ,γ‖W 1,p = 0. (2.39)

Otherwise, lim supλ→0 ‖uσ,λ,γ‖W 1,p = υp > 0. Hence there is a sequence j 󳨃→ λj ↑∞ such
that ‖uσ,λj ,γ‖W 1,p → ℓp as j →∞. Then, letting j →∞, we get from (2.3) and Lemma 2.2.2
that

0 ≥ lim sup
λ→0

mσ,λ,γ ≥ (
1
p
−
1
ν
)(1 − σ+

ℋp
)ℓpp > 0,

which is the desired contradiction, proving (2.39). Similarly,

lim
λ→0
‖uσ,λ,γ‖W 1,N = 0. (2.40)

Otherwise, lim supλ→0 ‖uσ,λ,γ‖W 1,N = ℓN > 0. Hence there is a sequence j 󳨃→ λj ↑ ∞
such that ‖uσ,λj ,γ‖W 1,N → ℓN as j → ∞. Then, letting j → ∞, we get from (2.3) and
Lemma 2.2.2 that

0 ≥ lim sup
λ→0

mσ,λ,γ ≥ (
1
N
−
1
ν
)ℓNN > 0,

which is the desired contradiction, proving (2.40). Of course, (2.39) and (2.40) imply
at once the validity of (2.2).
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Comments on Chapter 2
A substantial progress for Moser–Trudinger inequalities on Riemannian manifolds
has been achieved in the last years. For instance, in the compact case, the study of
these inequalities started with the pioneering works due to T. Aubin [18], P. Cherrier
[59], and L. Fontana [108]. In the presence of lack of compactness, Sobolev inequali-
ties are more delicate and the different geometric notions of curvature play a crucial
role in this case. For instance, inspired by the above cited paper [156] and by using
some fine estimates on the density function of the volume form, Q. Yang, D. Su, and
Y. Kong in [256] proved that on a complete, simply connected N-dimensional Rieman-
nian manifold with negative sectional curvature there exists a constant kN (ℳ) > 0
such that

sup
u∈W 1,N (ℳ)
‖u‖W1,N ≤1

∫
ℳ

(eβ|u|
N󸀠
− SN−2(β, |u|))dσg = kN (ℳ)

for every β ∈ [0,Nω1/(N−1)
N−1 ]. A challengingproblem is to extendTheorem2.1.1when (ℰN )

is set on a noncompact Riemannian manifoldℳ; see Chapter 8 for related results.
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3 Critical Hardy–Kirchhoff equations inℝN

Ognuno sta solo sul cuor della terra
trafitto da un raggio di sole:
ed è subito sera.

Salvatore Quasimodo
Ed è subito sera

This chapter dealswith the existence of nontrivial solutions for stationary critical, pos-
sibly degenerate, Kirchhoff (p, q) equations inℝN . For clarity, the results are presented
in the scalar case, and we refer to [101] for the extension into the vectorial as well as
fractional framework. The main difficulties arise because of the (p, q)-Laplacian oper-
ator, the double lack of compactness, as well as the fact that the Kirchhoff equation
can be degenerate, that is,M(0) = 0.

Lately, great attention has been drawn to the study of nonlocal elliptic problems
that lack compactness. Thesemodels arise in a quite natural way inmany different ap-
plications, and we refer to [210] for details. In the fractional setting we cite the recent
monograph [188], the extensive paper [81], and the references cited there for further
comments. More recently, the study has been extended to problems involving frac-
tional (p, q) elliptic operators, see [1, 14, 15, 38, 101].

3.1 The stationary Kirchhoff framework

In this chapter, we study the existence of nontrivial solutions for possibly degenerate
Kirchhoff equations involving the (p, q)-Laplacian aswell as critical nonlinearities. For
the sake of clarity,wepresent the results in the scalar case.More precisely,we consider
the following equation in ℝN :

M(‖u‖pW 1,p)(−Δpu + |u|p−2u) +M(‖u‖qW 1,q)(−Δqu + |u|q−2u)
= λf (x, u) + |u|q

∗−2u, (ℰM)

where 2 ≤ p < q < N and q∗ = Nq/(N − q).
The natural solution space isW = W 1,p(ℝN ) ∩W 1,q(ℝN ), with the norm

‖u‖ = ‖u‖W 1,p + ‖u‖W 1,q .
The spaceW is a separable reflexive Banach space.

Throughout the chapter, we suppose for the Kirchhoff coefficient that
(M ) M : ℝ+0 → ℝ

+
0 is a continuous function such that

(M1) there exists θ ∈ [1, p∗/p), yieldingM(t)t ≤ θM (t) for all t ∈ ℝ+0 , whereM (t) =
∫
t
0M(τ)dτ,

and either

https://doi.org/10.1515/9783110652017-003
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44 | 3 Critical Hardy–Kirchhoff equations inℝN

(M̃2) inft∈ℝ+0 M(t) = a > 0,
or M(0) = 0 and M verifies both properties:
(M2) for any τ > 0 there exists m = m(τ) > 0 such that M(t) ≥ m for all t ≥ τ,
(M3) there exists a positive number c > 0 such that M(t) ≥ c tθ−1 for all t ∈ [0, 1].

Usually, the existence of solutions of Kirchhoff problems is obtained when M is also
nondecreasing in ℝ+0. For more comments, we refer, e. g., to [105, 211, 216]. However,
the entire condition (M ) does not force M to be monotone as the example of M(t) =
(1 + t)k + (1 + t)−1 for t ∈ ℝ+0, with 0 < k < 1, shows; see Figure 3.1 below. For details,
we suggest looking at [22, 215].

Figure 3.1: The behavior ofM(t) for different values of k.

Let D1,p(ℝN ) be the Banach space defined in Section 1.2 so that (1.3) continues to hold
when ℘ = p.

The parameter λ in (ℰM) is strictly positive and the perturbed subcritical term f :
ℝN × ℝ→ ℝ verifies
(ℱ) f is a Carathéodory function. For a. e. x ∈ ℝN , F(x, ⋅) > 0 in ℝ+, where F(x, t) =
∫
t
0 f (x, s)ds. Furthermore, there exist r and γ such that θq < r < q

∗, θq < γ < q∗, and
for every ε > 0 there exists Cε > 0 for which the inequalities

󵄨󵄨󵄨󵄨f (x, t)
󵄨󵄨󵄨󵄨 ≤ εθq|t|

θq−1 + rCε|t|
r−1 for any t ∈ ℝ

and

0 ≤ νF(x, t) ≤ f (x, t)t for all t ∈ ℝ

hold for a. e. x ∈ ℝN .

The definition (ℱ)makes sense since θ < p∗/p < q∗/q.
For critical equations in ℝN , driven by the fractional p-Laplacian, we refer the

reader to [25, 32, 52, 81, 98, 99, 101, 211, 216] and the references therein for the study of
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3.1 The stationary Kirchhoff framework | 45

equations with critical nonlinearities. In the vectorial case very few contributions are
in the case ofℝN , e. g., [13, 100, 101, 103, 104, 159, 177], while in bounded domains we
mention [57, 92, 93, 120, 121, 173, 179, 180, 249] and the references therein.

Let us recall that Kirchhoff problems, with Kirchhoff function M, are said to be
nondegenerate if (M̃2) holds, and degenerate if M(0) = 0 and 0 is the unique zero of
M. From a physical point of view, the fact thatM(0) = 0 means that the base tension
of the string is zero andM measures the change of the tension on the string caused by
the change of its length during the vibration. The presence of the nonlinear coefficient
M is crucial to be considered when the changes in tension during the motion cannot
be neglected. For example, the existence of solutions for nondegenerate fractional
Kirchhoff stationaryproblems is treated in [104, 105, 159], and for degenerateproblems
this problem is considered in [22, 52, 98, 99, 216, 249] and the references therein.

Themain novelty of (ℰM) is that it involves elliptic operators with (p, q) growth, as
well as critical nonlinearities. In this last direction, we recall the recent works [1, 14,
15, 38], devoted to the study of critical (p, q)-fractional problems with M ≡ 1, namely
without the Kirchhoff coefficient. To overcome the lack of compactness, the authors
in [1, 14, 15, 38] exploited suitable concentration compactness arguments which seem
not to work in the presence of a general Kirchhoff coefficient M ̸≡ 1. For this reason,
following [101],we tried to adopt themethodwhichwas introduced in [22] andwas fur-
ther improved successfully in [52, 98, 99, 104, 211] for different contexts. Here we use
a tricky step analysis which allows us to handle the nonlocal nature and the double
loss of compactness of (ℰM). Actually, this approach has been useful also to provide
the existence of solutions for critical fractional Kirchhoff problems, as in [22, 101, 211].
However, it should be noted that in [52, 98, 99, 104] the presence of fractional Hardy
potentials does not allow us to use the strategy in the degenerate Kirchhoff setting. In
the critical (p, q)-fractional Kirchhoff equation (ℰM), the application of the tricky step
analysis is fairly delicate because of the double structure of the norm ‖⋅‖ inW . Indeed,
we have to split the study on the behavior of the Palais–Smale sequences in different
cases, examining all the possible situations as the norms ‖ ⋅ ‖W 1,p and ‖ ⋅ ‖W 1,q approach
zero, due to the degenerate nature of (ℰM). However, the scheme provides us with a
positive answer to the question of solution existence for (ℰM).

Theorem 3.1.1. Suppose thatM verifies (M )and f fulfills (ℱ). Then there exists a thresh-
old λ∗ > 0 such that (ℰM) admits at least one nontrivial solution uλ in W for all λ ≥ λ∗.
Moreover,

lim
λ→∞
‖uλ‖ = 0 (3.1)

holds.

We now study (ℰM) under the sole assumption (M̃2) on the positive continuous
Kirchhoff functionM, which is an addition to Theorem 3.1.1, when (ℰM) is nondegen-
erate.
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Theorem 3.1.2. Suppose that the positive continuous Kirchhoff function M verifies (M̃2)
and f fulfills (ℱ), with θ = 1 and the exponents ν and r satisfying

q < ν < q∗, q < r < q∗, qM(0) < ν a. (3.2)

Then for any ϵ ∈ (M(0), aν/q) there exists λ∗ = λ∗(ϵ) > 0 such that (ℰM) admits at least
one nontrivial solution uλ in W for all λ ≥ λ∗. Furthermore, (3.1) continues to hold.

Clearly, the requirement (3.2)3 is automatically satisfied wheneverM(0) = a, due
to ν > q by (3.2)1. The assumption M(0) = a, together with standard nondecreas-
ing monotonicity of M, was assumed in [105, 211], as well as in numerous papers. A
very interesting open problem is to construct a nontrivial solution uλ of (ℰM) when
ν a ≤ qM(0) and the growth condition on M stated in (M1) does not hold; in other
words, when both Theorems 3.1.1 and 3.1.2 cannot be applied. For the already men-
tioned Kirchhoff function

M(t) = (1 + t)k + (1 + t)−1, t ∈ ℝ+0 , k ∈ (0, 1),

we have M(0) = 2 and a = k−k/(k+1)(1 + k) < 2. Furthermore, if k is so small that
k + 1 < ν/q, thenM verifies all the assumptions of Theorem 3.1.1, with θ = k + 1. While
if k ∈ (0, 1) is sufficiently large, then qM(0) = 2q < ν a, since q < ν by (3.2), and M
satisfies all the hypotheses of Theorem 3.1.2. It is therefore evident that Theorem 3.1.2
is applicable even when neitherM is increasing in ℝ+0, norM(0) = a.

The two Theorems 3.1.1 and 3.1.2 extend, in different and nontrivial ways, to the
Kirchhoff settingdescribed inTheorem1.2 of [1], Theorem1.1 of [14], Theorem1.1 of [15],
while extending and completing the existence result given in Theorem 1.1 of [38].

For the generalization of the previous results to a general framework as well as to
the vectorial case, we refer the interested reader to the original paper [101].

3.2 Proof of Theorem 3.1.1

For the relevant definitions and notations related to the separable reflexive real Ba-
nach spaceW , we refer to [52, 56, 100, 101, 103, 215, 216]. In this section, we first as-
sume, without further mentioning, that the hypotheses required in Theorem 3.1.1 are
satisfied.

Lemma 3.2.1. Let (uk)k and u be in W and such that uk ⇀ u weakly in W, and uk → u
a. e. in ℝN . Then,

∫

ℝN

f (x, uk)(uk − u)dx → 0 (3.3)

as k →∞.
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Proof. By (ℱ), with ε = 1, the Hölder inequality gives, for a suitable constant C > 0,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

ℝN

f (x, uk)(uk − u)dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ∫

ℝN

{θq|uk |
θq−1|uk − u| + r C1|uk |

r−1|uk − u|}dx

≤ C(‖uk − u‖θq + ‖uk − u‖r)→ 0

as k → ∞, by Theorem 2.7 of [100], since 2 ≤ p ≤ θp < θq < r < q∗ by (M1) and (ℱ).
This proves (3.3).

We say that u ∈ W is a (weak) solution of (ℰM) if

M(‖u‖pW 1,p)⟨u,φ⟩W 1,p +M(‖u‖qW 1,q)⟨u,φ⟩W 1,q
= ∫

ℝN

f (x, u)φdx + 1
q∗
∫

ℝN

|u|q
∗−2uφdx

for any φ ∈ W , where

⟨u,φ⟩W 1,p = ⟨∇u, ∇φ⟩p + ⟨u,φ⟩p, ⟨u,φ⟩W 1,q = ⟨∇u, ∇φ⟩q + ⟨u,φ⟩q,
⟨∇u, ∇φ⟩p = ∫

ℝN

|∇u|p−2∇u ⋅ ∇φdx, ⟨u,φ⟩q = ∫
ℝN

|∇u|q−2∇u ⋅ ∇φdx,

⟨u,φ⟩p = ∫
ℝN

|u|p−2uφdx, ⟨u,φ⟩q = ∫
ℝN

|u|q−2uφdx.

Indeed, the simplified notation is reasonable, since ⟨u, ⋅⟩W 1,p , ⟨u, ⋅⟩W 1,q are linear
bounded functionals onW for all u ∈ W .

Clearly, the entire (weak) solutions of (ℰM) are exactly the critical points of the
Euler–Lagrange functional I : W → ℝ, I = Iλ, associated to (ℰM), given for all u ∈ W
by

I(u) = 1
p

M (‖u‖pW 1,p) + 1qM (‖u‖qW 1,q) − λ ∫
ℝN

F(x, u)dx − 1
q∗s
‖u‖q

∗
q∗ ,

which is well defined and of class C1(W) by (ℱ) and the continuity ofM.
We start by showing that the functional I has the mountain pass geometric fea-

tures to guarantee the existence of the Palais–Smale sequence at special levels. The
proof of this behavior is quite standard, but we give it for completeness.

Lemma 3.2.2. There exists e ∈ C∞c (ℝ
N ) such that I(e) < 0, ‖e‖WW1,p ≥ 1, and ‖e‖WW1,q ≥ 1

for all λ > 0.
Furthermore, for all λ > 0 there exist 𝚥 = 𝚥(λ) > 0 and ρ = ρ(λ) ∈ (0, 1] such that

I(u) ≥ 𝚥 for any u ∈ W, with ‖u‖ = ρ.
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Proof. Now, let u ∈ C∞c (ℝ
N ) be such that ‖u‖ = 1. The assumption (M1) implies that

M (t) ≤M (1)tθ for all t ≥ 1 and M (t) ≥M (1)tθ for all t ∈ [0, 1]. (3.4)

Thus, by (ℱ) and (3.4), we have for all λ > 0,

I(tu) = 1
p

M (‖tu‖pW 1,p) + 1qM (‖tu‖qW 1,q) − λ ∫
ℝN

F(x, tu)dx − t
q∗
q∗
‖u‖q

∗
q∗

≤M (1)( t
θp

p
+
tθq

q
) −

tq
∗

q∗
‖u‖q

∗
q∗ → −∞, (3.5)

as t → −∞, since θp < p∗ < q∗ and θq < q∗, since (p∗/p) < (q∗/q) by (M1). Hence,
taking e = τ0u with τ0 > 0 sufficiently large, we obtain at once that ‖e‖WW1,p ≥ 1,
‖e‖WW1,q ≥ 1, and I(e) < 0 for all λ > 0, as stated.

For the second part, note that (ℱ) gives for any ε > 0 the existence of Cε > 0 such
that

0 < F(x, t) ≤ εtθq + Cεt
r for all (x, t) ∈ ℝN × ℝ+ (3.6)

holds. Hence, fixing λ > 0, (1.3), (1.6), and (3.4) imply that for all u ∈ W with ‖u‖ ≤ 1,

I(u) ≥ M (1)
p
‖u‖θpW 1,p + M (1)

q
‖u‖θqW 1,q − λε‖u‖θqθq − λCε‖u‖rr − 1

q∗
‖u‖q

∗
q∗

≥ (
M (1)
q2θq−1
− λεcθqθq)‖u‖

θq − λCεc
r
r‖u‖

r −
cq
∗

q∗
q∗
‖u‖q

∗
.

From this, we choose ε > 0 sufficiently small so that

mλ =
M (1)
q2θq−1
− λεcθqθq > 0.

Clearly, there exists ρ ∈ (0, 1] such that

max
t∈[0,1]

y(t) = y(ρ) > 0, where y(t) = mλt
θq − λCεc

r
r t
r −

cq
∗

q∗
q∗

tq
∗
,

since θq < r < q∗. Consequently, I(u) ≥ y(ρ) = 𝚥 for all u ∈ W , with ‖u‖ = ρ, as desired.
This concludes the proof.

Now we discuss the compactness property for the functional I, given by the
Palais–Smale condition at a suitable level. For this, we fix λ > 0 and set

cλ = infγ∈Γ
max
t∈[0,1]

I(γ(t)), Γ = {γ ∈ C([0, 1];W) : γ(0) = 0, I(γ(1)) < 0}. (3.7)

Obviously, cλ > 0 thanks to Lemma 3.2.2, since in particular ‖e‖ > ρ. Before proving
that I satisfies the Palais–Smale condition at level cλ, we introduce an asymptotic con-
dition for the level cλ. This result will be crucial to overcome the lack of compactness
and was first used in [96] for the (p, q)-Laplacian critical equations.
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Lemma 3.2.3. One has

lim
λ→∞

cλ = 0.

Proof. Fix λ > 0. Let e be the function determined in Lemma 3.2.2, which is indepen-
dent of λ > 0. Since I satisfies the mountain pass geometry at 0 and e, there exists
tλ > 0 verifying I(tλe) = maxt≥0 I(te) for all λ > 0. Therefore, ⟨I󸀠(tλe), e⟩ = 0. Thus,

tp−1λ M(‖tλe‖
p
W 1,p)‖e‖pW 1,p + tq−1λ M(‖tλe‖

q
W 1,q)‖e‖qW 1,q

= λ ∫
ℝN

f (x, tλe)edx + t
q∗−1
λ ‖e‖

q∗
q∗ ≥ tq∗−1λ ‖e‖

q∗
q∗ , (3.8)

by (ℱ), since λ > 0.
We claim that {tλ}λ>0 is bounded in ℝ. Put Λ = {λ > 0 : tλ ≥ 1}. If Λ = 0, we are

done. So consider the case Λ ̸= 0. Now, from (M1), (3.4), the fact that ‖e‖WW1,p ≥ 1 and
also ‖e‖WW1,p ≥ 1, we derive that

tpλM(‖tλe‖
p
W 1,p)‖e‖pW 1,p + tqλM(‖tλe‖qW 1,q)‖e‖qW 1,q

≤ θ{M (‖tλe‖
p
W 1,p) +M (‖tλe‖

q
W 1,q)}

≤ θM (1)tθqλ ‖e‖
θq

(3.9)

for any λ ∈ Λ, since 1 < p < q and θ ≥ 1. Therefore, (3.8) and (3.9) imply that

θM (1)‖e‖θq ≥ tq
∗−θq

λ ‖e‖
q∗
q∗ for any λ ∈ Λ,

which yields that {tλ}λ∈Λ is bounded since θq < q∗, as already noted above. It follows
at once that {tλ}λ>0 is bounded. This proves the claim.

Fix now a sequence (λk)k ⊆ ℝ+ such that λk → ∞ as k → ∞. Obviously, {tλk }k is
bounded. Thus, there exist a t0 ≥ 0 and subsequence of (λk)k, still denoted by (λk)k,
such that tλk → t0. By the continuity ofM, also {M(tpλk ‖e‖

p
W 1,p )}k and {M(tqλk ‖e‖qW 1,q )}k are

bounded, and so by (3.8) there exists C > 0 such that, for any k ∈ ℕ,

λk ∫
ℝN

f (x, tλke)e dx + t
q∗−1
λk
‖e‖q

∗
q∗ ≤ C. (3.10)

We assert that t0 = 0. Otherwise, (ℱ) and the dominated convergence theorem yield

∫

ℝN

f (x, tλke)e dx → ∫
ℝN

f (x, t0e)e dx > 0 (3.11)

as k →∞. Recalling that λk →∞, we get

lim
k→∞
[λk ∫
ℝN

f (x, tλke)edx + t
q∗−1
λk
‖e‖q

∗
q∗] =∞,
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which contradicts (3.10). Thus t0 = 0 and tλ → 0 as λ → ∞, since the sequence (λk)k
is arbitrary.

Now the path γ(t) = te, t ∈ [0, 1], belongs to Γ, so that Lemma 3.2.2 gives

0 < cλ ≤ max
t≥0

I(γ(t)) ≤ I(tλe) ≤
1
p

M (‖tλe‖
p
W 1,p) + 1qM (‖tλe‖

q
W 1,q).

Moreover, M (‖tλe‖
p
W 1,p ) → 0 and M (‖tλe‖

q
W 1,q ) → 0 as λ → ∞, by the continuity of

M and the fact that e does not depend on λ > 0. This completes the proof of the
lemma.

Now we are ready to prove the compactness property of I at the special level (3.7)
for λ sufficiently large. To this aim, we use somehow an argument which first ap-
peared in [22]. This method has been adopted during the years, after several improve-
ments and refinements, in different problems where the lack of global compactness
was present; see [52, 98, 99, 104, 211].

Lemma 3.2.4. Any (PS)cλ sequence (uk)k of I is bounded in W for all λ > 0. Moreover,
there exist uλ ∈ W, nonnegative numbers ℓp, ℓq, δλ such that, up to a subsequence, still
denoted by (uk)k ,

uk ⇀ uλ in W , ‖uk‖
p
W 1,p → ℓp, ‖uk‖qW 1,q → ℓq,

uk → uλ in L
℘
loc(ℝ

N), uk → uλ a. e. in ℝ
N ,

|uk | ≤ gR a. e. in ℝN , for some gR ∈ L℘(BR) and all R > 0, (3.12)

uk ⇀ uλ in L
q∗(ℝN), ‖uk‖q∗q∗ → δλ,

|uk |
q∗−2uk ⇀ |uλ|q∗−2uλ in Lq∗/(q∗−1)(ℝN),

hold for all ℘ ∈ [1, q∗). Finally, up to further subsequence, if necessary, not relabeled,

∇uk → ∇uλ a. e. in ℝN (3.13)

is valid.

Proof. Fix λ > 0 and let (uk)k ⊂ W be a (PS)cλ sequence of I. Assume for contradiction
that (uk)k is not bounded in W . Then, going to a subsequence, still called (uk)k for
simplicity, either

lim
k→∞
‖uk‖W 1,p =∞, lim

k→∞
‖uk‖W 1,q =∞,

‖uk‖W 1,p ≥ 1, ‖uk‖W 1,q ≥ 1 for all k,
(3.14)

or

lim
k→∞
‖uk‖W 1,p =∞, sup

k∈ℕ
‖uk‖W 1,q <∞, ‖uk‖W 1,p ≥ 1 for all k (3.15)

is valid.

 EBSCOhost - printed on 2/10/2023 3:36 PM via . All use subject to https://www.ebsco.com/terms-of-use



3.2 Proof of Theorem 3.1.1 | 51

Assume first that (3.14) holds. If M(0) = 0, then by (M2), with τ = 1, there exists
m > 0 such that

M(‖uk‖
p
W 1,p) ≥ m and M(‖uk‖

q
W 1,q) ≥ m for all k. (3.16)

Clearly, inequalities (3.16) continue to hold also in the nondegenerate case, that is,
when (M̃2) is true, by taking m = a. Furthermore, from (M1) and (ℱ) in both cases it
follows that

I(uk) −
1
ν
⟨I󸀠(uk), uk⟩ ≥

1
p

M (‖uk‖
p
W 1,p) − 1νM(‖uk‖pW 1,p)‖uk‖pW 1,p

+
1
q

M (‖uk‖
q
W 1,q) − 1νM(‖uk‖qW 1,q)‖uk‖qW 1,q

+ (
1
ν
−

1
q∗
)‖uk‖

q∗
q∗

≥ (
1
pθ
−
1
ν
)M(‖uk‖

p
W 1,p)‖uk‖pW 1,p

+ (
1
qθ
−
1
ν
)M(‖uk‖

q
W 1,q)‖uk‖qW 1,q ,

since pθ < qθ < ν < q∗. Hence, by (1.9) there exists βλ such that as k →∞,

cλ + βλ‖uk‖ + o(1) ≥ α{‖uk‖
p
W 1,p + ‖uk‖qW 1,q}, α > 0,

α = ( 1
qθ
−
1
ν
) × {

m, in the degenerate case,
a, in the nondegenerate case,

(3.17)

wherem is given in (3.16), while a is the positive constant in (M̃2). Therefore,

0 < α ≤ βλ
‖uk‖W 1,p + ‖uk‖W 1,q
‖uk‖

p
W 1,p + ‖uk‖qW 1,q + o(1) ≤ βλ(‖uk‖1−pW 1,p + ‖uk‖1−qW 1,q) + o(1)

as k →∞. This is impossible by (3.14), since α > 0 is a fixed number.
It remains to consider the case when (3.15) holds. Arguing as above, we now get

0 < α ≤ βλ
‖uk‖W 1,p + ‖uk‖W 1,q
‖uk‖

p
W 1,p + o(1) = βλ ‖uk‖

1−p
W 1,p + o(1)

as k → ∞. Again this cannot occur by (3.15). The claim is now completely proved,
since the other alternative can be handled in the same way.

Clearly, (3.12) follows at once by the fact thatW is a reflexive Banach space, by (1.6)
and by Lemma 1.2.1.

It remains to prove (3.13). To this aim, we have to distinguish three cases for the
possibly degenerate nature of (ℰM). The case ℓp = ℓq = 0 cannot occur, otherwise
uk → 0 = uλ inW and so 0 = I(uλ) = cλ > 0 gives the required contradiction. Hence
either ℓp > 0 or ℓq > 0.
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We mimic the argument given in the proof of Lemma 2.3.2. Take R > 0 and φ ∈
C∞0 (ℝ

N ) such that 0 ≤ φ ≤ 1 in ℝN , φ ≡ 1 in BR and φ ≡ 0 in Bc2R. By convexity, we get

(󵄨󵄨󵄨󵄨∇uk(x)
󵄨󵄨󵄨󵄨
℘−2
∇uk(x) −

󵄨󵄨󵄨󵄨∇uλ(x)
󵄨󵄨󵄨󵄨
℘−2
∇u(x)λ) ⋅ (∇uk(x) − ∇uλ(x)) ≥ 0 a. e. in ℝN

for any k ∈ ℕ and for ℘ ∈ {p, q}.
Let us first suppose that ℓp > 0. Thus, the well known Simon inequality, see

Lemma 2.1 of [231], with p ≥ 2, yields the existence of cp > 0 such that

cpM(‖uk‖
p
W 1,p) ∫

BR

|∇uk − ∇uλ|
pdx

≤ M(‖uk‖
p
W 1,p) ∫

BR

(|∇uk |
p−2∇uk − |∇uλ|

p−2∇uλ) ⋅ (∇uk − ∇uλ)dx

≤ M(‖uk‖
p
W 1,p) ∫
ℝN

φ(|∇uk |
p−2∇uk − |∇uλ|

p−2∇uλ) ⋅ (∇uk − ∇uλ)dx

+M(‖uk‖
q
W 1,q) ∫
ℝN

φ(|∇uk |
q−2∇uk − |∇uλ|

q−2∇uλ) ⋅ (∇uk − ∇uλ)dx.

Therefore, as k →∞,

cpM(‖uk‖
p
W 1,p) ∫

BR

|∇uk − ∇uλ|
pdx

≤ ∫

ℝN

φ{M(‖uk‖
p
W 1,p)|∇uk |p +M(‖uk‖qW 1,q)|∇uk |q}dx

− ∫

ℝN

φ{M(‖uk‖
p
W 1,p)|∇uk |p−2

+M(‖uk‖
q
W 1,q)|∇uk |q−2}∇uk ⋅ ∇uλdx + o(1).

(3.18)

Clearly, (1.9) and (3.12) give

⟨I󸀠(uk),φuk⟩ − ⟨I
󸀠(uk),φu⟩ = o(1) as k →∞,

that is,

∫

ℝN

φ{M(‖uk‖
p
W 1,p)|∇uk |p +M(‖uk‖qW 1,q)|∇uk |q}dx

− ∫

ℝN

φ{M(‖uk‖
p
W 1,p)|∇uk |p−2 +M(‖uk‖qW 1,q)|∇uk |q−2}∇uk ⋅ ∇uλdx

= ⟨I󸀠(uk),φuk⟩ − ⟨I
󸀠(uk),φuλ⟩ − ∫

ℝN

{M(‖uk‖
p
W 1,p)|∇uk |p−2
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+M(‖uk‖
q
W 1,q)|∇uk |q−2}(uk − uλ)∇uk ⋅ ∇φdx (3.19)

− ∫

ℝN

φ{M(‖uk‖
p
W 1,p)|uk |p−2uk

+M(‖uk‖
q
W 1,q)|uk |q−2uk}(uk − uλ)dx

+ λ ∫
ℝN

φf (x, uk)(uk − uλ)dx + ∫
ℝN

φ|uk |
q∗dx − ∫

ℝN

φ|uk |
q∗−2ukuλdx.

By the Hölder inequality,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

ℝN

{M(‖uk‖
p
W 1,p)|∇uk |p−2 +M(‖uk‖qW 1,q)|∇uk |q−2}(uk − uλ)∇uk ⋅ ∇φdx󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ‖∇φ‖∞mp,q{‖∇uk‖
p−1
p (∫

B2R

|uk − uλ|
pdx)

1/p

+ ‖∇uk‖
q−1
q (∫

B2R

|uk − uλ|
qdx)

1/q
},

wheremp,q = max{supk M(‖uk‖
p
W 1,p ), supk M(‖uk‖qW 1,q )}. This yields by (3.12) that

lim
k→∞
∫

ℝN

{M(‖uk‖
p
W 1,p)|∇uk |p−2 +M(‖uk‖qW 1,q)|∇uk |q−2)}

× (uk − uλ)∇uk ⋅ ∇φdx = 0.
(3.20)

Similarly, again by the Hölder inequality,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

ℝN

φ{M(‖uk‖
p
W 1,p)|uk |p−2 +M(‖uk‖qW 1,q)uq−2k }uk(uk − uλ)dx

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ mp,q{‖uk‖
p−1
p (∫

B2R

|uk − uλ|
pdx)

1/p
+ ‖uk‖

q−1
q (∫

B2R

|uk − uλ|
qdx)

1/q
},

which implies that

lim
k→∞
∫

ℝN

φ(M(‖uk‖
p
W 1,p)|uk |p−2
+M(‖uk‖

q
W 1,q)uq−2k )uk(uk − uλ)dx = 0.

(3.21)
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Likewise, by (ℱ) and the Hölder inequality, as k →∞,

0 ≤ ∫
ℝN

φf (x, uk)(uk − uλ)dx

≤ ∫
B2R

φ(θq|uk |
θq−1|uk − uλ| + r C1|uk |

r−1|uk − uλ|)dx

≤ C{( ∫
B2R

|uk − uλ|
θqdx)

1/θq
+ (∫

B2R

|uk − uλ|
rdx)

1/r
}→ 0,

(3.22)

where C = θq supk ‖uk‖
θq−1
θq + r C1 supk ‖uk‖

r−1
r < ∞ by Lemma 2.2.2, since (uk)k is

bounded inW . Finally, as k →∞,

∫

ℝN

φ|uk |
q∗dx − ∫

ℝN

φ|uk |
q∗−2ukuλdx → 0, (3.23)

by (3.12). Thus, combining (3.18)–(3.23), we obtain

cpM(‖uk‖
p
W 1,p) ∫

BR

|∇uk − ∇uλ|
pdx ≤ o(1) as k →∞,

which implies at once that

∇uk → ∇uλ in [Lp(BR)]
N for all R > 0,

sinceM(‖uk‖
p
W 1,p ) → M(ℓpp) > 0 by (M2) whenM(0) = 0 and by (M̃2) in the nondegen-

erate case. Therefore, up to subsequence, not relabeled, we get (3.13).
It remains finally to consider the case in which ℓq > 0. Again, the well known

Simon inequality, with q > 2, yields the existence of cq > 0 such that

cqM(‖uk‖
q
W 1,q) ∫

BR

|∇uk − ∇uλ|
qdx

≤ M(‖uk‖
q
W 1,q) ∫

BR

(|∇uk |
q−2∇uk − |∇uλ|

q−2∇uλ) ⋅ (∇uk − ∇uλ)dx

≤ M(‖uk‖
p
W 1,p) ∫
ℝN

φ(|∇uk |
p−2∇uk − |∇uλ|

p−2∇uλ) ⋅ (∇uk − ∇uλ)dx

+M(‖uk‖
q
W 1,q) ∫
ℝN

φ(|∇uk |
q−2∇uk − |∇uλ|

q−2∇uλ) ⋅ (∇uk − ∇uλ)dx.
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Therefore, as k →∞,

cqM(‖uk‖
q
W 1,q) ∫

BR

|∇uk − ∇uλ|
qdx

≤ ∫

ℝN

φ{M(‖uk‖
p
W 1,p)|∇uk |p +M(‖uk‖qW 1,q)|∇uk |q}dx

− ∫

ℝN

φ{M(‖uk‖
p
W 1,p)|∇uk |p−2

+M(‖uk‖
q
W 1,q)|∇uk |q−2}∇uk ⋅ ∇uλdx + o(1).

(3.24)

Again, (1.9) and (3.12) give (3.19)–(3.23). Thus, combining (3.19)–(3.23) with now (3.24),
we get

cqM(‖uk‖
q
W 1,q) ∫

BR

|∇uk − ∇uλ|
qdx ≤ o(1) as k →∞,

which implies at once that

∇uk → ∇uλ in [Lq(BR)]
N for all R > 0,

sinceM(‖uk‖
q
W 1,q ) → M(ℓqq ) > 0 by (M2) whenM(0) = 0 and by (M̃2) in the nondegen-

erate case. Therefore, up to subsequence, not relabeled, we get also in this case (3.13).

Lemma 3.2.5. There exists λ∗ > 0 such that for any λ ≥ λ∗ the functional I satisfies the
Palais–Smale condition at level cλ.

Proof. Fix λ > 0 and let (uk)k ⊂ W be a (PS)cλ sequence of I. Thus, up to a subse-
quence, still called (uk)k, there exists uλ ∈ W such that (3.12) and (3.13) hold thanks to
Lemma 3.2.4. By (M1), (ℱ), (1.9), and (3.12), we also have

cλ + o(1) ≥ (
1
ν
−

1
q∗
)‖uk‖

q∗
q∗ (3.25)

as k →∞. In particular, by (3.12), (3.25) and the Brézis and Lieb lemma in [49], letting
k →∞, we get

cλ ≥ (
1
ν
−

1
q∗
)(ℓq

∗
λ + ‖uλ‖

q∗
q∗) ≥ ( 1ν − 1

q∗
)ℓq
∗

λ . (3.26)

On the other hand, (1.9), (3.3), (3.12), and (3.13) imply that, as k →∞,

o(1) = ⟨I󸀠(uk), uk − uλ⟩ = M(‖uk‖
p
W 1,p)‖uk‖pW 1,p −M(‖uk‖pW 1,p)⟨uk , uλ⟩W 1,p

+M(‖uk‖
q
W 1,q)‖uk‖qW 1,q −M(‖uk‖qW 1,q)⟨uk , uλ⟩W 1,q
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− ∫

ℝN

(|uk |
q∗−2uk(uk − uλ)dx − λ ∫

ℝN

f (x, uk)(uk − uλ)dx

= M(ℓpp)(ℓ
p
p − ‖uλ‖

p
W 1,p) +M(ℓqq)(ℓqq − ‖uλ‖qW 1,q)

− ‖uk‖
q∗
q∗ + ‖uλ‖q∗q∗ + o(1).

Thus, (3.12), (3.13), Theorem 2.7 of [100], and the Brézis and Lieb lemma yield the cru-
cial formula

M(ℓpp) limk→∞
‖uk − uλ‖

p
W 1,p +M(ℓqq) limk→∞

‖uk − uλ‖
q
W 1,q

= lim
k→∞
‖uk − uλ‖

q∗
q∗ = δq∗λ . (3.27)

On the other hand, by Lemma 3.2.3, there exists λ∗ > 0 such that for all λ ≥ λ∗,

cλ < (
1
ν
−

1
q∗
)

{{{{
{{{{
{

min{(mS)q
∗/(q∗−q), (c Sθ)q∗/(q∗−θq)},

in the degenerate case,

(a S)q
∗/(q∗−q) in the nondegenerate case,

(3.28)

wherem is thenumber dependingon τ = 1 selected as in (M2), c is thepositive constant
in assumption (M3) in the degenerate case, while a is given in (M̃2) in the nondegener-
ate case. Finally, S is the best constant of the Sobolev embedding forW 1,q(ℝN ), given
by

S = inf
u∈W 1,q(ℝN )

u ̸=0

‖u‖qW 1,q
‖u‖qq∗ > 0. (3.29)

Since (ℰM) could be degenerate, that is, theKirchhoff functionM could be possibly
0 at 0, we split the proof in two steps.

Step 1. The Kirchhoff functionM verifiesM(0) = 0, (M1), (M2), and (M3).
Due to the degenerate nature of (ℰM), several situations must be considered, and

we divide the proof of the current step into further three cases; we shall show that the
first two cannot occur.

Case 1. ℓp = 0, but ℓq > 0 for a fixed λ ≥ λ∗.

Of course, uk → 0 strongly in W 1,p(ℝN ). Thus (3.12) implies that uλ = 0 in W .
Therefore, the crucial formula (3.27) becomes

M(ℓqq)ℓ
q
q = δ

q∗
λ . (3.30)

We claim that δλ = 0. Otherwise, δλ > 0 and (3.29) and (3.30) imply

δq
∗−q
λ ≥ SM(ℓ

q
q). (3.31)
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Since we do not know the exact behavior ofM, we distinguish two situations.
If ℓq ≥ 1, then (M2) gives m > 0, corresponding to τ = 1, such that M(ℓqq ) ≥ m.

Hence, (3.31) yields

δq
∗−q
λ ≥ mS. (3.32)

While if ℓq ∈ (0, 1), then δ
q∗−q
λ ≥ c Sℓ

q(θ−1)
q ≥ c Sθδq(θ−1)λ by (3.31), (M3), and (3.29). This

gives

δq
∗−θq
λ ≥ c Sθ , (3.33)

since δλ > 0 by contradiction. By combining (3.26), (3.32), and (3.33), we have

cλ ≥ (
1
ν
−

1
q∗
)ℓq
∗

λ

≥ (
1
ν
−

1
q∗
)min{(mS)q

∗/(q∗−q), (c Sθ)q∗/(q∗−θq)}, (3.34)

which is impossible by (3.28). Thus δλ = 0, as claimed.
But δλ = 0 denies the validity of (3.30), since ℓq > 0 implies M(ℓqq ) > 0 by (M2).

Therefore, Case 1 cannot occur, as stated.

Case 2. ℓp > 0 but ℓq = 0 for some fixed λ > 0.

It is obvious that uλ = 0 inW and that uk → 0 strongly in Lq
∗
(ℝN ). Therefore, (3.27)

yields at once the required contradiction

M(ℓpp)ℓ
p
p = 0,

since ℓp > 0 and soM(ℓpp) > 0 by (M2).
In conclusion, we have to consider only

Case 3. ℓp > 0 and ℓq > 0 for some fixed λ ≥ λ∗.

Let us prove that (uk)k, up to a possibly further subsequence, converges strongly
to uλ in W . Arguing as above, we assert that δλ = 0. Otherwise, δλ > 0 so that (3.27)
and (3.29) give (3.31) again, and we can proceed as in Case 1. Let us distinguish two
situations. If ℓq ≥ 1, then (M2) givesm > 0, corresponding to τ = 1, such thatM(ℓqq ) ≥
m. Hence (3.31) yields again (3.32). While if ℓq ∈ (0, 1), then (3.12), (3.29), (3.31), (M3),
and Theorem 2.7 of [100] imply

δq
∗
λ ≥ SM(ℓ

q
q)δ

q
λ ≥ c S δ

q
λℓ

q(θ−1)
q

= c S δqλ(‖uk − uλ‖
q
W 1,q + ‖uλ‖qW 1,q)θ−1 + o(1) (3.35)

≥ c S δqλ‖uk − uλ‖
q(θ−1)
W 1,q + o(1) ≥ c Sθδθqλ + o(1)
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as k →∞. Consequently, (3.33) is valid again. Therefore, (3.26), (3.32), and (3.33) give
once more (3.34), which contradicts (3.28). Thus δλ = 0, as claimed. Hence,

lim
k→∞
‖uk − uλ‖q∗ = δλ = 0.

Clearly, (3.27) yields that uk → uλ inW as k →∞, due toM(ℓpp) > 0 andM(ℓ
q
q ) > 0 by

(M2) and the fact that ℓpp > 0 and ℓ
q
q > 0. This completes the proof of Step 1.

Step 2. The Kirchhoff functionM satisfies (M1) and (M̃2).
In this case, the proof of Step 1 simplifies further. Indeed, the argument produces

the main formula (3.27), and so (3.29) gives at once

δq
∗
λ ≥ SM(ℓ

q
q)δ

q
λ ≥ a S δ

q
λ

by (M̃2). Hence δλ = 0 by (3.26) and (3.28). Hence, we may finish the proof of Step 2
proceeding as at the end of Case 3. This completes the proof.

Proof of Theorem 3.1.1. Lemmas 3.2.2 and 3.2.5 guarantee that there exists λ∗ > 0 such
that for any λ ≥ λ∗, the functional I satisfies all the assumptions of the mountain pass
theorem at the level cλ. Hence, there exists a critical point uλ ∈ W of I at level cλ.
Clearly, uλ ̸= 0, since I(uλ) = cλ > 0 = I(0).

Furthermore, from (M1) and (ℱ),

cλ ≥ (
1
pθ
−
1
ν
)M(‖uλ‖

p
W 1,p)‖uλ‖pW 1,p

+ (
1
qθ
−
1
ν
)M(‖uλ‖

q
W 1,q)‖uλ‖qW 1,q ,

(3.36)

which yields (3.1) in the nondegenerate case by virtue of Lemma 3.2.3 and (M̃2).
In the degenerate case, we argue as follows. Suppose first that

lim sup
λ→∞
‖uλ‖W 1,p = ωp > 0.

Hence there is a sequence j 󳨃→ λj ↑ ∞ such that ‖uλj‖W 1,p → ωp as j → ∞. Then (3.36)
gives

cλj ≥ (
1
pθ
−
1
ν
)M(‖uλj‖

p
W 1,p)‖uλj‖pW 1,p .

Lemma 3.2.3 as j →∞ yields

0 ≥ ( 1
pθ
−
1
ν
)M(ωp

p)ω
p
p > 0

by (M2). This contradiction proves that

lim
λ→∞
‖uλ‖W 1,p = 0. (3.37)
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We assert that

lim
λ→∞
‖uλ‖W 1,q = 0. (3.38)

Otherwise, lim supλ→∞ ‖uλ‖W 1,q = ωq > 0. Hence there is a sequence j 󳨃→ μj ↑∞ such
that ‖uμj‖W 1,q → ωq as j →∞. Then, (3.36) gives

cμj ≥ (
1
qθ
−
1
ν
)M(‖uμj‖

q
W 1,q)‖uμj‖qW 1,q .

Lemma 3.2.3 as j →∞ yields

0 ≥ ( 1
qθ
−
1
ν
)M(ωq

q)ω
q
q > 0,

again by (M2). This contradiction proves (3.38). Of course, (3.37) and (3.38) imply at
once the validity of (3.1).

3.3 Proof of Theorem 3.1.2

We conclude this chapter proving the result stated in Theorem 3.1.2 for the nondegen-
erate case. For this, we need a truncation argument, as in [98, 99, 104, 105] and the
references therein, in order to control the growth of the elliptic part of (ℰM). From now
until the end of the section, we require all the assumptions of Theorem 3.1.2.

Proof of Theorem 3.1.2. Take ε ∈ ℝ+, with 0 < a ≤ M(0) < ε < aν/q, which is possible
by (3.2). Put for all t ∈ ℝ+0,

Mε(t) = {
M(t), ifM(t) ≤ ε,
ε, ifM(t) > ε,

so that

Mε(0) = M(0), min
t∈ℝ+0 Mε(t) = a,

(3.39)

and let Mε(t) = ∫
t
0Mε(τ)dτ. Consider the auxiliary equation in ℝN such that

Mε(‖u‖
p
W 1,p)(−Δpu + |u|p−2u) +Mε(‖u‖

q
W 1,q)(−Δqu + |u|q−2u)

= λf (x, u) + |u|q
∗−2u. (3.40)

We are going to solve (3.40), using the proof of Step 2 of Theorem 3.1.1, but replacing
the Kirchhoff functionM withMε.

Clearly, (3.40) can be thought as the Euler–Lagrange equation of the C1 functional

Iε(u) =
1
p

Mε(‖u‖
p
W 1,p) + 1qMε(‖u‖

q
W 1,q) − λ ∫

ℝN

F(x, u)dx − 1
q∗
‖u‖q

∗
q∗

 EBSCOhost - printed on 2/10/2023 3:36 PM via . All use subject to https://www.ebsco.com/terms-of-use



60 | 3 Critical Hardy–Kirchhoff equations inℝN

for all u ∈ W . For the functional Iε, Lemmas 3.2.2 and 3.2.3 continue to hold. Indeed,
for Lemma 3.2.2 it is enough to observe that (3.5) is now replaced by

Iε(tu) ≤ ε(
tp

p
+
tq

q
) −

tq
∗

q∗
‖u‖q

∗
q∗ → −∞

as t → ∞, since p < q < q∗. Similarly, also Lemma 3.2.3 can be proved in a simpler
way. Indeed, tλ > 0, so that (3.9) becomes

ε(tpλ ‖e‖
p
W 1,p + tqλ ‖e‖qW 1,q) ≥ tpλMε(‖tλe‖

p
W 1,p)‖e‖pW 1,p

+ tqλMε(‖tλe‖
q
W 1,q)‖e‖qW 1,q

for any λ > 0. This and (3.8) imply at once that {tλ}λ>0 is bounded in ℝ. The rest of the
proof is unchanged. Hence Lemmas 3.2.2–3.2.4 are valid, and it remains to prove the
main Lemma 3.2.5 for Iε.

Proceeding as in the proof of Claim 1 of Lemma 3.2.5, by (M̃2) now (3.17) becomes,
as n→∞,

cλ + βλ‖uλ‖ + o(1) ≥ α{‖un‖
p
W 1,p + ‖un‖qW 1,q}, α = a

q
−
ε
ν
> 0, (3.41)

since ε < a ν/q, while the other key formulas hold true with no relevantmodifications.
Thus, arguing as before in Step 2 of Lemma 3.2.5, we find that for all ε ∈ (M(0), aν/q)
there exists a suitable λ̃ = λ̃(ε) > 0 such that (3.40) admits a nontrivial solution uλ ∈ W ,
with Iε(uλ) = cλ. Hence, (3.41) implies that for all λ ≥ λ̃,

cλ ≥ α{‖uλ‖
p
W 1,p + ‖uλ‖qW 1,q},

so that (3.1) follows at once by Lemma 3.2.3.
Fix ε ∈ (M(0), aν/q). By (3.1),

a ≤ M(0) = Mε(0) = limλ→∞
max{Mε(‖uλ‖W 1,p), Mε(‖uλ‖W 1,q)}.

Therefore, there exists λ∗ = λ∗(ε) ≥ λ̃ such that

a ≤ max{Mε(‖uλ‖W 1,p), Mε(‖uλ‖W 1,q)} < ε for all λ ≥ λ∗.

In conclusion, for all ε ∈ (M(0), aν/q) there exists a threshold λ∗ = λ∗(ε) > 0 such that
for all λ ≥ λ∗ the solution uλ of (3.40) is also a solution of (ℰM).

Comments on Chapter 3
Equation (ℰM) possesses some interesting features: it is governed by two operators
and contains a critical term. Problems in which both the p and q Laplacians appear,
set also in unbounded domains, have been recently considered in the literature but,
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as far as we know, no problem like (ℰM) with either p or q variable has been examined.
A very interesting area of nonlinear analysis lies in the study of elliptic equations in-
volving anisotropic elliptic operators. Recently, great attention has been focused on
these problems; see, among others, the paper [8] and the references therein. From the
variational viewpoint, several intriguing difficulties naturally arise in this new set-
ting. For instance, a precise formulation of the concentration compactness principle
in spaces with variable exponent need to be investigated; see [109]. We also refer to
the monographs [221] for a theoretical account on these spaces. The extension to this
new setting will be an object of future studies.
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4 Multiple solutions for critical equations inℝN

Se non dovessi tornare,
sappiate che non sono mai
partito.
Il mio viaggiare
è stato tutto un restare
qua, dove non fui mai.

Giorgio Caproni
Biglietto lasciato prima di non andar via

In [9] A. Ambrosetti, H. Brézis, and G. Cerami studied the existence andmultiplicity of
solutions for semilinear ellipticDirichlet problems inboundeddomains, analyzing the
combined effects of concave and convex nonlinearities with respect to a real parame-
ter λ. Later, S. Alama and G. Tarantello in [2] dealt with a related semilinear Dirichlet
problem in a boundeddomain,withweightednonlinear terms. The competingnonlin-
ear terms combine each other, with the first being subcritical and the latter critical or
supercritical. Here, following [24, 217], we prove the existence of a critical value λ∗ > 0
with the property that (ℰλ) admits nontrivial nonnegative entire solutions if and only
if λ ≥ λ∗. Furthermore, if (ℰλ) possesses a nontrivial nonnegative entire solution for
some λ > 0, then (ℰλ) admits at least two nontrivial nonnegative entire solutions. In
the last section a multiplicity result has been proved in the presence of symmetries.

4.1 Nonnegative entire solutions

In this chapter we study the following one-parameter critical elliptic equation in ℝN :

− Δu + u = λw(x)|u|m−2u − h(x)|u|2∗−2u, N ≥ 3, 2∗ = 2N
N − 2
, (ℰλ)

where λ ∈ ℝ and the main coefficients verify
(ℋ1) (i) The exponent m is such that 1 < m < 2∗;
(ii) 0 < h ∈ L∞(ℝN ), 0 ≤ w ∈ L2∗/(2∗−m)(ℝN ), and w ̸≡ 0.

(ℋ2) The coefficients h and w are related by the condition that

w(w/h)(m−1)/(2∗−m) ∈ L2∗󸀠(ℝN),
󵄩󵄩󵄩󵄩w(w/h)

(m−1)/(2∗−m)󵄩󵄩󵄩󵄩2∗󸀠 = W ∈ ℝ+ (4.1)

hold, where 2∗󸀠 is the Hölder conjugate of 2∗.
Note that the requirement that h ∈ L∞(ℝN ) stated in (ℋ1)-(ii) implies that the potential
w ∈ L2

∗/(2∗−m)(ℝN ) under condition (ℋ2).

https://doi.org/10.1515/9783110652017-004

 EBSCOhost - printed on 2/10/2023 3:36 PM via . All use subject to https://www.ebsco.com/terms-of-use
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Equation (ℰλ) is a semilinear elliptic problem involving a Sobolev critical nonlin-
earity with combined effects. For quasilinear problems of this kind, we just quote, for
example, [24, 53, 209, 217] and the comments and references therein.

Clearly, (ℰλ) has a variational nature and the underlying functional I = Iλ is well
defined in H1(ℝN ) = W 1,2(ℝN ), which is the solution space of (ℰλ) and is given by

I(u) = 1
2
‖u‖2 − λ

m
‖u‖mm,w + 1

2∗ ‖u‖2∗2∗ ,h, (4.2)

where ‖ ⋅ ‖ = ‖ ⋅ ‖H1 . We combine the main results in the following statement.

Theorem 4.1.1. Let (ℋ1)–(ℋ2) hold.
(i) There exists λ∗ ≥ 0 such that (ℰλ) has at least one nontrivial nonnegative entire

solution for all λ > λ∗ and has no nontrivial nonnegative entire solutions for λ < λ∗;
(ii) If 2 < m < 2∗, then there exists λ∗ > 0 such that (ℰλ) admits at least one nontrivial

nonnegative entire solution if and only if λ ≥ λ∗;
(iii) Furthermore, if (ℰλ) has a nontrivial nonnegative entire solution for some λ > 0, then
(ℰλ) admits at least two nontrivial nonnegative entire solutions;

(iv) Finally, for all λ > 0 equation (ℰλ) has at least two nontrivial nonnegative entire
solutions, and if 1 < m < 2 then (ℰλ) possesses infinitelymany solutions (uk)k , whose
negative critical values ck = I(uk) tend to 0 as k → ∞, where I is the underlying
functional of (ℰλ), given in (4.2).

It is worthwhile to see that

∫

ℝN

w2∗/[2∗−m]
hm/[2∗−m] dx = H ∈ ℝ+ (4.3)

implies that (4.1) holds. Indeed, the Hölder inequality, with (2∗ − 1)m/(2∗ − m) and
m󸀠/2∗󸀠, where 2∗󸀠 andm󸀠 are the Hölder conjugates of 2∗ andm, respectively, gives

∫

ℝN

[w(w
h
)
(m−1)/(2∗−m)

]
2∗󸀠
dx = ∫
ℝN

w2∗󸀠/m[(w2∗
hm
)
1/(2∗−m)
]
2∗󸀠/m󸀠

dx

≤ ‖w‖2
∗󸀠/m
2∗/(2∗−m)H 2∗󸀠/m󸀠 .

Therefore property (4.1) holds by virtue of assumption (4.3), since w ∈ L2
∗/(2∗−m)(ℝN )

and 1 < m < 2∗ by (ℋ1)-(i).
Throughout the chapter we require condition (ℋ1), without further mentioning.

Since we are interested in weighted Lebesgue spaces, denoting by ω a generic weight
on ℝN of class L1loc(ℝ

N ), we put for any ℘, with 1 < ℘ <∞,

L℘(ℝN ,ω) = {u : ℝN → ℝ measurable : ω1/℘|u| ∈ L℘(ℝN)},
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endowed with the norm ‖u‖℘,ω = ‖ω1/℘u‖℘. In particular, the next result summarizes
themain properties of the weighted spaces Lm(ℝN ,w) and L2

∗
(ℝN , h)we are interested

in. By Proposition A.6 in [24], we have

Lemma 4.1.2. Let the weights w, h be of class L1loc(ℝ
N ), and let m be a finite Lebesgue

exponent strictly greater than 1. Then Lm(ℝN ,w) and L2
∗
(ℝN , h) are separable uniformly

convex Banach spaces.

By standard Sobolev theory we have

Lemma 4.1.3. The embeddings H1(ℝN ) 󳨅→ D1,2(ℝN ) 󳨅→ L2
∗
(ℝN ) are continuous, with

‖∇u‖2 ≤ ‖u‖ for all u ∈ H1(ℝN ),

‖u‖2∗ ≤ c2∗‖∇u‖2 for all u ∈ D1,2(ℝN). (4.4)

For any R > 0 and x0 ∈ ℝN , the embedding H1(ℝN ) 󳨅→󳨅→ L℘(BR(x0)) is compact for
all ℘, with 1 ≤ ℘ < 2∗.
Lemma 4.1.4. If either (ℋ2) or 2 < m < 2∗ is satisfied, then the embedding H1(ℝN ) 󳨅→󳨅→
Lm(ℝN ,w) is compact.

Proof. We divide the proof into two parts.

(i) Assume that (ℋ2) is satisfied. Again w ∈ L
2∗

2∗−m (ℝN ) by (ℋ1)-(ii). Let us recall the
following elementary inequality: for every k1 ≥ 0, k2 > 0 and α, β, with 0 < α < β, there
exists Cαβ =

β−α
β (

α
β )

α/(β−α) ∈ (0, 1) such that
k1|t|

α − k2|t|
β ≤ Cαβk1(

k1
k2
)
α/(β−α)
≤ k1(

k1
k2
)
α/(β−α)

(4.5)

for all t ∈ ℝ. Hence, taking k1 = w, k2 = 1/2, α = m − 1, β = 2∗ − 1 in (4.5), we get, for
all u ∈ H1(ℝN ),

‖u‖mm,w = ∫
ℝN

(w|u|m−1 − 1
2
|u|2
∗−1)|u|dx + 1

2
∫

ℝN

|u|2
∗
dx

≤ C1 ∫
ℝN

w(2∗−1)/(2∗−m)|u|dx + 1
2
‖u‖2

∗
2∗

≤ C1‖w‖2∗/(2∗−m)‖u‖2∗ + 12 ‖u‖2∗2∗
≤ C1c2∗W ‖∇u‖2 + 12 ‖u‖2∗2∗

(4.6)

by (4.4), where C1 = 2(m−1)/(2∗−m). Therefore, for any v ∈ H1(ℝN ), v ̸= 0, putting u =
v/‖v‖ and CW = C1c2∗W , we have

∫

ℝN

w
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

v
‖v‖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

m
dx ≤ CW

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∇

v
‖v‖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2
+
1
2
∫

ℝN

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

v
‖v‖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2∗
dx
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≤ CW

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∇

v
‖v‖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2
+
1
2
∫

ℝN

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

v
‖v‖2∗
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2∗
dx

≤ CW + 1.

Hence,

1 = ∫
ℝN

w
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

v
‖v‖m,w 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨mdx = ( ‖v‖‖v‖m,w )m ∫

ℝN

w
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

v
‖v‖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

m
dx

≤ (
‖v‖
‖v‖m,w )m(CW + 1).

Thus ‖v‖m,w ≤ (CW +1)1/m‖v‖, and soH1(ℝN ) is continuously embedded intoLm(ℝN ,w).
It remains to prove that the embedding is actually compact. To this aim, let uk ⇀ u

in H1(ℝN ). Again, up to a subsequence, still denoted by (uk)k, we have uk → u a. e. in
ℝN by Lemma A.10 of [24]. We claim that for all ε > 0 there exists K = K(ε) such that

∫

ℝN

w|uk − u|
mdx < ε for all k ≥ K. (4.7)

Sinceuk ⇀ u inH1(ℝN ), onehas ‖uk−u‖2
∗
2∗ ≤ M for all k = 1, 2, . . . anda suitable positive

constant M. Fix ε > 0. By (4.5), as in the proof of (4.6), taking k1 = w, k2 = ε/2M,
α = m − 1, β = 2∗ − 1, we get, for all k = 1, 2, . . . ,

∫

ℝN

w|uk − u|
mdx ≤ ∫

ℝN

Cεw
(2∗−1)/(2∗−m)|uk − u|dx
+

ε
2M
∫

ℝN

|uk − u|
2∗dx

≤ ∫

ℝN

Cεw
(2∗−1)/(2∗−m)|uk − u|dx + ε2 ,

(4.8)

where Cε = (2M/ε)(m−1)/(2∗−m). We assert that (w(2∗−1)/(2∗−m)|uk − u|)k is uniformly inte-
grable in ℝN . Indeed, for any measurable subset U ⊂ ℝN , we have

∫
U

w(2∗−1)/(2∗−m)|uk − u|dx ≤ (∫
U

w2∗/(2∗−m)dx)1−1/2∗‖uk − u‖2∗ .
From the last inequality we get at once the assertion. Hence the Vitali convergence
theorem yields

lim
k→∞ ∫
ℝN

Cεw(w/h)
(m−1)/(2∗−m)|uk − u|dx
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= ∫

ℝN

lim
k→∞Cεw(w/h)(m−1)/(2∗−m)|uk − u|dx = 0.

Thus there exists K = K(ε) such that

∫

ℝN

Cεw(w/h)
(m−1)/(2∗−m)|uk − u|dx < ε2

for all k ≥ K. In conclusion, the claim (4.7) is valid by (4.8). Therefore, the embedding
H1(ℝN ) 󳨅→󳨅→ Lm(ℝN ,w) is compact.

(iii) Assume 2 < m < 2∗. Similarly, H1(ℝN ) 󳨅→󳨅→ Lm(ℝN ,w) is compact. It is simply
enough to replace in themain argumentw(2∗−1)/(2∗−m) byw. Indeed, for all u ∈ H1(ℝN ),
the Hölder inequality and (4.4) give

∫

ℝN

w|u|mdx ≤ ‖w‖2∗/(2∗−m)‖u‖m2∗ ≤ cm2∗‖w‖2∗/(2∗−m)‖∇u‖m2
≤ cm2∗‖w‖2∗/(2∗−m)‖u‖m.

Thus, ‖u‖m,w ≤ c2∗‖w‖1/m2∗/(2∗−m)‖u‖ for all u ∈ H1(ℝN ), that is, the embeddingH1(ℝN ) 󳨅→

Lm(ℝN ,w) is continuous. Let us prove that it is actually compact. Fix (uk)k, u ∈ H1(ℝN )
and assume that uk ⇀ u inH1(ℝN ). Then, up to a subsequence, still denoted by (uk)k,
we get that uk → u a. e. in ℝN as k → ∞. Moreover, there exists a constant M > 0
such that ‖uk‖ + ‖u‖ ≤ M. We claim that uk → u in Lm(ℝN ,w). Fix ε > 0. There exists
δ = δ(ε) > 0 and r = r(ε) > 0 such that for any measurable subset U ⊂ ℝN , with
|U | < δ,

∫
U

w2∗/(2∗−m)dx < [ ε
(Mc2∗ )m ]

2∗/(2∗−m)
,

∫

ℝN \BR w2∗/(2∗−m)dx < [ ε
(Mc2∗ )m ]

2∗/(2∗−m)
for all R ≥ r,

since w ∈ L2
∗/(2∗−m)(ℝN ). Consequently, we have for any measurable subset U ⊂ ℝN ,

with |U | < δ,

∫
U

w|uk − u|
mdx ≤ (∫

U

w2∗/(2∗−m)dx)(2∗−m)/2∗‖uk − u‖m2∗ < ε,
∫

ℝN \BR w|uk − u|mdx ≤ ( ∫ℝN \BR w2∗/(2∗−m)dx)(2∗−m)/2∗‖uk − u‖m2∗ < ε
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for allR ≥ r. Therefore, the fact thatw|uk−u|→ 0 a. e. inℝN and theVitali convergence
theorem yield

lim
k→∞ ∫
ℝN

w|uk − u|
mdx = 0,

that is, uk → u in Lm(ℝN ,w), as claimed. This completes the proof.

Lemma 4.1.5. If u ∈ H1(ℝN )\{0} and λ ∈ ℝ satisfy

‖u‖2 + ‖u‖2
∗
2∗ ,h = λ‖u‖mm,w , (4.9)

then λ > 0. Moreover,
(i) if (ℋ2) is valid, then ‖u‖m,w ≤ κ1λ(m−2+2∗)/(2∗−m)m;
(ii) if 2 < m < 2∗ is satisfied, then κ2λ1/(2−m) ≤ ‖u‖m,w ,
and the positive constants κ1 and κ2 are independent of u.

Proof. Let u ∈ H1(ℝN )\{0} and λ ∈ ℝ satisfy (4.9), then λ > 0, since u ̸= 0.
(i) Assume that (ℋ2) is verified. By (4.5) and (4.9), we have

‖u‖2 + 1
2
‖u‖2

∗
2∗ ,h = ∫

ℝN

[λw|u|m−1 − 1
2
h|u|2

∗−1]|u|dx
≤ C1 ∫
ℝN

λw(λw/h)(m−1)/(2∗−m)|u|dx
≤ C1λ
(2∗−1)/(2∗−m)󵄩󵄩󵄩󵄩w(w/h)(m−1)/(2∗−m)󵄩󵄩󵄩󵄩2∗󸀠‖u‖2∗

≤ C2λ
(2∗−1)/(2∗−m)‖∇u‖2 ≤ Cλ(2∗−1)/(2∗−m)‖u‖,

(4.10)

where C = C1c2∗W , C1 = 2(m−1)/(2∗−m), as in (4.6). Thus
‖u‖ ≤ Cλ(2∗−1)/(2∗−m). (4.11)

By (4.9), since λ > 0, we finally get, thanks to (4.10) and (4.11),

‖u‖m,w ≤ ( 2λ[‖u‖2 + 12 ‖u‖2∗2∗ ,h])1/m
≤ (2C2λ2(2∗−1)/(2∗−m)−1)1/m
= κ1λ
(m−2+2∗)/(2∗−m)m,

where κ1 = (2C2)1/m.
(ii) Assume that 2 < m < 2∗. Then Lemma 4.1.4 and (4.9) imply that

‖u‖m,w ≤ Cm‖u‖ ≤ Cmλ1/2‖u‖m/2m,w ,
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where Cm > 0 is the constant of the embedding H1(ℝN ) 󳨅→ Lm(ℝN ,w). In conclusion,
since u ̸= 0 and 2 < m < 2∗, we get ‖u‖m,w ≥ κ2λ1/(2−m), where κ2 = C2/(2−m)m . This
completes the proof.

We say that u ∈ H1(ℝN ) is a (weak) entire solution of (ℰλ) if

⟨u, v⟩ = λ ∫
ℝN

w|u|m−2uvdx − ∫
ℝN

h|u|2
∗−2uvdx

for all v ∈ H1(ℝN ). Hence the entire solutions of (ℰλ) correspond to the critical points
of the energy functional I : H1(ℝN )→ ℝ, defined by

I(u) = 1
2
‖u‖2 − λ

m
‖u‖mm,w + 1

2∗ ‖u‖2∗2∗ ,h
for all u ∈ H1(ℝN ).

If (ℰλ) admits a nontrivial entire solution u ∈ H1(ℝN ), then (4.9) holds and so λ > 0
by Lemma 4.1.5. From now on we consider only the case λ > 0.

Lemma 4.1.6. Assume that (ℋ2) holds.
(i) The functional I is coercive in H1(ℝN ) and any sequence (uk)k in H1(ℝN ), with
(I(uk))k bounded, admits a weakly convergent subsequence in H1(ℝN );

(ii) For a fixed λ > 0, all the critical points of I are uniformly bounded in H1(ℝN ).

Proof. (i) By (4.5), arguing as in (4.6) and using the same notations, we get, for all
u ∈ H1(ℝN ),

I(u) = 1
2
‖u‖2 − [ λ

m
‖u‖mm,w − 1

2 ⋅ 2∗ ‖u‖2∗2∗ ,h] + 1
2 ⋅ 2∗ ‖u‖2∗2∗ ,h

≥
1
2
‖u‖2 + 1

2 ⋅ 2∗ ‖u‖2∗2∗ ,h − ∫
ℝN

[λ w
m
|u|m−1 − h

2 ⋅ 2∗ |u|2∗−1] ⋅ |u|dx
≥
1
2
‖u‖2 + 1

2 ⋅ 2∗ ‖u‖2∗2∗ ,h − C1 ∫
ℝN

λw(λw/h)(m−1)/(2∗−m)|u|dx
≥
1
2
‖u‖2 + 1

2 ⋅ 2∗ ‖u‖2∗2∗ ,h − CW ‖∇u‖2 ≥
1
2
‖u‖2 − CW ‖u‖,

with CW = C1c2∗W by Lemma 4.1.3. Thus I is coercive in H1(ℝN ).
(ii) Fix λ > 0 and let 𝒮λ = {u ∈ H1(ℝN ) : u is a critical point of I}. Clearly, every u ∈ 𝒮λ
is a solution of (ℰλ) and so satisfies (4.9). Hence Lemma 4.1.5(i) is valid. In conclusion,
𝒮λ is bounded in Lm(ℝN ,w), and so in H1(ℝN ) and also in L2

∗
(ℝN , h) by (4.9). This

completes the proof.

Lemma 4.1.7. Assume (ℋ2) holds. Then I is of class C1(H1(ℝN )) and sequentially weakly
lower semicontinuous in H1(ℝN ). Hence, if uk ⇀ u in H1(ℝN ), then

I(u) ≤ lim inf
k→∞ I(uk).
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Proof. Clearly, I is of class C1(H1(ℝN )). Hence it remains to show that I is sequentially
weakly lower semicontinuous inH1(ℝN ). To this aim, fix (uk)k, u inH1(ℝN ), with uk ⇀
u as k →∞.

Since (ℋ2) is satisfied, and due to the fact that λ > 0,

lim inf
k→∞ I(uk) ≥ lim inf

k→∞ ( 12 ‖uk‖2 + 1
2∗ ‖uk‖2∗2∗ ,h) − λm lim sup

k→∞ ‖uk‖mm,w
≥
1
2
‖u‖2 + 1

2∗ ‖u‖2∗2∗ ,h − λm ‖u‖mm,w = I(u),
by Lemma 4.1.4. Therefore I is sequentially weakly lower semicontinuous in H1(ℝN ).

Let I : H1(ℝN )→ ℝ be defined by

I (u) = 1
2
‖u‖2 + 1

2∗ ‖u‖2∗2∗ ,h
for all u ∈ H1(ℝN ) and let I 󸀠 : H1(ℝN ) → H−1(ℝN ) be its derivative operator, where
H−1(ℝN ) is the dual space of H1(ℝN ). Moreover, I 󸀠 can be represented as

⟨I 󸀠(u), v⟩ = ⟨u, v⟩ + ∫
ℝN

h|u|2
∗−2uvdx

for all u, v ∈ H1(ℝN ).

Lemma 4.1.8.
(i) I 󸀠 : H1(ℝN )→ H−1(ℝN ) is a continuous, bounded, strictly monotone operator;
(ii) I is a mapping of type (S+), i. e., if uk ⇀ u in H1(ℝN ) and

lim sup
k→∞ ⟨I 󸀠(uk) −I 󸀠(u), uk − u⟩ ≤ 0,

then uk → u in H1(ℝN );
(iii) I 󸀠 : H1(ℝN )→ H−1(ℝN ) is a homeomorphism.
Proof. (i) This is an obvious statement thanks to the representation of I 󸀠.
(ii) Property (S+) for I 󸀠 is a direct consequence of convexity and the fact that the set-
ting is Hilbertian.
(iii) The strict monotonicity of I 󸀠 implies that I 󸀠 is an injection operator. Clearly,

lim‖u‖→∞ ⟨I 󸀠(u), u⟩‖u‖ = lim‖u‖→∞ ‖u‖2 + ‖u‖2∗2∗ ,h‖u‖
=∞,

so that I 󸀠 is coercive in H1(ℝN ). Hence I 󸀠 is a surjection in view of the Minty–
Browder theorem, see Theorem 26A of [258]. ThusI 󸀠 has an inverse operator (I 󸀠)−1 :
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H−1(ℝN ) → H1(ℝN ) and the continuity of (I 󸀠)−1 is sufficient to ensure that I 󸀠 is a
homeomorphism.

To this aim, fix (fk)k, f ∈ H−1(ℝN ), with fk → f in H−1(ℝN ). Put uk = (I 󸀠)−1(fk) for
all k and u = (I 󸀠)−1(f ). Then I 󸀠(uk) = fk, I 󸀠(u) = f , and (uk)k is bounded in H1(ℝN ),
sinceI 󸀠 is coercive inH1(ℝN ). Without loss of generality, we assume that uk ⇀ u∞ in
H1(ℝN ) for some u∞ ∈ H1(ℝN ). Consequently, as k →∞,

⟨I 󸀠(uk) −I 󸀠(u∞), uk − u∞⟩ = ⟨I 󸀠(uk) −I 󸀠(u), uk − u∞⟩
+ ⟨I 󸀠(u) −I 󸀠(u∞), uk − u∞⟩

= ⟨fk − f , uk − u∞⟩ + ⟨I 󸀠(u) −I 󸀠(u∞), uk − u∞⟩
= o(1),

since fk → f in H−1(ℝN ) and uk ⇀ u∞ in H1(ℝN ). Therefore, uk → u∞ as k → ∞ by
the (S+) property ofI 󸀠. But fk → f inH−1(ℝN ) andI 󸀠 is continuous inH1(ℝN ), so that
I 󸀠(u∞) = limk→∞I 󸀠(uk) = limk→∞ fk = f = I 󸀠(u). SinceI 󸀠 is bijective, we conclude
that u∞ = u. Hence (I 󸀠)−1 is continuous, and this completes the proof.

Lemma 4.1.9. If (ℋ2) holds, then I satisfies the (PS) condition, namely, (uk)k ⊂ H1(ℝN ),
with I(uk)→ c and I󸀠(uk)→ 0 in H−1(ℝN ), admits a convergent subsequence in X.
Proof. Fix c ∈ ℝ and (uk)k ⊂ H1(ℝN ) such that I(uk) → c and I󸀠(uk) → 0 in H−1(ℝN ).
Then (uk)k is bounded in H1(ℝN ), due to I being coercive in H1(ℝN ) by Lemma 4.1.6
and (ℋ2). Thus (uk)k has a weakly convergent subsequence, still denoted by (uk)k, to
some u ∈ H1(ℝN ).

By Lemma 4.1.4 and (ℋ2), the embedding H1(ℝN ) 󳨅→󳨅→ Lm(ℝN ,w) is compact, so
that I󸀠w(uk)→ I󸀠w(u) inH−1(ℝN ), where Iw(u) = ‖u‖mm,w/m. Consequently, since (I 󸀠)−1 is
continuous fromH−1(ℝN ) toH1(ℝN ) by Lemma 4.1.8, it follows that uk → (I 󸀠)−1 ∘I󸀠w(u)
in H1(ℝN ), and we are done.

For all λ > 0 and (x, u) ∈ ℝN × ℝ, put

gλ(x, u) = −u + λw|u|
m−2u − h|u|2∗−2u.

Lemma 4.1.10. Assume that (ℋ2) holds. Then gλ(⋅, u) ∈ L1loc(ℝ
N ) along any u ∈ H1(ℝN ).

Proof. Fix λ > 0, u ∈ H1(ℝN ), and R > 0. Clearly,

∫
BR

|u|dx = cR <∞,

∫
BR

h|u|2
∗−1dx ≤ ‖h‖∞ ∫

BR

(|u|2
∗
+ 1)dx ≤ ‖h‖∞(‖u‖2∗2∗ + |BR|).
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By Lemma 4.1.4 and (ℋ2),

λ ∫
BR

w|u|m−1dx ≤ λ ∫
BR

w(|u|m + 1)dx ≤ λ(‖u‖mm,w + ∫
BR

wdx)

≤ λC(‖u‖m + ∫
BR

wdx),

where C = max{1,Cm}. Hence, summarizing the above inequalities, we obtain

∫
BR

󵄨󵄨󵄨󵄨gλ(x, u)
󵄨󵄨󵄨󵄨dx <∞.

Thus gλ(⋅, u) ∈ L1loc(ℝ
N ) for u ∈ H1(ℝN ).

From now on we assume also condition (ℋ2), without further mentioning. Let us
introduce the crucial value

λ = inf
u∈H1(ℝN )
Iw(u)=1 {

1
2
‖u‖2 + 1

2∗ ‖u‖2∗2∗ ,h} = inf
u∈H1(ℝN )
Iw(u)=1 I (u).

We claim that λ > 0. Indeed, for any u ∈ H1(ℝN ), with Iw(u) = 1, one has ‖u‖m,w =
m1/m > 1. By Lemma 4.1.4 and (ℋ2), there exists a constant Cm > 0 such that ‖u‖m,w ≤
Cm‖u‖ for any u ∈ H1(ℝN ). Thus ‖u‖ ≥ 1/Cm for any u ∈ H1(ℝN ), with Iw(u) = 1. Thus
I (u) ≥ C > 0 for all u ∈ H1(ℝN ), with Iw(u) = 1. Thus λ ≥ C > 0, and the claim is
proved.

Lemma 4.1.11. For all λ > λ, there exists a global nontrivial nonnegative minimizer e ∈
H1(ℝN ) of I, with I(e) < 0.

Proof. By Lemma 4.1.6 and (ℋ2), the functional I is coercive in H1(ℝN ), and Lem-
ma 4.1.7 gives that I is sequentially weakly lower semicontinuous in H1(ℝN ). Hence
for all λ > 0 there exists a global minimizer e ∈ H1(ℝN ) of I, that is,

I(e) = inf
v∈H1(ℝN )I(v).

Clearly, e is a solution of (ℰλ). The definition of λ yields that infv∈H1(ℝN ) I(v) < 0 for
all λ > λ. Thus e ̸= 0. In conclusion, for any λ > λ, equation (ℰλ) has a nontrivial
solution e ∈ H1(ℝN ) such that I(e) < 0. Finally, wemay assume e ≥ 0 a. e. inℝN , since
|e| ∈ H1(ℝN ) and I(e) = I(|e|).

Put ℰ = {λ ∈ ℝ : (ℰλ) admits a nontrivial nonnegative entire solution}. Lem-
ma 4.1.11 assures that ℰ is nonempty. Set

λ∗ = sup{λ : (ℰμ) admits only the trivial solution for all μ < λ},
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λ∗∗ = inf{λ : λ ∈ ℰ}.
Clearly, λ∗ ≥ 0 and λ∗∗ ≥ 0 by Lemma 4.1.5.

Theorem 4.1.12. For all λ > λ∗∗, equation (ℰλ) admits a nontrivial nonnegative entire
solution uλ ∈ H1(ℝN ). Moreover, λ∗ = λ∗∗.
Proof. Fix λ > λ∗∗. By definition of λ∗∗, there exists μ ∈ (λ∗∗, λ) such that Iμ has a
nontrivial critical point uμ ∈ H1(ℝN ). We assume, without loss of generality, that uμ ≥
0 a. e. in ℝN , since |uμ| is also a solution of (ℰ)μ. Of course, uμ is a subsolution for
(ℰ)λ. Only in this proof we denote explicitly the dependence of I on the parameter λ.
Consider the following minimization problem:

inf
v∈ℳ Iλ(v), ℳ = {v ∈ H1(ℝN) : v ≥ uμ}.

First note that ℳ is closed and convex, and in turn also weakly closed. Moreover, Iλ
is coercive inℳ, being coercive in H1(ℝN ) by Lemma 4.1.6. Finally, Iλ is sequentially
weakly lower semicontinuous in H1(ℝN ) and so in ℳ by Lemma 4.1.7. Hence, Corol-
lary 3.23 of [48] assures that Iλ is bounded from below in ℳ and attains its infimum
inℳ, i. e., there exists uλ ≥ uμ such that Iλ(uλ) = infv∈ℳ Iλ(v).

We claim that uλ is a solution of (ℰ)λ. Indeed, take φ ∈ C∞0 (ℝN ) and ε > 0. Put
φε = max{0, uμ − uλ − εφ} ≥ 0 and vε = uλ + εφ + φε,

so that vε ∈ℳ. Of course,

0 ≤ ⟨I󸀠λ(uλ), vε − uλ⟩ = ε⟨I󸀠λ(uλ),φ⟩ + ⟨I󸀠λ(uλ),φε⟩,

and in turn

⟨I󸀠λ(uλ),φ⟩ ≥ − 1ε ⟨I󸀠λ(uλ),φε⟩. (4.12)

Define

Ωε = {x ∈ ℝ
N : uλ(x) + εφ(x) ≤ uμ(x) < uλ(x)}.

Clearly, Ωε ⊂ suppφ. Since uμ is a subsolution of (ℰ)λ and φε ≥ 0, it turns out that
⟨I󸀠λ(uμ),φε⟩ ≤ 0. Hence, we have

⟨I󸀠λ(uλ),φε⟩ = ⟨I
󸀠
λ(uμ),φε⟩ + ⟨I

󸀠
λ(uλ) − I

󸀠
λ(uμ),φε⟩

≤ ∫
Ωε

(∇uλ − ∇uμ) ⋅ ∇(uμ − uλ − εφ)dx

+ ∫
Ωε

(uλ − uμ)(uμ − uλ − εφ)dx

− ∫
Ωε

(f (x, uλ) − f (x, uμ))(uμ − uλ − εφ)dx,

(4.13)
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where f (x, v) = λw|v|m−2v − h|v|2∗−2v. Clearly,
∫
Ωε

(∇uλ − ∇uμ) ⋅ (∇uμ − ∇uλ)dx = − ∫
Ωε

|∇uλ − ∇uμ|
2dx ≤ 0,

while, since 0 ≤ uμ − uλ − εφ = uμ − uλ + ε|φ| < ε|φ| in Ωε, we get

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ωε

(uλ − uμ)(uμ − uλ − εφ)dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ∫
Ωε

|uλ − uμ|(uμ − uλ − εφ)dx

≤ ε ∫
Ωε

|uλ − uμ| ⋅ |φ|dx,

and similarly,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ωε

(f (x, uλ) − f (x, uμ))(uμ − uλ − εφ)dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ε ∫

Ωε

󵄨󵄨󵄨󵄨f (x, uλ) − f (x, uμ)
󵄨󵄨󵄨󵄨 ⋅ |φ|dx.

Therefore, (4.13) yields

⟨I󸀠λ(uλ),φε⟩ ≤ ε ∫
Ωε

ψ(x)dx,

where ψ = (∇uμ − ∇uλ) ⋅ ∇φ + (|uλ − uμ| + |f (x, uλ) − f (x, uμ)|)|φ|. We claim that ψ ∈
L1(suppφ). Indeed, ∇uμ and ∇uλ are in [L2(ℝN )]N , while uλ and uμ are in L1loc(ℝ

N ).
Finally, also |f (x, uλ) − f (x, uμ)| is in L1loc(ℝ

N ), since

󵄨󵄨󵄨󵄨f (x, uλ) − f (x, uμ)
󵄨󵄨󵄨󵄨 ≤ λw(x)(|uλ|

m−1 + |uμ|m−1) + h(x)(|uλ|2∗−1 + |uμ|2∗−1).
Thus,

lim
ε→0+ ∫

Ωε

ψ(x)dx = 0,

since |Ωε| → 0 as ε → 0+. In conclusion, ⟨I󸀠λ(uλ),φε⟩ ≤ o(ε) as ε → 0+, so that
by (4.12) it follows that ⟨I󸀠λ(uλ),φ⟩ ≥ o(1) as ε → 0+. Therefore, ⟨I󸀠λ(uλ),φ⟩ ≥ 0 for

all φ ∈ C∞0 (ℝN ), that is, ⟨I󸀠λ(uλ),φ⟩ = 0 for all φ ∈ C∞0 (ℝN ). SinceH1(ℝN ) = C∞0 (ℝN ) ‖⋅‖,
we obtain that uλ is a solution of (ℰ)λ. Finally, uλ is nontrivial and nonnegative, since
uλ ≥ uμ.

The first part of the statement shows that λ∗∗ ≥ λ∗ Suppose by contradiction that
λ∗∗ > λ∗. Then (ℰλ) cannot admit a nontrivial solution u ∈ H1(ℝN ) if λ < λ∗∗, since this
would contradict theminimality of λ∗∗. Hence, for all λ ∈ [λ∗, λ∗∗) the unique solution
of (ℰλ) is u ≡ 0. But this is again impossible since it would contradict the maximality
of λ∗. Hence λ∗∗ = λ∗.

 EBSCOhost - printed on 2/10/2023 3:36 PM via . All use subject to https://www.ebsco.com/terms-of-use



4.1 Nonnegative entire solutions | 77

Theorem 4.1.13. Assume (ℋ1)–(ℋ2) and let 2 < m < 2∗. Then (ℰλ∗ ) admits a nontrivial
nonnegative entire solution u ∈ H1(ℝN ) and so λ∗ > 0.
Proof. Let (λk)k be a strictly decreasing sequence converging to λ∗ and let uk inH1(ℝN )
be a nontrivial nonnegative entire solution of (ℰλk ). Then for all v ∈ H

1(ℝN ),

∫

ℝN

(∇uk , ∇v)dx = ∫
ℝN

gkvdx, (4.14)

where gk = −uk + λkwum−1k − hu
2∗−1
k for all k.

By (4.9) and the monotonicity of (λk)k, we obtain

‖uk‖
2 + ‖uk‖

2∗
2∗ ,h = λk‖uk‖mm,w ≤ C,

where C = κm1 λ
2(2∗−1)/(2∗−m)
1 , thanks to Lemma 4.1.5-(i) by (4.1) in (ℋ2). Therefore, the

sequences (‖uk‖)k and (‖uk‖2∗ ,h)k are bounded. Hence, (gk)k is bounded in L1loc(ℝ
N ),

since also (λk)k is bounded. Moreover, by Lemma 4.1.4, it is possible to extract a sub-
sequence, still denoted (uk)k, satisfying

uk ⇀ u in H1(ℝN), uk → u in Lm(ℝN ,w),

uk ⇀ u in L2
∗
(ℝN , h), uk → u a. e. in ℝN , (4.15)

∇uk ⇀ ∇u in [L
2(ℝN)]

N
,

for some u ∈ H1(ℝN ). We claim that u, which is clearly nonnegative in ℝN by (4.1), is
the solution we are looking for.

Indeed, for all v ∈ H1(ℝN ),

∫

ℝN

(∇uk , ∇v)dx → ∫
ℝN

(∇u, ∇v)dx, ∫
ℝN

ukvdx → ∫
ℝN

uvdx (4.16)

as k →∞ by (4.1). Again, for all v ∈ H1(ℝN ),

∫

ℝN

w|uk |
m−2ukvdx → ∫

ℝN

w|u|m−2uvdx,
∫

ℝN

h|uk |
2∗−2ukvdx → ∫

ℝN

h|u|2
∗−2uvdx, (4.17)

as k → ∞ by (4.1) and Lemma 4.1.4. In conclusion, passing to the limit as k → ∞
in (4.14), we get by (4.16)–(4.17) that u is a nonnegative entire solution of (ℰλ∗ ).

We claim that u ̸= 0. Indeed, since uk ⇀ u in H1(ℝN ) by (4.1), Lemma 4.1.4 yields
in particular that ‖u‖m,w = limk→∞ ‖uk‖m,w. Moreover, Lemma 4.1.5(ii) applied to each
uk ̸= 0 implies that ‖uk‖m,w ≥ κ2λ1/(2−m)k ≥ κ2λ

1/(2−m)
1 , since λk ↘ λ∗ and 2 < m. Con-

sequently, ‖u‖m,w ≥ κ2λ
1/(2−m)
1 > 0. Hence u is nontrivial and nonnegative by (4.1).

Lemma 4.1.5 yields now that λ∗ > 0.
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4.2 Proof of Theorem 4.1.1

Thanks to the preliminary key results of the previous section, we are now able to prove
Theorem 4.1.1. However, for the sake of clarity, we shall divide the proof in two parts.
The first contains (i)–(iii), and the latter shows (iv).

First part of the proof of Theorem 4.1.1. (i) Theorem 4.1.12 says that there exists λ∗ ≥ 0
such that (ℰλ) has at least a nontrivial nonnegative entire solution for λ > λ∗ and (ℰλ)
has no nonnegative entire solution for λ < λ∗ by definition of λ∗.
(ii) Lemmas 4.1.5 and 4.1.11 as well as Theorems 4.1.12 and 4.1.13 show the existence
of λ∗ > 0 such that (ℰλ) admits at least a nontrivial nonnegative entire solution if and
only if λ ≥ λ∗.
(iii) Let (ℰλ) possess a nontrivial nonnegative entire solution u1 ∈ H1(ℝN ). We claim
that (ℰλ) admits at least two nontrivial nonnegative entire solutions.

To this aim let us consider

− Δu + u + h|u|2
∗−2u = λw|u|m−2u+, (4.18)

where u+ = max{u,0}. The embedding H1(ℝN ) 󳨅→󳨅→ Lm(ℍn,w) is compact by
Lemma 4.1.4 and (ℋ2). Thus, recalling that Iw(u) = ‖u‖mm,w/m, we have that I󸀠w :
H1(ℝN ) → (Lm(ℝN ,w))󸀠 is compact, i. e., if uk ⇀ u in H1(ℝN ) then I󸀠w(uk) → I󸀠w(u)
in (Lm(ℍn,w))󸀠.

Now I 󸀠 : H1(ℝN ) → H−1(ℝN ) is a homeomorphism by Lemma 4.1.8(iii). Hence u
is a solution of (4.18) if and only if u is a solution of the operator equation u = (I 󸀠)−1 ∘
I󸀠w(u+). Let δ ∈ [0, 1] and consider

u = (I 󸀠)−1 ∘ I󸀠δw(u+). (4.19)

Define G : [0, 1] × H1(ℝN ) → H1(ℝN ) by G(δ, u) = (I 󸀠)−1 ∘ I󸀠δw(u+) for all (δ, u) ∈
[0, 1] × H1(ℝN ). Thus G is continuous and compact. Lemma 4.1.6(ii) yields that all the
solutions of (4.19) are uniformly bounded in H1(ℝN ), so that there exists R > 0 suffi-
ciently large such that (4.19) has no solutions on 𝜕BR ⊂ H1(ℝN ). Therefore,

degLS(I − G(1, ⋅),BR,0) = degLS(I − G(0, ⋅),BR,0) = 1.

Since (4.18) has the trivial solution zero and the nontrivial nonnegative entire solu-
tion u1, then (4.18) has another nontrivial entire solution u2 ∈ H1(ℝN ).

We claim that u2 is nonnegative. Suppose the contrary. Put u−2 = max{−u2,0}. Then
u−2 ∈ H1(ℝN ) and take u−2 as a test function. Therefore by (4.18),

0 = λ ∫
ℝN

w|u2|
m−2u+2 u−2 dx = −󵄩󵄩󵄩󵄩u−2 󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩u−󵄩󵄩󵄩󵄩2∗2∗ ,h ≤ 0.

In conclusion, ‖u−2 ‖ = 0, that is, u−2 = 0, as required. Thus u2 is nonnegative. Finally,
u2 is a nontrivial nonnegative solution of (ℰλ).
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It remains to prove (iv) of Theorem 4.1.1. Before doing it, let us present some in-
troductory properties. Since H1(ℝN ) is separable and clearly reflexive, there exist two
sequences (ej)j ⊂ H1(ℝN ) and (e∗j )j ⊂ H−1(ℝN ) such that

H1(ℝN) = span {ej, j = 1, 2, . . . }, H−1(ℝN) = spanw∗{e∗j , j = 1, 2, . . . },
and < e∗i , ej >= δij, i, j = 1, 2, . . ., where < ⋅, ⋅ > is the dual pairing between H1(ℝN ) and
its dual spaceH−1(ℝN ), while δij denotes the Kronecker symbol and w∗ is the closure
of a subset of H−1(ℝN )with respect to the weak-star topology on H−1(ℝN ). For brevity,
we put

Xj = span {ej}, Yk =
k
⨁
j=1 Xj, Zk =

∞
⨁
j=k Xj. (4.20)

Let us state for completeness a useful corollary of the general Lemma 5.1 proved in
[217], which we state in our context.

Lemma 4.2.1. Let Φ : H1(ℝN ) → ℝ be sequentially weakly continuous in H1(ℝN ), with
Φ(0) = 0. Fix R > 0 and put

βk = sup{Φ(u) : ‖u‖ ≤ R, u ∈ Zk}

for all k. Then βk → 0 as k →∞.

Last part of the proof of Theorem 4.1.1. (iv) Fix λ > 0 and recall that by assumption

1 < m < 2 (4.21)

holds.
The functional I is weakly lower semicontinuous in H1(ℝN ) by Lemma 4.1.7 and

also coercive in H1(ℝN ) by Lemma 4.1.6(i). Hence, by Lemma 4.1.11, the functional I
attains its infimum at some nontrivial nonnegative function e ∈ H1(ℝN ) and, clearly,
e is a solution of (ℰλ), with I(e) < 0.

By Theorem 4.1.1(iii), equation (ℰλ) admits at least two nontrivial nonnegative en-
tire solutions in H1(ℝN ).

Thanks to the fact that in this case 1 < m < 2, we claim that (ℰλ) has a sequence of
solutions (±uk)k such that I(±uk) < 0 and I(±uk)→ 0 as k →∞.

The functional I is even in H1(ℝN ). Moreover, I is coercive in H1(ℝN ) by Lem-
ma 4.1.6(i) and I satisfies the (PS) condition in H1(ℝN ) by Lemma 4.1.9. Using Defi-
nition 5.1 on page 94 of [238], we denote by γ(B) the genus of B ∈ C , where

C = {B ⊂ H1(ℝN)\{0} : B is compact and B = −B},
Ck = {B ∈ C : γ(B) ≥ k}, ck = inf

B∈Ck
sup
u∈B I(u), k = 1, 2, . . .
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Thus

−∞ < c1 ≤ c2 ≤ ⋅ ⋅ ⋅ ≤ ck ≤ ck+1 ≤ ⋅ ⋅ ⋅ .
We assert that ck < 0 for every k.

Fix k ∈ ℕ and choose a k-dimensional linear subspace Fk of C∞c (ℝN ). Since all
the norms on Fk are equivalent, there exists ρk ∈ (0, 1) such that φ ∈ Fk and ‖φ‖ ≤ ρk
implies that ‖φ‖∞ ≤ δ < 1. Put

S(k)ρk = {u ∈ Fk : ‖u‖ = ρk}.
From the compactness of S(k)ρk and the fact thatw > 0 inΩ, for all k there exist constants
θk, ηk > 0 such that for all φ ∈ S(k)ρk ,

Iw(φ) =
1
m
∫

ℝN

w|φ|mdq ≥ 1
m
∫
Ω

w(q)|φ|mdq ≥ θk and I (φ) ≤ ηk .

Therefore, for φ ∈ S(k)ρk and t ∈ (0, 1),

I(tφ) = I (tφ) − λIw(tφ) ≤ ηk(t
2 + t2

∗
) − λ θkt

m.

Since 1 < m < 2 by (4.21), for all k there exist tk ∈ (0, 1) and εk > 0 so small that for all
φ ∈ S(k)ρk ,

I(tkφ) ≤ −εk < 0, that is, I(u) ≤ −εk < 0

for all u ∈ S(k)tkρk . Finally, γ(S(k)tkρk ) = k, so that ck ≤ −εk < 0 for all k and the assertion is
proved.

By the genus theory, see, for instance, Theorem 4.2. and the remark on page 97
of [238], each ck is a critical value of I. Hence there is a sequence of solutions (±uk)k
such that I(±uk) < 0. It only remains to show that ck → 0 as k →∞.

Since I is coercive inH1(ℝN ) by Lemma 4.1.6(i), there exists a constant R > 0 such
that I(u) > 0 for all u, with ‖u‖ ≥ R. Fix k and let Yk, Zk be as in (4.20). Take B ∈ Ck, so
that γ(B) ≥ k. Therefore, according to the properties of genus, B ∩ Zk ̸= 0. Put

βk = sup{λ Iw(u) : u ∈ Zk , ‖u‖ ≤ R}.

Thus βk → 0 as k →∞ by Lemma 4.2.1, since Iw is sequentially weakly continuous in
H1(ℝN ) by Lemma 4.1.4. If u ∈ Zk and ‖u‖ ≤ R, then

I(u) = I (u) − λIw(u) ≥ −λIw(u) ≥ −βk .

Hence supu∈B I(u) ≥ −βk, and so 0 > ck ≥ −βk . This implies at once that ck → 0 as
k →∞.
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4.3 Sign-changing multiple solutions

We study now the existence of multiple solutions (radial and nonradial) for (ℰλ) as-
suming that the weights h and w are radial in ℝN and possibly higher dimensions.
More precisely, we are going to prove

Theorem 4.3.1. Let N ≥ 3. Suppose that (ℋ2) holds and that w and h are radial in ℝN .
Then, there exists λ > 0 such that for all λ > λ equation (ℰλ) admits a nontrivial nonneg-
ative radial solution and ζN sign-changing solutions, with mutually symmetric different
structures, where

ζN = {
0, if N = 3,
(−1)N + [N−32 ], if N ≥ 4.

(4.22)

All the ζN sign-changing solutions have negative energy.

Clearly, ζ5 = 0, as we shall see in the construction of the symmetries and [ ⋅ ]
in (4.22) denotes the integer part of a real number.

We make use the group-theoretical construction given in [148, Section 2.2]. More
precisely, let either N = 4 or N ≥ 6 and consider the subgroup HN ,i ⊂ O(N) defined by

HN ,i = { O(N/2) × O(N/2) if i = N−2
2 ,

O(i + 1) × O(N − 2i − 2) × O(i + 1) if i ̸= N−2
2 ,

for every i ∈ JN = {1, . . . , ζN }, where ζN is introduced in (4.22). Let us introduce the
involution ηHN ,i : ℝN → ℝN as follows:

ηHN ,i (x) = {{
{

(x3, x1) if i = N−2
2 , x = (x1, x3) ∈ ℝ

N/2 × ℝN/2,
(x3, x2, x1) if i ̸= N−2

2 , x = (x1, x2, x3) ∈ ℝi+1 × ℝN−2i−2 × ℝi+1,
for every i ∈ JN . By definition, ηHN ,i ∉ HN ,i, as well as

ηHN ,iHN ,iη−1HN ,i = HN ,i, and η2HN ,i = idℝN ,
for every i ∈ JN . Moreover, for every i ∈ JN , let us consider the compact group

HN ,ηi = ⟨HN ,i, ηHN ,i⟩, that is, HN ,ηi = HN ,i ∪ (ηHN ,iHN ,i),
and the action ⊛i : HN ,ηi × H1(ℝN )→ H1(ℝN ) of HN ,ηi on H1(ℝN ), given by

g ⊛i u(x) = {
u(g−1x) if g ∈ HN ,i,
−u(τ−1η−1HN ,ix) if g = ηHN ,iτ ∈ HN ,ηi \ HN ,i, τ ∈ HN ,i, (4.23)

for a. e. x ∈ ℝN .
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Note that ⊛i is defined for every element of HN ,ηi . Indeed, if g ∈ HN ,ηi , then either
g ∈ HN ,i or g = ηHN ,iτ ∈ HN ,ηi \ HN ,i, with τ ∈ HN ,i. Moreover, set Ei = FixHN ,ηi (H1(ℝN )),
that is,

Ei = {u ∈ H
1(ℝN) : g ⊛i u = u for all g ∈ HN ,ηi}

for every i ∈ JN .
Fix i ∈ JN . Every nonzero element of the space Ei changes sign in ℝN . Indeed, if

u ∈ Ei \ {0}, then u(x) = −u(g−1i x) for every x ∈ ℝN thanks to the HN ,ηi -invariance of u
and to (4.23). Consequently, u should change sign in ℝN , since u ̸= 0.

Finally, for all u ∈ H1(ℝN ) and for a. e. x ∈ ℝN ,

g ⊛0 u(x) = u(g
−1x) for all g ∈ O(N). (4.24)

Then, putting E0 = {u ∈ H1(ℝN ) : g ⊛0 u = u for all g ∈ O(N)}, we get that E0 =
H1
rad(ℝ

N ) and the following facts:
if N = 4 or N ≥ 6, then

Ei ∩ E0 = {0} for every i ∈ JN ; (4.25)

if N = 6 or N ≥ 8, then

Ei ∩ Ej = {0} for every i, j ∈ JN , with i ̸= j. (4.26)

We refer the interested reader to [148, Theorem 2.2] for details.
Naturally,F0 iswell definedalsowhenN = 3 andN = 5. In conclusion, thenumber

ζN in (4.22) is well defined only when either N = 4 or N ≥ 6, but we extended the
definition of ζN for allN ≥ 3, putting ζN = 0 and JN = 0, whenN = 3 andN = 5. Finally,
set ̃JN = JN ∪ {0} and Gi = HN ,ηi if i ∈ JN , while G0 = O(N).

Let us introduce for all i ∈ ̃JN the new crucial values

λi = inf
u∈Ei

Iw(u)=1{
1
2
‖u‖2 + 1

2∗ ‖u‖2∗2∗ ,h} = inf
u∈Ei

Iw(u)=1I (u).
We claim that λi > 0. Indeed, for any u ∈ Ei, with Iw(u) = 1, then ‖u‖m,w = m1/m > 1. By
Lemma 4.1.4 and (ℋ2), there exists a constant Cm > 0 such that ‖u‖m,w ≤ Cm‖u‖ for any
u ∈ Ei. Thus ‖u‖ ≥ 1/Cm for any u ∈ Ei, with Iw(u) = 1. Therefore, I (u) ≥ C > 0 for all
u ∈ Ei, with Iw(u) = 1. Thus λi ≥ C > 0, and the claim is proved.

Proof of Theorem 4.3.1. Suppose N ≥ 3 and let us first claim that for all λ > λ, where

λ = max{λi : i ∈ ̃JN },

there exist a radial nonnegative minimizer e0 ∈ H1
rad(ℝ

N ) of I in E0 = H1
rad(ℝ

N ) and ζN
sign changing minimizers ei ∈ Ei of I in Ei for all i ∈ JN , with I(ei) < 0 for all i ∈ ̃JN .
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Indeed, by Lemma 4.1.6 and (ℋ2), the functional I is coercive in Ei, and Lem-
ma 4.1.7 gives that I is sequentially weakly lower semicontinuous inH1(ℝN ), and so in
Ei. Hence for all λ > 0 there exists a global minimizer ei ∈ Ei of I in Ei, that is,

I(ei) = infv∈Ei I(v).
Clearly, ei is a critical point of I|Ei in Ei for all i ∈ ̃JN . The definition of λ yields that
infv∈Ei I(v) < 0 for all λ > λ. Thus ei ̸= 0 for all i ∈ ̃JN . The radial case j = 0 can be
treated exactly as in the proof of Lemma 4.1.11, since e0 ∈ H1

rad(ℝ
N ) gives at once that

|e0| is still inH1
rad(ℝ

N ). Finally, the constructed 1+ ζN minimizers are distinct by (4.25)
and (4.26).

The functional I is even inH1(ℝN ), so that (4.23) and (4.24), as well as the fact that
h andw are radial inℝN , imply that I(g⊛i u) = I(u) for every g ∈ Gi, each u ∈ Ei, and all
i ∈ ̃JN . Therefore, I is Gi-invariant on H1(ℝN ). Indeed, Gi acts isometrically on H1(ℝN ).
Moreover,

∫

ℝN

(
λ
m
w(x)󵄨󵄨󵄨󵄨g ⊛i u(x)

󵄨󵄨󵄨󵄨
m
−
h(x)
2∗ 󵄨󵄨󵄨󵄨g ⊛i u(x)󵄨󵄨󵄨󵄨2∗)dx

= ∫

ℝN

(
λ
m
w(x)󵄨󵄨󵄨󵄨u(g

−1x)󵄨󵄨󵄨󵄨m − h(x)2∗ 󵄨󵄨󵄨󵄨u(g−1x)󵄨󵄨󵄨󵄨2∗)dx
= ∫

ℝN

(
λ
m
w(y)󵄨󵄨󵄨󵄨u(y)

󵄨󵄨󵄨󵄨
m
−
h(y)
2∗ 󵄨󵄨󵄨󵄨u(y)󵄨󵄨󵄨󵄨2∗)dy

if either g ∈ Gi = HN ,ηi for i ∈ JN or g ∈ G0 = O(N) for N ∈ {3, 5} thanks to (4.23)
and (4.24), while

∫

ℝN

(
λ
m
w(x)󵄨󵄨󵄨󵄨g ⊛i u(x)

󵄨󵄨󵄨󵄨
m
−
h(x)
2∗ 󵄨󵄨󵄨󵄨g ⊛i u(x)󵄨󵄨󵄨󵄨2∗)dx

= ∫

ℝN

(
λ
m
w(x)󵄨󵄨󵄨󵄨u(τ

−1η−1HN ,ix))󵄨󵄨󵄨󵄨m − h(x)2∗ 󵄨󵄨󵄨󵄨u(τ−1η−1HN ,ix)󵄨󵄨󵄨󵄨2∗ )dx
= ∫

ℝN

(
λ
m
w(y)󵄨󵄨󵄨󵄨u(y)

󵄨󵄨󵄨󵄨
m
−
h(y)
2∗ 󵄨󵄨󵄨󵄨u(y)󵄨󵄨󵄨󵄨2∗)dy

if g = ηHN ,iτ ∈ HN ,ηi \ HN ,i for i ∈ JN thanks to (4.23).
By the principle of symmetric criticality due to R. Palais in [202], see also Theo-

remA.1.2, the critical points ei, i ∈ ̃JN , of I|Ei in Ei are also critical points of I inH
1(ℝN ).

In summary, we have shown the needed multiplicity result.

Comments on Chapter 4
Elliptic problems in bounded domains involving concave and convex terms have been
studied extensively since thework [9]; see, amongothers, thepaper [248] and the refer-
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ences therein. The combined effect of concave and convex nonlinearities on the num-
ber of positive solutions for semilinear elliptic equations in the entire space ℝN and
involving sign-changing weight functions is an argument of genuine mathematical
interest. Some results in this direction are obtained in Theorems 1.1 and 1.2 of [248]
by using the Nehari manifold method and some classical theorems due to B. Gidas,
W.M. Ni, and L. Nirenberg [117]. An interplay between symmetries results and classi-
cal straightforward minimization arguments seems to be fruitful in order to get new
multiplicity results for elliptic problems governed by sign-changing weight functions.
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5 Weak solutions of a scalar field equation
Lo spirito ha bisogno del finito
per incarnare slanci d’infinito.

Maria Luisa Spaziani
from Lo spirito ha bisogno del finito

In this chapter we study themultiplicity of solutions for a class of Dirichlet eigenvalue
problems defined on strip-like domains of the Euclidean space ℝN , with N ≥ 3. The
first main result presented in Section 5.2 is based on an abstract critical point theo-
rem for smooth functionals and establishes the existence of multiple solutions which
are not cylindrically symmetric for certain eigenvalues. Afterwards, in Section 5.3, the
classical fountain theorem provides not only a finite number of infinitely many cylin-
drically symmetric solutions but also cylindrically nonsymmetric solutions for special
dimensions.

In both cases a crucial role in our approach is played by the principle of symmet-
ric criticality for smooth functionals and by a group-theoretical approach on certain
subgroups of the orthogonal group O(N) in ℝN developed in Section 5.1.

The theorems presented here represent a more precise form of some results al-
ready known on the same subject contained in [140, 141, 148, 151].

5.1 Sobolev spaces with symmetry on strip-like domains

In this section we give some preliminaries and introduce suitable group-theoretical
arguments that will be fundamental in the approach used along this chapter. In the
sequel𝒪 is a bounded open set inℝm,m ≥ 1, with a smooth boundary 𝜕𝒪, and finally
𝒪×ℝN−m is themain strip-like domain inℝN , withN ≥ m+2. A point (x, y) ∈ 𝒪×ℝN−m

is of the form (x1, . . . , xm, y1, . . . , yN−m); see Figure 5.1 below.

Figure 5.1: A strip-like domain𝒪 × ℝN−m in ℝN.

https://doi.org/10.1515/9783110652017-005
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Furthermore, H1
0(𝒪 × ℝ

N−m) denotes the usual Hilbert space endowed with the inner
product

⟨u, v⟩ = ∬
𝒪×ℝN−m

∇u ⋅ ∇v dxdy

and the induced norm

‖u‖ = ( ∬
𝒪×ℝN−m

|∇u|2dxdy)
1/2
,

while L℘(𝒪 ×ℝN−m), with ℘ ∈ [1,∞], is the classical Lebesgue space, having the norm
defined by

‖u‖℘ =
{
{
{

(∬𝒪×ℝN−m |u|
℘ dxdy)1/℘, if ℘ ∈ [1,∞),

inf{c ≥ 0 : |u| ≤ c a. e. in𝒪 × ℝN−m}, if ℘ =∞.

Since the embeddingH1
0(𝒪×ℝ

N−m) 󳨅→ L℘(𝒪×ℝN−m) is continuous for any ℘ ∈ [2, 2∗] ,
there exists c℘ > 0 such that

‖u‖℘ ≤ c℘‖u‖ for any u ∈ H1
0(𝒪 × ℝ

N−m). (5.1)

Let (O(N −m), ⋅) be the orthogonal group in ℝN−m and consider the group

Ô(N −m) = {𝕀m} × O(N −m),

where 𝕀m is the identitymatrix of orderm. The naturalmultiplication in Ô(N−m)maps
any pair (ĝ1, ĝ2) into

ĝ1 ⋅ ĝ2 = 𝕀m × (g1g2) for any ĝ1 = 𝕀m × g1, ĝ2 = 𝕀m × g2 ∈ Ô(N −m).

Clearly, every ĝ ∈ Ô(N − m) can be identified canonically with the element of O(N)
given by

ĝ = ( 𝕀m 0
0 g
) ,

for some g ∈ O(N − m). Taking into account the above remark, it is easily seen that
every group Ô(N −m) is isomorphic to a subgroup of O(N).

Let + : (ℝm×ℝN−m)× (ℝm×ℝN−m)→ ℝm×ℝN−m be the natural addition law given
by

(x, y) + (x󸀠, y󸀠) = (x + y, x󸀠 + y󸀠) for all (x, y), (x󸀠, y󸀠) ∈ ℝm × ℝN−m.
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Thenext lemma states that the group Ô(N−m) acts continuously and left-distributively
on (ℝm × ℝN−m,+) by the map

∗ : Ô(N −m) × ℝm × ℝN−m → ℝm × ℝN−m,

defined by

(ĝ, (x, y)) 󳨃→ ĝ ∗ (x, y) = (x, gy)

for every ĝ ∈ Ô(N −m) and (x, y) ∈ ℝm × ℝN−m.

Lemma 5.1.1. The group Ô(N −m) acts continuouslyℝm ×ℝN−m by ∗, i. e., the following
conditions hold:
(g1) (𝕀m × 𝕀N−m) ∗ (x, y) = (x, y) for every (x, y) ∈ ℝm × ℝN−m;
(g2) (ĝ1ĝ2) ∗ (x, y) = ĝ1 ∗ (ĝ2 ∗ (x, y)) for every pair of elements ĝ1, ĝ2 ∈ Ô(N −m) and for

all (x, y) ∈ ℝm × ℝN−m.
Furthermore the action ∗ is left-distributive, that is,
(g3) ĝ ∗ ((x, y) + (x󸀠, y󸀠)) = ĝ ∗ (x, y) + ĝ ∗ (x󸀠, y󸀠) for every ĝ ∈ Ô(N − m) and all
(x, y), (x󸀠, y󸀠) ∈ ℝm × ℝN−m.

Proof. Conditions (g1) and (g2) come directly from the definition of ∗. On the other
hand, the natural action law of the group O(N −m) on (ℝN−m,+) is left-distributive, so
that

ĝ ∗ ((x, y) + (x󸀠, y󸀠)) = ĝ ∗ (x + x󸀠, y + y󸀠)
= (x + x󸀠, g(y + y󸀠)) = (x + x󸀠, gy + gy󸀠)
= (x, gy) + (x󸀠, gy󸀠) = ĝ ∗ (x, y) + ĝ ∗ (x󸀠, y󸀠)

for every ĝ ∈ Ô(N − m) and (x, y), (x󸀠, y󸀠) ∈ ℝm × ℝN−m. Hence, also condition (g3) is
easily verified.

A set Ω ⊆ ℝm × ℝN−m is said to be Ô(N − m)-invariant if Ô(N − m) ∗ Ω = Ω, i. e.,
ĝ∗(x, y) ∈ Ω for every ĝ ∈ Ô(N−m). Moreover, if Ω is Ô(N−m)-invariant, then ĝ∗Ω = Ω
for every ĝ ∈ Ô(N − m) by (g1) and (g2). Of course, a strip-like domain 𝒪 × ℝN−m is
Ô(N −m)-invariant.

The natural induced action

♯ : Ô(N −m) × H1
0(𝒪 × ℝ

N−m)→ H1
0(𝒪 × ℝ

N−m)

of the group Ô(N − m) on H1
0(𝒪 × ℝ

N−m) maps any pair (ĝ, u) into the function ĝ♯u
defined pointwise by setting for a. e. (x, y) ∈ 𝒪 × ℝN−m,

ĝ♯u(x, y) = u(x, g−1y) if ĝ = 𝕀m × g, g ∈ O(N −m), (5.2)
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i. e., in a more direct form,

ĝ♯u(x, y) = u(ĝ−1 ∗ (x, y))

for a. e. (x, y) ∈ 𝒪 × ℝN−m.

Lemma 5.1.2. The group Ô(N −m) = {𝕀m} × O(N −m) acts isometrically on the Sobolev
space H1

0(𝒪 × ℝ
N−m) by (5.2).

Proof. Fix u ∈ H1
0(𝒪 × ℝ

N−m). It is enough to show that

‖ĝ♯u‖ = ‖u‖ for all ĝ = 𝕀m × g, g ∈ O(N −m), (5.3)

where the operation ♯ : Ô(N −m) ×H1
0(𝒪 ×ℝ

N−m)→ H1
0(𝒪 ×ℝ

N−m) is given in (5.2). In
order to prove (5.3), it is enough to check that

∬

𝒪×ℝN−m

|∇v|2dxdy = ∬
𝒪×ℝN−m

|∇u|2dxdy, (5.4)

where v(x, y) = u(x, g−1y) for a. e. (x, y) ∈ 𝒪 × ℝN−m. Since

∇v(x, y) = (ĝ−1)T∇u(x, g−1y),

where (ĝ−1)T denotes the transpose of ĝ−1, relation (5.4) becomes

∬

𝒪×ℝN−m

(ĝ−1)T∇u(x, g−1y) ⋅ (ĝ−1)T∇u(x, g−1y)dxdy = ∬
𝒪×ℝN−m

|∇u|2dxdy,

that is,

∬

𝒪×ℝN−m

ĝ−1(ĝ−1)T∇u(x, g−1y) ⋅ ∇u(x, g−1y)dxdy = ∬
𝒪×ℝN−m

|∇u|2dxdy. (5.5)

Since g ∈ O(N −m), taking into account that

ĝ−1 = ( 𝕀m 0
0 g−1

) and (ĝ−1)T = ( 𝕀m 0
0 (g−1)T

) , (5.6)

we have ĝ−1(ĝ−1)T = 𝕀N . Then, by (5.5) and (5.6), claim (5.3) is proved.

From now on the symbol E0 = FixÔ(N−m)(H
1
0(𝒪 × ℝ

N−m)) denotes the elements of
H1
0(𝒪 × ℝ

N−m) which are fixed with respect to the action ♯ of the group Ô(N − m) on
the space Sobolev space H1

0(𝒪 × ℝ
N−m), i. e.,

E0 = {u ∈ H
1
0(𝒪 × ℝ

N−m) : ĝ♯u = u, ĝ ∈ Ô(N −m)}. (5.7)
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Clearly, E0 = FixÔ(N−m)(H
1
0(𝒪 ×ℝ

N−m)) is a closed subspace of the main space H1
0(𝒪 ×

ℝN−m) and it is exactly the spaceH1
0,cyl(𝒪×ℝ

N−m) of cylindrically symmetric functions
defined by

H1
0,cyl(𝒪 × ℝ

N−m) ={u ∈ H1
0(𝒪 × ℝ

N−m) : u(x, y) = u(x, y󸀠) for a. e.

(x, y), (x, y󸀠) ∈ 𝒪 × ℝN−m such that |y| = 󵄨󵄨󵄨󵄨y
󸀠󵄨󵄨󵄨󵄨}.

(5.8)

Of course, by (5.1), the Sobolev embedding

H1
0,cyl(𝒪 × ℝ

N−m) 󳨅→ L℘(𝒪 × ℝN−m) (5.9)

is continuous for any ℘ ∈ [2, 2∗]. Moreover, by the celebrated paper of M. Esteban and
P.-L. Lions [85], the Sobolev embedding

H1
0,cyl(𝒪 × ℝ

N−m) 󳨅→󳨅→ L℘(𝒪 × ℝN−m) (5.10)

is compact for any ℘ ∈ (2, 2∗).
Let either N = m + 4 or N ≥ m + 6. Put JN ,m = {1, . . . , ζN ,m} ⊂ ℕ, where

ζN ,m = (−1)
N−m + [

N −m − 3
2
]. (5.11)

Clearly, the set of indices JN ,m is nonempty, since either N = m + 4 or N ≥ m + 6.
By grouping together the N − m variables of the unbounded part of the strip in

blocks of at least two variables, we easily see that there are ζN ,m ≥ 1 subgroups of
O(N −m) given for every i ∈ JN ,m by

HN ,m,i = {
O((N −m)/2) × O((N −m)/2), if i = N−m−2

2 ,

O(i + 1) × O(N −m − 2i − 2) × O(i + 1), if i ̸= N−m−2
2 .

Hence subgroups HN ,m,i define the subgroups

ĤN ,m,i = {𝕀m} × HN ,m,i ⊂ Ô(N −m)

for every i ∈ JN ,m. On account of the group isomorphism

ĤN ,m,i ∋ ĝ = 𝕀m × g 󳨃→ (
𝕀m 0
0 g
) ∈ O(N),

every group ĤN ,m,i can be identified as a subgroup of O(N).
Note that the sets Ei = FixĤN ,m,i

(H1
0(𝒪 × ℝ

N−m)), where

Ei = {u ∈ H
1
0(𝒪 × ℝ

N−m) : ĝ♯u = u for all ĝ ∈ ĤN ,m,i},
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are the subspaces of block-radial functions and each Ei is compactly embedded into
L℘(𝒪 × ℝN−m) for every ℘ ∈ (2, 2∗), see [160, Théorème III.2]. Regrettably, this is not
enough to get the multiplicity result, since the ζN ,m subspaces Ei are notmutually dis-
joint. Thus, for any i ∈ JN ,m, we define the involution ηN ,m,i : ℝN−m → ℝN−m as follows:

ηN ,m,i(y) =

{{{{{{{
{{{{{{{
{

(y3, y1), if i = N−m−2
2 and

y = (y1, y3) ∈ ℝ(N−m)/2 × ℝ(N−m)/2,

(y3, y2, y1), if i ̸= N−m−2
2 and

y = (y1, y2, y3) ∈ ℝi+1 × ℝN−m−2i−2 × ℝi+1,

and we set

ηĤN ,m,i
= 𝕀m × ηN ,m,i.

It is easily seen that for any i ∈ JN ,m,

ηĤN ,m,i
∈ Ô(N −m), η2ĤN ,m,i

= id𝒪×ℝN−m ,

ηĤN ,m,i
∉ ĤN ,m,i, ηĤN ,m,i

ĤN ,m,i η
−1
ĤN ,m,i
= ĤN ,m,i,

where

ηĤN ,m,i
ĤN ,m,i η

−1
ĤN ,m,i
= {ηĤN ,m,i

ĝ η−1ĤN ,m,i
: ĝ ∈ ĤN ,m,i}.

Finally, for every i ∈ JN ,m, we consider the compact subgroup of Ô(N −m)

ĤN ,m,ηi = ⟨ĤN ,m,i, ηĤN ,m,i
⟩,

where ⟨ĤN ,m,i, ηĤN ,m,i
⟩ denotes the subgroup generated by the subgroup ĤN ,m,i and the

element ηĤN ,m,i
∈ Ô(N −m) \ ĤN ,m,i, that is,

ĤN ,m,ηi = ĤN ,m,i ∪ (ηĤN ,m,i
ĤN ,m,i),

and the action

⊛i : ĤN ,m,ηi × H
1
0(𝒪 × ℝ

N−m)→ H1
0(𝒪 × ℝ

N−m)

of ĤN ,m,ηi on H
1
0(𝒪 × ℝ

N−m) is given by setting

ĝ ⊛i u(x, y) =
{{{
{{{
{

u(x, g−1y) if ĝ = 𝕀m × g in ĤN ,m,i,

−u(x, τ−1η−1N ,m,iy) if ĝ = 𝕀m × ηN ,m,iτ in
ĤN ,m,ηi \ ĤN ,m,i, τ ∈ HN ,m,i,

(5.12)
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for a. e. (x, y) ∈ 𝒪 × ℝN−m.
Bearing in mind (5.2) and fixing i ∈ JN ,m, the action ⊛i can be written as follows:

ĝ ⊛i u(x, y) =
{{{
{{{
{

ĝ♯u(x, y) if ĝ ∈ ĤN ,m,i,

−(ηĤN ,m,i
τ̂)♯u(x, y) if ĝ = ηĤN ,m,i

τ̂ ∈ ĤN ,m,ηi \ ĤN ,m,i

and τ ∈ HN ,m,i,

for a. e. (x, y) ∈ 𝒪 × ℝN−m.
Let us note that ⊛i is defined for every element of ĤN ,m,ηi . Indeed, if ĝ ∈ ĤN ,m,ηi ,

then either ĝ ∈ ĤN ,m,i or ĝ = 𝕀m × ηN ,m,iτ ∈ ĤN ,m,ηi \ ĤN ,m,i, with τ ∈ HN ,m,i.
We are now ready to introduce Ei = FixĤN ,m,ηi

(H1
0(𝒪 × ℝ

N−m)) for any i ∈ JN ,m,

which is the set of the functions of H1
0(𝒪 ×ℝ

N−m) fixed with respect to the action ⊛i of
the group ĤN ,m,ηi , that is,

Ei = {u ∈ H
1
0(𝒪 × ℝ

N−m) : ĝ ⊛i u = u for any ĝ ∈ ĤN ,m,ηi}. (5.13)

It easily seen that each set Ei is a nontrivial closed subspace ofH1
0(𝒪 ×ℝ

N−m). We first
prove that Ei for each i ∈ JN ,m is compactly embedded in the Lebesgue space L℘(𝒪 ×
ℝN−m) for any ℘ ∈ (2, 2∗) and then show some geometrical properties of Ei.

Actually, as we shall see below, the compactness result (5.10) continues to hold if
H1
0,cyl(𝒪 ×ℝ

N−m) is replaced by Ei. Let us recall that throughout the chapter, in all the
properties involving JN ,m, we tacitly handlewith the casem ≥ 1, and eitherN = m+4 or
N ≥ m+ 6. Therefore, the action ⊛i and the subspace Ei are defined in (5.12) and (5.13),
respectively.

Proposition 5.1.3. For each i ∈ JN ,m, the embedding Ei 󳨅→ L℘(𝒪 × ℝN−m) is continuous
for any ℘ ∈ [2, 2∗] and compact for any ℘ ∈ (2, 2∗).

Proof. Fix i ∈ JN ,m. The space Ei is continuously embedded in L℘(𝒪 × ℝN−m) for any
℘ ∈ [2, 2∗] and is compactly embedded in L℘(𝒪×ℝN−m) for any℘ ∈ (2, 2∗) by Théorème
III.2 of [160]. Hence, the embedding Ei 󳨅→ L℘(𝒪 × ℝN−m) is also continuous for any
℘ ∈ [2, 2∗] and compact for any ℘ ∈ (2, 2∗), since ĤN ,m,i ⊂ ĤN ,m,ηi , the first relation
of (5.12) that defines the action ⊛i implies that Ei is a subspace of the space of block-
radial functions Ei. This completes the proof.

Now, we prove a sort of flower-shape geometry for the configuration of the sub-
spaces Ei, as stated below.

Proposition 5.1.4. The following statements hold true:
(i) If either N = m + 4 or N ≥ m + 6, then Ei ∩ H1

0,cyl(𝒪 × ℝ
N−m) = {0} for any i ∈ JN ,m;

(ii) If either N = m + 6 or N ≥ m + 8, then Ei ∩ Ej = {0} for any i, j ∈ JN ,m, with i ̸= j.
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Proof. (i) Let either N = m + 4 or N ≥ m + 6. Fix i ∈ JN ,m and let u be in Ei ∩ H1
0,cyl(𝒪 ×

ℝN−m). Since u is ĤN ,m,ηi -invariant, taking into account (5.12), we have

u(x, y) = −u(x, η−1N ,m,iy) (5.14)

for a. e. (x, y) ∈ 𝒪 × ℝN−m.
Moreover, since u is radial in the second component, i. e., u(x, y) = u(x, y󸀠) if |y| =

|y󸀠|, and |y| = |η−1N ,m,iy| for every y ∈ ℝ
N−m, then (5.14) yields that u(x, y) = −u(x, y) for

a. e. (x, y) ∈ 𝒪 × ℝN−m and so umust be identically zero in𝒪 × ℝN−m.

(ii) Let eitherN = m+6 orN ≥ m+8 so that ζN ,m ≥ 2. Then, fix i, j ∈ JN ,m, with i < j, and
u ∈ Ei ∩Ej. It can be easily seen that the function u is both ĤN ,m,i- and ĤN ,m,j-invariant.
Therefore, u is also ⟨ĤN ,m,i, ĤN ,m,j⟩-invariant, where ⟨ĤN ,m,i, ĤN ,m,j⟩ denotes the sub-
group of Ô(N −m) generated by ĤN ,m,i and ĤN ,m,j, that is,

u(x, y) = u(x, g−1ij y)

for every gij ∈ ⟨HN ,m,i,HN ,m,j⟩ and for a. e. (x, y) ∈ 𝒪 × ℝN−m. Now, as proved in The-
orem 2.2(ii) of [148], the group ⟨HN ,m,i,HN ,m,j⟩ acts transitively on the sphere 𝕊N−m−1.
Hence, for any (x, y) ∈ 𝒪 × ℝN−m,

⟨ĤN ,m,i, ĤN ,m,j⟩(x, y) = {x} × |y|𝕊
N−m−1.

Hence, the function u is cylindrically symmetric, and we can apply (i), obtaining that
u is identically zero in𝒪 × ℝN−m. This concludes the proof.

For additional comments and remarks concerning the theoretical methods re-
called in this section, we refer to [79] and references therein.

In the next part of the chapter, we shall present two cases which are comple-
mentary and describe the existence of solutions with block-cylindrical symmetries.
Namely, the first treats nonlinear terms f which are sublinear at infinity, and the latter
handles the case when the nonlinearities are superlinear at infinity.

5.2 Finitely many solutions

The main purpose of this section is to use the group-theoretical properties presented
in Section 5.1 to treat eigenvalue problems on strip-like domains. The main approach
is based on a critical point result proved in [223], which will be combined with the
principle of symmetric criticality for smooth functionals, establishing the existence of
at least three distinct not cylindrically symmetric solutions for an eigenvalue Dirichlet
problem, lacking compactness.

Let𝒪 be a bounded open set inℝm with a smooth boundary 𝜕𝒪 and let𝒪 ×ℝN−m

be a strip-like domain in ℝN , withm ≥ 1, and either N = m + 4 or N ≥ m + 6.
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We shall deal with a multiplicity result for the elliptic Dirichlet problem given by

{
−Δu = λf (x, y, u) in𝒪 × ℝN−m,

u = 0 on 𝜕𝒪 × ℝN−m,
(Dλ)

where λ is a positive real parameter and f is a nonlinear term. Assume that
(k1) f : 𝒪 ×ℝN−m ×ℝ→ ℝ is continuous and there is p ∈ (2, 2∗), with the property that

for every ε > 0 there exists κε > 0 such that

󵄨󵄨󵄨󵄨f (x, y, t)
󵄨󵄨󵄨󵄨 ≤ ε|t| + κε|t|

p−1 for every (x, y, t) ∈ 𝒪 × ℝN−m × ℝ;

(k2) f (⋅, ⋅, t) is cylindrically symmetric for all t ∈ ℝ, that is, f (x, y, t) = f (x, |y|, t) for every
(x, y) ∈ 𝒪 × ℝN−m;

(k3) f (x, y, ⋅) is even in ℝ for every (x, y) ∈ 𝒪 × ℝN−m;
(k4) there exist positive numbers q ∈ (0, 2), q ∈ [2, 2∗] and measurable functions α ∈

Lq/(q−q)(𝒪 × ℝN−m) and β ∈ L1(𝒪 × ℝN−m) such that

F(x, y, t) ≤ α(x, y)|t|q + β(x, y), where F(x, y, t) =
t

∫
0

f (x, y, s)ds

for every (x, y, t) ∈ 𝒪 × ℝN−m × ℝ;
(k5) there are positive numbers r and t0 such that F(x, y, t) ≥ 0 for all (x, y, t) in 𝒪 ×

B(0, r) × [0, t0], and F(x, y, t0) > 0 for every (x, y) ∈ 𝒪 × B(0, r).

The function

f (x, y, t) = |t|
p−2t

(1 + |y|N−m)2
cos |t|p,

and its potential

F(x, y, t) = sin |t|p

p(1 + |y|N−m)2

satisfy conditions (k1)–(k5) in𝒪×ℝN−m ×ℝ, withm ≥ 1, eitherN = m+4 orN ≥ m+6,
q = 1, α = 0, and β(x, y) = (1 + |y|N−m)−2. Of course, a subcase is when f (x, y, t) = f (t) =
|t|p−2t cos |t|p. A simple prototype is given in Figure 5.2.

The main result of this section reads as follows.

Theorem 5.2.1. Let𝒪 be a bounded open set inℝm with a smooth boundary 𝜕𝒪 and let
𝒪 × ℝN−m be a strip-like domain in ℝN , with m ≥ 1, and either N = m + 4 or N ≥ m + 6.
Let f satisfy (k1)–(k5). Then, for every i ∈ JN ,m there exist an open interval Λi ⊂ ℝ

+ and a
number σi > 0 such that for each λ ∈ Λi there are at least three distinct not cylindrically
symmetric solutions of (Dλ), whose norms are strictly less than σi.
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Figure 5.2: The function f (t) = √|t|t cos√|t|5 with p = 5/2.

Theorem 5.2.1 furnishes a precise information on the number of solutions of prob-
lem (Dλ) with different symmetry structure; see the above special example of f as well
as Example 3.1 in [141].

The main abstract tool in order to prove Theorem 5.2.1 is the next critical point
result valid for smooth functionals defined on separable reflexive Banach spaces; see
[223] for a detailed proof.

Theorem 5.2.2. Let X = (X, ‖ ⋅ ‖) be a separable reflexive Banach space, let Q, I be
functionals belonging to C1(X), and let Σ ⊆ ℝ be a real interval. Suppose that
(i) Q is weakly sequentially lower semicontinuous in X and I is weakly sequentially

continuous in X;
(ii) for every λ ∈ Σ the functional ℐλ = Q+ λI satisfies the (PS) condition and is coercive,

that is,

lim
‖u‖→∞

ℐλ(u) =∞;

(iii) there exists a continuous concave function ℓ : Σ→ ℝ such that

sup
λ∈Σ

inf
u∈X
(ℐλ(u) + ℓ(λ)) < infu∈X

sup
λ∈Σ
(ℐλ(u) + ℓ(λ)).

Then there are an open interval Λ ⊆ Σ and a number σ > 0 such that for each λ ∈ Λ
the functional ℐλ has at least three distinct critical points in X with norms strictly less
than σ.

The existence of cylindrically symmetric solutions for hemivariational inequality
problems has been studied in Theorem 3.1 of [141] by using an abstract critical point
theorem similar to Theorem 5.2.2 but for nonsmooth functionals. In the case of strip-
like domains, the space of cylindrically symmetric functions has been themain tool in
the investigation, due to the presence of compact embeddings into classical Lebesgue
spaces. Inspired by the analysis given in [140, 141, 148, 151] and using the compact
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embedding result proved in Proposition 5.1.3 of Section 5.1, in Theorem 5.2.1 we are
interested in the existence of multiple not cylindrically symmetric solutions for prob-
lem (Dλ). We emphasize that the main conclusion in Theorem 5.2.1 remains valid for
the hemivariational problem treated in [141], using the Krawcewicz andMarzantowicz
principle for locally Lipschitz functionals, established in [139]. More general versions
of Theorem 5.2.1 in the nonsmooth case can be obtained by using the results contained
in [90].

Fix λ > 0 and consider the energy functional Iλ : H1
0(𝒪 × ℝ

N−m)→ ℝ given by

Iλ(u) = Φ(u) + λΨ(u), (5.15)

where

Φ(u) = 1
2
‖u‖2 = 1

2
∬

𝒪×ℝN−m

|∇u|2dxdy

and

Ψ(u) = − ∬
𝒪×ℝN−m

F(x, y, u)dxdy,

for every u ∈ H1
0(𝒪 × ℝ

N−m).
Now, let i ∈ JN ,m. Theorem 5.2.2 can be applied to the energy functional ℐλ,i : Ei →

ℝ defined by

ℐλ,i(u) = Φ|Ei (u) + λΨ|Ei (u)

for every u ∈ Ei, by choosing

X = Ei, Q = Φ|Ei , I = Ψ|Ei , Σ = ℝ+0 .

From now on, for the sake of simplicity, we fix i ∈ JN ,m and write ℐλ instead of ℐλ,i and
X in place of Ei. In order to prove Theorem 5.2.1, we show here the following semicon-
tinuity property.

Lemma 5.2.3. Thanks to (k1), the functional

u 󳨃→ I(u) for all u ∈ X

is sequentially weakly continuous on X. In particular, if uk ⇀ u∞ in X then

∬

𝒪×ℝN−m

f (x, y, uk)(uk − u∞)dxdy → 0 (5.16)

as k →∞.
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Proof. Fix (x, y) ∈ 𝒪×ℝN−m and t1, t2 ∈ ℝ. By the Lagrangemean value theorem, there
exists θ ∈ (0, 1) such that

F(x, y, t1) − F(x, y, t2) = f (x, y, θt1 + (1 − θ)t2)(t1 − t2).

Hence, by (k1), for every ε > 0 there exists κε > 0 such that
󵄨󵄨󵄨󵄨F(x, y, t1) − F(x, y, t2)

󵄨󵄨󵄨󵄨 ≤ [ε(|t1| + |t2|)

+ 2p−2κε(|t1|
p−1 + |t2|

p−1)]|t2 − t1|,
(5.17)

Let (uk)k ⊂ X converge weakly to an element u∞ ∈ X. By (5.17) and the Hölder inequal-
ity, it follows that

󵄨󵄨󵄨󵄨I(uk) − I(u∞)
󵄨󵄨󵄨󵄨 ≤ ∬

𝒪×ℝN−m

󵄨󵄨󵄨󵄨F(uk) − F(u∞)
󵄨󵄨󵄨󵄨dxdy

≤ ∬

𝒪×ℝN−m

(ε(|uk | + |u∞|) + Cε(|uk |
p−1 + |u|p−1))|uk − u∞|dxdy

≤ ε(‖uk‖2 + ‖u∞‖2)‖uk − u∞‖2
+ Cε(‖uk‖

p−1
p + ‖u∞‖

p−1
p )‖uk − u∞‖p,

where Cε = 2p−2κε.
Now, X is compactly embedded in Lp(𝒪 × ℝN−m) by Proposition 5.1.3 since p ∈

(2, 2∗). Thus ‖uk − u∞‖p → 0 as k →∞, since uk ⇀ u∞ in X. Consequently,

lim sup
k→∞

󵄨󵄨󵄨󵄨I(uk) − I(u∞)
󵄨󵄨󵄨󵄨 ≤ εC, (5.18)

where C = supk(‖uk‖2+‖u∞‖2)‖uk−u∞‖2 <∞, since (uk)k is bounded inX. Thus, since
ε is arbitrary, (5.18) gives that I(uk)→ I(u∞) as k →∞. This shows the first part of the
lemma.

To show (5.16), fix (uk)k ⊂ X weakly convergent to an element u∞ ∈ X. Repeating
again the argument above, (k1) implies

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∬

𝒪×ℝN−m

f (x, y, uk)(uk − u∞)dxdy
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ∬

𝒪×ℝN−m

(ε|uk | + κε|uk |
p−1)|uk − u∞|dxdy

≤ ε‖uk‖2‖uk − u∞‖2
+ κε‖uk‖

p−1
p ‖uk − u∞‖p,

that is, by Proposition 5.1.3,

lim sup
k→∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∬

𝒪×ℝN−m

f (x, y, uk)(uk − u∞)dxdy
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ εC.

Thus, since ε is arbitrary, the above inequality gives at once (5.16).
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We notice that the proof of Lemma 5.2.3 for functions with cylindrical symmetries
directly follows by classical arguments due to M. Esteban and P.-L. Lions. Indeed, by
(k1), it follows that F(x, y, t) = o(t2) as t → 0 and F(x, y, t) = o(t2

∗
) as t → ∞ for a. e.

(x, y) ∈ 𝒪 × ℝN−m. Arguing as in the proof of Corollary 3 of [85], it easily seen that
I(uk)→ I(u∞); see also [84, Lemma 4, p. 368].

Proof of Theorem 5.2.1. Fix i ∈ JN ,m and let us divide the argument into four steps.

Step 1. Q is weakly sequentially lower semicontinuous and I is weakly sequentially con-
tinuous in X.

The statement follows from Lemma 5.2.3 and a standard reasoning applied to the
functional Q.

Step 2. For every λ ∈ Λ, the functional ℐλ = Q + λI fulfils the (PS) condition and

lim
‖u‖→∞

ℐλ(u) =∞.

Fix λ ∈ Λ. First, (k4), the Hölder inequality, and (5.1) give

ℐλ(u) = Q(u) + λI(u)

≥
1
2
‖u‖2 − λ ∬

𝒪×ℝN−m

α(x, y)|u|qdxdy − λ ∬
𝒪×ℝN−m

β(x, y)dxdy

≥
1
2
‖u‖2 − λcqq‖α‖q/(q−q)‖u‖

q − λ‖β‖1,

for every u ∈ X. Since q ∈ (0, 2), one gets ℐλ(u)→∞ as ‖u‖→∞, that is, ℐλ is coercive.
Moreover, ℐλ satisfies the (PS) condition at level c ∈ ℝ, that is, for any sequence

(uk)k in X such that

ℐλ(uk)→ c and ℐ󸀠λ(uk)→ 0 in X󸀠 (5.19)

as k →∞, there exists u∞ ∈ X such that, up to a subsequence,

‖uk − u∞‖→ 0 (5.20)

as k →∞.
First of all, we notice that the coerciveness of the functional ℐλ implies that the

sequence (uk)k is bounded in X, and consequently in Lp(𝒪 × ℝN−m). Since X is a re-
flexive space, we also get that, up to a subsequence, still denoted by (uk)k, there exists
u∞ ∈ X such that, thanks also to Proposition 5.1.3,

uk → u∞ weakly in X, uk → u∞ a. e. in 𝒪 × ℝN−m,

uk → u∞ in L℘(𝒪 × ℝN−m), ℘ ∈ (2, 2∗),
(5.21)
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as k →∞. Now

⟨Φ󸀠(uk), uk − u∞⟩ = ⟨ℐ
󸀠
λ(uk), uk − u∞⟩ + ∬

𝒪×ℝN−m

f (x, y, uk)(uk − u∞)dxdy (5.22)

for every k ∈ ℕ.
Of course, taking into account that (uk)k is bounded in X, by (5.19) it follows that

󵄨󵄨󵄨󵄨⟨ℐ
󸀠
λ(uk), uk − u∞⟩

󵄨󵄨󵄨󵄨 ≤
󵄩󵄩󵄩󵄩ℐ
󸀠
λ(uk)
󵄩󵄩󵄩󵄩X󸀠‖uk − u∞‖→ 0 (5.23)

as k →∞. In conclusion, (5.16), (5.22), and (5.23) yield, as k →∞,

‖uk − u∞‖
2 = ∬

𝒪×ℝN−m

∇uk ⋅ ∇(uk − u∞)dxdy + o(1)

= ⟨Φ󸀠(uk), uk − u∞⟩→ 0,

which is (5.20).

Step 3. There exists a continuous concave function ℓ : Σ→ ℝ satisfying

sup
λ∈Σ

inf
u∈X
(ℐλ(u) + ℓ(λ)) < infu∈X

sup
λ∈Σ
(ℐλ(u) + ℓ(λ)). (5.24)

First of all, we prove that the structural assumptions on the nonlinear term f give
the existence of a parameter ϱ ∈ (0, 1] and of a nontrivial function uϱ,i in X such that

I(uϱ,i) = Ψ|X(uϱ,i) = − ∬
𝒪×ℝN−m

F(x, y, uϱ,i)dxdy < 0. (5.25)

Inspired by the construction given in [148], let r > 0 be as in (k5) and fix r1 and r2, with
0 < (5 + 4√2)r1 < r2 < r.

For any ϱ ∈ (0, 1], set

Sϱ,i = {y ∈ ℝ
N−m : y satisfies (5.27)}, (5.26)

where

{{{{{{{{
{{{{{{{{
{

(|y1| −
r2 + 3r1

4
)
2
+ |y3|2 ≤ ϱ2(

r2 − r1
4
)
2

if i = N −m − 2
2
,

(|y3| −
r2 + 3r1

4
)
2
+ |y1|2 ≤ ϱ2(

r2 − r1
4
)
2

and |y2| ≤ ϱ
r2 − r1
4
, if i ̸= N −m − 2

2
,

(5.27)

with

y =
{
{
{

(y1, y3) ∈ ℝ(N−m)/2 × ℝ(N−m)/2 if i = N−m−2
2 ,

(y1, y2, y3) ∈ ℝi+1 × ℝN−m−2i−2 × ℝi+1 if i ̸= N−m−2
2 .

(5.28)
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Now, let t0 > 0 be as in (k5) and define the function vϱ,i : 𝒪 × ℝN−m → ℝ as follows:

vϱ,i(y) = [(
r2 − r1
4
−max{√(|y1| −

r2 + 3r1
4
)
2
+ |y3|2, ϱ

r2 − r1
4
})
+

− (
r2 − r1
4
−max{√(|y3| −

r2 + 3r1
4
)
2
+ |y1|2, ϱ

r2 − r1
4
})
+

]⋅

× (
r2 − r1
4
−max{|y2|, ϱ

r2 − r1
4
})
+ 16t0
(r2 − r1)2(1 − ϱ)2

,

where y is as in (5.28).
Letω andΩ be open sets inℝm, with Lebesguemeasure |ω| > 0 andω ⊂⊂ Ω ⊂⊂ 𝒪.

Then, let us fix a nonnegative function φ ∈ C∞0 (𝒪), with suppφ ⊂ Ω, φ ≡ 1 on ω and
‖φ‖∞ = 1. Define

uϱ,i(x, y) = φ(x)vϱ,i(y) for (x, y) ∈ 𝒪 × ℝN−m . (5.29)

Direct computation ensures that uϱ,i ∈ H1(𝒪 × ℝN−m). Moreover, since supp uϱ,i is a
compact subset of𝒪×ℝN−m, one gets uϱ,i ∈ H1

0(𝒪×ℝ
N−m) by [48, Lemma9.5]. Actually,

uϱ,i ∈ X, since uϱ,i ∈ H1
0(𝒪 × ℝ

N−m), and uϱ,i is ⊛i-invariant by (5.12), arguing as in the
proof of Theorem 1.1(iii) of [148]. More precisely, we have

supp uϱ,i ⊂ 𝒪 × S1,i ⊆ {(x, y) ∈ 𝒪 × ℝ
N−m : r1 ≤ |y| ≤ r2}

󵄨󵄨󵄨󵄨uϱ,i(x, y)
󵄨󵄨󵄨󵄨 = t0 for (x, y) ∈ ω × Sϱ,i, ‖uϱ,i‖∞ ≤ t0.

(5.30)

Since |uϱ,i(x, y)| = |φ(x)vϱ,i(y)| ≤ |vϱ,i(y)| ∈ [0, t0] for (x, y) ∈ 𝒪 × ℝN−m and in force of
(k3) and (k5), we have

F(x, y, uϱ,i(x, y)) ≥ 0 for a. e. (x, y) ∈ 𝒪 × S1,i. (5.31)

Finally, 0 < r1 < r2 < r so that, by (5.29), (5.30), and (5.31), we get

I(uϱ,i) = − ∬
𝒪×ℝN−m

F(x, y, uϱ,i)dxdy = − ∬
𝒪×(Sϱ,i∪(S1,i\Sϱ,i))

F(x, y, uϱ,i)dxdy

= − ∬
𝒪×Sϱ,i

F(x, y, uϱ,i)dxdy − ∬
𝒪×(S1,i\Sϱ,i)

F(x, y, uϱ,i)dxdy

≤ − ∬
𝒪×Sϱ,i

F(x, y,φt0)dxdy − ∬
𝒪×(S1,i\Sϱ,i)

F(x, y, uϱ,i)dxdy

≤ − ∬
𝒪×Sϱ,i

F(x, y,φt0)dxdy ≤ − ∬
ω×Sϱ,i

F(x, y, t0)dxdy < 0,

i. e., inequality (5.25) is verified.
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Now, let us define the function χ : ℝ+0 → ℝ by

χ(s) = sup
Q(u)≤s
u∈X

∬

𝒪×ℝN−m

F(x, y, u)dxdy,

for every s ∈ ℝ+0. By (k1) and direct integration, we get that for all ε > 0 there exists
κε > 0 such that |F(x, y, t)| ≤ εt2+κε|t|p for every (x, y, t) ∈ 𝒪×ℝN−m×ℝ. Consequently,

0 ≤ χ(s) ≤ 2εc22s + 2
pκεc

p
ps

p
2 ,

for every s ∈ ℝ+0. Hence as s→ 0+,

0 ≤ χ(s)
s
< 2εc22 + 2

pκ(ε)cpps
p
2 −1 ∼ 2εc22 ,

since p > 2. Therefore, since ε > 0 is arbitrary, we get

lim
s→0+

χ(s)
s
= 0. (5.32)

Inequality (5.25) gives at once that uϱ,i ̸= 0 and there exists a number η such that

0 < η < 2
‖uϱ,i‖2

∬

𝒪×ℝN−m

F(x, y, uϱ,i)dxdy.

On the other hand, by (5.32), there exist numbers s0 ∈ (0, ‖uϱ,i‖2/2) and ρ0 > 0 such
that

χ(s0) < ρ0 <
2s0
‖uϱ,i‖2

∬

𝒪×ℝN−m

F(x, y, uϱ,i)dxdy = −
s0I(uϱ,i)
Q(uϱ,i)
. (5.33)

Hence, the choice of s0 yields

ρ0 < ∬
𝒪×ℝN−m

F(x, y, uϱ,i)dxdy, that is, ρ0 + I(uϱ,i) < 0. (5.34)

Define Σ = ℝ+0 and ℓ : Σ → ℝ by ℓ(λ) = ρ0λ. We claim that such ℓ satisfies (5.24). The
real function

Σ ∋ λ 󳨃→ inf
u∈X
(ℐλ(u) + ρ0λ), ℐλ(u) = Q(u) + λI(u),

is upper semicontinuous on Σ. Relation (5.34) implies that

lim
λ→∞

inf
u∈X
(ℐλ(u) + ρ0λ) ≤ limλ→∞

{Q(uϱ,i) + λ(ρ0 + I(uϱ,i))} = −∞.
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Thus, the Tonelli–Weierstrass Theorem 1.2 of [238] guarantees the existence of an ele-
ment λ ∈ Σ such that

sup
λ∈Σ

inf
u∈X
{ℐλ(u) + ρ0λ} = infu∈X

{Q(u) + λ(ρ0 + I(u))}. (5.35)

Moreover, I(u) > −ρ0 for every u ∈ Q−1((−∞, s0]), since χ(s0) < ρ0. Hence,

s0 ≤ inf
I(u)≥−ρ0

Q(u). (5.36)

On the other hand,

inf
u∈X

sup
λ∈Σ
(ℐλ(u) + ρ0λ) = infu∈X

{Q(u) + sup
λ∈Σ

λ(ρ0 + I(u))}

= inf
I(u)≥−ρ0

Q(u).

Therefore, relation (5.36) can be written as

s0 ≤ infu∈X
sup
λ∈Σ
(ℐλ(u) + ρ0λ). (5.37)

There are two cases to be considered in (5.35).

Case 1. If λ ∈ [0, s0/ρ0), then, recalling that 0 ∈ X and (5.37), we get

sup
λ∈Σ

inf
u∈X
(ℐλ(u) + ρ0λ) = infu∈X

(Q(u) + λ(ρ0 + I(u)))

≤ λρ0 < s0 ≤ infu∈X
sup
λ∈Σ
(ℐλ(u) + ρ0λ),

that is, we get the validity of (5.24).

Case 2. If λ ≤ [s0/ρ0,∞), then by (5.33),

sup
λ∈Σ

inf
u∈X
(ℐλ(u) + ρ0λ) = infu∈X

(Q(u) + λ(ρ0 + I(u)))

≤ Q(uϱ,i) + λ(ρ0 + I(uϱ,i))

≤ Q(uϱ,i) +
s0
ρ0
(ρ0 + I(uϱ,i))

= Q(uϱ,i) +
s0
ρ0

I(uϱ,i) + s0

< s0 ≤ infu∈X
sup
λ∈Σ
(ℐλ(u) + ρ0λ),

that is, (5.24) holds. This completes the proof of Step 3.

Step 4. Every critical point of ℐλ weakly solves (Dλ) in H1
0(𝒪 × ℝ

N−m).
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Clearly, Iλ is even inH1
0(𝒪×ℝ

N−m) by (k3). Furthermore, Iλ(ĝ ⊛i u) = Iλ(u) for every
ĝ ∈ ĤN ,m,ηi and u ∈ H

1
0(𝒪×ℝ

N−m), where ⊛i is defined in (5.12), i. e., the functional Iλ is
ĤN ,m,ηi -invariant onH

1
0(𝒪×ℝ

N−m). Indeed, ĤN ,m,ηi acts isometrically onH1
0(𝒪×ℝ

N−m)
by (5.12), taking into account that Ô(N − m) acts isometrically on H1

0(𝒪 × ℝ
N−m) by

Lemma 5.1.2. Moreover, (k2), (k3), and the fact that the strip-like domain 𝒪 × ℝN−m is
Ô(N −m)-invariant give

∬

𝒪×ℝN−m

F(x, y, ĝ ⊛i u)dxdy = ∬
𝒪×ℝN−m

F(x, y, u(x, g−1y))dxdy

= ∬

𝒪×ℝN−m

F(x, gz, u(x, z))dxdz

= ∬

𝒪×ℝN−m

F(x, z, u(x, z))dxdz

if ĝ = 𝕀m × g ∈ ĤN ,m,i, and

∬

𝒪×ℝN−m

F(x, y, ĝ ⊛i u)dxdy = ∬
𝒪×ℝN−m

F(x, y,−u(x, τ−1η−1HN ,m,i
y))dxdy

= ∬

𝒪×ℝN−m

F(x, ηN ,m,iτz, u(x, z))dxdz

= ∬

𝒪×ℝN−m

F(x, z, u(x, z))dxdz,

if ĝ = 𝕀m × ηN ,m,iτ ∈ ĤN ,m,ηi \ ĤN ,m,i and τ ∈ HN ,m,i.
By the principle of symmetric criticality, Theorem A.1.5, the critical points of the

restriction ℐλ in X are also critical points of the energy functional Iλ in H1
0(𝒪 ×ℝ

N−m).
Then, Theorem 5.2.2 guarantees that for every i ∈ JN ,m there are an open interval Λi ⊂
Σ = ℝ+0 and a number σi > 0 such that for each λ ∈ Λi there are at least three distinct
not cylindrically symmetric solutions of problem (Dλ), whose norms are strictly less
than σi. This completes the proof of Theorem 5.2.1.

5.3 Infinitely many solutions

In this section we study, as an application of Proposition 5.1.4, the existence of a fi-
nite number of infinitely many solutions without cylindrical symmetry for a Dirichlet
problem defined on a strip-like domain 𝒪 × ℝN−m, with m ≥ 1, and either N = m + 4
or N ≥ m + 6, provided that the nonlinear term verifies suitable hypotheses. Indeed,
we treat nonlinearities which satisfy special forms of (k1)–(k3) and (k5), but which are
superlinear at infinity. More precisely, we shall deal with infinitely many solutions of
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the semilinear elliptic Dirichlet problem

{
−Δu = w(x, y)f (u) in𝒪 × ℝN−m,
u = 0 on 𝜕𝒪 × ℝN−m,

(Dw)

under the following assumptions on the weight w and reaction term f :
(h1) f : ℝ → ℝ is a continuous function and there is an exponent p ∈ (2, 2∗), with the

property that for every ε > 0 there exists κε > 0 such that

󵄨󵄨󵄨󵄨f (t)
󵄨󵄨󵄨󵄨 ≤ ε|t| + κε|t|

p−1

for every t ∈ ℝ;
(h2) w ∈ L1(𝒪 × ℝN−m) ∩ L∞(𝒪 × ℝN−m) is cylindrically symmetric, that is, w(x, y) =

w(x, |y|) for a. e. (x, y) ∈ 𝒪 × ℝN−m and

w(x, y) ≥ w0 > 0

for a. e. (x, y) ∈ 𝒪 × ℝN−m;
(h3) f is odd in ℝ;
(h4) there exist ν > 2 and t0 > 0 such that

0 < νF(t) ≤ f (t)t for any t, with |t| ≥ t0, where F(t) =
t

∫
0

f (s)ds.

Amodel function verifying (h1)–(h4) isw(x, y)(|u|℘−2u+ |u|p−2u), where 2 < ℘ < p < 2∗,
ν = ℘, t0 is any positive number, and w ∈ L1(𝒪 × ℝN−m) ∩ L∞(𝒪 × ℝN−m) is a positive
cylindrically symmetric function in y satisfying (h2); see the Figure 5.3.

Figure 5.3: The case f (t) = |t|1/5u + |u|2/5u, with ℘ = 11/5.

Problem (Dw) has a variational nature and its Euler–Lagrange functional I is given by

I(u) = 1
2
‖u‖2 − ∬

𝒪×ℝN−m

w(x, y)F(u)dxdy, u ∈ H1
0(𝒪 × ℝ

N−m). (5.38)
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Clearly, under the main assumptions on the nonlinear term f , the functional I is well
defined in H1

0(𝒪 × ℝ
N−m) and is of class C1(H1

0(𝒪 × ℝ
N−m)). Furthermore, the critical

points of I are exactly the solutions of problem (Dw) in H1
0(𝒪 × ℝ

N−m).
As in Section 5.2, the difficulty in working with the functional I is the lack of com-

pactness. Using the compactness result given in Proposition 5.1.4, it is possible to find
suitable subspaces of H1

0(𝒪 × ℝ
N−m), compactly embedded into L℘(𝒪 × ℝN−m) for all

℘ ∈ (2, 2∗).
As done in Sections 4.3 and 5.2, let us put JN ,m = {1, . . . , ζN ,m}, where

ζN ,m = (−1)
N−m + [

N −m − 3
2
], (5.39)

when either N −m = 4 or N −m ≥ 6. We extend the definition of ζN ,m and of JN ,m for all
N −m ≥ 3, putting ζN ,m = 0 and JN ,m = 0, when N −m = 3 and N −m = 5.

With the above notations, we can now state the main result assuming, without
further mentioning, that conditions (h1)–(h4) hold.

Theorem 5.3.1. Let 𝒪 be a bounded open set in ℝm with a smooth boundary 𝜕𝒪 and
let 𝒪 × ℝN−m be a strip-like domain in ℝN , with m ≥ 1 and N − m ≥ 3. Then, prob-
lem (Dw) admits at least one cylindrically symmetric unbounded sequence (u

(0)
k )k of so-

lutions in H1
0(𝒪 × ℝ

N−m) and ζN ,m unbounded sequences (u(i)k )k , i ∈ JN ,m, of solutions in
H1
0(𝒪 × ℝ

N−m), with symmetric mutually different structure and being not cylindrically
symmetric.

The main variational tool to prove Theorem 5.3.1 is the classical critical point re-
sult, the fountain theorem for even smooth functionals, established originally by T.
Bartsch in Theorem 2.5 of [34].

Theorem 5.3.2. Let H be a Hilbert space and (ej)j ⊂ H be an orthonormal sequence. Set

Hn =
n
⨁
j=1
ℝej and H⊥n =

∞

⨁
j=n
ℝej,

for every n ≥ 1. Consider a C1-functional ℐ : H → ℝ which satisfies the following prop-
erties:
(j1) ℐ is even in H ;
(j2) bk−1 = supρ≥0 inf u∈H⊥k

‖u‖=ρ

ℐ(u)→∞ as k →∞;

(j3) infr>0 sup u∈Hk
‖u‖≥r

ℐ(u) < 0 for every k ∈ ℕ;
(j4) the (PS)c condition holds for all c > 0.
Then the functional ℐ possesses an unbounded sequence of critical values (ck)k . In fact,
for each k ≥ 1, with bk > 0, there exists a critical value ck ≥ bk , which can be character-
ized as

ck = infγ∈Γk
sup
u∈Bk

ℐ(γ(u)),

 EBSCOhost - printed on 2/10/2023 3:36 PM via . All use subject to https://www.ebsco.com/terms-of-use



5.3 Infinitely many solutions | 105

where

Bk = {u ∈ Hk : ‖u‖ ≤ rk},

with rk large enough, so that ℐ(u) < 0 for every u ∈ Hk , ‖u‖ ≥ rk , and

Γ = {γ : Bk → H : γ is odd, γ(u) = u if ‖u‖ = rk}.

Theorem 5.3.2 is even available when (j1) is replaced by the requirement that ℐ is
G-invariant with respect to a compact Lie group G, which acts transitively on H, as
shown in Chapter 3 of [247].

As mentioned above, the functional I defined by (5.38) does not satisfy the (PS)c
condition (j4) if the subspaces are not chosen carefully. Thus, we have to search for
suitable subspaces of H1

0(𝒪 × ℝ
N−m) such that the restrictions I on them satisfy (j4).

The next steps will give us a guess on how to construct such subspaces.
We notice that the existence of infinitely many axially symmetric solutions for

hemivariational inequalities has been proved in Theorem 3.2 of [141], by using a nons-
mooth version of the fountain theorem recalled above. By exploiting some ideas con-
tained in [140, 141], in Theorem 5.3.1 we are able to prove the existence of a precise
number of sequences of solutions with different symmetries. The main result remains
valid for the hemivariational problem studied in [141] and it can be viewed as a more
precise form of the existence theorem proved in the classical paper [36].

Proof of Theorem 5.3.1. Let m ≥ 1 and N − m ≥ 3. First of all, we shall apply Theo-
rem 5.3.2 to the functional ℐ : H → ℝ, H = H1

0,cyl(𝒪 × ℝ
N−m), I|H1

0,cyl(𝒪×ℝ
N−m) = ℐ. Of

course, ℐ satisfies (j1) since the potential F is even as a consequence of (h3).
Now, let (ek)k ⊂ H be an orthonormal basis of H and, using the notation of The-

orem 5.3.2, the next preparatory lemma follows directly by the compact embedding
in (5.10).

Lemma 5.3.3. For any ℘ ∈ (2, 2∗),

μk = sup
u∈H⊥k−1
u ̸=0

‖u‖℘
‖u‖
→∞

as k →∞.

Proof. First of all, by construction

0 < μk+1 = sup
u∈H⊥k
u ̸=0

‖u‖℘
‖u‖
≤ μk = sup

u∈H⊥k−1
u ̸=0

‖u‖℘
‖u‖
, k ≥ 2,

i. e., the real sequence (μk)k given in the statement is positive and nonincreasing. Sup-
pose, arguing by contradiction, that μk → μ∞ > 0 as k → ∞. Then, there exists a
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sequence (uk)k ⊂ H, such that uk ∈ H⊥k−1, ‖uk‖ = 1 and ‖uk‖℘ ≥ μ∞/2 for all k. By
definition of H⊥k−1, this implies that uk ⇀ 0 in H along a subsequence. Indeed, the
sequence (uk)k is bounded inH, thus, by reflexivity, there exists u∞ ∈ H such that, up
to a subsequence, still denoted by (uk)k, uk ⇀ u∞ inH. Any φ ∈ H can be represented
by its Fourier series, that is, φ = ∑∞j=1 cjej. Hence, for every k ≥ 2 we have

⟨uk ,φ⟩ =
∞

∑
j=k

cj⟨uk , ej⟩→ 0

as k → ∞. Thus uk ⇀ 0 in H as claimed. Now, as proved by M. Esteban and P.-L. Li-
ons in [85], the separable Hilbert Sobolev space H = H1

0,cyl(𝒪 × ℝ
N−m) is compactly

embedded in L℘(𝒪 × ℝN−m) for all ℘ ∈ (2, 2∗). In conclusion, uk → 0 in L℘(𝒪 × ℝN−m)
as k →∞. This is impossible and completes the proof.

With the above notations and assumptions, we prove the following facts:

Claim 1. The functional ℐ satisfies condition (j2).

By (h1), for every ε > 0 there exists a constant κε > 0 such that

󵄨󵄨󵄨󵄨F(t)
󵄨󵄨󵄨󵄨 ≤ ε|t|

2 + κε|t|
p (5.40)

for every t ∈ ℝ. Thus, for a fixed k ≥ 2 and u ∈ H⊥k−1, it follows that

ℐ(u) = 1
2
‖u‖2 − ∬

𝒪×ℝN−m

w(x, y)F(u)dxdy

≥
1
2
‖u‖2 − ‖w‖∞(ε‖u‖

2
2 + κε‖u‖

p
p)

≥ ‖u‖2( 1
2
− ε‖w‖∞) − κεμ

p
k‖u‖

p.

Now, we choose ε = (p − 2)/4p‖w‖∞, and so

ρk =
1

(pκεμ
p
k)
p−2 →∞

as k →∞ by Lemma 2.3.2. Hence, for all u ∈ H⊥k−1, with ‖u‖ = ρk, we have

ℐ(u) ≥ ( 1
4
−

1
2p
)
1
ρ2k
.

Therefore,

bk ≥ inf
u∈H⊥k−1
‖u‖=ρk

ℐ(u)→∞ as k →∞,

i. e., condition (j2) holds.
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Claim 2. The functional ℐ satisfies condition (j3).

To prove Claim 2, we first show the next property.

Lemma 5.3.4. The primitive F of the nonlinear term f satisfies the inequality

w(x, y)F(t) ≥ c0|t|
ν − w(x, y)F∞,

for a. e. (x, y) ∈ 𝒪 × ℝN−m and any t ∈ ℝ, where c0 = w0t−ν0 F(t0) > 0 and F∞ =
max|t|≤t0 |F(t)|.

Proof. Let t0 > 0 be as in (h4). A direct computation yields at once that

F(t) ≥ F(t0)
tν0

tν for any t ∈ ℝ, with t ≥ t0

and F(t0) > 0. Hence, since F is even in ℝ by (h3), we get F(t) ≥ c̃0|t|ν for any t ∈ ℝ,
with |t| ≥ t0 > 0, where c̃0 = t−ν0 F(t0) > 0. Clearly, by continuity, |F(t)| ≤ F∞ for any
t ∈ ℝ, with |t| ≤ t0. Hence, the stated estimate holds at once by (h2).

Since w ∈ L1(𝒪 × ℝN−m) by (h2), thanks to Lemma 5.3.4, we have

ℐ(u) ≤ 1
2
‖u‖2 − c0‖u‖

ν
ν − F∞‖w‖1 (5.41)

for every u ∈ H. Now, taking into account thatHk is a finite-dimensional space, all the
norms are equivalent on it. Therefore, ν > 2 implies

lim
r→∞

sup
u∈Hk
‖u‖≥r

ℐ(u)→ −∞.

This proves the claim.

Claim 3. The functional ℐ satisfies condition (j4).

To this aim, for any c > 0 fix a (PS)c sequence (uk)k inH of ℐ. Let us first show that
(uk)k is bounded in H.

For any k ∈ ℕ there exists κ > 0 such that

󵄨󵄨󵄨󵄨ℐ(uk)
󵄨󵄨󵄨󵄨 ≤ κ and 󵄩󵄩󵄩󵄩ℐ

󸀠(uk)
󵄩󵄩󵄩󵄩H󸀠 ≤ κ. (5.42)

Moreover, by (h1) and so (5.40), applied with ε = 1, we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∬

𝒪×ℝN−m∩{|uk |≤t0}

w(x, y)(F(uk) −
1
ν
f (uk) uk)dxdy

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ (t20 + κ1t
p
0 +

t20
ν
+
κ1
ν
tp0)‖w‖1 = κ̃.
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Hence, thanks to (h4), we get

ℐ(uk) −
1
ν
⟨ℐ󸀠(uk), uk⟩ ≥ (

1
2
−
1
ν
)‖uk‖

2

− ∬

𝒪×ℝN−m∩{|uk |≤t0}

w(x, y)(F(uk) −
1
ν
f (uk) uk)dxdy.

Therefore, we obtain

ℐ(uk) −
1
ν
⟨ℐ󸀠(uk), uk⟩ ≥ (

1
2
−
1
ν
)‖uk‖

2 − κ̃. (5.43)

As a consequence of (5.42), we also have

ℐ(uk) −
1
ν
⟨ℐ󸀠(uk), uk⟩ ≤ κ(1 + ‖uk‖),

so that, using (5.43), we find a suitable constant c > 0 such that

‖uk‖
2 ≤ c(1 + ‖uk‖)

for any k ∈ ℕ. Hence, (uk)k is bounded in the Hilbert space H and so there exists a
subsequence, still denoted by (uk)k, weakly converging to some u∞ ∈ H.

Now, let ε > 0 be fixed. Then, by (h1) there exists a corresponding κε > 0 such that
the Hölder inequality, as well as the fact that ‖uk‖p + ‖u∞‖p is uniformly bounded in k,
gives

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∬

𝒪×ℝN−m

w(x, y)(f (uk) − f (u∞))(uk − u∞)dxdy
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ε‖w‖∞ ∬
𝒪×ℝN−m

(|uk | + |u∞|)
2dxdy

+ κε‖w‖∞ ∬
𝒪×ℝN−m

(|uk |
p−1 + |u∞|

p−1)|uk − u∞|dxdy

≤ ‖w‖∞[2ε(‖uk‖
2
2 + ‖u∞‖

2
2) + κε(‖uk‖

p−1
p + ‖u‖

p−1
p )]‖uk − u∞‖p

≤ C(2ε + κε‖uk − u∞‖p),

and the right-hand side approaches 2Cε as k →∞ by (5.10). This gives at once

∬

𝒪×ℝN−m

w(x, y)(f (uk) − f (u∞))(uk − u∞)dxdy → 0

as k →∞, since ε > 0 is arbitrary. Hence, as k →∞,

‖uk − u∞‖
2 = ⟨ℐ󸀠(uk) − ℐ

󸀠(u∞), uk − u∞⟩
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+ ∬

𝒪×ℝN−m

w(x, y)(f (uk) − f (u∞))(uk − u∞)dxdy

= o(1),

by (5.42) and the fact that uk ⇀ u∞ in H. The claim is proved.
In conclusion, ℐ satisfies all the assumptions of Theorem 5.3.2 and so possesses

an unbounded sequence of critical points in H = H1
0,cyl(𝒪 × ℝ

N−m).
Clearly, (5.2) gives that I(ĝ♯u) = I(u) for every ĝ ∈ Ô(N − m) and any u ∈ H1

0(𝒪 ×
ℝN−m), i. e., the functional I : H1

0(𝒪×ℝ
N−m)→ ℝ is Ô(N −m)-invariant. Indeed, Ô(N −

m) acts isometrically on H1
0(𝒪 × ℝ

N−m) by (5.2), as proved in Lemma 5.1.2. Moreover,
𝒪 × ℝN−m is Ô(N −m)-invariant, as a strip-like domain. By (h2) and (h3),

∬

𝒪×ℝN−m

w(x, y)F(ĝ♯u)dxdy = ∬
𝒪×ℝN−m

w(x, y)F(u(x, g−1y))dxdy

= ∬

𝒪×ℝN−m

w(x, gz)F(u(x, z))dxdz

= ∬

𝒪×ℝN−m

w(x, z)F(u(x, z))dxdz,

if ĝ = 𝕀m × g ∈ Ô(N −m), g ∈ O(N −m).
By the principle of symmetric criticality, Theorem A.1.5, the critical points of the

restriction ℐ are also critical points of the energy functional I. Then, by virtue of The-
orem 5.3.2, problem (Dw) admits at least one unbounded sequence (uk)k of solutions
in H1

0(𝒪 × ℝ
N−m) with cylindrical symmetry.

Now, assume that either N = m + 4 or N ≥ m + 6. We apply Theorem 5.3.2 to each
Ei and to the corresponding functional ℐi on Ei, given by

ℐi(u) =
1
2
‖u‖2 − ∬

𝒪×ℝN−m

w(x, y)F(u)dxdy, u ∈ Ei,

for every i ∈ JN ,m.
Repeating a similar argument as in the cylindrical case, we state that for every i ∈

JN ,m, the functional ℐi admits at least one unbounded sequence (u(i)k )k of critical points
in Ei. Since f is an odd function by (h3), themain energy functional I, defined in (5.38),
is even. Thus, I is ĤN ,m,ηi -invariant, when the action of ĤN ,m,ηi onH

1
0(𝒪×ℝ

N−m) is given
by (5.12). Indeed, ĤN ,m,ηi acts isometrically on H1

0(𝒪 × ℝ
N−m) by (5.12), since Ô(N −m)

acts isometrically on H1
0(𝒪 × ℝ

N−m) by Lemma 5.1.2. Moreover, (h2), (h3), and the fact
that𝒪 × ℝN−m is Ô(N −m)-invariant yield

∬

𝒪×ℝN−m

w(x, y)F(ĝ ⊛i u)dxdy = ∬
𝒪×ℝN−m

w(x, y)F(u(x, g−1y))dxdy
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= ∬

𝒪×ℝN−m

w(x, gz)F(u(x, z))dxdz

= ∬

𝒪×ℝN−m

w(x, z)F(u(x, z))dxdz

if ĝ = 𝕀m × g ∈ ĤN ,m,i, g ∈ HN ,m,i, and

∬

𝒪×ℝN−m

w(x, y)F(ĝ ⊛i u)dxdy = ∬
𝒪×ℝN−m

w(x, y)F(−u(x, τ−1η−1HN ,m,i
y))dxdy

= ∬

𝒪×ℝN−m

w(x, ηN ,m,iτz)F(u(x, z))dxdz

= ∬

𝒪×ℝN−m

w(x, z)F(u(x, z))dxdz,

if ĝ = 𝕀m × ηN ,m,iτ ∈ ĤN ,m,ηi \ ĤN ,m,i, and τ ∈ HN ,m,i.
The principle of symmetric criticality, Theorem A.1.5, implies that the critical

points of ℐi are also critical points for the functional I, therefore, solutions of prob-
lem (Dw).

Summing up the above facts, on the basis of Proposition 5.1.4, problem (Dw) ad-
mits at least one cylindrically symmetric unbounded sequence (u(0)k )k of solutions in
H1
0(𝒪 × ℝ

N−m) and ζN ,m unbounded sequences (u(i)k )k, i ∈ JN ,m, of solutions in H
1
0(𝒪 ×

ℝN−m), with symmetric mutually different structure and being not cylindrically sym-
metric. This concludes the proof of Theorem 5.3.1.

Comments on Chapter 5
In the last years many papers deals with different aspects of problems similar to (Dw).
Special kinds of oscillations at infinity produce infinitely many solutions for a wide
class of elliptic problems in the Euclidean setting as proved in [200, 201]. These results
suggest to study elliptic or semilinear elliptic equations on strip-like domainsunder an
appropriate assumption on f at infinity. Aswe shall see in Chapter 9, in themultiplicity
Theorem 9.2.1 there are two key tools,

lim inf
t→0+

F(t)
t2
> −∞

and Theorem 1 of [171], that is, the continuity of the superposition operator defined
in (9.14). An interesting open question is the study of (Dw) when

lim inf
t→0+

F(t)
t2
= −∞.

However, to get a multiplicity result under this new assumption, the continuity of the
corresponding superposition operator remains essential.

 EBSCOhost - printed on 2/10/2023 3:36 PM via . All use subject to https://www.ebsco.com/terms-of-use



6 Elliptic equations on the sphere
Sento i miei passi passare...
In questo infinito oggi
sono l’oggi che va
senza andare.

Antonella Coletti
Attimi

The chapter deals with the existence of infinitely many sign-changing solutions of
higher order elliptic problems settled on the unit sphere 𝕊N 󳨅→ ℝN+1, N ≥ 2, and
involving a possibly critical nonlinear term. Here 𝕊N is endowedwith the induced Rie-
mannian metric h. To overcome the lack of compactness, symmetry properties on the
Sobolev space Hm(𝕊N ) are carefully studied in Section 6.1 via a group-theoretical ar-
gument. Thus the existence of sequences of sign-changing solutions, which are mu-
tually symmetrically distinct, is attained, and a lower estimate of the number of those
sequences is also given; see Theorem 6.2.1 in Section 6.2.

Then, in Theorems 6.2.4 and 6.2.5, we use the reductionmethod to the unit sphere
in order to prove the existence of infinitely many solutions for some parameterized
Emden–Fowler equations that naturally arise in astrophysics, conformal Rieman-
nian geometry, and in the theories of thermionic emission, isothermal stationary gas
sphere, and gas combustion.

In the last Section 6.3, the existence of multiple symmetric solutions for a critical
stationary nondegenerate Kirchhoff problem on the unit sphere is proved under min-
imal assumptions on the forcing nonlinear term, provided that a combination of the
Kirchhoff coefficients a and b is sufficiently large with respect to the critical Sobolev
embedding constant; see Theorem 6.3.3. This result is peculiar of Kirchhoff problems
on the Euclidean sphere.

The abstract approach we use to prove Theorem 6.3.3 is inspired by [226] and by
the recent paper [89]. For instance, somefine topological properties of the energy func-
tional associated to the main problem are obtained using abstract tools introduced
in [225, 226] and recalled in Theorems 6.3.1 and 6.3.2. Finally, a key role along the
proof is played by a compact argument given in Theorem6.1.2 and by Proposition 6.1.3.
See [144] and the monograph [151, Chapter 10] for a nice detailed discussion on the
subject and on related topics.

6.1 Group actions on Sobolev spaces

Letm be an integer and N > 2m. In what follows,Hm(𝕊N ) denotes the classical Hilbert
Sobolev space consisting of functions on𝕊N withweak derivatives of orderDα, |α| ≤ m,
in L2(𝕊N ). Due to the usual role of the critical exponent, the Sobolev space Hm(𝕊N )

https://doi.org/10.1515/9783110652017-006
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cannot be compactly embedded into the Lebesgue space L2
∗
m (𝕊N ), where as usual 2∗m =

2N/(N − 2m). In order to prove the main existence results of the chapter, we recover
compactness on suitable symmetric subspaces of Hm(𝕊N ), which are compactly em-
bedded into Lq(𝕊N ), even when q is supercritical. Such properties have been observed
in specific contexts by several authors, see [129, 144, 185] and the references therein for
related topics. This approach is fruitful in the study of a wide class of variational ellip-
tic problems in the presence of a suitable group action on the Sobolev space, thanks
to the principle of symmetric criticality given in the Appendix.

In this section we describe in detail the construction of sN subspaces Hm
Gτi
N ,i (𝕊N ) of

the Sobolev space Hm(𝕊N ) related to certain subgroups Gτi
N ,i of the orthogonal group

O(N + 1). Themain useful tool of the chapter, and in particular to prove Theorem 6.2.1,
is the geometrical profile of the subspaces Hm

Gτi
N ,i (𝕊N ) defined in Proposition 6.1.3.

In this last part of the section, we take sN = [N/2] + (−1)N+1 − 1, which is well
defined if N > 4. In this case, for every i ∈ JN = {1, . . . , sN },

GN ,i =
{
{
{

O(i + 1) × O(N − 2i − 1) × O(i + 1), if i ̸= N−1
2 ,

O(i + 1) × O(i + 1), if i = N−1
2 .

Furthermore, GN
i,j denotes the group generated by GN ,i and GN ,j whenever i, j ∈ JN and

i ̸= j. The following result, proved in Proposition 3.2 of [144], will be crucial in the
sequel.

Proposition 6.1.1. Let N > 4. For every i, j ∈ JN , with i ̸= j, the group GN
i,j acts transitively

on 𝕊N , i. e., there exists σ0 ∈ 𝕊N such that GN
i,jσ0 = 𝕊

N .

FixN > 4 and i ∈ JN . Let τi : 𝕊N → 𝕊N be the involution function associated to GN ,i
and defined for all σ = (σ1, σ2, σ3) ∈ 𝕊N by

τi(σ) =
{
{
{

(σ3, σ2, σ1), if i ̸= N−1
2 and σ1, σ3 ∈ ℝi+1, σ2 ∈ ℝN−2i−1,

(σ3, σ1), if i = N−1
2 and σ1, σ3 ∈ ℝi+1.

By construction,

τi ∉ GN ,i, τiGN ,iτ
−1
i = GN ,i and τ2i = id𝕊N .

Let us present explicit forms of some groups GN ,i and of related functions τi, as sum-
marized in Chapter 10 of [151]. For instance, if N = 11, then s11 = 5 and the groups and
the involution functions are:
(a) G11,1 = O(2) × O(8) × O(2), τ1(σ1, σ2, σ3) = (σ3, σ2, σ1) for σ1, σ3 ∈ ℝ2 and σ2 ∈ ℝ8,

when i = 1;
(b) G11,2 = O(3) × O(6) × O(3), τ2(σ1, σ2, σ3) = (σ3, σ2, σ1) for σ1, σ3 ∈ ℝ3 and σ2 ∈ ℝ6,

when i = 2;
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(c) G11,3 = O(4) × O(4) × O(4), τ3(σ1, σ2, σ3) = (σ2, σ1, σ3) for σ1, σ2, σ3 ∈ ℝ4, when i = 3;
(d) G11,4 = O(5) × O(2) × O(5), τ4(σ1, σ2, σ3) = (σ3, σ2, σ1) for σ1, σ3 ∈ ℝ5 and σ2 ∈ ℝ2,

when i = 4;
(e) G11,5 = O(6) × O(6), τ5(σ1, σ2) = (σ2, σ1) for σ1, σ2 ∈ ℝ6, when i = 5.

As in [144], we fix N > max{4, 2m} from now on, if not otherwise stated. For all i ∈ JN
let ⊛̂i be an action of the compact group

Gτi
N ,i = ⟨GN ,i, τi⟩ ⊂ O(N + 1) (6.1)

on the Sobolev space Hm(𝕊N ).
More precisely,we consider the action ⊛̂i : G

τi
N ,i×H

m(𝕊N )→ Hm(𝕊N ), (g̃, u) 󳨃→ g⊛̂iu,
which is defined pointwise for a. e. σ ∈ 𝕊N by

(g⊛̂iu)(σ) = {
u(g−1σ), if g ∈ GN ,i,

−u(g−1τ−1i σ), if g = τig̃ ∈ G
τi
N ,i \ GN ,i, g̃ ∈ GN ,i.

(6.2)

This can be done by the properties of τi. Therefore, ⊛̂i is well defined, linear, and con-
tinuous.

Let us consider for every i ∈ JN the subspace Hm
Gτi
N ,i (𝕊N ) of Hm(𝕊N ) given by

Ei = H
m
Gτi
N ,i(𝕊N) = {u ∈ Hm(𝕊N) : g⊛̂iu = u for all g ∈ G

τi
N ,i}.

Clearly, Ei = Hm
Gτi
N ,i (𝕊N ) contains all the functions u ∈ Hm(𝕊N )which are symmetric with

respect to the action ⊛̂i of the compact group Gτi
N ,i. Moreover, for every i ∈ JN we also

introduce

Ei = H
m
GN ,i(𝕊N) = {u ∈ Hm(𝕊N) : g ⊛i u = u for all g ∈ GN ,i},

where the action ⊛i : GN ,i × Hm(𝕊N ) → Hm(𝕊N ) of the compact group GN ,i on Hm(𝕊N ),
(g, u) 󳨃→ g⊛iu, is defined pointwise for a. e. σ ∈ 𝕊N by

(g⊛iu)(σ) = u(g
−1σ). (6.3)

Note that every u ∈ Ei \ {0} has no constant sign. Indeed, u(σ) = −u(τ−1i σ) for every
σ ∈ 𝕊N , since u is Gτi

N ,i-invariant by (6.3). The conclusion then follows immediately
from the fact that u is not zero.

For the sake of clarity, let us recall Lemma 3.2 of [35] in the formwe shall use later.

Proposition 6.1.2. Let G be a closed topological subgroup of the orthogonal group
O(N + 1) and let ⋅ : G×Hm(𝕊N )→ Hm(𝕊N ) be the natural action of the topological group
G on the Hilbert Sobolev space Hm(𝕊N ). Set

Hm
G (𝕊

N) = {u ∈ Hm(𝕊N) : gu = u for all g ∈ G}.
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Let

NG = min
σ∈𝕊N

dim(Gσ)

be the minimal dimension of the orbits in 𝕊N , where the orbit Gσ of an element σ ∈ 𝕊N is
given by

Gσ = {gσ : for all g ∈ G},

and gσ is the natural multiplicative action. Then the Sobolev embedding

Hm
G (𝕊

N) 󳨅→ Lq(𝕊N)

is compact for every q ∈ [1, qG), where

qG = {
m(N−NG)
N−NG−2m

if N > 2m + NG,

∞ if N ≤ 2m + NG.

If N > 2m + NG, then the space Hm
G (𝕊

N ) is continuously embedded in LqG (𝕊N ).

If G is a connected algebraic group, which acts on a variety Y (not necessarily
affine), then for each y ∈ Y the orbit Gy is an irreducible variety, that is, Gy is open
in its closure. Moreover, its boundary, 𝜕Gy = Gy \ Gy, is the union of orbits of strictly
smaller dimension. Finally, in this case orbits of minimal dimension are closed.

By Proposition 6.1.1, arguing as in the proof of Theorem 3.1 of [144], the next result
holds.

Proposition 6.1.3. Let N > 2m, with m ≥ 1. Then the following statements hold for any
fixed i ∈ JN :
(i) the Hilbert Sobolev space Ei = Hm

GN ,i (𝕊N ) is compactly embedded into Lq(𝕊N ), when-
ever q ∈ [1, q⋆i ), where

q⋆i = {
2(N−1)
N−2m−1 , if N > 2m + 1,
∞, if N = 2m + 1;

(ii) Ei ∩ Ej = {constant functions on 𝕊N } for every j ∈ JN , with j ̸= i;
(iii) Ei ∩ Ej = {0} for every j ∈ JN , with j ̸= i.

Proof. Part (i). A careful analysis of the definition of GN ,i shows that the GN ,i-orbit of
every point σ ∈ 𝕊N has at least dimension 1, i. e., dim(GN ,iσ) ≥ 1 for every σ ∈ 𝕊N , and

NGN ,i = min
σ∈𝕊N

dim(GN ,iσ) ≥ 1.
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Hence, by Proposition 6.1.2, the space Ei is compactly embedded into Lq(𝕊N ) for every
q ∈ [1, q⋆i ). Since N > 2m, one has

q⋆i > 2
∗
m =

2N
N − 2m

and Ei ⊂ Ei, so that the embedding

Ei 󳨅→󳨅→ L2
∗
m(𝕊N)

is compact for every i ∈ JN .
Part (ii). Fix j ∈ JN , with j ̸= i, and u ∈ Ei∩Ej. Since u is bothGN ,i- andGN ,j-invariant,

then u is also GN
i,j-invariant, i. e., u(gσ) = u(σ) for every g ∈ G

N
i,j and σ ∈ 𝕊

N . According
to Proposition 6.1.1, the groupGN

i,j acts transitively on the sphere 𝕊
N , i. e.,GN

i,jσ = 𝕊
N for

each σ ∈ 𝕊N . Thus, u is a constant function.
Part (iii). Fix j ∈ JN , with j ̸= i, and u ∈ Ei ∩ Ej. The second relation of (6.2) shows

thatu(σ) = −u(τ−1i σ) = −u(τ−1j σ) for everyσ ∈ 𝕊N . But, Part (ii) shows thatu is constant.
Thus, umust be identically zero in 𝕊N .

Finally, following [151], we construct explicit functions belonging to Ei that will
be useful in the sequel. To this aim, we say that a set D ⊂ 𝕊N is Gτi

N ,i-invariant if gD ⊆ D
for every g ∈ Gτi

N ,i.

Proposition 6.1.4. Let N > 2m and m ≥ 1. Let i ∈ JN be fixed. Then there exist a number
Ci > 0 and a Gτi

N ,i-invariant set Di ⊂ 𝕊
N , with Volh(Di) > 0, and a function v ∈ Ei such

that
(i) ‖v‖∞ ≤ 1;
(ii) |∇hv|h ≤ Ci a. e. in 𝕊N ;
(iii) |v| = 1 in Di.

An explicit function v : 𝕊N → ℝ fulfilling all the requirements of Proposition 6.1.4
is given by

v(σ) = 8
R − r

sgn(|σ1| − |σ3|)max{0,m(σ1, σ3)}, with

m(σ1, σ3) = min{R − r
8
,
R − r
4
−M(σ1, σ3)},

M(σ1, σ3) = max{||σ1| + |σ3
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−
R + 3r
4

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
, |||σ1| − |σ3|

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−
R + 3r
4

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
},

where R > r, and σ = (σ1, σ2, σ3) ∈ 𝕊N , with σ1, σ3 ∈ ℝi+1, σ2 ∈ ℝN−2i−1, whenever
i ̸= (N − 1)/2, and σ = (σ1, σ3) ∈ 𝕊N , with σ1, σ3 ∈ ℝ(N+1)/2, whenever i = (N − 1)/2. The
Gτi
N ,i-invariant set Di ⊂ 𝕊

N can be defined as

Di = {σ ∈ 𝕊
N : M(σ1, σ3) ≤

R − r
8
}.
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The above construction can be found in [144]. See also [151, Chapter 10] for additional
remarks.

6.2 Geometrically distinct sequences of solutions

In this section we first consider the polyharmonic problem on the sphere

{
Dmv = |u|2

∗
m−2u in 𝕊N ,

u ∈ Hm(𝕊N ), N > 2m,
(6.4)

whereDm is the polyharmonic operator given by

Dm =
m
∏
k=1
(−Δh +

1
4
(N − 2k)(N + 2k − 2)idL2(𝕊N )),

and Δh denotes the usual Laplace–Beltrami operator on 𝕊N .
We present here for simplicity a meaningful consequence of Theorem 1.1 in [185].

Theorem 6.2.1. Let m and N be two positive integers, with N > 2m ≥ 4. Set

sN = [N/2] + (−1)
N+1 − 1.

Then, the critical polyharmonic equation (6.4) admits at least sN sequences of infinitely
many finite energy nodal solutions, which are unbounded in Hm(𝕊N ) and mutually sym-
metrically distinct.

Figure 6.1: Number sN of sequences of solutions (5 ≤ N ≤ 28).

Figure 6.1 above shows the behavior of the number sN of sequences of solutions when
the dimension N is small. We study (6.4) from the point of view of the O(N + 1) sym-
metry theory, as in [35, 144, 174]. This approach presents new and challenging fea-
tures in the higher order case. For instance, A. Maalaoui and V. Martino in [165] and A.
Maalaoui, V. Martino, and G. Tralli in [166], motivated again by the original paper of
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W. Y. Ding, establish the existence of sign-changing solutions for the Yamabe problem
on the Heisenberg groupℍN = ℂN × ℝ.

Finally, for the sake of completeness, we cite the paper [145], in which A. Kristály
proves a more general multiplicity existence theorem of sign-changing solutions for
the fractional Yamabe problem on the Heisenberg group ℍN via a nonlocal version
of a compactness result due to W. Y. Ding, E. Hebey, and M. Vaugon on the Cauchy–
Riemann unit sphere 𝕊2N+1 and an algebraic-theoretical approach on suitable sub-
groups of the unitary group U(N + 1).

For the sake of clarity, we present a consequence of Theorem 6.2.1, when m = 2,
that is, when the biharmonic operator in equation (6.4) reduces to the celebrated
Paneitz operator, introduced by S. Paneitz himself in [203] for smooth Riemannian
manifolds. For further details in this context, we refer to [127], as well as to the mono-
graph [115] and to the references therein.Moreprecisely, in the casem = 2, the operator
D2 has the form

Δ2h − α Δh + a idL2(𝕊N ),

where α = (N2 − 2N − 4)/2 and a = N(N2 − 4)(N − 4)/16. Thus, α > 0 and a > 0 for all
N > 4.

Corollary 6.2.2. Let N > 4. Then, the critical Paneitz equation

Δ2hu − α Δhu + a u = |u|
8/(N−4)u in 𝕊N ,

admits at least sN sequences of infinitely many finite energy nodal weak solutions u(i)k ∈
H2(𝕊N ), i = 1, . . . , sN , which are unbounded in H2(𝕊N ) and mutually symmetrically dis-
tinct.

More precisely, for each i the unbounded sequence (u(i)k )k lies in the subspace
H2
Gτi
N ,i (𝕊N ) of the Gτi

N ,i-invariant functions of H
2(𝕊N ), with respect to the action

⊛̂i : G
τi
N ,i × H

2(𝕊N)→ H2(𝕊N), (g, v) 󳨃→ g⊛̂iu,

defined pointwise by

(g⊛̂iu)(σ) = {
u(g−1σ), if g ∈ GN ,i,

−u(g−1τ−1i σ), if g = τig̃ ∈ G
τi
N ,i \ GN ,i, g̃ ∈ GN ,i,

where Gτi
N ,i is the compact group of O(N + 1) generated by the compact subgroup

GN ,i =
{
{
{

O(i + 1) × O(N − 2i − 1) × O(i + 1), if i ̸= N−1
2 ,

O(i + 1) × O(i + 1), if i = N−1
2 ,

of O(N + 1) and by an involution τi : 𝕊N → 𝕊N , with the properties that

τi ∉ GN ,i, τiGN ,iτ
−1
i = GN ,i and τ2i = id𝕊N
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for every i = 1, . . . , sN . The mutual symmetry difference comes from the fact that
H2
Gτi
N ,i (𝕊N ) ∩ H2

G
τj
N ,j (𝕊N ) = {0} for all i, j ∈ JN , with i ̸= j.

The Hilbertian structure of Hm(𝕊N ) is given by the scalar product

⟨u, v⟩Hm(𝕊N ) =
{
{
{

∫𝕊N (Δ
k
huΔ

k
hv + uv)dσh, ifm = 2k,

∫𝕊N (∇hΔ
k
hu ⋅ ∇hΔ

k
hv + uv)dσh, ifm = 2k + 1,

(6.5)

for every u, v ∈ Hm(𝕊N ).We denote by ‖⋅‖Hm(𝕊N ) the norm induced by the scalar product
in (6.5).

In order to handle the variational formulation of problem (6.4), we introduce a
different Hilbertian norm ‖ ⋅ ‖∗ on the Sobolev space Hm(𝕊N ), which is equivalent to
the norm ‖ ⋅ ‖Hm(𝕊N ). This equivalence will be more readable if we express (6.5) in a
convenient form given in terms of the Fourier coefficients of the functions u and v. To
this aim, let L2(𝕊N ) be the standard Lebesgue space of square summable functions on
𝕊N endowed by the natural inner product

⟨u, v⟩L2(𝕊N ) = ∫
𝕊N

u vdσh for every u, v ∈ L2(𝕊N).

Clearly, L2(𝕊N ) can be decomposed as a direct sum of the orthogonal eigenspaces con-
nected with the eigenfunctions of −Δh on H1(𝕊N ), that is,

L2(𝕊N) =
∞

⨁
ℓ=0

Kℓ, (6.6)

where for every ℓ ∈ ℕ0 = ℕ ∪ {0} the ℓth eigenspace Kℓ = Ker(−Δh − λℓidL2(𝕊N )) is
generated by the ℓth degree orthonormal (real valued) spherical harmonics Y j

ℓ, with
j = 1, . . . , cℓ and

cℓ = (
ℓ + N
N
) − (
ℓ + N − 2

N
).

More precisely, the ℓth graded component of L2(𝕊N ) is generated by harmonic poly-
nomial maps P : ℝN+1 → ℝ restricted to 𝕊N that are homogeneous of degree ℓ. More-
over, the representation of the orthogonal group O(N + 1) on the linear space Kℓ is
irreducible, in the sense of the representation theory, see Chapter IV of the celebrated
monograph [235] due to E. M. Stein and G. Weiss.

By (6.6), every function u ∈ L2(𝕊N ) admits a unique Fourier decomposition

u =
∞

∑
ℓ=0

cℓ
∑
j=1

û(ℓ, j)Y j
ℓ, (6.7)
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where û(ℓ, j) denotes the Fourier coefficient of u given by

û(ℓ, j) = ⟨u,Y j
ℓ⟩L2(𝕊N )

for every ℓ ∈ ℕ0 and j = 1, . . . , cℓ. In other words, (6.7) has the expected expression

u =
∞

∑
ℓ=0

cℓ
∑
j=1
⟨u,Y j
ℓ⟩L2(𝕊N )Y

j
ℓ

for every u ∈ L2(𝕊N ). Accordingly to (6.7), we can rewrite the inner product given
in (6.5) as

⟨u, v⟩Hm(𝕊N ) =
∞

∑
ℓ=0
(bmℓ + 1)

cℓ
∑
j=1

û(ℓ, j)v̂(ℓ, j) for every u, v ∈ Hm(𝕊N), (6.8)

where bℓ = ℓ(ℓ + N − 1) denotes the ℓth eigenvalue of −Δh in H1(𝕊N ), that is,

− ΔhY
j
ℓ = bℓY

j
ℓ in 𝕊N (6.9)

for all j = 1, . . . , cℓ. Moreover, as it is well known, by (6.8) the inner product onHm(𝕊N ),
defined for every u, v ∈ Hm(𝕊N ) by

⟨u, v⟩∗ =
∞

∑
ℓ=0

γℓ(N ,m)
cℓ
∑
j=1

û(ℓ, j)v̂(ℓ, j), γℓ(N ,m) =
Γ(N2 +m + ℓ)
Γ(N2 −m + ℓ)

, (6.10)

induces the norm

‖u‖∗ = (
∞

∑
ℓ=0

γℓ(N ,m)
cℓ
∑
j=1

󵄨󵄨󵄨󵄨û(ℓ, j)
󵄨󵄨󵄨󵄨
2
)

1/2

for every u ∈ Hm(𝕊N),

which is equivalent to ‖ ⋅ ‖Hm(𝕊N ).
Now, we claim that

DmY j
ℓ = γℓ(N ,m)Y

j
ℓ (6.11)

for every ℓ ∈ ℕ0 and j = 1, . . . , cℓ. Fix ℓ ∈ ℕ0 and j = 1, . . . , cℓ. Then, by (6.9) and (6.10),

DmY j
ℓ =

m
∏
k=1
(−Δh +

1
4
(N − 2k)(N + 2k − 2)idL2(𝕊N ))Y

j
ℓ

=
m
∏
k=1
(bℓ +

1
4
(N − 2k)(N + 2k − 2))Y j

ℓ

= γℓ(N ,m)Y
j
ℓ,
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as claimed.
Let us now prove that

⟨u, v⟩∗ = ∫
𝕊N

(Dmu)vdσh (6.12)

for every u, v ∈ Hm(𝕊N ). To see this, fix u, v ∈ Hm(𝕊N ). By (6.7), clearly,

∫

𝕊N

(Dmu)vdσh =
∞

∑
ℓ=0

cℓ
∑
j=1

û(ℓ, j) ∫
𝕊N

(DmY j
ℓ)vdσh.

On the other hand, (6.11) yields

∫

𝕊N

(DmY j
ℓ)vdσh = γℓ(N ,m) ∫

𝕊N

Y j
ℓvdσh.

Thus

∫

𝕊N

(Dmu)vdσh =
∞

∑
ℓ=0

γℓ(N ,m)
cℓ
∑
j=1

û(ℓ, j) ∫
𝕊N

Y j
ℓvdσh. (6.13)

By (6.6), it follows that

∫

𝕊N

Y j
ℓvdσh =

∞

∑
ℓ̃=0

c𝚤
∑
j̃=1

v̂(ℓ̃, j̃) ∫
𝕊N

Y j
ℓY

j̃
ℓ̃
dσh

=
∞

∑
ℓ̃=0

c𝚤
∑
j̃=1

v̂(ℓ̃, j̃)δℓ̃,ℓδ̃j,j = v̂(ℓ, j).
(6.14)

Then, (6.13) and (6.14) give

∫

𝕊N

(Dmu)vdσh =
∞

∑
ℓ=0

γℓ(N ,m)
cℓ
∑
j=1

û(ℓ, j)v̂(ℓ, j),

i. e., (6.12) is verified.
In conclusion, we have shown that problem (6.4) has a variational nature. Conse-

quently, we say that a function u ∈ Hm(𝕊N ) is a solution of (6.4) if

⟨u,φ⟩∗ = ∫
𝕊N

|u|2
∗
m−2uφdσh

for every φ ∈ Hm(𝕊N ).

 EBSCOhost - printed on 2/10/2023 3:36 PM via . All use subject to https://www.ebsco.com/terms-of-use



6.2 Geometrically distinct sequences of solutions | 121

Proof of Theorem 6.2.1. As already noted, (6.4) has a variational nature and its Euler–
Lagrange functional 𝒥 is given by

𝒥 (u) = 1
2
‖u‖2∗ − ∫

𝕊N

|u|2
∗
mdσh, u ∈ Hm(𝕊N). (6.15)

The functional 𝒥 is well defined in Hm(𝕊N ) and is of class C1(Hm(𝕊N )). Moreover, for
each u ∈ Hm(𝕊N ),

⟨𝒥 (u),φ⟩ = ⟨u,φ⟩∗ − ∫
𝕊N

|u|2
∗
m−2uφdσh (6.16)

for every φ ∈ Hm(𝕊N ). Hence, the critical points of 𝒥 in Hm(𝕊N ) are exactly the solu-
tions of (6.4).

Let G be a topological group. We say that u ∈ Hm
G (𝕊

N ) is a solution of (6.4) only in
the Hm

G (𝕊
N ) sense if

⟨𝒥 (u),φ⟩ =⟨u,φ⟩∗ − ∫
𝕊N

|u|2
∗
m−2uφdσh

for anyφ ∈ Hm
G (𝕊

N ). Then, u ∈ Hm
G (𝕊

N ) is a solution of (6.4) in thewhole spaceHm(𝕊N ),
that is, in sense of definition (6.16), if the symmetric criticality Theorem A.1.5 of Palais
holds. For details and comments, we refer to Section 5 of [52].

We emphasize that the invariance of𝒥 , with respect to translations and dilations,
implies that the functional 𝒥 does not satisfy the Palais–Smale condition. However,
as observed in Proposition 3.1 of [35], the symmetric mountain pass theorem in addi-
tion to the principle of symmetric criticality of Palais yield the following critical point
result.

Theorem 6.2.3. Let G be a compact topological group. Let

⬦ : G × Hm(𝕊N)→ Hm(𝕊N), (g, u) 󳨃→ g ⬦ u,

be a linear and isometric action of G on Hm(𝕊N ) and denote by

Hm
G (𝕊

N) = {u ∈ Hm(𝕊N) : g ⬦ u = u for all g ∈ G}

the subspace of Hm(𝕊N ) containing all the symmetric functions with respect to the
group G. Let 𝒥 be the energy functional associated to (6.4) and assume that
(i) 𝒥 is G-invariant;
(ii) the embedding Hm

G (𝕊
N ) 󳨅→ L2

∗
m (𝕊N ) is compact;

(iii) Hm
G (𝕊

N ) has infinite dimension.
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Then, the functional 𝒥 admits a sequence of critical points (uk)k ⊂ Hm
G (𝕊

N ) such that

∫

𝕊N

|uk |
2∗mdσh →∞

as k →∞.

Let 𝒥 be the energy functional associated to (6.4) and given in (6.15). Fix i ∈ JN
and consider the compact group

Gτi
N ,i ⊂ O(N + 1),

given in (6.1), and let ⊛̂i : G
τi
N ,i × H

m(𝕊N ) → Hm(𝕊N ) be the action defined in (6.2).
Thanks to the definition of ⊛̂i, the functional 𝒥 is Gτi

N ,i-invariant, that is,

𝒥 (g⊛̂iu) = 𝒥 (u)

for every (g, u) ∈ Gτi
N ,i × H

m(𝕊N ). Then, the subspace

Ei = {u ∈ H
m(𝕊N) : g⊛̂iu = u for all g ∈ Gτi

N ,i}

of Hm(𝕊N ), which consists of Gτi
N ,i-invariant functions, has infinite dimension.

Since dim(Gτi
N ,iσ) ≥ 1 for every σ ∈ 𝕊

N , one gets q⋆i > 2
∗
m. Thus, Proposition 6.1.2

ensures that the embedding

Ei 󳨅→󳨅→ L2
∗
m(𝕊N)

is compact.
Hence, by Theorem 6.2.3, the functional 𝒥 admits a sequence of critical points

(u(i)k )k in Ei = H
m
Gτi
N ,i (𝕊N ) such that

∫

𝕊N

󵄨󵄨󵄨󵄨u
(i)
k
󵄨󵄨󵄨󵄨
2∗mdσh →∞, as k →∞.

The symmetric criticality Theorem A.1.5 implies that (6.4) admits a sequence (u(i)k )k ⊂
Hm(𝕊N ) of solutions satisfying

󵄩󵄩󵄩󵄩u
(i)
k
󵄩󵄩󵄩󵄩∗ →∞ as k →∞. (6.17)

Consequently, Proposition 6.1.3(ii) gives that (6.4) admits at least

sN = [N/2] + (−1)
N+1 − 1

sequences (u(i)k )k ⊂ H
m(𝕊N ) of solutions satisfying (6.17). The remarks on the structure

of the symmetric Sobolev spaces Ei yield that the solutions u(i)k for every k ∈ ℕ and
i ∈ JN are sign-changing. This completes the proof of Theorem 6.2.1.
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Since the appearance of the celebrated paper of W. Y. Ding [80] on the confor-
mally invariant scalar field equation inℝN , concerning the existence of infinitelymany
conformally inequivalent sign-changing solutions, with finite energy, the method of
pulling back the problem into the unit sphere 𝕊N ofℝN+1 by means of a stereographic
projection (see Figure 6.2) and then into its variational formulation has seen extensive
use in the literature for different problems involving critical nonlinearities in the sense
of Sobolev.

Figure 6.2: The stereographic projection π : 𝕊2 \ {𝒩 }→ ℝ2.

In other words, the case of N > 2 = 2m, that is,m = 1, reduces equation (6.4) into

−Δhu +
N(N − 2)

2
u = |u|4/(N−2)u in 𝕊N .

The search of positive solutions is thewell known Yamabe problem, which arises from
the conformal geometry. For details we refer to Chapter 7 of the monograph [10].

For instance, inspired by [80], T. Bartsch,M. Schneider, andT.Weth in [35] showed
for the critical polyharmonic equation

{{
{{
{

(−Δ)mu = |u|2
∗
m−2u in ℝN , u ∈ 𝒟m,2(ℝN ),

N > 2m, 2∗m =
2N

N − 2m
,

(6.18)

the existence of a sequence of infinitely many finite energy nodal solutions which are
unbounded in the Sobolev space𝒟m,2(ℝN ).

The polyharmonic operator (−Δ)m that appears in (6.18) is the most popular pro-
totype of an elliptic operator of order 2m, formally given by

(−Δ)m = (−1)m ∑
j1+⋅⋅⋅+jN=m

m!
j1!j2! ⋅ ⋅ ⋅ jN !

𝜕2m

𝜕x2j11 ⋅ ⋅ ⋅ 𝜕x
2jN
N

.
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Form ≥ 2, polyharmonic functions have interesting applications in physics. Airy func-
tions, which appear in optics, quantum mechanics, electromagnetics and radiative
transfer, are biharmonic functions.

In this spirit, starting from the pioneering paper [35] and encouraged by a wide
interest in the current literature on polyharmonic problems, in [185] the existence of
at least a finite number of sequences of infinitely many finite energy nodal solutions
which are unbounded in the Beppo Levi space𝒟m,2(ℝN ) has been proved. Finally, we
recall that every nontrivial nonnegative solution u ∈ 𝒟m,2(ℝN ) of (6.18) is positive in
ℝN and has the form

uε,ξ (x) = ε
− N−2m2 U((x − ξ )/ε), where U(x) = P

N−2m
4m

m,N (1 + |x|
2)
− N−2m2 ,

ε > 0, ξ ∈ ℝN and Pm,N = ∏
m
k=−m(N + 2k).

See the quoted paper [35] for additional remarks and comments. For historical
details and a wide list of recent contributions on semilinear problems involving the
biharmonic or polyharmonic operator as the principal part, we refer to the modern
excellent monograph [115] and the references therein.

More recently, in [174] the author describes a group-theoretical scheme, which
arises in previous papers on O(N + 1)-invariant variational problems, as a method to
show the existence of several geometrically different sequences of solutions, distin-
guished by their symmetry properties. The special topological compact groups Gi ⊂
O(N + 1), i = 1, . . . , κN , constructed in [174] via an abstract approach, can be applied
to Hm(𝕊N ) in order to find a finite family {Hm

Gi
(𝕊N )}κNi=1 of subspaces H

m
Gi
(𝕊N ) ⊂ Hm(𝕊N )

such thatHm
Gi
(𝕊N )∩Hm

Gj
(𝕊N ) = {0} and (O(N+1)u)∩Hm

Gi
(𝕊N ) = 0 for every u ∈ Hm

Gj
(𝕊N )\{0}

and i ̸= j. The theoretical procedure of [174], the Palais symmetry Theorem A.1.5, and
Proposition 6.1.3 ensure that equation (6.18) admits at least κN geometrically differ-
ent sequences of solutions distinguished by their symmetry properties. This result is
summarized in Theorem 4.8 of [174] in a more general form, in which W. Marzantow-
icz studies the intrinsic linking between orthogonal Borel subgroups in O(N + 1) with
partial and orthogonal flags inℝN+1. The key tool is the use of the number of the unre-
stricted partitions of the Euclidean dimensionN +1. A consequence of theMarzantow-
icz approach is given in Theorem 1.1 of [185], to which we refer the interested reader.

Let us nowprove an existence result for special Emden–Fowler problems by using
the reduction to the unit sphere. Let s be a fixed constant, with 1 − N < s < 0, and
suppose f : ℝ → ℝ is a locally Lipschitz continuous function, or more generally,
locally Hölder continuous, andw is a smooth and positive function on the unit sphere
𝕊N . Consider the parameterized Emden–Fowler equation

− Δu = λ|x|s−2w(x/|x|)f (|x|−su), x ∈ ℝN+1 \ {0}. (6.19)

Existence results for (6.19) has been established recently in [42, 150, 151], via vari-
ational methods. Using the key transformation as M. F. Bidaut–Véron and L. Véron
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in [39], we shall reduce (6.19) to

− Δhv + αv = λw(σ)f (v), σ ∈ 𝕊N , α = s(1 − s − N) > 0. (6.20)

Equations as in (6.20) have been largely studied, and we refer to the pioneering pa-
pers [68] of A. Cotsiolis and D. Iliopoulos and [244] by J. L. Vázquez and L. Véron.
Moreover, (6.20) perfectly fits the scope of the chapter.

For the main results of (6.19), let us introduce

Λ+(𝕊
N) = {w ∈ L∞(𝕊N) : ess inf

𝕊N
w > 0}

and on the Hilbert Sobolev space H1(𝕊N ) the norm

‖v‖ = (∫
𝕊N

|∇hv|
2dσh + α ∫

𝕊N

|v|2dσh)
1/2
,

which is equivalent to ‖ ⋅ ‖H1(𝕊N ) given in (6.5).

Theorem 6.2.4. Let N ≥ 3 and let s ∈ ℝ, with 1 − N < s < 0. Let w ∈ Λ+(𝕊N ) and
f : ℝ → ℝ be a locally Lipschitz continuous function, with f (0) ≥ 0, and such that for
some q ∈ (1, 2∗), 2∗ = 2N/(N − 2),

sup
t∈ℝ

|f (t)|
1 + |t|q−1

<∞.

Assume that
(i1) There are two real sequences (ξk)k and (ζk)k , with 0 ≤ ξk < ζk , and such that

F(ξk) = sup
t∈[ξk ,ζk]

F(t), lim
k→∞

ξk =∞,

(i2) F∞ = lim supt→∞
F(t)
t2 ∈ ℝ

+ ∪ {∞}.
Then, for every

λ > λ∗, λ∗ =
{
{
{

αVolh(𝕊N )
2F∞‖w‖L1(𝕊N ) if F∞ ∈ ℝ+,

0 if F∞ =∞,

equation (6.19) admits a sequence (uk)k of nonnegative classical solutions such that the
function | ⋅ |−suk ∈ H1(𝕊N ) for every k ∈ ℕ and

lim
k→∞
∫

𝕊N

(󵄨󵄨󵄨󵄨∇h(|x|
−suk)
󵄨󵄨󵄨󵄨
2
+ 󵄨󵄨󵄨󵄨|x|
−suk
󵄨󵄨󵄨󵄨
2
)dσh =∞.
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Proof. The solutions of (6.19) are being sought in the particular form

u(x) = rsv(σ), (6.21)

where (r, σ) = (|x|, x/|x|) ∈ ℝ+×𝕊N are the spherical coordinates in the spaceℝN+1 \{0}
and v is a smooth function defined on 𝕊N . This type of transformation comes from [39],
where the asymptotics of a special formof (6.19) has been studied. Thanks to (6.21) and
taking into account that

Δu = r−N 𝜕
𝜕r
(rN 𝜕
𝜕r
(rsv)) + rs−2Δhv

= (−α + Δhv)r
s−2, α = s(1 − s − N) > 0,

equation (6.19) reduces to (6.20). Set for every σ ∈ 𝕊N ,

f(σ, t) = {
w(σ)f (t) if t ≥ 0,
w(σ)f (0) if t < 0,

and consider the equation

− Δhv + αv = λf(σ, v), σ ∈ 𝕊N , v ∈ H1(𝕊N). (6.22)

Put for every v ∈ H1(𝕊N ),

Φ(v) = 1
2
‖v‖2 and Ψ(v) = ∫

𝕊N

(

v(σ)

∫
0

f(σ, t)dt)dσh.

Standard arguments ensure that the solutions of (6.22) are the critical points of the
energy functional

Jλ(v) =
1
λ
Φ(v) −Ψ(v) for all v ∈ H1(𝕊N).

Owing to the compact embedding ofH1(𝕊N ) into the Lebesgue spaces L℘(𝕊N ), with ℘ ∈
[1, 2∗), the functional Jλ is well defined and sequentially weakly lower semicontinuous
and continuously Gâteaux differentiable in H1(𝕊N ). For every k ∈ ℕ define

𝔼k = {v ∈ H
1(𝕊N) : 0 ≤ v ≤ ζk a. e. in 𝕊

N}.

Following the arguments used in [181, Theorem 3.1] it is possible to prove that there
exists vk ∈ 𝔼k such that Jλ(vk) = infv∈𝔼k Jλ(v) = mk for every k ∈ ℕ.

Now, let us prove that lim infk→∞mk = −∞. Assume first that F∞ < ∞ in (i2).
Since

λ > λ∗ =
αVolh(𝕊N )

2F∞‖w‖L1(𝕊N )
,
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clearly,

1
2λ
<
F∞‖w‖L1(𝕊N )
αVolh(𝕊N )

.

Let L ∈ ℝ+ be such that

1
2λ
< L <

F∞‖w‖L1(𝕊N )
αVolh(𝕊N )

.

Then, there exists a sequence (ηk)k ⊂ ℝ+ such that

lim
k→∞

ηk =∞ and F(ηk)
η2k
>
αVolh(𝕊N )
‖w‖L1(𝕊N )

(6.23)

for every k ∈ ℕ by (i2). The sequence (ηk)k with the property (6.23), clearly, exists also
in the case F∞ =∞ and λ∗ = 0 as a direct consequence of (i2).

Let us choose a subsequence (ζkj )j of (ζk)k such that ηj < ζkj for every j ∈ ℕ. Thus,
the function vj = ηj in 𝕊N belongs to 𝔼kj . This implies that for every j ∈ ℕ,

Jλ(vj) =
1
λ
Φ(vj) − F(vj)

≤
η2j
2λ
αVolh(𝕊

N) − ∫

𝕊N

w(σ)(
vj(σ)

∫
0

f (t)dt)dσh

<
η2j
2
αVolh(𝕊

N)(
1
2λ
− L) < 0.

Thus, limj→∞ Jλ(vj) = −∞. Moreover, since

mkj = inf
v∈𝔼kj

Jλ(v) ≤ Jλ(vj),

the previous inequality implies that limj→∞mkj = −∞.
Let us prove that the sequence of local minima (vkj )j must be unbounded in

H1(𝕊N ). Otherwise, there would be a subsequence, still denoted by (vkj )j, weakly
convergent to some function v∞ ∈ H1(𝕊N ). Then,

Jλ(v∞) ≤ lim inf
j→∞

Jλ(vkj ) = −∞,

which is the desired contradiction. The assertion is proved.
Finally, the solutions of (6.22) are classical since the nonlinear term f is a locally

Lipschitz continuous function.
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Put

ak =
2k!(k + 2)! − 1
4(k + 1)!

and bk =
2k!(k + 2)! + 1
4(k + 1)!

,

for every k ≥ 1. Moreover, let f : ℝ→ ℝ be the function defined by

f (t) =
{{
{{
{

((k + 1)!2 − k!2) gk(t)
∫
bk
ak

gk(τ)dτ
if t ∈ ⋃k≥1[ak , bk],

0 otherwise,

where gk : [ak , bk]→ ℝ is given by

gk(t) = √
1

16(k + 1)!
− (t − k!(k + 2)

2
)
2
, t ∈ [ak , bk]

for every k ∈ ℕ; see Figure 6.3.

Figure 6.3: The sequence (gk)k .

More precisely, (gk)k is a sequence of semicircles with decreasing radii and supported
on the intervals [ak , bk] for every k ∈ ℕ.

As noted in [41, Example 4.1], a direct computation ensures that

lim sup
t→0+ F(t)

t2
= F∞ = 4.

Moreover,

F(bk) = sup
t∈[bk ,ak+1] F(t) for every k ∈ ℕ.

Then, Theorem 6.2.4 asserts that

−Δu = λ|x|s−2w(x/|x|)f (|x|−su), x ∈ ℝN+1 \ {0},

admits for every λ > αVolh(𝕊N )
8‖w‖L1(𝕊N ) a sequence (uk)k of nonnegative classical solutions such

that | ⋅ |−suk ∈ H1(𝕊N ) for every k ∈ ℕ and

lim
k→∞
∫

𝕊N

(󵄨󵄨󵄨󵄨∇h(|x|
−suk)
󵄨󵄨󵄨󵄨
2
+ 󵄨󵄨󵄨󵄨|x|
−suk
󵄨󵄨󵄨󵄨
2
)dσh =∞.
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We end the section proving the existence of infinitely many arbitrarily small solutions
of problem (6.19). In this case, global growth conditions on the nonlinear term f are
not required any longer, but the potentialF is supposed to have anoscillating behavior
near the origin expressed by condition (j2) below. The statement of the result is as
follows.

Theorem 6.2.5. Let N ≥ 3 and let s ∈ ℝ with 1 − N < s < 0. Let w ∈ Λ+(𝕊N ) and let
f : ℝ→ ℝ be a locally Lipschitz continuous function, with f (0) = 0. Assume that
(j1) There are two real sequences (ξk)k and (ζk)k , with 0 ≤ ξk < ζk for every k ∈ ℕ and

such that

F(ξk) = sup
t∈[ξk ,ζk]

F(t), lim
k→∞

ζk = 0;

(j2) F0 = lim supt→0+ F(t)
t2 ∈ ℝ

+ ∪ {∞}.
Then, for every

λ > λ∗, λ∗ =
{
{
{

αVolh(𝕊N )
2F0‖w‖L1(𝕊N ) if F0 ∈ ℝ+,

0 if F0 =∞,

equation (6.19) admits a sequence (uk)k of nonnegative classical solutions such that the
function | ⋅ |−suk ∈ H1(𝕊N ) ∩ L∞(𝕊N ) for every k ∈ ℕ and

lim
k→∞
󵄩󵄩󵄩󵄩| ⋅ |
−suk
󵄩󵄩󵄩󵄩∞ = lim

k→∞
∫

𝕊N

(󵄨󵄨󵄨󵄨∇(|x|
−suk)
󵄨󵄨󵄨󵄨
2
+ 󵄨󵄨󵄨󵄨|x|
−suk
󵄨󵄨󵄨󵄨
2
)dσh = 0. (6.24)

Proof. Since the term f is continuous, fixing t0 > 0, there exists κ > 0 such that

󵄨󵄨󵄨󵄨w(σ)f (t)
󵄨󵄨󵄨󵄨 ≤ κ for all (σ, t) ∈ 𝕊N × [0, t0].

Without loss of generality, we suppose that ζk ≤ t0 for every k ∈ ℕ.
Fix λ > λ∗ and define f : ℝ→ ℝ by

f(t) =
{{
{{
{

f (t0) if t > t0,
f (t) if 0 ≤ t ≤ t0,
0 if t < 0.

Whence, for a. e. σ ∈ 𝕊N and t ∈ ℝ, it turns out that

󵄨󵄨󵄨󵄨w(σ)f(t)
󵄨󵄨󵄨󵄨 ≤ κ. (6.25)

Now, consider the equation

− Δhv + αv = λw(σ)f(v), σ ∈ 𝕊N , v ∈ H1(𝕊N), (6.26)
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and set

Jλ(v) =
1
λ
Φ(v) −Ψ(v) for all v ∈ H1(𝕊N),

where

Φ(v) = 1
2
‖v‖2 and Ψ(v) = ∫

𝕊N

w(σ)(
v(σ)

∫
0

f(t)dt)dσh,

for every v ∈ H1(𝕊N ). Clearly, the solutions of (6.26) are the critical points of the func-
tional Jλ. Owing to (6.25) and the compact embedding of H1(𝕊N ) into L℘(𝕊N ), with
℘ ∈ [1, 2∗), the functional Jλ is well defined and sequentially weakly lower semicon-
tinuous and continuously Gâteaux differentiable in H1(𝕊N ). Moreover, taking into ac-
count (6.25) and (j1), by using direct minimization arguments, Jλ admits a local mini-
mum vk that belongs to the set

𝔼k = {v ∈ H
1(𝕊N) : 0 ≤ v ≤ ζk a. e. in 𝕊

N}

for every k ∈ ℕ.More precisely, every vk assumes its values in the interval [0, ξk] except
for a null measure subset of 𝕊N . In fact, fix k ∈ ℕ, define the function ϱk : ℝ→ ℝ by

ϱk(t) =
{{
{{
{

ξk if t > ξk ,
t if 0 ≤ t ≤ ξk ,
0 if t < 0,

and consider the superposition operator Tk : H1(𝕊N ) → H1(𝕊N ) such that v 󳨃→ Tkv,
where

Tkv(σ) = ϱk(v(σ)) a. e. in 𝕊N

for every v ∈ H1(𝕊N ); see Figure 6.4.

Figure 6.4: The graph Gr(ϱk) of the function ϱk .
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Moreover, Tkv ∈ H1(𝕊N ) for every v ∈ H1(𝕊N ). Indeed, since ϱk is Lipshitz continuous,
with ϱk(0) = 0, one gets Tkv ∈ H1(𝕊N ) for every v ∈ H1(𝕊N ). More precisely, Tkv ∈ 𝔼k
for every k ∈ ℕ. Now, set vk = Tkvk and let

Xk = {σ ∈ 𝕊
N : vk(σ) ̸∈ [0, ξk]}.

If the Riemann measure Volh(Xk) = 0 our conclusion is achieved. Otherwise, suppose
that Volh(Xk) > 0. Then, ξk < vk(σ) ≤ ζk, as well as

vk(σ) = Tkvk(σ) = ξk

for a. e. σ ∈ Xk . Now, (j1) gives

vk(σ)

∫
0

f(t)dt ≤ sup
t∈[ξk ,ζk]

t

∫
0

f(ξ )dξ =
ξk

∫
0

f(t)dt =
vk(σ)

∫
0

f(t)dt

for a. e. σ ∈ Xk . Moreover,

‖vk‖
2 − ‖vk‖

2 = α ∫
𝕊N

(|vk |
2 − |vk |

2)dσg + ∫
𝕊N

(|∇hvk |
2 − |∇hvk |

2)dσg

= α ∫
Xk

(ξ 2k − v
2
k)dσg − ∫

Xk

|∇hvk |
2dσg

≤ −α ∫
Xk

|vk − ξk |
2dσg − ∫

Xk

|∇hvk − ∇hvk |
2dσg

= −α ∫
𝕊N

| vk − vk |
2dσg − ∫

𝕊N

|∇hvk − ∇hvk |
2dσg

= −‖vk − vk‖
2.

The above inequalities ensure that

Jλ(vk) − Jλ(vk) =
1
2λ
(‖vk‖

2 − ‖vk‖
2) − ∫

𝕊N

w(σ)(
vk

∫
vk

f(t)dt)dσg

≤ −
1
2λ
‖vk − vk‖

2 − ∫
Xk

w(σ)(
vk

∫
vk

f(t)dt)dσg

≤ −
1
2λ
‖vk − vk‖

2.

Since vk ∈ 𝔼k, it follows that Jλ(vk) ≥ Jλ(vk). Then

‖vk − vk‖
2 = 0 for all k,
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that is,

‖vk − vk‖
2 = ∫

Xk

󵄨󵄨󵄨󵄨∇( vk − vk)
󵄨󵄨󵄨󵄨
2dσg + ∫

Xk

α| vk − vk |
2dσg = 0.

Since Volh(Xk) > 0, one gets vk = vk a. e. in 𝕊N . Hence vk ∈ [0, ξk] a. e. in 𝕊N , as
claimed. Now, following the arguments used in [181, Theorem 3.2], the function vk is a
local minimum point of functional Jλ in the Sobolev space H1(𝕊N ) for every k ∈ ℕ. Set
mk = infv∈𝔼k Jλ(v) = Jλ(vk). By (6.25), we get for every v ∈ 𝔼k,

Jλ(v) =
1
λ
Φ(v) −Ψ(v) ≥ − ∫

𝕊N

w(σ)(
v(σ)

∫
0

f(t)dt)dσh ≥ −κVolh(𝕊
N)ζk .

Then, since −κVolh(𝕊N )ζk ≤ mk ≤ 0, it follows that

lim
k→∞

mk = lim
k→∞

inf
v∈𝔼k

Jλ(v) = 0.

Moreover,

1
λ
Φ(vk) = Ψ(vk) + Jλ(vk) ≤ ∫

𝕊N

w(σ)(
vk(σ)

∫
0

f(t)dt)dσh +mk

≤ κVolh(𝕊
N)ζk +mk .

Hence, the last inequality yields

lim
k→∞
‖vk‖ = 0. (6.27)

To obtain the conclusion, it is enough to prove that such local minima are pairwise
distinct. Assume first that F0 <∞ in (j2). Since λ > λ∗, we get

F0 >
αVolh(𝕊N )
2λ‖w‖L1(𝕊N )

.

Hence, there exists a sequence (ηk)k ⊂ ℝ+ such that

lim
k→∞

ηk = 0 and F(ηk)
η2k
>

αVolh(𝕊N )
2λ‖w‖L1(𝕊N )

(6.28)

for every k ∈ ℕ. The sequence (ηk)k with the property (6.28) exists also in the easier
case F0 = ∞ and λ∗ = 0 as a direct consequence of (j2). Let k0 ∈ ℕ be so large that
ηk0 < ζk . Thus, the constant function ηk0 belongs to H

1(𝕊N ) and this implies that

Jλ(vk) ≤ Jλ(ηk0 ) for every k ∈ ℕ.
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Moreover,

F(ηk0 )
η2k0
>

αVolh(𝕊N )
2λ‖w‖L1(𝕊N )

.

Consequently, Jλ(vk) < 0 for every k ∈ ℕ. Then, the sequence (vk)k has a subsequence,
still denoted by (vk)k, of pairwise distinct elements that solve (6.26). On the other
hand, ‖vk‖∞ ≤ t0 for every k ∈ ℕ. Thus, (vk)k is a sequence of solutions of (6.26) and,
thanks to (6.21), as in the proof of Theorem 6.2.4, also solutions of (6.19). The proof is
complete on account of (6.21) and (6.27).

We observe that a similar variational approach with respect to that used here in
order to prove Theorems 6.2.4 and 6.2.5 has been used in [17], where the existence of
infinitely many solutions for elliptic Neumann problems on bounded domains was
studied.

Put

ak =
1
k!k

and bk =
1
k!
,

for every k ≥ 2, and let f : ℝ→ ℝ given by

f (t) =
{{{{
{{{{
{

4(b2k − b
2
k+1)

t−bk+1
(ak−bk+1)2 if bk+1 ≤ t ≤

ak+bk+1
2 ,

4(b2k − b
2
k+1)

ak−t
(ak−bk+1)2 if ak+bk+1

2 < t ≤ ak ,

0 otherwise.

An easy description of the behavior of f is given below; see Figure 6.5. More precisely,
the graph of the function f is given by a sequence of triangles with decreasing height
and supported on the intervals [bk+1, ak], for every k ≥ 2.

Figure 6.5: The structure of the function f .

As noted in [86, Example 2.4], a direct computation ensures that

lim inf
t→0+ F(t)

t2
= 1 and lim sup

t→0+ F(t)
t2
= F0 =∞.
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Moreover,

F(ak+1) = sup
t∈[ak+1 ,bk+1] F(t) for every k ≥ 2.

Then, Theorem 6.2.5 asserts that

−Δu = λ|x|s−2w(x/|x|)f (|x|−su), x ∈ ℝN+1 \ {0},

admits for every λ > 0 a sequence (uk)k of nonnegative classical solutions such that
| ⋅ |−suk ∈ H1(𝕊N ) ∩ L∞(𝕊N ) for every k ∈ ℕ and (6.24) holds.

6.3 Stationary Kirchhoff critical equations on the sphere

Motivated by a wide interest in Kirchhoff equations on manifolds, in this section we
apply Theorem 6.1.2 and Proposition 6.1.3 to get multiple symmetric solutions for sta-
tionary Kirchhoff critical problems on the unit sphere 𝕊N .

Existence of a smooth positive solution of nonlinear critical problems on the unit
sphere are related to the celebrated Yamabe andNirenberg problems; see [252], aswell
as [197]. Celebrated results for nonlinear critical problems on the unit sphere, as those
obtained by T. Aubin in [20], A. Cotsiolis and D. Iliopoulos in [68], E. Hebey in [122],
J. L. Kazdan and F.W.Warner in [136], J. L. Vázquez and L. Véron in [244], are contained
in the remarkable survey [157] due to J. M. Lee and T. H. Parker.

To prove the main theorem of the section, we recall two abstract results. The first
is settled on Banach spaces. Let X be a real Banach space.We indicate by𝒲X the class
of all functionals I : X → ℝ with the property that if uk ⇀ u in X and

lim inf
k→∞

I(uk) ≤ I(u),

then uk → u up to a subsequence.With the above notation, the following result holds.

Theorem 6.3.1. Let X be a separable reflexive real Banach space. Assume that Q, P :
X → ℝ are two sequentially weakly lower semicontinuous functionals and that Q ∈𝒲X ,
with

lim
‖u‖→∞
(Q(u) + P(u)) =∞.

Then, any strict local minimum of the functional Q+P in the strong topology is such also
in the weak topology of X.

For a simple detailed proof, we refer to [226, Theorem C]. The second tool is given
in the framework of topological spaces. More precisely, the next existence result is
proved in [225, Theorem 4], in which Σζ = (−∞, ζ ) for any real number ζ .
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Theorem 6.3.2. Let X = (X, τX) be a Hausdorff topological space and let Q, P :
X → ℝ be two sequentially lower semicontinuous functionals. Assume that there is
ζ > infu∈X Q(u) such that the set Q−1(Σζ ) is compact and first countable. Finally, if
u0 ∈ X is a strict local minimum of Q such that

inf
u∈X

Q(u) < Q(u0) < ζ ,

then there exists δ > 0 such that for each ϑ ∈ [0, δ] the functional Q + ϑP admits at
least two τQ-local minima lying in Q−1(Σζ ), where τQ is the smallest topology on X which
contains the topology τX and the family of sets {Q−1(Σξ )}ξ∈ℝ.

Put Z = {f ∈ C(ℝ) : f is odd and supt∈ℝ
|f (t)|
1+|t|q−1 <∞ for some q ∈ (2, 2∗)}. Let S be

the positive constant given by

S = inf
u∈H1(𝕊N )

u ̸=0

‖u‖2H1(𝕊N )

‖u‖22∗ .
From here on, with abuse of notation, but for simplicity, we denote ‖ ⋅ ‖H1(𝕊N ) by ‖ ⋅ ‖.
The main result involves the key number

sN = [N/2] + (−1)
N+1 − 1

introduced in Theorem 6.2.1.

Theorem 6.3.3. Let N > 4 and let w, w ∈ L∞(𝕊N ) be two radially symmetric weights,
with ess inf𝕊N w > 0. Let a, b be two positive real numbers, with

a
N−4
2 b > 2(N − 4)

N−4
2

(N − 2)
N−2
2 S

N
2

. (6.29)

Suppose that f ∈ Z satisfies
(k1) limt→0+ F(t)

t2 ≤ 0;
(k2) F(t0) > 0 for some t0 > 0.
Then, there exists λ∗ > 0 such that for each compact interval [α, β] ⊂ (λ∗,∞) there is
r > 0 with the property that for every λ ∈ [α, β] and for every f ∈ Z there is ϑ∗ > 0 such
that the Kirchhoff critical equation

(a + b‖u‖2)(−Δhu + u) = |u|
2∗−2u + λw(σ)f (u) + ϑw(σ)f(u) in 𝕊N (6.30)

has at least 3sN solutions whose norms are strictly less that r for every ϑ ∈ [0, ϑ∗].

Proof. Let us fix i ∈ JN and consider the energy functional Ψ : H1
Gτi
N ,i (𝕊N )→ ℝ given by

Ψ(u) = ∫
𝕊N

w(σ)F(u)dσh.
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By Proposition 6.1.3, the Sobolev space H1
GN ,i (𝕊N ) is compactly embedded into L℘(𝕊N ),

whenever ℘ ∈ [1, q∗i ), q
∗
i = (2N − 2)/(N − 3). Of course, 2

∗ < q∗i , so that from Ei =
H1
Gτi
N ,i (𝕊N ) ⊂ Ei = H1

GN ,i (𝕊N ) 󳨅→ L2
∗
(𝕊N ) it follows that the embedding Ei 󳨅→ L2

∗
(𝕊N )

is compact. Clearly, the above compactness property ensures the sequentially weak
continuity of the smooth functional Ψ. Set

Φ(u) = a
2
‖u‖2 + b

4
‖u‖4 − 1

2∗
‖u‖2

∗
2∗ for every u ∈ Ei = H

1
Gτi
N ,i(𝕊N).

Let us consider the real function φ : ℝ+0 → ℝ defined by

φ(t) = a
2
+
b
4
t2 − S

− 2
∗
2

2∗
t2
∗−2 for every t ∈ ℝ+0 ,

see Figure 6.6. The minimum of φ is attained atmφ > 0, where

mφ = (
2∗b

2(2∗ − 2)
S

2∗
2 )

1
2∗−4
,

and 2∗ < 4 since N > 4. By (6.29), it follows that

φ(mφ) =
1
2
(a − 2

4
N−4 b− 2

N−4 N − 4
N

N−2
N−4 S N

N−4 ) > 0.
Thus φ is positive in ℝ+0 and

Φ(u) ≥ φ(mφ)‖u‖
2 for every u ∈ H1

Gτi
N ,i(𝕊N). (6.31)

Since f ∈ Z , by (k1) it follows that

lim sup
u→0

Ψ(u)
Φ(u)
≤ 0. (6.32)

Figure 6.6: The graph of the function φ.
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To prove (6.32), fix ε > 0. Then, since F is odd, (k1) yields the existence of a δε > 0 such
that

F(t) ≤ ε
‖w‖∞

t2 for every t, with |t| ≤ δε. (6.33)

Let us divide the argument in two cases.
Since q ∈ (2, 2∗), one gets that t 󳨃→ f (t)

|t|q−1 is bounded for every t ∈ ℝ with |t| > δε.
Therefore, there ismε > 0 such that

F(t) ≤ ε
‖w‖∞

t2 + mε
q
|t|q for every t ∈ ℝ. (6.34)

Thus, for u ∈ H1
Gτi
N ,i (𝕊N ),

Ψ(u) ≤ ∫
𝕊N

w(σ)[ ε
‖w‖∞

u2 + mε
q
|u|q]dσh

≤ ∫

𝕊N

[εu2 + mε
q
w(σ)|u|q]dσh (6.35)

≤ ε‖u‖2 +mεc
q
i,q‖w‖∞‖u‖

q,

where ci,q > 0 is the best embedding constant in Ei = H1
Gτi
N ,i (𝕊N ) 󳨅→ Lq(𝕊N ), thanks to

Proposition 6.1.3. Thus, (6.31) implies that for every u ∈ Ei \ {0}, Ei = H1
Gτi
N ,i (𝕊N ),

Ψ(u)
Φ(u)
≤
ε‖u‖2 +mεc

q
i,q‖w‖∞‖u‖

q

Φ(u)
≤ φ(mφ)

−1(ε +mεc
q
i,q‖w‖∞‖u‖

q−2).

Consequently, since q > 2,

lim sup
u→0

Ψ(u)
Φ(u)
≤

ε
φ(mφ)
.

Since ε > 0 is arbitrary, the above relation immediately gives (6.32).
By (6.32), the energy functional 𝒥i,λ : H1

Gτi
N ,i (𝕊N )→ ℝ, defined by

𝒥i,λ(u) = Φ(u) − λΨ(u) for every u ∈ H1
Gτi
N ,i(𝕊N),

has a strong local minimum at zero for every λ > 0. Moreover, the function 𝒥i,λ is
bounded frombelowand coercive onH1

Gτi
N ,i (𝕊N ) sinceN > 4. Indeed, by (6.35), it follows

that

𝒥i,λ(u) ≥ (
a
2
− ε)‖u‖2 + b

4
‖u‖4 − 1

2∗
‖u‖2

∗
2∗ −mεc

q
i,q‖w‖∞‖u‖

q

 EBSCOhost - printed on 2/10/2023 3:36 PM via . All use subject to https://www.ebsco.com/terms-of-use



138 | 6 Elliptic equations on the sphere

for everyu ∈ H1
Gτi
N ,i (𝕊N ). Hence, since q ∈ (2, 2∗) andN > 4, the above inequality ensures

that

lim
‖u‖→∞

𝒥i,λ(u) =∞,

as claimed.
Now, we claim that the global minimum of 𝒥i,λ inH1

Gτi
N ,i (𝕊N ) is nonzero. Indeed, by

(k1) there is a strict decreasing sequence (tk)k ⊂ (0, 1) such that

lim
k→∞

F(tk)
t2k
= F0 ≤ 0 and lim

k→∞
tk = 0.

Moreover, F(tk) = F(−tk) for every k ∈ ℕ, since f ∈ Z . Let Di ⊂ 𝕊
N be Gτi

N ,i-invariant
and let Ci > 0 be as in the statement of Proposition 6.1.4. Fix

ℓ > −F0max{1, Volh(Di)
Volh(𝕊N )

} ∈ ℝ+0 . (6.36)

Since F is even, then (k1) implies that there exists ϱ > 0 such that

F(t) ≥ −ℓt2 for every t ∈ (−ϱ, ϱ). (6.37)

Let vk = tkv ∈ HGτi
N ,i (𝕊N ) be the function from Proposition 6.1.4 corresponding to the

value tk > 0. Then

𝒥i,λ(vk) ≤ κit
2
k − λ∫

Di

F(vk)dσh − λ ∫
𝕊N \Di

F(vk)dσh,

with

κi =
1
2
(C2i + 1)Volh(𝕊

N)(a + b
2
(C2i + 1)Volh(𝕊

N)),

where the constant Ci is given in Proposition 6.1.4(ii). Moreover, Proposition 6.1.4(iii)
yields

∫
Di

F(vk)dσh = F(tk)Volh(Di).

On the other hand, due to relation (6.37) and Proposition 6.1.4(i), we have

∫

𝕊N \Di

F(vk)dσh ≥ −ℓ ∫
𝕊N \Di

v2k(σ)dσh > −ℓVolh(𝕊
N)t2k .
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Hence

𝒥i,λ(vk) ≤ t
2
k[κi − λ(

F(tk)
t2k

Volh(Di) + ℓVolh(𝕊
N))].

By (6.36) and taking λ > λ∗i , where

λ∗i =
κi

F0Volh(Di) + ℓVolh(𝕊N )
,

there exists k̄ such that

𝒥i,λ(vk̄) ≤ t
2
k̄[κi − λ(

F(tk̄)
t2
k̄

Volh(Di) + ℓVolh(𝕊
N))] < 0.

Consequently,

inf
u∈H1

G
τi
N ,i (𝕊N )𝒥i,λ(u) ≤ 𝒥i,λ(vk̄) < 0,

which proves the claim.
On account of Theorem 6.3.1, the trivial function v0 = 0 turns out to be a local

minimizer of 𝒥i,λ in the weak topology of H1
Gτi
N ,i (𝕊N ).

Now, let us fix [α, β] ⊂ (λ∗i ,∞) and ζ > 0. Since 𝒥i,λ is coercive on H1
Gτi
N ,i (𝕊N ), it

follows that the weak closure of the sublevel 𝒥 −1i,λ (Σζ ), namely 𝒥 −1i,λ (Σζ )
w
, is compact

and metrizable with respect to the weak topology. Moreover, let η > 0 be such that

⋃
λ∈[α,β]

𝒥 −1i,λ (Σζ ) ⊆ Bη,

where

Bi,η = {u ∈ H
1
Gτi
N ,i(𝕊N) : ‖u‖ < η}.

Let r > η be such that

⋃
λ∈[α,β]

𝒥 −1i,λ ((−∞, c
⋆ + 2]) ⊆ Br , (6.38)

where c⋆ = supu∈Bη Ψ(u) + β supu∈Bη |Ψ(u)|.
Now, let the functional ϒ : H1

Gτi
N ,i (𝕊N )→ ℝ be defined by

ϒ(u) = ∫
𝕊N

w(σ) F(u)dσh, where F(t) =
t

∫
0

f(s)ds.
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Since f ∈ Z , it follows that ϒ ∈ C1(H1
Gτi
N ,i (𝕊N )). Furthermore, the derivative ϒ󸀠 of ϒ

is a compact operator since the Sobolev space HGτi
N ,i (𝕊N ) is compactly embedded into

L℘(𝕊N ) for every ℘ ∈ [1, 2∗] by Proposition 6.1.3. Let ϕ ∈ C1(ℝ) be a bounded function
such that

ϕ(t) = t for every t ∈ [− sup
u∈Br

󵄨󵄨󵄨󵄨ϒ(u)
󵄨󵄨󵄨󵄨, sup
u∈Br

󵄨󵄨󵄨󵄨ϒ(u)
󵄨󵄨󵄨󵄨].

Define ϒ̃ = ϕ ∘ ϒ. Clearly, ϒ̃ is a C1 functional with compact derivative and such that
ϒ̃ = ϒ in Br .

Denote by τ𝒥i,λ the smallest topology on HGτi
N ,i (𝕊N ) containing the weak topology

and the family {𝒥 −1i,λ (Σξ )}ξ∈ℝ.
An application of Theorem 6.3.2 to the functionals Q = 𝒥i,λ, P = −ϒ̃, and X =

HGτi
N ,i (𝕊N ), endowed with the weak topology, gives the existence of some δi > 0 such

that for every ϑ ∈ [0, δi] the functional 𝒥i,λ − ϑϒ̃ has two local minimizers u1, u2 ∈
HGτi

N ,i (𝕊N ) in the τ𝒥i,λ topology, with
u1, u2 ∈ 𝒥

−1
i,λ (Σζ ) ⊆ Bη ⊂ Br .

Since the topology τ𝒥i,λ is weaker than the strong topology, the functions u1, u2 are
local minimizers of 𝒥i,λ − ϑϒ̃.

Let us denote by ϑ∗i = min{δi,
1

supt∈ℝ ϕ(t) }. Due to the compactness of embedding of
HGτi

N ,i (𝕊N ) into L℘(𝕊N ) for every ℘ ∈ [1, 2∗], it is easily seen that the functional 𝒥i,λ − ϑϒ̃
verifies the (PS) condition thanks to the compactness arguments given in [89]; see also
[257, Example 38.25] for classical results.

The Pucci and Serrin Theorem 1 in [212] ensures that the functional𝒥i,λ−ϑϒ̃ admits
a critical point u3 ∈ HGτi

N ,i (𝕊N ) such that
(𝒥i,λ − ϑϒ̃)(u3) = infγ∈Γ

sup
t∈[0,1]
(𝒥i,λ − ϑϒ̃)(γ(t)),

where Γ = {γ ∈ C([0, 1],HGτi
N ,i (𝕊N )) : γ(0) = u1 and γ(1) = u2}. Now, if γ̃(t) = tu1+(1−t)u2,

with t ∈ [0, 1], then γ̃ ∈ Γ and

γ̃(t) ∈ Bη for every t ∈ [0, 1].

Thus, it follows that

(𝒥i,λ − ϑϒ̃)(u3) ≤ sup
t∈[0,1]
(𝒥i,λ − ϑϒ̃)(γ̃(t)) ≤ c

∗ + ϑ∗ sup
t∈ℝ

ϕ(t) ≤ c∗ + 1.

Since

(𝒥i,λ − ϑϒ̃)(u3) ≤ c
∗ + 1 + ϑ∗ sup

t∈ℝ
ϕ(t) ≤ c∗ + 2,
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by (6.38), we have u3 ∈ Br . Hence ϒ̃(ui) = ϒ(ui), with i ∈ {1, 2, 3}.
Consequently, the functions u1, u2, u3 ∈ HGτi

N ,i (𝕊N ) are critical points of the func-
tional 𝒥i,λ − ϑϒ in HGτi

N ,i (𝕊N ).
Since f and g are odd functions, the energy functional ℐλ,

ℐλ(u) = Φ(u) − λ ∫
𝕊N

w(σ)F(u)dσh − ϑ ∫
𝕊N

w(σ)F(u)dσh,

Φ(u) = a
2
‖u‖2 + b

4
‖u‖4 − 1

2∗
‖u‖2

∗
2∗ for every u ∈ H1(𝕊N),

is even. Thus, for every i ∈ JN the functional ℐλ isG
τi
N ,i-invariant, sinceG

τi
N ,i acts isomet-

rically on H1(𝕊N ), by virtue of (6.2).
Moreover, thanks to the symmetry assumptions on f , f, w, and w, it is easily seen

that the functional Nλ,ϑ : H1(𝕊N )→ ℝ, given by

Nλ,ϑ(u) = λ ∫
𝕊N

w(σ)F(u)dσh + ϑ ∫
𝕊N

w(σ)F(u)dσh,

is Gτi
N ,i-invariant.
Hence, the symmetric criticality Theorem A.1.5 yields that the critical points

of 𝒥i,λ − ϑϒ are also critical points for the functional ℐλ, and so solutions of equa-
tion (6.30).

Thus, for every i ∈ JN the functional𝒥i,λ−ϑϒadmits at least three distinct solutions
(u(i)k )

3
k=1 in Ei = HGτi

N ,i (𝕊N ), provided that λ > λ∗i .
Now, it remains to count the number of distinct solutions of the above type. More

precisely, on the basis of Proposition 6.1.3, there are at least sN subspaces HGτi
N ,i (𝕊N ) ⊂

H1(𝕊N ) whose mutual intersections contain only the zero function. Put

λ∗ = max{λ∗i : i ∈ JN} and ϑ∗ = min{ϑ∗i : i ∈ JN}.

Each HGτi
N ,i (𝕊N ) ⊂ H1(𝕊N ) contains three distinct pairs of nonzero solutions of (6.30),

whenever

λ > λ∗ and ϑ < ϑ∗.

This concludes the proof.

A meaningful consequence of Theorem 6.3.3 is the next multiplicity result.

Corollary 6.3.4. Let N > 4 and let a, b ∈ ℝ+ satisfy (6.29). Furthermore, let q ∈ (2, 2∗).
Then, for every λ > 0 the stationary Kirchhoff critical equation

(a + b‖u‖2)(−Δhu + u) = λ|u|
q−2u + |u|2

∗−2u in 𝕊N

has at least 3sN solutions.
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In Corollary 6.3.4 the threshold λ∗ in Theorem 6.3.3 is zero. Clearly, in this case
F(u) = |u|q/q with q ∈ (2, 2∗). Consequently, F0 = limt→0+ F(t)

t2 = 0. Fix λ0 > 0 and take

ℓ >
max{κi : i ∈ JN }
λ0Volh(𝕊N )

.

Put

λ∗i =
κi

ℓVolh(𝕊N )
for every i ∈ JN .

Thus, (6.36) holds and the conclusion is achieved.

Comments on Chapter 6
The method introduced in [172] allowedW. Marzantowicz to obtain also nice informa-
tion on the number of the solutions of critical problems on the sphere via suitable
algebraic methods mainly based on the classification of the Borel subgroups of the
orthogonal group. Now, very little it is known about the existence, multiplicity and
blow-up of nodal solutions for the supercritical problem on the Euclidean sphere. For
instance, some new symmetry results for positive solutions of elliptic problems in the
whole space ℝN+1 and on the sphere 𝕊N have been studied in [51]. The proofs of the
results contained in [51] are proved through the stereographic projection and they are
essentially based on the moving plane method and rearrangement techniques. The
methods in [172] and the above theoretical results seem to be useful to obtain the ex-
istence of an infinite number of nodal solutions of elliptic equations involving criti-
cal exponents; see, among others, the paper [95] and the references therein. Further-
more, Ding-type results and the Hebey–Vaugon compactness properties can be used
in the study of equations similar to (6.18) in a fractional Heisenberg setting. We re-
fer to [27] and to Chapter 9 for related equations in the Heisenberg group. Moreover,
in the framework of complete Riemannian manifolds, some reduction methods also
apply and have been combinedwith the Lyapunov–Schmidt arguments in order to ob-
tain sequences of positive and sign-changing solutions of supercritical equations; see,
among others, the paper [94]. The above remarks motivate the idea that the methods
developed in this chapter can be successfully applied to different classes of problems
having Riemannian and subelliptic structures.
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7 Subelliptic problems on Carnot groups
Bacio che sopporti il peso
della mia anima breve
in te il mondo del mio discorso
diventa suono e paura.

Alda Merini
Bacio

The chapter deals with the existence of solutions for a wide class of eigenvalue subel-
liptic critical problems in possibly unbounded domains Ω of a Carnot group𝔾 via the
symmetric criticality principle of Palais, togetherwith variational arguments based on
certain recent compactness results due to Z. Balogh and A. Kristály in [27]. In this way,
we do not have to require any longer the strong asymptotical contractiveness condi-
tion on the domain Ω, which is a persisting assumption in the current literature.

More precisely, we study semilinear equations, when either the Ambrosetti–
Rabinowitz geometrical condition is satisfied or the nonlinear terms are monotone so
that the trick due to P. Rabier can be used. In the first case, the main variational tools
are the mountain pass theorem of A. Ambrosetti and P. Rabinowitz, the principle of
symmetric criticality of Palais, and a suitable flower-shape geometry on the horizontal
Sobolev space associated to the domain Ω of𝔾. In the latter case, following [219], the
existence of bounded Palais–Smale sequences for the energy functional associated
to the equation is obtained via a generalization of the quite classical approach due to
M. Struwe and L. Jeanjean, combined with a rescaling argument.

At the end of each section of the chapter, we present applications of the main
results on the meaningful subcase in which the Kohn–Laplace subelliptic problems
are settled onunboundeddomains of theHeisenberg groupℍN . Indeed, in this special
framework, the geometrical group arguments are particularly expressive.

7.1 Basic theory on stratified Lie groups

In this section we briefly recall some basic facts on Carnot groups and the functional
Folland–Stein space HW 1,2

0 (Ω). A Carnot group𝔾 = (𝔾, ∘) is a connected, simply con-
nected, nilpotent Lie group, whose Lie algebraG admits a stratification, i. e.,

G =
r
⨁
k=1

Gk ,

where the integer r is called the step of 𝔾, while Gk is the linear subspace of finite
dimension dk ofG for every k ∈ {1, . . . , r}, and

[G1,Gk] = Gk+1 for all k, with 1 ≤ k < r − 1, and [G1,Gr] = {O}.

https://doi.org/10.1515/9783110652017-007
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In this context the symbol [G1,Gk] denotes the subalgebra ofG generated by the com-
mutators [X,Y], where X ∈ G1 and Y ∈ Gk, and where the last bracket denotes the Lie
bracket of vector fields, that is, [X,Y] = XY − YX.

The left translation by σ1 ∈ 𝔾 on 𝔾 is given by ℓσ1 (σ) = σ1 ∘ σ for every σ ∈ 𝔾. Let
Γ(T𝔾) be the space of global sections of the tangent bundle T𝔾 on 𝔾. A vector field
X ∈ Γ(T𝔾) is left invariant if

X(φ ∘ ℓσ) = (Xφ) ∘ ℓσ

for any σ ∈ 𝔾 and φ ∈ C∞(𝔾).
Moreover, the Lie algebraG associated to𝔾 consists of left invariant vector fields

X onG andG is canonically isomorphic to the tangent space Te𝔾. Let

d =
r
∑
k=1

dk

be the topological dimension of the Carnot group𝔾.
The exponential map exp𝔾 : G → 𝔾 is given by exp𝔾(X) = γX(1), where γX is the

unique integral curve associated to the left invariant vector fieldX such that γX(0) = e,
where e is the neutral element of𝔾. In other words, the curve γX is the unique solution
of the Cauchy problem

γ̇X(t) = X(γX(t)), γX(0) = e.

The curve γX is defined for any t ∈ ℝ, since from the identity γX(t + s) = γX(s) γX(t) for
all s, t ∈ ℝ, it is clear that γX can be extended in the entire ℝ.

Since𝔾 is nilpotent, connected, and simply connected Lie group, the exponential
map exp𝔾 is a smooth diffeomorphism fromG onto𝔾.

Let ⟨⋅, ⋅⟩0 be a fixed inner product on the first graduated componentG1 ofG, with
associated orthonormal basis ℬ = {X1,X2, . . . ,Xd1 }. From now on, we consider the ex-
tension of the inner product ⟨⋅, ⋅⟩0 to the whole tangent bundle T𝔾 by group transla-
tion. The corresponding norm is denoted by ‖ ⋅ ‖0. A left invariant vector field X ∈ G is
said to be horizontal if

X(σ) ∈ span{X1(σ), . . . ,Xd1 (σ)}

for every σ ∈ 𝔾. Indeed, G1 is considered to be the horizontal direction, while the
remaining layersG2, . . . ,Gr are viewed as the vertical directions. In particular, the last
layer Gr is the center of the Lie algebra, and the horizontal direction G1 generates in
the sense of Lie algebras the wholeG. More precisely,

Gk = [G1, [G1, [G1, . . . [G1,G1] ⋅ ⋅ ⋅]]]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
k times

for all k = 2, . . . , r.
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Since the map exp𝔾 is bijective, for every element σ ∈ 𝔾 there exists a unique
vector field X = ∑d1k=1 xkXk +∑

d
k=d1+1 xkX

󸀠
k ∈ G such that

σ = exp𝔾(X) = exp𝔾(
d1
∑
k=1

xkXk +
d
∑

k=d1+1
xkX
󸀠
k),

where {Xd1+1, . . . ,Xd} are vertical vector fields that extend ℬ to an orthonormal basis
ℬ∗ ofG.

Now, observe that G ≅ ℝd. Thus, we often identify every element σ ∈ 𝔾 with its
exponential coordinates (x1, . . . , xd1 , xd1+1, . . . , xd) ∈ ℝ

d in connection to the basis ℬ∗

ofG.
More precisely, it is possible to identify the Carnot group (𝔾, ∘)with (ℝd, ⋆), where

the expression of the group operation ⋆ is given by

x ⋆ y = ϱ−1(ϱ(x) ∘ ϱ(y)) for all x, y ∈ ℝd

and is explicitly determined by the Baker–Campbell–Hausdorff formula.
Whenever we are in the presence of a stratification, it is possible to define a one-

parameter group {Δη}η>0 of dilatations of the algebra. More precisely, for a fixed real
number η > 0 and all X ∈ Gk, we set Δη(X) = ηkX and extend the map Δη to the whole
G by linearity.

Furthermore, the family {Δη}η>0 induces a family {δη}η>0 of the group automor-
phisms on𝔾 by the exponential map such that the diagram in Figure 7.1 is commuta-
tive.

Figure 7.1: The automorphism δη.

The homogeneous dimensionQ of𝔾, attached to the automorphisms {δη}η>0, is defined
by

Q =
r
∑
k=1

k dimGk = d1 + 2d2 + ⋅ ⋅ ⋅ + rdr .

In particular, the above definition ofQ and the fact that {δη}η>0 is a family of automor-
phisms on 𝔾 imply that the Jacobian determinant of the dilation δη is constant in σ
and given by ηQ.
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Moreover, let μ denote the push-forward of the d-dimensional Lebesgue measure
λd on G via the exponential map. Then, dμ defines a biinvariant Haar measure on 𝔾
and

dμ(σ ∘ δη) = η
Qdμ(σ).

Since𝔾 can be identifiedwith (ℝd, ⋆) by using the exponential map, if E ⊆ 𝔾 is amea-
surable subset, its Haar measure μ is explicitly given by μ(E) = λd(ρ−1(E)). Therefore,
the same notation will be used for both measures.

Take σ1, σ2 ∈ 𝔾 and let HΓσ1 ,σ2 (𝔾) be the set of piecewise smooth curves γ, such
that γ : [0, 1]→ 𝔾, γ̇(t) ∈ G1 a. e. t ∈ [0, 1], (γ(0), γ(1)) = (σ1, σ2) and

1

∫
0

󵄩󵄩󵄩󵄩γ̇(t)
󵄩󵄩󵄩󵄩0dt <∞.

SinceHΓσ1 ,σ2 (𝔾) ̸= 0 by the celebrated Chow–Rashevskiĭ theorem in [60], it is possible
to define the Carnot–Carathéodory distance on𝔾 as follows:

dCC(σ1, σ2) = inf
γ∈HΓσ1 ,σ2 (𝔾)

1

∫
0

󵄩󵄩󵄩󵄩γ̇(t)
󵄩󵄩󵄩󵄩0dt.

The metric dCC is left invariant on𝔾 and for every η > 0,

dCC(δη(σ1), δη(σ2)) = η dCC(σ1, σ2)

for every σ1, σ2 ∈ 𝔾.
The Euclidean norm | ⋅ | induces two homogeneous pseudonorms | ⋅ |G on G and

| ⋅ |𝔾 on the group 𝔾 via the exponential map. Indeed, for X ∈ G, with X = ∑rk=1 Xk,
where Xk ∈ Gk, define a pseudonorm onG as follows:

|X|G = (
r
∑
k=1
|Xk |

2r!/k)

2r!

.

The induced pseudonorm on𝔾 has the form

|σ|𝔾 =
󵄨󵄨󵄨󵄨exp
−1
𝔾 (σ)
󵄨󵄨󵄨󵄨G for all σ ∈ 𝔾

and is usually knownas thenonisotropic gauge. It defines apseudodistance on𝔾 given
by

d(σ1, σ2) =
󵄨󵄨󵄨󵄨σ
−1
2 ∘ σ1
󵄨󵄨󵄨󵄨𝔾 for all σ1, σ2 ∈ 𝔾,

which is equivalent to the Carnot–Carathéodory distance dCC on𝔾.
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Thus, Carnot groups are endowed with the intrinsic Carnot–Carathéodory geom-
etry. The adjective “intrinsic” is meant to emphasize a privileged role played by the
horizontal layer and by group translations and dilations. It is worth stressing that
the Carnot–Carathéodory geometry is not Riemannian at any scale. In fact, Carnot
groups can be seen as a particular case of more general structures, the so called sub-
Riemannian spaces.

The most basic second-order partial differential operator in a Carnot group 𝔾 is
the sub-Laplacian, or equivalently, the horizontal Laplacian in𝔾, given by

Δ𝔾 =
d1
∑
k=1

X2
k .

We shall denote by D𝔾 = (X1, . . . ,Xd1 ) the related horizontal gradient and set ‖D𝔾u‖0 =
(∑d1k=1(Xku)

2)1/2.
Obviously, Euclidean spaces are commutative Carnot groups, and,more precisely,

the only commutative Carnot groups. The simplest example of a Carnot group of step
two is provided by the Heisenberg groupℍN of topological dimension d = 2N + 1 and
homogeneous dimensionQ = 2N+2, that is, the Lie groupwhose underlyingmanifold
is ℝ2N+1, endowed with the non-Abelian group law

σ1 ∘ σ2 = (z + z
󸀠, t + t󸀠 + 2

N
∑
i=1
(yix
󸀠
i − xiy

󸀠
i ))

for all σ1, σ2 ∈ ℍN , with σ1 = (z, t) = (x1, . . . , xN , y1, . . . , yN , t), σ2 = (z󸀠, t󸀠) =
(x󸀠1, . . . , x

󸀠
N , y
󸀠
1, . . . , y

󸀠
N , t
󸀠). The vector fields, for j = 1, . . . ,N,

Xj =
𝜕
𝜕xj
+ 2yj
𝜕
𝜕t
, Yj =

𝜕
𝜕yj
− 2xj
𝜕
𝜕t
,
𝜕
𝜕t
,

constitute a basisℬ∗ for the real Lie algebraH = G of left invariant vector fields onℍN .
The basis ℬ∗ satisfies the Heisenberg canonical commutation relations for position
and momentum [Xj,Yk] = −4δjk𝜕/𝜕t, all other commutators being zero.

If u ∈ C2(ℍN ), then the horizontal Laplacian inℍN of u, called the Kohn–Spencer
Laplacian, is defined as follows:

ΔℍNu =
N
∑
j=1
(X2

j + Y
2
j )u

=
N
∑
j=1
(
𝜕2

𝜕x2j
+
𝜕2

𝜕y2j
+ 4yj
𝜕2

𝜕xj𝜕t
− 4xj
𝜕2

𝜕yj𝜕t
)u + 4|z|2 𝜕

2u
𝜕t2
,

and ΔℍN is hypoelliptic according to the celebrated Theorem 1.1 due to L. Hörmander
in [131].
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In order to study the variational problems considered in thenext sections,weneed
to introduce suitable solution spaces. To this goal, let Ω be a nonempty open subset
of𝔾. The Folland–Steinhorizontal Sobolev spaceHW 1,2

0 (Ω) is the completion ofC∞0 (Ω)
with respect to the Hilbertian norm

‖u‖ = (∫
Ω

‖D𝔾u‖
2
0dμ + ∫

Ω

|u|2dμ)
1/2
,

⟨u,φ⟩ = ∫
Ω

⟨D𝔾u,D𝔾φ⟩0 dμ + ∫
Ω

uφdμ.
(7.1)

Of course, if Ω = 𝔾, then HW 1,2(𝔾) = HW 1,2
0 (𝔾), where HW

1,2(𝔾) denotes the hori-
zontal Sobolev space of the functions u ∈ L2(𝔾) such that D𝔾u exists in the sense of
distributions, and ‖D𝔾u‖0 is in L2(𝔾) endowed with the Hilbertian norm (7.1).

The embedding

HW 1,2
0 (Ω) 󳨅→ L℘(Ω)

is continuous for any ℘ ∈ [2, 2∗]; see G. B. Folland and E. M. Stein [106]. Furthermore,
by [114, 132, 243] we know that, if Ω is a bounded open set of𝔾, the embedding

HW 1,2
0 (Ω) 󳨅→󳨅→ L℘(Ω)

is compact for all ℘, with 1 ≤ ℘ < 2∗.
Let (𝔾, ∘) be a Carnot group, and (T , ⋅) be a closed topological group, with neutral

element jT . The group T is said to act continuously on 𝔾, if there exists a map ∗ :
T ×𝔾→ 𝔾 such that the following conditions:
(T1) jT ∗ σ = σ for every σ ∈ 𝔾;
(T2) τ1 ∗ (τ2 ∗ σ) = (τ1 ⋅ τ2) ∗ σ for every τ1, τ2 ∈ T and σ ∈ 𝔾,
hold. In addition, the action ∗ is said to be left distributed if
(T3) τ ∗ (σ1 ∘ σ2) = (τ ∗ σ1) ∘ (τ ∗ σ2) for every τ ∈ T and σ1, σ2 ∈ 𝔾
is satisfied. A set Ω ⊆ 𝔾 is T-invariant, with respect to ∗, if T ∗ Ω = Ω.

We assume that T induces an action ♯ : T × HW 1,2
0 (𝔾) → HW 1,2

0 (𝔾), defined for
every (τ, u) ∈ T × HW 1,2

0 (𝔾) by

(τ♯u)(σ) = u(τ−1 ∗ σ) for all σ ∈ 𝔾. (7.2)

The group T acts isometrically on HW 1,2
0 (Ω) if

‖τ♯u‖ = ‖u‖ for all (τ, u) ∈ T × HW 1,2
0 (𝔾).

Let

HW 1,2
0,T (Ω) = {u ∈ HW

1,2
0 (Ω) : τ♯u = u for all τ ∈ T}
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be the T-invariant subspace ofHW 1
0(Ω). Clearly,HW

1,2
0,T (Ω) is closed, since the action ♯

of T on HW 1,2
0 (Ω) is continuous.

Hereafter we shall frequently use on 𝔾 the Carnot–Carathéodory distance dCC :
𝔾 × 𝔾 → ℝ+0 and the natural Haar measure μ on 𝔾. In the next definition “lim inf” is
the Kuratowski lower limit of sets.

Let Ω be a nonempty open T-invariant subset of𝔾, with a nontrivial boundary 𝜕Ω,
and assume that
(H ) For every (σk)k ⊂ 𝔾 such that

lim
k→∞

dCC(e, σk) =∞ and μ(lim inf
k→∞
(σk ∘ Ω)) > 0,

where σk ∘ Ω = {σk ∘ σ : σ ∈ Ω}, then there exist a subsequence (σkj )j of (σk)k and a
sequence of subgroups (Tσkj )j of T, with cardinality card(Tσkj ) =∞, having the property
that for all τ1, τ2 ∈ Tσkj , with τ1 ̸= τ2, it results

lim
j→∞

inf
σ∈𝔾

dCC((τ1 ∗ σkj ) ∘ σ, (τ2 ∗ σkj ) ∘ σ) =∞.

A domain Ω of𝔾, for which condition (H ) holds, is simply called anℋ domain.
The following compactness result is due to Z. Balog and A. Kristály and is given

in [27, Theorem 3.1].

Lemma 7.1.1. Let 𝔾 = (𝔾, ∘) be a Carnot group of step r and homogeneous dimension
Q > 2, with neutral element denoted by e. Let T = (T , ⋅) be a closed infinite topological
group acting continuously and left distributively on𝔾 by themap∗ : T×𝔾→ 𝔾. Assume
furthermore that T acts isometrically on HW 1,2

0 (𝔾), where the action ♯ : T ×HW
1,2
0 (𝔾)→

HW 1,2
0 (𝔾) is defined in (7.2). LetΩ be a nonempty T-invariant open subset of𝔾, satisfying

condition (H ). Then the embedding

HW 1,2
0,T (Ω) 󳨅→󳨅→ L℘(Ω)

is compact for every ℘ ∈ (2, 2∗).

Adirect application of Lemma 7.1.1 gives a compactness result for suitable Sobolev
spaces associated to a class of unbounded domains of the Heisenberg group ℍN =
ℂN × ℝ, N ≥ 1.

More precisely, letψ1,ψ2 : ℝ
+
0 → ℝbe two functions that are boundedonbounded

sets, with ψ1(t) < ψ2(t) for every t ∈ ℝ+0. Define

Ωψ = {σ ∈ ℍ
N : σ = (z, t) with ψ1(|z|) < t < ψ2(|z|)}, (7.3)

where |z| = √∑Ni=1 |zi|2; see Figure 7.2 below.
Let𝕌(N) = U(N) × {1}, where

U(N) = {τ ∈ GL(N ;ℂ) : ⟨τz, τz󸀠⟩ℂN = ⟨z, z
󸀠⟩ℂN for all z, z

󸀠 ∈ ℂN},
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Figure 7.2: A strip-like domain Ωψ.

that is, U(N) is the usual unitary group. Here ⟨⋅, ⋅⟩ℂN denotes the standard Hermitian
product on ℂN , in other words, ⟨z, z󸀠⟩ℂN = ∑

N
k=1 zk ⋅ z󸀠k .

Hence, 𝕌(N) is the unitary group endowed with the natural multiplication law
⋅ : 𝕌(N)×𝕌(N)→ 𝕌(N), which acts continuously and left distributively onℍN by the
map ∗ : 𝕌(N) ×ℍN → ℍN , defined by

τ̂ ∗ σ = (τz, t) for all τ̂ = (τ, 1) ∈ 𝕌(N) and all σ = (z, t) ∈ ℍN ,

thanks to [27, Lemma 3.1]. Taking T = 𝕌(N), we get that Ωψ is𝕌(N)-invariant and an
ℋ domain, as shown in the proof of Theorem 1.1 of [27]. Moreover,

HW 1,2
0,𝕌(N)(Ωψ) = {u ∈ HW

1,2
0 (Ωψ) : u(z, t) = u(|z|, t) for all (z, t) ∈ Ωψ},

that is, HW 1,2
0,𝕌(N)(Ωψ) = HW 1,2

0,cyl(Ωψ) is the space of cylindrically symmetric functions
of HW 1,2

0 (Ωψ).
Finally,𝕌(N)acts isometrically on thehorizontal Folland–Stein spaceHW 1,2

0 (ℍ
N ),

where the action ♯ : 𝕌(N) × HW 1,2
0 (ℍ

N ) → HW 1,2
0 (ℍ

N ) is defined for every (τ̂, u) in
𝕌(N) × HW 1,2

0 (ℍ
N ) by

(τ̂♯u)(σ) = u(τ−1z, t) for all σ = (z, t) ∈ ℍN , (7.4)

in view of [27, Lemma 3.2].
Thus, let T ⊆ 𝕌(N) be the subgroup of the form

T = U(N1) × ⋅ ⋅ ⋅ × U(Nℓ) × {1}, N =
ℓ

∑
k=1

Nk , with Nk ≥ 1 and ℓ ≥ 1,

and consider the Sobolev space

HW 1,2
0,T (Ωψ) = {u ∈ HW

1,2
0 (Ωψ) : u(z, t) = u(|z1|, |z2|, . . . , |zℓ|, t), zk ∈ ℂ

Nk }.

On account of the above results, since Ωψ is a T-invariant open subset of ℍN , Theo-
rem 1.1 in [27] ensures that the next special case of Lemma 7.1.1 holds.
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Lemma 7.1.2. Let N ≥ 1 and let Ωψ be a strip-like domain ofℍN , as given in (7.3). Then
the following embedding:

HW 1,2
0,T (Ωψ) 󳨅→󳨅→ L℘(Ωψ)

is compact for any ℘ ∈ (2, 2∗).

Inspired by Section 4 of [27], we introduce the main definitions and notations
necessary to state the key compactness Proposition 4.1 of [27] and stated here in
Lemma 7.1.3 and Proposition 7.1.4. From here until the end of the section, we assume
that N ≥ 2, unless state differently, and put JN = {1, . . . , [N/2]}.

For every j ∈ JN , consider the subgroup TN ,j ⊂ U(N), defined by

TN ,j = {
U(N/2) × U(N/2), if j = N/2,
U(j) × U(N − 2j) × U(j), if j ̸= N/2,

and the matrix

ωj =

{{{{{{{{{{
{{{{{{{{{{
{

(
0 𝕀ℂN/2
𝕀ℂN/2 0

) , if j = N/2,

(

0 0 𝕀ℂj

0 𝕀ℂN−2j 0
𝕀ℂj 0 0

) , if j ̸= N/2.

By definition, ωj ∈ U(N) \ TN ,j, as well as

ωjTN ,jω
−1
j = TN ,j and ω2

j = idℂN

for every j ∈ JN .
Let T̂ωj

N ,j be the subgroup of𝕌(N) generated by ωj and T̂N ,j = TN ,j × {1}, that is,

T̂ωj
N ,j = ⟨T̂N ,j,ωj⟩ = T̂N ,j ∪ ω̂jT̂N ,j

for every j ∈ JN .
Define the action T̂ωj

N ,j♮HW
1,2
0 (Ωψ)→ HW 1,2

0 (Ωψ) of T̂
ωj
N ,j on HW

1,2
0 (Ωψ) given by

(τ̃♮u)(σ) = {
(τ̂♯u)(σ), if τ̃ = τ̂ ∈ T̂ωj

N ,j,

−((ω̂jτ̂)♯u)(σ), if τ̃ = ω̂jτ̂ ∈ T̂
ωj
N ,j \ T̂N ,j, with τ̂ ∈ T̂N ,j,

(7.5)

for every σ ∈ Ωψ.
The action ♮ is defined on the whole subgroup T̂ωj

N ,j. Indeed, if τ̃ ∈ T̂
ωj
N ,j, then either

τ̃ = τ̂ ∈ T̂ωj
N ,j or τ̃ = ω̂jτ̂ ∈ T̂

ωj
N ,j \ T̂N ,j, with τ̂ ∈ T̂N ,j. Moreover, set

Ej = HW
1,2
0,T̂

ωj
N ,j (Ωψ) = {u ∈ HW

1,2
0 (Ωψ) : τ̃♮u = u for all τ̃ ∈ T̂

ωj
N ,j}
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for every j ∈ JN .
By Lemma 7.1.2, since HW 1,2

0,T̂
ωj
N ,j (Ωψ) ⊂ HW 1,2

0,T̂N ,j (Ωψ), the following compactness re-

sult holds.

Lemma 7.1.3. The embedding

HW 1,2
0,T̂

ωj
N ,j (Ωψ) 󳨅→󳨅→ L℘(Ωψ)

is compact for any ℘ ∈ (2, 2∗) and every j ∈ JN .

The next result provides precise information on the mutually symmetric differ-
ences for the spaces of T̂ωj

N ,j-invariant functions in HW
1,2
0 (Ωψ).

Proposition 7.1.4. The following statements hold true:
(i) Ej ∩ HW 1,2

0,cyl(Ωψ) = {0} for every j ∈ JN ;
(ii) If N ≥ 4, then

Ej ∩ Ek = {0}

for every j, k ∈ JN , with j ̸= k.

The geometrical meaning of Proposition 7.1.4 is clearly expressed in Figure 7.3.

Figure 7.3: The flower-shape geometry given by
Proposition 7.1.4.

From now on in this chapter, unless otherwise specified, we assume that:
ã 𝔾 = (𝔾, ∘) is a Carnot group of step r and homogeneous dimension Q > 2, with

neutral element denoted by e;
ã T = (T , ⋅) is a closed infinite topological group acting continuously and left distribu-

tively on𝔾 by the map ∗ : T ×𝔾→ 𝔾;
ã T = (T , ⋅) acts isometrically on the Hilbert Sobolev space HW 1,2

0 (𝔾) by the action ♯,
where ♯ : T × HW 1,2

0 (𝔾)→ HW 1,2
0 (𝔾) is defined in (7.2).
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7.2 Semilinear problems on unbounded domains of Carnot groups

Weare readynow to study the existence of solutions of the nonlinear eigenvalue subel-
liptic problem

{
−Δ𝔾u + u = λw(σ)f (u) in Ω,
u = 0 on 𝜕Ω,

(7.6)

where Ω is aℋ domain of a Carnot group𝔾with boundary 𝜕Ω. For our purpose, we as-
sume that the right-hand side of equation (7.6) is a function f verifying the conditions:
(f1) f ∈ C(ℝ) and for some q ∈ (2, 2∗Q),

sup
t∈ℝ\{0}

|f (t)|
|t| + |t|q−1

<∞,

where 2∗Q is the critical Sobolev exponent given by 2
∗
Q = 2Q/(Q − 2);

(f2) f (t) = o(|t|) as |t|→ 0;
(f3) There exists ν > 2 such that 0 < νF(t) ≤ tf (t) for any t ∈ ℝ \ {0}, where F(t) =
∫
t
0 f (s)ds.

Moreover, we require
(w) w ∈ L1(Ω) ∩ L∞(Ω) with ess infΩ w > 0;
(CΨ) The functionalΨ : HW 1,2

0 (Ω)→ ℝ given by

Ψ(u) = ∫
Ω

w(σ)F(u)dμ for every u ∈ HW 1,2
0 (Ω)

is T-invariant, that is,Ψ(τ♯u) = Ψ(u) for every (τ, u) ∈ T × HW 1,2
0 (Ω).

The next lemma is based on well-known tools in abstract group measure theory. The
result shows when the key assumption (CΨ) is satisfied, imposing some additional
conditions on the weight w and on the Haar measure on𝔾.

Lemma 7.2.1. Suppose that the action ∗ of the group T on the Carnot group 𝔾 satisfies
conditions (T1)–(T3). Assume furthermore that the natural Haar measure μ, defined on
𝔾, is left ∗ invariant, that is, for all measurable subset E of𝔾 and for all τ ∈ T,

μ(τ ∗ E) = μ(E),

where τ ∗ E = {τ ∗ σ : σ ∈ E}. If f ∈ C(ℝ) is a subcritical function and w ∈ L1(Ω)∩ L∞(Ω)
is T-invariant, that is, w(τ ∗ σ) = w(σ) for every τ ∈ T and σ ∈ 𝔾, then the functional Ψ
satisfies (CΨ).
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Proof. Fix τ ∈ T and u ∈ HW 1,2
0 (Ω). Then, putting τ

−1 ∗ σ = σ̃, we get by (T1)–(T3) that

Ψ(τ♯u) = ∫
Ω

w(σ)F((τ♯u)(σ))dμ(σ) = ∫
Ω

w(σ)F(u(τ−1 ∗ σ))dμ(σ)

= ∫
τ∗Ω

w(τ ∗ σ̃)F(u(σ̃))dμ(τ ∗ σ̃)

= ∫
Ω

w(σ̃)F(u(σ̃))dμ(σ̃) = Ψ(u),

since Ω andw are T-invariant by assumption, and the left ∗ invariance of themeasure
μ implies that

dμ(τ ∗ σ̃) = dμ(σ̃) for all σ̃ ∈ 𝔾,

which is exactly [45, formula (10)]. This shows that Ψ is T-invariant, that is, Ψ satisfies
(CΨ), concluding the proof.

In the first result of this section, we consider the semilinear equation (7.6) when f
satisfies the superlinear condition given in (f3). Themain tools are given by themoun-
tain pass theorem of [12], and the algebraic tools developed in Section 7.1.

Theorem 7.2.2. LetΩ be a nonempty T-invariant open subset of𝔾, satisfying condition
(H ), and let λ be a positive parameter. Assume that (f1)–(f3), (w), and (CΨ) hold. Then,
for any λ > 0 problem (7.6) admits a nontrivial T-invariant solution uλ ∈ HW 1,2

0 (Ω). In
addition, if f is odd, then (7.6) admits a sequence of nontrivial T-invariant solutions for
any λ > 0.

Proof. Problem (7.6) has a clear variational structure. Indeed, its solutions can be
found as critical points of the underlying energy functional defined for all u ∈
HW 1,2

0 (Ω) by

ℐλ(u) =
1
2
‖u‖2 − λ∫

Ω

w(σ)F(u)dμ,

where ‖ ⋅ ‖ is the standard norm on HW 1,2
0 (Ω) introduced in (7.1).

Since the problem is settled on the domain Ω, possibly unbounded, no com-
pact embeddings can be used for the whole Folland–Stein horizontal Sobolev space
HW 1,2

0 (Ω). In order to find a solution of (7.6), we shall work with HW
1,2
0,T (Ω), where T is

defined above, in order to recover compactness. It is clear from Lemma 7.1.1 that the
crucial role is played by 𝒥λ, which is the restriction of ℐλ to the space HW 1,2

0,T (Ω), i. e.,

𝒥λ(u) = ℐλ|HW 1,2
0,T (Ω)(u), u ∈ HW 1,2

0,T (Ω). (7.7)
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First of all, let us show that 𝒥λ possesses the geometric mountain pass structure. By
continuity and conditions (f1) and (f2), it is clear that for any ε > 0 there exists M =
Mε > 0 such that for any t ∈ ℝ,

󵄨󵄨󵄨󵄨f (t)
󵄨󵄨󵄨󵄨 ≤ ε|t| +Mε|t|

q−1

and, consequently,

󵄨󵄨󵄨󵄨F(t)
󵄨󵄨󵄨󵄨 ≤

ε
2
|t|2 + Mε

q
|t|q . (7.8)

Now, let us proceed by steps.

Step 1. There exist ρ > 0 and 𝚥ρ > 0 such that 𝒥λ(u) ≥ 𝚥ρ for any u ∈ HW 1,2
0,T (Ω), with

‖u‖ = ρ.
Let u be a function in HW 1,2

0,T (Ω). On account of (7.8) and the positivity of λ, we
easily get that for any ε > 0,

𝒥λ(u) ≥
1
2
‖u‖2 − ελ

2
‖w‖∞‖u‖

2
2 −

Mελ
q
‖w‖∞‖u‖

q
q

≥
1
2
(1 − ελc22‖α‖∞)‖u‖

2 −
Mελcqq
q
‖w‖∞‖u‖

q

= ‖u‖2[ 1
2
(1 − ελc22‖w‖∞) −

Mελcqq
q
‖w‖∞‖u‖

q−2],

where c℘, with ℘ ∈ {2, q}, is the Sobolev constant of the continuous embedding
HW 1,2

0,T (Ω) 󳨅→ L℘(Ω).
By choosing ε > 0 small enough to have ελc22‖w‖∞ < 1, we get that there exist

suitable positive constants κ̄ and κ̃ such that

inf
u∈HW 1,2

0,T (Ω)
‖u‖=ρ

𝒥λ(u) ≥ ρ
2(κ̄ − κ̃ρq−2) = 𝚥ρ > 0,

provided ρ is sufficiently small.

Step 2. There exists a function u ∈ HW 1,2
0,T (Ω) such that ‖u‖ > ρ and 𝒥λ(u) < 𝚥ρ.

First of all, note that as a consequence of (f1) and (f4), we easily have that there
exist two positive constants a1 and a2 such that

F(t) ≥ a1|t|
ν − a2 for any t ∈ ℝ.

Let u ∈ HW 1,2
0,T (Ω) be such that ‖u‖ = 1 and let s > 0. Moreover, let w0 > 0 be such

that ess infΩ w ≥ w0. Bearing in mind that λ > 0 and w ∈ L1(Ω) ∩ L∞(Ω), the above
superquadratic condition immediately yields

𝒥λ(su) =
s2

2
‖u‖2 − λ∫

Ω

w(σ)F(su) dμ

≤
s2

2
− λa1w0s

ν‖u‖νν + λa2‖w‖1 .
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Since ν > 2, passing to the limit as s→∞, we get that 𝒥λ(su)→ −∞, so that the claim
follows taking u = ̄su, with ̄s sufficiently large.

Thanks to Lemma 7.1.1, arguing as in the proof of Claim 3 in Chapter 5, Section 5.3,
it is possible to show that the functional 𝒥λ satisfies the Palais–Smale condition at
any level c ∈ ℝ. Hence, by Steps 1 and 2, the mountain pass theorem ensures the
existence of a nontrivial solution uλ ∈ HW 1,2

0,T (Ω)which is a critical point for the energy
functional 𝒥λ. Thus, uλ is a constrained critical point of ℐλ on HW 1,2

0,T (Ω). It remains to
prove that HW 1,2

0,T (Ω) is a natural constraint for ℐλ. To achieve this goal, we notice that
T acts isometrically on HW 1,2

0 (𝔾), where the action ♯ : T × HW
1,2
0 (𝔾) → HW 1,2

0 (𝔾)
is defined in (7.2). Thus, thanks to assumption (CΨ), the functional ℐλ is T-invariant,
that is, ℐλ(τ♯u) = ℐλ(u) for every u ∈ HW 1,2

0 (Ω). The principle of symmetric criticality,
Theorem A.1.5, ensures that uλ is a critical point of ℐλ, i. e., uλ ∈ HW 1,2

0 (Ω) is a solution
of problem (7.6).

Finally, in the case of f being odd, as usual when dealing with even functionals,
we apply the classical symmetric version of the mountain pass theorem to the energy
functional 𝒥λ. Similar geometrical arguments as in Steps 1 and 2 and Theorem A.1.5
give that for any λ > 0 problem (7.6) admits a sequence of nontrivial T-invariant solu-
tions in HW 1,2

0 (Ω). The proof is now complete.

Now, we prove that, for small values of the parameter, problem (7.6) admits at
least two solutions requiring that the continuous term f satisfies only (f3) and the new
condition
(f 󸀠1 ) For some q ∈ (2, 2

∗
Q),

Cf = sup
t∈ℝ

|f (t)|
1 + |t|q−1

<∞.

An application of the principle of symmetric criticality and suitable variational meth-
ods give the following result.

Theorem 7.2.3. Let Ω be a nonempty T-invariant open subset of 𝔾, satisfying condi-
tion (H ), and let λ be a positive parameter. Assume that w ∈ L1(Ω) ∩ L∞(Ω) with
ess infΩ w > 0, and let f ∈ C(ℝ) verify assumptions (f 󸀠1 ) and (f3). Finally, suppose that
(CΨ) holds. Then, there exists λ⋆ > 0 such that, for every λ ∈ (0, λ⋆), problem (7.6) admits
at least two solutions in HW 1,2

0,T (Ω).

To prove Theorem 7.2.3, we shall use the next critical point result.

Theorem 7.2.4. Let X be a reflexive real Banach space, and let Φ,Ψ : X → ℝ be two
continuously Gâteaux differentiable functionals such that
– Φ is sequentially weakly lower semicontinuous and coercive in X;
– Ψ is sequentially weakly continuous in X.
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Assume further that for each η > 0 the functional Jη = ηΦ−Ψ satisfies the (PS)c condition
for all c ∈ ℝ. Then, for each ϱ > infX Φ and each

η > inf
u∈Φ−1(Σϱ)

supv∈Φ−1(Σϱ)Ψ(v) −Ψ(u)
ϱ −Φ(u)

,

where Σϱ = (−∞, ϱ), the following alternative holds: either the functional Jη has a strict
global minimum which lies inΦ−1(Σϱ), or Jη has at least two critical points one of which
lies inΦ−1(Σϱ).

The above critical point result comes from a joint application of the classical the-
orem due to P. Pucci and J. Serrin in [212] and of a local minimum result obtained
in [224]; see [222, Theorem 6] for a detailed proof.

Proof of Theorem 7.2.3. Fix λ > 0 and consider the energy functional 𝒥η : HW 1,2
0,T (Ω)→

ℝ defined for every u ∈ HW 1,2
0,T (Ω) by

𝒥η(u) =
1
η
‖u‖2 − ∫

Ω

w(σ)F(u)dμ,

where η = 1/2λ. We shall prove that𝒥η satisfies the assumptions of Theorem 7.2.4, with
X = HW 1,2

0,T (Ω),

Φ(u) = ‖u‖2, Ψ(u) = ∫
Ω

w(σ)F(u)dμ, u ∈ X.

Then, Φ is sequentially weakly lower semicontinuous and coercive, and Ψ is se-
quentially weakly continuous in HW 1,2

0,T (Ω), thanks to the compact embedding in
Lemma 7.1.1. Arguing as in the proof of Step 2 of Theorem 7.2.2, it easily seen that there
exists u ∈ HW 1,2

0,T (Ω) such that 𝒥η(su) → −∞ as s → ∞. Moreover, since (f 󸀠1 ) and (f3)
hold, standard arguments ensure that the functional 𝒥η satisfies the compactness
(PS)c condition for all c ∈ ℝ. In order to conclude the proof, fix ϱ > 0, let

1
λ⋆
= 2Cf(

c2
√ϱ
‖w‖2 +

cqq
q
‖w‖∞ϱ

q/2−1),

and take λ ∈ (0, λ⋆), where c℘, with℘ ∈ {2, q}, is the Sobolev constant of the continuous
embedding HW 1,2

0,T (Ω) 󳨅→ L℘(Ω). We claim that φ(ϱ) < η = 1/2λ, where

φ(ϱ) = inf
u∈Φ−1(Σϱ)

supv∈Φ−1(Σϱ)Ψ(v) −Ψ(u)
ϱ −Φ(u)

and Σϱ = (−∞, ϱ). Clearly, the identically zero function 0 is in Φ−1(Σϱ), and Φ(0) =
Ψ(0) = 0. Consequently,

φ(ϱ) = inf
u∈Φ−1(Σϱ)

(supv∈Φ−1(Σϱ)Ψ(v)) −Ψ(u)
ϱ −Φ(u)

≤
supv∈Φ−1(Σϱ)Ψ(v)

ϱ
= χ(ϱ).
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By using (f 󸀠1 ), it follows that

∫
Ω

w(σ)F(v)dμ ≤ Cf(‖w‖2‖v‖2 +
‖w‖∞
q
‖v‖qq)

≤ Cf(c2‖w‖2‖v‖ +
cqq
q
‖w‖∞‖v‖

q)

for every v ∈ X. We deduce that

sup
v∈Φ−1(Σϱ)∫Ω h(σ)F(v)dμ ≤ Cf(c2‖w‖2√ϱ +

cqq
q
‖w‖∞ϱ

q/2).

This implies that

χ(ϱ) ≤ Cf(
c2
√ϱ
‖w‖2 +

cqq
q
‖w‖∞ϱ

q/2−1) <
1
2λ
= η,

as claimed. Hence, Theorem 7.2.4 ensures the existence of two solutions in HW 1,2
0,T (Ω)

whichare critical points for the energy functional𝒥η. Similar arguments as in theproof
of Theorem 7.2.2 give that for λ ∈ (0, λ⋆), problem (7.6) has at least two solutions in
HW 1,2

0 (Ω).

A careful analysis of the proof of Theorem 7.2.3 shows that the main conclusion
holds true, provided that

λ ∈ (0, q
2Cf

sup
ϱ>0

√ϱ

qc2‖w‖2 + c
q
q‖w‖qϱ

q−1
2

),

see Figure 7.4.
The Rubik-cube technique, developed in [27, Theorem 1.2] and applied to the sub-

groups T̂ωj
N ,j ⊂ 𝕌(N), defined in Section 7.1, allows us to obtain a more precise version

of Theorem 7.2.3 in theHeisenberg setting, thanks to Lemma 7.2.1 and Proposition 7.1.4.

Figure 7.4: The maximal interval (0, λ⋆).
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Corollary 7.2.5. Let Ωψ ⊂ ℍ
N be as in (7.3) and let w ∈ L1(Ωψ) ∩ L∞(Ωψ) be a cylindri-

cally symmetric function with ess infΩ w > 0. Furthermore, let f ∈ C(ℝ) verify (f 󸀠1 ) and
(f3). Let T = U(N1) × ⋅ ⋅ ⋅ × U(Nℓ) × {1}, where N = ∑

ℓ
k=1 Nk , with Nk ≥ 1 and ℓ ≥ 1. Then,

the following properties hold:
(i) There exists λ⋆ > 0 such that for every λ ∈ (0, λ⋆),

{
−ΔℍNu + u = λw(σ)f (u) in Ωψ,

u = 0 on 𝜕Ωψ
(7.9)

has at least two solutions localized in

HW 1,2
0,T (Ωψ) = {u ∈ HW

1,2
0 (Ωψ) : u(z, t) = u(|z1|, |z2|, . . . , |zℓ|, t)},

where zk ∈ ℂNk for all k = 1, . . . , ℓ.
(ii) In addition, if the function f is odd, there exists λ0 > 0 such that for every λ ∈ (0, λ0)

problem (7.6) admits at least 2([N/2]+ 1) solutions in HW 1,2
0 (Ωψ)with mutually sym-

metric different structures.

Proof. (i) This is a direct consequence of Theorem 7.2.3. Indeed, Ωψ is𝕌(N)-invariant
and anℋdomain, as shown in the proof of Theorem 1.1 of [27]. HenceΩψ is a nonempty
T-invariant open subset of ℍN , satisfying condition (H ); see Section 7.1 and Lem-
mas 3.1 and 3.2 in [27] for additional comments and remarks. Moreover, since T acts
isometrically onHW 1,2

0 (Ωψ) by (7.4), condition (CΨ) is easily verified, sincew ∈ L1(Ωψ)∩
L∞(Ωψ) is cylindrically symmetric. Then, Theorem 7.2.3 gives the existence of λ⋆ > 0
such that for every λ ∈ (0, λ⋆) problem (7.9) admits at least two solutions inHW 1,2

0 (Ωψ),
localized in the symmetric space HW 1,2

0,T (Ωψ).

(ii) Part (i), with T = 𝕌(N) = U(N) × {1}, ensures that there exists λ⋆ > 0 such that, for
every λ ∈ (0, λ⋆), problem (7.9) admits at least two solutions inHW 1,2

0 (Ωψ), localized in
the symmetric space HW 1,2

0,cyl(Ωψ), and the proof is complete when N = 1.
Now, let N ≥ 2. Since f is odd, the energy functional ℐη : HW 1,2

0 (Ωψ)→ ℝ given by

ℐη(u) =
1
η
‖u‖2 − ∫

Ωψ

w(σ)F(u)dμ, u ∈ HW 1,2
0 (Ωψ),

is even. Thus, ℐη is T̂
ωj
N ,j-invariant for every j ∈ JN = {1, . . . , [N/2]}, since T̂

ωi
N ,j acts isomet-

rically on HW 1,2
0 (Ωψ) by virtue of (7.5), and w ∈ L1(Ωψ) ∩ L∞(Ωψ) is cylindrically sym-

metric. Hence, the symmetric criticality TheoremA.1.5 yields that the critical points of
the restrictions of ℐη to HW 1,2

0,T̂
ωj
N ,j (Ωψ) are also critical points for the functional ℐη, and

so solutions of (7.9).
Then, arguing as in the proof of Theorem7.2.3, Theorem7.2.4 ensures that for every

j ∈ JN there exists λ(j)⋆ such that the restriction of the functional ℐη to the symmetric
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space Ej admits at least two distinct solutions (u(j)k )
2
k=1 in Ej = HW 1,2

0,T̂
ωj
N ,j (Ωψ), provided

that λ ∈ (0, λ(j)⋆ ).
It remains to count the number of distinct solutions of the above type. More

precisely, on the basis of Proposition 7.1.4, there are at least [N/2] subspaces Ej =
HW 1,2

0,T̂
ωj
N ,j (Ωψ) ⊂ HW 1,2

0 (Ωψ)whose mutual intersections contain only the zero function.

Put

λ0 = min{λ⋆, λ
(j)
⋆ : j ∈ JN}.

For every λ ∈ (0, λ0), problem (7.9) admits at least 2([N/2] + 1) solutions in HW 1,2
0 (Ωψ)

with mutually symmetric different structure. This concludes the proof.

If the functionsψ1 andψ2 are bounded, the domain Ωψ is strongly asymptotically
contractive, and the whole space HW 1,2

0 (Ωψ) is compactly embedded in L℘(Ωψ) for ev-
ery ℘ ∈ (2, 2∗Q), where 2

∗
Q = 2(N + 2)/N . We refer to [27, 169] for further details. In such a

case, Theorem 7.2.5 follows by using the embedding result proved by N. Garofalo and
E. Lanconelli in [113]. See also I. Schindler and K. Tintarev [229].

We end the section by analyzing problem (7.6) when the nonlinear term f has a
sublinear growth at infinity, thus condition (f3) fails. In this case we assume that the
nonlinearity f ∈ C(ℝ) verifies the following assumptions:
(h1) f (t) = o(|t|) as |t|→ 0;
(h2) f (t) = o(|t|) as |t|→∞.

The next multiplicity result holds.

Theorem 7.2.6. LetΩ be a nonempty T-invariant open subset of𝔾, satisfying condition
(H ), and let λ be a positive parameter. Assume that w ∈ L1(Ω)∩L∞(Ω)with ess infΩ w >
0 and let f ∈ C(ℝ) verify assumptions (h1) and (h2). Finally, suppose that (CΨ) holds and
supu∈HW 1,2

0,T (Ω)Ψ(u) > 0. Then, there exists λ⋆ > 0 such that for every λ > λ⋆ problem (7.6)
admits two nontrivial T-invariant solutions in HW 1,2

0 (Ω).

Proof. Since lim‖u‖→0Ψ(u)/‖u‖2 = 0, the energy functional 𝒥λ given in (7.7) has a local
minimum at zero. Taking into account that lim‖u‖→∞Ψ(u)/‖u‖2 = 0, the functional
𝒥λ is also coercive, bounded from below in HW 1,2

0,T (Ω), and satisfies the Palais–Smale
condition. Thus 𝒥λ has a global minimum in HW 1,2

0,T (Ω) with negative energy level for
λ sufficiently large. Consequently, the Pucci and Serrin Theorem 1 in [212] gives a third
critical point of 𝒥λ in HW 1,2

0,T (Ω) for 𝒥λ. Finally, similar arguments as in the proof of
Theorem 7.2.2 ensure that for λ > λ⋆ problem (7.6) has at least two nontrivial solutions
in HW 1,2

0 (Ω).

A more general version of Theorem 7.2.6 can be obtained by arguing as in the
proof of Theorem 9.3.2 in Chapter 9, employing the critical point result given in Theo-
rem 9.3.1. However, Theorem 7.2.6 continues to hold even in presence of a sufficiently
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small nonlinear subcritical perturbation term. Theorem 1.2 of [27], besides other prop-
erties, has already shown this extension, but in the Heisenberg setting.

7.3 Dirichlet problems on strips of the Heisenberg group

In this section we turn back to (7.9) when λ = 1. More precisely, we treat

{
−ΔℍNu + u = w(σ)f (u) in Ωψ,

u = 0 on 𝜕Ωψ,
(7.10)

when the nonlinear term f ∈ C(ℝ) verifies:
(k1) For some q ∈ (2, 2∗Q),

Cf = sup
t∈ℝ

|f (t)|
1 + |t|q−1

<∞;

(k2) F+(t) = o(|t|2) as |t|→ 0, where F+ = max{F,0};
(k3) F is bounded from below on ℝ+0 and there exists a sequence (tk)k ⊂ ℝ

+ such that

lim
k→∞

F(tk)
t2k
=∞;

(k4) f (t)t ≥ 2F(t) for every t ∈ ℝ;
(k5) There exist a constant ν > 2 and κ ∈ ℝ such that

f (t)t ≥ νF(t) for every t ∈ ℝ such that F(t) ≥ κ.

Before stating the main result, let us introduce some preliminaries. Following [27],
we construct a special test function belonging to HW 1,2

0,T (Ωψ) which will be useful for
the proof of Theorem 7.3.1. Let N ≥ 2 and let w ∈ L1(Ωψ) ∩ L∞(Ωψ) be a cylindrically
symmetric nonnegative function as in (7.10). Assume that there exists an open set Ω ⊂
Ωψ such that

ess inf
Ω

w > 0, (7.11)

and set

Ω̂ = ⋃
τ̂∈𝕌(N)
{τ̂ ∗ Ω}.

Since w is cylindrically symmetric,

ess inf
Ω

w = ess inf
Ω̂

w > 0. (7.12)
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Furthermore, we can find (z0, t0) ∈ Ωψ and R such that

0 < R < 2|z0|(√2 − 1), (7.13)

and

AR = {σ ∈ ℍ
N : σ = (z, t), with 󵄨󵄨󵄨󵄨|z| − |z0|

󵄨󵄨󵄨󵄨 ≤ R, |t − t0| ≤ R} ⊂ Ω̂. (7.14)

Of course,AϱR ⊆ AR ⊂ Ω̂ and μ(AϱR) > 0 for every ϱ ∈ (0, 1]. Introduce ej : ℂj×ℂj×ℝ→
ℝ, defined by

ej(z, z̃, t) =
2
R
√(|z|2 − |z0| +

R
2
)
2
+ |z̃|2 + (t − t0)2,

where z0, t0 and R > 0 are from (7.13) and (7.14). Set ϱ ∈ (0, 1), and consider vϱ,j ∈ Ej =
HW 1,2

0,T̂
ωj
N ,j (Ωψ) defined by

vϱ,j(z, t) =
((1 −max{ej(z1, z2, t), ϱ})+ − (1 −max{ej(z2, z1, t), ϱ})+)

1 − ϱ
(7.15)

if j = 2N and z = (z1, z2) ∈ ℂj × ℂj, as well as

vϱ,j(z, t) =
((1 −max{ej(z1, z3, t), ϱ})+ − (1 −max{ej(z3, z1, t), ϱ})+)

(1 − ϱ)2
(7.16)

×(1 −max{ 2
R
|z2|, ϱ})

+

if j = 2N and z = (z1, z2, z3) ∈ ℂj × ℂ2N × ℂj. For every ϱ ∈ (0, 1], we set:

Sjϱ = {(z1, z2, t) ∈ ℂ
j × ℂj × ℝ : ej(z1, z2, t) ≤ ϱ ∨ ej(z2, z1, t) ≤ ϱ} if N = 2j,

Sjϱ = {(z1, z2, t) ∈ℂ
j × ℂN−2j × ℂj × ℝ :

ej(z1, z3, t) ≤ ϱ ∨ ej(z3, z1, t) ≤ ϱ, and |z2| ≤ ϱ
R
2
} if N ̸= 2j.

Moreover, the following relations hold:
(j1) supp(v

c0
ϱ,j) = S

j
1;

(j2) ‖vϱ,j‖∞ ≤ 1;
(j3) vϱ,j = 1 in Sjϱ.

Theorem 7.3.1. Let Ωψ ⊂ ℍ
N be as in (7.3) and let w ∈ L1(Ωψ) ∩ L∞(Ωψ) be a radially

cylindrically nonnegative function such that (7.11) holds on some nonempty open setΩ ⊂
Ωψ. Finally, let f ∈ C(ℝ) verify (k1)–(k5). Then,
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(i) Problem (7.10) has at least one solution in HW 1,2
0 (Ωψ) localized in

HW 1,2
0,T (Ωψ) = {u ∈ HW

1,2
0 (Ωψ) : u(z, t) = u(|z1|, |z2|, . . . , |zℓ|, t)},

where zk ∈ ℂNk for all k = 1, . . . , ℓ.
(ii) If f is also odd, problem (7.10) admits at least [N/2] + 1 solutions in HW 1,2

0 (Ωψ) with
mutually symmetric different structures.

A key point in the proof of Theorem 7.3.1 is to show the existence of a bounded
Palais–Smale sequence at somemountain pass level. More precisely, we shall use the
following abstract result proved in [219].

Theorem 7.3.2. Let X be a reflexive real Banach space, and letΦ,Ψ : X → ℝ be two C1

functionals. Set

J(u) = Φ(u) −Ψ(u) for all u ∈ X.

Assume that
(i1) Φ is homogeneous of degree p > 1 and coercive;
(i2) There exist u1, u2 ∈ X such that

max{J(u1), J(u2)} < c,

where c = infγ∈Γmaxt∈[0,1] J(γ(t)) and

Γ = {γ ∈ C([0, 1],X) : γ(0) = u1 and γ(1) = u2};

(i3) The functional L(u) = Ψ󸀠(u)u − pΨ(u) ≥ 0 for every u ∈ X;
(i4) L(u)→∞ asΨ(u)→∞.
Then the functional J admits a bounded (PS) sequence at level c.

Proof of Theorem 7.3.1. Let us consider the energy functional ℐ : HW 1,2
0 (Ωψ) → ℝ de-

fined for every u ∈ HW 1,2
0 (Ωψ) by

ℐ(u) = 1
2
‖u‖2 − ∫

Ωψ

w(σ)F(u)dμ. (7.17)

(i) We shall prove that the restriction of ℐ to HW 1,2
0,T (Ωψ), namely 𝒥 , satisfies the as-

sumptions of Theorem 7.3.2, with X = HW 1,2
0,T (Ωψ),

Φ(u) = 1
2
‖u‖2, Ψ(u) = ∫

Ωψ

w(σ)F(u)dμ, u ∈ X.
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Clearly, Φ and Ψ are smooth, with Φ homogeneous of degree 2 and coercive on X. Let
us claim that (i2) holds true. By (k1), we know that |F(t)| ≤ Cf (|t| + |t|q), so that

0 ≤ F+(t) ≤ Cf (|t| + |t|
q). (7.18)

Now, we shall prove that

𝒥 (u) ≥ 1
4
‖u‖2 (7.19)

in some neighborhood of zero in X. Since 𝒥 (0) = 0 and

𝒥 (u) ≥ 𝒥+(u) =
1
2
‖u‖2 − ∫

Ωψ

w(σ)F+(u)dμ,

it is enough to show (7.19) for 𝒥+ instead of 𝒥 . By (k2), for any ε > 0 there exists δε > 0
such that

0 ≤ F+(t) ≤ ε|t|
2 for every t, with |t| < δε.

Thus, (7.18) yields the existence of a positive constantMε such that

0 ≤ F+(t) ≤ ε|t|
2 +Mε|t|

q for every t ∈ ℝ.

Hence

0 ≤ ∫
Ωψ

w(σ)F+(u)dμ ≤ ‖w‖∞(ε‖u‖
2
2 +Mε‖u‖

q
q)

≤ ‖w‖∞(c2ε‖u‖
2 + cqMε‖u‖

q).

Let us fix ζ ∈ (4,∞) and let ε = 1
ζc2‖w‖∞ . The above inequality ensures that

𝒥+(u) =
1
2
‖u‖2 − ∫

Ωψ

w(σ)F+(u)dμ

≥
1
2
‖u‖2 − εc2‖w‖∞‖u‖

2 − cqMε‖w‖∞‖u‖
q

= ‖u‖2[ 1
2
−
1
ζ
− cqMε‖w‖∞‖u‖

q−2]

≥
1
4
‖u‖2,

provided that ‖u‖ < ( ζ−4
4c2ζ ‖w‖∞ ) 1

q−2 . This proves the validity of (7.19).
Set ϱ ∈ (0, 1) and consider the truncation function uϱ ∈ HW 1,2

0,cyl(Ωψ) ⊆ HW 1,2
0,T (Ωψ)

given by

uϱ(σ) =
1

1 − ϱ
(1 −max{ ||z| − |z0||

R
,
||t| − |t0||

R
, ϱ})
+
, σ = (z, t) ∈ Ωψ.
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With the above notation, we have:
(j󸀠1) supp(uϱ) = AR;
(j󸀠2) ‖uϱ‖∞ ≤ 1;
(j󸀠3) uϱ = 1 in AϱR.

Now, the function F is bounded from below onℝ+0 by (k3), and there exists a sequence
(tk)k ⊂ ℝ+ such that

lim
k→∞

F(tk)
t2k
=∞. (7.20)

Then, (j󸀠1)–(j
󸀠
3) imply that

Ψ(tkuϱ) = ∫
Ωψ

w(σ)F(tkuϱ)dμ = ∫
AϱR

w(σ)F(tkuϱ)dμ

= F(tk) ∫
AϱR

w(σ)dμ + ∫
AR\AϱR

w(σ)F(tkuϱ)dμ.

≥ F(tk) ∫
AϱR

w(σ)dμ + inf
ℝ+0 F(t) ∫AR\AϱR

w(σ)dμ.

Since μ(AϱR) > 0, formulas (7.12) and (7.20) give

lim
k→∞

Ψ(tkuϱ)
t2k
=∞.

Consequently,

𝒥 (tkuϱ) = Φ(tkuϱ) −Ψ(tkϱ) = t
2
k[
‖uϱ‖2

2
− t−2k Ψ(tkuϱ)] < 0 (7.21)

for every k ∈ ℕ sufficiently large. Therefore, condition (i2) is verified taking u1 = 0,
u2 = tk̄uϱ and k̄ large enough. Indeed, (7.19) and (7.21) give, for some k̄ sufficiently
large,

max{𝒥 (u1),𝒥 (tk̄uϱ)} = 0 < c = infγ∈Γ
max
t∈[0,1]

𝒥 (γ(t)),

with Γ = {γ ∈ C([0, 1],HW 1,2
0,T (Ωψ)) : γ(0) = u1 and γ(1) = tk̄uϱ}. Now, (k4) yields that

Ψ󸀠(u)u − 2Ψ(u) = ∫
Ωψ

w(σ)[f (u)u − 2F(u)]dμ ≥ 0,

i. e., (i3) holds true.
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Finally, we prove (i4). Let (uk)k ⊂ HW 1,2
0,T (Ωψ) be a sequence such that Ψ(uk)→∞

as k →∞. Fix k ∈ ℕ and set

Ω−ψ = {σ ∈ Ωψ : F(uk(σ)) < κ} and Ω+ψ = {σ ∈ Ωψ : F(uk(σ)) ≥ κ},

where κ is given in (k5). Then, since w is nonnegative in Ωψ, it follows that

Ψ(uk) = ∫
Ω−ψ

w(σ)F(uk)dμ + ∫
Ω+ψ

w(σ)F(uk)dμ

≤ κ‖w‖1 + ∫
Ω+ψ

w(σ)F(uk)dμ.

Hence

lim
k→∞
∫
Ω+ψ

w(σ)F(uk)dμ =∞. (7.22)

Now, (k4) and (k5) yield

Ψ󸀠(uk)uk − 2Ψ(uk) = ∫
Ω−ψ

w(σ)[f (uk)uk − 2F(uk)]dμ

+ ∫
Ω+ψ

w(σ)[f (uk)uk − 2F(uk)]dμ

≥ (ν − 2) ∫
Ω+ψ

w(σ)F(uk)dμ,

which, together with (7.22), gives

lim
k→∞
(Ψ󸀠(uk)uk − 2Ψ(uk)) =∞,

since ν > 2.
Therefore, an application of Theorem 7.3.2 yields the existence of a bounded se-

quence (uk)k in HW 1,2
0,T (Ωψ) such that

𝒥 (uk)→ c > 0 and 󵄩󵄩󵄩󵄩𝒥
󸀠(uk)
󵄩󵄩󵄩󵄩(HW 1,2

0,T )󸀠 → 0, (7.23)

as k → ∞. We prove now that there exists u∞ ∈ HW 1,2
0,T (Ωψ) such that, up to a subse-

quence,

‖uk − u∞‖→ 0 (7.24)
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as k → ∞. Since HW 1,2
0,T (Ωψ) is reflexive, up to a subsequence, still denoted by (uk)k,

there exists u∞ ∈ HW 1,2
0,T (Ωψ) such that, thanks also to Lemma 7.1.2,

uk → u∞ weakly in HW 1,2
0,T (Ωψ), uk → u∞ a. e. in Ωψ,

uk → u∞ in L℘(Ωψ), ℘ ∈ (2, 2
∗
Q),

(7.25)

as k →∞. Now

⟨Φ󸀠(uk), uk − u∞⟩ = ⟨𝒥
󸀠(uk), uk − u∞⟩ + ∫

Ωψ

w(σ)f (uk)(uk − u∞)dμ (7.26)

for every k ∈ ℕ.
Of course, taking into account that (uk)k is bounded in HW 1,2

0,T (Ωψ), by (7.23), it
follows that

⟨𝒥 󸀠(uk), uk − u∞⟩→ 0 (7.27)

as k → ∞. On the other hand, since w ∈ L1(Ωψ) ∩ L∞(Ωψ), the Hölder inequality and
(k1) imply that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ωψ

w(σ)f (uk)(uk − u∞)dμ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ Cf ∫

Ωψ

w(σ)(1 + |uk |
q−1)|uk − u∞|dμ

≤ Cf (‖w‖q󸀠 + ‖w‖∞‖uk‖q−1q )‖uk − u∞‖q,

that is, by (7.25),

∫
Ωψ

w(σ)f (uk)(uk − u∞)dμ→ 0 (7.28)

as k →∞. In conclusion, (7.26), (7.27), and (7.28) yield, as k →∞,

‖uk − u∞‖
2 = ⟨uk , uk − u∞⟩ + o(1) = ⟨Φ

󸀠(uk), uk − u∞⟩→ 0,

which is (7.24).
As a consequence, 𝒥 (u∞) = c and 𝒥 󸀠(u∞) = 0, that is, u∞ in HW 1,2

0,T (Ωψ) is a non-
trivial critical point of 𝒥 . Now, exactly as in the proof of Corollary 7.2.5, the functional
ℐ given in (7.17) is T-invariant. The principle of symmetric criticality, Theorem A.1.5,
ensures that u∞ ∈ HW 1,2

0,T (Ωψ) is a critical point of ℐ inHW 1,2
0 (Ωψ), i. e., u∞ is a solution

localized in HW 1,2
0,T (Ωψ) of problem (7.10) set in HW 1,2

0 (Ωψ).
(ii) Part (i) ensures that the problem (7.10) admits at least one nontrivial solution

in HW 1,2
0 (Ωψ), localized in the symmetric space HW 1,2

0,cyl(Ωψ), and so for N = 1 we are
done.
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Let now N ≥ 2 and fix j ∈ JN . Arguing as in part (i), it is possible to prove that
the restriction 𝒥 (j) of the functional ℐ to the symmetric space Ej verifies assumptions
(i1)–(i3) of Theorem 7.3.2. In particular,

𝒥 (j)(u) ≥ 1
4
‖u‖2, (7.29)

in someneighborhood of zero in Ej. Furthermore,𝒥 (j) verifies also (i4). Indeed, by (k3),
the function F is bounded from below on ℝ+0 and there exists a sequence (tk)k ⊂ ℝ+

such that (7.20) holds. Let us consider the symmetric function vϱ,j ∈ Ej given in (7.15)
and (7.16). Then, since F is even, (j1)–(j3) give

Ψ(tkvϱ,j) = ∫
Ωψ

w(σ)F(tkvϱ,j)dμ = ∫
Sj1

w(σ)F(tkvϱ,j)dμ

= F(tk)∫
Sjϱ

w(σ)dμ + ∫
Si1\S

j
ϱ

w(σ)F(tk |vϱ,j|)dμ.

≥ F(tk)∫
Sjϱ

w(σ)dμ + inf
ℝ+0 F(t) ∫

Sj1\S
j
ϱ

w(σ)dμ.

Since μ(Sjϱ) > 0, then (7.12) and (7.20) imply that

lim
k→∞

Ψ(tkvϱ,j)
t2k
=∞.

Consequently,

𝒥 (j)(tkvϱ,j) = t
2
k[
‖vϱ,j‖2

2
− t−2k Ψ(tkvϱ,j)] < 0 (7.30)

for every k ∈ ℕ sufficiently large. Therefore, (i2) is verified taking u1 = 0, u2 = tk̄vϱ,j,
and k̄ large enough. Indeed, (7.29) and (7.30) yield for some k̄ sufficiently large

max{𝒥 (j)(u1),𝒥
(j)(tk̄vϱ,j)} = 0 < c = infγ∈Γ

max
t∈[0,1]

𝒥 (j)(γ(t)),

with

Γ = {γ ∈ C([0, 1],Ej) : γ(0) = 0 and γ(1) = tk̄vϱ,j}.

Therefore, Theorem7.3.2 ensures the existence of a bounded sequence (u(j)k )k inEj such
that 𝒥 (j)(u(j)k ) → c > 0 and ‖(𝒥 (j))󸀠(uk)‖E󸀠j → 0 as k → ∞. Thus, arguing as in part
(i), there exists u(j)∞ ∈ Ej which is a nontrivial critical point of 𝒥 (j). Now, since f is
an odd function, the energy functional ℐ given in (7.17) is even and T̂ωj

N ,j-invariant. In
conclusion, Proposition 7.1.4 and Theorem A.1.5 imply that problem (7.10) admits at
least [N/2] + 1 solutions in HW 1,2

0 (Ωψ) with mutually symmetric different structures.
The proof is now complete.
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Theorem 7.3.1 can be applied to the following model problem in Ωψ ⊂ ℍ
N , N ≥ 1:

{{
{{
{

−ΔℍNu + u = 2w(σ)u
3(2 + 3u2(sin 1

u2
+ 1) − cos 1

u2
) in Ωψ,

u = 0 on 𝜕Ωψ,
(7.31)

where w ∈ L1(Ωψ) ∩ L∞(Ωψ) is a cylindrically symmetric nonnegative function such
that (7.11) holds on some nonempty open set Ω ⊂ Ωψ. Indeed, since

F(t) = t6(sin 1
t2
+ 1) + t4 for every t ∈ ℝ,

direct computations ensure that all the assumptions of Theorem 7.3.1 are verified; see
Figure 7.5. Consequently, part (ii) of Theorem 7.3.1 implies that problem (7.31) admits at
least [N/2] + 1 solutions in HW 1,2

0 (Ωψ) with mutually symmetric different structures.

Figure 7.5: The graphs of the functions F and F 󸀠 = f .

The above result can be viewed as an extension of the classical Theorem 4.1 proved by
P. Rabier in [219] to problems settled on strip-like domains Ωψ ⊂ ℍ

N .

Comments on Chapter 7
In [62, Theorems 1.1 and 1.2], G. Citti studies the critical semilinear problem

{{{
{{{
{

−ΔℍNu + a(σ)u = f (σ, u) + u
N+2
N in Ω,

u > 0 in Ω,
u = 0 on 𝜕Ω,

(7.32)

where Ω is a smooth bounded domain of the Heisenberg groupℍN , a ∈ L∞(Ω), and
f : Ω×ℝ→ ℝ denotes a suitable subcritical continuous function. Themain ingredient
in the proof of Theorems 1.1 and 1.2 in [62] is the explicit profile decomposition of the
Palais–Smale sequences à la Lions. The extension to the Heisenberg context is due to
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172 | 7 Subelliptic problems on Carnot groups

D. Jerison and J.M. Lee [133]. An interesting openproblem is to obtain the results of [62]
for critical problems in strip-like domains Ωψ ofℍN . Certainly, a key point in the new
approach will be played by some local weakly lower semicontinuity properties and
direct minimization arguments; see [189, 190] for related topics.

 EBSCOhost - printed on 2/10/2023 3:36 PM via . All use subject to https://www.ebsco.com/terms-of-use



8 Arbitrarily many solutions on homogeneous
Hadamard manifolds
Taci. Su le soglie
del bosco non odo
parole che dici
umane; ma odo
parole più nuove
che parlano gocciole e foglie
lontane.

Gabriele D’Annunzio
from La pioggia nel pineto

In this chapter, using variational methods, we study the following elliptic problem:

{
−Δgu + u = w(σ)[f (u) + λf(u)] inℳ,

u ≥ 0 inℳ, u ∈ H1
g(ℳ),

(Pλ)

where Δg is the classical Laplace–Beltrami operator on an N-dimensional homoge-
neous Hadamard manifold ℳ, with N ≥ 3. In this context, λ is a real parameter,
w : ℳ → ℝ is a suitable symmetric positive potential, f : ℝ+0 → ℝ is a continuous
function oscillating near the origin or at infinity, and f : ℝ+0 → ℝ is any continuous
function, with f(0) = 0.

Problem (Pλ) may be also viewed as a prototype of pattern formation in biology
and is in relationship with the steady state problem for a chemotactic aggregation
model introduced by E. F. Keller and L. A. Segel [137]. Moreover, (Pλ) also plays an im-
portant role in the study of activator inhibitor systems describing biological pattern
formations, as proposed by A. Gierer and H. Meinhardt in [118]. Problems of this type,
as well as the associated evolution equations, describe super diffusion phenomena.
Such models have been studied by P. G. de Gennes [76] to describe long range van der
Waals interactions in thin films spread on solid surfaces.

Through variational and topological methods, we show that the number of so-
lutions of (Pλ) is influenced by the value of the real parameter λ. More precisely, a
variational construction enforces the use of the principle of symmetric criticality for
nonsmooth Szulkin-type functionals defined on certain symmetric subspaces of the
Sobolev space H1

g(ℳ).
The results presented here extend some recent contributions, obtained for equa-

tions driven by the Laplace operator on the Euclidean space [143], and Schrödinger–
Maxwell systems on Hadamard manifolds [91]. See also the results proved in [87, 147,
149], where competition phenomena are investigated for different classes of elliptic
problems.

https://doi.org/10.1515/9783110652017-008
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8.1 Elements of analysis on Riemannian manifolds

In this sectionwebriefly recall somenotions fromRiemannian geometry needed in the
sequel and then illustrate the functional framework we shall move into. We refer the
reader to the classical sources [18–20, 122, 123] for detailedderivationsof the geometric
quantities, their motivations, and further applications.

Let ℳ = (ℳ, g) be an N-dimensional Riemannian manifold, with N ≥ 3; see
Figure 8.1 below. Let gij be the components of themetric g. Denote by Tσℳ the tangent
space at σ ∈ℳ and by Tℳ = ⋃σ∈ℳ Tσℳ the tangent bundle. Let dg :ℳ ×ℳ→ ℝ+0
be the usual distance function associated with g. Denote by

Bg(σ0, r) = {σ ∈ℳ : dg(σ0, σ) < r}

and Bg(σ0, r) = {σ ∈ℳ : dg(σ0, σ) ≤ r} the open and closed geodesic balls centered at
σ0 ∈ℳ and of radius r > 0, respectively.

Figure 8.1: An abstract Riemannian manifoldℳ = (ℳ,g).

If C∞c (ℳ) denotes, as is customary, the space of real-valued compactly supported
smooth functions onℳ, set

‖φ‖ = (∫
ℳ

|∇gφ|
2dσg + ∫

ℳ

|φ|2dσg)
1/2

(8.1)

for every φ ∈ C∞c (ℳ), where ∇gφ is the covariant derivative of φ and dσg is the Rie-
mannian measure on ℳ, related to the Lebesgue measure dx in ℝN by the formula
dσg = √g dx, g = det(gij). Put

Volg(Ω) = ∫
Ω

dσg
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for every bounded measurable set Ω ⊂ ℳ. For any fixed system of local coordinates
(x1, . . . , xN ), the gradient ∇gφ can be represented by

(∇2gφ)ij =
𝜕2φ
𝜕xi𝜕xj
− Γkij
𝜕φ
𝜕xk
,

where

Γkij =
1
2
(
𝜕glj
𝜕xi
+
𝜕gli
𝜕xj
−
𝜕gij
𝜕xk
)glk

are the usual Christoffel symbols and glk are the elements of the inversematrix of g. In
the last two chapters of the book, Einstein’s summation convention is tacitly adopted.
The Laplace–Beltrami operator Δg is the differential operator Δgφ = div(∇gφ) whose
local expression is

Δgφ = g
ij(
𝜕2φ
𝜕xi𝜕xj
− Γkij
𝜕φ
𝜕xk
) = −

1
√g
𝜕
𝜕xm
(√ggkm 𝜕φ

𝜕xk
).

The space H1
g(ℳ) is defined to be the completion of C∞c (ℳ), with respect to the

norm (8.1), and it turns out to be a Hilbert space equipped with the inner product

⟨u, v⟩ = ∫
ℳ

⟨∇gu, ∇gv⟩gdσg + ∫
ℳ

uvdσg (8.2)

for every u, v ∈ H1
g(ℳ).

A Riemannianmanifoldℳ = (ℳ, g)with a transitive groupof isometries is said to
be a Riemannian homogeneous space. An Hadamard manifold is a Riemannian mani-
fold which is complete, simply connected, andwith everywhere nonpositive sectional
curvature. The Cartan–Hadamard theorem guarantees that every Hadamardmanifold
ℳ is diffeomorphic to ℝN , N = dimℳ, in striking contrast to the Meyer theorem,
which states that any complete Riemannian manifoldℳ of strictly positive Ricci cur-
vature is compact. Besides the Euclidean space, there exist other interesting geometric
objects having the structure of an Hadamard manifold. An Hadamard manifold that
is also a homogeneous space is said to be a homogeneous Hadamard manifold.

From now on, we always assume thatℳ = (ℳ, g) is an N-dimensional homoge-
neous Hadamard manifold, with N ≥ 3.

Referring to D. Hoffman and J. Spruck [130], the Sobolev embedding H1
g(ℳ) 󳨅→

L℘(ℳ) is continuous but not compact for every ℘ ∈ [2, 2∗], where, as usual, 2∗ =
2N/(N−2) denotes the critical Sobolev exponent. In the light of this result, we indicate
by c℘ the positive constant

c℘ = sup
u∈H1

g(ℳ)\{0}

‖u‖℘
‖u‖
<∞,

‖ ⋅ ‖℘ denoting as usual the L℘-norm onℳ.
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Since the main problem is settled in a noncompact framework, we shall adopt
a group-theoretical approach to identify suitable symmetric subspaces of H1

g(ℳ) for
which the compactness of the embedding in L℘(ℳ) can be regained, when ℘ ∈ (2, 2∗).
Denote by Isomg(ℳ) the group of isometries of (ℳ, g) with the natural composition
law and let G be a subgroup of Isomg(ℳ).

We say that u :ℳ→ ℝ is G -invariant if u(τ(σ)) = u(σ) for every σ ∈ℳ and τ ∈ G ,
and set

FixG (ℳ) = {σ ∈ℳ : τ(σ) = σ for all τ ∈ G }.

The natural action ⊛G : G × H1
g(ℳ) → H1

g(ℳ) of the group G on the Sobolev space
H1
g(ℳ) is defined, as usual, by

τ ⊛G u(σ) = u(τ−1(σ)) for all τ ∈ G , u ∈ H1
g(ℳ), σ ∈ℳ. (8.3)

As a next step, denote by

H1
G ,g(ℳ) = {u ∈ H

1
g(ℳ) : τ ⊛G u = u for all τ ∈ G }

the subspace of the G -invariant functions of H1
g(ℳ). A recent embedding result à la

Lions due to L. Skrzypczak and C. Tintarev is decisive in our next arguments. We state
it below in a convenient form.

Theorem 8.1.1. Let ℳ = (ℳ, g) be an N-dimensional homogeneous Hadamard mani-
fold, with N ≥ 3. If G is a compact connected subgroup of Isomg(ℳ) and FixG (ℳ) is a
singleton, then the embedding

H1
G ,g(ℳ) 󳨅→󳨅→ L℘(ℳ)

is compact for any ℘ ∈ (2, 2∗).

See [232, Theorem 1.3 and Proposition 3.1], as well as [91] for related results.
We conclude this section by constructing a special function which will be useful

in the proof of ourmain theorems. Let a, b be two positive numbers, with a < b. Define
the annulus domain Aba(σ0) centered at σ0 ∈ℳ as

Aba(σ0) = {σ ∈ℳ : b − a < dg(σ0, σ) < a + b}.

Moreover, it is useful to recall here that for every fixed σ0 ∈ℳ, the eikonal equation
󵄨󵄨󵄨󵄨∇gdg(σ0, ⋅)

󵄨󵄨󵄨󵄨 = 1 (8.4)

is satisfied a. e. inℳ \ {σ0}. Now, take r, ρ, with 0 < r < ρ, and put

vρ,r(σ) =
{{
{{
{

0 if σ ∈ℳ \ Aρr (σ0),
1 if σ ∈ Aρr/2(σ0),
2(r−|dg(σ0 ,σ)−ρ|)

r if σ ∈ Aρr (σ0) \ A
ρ
r/2(σ0)

(8.5)

for every σ ∈ℳ; see Figure 8.2 for details.
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Figure 8.2: The annulus-type domain of the test function vρ,r .

It is clear that supp vρ,r ⊂ A
ρ
r (σ0) and ‖vρ,r‖∞ = 1. By the definition of vρ,r and exploiting

also (8.4), we have

‖vρ,r‖
2 = ∫

Aρ
r (σ0)

|∇gvρ,r |
2dσg + ∫

Aρ
r (σ0)

|vρ,r |
2dσg

= ∫
Aρ
r/2(σ0)
|∇gvρ,r |

2dσg + ∫
Aρ
r/2(σ0)
|vρ,r |

2dσg

+ ∫
Aρ
r (σ0)\A

ρ
r/2(σ0)
|∇gvρ,r |

2dσg + ∫
Aρ
r (σ0)\A

ρ
r/2(σ0)
|vρ,r |

2dσg

≤ Volg(A
ρ
r (σ0)) +

4
r2
∫

Aρ
r (σ0)\A

ρ
r/2(σ0)
󵄨󵄨󵄨󵄨∇g(r −
󵄨󵄨󵄨󵄨dg(σ0, σ) − ρ

󵄨󵄨󵄨󵄨)
󵄨󵄨󵄨󵄨
2dσg

= Volg(A
ρ
r (σ0)) +

4
r2
∫

Aρ
r (σ0)\A

ρ
r/2(σ0)
󵄨󵄨󵄨󵄨∇g
󵄨󵄨󵄨󵄨dg(σ0, σ) − ρ

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨
2dσg

= Volg(A
ρ
r (σ0)) +

4
r2
Volg(A

ρ
r (σ0) \ A

ρ
r/2(σ0))

≤ (1 + 4
r2
)Volg(A

ρ
r (σ0)).

For any t > 0, we define the function

v
ρ,r
t = tvρ,r , (8.6)

where vρ,r is given in (8.5). It is clear that vρ,rt ≥ 0 in ℳ. Moreover, if G is a compact,
connected subgroup of Isomg(ℳ), with FixG (ℳ) = {σ0}, then v

ρ,r
t ∈ H

1
G ,g(ℳ). Finally,

‖vρ,rt ‖∞ = t and

󵄩󵄩󵄩󵄩v
ρ,r
t
󵄩󵄩󵄩󵄩
2 ≤ (1 + 4

r2
)Volg(A

ρ
r (σ0))t

2. (8.7)
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We also introduce the truncation function ϕη : ℝ
+
0 → ℝ defined as

ϕη(t) = min{η, t} (8.8)

for any t ≥ 0, where η is the positive constant given in assumption (8.12). Note that ϕη
is a continuous function in ℝ+0.

8.2 An auxiliary elliptic problem on manifolds

In order to solve (Pλ), in this section we introduce the auxiliary equation

{
−Δgu + u = w(σ)f (u) inℳ,

u ≥ 0 inℳ, u ∈ H1
g(ℳ).

(8.9)

Here, we assume that f : ℝ+0 → ℝ is a continuous function satisfying the following
conditions:

f (0) = 0; (8.10)
There exists M > 0 such that 󵄨󵄨󵄨󵄨f (t)

󵄨󵄨󵄨󵄨 ≤ M for every t ∈ ℝ+0 ; (8.11)
There are δ, η, with 0 < δ < η, such that f (t) ≤ 0 for any t ∈ [δ, η]. (8.12)

In the sequel, taking into account that (8.10) holds, we extend the function f on the
whole real line by taking f (t) = 0 for every t < 0. For the potential w, we assume
(w) w :ℳ → ℝ is in L1(ℳ) ∩ L2(ℳ); it is positive, continuous, and radially symmetric

with respect to σ0 ∈ℳ, i. e., there exists ψ : ℝ+0 → ℝ such that

w(σ) = ψ(dg(σ0, σ)) for every σ ∈ℳ. (8.13)

In this section we prove the existence of a nonnegative solution for (8.9). Since equa-
tion (8.9) is variational, let us introduce the associated energy functional ℰaux :
H1
g(ℳ)→ ℝ defined by

ℰaux(u) =
1
2
‖u‖2 − ∫

ℳ

w(σ)F(u) dσg , (8.14)

where F(t) = ∫t0 f (s)ds for any t ∈ ℝ.
Due to the embedding properties of the space H1

g(ℳ) into the Lebesgue spaces,
it is easy to see that ℰaux is well defined. Indeed, the mean value theorem, (8.11), the
Hölder inequality, and (w) yield

∫
ℳ

w(σ)󵄨󵄨󵄨󵄨F(u)
󵄨󵄨󵄨󵄨dσg ≤ M‖w‖2‖u‖2 <∞
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for every u ∈ H1
g(ℳ). Moreover, standard arguments show that ℰaux is of class

C1(H1
g(ℳ)).
Now, according to the notations of Section 8.1, if G is a compact connected sub-

group of Isomg(ℳ) such that FixG (ℳ) = {σ0}, we denote by

H1
G ,g(ℳ) = {u ∈ H

1
g(ℳ) : τ(u) = u for all τ ∈ G }

the subspace of G -invariant functions of H1
g(ℳ) and by ℰG

aux the restriction of ℰaux to
H1

G ,g(ℳ).
In order to find nonnegative solutions of (8.9), we look for nonnegative critical

points of the functional ℰG
aux. At this purpose, we introduce the setWη(ℳ) defined as

follows:

Wη(ℳ) = {u ∈ H
1
g(ℳ) : ‖u‖∞ ≤ η},

and also set

WG
η (ℳ) = Wη(ℳ) ∩ H

1
G ,g(ℳ),

where η is the positive parameter given in (8.12); see Figure 8.3 below.

Figure 8.3: The subsetWG
η (ℳ).

The main result of the section is given in the following theorem.

Theorem 8.2.1. Let ℳ = (ℳ, g) be a homogeneous Hadamard manifold of dimen-
sion N ≥ 3 and let G be a compact connected subgroup of Isomg(ℳ) such that
FixG (ℳ) = {σ0}. Furthermore, let f : ℝ+0 → ℝ be a continuous function satisfying
conditions (8.10)–(8.12) and let w :ℳ→ ℝ verify condition (w). Then,
(i) ℰG

aux is bounded from below on WG
η (ℳ), with infimum attained at some uG

η ∈
WG

η (ℳ);
(ii) uG

η ∈ [0, δ] a. e.ℳ, where δ > 0 is given in (8.12);
(iii) uG

η is a nonnegative solution of (8.9).
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Proof. The proof is similar to that of [91]; for completeness, we provide its main steps.
(i) Clearly, the set WG

η (ℳ) is convex. Moreover, W
G
η (ℳ) is closed in H1

G ,g(ℳ).
Indeed, if (uG

η,k)k inWG
η (ℳ) is such that uG

η,k → uG
η,∞ in H1

G ,g(ℳ) as k → ∞, then we
claim that uG

η,∞ ∈ W
G
η (ℳ). Of course, u

G
η,∞ ∈ H

1
G ,g(ℳ). Furthermore, by assumption

(uG
η,k)k is bounded in L∞(ℳ). Since L∞(ℳ) is the dual space of L1(ℳ), which is a

separable Banach space, one has uG
η,k
∗
⇀ uG

η,∞ in L∞(ℳ) as k →∞. Hence,

η ≥ lim inf
k→∞
󵄩󵄩󵄩󵄩u

G
η,k
󵄩󵄩󵄩󵄩∞ ≥
󵄩󵄩󵄩󵄩u

G
η,∞
󵄩󵄩󵄩󵄩∞,

that is, uG
η,∞ ∈ W

G
η (ℳ), which proves the claim.

Consequently, since WG
η (ℳ) is convex and closed in H1

G ,g(ℳ), we get that
WG

η (ℳ) is weakly closed in H
1
G ,g(ℳ).

Now, let us prove that ℰG
aux is sequentially weakly lower semicontinuous in

H1
G ,g(ℳ). This follows at once if we prove that the functional

Ψ(u) = ∫
ℳ

w(σ)F(u)dσg

is sequentially weakly continuous in H1
G ,g(ℳ). Otherwise, there exists (uk)k in

H1
G ,g(ℳ) which converges weakly to some u∞ and such that, for every k ∈ ℕ,

󵄨󵄨󵄨󵄨Ψ(uk) −Ψ(u∞)
󵄨󵄨󵄨󵄨 ≥ ε0,

for some appropriate ε0 > 0. Clearly, (uk)k converges strongly to u∞ in L℘(ℳ) for all
℘ ∈ (2, 2∗) by Theorem 8.1.1. Now, fix ℘ ∈ (2, 2∗). Then the mean value theorem, the
Hölder inequality, (8.11), and (w), together with the above inequality, give that

0 < ε0 ≤ M ∫
ℳ

w(σ)|uk − u∞|dσg ≤ M‖w‖℘󸀠‖uk − u∞‖℘,
thanks to (w), since 1 < ℘󸀠 < 2. But the right-hand side tends to zero as k →∞, which
is the desired contradiction.

Moreover, (8.11) and the definition of F yield that the functional ℰG
aux is bounded

from below onWG
η (ℳ). Indeed,

ℰG
aux(u) =

1
2
‖u‖2 − ∫

ℳ

w(σ)F(u) dσg

≥ − ∫
ℳ

w(σ)F(u) dσg ≥ −M ∫
ℳ

w(σ)|u| dσg

≥ −ηM‖w‖1

for any u ∈ WG
η (ℳ).
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Let us denote bymG
η the infimum of ℰG

aux onW
G
η (ℳ), that is,

mG
η = inf

u∈WG
η (ℳ)

ℰG
aux(u) > −∞. (8.15)

It is easily seen that for every k ∈ ℕ there exists uG
η,k ∈ W

G
η (ℳ) such that

mG
η ≤ ℰ

G
aux(u

G
η,k) ≤ m

G
η +

1
k
. (8.16)

Also, since uG
η,k ∈ W

G
η (ℳ) and thanks to (8.11), we get

1
2
󵄩󵄩󵄩󵄩u

G
η,k
󵄩󵄩󵄩󵄩
2 = ∫

ℳ

w(σ)F(uG
η,k)dσg + ℰ

G
aux(u

G
η,k)

≤ ηM‖w‖1 + ℰ
G
aux(u

G
η,k) ≤ ηM‖w‖1 +m

G
η +

1
k

≤ ηM‖w‖1 +m
G
η + 1

for every k ∈ ℕ. Thus,

sup
k

󵄩󵄩󵄩󵄩u
G
η,k
󵄩󵄩󵄩󵄩 ≤ κ, where κ = √2(ηM‖w‖1 +mG

η + 1).

Then, the sequence (uG
η,k)k is bounded in H1

G ,g(ℳ) and so, up to a subsequence, still
denoted by (uG

η,k)k,

uG
η,k ⇀ uG

η inWG
η (ℳ) (8.17)

as k →∞ for some uG
η ∈ W

G
η (ℳ).

Now, let us show that uG
η is the minimum of ℰG

aux inW
G
η (ℳ)we are looking for. Of

course, uG
η ∈ Wη(ℳ), sinceWG

η (ℳ) is weakly closed in H
1
G ,g(ℳ). Thus, by (8.15),

ℰG
aux(u

G
η ) ≥ m

G
η . (8.18)

On the other hand, thanks to (8.16), (8.17), and the sequential weak lower semiconti-
nuity of ℰG

aux, we obtain that

mG
η ≥ lim inf

k→∞
ℰG
aux(u

G
k ) ≥ ℰ

G
aux(u

G
η ).

Therefore, (8.18) yields that ℰG
aux(u

G
η ) = m

G
η , which, together with (8.15), concludes the

proof of statement (i); see Figure 8.4.
(ii) Let δ be as in (8.12) and define

U(uG
η ) = {σ ∈ℳ : u

G
η ∉ [0, δ]}.
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Figure 8.4: The minimization of ℰG
aux onW

G
η (ℳ).

Assume by contradiction that Volg(U(wG
η )) > 0. Let ϕ : ℝ → ℝ be the function given

by

ϕ(t) = min{t+, δ},

where t+ = max{t,0}. Also, set uG
η = ϕ ∘ u

G
η , that is,

uG
η (σ) =
{{
{{
{

δ if uG
η (σ) > δ,

uG
η (σ) if 0 ≤ uG

η (σ) ≤ δ,
0 if uG

η (σ) < 0

for a. e. σ ∈ℳ.
Since ϕ is a Lipschitz function and ϕ(0) = 0, by [122, Proposition 2.5, p. 24], it

follows that uG
η ∈ H

1
g(ℳ). We claim that uG

η ∈ H
1
G ,g(ℳ). Indeed,

τ ⊛G uG
η (σ) = u

G
η (τ
−1(σ)) = (ϕ ∘ uG

η )(τ
−1(σ))

= ϕ(uG
η (τ
−1(σ))) = ϕ(uG

η (σ))

= uG
η (σ)

for all τ ∈ G . Moreover, 0 ≤ uG
η ≤ δ a. e. ℳ. Consequently, uG

η ∈ Wη, since δ < η by
assumption (8.12).

We introduce the sets

U1(u
G
η ) = {σ ∈ℳ : u

G
η (σ) < 0} and U2(u

G
η ) = {σ ∈ℳ : u

G
η (σ) > δ}.
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Thus, U(uG
η ) = U1(uG

η ) ∪ U2(uG
η ) and uG

η = u
G
η a. e. inℳ \ U(uG

η ), while u
G
η = 0 a. e. in

U1(uG
η ) and uG

η = δ a. e. in U2(uG
η ). Thus,

ℰG
aux(u

G
η ) − ℰ

G
aux(u

G
η ) =

1
2
(󵄩󵄩󵄩󵄩u

G
η
󵄩󵄩󵄩󵄩
2 − 󵄩󵄩󵄩󵄩u

G
η
󵄩󵄩󵄩󵄩
2)

− ∫
ℳ

w(σ)(F(uG
η ) − F(u

G
η ))dσg

= −
1
2
∫

U(uG
η )

󵄨󵄨󵄨󵄨∇u
G
η
󵄨󵄨󵄨󵄨dσg

+
1
2
∫

U(uG
η )

(󵄨󵄨󵄨󵄨u
G
η
󵄨󵄨󵄨󵄨
2 − 󵄨󵄨󵄨󵄨u

G
η
󵄨󵄨󵄨󵄨
2)dσg

− ∫
U(uG

η )

w(σ)(F(uG
η ) − F(u

G
η ))dσg .

(8.19)

Moreover,

∫
U(uG

η )

(󵄨󵄨󵄨󵄨u
G
η
󵄨󵄨󵄨󵄨
2 − 󵄨󵄨󵄨󵄨u

G
η
󵄨󵄨󵄨󵄨
2)dσg = − ∫

U1(uG
η )

󵄨󵄨󵄨󵄨u
G
η
󵄨󵄨󵄨󵄨
2dσg

+ ∫
U2(uG

η )

(δ2 − 󵄨󵄨󵄨󵄨u
G
η
󵄨󵄨󵄨󵄨
2)dσg ⩽ 0.

(8.20)

Since f (t) = 0 for every t ≤ 0 by definition, we get

∫
U1(uG

η )

w(σ)(F(uG
η ) − F(u

G
η ))dσg = 0. (8.21)

Thanks to the mean value theorem, for a. e. σ ∈ U2(uG
η ) there exists a number θ(σ) ∈

[δ, uG
η (σ)] ⊆ [δ, η] such that

F(uG
η (σ)) − F(u

G
η (σ)) = F(δ) − F(u

G
η (σ)) = f (θ(σ))(δ − u

G
η (σ)).

Thus, taking into account (8.12) and the definition of U2(uG
η ), we have

∫
U2(uG

η )

w(σ)(F(uG
η ) − F(u

G
η ))dσg = ∫

U2(uG
η )

w(σ)f (θ)(δ − uG
η )dσg ≥ 0 . (8.22)

Hence, by (8.21) and (8.22), we get that

∫
U(uG

η )

w(σ)(F(uG
η ) − F(u

G
η ))dσg ≥ 0.
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As a consequence, (8.19) and (8.20) yield

ℰG
aux( u

G
η ) − ℰ

G
aux(u

G
η ) ≤ 0 . (8.23)

On the other hand, it is apparent that ℰG
aux(u

G
η ) ≥ ℰ

G
aux(u

G
η ), since u

G
η ∈ W

G
η (ℳ). There-

fore, (8.23) gives

ℰG
aux( u

G
η ) = ℰ

G
aux(u

G
η ).

Since all the integrals on the right-hand side of (8.19) are nonpositive, it is easy to see
that every integral in (8.19) should be zero. In particular,

∫
ℳ

w(σ)(F(uG
η ) − F(u

G
η ))dσg = 0. (8.24)

Also, note that the integrals on the right-hand side of (8.20) are both nonpositive.
Thus, (8.24) gives

∫
U1(uG

η )

󵄨󵄨󵄨󵄨u
G
η
󵄨󵄨󵄨󵄨
2dσg = ∫

U2(uG
η )

(󵄨󵄨󵄨󵄨u
G
η
󵄨󵄨󵄨󵄨
2 − δ2)dσg = 0.

The definitions of U1(uG
η ) and U2(uG

η ) provide Volg(U1(uG
η )) = Volg(U2(uG

η )) = 0, that
is, Volg(U(uG

η )) = 0. This is impossible and proves (ii).

(iii)We divide the proof in two steps.

Step 1. ⟨ℰ 󸀠aux(u
G
η ), u − u

G
η ⟩ ≥ 0 for every u ∈ Wη(ℳ).

Let ψWη
be the indicator function of the setWη(ℳ), i. e.,

ψWη
(u) = { 0 if u ∈ Wη(ℳ),

∞ if u ∉ Wη(ℳ).

The functional Jη : H1
g(ℳ)→ ℝ ∪ {∞}, given by

Jη = ℰaux + ψWη
,

is of Szulkin’s type, since ℰaux is of class C1(H1
g(ℳ)) and ψWη

is convex, lower semi-
continuous, and proper, as Wη(ℳ) is closed and convex in H1

g(ℳ). Now, W
G
η (ℳ) =

Wη(ℳ)∩H1
G ,g(ℳ), so that the restriction of ψWη

toH1
G ,g(ℳ) is precisely the indicator

function ψWG
η
of the setWG

η (ℳ), i. e.,

ψWG
η
(u) = {

0 if u ∈ WG
η (ℳ),

∞ if u ∉ WG
η (ℳ).
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By (i), the function uG
η is a minimum of ℰG

aux inW
G
η (ℳ). Hence, u

G
η a local minimum

of the Szulkin functional 𝒥 G
η : H

1
G ,g(ℳ)→ ℝ ∪ {∞} defined by

𝒥 G
η = ℰ

G
aux + ψWG

η
.

Proposition A.2.1 yields that uG
η is a critical point of 𝒥 G

η in H1
G ,g(ℳ), that is,

0 ∈ (ℰG
aux)
󸀠(uG

η ) + 𝜕ψWG
η
(uG

η ) in (H
1
G ,g(ℳ))

󸀠,

where 𝜕ψWG
η
stands for the subdifferential of the convex function ψWG

η
.

In order to apply the Palais principle recalled in Theorem A.2.2, the functionals
ℰaux and ψWη

need to be G -invariant. Let us prove that ℰaux is G -invariant. To show
this, let u ∈ H1

g(ℳ) and τ ∈ G be fixed. Since τ ∈ G is an isometry, on account of (8.3),
we get the chain rule as follows:

∇g(τ ⊛G u)(σ) = Dττ−1(σ)∇gu(τ−1(σ)), (8.25)

for a. e. σ ∈ℳ, where Dττ−1(σ) : Tτ−1(σ)(ℳ) → Tσ(ℳ) denotes the differential of τ ∈ G

at the point τ−1(σ). Setting y = τ−1(σ), it follows that

‖τ ⊛G u‖2 = ∫
ℳ

󵄨󵄨󵄨󵄨∇g(τ ⊛G u)(σ)󵄨󵄨󵄨󵄨
2
σdσg + ∫

ℳ

󵄨󵄨󵄨󵄨(τ ⊛G u)(σ)󵄨󵄨󵄨󵄨
2dσg

= ∫
ℳ

󵄨󵄨󵄨󵄨∇gu(τ
−1(σ))󵄨󵄨󵄨󵄨

2
τ−1(σ)dσg + ∫

ℳ

󵄨󵄨󵄨󵄨u(τ
−1(σ))󵄨󵄨󵄨󵄨

2dσg (8.26)

= ∫
ℳ

󵄨󵄨󵄨󵄨∇gu(y)
󵄨󵄨󵄨󵄨
2
ydσg(y) + ∫

ℳ

󵄨󵄨󵄨󵄨u(y)
󵄨󵄨󵄨󵄨
2dσg(y)

= ‖u‖2,

where we havemade use of (8.25) and of the fact that themapDττ−1(σ) is inner product
preserving.

Moreover, since the weight w is radially symmetric with respect to the point σ0 ∈
ℳ, thanks to (8.13), for a. e. σ ∈ℳ and τ ∈ G , we have

w(τ(σ)) = ψ(dg(σ0, τ(σ))) = ψ(dg(τ(σ0), τ(σ))) = ψ(dg(σ0, σ)) = w(σ),

and consequently,

∫
ℳ

w(σ)(
(τ⊛G u)(σ)

∫
0

f (t)dt)dσg = ∫
ℳ

w(σ)(
u(τ−1(σ))
∫
0

f (t)dt)dσg

= ∫
ℳ

w(y)(
u(y)

∫
0

f (t)dt)dσg(y).
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Therefore, recalling (8.26), we obtain that for every τ ∈ G and u ∈ H1
g(ℳ),

ℰaux(τ ⊛G u) = 1
2
‖τ ⊛G u‖2 − ∫

ℳ

w(σ)(
(τ⊛G u)(σ)

∫
0

f (t)dt)dσg = ℰaux(u),

which proves the claim.
Moreover, due to the fact that the setWη(ℳ) is G -invariant, the functional ψWη

is
G -invariant as well. SinceH1

G ,g(ℳ) is exactly the closed subspace of the G -symmetric
points of H1

g(ℳ), from Theorem A.2.2 we obtain

0 ∈ ℰ 󸀠aux(u
G
η ) + 𝜕ψWη

(uG
η ) in (H1

g(ℳ))
󸀠,

Consequently, for every u ∈ Wη(ℳ), we have

⟨ℰ 󸀠aux(u
G
η ), u − u

G
η ⟩ = ⟨ℰ

󸀠
aux(u

G
η ), u − u

G
η ⟩ + ψWη

(u) − ψWη
(uG

η ) ≥ 0,

which is exactly what is claimed in Step 1.

Step 2. uG
η is a solution of (8.9), that is,

{
⟨uG

η ,φ⟩ = ∫ℳ w(σ)f (uG
η )φdσg for any φ ∈ H1

g(ℳ),

uG
η ∈ H

1
g(ℳ).

Step 1 ensures that

⟨uG
η , u − u

G
η ⟩ − ∫

ℳ

w(σ)f (uG
η )(u − u

G
η )dσg ≥ 0 (8.27)

for every u ∈ Wη(ℳ). Let us define the truncation function ϕ : ℝ→ ℝ given by

ϕ(t) = sgn(t)min(|t|, η) for every t ∈ ℝ.

Fix ε > 0 and φ ∈ H1
g(ℳ) arbitrarily; see Figure 8.5.

Figure 8.5: The truncation function ϕ.
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Sinceϕ is Lipschitz continuous, uϕ = ϕ∘(uG
η +εφ) belongs toH

1
g(ℳ), see E. Hebey

[122, Proposition 2.5, p. 24]. Set

{uG
η + εφ < −η} = {σ ∈ℳ : u

G
η (σ) + εφ(σ) < −η},

{󵄨󵄨󵄨󵄨u
G
η + εφ
󵄨󵄨󵄨󵄨 < η} = {σ ∈ℳ :

󵄨󵄨󵄨󵄨u
G
η (σ) + εφ(σ)

󵄨󵄨󵄨󵄨 < η},

{η ≤ uG
η + εφ} = {σ ∈ℳ : η ≤ u

G
η (σ) + εφ(σ)}.

The explicit expression of uϕ is

uϕ(σ) =
{{{
{{{
{

−η, if σ ∈ {uG
η + εφ < −η},

uG
η (σ) + εφ(σ), if σ ∈ {−η ≤ uG

η + εφ < η},
η, if σ ∈ {η ≤ uG

η + εφ}.

Therefore, uϕ ∈ Wη(ℳ). Taking u = uϕ as a test function in (8.27), we easily have

0 ≤ − ∫
{uG

η +εφ<−η}

{󵄨󵄨󵄨󵄨∇u
G
η
󵄨󵄨󵄨󵄨
2 + uG

η (η + u
G
η ) − w(σ)f (u

G
η )(η + u

G
η )}dσg

+ ε ∫
{|uG

η +εφ|<η}

{⟨∇uG
η , ∇φ⟩g + u

G
η φ − w(σ)f (u

G
η )φ}dσg

− ∫
{η≤uG

η +εφ}

{󵄨󵄨󵄨󵄨∇u
G
η
󵄨󵄨󵄨󵄨
2 − uG

η (η − u
G
η ) + w(σ)f (u

G
η )(η − u

G
η )}dσg .

Hence, it follows that

ε{⟨uG
η ,φ⟩ − ∫

ℳ

w(σ)f (uG
η )φdσg}

≥ ε ∫
{uG

η +εφ<−η}∪{η≤uG
η +εφ}

⟨∇uG
η , ∇φ⟩gdσg

+ ∫
{uG

η +εφ<−η}∪{η≤uG
η +εφ}

󵄨󵄨󵄨󵄨∇u
G
η
󵄨󵄨󵄨󵄨
2dσg

− ∫
{uG

η +εφ<−η}

{w(σ)f (uG
η ) − u

G
η }(η + u

G
η + εφ)dσg

− ∫
{η≤uG

η +εφ}

{w(σ)f (uG
η ) − u

G
η }(−η + u

G
η + εφ)dσg

≥ ε ∫
{uG

η +εφ<−η}∪{η≤uG
η +εφ}

⟨∇uG
η , ∇φ⟩gdσg

− ∫
{uG

η +εφ<−η}

{w(σ)f (uG
η ) − u

G
η }(η + u

G
η + εφ)dσg
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− ∫
{η≤uG

η +εφ}

{w(σ)f (uG
η ) − u

G
η }(−η + u

G
η + εφ)dσg .

Since uG
η ∈ [0, δ] ⊂ [−η, η] a. e. inℳ, we have

∫
{uG

η +εφ<−η}

{w(σ)f (uG
η ) − u

G
η }(η + u

G
η + εφ)dσg

≤ −ε ∫
{uG

η +εφ<−η}

[Mw(σ) + uG
η ]φ(σ)dσg

and

∫
{η≤uG

η +εφ}

{w(σ)f (uG
η ) − u

G
η }(−η + u

G
η + εφ)dσg ≤ εM ∫

{η≤uG
η +εφ}

w(σ)φdσg .

Using the above estimates and dividing by ε > 0, we obtain

⟨uG
η ,φ⟩ − ∫

ℳ

w(σ)f (uG
η )φdσg ≥ ∫

{uG
η +εφ<−η}∪{η≤uG

η +εφ}

⟨∇uG
η , ∇φ⟩gdσg

+ ∫
{uG

η +εφ<−η}

[Mw(σ) + uG
η ]φ(σ)dσg

−M ∫
{η≤uG

η +εφ}

w(σ)φdσg .

Now, taking into account that uG
η ∈ [0, δ] a. e. inℳ and δ < η by (8.12), we get

Volg({u
G
η + εφ < −η})→ 0 and Volg({η ≤ u

G
η + εφ})→ 0

as ε → 0+. Consequently, the above inequality reduces to

⟨∇uG
η , ∇φ⟩ − ∫

ℳ

w(σ)f (uG
η )φdσg ≥ 0.

Replacing φ by −φ, we obtain the reverse inequality. Therefore, uG
η is a solution

of (8.9). This completes the proof of Step 2 and of the theorem.

8.3 Competition phenomena for elliptic equations

Let us turn back to (Pλ) and study the number and the behavior of its solutions, when
λ is a real parameter, f : ℝ+0 → ℝ is a continuous function oscillating near the origin
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or at infinity, and f : ℝ+0 → ℝ is any continuous function, with f(0) = 0. We again
assume that the potential w : ℳ → ℝ satisfies condition (w) as before. The analy-
sis is based on variational and topological techniques in addition to the preliminary
results presented in Sections 8.1 and 8.2. The main theorems of the section cover two
distinct cases, that is, when the nonlinearity f oscillates near the origin or at infinity,
respectively.

Oscillation near the origin
In this case we assume the following conditions on f :

f ∈ C(ℝ+0); (8.28)
There is (sk)k in ℝ

+,with lim
k→∞

sk = 0 and f (sk) < 0 for any k ∈ ℕ; (8.29)

−∞ < lim inf
t→0+ F(t)

t2
≤ lim sup

t→0+ F(t)
t2
=∞. (8.30)

Theorem 8.3.1. Letℳ = (ℳ, g) be a homogeneous Hadamard manifold of dimension
N ≥ 3 and let G be a compact connected subgroup of Isomg(ℳ) such that FixG (ℳ) =
{σ0}. Let f : ℝ+0 → ℝ be a function verifying (8.28)–(8.29) and w :ℳ → ℝ a potential
satisfying (w). The following facts hold:
(i1) If λ = 0 there exists a sequence (uG ,0

0,k )k ⊂ H
1
g(ℳ) of distinct G -symmetric solutions

of (P0) such that

lim
k→∞
󵄩󵄩󵄩󵄩u

G ,0
0,k
󵄩󵄩󵄩󵄩 = lim

k→∞
󵄩󵄩󵄩󵄩u

G ,0
0,k
󵄩󵄩󵄩󵄩∞ = 0. (8.31)

(i2) If f ∈ C(ℝ+0), with f(0) = 0, then for every j ∈ ℕ there exists λ
0
j > 0 such that (Pλ) has

at least j distinctG -symmetric solutions inH1
g(ℳ)whenever λ ∈ [−λ

0
j , λ

0
j ]. Moreover,

denoted by (uG ,λ
0,i )

j
i=1 ⊂ H

1
g(ℳ) the j distinct G -symmetric solutions of (Pλ), then

󵄩󵄩󵄩󵄩u
G ,λ
0,i
󵄩󵄩󵄩󵄩 ≤ 1/i and 󵄩󵄩󵄩󵄩u

G ,λ
0,i
󵄩󵄩󵄩󵄩∞ ≤ 1/i for every i = 1, . . . , j, (8.32)

provided that λ ∈ [−λ0j , λ
0
j ].

Proof. Since the nonlinear terms f and f are continuous, on account of (8.29), there
are positive real sequences, (δk)k, (ηk)k, and (λk)k such that

lim
k→∞

δk = lim
k→∞

ηk = 0; (8.33)

for every k ∈ ℕ, one has ηk+1 < δk < sk < ηk < 1 and (8.34)
f (t) + λf(t) ≤ 0 for every t ∈ [δk , ηk] and λ ∈ [−λk , λk]. (8.35)

Bearing in mind the notation given in (8.8), let us consider the real functions fk, fk :
ℝ+0 → ℝ given by

fk(t) = f (ϕηk (t)) and fk(t) = f(ϕηk (t)) (8.36)
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for every t ∈ ℝ+0 and k ∈ ℕ, where ϕηk is defined in (8.8). Now, fk(0) = fk(0) = 0 for
every k ∈ ℕ. Indeed, f(0) = 0 by assumption, and (8.29) implies that also f (0) = 0.
Thus, for every k ∈ ℕ, we extend continuously the functions fk and fk to the whole
real line, taking fk(t) = fk(t) = 0 for every t < 0. Hence, for every k ∈ ℕ, the explicit
expressions of fk and fk are

fk(t) =
{{{
{{{
{

f (ηk) if t > ηk ,
f (t) if 0 ≤ t ≤ ηk ,
0 if t < 0,

and fk(t) =
{{{
{{{
{

f(ηk) if t > ηk ,
f(t) if 0 ≤ t ≤ ηk ,
0 if t < 0,

see Figure 8.6 below.

Figure 8.6: The truncation function fk .

Fix k ∈ ℕ and λ ∈ [−λk , λk]. Let f k,λ : ℝ→ ℝ be the function defined by

f k,λ(t) = fk(t) + λfk(t) and Fk,λ(t) =
t

∫
0

f k,λ(s)ds (8.37)

for all t ∈ ℝ. Let us put for simplicity

ℰk,λ(u) =
1
2
‖u‖2 − ∫

ℳ

w(σ)Fk,λ(u) dσg (8.38)

for all u ∈ H1
g(ℳ), cf. (8.14). Clearly, ℰk,λ is the energy functional associated to (8.9),

when f = f k,λ. The function f k,λ verifies all the assumptions of Theorem 8.2.1.
Hence, as a consequence of Theorem 8.2.1, there exists a G -symmetric function

uG ,λ
0,k ∈ W

G
ηk (ℳ) such that

min
u∈WG

ηk
(ℳ)

ℰG
k,λ(u) = ℰ

G
k,λ(u

G ,λ
0,k ) and uG ,λ

0,k ∈ [0, δk] a. e. inℳ, (8.39)
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where the functional ℰG
k,λ : H

1
G ,g(ℳ)→ ℝ is given by

ℰG
k,λ(u) =

1
2
‖u‖2 − ∫

ℳ

w(σ)Fk,λ(u) dσg , (8.40)

and uG ,λ
0,k is a nonnegative solution of

{
−Δgu + u = w(σ)f k,λ(u) inℳ,

u ≥ 0 inℳ, u ∈ H1
g(ℳ).

(8.41)

The definition of ϕηk , (8.37), and the fact that uG ,λ
0,k ≤ δk < ηk a. e. in ℳ by (8.34)

and (8.39) yield

f k,λ(u
G ,λ
0,k ) = f (ϕηk (u

G ,λ
0,k )) + λf(ϕηk (u

G ,λ
0,k ))

= f (uG ,λ
0,k ) + λf(u

G ,λ
0,k ) a. e. inℳ.

Thus, the above relation ensures that uG ,λ
0,k is a nonnegative solution not only of (8.41)

but also of (Pλ).
(i1) Assume λ = 0. We have to prove that there are infinitely many distinct elements in
the sequence (uG ,0

0,k )k such that (8.31) holds. In order to see this, we first claim that

ℰG
k,0(u

G ,0
0,k ) < 0 for every k ∈ ℕ. (8.42)

The right-hand side of (8.30) implies the existence of some ℓ0 > 0 and ς0 ∈ (0, η1) such
that

F(t) ≥ − ℓ0t
2 for every t ∈ (0, ς0). (8.43)

Set 0 < r < ρ and choose L0 > 0 so large that

L0 >
1

infσ∈Aρ
r (σ0) w(σ)

[(
1
2
+
2
r2
) + ℓ0

‖w‖1
Volg(A

ρ
r (σ0))
], (8.44)

where Aρr (σ0) is the annulus type domain given by

Aρr (σ0) = {σ ∈ℳ : ρ − r < dg(σ0, σ) < ρ + r};

see Figure 8.7.
Moreover, taking into account the right-hand side of (8.30), there is a sequence

(tk)k in (0, ς0) such that limk→∞ tk = 0 and

F(tk) > L0t
2
k (8.45)

for k ∈ ℕ. Since limk→∞ δk = 0, we choose a subsequence of (δk)k, still denoted by
(δk)k, such that

tk ≤ δk (8.46)

for every k ∈ ℕ.
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Figure 8.7: The annulus type domain Aρr (σ0).

Figure 8.8: The truncation function u
ρ,r
tk
.

Now, consider the G -invariant function defined in (8.6) with s = tk, that is,

u
ρ,r
tk (σ) =

{{
{{
{

0 if σ ∈ℳ \ Aρr (σ0),
tk if σ ∈ Aρr/2(σ0),
2tk
r (r − |dg(σ0, σ) − ρ|) if σ ∈ Aρr (σ0) \ A

ρ
r/2(σ0),

(8.47)

for every σ ∈ ℳ; see Figure 8.8. Then, uρ,rtk ∈ H
1
G ,g(ℳ) and ‖u

ρ,r
tk ‖∞ = tk ≤ δk < ηk

by (8.30) and (8.46). Hence, uρ,rtk ∈ W
G
ηk (ℳ) and 0 ≤ uρ,rtk ≤ tk ≤ δk < ηk a. e. in ℳ.

Consequently,

uρ,r
tk
(σ)

∫
0

f k,0(t)dt =

uρ,r
tk
(σ)

∫
0

f (ϕηk (t))dt =

uρ,r
tk
(σ)

∫
0

f (t)dt

for a. e. σ ∈ℳ. Thus, by (8.7), for every k ∈ ℕ we have

ℰG
k,0(u

ρ,r
tk ) =

1
2
󵄩󵄩󵄩󵄩u

ρ,r
tk
󵄩󵄩󵄩󵄩
2 − ∫

ℳ

w(σ)Fk,0(u
ρ,r
tk ) dσg

=
1
2
󵄩󵄩󵄩󵄩u

ρ,r
tk
󵄩󵄩󵄩󵄩
2 − F(tk) ∫

Aρ
r/2(σ0)

w(σ)dσg
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− ∫
Aρ
r (σ0)\A

ρ
r/2(σ0)

w(σ)F( uρ,rtk )dσg

≤ {(
1
2
+
2
r2
)Volg(A

ρ
r (σ0))

− L0Volg(A
ρ
r (σ0)) inf

σ∈Aρ
r (σ0)

w(σ) + ℓ0‖w‖1}t
2
k ,

thanks to (8.43), (8.45), and using the fact that uρ,rtk < ηk < η1, due to (ηk)k being de-
creasing by (8.29). Then by (8.44), we get that

ℰG
k,0(u

ρ,r
tk ) < 0 for every k ∈ ℕ.

Then, using also (8.39), we obtain for all k ∈ ℕ,

ℰG
k,0(u

G ,0
0,k ) = min

u∈WG
ηk
(ℳ)

ℰG
k,0(u) ≤ ℰ

G
k,0(u

ρ,r
tk ) < 0, (8.48)

which proves (8.42). Inequality (8.48) also guarantees that uG ,0
0,k ̸≡0 inℳ, as ℰG

k,0(0)=0.
Now, we claim that

lim
k→∞

ℰG
k,0(u

G ,0
0,k ) = 0. (8.49)

Indeed, for k ∈ ℕ, the definition of Fk,0, the fact that Fk(0) = 0, (8.39), (8.34), and the
mean value theorem give

ℰG
k,0(u

G ,0
0,k ) > − ∫

ℳ

w(σ)Fk,0(u
G ,0
0,k )dσg

= − ∫
ℳ

w(σ)Fk(u
G ,0
0,k ) dσg

≥ − max
t∈[0,1]
󵄨󵄨󵄨󵄨f (t)
󵄨󵄨󵄨󵄨 ∫
ℳ

w(σ)󵄨󵄨󵄨󵄨u
G ,0
0,k
󵄨󵄨󵄨󵄨dσg

≥ − max
t∈[0,1]
󵄨󵄨󵄨󵄨f (t)
󵄨󵄨󵄨󵄨 ‖w‖1δk .

(8.50)

Since limk→∞ δk = 0 by (8.33), the above inequality and (8.48) lead to (8.49), and so
the claim is proved. Due to (8.36) and (8.39), we notice that

ℰG
k,0(u

G ,0
0,k ) = ℰ

G
1,0(u

G ,0
0,k ) for every k ∈ ℕ.

Combining the above relation with (8.42) and (8.49), we deduce that the sequence
(uG ,0

0,k )k contains infinitelymany distinct elements, that is, (Pλ) has infinitelymany dis-
tinct G -symmetric solutions.

Finally, it remains toprove relation (8.31). Since ‖uG ,0
0,k ‖∞ ≤ δk for k ∈ ℕ sufficiently

large by (8.39), and limk→∞ δk = 0, we easily get that limk→∞ ‖uG ,0
0,k ‖∞ = 0.
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For the latter limit in (8.31), note that

1
2
󵄩󵄩󵄩󵄩u

G ,0
0,k
󵄩󵄩󵄩󵄩
2 < ∫

ℳ

w(σ)Fk,0(u
G ,0
0,k )dσg

= ∫
ℳ

w(σ)Fk(u
G ,0
0,k )dσg

≤ max
t∈[0,1]
󵄨󵄨󵄨󵄨f (t)
󵄨󵄨󵄨󵄨 ‖w‖1δk ,

(8.51)

thanks to (8.28), (8.39), and (8.42).
Thus, by (8.33), inequality (8.51) yields

lim
k→∞
󵄩󵄩󵄩󵄩u

G ,0
0,k
󵄩󵄩󵄩󵄩 = 0,

which concludes the proof of (i1).
(i2) It remains to prove that for any j ∈ ℕ equation (Pλ) admits at least j distinct solu-
tions, namely (uG ,λ

0,i )
j
i=1 ⊂ H

1
g(ℳ), which verify (8.32), provided that λ is suitably small.

Fix j ∈ ℕ. Let (ϑk)k be a real sequence such that ϑk < 0 and limk→∞ ϑk = 0. Up to
a subsequence, still denoted by (ϑk)k, we may assume that for all k ∈ ℕ,

ϑk < ℰ
G
k,0(u

G ,0
0,k ) ≤ ℰ

G
k,0(u

ρ,r
tk ) < ϑk+1, (8.52)

where the function u
ρ,r
tk is given in (8.47) and

δk <
1
k
min{1, 1

2k‖w‖1(maxt∈[0,1] |f (t)| +maxt∈[0,1] |f(t)|)
}. (8.53)

For every k ∈ ℕ, set

λ󸀠k =
ϑk+1 − ℰG

k,0(u
ρ,r
tk )

‖w‖1(maxt∈[0,1] |f (t)| + 1)
and λ󸀠󸀠k =

ℰG
k,0(u

G ,0
0,k ) − ϑk

‖w‖1(maxt∈[0,1] |f(t)| + 1)
. (8.54)

Define

λ0j = min
i∈{1,...,j}
{1, λi, λ

󸀠
i , λ
󸀠󸀠
i }.

Clearly, λ0j is positive on account of (8.52) and (8.54).
From now on we fix i ∈ {1, . . . , j} and λ ∈ [−λ0j , λ

0
j ]. We claim that

ϑk < ℰ
G
k,λ(u

G ,λ
0,k ) < ϑk+1. (8.55)

Indeed, by (8.39), the definition of λ󸀠k, and (8.34), it follows that

ℰG
k,λ(u

G ,λ
0,k ) ≤ ℰ

G
k,λ(u

ρ,r
tk ) = ℰ

G
k,0(u

ρ,r
tk ) − λ ∫

ℳ

w(σ) Fk(u
ρ,r
tk )dσg < ϑk+1. (8.56)
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On the other hand, since uG ,λ
0,k ∈ W

G
ηk (ℳ), bearing in mind the definition of λ󸀠󸀠k and

recalling that ℰG
k,0(u

G ,0
0,k ) = minu∈WG

ηk
(ℳ) ℰ

G
k,0(u) by (8.48), we obtain

ℰG
k,λ(u

G ,λ
0,k ) = ℰ

G
k,λ(u

G ,λ
0,k ) − λ ∫

ℳ

w(σ)Fk(u
G ,λ
0,k ) dσg

≥ ℰG
k,0(u

G ,0
0,k ) − λ ∫

ℳ

w(σ) Fk(u
G ,λ
0,k ) dσg

> ϑk ,

(8.57)

on account of (8.34).
Thus, by (8.56) and (8.57), the claim (8.55) is verified. Hence in particular,

ℰG
1,λ(u

G ,λ
0,1 ) < ℰ

G
2,λ(u

G ,λ
0,2 ) < ⋅ ⋅ ⋅ < ℰ

G
j−1,λ(u

G ,λ
0,j−1) < ℰ

G
j,λ(u

G ,λ
0,j ) (8.58)

for all λ ∈ [−λ0j , λ
0
j ]. Clearly, u

G ,λ
0,k ∈ W

η1
G (ℳ), so that

ℰG
k,0(u

G ,λ
0,k ) = ℰ

G
1 (u

G ,λ
0,k ) for every i ∈ {1, . . . , j}. (8.59)

Therefore, (8.58) and (8.59) yield

ℰG
1,λ(u

G ,λ
0,1 ) < ℰ

G
1,λ(u

G ,λ
0,2 ) < ⋅ ⋅ ⋅ < ℰ

G
1,λ(u

G ,λ
0,j−1) < ℰ

G
1,λ(u

G ,λ
0,j ) (8.60)

for every λ ∈ [−λ0j , λ
0
j ].

Inequalities given in (8.60) ensure that (uG ,λ
0,i )

j
i=1 ⊂ H

1
g(ℳ) are j distinct G -sym-

metric solutions of (Pλ).
It remains to show that (8.32) holds. It is clear that (8.39) and (8.53) give

󵄩󵄩󵄩󵄩u
G ,λ
0,i
󵄩󵄩󵄩󵄩∞ < δi <

1
i

for every i ∈ {1, . . . , j} and λ ∈ [−λ0j , λ
0
j ]. In order to prove the second relation in (8.32),

let us start by observing that

ℰG
i,0(u

G ,λ
0,i ) = ℰ

G
1 (u

G ,λ
0,i ) < ϑi+1 < 0 (8.61)

for every i ∈ {1, . . . , j}and λ ∈ [−λ0j , λ
0
j ]. Due to (8.61), thanks to themeanvalue theorem,

it follows that
1
2
󵄩󵄩󵄩󵄩u

G ,λ
0,i
󵄩󵄩󵄩󵄩
2 < ∫

ℳ

w(σ)F i,λ(u
G ,λ
0,i )dσg

= ∫
ℳ

w(σ)Fi(u
G ,λ
0,i )dσg + λ ∫

ℳ

w(σ) Fi(u
G ,λ
0,i )dσg

<
1
2i2
,

(8.62)

since λ < λ0j ≤ min{1, λi} and thanks to (8.34), (8.39), and (8.53). The proof is now
complete.
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A model for f in Theorem 8.3.1 is given by

f (t) = {
√t( 12 + sin√t) if t > 0,
0 if t ≤ 0 ,

(8.63)

and whose graph is given in Figure 8.9. Note that f is continuous in ℝ+0 and

F(t) = {
1
3 t√t + 2(2√t sin√t + (2 − t) cos√t) if t > 0,
0 if t ≤ 0.

Figure 8.9: The local behavior of f in (8.63) at zero.

Oscillation at infinity
This subsection is devoted to the study of (Pλ) when f oscillates at infinity. In order
to prove Theorem 8.3.2 below, we follow more or less the techniques of the previous
oscillatory case at 0. However, for completeness, we give all the details.

Precisely, we prove the main result under the following assumptions on the func-
tion f :

f ∈ C(ℝ+0) and f (0) = 0; (8.64)
There is (sk)k ⊂ ℝ

+,with lim
k→∞

sk =∞ and f (sk) < 0 for every k ∈ ℕ; (8.65)

−∞ < lim inf
t→∞

F(t)
t2
≤ lim sup

t→∞

F(t)
t2
=∞. (8.66)

In this setting, the multiplicity result for (Pλ) is:

Theorem 8.3.2. Let ℳ = (ℳ, g) be a homogeneous Hadamard manifold of dimen-
sion N ≥ 3 and take G to be a compact connected subgroup of Isomg(ℳ) such that
FixG (ℳ) = {σ0}. Let f : ℝ+0 → ℝ be a function verifying (8.64)–(8.66) and w :ℳ → ℝ
is a potential satisfying (w). Then, the next facts hold:
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(j1) If λ = 0, there exists a sequence (uG ,0
∞,k)k ⊂ H

1
g(ℳ) of distinct G -symmetric solutions

of (P0) such that

lim
k→∞
󵄩󵄩󵄩󵄩u

G ,0
∞,k
󵄩󵄩󵄩󵄩∞ = 0. (8.67)

(j2) If f ∈ C(ℝ+0), with f(0) = 0, for every j ∈ ℕ there exists λ∞j > 0 such that for all
λ ∈ [−λ∞j , λ

∞
j ] equation (Pλ) has at least j distinct G -symmetric solutions (uG ,λ

∞,i )
j
i=1

in H1
g(ℳ) such that

󵄩󵄩󵄩󵄩u
G ,λ
∞,i
󵄩󵄩󵄩󵄩 > i − 1 for every i = 1, . . . , j. (8.68)

Proof. The left-hand side of (8.66) ensures that there exist ℓ∞ > 0 and ς∞ > 0 such
that

F(t) ≥ − ℓ∞t
2 for every t ∈ (ς∞,∞). (8.69)

Set 0 < ϱ < ρ and choose L∞ > 0 so large that

L∞ >
1

infσ∈Aρ
ϱ(σ0) w(σ)

[(
1
2
+

2
ϱ2
) + ℓ∞

‖w‖1
Volg(A

ρ
ϱ(σ0))
], (8.70)

where Aρϱ(σ0) is the usual annulus type domain. Taking into account the right-hand
side of (8.66), there is a sequence (tk)k ⊂ ℝ+ such that limk→∞ tk =∞ and

F(tk) > L∞t
2
k for k ∈ ℕ. (8.71)

Since limk→∞ sk = ∞, by (8.65), there is a subsequence (smk
)k of (sk)k such that tk ≤

smk
for every k ∈ ℕ. By (8.65) and the continuity of f and f, there are positive real

sequences (δk)k, (ηk)k, and (λk)k such that

lim
k→∞

δk = lim
k→∞

ηk =∞; (8.72)

for every k ∈ ℕ it results δk < smk
< ηk < δk+1 and (8.73)

f (t) + λf(t) ≤ 0 for every t ∈ [δk , ηk] and λ ∈ [−λk , λk]. (8.74)

Arguing as in the proof of Theorem 8.3.1, we define fk , fk : ℝ+0 → ℝ given for every
k ∈ ℕ by

fk(t) = f (ϕηk (t)) and fk(t) = f(ϕηk (t)). (8.75)

Clearly, fk(0) = fk(0) = 0 for every k ∈ ℕ, since f (0) = f(0) = 0 by assumptions (8.28)
and (j2). Thus, for every k ∈ ℕ we extend continuously the functions fk and fk to the
whole real line, putting fk(t) = fk(t) = 0 for every t < 0.
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Fix k ∈ ℕ and λ ∈ [−λk , λk]. Define f k,λ : ℝ+0 → ℝ by

f k,λ(t) = fk(t) + λfk(t) and Fk,λ(t) =
t

∫
0

f k,λ(s)ds. (8.76)

Also, in what follows we denote by ℰG
k,λ the functional defined in (8.40), with now

Fk,λ given in (8.76). Clearly, ℰk,λ is the energy functional associated with (8.9), where
f = f k,λ. The function f k,λ verifies all the assumptions of Theorem 8.2.1. Hence, Theo-
rem 8.2.1 yields the existence of a G -symmetric function uG ,λ

∞,k inW
G
ηk (ℳ) such that

min
u∈WG

ηk
(ℳ)

ℰG
k,λ(u) = ℰ

G
k (u

G ,λ
∞,k), uG ,λ

∞,k ∈ [0, δk] a. e. inℳ, (8.77)

and so uG ,λ
∞,k is a nonnegative solution of

{
−Δgu + u = w(σ)f k,λ(u) inℳ,
u ≥ 0 inℳ, u ∈ H1

g(ℳ).
(8.78)

The definition of ϕηk , (8.76), and the fact that uG ,λ
∞,k ≤ δk < ηk a. e. in ℳ by (8.73)

and (8.77) yield

f k,λ(u
G ,λ
∞,k) = f (ϕηk (u

G ,λ
∞,k)) + λf(ϕηk (u

G ,λ
∞,k)) = f (u

G ,λ
∞,k) + λf(u

G ,λ
∞,k)

a. e. inℳ. Thus, the above relation and (8.77) ensure that uG ,λ
∞,k is a nonnegative solu-

tion not only of (8.78), but also of (Pλ). We are now in a position to prove the theorem.

(j1) Assume λ = 0. We claim that

lim
k→∞

ℰG
k,0(u

G ,0
∞,k) = −∞. (8.79)

Fix k ∈ ℕ. With the usual notation, take

u
ρ,r
tk (σ) =

{{
{{
{

0 if σ ∈ℳ \ Aρr (σ0),
tk if σ ∈ Aρr/2(σ0),
2tk
r (r − |dg(σ0, σ) − ρ|) if σ ∈ Aρr (σ0) \ A

ρ
r/2(σ0),

for a. e. σ ∈ℳ. Then, uρ,rtk ∈ H
1
G ,g(ℳ) and

ℰG
k,0(u

ρ,r
tk ) =

1
2
󵄩󵄩󵄩󵄩u

ρ,r
tk
󵄩󵄩󵄩󵄩
2 − ∫

ℳ

w(σ)Fk(u
ρ,r
tk ) dσg

≤ (
1
2
+
2
r2
)Volg(A

ρ
r (σ0))t

2
k − F(tk) ∫

Aρ
r/2(σ0)

w(σ)dσg
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− ∫
(Aρ

r (σ0)\A
ρ
r/2(σ0))∩{uρ,r

tk
>ς∞}

w(σ)Fk(u
ρ,r
tk )dσg

− ∫
(Aρ

r (σ0)\A
ρ
r/2(σ0))∩{uρ,r

tk
≤ς∞}

w(σ)Fk(u
ρ,r
tk )dσg

≤ {(
1
2
+
2
r2
)Volg(A

ρ
r (σ0))

− L∞Volg(A
ρ
r (σ0)) inf

σ∈Aρ
r (σ0)

w(σ) + ℓ∞‖w‖1}t
2
k

+ ‖w‖1 max
t∈[0,ς∞]󵄨󵄨󵄨󵄨F(t)󵄨󵄨󵄨󵄨tk ,

on account of (8.7), (8.69), and (8.71).
Therefore, since limk→∞ tk =∞ and (8.70) holds, we have

lim
k→∞

ℰG
k,0(u

ρ,r
tk ) = −∞.

Recalling that ℰG
k,0(u

G ,0
∞,k) ≤ ℰ

G
k,0(u

ρ,r
tk ) for all k, the claim (8.79) is immediately verified.

Now, (8.79) yields that the sequence (uG ,0
∞,k)k ⊂ H

1
g(ℳ) contains infinitely many

distinct solutions of (P0). Otherwise, the sequence (uG ,0
∞,k)k ⊂ H

1
g(ℳ) contains only a fi-

nite number, say k0, of distinct solutions {uG ,0
∞,k}

k0
k=1 of (P0). This is impossible by (8.79).

Finally, it remains to prove relation (8.67). Arguing again by contradiction, as-
sume that there exists a subsequence (uG ,0

∞,kn
)n of (uG ,0

∞,k)k such that for someM > 0,

󵄩󵄩󵄩󵄩u
G ,0
∞,kn
󵄩󵄩󵄩󵄩∞ ≤ M for every n and (uG ,0

∞,kn
)n ⊂ W

G
ηK (ℳ) for some K ∈ ℕ.

Thus, since ℰG
kn ,0 = ℰG

K,0 on WG
ηK (ℳ) for every kn ≥ K, by (8.73) and (8.75), and for

ηkn > ηK , we get

ℰG
K,0(u

G ,0
∞,K) = min

u∈WG
ηK
(ℳ)

ℰG
K,0(u) = min

u∈WG
ηK
(ℳ)

ℰG
kn ,0(u)

≥ min
u∈WG

ηkn
(ℳ)

ℰG
kn ,0(u) = ℰ

G
kn ,0(u

G ,0
∞,kn
)

≥ min
u∈WG

ηK
(ℳ)

ℰG
K,0(u) = ℰ

G
K,0(u

G ,0
∞,K).

Consequently,

ℰG
kn ,0(u

G ,0
∞,kn
) = ℰG

K,0(u
G ,0
∞,K) for every n ∈ ℕ. (8.80)

On the other hand, the sequence (ℰG
k,0(u

G ,0
∞,k))k is nonincreasing. Indeed, by (8.75)

and (8.78), it follows that

ℰG
k+1,0(u

G ,0
∞,k+1) = min

u∈WG
ηk+1 (ℳ) ℰ

G
k+1,0(u)
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≤ min
u∈WG

ηk
(ℳ)

ℰG
k+1,0(u)

= min
u∈WG

ηk
(ℳ)

ℰG
k,0(u)

= ℰG
k,0(w

G ,0
∞,k).

Thus, by (8.80) there exists k0 ∈ ℕ such that

ℰG
k,0(u

G ,0
∞,k) = ℰ

G
K,0(u

G ,0
∞,K) for every k ≥ k0,

which clearly contradicts (8.79). This fact concludes the proof of (j1).

(j2) Fix j ∈ ℕ and λ. Let (uG ,λ
∞,i )

j
i=1 ⊂ H

1
g(ℳ) be the critical points of ℰ

G
i,λ, i = 1, . . . , j,

constructed in (8.77).
Let (ϑk)k be a real sequence such that ϑk < 0, limk→∞ ϑk = −∞, and

ϑk+1 < ℰ
G
k,0(u

G ,λ
∞,k) ≤ ℰ

G
k,0(u

ρ,r
tk ) < ϑk and δk ≥ k (8.81)

for all k, where the function u
ρ,r
tk is given in (8.47).

Fix k ∈ ℕ and set

λ󸀠k =
ϑk+1 − ℰG

k,0(u
ρ,r
tk )

‖w‖1(maxt∈[0,ηk] |f (t)| + 1)ηk
, λ󸀠󸀠k =

ℰG
k,0(u

G ,0
∞,k) − ϑk

‖w‖1(maxt∈[0,ηk] |f(t)| + 1)ηk
. (8.82)

Define

λ∞j = min
i∈{1,...,j}
{1, λi, λ

󸀠
i , λ
󸀠󸀠
i }.

Clearly λ∞j is positive by (8.81) and (8.82). Now, for every i ∈ {1, . . . , j} and λ ∈
[−λ∞j , λ

∞
j ], we claim that

ϑi+1 < ℰ
G
i,λ(u

G ,λ
∞,i) < ϑi. (8.83)

Indeed, by (8.77), the definition of λ󸀠i , and (8.73), it follows that

ℰG
i,λ(u

G ,λ
∞,k) ≤ ℰ

G
i,λ(u

ρ,r
ti ) = ℰ

G
i,0(u

ρ,r
ti ) − λ ∫

ℳ

w(σ) Fi(u
ρ,r
ti )dσg < ϑi, (8.84)

since ti ≤ smi
by construction.

On the other hand, since uG ,λ
0,i ∈ W

G
ηi (ℳ), by the definition of λ󸀠󸀠i and by (8.77)

when λ = 0, we have

ℰG
i,λ(u

G ,λ
∞,i) = ℰ

G
i,λ(u

G ,λ
∞,i) − λ ∫

ℳ

w(σ)Fi(u
G ,λ
∞,i)dσg
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≥ ℰG
i,0(u

G ,0
∞,i ) − λ ∫

ℳ

w(σ) Fi(u
G ,λ
∞,i)dσg (8.85)

> ϑi+1,

since again ti ≤ smi
.

Thus, by (8.84) and (8.85), inequality (8.83) is verified for every i ∈ {1, . . . , j} and
λ ∈ [−λ∞j , λ

∞
j ]. Hence

ℰG
k,λ(u

G ,λ
∞,k) < ℰ

G
k−1,λ(u

G ,λ
∞,k−1) < ⋅ ⋅ ⋅ < ℰ

G
2,λ(u

G ,λ
∞,2) < ℰ

G
1,λ(u

G ,λ
∞,1) < 0. (8.86)

In particular, uG ,λ
∞,i ∈ W

G
ηk (ℳ) implies that

ℰG
i,λ(u

G ,λ
∞,i) = ℰ

G
1,λ(u

G ,λ
∞,k) for every i ∈ {1, . . . , j}.

Therefore, (8.86) gives

ℰG
j,λ(u

G ,λ
∞,j) < ℰ

G
j,λ(u

G ,λ
∞,j−1) < ⋅ ⋅ ⋅ < ℰ

G
j,λ(u

G ,λ
∞,2) < ℰ

G
j,λ(u

G ,λ
∞,1) < 0 (8.87)

for every λ ∈ [−λ∞j , λ
∞
j ].

Consequently, (8.87) implies that (uG ,λ
0,i )

j
i=1 ⊂ H1

g(ℳ) are j distinct G -symmetric
solutions of (Pλ).

It remains to show that (8.68) holds. Fix λ ∈ [−λ∞j , λ
∞
j ]. The conclusion is valid

for i = 1. Indeed, ℰG
1,λ(u

G ,λ
∞,1) < ℰ

G
1,λ(0) = 0 gives that ‖u

G ,λ
∞,1‖∞ > 0. Let us claim that

󵄩󵄩󵄩󵄩u
G ,λ
∞,i
󵄩󵄩󵄩󵄩 > δi−1 for every i = 2, . . . , j. (8.88)

Otherwise, ‖uG ,λ
∞,i‖ ≤ δi−1 for some i ∈ {2, . . . , j}. Hence, uG ,λ

∞,i ∈ WG
ηi−1 (ℳ), since

δi−1 < ηi−1. Then, (8.75) and (8.77) yield that

ℰG
i−1,λ(u

G ,λ
∞,i−1) = min

u∈Wηi−1
G (ℳ)

ℰG
i−1,λ(u) ≤ ℰ

G
i−1,λ(u

G ,λ
∞,i) = ℰ

G
i,λ(u

G ,λ
∞,i).

This contradicts (8.86), and so the claim (8.88) is proved.
Furthermore, (8.68) follows from (8.88) by (8.81), and the proof is now com-

plete.

A continuous prototype of f , with oscillations at∞, is given by

f (t) = tα(γ + sin tβ), t ∈ ℝ+0 ,

where α > 1, β > 0, γ ∈ (0, 1), and |α − β| < 1. Direct calculations show that f satisfies
assumptions (8.64), (8.65), and (8.66) of Theorem 8.3.2.
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Comments on Chapter 8
Theorems 8.3.1 and 8.3.2 apply to the N-dimensional Euclidean space endowed by
the standard metric under the natural multiplicative action of the orthogonal group
O(N). In such a case, Theorems 8.3.1 and 8.3.2 reduce to the results proved in [143].
Moreover, thanks to the famous compact embedding theorems due to P.-L. Lions [160]
and W.A. Strauss [236], the main results remain valid in the presence of block-radial
symmetries under the natural action of the direct product group T = ∏jk=1 O(Nk) on
ℝN , whenever ∑jk=1 Nk = N and Nk ≥ 2 for every k = 1, . . . , j, with j ≥ 1. In this
framework, Theorems 8.3.1 and 8.3.2 ensure the existence ofT-symmetric solutions for
problem (Pλ) settled in the Euclidean case, provided that the real parameter λ is suf-
ficiently small. Furthermore, an interesting open problem is to consider equations on
unboundeddomains of a complete noncompactHadamardmanifoldℳ involving sin-
gular and critical Sobolev nolinearities; see [191, 193] for related topics. After settling
the compactness issue bymeans of a group-theoretical argument as in Theorems 8.3.1
and 8.3.2, the main perspective is to apply minimization arguments on a Nehari man-
ifold decomposition to establish the existence and multiplicity of solutions. In order
to handle this kind of problems, the fibering method introduced by S. I. Pohozaev in
the seminal papers [205, 206] seems to be essential.
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9 Kirchhoff problems on the Poincaré ball model
Lo duca e io per quel cammino ascoso
intrammo a ritornar nel chiaro mondo;
e sanza cura aver d’alcun riposo,
salimmo sù, el primo e io secondo,
tanto ch’i’ vidi de le cose belle
che porta ’l ciel, per un pertugio tondo.
E quindi uscimmo a riveder le stelle

Dante
Inferno XXXIV, 133–139

Hyperbolic geometrywas created in thefirst half of thenineteenth century in themidst
of attempts to understand Euclid’s axiomatic basis for geometry. In this theory there
are differentmodels for the hyperbolic spaceHN . Each representation has its ownmet-
ric, geodesics, isometries, and related properties. In order to understand the relation-
ships among these models, it is helpful to know the geometric properties of the con-
nectingmaps. Two of them are the central projection and the stereographic projection
from a sphere to a plane; see, e. g., the monograph [37] and references therein.

Recently, some eigenvalue problems in thehyperbolic space frameworkhave been
studied; see, for instance, the papers [111, 167, 182], aswell as [218, 233, 234].Motivated
by thiswide interest in the current literature, in this chapterwedealwith the following
Kirchhoff problem:

{{{
{{{
{

− (a + b ∫
𝔹N

|∇Hu|
2dμ)ΔHu = λw(σ)f (u) in 𝔹N ,

u ∈ H1(𝔹N),

(Kλ)

settled on the Poincaré ball model 𝔹N , with dimension N ≥ 3, which is a noncompact
manifold of infinite Riemannianmeasure. The real parameters λ, a, and b are positive,
ΔH denotes the Laplace–Beltrami operator on 𝔹N . The potential w is nontrivial non-
negative of class L1(𝔹N ) ∩ L∞(𝔹N ) and radially symmetric, f is a continuous function.
The main results of the chapter may be seen as an extension of multiplicity theorems
for different nonlinear elliptic problems obtained in [182, 187].

9.1 The Poincaré ball model𝔹N

In this sectionwe briefly recall some notions of the hyperbolic geometry needed in the
sequel and then illustrate the functional framework we shall use. We refer the reader
to the book [37] for detailed derivations of the geometric quantities, their motivations,
and further applications. As it is well known, there are several models for the hyper-
bolic space HN , for instance, the Poincaré ball 𝔹N . In particular, the Poincaré disk,

https://doi.org/10.1515/9783110652017-009
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204 | 9 Kirchhoff problems on the Poincaré ball model

also called the conformal ball, is a model of two-dimensional hyperbolic geometry in
which the points of the geometry are inside the unit disk, and the straight lines consist
of all segments of circles contained within the disk that are orthogonal to the bound-
ary of the disk, plus all diameters of the disk; see Figure 9.1.

Figure 9.1: The Poincaré disk model.

To be specific, let us set

𝔹N = {σ = (x1, x2, . . . , xN ) ∈ ℝ
N : |σ| < 1},

endowed with the Riemannian metric given by

gij =
4

(1 − |σ|2)2
δij, σ ∈ 𝔹N , i, j = 1, . . . ,N ,

where |⋅| and δij denote the Euclideandistance and theusual Kronecker delta function,
respectively. For every i, j = 1, . . . ,N, set

gij = (gij)
−1 and g = det(gij).

In this setting, the Laplace–Beltrami operator ΔH is locally defined as follows:

ΔH =
1
√g

N
∑
i=1

𝜕
𝜕xi
(√g

N
∑
j=1

gij 𝜕
𝜕xj
).

Now, as usual, let

dμ = √gdx = 2N

(1 − |σ|2)N
dx

be the Riemannian volume element in 𝔹N , where dx denotes the standard Lebesgue
measure in the Euclidean space ℝN . Hence, if

dH (σ) = 2
|σ|

∫
0

dt
1 − t2
= log 1 + |σ|

1 − |σ|
(9.1)
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denotes the geodesic distance of σ ∈ 𝔹N from the origin σ0 ∈ 𝔹N , a direct computation
ensures that the operator ΔH has the more convenient form

ΔH =
1
4
(1 − |σ|2)2

N
∑
i=1

𝜕2

𝜕x2i
+ N − 2

2
(1 − |σ|2)

N
∑
i=1

xi
𝜕
𝜕xi
.

Finally, if (ϱ, θ) are the polar geodesic coordinates in 𝔹N \ {0}, then in 𝔹N \ {0},

ds2 = dϱ2 + (sinh ϱ)2dθ

and

ΔH =
𝜕2

𝜕ϱ2
+ (N − 1) coth ϱ 𝜕

𝜕ϱ
+ 1
(sinh ϱ)2

Δθ ,

where Δθ is the Laplace–Beltrami operator on the sphere 𝕊N−1 󳨅→ ℝN .
The hyperbolic distance in the Poincaré ball is given by the formula

dH (σ1, σ2) = arccosh(1 +
2|σ2 − σ1|2

(1 − |σ1|2)(1 − |σ2|2)
),

for every σ1, σ2 ∈ 𝔹N .
For any r ∈ (0, 1), let us denote by

Br = {x ∈ ℝ
N : |x| < r}

the open Euclidean ball of radius r centered at 0 ∈ ℝN , while

𝔹ρ = {σ ∈ 𝔹
N : dH (σ) < ρ}

means the geodesic ball of radius ρ > 0 centered at σ0 ∈ 𝔹N . Hence,

Br = 𝔹ρ(r), ρ(r) = log 1 + r
1 − r
.

See [218] for additional comments and related facts.
Let Tσ(𝔹N ) be the tangent space at σ ∈ 𝔹N endowed by the inner product ⟨⋅, ⋅⟩σ

and by T(𝔹N ) = ⋃σ∈𝔹N Tσ(𝔹
N ) the tangent bundle on 𝔹N . When no confusion arises,

if X,Y ∈ Tσ(𝔹N ), we simply write |X| and ⟨X,Y⟩ instead of the norm |X|σ and inner
product ⟨X,Y⟩σ, respectively. Let C∞c (𝔹

N ) be the space of real-valued compactly sup-
ported smooth functions on 𝔹N . The space H1(𝔹N ) is defined to be the completion of
C∞c (𝔹

N ) with respect to the Hilbertian norm

⟨φ,ϕ⟩H1 = ∫
𝔹N

(⟨∇Hφ, ∇Hϕ⟩ + φϕ)dμ,

‖φ‖H1 = ( ∫
𝔹N

(|∇Hφ|
2 + |φ|2)dμ)

1/2
,

(9.2)
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for every φ, ϕ ∈ C∞c (𝔹
N ), where ∇H is the covariant derivative and dμ is the Rieman-

nian measure on 𝔹N . In a direct form,

∇H = (
1 − |σ|2

2
)
2
∇ and |∇Hu| = (

1 − |σ|2

2
)
2
|∇u|,

where ∇ denotes the Euclidean gradient.
As in Chapter 8, referring again to D. Hoffman and J. Spruck [130], the Sobolev

embedding H1(𝔹N ) 󳨅→ L℘(𝔹N ) is continuous for every ℘ ∈ [2, 2∗], but not compact. As
a biproduct of the results contained in [69], the bottom of the spectrum of −ΔH in 𝔹N

is given by

λ1 = λ1(−ΔH ) = inf
u∈H1(𝔹N )\{0}

‖∇u‖22
‖u‖22
= (N − 1)

2

4
, (9.3)

see also [167] for related topics and direct applications. Consequently, fromnow onwe
endow H1(𝔹N ) with the equivalent Hilbertian norm

‖u‖ = ( ∫
𝔹N

|∇Hu|
2dμ)

1/2
.

The following result will be crucial in the sequel.

Proposition 9.1.1. Let ϱ : ℝ→ ℝ be a Lipschitz continuous function and u ∈ H1(𝔹N ). If
ϱ ∘ u ∈ L2(𝔹N ), then ϱ ∘ u ∈ H1(𝔹N ) and

󵄨󵄨󵄨󵄨∇H (ϱ ∘ u)
󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨ϱ
󸀠(u)󵄨󵄨󵄨󵄨 ⋅ |∇Hu| a. e. in 𝔹N .

In particular, |u| ∈ H1(𝔹N ) and |∇H |u|| a. e. in 𝔹N for all u ∈ H1(𝔹N ).

Proposition 9.1.1 is a corollary of [123, Proposition 2.5, p. 24], and we refer again
to [123] for its proof. The result is valid evenwhen𝔹N is replaced by a smooth complete
Riemannian manifold.

Since (Kλ) is settled in the entire noncompact space 𝔹N , in the next section we
shall adopt a group-theoretical approach to identify suitable symmetric subspaces of
H1(𝔹N ) for which the compactness of the embedding into L℘(𝔹N ), ℘ ∈ (2, 2∗), can be
regained.

Let N ≥ 3 and define the family of subgroups of the special orthogonal group
SO(N) given by

F = {G ⊆ SO(N) : G =
ℓ

∏
j=1

SO(Nj), ℓ ∈ ℕ,

with Nj ≥ 2, j = 1, . . . , ℓ, and
ℓ

∑
j=1

Nj = N},

(9.4)
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where SO(Nj) denotes here the special orthogonal group in dimension Nj for every
j = 1, . . . , ℓ. Now, take G ∈ F and let ⋅ : G × 𝔹N → 𝔹N be the natural multiplicative
action of the group G on 𝔹N . Fix G ∈ F , where F is the family defined in (9.4). The
action ⊛G : G × H1(𝔹N )→ H1(𝔹N ) of the subgroup G on H1(𝔹N ) is given, as usual, by

g ⊛G u(σ) = u(g−1σ) for a. e. σ ∈ 𝔹N , (9.5)

for every g ∈ G and u ∈ H1(𝔹N ). Denote by

H1
G (𝔹

N) = {u ∈ H1(𝔹N) : g ⊛G u = u for every g ∈ G }

the subspace of G -invariant functions of H1(𝔹N ).
The next compact embedding result is a particular case of Theorem 8.1.1 given in

Chapter 8.

Theorem 9.1.2. Let𝔹N be the N-dimensional homogeneous Poincaré ball. Then the em-
bedding H1(𝔹N ) 󳨅→ L℘(𝔹N ) is continuous for every ℘ ∈ [2, 2∗]. If G ∈ F , then the em-
bedding H1

G (𝔹
N ) 󳨅→󳨅→ L℘(𝔹N ) is compact for any ℘ ∈ (2, 2∗).

Now, let us introduce the notations in the hyperbolic variational setting in order
to apply the symmetric criticality principle, TheoremA.1.2. For details and comments,
we refer to the Appendix, as well as [78] and [63, Section 5]. See also [183, 208] for
related topics and results.

A group H = (H , ∗) acts continuously on the real Hilbert space H1(𝔹N ) by an
application (τ, u) 󳨃→ τ ⊛H u from H × H1(𝔹N ) to H1(𝔹N ) if ⊛H is continuous on H ×
H1(𝔹N ) and satisfies for every u ∈ H1(𝔹N ),
(i1) idH ⊛H u = u;
(i2) (τ1 ∗ τ2) ⊛H u = τ1 ⊛H (τ2 ⊛H u) for every τ1, τ2 ∈ H ;
(i3) u 󳨃→ τ ⊛H u is linear for every τ ∈ H .

According to the above definition, a group G ∈ F acts continuously on the Hilbert
Sobolev space H1(𝔹N ) via the map ⊛G given in (9.5). Finally, as is customary, set

FixG (H
1(𝔹N)) = {u ∈ H1(𝔹N) : τ ⊛G u = u for every τ ∈ G }.

A functional I : H1(𝔹N )→ ℝ is said to be G -invariant if

I(τ ⊛G u) = I(u)

for every u ∈ H1(𝔹N ) and g ∈ G .
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9.2 Existence results

Lately, E. Hebey in [126] investigated the existence and compactness properties of the
problem

{{{{
{{{{
{

− (a + b ∫
ℳ

|∇gu|
2dσg)

θ0
Δgu + h(σ)u = u

q−1 in ℳ,

u ≥ 0 in ℳ,

(9.6)

where ℳ = (ℳ, g) is an N-dimensional, N ≥ 3, compact manifold, a, b, and θ0 are
positive real parameters, h ∈ C1(ℳ), q ∈ (2, 2∗), and 2∗ is the critical Sobolev expo-
nent.

In particular, to prove existence of at least oneC2 solution of (9.6), in [126] E.Hebey
required the coercivity of the operator

ℒ = −Δg +
h
aθ0
,

in addition to the technical assumption q ̸= 2(1 + θ0). Since the manifold ℳ is com-
pact and without boundary, the constant functions can be used in order to show the
mountain pass geometry of the associated energy functional

Iq(u) =
1

2(1 + θ0)b
(a + b ∫

ℳ

|∇gu|
2dσg)

1+θ0
+ 1
2
∫
ℳ

h(σ)u2dσg −
1
q
∫
ℳ

uq+dσg ,

where u+ = max{0, u}. Moreover, due to the subcritical assumption on the forcing
nonlinear term, standard arguments ensure the validity of the Palais–Smale compact-
ness condition. The classical Ambrosetti–Rabinowitz theorem yields the existence of
at least one nontrivial solution; see also [124, 125, 128] for Kirchhoff problems on Rie-
mannian manifolds involving a critical term.

Equation (9.6) is a reasonable generalization of the most studied subcritical ellip-
tic problems, which naturally arise in different branches of mathematics.

Motivated by thiswide interest in the current literature, the purpose of the present
chapter is to study the existence of solutions for a stationary Kirchhoff equation set on
the Poincaré ball model 𝔹N .

A solution of (Kλ) is any function u ∈ H1(𝔹N ) ∩ L∞(𝔹N ) such that

(a + b ∫
𝔹N

|∇Hu|
2dμ) ∫
𝔹N

⟨∇Hu, ∇Hφ⟩σdμ − λ ∫
𝔹N

w(σ)f (u)φdμ = 0

for every φ ∈ H1(𝔹N ).
Throughout the chapter we assume the following condition on the weight w:

(w) w ∈ L1(𝔹N ) ∩ L∞(𝔹N ) is a nontrivial nonnegative function, which is radially sym-
metric with respect to the origin σ0 ∈ 𝔹N .
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In this section we present the main result for the introductory equation (Kλ) and some
further generalizations.

Theorem 9.2.1. Let w satisfy (w) and let f : ℝ→ ℝ be a continuous function verifying
(f1) There are two real sequences (ξk)k and (ζk)k such that

lim
k→∞

ζk = 0, 0 ≤ ξk < ζk , F(ξk) = sup
t∈[ξk ,ζk]

F(t)

for every k ∈ ℕ;
(f2) There exist a constant M > 0 and a sequence (ηk)k ⊂ ℝ+, with

lim
k→∞

ηk = 0, lim
k→∞

F(ηk)
η2k
=∞ and inf

t∈[0,ηk]
F(t) ≥ −MF(ηk)

for every k ∈ ℕ.
Then, for every G ∈ F , where F is defined in (9.4), and for each λ > 0, there exists a
sequence (uG

k )k ⊂ H
1(𝔹N ) of nontrivial nonnegative G -invariant solutions of (Kλ) such

that

lim
k→∞
󵄩󵄩󵄩󵄩u

G
k
󵄩󵄩󵄩󵄩 = lim

k→∞
󵄩󵄩󵄩󵄩u

G
k
󵄩󵄩󵄩󵄩∞ = 0.

The approach of the proof of Theorem 9.2.1 is based on variational techniques. In
the sequel, we shall describe it briefly. More precisely, it is well known that H1(𝔹N )
is not compactly embedded into L℘(𝔹N ), ℘ ∈ (2, 2∗), due to the unboundedness of
the hyperbolic space. However, by a Lions-type result, the fixed point space ofH1(𝔹N )
under the action of G ∈ F , denoted by H1

G (𝔹
N ), is compactly embedded into L℘(𝔹N )

when ℘ ∈ (2, 2∗); see L. Skrzypczak and C. Tintarev [232].
Instead of (Kλ), we study the auxiliary variational equation (9.11) whose solutions

also solve the original equation (Kλ) in the weak sense. If Iλ is the C1 energy func-
tional associated to (9.11), thanks to a compactness result in [232], the restriction of Iλ
to H1

G (𝔹
N ), denoted by IG ,λ, is weakly sequentially lower semicontinuous in H1

G (𝔹
N )

and the critical points of IG ,λ are critical points of Iλ inH1(𝔹N ) as well, due to the prin-
ciple of symmetric criticality, Theorem A.1.2.

The crucial step in the proof argument is the construction of an appropriate
sequence of weakly closed subsets (CG

k )k of H
1
G (𝔹

N ), so that the constrained local
minima of IG ,λ on each CG

k are actually local minima of IG ,λ on H1
G (𝔹

N ). Hence, the
constrained critical points are G -invariant solutions of (Kλ). Subsequently, a suitable
subsequence of critical points of IG ,λ can be extracted from the aforementioned con-
strained local minima and satisfy (9.27). We emphasize that the crucial step described
above can be achieved thanks to the continuity of the superposition operator due
to M. Marcus and V. Mizel [171, Theorem 1, p. 219] settled in the hyperbolic context
instead of the classical Euclidean framework; see also [123, Proposition 2.5, p. 24] for
additional comments and remarks in the Riemannian framework.
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The main Theorem 9.2.1 complements some results obtained on bounded Eu-
clidean domains, where the elliptic problems with oscillatory nonlinearities have
been considered. For instance, among others, Dirichlet problems were studied by G.
Anello and G. Cordaro in [16] and G. Molica Bisci and P. Pizzimenti in [184], while
Neumann problems have been considered again by G. Anello and G. Cordaro in [17].
We point out that some almost straightforward computations in [16, 17] are adapted
here to the hyperbolic setting. Anyway, due to the noncompact framework, the ab-
stract procedure, as well as the setting of Theorem 9.2.1, is different from the results
contained in [16, 17], where elliptic problems on bounded smooth domains have been
studied.

Furthermore, in [200] P. Omari and F. Zanolin prove the existence of infinitely
many solutions of the Dirichlet problem

{
−Δu = λf (u) in Ω,
u|𝜕Ω = 0,

(9.7)

on a bounded domain Ω ⊂ ℝN , with a smooth boundary 𝜕Ω, under the main assump-
tion

lim inf
t→0+

F(t)
t2
= 0 and lim sup

t→0+

F(t)
t2
=∞; (9.8)

see also [171, 198, 199, 201] for related topics. Most papers treat odd nonlinearities f in
order to apply different variants of the classical Lusternik–Schnirelmann theory. Only
a few papers deal with not necessarily odd nonlinearities. Among them, let us cite
[16, 200, 226, 228], which are more related to the treatment of the current chapter. We
refer the interested reader to the results due to G. Molica Bisci in [181], where a simi-
lar multiplicity property has been established for equations settled on the Euclidean
sphere 𝕊N 󳨅→ ℝN+1, endowed with the Euclidean induced metric; see Chapter 6.

The Laplacian case was also studied using different methods, and the existence
of infinitely many solutions, with the property that the L2-norm of their gradient go
to infinity, was proved by O. Kavian in [135] and M. Struwe in [237, 238]; see also the
classical book of P. Rabinowitz [220].

The noncompact hyperbolic setting presents additional difficulties with respect
to the aforementioned cases, and suitable geometrical and algebraic tools need to be
exploited in order to get themain results. For instance, a crucial ingredient used along
the proof of Theorem 9.2.1 is based on a careful analysis of the energy level on (CG

k )k
of some G -invariant functions vερ,r ∈ H

1(𝔹N ) given in (9.22).

Proof of Theorem 9.2.1. Fix λ > 0 and t0 > 0. Since f is continuous, there exists κ > 0
such that |f | ≤ κ in [0, t0]. Moreover, (f1) and (f2) yield that f (0) = 0. Indeed, by (f1),
the function F attains its maximum in [ξk , ζk] at the point ξk . Then

lim
t→0+

1
t

ξk+t

∫
ξk

f (s)ds = f (ξk) ≤ 0.
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Hence limk→∞ f (ξk) = f (0) ≤ 0, since f is continuous. On the other hand,

lim
k→∞

F(ηk)
η2k
=∞, (9.9)

where (ηk)k is the sequence given in (f2). We claim that f (0) ≥ 0. Otherwise, f (0) < 0
and by continuity f < 0 on some interval (0, δ), δ > 0. Consequently, F < 0 in (0, δ).
Now ηk → 0+ as k →∞ by (f2), so that

lim
k→∞

F(ηk)
η2k
≤ 0.

Clearly, this contradicts (9.9). In conclusion, the claim is proved, and so f (0) = 0.
Without loss of generality, suppose that max{ηk , ζk} ≤ t0 for every k ∈ ℕ, and

define the truncated (continuous) function f : ℝ→ ℝ as follows:

f(t) =
{{
{{
{

f (t0) if t > t0,
f (t) if 0 ≤ t ≤ t0,
0 if t < 0.

Thanks to (f1)–(f2) and (w), the energy functional Jλ : H1(𝔹N )→ ℝ given by

Jλ(u) =
1
λ
(a
2
‖u‖2 + b

4
‖u‖4) − ∫

𝔹N

w(σ)(
u(σ)

∫
0

f(t)dt)dμ (9.10)

is well defined and of class C1(H1(𝔹N )) by the continuous embedding result, Theo-
rem 9.1.2. Let us consider the auxiliary equation

{{{
{{{
{

− (a + b ∫
𝔹N

|∇Hu|
2dμ)ΔHu = λw(σ)f(u) in 𝔹N ,

u ∈ H1
G (𝔹

N).

(9.11)

Set for all u ∈ H1
G (𝔹

N ),

JG ,λ(u) =
1
λ
Φ(u) −Ψ(u), (9.12)

where

Φ(u) = a
2
‖u‖2 + b

4
‖u‖4 and Ψ(u) = ∫

𝔹N

w(σ)(
u(σ)

∫
0

f(t)dt)dμ.

Let us fix q ∈ (2, 2∗). Since f is bounded, w ∈ L1(𝔹N ) ∩ L∞(𝔹N ), and the embed-
ding of H1

G (𝔹
N ) into Lq(𝔹N ) is compact, then JG ,λ is well defined, sequentially weakly
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lower semicontinuous, and continuously Gâteaux differentiable in the Sobolev space
H1

G (𝔹
N ). Hence, the solutions of (9.11) are exactly the critical points of theC1 functional

JG ,λ. Indeed, a solution of (9.11) is any function u ∈ H1
G (𝔹

N ) such that

(a + b ∫
𝔹N

|∇Hu|
2dμ) ∫
𝔹N

⟨∇Hu, ∇Hφ⟩dμ − λ ∫
𝔹N

w(σ)f(u)φdμ = 0

for every φ ∈ H1
G (𝔹

N ). Fix k ∈ ℕ and define

CG
k = {u ∈ H

1
G (𝔹

N) : 0 ≤ u ≤ ζk a. e. in 𝔹
N}.

Step 1. The functional JG ,λ is bounded from below on CG
k and its infimum on CG

k is
attained at some uG

k ∈ C
G
k .

Since CG
k is closed and convex in H1

G (𝔹
N ), we have that CG

k is weakly closed in
H1

G (𝔹
N ). Moreover, for every u ∈ CG

k ,

JG ,λ(u) ≥ −Ψ(u) ≥ −κ‖w‖1ζk , (9.13)

since in CG
k one has

Ψ(u) ≤ ∫
𝔹N

w(σ)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

u(σ)

∫
0

f(t)dt
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
dμ ≤ κ ∫

𝔹N

w(σ)udμ ≤ κ‖w‖1ζk .

LetmG
k = infu∈CG

k
JG ,λ(u). For every j ∈ ℕ, there exists vj ∈ CG

k such that

mG
k ≤ JG ,λ(vj) < m

G
k +

1
j
.

Hence, it follows that

Φ(vj) = λ[Ψ(vj) + Jλ(vj)]

≤ λ[ ∫
𝔹N

w(σ)(
u(σ)

∫
0

f(t)dt)dμ +mG
k +

1
j
]

≤ λ(κ‖w‖1ζk +m
G
k + 1).

Then (vj)j is bounded in H1
G (𝔹

N ). This implies that there exists a subsequence (vjn )n
weakly convergent to some uG

k ∈ C
G
k , as C

G
k is weakly closed. Now, the weak sequen-

tially lower semicontinuity of JG ,λ yields that

mG
k = inf

u∈CG
k

JG ,λ(u) ≤ JG ,λ(u
G
k ) ≤ lim inf

n→∞
JG ,λ(vjn ) = m

G
k .

Hence JG ,λ(uG
k ) = m

G
k as claimed.
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Step 2. Fix k ∈ ℕ. We claim that uG
k ∈ [0, ξk] in a. e. 𝔹

N .
Indeed, define ϱk : ℝ→ ℝ as follows:

ϱk(t) =
{{
{{
{

ξk if t > ξk ,
t if 0 ≤ t ≤ ξk ,
0 if t < 0,

and consider the superposition operator Tk : H1
G (𝔹

N )→ CG
k such that u 󳨃→ Tku, where

for every u ∈ H1
G (𝔹

N ),

Tku = ϱk ∘ u a. e. in 𝔹N . (9.14)

We assert that Tk is well posed. Fix u ∈ H1
G (𝔹

N ). Since ϱk is Lipschitz continuous, with
ϱk(0) = 0, we have Tku ∈ H1(𝔹N ) by Proposition 9.1.1. Furthermore, for all g ∈ G ,

g ⊛G Tku(σ) = Tku(g
−1σ) = (ϱk ∘ u)(g

−1σ)

= ϱk(u(g
−1σ)) = ϱk(u(σ))

= Tku(σ)

for a. e. σ ∈ 𝔹N by (9.5). In other words, Tku ∈ CG
k ⊂ H

1
G (𝔹

N ), as asserted.
Now, set vG

k = Tku
G
k and let

XG
k = {σ ∈ 𝔹

N : uG
k (σ) ̸∈ [0, ξk]}.

If the Riemann measure VolH (XG
k ) = 0, the claim of Step 2 is proved. Otherwise, sup-

pose that VolH (XG
k ) > 0. Then,

ξk < u
G
k ≤ ζk , vG

k = Tku
G
k = ξk a. e. in XG

k . (9.15)

On the other hand, assumption (f1) gives

uG
k (σ)

∫
0

f(t)dt ≤ sup
s∈[ξk ,ζk]

s

∫
0

f(t)dt =
ξk

∫
0

f(t)dt =
vG
k (σ)

∫
0

f(t)dt

for a. e. σ ∈ XG
k . Therefore,

JG ,λ(v
G
k ) − JG ,λ(u

G
k ) =

1
λ
(a
2
󵄩󵄩󵄩󵄩v

G
k
󵄩󵄩󵄩󵄩
2 + b

4
󵄩󵄩󵄩󵄩v

G
k
󵄩󵄩󵄩󵄩
4)

− ∫
𝔹N

w(σ)(
vG
k

∫
0

f(t)dt)dμ

− 1
λ
(a
2
󵄩󵄩󵄩󵄩u

G
k
󵄩󵄩󵄩󵄩
2 + b

4
󵄩󵄩󵄩󵄩u

G
k
󵄩󵄩󵄩󵄩
4)
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+ ∫
𝔹N

w(σ)(
uG
k

∫
0

f(t)dt)dμ

≤ − 1
λ
(a
2
∫
XG
k

󵄨󵄨󵄨󵄨∇Hu
G
k
󵄨󵄨󵄨󵄨
2dμ + b

4
( ∫
XG
k

󵄨󵄨󵄨󵄨∇Hu
G
k
󵄨󵄨󵄨󵄨
2dμ)

2
)

− ∫
XG
k

w(σ)(
vG
k

∫
uG
k

f(t)dt)dμ

≤ − 1
λ
(a
2
∫
XG
k

󵄨󵄨󵄨󵄨∇Hu
G
k
󵄨󵄨󵄨󵄨
2dμ + b

4
( ∫
XG
k

󵄨󵄨󵄨󵄨∇Hu
G
k
󵄨󵄨󵄨󵄨
2dμ)

2
),

since |∇HvG
k | = 0 a. e. in XG

k . Moreover, JG ,λ(v
G
k ) ≥ JG ,λ(u

G
k ), thanks to the fact that

vG
k ∈ C

G
k . Hence,

󵄩󵄩󵄩󵄩v
G
k − u

G
k
󵄩󵄩󵄩󵄩
2 = 0,

that is,

󵄩󵄩󵄩󵄩v
G
k − u

G
k
󵄩󵄩󵄩󵄩
2 = ∫
𝔹N

󵄨󵄨󵄨󵄨∇H(v
G
k − u

G
k )
󵄨󵄨󵄨󵄨
2dμ = ∫

XG
k

󵄨󵄨󵄨󵄨∇Hu
G
k
󵄨󵄨󵄨󵄨
2dμ = 0.

Moreover, uG
k = v

G
k ∈ [0, ξk] a. e. in𝔹

N , since VolH (XG
k ) > 0. Thus, the claim is proved.

Step 3. The function uG
k is a local minimum point of JG ,λ in H1

G (𝔹
N ) for every k ∈ ℕ.

Fix k ∈ ℕ and u ∈ H1
G (𝔹

N ). Let

ZG ,k = {σ ∈ 𝔹
N : u(σ) ̸∈ [0, ξk]}

and let Tk be the operator defined in (9.14). Set

vk(σ) = Tku(σ) =
{{
{{
{

ξk if u(σ) > ξk ,
u(σ) if 0 ≤ u(σ) ≤ ξk ,
0 if u(σ) < 0,

for a. e. σ ∈ 𝔹N . The definition of Tk yields

u(σ)

∫
v⋆k (σ)

f(t)dt = 0,

if σ ∈ 𝔹N \ ZG ,k . Furthermore, if σ ∈ ZG ,k, then the following alternatives hold:
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(a) If u(σ) ≤ 0, then

u(σ)

∫
vk(σ)

f(t)dt =
u(σ)

∫
0

f(t)dt = 0.

(b) If ξk < u(σ) ≤ ζk, then

u(σ)

∫
vk(σ)

f(t)dt =
u(σ)

∫
0

f(t)dt −
vk(σ)

∫
0

f(t)dt

=
u(σ)

∫
0

f(t)dt −
ξk

∫
0

f(t)dt

=
u(σ)

∫
0

f(t)dt − sup
s∈[ξk ,ζk]

s

∫
0

f(t)dt

≤ 0.

(c) If u(σ) > ζk, it follows that

u(σ)

∫
vk(σ)

f(t)dt =
u(σ)

∫
ξk

f(t)dt ≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

u(σ)

∫
ξk

f(t)dt
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ κ(u(σ) − ξk).

Hence, the constant

C = κ
‖w‖∞

sup
ξ≥ζk

ξ − ξk
(ξ − ξk)q

is finite and

u(σ)

∫
vk(σ)

f(t)dt ≤ C‖w‖∞
󵄨󵄨󵄨󵄨u(σ) − vk(σ)

󵄨󵄨󵄨󵄨
q

a. e. in 𝔹N . Then,

∫
𝔹N

w(σ)(
u(σ)

∫
vk(σ)

f(t)dt)dμ ≤ Ccqq‖u − vk‖
q, (9.16)

where

cq = sup
v∈H1

G (𝔹
N )\{0}

‖v‖q
‖v‖
<∞.
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Therefore, for all u ∈ H1
G (𝔹

N ),

JG ,λ(u) − JG ,λ(vk) =
1
λ
(a
2
‖u‖2 + b

4
‖u‖4) − 1

λ
(a
2
‖vk‖

2 + b
4
‖vk‖

4)

− ∫
𝔹N

w(σ)(
u(σ)

∫
vk(σ)

f(t)dt)dμ

= a
2λ
∫
ZG
k

|∇Hu|
2dμ + b

4λ
( ∫
ZG
k

|∇Hu|
2dμ)

2

− ∫
𝔹N

w(σ)(
u(σ)

∫
vk(σ)

f(t)dt)dμ

= a
2λ
∫
𝔹N

󵄨󵄨󵄨󵄨∇H (u − vk)
󵄨󵄨󵄨󵄨
2dμ + b

4λ
( ∫
𝔹N

󵄨󵄨󵄨󵄨∇H (u − vk)
󵄨󵄨󵄨󵄨
2dμ)

2

− ∫
𝔹N

w(σ)(
u(σ)

∫
vk(σ)

f(t)dt)dμ

≥ a
2λ
‖u − vk‖

2 + b
4λ
‖u − vk‖

4 − Ccqq‖u − vk‖
q.

Since vk ∈ Ck,G , it follows that JG ,λ(vk) ≥ JG ,λ(uG
k ). Therefore,

JG ,λ(u) ≥ JG ,λ(u
G
k ) + ‖u − vk‖

2( a
2λ
+ b
4λ
‖u − vk‖

2 − Ccqq‖u − vk‖
q−2)

≥ JG ,λ(u
G
k ) + ‖u − vk‖

2( a
2λ
− Ccqq‖u − vk‖

q−2)

for all u ∈ H1
G (𝔹

N ). The operator Tk : H1
G (𝔹

N ) → CG
k is continuous on account of

Proposition 9.1.1 and [171, Theorem 1, p. 219]. Hence, fixed β ∈ (0, α), where

α = ( a
4λCcqq
)
1/(q−2)
,

there exists δ ∈ (0, β] so small that ‖TkuG
k − Tku‖ ≤ α − β ≤ α − δ for every u ∈ H

1
G (𝔹

N ),
with ‖u − uG

k ‖ < δ. Therefore,

‖u − vk‖ ≤
󵄩󵄩󵄩󵄩u − u

G
k
󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩u

G
k − vk
󵄩󵄩󵄩󵄩

= 󵄩󵄩󵄩󵄩u − u
G
k
󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩Tku

G
k − Tku

󵄩󵄩󵄩󵄩 ≤ α

for every u ∈ H1
G (𝔹

N ), with ‖u−uG
k ‖ < δ. Consequently, if u ∈ H

1
G (𝔹

N ) and ‖u−uG
k ‖ < δ,

then

‖u − vk‖
q−2 ≤ a

4λCcqq
,
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since q > 2, and so

JG ,λ(u) ≥ JG ,λ(u
G
k ) +

a
4λ
‖u − vk‖

2 ≥ JG ,λ(u
G
k ),

that is, uG
k is a local minimum of JG ,λ in H1

G (𝔹
N ), as desired.

Step 4. If

mG
k = inf

u∈CG
k

JG ,λ(u), (9.17)

then limk→∞mG
k = limk→∞ ‖uG

k ‖ = 0.
Since uG

k ∈ C
G
k andmG

k = JG ,λ(u
G
k ), then

Φ(uG
k ) = 2λ(Ψ(u

G
k ) + JG ,λ(u

G
k ))

= 2λ( ∫
𝔹N

w(σ)(
u(σ)

∫
0

f(t)dt)dμ +mG
k ) (9.18)

≤ 2λ(κ‖w‖1ζk +m
G
k ).

Now (9.13) holds and

− κ‖w‖1ζk ≤ m
G
k = inf

u∈CG
k

JG ,λ(u) ≤ 0, (9.19)

taking into account that the identically zero function u0 ≡ 0 belongs to CG
k and that

JG ,λ(0) = 0. By (9.19), since ζk → 0 as k →∞, it follows that

lim
k→∞

mG
k = 0. (9.20)

Hence, inequality (9.18) yields

lim
k→∞
󵄩󵄩󵄩󵄩u

G
k
󵄩󵄩󵄩󵄩 = 0.

Step 5. LetmG
k be given as in (9.17). ThenmG

k < 0 for every k ∈ ℕ.
To prove this, let us fix k ∈ ℕ. We introduce a class of functions belonging to

H1
G (𝔹

N ) that will be crucial along the proof of the main step.
Since w ∈ L∞(𝔹N ) \ {0} is nonnegative in 𝔹N , there are positive real numbers ρ, r,

m0, with ρ > r, such that

ess inf
Aρ
r

w ≥ m0 > 0. (9.21)

Furthermore, for every a, b, with 0 < a < b, define the following annular domain:

Aba = {σ ∈ 𝔹
N : b − a < dH (σ) < a + b},
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where dH is the geodesic distance of the point σ ∈ 𝔹N from the origin σ0 of 𝔹N ,
introduced in (9.1).

With the above notations, fix ε ∈ (0, 1) and set vερ,r ∈ H
1(𝔹N ) given by

vερ,r(σ) =
{{{{
{{{{
{

0 if σ ∈ 𝔹N \ Aρr ,

1 if σ ∈ Aρεr,
1
(1−ε)r (r − | log(

1+|σ|
1−|σ| ) − ρ|) if σ ∈ Aρr \ A

ρ
εr ,

(9.22)

for every σ ∈ 𝔹N . Since the group G is a compact connected subgroup of the isom-
etry group IsomH (𝔹

N ) such that FixG (𝔹
N ) = {σ0}, the function vερ,r ∈ H

1(𝔹N ), given
in (9.22), belongs to H1

G (𝔹
N ). Direct computations yield

(j1) supp(vερ,r) ⊂ A
ρ
r ;

(j2) ‖vερ,r‖∞ ≤ 1;
(j3) vερ,r(σ) = 1 for every σ ∈ A

ρ
εr .

Moreover,

󵄩󵄩󵄩󵄩v
ε
ρ,r
󵄩󵄩󵄩󵄩
2 < ∫

Aρ
r

󵄨󵄨󵄨󵄨∇Hv
ε
ρ,r
󵄨󵄨󵄨󵄨
2dμ + ∫

Aρ
r

󵄨󵄨󵄨󵄨v
ε
ρ,r
󵄨󵄨󵄨󵄨
2dμ = ∫

Aρ
εr

󵄨󵄨󵄨󵄨∇Hv
ε
ρ,r
󵄨󵄨󵄨󵄨
2dμ

+ ∫
Aρ
εr

󵄨󵄨󵄨󵄨v
ε
ρ,r
󵄨󵄨󵄨󵄨
2dμ + ∫

Aρ
r \A

ρ
εr

󵄨󵄨󵄨󵄨∇Hv
ε
ρ,r
󵄨󵄨󵄨󵄨
2dμ + ∫

Aρ
r \A

ρ
εr

󵄨󵄨󵄨󵄨v
ε
ρ,r
󵄨󵄨󵄨󵄨
2dμ

≤ VolH(A
ρ
r ) +

1
(1 − ε)2r2

∫
Aρ
r \A

ρ
εr

󵄨󵄨󵄨󵄨∇H(r −
󵄨󵄨󵄨󵄨dH (σ) − ρ

󵄨󵄨󵄨󵄨)
󵄨󵄨󵄨󵄨
2dμ (9.23)

= VolH(A
ρ
r ) +

1
(1 − ε)2r2

∫
Aρ
r \A

ρ
εr

󵄨󵄨󵄨󵄨∇H
󵄨󵄨󵄨󵄨dH (σ) − ρ

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨
2dμ

= VolH(A
ρ
r ) +

1
(1 − ε)2r2

VolH(A
ρ
r \ A

ρ
εr)

≤ (1 + 1
(1 − ε)2r2

)VolH(A
ρ
r ),

where VolH denotes the Lebesgue volume on 𝔹N .
Set gμ : (0, 1)→ ℝ+ to be the real function defined by

gμ(ε) =
VolH (A

ρ
εr)

VolH (A
ρ
r \ A

ρ
εr)
, ε ∈ (0, 1).

Clearly, if ε → 0+, then gμ(ε) → 0, as well as gμ(ε) → ∞ if ε → 1−. Thus, there exists
ε0 ∈ (0, 1) such that

VolH (A
ρ
ε0r)

VolH (A
ρ
r \ A

ρ
ε0r)
= M + 1,
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whereM > 0 is given in condition (f2).
By the former condition of (f2), there exists j0 ∈ ℕ such that ηj ≤ ζk and

ηj

∫
0

f (t)dt > M + 1
λm0VolH (A

ρ
ε0r)

Φ(ηjv
ε0
ρ,r) for every j ≥ j0. (9.24)

On account of (j1)–(j3), the latter condition of (f2) and (9.21) yield

Ψ(ηjv
ε0
ρ,r) = ∫

Aρ
ε0r

w(σ)(
ηj

∫
0

f (t)dt)dμ + ∫
Aρ
r \A

ρ
ε0r

w(σ)(
ηjv

ε0
ρ,r(σ)

∫
0

f (t)dt)dμ

≥ m0 ∫
Aρ
ε0r

(

ηj

∫
0

f (t)dt)dμ + ∫
Aρ
r \A

ρ
ε0r

inf
t∈[0,ηj]
(

t

∫
0

f (s)ds)dμ

≥ m0( ∫
Aρ
ε0r

(

ηj

∫
0

f (t)dt)dμ −M ∫
Aρ
r \A

ρ
ε0r

(

ηj

∫
0

f (t)dt)dμ)

= m0
VolH (A

ρ
ε0r)

M + 1

ηj

∫
0

f (t)dt.

Consequently, recalling (9.24) and that Φ(ηjv
ε0
ρ,r) > 0, we have

1
λ
<
VolH (A

ρ
ε0r)

M + 1
m0

Φ(ηjv
ε0
ρ,r)

ηj

∫
0

f (t)dt ≤
Ψ(ηjv

ε0
ρ,r)

Φ(ηjv
ε0
ρ,r)

for every j ≥ j0. Whence ηjv
ε0
ρ,r ∈ CG

k and JG ,λ(ηjv
ε0
ρ,r) < 0 for j ≥ j0. Thus, mk =

infu∈CG
k
JG ,λ(u) < 0 as claimed.

Now, taking into account that ‖uk‖∞ → 0 as k → ∞, there exists a subsequence
of (uG

k )k ⊂ H
1
G (𝔹

N ), still denoted by (uk)k, of pairwise distinct elements, with

0 ≤ 󵄩󵄩󵄩󵄩u
G
k
󵄩󵄩󵄩󵄩∞ ≤ t0 for every k ∈ ℕ, (9.25)

that weakly solve problem (9.11). Since the fixed point set of H1(𝔹N ) under the ac-
tion of the group G is exactly H1

G (𝔹
N ), the symmetric criticality principle recalled in

Theorem A.1.2 ensures that (uG
k )k ⊂ H1(𝔹N ) is a sequence of critical points for the

C1-functional Jλ for which (9.25) holds, i. e., (uG
k )k ⊂ H

1(𝔹N ) is a sequence of solutions
for problem (Kλ).

We claim that the functional Jλ defined in (9.10) is G -invariant, so that the key
Theorem A.1.2 can be applied. To prove the claim, fix u ∈ H1(𝔹N ) and g ∈ G . Since
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g ∈ G ⊆ SO(N) is an isometry, on account of (9.5), we have the following the chain
rule:

∇H (g ⊛G u)(σ) = Dgg−1σ∇Hu(g
−1σ) (9.26)

for a. e. σ ∈ 𝔹N , where Dgg−1σ : Tg−1σ(𝔹
N ) → Tσ(𝔹N ) denotes the differential of g ∈ G

at the point g−1σ. Setting y = g−1σ, we get

‖g ⊛G u‖2 = ∫
𝔹N

󵄨󵄨󵄨󵄨∇H (g ⊛G u)(σ)󵄨󵄨󵄨󵄨
2
σdμ(σ)

= ∫
𝔹N

󵄨󵄨󵄨󵄨∇Hu(g
−1σ)󵄨󵄨󵄨󵄨

2
g−1σdμ(σ) = ∫

𝔹N

󵄨󵄨󵄨󵄨∇Hu(y)
󵄨󵄨󵄨󵄨
2
ydμ(y)

= ‖u‖2

and

‖g ⊛G u‖4 = ( ∫
𝔹N

󵄨󵄨󵄨󵄨∇H (g ⊛G u)(σ)󵄨󵄨󵄨󵄨
2
σdμ(σ))

2

= ( ∫
𝔹N

󵄨󵄨󵄨󵄨∇Hu(g
−1σ)󵄨󵄨󵄨󵄨

2
g−1σdμ(σ))

2

= ( ∫
𝔹N

󵄨󵄨󵄨󵄨∇Hu(y)
󵄨󵄨󵄨󵄨
2
ydμ(y))

2

= ‖u‖4,

thanks to (9.26) and to the fact that the map Dgg−1σ is inner product preserving. More-
over, since w ∈ L1(𝔹N ) ∩ L∞(𝔹N ) is radially symmetric with respect to the origin
σ0 ∈ 𝔹N , we obtain

∫
𝔹N

w(σ)(
(g⊛G u)(σ)

∫
0

f(t)dt)dμ(σ) = ∫
𝔹N

w(σ)(
u(g−1σ)

∫
0

f(t)dt)dμ(σ)

= ∫
𝔹N

w(y)(
u(y)

∫
0

f(t)dt)dμ(y).

Thus, we conclude that

Jλ(g ⊛G u) = 1
λ
Φ(g ⊛G u) − ∫

𝔹N

w(σ)(
(g⊛G u)(σ)

∫
0

f(t)dt)dμ = Jλ(u),

which proves the claim.
The next is a direct consequence of Theorem 9.2.1.
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Corollary 9.2.2. Let w satisfy (w) and let f : ℝ→ ℝ be a continuous function such that
(i) There are two real sequences (ξk)k and (ζk)k such that

lim
k→∞

ζk = 0, 0 ≤ ξk < ζk , F(ξk) = sup
t∈[0,ζk]

F(t),

for every k ∈ ℕ;
(ii) −∞ < lim inft→0+

F(t)
t2 ≤ lim supt→0+

F(t)
t2 =∞,

hold. Then, for every G ∈ F and λ > 0 there exists a sequence (uG
k )k ⊂ H1(𝔹N ) of

nontrivial nonnegative G -invariant solutions of (Kλ) such that

lim
k→∞
󵄩󵄩󵄩󵄩u

G
k
󵄩󵄩󵄩󵄩 = lim

k→∞
󵄩󵄩󵄩󵄩u

G
k
󵄩󵄩󵄩󵄩∞ = 0. (9.27)

Proof. If (i) holds, condition (f1) is automatically verified. On the other hand, (ii) im-
plies (f2). To prove this, assume that condition (ii) holds. Since lim supt→0+ F(t)/t2 =
∞, there exists a sequence (ηk)k ⊂ ℝ+ such that

lim
k→∞

ηk = 0 and lim sup
k→∞

F(ηk)
η2k
=∞.

Moreover, lim inft→0+ F(t)/t2 > −∞, so that there exist positive real numbersM and δ
such that F(t) ≥ −Mt2 for every t ∈ (0, δ). Since limk→∞ ηk = 0, there is ℘ ∈ ℕ such
that ηk ∈ (0, δ) and F(ηk) ≥ −MF(ηk) for every k ≥ ℘. Thus, condition (f2) is verified as
claimed.

The following model equation in 𝔹N , N ≥ 3, illustrates how Theorem 9.2.1 can be
applied:

{{{{{
{{{{{
{

− (a + b ∫
𝔹N

|∇Hu|
2 dμ)ΔHu = λ(

1 − |σ|2

2
)
N
f (u) in 𝔹N ,

u ∈ H1(𝔹N),

(9.28)

where f : ℝ→ ℝ is the function defined by

f (t) =
{
{
{

15 3√t2 sin 1
3√t
− 3 3√t cos 1

3√t
if t > 0,

0 if t ≤ 0.

Owing to Theorem 9.2.1, for every G ∈ F and λ > 0, there exists a sequence (uG
k )k ⊂

H1(𝔹N ) of nontrivial nonnegative G -invariant solutions of (9.28) such that

lim
k→∞
󵄩󵄩󵄩󵄩u

G
k
󵄩󵄩󵄩󵄩 = lim

k→∞
󵄩󵄩󵄩󵄩u

G
k
󵄩󵄩󵄩󵄩∞ = 0.
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Now, a direct computation ensures that the potential F of f is given by

F(t) =
{
{
{

9 3√t5 sin 1
3√t

if t > 0,

0 if t ≤ 0,
(9.29)

so that

lim inf
t→0+

F(t)
t2
= −∞;

see Figure 9.2 below.

Figure 9.2: The graph of the potential F .

Thus, Corollary 9.2.2 cannot be applied in this case; see also [16, Example 3.1] for ad-
ditional comments and remarks. However, in the next result we show how assump-
tion (ii) of Corollary 9.2.2 implies the existence of a nontrivial solution of (Kλ) on the
Poincaré ball model𝔹N . The main tool used along the proof of this existence theorem
is given by a variational principle obtained by B. Ricceri in [226] and recalled in the
convenient form below; see [41, Theorem 2.1].

Theorem 9.2.3. Let X be a reflexive real Banach space, and let Φ,Ψ : X → ℝ be two
Gâteaux differentiable functionals such that
– Φ is continuous, sequentially weakly lower semicontinuous and coercive in X;
– Ψ is sequentially weakly upper semicontinuous in X.
For every r > infX Φ, put

φ(r) = inf
u∈Φ−1(Σr)

(supv∈Φ−1(Σr)Ψ(v)) −Ψ(u)
r −Φ(u)

,

where Σr = (−∞, r).
Then, for each r > infX Φ and each λ ∈ (0, 1/φ(r)), the functional Jλ = Φ−λΨ admits

a global minimum inΦ−1(Σr), which is a critical point (local minimum) of Jλ in X.
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The main result reads as follows.

Theorem 9.2.4. Let w satisfy (w) and let f : ℝ → ℝ be a continuous function verifying
(ii) and the growth condition

Cf = sup
t∈ℝ

|f (t)|
1 + |t|q−1

<∞, (9.30)

for some q ∈ (2, 2∗). Then, for every G ∈ F there exists λ⋆ > 0 such that, for every
λ ∈ (0, λ⋆), problem (Kλ) admits a G -invariant solution uG

λ ∈ H
1(𝔹N ) and

lim
λ→0+
∫
B1

󵄨󵄨󵄨󵄨∇u
G
λ (x)
󵄨󵄨󵄨󵄨
2 2N−2

(1 − |x|2)N−2
dx = 0.

Proof. Following [192], the main idea of the proof consists in applying Theorem 9.2.3
to the energy functional

𝒥λ(u) = Φ(u) − λΨ|H1
G (𝔹

N )(u), u ∈ H1
G (𝔹

N),

where

Φ(u) = a
2
‖u‖2 + b

4
‖u‖4 and Ψ(u) = ∫

𝔹N

w(σ)F(u)dμ.

Then, the existence of one nontrivial G -symmetric solution of (Kλ) follows from The-
orem A.1.2.

The functionals Φ and Ψ|H1
G (𝔹

N ) have the regularity required in Theorem 9.2.3.
Moreover, it is also clear that Φ is strongly continuous, coercive in H1

G (𝔹
N ), and

inf
u∈H1

G (𝔹
N )
Φ(u) = 0.

Now, set

λ⋆ = q
Cf cq

max
t>0
( t

q√ 2
a ‖w‖q󸀠 +

2q/2cq−1q ‖w‖∞
aq/2 tq−1

), (9.31)

where q󸀠 = q/(q − 1), and

cq = sup
u∈H1

G (𝔹
N )\{0}

‖u‖q
‖u‖
.

Fix λ ∈ (0, λ⋆). By (9.31), there exists ̄t > 0 such that

λ < λ⋆( ̄t) = q
Cf cq
⋅

̄t

q√ 2
a ‖w‖q󸀠 +

2q/2cq−1q ‖w‖∞
aq/2

̄tq−1
< λ⋆. (9.32)
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Set r ∈ ℝ+ and Σr = (−∞, r). Consider the function χ : ℝ+ → ℝ+0 given by

χ(r) =
supu∈Φ−1(Σr)Ψ|H1

G (𝔹
N )(u)

r
.

The growth condition (9.30) yields

Ψ|H1
G (𝔹

N )(u) ≤ Cf ∫
𝔹N

w(σ)|u|dμ +
Cf
q
∫
𝔹N

w(σ)|u|qdμ.

Moreover,

‖u‖H1
G (𝔹

N ) < √
2r
a

for every u ∈ H1
G (𝔹

N), with Φ(u) < r,

which yields, by the Sobolev embedding Theorem 9.1.2,

Ψ|H1
G (𝔹

N )(u) < Cf cq(‖w‖q󸀠√
2r
a
+
cq−1q

q
‖w‖∞(

2r
a
)
q/2
)

for all u ∈ H1
G (𝔹

N ), with Φ(u) < r. Hence

sup
u∈Φ−1(Σr)

Ψ|H1
G (𝔹

N )(u) ≤ Cf cq(‖w‖q󸀠√
2r
a
+
cq−1q

q
‖w‖∞(

2r
a
)
q/2
).

Therefore, the above inequality immediately gives

χ(r) ≤ Cf cq(‖w‖q󸀠√
2
ar
+
(2/a)q/2cq−1q

q
‖w‖∞r

q/2−1) (9.33)

for every r > 0. Evaluating inequality (9.33) at r = ̄t2 and recalling (9.32), we have

χ( ̄t2) ≤ Cf cq(√
2
a
‖w‖q󸀠
̄t
+
(2/a)q/2cq−1q

q
‖w‖∞ ̄t

q−2) = 1
λ⋆( ̄t)
. (9.34)

Now, put Σ ̄t2 = (−∞, ̄t
2) and note that the identically zero function 0 is in Φ−1(Σ ̄t2 ), and

Φ(0) = Ψ(0) = 0, since clearly 0 ∈ H1
G (𝔹

N ). Consequently,

φ( ̄t2) = inf
u∈Φ−1(Σ ̄t2 )

(supv∈Φ−1(Σ ̄t2 )Ψ|H1
G (𝔹

N )(v)) −Ψ|H1
G (𝔹

N )(u)
̄t2 −Φ(u)

≤
supv∈Φ−1(Σ ̄t2 )Ψ|H1

G (𝔹
N )(v)

̄t2
= χ( ̄t2).

Thus, (9.34) gives

φ( ̄t2) ≤ χ( ̄t2) ≤ 1
λ⋆( ̄t)
< 1
λ
. (9.35)
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Then

λ ∈ (0, λ⋆( ̄t)) ⊆ (0, 1/φ( ̄t2)).

Themain critical point Theorem9.2.3 ensures that there exists a functionuG
λ ∈ Φ

−1(Σ ̄t2 )
such that

Φ󸀠(uG
λ ) − λ(Ψ|H1

G (𝔹
N ))
󸀠(uG

λ ) = 0,

and, in particular, uG
λ is a global minimum of the restriction of the functional𝒥λ to the

sublevel Φ−1(Σ ̄t2 ).
Now, we have to show that the solution uG

λ found above is not the trivial (identi-
cally zero) function. If f (0) ̸= 0, then it easily follows that uG

λ ̸≡ 0 inH
1
G (𝔹

N ), since the
trivial function is not a solution of (Kλ).

Let us consider the case when f (0) = 0. Clearly, uG
λ is a critical point of 𝒥λ in

H1
G (𝔹

N ) and has the property that

Φ(uG
λ ) < ̄t

2, 𝒥λ(u
G
λ ) ≤ 𝒥λ(u) for any u ∈ H1

G (𝔹
N),with Φ(u) < ̄t2. (9.36)

Moreover, uG
λ is a solution of (Kλ), due to the G -invariance of the functional Jλ and

Theorem A.1.2. In this setting, in order to prove that uG
λ ̸≡ 0 in H

1
G (𝔹

N ), we first claim
that there exists a sequence of functions (vk)k in H1

G (𝔹
N ) such that

lim sup
k→∞

Ψ|H1
G (𝔹

N )(vk)
Φ(vk)

=∞. (9.37)

By the assumption on the limsup in (ii), there exists a sequence (tk)k ⊂ ℝ+ such that
tk → 0+ as k →∞ and

lim
k→∞

F(tk)
t2k
=∞. (9.38)

Thus for anyM > 0 and k sufficiently large,

F(tk) > Mt2k . (9.39)

Define vk = tkvερ,r for any k ∈ ℕ. Then, vk ∈ H
1
G (𝔹

N ) for any k ∈ ℕ, since vερ,r ∈ H
1
G (𝔹

N ).
Furthermore, taking into account the algebraic properties of the functions vερ,r stated
in (j1)–(j3), since F(0) = 0, and using (9.39), we can write

Ψ|H1
G (𝔹

N )(vk)
Φ(vk)

=
∫Aρ

εr
w(σ)F(vk) dμ + ∫Aρ

r \A
ρ
εr
w(σ)F(vk) dμ

Φ(vk)

=
∫Aρ

εr
w(σ)F(tk) dμ + ∫Aρ

r \A
ρ
εr
w(σ)F(tkvερ,r) dμ

Φ(vk)
(9.40)
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≥ w0
M VolH (A

ρ
εr)t2k + ∫Aρ

r \A
ρ
εr
F(tkvερ,r) dμ

at2k
2 ‖v

ε
ρ,r‖2 +

bt4k
4 ‖v

ε
ρ,r‖4

for k sufficiently large. Now we have to distinguish two different cases.

Case 1. Suppose that limt→0+
F(t)
t2 =∞.

Then, there exists ρM > 0 such that for any t, with 0 < t < ρM ,

F(t) ≥ Mt2. (9.41)

Since tk → 0+ and 0 ≤ vερ,r ≤ 1 in 𝔹
N , one gets vk = tkvερ,r → 0+ as k → ∞ uniformly

in 𝔹N . Hence, 0 ≤ vk < ρM in 𝔹N for k sufficiently large. As a consequence of (9.40)
and (9.41), we have

Ψ(vk)
Φ(vk)
≥ w0

M VolH (A
ρ
εr)t2k + ∫Aρ

r \A
ρ
εr
F(tkvερ,r) dμ

at2k
2 ‖v

ε
ρ,r‖2 +

bt4k
4 ‖v

ε
ρ,r‖4

≥ w0
M VolH (A

ρ
εr) + ∫Aρ

r \A
ρ
εr
|vερ,r |

2 dμ

a
2 ‖v

ε
ρ,r‖2 +

bt4k
4 ‖v

ε
ρ,r‖4

for k sufficiently large. Thus,

lim sup
k→∞

Ψ(vk)
Φ(vk)
≥ w0

M VolH (A
ρ
εr) + ∫Aρ

r \A
ρ
εr
|vερ,r |

2 dμ
a
2 ‖v

ε
ρ,r‖2

.

This gives (9.37), sinceM > 0 is arbitrary. The claim is so proved.

Case 2. Suppose that lim inft→0+
F(t)
t2 = ℓ ∈ ℝ.

Then, for any ϵ > 0 there exists ρϵ > 0 such that for any t, with 0 < t < ρϵ,

F(t) ≥ (ℓ − ϵ)t2. (9.42)

Arguing as above, we can suppose that 0 ≤ vk = tkvερ,r < ρϵ in 𝔹
N for k large enough.

Thus, by (9.40) and (9.42), we get

Ψ(vk)
Φ(vk)
≥ w0

M VolH (A
ρ
εr)t2k + ∫Aρ

r \A
ρ
εr
F(tkvερ,r)dμ

at2k
2 ‖v

ε
ρ,r‖2 +

bt4k
4 ‖v

ε
ρ,r‖4

≥ w0
M VolH (A

ρ
εr) + (ℓ − ϵ)∫Aρ

r \A
ρ
εr
|vερ,r |

2dμ

a
2 ‖v

ε
ρ,r‖2 +

bt4k
4 ‖v

ε
ρ,r‖4

,

provided that k is sufficiently large. ChoosingM > 0 large enough, say

M > max{0,− 2ℓ
VolH (A

ρ
εr)
∫

Aρ
r \A

ρ
εr

󵄨󵄨󵄨󵄨v
ε
ρ,r
󵄨󵄨󵄨󵄨
2 dμ},
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and ϵ > 0 so small that

ϵ ∫
Aρ
r \A

ρ
εr

󵄨󵄨󵄨󵄨w
ε
ρ,r
󵄨󵄨󵄨󵄨
2 dμ < MVolH (A

ρ
εr)

2
+ ℓ ∫

Aρ
r \A

ρ
εr

󵄨󵄨󵄨󵄨v
ε
ρ,r
󵄨󵄨󵄨󵄨
2 dμ,

we get at once

Ψ(vk)
Φ(vk)
≥

w0
Φ(vk)
(M VolH(A

ρ
εr) + ℓ ∫

Aρ
r \A

ρ
εr

󵄨󵄨󵄨󵄨v
ε
ρ,r
󵄨󵄨󵄨󵄨
2 dμ − ϵ ∫

Aρ
r \A

ρ
εr

󵄨󵄨󵄨󵄨v
ε
ρ,r
󵄨󵄨󵄨󵄨
2 dμ)

>
w0M

a‖vερ,r‖2 +
bt4k
2 ‖v

ε
ρ,r‖4
⋅
VolH (A

ρ
εr)

2
,

for k ∈ ℕ large enough. Hence

lim sup
k→∞

Ψ(vk)
Φ(vk)
≥
w0 VolH (A

ρ
εr)

2a‖vερ,r‖2
M.

This gives again (9.37), sinceM is arbitrary.
Now, ‖vk‖ = tk ‖vερ,r‖→ 0 as k →∞, so that for large enough k,

a
2
‖vk‖

2 + b
4
‖vk‖

4 < ̄t2.

Thus vk ∈ Φ−1(Σ ̄t2 ) and 𝒥λ(vk) = Φ(vk) − λΨ|H1
G (𝔹

N )(vk) < 0 provided that k is large
enough, thanks to (9.37) and the fact that λ > 0. Consequently,

𝒥λ(u
G
λ ) ≤ 𝒥λ(vk) < 0 = 𝒥λ(0),

since uG
λ is a global minimum of the restriction of 𝒥λ to Φ−1(Σ ̄t2 ) by (9.36). Therefore,

uG
λ ̸≡ 0 in H

1
G (𝔹

N ). Thus, uG
λ is a nontrivial solution of (Kλ) for any λ ∈ (0, λ⋆).

Finally, we prove that limλ→0+ ‖uG
λ ‖ = 0. To this end, let us fix λ ∈ (0, λ

⋆( ̄t)). By
construction,

Φ(uG
λ ) =

a
2
󵄩󵄩󵄩󵄩u

G
λ
󵄩󵄩󵄩󵄩
2 + b

4
󵄩󵄩󵄩󵄩u

G
λ
󵄩󵄩󵄩󵄩
4 < ̄t2,

that is,

󵄩󵄩󵄩󵄩u
G
λ
󵄩󵄩󵄩󵄩 < √

2
a
̄t .

Set

M ̄t = cqCf(√
2
a
‖w‖q󸀠 ̄t + (

2
a
)
q/2
cq−1q ‖w‖∞ ̄t

q).
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The growth condition (9.30) yields

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝔹N

w(σ)f (uG
λ )u

G
λ dμ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ Cf(∫
𝔹N

w(σ)󵄨󵄨󵄨󵄨u
G
λ
󵄨󵄨󵄨󵄨dμ + ∫
𝔹N

w(σ)󵄨󵄨󵄨󵄨u
G
λ
󵄨󵄨󵄨󵄨
qdμ)

≤ Cf (‖w‖q󸀠
󵄩󵄩󵄩󵄩u

G
λ
󵄩󵄩󵄩󵄩q + ‖w‖∞

󵄩󵄩󵄩󵄩u
G
λ
󵄩󵄩󵄩󵄩
q
q) (9.43)

< M ̄t ,

since q ∈ (2, 2∗). Now uG
λ is a critical point of 𝒥λ, so that ⟨𝒥 󸀠λ (u

G
λ ),φ⟩ = 0 for any

φ ∈ H1
G (𝔹

N ) and every λ ∈ (0, λ⋆( ̄t)) . In particular, ⟨𝒥 󸀠λ (u
G
λ ), u

G
λ ⟩ = 0, that is,

⟨Φ󸀠(uG
λ ), u

G
λ ⟩ = λ ∫

𝔹N

w(σ)f (uG
λ )u

G
λ dμ (9.44)

for every λ ∈ (0, λ⋆( ̄t)), where

⟨Φ󸀠(uG
λ ), u

G
λ ⟩ = (a + b

󵄩󵄩󵄩󵄩u
G
λ
󵄩󵄩󵄩󵄩
2)󵄩󵄩󵄩󵄩u

G
λ
󵄩󵄩󵄩󵄩
2.

Then it follows, by (9.43) and (9.44), that

0 ≤ 󵄩󵄩󵄩󵄩u
G
λ
󵄩󵄩󵄩󵄩
2 = ⟨Φ󸀠(uG

λ ), u
G
λ ⟩ = λ ∫

𝔹N

w(σ)f (uG
λ )u

G
λ dμ < λM ̄t

for any λ ∈ (0, λ⋆( ̄t)) . We get limλ→0+ ‖uG
λ ‖ = 0, as claimed. This completes the proof

of the main result.

Theorem 9.2.4 can be applied to the prototype problem

{{{{
{{{{
{

− (a + b ∫
𝔹4

|∇Hu|
2 dμ)ΔHu = λ(

1 − |σ|2

2
)
4
(|u|r−2u + |u|s−2u) in 𝔹4,

u ∈ H1(𝔹4),

where 1 < r < 2 and 2 < s < 4, and ensures that for everyG ∈ F there exists λ⋆ > 0 such
that for every λ ∈ (0, λ⋆) the above equation admits at least onenontrivialG -symmetric
solution uG

λ ∈ H
1(𝔹4). Moreover,

lim
λ→0+
󵄩󵄩󵄩󵄩u

G
λ
󵄩󵄩󵄩󵄩 = 0.

A simple case is displayed in Figure 9.3.
The next result below can be viewed as a natural counterpart of Theorem 9.2.1.

Theorem 9.2.5. Let w satisfy (w) and let f : ℝ → ℝ be a continuous function such that
(f1) holds in addition to
(a) lim inft→0+

F(t)
t2 = 0;
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Figure 9.3: The model case f (t) = |t|−1/2t + |t|t.

(b) F0 = lim supt→0+
F(t)
t2 ∈ ℝ

+ ∪ {∞}.

Then, for every G ∈ F and λ > 0 sufficiently large, there exists a sequence (uG
k )k ⊂

H1(𝔹N ) of nontrivial nonnegative G -invariant solutions of (Kλ) such that

lim
k→∞
󵄩󵄩󵄩󵄩u

G
k
󵄩󵄩󵄩󵄩 = lim

k→∞
󵄩󵄩󵄩󵄩u

G
k
󵄩󵄩󵄩󵄩∞ = 0.

Proof. The first steps of the proof are similar to the arguments of the proof of Theo-
rem 9.2.1. The essential difficulty to apply the variational method to study (Kλ) is due
to the fact that the Sobolev compact embedding fails on the whole space.

To be precise, the embedding from H1(𝔹N ) into L℘(𝔹N ) in not compact when ℘ ∈
(2, 2∗), since 𝔹N here is equipped with the Poincaré metric, and so it is a complete
noncompact Riemannian manifold.

On the other hand, from Theorem 9.1.2 of L. Skrzypczak and C. Tintarev [232], the
G -invariant subspace H1

G (𝔹
N ) of H1(𝔹N ) is compactly embedded into L℘(𝔹N ), when-

ever ℘ ∈ (2, 2∗). Therefore the proof can be sketched as follows. At any subset CG
k ,

the functional JG ,λ, given in (9.12), attains its infimum at some point uG
k . Then, it is

possible to prove that uG
k is a local minimum point of JG ,λ on the symmetric subspace

H1
G (𝔹

N ). This partial result is intuitively obvious, since its analogy in basic calculus
depends heavily on (f1). From the Palais Theorem A.1.2, every uG

k is actually a critical
point of the smooth functional Jλ on the entire H1(𝔹N ).

A careful analysis of the energy levels

mG
k = inf

u∈CG
k

JG ,λ(u)

gives that limk→∞mG
k = limk→∞ ‖uG

k ‖ = 0.
To obtain the conclusion, it is enough to prove that such local minima (uG

k )k are
pairwise distinct. From now on, technical details andmethods are different compared
to the proof of Theorem 9.2.1. We first claim that

mG
k = inf

u∈CG
k

JG ,λ(u) = JG ,λ(u
G
k ) < 0
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for every k ∈ ℕ. Indeed, fix ρ, r, with ρ > r > 0, and ε ∈ (0, 1). Let vερ,r be the function
given in (9.22) and take κ0 so that

0 < κ0 <
F0 ∫Aρ

εr
w(σ)dμ

∫Aρ
r \A

ρ
εr
w(σ)|vερ,r |2dμ

, (9.45)

which is possible by (b). Clearly, the right-hand side of (9.45) is trivially satisfied when
F0 =∞. By (a), there exists δ > 0 such that

F(t) > −κ0t
2 (9.46)

for every t ∈ (0, δ). Thanks to (b), there is a sequence (sj)j ⊂ ℝ+ such that limj→∞ sj = 0
and

lim
j→∞

F(sj)
s2j
= lim sup

t→0+

F(t)
t2
= F0 > 0. (9.47)

Now, for any j ∈ ℕ, set

vρ,rsj = sjv
ε
ρ,r . (9.48)

Observe that

Φ(vρ,rsj ) ≤
s2j
2
(a + b

2
)󵄩󵄩󵄩󵄩v

ε
ρ,r
󵄩󵄩󵄩󵄩
2 (9.49)

for every j ∈ ℕ sufficiently large.
Fix k ∈ ℕ and j ∈ ℕ sufficiently large so that sj ≤ ζk < t0 by (9.49). Hence, thanks

to (9.46),

JG ,λ(v
ρ,r
sj ) ≤

s2j
2λ
(a + b

2
)󵄩󵄩󵄩󵄩v

ε
ρ,r
󵄩󵄩󵄩󵄩
2

− (F(sj) ∫
Aρ
εr

w(σ)dμ + ∫
Aρ
r \A

ρ
εr

w(σ)F( vρ,rsj )dμ)

≤
s2j
2λ
(a + b

2
)󵄩󵄩󵄩󵄩v

ε
ρ,r
󵄩󵄩󵄩󵄩
2

− (F(sj) ∫
Aρ
εr

w(σ)dμ − κ0s
2
j ∫
Aρ
r \A

ρ
εr

w(σ)󵄨󵄨󵄨󵄨v
ε
ρ,r
󵄨󵄨󵄨󵄨
2dμ)

≤
s2j
λ
[(a

2
+ b
4
)󵄩󵄩󵄩󵄩v

ε
ρ,r
󵄩󵄩󵄩󵄩
2

− λ(
F(sj)
s2j
∫
Aρ
εr

w(σ)dμ − κ0 ∫
Aρ
r \A

ρ
εr

w(σ)󵄨󵄨󵄨󵄨v
ε
ρ,r
󵄨󵄨󵄨󵄨
2dμ)].
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Now, (9.46) allows us to take

λ > (a
2
+ b
4
)

‖vερ,r‖
2

F0 ∫Aρ
εr
w(σ)dμ − κ0 ∫Aρ

r \A
ρ
εr
w(σ)|vερ,r |2dμ

,

so that there exists j0 ∈ ℕ such that sj0 ≤ ζk and

JG ,λ(v
ρ,r
sj0
) ≤

s2j0
λ
[(a

2
+ b
4
)󵄩󵄩󵄩󵄩v

ε
ρ,r
󵄩󵄩󵄩󵄩
2

− λ(
F(sj0 )
s2j0
∫
Aρ
εr

w(σ)dμ − κ0 ∫
Aρ
r \A

ρ
εr

w(σ)󵄨󵄨󵄨󵄨v
ε
ρ,r
󵄨󵄨󵄨󵄨
2dμ)] < 0.

Thus, the test function v
ρ,r
sj0

belongs to CG
k and JG ,λ(v

ρ,r
sj0
) < 0. Hence,

mG
k = inf

u∈CG
k

JG ,λ(u) = JG ,λ(u
G
k ) ≤ JG ,λ(v

ρ,r
sj0
) < 0,

as claimed.
Thanks to (9.20), there exists a subsequence of (uG

k )k, still denoted by (uG
k )k, of

pairwise distinct elements that weakly solve the truncated equation (9.11) and such
that

0 ≤ 󵄩󵄩󵄩󵄩u
G
k
󵄩󵄩󵄩󵄩∞ ≤ t0 (9.50)

for every k ∈ ℕ.
Since the fixed point set of H1(𝔹N ) under the action of the group G is exactly

H1
G (𝔹

N ), the symmetric criticality principle, recalled in Theorem A.1.2, ensures that
(uG

k )k ⊂ H
1(𝔹N ) is a sequence of critical points for the C1-functional Jλ for which (9.50)

holds, i. e., (uG
k )k ⊂ H

1(𝔹N ) is a sequence of solutions of (Kλ).

A concrete application of Theorem 9.2.5 is given by the following example. Let
(ak)k, (bk)k be two positive real sequences such that bk+1 < ak < bk for every k ≥ k0
and some k0 ∈ ℕ. Assume that

lim
k→∞

bk = 0 and lim
k→∞

bk
ak
=∞.

Moreover, let φ ∈ C1([0, 1]) be a nontrivial nonnegative function such that φ(0) =
φ(1) = 0 and let ϕ : ℝ→ ℝ be defined by

ϕ(t) = {
φ( t−bk+1ak−bk+1

) if t ∈ ⋃k≥k0 [bk+1, ak],
0 otherwise.

(9.51)

Furthermore, let

0 < κ0 <
‖φ‖∞ ∫Aρ

εr
w(σ)dμ

∫Aρ
r \A

ρ
εr
w(σ)|vερ,r |2dμ

, (9.52)
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where w is a nontrivial nonnegative potential, verifying (w). The function vερ,r is given
in (9.22), and the annulus-type domains Aρr and A

ρ
εr are defined as in the proof of The-

orem 9.2.1. By Theorem 9.2.5, for every G ∈ F and for all λ > 0 sufficiently large, there
exists a sequence (uG

k )k ⊂ H
1(𝔹N ) of nontrivial nonnegative G -symmetric solutions of

{{{
{{{
{

− (a + b ∫
𝔹N

|∇Hu|
2dμ)ΔHu = λw(σ)u[2ϕ(u) + uϕ

󸀠(u)] in 𝔹N ,

u ∈ H1(𝔹N)

(9.53)

such that

lim
k→∞
󵄩󵄩󵄩󵄩u

G
k
󵄩󵄩󵄩󵄩 = lim

k→∞
󵄩󵄩󵄩󵄩u

G
k
󵄩󵄩󵄩󵄩∞ = 0.

In (9.53), the function ϕ is defined in (9.51) and f (t) = t[2ϕ(t) + tϕ󸀠(t)]. More precisely,
a careful analysis of the proof of Theorem 9.2.5 and inequality (9.23) ensure that the
main conclusion holds provided that

λ > (a
2
+ b
4
)

VolH (A
ρ
r )

‖φ‖∞ ∫Aρ
εr
w(σ)dμ − κ0 ∫Aρ

r \A
ρ
εr
w(σ)|vερ,r |2dμ

(1 + 1
(1 − ε)2r2

),

where κ0 is the constant given in (9.52). We emphasize that Theorem 9.2.1 cannot be
applied to (9.53), since in this case F(t) = t2ϕ(t) and so

lim sup
t→0+

F(t)
t2
= lim sup

t→0+
ϕ(t) = ‖φ‖∞ > 0, while lim inf

t→0+
F(t)
t2
= lim inf

t→0+
ϕ(t) = 0.

In particular, we can take for all k ≥ 2,

ak =
1
k!k
, bk =

1
k!
, and φ(t) = Me4e

1
t(t−1)

for t ∈ (0, 1), with φ(0+) = φ(1−) = 0, and where M is a positive constant sufficiently
large; see Figure 9.4.

Figure 9.4: The function ϕ in [bk+1, ak] for different
values ofM.
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9.3 Perturbed Kirchhoff-type problems

The last part of the chapter is devoted to the sublinear case, in which we assume that
the nonlinearity f : ℝ→ ℝ is continuous and verifies the assumptions:
(h1) f (t) = o(|t|), as |t|→ 0;
(h2) f (t) = o(|t|), as |t|→∞;
(h3) There exists t0 ∈ ℝ such that F(t0) > 0.

Clearly, (h2)means exactly that f is sublinear at infinity. Moreover, due to (h1) and (h2),
the number

cf = max
t ̸=0

|f (t)|
|t|

(9.54)

is well defined and positive. We consider the perturbed form of (Kλ), namely,

{{{
{{{
{

− (a + b ∫
𝔹N

|∇Hu|
2 dμ)ΔHu = λw(σ)f (u) + ϑw(σ)f(u) in 𝔹N ,

u ∈ H1(𝔹N),

(Kλ,ϑ)

where w and f are of special type. To prove the existence result for (Kλ,ϑ), we shall use
the next general abstract theorem due to B. Ricceri in [226], where, according to the
definition given in Section 6.3, the set 𝒲X is the class of all functionals I : X → ℝ,
with the property that uk ⇀ u in X and lim infj→∞I(uk) ≤ I(u) implies that uk → u up
to a subsequence.

Theorem 9.3.1. Let X be a separable reflexive real Banach space. Assume that
– Φ : X → ℝ is a coercive, sequentially weakly lower semicontinuous C1-functional

on X, belonging to𝒲X ;
– Φ is bounded on each bounded subset of X and its derivative admits a continuous

inverse on the dual space X󸀠 of X;
– Ψ : X → ℝ a C1-functional, with compact derivative;
– Φ has a strict local minimum in u0, withΦ(u0) = Ψ(u0) = 0;
– ϱ < χ, where

ϱ = max{0, lim sup
‖u‖→∞

Ψ(u)
Φ(u)
, lim sup

u→u0

Ψ(u)
Φ(u)
},

χ = sup{Ψ(u)
Φ(u)
: u ∈ X andΦ(u) > 0}.

Then, for each compact interval [λ1, λ2] ⊂ (1/χ, 1/ϱ), there exists a number η > 0, with
the property that for every λ ∈ [λ1, λ2] and every C1-functional ϒ : X → ℝ, with compact
derivative, there exists δ > 0 such that for each ϑ ∈ [−δ, δ], the equation

Φ󸀠 − λΨ󸀠 − ϑϒ󸀠 = 0

admits at least three solutions in X whose norms are strictly less than η.
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In order to apply Theorem 9.3.1 to (Kλ,ϑ), let us introduce

Wq = {f ∈ C(ℝ) : sup
t∈ℝ\{0}

|f(t)|
|t| + |t|q−1

<∞},

where q ∈ (2, 2∗).

Theorem 9.3.2. Let w and w satisfy (w) and let f : ℝ → ℝ be a continuous function
verifying (h1)–(h3). Let f ∈ Wq for some q ∈ (2, 2∗). Then, the following assertions hold:
(k1) (Kλ,0) has only the identically zero solution whenever

0 ≤ λ < a (N − 1)
2

4cf ‖w‖∞
,

where cf is given in (9.54);
(k2) For every G ∈ F , there exists λ∗ > 0 such that for every λ > λ∗ there is δλ > 0 with

the property that for every ϑ ∈ [−δλ, δλ] equation (Kλ,ϑ) has at least two distinct
nontrivial G -symmetric solutions in H1(𝔹N ).

Proof. The underlying energy functional 𝒥λ : H1(𝔹N )→ ℝ is defined by

𝒥λ(u) =
a
2
‖u‖2 + b

4
‖u‖4 − λ ∫

𝔹N

w(σ)F(u)dμ − ϑ ∫
𝔹N

w(σ) F(u)dμ

for every u ∈ H1(𝔹N ), where for all t ∈ ℝ,

F(t) =
t

∫
0

f (s)ds and F(t) =
t

∫
0

f(s)ds.

By Theorem 9.1.2, the functional 𝒥λ is well defined and of class C1(H1(𝔹N )); moreover,
its critical points are exactly the solutions of (Kλ,ϑ).
(k1) Suppose by contradiction that there exists a solution u0 ∈ H1(𝔹N ) \ {0} of (Kλ,0).
Thus, taking as test function φ = u0, we have

a‖u0‖
2 ≤ (a + b‖u0‖

2)‖u0‖
2 = λ ∫
𝔹N

w(σ)f (u0)u0dμ

≤ λ 4
(N − 1)2

cf ‖w‖∞‖u0‖
2.

Therefore, bearing in mind the assumption on λ, since a > 0, we get

‖u0‖
2 ≤ λ‖w‖∞

4cf
(N − 1)2a

‖u0‖
2 < ‖u0‖

2,

which is an obvious contradiction. Hence u0 = 0.
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(k2) Let G ∈ F . Let us apply Theorem 9.3.1 with the choices X = H1
G (𝔹

N ) and

Φ(u) = a
2
‖u‖2 + b

4
‖u‖4,

Ψ(u) = ∫
𝔹N

w(σ)F(u)dμ, ϒ(u) = ∫
𝔹N

w(σ) F(u)dμ

for all u ∈ H1
G (𝔹

N ).
As a norm-type functional, Φ is coercive and sequentially weakly lower semicon-

tinuous inH1
G (𝔹

N ). Moreover, Φ belongs to𝒲H1
G (𝔹

N ) and is bounded on each bounded
subset of H1

G (𝔹
N ). We claim that its derivative Φ󸀠 admits a continuous inverse on the

dual space (H1
G (𝔹

N ))󸀠.
To this aim, we identify (H1

G (𝔹
N ))󸀠 with H1

G (𝔹
N ). Since the Kirchhoff function

K(t) = a + bt is nondecreasing in ℝ+0, with K(0) = a > 0, then the real function
t 󳨃→ t(a + bt2), with t ∈ ℝ+0, is increasing and onto in its domain, and so there exists a
continuous function g : ℝ+0 → ℝ such that

g(t(a + bt2)) = t for every t ∈ ℝ+0 . (9.55)

Let T : H1
G (𝔹

N )→ H1
G (𝔹

N ) be the operator defined by

T(v) =
{
{
{

g(‖v‖)v
‖v‖ if v ̸= 0,

0 if v = 0

for every v ∈ H1
G (𝔹

N ).
Since g is continuous and g(0) = 0, the operator T is continuous inH1

G (𝔹
N ). More-

over, K(‖u‖2) > 0, and (9.55) yields for each u ∈ H1
G (𝔹

N ) \ {0},

T(Φ󸀠(u)) = T(K(‖u‖2)u) = g(K(‖u‖
2)‖u‖)

K(‖u‖2)‖u‖
K(‖u‖2)u

= ‖u‖
K(‖u‖2)‖u‖

K(‖u‖2)u = u.

Thus the derivative Φ󸀠 has a continuous inverse onH1
G (𝔹

N ), as claimed. Furthermore,
since H1

G (𝔹
N ) is a closed subspace of H1(𝔹N ) and the embedding H1

G (𝔹
N ) 󳨅→ L℘(𝔹N )

is compact for every ℘ ∈ (2, 2∗) in force of Theorem 9.1.2, the functionals Ψ and ϒ have
compact derivatives.

Now, we claim that

lim
‖u‖→0

Ψ(u)
Φ(u)
= lim
‖u‖→∞

Ψ(u)
Φ(u)
= 0. (9.56)

Due to (h1) and (h2), for every ε > 0 there exists δε ∈ (0, 1) such that

0 ≤ 󵄨󵄨󵄨󵄨f (t)
󵄨󵄨󵄨󵄨 ≤

ε
‖w‖∞
|t| for every t, with either |t| ≤ δε or |t| ≥ δ

−1
ε . (9.57)
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Let q ∈ (2, 2∗). It is clear that the real function t 󳨃→ t1−qf (t) is bounded on [δε, δ−1ε ].
Therefore, for some qε > 0, we have

0 ≤ 󵄨󵄨󵄨󵄨f (t)
󵄨󵄨󵄨󵄨 ≤

ε
‖w‖∞
|t| +mε|t|

q−1 for every t ∈ ℝ. (9.58)

Thus, for every u ∈ H1
G (𝔹

N ),

0 ≤ 󵄨󵄨󵄨󵄨Ψ(u)
󵄨󵄨󵄨󵄨 ≤ ∫
𝔹N

w(σ)󵄨󵄨󵄨󵄨F(u)
󵄨󵄨󵄨󵄨dμ

≤ ∫
𝔹N

w(σ)[ ε
2‖w‖∞

u2 + mε
q
|u|q]dμ

≤ ∫
𝔹N

[ε
2
u2 + mε

q
w(σ)|u|q]dμ

≤ ε
2
‖u‖2 + mε

q
cqq‖w‖∞‖u‖

q,

where cq > 0 is the best embedding constant in H1
G (𝔹

N ) 󳨅→ Lq(𝔹N ). Thus, for every
u ∈ H1

G (𝔹
N ) \ {0},

0 ≤ |Ψ(u)|
|Φ(u)|
≤ 2|Ψ(u)|

a‖u‖2
≤ ε
a
+ 2mε

aq
cqq‖w‖∞‖u‖

q−2.

Since q > 2 and ε > 0 is arbitrarily small, the first limit in (9.56) follows at once.
Let ℓ ∈ (1, 2). Since f ∈ C(ℝ), there also exists a numberMε > 0 such that

0 ≤ |f (t)|
tℓ−1
≤ Mε for every t ∈ [δε, δ

−1
ε ],

where δε ∈ (0, 1) is from (9.57). The latter relation, together with (9.57), gives that

0 ≤ 󵄨󵄨󵄨󵄨f (t)
󵄨󵄨󵄨󵄨 ≤

ε
‖w‖∞
|t| +Mε|t|

ℓ−1 for every t ∈ ℝ.

Similarly as above, we get

0 ≤ 󵄨󵄨󵄨󵄨Ψ(u)
󵄨󵄨󵄨󵄨 ≤

ε
2
‖u‖2 + Mε

ℓ
‖w‖ 2

2−ℓ
‖u‖ℓ. (9.59)

For every u ∈ H1
G (𝔹

N ) \ {0}, we have

0 ≤ |Ψ(u)|
|Φ(u)|
≤ 2|Ψ(u)|

a‖u‖2
≤ ε
a
+ 2Mε

aℓ
‖w‖ 2

2−ℓ
‖u‖ℓ−2.

Since ε > 0 is arbitrary and ℓ ∈ (1, 2), taking the limit as ‖u‖ → ∞ in H1
G (𝔹

N ), we
obtain the second relation in (9.56).
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Moreover, u0 = 0 is a strict global minimum point of the functional Φ, Φ(u0) =
Ψ(u0) = 0, and (9.56) obviously yields

ϱ = max{0, lim sup
‖u‖→∞

Ψ(u)
Φ(u)
, lim sup

u→0

Ψ(u)
Φ(u)
} = 0.

Hence it is enough to show that

χ = sup{Ψ(u)
Φ(u)
: u ∈ H1

G (𝔹
N) \ {0}} ∈ ℝ+. (9.60)

Let t0 ∈ ℝ be the number given in (h3). Since w ∈ L∞(𝔹N ) \ {0} is nonnegative in 𝔹N ,
there are positive real numbers ρ, r, and w0, with ρ > r, such that condition (9.21)
holds.

Fix ε ∈ (0, 1) and consider the function vερ,r ∈ H
1
G (𝔹

N ) given by

vερ,r = t0v
ε
ρ,r in 𝔹N , (9.61)

where vερ,r is defined in (9.22). Direct computations yield
(𝚥1) supp(vερ,r) ⊂ A

ρ
r ;

(𝚥2) ‖v
ε
ρ,r‖∞ ≤ |t0|;

(𝚥3) v
ε
ρ,r(σ) = 1 for every σ ∈ A

ρ
εr .

The above properties and the assumptions on the weight w imply that

Ψ(vερ,r) = ∫
𝔹N

w(σ)F(vερ,r)dμ = ∫
Aρ
r

w(σ)F( vερ,r)dμ

= ∫
Aρ
εr

w(σ)F( vερ,r)dμ + ∫
Aρ
r \A

ρ
εr

w(σ)F(vερ,r)dμ

≥ w0F(t0)VolH(A
ρ
εr) − ‖w‖∞ max

|t|≤|t0|
󵄨󵄨󵄨󵄨F(t)
󵄨󵄨󵄨󵄨VolH(A

ρ
r \ A

ρ
εr).

We claim that there is ε0 > 0 such that Ψ(v
ε0
ρ,r) > 0. Indeed, set gμ : (0, 1) → ℝ+ be the

real continuous function defined by

gμ(ε) =
VolH (A

ρ
εr)

VolH (A
ρ
r \ A

ρ
εr)
, ε ∈ (0, 1).

Clearly, gμ(ε) →∞ if ε → 1−. Hence F(t0) > 0 by assumption (h3), and there is ε0 > 0
such that

gμ(ε0) =
VolH (A

ρ
ε0r)

VolH (A
ρ
r \ A

ρ
ε0r)
> ‖w‖∞

max|t|≤|t0| |F(t)|
w0F(t0)

.

 EBSCOhost - printed on 2/10/2023 3:36 PM via . All use subject to https://www.ebsco.com/terms-of-use



238 | 9 Kirchhoff problems on the Poincaré ball model

Thus Ψ(vε0ρ,r) > 0 as affirmed. Consequently, (9.60) immediately holds by (9.56), and
the number

λ∗ = inf{Φ(u)
Ψ(u)
: u ∈ H1

G (𝔹
N) and Ψ(u) > 0} <∞ (9.62)

is well defined. Moreover, λ∗ = χ−1.
Applying Theorem 9.3.1, for every λ > λ∗ there exists δλ > 0 such that for each

ϑ ∈ [−δλ, δλ] the functional 𝒥λ, restricted to H1
G (𝔹

N ), has at least three critical points,
as desired.

Since𝒥λ is G -invariant with respect to⊛G : G ×H1(𝔹N )→ H1(𝔹N ), defined in (9.5),
the symmetric criticality TheoremA.1.2 implies that the critical points of𝒥λ|H1

G (𝔹
N ) are

also critical points of 𝒥λ in H1(𝔹N ), and so G -symmetric solutions of (Kλ,ϑ).

In any case we can produce a concrete bound for λ∗. Indeed,

Φ(vε0ρ,r) =
a
2
󵄩󵄩󵄩󵄩v

ε0
ρ,r
󵄩󵄩󵄩󵄩
2 + b

4
󵄩󵄩󵄩󵄩 v

ε0
ρ,r
󵄩󵄩󵄩󵄩
4,

and so (9.23) gives

Φ(vε0ρ,r) ≤ (1 +
1

(1 − ε0)2r2
)
2Vol2H (A

ρ
r )

2
t20

× (a + b
2
(1 + 1
(1 − ε0)2r2

)
2
Vol2H(A

ρ
r )t

2
0).

Thanks to the above inequality, a careful analysis of the proof of Theorem9.3.2 ensures
that the main conclusion in (k2) holds true, provided that

λ >
t20Vol

2
H (A

ρ
r )(1 + 1

(1−ε0)2r2
)2(a + b

2 (1 +
1

(1−ε0)2r2
)2Vol2H (A

ρ
r )t20)

2(w0F(t0)VolH (A
ρ
ε0r) − ‖w‖∞max|t|≤|t0| |F(t)|VolH (A

ρ
r \ A

ρ
ε0r))
.

Theorem 9.3.2 can be applied in particular to the equation

{{{
{{{
{

− (a + b ∫
𝔹N

|∇Hu|
2 dμ)ΔHu = λw(σ) log(1 + u

2) in 𝔹N ,

u ∈ H1(𝔹N),

(9.63)

where w satisfies (w); see Figure 9.5. Hence, for every G ∈ F there exists λ∗ > 0 such
that for every λ > λ∗ equation (9.63) has at least two nontrivial distinct G -symmetric
solutions in H1(𝔹N ). Theorem 9.3.2 gives furthermore more precise information, that
is, it asserts that the number of solutions is stable with respect to small subcritical
perturbations.

In the last results of the section, we turn back to equations settled on a homo-
geneous Hadamard manifold ℳ of the type treated in Chapter 8. More precisely, we
present an analogue of Theorems 9.2.4 and 9.3.2 in this general framework.
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Figure 9.5: The model case f (t) = log(1 + t2).

Theorem 9.3.3. Letℳ = (ℳ, g) be a homogeneous Hadamard manifold of dimension
N ≥ 3 and let G be a compact connected subgroup of Isomg(ℳ) such that FixG (ℳ) =
{σ0}. Let w satisfy condition (w) of Chapter 8 and let f : ℝ→ ℝ be a continuous function
satisfying the growth condition

sup
t∈ℝ

|f (t)|
1 + |t|q−1

<∞,

for some q ∈ (2, 2∗) and such that

−∞ < lim inf
t→0+

F(t)
t2
≤ lim sup

t→0+

F(t)
t2
=∞.

Then, there exists λ⋆ > 0 such that for every λ ∈ (0, λ⋆) the equation

{
(a + b‖u‖2)(−Δgu + u) = λw(σ)f (u) inℳ,

u ∈ H1
g(ℳ),

(Pλ)

admits a G -invariant solution uG
λ ∈ H

1(ℳ) and

lim
λ→0+
󵄩󵄩󵄩󵄩u

G
λ
󵄩󵄩󵄩󵄩 = 0.

In the sublinear case for the perturbed form of (Pλ), namely

{
(a + b‖u‖2)(−Δgu + u) = λw(σ)f (u) + ϑw(σ)f(u) inℳ,

u ∈ H1
g(ℳ),

(Pλ,ϑ)

we get the next result.

Theorem 9.3.4. Letℳ = (ℳ, g) be a homogeneous Hadamard manifold of dimension
N ≥ 3 and let G be a compact connected subgroup of Isomg(ℳ) such that FixG (ℳ) =
{σ0}. Let w and w satisfy condition (w) of Chapter 8, let f ∈ C(ℝ) be a function verifying
(h1)–(h3), and let f ∈ Wq for some q ∈ (2, 2∗). Then, the following assertions hold:
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(k1) Equation (Pλ,0) has only the trivial solution, whenever

0 ≤ λ < a
c22Cf ‖w‖∞

, where Cf = max
t ̸=0

|f (t)|
|t|

and c2 = sup
u∈H1

g(ℳ)\{0}

‖u‖2
‖u‖
;

(k2) There exists λ∗ > 0 such that for every λ > λ∗ there is δλ > 0 with the prop-
erty that for every ϑ ∈ [−δλ, δλ] equation (Pλ,ϑ) has at least two nontrivial distinct
G -symmetric solutions in H1

g(ℳ).

Comments on Chapter 9
An interesting open problem is to extend the methods used to prove the main results
of Chapter 9 to the case of degenerate Kirchhoff equations in order to obtain a hyper-
bolic version of some classical results due to O. Kavian [135], M. Struwe [238, 237], and
P. Rabinowitz [220]. More generally, inspired by the heuristic ideas contained in the
entire book, in our opinion, a careful analysis of the symmetries on Sobolev spaces as-
sociated either to manifolds or to sub-Riemannian structures seems to be a very rich
and fruitful theoretical argument in studying existence results and multiplicity phe-
nomena arising from different branches of pure and applied mathematics.
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A Appendix – the symmetric criticality principle

An important approach for studying properties of the solution space of nonlinear
equations is to restrict attention to manifolds that admit a specified group of sym-
metries. Viewing these issues strictly from the point of view of action of smooth
functionals, R. Palais proved in his celebrated work [202] the so-called principle of
symmetric criticality, briefly (SC) principle.

The validity of Palais’ principle has a powerful impact on applications to nonlin-
ear problems of mathematical physics which are set on noncompact manifolds, and
whose associated energy functionals are invariant under the action of suitable groups
of isometries.

For instance, this approach, used previously in the context of transverse symme-
try group actions, provides a generalization of the well known unimodularity condi-
tion that quite naturally arises in spatially homogeneous cosmological physical mod-
els.

In this appendix we shortly recall the (SC) principle and some of its extensions for
general energy functionals, possibly nonsmooth, associated to variational problems.
We refer to the brilliant and detailed discussion on the subject given by J. Kobayashi
and M. Ôtani in [138].

A.1 The principle for C1 functionals

Most of the results in this section are essentially contained in [138, 202] and in [151,
Part I, Chapter I]. However, we recall them for the sake of completeness.

Let X be a Banach space and let X󸀠 be its dual. As usual, we denote by ‖ ⋅ ‖ and
‖ ⋅ ‖X󸀠 the norms on X and X󸀠, respectively. Moreover, ⟨⋅, ⋅⟩ stands for the duality pairing
between the spaces X and X󸀠.

Let (G , ⋅) be a group, e its identity element, and let π be a representation of G over
X, that is, π(g) : X → X is a linear bounded operator from X into X for each g ∈ G ,
such that the following properties hold:
(i) π(e) = idX ;
(ii) π(g1g2)u = π(g1)(π(g2)u) for every g1, g2 ∈ G and u ∈ X,
where, as is customary, π(g)u denotes the image of u ∈ X trough the linear bounded
operator π(g).

This representation π of G overX induces a canonical representation πX󸀠 of G over
the dual space X󸀠 of X, that is, πX󸀠 (g) : X󸀠 → X󸀠 is a linear bounded operator from X󸀠

into X󸀠 for each g ∈ G such that
(i∗) πX󸀠 (e) = idX󸀠 ;
(ii∗) πX󸀠 (g1g2)v∗ = π(g1)(π(g2)v∗) for every g1, g2 ∈ G and v∗ ∈ X󸀠,

https://doi.org/10.1515/9783110652017-010
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where the functional πX󸀠 (g)v∗ ∈ X󸀠 is defined by duality

⟨πX󸀠 (g)v
∗, u⟩ = ⟨v∗,π(g−1)u⟩ (A.1)

for every u ∈ X.
In order to simplify the notations, for g ∈ G , u ∈ X, and v∗ ∈ X󸀠, we put

gu = π(g)u and gv∗ = πX󸀠 (g)v
∗.

A functional I : X → ℝ is said to be G -invariant if I(gu) = I(u) for every u ∈ X and
g ∈ G . A subset S ⊆ X is called G -invariant if

gS = {gu : u ∈ S} ⊆ S.

Let us define the subspace of G -symmetric points of X given by

FixG (X) = {u ∈ X : gu = u for every g ∈ G }.

Analogously, let

FixG (X
󸀠) = {v∗ ∈ X󸀠 : gv∗ = v∗ for every g ∈ G },

be the subspace of G -symmetric points of X󸀠.
By (A.1), it follows that

v∗ ∈ FixG (X
󸀠)⇐⇒ v∗ : X → ℝ is G -invariant.

Moreover, FixG (X) and FixG (X󸀠) are linear closed subspaces of X and X󸀠, respectively,
since for every g ∈ G the operators π(g) and πX󸀠 (g) are linear and bounded. Conse-
quently, FixG (X) and FixG (X󸀠) are Banach spaces with their induced norms. Set

C1G (X) = {I : X → ℝ : I ∈ C
1(X) and G -invariant},

(FixG (X))
⊥ = {v∗ ∈ X󸀠 : ⟨v∗, u⟩ = 0 for every u ∈ FixG (X)}.

We have the following result that represents the (SC) principle for smooth func-
tionals in its abstract and general form.

Theorem A.1.1. The following facts are equivalent:
(i1) If I ∈ C1G (X) and (I|FixG (X))

󸀠(u) = 0, then I󸀠(u) = 0;
(i2) FixG (X󸀠) ∩ (FixG (X))⊥ = {0}.

Proof. (i1)⇒ (i2) Suppose by contradiction that FixG (X󸀠)∩ (FixG (X))⊥ ̸= {0} and let v∗

be a nontrivial element of FixG (X󸀠) ∩ (FixG (X))⊥. Define IX󸀠 by IX󸀠 (u) = ⟨v∗, u⟩ for all
u ∈ X. It is clear that IX󸀠 ∈ C1G (X) and (IX󸀠 )

󸀠 = v∗ ̸= 0, so IX󸀠 has no critical points in X.
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On the other hand, v∗ ∈ (FixG (X))⊥ implies that v∗|FixG (X) = 0. Thus (IX󸀠 |FixG (X))
󸀠(u) =

0 for every u ∈ FixG (X), and this contradicts (i1), as required.

(i2) ⇒ (i1) Let u0 ∈ FixG (X) be a critical point of restriction I|FixG (X) and let us prove
that I󸀠(u0) = 0. Since I(u0) = I|FixG (X)(u0) and I(u0 + u) = I|FixG (X)(u0 + u) for every
u ∈ FixG (X), we obtain

⟨I󸀠(u0), u⟩ = ⟨(I|FixG (X))
󸀠(u0), u⟩FixG (X)

for every u ∈ FixG (X), where ⟨⋅, ⋅⟩FixG (X) denotes the duality pairing between FixG (X)
and its dual (FixG (X))󸀠. This implies that I󸀠(u0) ∈ (FixG (X))⊥. On the other hand, the
G -invariance of functional I yields

⟨I󸀠(gu), v⟩ = lim
t→0

I(gu + tv) − I(gu)
t

= lim
t→0

I(u + tg−1v) − I(u)
t

= ⟨I󸀠(u), g−1v⟩

= ⟨gI󸀠(u), v⟩

for every g ∈ G and u, v ∈ X. This means that I󸀠 is G -equivariant, that is, I󸀠(gu) = gI󸀠(u)
for every g ∈ G and u ∈ X. Since u0 ∈ FixG (X), we obtain gI󸀠(u0) = I󸀠(u0) for every
g ∈ G , that is, I󸀠(u0) ∈ FixG (X󸀠). Hence I󸀠(u0) ∈ FixG (X󸀠) ∩ (FixG (X))⊥ = {0} by
assumption. Therefore I󸀠(u0) = 0, as required. ◻

In the sequel, we are interested in finding conditions in order to recover the re-
quirement FixG (X󸀠) ∩ (FixG (X))⊥ = {0}, so that the (SC) principle is available by The-
orem A.1.1. To this aim, we consider two different settings: the so-called compact case
and the isometric case.

The compact case
We recall that for each u ∈ X there exists a unique element v ∈ X such that

⟨v∗, v⟩ = ∫
G

⟨v∗, gu⟩dμ for every v∗ ∈ X󸀠, (A.2)

where dμ is the normalized Haar measure on G ; see [227, Theorem 3.27]. Hence u 󳨃→
v = Au defines an operator, andAu is actually in FixG (X) by formula (20) on page 68 of
Theorem 2.5.13 of [242]. In conclusion, A : X → FixG (X), and A is called the averaging
operator on the group G .

Wearenow inposition todealwith the (SC)principle in the compact settingwhose
original form has been given by R. Palais in [202, Proposition 4.2].

Theorem A.1.2. Let G be a compact topological group. Assume that the representation
π of G over X is continuous. Then FixG (X󸀠) ∩ (FixG (X))⊥ = {0}.

 EBSCOhost - printed on 2/10/2023 3:36 PM via . All use subject to https://www.ebsco.com/terms-of-use



244 | A Appendix – the symmetric criticality principle

Proof. Suppose by contradiction that FixG (X󸀠) ∩ (FixG (X))⊥ ̸= {0} and take v∗ ̸= 0
in FixG (X󸀠) ∩ (FixG (X))⊥. Define the hyperplane

Hv∗ = {u ∈ X : ⟨v
∗, u⟩ = 1}.

Clearly, Hv∗ is a nonempty, closed, and convex subset of X. Since v∗ ∈ FixG (X󸀠), on
account of (A.2), for any u ∈ Hv∗ we have

⟨v∗,Au⟩ = ∫
G

⟨v∗, gu⟩dμ = ∫
G

⟨g−1v∗, u⟩dμ (A.3)

= ∫
G

⟨v∗, u⟩dμ = ⟨v∗, u⟩∫
G

dμ = ⟨v∗, u⟩ = 1.

On the other hand, v∗ ∈ (FixG (X))⊥. Consequently, ⟨v∗,Au⟩ = 0 for any u ∈ Hv∗ . This
contradicts (A.3) and completes the proof. ◻

The isometric case
Let X be a reflexive real Banach space. We say that the group G acts isometrically on X
if ‖gu‖ = ‖u‖ for every u ∈ X and g ∈ G . The following preparatory results hold.

Lemma A.1.3. If G acts isometrically on X, then G acts isometrically on the dual
space X󸀠, that is, ‖gv∗‖X󸀠 = ‖v∗‖X󸀠 for every v∗ ∈ X󸀠 and g ∈ G .

Proof. Let v∗ ∈ X󸀠 and g ∈ G . We first prove that ‖gv∗‖X󸀠 ≤ ‖v∗‖X󸀠 . Indeed, since G acts
isometrically on X, it follows that

󵄩󵄩󵄩󵄩gv
∗󵄩󵄩󵄩󵄩X󸀠 = sup

‖u‖=1

󵄨󵄨󵄨󵄨⟨gv
∗, u⟩󵄨󵄨󵄨󵄨 = sup

‖u‖=1

󵄨󵄨󵄨󵄨⟨v
∗, g−1u⟩󵄨󵄨󵄨󵄨

= sup
‖u‖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⟨v∗, g

−1u
‖g−1u‖
⟩
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
‖u‖, 󵄩󵄩󵄩󵄩g

−1u󵄩󵄩󵄩󵄩 = ‖u‖

≤ sup
‖u‖=1

󵄩󵄩󵄩󵄩v
∗󵄩󵄩󵄩󵄩X󸀠‖u‖ =

󵄩󵄩󵄩󵄩v
∗󵄩󵄩󵄩󵄩X󸀠 .

On the other hand, we also have

󵄩󵄩󵄩󵄩v
∗󵄩󵄩󵄩󵄩X󸀠 =
󵄩󵄩󵄩󵄩g
−1(gv∗)󵄩󵄩󵄩󵄩X󸀠 = sup

‖u‖=1

󵄨󵄨󵄨󵄨⟨g
−1(gv∗), u⟩󵄨󵄨󵄨󵄨 = sup

‖u‖=1

󵄨󵄨󵄨󵄨⟨gv
∗, gu⟩󵄨󵄨󵄨󵄨

= sup
‖u‖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⟨gv∗, gu
‖gu‖
⟩
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
‖u‖ ≤ sup

‖u‖=1

󵄩󵄩󵄩󵄩gv
∗󵄩󵄩󵄩󵄩X󸀠‖u‖ =

󵄩󵄩󵄩󵄩gv
∗󵄩󵄩󵄩󵄩X󸀠 .

Thus, ‖gv∗‖X󸀠 = ‖v∗‖X󸀠 for every v∗ ∈ X󸀠 and g ∈ G , as desired. ◻

Let F : X → 2X
󸀠
be the duality map defined for all u ∈ X by

F(u) = {v∗ ∈ X󸀠 : 󵄩󵄩󵄩󵄩v
∗󵄩󵄩󵄩󵄩X󸀠 = ‖u‖ and

󵄩󵄩󵄩󵄩v
∗󵄩󵄩󵄩󵄩

2
X󸀠 = ⟨v

∗, u⟩},

and let R(F) ⊆ X󸀠 be the range of the multifunction F.
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Lemma A.1.4. Assume that the group G acts isometrically on X. Then, the fiber F−1(v∗)
is a G -invariant set for every v∗ ∈ FixG (X󸀠) ∩ R(F), i. e., gF−1(v∗) ⊆ F−1(v∗) for every
g ∈ G .

If X is also strictly convex, then F−1(FixG (X󸀠)) is a subset of FixG (X).

Proof. Let v∗ ∈ FixG (X󸀠) ∩ R(F) and take u ∈ F−1(v∗), where

F−1(v∗) = {u ∈ X : ‖u‖ = 󵄩󵄩󵄩󵄩v
∗󵄩󵄩󵄩󵄩X󸀠 and ⟨v

∗, u⟩ = 󵄩󵄩󵄩󵄩v
∗󵄩󵄩󵄩󵄩

2
X󸀠}.

We claim that gu ∈ F−1(v∗). Indeed, since u ∈ F−1(v∗) Lemma A.1.3 yields that ‖gu‖ =
‖u‖ = ‖v∗‖X󸀠 . Moreover, since v∗ ∈ FixG (X󸀠) ∩ R(F) and u ∈ F−1(v∗), we also have

⟨v∗, gu⟩ = ⟨g−1v∗, u⟩ = ⟨v∗, u⟩ = 󵄩󵄩󵄩󵄩v
∗󵄩󵄩󵄩󵄩

2
X󸀠 .

Thus gF−1(v∗) ⊆ F−1(v∗) for every g ∈ G .
By Theorem 3.4 on page 62 of [61] the reflexivity of X ensures that F is surjective,

that is⋃u∈XF(u) = X
󸀠. Assume now that X is also strictly convex. Then by Corollary 1.9

on page 46 of [61], the dualitymap F is strictlymonotone, and so injective. Hence F−1 is
a single-valued function from X󸀠 onto X. Therefore the first part of the lemma shows at
once that gF−1(v∗) = F−1(v∗) for every v∗ ∈ X󸀠 and g ∈ G , i. e.,F−1(FixG (X󸀠)) ⊆ FixG (X),
as stated. ◻

Theorem A.1.5. Let X be a reflexive and strictly convex real Banach space and let G be
a topological group that acts isometrically on X. Then

FixG (X
󸀠) ∩ (FixG (X))

⊥ = {0}.

Proof. Assume by contradiction that FixG (X󸀠) ∩ (FixG (X))⊥ ̸= {0} and let v∗ ∈
FixG (X󸀠)∩ (FixG (X))⊥ \ {0}. In particular, v∗ ∈ FixG (X󸀠) implies that F−1(v∗) ∈ FixG (X)
by Lemma A.1.4. But v∗ ∈ (FixG (X))⊥ gives ‖v∗‖X󸀠 = ⟨v∗, F−1(v∗)⟩ = 0, which is the
desired contradiction. ◻

A.2 Extensions to nonsmooth functionals of special forms

Let X be a reflexive real Banach space and let ℰ : X → ℝ be a functional of class C1. As-
sume thatψ : X → ℝ∪ {∞} is a proper, convex, and lower semicontinuous functional.
Then, according to [239], we say that J = ℰ + ψ is a Szulkin-type functional.

An element u ∈ X is named a critical point of J = ℰ + ψ if

⟨ℰ 󸀠(u), v − u⟩ + ψ(v) − ψ(u) ≥ 0 for every v ∈ X. (A.4)

The number J(u) is a critical value of J.
For every u ∈ D(ψ) = {v ∈ X : ψ(v) <∞}, the set

𝜕ψ(u) = {x∗ ∈ X󸀠 : ψ(v) − ψ(u) ≥ ⟨x∗, v − u⟩ for every v ∈ X}
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is called the subdifferential of ψ at u. An equivalent formulation for (A.4) is

0 ∈ ℰ 󸀠(u) + 𝜕ψ(u) in X󸀠.

Proposition A.2.1. Every local minimum point of J = ℰ + ψ is a critical point of J in the
sense given in (A.4).

Proof. Let u ∈ X be a local minimumpoint of the functional J, so in turn u ∈ D(ψ). Due
to the convexity of ψ, for every t > 0 small enough,

0 ≤ J((1 − t)u + tv) − J(u)
t

≤
ℰ(u + t(v − u)) − ℰ(u)

t
+ (ψ(v) − ψ(u))

for every v ∈ X. Letting t → 0+, we get (A.4), as claimed. ◻

Although a slightly more general version is proved by J. Kobayashi and M. Otani
in [138], we recall the following form of the principle of symmetric criticality for Szulkin
functionals used in Chapter 8.

Theorem A.2.2. Let J = ℰ + ψ : X → ℝ ∪ {∞} be a Szulkin-type functional, where
X is a reflexive real Banach space. Assume that a compact group G acts linearly and
continuously on X, and that the functionals ℰ andψare G -invariant. If there exists u ∈ Σ,
where Σ denotes the subspace of G -invariant functions of X, such that

0 ∈ (ℰ |Σ)
󸀠(u) + 𝜕(ψ|Σ)(u) in Σ

󸀠,

then

0 ∈ ℰ 󸀠(u) + 𝜕ψ(u) in X󸀠,

i. e., u is a critical point of J in the sense given in (A.4).

The proof of TheoremA.2.2 is quite involved, it combines in an ingenious way var-
iousmethods and notions from convex and functional analysis. The proof is, however,
given in details in [138, Theorem 3.16].
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List of symbols

The following symbols are frequently used throughout the manuscript:
ℝ+0 ℝ+0 = [0,∞);
ℝ+ ℝ+ = (0,∞);
ℝN standard N-dimensional Euclidean space;
𝕊N unit sphere in ℝN+1 endowed by the induced Euclidean metric;
𝒪 × ℝN−m strip-like domain in ℝN ;
𝔾 Carnot group𝔾 = (𝔾, ∘) endowed by the operation ∘;
G Lie algebra associated to the Carnot group𝔾;
ℍN Heisenberg groupℍN = ℂN × ℝ;
Ωψ strip-like domain in Heisenberg groupℍN ;
HN N-dimensional hyperbolic space;
𝔹N Poincaré ball model of the hyperbolic space HN ;
ℳ Riemannian manifoldℳ = (ℳ, g) endowed of the metric g;
O(N) orthogonal group in dimension N;
SO(N) special orthogonal group in dimension N;
U(N) unitary group in dimension N;
ℳ(ℝN ) space of ℝ-valued Lebesgue measurable functions in ℝN ;
L℘(ℝN ) Lebesgue L℘ space of ℝ-valued functions in ℝN , with ℘ ∈ [1,∞];
L℘loc(ℝ

N ) space of the locally L℘ summable of ℝ-valued functions in ℝN , with
℘ ∈ [1,∞);

L℘(ℝN , |x|−℘dx) space of the L℘ summable weighted functions in ℝN , with respect to
the weight |x|−℘ and with ℘ ∈ (1,N);

C1(ℝ+0) space of ℝ-valued functions continuously differentiable in ℝ+0;
W 1,℘(ℝN ) Sobolev space ofweakly differentiableℝ-valued functions inℝN with

L℘ weak derivatives;
H1(ℝN ) Hilbertian SobolevW 1,2 space ofℝ-valued functions defined overℝN ;
H1
rad(ℝ

N ) subspace of H1(ℝN ) of O(N)-invariant functions;
H−1(ℝN ) dual space of H1(ℝN );
H1(𝒪 × ℝN−m) Hilbertian SobolevW 1,2 space ofℝ valued functions defined over𝒪×

ℝN−m;
H1
0(𝒪 × ℝ

N−m) subspace ofH1(𝒪×ℝN−m)of functionswithnull trace at the boundary
of𝒪 × ℝN−m;

Wk,℘(𝕊N ) Sobolev space of the k times weakly differentiable functions in 𝕊N

whose derivatives up to order k are L℘ summable over 𝕊N ;
Hm(𝕊N ) Hilbertian SobolevWm,2 space ofℝ valued functions defined over𝕊N ;
Hm
G (𝕊

N ) subspace of Hm(𝕊N ) of G-invariant functions;
HW 1,2(Ωψ) Hilbertian Sobolev HW 1,2 Folland–Stein space ofℝ-valued functions

defined over Ωψ;
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 EBSCOhost - printed on 2/10/2023 3:36 PM via . All use subject to https://www.ebsco.com/terms-of-use



248 | List of symbols

HW 1,2
0 (Ωψ) subspace of HW 1,2(Ωψ) of functions with null trace at the boundary

of Ωψ;
HW 1,2

0,T (Ωψ) subspace of HW 1,2
0 (Ωψ) of T-invariant functions;

HW 1,2
0,T̂

ωj
N ,j

(Ωψ) subspace of HW 1,2
0 (Ωψ) of T̂

ωj
N ,j-invariant functions;

Wk,℘
g (ℳ) Sobolev space of the k timesweakly differentiableℝ-valued functions

on the manifold ℳ = (ℳ, g) whose derivatives up to order k are L℘

summable overℳ;
H1
g(ℳ) Hilbertian SobolevW 1,2

g space ofℝ valued functions defined over the
manifoldℳ;

H1
G ,g(ℳ) subspace of H1

g(ℳ) of G -invariant functions.
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